

16111

Introduction
to PC/IX

and PC XENIX

Introduction
to PC/IX

and PC XENIX
Peter Brown

with Paul Szilard and Stephen Weeks

♦♦
ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California • Don Mills, Ontario
Wokingham, England • Amsterdam • Sydney • Singapore • Tokyo

Mexico City • Bogota • Santiago • San Juan

To the IBM 026 card punch

by which we first met

© 1985 Addison -Wesley Publishing Company Inc.

((1985 Addison-Wesley Publishers Limited

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any other means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission of the publisher.

Printed in the United States of America

The programs presented in this book have been included for their
instructional value. They have been tested with care but are not guaranteed
for any particular purpose. The publisher does not offer any warranties or
representations, nor does it accept any liabilities with respect to the programs.

Library of Congress Cataloging in Publication Data
Brown, P. J. (Peter John)

Introduction to PC/IX and PC XENIX.

Includes index.
1. UNIX (Computer operating system) 2. IBM Personal
Computer-Programming. I. Szilard, Paul. II Weeks,
Stephen, 1954- III. Title.
QA76.6.B768 1985 001.64'2 84-21684

ISBN 0-201-15032-8

ISBN 0-201-10928-X

Cover design by Marshall Henrichs

ABCDEFGHIJ-HA-898765
First printing , August 1985

ag

7C -` eia ^w:v

ss. w
rl^

Contents

Preface

Introduction UNIX AND THE IBM PC xiii

PART I: IDEAS AND CONCEPTS

Chapter 1 INTRODUCTORY BACKGROUND 3
Kinds of operating system 4

Is UNIX friendly? 4

Kinds of terminal 4

A sample 5

Commands and programs 7

Document preparation 8

On-line documentation 9

The C programming language 9

History 10

Small-is-beautiful 10

Chapter 2 SHARING YOUR COMPUTER 11

Learning how operating systems work 12

How does a computer support several simultaneous users? 13

Security and the superuser 15

Logging in 15

Finding another user's password 16

Protection between processes 16

Protecting files 17

Accounting 17

Electronic mail 17

Chapter 3 FILES 19

Binary and character files 20

Physical devices 22

Permanent and removable storage 23

V

Sharing and protecting files 23
Managing a lot of files 24
Requirements of a file system 24

Chapter 4 FILE STRUCTURE 25
Directories 26
A personal telephone directory 26
Organizing UNIX directories 27
Advantages of directories 28
Being a pioneer 29
Tree structure 29
The overall tree 30
Removable files 31
Introduction to protection 33
Owners and groups 33
Permissions 34
The Great Pest 35
Examples of protection 35
Protection for directories 36
Protection from yourself 36
Running out of file storage 36

Chapter 5 INPUT AND THE SHELL 39
Keyboards 40
Networks 40
Typing 40
Scrolling 41
Full-duplex and type-ahead 42
Terminal characteristics 43
The shell 43
Device-independence 43
Spooling 44
Pipes 45
Software tools 47
Summary 47

PART II: APPLYING THE IDEAS

Chapter 6 A SAMPLE SESSION 51
A revelation 53
Format of commands 54
Options 56
Exploring the tree 58
Relation of options to other arguments 58
Changing permissions 59
Making a directory 60

vi

Pathnames
Moving files
Copying files
Deleting files
Linking
Simultaneous writing
Combating the Great Pest

Chapter 7 COMMANDS AND THE SHELL 69,
Style 70
Options 71
Extra arguments 72
Summary of style 73
Notation for specifying syntax 74
Different shells 75
Wildcards 75
More advice on filenames 77
Extensions 79
README files 79
Summary of advice 80
The echo command 80
Redirection 80
Chickens 81
Pipes 82
Exploiting pipes 83
Executing commands in the background 83
Use of a printer 85
Defining your own commands 85
Executing shell programs 86
Making files executable 87
Redirection on shell programs 88
Bin directories 88
A sortie against Dudley 89
The shell programming language 90
User profiles 91
Summary of the shell 92

Chapter 8 EDITING
A note for BASIC users
The ed editor
The buffer
A sample session
Some changes
The general form of a command
Writing to a file
Changes within the current line
Quitting
Browsing and breaking

93

94
95
95
96

98
101

102
103

105
105

vii

Complete examples 106
Regular expressions 109
Examples of regular expressions 110
Context of editing metacharacters and wildcards 112
Use of ampersand in a replacement 112
Repeated edits 113
Regular expressions in the grep command 114
Including other files 114
Looking at the outside world 114
Further editing facilities 115
Reference examples 115
Screen editing 117

Chapter 9 DOCUMENTATION AND COMMUNICATION 119
UNIX documentation 120
Extracting information from the manual 122
Redirecting output 122
Format of manual pages 123
Other forms of help 123
Subsidiary help systems 124
Critique 124
Mail 125
Finding the current users 125
Being inquisitive 126
Communicating 126
Sending mail 128
Receiving mail 129
Controlling mail 130
Accessing remote machines 131
Summary of communication mechanisms 131

Chapter 10 ERRORS 133
Up and down 134
Initial problems 134
Hung terminals 134
The insatiable appetite 135
The inescapable program 135
The screenful of garbage 136
Error messages 136
Errors with files 137
Executing commands 139
Misuse of spaces in shell commands 139
Unintended wildcards 140
Some specific messages 140
Mean tricks 141

viii

Chapter 11 DOCUMENT PREPARATION
Text formatters
Facilities available
Some advice
Method of use
Output on a terminal
Preparing input
Comments
Page and line breaks
Macros
Arguments
Paragraphs and sections
Indented paragraphs
Displays
Preprocessors

Fonts
Use of backslash
Forbidden characters
Errors
House style
Spacing and punctuation
Raw text
Page size and spacing
Environments
The start of a document
Macro libraries
Manual pages
Dangerous combinations
Typesetting
Independence of printing devices
Summary of formatting
List of requests
Aids to good writing
Readability grades
Sentence information
Word usage
Sentence openers
Summary of style
Diction
Reaction
Summary of all aids

CD
143 S

wl r

1
.(n =r

G*i ^

1+$
1I c..a r

14A
149
149
150

150

151
153
154

156
157

157
158
158
159

160
161
161

163
164
164

165
165
165

166
166
167

168
168
169

169
170

170
170
171
171

Chapter 12 PROGRAMMING 173
Programming languages 174
Design of programming languages 174
Comparing programs 175
General impressions 176
Details of the C program 177

ix

In C you can 178
System calls 179
Executing a program 179
The executable program 180
Keeping an executable program 181
Compiling separate modules 181
Extensions 182
Compiling a multi-module program 183
Languages and processors 184
Libraries 184
Following the UNIX style 185
Summary 185

Chapter 13 ROUNDING OFF 187
Devices 188
Performing commands in the future 189
Comparing files 190
File usage 192
Changing your password 192
Seven Deadly Sins 193
Paginated printing 193
Controlling your terminal 194
Games 195
Looking at the end of a file 195
Counting 195
Versions of UNIX 196
File interchange with PC-DOS 197
PC/IX transfer commands 198
PC XENIX transfer commands 198
Summary 199

REFERENCES 201

APPENDICES 203
Appendix A: sample terminal sessions 203
Appendix B: list of commands 211

INDEX 219

x

Preface

UNIX provides a powerful and flexible means of getting computers to do what
you want them to. Once you have cleared a modest initial learning hurdle, you
will find UNIX's philosophy is a fundamentally simple and elegant one. Almost
everyone who has made the effort to understand the ideas and the mechanisms
underlying UNIX will tell you that the time was well spent: it enabled them to
reach a world that is coherent, convenient, even delightful. This book aims to
give you such an understanding, and to show enough of the detail of UNIX to
get you going. It tries to be light and readable, to be serious without being too
solemn.

The book is aimed at the beginner. All we ask of you, the reader, is that you
have actually seen a computer and used one for half an hour or so - playing
games does not count. Even if you did not really understand what you were doing,
you will at least have learned what a computer's terminal looks like, and how a
conversation between a person and a computer may proceed.

You may be intending to use UNIX solely to prepare textual material -
reports, essays, letters, books; in this case you may never have written a program
in your life and may never plan to do so. Alternatively you may be a skilled
programmer who is interested in UNIX as a framework for your programming
activities. The book does not assume anything about you other than that you are a
beginner to UNIX.

For those readers who already know an operating system our advice is to
forget what you know, and start again with a fresh mind. As we have said,
UNIX has its own philosophy of how to organize your computing, and if you
have fixed and different ideas then you will never strike up a friendship with
UNIX. This, in a way, is good news for those readers who have never used any
operating systems and are delightfully ignorant of what they are; these absolute
beginners, with their open minds, may actually be better placed than those with
more experience.

ORGANIZATION OF THE BOOK

Many books start by presenting a detailed account of how to use UNIX. This
book adopts a different approach. We firmly believe that it is worth investing a
couple of hours in reading about the underlying concepts of UNIX before

xi

plunging into details. The book is therefore divided into two Parts: Part I explains
the ideas and concepts behind UNIX, and Part II shows how to use UNIX. There
are four reasons for this approach.

• once you understand the ideas, the details follow easily. The reverse is not

true.

• your own documentation will tell you the details of your local system. Thus
buying a book covering these same details may be something of an

extravagance.

• details change with time, but concepts do not.

• UNIX has been implemented on many different computers and the details

vary.

VERSIONS OF UNIX

The last two points are worthy of expansion. The version of UNIX that you use
depends upon the vendor, the computer you use and the date of purchase. There
are now numerous `UNIX look-alikes', which have names similar to UNIX. Do
not let the variety of names confuse you: most UNIX look-alikes really do look
like UNIX. Thus, although this book is aimed at users of the IBM PC, the concepts
described apply to all versions of UNIX, save for the inevitable one or two

mavericks.

ACKNOWLEDGEMENTS

I have been fortunate, when preparing this book, to have such a wealth of
colleagues to turn to for help and advice. Among those at Kent that I have most
imposed upon are: Mike Bayliss, John Bovey, Peter Collinson (above all), Simon
Croft, Bob Eager, Ursula Fuller, Richard Hellier, Ian Utting and David Wood;
among those outside are David Duce, Eric Foxley, Brian Kernighan, Brian Reid,
Chris Tavare, Ken Thompson and Douglas Woodall. I have also been blessed with
two fine typists, Judith Farmer and Marianne Kong, who have turned hierogly-
phics on paper into coherent bit patterns on disk. Finally I must thank Heather
Brown: the worst parts of the drafts of this book were burnt away by the acid
dripping from her tongue.

Peter Brown
Canterbury

August 1984

xii

Introduction
UNIX and the IBM PC

UNIX has been implemented on many different computers. The principles, and
nearly all the details, are the same on all implementations of UNIX; there are,
however, small differences. Many implementations have their own proprietary
names, which serve to identify them uniquely. Sometimes alternative implement-
ations of UNIX are available on the same computer. In particular, this applies to
the IBM Personal Computer: two of the alternatives are IBM Personal Computer
Interactive Executive and IBM Personal Computer XENIX. Throughout this book
we shall refer to these as PC/IX and PC XENIX, respectively. All references to
PC/IX and PC XENIX should be taken to refer to the above products; likewise all
references to the IBM PC mean the IBM Personal Computer family. PC XENIX
runs on the IBM Personal Computer AT.

This book covers both PC/IX and PC XENIX. The book is an adaptation of
the general book called Starting with UNIX. In this adaptation, various details
have been changed from the original book and geared specially for PC/IX and PC
XENIX. The changes are greatest in Chapter 11, which has been completely
rewritten, and in Chapter 9. Nevertheless, most of the book still relates to UNIX in
general and covers (almost) all implementations. It is thus suitable for readers
whose immediate need is to use PC/IX or PC XENIX, but who still want to be
aware of the whole UNIX world.

The adaptation of the book has largely been performed by Paul Szilard and
Stephen Weeks, both of whom work on PC UNIX products for IBM(UK)
International Products Limited.

xiii

CHAPTER 1

Introductory
background

1, a stranger and afraid

In a world I never made.

HOUSMAN

UNIX is an example of an operating system: a program that controls the running of
a computer. If you wish to exploit any facility of your computer - be it a game-
playing program or a fancy printing device - you need to master the operating
system first. A popular saying in computing is that the operating system comes
between you and your computer. This has the implication that the operating system
gets in your way, and actually hinders you in getting at the facilities you want.

Operating systems were first produced around 1950, and since then thousands
of different operating systems have been constructed. Many of these were massive,
complicated, fussy, and thus a huge barrier to anyone wanting to use a computer.
Gradually the designers of operating systems paid more attention to the needs of the
human user. Recently the ugly adjective `user-friendly' has been coined, and used to
convey the idea that an operating system helps its users rather than hinders them.

Of the thousands of operating systems that have existed, many have been so
unfriendly that they have driven all their users away; then having apparently
achieved their aim of banishing the humans they have died of neglect. Nevertheless
in spite of the huge mortality there are still hundreds of different operating systems
in use today.

KINDS OF OPERATING SYSTEM

Operating systems come in all shapes and sizes. Some are designed to fit onto a
tiny computer, others are geared for the huge computers found in, say, head offices
of airlines. Some operating systems are geared to a particular class of user, such as
military personnel or professional computer scientists. Others, like UNIX, aim to
be a Jack-of-al]-trades.

Operating systems also differ in their range of availability. An operating
system may be tied to one type of computer, or it may be available on many
different ranges of computers. UNIX grew up on one type of computer, but
because of its success has now been implemented on numerous different ranges of
computers. In fact it is probably the most widely implemented operating system in
the world today. Its habitat ranges from huge mainframes to relatively modest
microcomputers.

IS UNIX FRIENDLY?

If you join a new group of people, the first friends you make are probably the more
talkative ones: those who approach you readily and tell you everything you need
to know about your new environment. As time goes by, you will find that the
chatterers bore you and, after a while, become downright annoying. You make
new and more solid friendships with the strong and silent types who perhaps were
rather forbidding at first. So it is with making the acquaintance of operating

systems. You will find UNIX among the strong and silent ones. UNIX is not
especially friendly on first acquaintance; it is not unfriendly either - merely
somewhat indifferent. As your acquaintance grows, you will find your friendship
blossoms - maybe to become firm enough to last a lifetime.

KINDS OF TERMINAL

In the late sixties and early seventies, people conversed with computers using a

4

terminal very much like a typewriter. These typewriter terminals are still available
today, though they no longer predominate. When you use such terminals, the
characters that you type, as well as being printed on the typewriter's paper, are
relayed to the computer. When the computer wants to talk to you, it takes control
of the typewriter and prints on the paper.

Nowadays most terminals consist of display screens that resemble television
screens - sometimes they are indeed televisions - together with a keyboard.
What you type on the keyboard is displayed on the screen, and when the computer
wants to talk to you it displays material on the screen. What appears on the screen
is almost identical to what would appear on a typewriter's paper.

Some people still prefer to use typewriter terminals, or other sorts of printing
terminal. They have two advantages: firstly they give you hard copy, i.e. printed
material you can keep or pass on to someone else; secondly, they do not share the
problem of display terminals that only 24 lines of text (or thereabouts) can be
shown at any one time.

Many UNIX systems nowadays are primarily based on display terminals but
have one printing terminal for use when hard-copy output is needed. (Some
systems have a special printer that is used exclusively for printed output and
cannot be used as a terminal at all.)

IBM PC UNIX systems treat the keyboard and display as a terminal
connected to the UNIX system. In line with the UNIX documentation, we shall
refer to them as your terminal, rather than as your console.

UNIX can be used equally well from a display terminal or a printing terminal.
Thus you can follow through the examples in this book irrespective of which type
of terminal you are using. A lot of computing terminology is still based on the old
typewriter days. In particular, if you have a display terminal, you will have to get
used to people saying that the computer `prints' something on your terminal when
they really mean it displays the material on your screen. There are several
instances in the UNIX documentation where `print' means `display'. In this book
we shall keep to the word `display', and reserve the word `print' for the cases where
material is really printed.

A SAMPLE

In order to give a feel for the use of UNIX, we show below an extract from a
UNIX session. We must emphasize, however, that we are not concerned with the
details at this stage - such matters are covered in Part II - but with general
principles. In our example, material typed by the user is in bold face , to distinguish
it from UNIX's replies.

$ Is
bridgegame

gamel

game2
jobletter796

jobletter797
jobletter798

$ cat jobletter798

5

Dear sir,

I am sorry I did not turn up for the job interview last

week, but there was a good horror film on the television

and I did not want to miss it.

I am willing to come for a new interview on Wednesday

afternoon next week, though I must leave by 4:30 to

go to the football game.

I am an expurt in UNIX, particularly the game playing

programs, so I would be a grate asset to your company.

yours sincerely,

$ spell jobletter798

expurt

$ ed jobletter798
421

/expurt/

I am an expurt in UNIX, particularly the game playing

s/purt/pert/p

I am an expert in UNIX, particularly the game playing

w

421

q

To a beginner the above may look largely incomprehensible, but it can be
explained fairly simply.

In the first line, UNIX displays a prompt, saying it is ready for the user to type.
The prompt is a dollar sign, followed by a space. The user types Is, which is a
command to UNIX to list the names of all his files. Files are one of the most
important facilities of UNIX, and we shall discuss them fully later on. For the time
being, think of a file as some information, of any nature you like, kept inside the
computer; each file is identified by a name chosen by the user. In the above example
the user has six files. We shall assume these files arose in the following way. The first
three files, which the user has called bridgegame , gamel and game2 , are concerned
with games. The other three files contain letters applying for jobs. The user began,
some while ago, by calling his job application letters jobletterl , jobletter2 , etc. He
has had a certain amount of trouble getting a job: the first 795 applications failed.
He has since deleted these files, and their names do not appear on the listing. He has
kept jobletter796 and jobletter797; although these letters have been sent, he is still
awaiting replies, so he keeps the originals for reference. Since there is a chance that
these applications will not be successful the user is now working on a new letter,
jobletter798 . This was created earlier in the current session.

To return to the above episode, UNIX, after displaying the names of files,
again produces its prompt, the dollar sign. The user can then type another
command. What he types is

6

cat jobletter798

The word cat is a curious name for a command, but what it does is to display the
contents of a given file, in this case jobletter798 . The user does this to remind himself
of what is in the file. After displaying the file, UNIX produces its prompt again.

Just to be certain that the letter is perfect, the user invokes UNIX's program
that checks spelling. Unlike cat, this command has an obvious name: spell. The
spelling check on the file jobletter798 comes up with one mis-spelling: `expurt'. It is
not clever enough to point out the spelling of `great' as `grate', since the latter is a
correct word. If spell were an exceptionally clever program - at the frontier of
current research - it would have tried to analyze the meaning of words; if so, it
would have pointed out the peculiar use of `grate'. It is, however, not that smart; it
looks at each word in isolation.

The user decides to correct his spelling error by editing, i.e. changing, his file.
To do this he applies the editor program ed to the jobletter798 file. On being
entered, the ed program displays the number of characters in the file, in this case
421. The user then types the line

/expurt/

to find the line containing expurt . (We shall explain the editor later in the book:
you will just have to take its machinations on trust for the moment. One unusual
facet of the editor is that it does not produce prompts - the user just types lines at
it.) The above line causes the editor to search through the file for expurt and
display the (first) line that contains it. The user then corrects his spelling error by
typing the magic line

s/purt/pert/p

(This actually means substitute pert in place of purt and display the result.) Having
made the change, the user types the lines w and q to finish off his editing - again
the details will be explained later. The editor gives the length of the revised
jobletter798 file. This length is, in fact, the same as before because the alteration
made no difference to the length. UNIX then displays its dollar prompt again and
the user can issue his next command. Quite likely he will now get the letter typed
on some printer attached to his computer; he can then put the letter in an envelope
and dispatch it.

Appendix A contains further examples of UNIX sessions. You will not be
able to understand all of these yet, but a quick browse through may help give you
more of a flavour of UNIX.

COMMANDS AND PROGRAMS

A relationship with a computer is a purely selfish one. You make friends with the
system that has most to offer you.

UNIX offers you two facilities. The first is an excellent file system, which as its
name implies provides a way of storing information in an orderly manner - the
UNIX analogue of a filing cabinet. We discuss file systems in Chapters 3 and 4.
The second is a rich collection of programs, all written by experts, and all pre-
packaged in a form ready to use. Most of the programs are built-in system

7

programs that are provided on all (or perhaps nearly all) UNIX implementations.
These system programs can be augmented by further programs developed locally
for your particular computer. You may eventually write programs yourself to
augment UNIX even more, though your initial aim may just be to use what is
there, rather than to add to it. The UNIX community, which straddles the world,
is a community that shares and exchanges valuable programs and data.

There are 200 or so system programs available under UNIX, and they range
from simple aids to comprehensive packages. The programs shown in the above
extract were

• Is, a program to list the names of files
• cat, a program to display the contents of a file
• spell, a program to check spelling
• ed, an editor.

Examples of others are

• a compiler for the `C' language
• a program to typeset mathematical equations
• a program to aid in plotting graphs

• a program to communicate with users on other computers.

As you can see , these are so diverse that it is unlikely that one user would want every
one of them. A typical user has a restricted sphere of interest , preparing documents,
say, and just gets to know the programs in that area. Nevertheless there is a core of
twenty or so UNIX system programs that are so basic that every user must know
them. Everyone must know how to display and to copy files, for example. The
emphasis of this book is on these core programs, and once you have mastered these,
and, of course, mastered the style of UNIX, you will easily be able to master the
more specialized programs in your particular field of application. Appendix B gives
a list of UNIX commands; this can be used for browsing or for reference.

You select the program you want to use by giving UNIX a command. The
very word `command' gives the impression that you are the boss, and that UNIX
will do exactly what you want it to. This will, we hope, eventually be the case, but,
as you probably know, beginners tend to make mistakes that cause the computer
to appear to be an untamed monster. Thus if you mentally substitute `tentative
request' for the word `command' you may get a better impression of what the
world is really like.

When you use a program you are said to execute (or run) it. In our sample
episode we executed the programs Is, cat , spell and ed . The word tool is often used
to describe a program that is an aid to achieving some larger goal . Thus the spell
program is a tool for writers.

DOCUMENT PREPARATION

UNIX uses the neutral term document to refer to any textual material. A document

may be a three-line party invitation, a letter, a poem, a report, a list of names and

addresses or a twenty-volume book. Documents are normally preserved in files, as

we saw in the jobletter examples. UNIX provides a large number of tools to aid
document preparation. Document preparation overlaps with word-processing,

and indeed some people use the two terms as synonyms. The emphasis in UNIX is

8

to provide a general set of tools, which can be applied to documents of any kind
and size, and which cover every stage of document preparation from the initial
typing of the document through to preparing the finished product for typesetting
and/or printing. Word-processing systems are often more specialized, and may be
particularly geared to a certain set of tasks performed in offices. These specialized
systems excel at their chosen task and are often very easy to learn, but they
frequently lack the flexibility and versatility of UNIX's tools.

Although UNIX users are diverse, document preparation is a common
thread. To an author, document preparation is an end in itself. To a programmer,
document preparation is a means by which he can explain his programs to
potential users; programs are useless without documentation.

In this book, we shall often select our examples from the field of document
preparation because every reader can then appreciate the examples. We do not
however assume that the reader is solely interested in this field.

ON-LINE DOCUMENTATION

Because UNIX is good for document preparation, it has been used to produce its
own documentation. Moreover, on the larger UNIX implementations, this
documentation is stored on the computer and can be displayed on any user's
terminal. If you have on-line documentation available and you want information
on a particular UNIX feature, you do not usually look it up in a printed document.
Instead you ask UNIX itself to display on your terminal the relevant page from its
documentation.

Unfortunately, the relatively small hard disks of the IBM PC family are not
big enough to store the UNIX documentation, and users will therefore not have
the documentation available interactively.

UNIX documentation is collected together in a massive tome (often) called
the UNIX Programmer's Manual. Volume 1 of this manual describes all the UNIX
commands. The only problem with this manual is that it is terse, and not written
for beginners. The very purpose of a book such as this, therefore, is to get readers
to the stage where they can appreciate the UNIX Programmer's Manual; they can
then toss the book away.

Although we have used the term UNIX Programmer's Manual above, and,
indeed, will continue to do so throughout this book, you may find that on your
UNIX the documentation has been repackaged and retitled. Volume I may, for
example, be called the UNIX System User's Manual. However, though the
packaging may look different, the actual words inside the manuals vary little
between implementations. On PC/IX the main reference document is called
PC/IX: User's Manual and on PC XENIX it is called Command Reference Manual.

THE C PROGRAMMING LANGUAGE

UNIX has been implemented using a programming language called C. The C
language was designed for UNIX, and the development of C and UNIX have
proceeded hand in hand. If, like the majority of UNIX users, you are happy to
remain an amateur, you do not need to know anything about C.

If, on the other hand, you aspire to be a professional you will need to learn C.
Learning C will enable you to change and adapt your local UNIX system and to
write system programs. It will also enable you to use some of UNIX's highly

9

specialized system programming tools. In Chapter 12 we give a brief introduction
to C, and supply further references for those who are interested.

HISTORY

Operating systems are normally written to satisfy the requirements of an
anonymous ` typical customer ' identified by marketing men. One of the prime
reasons for the success of UNIX is, paradoxically , that there were no marketing
men involved.

Work on UNIX was started in 1969 by Ken Thompson , a researcher at Bell
Laboratories ' Computing Science Research Laboratories in Murray Hill, New
Jersey. Ken Thompson 's goal was to write an operating system for himself rather
than for some anonymous user, and he therefore had a perfect understanding of
the customer 's needs.

The Murray Hill Laboratory had, and still has, one of the most talented
collections of computer scientists in the world. It is certainly in the top five, and in
a few areas even comes quite close to the University of Kent at Canterbury.

The promise of Thompson' s work attracted some of this talent , and over the
years a large number of exceptional people have contributed to UNIX. One of
them , Dennis Ritchie , became specially involved and extended UNIX 's horizons.
The result of Ritchie and Thompson 's labours came to light in their prizewinning
paper in Communications of the ACM (1974 - also reprinted in the January 1983
Anniversary issue). This paper is still excellent reading for all the wisdom it so
concisely presents . A confirmation of this wisdom is that the principles of UNIX
laid down then still hold good today.

Other people at Bell Laboratories made UNIX even more attractive, by
making it portable (i.e. capable of being moved to different computers) and by
writing programs that provided more and more facilities.

SMALL - IS-BEAUTIFUL

One of the achievements of UNIX has been to harness all the talent that has gone
into producing it. Many past projects involving armies of clever people have ended
in absolute disaster. There are two dangers. Firstly the clever people produce
something that no-one else can understand. Secondly, the problem of management
grows exponentially as teams get bigger - and even one clever person is usually
harder to manage than two less talented ones. UNIX has harnessed the talent by
adopting a small-is-beautiful philosophy. It is built out of relatively small
components, and the power comes from joining the pieces together. Components
have been produced by small teams, often one or two people. If a component is
small, it is unlikely to be too complicated for ordinary mortals to understand.

The result of UNIX's harnessing of talent, and in particular of its small-is-
beautiful philosophy, is that it is one of today's most widely-used operating
systems. Its popularity is not the result of the activities of marketing men, of
adverts on television, or of free gifts, but simply because UNIX is good.

UNIX users are now an amazingly wide range of people: they encompass
writers, businessmen, researchers, scientists and, last but not least, those who use a
computer just for the pleasure it brings.

10

CHAPTER 2

Sharing your computer

Sure, I said, heav'n did not mean,

Where I reap thou shouldst but glean,

Lay thy sheaf adown and come,

Share my harvest and my home.

HOOD

UNIX is a multi-user operating system. This means that you share the computer
with a number of other people, all using the computer at the same time. Each user
works on a separate terminal - or, let us hope so, for otherwise you have real
problems. Each user has an independent conversation with the computer. The
situation is exactly similar to a chess grand-master playing twenty simultaneous
games of chess. On some computers the UNIX grand-master may be dealing with
many more than twenty simultaneous users; the.number may even exceed a
hundred on a super-computer. These users may be all in the same building, or,
using modern communications systems, may be distributed all over the world.

Most UNIX systems are, however, much more modest: indeed we should
really have said that UNIX is potentially a multi-user system, as for example PC/
IX allows only one simultaneous user. A machine which only allows one user at a
time is called a single-user system (even though there may be several different users
who use the machine at separate times). Even if yours is a single-user UNIX it is
still worth reading this Chapter, for reasons that will become clear shortly.

The main advantage of a multi-user system is, of course, that hardware costs
can be shared. A second advantage is a more surprising one: your first reaction to
the idea of having people share a computer with you may bq the same as to the
idea of sharing your boyfriend or girlfriend; however when people share a
computer (where here and elsewhere in this Chapter the word `share' means
`simultaneously share'), they can communicate with each other - via messages on
the computer - and can co-operate in groups to achieve more than any individual
can achieve.

Even if you are not convinced by this argument, and are rather fearful of the
uncivilized masses who may share a computer with you, you will be appreciative of
the third advantage of multi-user systems like UNIX: you can share a computer
with the most civilized and reasonable person you know: yourself. This works as
follows.

If you set the computer to do a task that will take a fair amount of time,
UNIX allows you to get on with another task while you are waiting, instead of just
sitting there impatiently twiddling your thumbs. In this case your two separate
activities, or more than two if you like, share the computer in exactly the same way
as if it were shared by separate users. The only difference is that tasks belonging to
the same user all communicate with the same terminal, whereas tasks belonging to
separate users normally communicate with their separate terminals. (Hence our
previous suggestion that users of single-user UNIX systems read this Chapter.)

The term task is actually a jargon word of computing, and is used to mean a
program running in the computer. The term process is synonymous with the word
`task', and, since UNIX documentation prefers the latter term, we shall use it too.

LEARNING HOW OPERATING SYSTEMS WORK

Large and weighty books have been written on how operating systems work, and
on the problems of dealing with numerous simultaneous users. You, as a UNIX
user, do not need to know about the principles of operating systems any more than
a car driver needs to know the principles of the internal combustion engine.
However when you use UNIX, it helps to know what is happening underneath,
just as it does when you are using a car, and we shall provide a grossly over-

12

simplified sketch here. (In fact our over-simplified definition of the word `process'
will already have upset operating system gurus.) Nevertheless if you find our
explanation hard going feel free to skip this Section and the one that follows. On
the other hand, if you are inspired into seeking a deeper understanding of
operating systems, a good and comparatively small book is Lister (1979). Another
small one, devoted to multi-user systems, is Wilkes (1972); this is comparatively
old but still good. A third book, larger and more recent, is by Deitel (1983).

HOW DOES A COMPUTER SUPPORT SEVERAL SIMULTANEOUS USERS?

Surprisingly, when you first use UNIX you are probably not even aware of all the

other people who are sharing the computer with you, unless of course they are

sitting at adjacent terminals and you can actually see them. The effect is as if you

had the computer to yourself. Perhaps, in a similar way, the people simultane-

ously playing chess against a grand-master each see their world as a single game

between them and the master. Only if the computer is heavily loaded in that it has

too many users for the power of the machine, does the computer's response time

become unreasonably slow. (The response time is the time between you typing

something and the computer replying.)

Sometimes it is not so much the number of users that loads a computer, but
the greed for processing power of a few users.

To explain how UNIX caters for several simultaneous users, we shall change
our analogy from a chess grand-master to a juggler. The juggler conveys more of
an impression of speed of action, and the need for quick responses. A juggler
throws up a ball, and can then deal with other balls for a second or two until the
first ball comes down again and it is time to give it another throw.

In a similar way UNIX divides its time into small time-slots. The size of a

time-slot varies between UNIX implementations; a sample value is one second.
UNIX runs one process for a time-slot, and then suspends this process and
switches to another. This second process is run for one time-slot and then UNIX
switches to a third process. After a few more time-slots, the original process's turn
comes again, and it will be resumed where it left off. The algorithm inside an
operating system that selects which process to run is called its scheduling algorithm.

A simple scheduling algorithm is a round-robin, which selects each task in turn in a
strict order. This is just like the juggler - unless the juggler is pulling a sensational
trick whereby one ball overtakes another. Years of study have now been devoted
to scheduling algorithms, and algorithms much more sophisticated than the
round-robin have been devised. Modern algorithms frequently try to punish
greedy people by cutting down on their shares. Most implementations of UNIX
attempt to do this, and also to make response time as fast as possible.

Nevertheless if there are twelve users on the computer and each simultane-
ously starts a process that takes five minutes of computation, even the cleverest
scheduling algorithm cannot prevent there being a lapse of an hour before the last
one is complete. In fact it will be longer than an hour because of the extra time
needed for UNIX to switch between processes. Thus the computer will appear to a
user to be at least twelve times as slow as it would be if he were the only user. (This
book adopts the convention that users are male but the superuser - a character
still to be introduced - is female. While it seems impossible to have any

13

convention that reads well and offends no-one, we hope that this will at least
prevent protest marches descending on Canterbury.)

Although we have just cited a case where a process runs twelve times slower
than it might we stand by our claim that for most of the time a single user is not
inconvenienced by the others. This is because it is extremely rare for all users to be
running processes at the same time. There are two reasons for this.

The first is simply a matter of observation. If you take a snapshot of a UNIX
system supporting a dozen users, then you might find that six of the users are
thinking, three are typing input and the other three are waiting while a process is
running. (We assume that the people in the room are trying to do something
useful, and are working independently. If they were all playing a spaceship game,
then different considerations would apply.)

Even the fastest typist is slow in comparison with the computer's processing
speed, so our three people typing are not putting any great load on the computer.
Obviously the six people thinking are no load on the computer either, so this just
leaves the three people who are running processes.

Of these, we shall assume that one is doing a simple interactive job, which we
shall here assume to be editing. The user has typed an editing command and the
computer has to execute it. Normally this will not need much computing power -
with luck the process can be completed well within one of our time-slots, so this
again does not take much power from the computer. Indeed in a great many cases
a process will voluntarily relinquish its time-slot before this expires.

The second user, we shall assume, is performing some operation on a file.
Files are typically stored on a computer storage device called a disk. The second
user's process consumes a few time-slots and then needs to input some more data
from a file. Input from a file, though faster than input from a terminal, is still slow
by computer standards. In order that the industrious computer is not kept hanging
around, cursing the slowness of its file input and thinking that it could have
checked all the spelling in War and Peace during the time it is kept waiting, most
computers have an instruction of the form "get on with this filing operation and
tell me when it is complete". While the slow filing work is proceeding the computer
tackles its other work. In particular it can give a time-slot to our third user.

Our third user has a program that calculates for two hours, and then outputs
a single number that is the result of all its labours. (When his program finishes, the
user makes a random change to it and runs it for two more hours. By chance, he
happens to be a physicist.) His process uses all the time-slots the scheduling
algorithm gives it. Its only pause comes when it outputs a line to the terminal.
Writing to the terminal is extremely slow, even compared with getting at
information stored in files, and gives the chance for others to get some time-slots.
Even when this process is not doing any input/output and thus asking for all the
time-slots it can get, a good scheduling algorithm should ensure that the other
users get their fair share by giving them priority over the greedy person.

In conclusion, therefore, an operating system can support a lot of users
because

• at any one time most users are thinking or typing
• most processes pause periodically to do some input/output
• a good scheduling algorithm will keep the greedy users in check

14

• some processes, particularly the transfer of information to or from a file,
can go on in the background while the computer gets on with other

processes.

The last point can be expanded: in general, a computer system may be built
out of several sub-computers, all of which can be simultaneously working away at

different tasks. This is called multi-processing. However UNIX gives its users the
impression that they are talking to a single entity, so you do not need to worry
about such details.

SECURITY AND THE SUPERUSER

Sharing your computer with others would be no pleasure if your `friends' could
change your files or interfere with your UNIX processes. To prevent this, UNIX
has a number of security rules, and mechanisms to enforce them.

Most of the rules we live by are laid down by governments. Numerically the
most common form of government is the dictatorship. UNIX is also a dictator-
ship. There is one user who makes the rules by which other users live, and who
controls the enforcement of rules. The dictator is called the superuser. The

superuser controls whether you can use the computer, how much space your files
can occupy, which files you can change and even which UNIX commands you can
use. She (our convention being to assume a female superuser) does not impose her
will by brute strength. You will not find a huge figure glowering over you as you sit
at your terminal. Instead the superuser's power lies in her control over certain
mechanisms within UNIX. You may not even know who she is.

Generally the superuser is a blessing to you; she performs a host of thankless
behind-the-scenes tasks to make your use of UNIX more pleasant. If the superuser
were replaced by anarchy, your UNIX system would soon collapse.

LOGGING IN

Immediately you try to use UNIX you become aware of the superuser's power.
She controls who can use the UNIX she manages. Each user has to have a login

name, which the superuser (or her agent) allocates. Typically your login name is
your initials or your first name. Login names must be unique, and hence if there is

already a peter using your UNIX, you cannot be peter too.
The word `login' comes from a computer jargon term. Each time you use a

multi-user operating system you must first make yourself known to the computer.

This is called logging in. Once logged in you can then use the system until you say

good-bye by logging out. The period you spend logged in is called a session.

Assuming your superuser permits it, a session may last anything from a few
seconds to several hours. Moreover you might have a number of sessions in a day.

There may be limits on the number of users who can be simultaneously logged

in, i.e. using the computer. Obviously, since each terminal can only support one
user at a time, the physical limit on the number of simultaneous users is the
number of terminals that can connect to a UNIX system, but sometimes the
superuser sets the actual limit lower than this. For a personal UNIX system there
may be only one terminal and hence one simultaneous user. A small shared UNIX
might, for example, have a limit of a dozen users. The total number of users of the

15

system may still number hundreds, since the limit only applies to the number of
people logged in at the same time.

To prevent imposters each UNIX login name has an associated secret
password. Every time you log in you need to type both your login name and your
password. Normally every character you type at the keyboard appears on the
screen. This does not, however, happen when you type your password: if the
password appeared on the screen its very purpose, secrecy, would be lost; thus
UNIX suppresses it. Even so, beware of the sneaky person who watches your
fingers when you type your password.

In Chapter 6, when we introduce the details of using UNIX, we shall show an
example of logging in.

Your password is something you control; once logged in you can change it to
anything you like. Do not try to be too clever. The most humiliating experience in
computing is to forget your own password, and have to crawl to the superuser
(assuming you know who she is) and ask her to give you a new password.

FINDING ANOTHER USER'S PASSWORD

Human ingenuity the world over has been devoted to finding other people's
passwords.

The first approach is through psychology. A large number of people choose as
their password the name of the thing they most love in the world: their girlfriend
or boyfriend, a sports team or perhaps themselves. It is amazing how often a guess
along these lines is correct.

A second approach, open to those who are programmers, is to write subtle
programs that deceive the innocent. A particularly simple and appealing one runs as
follows. You write a program that displays on the terminal the exact prompt that
UNIX would give when it expected someone to login. You then leave your program
in this state and vacate your terminal. After a while your prey appears. He follows
the normal logging in procedure, typing his login name and password. What your
program does is to write these to a file, output a message to the user such as `wrong
password' and log out. The real UNIX logging in prompt then appears. Your prey
thinks he mistyped his password and indeed when he tries a second time all goes
well, so he thinks no more of it. Later on you log in and examine the file that your
sneaky program created, and you have the password. If you are really lucky you will
catch the superuser. Once you have her password, all the power of the system is
yours. You log in as superuser, change her password and the bloodless coup is
complete. The superuser's login name is, by the way, nothing flamboyant like
Napolean or Thatcher; it is simply root . We shall see why later.

If you are not a programmer you may not have understood the above
explanation. Nevertheless, if you work in a UNIX environment where people
delight in playing tricks on one another, our explanation will have served a
purpose if it simply puts you on your guard.

PROTECTION BETWEEN PROCESSES

Although UNIX may be running several simultaneous processes, you can safely
assume that other people ' s processes will not upset yours . For example there is no

16

danger, when someone else uses the spell program at the same time as you, that
their spelling errors will get mixed up with yours.

You may, if you get to be an advanced user of UNIX, intentionally create two
different processes of your own which communicate with one another. However
such matters are beyond the scope of this introductory book.

The important point to remember is that when you start with UNIX you will
not need to use such facilities, and thus can sleep soundly.

PROTECTING FILES

Although your processes are safe from interference by other users, the material
you keep in your files might not be. Indeed if you are working in a team you may
be quite happy for other members of the team to change your files. For example,
our user in Chapter 1 might even be happy for his friends to try to change and
improve his jobletter files. However you normally want protection, and UNIX
provides a means of achieving this. It does not, of course, protect you from the all-
embracing powers of the superuser, who can change or delete anything she likes.

ACCOUNTING

UNIX, like any other multi-user system, may keep records of how much of the
computer's resources each user has consumed. These resources include file space,
processing time and connect time (i.e. the time for which you are logged in to
UNIX, irrespective of whether you are thinking or doing something).

On some UNIX implementations users pay real money for the resources they
use, and the computer's accounting information is used to calculate the charges.
Even if, as is likely with an IBM PC, you are lucky enough to be using a UNIX
system with no charges, the accounting figures still come in useful for managing the
system. This is because of the phenomenon that if a computing resource is freely
available, and pleasant to use like UNIX, then users will swamp it. Thus the space for
files, however large, soon becomes exhausted; similarly, processing power, how-
ever great, gets lapped up until response time becomes slow and further users are
driven away.

Because of this phenomenon, there must be firm management to punish the
greedy and protect the unselfish users like you. This is done by the superuser, and,
at the second-to-second level by the scheduling algorithm, using the accounting
information that UNIX provides.

ELECTRONIC MAIL

If a computer systc.n has a fair number of users they will want to communicate
with one another. To facilitate this, UNIX supports a system of electronic mail
whereby users can send each other messages. Messages sent to a user who is not
currently logged in are preserved until he next does so; he can then display his
mail. Often the first message that UNIX displays when you log in is `You have
mail'.

On some of the bigger UNIX implementations, which support large and
diverse user populations, electronic mail has become the preferred method of
communication, to the detriment of written notes or the use of the telephone.

17

Indeed the term `mail' comes to mean electronic mail rather than ordinary mail, a
convention we shall adopt in this book. Some UNIX users log in once or twice a
day just to read their mail.

The nature of messages sent obviously depends on the user community. On
some implementations, special interest groups flourish and use UNIX to exchange
information on, say, wines. On others the mail is predominantly concerned with
administrative matters or with availability and use of information ("My address
list has now been updated to include your suggestions", "You have eight copies of
similar information, delete some of them".)

18

All the information you keep inside the computer is put into files. The word `file' is
in fact a rather inappropriate one. The word is derived from the sort of file you put
in a filing cabinet; such files tend to contain a lot of separate pieces of paper:
letters, bills, reports and so on.

When you start to use UNIX files do not try to put entirely separate entities,
such as a letter and an invoice, in the same file. Instead if two pieces of information
are different in nature, create separate files for them. You are always free to combine
files later on, when you have more experience of managing your information.

This is not to say that you cannot create big files in UNIX; files can be up to a
billion characters, and a single file could therefore contain a mailing list of millions
of names and addresses. Nevertheless, in line with UNIX's small-is-beautiful
approach, it is still often best to split such large files into a collection of smaller
files, particularly if you are going to work on individual parts separately. Thus a
long report might be divided into separate chapters, each in a different file.

Any information you want preserved from one UNIX session to the next needs
to be stored in files. (You may also use `temporary' files that you throw away at the
end of a session.) Even modest users find that they soon build up a collection of tens,
perhaps hundreds, of files. In fact as a UNIX user you tend to generate more files
than if you use other operating systems. One reason for this is the small-is-beautiful
philosophy; a second reason is that, because UNIX has so many excellent facilities,
you use it for many more purposes that you first imagine. For example if you use

UNIX mainly for writing C programs you will also use UNIX to produce
documentation for your programs, and perhaps to keep records of your modifica-
tions and to build up statistical information about performance.

Do not concern yourself at this stage about how UNIX files are actually
stored. All you need to know is that UNIX provides a file system which looks after
all your files for you. Your only task is to choose a name, the filename, by which
you will know each file you create. UNIX allows any sequence of characters to act
as a filename but we shall keep to sequences of letters and/or digits (except for
extensions - see later), and we recommend you do the same.

We saw six examples of filenames in our sample session in Chapter 1. Further
examples are mailinglist, f and division2.

BINARY AND CHARACTER FILES

The majority of files contain documents , where we use the word ` document' to
cover any material represented by a sequence of characters . Thus a document
could be anything from a love poem to the textual version of a program. Files that
contain documents are called character files. UNIX does not, of course, know or
care what a file represents . When you look at a file , you may rhapsodize over its
beauty as a poem , or alternatively you may admire its elegance as a program, but
inside the computer all files are just sequences of characters . The end of a line is
represented as a special ` newline' character , and this character is treated by UNIX
just like any other. Thus the beautiful love poem

I adore
you even more
than Southampton's superb
Football Clerb.

20

is represented by the sequence of characters: `I', space, `a', `d', `o', `r', `e',newline,

`y', `o', `u', space,
In addition to these character files, UNIX supports binary files. If you are not

a programmer you will not be interested in creating these, but you should at least
know what they are. If you are little the wiser after reading this Chapter, do not
worry too much - you can try reading it again after you have had a little more

experience.
As you may know even if you are not a programmer, programs are often

converted from their textual (or source) form to a sequence of individual bits that
can be directly executed by the computer. It is convenient to store this binary form
of a program in the file system, as well as the source form. This saves re-translating
the program to binary form each time it is used. When you use a UNIX system
program, such as Is, you use its binary form directly.

Some programs are only issued in binary form, because their originators want
to keep the source form secret (sometimes for commercial reasons, sometimes
because of shame). In addition it is common practice to store certain data in
binary form. Thus high-level programming languages such as C provide ways of

reading and writing data in binary form.
Even within character files, although we have pretended these are represented

as sequences of characters, each character is really stored as a numeric code. The
numeric codes are defined by some coding system. There are a number of different
standard coding systems (if it is not a contradiction in terms to speak of different
standards) of which ASCII (American Standard Code for Information Inter-
change) is the most popular. Another popular code, ISO, is very similar to ASCII.

Each character is stored as a byte, which consists of 8 bits. In this book we are
certainly not interested in talking about individual bits - indeed some readers
may not know what a bit is. It is quite adequate to think of a byte as representing a
decimal value in the range 0 to 255. If we assume the ASCII code our poem would
be stored as the sequence of bytes

73 32 97 100 111 114 101 ...

No wonder that UNIX is often gruff and grumpy, given that it sees romance as a

series of numbers.
One of the most pleasant properties of UNIX is that all files are treated in the

same way. This is one of the many features of UNIX that you do not really
appreciate unless you have used another operating system, where different types of
file require different commands. To UNIX every file is simply a sequence of bytes,
and you can, for example, use the same command to copy a file irrespective of
whether the file contains a poem or a program, and irrespective of whether it is a
character file or a binary file. This freedom to do what you like with any file
nevertheless has its dangers in that you are free to do silly things as well as sensible
things, as we shall shortly see.

Fortunately most users need not be concerned with coding systems and bytes.
However some apparently peculiar behaviour of your computer may become
clearer if you realize that even character files are actually encoded inside the
computer as numbers. When UNIX displays a file it converts the numbers back to
character form, using the coding system in reverse. As a result the internal
numbers come out on a display as the characters you expect. Your freedom to do

21

what you like with any file allows you to try to decode and display a file that is not
a character file but a binary file. In other words you can try to convert to
characters some bytes that do not represent characters at all. What comes out
when you do this is an apparently random sequence of characters. (The characters
may, by chance, represent a coherent sequence of words, but the chances of
producing the complete works of Shakespeare are not great.) A random sequence
of characters is not particularly dramatic, but the fireworks begin when one of the
character codes you are trying to display happens to correspond to a code that
changes the behaviour of your terminal. Such codes may cause the screen to clear,
to go into reverse-video, or a sound to be produced. With luck you may get a Son
et Lumiere show.

PHYSICAL DEVICES

One of the greatest services that UNIX provides is to disguise from its users the
intricacies of the physical devices on which files are stored. In this Section we show
some of these unseen favours that UNIX performs.

Your files will probably be stored on such devices as disks and tapes. These
physical devices place a large number of nasty constraints on their usage. Typically
files must be divided into blocks of information - a block might, for example,
consist of 512 bytes. There are huge problems in keeping track of which pieces of
storage are in use, and which are free. There are further problems in 'fragmenta-
tion': sometimes the unused parts of storage might consist of lots of very small
pieces, whereas it is desirable (or perhaps necessary) to store information in one
large contiguous piece.

In early operating systems for mainframe computers the poor user was put in
the front line to battle with these problems. The same is true for some modern
operating systems that run on very small computers. UNIX does all the fighting
for you. To you, the user, a file is simply a sequence of characters (bytes). As a
UNIX user you are completely unaware of such matters as block size and the
layout of information. Indeed you can be completely unware of what physical
medium is used to store your files. If you are a woodworker and think of a file
as a tool for rubbing away your wood, then you could be under the incredible
illusion that computers stored their information as tiny scratches on wood. This
illusion would not prevent you using UNIX effectively. More to the point, even
though storage technology is constantly changing, the UNIX user's view of a file
remains constant. It may even be that the next dramatic advance in storage
technology will indeed be to store information as scratches on wood. The wood
may even be removable, so that the terms `log in' and `log out' will have literal
meanings.

You do not even have to worry about the size of each of your files. UNIX will
reserve room for each file however big it is; UNIX does not mind if the file
subsequently changes in size. The only limits are the total size of physical storage
and the less-than-onerous requirement than a single file cannot exceed a billion
characters - since most systems do not have a billion characters of storage
anyway this requirement is similar to one than says that no individual may own
more than a thousand tons of gold.

22

PERMANENT AND REMOVABLE STORAGE

Although you need not concern yourself with the physical details of storage media,
there is one general property you must know: whether the storage used for files is

permanent or removable.
In some disk storage systems, the disk itself is removable. Thus the user (or,

for a large computer, the operator) can take one disk out - unload it - and load a

different disk instead. In other disk storage systems - often called fixed or hard

disks - removal is not possible; such disks provide permanent storage. (It is also
possible to provide permanent storage with removable disks which are, in fact,

never removed when UNIX is running.)
All UNIX systems provide some permanent file space. To exploit the full

power of UNIX you need a reasonable amount of storage for files: most systems
provide millions of characters and some provide hundreds of millions.

In some UNIX implementations, all the file system is in permanent storage.
On others, the permanent storage is supplemented by removable storage. The
removable storage may be a largish disk that is loaded when a certain group of
users is active, or it may be a relatively small disk (e.g. a floppy diskette) that
belongs to one user and is loaded when he logs in and unloaded when he logs out.

UNIX has an integrated approach that covers all file storage, whether
permanent or removable. The permanent storage may be spread over several
different physical disks, but you the user are not concerned with this any more than
with the characteristics of the disks themselves. To you the UNIX file system is one
uniform whole. If you come to use removable storage, on the other hand, you need
to know something about where your files are stored in order to know what to

load.

SHARING AND PROTECTING FILES

Just as you share your computer with others you share its file system. It is through
the file system that you can gain by the presence of other users. UNIX allows you
to access files belonging to other users, and on the majority of UNIX implementa-
tions a co-operative spirit has blossomed. People use each other's files, whether
they are job application letters, drafts of books, programs or data, and as a result
everyone is more productive.

Sad to say, societies based on free and open sharing rarely work. In few
communities do people leave their houses open with their possessions available to
all, though somewhere in the world there may still be societies - doubtless
dubbed as `primitive' - in this happy state. Instead the majority of people have

locks on their doors.
UNIX, too, provides its locks. You can protect your files so that others

cannot change them or, if you want to be really protective, cannot look at them at
all. Doubtless you will need to put these protection locks on some of your own
files, but try to keep your UNIX community as open as possible. Significantly,
Bourne (1983) reports that few people within Bell Laboratories itself protect their
files; this is not unrelated to the success of UNIX as a co-operative project.

In the next Chapter, we shall cover some details about file access and

protection.

23

Not only may you want to access files belonging to other users, but you will
also definitely want to access some files provided by UNIX itself. UNIX provides
a large number of public files. They include all the built-in programs available to
you - these are generally made available in binary form. They also include the
files that provide the interactive documentation of your UNIX system.

Thus the file system is an amalgam of your files, public UNIX files and other
people's files. All of these are provided as an integrated whole.

MANAGING A LOT OF FILES

After using UNIX for a year, you might be the proud possessor of a hundred
different files. If you have no system for organizing your files, the time will soon
come when you forget which file relates to which of your projects. (If you have
ever used diskettes, you may have been forced into a partial solution of this
problem. A typical diskette might contain 10 to 20 files; if you have a hundred files,
and thus require 5 to 10 different floppies, you are forced into thinking how your
files are best divided up into separate families - one family for each floppy.)

Irrespective of the physical media on which files are stored, operating systems
should help you manage your files by providing an overall structure which allows
you to divide your files into small families, and to see how the families relate to one
another.

REQUIREMENTS OF A FILE SYSTEM

In the first part of this Chapter we discussed the underlying details of the way
individual files are stored. To summarize, what the user needs to know is that

• files may represent character or binary information, but all files are stored
inside the computer in an identical way: as a sequence of bytes. Details of
the precise coding system used for character files are not important

• on some UNIX implementations, files may be removable

In the second part of this Chapter we discussed the way files are used. This was in
preparation for the next Chapter, which is concerned with how files relate to each
other. We have identified the following requirements of a file system.

• it should provide some overall structure to help you manage your files
• it should allow you access to your own files, to other user's files and to

public UNIX files
• it should provide a protection mechanism
• it should cover all files, even removable ones

As a trailer to the next Chapter, we can say that if you have used files on other
operating systems you are due for a pleasant surprise. The UNIX file system is so
simple and uniform that you may well wonder why your previous operating
system was so complicated.

24

Providing a good file system was the first aim of UNIX, and its file system is the
cornerstone of the whole operating system.

The fundamental mechanism which succeeds, single-handedly, in meeting
most of the requirements we outlined at the end of the previous Chapter is the
hierarchical file structure. The basic building block of this hierarchy is the
directory, so we shall start by explaining this.

DIRECTORIES

Every file system must keep records of the names of all existing files and where
they are stored. This is called a directory. Directories may also contain further
information about each file, such as a specification of who can use it.

On some operating systems, file systems have one directory for each user,
while on others there is one directory for each disk or tape. UNIX, since it does
not concern the user with physical media, uses the former approach. However the
concept is considerably generalized. A directory is treated as an ordinary file; in
particular it has a name just like any other filename. (A directory is actually a
binary file because, although filenames within the directory are stored in character
form, information about files is represented in binary form.)

Since a directory is an ordinary file, one or more of the files within a directory
can themselves be directories. This simple statement is the foundation of the entire
UNIX file system.

We shall explain why by first considering a separate application: a personal
telephone directory.

A PERSONAL TELEPHONE DIRECTORY

Assume you spend a lot of time making telephone calls and in particular in looking
up people's numbers in a massive telephone directory. To save time, you decide to
write on a small card the names and telephone numbers of the people you most
frequently call. This card is placed beside your phone, and serves as your personal
directory. After a while your directory card gets full so you decide to expand your
system to several cards. When designing this new system you ponder on why you use
the telephone and conclude that you use it for four separate activities

• flirting
• seeking information
• arguing
• seeking reassurance

You therefore create four directory cards labelled flirts, boffins , arguers and
flatterers, and write the appropriate names and telephone numbers on each
directory card. Some names may be in more than one directory. These four new
directories are sub-directories of your main directory. Your main directory is
revised to contain only the names that you call very often indeed, plus references
to the sub-directories. The main card might therefore read

anne 7699

arguers see separate directory
boffins see separate directory

26

derek 7698
flatterers see separate directory
flirts see separate directory
mother 01 - 999- 9999

The main directory is normally beside your phone. However if you are in the
mood for arguing you put the arguers directory beside your phone, in place of the
main directory. After a happy hour spent arguing you may well return to the main
directory again, and perhaps then select another sub-directory card.

If this system works well you can extend it to deeper levels. Assume the
arguers directory gets full. You then divide it into two sub-directory cards,
aggressive and sarcastic , say, and only leave in the arguers directory your favourite
(i.e. most hated) contacts - the ones you phone almost every time you feel the
urge to argue. Your arguers directory now reads

aggressive see separate directory
heather 7550
sarcastic see separate directory

Now this may or may not be a sensible way to organize your personal
telephone directories, but it is a good way to organize a file system, and it is the
method UNIX uses.

ORGANIZING UNIX DIRECTORIES

When you use UNIX you have, at all times, a current directory; this is analogous
to the card that is currently beside the phone. You can change your current
directory as often as you wish.

When you first log in, your current directory is a directory called your home
directory, the analogy of the main telephone directory card. You place in your
home directory the files you use almost every time you log in. In our case we shall
assume that there are two such files: our love poem, in a file called lovepoem and,
more cherished still, the file reply , which is the reply from the loved one. For each
of our projects we create sub-directories of the main directory. In particular we
have a directory model which contains the files for the economic modelling system
we are building, and a directory articles , which is the magazine we edit. The model
directory contains two files: program and data ; the articles directory contains three
files: comment, news and reviews. The structure of our directory is shown in
Figure 4.1.

Indeed the structure might be extended further if names such as reviews were
themselves directories.

You can give different files the same name, provided they are in separate
directories. Thus we could extend each of our directories to include a file lovepoem,
where each of these lovepoem files contained a different love poem.

It is also possible to do the opposite: to have the same file referenced from
separate directories. In this case the file can go under the same name in each

27

hard-sell). Most companies, for example, are managed as trees. Indeed the
commonest way of showing how a company is organized is to present the
information in the form of a tree.

Tree structures are widely used in computer science to represent the structur-
ing of data. Thus the idea of using a tree to represent a file system is not new; it is
an application of a method well proven over time. UNIX's use of a tree-structured
file system has been so successful that the idea has been adopted by others and has
almost become a norm for all but the simplest file systems.

If you want to read more about the uses of trees, a good book is Knuth's
(1973) The Art of Computer Programming, Volume 1, one of the classics of
computing. This contains a wealth of information, of which the material on trees is
only a small part.

Computer scientists, being perverse folk, tend to draw their trees upside
down. We shall follow this convention - indeed our earlier picture of a directory
structure was drawn as a tree with the root, the home directory, at the top. UNIX
has a terminology which is based on taking the file system tree to be a family tree.
Thus a directory within a directory is said to be a child, and similarly the child
looks on the directory above it as its parent. Hence in our example model is a child
of the home directory, and the home directory is the parent of model . (Each child
has only one parent, so the UNIX view is actually of a family tree of a uni-sexual
species.)

THE OVERALL TREE

We have now covered one of the requirements of a file system stated at the end of
Chapter 3: providing a structure that helps you manage your files. It is time to
move on to two other requirements: accessing other files and catering fdr
removable files. Both of these are satisfied by an extension of the tree structure we
have just described.

We have so far confined ourselves to a small part of a complete tree. Your
home directory is actually a sub-directory of a larger structure, which is a single
tree representing the whole of the UNIX file system. The root of this tree is a
directory called root - you can, perhaps, begin to see why root is the login name
of the superuser. The root directory contains a number of sub-directories, one of
which is called usr. (UNIX liks to b concis so it oftn lays out lttrs such as `e'. Many
of us considr this xcssiv.) The usr directory contains all the files created by UNIX
users. The public files built into the UNIX system are in other sub-directories of
root; one of these sub-directories is called bin, and contains binary versions of the
UNIX programs you might want to use. UNIX file systems are often structured so
that the usr directory consists solely of a number of sub-directories, one for each
user; each sub-directory is a user's home directory and has as its name the user's
login name. Thus if your login name is you and another person's login name is him,
the tree will be as shown in Figure 4.2.

The advantage of this structure is that you can refer to any file in the file
system, simply by giving its pathname from the root. To reference the file
lovepoem , for example, the path is defined as follows

30

root

bin usr

spell you him

articles lovepoem model reply

comment news reviews data program

Figure 4.2 The complete directory tree

• start at the root
• go to the directory usr
• then go to directory you

• the file lovepoem is in this directory

This is written as the UNIX pathname

/usr/you /lovepoem

The `/' at the beginning is an abbreviation for root. This pathname could be used
by you or any other user to refer to lovepoem, irrespective of the current directory.
If lovepoem is in the current directory, this relatively verbose pathname is
unnecessary. The name lovepoem suffices. Similarly, if you recall our sample
UNIX session back in Chapter 1, the jobletter798 file was in our current directory,
so it was unnecessary to refer to it using a full pathname.

The overall tree structure offers the same advantages as each individual user's
tree structure, but magnified. Thus it becomes easier not only to see how each
user's files relate to one another, but also to see the interrelationship of all the files
in the UNIX system. Directories can be kept small. There may be thousands of
files in a UNIX system but the very biggest directory might only contain a hundred
files. Small directories make searching for files quicker.

REMOVABLE FILES

The overall tree structure offers a further advantage: it covers the requirement to
cater for removable file storage.

If you look at our sample tree displayed in Figure 4.2, and delete from it the
directory you and everything below you (i .e. remove all your files) then the result is
still a valid tree structure. The same is true of any other sub-tree of the main tree.
Thus if the files within each removable storage device are organized as a tree, then
this sub-tree can be connected and disconnected from the main tree as devices (e.g.
disks) are loaded and unloaded. A complete tree on a removable device is itself
called a file system. Thus the main UNIX file system can itself contain subsidiary
file systems, just as a directory can contain subsidiary directories.

To make the same point in a different way, if all your files are stored on a

31

floppy diskette then the tree growing from you is a separate file system stored on
this diskette. Before you first use any part of a file system stored on a removable
device, you must load the device and tell UNIX to incorporate into its overall file
system the file system that is stored on the device. This is called mounting the
device. The UNIX command needed to mount a device varies between implement-
ations: sometimes only the superuser is allowed to mount. Before a device is
unloaded it must be unmounted. If you forget to unmount, the UNIX file system
will contain files that are no longer loaded, and this will cause big problems if a
user tries to access one of these files. Removable devices are valuable for
transferring files to a UNIX system running on a different computer: however,
such transfers are only guaranteed between two identical UNIX implementations.
If two different UNIXes are involved, you may well run into problems due to
incompatible use of devices. If you try to go even further and transfer file systems
between UNIX and a different operating system, then your problems will probably
be insuperable - unless some extra conversion software has been written for the
purpose. The safest rule is to assume that, if you mount a device, that device must
contain a file system that was created on your own UNIX, or by a UNIX
implementation identical to your own. Virgin diskettes must have been initialized
to contain a null UNIX file system.

Even if the file storage in your UNIX is all permanent it may still be split up
into separate file systems. Members of the IBM PC family that run UNIX usually
have a hard disk plus one or more diskette drives. (On some other computers,
diskettes are called floppy disks, and UNIX documentation often uses the latter
term.) The hard disk is typically divided up into a number of separate areas, called
partitions, and these areas can be regarded as logically separate disks. One
partition is reserved for your permanent file system, but the other partitions,
together with all diskettes that contain UNIX file systems, are removable. The
commands for mounting and unmounting are simply mount and umount , respect-
ively. Some special transfer programs have been written to ease file transfer with
the PC-DOS operating system; these are described in Chapter 13.

The advantage of splitting permanent storage into several separate file systems
is that, with luck, if a tragedy befalls a disk then only one file system will be lost.
This is no consolation if the lost one is the main file system or the file system
containing your files, but otherwise you may not be greatly inconvenienced. Taken
as a whole, the total sum of the misery is less than if a disk crash had knocked the
whole system out.

All this is really the concern of the superuser rather than the average user.
Boundaries between subsidiary file systems are quite invisible to the normal user;
the entire UNIX file space appears as a single tree. The only impact it has on the
average user is that there is a restriction that you must not link (give two names to
the same file) across file systems. This is such a minor restriction that many people
have used UNIX for years without ever realizing that their system's permanent
disk storage was divided into separate file systems.

The UNIX mechanism for mounting devices is actually more general than just
catering for removable devices: you can, if you wish, mount and unmount file
systems that are in permanent storage; you can thus unmount a corrupt file system.

In fact, by including the above discussion, we have probably come too much
under the influence of our friend Dudley Detail. Whichever UNIX implementa-

32

tion you use you will soon meet Dudley. He knows all there is to know about
UNIX, and even if you go to him for the simplest piece of advice, he will give you
the benefit of a twenty-minute monologue about the finer points of UNIX. The
only problem is that you come away not quite knowing what the answer to your
simple question really was.

INTRODUCTION TO PROTECTION

We have now seen that UNIX' s hierarchical file store , by itself, covers three of our
requirements for a file system : providing a structure for managing your own files,
allowing access to other files, and catering for permanent and removable files. Our
last requirement , a protection system, requires a further mechanism and we shall
now concentrate on this. Two concepts that are important in UNIX's protection
system are those of an ` owner' and a `group'.

OWNERS AND GROUPS

Every UNIX file has an owner. Normally the owner is represented by his login
name. If you create a file you own it for life. This applies even if the file is
moved into someone else's directory. If another person makes a copy of one of
your files then certainly they may own the copy, but the original - the one that
will fetch the high price with the antique collectors of the year 2100 - is still yours.
Files that are created as part of the UNIX system, rather than by an ordinary user,
are owned by root, the superuser; now, perhaps, you can understand her true
power.

UNIX allows users to be formed into groups. These are normally people
working together on the same project, often being groups of friends as well. UNIX
is a formidable dictatorship. You do not decide who your friends are; the
superuser defines your friends for you by fixing which group you belong to. Some
users are loners and do not even bother to find out if they belong to a group;
others derive benefit from groups by allowing members of their group to have
privileges, in the form of access to files, denied to the world in general.

As well as their use in protection, groups may also be used for accounting. If
groups are regarded as an important part of your UNIX implementation you may
find that your home directory is not a child of the usr directory but is a child of a
group directory that comes between you and usr.

Some UNIX users have several different login names. You may, for example,
be a part-time librarian and keep the library records on the computer. In this case
it would be sensible to have a separate login name, librarian say, for your library
work, and to keep the login name you for the rest of your work. The advantage of
this dual identity is that if somebody else subsequently takes over your library
work, then he can simply take over the librarian login name. You just tell him the
password. He then owns all the librarian 's files, but you still own the rest of your
files. (If a computer is used by a single person, she might still have several different
login names to represent different sides of her character - one of which is, of
course, the superuser.) If you have several different login names these need not
even be in the same group.

33

PERMISSIONS

The basis of the UNIX protection system is that you can attach to each file some
permissions , which control who can do what with the file. There are three kinds of
permission

• permission to read
• permission to write (i.e. to change)
• permission to execute (i.e. to use the file as a program - see below)

(A few readers may be unfamiliar with the computer jargon of reading and
writing. The terms correspond closely to their normal English usage . Reading
means looking at the contents of a file, and writing means altering a file in any
way, i.e. creating a file, deleting it or changing its contents.)

The three kinds of permission are controlled independently , though certain
combinations , such as a file that can be written but not read , are rather odd.

In addition these three kinds of permission can be applied to each of the three
classes of user

• the owner
• other users in the owner's group
• users not in the owner's group - we call these users `the rest of the world'

If a class of user does not have permission to, say, write a file then UNIX prevents
such users from doing so and thus the file is protected from writing. As an example
of the use of permissions to achieve protection, if you own a file you can set its
permissions so that

• you can both read and write the file
• members of your group can only read it
• the rest of the world cannot even read it

Since there are three kinds of permission, and three classes of user that each
permission can be applied to, there is a total of nine independent permission
attributes attached to each file. (Dudley says there is a tenth one, used by UNIX
system programs, and he is very willing to explain it to you in full, if you have an
hour to spare.) Since a directory is an ordinary file, permission attributes can be
applied to directories too.

The terminology on what we call permissions varies: some people use the term
access rights to mean the same thing. Moreover UNIX documentation uses the
word mode to mean the set of permissions attached to a file, but we shall try to
avoid using this somewhat meaningless term. We shall use the natural terminol-
ogy, also used by UNIX documentation, that read permission means permission to
read, write permission means permission to write, and execute permission means
permission to execute.

There are no rules, of course, for the ultimate dictator, the superuser. She can
examine or even delete all your files whenever she likes, and your permission
mechanisms are not worth the bytes they are written on.

The initial permissions, when you first create a file, are defined by the UNIX
system. Often these will allow you to read and write, but all others only to read.
You are, however, free to change the permissions at any time for each file you own
- but not for files you do not own. If you are interested in changing the initial

34

settings of permissions you may find this more difficult; start by looking at your
local UNIX documentation under the somewhat unlikely heading of umask.

Execute permission is only applicable to three kinds of file
• binary versions of programs
• files of commands (see Chapter 7)
• directories. In this case the meaning of `execute' is rather different, as we

shall explain shortly.

If a file is not one of these it should never have an execute permission set.
Permission to execute a file that, by its nature, cannot be executed is like
permission to commit suicide (by execution?).

THE GREAT PEST

That fine book The Small Garden by C.E. Lucas Phillips (Pan, 1980) is full of
wisdom about gardening. (The next edition will contain a special warning to
computer scientists to stop them planting their trees upside down.) One of the
book's most apt statements is that of all the pests that damage the garden, the
most dangerous one is you yourself. The same applies to file systems. You can
make elaborate arrangements to prevent others deleting your most valuable files,
but the most likely person to delete them, albeit accidentally, is you yourself. Thus
the protections that you can set against yourself are quite appropriate. We shall be
more specific later.

Meanwhile ruminate on the sad fact that, lurking within each of us, lies a
powerful and immortal Great Pest, ever ready to spring when we are off our guard.

EXAMPLES OF PROTECTION

To show how you might use UNIX's protection mechanisms we shall present two
specific examples.

Example 1
You have developed a superb new chess playing program, which, whatever

the quality of its human opponent, puts up a great fight but always just loses. Such
a program would have millions of buyers and is certain to make your fortune.
Although you are happy for people in your group to use the program you do not
want anyone to steal it. What you do, therefore, is to prevent anyone other than
you, the owner, from even reading the file containing your source program.
However you create a second file, which contains the binary form of the program,
and give your group execute permission for this binary file. You do not give them
permission to read it, since otherwise they could make a copy of it.

Example 2
When you produce your best selling novel using UNIX, you put each

different chapter into a separate file. (Later on we have a specific example where
we do just this.) You give the rest of your group read permission for each chapter.
Assuming there are young children outside the group you give the rest of the world
permission to read only those chapters that do not contain torrid love scenes.

35

PROTECTION FOR DIRECTORIES

You notionally `execute' a directory D when you use it to find one of the files
within D. Hence if a person is to be able to get at any of these files, or any files in
sub-directories of D, he must have execute permission for D. Permission to read
just gives the ability to display the names of the files in D, but not to get at the files
themselves. Permission to write to a directory allows someone to add new files to
the directory; he can also delete any file in the directory for which he has
permission to write (on some UNIX implementations he does not even need that).

The permissions attached to a directory need not be the same as the
permissions for files within that directory. Thus you may allow everyone to read
and execute a particular directory, but they may be prevented from looking at
individual files in the directory. Indeed all the files in the directory could have
permission to read denied, thus making the permission to read and execute the
directory an almost empty privilege.

If you deny the rest of the world permission to execute and read your home
directory, then you have a secret set of files (except, of course, to the superuser).
When another user examines the UNIX file system it will appear to him that the
tree is cut off at you, and nothing below this is apparently present. This user in turn
could cut you off from his home directory so that you would not see his part of the
tree. Each user therefore sees a tree that is a subset of the tree that is really there.
Two different users may well see different subsets.

PROTECTION FROM YOURSELF

Some people's handwriting is so awful that it is hard to believe they can read it
themselves. Nevertheless there does not seem much of a case for files that the
owner cannot even read.

Many people, as a defence against the Great Pest, protect themselves from
writing their own files. Assuming the files have permission to read, they are then
`read-only' files. Owners create read-only files by giving write permission to
nobody, not even themselves. This works because UNIX recognizes such files as a
special case. When you, as owner, try to write to such a file UNIX does not give its
normal response of "No, you cannot"; instead it asks "Do you really want to write
to this read-only file?" (though in reality it puts the question more tersely). If your
answer is an explicit `yes', UNIX proceeds to write. You do however have the
chance to say `no' if you got it wrong and were just about to destroy your most
valued possession. We shall give an explicit example of this `second chance'
technique in Chapter 6.

RUNNING OUT OF FILE STORAGE

No-one ever wants to throw away a file. There is always some chance that it may
come in useful in the future, if only to a historian interested in the primitive things
people used to do with computers.

Nevertheless you will one day have to face up to deleting files, particularly if
your UNIX is based mainly on permanent storage. By its very nature this is of a
fixed total size. To delay the unhappy day, and to make it less unhappy when it
does come, it is well worth adopting the discipline that at the end of each session

36

you delete files that you do not really need. There will always be files of
intermediate results, or early versions of documents that have subsequently been
superseded, such as the first 795 job letters in Chapter 1. If you keep these files for
too long and, by their very nature, do not use them, you will forget what they are.
You will then be afraid to delete them in case their usage, now forgotten, is
actually something vital. This may sound fanciful to you, but it happens all the
time.

Even when the unhappy day comes, some UNIX implementations alleviate
the heartache by providing an archiving system. In such a system you can preserve
files on a back-up medium such as floppy diskettes. Then if you really need the file
after you have deleted it from the main file system it can at least be retrieved from
the archive, though you may need to give an hour's or even a day's notice to do so.
Some large UNIX implementations, for example, may have human operators
remote from the users, who mount the archiving diskettes at some set time each day.
(If you read about archives in UNIX documentation, beware a double use of the
term: a special UNIX convention is that `archive' means a library of program
fragments; this contrasts with the normal use of `archive' to mean back-up copies
of files.)

37

CHAPTER 5

Input and the shell

Sweet Echo, sweetest nymph, that liv'st unseen
Within thy airy shell.
MILTON

The purpose of this Chapter is to explain how you type your input to UNIX, and
how UNIX interprets what you have typed. We assume your input device is a
keyboard, but similar principles are likely to apply to other input media, even to
speech input.

KEYBOARDS

If you look at a number of different makes of computer keyboard you will find they
are much the same in terms of the printable characters they offer. There may be
small variations, such as a dollar-sign on one keyboard where there is a pound-sign
on another, or an acute accent in place of a double-quote, but these variations are
comparatively trivial. What is not trivial is the difference in control characters: the
keys with labels such as DEL, ESC, BREAK etc. which perform a function rather
than display a character. These vary greatly between keyboards. Operating systems
are designed to cater for as many types of terminal as possible: they assume that
certain functions will be available, but the key used to achieve a given function may
vary between keyboards. You will therefore need to find out what key your
particular terminal uses for some of the functions described in this Chapter.

NETWORKS

It is becoming increasingly common for computers to be connected together in
networks. One advantage is that it may be possible to send electronic mail to other
users all over the network; several businesses are totally based on such mail as the
primary method of circulating information. On some networks you only have access
to one computer, and electronic mail might be the only means of communicating
with the rest of the network. On other networks there may be a variety of alternative
computer systems that you can use, provided you have valid login names, and these
might run different operating systems. (In some environments it is even possible to
use several different operating systems simultaneously from the same terminal. For a
beginner, though, one operating system is quite enough.)

Networks are good for users. They offer variety, and extra facilities for
communication with both humans and computer files. Nevertheless they add a
small extra complication to your communication with UNIX. Before logging in to
UNIX you may have to identify which computer you wish to use, and indeed you
may have to log in to the network first. After you have logged in you may find that
the software which controls the network imposes extra rules on the control
characters on your terminal. Ideally this effect should be minimal as a good
network is invisible to its users.

In this book, we ignore any possible extra complications imposed by
networks, but clearly if you are communicating with UNIX via a network you will
need to find out about your local rules before you can even begin your
acquaintance with UNIX itself.

TYPING

UNIX normally communicates with you one line at a time. There are certainly
some programs that run under UNIX which take their input in raw-mode, i.e. one
character at a time, but these are the exception rather than the rule.

40

Thus in general UNIX does not analyse the line you have typed until you type
the key that indicates the end of the line. A beneficial consequence of this is that if
you make a typing error and notice it, you can correct your error before UNIX
acts on what you have typed . (Terminals are notoriously variable in the key that
they use for the RETURN key , i.e. the key that indicates the end of a line. On the
keyboard of the IBM PC , the `Enter ' key is used ; this key is labelled with the
symbol

Other keyboards use keys variously labelled `CR', `Newline' or `Return'. In this
book we use the term Enter key to cover whatever key is used to indicate the end of
a line.)

There are two ways of correcting typing errors. By far the most commonly
used is to erase the last character you typed. You do this by typing a special key
which we call the erase key. Like the Enter key, the erase key varies between
terminals. On the IBM PC keyboard it is the `backspace' key, which is labelled

4-

You can press the erase key as many times as you like. Thus by pressing it five
times you erase the last five characters you typed. You cannot, of course, erase
more characters than you have typed on the current line.

If you make a real mess of typing a line you can `kill' the line by typing
another special key, the exact position of which depends on your terminal. You
can then start a fresh attempt at typing the line. On the IBM PC keyboard you kill
a line by holding down the CONTROL key (the key labelled `Ctrl') and
simultaneously typing V.

In addition to the erase and kill keys, some terminals may provide further
`local editing' facilities, such as insertion of extra characters at any desired point in
the current line.

SCROLLING

If you are using UNIX from a conventional display terminal, you may have a
problem when a command outputs more than a screenful of information. An
example would be a command that displays a long file. It is likely that the
information will be output so fast that you will not have time to read it before it
vanishes off the top of the screen.

A `solution' to the problem is to leave you to do the work. Most terminals
have special control characters that cause the display to freeze and unfreeze.
Typically you can freeze a display by holding down the Ctrl key and

41

typing `s' (in a similar way to holding the SHIFT key down if you want a
capital `S'). We shall, in this book, follow the popular practice of using AX
to mean the character x typed with the CONTROL key held down. When
you type AS the display freezes so that you can read it before the information
disappears; typing n q unfreezes the display so that information starts flashing by
again.

However, IBM Personal Computer UNIX implementations provide a better
approach than this: they have programs called `more', `page' or `1' which can be
used to browse through long files. With these programs, UNIX stops at the end of
the first screenful of information to give you a chance to read it. When you are
ready to proceed you type a key and the next screenful duly appears. A common
rule is that the Enter key advances one line, and any other key advances to the next
screenful. This is an instance of scrolling - a term used because of a resemblance
to unrolling a scroll.

FULL-DUPLEX AND TYPE-AHEAD

Your terminal will be connected to UNIX in a full-duplex manner, which means
that you can talk to UNIX at the same time as it talks to you. In general, having
both parties talking at the same time is no way to conduct a civilized conversation,
but there are three circumstances where simultaneous talking can be valuable.

The first can be exemplified thus: you are browsing round the filing system
and find that Dudley has a file called hints . Thinking this may contain useful
advice on UNIX, and noticing that he generously allows everybody permission to
read this file, you display it. Unfortunately it turns out to consist of a host of
trivial detail, and, worse, it goes on and on. UNIX has displayed fifty pages and
there is no sign of an end. To cater for emergencies such as this, UNIX has a
break-in key. On your IBM PC this function is provided by the key marked `Del'. If
you press the break-in key while UNIX is talking to you it will (in general) shut up
immediately and ask for the next command. You can use the break-in key to stop
UNIX when it is not producing output, but silently executing a very long
command; this is particularly useful when you belatedly discover you typed the
wrong command in the first place. Before you start to use any operating system
find out what the break-in key is on your terminal, since it can be a godsend.
Indeed it is a pity that humans are not fitted with break-in keys too.

The act of breaking-in is called, in the UNIX documentation, an interrupt.
We shall, however, continue to use the term break-in, since in the general world
of computing the word interrupt has a wider meaning than a user-inspired break-
in.

The second use of simultaneous talking is that you can type ahead. Thus if
your current UNIX process is taking a long time, you can type further lines of
input while you are waiting. These lines must anticipate what UNIX requires.
Thus if you know the next thing UNIX will do is to ask a yes/no question, you can
answer `yes' before the question is asked. Similarly, if you know UNIX will next
ask for a command you can type the next command you want done. You can,
within reason, type ahead as far as you like. UNIX simply takes the lines you have
typed when it is ready for them. Since you can type ahead even while UNIX is
producing output, it can be an example of simultaneous talking. Obviously, you
will only type ahead when you have become quite familiar with UNIX.

42

The third instance of simultaneous talking occurs when you set UNIX doing
several processes at the same time. While you are talking to one process, another
process might talk back to you. This can result in a confusing jumble on your
display; we shall discuss in Chapter 7 how to curb such anarchy.

TERMINAL CHARACTERISTICS

We have said that the erase key, the kill key and the break-in key are dependent on
your keyboard. There is a host of other terminal characteristics concerned with

either your input device (e.g. keyboard) or your output device (e.g. display). These
include size of screen, cursor movements and graphics facilities. Some UNIX
implementations have a special file which describes the characteristics of each of
the types of terminal attached to the system. Using this information, UNIX
programs with special requirements, such as graphics, can adapt their behaviour
to reflect the type of terminal they are using, so that their appearance is as uniform
as possible. Sometimes, however, UNIX gets the wrong idea about a terminal and,
if this happens, communication with the user is at best garbled and at worst non-
existent. Solving such problems usually needs expert help.

Users do, however, have some control over their terminal's behaviour. There
is a command called stty which can be used for such purposes as changing the
erase key or switching between the monochrome and colour displays. We discuss
this further in Chapter 13.

THE SHELL

Let us assume you have successfully mastered your terminal, have logged into
UNIX, and are confidently ready to type lines of input. Having done all this it
comes as something of a shock to learn that UNIX itself does not look at the lines
you type. Instead UNIX is surrounded by a shell, which, like that of a tortoise or

snail, protects it from people outside.
The shell is actually your friend. It converts the commands you type into an

internal form which UNIX programs expect. As a result it offers a powerful and
pleasant way of specifying your commands.

A further potential advantage of this intermediary shell is that each user can
have his own shell. Your shell is just an ordinary program which translates the
commands you type into UNIX's internal format. In practice, however, most
users have the same shell, though some second-class UNIX citizens may be given a
restricted shell that only allows a limited number of commands. We shall assume
the standard shell in this book (though, to be exact, there are several different
variants of this `standard' as we shall explain in Chapter 7).

DEVICE-INDEPENDENCE

Output from UNIX normally comes to your terminal. This applies, for instance,
to all the output in the example in Chapter 1, such as the list of files and the job
letter. Sometimes you may want to send the output from one of your commands to
a file rather than to your terminal; you can then view this file at some time in the
future. For example if the spell program had come up with a hundred spelling

43

errors, you might well wish to preserve the errors in a file, so that you could deal
with them later - when you had a couple of hours to spare. To accomplish this
you add to your command an indication to redirect the output to the place you
want. The shell takes care of the redirection for you, and indeed the UNIX
underneath knows nothing about it. A similar principle applies to redirection of
input.

The way this redirection is implemented is as follows. Three notional files
always exist:

• the standard input
• the standard output
• the standard error output

These all normally correspond to your terminal. Thus the concept of input/output
to a file is generalized to include input/output to a terminal, as well as to a real file
in the file system. Obviously terminal files cannot be used to store information -
this must be done in real files. By default, each command takes its input from the
standard input and sends its output to the standard output - hence the names.
When you redirect the input or output the effect is temporarily to redefine the
standard input and/or the standard output to be something other than your
terminal. Redirection is usually applied to a single command, but it can be applied
to a sequence of commands.

The importance of the standard error output arises when the standard output
is redirected. Even if you redirect your output to a file you still want error
messages (for example a message from UNIX that you have typed an incorrect
command) to come to your terminal. This is why the two types of output are kept
notionally separate. The standard error output is only redirected away from the
terminal in unusual circumstances; doing so effectively says "Do not tell me if
something goes wrong; just make a note of it somewhere".

As well as your terminal, you may have other input or output devices attached
to your computer. If so, you can use the redirection mechanism to communicate
with them. We shall give some precise details in Chapter 13. However, the most
common such device is a printer, and communication with this is normally done
through the `spooling' mechanism that we are just about to introduce.

SPOOLING

Assume you have a printer on your UNIX system . This will usually be shared by
all the other users of your system. It does not mean , however, that if another user
starts printing something while you are also using the printer , then the two sets of
printing are garbled together and you have to get to work with scissors cutting out
the parts that are yours . UNIX prevents this problem.

Moreover UNIX does not even require you to wait until your printing is
finished before you can get on with something else. Instead it copies all material to
be printed to a special internal file of its own . Individual requests for printing are
kept separate to remove the subsequent need for scissors . A separate process prints
out the material that is in the special internal file , but the process works away in
the background while the users are getting on with their ordinary work . You can
even ask for a file to be printed while the printer is temporarily out-of-action.

44

UNIX simply keeps the material to be printed in its internal file, and does the
printing when the printer becomes available again.

In all cases the only delay the user at the terminal sees when he asks for
printing is the time taken for UNIX to copy the requisite material to its internal
file. This time is not usually even noticeable.

The mechanism UNIX uses to accomplish this magic is called spooling (where
`spool' stands for Simultaneous Peripheral Operation On Line, though the
acronym is unlikely to leave anyone the wiser). Spooling can be applied to other
input/output devices besides printers. It can also be used in the provision of
facilities such as electronic mail to be sent round a network. Here spooling mirrors
a Post Office that piles up mail in the sorting office for several days before doing
anything about it, though hopefully UNIX delays are seconds rather than days.

PIPES

We now come to one of the finest features of UNIX. It is a feature that is valuable
to both writers and users of UNIX programs. We shall start by introducing a
problem that faces the program writer, and shall then go on to describe a facility
that helps solve this problem. The solution has the happy property that it makes
all UNIX programs easier to use, irrespective of whether they are built-in
programs or programs written by users.

If you provide a program that is used by others you might expect to become
some kind of hero. However in reality, far from being a hero, you are continually
attacked and harassed with an insidious weapon called a WIBNI. WIBNIs arise

because everyone knows that programs in general, and yours in particular, are
flexible and can easily be changed. Thus whenever one of the users of your
program comes across a feature that is lacking, or a feature whose design is not to
his taste, he asks you to change your program accordingly.

To take a specific example, assume you yourself have implemented a UNIX

program called keats which takes as input the dullest of prose and turns it into the
finest of poetry. You think you have done your bit for the world by producing this
magic program, but no. One user says it would be nice if lines of the poem could be
numbered; another says it would be nice if the prose input could be in encrypted
form (to thwart the plagiarist), while a third says it would be nice if the poems were
put in a form for a typesetter. You then understand what WIBNI means:
"Wouldn't It Be Nice If ... T'

If you implemented all the WIBNIs, your keats program would get larger and
larger, and more and more cumbersome to use. The result of such an exercise is
frequently that as a program is `improved' to provide more and more facilities it
actually gets worse.

The writers of UNIX programs faced these WIBNIs, just like everyone else.
However they came up with an answer that enabled them to retain their small-is-
beautiful philosophy but still to fend off the WIBNIs. The answer is a pipe. (The

word is a reference to a pipeline, rather than to the offensive weapon some people
put in their mouths and drive others away by polluting the atmosphere with smoke

fumes.)
Figure 5.1 illustrates a pipe containing two programs.

45

INPUT program 1

Figure 5.1 The form of a pipe

program2 OUTPUT

Here the standard output from program] acts as the standard input to program2.
A UNIX user can connect any desired programs together in a pipe. (Obviously the
programs must be ones that have input and/or output, in order that the pipe
connections be made.) The user of keats can create the pipe shown in Figure 5.2.

INPUT decoding

L program

Figure 5.2 A pipe that decodes the input to keats

keats OUTPUT

The input to this pipe is some encrypted prose. The decoding program converts it
to ordinary prose and passes this directly to keats , which turns it into poetry, the
final output. Thus the overall effect of the pipe is to turn encrypted prose into
poetry.

UNIX designers are rightly proud of pipes, and their use pervades the whole
design philosophy of UNIX programs. The philosophy can be summarized as `Do
not write large and complicated programs. Instead provide small modular
components, each of which does a single job and does it well." The user can then
connect these modules together in any desired manner to achieve the function he
requires. In our example keats is good at poetry but knows nothing of encryption.
The decoding program has the opposite properties. Combined together in a pipe
they provide good encryption together with good poetry.

Pipes can be as long as you like. UNIX has a typesetting program troff, which
we shall describe later; unlike keats , which sadly is hypothetical, troff is a real
UNIX program, as perhaps you guessed by its supremely unmemorable name.
Troff can be added to our pipe, as shown in Figure 5.3.

INPUT-
decoding
program

keats troff OUTPUT

Figure 5.3 The pipe extended to typeset the output from keats

In this pipe the input is some encrypted prose and the final output is some poetry,
presented in a form that can be fed to a typesetting machine.

If your UNIX has a program that prefixes line numbers to lines of text, this
too could be added to the above pipe, thus satisfying all the WIBNIs we cited
above.

Pipes are so important and so valuable in UNIX that some programs are

46

designed mainly with a view to being a component of a pipe, rather than to be used
by themselves. Such programs are known as filters. A typical filter would be a
program to delete all blank lines from a file.

The only real limitation on pipes is that you cannot build a complicated
network where several programs feed into one. Entrepreneurs will, however, be

glad to know that you can go as far as building a form of T-joint in a pipe; those
interested should examine their UNIX documentation for the tee program.

SOFTWARE TOOLS

If you are a programmer and are interested in exploring further the ideas of
building programs out of small modules, then you cannot do better than to read
Software Tools by Kernighan and Plauger (1976). (The examples in that book are
expressed in the language RATFOR, an extension of FORTRAN. If you prefer
the examples to be in Pascal there is an alternative form of the book: Software
Tools in Pascal. Whichever book you read, the ideas apply to all programming
languages.) The book is one of the wisest and best written books in computing.
Remarkably for a book written by two people, there is a perfect uniformity of style
and content. To give you a flavour of the style the following is an extract from the
introduction.

"Whenever possible we will build more complicated programs up from the
simpler; whenever possible we will avoid building at all, by finding new uses for
existing tools, singly or in combinations. Our programs work together; their
cumulative effect is much greater than you could get from a similar collection of
programs that you couldn't easily connect. By the end of the book you will have
been introduced to a set of tools that solve many problems you encounter as a
programmer."

UNIX is an excellent base on which to implement the ideals of Software
Tools, and indeed these very ideals permeate almost all of UNIX itself.

SUMMARY

This ends Part I of the book. We hope you are now well prepared to assimilate the
practical details of UNIX that are to be described in Part 11, and then to
experiment with UNIX itself - knowing what you are doing.

Some people learn by reading, some learn by doing. Successful people do
both. When you get deep into Part II you may wish to refer back to Part 1. Above
all we hope that the two Parts of the book form a complementary partnership: we
hope that an understanding of the concepts - even an incomplete understanding
- will help you to master practical details, and we hope that practical experience
will help clarify concepts.

47

CHAPTER 6

A sample session

When I play with my cat, who knows whether I make her more
sport than she makes me?
MONTAIGNE

We begin this Part of the book by following through a sample UNIX session. You
can take two alternative approaches to such sample sessions. The first is simply to
read them just like the other parts of the book. The second is to log in to your
UNIX implementation - assuming one is available to you - and follow the
sample sessions through, perhaps making a few variations of your own. The first
approach is probably better, but it is a matter of personal taste. Whichever
approach you take, it is important at some stage to have a comprehensive `getting
to know you' session with your UNIX - explore its tree, experiment with its
protection mechanism and try out its commands. The only question is whether
there is merit in following a sample script or whether it is better to give rein to your
own imagination.

The prompts that UNIX displays when it is ready for a command are `$' for
normal mortals, `##' for the superuser, and `%' when using an alternative shell called
the C shell. (The C shell is available, as an alternative, on PC XENIX. Some other
UNIX implementations may have yet more different prompts.) In our examples we
will use the `$' prompt.

Our sample sessions show what should appear at a terminal. We follow the
convention of Chapter 1: material typed by the user is in bold face to distinguish it
from material output by UNIX. (Do not worry if you have forgotten all the details
of the brief example in Chapter 1; we start again from scratch here.) The way we
follow through a session is to show an episode consisting of a few commands and
then to give a verbal explanation of what happened in the episode. We then go on
to the next episode. The point of resumption is indicated by a line of form

directory name

The directory name is the name of your current directory, and is included to
remind you where the previous episode left off. If at any stage you want to remind
yourself of the nature of a particular command, or to find out more about it,
consult Appendix B.

You start by logging in. UNIX will display the prompt `login:'. To get this
prompt it may be necessary first to wake your terminal up to your presence. Do
this by hitting it, just as you would wake up a person. For a terminal you hit it on
the keyboard. The keys to hit vary between systems, but repeated pressing of the
space, BREAK or Enter keys jolt many systems from their slumbers.

Before proceeding any further, check that your terminal is set for lower case
typing - we certainly hope you have not got an upper-case-only terminal. Thus
make sure that keys such as SHIFT LOCK or ALPHA LOCK are not set. UNIX
is a fanatical devotee of lower case typing; all its commands and other built-in
filenames are (almost) exclusively made up of lower case letters. To start with, it is
best to go along with UNIX's fanaticism; later on you can perhaps use the odd
upper case letter in a filename. The contents of your files can, of course, be in upper
or lower case according to your aesthetics. If you type your login name in upper
case, UNIX assumes you are a lost soul with an upper-case-only terminal, and
thereafter expects you to type everything in upper case.

You log in by typing your login name and password. When you type these
lines, as with every other line of input to UNIX, do not forget to type the

52

Enter key at the end. In fact as a general rule if your UNIX appears to go dead,
then a likely cause is that it is still waiting for you to type the Enter key.

Our log in proceeds as follows

login: me

Password: cleverme

The password will not, we hope, actually be displayed on the screen.
On logging in, we may get some messages and/or some mail. A common

message is one requesting everyone to delete some of their files because the
permanent disk space is nearly full. There may be a threat that if people do not
delete their own files, the superuser will do it for them. In our case we do not have
any files yet, so we can, for once, laugh at the superuser's threats.

UNIX will then display its command prompt, asking you to type a command.
In our sample session the command prompt is `$'.

Brian Kernighan (1978) has written an excellent introductory tutorial entitled
UNIX for beginners. In this the user starts by asking UNIX what the date is, and,
apparently satisfied, gets involved in writing a book. Since Kernighan's paper,
almost every UNIX tutorial session has started with the user asking for the date,
and later going on to his book. We shall continue this fine tradition.

Our first action, therefore, is to use the date command. We then ask for a
listing of all the files in the current directory by using the Is command. (The name
Is means List Sorted - the names are sorted into alphabetical order.) The current
directory when we log in is our home directory, which has no files in it since we
have not used UNIX before. We assume the name of our home directory is
/usr/me.

/usr/me

$ date
Fri Nov 11 15:16:49 GMT 1983

$ Is

You can see that the date command, as a bonus, displays the time as well as the
date. The time is normally the local time; in our case it is Greenwich Mean Time,
as represented by the GMT.

A REVELATION

Notice how, in reply to our Is command, UNIX says nothing at all. Our current
directory is empty, so the contents is null. UNIX does not say "Your current
directory is empty, so I have nothing to list"; instead it simply lists nothing, since
that is exactly what we asked for.

It can now be revealed for the first time that there was a third person, in
addition to Thompson and Ritchie, who was responsible for the original design of
UNIX. He is a hermit who does his very best to avoid human conversation.
Because he shuns publicity his contribution to UNIX has been overlooked, but it
was he who designed nearly all the parts of UNIX that interface with the user.

53

This hermit prefers to be known (if he has to be known at all) by the name hrmt.
The silent response to Is is typical of hrmt's work, as is the very name Is - though
hrmt would have preferred the command to have a one-character name rather
than its outrageously long two-character name; his view was unfortunately
overruled.

FORMAT OF COMMANDS

The general form of a UNIX command consists of the command name optionally
followed by a list of one or more arguments. Each argument is a string of
characters preceded by a space (or by several spaces and/or tabs if you really want
to make the command look a long one). An example of a command with one
argument is

ed jobletter798

Here the argument, jobletter798 , specifies which file is to be edited by the ed
program. The only commands used so far in this Chapter, date and Is, were not
given any arguments, but we shall soon show some examples of commands that
are. In the UNIX documentation arguments are often referred to as words.

In order to force UNIX to say something when we next use Is, we shall create
some files. This can be done with the cat command. In order that you can have fun
with cat, rather than vice-versa, we shall devote some time to explaining it in detail
- thus making you the master.

The cat command is a fine example of the economy of UNIX in covering a
wide range of functions with a single command. It is also an example of hrmt's
sense of economy in names: cat stands for `concatenate' (i.e. join together). The cat
command, therefore, can be used to join a lot of files together. It copies each of
these files to the standard output, leaving the original files intact. As we have said-
earlier, the standard output corresponds to the terminal, unless it is redirected
elsewhere.

Cat can be used to concatenate a single file; the output is then a copy of this
file. Hence cat can be used as a command to copy a file. The name of the file to be
`concatenated' is supplied as an argument to cat. For example

cat x

copies the file x to the terminal, i.e. displays it. Thus the general command to
concatenate files also serves to display a single file - indeed this is its most
frequent usage.

The generalization of cat is carried one stage further. If you do not specify
any file at all to be concatenated, i.e. just type

cat

then UNIX takes this null specification to mean that the `file' is to be taken from
the standard input, again the terminal. The result is that this minimal form of cat
takes lines of input from the terminal, and copies them back to the terminal. (It is a
quirk of cat that in this case it does not produce the output until it has had a
reasonable gulp of the input. Thus it does not echo each line as it is typed.)

To summarize the behaviour of cat:

54

(1) cat on its own simply copies back what is typed on the terminal
(2) cat of a single file copies that file
(3) cat of several files makes a copy consisting of all the files concatenated
(4) by default the output goes to the terminal but you can redirect it to a file.

In our sample session we shall start by exploring case (1) - not a very useful
facility but it lays the groundwork. In order that we do not go on typing forever we
need a way of indicating when our input is finished. (We could use the break-in
key, but this should be reserved for an emergency stop rather than a planned one.)
In UNIX you indicate the end of input by typing Ad (the letter `d' with the
CONTROL key held down).

/usr/me

$ cat
I hate parrots
I am not talking to you any more

Ad

I hate parrots

I am not talking to you any more

Usually the n d is not echoed on the display screen, though certain UNIX systems
display something like `(EOF)' - meaning End of File - in its place.

Look at the second, third and fourth lines of the above episode. You will see
that UNIX gave no prompt at all for these lines, which were the input to cat. This
silence is the normal practice of UNIX when it is asking for data from the
standard input, but it can be disconcerting to beginners.

Now let us do something more useful by redirecting the output from cat to a
file. We do this by writing the `>' sign followed (without the need for spaces in
between) by the name of the file we want to create.

/usr/me

$ cat > scores

Southampton 9 Tottenham 0

Unikent Computing 6 Rest of the world 1

Ad

$ cat scores

Southampton 9 Tottenham 0

Unikent Computing 6 Rest of the world 1

$

Here our first use of cat is still case (1) but with the output redirected to the file

scores . The second use of cat is case (2); it displays the file scores that we have just

created.

We shall now create a second file, the start of the best-selling thriller we are
writing.

/usr/me

55

$ cat > bestseller

Greg Daimler entered the room . There were seven bodies on
the floor . He coughed . A body fell from the top of the
bookcase . He looked up. He saw ten more bodies stuck to
the ceiling.

Ad

Our apologies for stopping this just as you were becoming riveted to the story, but

you cannot expect to get two books for the price of one.

If we now type Is it will have something to tell us.

/usr/me

$ Is

bestseller

scores

Once files are created, then, unless you explicitly delete them, they will last

until the dying day of your UNIX system - or at least they should do. In
particular if you now logged out, and logged in again a month or even a year later
then an Is should still give the above result.

Before proceeding to further matters, we shall finish our exploration of cat by
giving it the rare pleasure of actually doing some concatenating.

/usr/me

$ cat scores bestseller

Southampton 9 Tottenham 0

Unikent Computing 6 Rest of the world 1

Greg Daimler entered the room. There were seven bodies on

the floor. He coughed. A body fell from the top of the

bookcase. He looked up. He saw ten more bodies stuck to

the ceiling.

OPTIONS

When we have used the Is command we have not given it any arguments. It can,
however, have arguments. In particular the argument -1 means that you want a
`long' listing of the files in the directory. An argument that begins with a minus
sign is called an option. Options cause a command to act differently from normal;
we discuss this further later in this Chapter. For the Is command the `long' option
gives you extra information about each file in the directory.

/usr/me

$ Is -1

total 2

- rw- r- -r- - 1 me 182 Nov 11 15:25 bestseller

-rw-r--r-- 1 me 076 Nov 11 15:22 scores

56

As you can see, there is a lot of information here. The first line output by Is gives
the total number of storage units (they are called blocks) occupied by our files.
Since our files are small, each occupies one block and so the total is two. The
remaining lines of the listing give details about each of the files bestseller and
scores . We shall explain the former.

The line about bestseller starts with the ten-character string

-rw-r--r--

This tells you the permissions for bestseller . Within this string the minus sign
effectively represents `no'. The first character of the string has a special meaning:
here a d says the file is a directory. Since neither of our files is a directory, they both
have a minus sign for the first character. The remaining nine characters are divided
into threes. The first three give the permissions for the owner of the file.

r means allowed to read
w means allowed to write
x means allowed to execute

Thus we can read and write bestseller , but not execute it. (It would be ludicrous to
execute it as it is not an executable file.) The next three characters, an r followed by
two minus signs, give the permissions for members of our group, and the last three
characters, also an r followed by two minus signs, give the permissions for
everyone else. A complete analysis of the ten-character string is therefore

- not a directory
r owner can read
w owner can write
- owner cannot execute
r other members of the owner's group can read
- other members of the owner's group cannot write
- other members of the owner's group cannot execute
r non-members of the owner's group can read
- non-members of the owner's group cannot write
- non-members of the owner's group cannot execute

These permissions, the initial ones set when the file is created, are fixed by UNIX
itself. Your UNIX may be different from ours but the above permissions are
reasonable, though perhaps over-protective.

The next piece of information about bestseller is the number `1'. This is the
`number of links' - a concept we explain more fully later in this Chapter; broadly
speaking it means the number of filenames that are synonymous with this one.
Since bestseller is stand-alone, like most files are, the number of links is 1.

After the `1' comes the owner of the file. Since we created the file, we are the
proud owner. It is possible to have in your directory files that are owned by other
people and are, as it were, on loan to you.

After the owner comes the size of the file in characters. You can verify the
figure 182 by counting the characters yourself - do not forget the newline
character on the end of each line.

The last field in the listing is the time at which the file was last changed. This is
called a datestamp.

57

"In addition to -1, there are seventeen other alternative options to the Is
command on my UNIX," said Dudley . "If you are interested in the i-numbers of
your files , you can"

EXPLORING THE TREE

The Is command can be used to look at directories other than the current one. You
do this by supplying the directory name as an argument; if no directory name is
supplied as an argument, as in our previous use of Is, the current directory is
assumed. The directory at the very top of the tree, the root directory, is known by
the very simple name of'/'.

/usr/me

$ Is t

bin

dev

etc
lib

mbox

unix
usr

This lists the names of the files in the root directory. (Remember two points: firstly
each argument must be preceded by a space, so there must be a space between the
above Is and the '/' which follows it; secondly, the contents of the root directory
will vary among UNIX systems so what you see on your UNIX may differ in detail
from the above.)

RELATION OF OPTIONS TO OTHER ARGUMENTS

We have seen there are two possible kinds of argument to the Is command

Is -1 gives a long listing
Is directory name lists a different directory from the current one

In general there might be ambiguity between these two kinds of argument and
UNIX may not be able to tell whether a given argument represents a directory
name or not. UNIX resolves this ambiguity by its rule that arguments which
represent options must start with a minus sign. Thus -l specifies the `long listing'
option. We recommended earlier that you constructed your filenames out of letters
and digits. Doubtless you will break this rule sometimes, but whatever you do, do
not start a filename with a minus sign. If you had a directory called -1, it would be
indistinguishable from the option -1.

Among the other options for is alluded to by Dudley are
a list all the files in the directory - this includes some normally hidden files

used by UNIX itself

58

r reverse the order of the listing
You can write a sequence of these letters in your list of options, e.g. - air

would ask for all the three options we have mentioned. (The order in which you
write the sequence is immaterial; hence - ral is the same as - lar.)

In general, arguments that represent options are written before those that do
not.

The use of options is illustrated below.

/usr/me

$ Is - Ir

total 2

-rw-r- -r- - 1 me 076 Nov 11 15:22 scores

-rw-r--r-- 1 me 182 Nov 11 15:25 bestseller

$ Is -r
usr
Unix

mbox

lib

etc

dev

bin

In our examples of Is, the names of the files have been displayed in a single
column. It is also possible to display the names in a more concise way, with several
names on a line - indeed, in some UNIXes this is the default. This multi-column
format may be produced by the command Ic for PC XENIX or Ii for PC/IX. We
will continue in the examples to use the more common Is command and assume a
single-column format.

CHANGING PERMISSIONS

It is simple to change the permissions on files. Let us assume we want to make our
file scores readable and writable by members of our group, but completely
inaccessible to everyone else. We do this with the chmod command. Chmod has
two (or more) arguments: the first consists of a sequence of digits; the remaining
arguments are the filename(s) to which the new permissions are to apply. The three
digits in the first argument correspond to the three types of user:

the first digit describes the owner

the second digit describes the group

the .third digit describes the rest

Each digit is constructed by adding together the numbers

4 for read permission

2 for write permission

1 for execute permission

59

Thus if the first digit is 6 this means the owner has read and write permission.

/usr/me

$ chmod 660 scores
$ Is -1

total 2

-rw -r- - r - - 1 me 182 Nov 11 15:25 bestseller

- rw - r w - - - - 1 me 076 Nov 11 15:22 scores

You can see how the permissions for scores have been changed.
You may find the numerical argument to chmod a bit baffling. If so consult

your UNIX documentation and you will see there is an alternative way of writing
this argument. It may however be arguable whether the notation is any better than
the horrible numeric one. The only merit of understanding the numeric one is that
the numbers may appear in certain UNIX error messages.

MAKING A DIRECTORY

There is something wrong with our novel: not, of course, in the text, but in the way
we have organized the files.

Since the novel itself will eventually be a long file it is much better to plan to
split it up into separate files. A chapter is a natural unit. We will work on one
chapter at a time, and will want to apply operations such as printing and spelling
checking to each individual chapter we finish, rather than to the current text of the
whole novel. Thus we shall put each chapter in a separate file.

Given that the novel will consist of many different files it is highly desirable to
create a separate directory for these files, rather than to mix them up with all our
other files. This is done by the mkdir command. The argument to mkdir is the
name of the new directory you want.

/usr/me

$ mkdir novel

$ Is -1
total 3
- r w - r --r -- me 82 Nov 1 5:25 bestseller

d r w x r - x r - x 2 me 032 Nov 11 15:39 novel

- r w - r w - - - - 1 me 076 Nov 11 15:22 scores

Notice how, in the listing of files, the line for novel has a d at the start, showing
that it is a directory. Its permissions allow everyone to execute it, as shown by the
three occurrences of x. Remember that executing a directory means using it to
access a file within that directory. A useful way of remembering this is that the
letter `x' represents eXecute permission or, for a directory, permission to aXess
files within that directory. Directories are useless without execute permission, and
thus mkdir automatically gives execute permissions to every directory it creates.

60

(You may also have noticed that the `number of links' field for the directory is
given as 2. You need not be greatly concerned with this. Dudley will tell you that
the `number of links' field for a directory has a value two more than the number of
sub-directories in that directory; as novel has no such sub-directories - indeed at
the moment it is totally empty - its number of links is two.)

Although we have just created a new directory, our current directory has not
changed. The current directory is still our home directory, where we have been
since we logged in. We can display the pathname of our current directory by using
the pwd command - this is hrmt's term for Print Working (i.e. current) Directory.
To change our current directory we use the command cd, and supply as its
argument the name of the new current directory we want to use.

/usr/me

$ pwd
/usr/me

$ cd novel

$ pwd
/usr/me/novel

$ cat > introduction
Any resemblance between the characters in this book and

real people is entirely coincidental . I would like to

thank my wife Heather for proof deading the manuscipt.

Ad

$ Is
introduction

$ spell introduction
manuscipt

Here we have used pwd twice in order to illustrate the change in our current
directory from our home directory to its novel sub-directory. Having changed our
current directory to novel we created a file within it, called introduction . When we
used is we were shown the state of this directory. Finally we applied the oft-
mentioned spell program to our new file. It output the one word `manuscipt' that it
thought (rightly) was a spelling error. It did not object to `deading' -which shows
how foolish it is to put too much faith in spelling correction programs.

The tree structure of our part of the file system is now as follows.

root

usr

me

bestseller novel scores

introduction

Figure 6.1 The tree structure associated with me

61

Now that we have re-organized our file structure we can move our file
bestseller into the new directory novel , and rename it chapterl . To do this we need
to widen our horizons, since the file bestseller is outside our current directory,
novel.

PATHNAMES

We have already explained that the pathname is the mechanism that you can use
to refer to any file in the file system. The pathname for our bestseller file is

/usr/me/bestseller

This works irrespective of our current directory. The path starts from the root,
which is signified by the `/' on the front. As a particular example of this notation a
pathname consisting of the one character'/' represents the root directory, and that
is why earlier in the sample session

is /

gave a listing of the root directory.
Pathnames starting at the root can, within large file systems, become very

verbose, so UNIX offers a second way of specifying pathnames. This is to start
from your current directory instead of from the root. If you do not put a '/' on the
front of a pathname it means that this second form is to apply. The following table
shows some examples of pathnames to your introduction file, assuming various
different directories are your current directory. Do not forget you can change your
current directory to any directory in the entire file system (provided, as always,
that the permissions allow you to reach it). Similarly other users can set any of
your directories as their current directory.

Current directory Pathname for introduction

novel introduction
me novel/introduction
usr me/novel/introduction
root usr/me/novel /introduction

All these examples go down the tree (i.e. away from the root) from the current
directory to a file. However when we left our sample session our current directory
was novel, and we wanted to refer to the file bestseller which is up the tree from our
current directory.

This can be done using a special extra name UNIX provides in each directory
it creates: this is the name `..' and it refers to the parent (i.e. the directory) above
the current one. Thus when our current directory is novel we can refer to bestseller
as

../bestseller

This is shorter and more convenient than using a pathname starting from the root.
You can extend this `..' notation, though not, as you might expect, by writing

more than two dots. If you want to go up two levels, i.e. to refer to a file in the usr
directory, you can refer to it as

62

..1..1filename

As an example, the fatuous pathname

../../me/novel/introduction

would be identical to saying introduction , since you go up two levels and then come
back down to your current directory again.

Everywhere in UNIX where you write a filename as argument, e.g. when
using the cat command, you can specify a pathname instead. Thus all the UNIX
commands that work with files can work with any file that you can access in the
entire file system.

MOVING FILES

The my command will move a file from one place to another. It is not equivalent to
copying a file since the original instance is destroyed; it is more like renaming a file.
(To be exact, an my is equivalent to renaming a file unless the new name is in a
different file system from the old - in which rare case a new copy of the file is
made.) The first argument to my is the existing filename and the second is the new
filename. We can use my to get bestseller into our current directory, novel.

/usr/me/novel

$ my ../bestseller chapterl
$ Is -1

total 2

-rw-r- -r- - 1 me 182 Nov 11 15:25 chapterl

- rw- r- -r-- 1 me 165 Nov 11 15:41 introduction

$Is..
novel

scores

The permissions remain unchanged when a file is moved. Notice our second is
above. This gives a listing of our home directory, as `..' means the parent of our
current directory. You can see that bestseller has gone from this directory.

COPYING FILES

The command cp is like my except that it actually makes a copy. (You can often do
the same thing using the cat command, but cp can be more convenient.) Thus if
our friend aper wants to make a copy of our introduction in his home directory he
can say

cp ../me /novel/introduction beginning

He now has a file beginning which is an independent copy of our introduction.
Just as you can read files outside your current directory you can also write

them. Thus we can create a file morescores in our home directory by

/usr/me/novel

63

$ cat > ../morescores

Somerset 650 (Botchards 310)

Kent 246 (Tavare 61)

Ad

DELETING FILES

In our session so far we have been steadily creating files, starting from nothing. It
is now time to talk about destroying them.

There are two ways of destroying the contents of a file. One is to write some
other material on top of the previous contents; in this case the file itself still exists
but its contents have changed. The other is to delete the file altogether so that its
name no longer appears in the directory. In both cases the original contents of the
file are lost forever.

UNIX commands vary in their attitude to writing to a file that already exists.
UNIX implementations vary too, and there can be further variations depending
on individual user's profiles (see later). On our system, for example, if you cp to an
existing file, the previous contents are overwritten without ceremony. On the other
hand, if you redirect output to an existing file (say when using cat) then UNIX
refuses to overwrite the file. You have to delete the file explicitly first. Commands
that share cp's attitude are an encouragement to the Great Pest. If you write to
what you think is a new filename, and you have inadvertently chosen a new name
that corresponds to an existing file, then the contents of the original file are lost.

The way to delete a file completely is to use the rm command, supplying as
arguments the names of the file(s) you want to delete. In any usage of the
computer you will continually be creating new files. If you do not regularly delete
files you are in an unstable, continually expanding, state and you will inevitably
crash against some size limitation. In any stable UNIX system the total user
population must be deleting files as often as they create them.

We shall therefore be public-spirited and delete our morescores file. (Before it
goes we should explain that it represents scores in a golf competition; no reader
would surely be foolish enough to think that a cricket match would finish with
Kent losing so heavily.)

/usr/me/novel

$ Is ..
morescores

novel

scores
$ rm ../morescores

$Is..
novel

scores

You can see that after the rm the file morescores has gone. You can also see that,
although our current directory is novel , we can still quite freely work with files in

64

another directory; in this case we work in the parent directory by using the `..'
notation.

At this point our spies tell us that aper has taken a copy of our introduction file
and called it beginning . We decide to delete this copy. To do this we can change our
current directory to his home directory, find out what is there, and delete the copy
of our introduction.

/usr/me/novel

$ cd /usr/aper

$ Is -1

total 3

- r w - r w - r w - aper 65 Nov 1 5:18 beginning

-rwx r - - r - - 1 aper 343 Aug 13 12:18 end

-rwx r - - r - - 1 aper 377 Oct 30 17:58 middle

$ rm beginning

rm: /usr/aper/beginning not removed

When we used rm, UNIX replied with an error message, telling us that our
attack had been repulsed. The defensive weapon that aper must have used was to
deny us write permission on his directory; you need to change the directory when
you delete a file, so our attempted deletion was not accepted. Notice how UNIX
uses the full pathname when it refers to a file in an error message.

We are not, however, totally defeated. Aper has persuaded a friend to help
him improve our introduction, and to allow this friend to work on the beginning
file, he has set its permissions so that everyone can write to it. We can exploit this
loop hole. Given that we have write permission for beginning, we can copy
anything we like on top of its previous contents.

/usr/aper

$ cp /usr/me/scores beginning

$ cat beginning

Southampton 9 Tottenham 0

Unikent Computing 6 Rest of the world 1

We have therefore destroyed the contents of beginning by writing scores on top of
it. We can now withdraw from our successful foray.

/usr/aper

$ cd /usr/me

We are now back in our home directory. (We could have achieved the same effect
by simply typing

cd

65

on its own. If you do not give cd an argument , this is taken to mean that you want
to return to your home directory.)

Although directories are files, you cannot use rm to remove a directory (unless
you use a special option). Instead you use the command rmdir. The directory must
be empty before you delete it.

Before finishing our discussion of rm we must re-emphasize our previous
warning: when you delete a file it is lost forever, so beware. It would be the
meanest of practical jokes to tell a beginner to UNIX that rm stood for really
mandatory, and was a way of telling UNIX to treat a file with the utmost care.

LINKING

Let us assume that another author , dickens , having seen the excellence of our
novel, wants us to help with his work. In particular he wants us to co-author
chapters within his book , olvrtwst , a new novel written in the UNIX style. The rule
we agree is that both co-authors can write to the chapter5 file within his olvrtwst
directory, so he gives us (as a member of his group) write permission.

We can reference his chapter5 file using a pathname. This however, is
somewhat long-winded and if we are going to access his file a lot it is more
convenient to have a synonym facility. To accomplish this we use UNIX's linking
mechanism. It is possible to link any number of filenames, perhaps belonging to
separate users, to the same actual file; in this case all the filenames are synonyms.

We decide to use the name withdickens as the synonym for chapter5 of the
dickens novel. To accomplish the linking we use the In command.

/usr/me

$ In /usr/dickens/olvrtwst/chapter5 withdickens
$ Is

total 12

d r w x r- x r - x 2 me 64 Nov 11 16:04 novel

- r w - r w - - - - 1 me 76 Nov 11 15:22 scores

- r w - r w - - - - 2 dickens 4766 Aug 25 13:33 withdickens

Notice how the total blocks of file storage is now 12. This is because withdickens is
a relatively long file (4766 bytes) and takes ten 512-byte blocks on our UNIX.

The entry for withdickens in the listing shows a number of interesting
properties. Firstly the owner of the file is dickens, not ourselves, and the
permissions are controlled by him; he has given write permission to his group, so
we are all right. Secondly the number of links is now given as two. (All people
linked to a file see it in the same way - indeed there is only one file to see. Thus if
dickens did a Is he would see an identical line to our line for withdickens , except
that he would see the name as chapter5.)

The `number of links' field provides a further advantage of linking, which
makes it better than a straight synonym facility. It is a means of preventing one of
the sharers of the file deleting it and thus upsetting the others. What rm does is, in
fact, not to delete a file but to unlink it, i.e. to do the opposite of linking. Only if,
after this unlinking, the number of links has became zero does the file disappear.

66

Thus assume that dickens, either deliberately in a fit of depression, or
inadvertently as a result of the Great Pest within him, deletes his chapter5. We do

not lose our withdickens file. The only change in it that we may notice is that its
number of links is down to one. Thus files that we link to can be regarded exactly
like any of our other files. (The only proviso is that if you do not own a file you
cannot change its permissions. In this example if we want the permissions changed
we will have to persuade dickens , who still owns the file even though he has deleted
it, to link to it again and make the change; alternatively we can copy the file in such
a way that we own the copy.)

There are two restrictions on linking. Firstly, although in most of UNIX a
directory is treated as an ordinary file, you cannot link to a directory. Thus we
could not have created a link to olvrtwst . Secondly you cannot link to a file in a
separate file system. ("It is all connected with i-numbers, which are ... ", said
Dudley.)

SIMULTANEOUS WRITING

In UNIX you can read a file that someone else is simultaneously writing. This
happens quite naturally with directories. For example you can at any time read the
usr directory and it may happen that while you are reading it a new user is being
added to the directory. UNIX takes care of this without any fuss. At some point
during the reading of a file that is being written to by someone else you will switch
from the old version to the new version. In most cases the switch will not be
noticeable to you, unless the writer has changed the files radically, such as
replacing soccer scores by a John Milton poem.

It is also possible to have several people simultaneously writing to a file.
However in our withdickens example it would be desirable to have some informal
agreement with dickens to prevent anarchy.

COMBATING THE GREAT PEST

We shall finish the sample session by illustrating two features that were discussed
when we introduced files in Chapters 3 and 4. The first is the displaying of binary
files. If we now typed

cat novel

we would get a peculiar output on our terminal. This is because novel is a directory
file and is in fact a mixture of character information (the filenames) and binary
information about each file. The resultant output, which we have not shown above
because it varies so much between terminals, would be a mixture)f file names and
random characters - a puzzling concoction if we had not realized what we had
done.

The second, and more important, matter to be illustrated is the way we deny
ourselves write permission on our own files.

/usr/me

67

$ cd novel

$ chmod 440 introduction
$ Is -1
total 2

- r w - r - - r 1 me 182 Nov 11 15:25 chapterl

- r - - r - - - - - 1 me 165 Nov 11 15:41 introduction

You can see that neither we nor anyone else now has write permission for
introduction . If we really do need to write to introduction we can change its
permissions to allow writing again, but the current permissions prevent accidents.

Suddenly the Great Pest appears and tries to overwrite, and then to rm our
introduction.

L /usr/me/novel

$ cp ../scores introduction
cp: cannot create /usr/me/novel/introduction

$ rm introduction

rm: override protection 440 for introduction? n
$ Is
chapterl

introduction

UNIX did not allow the Great Pest to cp on top of our existing file. When he
tried the rm UNIX gave us a second chance, and our better self took control and
typed n for no deletion. The Great Pest has been thwarted, as you can see from the
above listing, which shows introduction to be still in existence.

Happy with our triumph, we log out.

/usr/me/novel

$ Ad

The use of Ad to log out is sometimes a nuisance: you may type it accidentally,
believing that you need to terminate some data. Thus some UNIX implementa-
tions instead provide explicit commands to log out, e.g. logout.

It is important to log out before leaving your terminal. If you do not

• you may still be charged for the time you are `using' the system
• anyone else who takes over your terminal does not need to log in. The

terminal is logged in for you, and he can thus delete all your files.

If you are using UNIX over a phone line, hanging up the phone may count as
logging out.

Finally, some UNIX implementations have a time-out mechanism. If your
terminal is inactive for, say, fifteen minutes you are assumed to have dropped off
to sleep and are logged out.

68

CHAPTER 7

Commands and the
shell

It is quite a three-pipe problem.
SHERLOCK HOLMES

111111111

In Chapter 5 we introduced the idea of the `shell' which comes between you and
the UNIX programs that you use. In the sample session in the previous Chapter,
the existence of the shell was barely evident. Commands were typed and some
action was performed. We did not care whether this was done by the shell itself or
by other UNIX programs to which it passed control; our concern was that our
commands were performed, not with who was responsible. As it happens, the
main contribution of the shell to our sample session was to redirect the output on a
few of our commands; otherwise we did not exploit its talents.

In this Chapter we consider some further features of the shell, and here it does
help to consider the shell as a separate entity.

Before we proceed further, however, we shall introduce one more UNIX
command, grep, which has a particularly happy symbiotic relationship with the
shell. The command

grep pattern file

displays all the lines of thefile which match the given pattern. Often the pattern is a
single word, e.g.

grep Daimler chapterl

displays all the lines of chapterl that contain the word Daimler . The grep
command is useful in itself but, coupled with some extra features of the shell, it is a
real winner.

STYLE

It is easier to understand the shell if you appreciate the style which pervades UNIX
commands.

Every language for communicating with computers imposes a style upon the
user. If you are familiar with the programming languages BASIC and Pascal, you
will know that each has a very distinct style. If you were shown a single statement
from a program, even if you were totally unfamiliar with that kind of statement,
you could immediately say whether that statement was in BASIC or Pascal.

Similarly UNIX encourages a certain style for writing commands. The
advantages of a style are two-fold:

• easy learning. Once you know the style, you can usually guess how to use
each command. You do not keep having to refer to documentation.

• use of tools. If all commands follow a similar style, there can be automatic
tools for helping to write commands. Such tools provide positive feed-back.
If the tools are good, then this provides further encouragement to conform
to the style; the more the style is adopted the more easy it is to provide
further good tools.

Any language for communicating with computers encompasses both of the
following

• syntax: the grammatical rules on what you can write in the language
• semantics: what the language means, i.e. what actions the computer is made

to perform

70

The style for UNIX commands covers both their syntax and some aspects of their
semantics.

A command that epitomizes the UNIX style is our favourite spell command.
Its full syntax is

spell options filename filename2 ... filenameN

Thus the name spell is immediately followed by some options - these, as the name
strongly implies, are optional. After this comes a list of N filenames. The spell
command is applied to each of these files in turn. If N is zero, i.e. there are no file
names, then the convention is that input is taken from the terminal. We could thus
type

any directory

$ spell
Try some words

harrass harass

grumpy grumpey

precede preseed

Ad

grumpey

grumpy

harrass

Here we typed input directly to spell in order to find out how to spell `harass',
`grumpy' and `precede'. We deliberately chose these examples to reinforce a
warning we made earlier: use spell as an aid, but do not trust it too far. Spell works
by looking up words in a built-in dictionary. There are gaps in this dictionary:
perhaps in o• der to emphasize what a happy friendly family UNIX users are, the
word `grumpy' was not even in the dictionary in our UNIX, and so spell thought it
was a spelling error. Spell also tries to match words by applying common prefixes
and suffixes like dis-, pre-, iso-, -ing, and -ation. It will sometimes accept nonsense
words as correct if they are built using these prefixes and/or suffixes. For example
our spell accepted `preseed', because it is the word `seed' with the prefix `pre-'
applied.

Returning from this digression, you may have noticed that the style of writing
a list of filenames as arguments to spell follows an identical pattern to the style of
the cat command, which we used during the sample session in the previous
Chapter. This is no accident, and indeed helps to confirm the uniformity of the
style. It was the very reason we explored cat at some length. In fact we would have
chosen cat as our example here except that (at least on some UNIX implementa-
tions) it is atypical in that it has no options.

OPTIONS

We explored options when we covered the is command. The typical UNIX
command has about three options, each indicated by a lower case letter. The

71

convention that each option is represented by a single character is fairly uniform
throughout UNIX commands, but there is great variation from the norm of three.
Some commands have no options while others have so many options that they use
all the 26 possible lower case letters, some upper case letters and some other
characters too.

On most UNIX implementations, spell is close to the norm of three. For our
examples here we shall use just one option:

- b means use British spellings - thus `realize' becomes `realise'

The much improved version of spell, available tomorrow, will have British
spellings as standard. Perverse souls can, if they really want to be a centre of
ridicule, use American spellings. In this case they must use our new - w(rong)
option.

In the meantime we must be content with the present imperfect spell. Samples
of its use are

spell
spell - b
spell chapterl
spell - b chapterl
spell chapterl chapter2 chapter3
spell - b chapterl chapter2 chapter3

Examples (1) and (2) take their input from the standard input, normally the
terminal. Examples (5) and (6) apply spelling checks to the three files chapterl,
chapter2 and chapter3 (in that order - though for spell the ordering does not have
any effect).

We could extend any or all of the above examples by redirecting the output
to, say, a file.

Other examples of UNIX commands which follow an identical style to spell
are rm and Is. Samples of the use of these are

is -1 directory) directory2
rm chapterl chapter2

EXTRA ARGUMENTS

Before we say more about arguments to UNIX commands we should make a
general point: one reason for the richness of UNIX is the diversity of people who
have contributed to it by implementing commands. Generally all these implemen-
tors have kept to the overall UNIX style, but when it comes to the finer detail
practices have inevitably diverged.

This comes out in the specification of options. We said in the previous
Chapter that options begin with a minus sign to distinguish them from filenames,
and that options are normally written at the start of a list of arguments. This is
true, but there are some commands which have the added flexibility of allowing
options to be changed within a list of filenames; moreover some commands even
allow the minus sign that precedes options to be optionally omitted. Such details
are largely in the realm of Dudley so we shall not worry about them here.

Some UNIX commands have other arguments, in addition to options and

72

filenames. The normal UNIX convention is that these come after the options (if
any), and before the filenames. An example we have already encountered is the
chmod command. Another is the grep command, which, as you will have guessed
because of UNIX's uniformity of style, can be applied to a list of filenames.
Examples of grep are

grep kill chapterl
grep kill chapterl chapter2 chapter3
grep - n kill chapterl chapter2 chapter3

These commands all search for the word `kill'. The option - n means that output
lines should be prefixed with the line number of the corresponding input line (thus
you might find out that `kill' was used in lines 150 and 296 of chapterl).

The first argument to grep (not counting the options for the moment), which
is the pattern to be searched for, must always be present. Thus our argument kill is
not interpreted as a filename, even if we happened to have a file with this name.

If, however, kill were an optional argument there would be a problem with
ambiguity. Furthermore such an optional argument could not be represented by a
single character, and therefore does not readily come under the options mecha-
nism. UNIX has no uniform convention to solve this ambiguity problem.
However a popular device is to use the options mechanism to indicate whether
certain subsequent arguments are present.

All this sounds complicated, so we had better show an example. We shall
choose a facility that is present in our dream of the UNIX of the future. This is a
weapon to eliminate authors who use certain words that rile us. The weapon is an
optional hated-word that can be supplied as an argument to rm. If you say

rm conceptualize /usr/crass /document

then this new rm tests if the document file in the home directory of the user crass
contains the word `conceptualize', and, if so, not only does it delete the offending
file, but it also deletes all other files in crass 's home directory - irrespective of
whether the requisite permissions are given. For good measure, this imaginary rm
changes crass 's password to a random combination so he will not be able to log in
again.

Now this rm has one draw-back: its syntax is ambiguous, in that the hated-
word is an optional argument. Thus it is not clear whether conceptualize is a
filename or a hated-word. To resolve the ambiguity, the revised syntax is

rm -h conceptualize /usr/crass/document

The - h option has the effect of saying that the next argument is a hated-word, not
a filename.

(A final thought on the matter: this book now contains the word 'conceptual-
ize' - in fact several occurrences of it. We had better be a tiny bit careful when our
dream of the new rm is realized - and also indeed when our new spell is realised.)

SUMMARY OF STYLE

To summarize the style of UNIX commands:

• options come first and are prefixed by a minus sign.

73

• any arguments that are not filenames come next . If a command has
optional arguments options can be used to say what arguments are present.

• a command ends with an arbitrarily long list of filenames. If the list is
missing , the standard input is assumed.

A command may also include instructions to redirect the standard input /output.
We discuss this later in the Chapter.

Obviously there are some commands that do not quite fit the style . Examples
are my and cp which , by their very nature, always require two filenames as
arguments . ("This is wrong ." said Dudley . "There are alternative forms of cp and
my covered in pages 1096 to 1214 of my Notes for UNIX users, which ... ".)
However, these exceptions are a small perturbation of the overall uniformity of
style.

NOTATION FOR SPECIFYING SYNTAX

Most UNIX documentation has a standard notation for describing the general
form of each command. An example is the following description of the Is
command.

Is [options] file ...

The notation is simple to understand as there are just two conventions.
[xxx] means that the argument xxx may optionally be omitted
xxx ... means that there can be indefinitely many arguments of the form

xxx

Thus the above description of Is says that the options may be omitted, and that
there can be indefinitely many files. Similarly the description

chmod mode file ...

specifies that the first argument to chmod is something called a mode and this is
then followed by an indefinitely long list offiles. Obviously, the documentation of
chmod must explain what a mode is, and similarly the documentation of Is must
explain what its options are.

Since UNIX programs, and their documentation, are written by so many
different people there tends to be a certain looseness in the use of conventions.
However it is almost invariably true that if an argument is described as file, name
or filename then that argument is indeed the name of a file.

The brackets `[' and `]' can actually be nested, as in

abc [- [p] [q] [r]]

This says that the argument to abc can optionally consist of a minus sign, and if
this is present, then the minus sign may be followed by a p and/or a q and/or an r.
Thus all the following are valid

abc

abc
abc
abc

_p

-pqr

74

Actually most of the UNIX documentation adopts the somewhat naughty
approach of writing the above as

abc [-pqr]

which, taken literally, means you either can write - pqr or nothing at all; however
readers guess that it really means the same as our original specification of the abc
command. Indeed many UNIX commands carry the flexibility further by allowing
options to be specified one by one, e.g.

abc -p -q -r

The brackets and the dots used in the notation to specify commands can, if
desired, be combined, i.e.
[xxx] ... means that xxx can be repeated any number of times, including zero

times

Again UNIX documentation is loose and

is often used to include the possibility of zero repetitions of xxx - indeed our
earlier Is example did just this.

Nevertheless such blemishes do not detract from the overall picture. Given an
understanding of the UNIX style, and of this simple syntactic notation, you
should find it easy to read UNIX documentation and master the commands that
are useful to you.

DIFFERENT SHELLS

There are several popular shells used on UNIX systems. One that emanates from
Bell Laboratories is the so-called Bourne shell, named after Steve Bourne. Steve
Bourne is the author of a UNIX book called The UNIX system, which is a much
more sophisticated work than the one that you are reading now. Another good
shell is the C shell, which is syntactically related to the C language. The C shell
comes from another centre of UNIX excellence: the University of California at
Berkeley. The Bourne shell is called sh - a request from hrmt that conversations
should be quiet and short - and the C shell is called csh.

Everything we have said about style, and nearly everything we say later in this
Chapter about the details of the shell, applies both to sh and to csh (and to the
numerous variants of each). On the few occasions where we need to be specific we
shall assume sh. Generally you only have to know which shell you are using if you
write elaborate shell programs, which are beyond the scope of this book. You will
find the Bourne shell in all the IBM PC family UNIX systems. The C shell and an
additional menu driven shell - called the visual shell - are also provided in PC
XENIX.

WILDCARDS

We have said that uniformity of style goes hand in hand with tools to make
commands easier to write. We can now show a specific tool provided by the shell

75

which makes it much easier to specify both individual filenames and lists of
filenames.

The tool is a method whereby the shell fills in your filenames for you. It does
this by assigning a special meaning to the following characters.

? means any single character
* means any sequence of characters (including the null sequence)

[abc] means either a or b or c

These special characters are called wildcards. If you use wildcards in any argument
to a UNIX command, the shell expands the argument to consist of a list of all the
filenames that could match the argument. It is easiest to appreciate this by
examining a specific example.

Assume that our current directory, relating to a magazine we edit, contains
the filenames

advice articleO article! article2 article3
commentl comment2 comment3 commerce

Then the following examples show how we could refer to files in this directory.

Example 1

cat c*

is equivalent to

cat commentl comment2 comment3 commerce

Example 2

spell comment?

is equivalent to

spell commentl comment2 comment3

Example 3

chmod 644 article[231

is equivalent to

chmod 644 article2 article3

Example 4

cat *r*13e1

would cat any filename containing an r and ending in 3 or e. Hence it is the same as

cat article3 commerce

Example 5

grep kiss articlelI - 31

indicates a further feature. The 1 -3 within the brackets means anything between
1 and 3 inclusive and hence is equivalent to

76

grep kiss articlel article2 article3

Example 6

rm *

deletes all files in the current directory.

Example 7

rm /usr /aper/*

removes all aper 's files, provided, of course, you have permission to remove them.
This example shows that you can use the wildcard mechanisms in all directories,
not just the current one.

Note that the lists of filenames generated by the shell are in alphabetical and
numerical order (e.g. a comes before b and 1 before 2). Strictly speaking, the
ordering is determined by the ASCII code or whatever other code your UNIX uses
for storing characters. The ordering is a natural one because it is the same as is
used by Is.

Note also that the shell tries to expand wildcard characters in all arguments
- it does not know which arguments are supposed to be filenames. Thus if you
write

grep c* advice

to find occurrences of c* in the file advice the shell gratuitously turns it into

grep commentl comment2 comment3 commerce advice

Grep then assiduously searches for the word commentl in each of the four specified
files. The chances are it does not find it, so in the true UNIX tradition it says
nothing. The result is that, if you are not awake to what the shell does behind the
scenes, you are left thinking that the file advice does not contain the string `c*',
which may be far from the truth.

Thus there are times where you want the shell to leave you alone, and the
shell, very charitably, provides a mechanism for doing this. Anything enclosed in
quotes is treated literally by the shell. Thus we should have written our original
grep as

grep 'c*' advice

This use of quotes can surmount a further problem. If you wanted to search
for `he said' in articlel, then

grep he said articlel

would search for he in the (non-existent) file said and in articlel. Instead you can
say

grep 'he said ' articlel

MORE ADVICE ON FILENAMES

A consequence of the existence of wildcards is that it is all the more advisable to

77

take care in the choice of filenames. An acquaintance of ours accidentally created a
file called `*'. He decided to delete it, and the Great Pest within him typed

rm *

He spent the next three weeks re-creating all the files he had accidentally deleted.
He should, of course, have typed

rm '*'

Alternatively he could have used another UNIX feature: this is that if a character
is preceded by `V' - this is called a backslash - the shell assumes that you really
mean that character. (If you really mean a backslash you have to type two
backslashes.) Thus an equivalent of the above rm is

rm *

If you have a friend who is always boasting of his UNIX prowess, create a file
called `*' in one of his directories (if you are allowed to), and place in the file the
message

You do not really understand UNIX

When he rushes to delete this outrageous message he will, if he forgets to use
quotes or the backslash, confirm that the message was in fact true.

There is another, more positive, way that wildcard facilities of the shell can
influence your choice of filenames. If you are preparing a book or report there is
some advantage in calling the chapters chapterl, chapter2 , etc. You can then
simply say

cat chapter*

to display the whole book. If you have an introduction, there is even some
advantage in calling this file chapterO rather than introduction , so that it can be
caught by the same mechanism. If you have more than nine chapters you have
another naming problem. If you use the name chapterl0 for your tenth chapter
then the order in which files are displayed by the above cat, being strictly
alphabetic, is

chapterl

chapterlO
chapter2

This would be a bit sad if chapterlO revealed who the murderer was. If you called it
chapter9l , on the other hand, it would come out in the right place.

Nevertheless there comes a stage where such tricks of naming cause more
problems than they solve, and sensible filenames must take priority over trickery.

Many UNIX users employ the `*' wildcard to gain the convenience of long,
and hence more meaningful, filenames without the penalty of extra typing. Thus
you could have a filename division3scores; if you did not happen to have, in the
same directory, any other filename containing the character `3', you could just use

78

3

to refer to division3scores , thus saving a bit of typing. Again, this kind of trickery is
best kept within bounds.

EXTENSIONS

There is one character besides letters and digits that is commonly used in UNIX
filenames. This is the dot. It is common practice to put, on the end of a filename, a
dot followed by a few characters to show what type of information is in the file.
This is called an extension. Examples of extensions are
average.p a Pascal program
average.c a program in the C language
average.spec a specification of the average program

This convention has the following advantages

• some UNIX programs insist on certain extensions, in order that they are
not sent rubbish. Thus the compiler for the C language insists that source
programs are stored in files with a c extension.

• some UNIX compiling programs (e.g. the compiler for the C language) use
the extension to identify the type of a file, e.g. o might mean an
intermediate binary file as distinct from a source program. We discuss these
matters in Chapter 12.

• the use of extensions fits well with the `*' wildcard. Thus

*.p

refers to all the Pascal programs in the current directory.

Note however that the extension mechanism is simply a naming convention, and
has no effect on how the file is stored. There is nothing to stop you giving a p
extension to something that is not a Pascal program, though the UNIX programs
that use extensions - e.g. the Pascal compiler - might be a bit upset with you.

README FILES

It is something of a defect of UNIX (and, indeed, other operating systems) that
directories contain only the names of files, and there is no facility for a user to put
a comment against a name, in order to say more about the purpose of the file. The
extension mechanism is merely a poor excuse for a proper commentary facility. To
combat this defect, and generally to make UNIX more friendly, a convention has
grown up to define files called README. You put a README file in each
directory that merits further explanation. The file contains a short verbal
explanation of the directory and the files within it (e.g. "this is the November issue
of the magazine; articles are collected in files To run off a copy of the
magazine, do the following:..."). All the capital letters in the name README
must greatly offend UNIX's sensibilities, so some users employ names such as
readme or read.me. The advantage of the capital letters is that they stand out in a
listing. Also, for what it is worth, README can usually be unambiguously
referenced as `R*'.

79

SUMMARY OF ADVICE

To summarize our advice to beginners on the choice of filenames:

• if you write programs use extensions to show the nature of your files
• only use letters and digits in filenames (together with the dots that herald

extensions)
• select systematic filenames with a view to the use of wildcards
• be an antihrmt and choose meaningful, and hence sometimes long,

filenames; when reasonable, use wildcards to abbreviate the long names
• create README files to explain what you are doing

THE ECHO COMMAND

UNIX supports a command echo which just outputs its arguments, e.g.

any directory

$ echo hello there

hello there

This in itself may not strike you as the great facility you have always needed, but
echo is useful in showing how the expansion of wildcards works. (It also has
further uses which we cover later.) Assuming the magazine directory we used
previously, the following examples show echo in action.

/usr/me/magazine

$ echo Current articles : article.
Current articles: articleO articlel article2 article3

$ echo '...' [a - g]?????

... advice

In the second echo above, the three asterisks at the start of the argument are
enclosed in quotes and are therefore copied literally. The rest of the argument is a
pattern to find all filenames that begin with a letter between a and g , and then
consist of exactly five further characters. The filename advice is the only one that
follows such a pattern.

REDIRECTION

We have already seen the use of the `>' character to redirect output, e.g.

cat > scores

If you want to add to the end of an existing file you can use '> >' instead of `>'.
For example

cat > > scores

80

appends to the end of scores . (If scores does not already exist, UNIX creates a new
file called scores and so the effect of '> >' is then no different to

You can redirect input by using the ` <' symbol, e.g.

cat < existingfile

takes the input to cat from existingfile rather than the standard input. You can,
however, say

cat existingfile

to do the same thing, and thus redirecting input does not enable cat to do anything
it cannot do already. The same applies to most other built-in UNIX commands,
and the main people who use input redirection are those who write their own
programs (see Chapter 12).

All redirection is done by the shell rather than the UNIX underneath. You
can confirm this by typing

echo hello > t

What the shell does is to strip off the > t from this command , and ask echo to
perform its task on the argument hello. It duly copies this to the standard output,
but the shell intercepts this output and sends it to the file t. If you then display the
file t you find it contains the text hello and not the text

hello > t

Since the shell strips off your redirection instructions, it follows that it is
immaterial what order you write these instructions in. Thus the following are all
equivalent

grep kiss < existingfile >t
grep kiss > t < existingfile
grep > t <existingfile kiss

(Also identical is

grep kiss existingfile > t

Thus with grep, as with cat, the redirection of input does not gain you anything
you cannot do already.)

CHICKENS

If you are beginning to find this Chapter hard going, feel free to opt out at this
point. We still have some important topics to cover - notably the way UNIX
implements some concepts we outlined in Part I, such as pipes and background
processes. However you can get by for your first month or so with UNIX without
consciously using these. Hence if you are now shell-shocked you might do better to
save what is left of your mental energy for the next Chapter, which contains
material everyone needs to know from day one.

81

PIPES

For those intrepid readers who remain, there is the reward that our next topic, the
pipe, is realized in an extremely simple way. You just write a sequence of
commands separated by the '1' symbol. For example

Is I spell

tests if all your filenames (not the contents of the files) are spelled properly. The
effect is that the output from Is, instead of going to the terminal, is redirected to act
as input to the command spell. The above command is thus equivalent to the two
commands

Is > tempfile
spell < tempfile

but is, of course, much faster and more convenient. Specifically the pipe has the
advantage that Is and spell work together in parallel rather than in sequence.

Performing a spelling check on your filenames is a curious thing to do. In
order to provide some more realistic examples of pipes, we shall introduce some
further UNIX commands which are suitable for use as filters, i.e. components of
pipes. These commands, all of which do something to the standard input and send
the result to the standard output are
sort sort into alphabetic order
uniq delete each line that is identical to the previous line
tr string] string2 translate each occurrence of a character in string] into the

corresponding character of string2

"The sort command is a very interesting one," said Dudley. "It has lots of options
for sort keys and merging and sorting backwards and upside down and ... ".

The strings supplied as arguments to tr can use ranges of characters, e.g. a - f
for the letters a, b, c, d , e and f. Two examples of tr - both of which work on the
standard input and send the result to the standard output - are
tr AB 78 turns each A into 7 and each B into 8
tr A- Z a- z turns each A into a, B into b, etc., i.e. turns all upper case

letters into lower case

Given these three new additions to our armoury, we can provide some more useful
examples of pipes.

Assume a file names contains a list of all the people in a town. Each line of the
file consists of a first name, a second name and an age, e.g.

Fiona Hawkins 9

Fred Brown 12

Charles Smith 33

The file is sorted in ascending age. The following operations show commands that
can be applied to the file.

Example 1

grep Smith names

displays all the lines of names that contain Smith.

82

Example 2

grep Charles names I grep 33

displays all the lines of names that contain both Charles and 33 (in either order

though as we have it the age always comes second).

Example 3

grep Charles names I grep 33 uniq

is the same as Example 2 except that duplicate lines are deleted (e.g. if there were
two Charles Smiths aged 33).

Example 4
We find that some names are entirely in lower case (e.g. charles smith), some

very important people are exclusively in upper case (e.g. CHARLES SMITH),
whereas others use a mixture (e.g. Charles Smith). In our previous examples only
the last of these three was recognized. If, in Example 2, we want to find instances
of each Charles aged 33 irrespective of whether the name is in upper or lower case,
we extend our pipe to be

tr A - Z a - z < names I grep charles I grep 33

Example 5
Finally our last pipe finds all the Smiths and sorts them according to first

name, deleting duplicates.

tr A - Z a - z < names I grep smith I sort I uniq

EXPLOITING PIPES

We hope you can begin to see from the above examples that if you have a file of
information and want all or part of this information extracted and presented in a
different form, then the chances are you can achieve your objective using a single
pipe. This is a confirmation of the success of the `software tools' philosophy of
UNIX: to provide a set of modular components and to allow users to combine
these together to build a command tailored to solve the problem in hand.

Pipes are an unfamiliar concept, even to experienced computer users new to
UNIX, and it takes time to realize what a powerful aid they are. If you find you
are creating numerous files to hold intermediate results, there is a good chance you
should be using pipes.

EXECUTING COMMANDS IN THE BACKGROUND

If you want to execute a command in the background, so that you can get on with
something else while it is doing its work, you simply append an & to the command,
e.g.

/usr/me/novel

83

$ spell chapter. > t&

7654

Here we apply the spelling correction program to every chapter of a long book and
redirect the output, the list of wrong words, to the file t. UNIX replies by saying
7654 (it gives you a different arbitrary number each time), and outputs a command
prompt so that we can proceed normally while the background command is being
executed. At this point we are using two separate processes inside the computer:
the execution of the background command and our normal `foreground' dialogue
with the shell. If there are other users on the machine they could be executing
background processes too, in addition to their normal foreground process. Thus
the number of processes in existence might be much greater than the number of
users on the machine.

The arbitrary number 7654 is the process ID (or, as hrmt calls it, PID) of our
background process. This number uniquely identifies that process among all the
others. Most of the time you ignore process IDs - they are more the province of
Dudley; however the process ID is useful if you want to `kill' a process. Not only
do computer scientists draw trees upside down, but they also have a jargon where
`kill' means to stop execution.

Assume you suddenly decide you do not want to apply spelling correction to
your book because it is written in Latin; thus spell would reject almost every single
word. You therefore decide to kill your background process to save wasting
computer time, and creating a huge file t. To do this you use the command

kill 7654

and the process identified by 7654 dies (i.e. ceases execution).
If you want to look at all your processes you can use the ps command. If we

had typed ps before killing our 7654 process we would have got a display such as

PID TTY TIME COMMAND

6005 console 0:06 sh

7654 console 0:10 spell chapterl chapter2 chapter3

The last line of the above tells us that our background process to use spell is indeed
numbered 7654. It is controlled from console , which is the name UNIX gives to our
terminal (see later), and has been running for 10 seconds. Notice how the spell
command being executed is shown in the expanded form generated by the shell, i.e.
the asterisk notation has been expanded to give a list of file names. (Thus the
internal UNIX view of your command may in general differ from your view, so do
not worry if ps comes up with a peculiar interpretation.) In addition, the ps shows
we are running a second process, numbered 6005. This is the shell, called sh, that
we talk to all the time.

Some UNIX users find amusement in continually typing ps to monitor the
progress of their background process. The above ten seconds might, for example,
have changed to eleven if we typed ps a second time. However if you spend your
foreground time continually looking over your shoulder at the background this
defeats the object of the background process.

84

You are not confined to running one process in the background. You can run
as many as you wish, so that the output from your ps may fill half the screen.

A few more facts about background processes:

• if you type the break-in key this only halts the foreground process, not the

background process.
• logging out kills all your background processes unless they were invoked

with the special nohup command. `nohup' stands for no hang up.

• on some UNIX implementations background processes may not communi-

cate with the terminal.
• on some UNIX implementations you can move processes from the

foreground to the background, or vice versa, while they are still running.

Most of us find it hard to carry on several conversations at the same time.
Therefore, unless you are lucky enough to have a super terminal that has several
separate `windows' on UNIX, it is usually best to confine your UNIX conversa-
tion to the foreground process, and to redirect the input and output from
background processes so that it does not appear on your terminal.

USE OF A PRINTER

In Part I we introduced the idea of `spooling', whereby material for input/output
devices such as printers is run off in the background, while you get on with other
work. The command

lpr file ...

copies the given file(s) to the printer spooler. The spooling process to do the actual
printing is automatically placed in the background, so there is no need to put an

on the end of the lpr command.
A popular use of lpr is to put it at the end of a pipe, e.g.

grep plumber traders I sort I lpr

This searches for all lines within the file traders which contain the word `plumber',

sorts the lines found, and finally prints them. On some implementations, including

PC/IX , lpr is called print.

DEFINING YOUR OWN COMMANDS

Assume our custom is to put an explanatory README file in each of our
directories. Our normal action on entering a directory we have not visited for a
while is to type the two commands

cat README
is

Given that we type this pair of commands very frequently, we can make our future
life slightly more convenient by putting these two commands into a file, called, say,

info . We do this as follows

85

/usr/me/somedirectory

$ cat > info

cat README

Is

Ad

We have now written a program, albeit a modest one: the file info contains two
built-in UNIX commands and represents a shell program.

Whenever we want to execute our pair of commands we can execute the
contents of the info file instead of typing the commands each time. We use the term
shell command to mean any command that is available when running the shell; a
shell command may therefore be a built-in UNIX command or a shell program
such as info.

EXECUTING SHELL PROGRAMS

Before we explain how to execute the shell program in the info file, we should
explain an important and powerful property of the shell itself. The shell is an
ordinary UNIX program that normally reads the commands that you type at your
terminal, and causes these commands to be executed. As with other UNIX
programs, the shell can be made to take its input from a file instead of from the
terminal (the standard input). Thus to execute our info file we can say

sh < info

This can be slightly abbreviated by writing

sh info

The shell, like many other UNIX programs, allows a list of filenames to be
supplied as arguments; in such a case it takes its input from each of these files in
turn, in just the same way as the cat program. In the above example there is just
one file, info.

When the info file is fed to the shell the two commands within it are executed
exactly as if they had been typed on a terminal.

The above use of the shell is interesting for a second reason. Our command
line

sh info (or sh < info)

was interpreted, like all command lines, by the shell. This command line, however,
has the unusual property that it invokes the shell. Thus we have used the shell
within the shell. UNIX happily supports such `nested' use of programs to any
desired depth (e.g. a shell within a shell within a shell ...). The use of the shell
within the shell is most obvious to you if you type

sh info&

Here you manifestly have an instance of the shell running in the background with
the info file as its input, while your normal shell process talks to you in the
foreground.

86

MAKING FILES EXECUTABLE

We can actually do even better than our above way of executing the shell program

in the info file. We can upgrade info into a UNIX command that can be used in the

same way as the built-in UNIX commands such as date and Is. This is done in an

extremely simple way: all we do is change the permissions on info so that it

becomes an executable file. The appropriate command is

/usr/me /somedirectory

$ chmod 755 info
$ Is - I info
- rwxr - xr - x 1 me 14 Nov 29 14:41 info

We performed the Is to confirm that info is now indeed executable - if you give Is
an argument that is a non-directory file it just lists the properties of that file. Now

we have made info executable, it has become our own local UNIX command to
augment the built-in commands. We can therefore use info just as we use built-in

commands such as date and Is, i.e.

info
We get a printout of the current README file

and a listing of the current directory

Although info now appears as a single UNIX command, it achieves its effect
behind the scenes by using the two underlying commands cat and Is. This is an
instance of a familiar happening in UNIX, e.g.

• a directory can itself contain directories
• a tree can itself contain trees, and, following on from this, a file system can

itself contain file systems

It should be no surprise therefore that a command can itself be made out of
commands. The technique of building things out of themselves is one of the
reasons for the power and elegance of UNIX.

Readers who are programmers might be interested to know how shell
programs are differentiated from programs that they might write using their
favourite programming language; we shall therefore say a little more about the
concept of executable files.

Executable files are either binary programs that were generated using some
programming language such as C - we cover such matters in Chapter 12 - or
they are shell programs. The former have a secret mark put on them by the `loader'
- again a topic that we shall discuss in Chapter 12. In our case the info file has no
such secret mark and is therefore taken to be a shell program. When you type

info

UNIX simply takes it as

sh info

87

REDIRECTION ON SHELL PROGRAMS

When you define your own UNIX commands, these have all the facilities of built-
in UNIX commands. In particular you can redirect their input and/or output, and
you can use them as components of pipes, e.g.

info > t

info I lpr

It is worth exploring the first example above further. Here we make a nested call of
the shell to execute our info command, and for this nested call, the standard output
is the file t rather than the terminal. The cat and is within info therefore send their
output to t. If, however, info contained a command that explicitly redirected its
output to a file tl, this would carry redirection one level deeper and would use tl to
override the standard output t.

BIN DIRECTORIES

We still have not finished with our info command. We can go even further in
upgrading its status to that of a fully-fledged UNIX command. We do this by
using a device called a bin directory. To explain the UNIX convention of bin
directories it helps to go back to first principles and look at the format of some
UNIX commands:

Is
cat x y
info
spell chapterl

In all four cases the command name (i.e. Is, cat, info or spell) is simply the name of a
UNIX file; this is an executable file and the act of executing it defines the action of
the command. Thus execution of the shell program in the file info defines the info
command. Similarly there is, somewhere in the UNIX file system, an executable
file called spell; this file contains a program to perform spelling checks.

Of all the four command names above, only the info file is ever likely to be in
our current directory; nevertheless in the other three cases we do not have to write
pathnames to show which directory contains the desired file. The reason is that,
for command names only, UNIX uses a predefined method of searching for the
filename; this is called a search path. The search path normally starts at the current
directory, and, if the command name is not found there, the search proceeds to
other directories which are known to contain executable files corresponding to
commands. By convention all these directories are called bin.

If you look at the root directory of your UNIX you will find it has a directory
called bin, and if you then look inside bin you will find its filenames indeed
correspond to built-in UNIX commands. Most UNIXes actually distribute the
built-in commands among several bin directories. In particular the /usr directory
usually has a bin sub-directory which contains further built-in commands. We
shall assume in this book that all the built-in commands are stored in either /bin or
/usr/bin.

Users can create their own bin directory, and place in it commands that they

88

have defined themselves. By convention this bin directory is a sub-directory of the

user's home directory.
We could therefore create a bin directory, if we did not have one already, and

move our definition of info into it. To see the advantage of doing this we shall first
examine how a search path is defined. If x is the current command name and the

user is me then a common search path is

• first look for x in the current directory
• if this fails, look for x in / usr/me/bin
• if this fails, look for x in /bin
• if this fails, look for x in / usr/bin
• if this fails, give an error message
• in all cases give an error message if x is not an executable file

Your default search path is defined by the superuser. It is likely to be as above,
except that the directory / usr/me /bin may not be there. If it is not, then when you

first create your own bin directory you will need to add /usr/me/bin to your search
path. You can also add other directories to your search path, such as a friend's bin
directory. We shall explain later how to change your search path; in the meantime,

assume that /usr/me /bin is indeed in the path.
The advantage of moving info to our bin directory is that, once there, it is

recognized as a command name irrespective of the current directory, since

usr/me/bin is always in our search path. If info is stored in a directory that is
not in the search path it is only recognized when that directory is the current

directory.
Some commands are essentially local to a directory and are best left there.

However any command that is globally useful is worth putting in a bin directory

on your search path.
Lastly there are three further points about search paths:

• if you want to execute a file that is out of the current search path you can
give its full pathname. For example the command name

/usr/me/info

would execute the info program in the directory / usr/me , irrespective of the
current directory and search path. (The exact rule is that if you put a `/' in
your command name this is assumed to be part of a pathname and the
normal search path is not used.)

• if you move a file into your bin directory using the C shell with PC XENIX,
you will need to log out and log in again or issue the rehash command
before the new command becomes effective. The reason for this curious
behaviour is that UNIX can be more efficient if, at the start of the session, it
`freezes' certain internal tables used to look up command names.

• there is no inherent difference between commands defined by users and
built-in commands. UNIX simply follows a search path, and is quite
unconcerned as to who defined the command.

A SORTIE AGAINST DUDLEY

We can use our new-found knowledge of shell programs and search paths to

89

implement a command that has the double advantage of serving as an illustrative
example and silencing Dudley for a while. Our action is

any directory

$ cat > /usr/dudley/bin/cat
echo The dreaded file-moth has struck

Ad
$ chmod 777 /usr/dudley/bin/cat

The effect of this nefarious attack (which takes advantage of Dudley's generosity
in allowing us write permission on his bin directory) is that when Dudley next uses
the command

cat filename

he will get the output

The dreaded file-moth has struck

The impression is therefore that the contents of all his files have been overwritten
by this fatuous message.

What really has happened is that we have, for Dudley, defined the cat
command as

echo The dreaded file -moth has struck

Since Dudley's search path will look at his bin directory before the built-in bin
directories (or so we assume), the new cat will be recognized rather than the true
cat. The principal illustrated by this example is therefore that you can, if you wish,
redefine existing UNIX commands - though usually you do this for your own
benefit rather than a friend's.

THE SHELL PROGRAMMING LANGUAGE

The shell actually offers a quite comprehensive programming language, support-
ing most of the concepts you have come across if you have used, say, BASIC. In
particular there are variables, assignment statements, IF statements, loops and so
on. Such matters are beyond the scope of this book, but you might be interested in
the following sample, in order to get a flavour of shell programming. The level of
detail in this example is such that it is very much tied to the Bourne shell rather
than the C shell.

if test X$1 = X - w
then

shift

/usr/bin /spell $*

else
/usr/bin /spell -b $*

fi

This new command realizes a dream, or, to be exact, realises a dream. It is our new
spell command with the British spellings. It is in a file called spell in our bin
directory, and thus overrides the bad old spell, which is in the /usr/bin directory.

90

Shell programs can refer to arguments of the current command. The first
argument is referenced as $1, the second as $2, and so on; $* means all the
arguments. Thus the first line of our program tests if the first argument is - w.
(The reason for the X character is too complicated to explain here; it is a feature of
shell programming that, if you are a tyro, you tear your hair out trying to find
unusual ways of combating apparently irrational shell behaviour; the X is written
by a bald programmer.) If the first argument is -w the shell command shift is
called to shift the arguments up; the - w argument is shifted away, and what was
the second argument to our spell becomes the first. The old spell is then called, and
the arguments to our spell (less the - w argument) are passed on to it.

If the argument - w is not supplied the else part of the above if is used: this
calls the old spell with the - b option, thus requesting British spellings, and passes
on all the arguments to our spell. The outcome is that our new spell program has
the desired effect: if the user does not say - w he gets British spellings.

The Bourne shell supports a wealth of other facilities not covered by this
example. Perhaps the one of most interest to relative beginners is the facility for
built-in variables with fixed meanings. In particular

HOME means the name of your home directory
PATH is your search path

These two variables are part of the environment, which defines the way you use

UNIX. If you type the command

set

you get a print-out of your environment. This includes the values of HOME and
PATH, the name of the shell you are using, the characters used as prompts, etc.

You can change the environment by giving a new value to a variable in the
environment. For example you can set a new PATH by assigning it a value which
consists of a sequence of directory names separated by colons. This is done,
assuming you are using sh, by the command

PATH = . : $HOME/bin : /bin : /usr/bin

This sets the search path to consist of the sequence
(1) the current directory - it is a UNIX rule that this is indicated by `.'
(2) the bin directory in your home directory - $HOME inserts the name of your

home directory
(3) /bin
(4) /usr/bin

When you type the above command, leave the spaces out; we should not really

have put them there but it does aid readability.

USER PROFILES

The chances are that the very first act you performed when you started to use
UNIX was to execute a shell program. This is because each user normally has a

shell program called profile which is automatically executed every time he logs in.

Your particular profile file may define your search path, your home directory, the
characteristics of the terminal you normally use, and so on.

91

On some UNIXes you may also have a . logout file which is automatically
executed every time you log out; this file might, for example, clear up your files by
deleting all files with certain names. (Some UNIX implementations have further
shell programs of this nature; alternatively they may use different names to ours,
such as .login instead of .profile.)

You may wonder why, if you have files such as these, you have never seen
them on an Is. The reason is that Is treats any filenames starting with `.' as
unmentionable. Thus the internal mechanisms of UNIX which use profile files
and the like are hidden from the innocent user. If you want to see the
unmentionable files you give the - a option (meaning `all') to Is. Then if you are in
your home directory, you might get a listing such as

.profile

filel
file2

file3

whereas without the -a you would only see

filel
file2
file3

Of these three unmentionable files
is your current directory
links you back to the parent directory

.profile is the file executed every time you log in

You can, if you wish, edit your profile file. You could add to it the command

echo Hello beautiful

to make UNIX, however reluctantly, type

Hello beautiful

to you every time you log in.
More to the point you can make profile set variables in the environment to

tailor UNIX to your preferred way of working. Thus you can set PATH so that
your bin directory, and perhaps your friend's too, is automatically included in
your search path.

SUMMARY OF THE SHELL

Compared with most operating systems, the UNIX shell offers enormous power
and flexibility. To start with you may limit yourself to its simpler facilities, such as
redirection, pipes and background processes. However if you aspire to be a
professional UNIX programmer it is well worth spending an hour or two battling
to understand the documentation of your shell; the documentation may not give in
easily, but eventually you may conquer it and learn of the riches locked away.

92

CHAPTER 8

Editing

For all that moveth cloth in Change delight.

SPENSER

F6 snails"
are__ ,.

0
r.

of r5

MuIf/
II

°J -J07,

l

The tasks to be performed by an editor are absurdly simple: the inserting and
deleting of characters in a file. It is an unfortunate characteristic of all of us that
the more trivial a matter is, the more we argue about it and take up truculent
positions. Thus everyone has their own fixed views about editors, and all designers
of operating systems have implemented their own editor, different from any other.
In addition users of operating systems have often added editors of their own
design, and thus on any one machine there might be an `official' editor plus several
unofficial ones.

There are basically two types of editor. The difference lies in how the user
identifies the point at which he wants to make an alteration (a deletion or an
insertion). In one type of editor the user moves a cursor round the screen until it
points at the desired place. Such screen editors are popular on micros. In the other
type of editor, the position to change is identified by context (e.g. "I want to
change the word `to' in the line that contains the word `unpalatable' "). Context
editors - also called line-based editors - are popular on mainframes, and indeed
many mainframe terminals do not allow free cursor movement, so there is no
possibility of a screen editor.

The `official' UNIX editor is a context editor called ed. Some UNIXes also
provide an `official' screen editor called A. In addition, your UNIX implementa-
tion may have legion alternative editors to these. Some of the alternative editors
are based on ed ; they often have similar names to ed, e.g. em or ex. Others are
totally different. If you want to use one of the latter, good luck to you. We
understand, of course, that the use of any editor is a temporary measure; you will
eventually decide that you should design a new editor, different from all the others,
and better too. Until this is available, you will have to live with the current inferior
products.

In this book we shall concentrate on ed since it is available on all types of
terminal. Furthermore the vi editor contains the facilities of ed as a sub-set, so a
knowledge of ed is valuable even if you subsequently use vi. (In fact one of the
variants of ed, called ex, is actually the same program as vi.) At the end of the
Chapter we give a brief introduction to screen editors.

A NOTE FOR BASIC USERS

If you have written programs in the BASIC language, then you will know BASIC's
editing facilities. This knowledge is, however, no use in your learning about
general-purpose editors such as ed. Editing in BASIC depends on each line having
a number on the front, e.g.

100 PRINT "HELLO"

These numbers are fine for BASIC, but it is neither necessary nor desirable to put
numbers on the front of lines of, say, our best selling novel. Because of this, it is
necessary to use a different sort of editing.

Indeed, very few programming languages apart from BASIC have numbers
built into lines. For most programming languages, including Pascal, C and
FORTRAN, you use a general-purpose editor to change your program. Thus ed
has been designed to cater for editing programs as much as for editing English
text.

94

THE ED EDITOR

P.J. Plauger, in a review in the February 1982 issue of Computing Reviews, sums up
ed perfectly as "an editor geared for dumb terminals and smart people". (Dumb
terminals are terminals with no fancy features - dumb means `stupid' not `silent'.)

There must be a lot of dumb terminals and smart people about, because ed
has been widely copied and is now used with lots of operating systems besides
UNIX. Needless to say each copy was implemented by people who had their own
ideas on how ed could be improved. Thus ed now has hundreds of children and
grandchildren all over the world, all bearing a resemblance to one another, but no
two the same. Your UNIX may support one of these offspring of ed rather than ed
itself, so be prepared for variations on what is described here.

The real ed contains some of the finest examples of hrmt's work. Every
element of your conversation with ed, whether your instructions or its error
messages, gives the impression that each character typed is worth a bar of gold.
Many editing instructions, though already brief, can be further shortened by
taking advantage of default assumptions built into ed.

When you enter ed you leave the shell and start typing editing commands
rather than shell commands. There are several other UNIX programs with a
similar property: thus if your UNIX has a BASIC system then when you enter this
you start typing BASIC commands rather than shell commands. When you quit
from ed (or BASIC) you go back to the shell again.

When ed wants you to type a command it issues hrmt's favourite prompt:
nothing.

As the verbose people responsible for PC XENIX felt that this was overdoing
brevity, PC XENIX issues an asterisk (*) prompt when editing commands are
expected. As the standard ed prompt is nothing, we will show the examples without
asterisks. If you are using XENIX, just regard the extra prompt as a bonus.

THE BUFFER

Ed's first action is to make its own copy of the file to be edited. This is called the
buffer copy. The buffer is (normally) kept in fast storage, so that editing will be
quick . All edits are applied to the buffer , not to the original file. At the end of an
editing session , you should write the buffer back to a file. Normally you will write
the buffer back in place of the original , but there is nothing to stop you writing it
to a new file or even in place of some other file. If you have made an appalling mess
of your edits , you do not need to write the buffer at all; instead you can simply exit
from the editor and no harm will have been done to your file, only to your self-
confidence.

In addition to using editors to change existing files , people also use them to
create new ones. In such cases the buffer is initially empty.

At any time during editing you have a current line , which you can think of as a
pointer that identifies one line in the buffer . Initially the current line is the last line
of the buffer . When you specify a change, this is made to the current line. The
simplest way of editing is to do it in two stages:
(A) move the current line to the line you want to change
(B) make the change

95

There are three ways of moving the current line:
(1) by specifying a number. This is taken to be a line number within the buffer.

Thus if you specify 45 you get the forty-fifth line of the buffer. By an ed
convention, if you specify a dot, this stands for the number of the current line;
another rule is that a dollar means the last line of the buffer.

(2) by a context search. Here ed searches for lines containing a given string (i.e.
sequence of characters), and sets the current line to the first such line it finds.
The rule of ed is that strings must be enclosed within `/' characters, thus /pig/
searches for lines containing pig. (In most programming languages, on the
other hand, strings are enclosed in quotes, e.g. 'pig'). The context search for a
string begins with the line beyond the current one; if the search reaches the
end of the buffer without finding its quarry, it starts again at the beginning
and continues until it gets back to the current line. This is called wrap-around.
Only after it has done a full lap does it give up.

(3) by relative numbers. You can extend cases (1) and (2) by appending a plus or
minus sign and a number. For example

/pig/ + 2

means two lines beyond the next occurrence of pig and

/Summary/ - 12

means twelve lines before the next occurrence of Summary . It is particularly
useful to use line numbers relative to the current line. Thus . + 3 means three
lines beyond the current line. Indeed this is so commonly used that hrmt
allows you to omit the dot and just type + 3. We shall not, however, use
this shorthand here as its initial impact might be confusing.
Beginners are always tempted to use method (1), the line number. This

temptation, like all temptations, is best resisted but never is. The problem with line
numbers is that they are only suitable for very short files. If you want to change a
big file it is highly unlikely that you will know that your point of change is, say,
line 1597. There is, moreover, a secondary problem: line numbers change. Thus if
you insert an extra line before line 3, the previous line 3 becomes line 4, line 4
becomes line 5, and line 1597 becomes line 1598.

If you are ever going to use UNIX in more than a trivial way, avoid the
temptation of line numbers and get into the habit of finding lines by context.

In order that you have a sound understanding of how to set the current line
we shall show some samples of this alone - we shall not, as yet, make any changes
in the buffer.

The simplest ed commands consist of a setting of the current line followed by
a command-name. The command-name is normally a single letter.

A SAMPLE SESSION

We shall show the editor being used on the file chapterl of our book. Assuming
this file has remained intact since we created it two chapters ago, it still contains
the text

Greg Daimler entered the room. There were seven bodies on

the floor. He coughed. A body fell from the top of the

96

bookcase. He looked up. He saw ten more bodies stuck to

the ceiling.

To start our editing we type

$ ed chapterl

182

The number typed back by ed is the number of characters (or, on some
implementations, the number of lines) in the file. We call the file being edited, in
this case chapterl , the current file.

The most common action of a beginner is to display the current line. Indeed
this is the only action we shall perform in this introductory exploration of ed.
Because it is so common, it is represented by the briefest ed command-name: the
command-name consisting of zero characters, i.e. the null command-name.
(Alternatively you can use p for `print' as the command-name if you want to be
verbose - ed uses the word `print' to mean `display on the terminal' and we shall
follow the same convention within this Chapter.) Hence if you simply set the
current line, e.g. by typing 16 or /pig/, you get a display of the new current line.

We shall now start our editing session. We shall break up the session into
small fragments in order to explain what is happening. Each fragment begins with
a line of form

- text of current line

so that the current line is readily obvious. Note, however, that this is a feature of
the book, not of ed itself. At the very start, as we have said, the current line is the
last line of the buffer.

w the ceiling.

the ceiling.

1

Greg Daimler entered the room. There were seven bodies on

/ten/
bookcase. He looked up. He saw ten more bodies stuck to

.-2
Greg Daimler entered the room. There were seven bodies on

Here we print four different current lines. Firstly we type a dot to examine the
current line without moving it. This prints the last line of our file, where the
current line is initially placed.

We then move the current line to line I - just to tempt you with the
forbidden fruit. (Actually line 1 is the only line number that is regularly used even
by people devoted to context searching; it is often necessary to refer to the first line
of the file and this is a natural way to do it.)

Thirdly we use context searching. Ed advances the current line to the next line
that contains ten. Note that ed simply regards the buffer as a collection of lines,
and all characters within the lines are treated equally. A line is not regarded as a
collection of words: thus if you search for ten, you might not get a line containing
the word `ten'; instead ed might match ten against `tennis' or `stench'. In our
example, however, we do indeed find the word `ten'.

97

Lastly, we set the current line back two lines , and, in fact, it is now back to
line one again.

We shall now show three more examples of context searching in order to
illustrate some specialized points.

• - Greg Daimler entered the room . There were seven bodies on

/k t/
bookcase. He looked up. He saw ten more bodies stuck to

/body/
the floor. He coughed. A body fell from the top of the

/body/
the floor. He coughed. A body fell from the top of the

The first line shows how all characters are treated equally: in particular a space is
no different from any other character and can therefore be included in a context
search. The string

/k t/

searches for a k followed by a space followed by a t.
The first search for body shows the wrap-around feature of searching : when

we started our search we were at the third line of the buffer, but the search has to
go to the end of the buffer and then start again before it finds its quarry in the
second line.

When we search for body again we do a full circle. There is only one line
containing body (as distinct from bodies), so the search goes right round until it
gets back to the same current line again.

Finally we shall make some mistakes and show the power of ed's error
messages.

-the floor . He coughed . A body fell from the top of the

gold

/gold/

In the first line we intended to write /gold/ but typed gold by mistake. This is not

an ed command so hrmt replies with a derisive'T. We then search for a string, gold,
that does not exist within the buffer. Hence ed does a full lap round the buffer and
still fails to find its target. Hrmt, enraged by this wasted search, is twice as voluble
as before.

The two messages `?' and `??', plus certain messages concerned with files, are
the limit of ed's conversation. You will never get any other error message (unless
your ed is an adapted version). Thus be sure you well understand the syntax of ed
before you use it; you will not get any help if you go wrong. Indeed that is the very
reason why, although we are deep into the Chapter, we have just finished covering
the preliminaries to editing and are only now ready to describe how to make
changes to the text in the buffer.

SOME CHANGES

There are two kinds of change you can make to the buffer

98

• you can insert or delete complete lines
• you can substitute one string for another within a line

We shall explore the former first.
There are four commands for changing complete lines:

d delete the current line
i insert before the current line
a append to the current line (i.e. insert after)
c change the current line, i.e. delete it and put other lines in its place

For all but the first of these you need to specify the lines to be added. In all cases
you can add as many lines as you like. To indicate the end of the material to be
added you type a line consisting of a single dot.

We shall illustrate these by first adding some new lines to the end of our
buffer.

- the floor . He coughed . A body fell from the top of the

the ceiling.

a

At this point a door opened.
A tall and exceptionally beautiful girl entered the room.
She was wearing a low-cut and very tight dress.

Here we set the current line to the last line of the buffer by typing a dollar sign, and
then append three further lines. After text has been added to the buffer, ed resets
the current line to the last of the newly added lines.

You can see that ed has two modes of working. Most of the time it is in
command mode, where it takes the lines you type as commands (e.g. to move the
current line or to make a change). After you type an i, a or c command, ed changes
mode and takes your lines of input to be additions to the buffer. When you type a
dot, ed returns to command mode. (It is a feature of ed that when it needs a
character with a special meaning, its first choice is a dot: we have already seen that
a dot as a line number means the current line, and a dot on a line by itself
terminates text to be added to the buffer. There is a further use of dot still to be
explained.)

Ed contains two especially slippery banana skins that cause beginners to
tumble. One is the dot to terminate inserted text. The undoing of many beginners
- and experts too - is that they periodically forget the dot.

ow She was wearing a low-cut and very tight dress.

.-2
At this point a door opened.

i

The clock struck three.

Here We insert a new line, crucial to the plot of the novel, before the current one.
Having (apparently) done this we then remember that it is also crucial to the plot
that the tractor stopped before three o'clock, so we further insert the line.

99

i

The tractor outside stopped its engine.

Fortunately at this point we decide to review our handiwork and print the buffer.
We then see

Greg Daimler entered the room. There were seven bodies on
the floor. He coughed . A body fell from the top of the
bookcase . He looked up . He saw ten more bodies stuck to
the ceiling.

The clock struck three.
i

The tractor outside stopped its engine.
At this point a door opened.

A tall and exceptionally beautiful girl entered the room.

She was wearing a low-cut and very tight dress.

(We shall shortly explain how to print the buffer.) The buffer is not what we
expect, and the full insidiousness of the banana skin is revealed: we slipped into
another world without knowing it. The reason why this happened is that we forgot
to type the dot after our first insert, with the result that the second insert is taken
as part of the data for the first.

We remedy this by deleting the line that just contains the letter i; this line is
one before the current line (we assume that the current line was restored to its
previous position after printing the buffer). After deleting the i line, we delete the
line about the tractor as well.

- The tractor outside stopped its engine.

.-1

d

d

After a d the current line is set to the line after the deleted one. Hence repeated
typing of d deletes successive lines.

We now re-insert the tractor line in its intended place, before the line about
the clock striking.

R At this point a door opened.

.-1

The clock struck three.

i

The tractor outside stopped its engine.

The buffer now contains

Greg Daimler entered the room . There were seven bodies on
the floor . He coughed . A body fell from the top of the
bookcase . He looked up . He saw ten more bodies stuck to
the ceiling.

100

The tractor outside stopped its engine.
The clock struck three.

At this point a door opened.
A tall and exceptionally beautiful girl entered the room.

She was wearing a low-cut and very tight dress.

(There was actually no need to delete the tractor line and re-insert it again. We
could have used a more advanced ed command that moves lines from one place to
another.)

We have thus escaped fairly lightly from our crime of omitting the dot at the
end of inserted text. You will not always be so fortunate. If you have been typing
away happily for half an hour to ed without any response, the chances are there
was a missing dot somewhere. Hence a good rule for ed is: a dot removes doubt. If
you are already in command mode a dot will simply print the current line, and
thus reassure you that all is well. If you are not in command mode a dot will get
you there.

Having reached the stage where you can now do simple edits, we shall
suspend our editing session for a while and explain some general properties of ed.

THE GENERAL FORM OF A COMMAND

We have so far separated the setting of the current line from the commands, such
as i, which change the buffer. You can, once you have gained a little confidence
with ed, combine the two.

In general the form of an ed command is

[address [,address]] command-name [argument]

where the address is a specification of a line - like the ones we have used to set the
current line. As you can see, a command-name is preceded by zero, one or two
addresses. Most commands, as examples below will show, permit any of these
three possibilities. If no addresses are supplied a default assumption, normally the
address of the current line, is made. A pair of addresses constitutes an address
range, and means that the command is to be applied to every line from the
beginning of the address range up to and including its end.

We shall illustrate the form of commands by showing a sequence of examples
of the d command, which deletes lines.
d delete the current line
+ 2d advance the current line by two, and then delete the new current

line
/Daimler/d advance the current line to the next line containing Daimler and

delete this
3,5d delete lines 3 to 5 inclusive
.,/Daimler/d delete all the lines from the current line to the next line

containing Daimler
1,$d delete the entire buffer

Two points about these examples:

• you can, if you wish, add spaces before the d, e.g. 3,5 d

101

• although all our examples show the d command, most other ed commands
have the same alternative forms, and we could equally well have used, say,
the c command. One command that is particularly useful with a pair of
addresses is the command p which prints lines. In particular 1,$p prints the
whole buffer - an operation we assumed in our earlier example, and 3,5p
prints lines 3 to 5 inclusive.

WRITING TO A FILE

Many ed users , mindful that disaster may strike at any time, periodically write the
buffer to the current file. Their work will then be saved, and if they have a
subsequent appalling disaster with the buffer, they can simply abandon it,
confident that at least some of their work has been salvaged. You write the buffer
by using the w command.

If you simply type the command

w

this writes the entire buffer to the current file. The current file is normally the
filename you typed on the original ed command, e.g.

ed chapter2

(There are ways of changing the name of the current file, but these are beyond the
scope of this book.)

The w command is an exceptional command: it actually makes a gratuitous
remark. When it has written the file - which may take a while if the buffer is long
- it tells you, quite voluntarily, the number of characters (or, on some versions of
ed, the number of lines) that it has written.

The w command is also different in a second way: if you do not specify any
addresses, then the w is assumed to apply to the whole buffer. This happened, for
instance, in our example above. For most ed commands, on the other hand, the
default assumption is the current line. Thus, fortunately, typing d alone does not
delete the entire buffer, but just the current line.

Given hrmt's role in the design of ed, the default assumption is the most
frequent situation. Only w, and a handful of other ed commands, are most
frequently applied to the whole buffer.

You can always override the default address range by giving one or two
explicit addresses before a command. Thus

.-lw

sets the current line back one and writes this line, and nothing else, to the current
file. (This is likely to be a disaster, unless the rest of the buffer is written separately,
as everything else would be lost.)

The command

1,/Daimler/w

shows the use of the w command over a range of lines. This writes from the start of
the buffer up to and including the first line containing Daimler . This /Daimler/ line
then becomes the current line.

102

The w command also has an optional argument. If you want to leave the
current file intact, and write to a different file you can use commands such as

w newcopy

6w line6
1,/Daimler /w uptoDaimler

The first of these writes the whole buffer to a file newcopy; the second writes the
sixth line of the buffer to a file line6; the third writes a range of lines to a file
uptoDaimler . (Note that you need to put at least one space between the w and the
filename that follows it - one of the few places in ed where a space is necessary.)
The w command is quite ruthless: if a file already exists with the given name, then
w overwrites the previous contents, destroying it forever.

As an alternative to w it is often useful to use W, which appends on the end of
a file, rather than overwrites it. (On some implementations, wa is used rather than
W.)

CHANGES WITHIN THE CURRENT LINE

We said earlier that there were two kinds of changes you could make to a file:
inserting or deleting complete lines, and making alterations within a line. So far we
have only covered the former, which is achieved by commands such as i and d.
This sort of editing is most frequently used when the material being edited is a
program. When you are editing textual material, particularly when you are
making changes to an existing document, it is much more usual to change the odd
word or phrase within a line, rather than to slaughter or create complete lines. It is
therefore high time we explained how to make changes within a line.

The command to do this is the s command, which has the general form

s/pattern/replacement/p

For the time being we shall take both the pattern and the replacement to be simple
strings of characters. The action of s is to replace the first occurrence, within the
current line, of the pattern by the replacement. The p on the end, which is optional,
causes the current line to be printed after the substitution has been made. (It is an
instance of a more general facility: you can append the p command, which prints
the current line, to several of the ed commands. You then get two commands for
the price of one.)

We shall now return to our editing session and use the s command.

- The tractor outside stopped its engine.

1
Greg Daimler entered the room. There were seven bodies on

s/seven/18/p
Greg Daimler entered the room. There were 18 bodies on

Here we set the current line to the first line of the buffer, and change seven into 18.
For many people the s command is the most popular ed command, so we shall

show several more examples of its use.

.r Greg Daimler entered the room . There were 18 bodies on

103

s/18//p

Greg Daimler entered the room. There were bodies on

Here we apply s to the current line, and replace 18 by nothing, i.e. we delete it. We
now notice that there are two spaces before bodies . To turn these into one we type

s/ / /

This replaces the (first) pair of spaces on the line by a single space. We omitted the
p on the end because we were confident this would work. (Note that here, as
everywhere else in ed , a space is treated just like any other character.)

You can add to the s command a g suffix (as well as, or instead of, the p suffix)
if you want all occurrences of the pattern to be replaced, though this still applies
only within the current line.

' Greg Daimler entered the room. There were bodies on

s/e/E/gp

GrEg DaimlEr EntErEd the room. ThErE wErE bodiEs on

Here we replace every e in the current line by E. This is a bizarrE thing to do, but it
gives us a chance to show a command that acts as a valuable counterweight to the
s command. If you type u (for undo) this cancels the previous s.

.r GrEg DaimlEr EntErEd the room . ThErE wErE bodiEs on

u

Greg Daimler entered the room. There were bodies on

Here we undo our substitution of E for e, and print the current line to make sure
that the previous substitution has, indeed, been undone.

Unfortunately the u command works only with the most recent substitution,
and applies only to the current line. You cannot (unless you have a super extended
ed) undo other commands, such as a tragic

1,$d

where, by typing d when you mean to type p you delete the whole of the buffer
rather than print it.

Finally, there is a special way of combining s with a context search. The pair
of commands

/green/
s/green/blue/

which finds the next occurrence of green and then replaces it by blue, can be
abbreviated as

/green/
s//blue/

The general rule is that a null pattern means the pattern you most recently used.
Another application of this, where ed is being applied to a file of nursery rhymes, is

/Piggy/
This little piggy went to market.

104

This little piggy stayed at home.

Here, having found one piggy , we want to find the next. All we need to type is'//'.

QUITTING

The command that beginners to ed most yearn to type is q, which means that the
editing session is complete , and it is time to quit the editor . Having quit the editor
you are then returned to the normal command status in the shell . Thus you get the
`$' prompt , and you can type ordinary UNIX commands again , rather than ed
commands.

(More generally , the letter q is often a good thing to type to UNIX when
matters are getting out of hand. The convention that q means quit applies to a lot
of other UNIX programs as well as the editor.)

The normal way of leaving the editor is to type

w

q

in order to write the buffer back to the current file and then quit. In some
implementations this can be written as one command: wq.

If you try to quit, having made changes in the buffer since the last w, then
these changes will be lost. There are two cases where this occurs

• the Great Pest's quit when you have spent two hours editing your buffer
and then forget to write these changes back to the current file

• the ignominious quit where you have made such a mess of your editing that
you want to escape without changing your original file.

In either case ed questions the quit. (It has, of course, no means of
distinguishing the two cases.) On friendly implementations it types a message such
as `sure?' and you have to type an explicit y if you are in the ignominious state of
really wanting to quit. On less friendly implementations, hrmt simply gives his
normal `?' error message to the first attempt to quit, but if you try again the quit
will work.

BROWSING AND BREAKING

When you are editing a file you may sometimes be only dimly aware of its
contents. This may apply, for example, to an old file, a very long file, or to a file
created by someone else. It is often useful, therefore, to use ed to browse through
the buffer to get an impression of what is there. You can, for instance, use a
context search to look for certain words.

Sometimes you want to go through part of a file line by line. You can do this
by successively typing

.+1

However, hrmt finds this verbose, and he has provided an alternative form that is
shortened by the maximum amount: if you type a null line, i.e. you just type the
Enter key,then hrmt interprets it as. + 1. Thus to browse through the buffer line by

105

line you just keep pressing the Enter key. If you reach the end of the buffer, hrmt
will reply with a question mark if you try to proceed further.

If you want to look at a sequence of lines surrounding the current line - the
sort of image you see on a screen editor - you can type a command such as

.-10,.+1Op

Because this is such a common operation some versions of ed have a special
command to achieve this effect - indeed the special command has a better effect
since, unlike the above use of p, it leaves the current line positioned at its original
place.

Sometimes, during your browsing, you may want to note the number of the
current line; you may for example want to refer to the line in a subsequent d
command. To do this, you can type

The reply is the line number.
Occasionally you can get characters into your buffer that you cannot see.

Examples are tab and backspace characters. Beginners are especially likely to be
puzzled by such unseen hazards. If you want to be sure of what is really in your
lines you can type 1, instead for p, to display the lines. The I command displays
something visible for every character, though the exact way it represents the
unseen characters depends on your version of ed. A typical convention is

a tab comes out as >
a backspace comes out as <

Other non-printing characters come out as a backslash followed by the internal
code of the character. In general, however, the beginner is not interested in the
details, it is enough to know that some funny characters have got into the line and
need replacing.

The ultimate in browsing is to type

1,$p

but if your file contains 10,000 lines you may regret doing this - the display will
take a long time. Fortunately, while using ed, you can type a break-in without a
catastrophic effect. Such a break-in simply returns you to command mode in ed.
The current command is abandoned and the buffer remains in the state it was
when you typed the break-in. Break-ins can therefore be used to terminate tedious
and unwanted printing that you have set in motion.

This use of break-in contrasts with some other UNIX programs, where a
break-in abandons everything and returns you to the shell.

COMPLETE EXAMPLES

Since our descriptions of ed commands have been scattered over several pages, it
might be helpful to examine some complete sample sessions in order to see how the
commands fit together. We show five sample sessions below. The first one
illustrates the use of ed to create a new file.

106

Sample session 1

$ ad

a
When Greg Daimler regained consciousness he

found himself in a dark room . He smelled gas:

a horrific new nerve gas that could wipe out

a million people in a second . No worry here.

The gas might wipe out a million ordinary

people , but ordinary people did not have nerves

like Greg Daimler . Daimler simply smiled.

The gas had killed all the poisonous snakes

and scorpions that were surrounding him.

/dark/
found himself in a dark room . He smelled gas:

s/dark/small dark/p
found himself in a small dark room . He smelled gas:

w chapter2

405

q

Here we start chapter2 of the book. Since we have no existing file we supply no
argument to ed . When we come to do the w at the end, we name the file we want to
write to. When you create a new file your first command is invariably a since there
is nothing else to do but to append to the null buffer that is already there. In our
session above, we noticed an error after we had typed in the new material. The
dark room should have been a small dark room. We therefore used the s command
to make this change before writing our file. In this case s was used to insert a new
word, rather than to replace anything, but this manner of use is not fundamentally
different from a replacement. (The above use of s could, incidentally, have been
abbreviated as s//small dark /p since the word dark had just been found on a
context search.)

The advantage of using ed, rather than cat , to create a new file is that you can
make changes like this as you go along.

Sample session 2

The above session would have been identical if the first line had been

$ ad chapter2

and the penultimate ed command had been w instead of

w chapter2

The reason is that if ed is called with a non-existent file, as we are assuming chapter2
is, it simply gives its favourite error message, the question mark, and proceeds
exactly as if it was editing a null file. However the filename is remembered, and
treated as the current file; thus the w in our example writes to chapter2.

Although this way of creating a new file is only trivially different from

107

Session 1, some people prefer it. If you use the Session 1 method there is a small
danger that, after a harrowing ed session , you will forget which file you are supposed
to be creating.

Sample session 3

$ ed chapter2

405

1i

DAIMLER BREAKS OUT

w

425

q

Here we add a title line at the start of the file. The title is followed by a blank line.
We then write the buffer back on top of the original file. (The difference between
425 and 405 tells us that the file is now 20 characters longer.)

Sample session 4

$ ed chapter2

425

/wipe/
a horrific new nerve gas that could wipe out

/wipe/
The gas might wipe out a million ordinary

s//knock/p
The gas might knock out a million ordinary

/wipe/
a horrific new nerve gas that could wipe out

w
426

q

Here we are a little worried about the repeated use of the word wipe. We find two
occurrences and change the second to knock. We then search for the next wipe and
find we get round to the first one again. There are therefore no other occurrences
of wipe. Happy, we write the file and quit.

Sample session 5

$ ed chapter2

426

1

DAIMLER BREAKS OUT

null line typed here

w ed displays the next line, which is blank

null line typed here

108

When Greg Daimler regained consciousness he

.+1,$c
... IF YOU WANT TO READ THE REST OF THIS, PLEASE

BUY ME AN I-LOVE -UNIX T-SHIRT.

1,$P

DAIMLER BREAKS OUT

When Greg Daimler regained consciousness he

... IF YOU WANT TO READ THE REST OF THIS, PLEASE

BUY ME AN I-LOVE-UNIX T-SHIRT.

w /usr /friend /thrills
145

Q

Here we start by printing line 1. We then browse through the buffer by typing two
null lines. (Since the second line of the buffer is a blank line, the reply to the first
null command is a blank line. Thus the above display shows three blank lines in
succession.) When we reach the first line of the story we replace all the lines
beyond it by an offer that no-one could refuse, and write the buffer to a friend
(who has given us write permission to his home directory). We do not write this
buffer back on top of our current chapter2 file, as we do not want to destroy the
original.

REGULAR EXPRESSIONS

The second banana skin in ed is the metacharacter: a character that is not what it
seems.

The banana skin arises from one of the most common phenomena in
computing: a simple facility is made much more general and powerful; the gains
are immense, and the designer of the new facility glows with pride; there is,
however, one small problem: the simple facility is not simple any more.

In this case the phenomenon arises with the context searching facility. When
you use this you actually search for a pattern. In our simple examples so far this
pattern has consisted only of fixed characters, such as /dark/. It can, however,
contain variable elements. The variable elements are indicated by so-called
metacharacters, which are characters with special meanings. We have already seen
the use of metacharacters in the shell. The characters that we called wildcards, such
as * and ? are actually examples of metacharacters. The ed metacharacters are,
however, generally different from the wildcard characters. The following is a list of
some of them

means any character. (A dot, as we know, is always ed's first choice as
a character with a special meaning.) Thus /c.t/ matches cat, czt, c + t,
etc.

x* where x is any character, means any number of x's, including none at
all. Thus /ab*d/ matches any of ad, abd , abbd, etc. Similarly /a.*d/
matches any string starting with an a and ending with a d. (The a and

109

d must, however, be on the same line, since ed works line by line. If
there is more than one a or d on a line, /a.*d/ matches from the first a
to the last d.)

$ means the end of the line. Thus /d$/ matches a d at the end of a line.
This use of `$' is somewhat analogous to the use of `$' to mean the last
line of the buffer, e.g. 1,$p

n means the start of the line. Thus /AT/ matches a T at the start of the
line; /A$/ matches a blank line

[Aab] means either A or a or b. (This is the one ed metacharacter facility
which exactly mirrors a wildcard facility in the shell.)

[AAab] means any character that is neither A nor a nor b. This use of `[A' to
mean `none of' is entirely separate from our previous use of `A' to
mean the start of a line.

[,;]* means any sequence (including a null one) made up of spaces and/or
commas and/or semicolons.

The patterns you use in a context search are called regular expressions. (This
is a term used in the mathematical analysis of syntax; it is not just a term coined by
ed - otherwise it would have a shorter name.) You should remember the
following points about regular expressions:

• a beginner's first acquaintance with metacharacters often arises when he
uses them by accident and peculiar things happen. Thus he types /ing./ to
find ing followed by a dot, and is surprised when ed finds a line containing
ings instead. (The dot matches anything.)

• if you really want a character to mean itself you can precede it with a
backslash - in a similar way to using a backslash in the shell. Thus the
above /ing./ should have been

/ing\./

• the concept of regular expressions, and the use of metacharacters, is present
in several UNIX programs. Some programs, such as grep , use identical
metacharacters to ed. (We shall soon explain this extended use of grep.)

• all regular expressions are matched within the current line. You cannot
match a string that straddles several lines.

• regular expressions can be used in the pattern of an s command, as well as
in a context search.

EXAMPLES OF REGULAR EXPRESSIONS

The following are some examples of the use of regular expressions.

Example I

/[Hh]e/

finds the next occurrence of He or he. Note that ed treats upper case letters as

different from lower case ones. Hence if you are searching for all occurrences of

the pronoun `he', don't forget to include `He' in your search as well.

110

Example 2

sl:.*$l:lp

Here we see a regular expression on an s command. The regular expression

matches the string from the first colon in the current line, right up to the end of the
current line. This is replaced by a colon, so the net effect is to delete everything
after the first colon in the line. (If the current line does not contain a colon, ed will
give the `??' error message, which it always gives when it fails to find a string or
pattern.)

Example 3
Note that `n' does not stand for the first character on the line. Instead it can

be thought of as an imaginary character preceding the first character on a line. The
distinction is important when you do a substitution. Thus if our current line is

Greg is afraid

then replacing `n' works as follows

sift /`/p
'Greg is afraid

Here we replace the imaginary character at the start of the line by a quote. The rest
of the line is unaffected. (Indeed the imaginary character is unaffected, because ed
always assumes it is there.) On the other hand consider

- Greg is afraid

s/./`/p

'reg is afraid

Here the dot matches the first character on the line and this is replaced.

Example 4
The `$' on the end of the line is as imaginary as the `n' at the start. It is often

useful as the subject of substitution, e.g.

- Greg is afraid

s/$/ of nothing/p
Greg is afraid of nothing

Note the space before the of in the above substitution. If we had left it out the
result would have been

Greg is afraidof nothing

Example 5

sin *1!

deletes any spaces that occur at the start of the current line.

Example 6

111

might look like a command to delete the first sequence of spaces on the current
line. Actually its effect is identical to Example 5. If the current line does not begin
with a space the above pattern happily matches a null string at the start of the line.
It replaces this by a null string, thus having no effect. Having done this onerous
replacement it does no more; it therefore does not look for spaces later in the line.
The moral is to beware the use of the asterisk metacharacter unless the beginning
of the repetitions is clearly delimited - otherwise you need a twisted mind to work
out what will happen. (The correct pattern for our replacement is two spaces
followed by an asterisk - this means one space followed by zero or more further
spaces.)

CONTEXT OF EDITING METACHARACTERS AND WILDCARDS

Note that ed metacharacters only apply to regular expressions enclosed within '/'
signs. They do not apply elsewhere in ed , nor do they apply to shell commands.
Similarly shell wildcards do not apply to ed commands. Thus

cat ve*

if used in the shell, might cat a file called verylongname . You could not use

w ve*

as an ed command to write to the same file. Instead you must write the name out in
full.

USE OF AMPERSAND IN A REPLACEMENT

There is one other place in ed where a character is not what it seems: the character
& in the replacement string of an s command means the pattern you have just
matched. Thus

s/dark/small &/

is the same as

s/dark/small dark/

The use of & is of most benefit when the pattern is a regular expression. Thus

s/10*/(&)/

matches a string consisting of a I followed by any number of 0's, and substitutes a
pair of parentheses round whatever it matches. Thus

1 becomes (1)
10 becomes (10)
100 becomes (100)

For beginners this marginal advantage is more than offset by the banana skin
effect of the ampersand. For example

s/Jones/Jones & Sons/

turns

The name of Jones is known for accuracy.

112

into

The name of Jones Jones Sons is known for accuracy.

(If you really want an ampersand in a replacement string you must put a backslash
in front of it.)

There is one consolation: at least the pattern metacharacters do not apply in
replacements - you can, for example, freely use dots. The ampersand together
with the `/', which is taken to mark the end of the replacement, are the only two
characters you need worry about.

REPEATED EDITS

One of the huge advantages of storing a document on the computer is that you can
make systematic changes to it. Thus, with our novel on the computer, we can
easily rename Greg Daimler as Cyril Daimler, if we want to. Likewise we can
change every occurrence of 1984 into 1985, or every occurrence of `at this moment
in time' to `now'.

The use of systematic changes is also common for files that are programs:
programmers are always refining their programs by changing variable names,
formats, and so on.

You can accomplish repeated substitutions in ed by preceding the s command
by a pair of addresses to show the range in which the substitutions are to be made.
For example

1,$s/Greg/Cyril/gp

replaces all occurrences of Greg by Cyril (since it is applied in the range from line 1
right up to the last line). Let us hope that there are no occurrences of Gregory,
because these would be turned into Cyrilory. It is a quirk of ed that the p on the
end of this substitute command only causes printing of the last line in which a
substitution has been made - not every such line. The g before the p is important.
It means that every Greg on each line within the address range is replaced; if we
had omitted the g, only the first occurrence of Greg on each line in the address
range would be replaced. Thus the line

She looked at Greg. Greg smiled.

would become

She looked at Cyril. Greg smiled.

As a second example of a systematic substitution, this time in a limited line
range, the command

. - 10,. + 10s /he/she/

substitutes she for he in the ten lines before and after the current line (and also, of
course, in the current line itself).

113

REGULAR EXPRESSIONS IN THE GREP COMMAND

You may remember that the shell command

grep pattern file ...

prints out all the lines of the file(s) that contain the given pattern. In our previous
examples the pattern was always a fixed string. We mentioned earlier in this
Chapter that the pattern could be any regular expression, written using metachar-
acters identical to ed.

An example of this extended use of grep is

grep '[,;].*[,;]' chapterl

Here we have an elaborate pattern that matches
a comma or a semicolon ([,;])
followed by any string of characters (.*)
followed by a comma or a semicolon ([,;])

This command therefore displays all lines of chapterl that contain a comma or
semicolon, followed, later in the line, by another comma or semicolon, i.e. all the
lines that contain two or more commas or semicolons (or one comma and one
semicolon).

This usage of grep explains its curious name. The name stands for Globally
find Regular Expressions and Print.

INCLUDING OTHER FILES

The r command in ed reads a file and inserts it into the buffer after a specified line.
Hence

$r boast

adds the contents of the file boast at the end of the buffer (since `$' means the last
line). When it has read the file, the r command prints the number of characters
read, and sets the current line as the last line read.

It is common practice to keep popular pieces of text or program in separate files
so that they can be included within other files you create. Thus boast might be a
modest description of yourself, which you add at the end of every document you
write.

LOOKING AT THE OUTSIDE WORLD

You can, while using ed, execute any shell command you like, and you can do this
without leaving the editor or changing your buffer. All you do is put an
exclamation mark on the front of the shell command you want to execute, e.g.

r boost
?boost

!Is
boast

boaster

boastest

114

r boast

7943

Here we try to read a file boost but find it does not exist. (The message `?boost'
is one of hrmt's most verbose sayings.) We therefore use the shell command is
to give a listing of our files. This shell command produces its output in the
normal way and then ed types another exclamation mark to indicate you are back in
the editor again. You now know your filename is boast and can use it in the normal
way.

If you want to use your buffer in a shell command, you have to write it first,
e.g., assuming our current file is chapter2

w

1234

!spell chapter2

The advantage of using commands such as spell from within the editor is that, if
there are any mistakes to correct, then you are still in the editor and can get
straight down to doing the corrections.

FURTHER EDITING FACILITIES

Unfortunately Dudley Detail is still battling with the dreaded file-moth that struck
him during the last Chapter. He is thus not available to give us the benefit of his
detailed knowledge of ed. His brother is, however, happy to oblige. This man is a
vicar but, sadly, suffers from poor health. The Ill-Reverent Detail, as he is called, is
writing the standard work on ed; he is currently working on Volume 14: Edits with

more than twenty metacharacters.
His comments on our introduction to ed are not re-assuring. "Your descrip-

tion is much too superficial," he said. "You have not mentioned marking lines,
moving blocks of text about, encrypting the buffer to gain security, joining
lines together, the g on the front to make commands apply to the whole buffer,
splitting regular expressions into separate parts, specifying newline characters in
replacements, doing a context search backwards, using an alternative to the `/' on
s ... ".

REFERENCE EXAMPLES

In spite of these appalling omissions, we shall conclude our description of ed here.
In order to help you remember the features of ed that we have covered, we show in
this Section a simple example of each.

Addresses
These specify a line in the buffer.

12 twelfth line
current line

$ last line

115

.+3 three after the current line

$-6 six before the last line

/pig/ the next line that contains pig

// same as previous pattern

Metacharacters

These apply in patterns between `/' and `/'. Each of the following advances

the current line to the next line containing the stated pattern.

/Ax/ x at start of line

/x$/ x at end of line

/x.y/ x, then any character, then y

/x.*y/ x, then any sequence of characters, then y

/[xy]/ x or y

/[nxy]/ any character that is neither x nor y

/\./ a dot

/\// /

Commands

(null) advance current line and print it

/pig/ advance current line to next line containing pig and print it

a
extra line 1

extra line 2
append lines after current line

c

replacement change (i.e. replace) current line

d delete current line

1,/pig/d delete from line 1 to first line containing pig

i

precedent 1

precedent 2

I

p
1,$p

q
/Author/r boast
r /usr/him/x

s/new/fresh/p

s/new/fresh/gp

s/very //p

1,$s/new /fresh/gp

s/xx*/(&)/

u

} insert extra lines before current line

print current line, including invisible characters

print current line

print the whole buffer

quit

insert the file boast after the next line containing Author

insert the file usr/him/x after the current line

replace first new in current line by fresh , and print the line

replace every new in current line by fresh , and print the line

delete the first occurrence of very (followed by a space) in

the current line, and print the line

replace every new in the buffer by fresh, and print the

(last) replaced line

replace, within the current line, the first sequence of x's

by the same sequence in parentheses

undo last substitution

116

w write the buffer to the current file

w mycopy write the buffer to the file mycopy

.w bestline write the current line to the file bestline
W xxx append the buffer to the file xxx
= print line number of current line

!Is execute the shell command is

Error messages
? unrecognized editing command
?? pattern could not be found
?xxx something is wrong with file xxx
?TMP an internal file has overflowed - something is too big

Banana skins
Missing dot after inserted text
Unintentional use of metacharacters

SCREEN EDITING

Some implementations of UNIX, in particular PC XENIX, have a screen editor
called vi. If ed is an editor for smart people on dumb terminals , then vi is an editor
for even smarter people on less dumb terminals . Though you, the current reader,
are definitely extremely smart, we must allow for other readers who are less gifted;
we shall therefore not plunge into the details of vi here. It may even be that your
UNIX has an alternative screen editor, which might be more suitable for
beginners, so there is no immediate need to learn vi . All we shall do here is mention
some principles of screen editors.

Screen editors work with a buffer, just like ed . Unlike ed, the buffer is always
displayed on the screen. A typical terminal will display 24 lines of text, and we
shall assume that our screen editor devotes 22 lines of the screen to displaying the
buffer - the remaining two lines being used for showing the current state of play
and, on occasion, for echoing characters typed at the terminal. Obviously the
buffer will generally be larger than 22 lines; the screen can be thought of as a 22-
line `window' that can look at any part of the buffer. Thus a screen editor has
commands which allow the user to move the window to any desired part of the

buffer.
To locate a character that is in the window, the user moves a cursor left or

right, up or down, until it reaches the desired point. Thus instead of the concept of
a current line, you have the concept of a current character. (Some screen editors
have subsidiary concepts of the current word and the current line, as well as the
current character, but we shall not worry about these here.) All edits are done at
the current character position. Thus you can delete the current character or insert
in front of it. The great advantage of a screen editor is that you can see what you

are doing: as you make each change the screen editor will redisplay the window so
that you can see the effect of the alteration.

To bring out the difference between screen editing and line editing we shall

consider the ed command

s/he/Ron/p

117

With a screen editor you do not need a pattern to find the he. You just point a
cursor at it - you may need to move the window first. You then twice type the
delete command (a single key on almost every screen editor) to delete the h and e.
The screen changes as you make the deletions. To finish the edit you type the insert
command followed by the text Ron. Lastly you type a terminator to indicate the
end of the insertion.

Some implementations of ed have a limited form of screen editing, in that you
can move a cursor along the current line, and change the character pointed at by
the cursor.

PC/IX has a screen editor called INed , which allows you to divide your screen
into more than one window, with different files visible through each window. Its
many other features, if listed, might make it sound formidable to use, but INed
does have on-line documentation, and is worth exploring.

118

CHAPTER 9

Documentation and
communication

We should show life neither as it is nor as it should be,
but as we see it in our dreams.
CHEKHOV

In this Chapter we explain how to extract information about your UNIX system,
and how to communicate with other users.

The ideal operating system has an interactive information service. Whenever
you have a query such as

• how does the xxx command work?
• what commands manipulate directories?
• why does this line not do what I intended?

you simply type the query on your terminal , and the operating system immediately
provides a helpful and friendly answer. This ideal information service is even
better than a human adviser standing by your side , since the information service
will not laugh at your ignorance and stupidity.

The nadir of operating systems have no information service. Instead you have
to buy a printed manual , and search through it whenever you want information.

No operating system in existence today even gets close to our ideal . There are
plenty of systems close to the nadir - some even seem to be inferior to the worst
one could imagine : the printed manuals run to several fat volumes ; each volume is
in a loose-leaf binder where pages have been constantly changed, and several
pages have pencilled corrections.

UNIX implementations vary in their point on the spectrum between the ideal
and the nadir. Most are at least some way on the road to the ideal , since the
documentation is available on the computer and can be consulted from a terminal.
This is not true , however, of smaller personal computers, where disk storage space
is limited.

UNIX DOCUMENTATION

The original authoritative definition of UNIX was the UNIX Programmer's
Manual. As we have said, some UNIX implementations have repackaged this in
various ways, though generally without changing the content much. In this Section
we discuss the structure of the UNIX Programmer's Manual; if your document-
ation is a repackaged version you will need to do a little browsing to relate it to
what is described here. Both PC XENIX and PC/IX have repackaged
documentation, and the repackaging differs in the two cases. The PC XENIX
documentation has dispensed with the concept of Section Numbers, as described
below.

The UNIX Programmer's Manual is (normally) divided into two volumes.
The most important is Volume 1, which gives a fairly complete definition. This is
written as concisely as possible - though it is still a bulky work - and assumes a
reasonably sophisticated reader.

Volume I is supplemented by Volume 2, which is even bigger than Volume 1,
and may be divided into several sub-volumes. Volume 2 is a comparatively
unstructured work, containing a collection of papers on different aspects of
UNIX. Some of these papers are tutorial and good for beginners; some are for
experts and are concerned with management or implementation; some give fuller
details of specialized UNIX programs, such as compilers and text preparation
systems; some describe local variations of UNIX. Most of the papers are self-
contained.

120

Some tutorial material, together with some excellent technical papers, can be
found in the special issue of The Bell System Technical Journal that was devoted to
UNIX. This is Volume 57, Number 6, Part 2 and is dated July-August 1978. A
subsequent issue of the journal, retitled AT&T Bell Laboratories Technical Journal,
contains a further set of papers, which maintain the same high standard. This issue
is Volume 63, Number 8, Part 2 and is dated October 1984.

A typical UNIX implementation will have Volume I stored on the computer,
and available interactively. We shall assume in this Chapter that your UNIX is
one of these. The advantages of storing documentation on the computer are great:

• it can be consulted from any terminal
• it is cheaper than printing lots of manuals

• it can be updated quickly
• it can be processed by software tools, for example tools to search it for

given words, tools to display parts of it, tools to edit it, and so on.

The only real disadvantage is that vast quantities of interactive documentation
occupy a lot of file storage, and this may necessitate some pruning to fit on small
systems.

UNIX documentation, such as Volume 1 of the UNIX Programmer's Manual,
stored in the computer is normally in an encoded form. (Specifically it is the input

format for nroff/troff, which we shall describe later.) When a user asks for a part of
the documentation to be displayed on his terminal, the encoded form is converted
to a printable form. This has the disadvantage that displaying of documentation
can be slowish, but the great advantage that the form of the display can be adapted
according to the type of terminal (e.g. width of lines, use of bold face characters,
etc.). There may also be a secondary advantage that the encoded form occupies
less file space than the printable form.

If you are going to access the UNIX Programmer's Manual, it is useful to
know a little about its organization. Volume 1 is divided into six or more Sections.

Section 1, which is by far the most important one, contains descriptions of all
the UNIX commands. The shell itself, which corresponds to the sh command, is
described in this Section, though the description is certainly not written for
novices. There is a sub-classification used for the commands within Section 1,
which normally works as follows

lC commands for communication with other systems
1G commands for graphics
lM commands for system maintenance (see also Section 8 below)
1 commands for general use

Sections 2 and 3 are of interest to programmers, particularly to those writing
in the C language. They describe libraries and ways of using, from within a
program, certain facilities built into UNIX.

Section 6 is the next Section, after Section 1, that is likely to concern
beginners. It contains descriptions of the game-playing programs that are
available.

The nature of the other Sections varies greatly between implementations.
Section 5 or 7 often contains miscellaneous useful information, such as a definition
of the ASCII character set, and some material useful in document preparation.

121

Each Section consists of a number of `manual pages', one page for each item.
In Section 1, for example, there is one page for each command name. Some of
these manual `pages' actually occupy several real pages. In particular the page
about sh, the shell, takes half a dozen or so real pages. The pages in a Section are
arranged in alphabetical order.

It is common to refer to pages by a name such as

ls(I)
graph(] G)
chess(6)

The number in parentheses gives the Section number where the manual page about
the given command can be found. Thus chess , the chess playing program, is among
the games in Section 6.

EXTRACTING INFORMATION FROM THE MANUAL

Assuming Volume 1 of the UNIX Programmer's Manual is available interactively
on your implementation, you use the man command to access it. For example

man Is

gives you the manual page for the Is command. The argument to man must be the
name of a manual page; normally the argument is the name of a command that
you want to find out about.

Generally man will search every Section of the manual and print out each
page it finds with the given name. (There might even happen to be a file called Is in
Section 3 of the manual as well as in Section 1, and if there were, you would be told
about this too.) You can limit the search by specifying the Section you want, as in

man 6 chess

This can speed up the search, particularly for names outside Section 1, which is
scanned first.

REDIRECTING OUTPUT

Since man is an ordinary UNIX command its output can be redirected or put into
a pipe, e.g.

man Is > myfile
man chess I Ipr
man Is I grep group

In the first example above, the output from man is put into myfile . (This is not
generally a good thing to do, as if each user kept their own copy of the
documentation, file space would soon become exhausted.) The second example
pipes the manual page for chess to lpr, so that a hard copy is printed. The third
example also uses a pipe, this time to find all the lines of the manual page for Is
which contain the string `group'.

122

FORMAT OF MANUAL PAGES

Manual pages have a standard format to make it easy for people to find the
information they want.

Each page starts with the heading `NAME' followed by the name of the
command (or whatever) described in the page. The name is in turn followed, on
the same line, by a one-line description. For example

$ man Is
NAME

Is list contents of directory

The page then continues with five more headings:

SYNOPSIS
DESCRIPTION
FILES
SEE ALSO
BUGS

For some pages one or more of these headings may be omitted.
The SYNOPSIS gives a syntactic definition of the command, and the

DESCRIPTION gives a verbal definition - this is normally the longest part of the
manual page. The FILES Section describes any files, usually built-in UNIX files,
used by the command. Thus the spell program might use a system file with an odd
name like /usr/dict/hlistb, which contains its dictionary of words. The SEE ALSO
heading covers related commands, and finally the BUGS heading covers prob-
lems. These `bugs' tend to be descriptions of peculiar behaviour ("If you do this
unusual thing then the result will be ... ") rather than catastrophic problems that
really need to be corrected immediately.

We hope the time will come when you implement your own UNIX
commands, which are so useful that they are made available as part of your local
UNIX system. If so, your commands must be properly documented or they are
useless; it is obviously sensible if your own documentation follows general UNIX
conventions. Thus one day you might yourself write a UNIX manual page.

OTHER FORMS OF HELP

The man system is only useful if you know the name of the command that does the
job you want. If you do not know the name, guessing will not always get you there.
How long would it take to guess that the name of the command which scans for a
given string is grep?

To combat this problem, some implementations of UNIX provide a help
command (sometimes called apropos), which tries to identify the name of the
command to do a given job. Typically the help system works as follows.

The person who looks after your UNIX implementation creates a file
containing a one-line description of all the commands available. (The lines after
the NAME headings of manual pages can be used to build this file.) When the user
wants help he simply types

123

help string

and help searches the file for the string and prints all the lines it finds, e.g.

$ help scan

awk(1): pattern scanning and processing language.

scanf (3s): formatted input conversion.

If the user was really after the grep command, he has not found what he wants, but
at least the help has revealed the existence of awk, which might be a useful
language to learn. (Scanf, being in Section 3, is only of interest to specialists.) If the
user tries a synonym for `scan', e.g.

$ help search
grep(1): search a file for a pattern.

he finds grep . He can then use

man grep

to get full information.
The user could also have tried another tack in his search for grep. He could

have typed

help file

Here he would have received a long list in reply, since most UNIX commands deal
with files, but grep would certainly have been somewhere in the list.

SUBSIDIARY HELP SYSTEMS

Those UNIX commands, such as ed, which have their own sub-commands may
have their own help system. Typing h or a question mark often invokes the help
system. In particular, some implementations of ed support an h command, which
gives a list of all available editing commands.

CRITIQUE

The man and help commands, if you have them, are certainly valuable but they are
some way from the ideal information service. In particular

• neither helps directly with specific problems of the "What on earth have I
done here?" variety.

• there is a gap between help, which provides one line of information about
each item, and man , which often provides material of too much detail and
sophistication. On our local system this gap is bridged by the command
how, which supplements help by listing all the options available on any
given command; it provides a one-line description of each option, plus
certain other vital information where needed. This command, or its
equivalent, is now becoming more widespread.

Those of us who design and implement programs to be used by others are
only just beginning to realize that it is no good providing advanced facilities unless
you give ordinary people help in using them. The huge research and development

124

effort in producing ever more advanced systems needs to be matched by an equal
effort spent on the even more daunting task of providing interactive guidance
when these advanced systems go berserk in the hands of inexperienced users.

The wider availability of high-quality graphics terminals will help make such
guidance easier to provide. One aid, now commonly used in software such as the
INed screen editor on PC/IX, is the pop-up menu. Here the user, when puzzled,
presses a special HELP key on his terminal, and a `menu' pops up on part of the

screen; this menu explains what commands can be typed in the current state.
It will take some time for such aids to be universally available. In the

meantime you must be content with the thought that the UNIX man and help
system, imperfect as it is, is much better than most operating systems provide.

MAIL

We have now completed our discussion of the passive side of communication:
extracting information from UNIX. In the remainder of this Chapter we discuss
active communication: exchanging messages with other people by electronic mail.

Electronic mail is used both locally, between users on the same computer, and
globally between users on different computers connected together on networks.
Computer networks are growing rapidly; they vary between networks covering the
computers in one building to international networks. Such networks are
increasingly used by businesses and by individuals to exchange information.

We shall concentrate here on local mail. If your computer is connected to
some network that supports global mail, the chances are that the global facilities
will be an extension of the local ones.

If you send mail to a person who is currently logged in, he normally receives
almost immediately a notification that some mail is waiting. If he is not currently
logged in he will receive the notification when he next logs in.

PC/IX is a single-user system, and thus the recipient of your mail will never be
logged in at the same time as you (unless you are sending mail to yourself). If,
however, the PC is connected to a network it might be possible to send mail to
users of other systems, and these might be logged in at the same time as you.

PC XENIX, on the other hand, is a multi-user system, and you have extra
possibilities for identifying and communicating with the people concurrently
sharing your computer with you.

FINDING THE CURRENT USERS

On multi-user UNIX systems, as a prel'nde to sending mail, it is often valuable to
find out who is currently logged in to your computer. To do this you simply type
the command

who

UNIX will reply with something of the following form

me console Jul 1 13:50
anne tty01 Jul 1 13:20

dudley tty02 Jul 1 4:10

125

This is a list of the login names of all the people currently logged in to the system.
You yourself must be somewhere on this list. Against each login name is an
identification of the terminal that they are using, and the date and time at which

they logged in. Terminals are usually identified by tty (which was originally an
abbreviation for `Teletype') followed by an arbitrary number. Console is the name
of the IBM Personal Computer itself.

If your UNIX system has all its terminals in the same room, you may think
the who command is useless. It is easier to find out who is logged in by looking
round the room. However this is not necessarily so. Some users have several
possible login names, and the who command tells you which one they are using.

As an extension of this, you can solve an identity crisis by typing

who am I

UNIX then solves at a stroke one of the deepest problems of philosophy by
replying

me console Jul 1 13:50

The output from who, like any other UNIX command, can be fed into a pipe.
Thus

who I grep bill

finds all occurrences of bill in the output from who. Thus if bill is not logged in, the
reply will be null (unless there is another user called spoonbill or the like); if bill is
logged in, the reply will be the corresponding line from who.

BEING INQUISITIVE

If you are nosy by nature, UNIX provides a number of tools to help satisfy your
curiosity. Some implementations allow you to enquire about the personal details
of a particular user. The command to do this in PC XENIX is

finger anne

The name finger puts the finger on Anne and you are told anne 's full name, the time
at which she last logged in, and perhaps her status and location within the
organization that owns your UNIX.

Not only may you be able to find out who people are, but you can also find
out what they are doing by typing the command

ps -a

This tells you all the processes that are currently running. Part of the information
given against each process is the terminal that controls it, and from this you can
deduce the user. (On some implementations you can type - an instead of - a, and
get users' login names against each terminal, so there is no need to tax your
deductive powers.)

COMMUNICATING

There are two commands for sending messages to other people: write and mail.

126

The former is a brusque way of interrupting what they are doing and displaying
your message. The latter is a more civilized form of communication. We shall start
by being brusque, and then go on to reform ourselves.

Because write is an immediate form of communication you can only write to
someone who is currently logged in. Hence typing who is often a prelude to using
write . The argument to the write command is the login name of the person you
want to address.

If we type the command

write anne

then the effect as we see it is not dramatic: our terminal appears to go dead. The
reason is that UNIX is waiting for some input - our message - in exactly the
same way as if it wanted input to, say, the cat command. The action happens at
anne 's terminal. What she is doing is interrupted by the message

Message from me console...

Thereafter each line of input that we type is displayed on anne 's terminal. This
continues until we terminate our input by typing A d. Thus our use of write might
be

$ write anne

I am sorry to interrupt you, but I have just found out
about the write command.
Ad

It is possible to carry out a two-way conversation using write . Anne, when she
finds that me is writing to her, can decide to write back by typing the command

write me

After she has done this, not only are the lines of input that we type reproduced on
anne 's terminal, but the lines of input typed by anne are reproduced on our
terminal. This is a fine recipe for a chaotic conversation, so some UNIX users have
developed informal rules for saying when they want their correspondent to type. A
common rule is that

(0)

meaning `over' is a signal for the other to proceed; using this convention, our
conversation with anne might proceed as follows.

$ write anne
I have got a new UNIX game I want to play with you.
Are you free tonight?

(0)
Message from anne tty0l...

NO. (0)

Are you free tomorrow night? (0)

NO.

EOF

127

Then I will come round now.
Ad

When anne received our message ending in `(O)' she decided to write to us.
We therefore received the line

Message from anne tty01...

followed by her brief message. We then asked if she was free the following night,
and, having said no, she must have inadvertently typed the Ad key thus
terminating her write. The recipient always gets a line containing the word EOF
(meaning end-of-file) at the end of a write. Undeterred by her error, we type the
final line of our message followed by A d to terminate our side of the conversation.

The way anne sees the conversation is as follows.

Message from me console...

I have got a new UNIX game I want to play with you.

Are you free tonight?

(0)
$ write me
NO. (0)

Are you free tomorrow night? (0)
NO
Ad

$ Then I will come round now.
EOF

SENDING MAIL

More civilized communication uses mail rather than write . The mail system varies
between implementations but it generally has the following properties

• recipients of messages do not need to be logged in when a message is sent
• mail is automatically stored, perhaps for several weeks, until the recipient

logs in and opts to look at it
• the same message can, if desired, be sent to more than one person (On

certain implementations some or all of these people may be on other
computers, interconnected with the sender by a network.)

• there is a system for saving messages that you receive.

Sending a message using mail is almost identical to using write . The main
difference is that the message can be terminated with a line consisting of a single
dot, as an alternative to A d. For example

$ mail anne

You cannot have recieved the message that I was
coming over , because when I got there you had gone.
Please mail me as soon as possible.

128

If you want to send the same message to several people, you write all their
login names as arguments to mail, e.g.

mail anne yvonne mary

You can, if you wish, send mail to yourself, e.g.

mail me

This may be used to remind yourself of something you should do when you next

log in.
On systems that allow mail to be sent to remote users on other machines, the

name of the recipient is often written in the form

xmachine!him

where xmachine identifies the computer and him the person. Conventions vary,

however, so you will need to consult your local documentation.
If you have a long message to send to somebody, you can prepare it in a file

and make mail take its input from this file, e.g.

mail anne < message

It is usually good practice to do this. When we noticed the spelling error in
`received' in our last message to anne , the line had been sent and there was no

correcting it.

RECEIVING MAIL

When you log in to UNIX, you are told if there is any mail waiting for you (e.g.
`You have mail'). You are also told if new mail arrives while you are logged in (e.g.
`You have new mail'). In either case, if you wish to examine your mail you simply

type

mail

There may, in general , be a number of items of mail waiting to be read. These are
stored in your `mailbox', which is a file deep in the UNIX filing system (often in the
directory usr/spool/mail). When you ask for mail, the first message in your mailbox
is printed and then a question mark is displayed, asking you what to do next. There
are several possible actions, of which the following are the most popular.

• pressing the Enter key goes on to the next message, if any
• typing d deletes the message and then goes on to the next one
• typing

s filename

saves the message in the given filename and goes on to the next message (or,
on some implementations, exits from the mail system). If you omit the
filename the message is saved in a default file called mbox . Many users,
after they have been using UNIX for a while, build up an mbox file
containing valuable messages they have saved. Note that this mbox file is
your own file, controlled by you, and is separate from the mailbox that

129

accumulates your incoming messages. Saved messages are appended to the
end of files, so that the previous contents remains intact.

• typing q quits from the mail system and returns to the shell
• typing a question mark summarizes the available commands in the mail

system.

Note that if you just read your messages and do not save them or delete them, they
remain in your mailbox and are re-displayed next time you type mail. It is like
saying to the postman: "That letter is very interesting. Bring it again at the next
delivery and I will have another look at it."

As an example of the receipt of mail, we assume that when anne next logs in
she has two messages waiting, one from Dudley and one from us. What she types
is as follows

$ mail

From dudley Tue Jul 1 13:00:59

I love you. Meet me tonight as usual, after I have

finished my UNIX session.

? s treasure
From me Tue Jul 1 12:10:21

You cannot have recieved the message that I was

coming over, because when I got there you had gone.

Please mail me as soon as possible.

?d
?q

$ mail dudley

Here mail displays the first message and prompts with a question mark. Note that
all mail messages are prefixed with the sender's name, and a postmark, which gives
the date and time of sending (accurate to the nearest second). Do not therefore try
using UNIX mail for your anonymous poisoned pen letters to the superuser.

Anne saves dudley 's message in a file called treasure , and then the mail system
displays the next message, which is ours. Unfortunately anne mistakenly types the
d key to destroy this message. Distraught at her error, she quits the mail system.
She then prepares to send some mail to dudley to reply to his ridiculous message.

CONTROLLING MAIL

Junk mail is a problem with conventional mail systems. With electronic mail the
problem is worse, because mail is so easy to send. Unfortunately it is not possible
to filter out junk mail automatically, but UNIX does offer some controls over mail
and write. In particular you can totally inhibit the latter by typing

mesg n

Thereafter no-one can write to you until you type

130

mesg y

to allow writing again. It is particularly valuable to inhibit writing if your terminal
is a printing terminal used for document preparation. In fact some UNIX
document preparation programs automatically inhibit writing, so that an inane
message from a friend does not come out in the middle of the final copy of your
best-selling novel.

Although you can control write you cannot control mail, unless your
implementation has special extensions to do this. If it does you may be able to
summarize the list of people who have sent mail to you, and then to delete
messages from well-known bores. If you wish to automate the receiving of mail
when you log in, you can put some appropriate commands in your user profile.
Again the details are heavily dependent on your particular implementation of the
mail system.

ACCESSING REMOTE MACHINES

The use of computers over networks is still in its infancy, and most implementa-
tions have their own ad hoc procedures and conventions for communication. In
general it is not possible for users running a program on one machine to access
files on another. Instead an explicit copy of the file has to be made for the machine
that wants to use it. To help this procedure, UNIX provides a version of the cp

command called uucp . This stands for UNIX to UNIX cp, and it is assumed that
both the donor machine and the receiver machine are running UNIX. You use
uucp by typing a line of form

uucp file xmachine!newfile

Your file is then copied to the newfile on xmachine. You can also, if there is
permission, use uucp to copy files from other machines to yours.

Do not expect too much of uucp, however. To management, the free transfer
of files between machines presents severe security problems, so you may well find
that your use of uucp is limited to a few directories.

SUMMARY OF COMMUNICATION MECHANISMS

To summarize what we have said in this Chapter:

• use help and man to find out how to use your UNIX
• use who and ps to find out what is going on in your machine
• use mail , and perhaps occasionally write , to communicate with your fellow

users
• if your computer is part of a network you may be able to use mail and uucp

to communicate with people on other computers.

Dudley would like to have told you that PC XENIX has Micnet, an alternative
method of accessing remote files, but you would probably prefer to consult your
local documentation.

131

CHAPTER 10

Errors

To err is human

To forgive is divine

To give decent error messages is heavenly.

OLD PROVERB

In this Chapter we try to give a few useful suggestions on what to do when things
go wrong. Unfortunately the number of possible errors and misconceptions in
using UNIX, as with any other operating system, is so great that we can only
scratch the surface.

UP AND DOWN

A computer system is said to be up when it is working and down when it is not.
You can therefore think of your system as an aeroplane, particularly as a sudden
transition from being up to being down is called a crash.

When your UNIX system is down, it may be because of hardware or software
malfunctions or for scheduled maintenance. In many cases you are not interested
in the reason for the failure - someone else has to put things right. All you want
to know is when the system will come up again. If this is so, spare a thought for the
poor devil who has to look after your UNIX; remember that the more you
interrupt him with questions about when he will have finished, the longer this time
will be delayed.

Fortunately crashes are rare on most UNIX systems. When they do occur
there are two common phenomena. One is that each user thinks he caused the
crash. ("I typed an Is command and the system crashed.") Remember that there
are normally several processes running inside the computer - even if you are the
only user - and it is unlikely that what you typed on your terminal directly caused
the crash.

The second phenomenon is that crashes always occur at the worst possible time
- half an hour before your deadline or when you have just typed 1,000 lines of text
into the editor's buffer and have not yet saved it in a file. Experienced computer
users solve the first of these problems by pretending their deadline is a day earlier
than the real one - and keeping to the pretence.

INITIAL PROBLEMS

If when you come to use your terminal you cannot get any sense out of it, it is not
always easy to tell if this is because your UNIX is down, or because there is some
problem with the terminal. Your best action may be to look at other users, if there
are any at hand, and see if they are smiling. If they are, then there is something
amiss with your terminal, or more likely, UNIX's view of it. Expert help is usually
needed, though you could experiment with changing line-speeds, or with pressing
keys such as FULL-DUPLEX or BREAK.

If you can communicate with UNIX but your attempts to log in are
invariably rejected, then you need help from the superuser. Either she does not
regard you as a proper user or your password is wrong - perhaps because a kind
friend has changed it.

Once you have successfully logged in your real problems start, because there
is usually only one person to help you: yourself.

HUNG TERMINALS

A common problem is for a terminal to go into an apparently frozen state. This is
called a hung terminal. There are three possible reasons for this

134

(1) UNIX is down
(2) you are executing a command that takes a long time to finish. Indeed you

could be running a program that is in an endless loop.
(3) UNIX is waiting for you to type.

Of these, case (3) is by far the most common. Beginners often forget to press the
Enter key at the end of a line, with the result that they are waiting for UNIX
to do something, but UNIX is waiting for them to finish their input line. A second
possibility is that the frozen terminal may be caused by scrolling: perhaps UNIX is
waiting for you to type a character to request the next screenful, or perhaps you
have, intentionally or otherwise, typed n S to freeze the screen - you may then
need to type n q to unfreeze it. A third possibility is that you ought to have typed
A d at the end of some data and you forgot to do so. You may then think that your
data is complete and that UNIX is processing it, but the reality is otherwise. A
fourth possibility is that UNIX has prompted you for a reply to some question,
and is awaiting a reply. Such prompts should, however, be obvious to see (except
in hrmt's ed and the like): even if the prompt is only a question mark, it should be
evident that you need to type something.

Because of these four possibilities, the first thing to do with a frozen terminal

is to type something. Pressing the Enter key is a good start, and Ad or Aq are other

excellent choices.
If this does not help, then case (1) or (2) may apply. If the characters you type

are echoed on the screen, then the chances are that UNIX is not down but is
executing a long command. In this case if you want to terminate your long-drawn
out process, the break-in key will normally do the trick.

THE INSATIABLE APPETITE

An alternative to the frozen terminal is the terminal with the insatiable appetite:
every line you type is gobbled up by the terminal without any reply. This problem
is almost always caused by a missing terminator for data. Hence consider typing
A d, or, if in ed, a dot. If all else fails type the break-in key.

THE INESCAPABLE PROGRAM

A common problem with badly designed computer-aided instruction programs is
as follows.

An innocent user enters the program by typing the appropriate UNIX
command, and plays with it for a while. He then gets bored, and decides to quit.
The program has displayed

What is the capital of Bulgaria?

The user tries q, Ad, a dot, the Enter key, the break-in key, and many other
desperate replies to the question, but the reply is always something like

135

q is not the capital of Bulgaria.

Try again.

What is the capital of Bulgaria?

There is, unfortunately no infallible way of escaping from such programs - and
they arise in many fields as well as computer-aided instruction. All we can say is
that the vain attempts tried above are often the best ones. In addition it is worth
trying h or ?; these may enter a help system, if there is one, which tells you how to
escape.

If you get really distraught the only way out is to abandon your terminal, and
hope that the next person to come along knows what the capital of Bulgaria is,
and, more to the point, knows how to escape from the program that you are using.

THE SCREENFUL OF GARBAGE

If your terminal displays an incomprehensible collection of apparently random
characters then you have probably tried to display a binary file (or a file encrypted
by ed). Such a display can cause a secondary problem in that one of the random
characters that is output may cause your terminal to go into some special mode.
You will then need to find what to you is an equally random character in order to
get back to normal again. If all else fails, switching the terminal off and on again
might help.

ERROR MESSAGES

Having covered general problems, we shall now go on to introduce more specific
troubles.

When you make a mistake in a UNIX command, one of the following will
happen

• UNIX will be unable to execute the command and will give an error
message

• UNIX will execute the command in a way that you did not intend

The latter is the more troublesome case, but, when you become a comparative
expert with UNIX, it will enable you to make some money. There is a large class of
people who, when UNIX starts behaving oddly, assume the fault lies with UNIX
and not with them. "It can't be my fault: all I typed was ... , and this bug-ridden
UNIX system treated it as ... ". This is where you make your money. Ninety-nine
percent of the time, the mistake turns out to be the user's; you therefore have a
standing bet that you will give any user ten shares in IBM for each UNIX bug they
find, provided that they give you one share if the mistake turns out to be theirs.
Within a year you will control IBM.

To return to the former case, that of the error message from a UNIX
command, you will find that messages vary considerably between UNIX imple-
mentations, and the messages shown in this book will not necessarily be the ones
that appear on your terminal. In general, however, UNIX error messages though
terse are generally accurate and helpful. They are, nevertheless, some way from
being heavenly. (We are talking here of error messages from shell commands.

136

When you get deep inside programs such as the editor, you get the program's own
style of messages. As we have seen from ed, these can be even less heavenly than
the normal messages.)

Sometimes a message will tell you what went wrong, e.g.

$ poetry
poetry: Command not found.

Sometimes the message will tell you what you should have done, e.g.

$ cp xxx

Usage: cp f1 f2; or cp f1 ... fn d2

Here you only gave one argument to the cp command, and are told that the way to
use it is to type

cp fl f2

(i.e. cp one file to another) or

cpfl ... fn d2

which means copy a set of n files to a directory. (We have not, in fact, covered this
extended form in the book.)

Often messages are prefixed by the name of the command or file in which the
error arose, e.g., if xxx is a non-existent file

$ cat xxx

cat: can't open xxx.

$ Is xxx
xxx not found

These examples also show that there are a few inconsistencies between error
messages from different commands - at least on our UNIX implementation. The
error message from cat is prefixed by `cat:' but is produces a different message
(though the error, to you the user, is the same as the error on the cat) and does not
prefix it with 'Is:'.

In the above examples the prefix, when it does occur, is not specially useful as
you know what command you are executing. However the prefix is valuable when
you are executing a command file, when you are running background processes, or
when you have typed ahead and are executing a command that you typed perhaps
three lines earlier.

ERRORS WITH FILES

The error message

Can't open xxx.

is probably the most common error message in UNIX. It means that your file xxx
cannot be accessed, either because it does not exist, or because you do not have
permission to read it. If the message puzzles you, because you think xxx does exist
and you have permission to read it, a common reason for your confusion is that
you are in the wrong directory. Thus it well worth using the pwd command to find

137

out what your current directory is. The pwd command is actually useful in a much
wider context than when you are puzzled by errors. Observers of university UNIX
systems have said that pwd is one of the most commonly-used commands; it is
invaluable to inquisitive students who explore their UNIX file structure and get
lost.

If typing pwd does not reveal your problem, it is worth trying Is to get a listing
of the directory in which you think xxx is. The command

Is -1

is valuable if you want to look at the permissions attached to files.
If your file is accessed via a pathname such as

a/b/c

It may help to explore the path step by step, e.g.

cd a
cd b
cat c

The error should be revealed on one of the steps.
If you have built a complex hierarchy of directories, and you know that the

file xxx is somewhere but you are not sure where, then you can be intrepid and use
the find command. This command is only for the brave, and we shall not describe
it in this book save to say that

find . - name xxx - print

will search for xxx in the current directory and all its sub-directories, and will
display the pathname of any occurrence(s) it finds. Thus if you set the current
directory to your home directory, the magic find command shown above should
locate your file. More dramatically, you can set the current directory to the root
directory (/), and the find then searches the whole file system to locate the required
file. It may, however, take a long time to do so. The only possible stumbling block
is that you might not have read or execute permission for some directory which is
between the find's starting directory and xxx.

Errors in writing files are less frequent than errors in reading them. However
messages such as

xxx: Cannot create
xxx: Permission denied
xxx: File exists

are still quite common. Two likely causes are

• a file xxx already exists and has not got write permission
• the directory containing xxx does not have write permission and hence you

cannot create any new files within it

The latter frequently occurs when you are exploring other people's directories.
With some UNIX shells (e.g. csh) it is possible to prevent the disaster where

the Great Pest destroys a file when he types

cat > randomname

138

and randomname happens to be a valuable file that already exists. You may be able
to prevent this by setting a variable called noclobber . The Great Pest is then
thwarted by the "File exists" message.

Your worst problem with writing files arises when the file space of your
UNIX system becomes full up, and either you or some other users must delete old
files to make way for new ones.

EXECUTING COMMANDS

If you try to execute a command

x

and get a message like "Command not found" or simply "not found", then the
reason is that there is no file called x in any of the directories in your search path.
(If you are worried about your search path, type set; this may also have the benefit
of revealing other potential problems in your environment.)

If the response to your command is

x: permission denied

or

x: cannot execute

then x does exist, but you do not have permission to execute it.

MISUSE OF SPACES IN SHELL COMMANDS

The rule for spacing in shell commands is simple: you just type one or more spaces
before each argument. Although the rule is simple, it is still easy for beginners to
omit necessary spaces or to put in wrong ones. In both cases the punishment is
that your command will be interpreted in entirely the wrong way - a severe
penalty for an apparently harmless crime.

For example the following are the effects of bad spacing in the command

Is -1

Error 1: missing space

$ Is-I
Is-I: Command not found.

Here Is - I is taken as the command name, and UNIX can find no such command.

Error 2: extra space

$ Is - I
I not found

This is taken as a use of the Is command with a null option (a minus sign on its own).
Since the I that follows the minus is preceded by a space it is taken as the second
argument. In the case of Is the second argument is the name of the file - usually a
directory - that is to be listed. The file I cannot be found, and hence the above error

139

message is given. (If you did happen to have a file called 1 it would indeed be listed,
and you would be somewhat surprised at the effect of your command.)

UNINTENDED WILDCARDS

We have emphasized the problems caused by metacharacters in ed and, to a lesser
extent, by wildcards in the shell. Remember that

grep * xxx

does not search for all lines of the file xxx that contain asterisks. Instead the shell
replaces the asterisk by the list of all the filenames in the current directory, so you
get a peculiar command indeed.

In general, therefore, if a command seems to be behaving in a particularly
perverse way, check to see if it contains any wildcards. If you want to be sure, try
the command as an argument to echo . For example

echo grep * xxx

would have told us what the shell turned our grep command into.

SOME SPECIFIC MESSAGES

The following is a list of some specific error messages which occur frequently and
sometimes cause bewilderment.

Bad directory

You have tried to use as a directory a file that is not in the proper format for a
directory. The error normally arises when you mistakenly specify an ordinary
character file where you should have written a directory file.

Broken pipe

One of the commands in a pipeline has failed, and has thus not relayed
information to the next command in the pipe (or has not accepted information
from the previous command in the pipe).

Can't access xxx

This is similar to being unable to open a file: the file xxx does not exist or you do
not have permission to look at it.

xxx: cannot unlink

This normally arises when you try to rm a file that you do not have permission to
delete (either because of the permissions on the file itself or permissions on the
containing directory). The message can arise on an my command, which tries to
delete the old file after making a new one.

Core dumped

If you get this message it is both good and bad news. The bad news is that there is

140

something wrong with the program you are using. The good news is that it is not
your fault; it is the fault of the person who wrote the program. (If this is also you,
the news is doubly bad.) The message arises when a program tries to do something
impossible, such as to divide by zero, or to refer to some storage that does not
exist. When you get the "Core dumped" message, a file called core is gratuitously
created in your current directory. This is an image of the store of the computer at
the time the fault occurred; it can be examined by programmers with suitable
tools. The "Core dumped" message is often preceded by a message to pinpoint the
cause of the trouble; one such message is the puzzling "Bus error".

No such tty

This means that you tried to refer to a terminal that does not exist.

xxx: 400 mode

The permissions for the file xxx do not allow the current operation. The 400 (or
whatever number you get) has the same meaning as the first argument to the

chmod command.

MEAN TRICKS

Finally, the most baffling errors of all arise when your kind friends play mean
tricks on you by changing your user profile, by altering some of your files or by
creating new ones. Every UNIX user can be a Machiavelli: a sly observation of a
password and a new career begins.

An example is the file-moth trick we played on Dudley. This was, of course,
an extremely funny joke, but a joke is never funny a second time. If someone did it
to us it would be childish and time-wasting.

The essence of a successful trick is that the subject is taken in. Nevertheless if,
when you log in to your UNIX and get a message that you are connected to the
bank's computer and can edit the file containing the amount of money in your
account, try to remember to do a few UNIX checks before ordering the new Rolls-
Royce. Good checks to try are pressing the break-in key, typing commands such

as

Is - al to list all files, with their owners, etc.
set to show your environment
pwd to show your current directory

If you understand such things, you should also display your user profile.
Don't be too hasty, though; you might as well savour for a while the sense of

infinite richness, even if the illusion is inevitably bound to be shattered.

141

If a document is to serve its purpose, whether it is a technical manual or a letter
seeking a job, it must look good and read well. UNIX helps you achieve both these
goals, though it cannot go as far as turning each of us into a Brian Kernighan.

A document initially attracts the reader if it is well laid out in terms of
headings, indentation, and so on. The bulk of this Chapter is devoted to
explaining UNIX's text formatters, which help you lay out your documents. At
the end of the Chapter we give a brief introduction to some of UNIX's aids to
good writing.

TEXT FORMATTERS

To understand the need for a text formatter we shall assume a world without one.
Working in this world, you use UNIX to prepare a complete chapter of a

book. You carefully keep the lines of similar length, so that the book looks good
when displayed (using cat, for example). When doing a final check of the chapter
you notice that you have omitted three vital words in the first line of a paragraph.
This is a minor disaster: by adding these three words you make the first line much
longer than the rest - perhaps even too long to fit on the paper you print on. You
therefore need to retype the whole paragraph to get the lines equal again.

Such time-wasting procedures are common with traditional typewriting and
printing. To quote an instruction to proof checkers: "If you substitute a word or
phrase, make the new material the same number of letters as the old. If this is not
done, the balance of a paragraph must be redone".

With UNIX's text formatting aids such problems vanish. Indeed it would be a
disgrace if they did not, as even the humblest of word processors can eliminate
these problems. UNIX has programs that will automatically divide text into lines
of any desired size. The main programs available are

• troff, which prepares text for a computer controlled typesetter
• nroff, which prepares text for devices where all characters have the same

width: this covers most matrix printers, daisy-wheel printers, line-printers
and display terminals; thus nroff caters for the majority of output devices
that are likely to be available on your computer.

Nroff and troff are closely related, and the facilities of the former are (almost) a
sub-set of the latter. Your UNIX implementation may also have further programs
in the `rofi' family.

In this book we shall describe nroff. We do this for two reasons

• once you know nroff you can easily adapt to other members of the family
• most computer systems support devices for which nroff is suitable, but few

support typesetting devices.

Although nroff is simpler than troff, we would still need to devote the best
part of a book to it if we wanted to give tutorial explanations of every feature. In
this book our aim is more modest: we shall give a simplified introduction to nroff's
most valuable facilities, so that you will know enough to use it for many tasks. If,
however, you want anything unusual or fancy you will need to consult the full
nroff documentation, as given in the NROFF/TROFF User's Manual.

144

FACILITIES AVAILABLE

To introduce nroff we shall first outline its main facilities. These are as follows.
Nroff will divide documents into pages with a heading and page number on

each page, if required. It will also deal with so-called footers at the bottoms of
pages. Some documents, for example, have their date as a footer at the bottom of
each page. (Nroff will also, incidentally, deal with footnotes, which are a separate
concept from footers.)

Nroff will automatically fill and justify text. These are complementary
processes, and we shall start by explaining the former. Filling consists of adding
words to each line of output until no more words will fit. This ensures that all the
lines are of similar length, but does not make them of identical length. Some lines
will be shorter than the maximum line length. For example if an output line has
been filled to a position three characters from the right-hand margin, and the next
word consists of four characters, then it is necessary to start a new line. Thus the
original line will be three characters short of the maximum. In general the output
will have some lines of the full length, some one character short, some two
characters short, and so on. It therefore has a ragged right-hand margin. Most
letters produced on ordinary typewriters have this appearance. The process of
justification (or, as the nroff documentation calls it, adjusting the margins)
straightens ragged margins. This is done by putting extra spaces between the words
in a line in order to pad the line out to the full length. If a line is three characters
short, therefore, three extra spaces (or, on some fancy printers, six extra half-
spaces) will be added. The text in almost every book is justified in this way, in
order to give a more pleasing effect. The following example shows a piece of text
that has a very ragged margin - it has neither been properly filled nor justified.

The use of nroff to format text is an invaluable
aid to any writer , whether he be producing

a book or a letter.
A good property of nroff is that you can gradually
learn new features so that your documents get

better and better.

If you feed this text to nroff it comes out in filled and justified form as follows -
we show the output as it would appear on a `letter-quality' printer with a line
length of 42 characters

The use of nroff to format text is an in-

valuable aid to any writer, whether he be

producing a book or a letter. A good pro-
perty of nroff is that you can gradually

learn new features so that your documents

get better and better.

Notice the extra spacing in the first two lines. It has been inserted in the second
half of the first line, but in the first half of the second line. Such alternation is a
characteristic of a good text formatter; it gives the output a balanced appearance.

145

As an adjunct to the processes of filling and justification , nroff will automatically
hyphenate words in order to split them across lines. It does this gracefully, rather
than by splitting words at arbitrary points. You can see that the words `invaluable'
and `property' have been hyphenated in the above output text, thus avoiding
excessive extra spacing. If, however, you do not like nroff's hyphenation you can
switch it off.

Nroff caters for separate fonts. Broadly speaking a font is a set of characters in
a single style of type. A font might include all the letters of the alphabet, both
upper case and lower case, the digits 0 to 9, plus all the popular punctuation signs.
Typesetters offer all kinds of sizes and styles of characters. You only have to
compare two different books, or a book and a magazine, to get an impression of
the variety available. The devices that nroff caters for are, however, much more
limited. They typically only offer three fonts, which are all of the same size and all
related to the same type style. The fonts are:

• Roman, which is the normal style
• Bold, which makes characters stand out. The effect of bold type is often

achieved on printing devices by striking the same character more than once,
perhaps with the strokes slightly offset from one another.

• Italic, where characters are slanted. Few computer output devices offer true
italics. Instead characters that should be in italics are underlined; this
achieves the desired effect of showing that the characters are something
special.

Finally nroff helps with the layout within pages. It covers such matters as
paragraphs, indentation, and section headings.

In subsequent Sections we shall explain how you use some of these facilities.
However, as we warned earlier, we confine ourselves to the mainstream; if you are
interested in special footers or footnotes, for example, you need to consult the
nroff documentation yourself.

SOME ADVICE

There are two common mistakes made by beginners preparing documents. The
first is to think only in terms of one printing device or display. If you do this you
will pay the price when your beloved printer is replaced by a `superipr' one, or
when there is a need to transfer your document to another computer system.
Different output devices can produce very different images of a document.
Problems can be avoided if you think in terms of the underlying nature of your
document rather than a particular image of it. Thus think of paragraphs and
sections, rather than of the blank lines and spaces used to lay these out. Moreover
think of italics rather than of the underlining that some devices use instead of
italics.

The second mistake is to become crazed with the power available in a
formatter. Fortunately this book does not cover some of the really suicidal devices
available in nroff and troff. However even a simple facility such as justification may
be over-exploited. Remember that although a justified document can look
professional, the extra spaces introduced by the justification may make the
document less easy to read.

146

METHOD OF USE

Some text formatters can be used interactively, i.e. you type unformatted text in
and immediately see beautifully formatted text come out. You do not use nroff in
this way. Instead you prepare your input text in a file, and then feed the file to
nroff; if, for example, your input is in the file mybook you use the command

nroff options mybook

We shall suggest suitable options later. When you first see the output from nroff
you will doubtless notice errors - perhaps all the indentation will be wrong. You
then correct the errors by editing the input file and feeding it to nroff again.

For beginners this non-interactive method of working is tedious and generally
unattractive. Nevertheless some professionals are happy to forego the advantages
of interaction because of compensating advantages that non-interactive text
formatters can provide. These advantages are not obvious to beginners, but
broadly speaking, they derive from the flexibility of having an nroff `program' to
generate your output text; you can make systematic changes to this program in
order to cater for different environments. A similar situation arises with program-
ming languages: a beginner may like interactive BASIC while a professional may
prefer non-interactive Pascal.

OUTPUT ON A TERMINAL

Even when the final product of nroff is to be printed, you can still examine the
results at a display terminal. However, display terminals do not normally have
bold and italic fonts, so you lose this dimension.

People who want to impress prepare their electronic mail using nroff, e.g.

nroff myletter I mail anne

More typically nroff output is redirected to a file, e.g.

nroff myletter > myfile

Then you can examine the myfile output file at a terminal before printing (or
mailing) it. If you examine the output file using ed and list lines using the I
command, you will see how bold and italic characters are done (assuming there are
some of these in your file). As we have said, bold face is effected by backspacing
and printing the same character over again - an effect you cannot observe if the
characters are displayed on a display terminal unless your eyes are exceptionally
fast.

Nroff output tends to have a lot of blank lines on the end, in order to fill out
the last page. These can be somewhat annoying when the output is displayed, since
the screen size of display terminals is normally smaller than a page size geared for
printers.

PREPARING INPUT

If you feed to nroff a file containing some ordinary text that you prepared before
you knew nroff existed - we call this raw text - then nroff will do its best.

147

However if you wish to exploit nroffproperly you must prepare your document
with its capabilities in mind. In particular you need to insert nroff requests into
your document, in order to indicate what lines are to be indented, where the
section headings come, and which characters are to be in italic or bold fonts. (The
nroff user is humbler than most: he issues `requests' rather than `commands'.)
Most requests begin with a dot and occupy a line by themselves.

The following is a sample of some nroff input that has requests embedded in it

These people have been consulted and all agree

with my proposal

.in +10

.nf

Brian Jones
Joan Brown

Bert Smith
.fi

.in -10

I am therefore going ahead to Implement my ideas;
I expect to finish by the Summer.

The above text contains four requests - the four lines that begin with a dot. The
request

.in + 10

causes everything that follows to be indented ten more spaces than the lines
preceding it. The request

.in -10

has the opposite effect, and thus restores the original indentation. This pair of
requests therefore acts as a kind of bracketing that delimits lines to be indented.
Two further requests are used above: of and fl. These mean no fill and fill,
respectively. The of request stops nroff from filling subsequent lines; instead the
input lines are output without change. The fi request cancels the of and causes
nroff to resume its normal process of filling and justification. (You cars, if you wish,
switch off justification independently of filling. You do this if you want a ragged
margin.)

In our example we want the three names Brian Jones, Joan Brown and Bert
Smith to come out on separate lines, exactly as in the input. We use the of request
to achieve this. If this request had been omitted then all the names would have
come out on the same line, thus

Brian Jones Joan Brown Bert Smith

At the end of the list of names we restore filling by using the fi request. Subsequent
text is therefore filled.

148

The output corresponding to our input is as follows

These people have been consulted and all

agree with my proposal

Brian Jones
Joan Brown

Bert Smith

I am therefore going ahead to implement my

ideas; I expect to finish by the Summer.

Note that blank lines in the input are carried over to the output. Our input
had a blank line before the first name and after the last name, in order to improve
the layout.

COMMENTS

Nroffhas a huge number of possible requests, of which only a small fraction are
described in this book. The names of requests consist of a two-character
abbreviation of the function performed (such as in for indent). In order to make
your nroff input easier to understand and change, it is highly desirable to put
comments after requests. These are written in the following way

.in + 10 \" indent ten more

As you see the comment follows a request and is prefixed by a backslash and a
double quote.

PAGE AND LINE BREAKS

The general philosophy of nroffis this: there are a number of automatic
mechanisms that are designed to give the form of document that most people need;
people who want to change the automatic behaviour can use special requests to
achieve their aim.

As an example, nroff automatically divides text into pages. Normally it fills
each page with text, but if you want to force it to abandon the current page and
start a new one you can issue the request

.bp

As a second example, we have already seen that although nroffnormally fills
(and justifies) text, you can switch this off using nf. Moreover if you are filling text,
you can still force a new line to begin (i.e. a line break) by issuing a br request. As
an example of this, our previous list of names could have been written

Brian Jones

.br \" start a new line

Joan Brown
.br \" start another new line
Bert Smith

149

This is an alternative to using of and fl.
When you first use nroff you may have surprises with line breaks, but you soon

become accustomed to controlling the way your output lines are to be broken up.

MACROS

The requests you can issue to nroff tend to be at a low level of detail, and you will
soon find them tedious and error-prone. To alleviate this problem nroff has some
files of macros. These macros have the effect of extending the built-in repertoire of
nroff requests by providing some extra requests which are more powerful and
easier to use. There are a number of alternative macro files available on most nroff
implementations; each contains a coherent collection of macros designed for a
certain style of document. These macro files are called macro libraries. One of the
most popular is the mm macro library developed at Bell Laboratories. This is
suitable for a wide range of documents.

The macro mechanism is so easy and natural that

• the average nroff user does not need to know what a macro is
• the new requests provided by macros can, with some provisos, be inter-

mixed with the built-in requests we have covered already.

All you need to do to make the mm macros available is to include the - mm
option on your prof command, e.g.

nroff - mm inputfile > outputfile

You then have an additional armoury of requests. These new mm requests are
represented by upper case letters, e.g. HU, whereas the built-in nroff requests are
represented by lower case letters.

Most of the rest of this Chapter is devoted to explaining the mm macros. We
recommend that you use the mm macros when preparing your documents. Perhaps
because of their success, the ideas in the mm macro library have been used and
extended in other macro libraries. The mm macros are derived from another set of
macros, called the ms macros.

There are just two exceptions to our recommendation to use the mm macros

• short documents, say of one or two pages. When you use the mm
macros nroff takes several seconds to get started, and such delays may be
annoying for short documents

• documents with special needs. Later we shall discuss preprocessors and
macro libraries to meet such needs.

Given our keep-to-the-mainstream approach, we shall not explain every single

request available in the mm macros . Readers who require full details should
consult the guides and reference works in the local documentation.

ARGUMENTS

Some requests have arguments - we have already seen examples of this with the in
request, where the argument gave the indentation required. Arguments to nroff
requests, like the arguments to shell commands, are written immediately after the

150

request and are separated from one another by spaces. If an argument itself
includes spaces, the whole argument must be enclosed within a pair of double
quotes, e.g.

.xx "An argument containing spaces " two three

The above hypothetical request has three arguments. Note that the use of double
quotes is different from the shell, where single quotes are used for this same
purpose.

Arguments can be used, where appropriate, on requests made available
through macros, as well as on built-in requests.

PARAGRAPHS AND SECTIONS

One valuable service provided by the mm macros is a simple set of requests to lay
out the paragraphs and sections of your document.

Almost every document is divided into paragraphs. In works of a tutorial
nature, like this book, paragraphs are grouped into sections where each section
has a heading. The heading for the section you are just reading is `PARAGRAPHS
AND SECTIONS'. In some works section headings are numbered, e.g. `1. Intro-
duction'.

You use mm requests to identify headings and the starts of paragraphs. You
can also, if you wish, place some general requests at the start of your document in
order to control the overall style of layout. In particular, you can control the
default indentation of paragraphs by means of the request

.nr Pt x

where x , the paragraph type, has the value 0, 1 or 2. These values correspond to
three alternative styles for indenting the first line of each paragraph:

• 0 means do not indent the first line . If you do not specify any paragraph
type you get this style.

• I means indent all first lines.
• 2 means indent first lines except after headings, certain displayed material,

and indented lists (see later).

The last of these is the style used in this book, so we shall adopt it for our examples
too.

There is a second overall request which is also commonly placed at the start of
a document. This is the request SA 1, which causes the text to be justified to give a
straight margin on the right. We shall assume this in our examples, though we
stand by our statement that for many printers there is no justification for
justification.

The overall outcome of our two assumptions is that the document should
have the two following requests at the start

.nr Pt 2 \" set default indentation

.SA 1

151

The nr request above is, in fact, an illustration of a more general property of the
mm macros: almost every detail (e.g. paragraph type, number of blank lines before
and after headings, line width, page length, page numbering style) can be changed
by the user. This is often done by placing a value in a number register by using the
nr request. The paragraph type is controlled by the Pt number register; if you look
at the documentation of the mm macros you will find a host of other registers that
you can change.

Having covered the preliminaries, we can now describe the requests you place
within the document in order to identify the paragraphs and sections. The most
important ones are as follows

P means start a new paragraph with the default first-line indentation (as
controlled by the setting of Pt)

P 0 means start a new paragraph with no first-line indentation - irrespec-
tive of the default setting

P 1 means start a new paragraph with the first line indented - irrespective
of the default setting

HU means a section heading
H 1 means the same as HU, but headings are automatically numbered in

sequence.

We call these the paragraph/heading requests. The paragraph requests are written
on a line by themselves and are then followed by the text of the paragraph. The text
of each heading is written as an argument to an HU or H request, as shown in the
example below. The end of a paragraph is indicated by the next paragraph/heading
request. Such a request not only terminates one paragraph, but also serves to
introduce the next one. The only exception is that the very last paragraph in the
document has nothing to indicate its end - it simply ends when the input runs out.

Part of a document using these requests might take the form

.HU "An example of a section heading"

.p
This is the text of the first paragraph.
Its first line is not indented because

it follows a heading.

.p
This is the text of another paragraph.
Its first line is indented but subsequent
lines of this paragraph are not indented.
.HU "A further example of a section heading"

.p
The one and only paragraph in this section.
The end of this paragraph is the end of the text.

Notice how the argument to the HU request has been placed within double quotes
because it contains spaces. Each of the requests to start a paragraph or heading
automatically causes an extra blank line to be output in order to improve the
layout. Section headings are automatically converted to bold.

Thus the above input comes out as shown in Figure 11.1.

152

An example of a section heading

This is the text of the first paragraph.

Its first line is not indented because it

follows a heading.

This is the text of another para-

graph. Its first line is indented but

subsequent lines of this paragraph are not
indented.

A further example of a section heading

The one and only paragraph in this sec-

tion. The end of this paragraph is the

end of the text.

Figure 11.1 Output from paragraph and heading requests

INDENTED PARAGRAPHS

Documents frequently contain lists of indented paragraphs, where each paragraph
is marked by some `label' for example

In these lists, the whole paragraph is indented, not just the first line. Often the
labels follow a sequence such as a, b, c, ... or 1, 2, 3, AL, LI, and LE are
requests used to lay out lists of indented paragraphs. At the start of the list, the AL
request is used to specify the nature of the list. Examples are

.AL 1 use the sequence of labels 1 , 2, 3, ...

.AL a \ use the sequence of labels a , b, c, ...

.AL A \" use the sequence of lables A, B, C, ...

.AL i \" use the sequence of labels i , ii, iii, iv, ...

AL may, on option, have a second argument that specifies the desired indentation;
if this argument is absent a default indentation is used. The AL request just
performs initialization; it does not actually output any label.

Each of the list of paragraphs that follows the AL is preceded by an LI
request. This outputs the next label in the sequence defined by AL. The final list
item is followed by the LE request. Any paragraph in the list can itself contain a
sub-list. Such sub-lists follow the same pattern as the main list. In particular they
begin with Al, and end with LE.

An example of some input that uses these requests is as follows

153

.P

There are three ways of getting there
.AL 1

.LI

by bus from Victoria coach station
.LI

by train:

.AL A

.LI

from Victoria
.LI

from Charing Cross
.LE

.LE

.P

I prefer the last, since it travels

through pleasant countryside.

This produces the output

There are three ways of getting there

1. by bus from Victoria coach station

2. by train:

A. from Victoria

B. from Charing Cross

I prefer the last, since it travels

through pleasant countryside.

Note how the paragraph following the last P request is not indented since it follows
our indented list. This applies because of our assumed setting of the Pt register.

There are alternative macros to AL, which cater for lists that are not labelled
in a sequence. In particular, the ML request can be used to place the same label on
each item in a list. For example

.ML +

labels each item with a plus sign.

DISPLAYS

Documents often contain figures, tables or programs. The way you want these laid
out is not, in general, covered by the rules of laying out ordinary English sentences
and paragraphs, since concepts such as justification and filling are not applicable.
Often the best way of dealing with such material is for you, not nroff, to do the

154

laying out; you then supply the laid out material, enclosed within the bracketing
requests DS and DE, as the input to nroff. An example of such displayed text is

.p
Trains in mid-afternoon are:
.DS 1
15:00 from Charing Cross

15:23 from Victoria
15:30 from Charing Cross

15:53 from Victoria
.DE

If you take the three o 'clock train you need

to change at Ashford.

The effect of the DS and DE brackets on the lines they enclose is as follows

• if DS is given the value `1' as argument (as in the above example), the lines
are indented

• the lines are not filled - they are left exactly as supplied in the input
• a blank line is put in place of both the DS and the DE
• the lines are kept together, if possible, so that they are all on the same page.

Thus if nroff is two lines from the bottom of a page when it comes upon our
displayed text, which occupies four lines, it starts a new page. This feature
is especially vital for tables, which look appalling if split across two pages.

The DS and DE mechanism is separate from the paragraph mechanisms.
After a DE the previous paragraph resumes. Thus in our example all the material
belongs to the same paragraph. If we had wanted to start a new paragraph after

the DE, we should have placed a P request there. As it stands our input produces
the following output

Trains in mid-afternoon are:

15:00 from Charing Cross

15:23 from Victoria
15:30 from Charing Cross

15:53 from Victoria

If you take the three o'clock train you
need to change at Ashford.

This book was prepared using nroff (and, later, troff), and DS and DE were
two of the most heavily used requests. They are even useful when a single line
needs to be displayed, as in

The message printed is
.DS 1
Command not found.

.DE
This means that ...

155

The above comes out as

The message printed is

Command not found.

This means that ...

When preparing tabular material it is helpful to use tab characters, like those
available on typewriters. You can set tab stops in nroff by the request ta. For
example

.ta8 16 30 48 60

sets tab stops at indentations of 8, 16, 30, 48 and 60 character positions. An
occurrence of the tab character (Ai on some keyboards that do not have an
explicit tab key) then advances to the next tab stop. A tab always causes at least
one space to be output. Remember that the to request only controls the output of
nroff. When you type the tab character into the input file it may look different, as
the standard UNIX tab positions will be assumed at this stage. It should, however,
all come out right in the end.

PREPROCESSORS

We have suggested that you lay out your own tables and other displayed text. If,
however, you have elaborate tables or forms, it is well worth finding out about
further help that UNIX can give you. Firstly you may discover that your UNIX
has some macros specially geared to your needs; we discuss this later. Secondly
you should explore the use of nroff preprocessors. Such preprocessors are
conceptually like macros in that they have the effect of extending nroff, but they
are used in a different way. Preprocessors automatically generate low-level nroff
requests (i.e. they produce part of your nroff program for you) and are used as
filters in a pipe.

One preprocessor is called tbl and is designed for generating tables. An
example of a command to use tbl is

tbl myfile I nroff - mm > outputfile

If you have problems with your tables, a look through the documentation of tbl
should show you mechanisms for solving them.

A second valuable preprocessor is neqn (or, for troff, eqn), which deals with
laying out mathematical equations. Without neqn it requires titanic skill to make
complicated equations look reasonable.

You may find that your UNIX has other preprocessors, geared to local needs.
In a research environment, for example, there may be a preprocessor for citations
to papers in learned journals.

We shall not give details of any of these preprocessors here, since they are all
geared to specialized rather than general needs.

156

FONTS

The three fonts available in nroff are represented by the following letters

R Roman, the normal font
I Italic
B Bold

By default all text except for certain headings comes out in the Roman font. To
change font you use the ft request, and supply as its argument the letter
representing the font you desire, e.g.

The
.ft B
ft

.ft R
request changes font.

will produce the output

The ft request changes font.

In addition to the letters R, I, B, the letter P can be used. This means the
previous font, i.e. the font in force before you last used ft.

You can change font within a line by typing \f followed by the letter
indicating the font you want. Thus our above example could be rewritten

The \fBft\fP request changes font.

This is shorter, but rather more difficult to read than the previous form. The first
and third occurrences off above set fonts but the second is a real f. You may have
noticed that we used the letter P, not the letter R, to reset the font back to Roman.
This is held to be good nroff style. Its advantage is that if you decide later to
change the above sentence from Roman to italics, then you do not need to change
the sentence itself: all you do is to put extra ft requests either side of it, as follows

.ft I
The \fBft\fP request changes font.

.ft R

Our original sentence does not need changing because the P now sets the font back
to italics rather than to Roman.

USE OF BACKSLASH

In the previous Section we saw that the backslash character was used to herald an

nroff request - in our case a font change - within a line. A host of other nroff
facilities can be invoked within an input line; each of these is heralded by a
backslash. Many of them are highly esoteric but a feature of importance to
ordinary users is the use of the backslash mechanism to introduce characters that
do not normally appear on keyboards. An example is

\(bu

157

which means a bullet, i.e. the character'*'. A bullet is frequently used as a label for
indented paragraphs, and there is a special request, BL, which is an alternative to
AL and ML. BL labels each of the indented paragraphs with a bullet. You can see
numerous uses of bullets if you peruse this book. Most printing devices do not
have bullet characters, but nroff does its best by overprinting an x with an o.

There are about a hundred special characters in nroff represented by

\(xx

where xx is some unique pair of letters. You can get Greek letters, mathematical
symbols, copyright symbols, and all kinds of other characters that will impress
your friends. If you want to use such characters consult the NROFF/TROFF
User's Manual, and you may strike gold. However to get the characters printed
really accurately, you will need a superior printing device, if not a typesetter.

FORBIDDEN CHARACTERS

The use of backslash by nroff leads us back into the world of forbidden characters,
which is already all too familiar to users of ed or the shell. If you really want a
backslash to appear in your output, you need to type the pair of characters \e. You
must also avoid-putting dots or closing-quotes (acute accents) at the start of your
input lines. This is because they both mark a line as an nroff request rather than a
line of text. (In this book we begin all our requests with a dot; a closing-quote is
similar but it avoids breaking the output.) If you really want to put dots or closing
quotes at the start of a line,.precede them with a backslash and an ampersand. An
example is

Things that annoy me in \fBnroff\fP include
.DS 1
backslashes

dots at starts of lines
\&...

.DE

This comes out as

Things that annoy me in nroff include

backslashes
dots at starts of lines

ERRORS

It is in the error messages of nroff that hrmt has achieved his ideal of perfection:
most of the error messages of nroff are totally empty. Thus if you make an error in
an nroff request, for example by typing the P request as

.p

158

(which is not a legal request) then this wrong request is contemptuously ignored.
The effect as the user sees it is that two paragraphs are run together, because one
of his requests to start a new paragraph has been rejected. Worse still, if he forgets
to put the -mm option on his nroff command, then all his macro requests will be
ignored.

There is, however, a way of outwitting hrmt. Many UNIX implementations
include the commands

checkmm file ...
mm file ...

The first can be used to check all the nroff and mm requests in the given file.
Although checkmm is not perfect, as it misses some requests that nroff itself will
treat as errors, it is much better than total silence. The mm command is the same as
giving the nroff command with the - mm option. We therefore suggest that you
adopt the following sequence of shell commands when preparing a new document,
or when changing an existing document.

(1) Use an editor to create and/or change the document. We assume the
resultant document is put in the file masterpiece.

(2) Execute the command

(3)

checkmm masterpiece

Execute one of the commands

mm masterpiece > afile

or

mm masterpiece I aprogram

where aprogram may be anything from lpr (or print on PC/IX), which
prints its input, to mail. When you use the first of the above
commands you can look at afile by displaying it; if it is satisfactory,
you can feed it to aprogram. If you are not using the mm macros, you
should replace, within the two above commands, mm with nroff.

HOUSE STYLE

Most publishers have evolved a `house style': a set of rules for punctuation,
spacing, layout, etc. that is designed to make books look attractive and uniform.
In an office environment there are similar rules for typewritten documents. A
document produced by a typist who follows the rules will look considerably better
than one typed by a rank amateur.

In the next few Sections we look at some of nroff's conventions for spacing,
and see how they relate to one particular rule of style, which is a rule for the
spacing between sentences.

Your first reaction may be to ignore such rules: you will doubtless be pleased
to get anything looking remotely acceptable out of nroff, and pernickety rules of
style will be a secondary matter.

Nevertheless we hope you eventually decide to develop a uniform house style of
your own. This can turn a mediocre document into a good one. Sad to say, the

159

success of a document is more often determined by what it looks like than what it
says. If you get as far as typesetting documents, there is much fascination in learning
a little of the craft of the compositor in making documents pleasing to the eye.

SPACING AND PUNCTUATION

The normal rule for sentence separation in typewritten documents is to leave two
spaces after the full stop (period) at the end of each sentence. To assist in this
convention, nroff has the ad hoc property that if a full stop comes at the end of an
input line, then it automatically puts two spaces after the full stop. (This is not, of
course, done if the full stop happens to come at the end of an output line - extra
spaces are not needed in this case.) Strictly speaking we should have said that nroff
puts at least two spaces after the full stop, as it sometimes adds extra spaces to
justify the line.

Nroff does not take any special action for a full stop that occurs within an
input line. In this case you yourself should put two spaces after the full stop. This
makes use of nroff's general property that each space in the input gives at least one
space in the output. It therefore assumes that if you type extra spaces in the input,
then you really mean them to be there. (Similarly if you put a space at the start of a
line, it reproduces the space and also assumes you want a break between output
lines.)

As an illustration of these matters, consider the input

He came. He saw . He conquered.

He ---

The first full stop only has one space after it, so is not treated specially. The second
full stop has two spaces after it, so these are carried over to the output. The third
full stop is at the end of a line, and thus gets two spaces added after it. The output
therefore reads

He came. He saw. He conquered. He ---

A tasteful reader would object to this output, as the missing space after the first
full stop would offend his sensibilities (though for typeset, rather than typewritten,
documents, different aesthetics apply).

A sentence need not end with a full stop: it can end with an exclamation mark
or question mark. Nroff therefore applies similar rules to these characters.

If you want to avoid complication, use the following two rules for nroff input

• start each sentence on a new line
• avoid redundant spaces

If you are not willing to obey the first rule, do not forget to add an extra space
after sentences that end before the end of the input line.

Note that to nroff, a full stop is simply the character `.'; it is not clever enough
to distinguish a full stop at the end of a sentence from any other use of the
character `.', e.g. its use in the abbreviation `etc.'. The moral is that you should

160

avoid putting words like `etc.' at the ends of input lines, unless they are really the
ends of sentences. Otherwise bone-headed nroffwill add an extra space.

Just as nroff takes extra spacing as meaningful, it also takes extra blank lines
as meaningful, as we have already mentioned. You must therefore be careful not
to use blank lines wantonly. If your input is

end of one paragraph.

.P

Start of next ...

Then you will get two blank lines between the paragraphs. The blank line in the
input gives one, and the P request gives a second one.

RAW TEXT

One purpose of nroff's rules for spacing and blank lines is that they allow raw text
to be processed in a reasonable way.

If, for example, a document was prepared without nroff in mind, the break
between paragraphs might look like this

end of one paragraph.

Start of next ...

This contains a blank line between the paragraphs and five spaces of indentation
before the word `Start'. Nroff reproduces these in the output, and thus the break
between paragraphs in the output exactly mirrors the input. Although a user who
feeds raw text to nroff does not exploit its full facilities he gains the advantages of
filling and justification and the division of text into pages. On the other hand he
might run into two new problems. Firstly, if his input contains tabular or
displayed material, he may be upset by nroff's attempts to `fill' such material by
packing several lines into one. He might therefore need to edit of and fl (or DS and
DE) requests into his document. Secondly, if his document does not observe the
spacing convention about full stops within lines, he will get inconsistent output:
the full stops that happen to occur at the ends of input lines will get two spaces
appended, whereas the others will only get one. (A magic ed pattern to find full
stops that are only followed by one space is

/\. [A - Z]/

Get Dudley to explain this if you cannot work it out for yourself - doubtless as a
bonus he will give you an even cleverer pattern. We could, incidentally, usefully
use such a pattern to help edit our Greg Daimler novel, which only has one space
after each full stop.)

PAGE SIZE AND SPACING

Computer output devices vary greatly in the sizes of their pages and lines.
Moreover within the limits of the physical page size users will want to vary the
indentation and vertical spacing. Nroff therefore supports requests for controlling

161

page layout. Most of these requests have an argument that is a physical distance.
These distances can be described in various possible units, as shown in the
following examples.
10i 10 inches
26c 26 centimetres
7m 7 ems; in nroff this means 7 characters, but in troff, where characters can

have variable size, it is 7 times the width of the letter 'M'- hence the name
`em'

7n 7 ens; in nroff, ens are the same as ems, but in troff an en, which is the width
of the letter `N', is half an em

8 8 default units; for horizontal spacing along the line, the default units are
ems, but for vertical spacing down a page the default unit is the height of a
line, i.e. the distance from the base of one line to the base of the next

+9 9 default units more than the previous value
- 2c 2 centimetres less than the previous value

We have already seen examples similar to the last two of these on the in
requests

.in + 10

.in -10

The first of these caused extra indentation of ten default units (ems); the second
reduced the indentation by ten ems, thus reverting to the previous indentation.
Examples of in which use some of the other units are

.in lc

.in 3n

Another example where default units have already been used is the request

.ta8 16 30 48 60

We shall now introduce examples of further requests. Each of these can use
any of the above units, although our examples only show one specific case. (We
have not shown examples of changing page size. Such requests exist, but do not
work well when macro packages such as mm are used . You will therefore need to
consult your macro package documentation.)

Blank lines

.sp 3

outputs three blank lines. Since this is vertical spacing rather than horizontal the
default units are heights of lines. If no argument is supplied to sp then a single
blank line is output - the same effect can be achieved by a blank input line.

Double spacing

.ls 2

causes an extra blank line to be put out after each output line. Thus it gives double
spacing - hence the 2. This is useful for draft documents, as it leaves plenty of
room for corrections to be pencilled in.

162

Centring

Finally, there is one spacing request that does not use any units. This is the ce
request, which centres the text that is supplied on the next input line. The centre is
the centre, irrespective of the units of measurement.

The following example shows the use of ce and sp requests to produce title
lines of a document.

.ce

\fBBe friends with UNIX\fP
.sp
.ce

by Dudley and Anne
.sp 2
.p

UNIX helps people get together

The above input produces the output

Be friends with UNIX

by Dudley and Anne

UNIX helps people get together ...

ENVIRONMENTS

We have seen that nroff provides numerous parameters for controlling the output
text: examples are line spacing, tab settings, and the current font. The set of
current values of all these parameters is called the environment. You can actually
maintain up to three alternative environments and switch between them. This is a
facility for professionals, but it affects ordinary users when they use the DS and
DE requests. Text within this pair of requests has a different environment from the
rest. As a result you may get a few surprises. For example if you put the request

is 2

at the start of your input this will cause double spacing everywhere except within
DS and DE. This is because the latter have a separate environment, which is
unaffected by the Is.

As a second example, if you are in bold font at the DE which ends some
displayed text - perhaps because you forgot to switch back to Roman - then the
text after the next DS, which may be 500 lines further on, will come out in bold
face. This is because the DS carries on with the environment left by the previous
DE.

163

THE START OF A DOCUMENT

If you are preparing a document of any great length, you will probably want to do
better than our Befriends with UNIX example by a having a special title page. To
do this the requests that you should learn about are

TL the document title

AU author's name

AT author's title

AS start of the abstract outlining the document's content

AE end of the abstract

MT memorandum type

TC table of contents - a list of numbered headings

The MT request controls the style of layout to be used for the title page.
In addition to the title page itself you may wish to put, at the very start of a

document, further instructions to control the overall document format. If you look
at the documentation of the mm macros you will find how to control page headings
and footers, and even how to divide pages into multiple columns.

By default each page is numbered at the top.

MACRO LIBRARIES

The mm macros are a good general-purpose aid to document preparation, but if
you have specialized needs you may find them inappropriate. If so you have two
alternatives:

• use another set of macros
• write your own macros

The first is obviously preferable, since it saves you work by exploiting the efforts of
others. Thus it is well worth finding out what macro libraries are available on your
UNIX implementation. You should find descriptions of them in the local
documentation.

If you want to write your own macros, your first action should be to look at
some existing macros written by experts, for instance the mm macros themselves.
You might find these in a file called /usr/lib/macros/mmn. If you cat a macro file
you will have a shock: it is full of formidably esoteric material such as

.de I

.nr PQ \\n(.f

.if t ft 2

.if "\\$1""q .if n ul 1000

.if !"\\$1""q if n ul 1

.if t .if !"\\$1-' \&\\$1\\f\\n(PQ\\$2

.if n .if \\n(.$ =1 \&\\$1

.if n .if \\n(.$>1 \&\\$1\\c

.if n .if \\n(.$> l \\&\\$2

Do not despair. Writing a complete macro library as powerful as mm is indeed a task
beyond ordinary mortals. However it is not too difficult to write a set of a dozen or
so macros to augment an existing library in order to meet your special needs.

164

Having said this is `not too difficult' we shall stretch the reader's credulity
further by saying that in spite of this we have not the space to explain it in the
current book.

MANUAL PAGES

We said in Chapter 9 that manual pages may be kept in an internal form, which
can then be converted to a suitable format for the output device. The manual pages
are in fact in the form of nroff (or really troff) input; when you use the man
command to look at a manual page, what man does is to run nroff in order to
convert the manual page to a suitable format to be output.

Now that you understand a little about nroff it might be of interest to look at
the manual pages if they are stored inside your computer. On most UNIX
implementations the manual pages for Section 1 of the UNIX Programmer's
Manual are in a directory called /usr/man /manl , though your UNIX may use a
different directory - or, if there is insufficient space, the manual pages might not
be on disk at all. The manual page for is is stored in a file called ls.1 (or perhaps on
other UNIX systems some other name containing Is). If you cat this you will see an
example of nroff input.

The manual pages use a macro library called the man macros; this is similar
but not identical to the mm macros. The manual pages also use a lot of the built-in
nroff requests - the ones with lower case names.

DANGEROUS COMBINATIONS

If you find out more about nroff by reading the documentation you will increase
your stock of requests. However be careful in mixing mm requests (the capital
letter ones) with the rest; an example would be to mix the mm requests for page
headers with your own clever low-level requests to generate headers. The likely
result is that the two mechanisms will work at cross purposes and produce chaos.

The modest set of nroff requests described in this book can be intermixed quite
freely with the mm requests - provided you do not ask for anything really daft.

TYPESETTING

Some documents, though initially prepared for humble printing devices using
nroff, may subsequently be typeset. Your novel is accepted by a publisher;
someone publishes a book about you called The Collected UNIX letters of /usr/me;
more prosaically, the announcements of your local computer club's meetings,
which you prepare on your UNIX system, are to be typeset so that they look more
professional. If you want your file to be typeset it is unlikely that you will have the
necessary typesetter on your own computer. Instead you will need to send the file,
via electronic mail, tape or diskette, to another UNIX system that possesses troff
and is equipped with suitable hardware.

The result of such an exercise can be a beautiful document. If you have any
experience of computing, however, you will realize that nothing ever goes as
smoothly as you expect (even when you do not expect much in the first place).
Problems of converting nroff input for use with troff arise mainly because typeset

165

characters are of different sizes: an `i' is, for example, much less wide than a `W'.
The average width of characters is considerably smaller than an em, which is the

width of a character in nroff output. A secondary problem is that if you think only

in terms of nroff you will use the same character for a hyphen, a dash, and a minus

sign.
These problems might manifest themselves as follows

• your indentation of 10 default units (ems) looks fine in nroff but looks

much too wide for troff
• alignment of the columns in a table is wrong in troff because characters are

of different widths
• all dashes and minus signs come out as hyphens, which look absurdly

small. (Similarly all quotes may come out as closing inverted commas, as in

'x', because nroff users are not accustomed to distinguishing between

quotes and apostrophes.)

Even when you cure these problems you still need to adapt your document to take
advantage of the enhancements that troff offers over nroff, such as an increased

variety of fonts and the ability to vary the size of characters (e.g. to print titles in a

larger type).
The moral is that if you are one of those frightfully organized people who

think many steps ahead, it is well worth paying attention to the needs of troff when
you design your personal house style.

INDEPENDENCE OF PRINTING DEVICES

One advantage of the mm macros is that they make your document more device-

independent, i.e. it can be adapted to any printer. We have already emphasized the
undesirability of being tied to one particular printer. Where relevant, the macros
automatically tailor their output for the printing device to be used, and indeed this

smooths any transition from nroff to troff. To some extent the macros also allow
you to change your style too: if you do not like the style of layout provided by
some macros you can change them. Thus you could alter the layout of paragraphs
by writing a revised P macro - though be warned that tampering by amateurs
can often have catastrophic effects.

When you use the shell command that invokes troff or nroff you can supply an
argument that states which printing device you plan to use; this causes the output
of nroff to be adapted accordingly. An example is

nroff -mm -T1234x myfile > outputfile

The outputfile will then be geared to the model 1234x printer. Our model 1234x is
entirely hypothetical; you will need to find out for yourself what special printer
options, if any, are available on your own nroff. If you find that nroff is at odds
with your output device, the problem can often be solved by using the right -T

option.

SUMMARY OF FORMATTING

For most people, producing good documents is a satisfying task. It does however
require attention to detail.

166

Nroff is not an easy formatting system to master, but it has more power than
many of its superficially attractive rivals. Most problems are avoided by a careful
advance into nroff rather than a headlong charge. The stages of your advance
might be

• find out about available printing devices, even about typesetters that might
be used in the remote future

• look at some samples of nroff input produced by colleagues who are
masters of nroff. Most important, try to find documents of a similar nature
to yours

• start by performing some experiments with nroff using short documents
• before you begin your first major document, develop your own house style;

use this consistently

• use the mm macros, except for small documents such as letters, or
documents with special needs

• use checkmm to try to find the errors before you feed anything to nroff
• treat disasters along the way as a cause for laughter rather than tears

LIST OF REQUESTS

This concludes our description of nroff. Since an ill-written document is still an ill-
written document even if it is beautifully formatted, we devote the subsequent
Sections of this Chapter to the quality of writing. This final nroff Section
summarizes all the requests that we have used.

Built-in requests

bp start a new page
br break (i.e. start a new line)
ce place next line(s) in centre of page
fl fill subsequent text (cancels nf)
ft change font
in change indentation
is set line spacing
of do not fill subsequent text
nr set `number register' - we used it to set Pt
sp output blank line(s)
to place tab positions

In addition the requests \fB, \l , etc., can be used to change font within a line.
By default all text is filled and justified.

Requests in mm macros

AL (together with LE and LI) indented list
BL indented list marked by bullets
DE end displayed text
DS start displayed text (for indenting use 1 as argument)
H 1 numbered section heading
HU un-numbered section heading

167

ML indented list marked with given character
P paragraph with default indentation
P 0 paragraph without indentation
P 1 paragraph with first line indented

In addition the requests AS, AE, AT, AU, TC and MT can be used for the title

page.

AIDS TO GOOD WRITING

UNIX provides three aids to good writing: spell, style , and diction . We have

already covered the first of these. The others are available to users of PC XENIX,

but not to users of PC/IX.
The style and diction programs are, in the words of their authors (Cherry and

Vesterman, 1981): "a first step towards helping writers to produce readable
documents". Broadly, the style program looks at documents as a whole, and

diction looks at individual words.
We fed one of the Chapters of this book to style. The resultant output is

shown in Figure 11.2. There is so much information here that the initial effect is off-
putting, but perseverance pays.

READABILITY GRADES

The first piece of information is about readability grades: four separate measures

are shown, though they all give similar readings, varying between 9.9 and 10.7.
These measures are all based on lengths of sentences and lengths of words: the
only difference between the four measures is that slightly different formulae are
used. We suggest that, to start with, you only take notice of the first measure,
which is derived from a formula due to Kincaid. A Kincaid measure on its own is
meaningless; it is only useful when compared with corresponding measures from
other documents. If one document has a lower figure than another, this means it
has shorter words and sentences. By and large, it should therefore be easier to
read, though there is a limit: a book for toddlers may come up with a figure as low
as 5, but most adults, though certainly finding such books easy to read, do not find
the style attractive (nor their content, though this is a separate matter).

Our figure of 10.2 is already on the low side. A survey of documents in Bell
Laboratories came up with a mean Kincaid reading of 13.3. The maximum was
16.9 and the minimum 9.5.

We suggest you apply style to your documents and compare your Kincaid
reading with those quoted here, and with readings you can derive from files
belonging to your friends. If your prose stands out as exceptionally simple or
exceptionally complex, this should be a warning to examine your style.

You should expect figures to vary according to the type of document. It might
be acceptable for a piece of literary criticism to have a high figure, but technical
documents are better with low ones: the reader will have enough trouble
understanding new technical concepts, and should not be diverted by having to
unravel long sentences, or to look up long words in a dictionary.

168

readability grades:

(Kincaid) 10.2 (auto) 10.2

(Coleman-Liau) 9.9 (Flesch) 10.7 (56.5)
sentence info:

no. sent 179 no. wds 3506
av sent leng 19.6 av word leng 4.63

no. questions 2 no. imperatives 0

no. nonfunc wds 1869 53.5% av leng 6.04
short sent (<15) 35% (63) long sent (>30) 11% (20)
longest sent 79 wds at sent 13;

shortest sent 4 wds at sent 15

sentence types:

simple 35% (62) complex 45% (81)
compound 7% (13) compound-complex 13% (23)

word usage:

verb types as % of total verbs

tobe 38% (162) aux 23% (97) inf 14% (61)
passives as % of non-inf verbs 11% (41)
types as % of total

prep 9.7% (339) conj 2.7% (93) adv 5.7% (201)

noun 24.1% (845) adj 13.6% (477) pron 8.6% (301)
nominalizations 1 % (43)

sentence beginnings:

subject opener: noun (28) pron (24) pos (4)

adj (17) art (34) tot 60%
prep 11% (20) adv 12% (21)

verb 3% (5) sub-conj 12% (22) conj 0% (0)
expletives 2% (4)

Figure 11.2 Output from the style program

SENTENCE INFORMATION

The next two sections of style's output give information about sentence structure.
Good authors mix long sentences with short ones. (That is why children's books,
with an excess of short sentences, are unattractive to adults.) Thus if you find your
style figures are much different from those of your fellows, you should examine the
nature of your sentences, and how you distribute them.

Do not be too over-awed by the mass of detail that is spewed out by style.
Items such as `nonfunc wds' (which are actually nouns, adverbs and non-auxiliary
verbs) can be ignored until you have become accustomed to understanding how to
interpret the broad message that style gives you.

WORD USAGE

Although style's counts of parts of speech are rough and ready, they may still help
to tell you that something is wrong with your style. An over-use of adjectives, for
example, may be acceptable in holiday brochures, but in most documents it soon

169

annoys the reader. An excess of passive verbs is a danger signal in technical
documents, since most books on style, and most experiments on comprehension,
show that active verbs are better. Finally almost total lack of pronouns might
indicate that a document is too wordy.

SENTENCE OPENERS

We were somewhat surprised at the last line of our output from style: our Chapter
apparently contains four expletives. Has style an especially prim view of what are
rude words?

The answer is that expletives are not what we thought. They are words like `it'
and `there' which are used at the start of sentences in which the subject follows the

verb, e.g.

There are three files used by the program

Many authors over-use such expletives, and some critics treat them with as much
horror as rude words.

If you look at the last five lines of Figure 11.2, you will see a complete analysis
of the parts of speech used to start sentences. A good principle of style is to vary
the way your sentences begin. If style shows that you rarely use certain parts of
speech as sentence openers then you may gain by extending your repertoire.

SUMMARY OF STYLE

Style gives you a number of crude statistics. They are not even totally accurate as
style cannot always tell where sentences begin and end, or whether such words as
`need' or `beat' are nouns or verbs.

The statistics are nevertheless valuable. If you are an exceptionally gifted
author your figures from style may be considerably different from the average;
indeed a variation from the norm may confirm the exceptional superiority of your
style. However for each author whose style stands out for its excellence, there are

ten authors whose outpourings are unreadable. If you think you may be one of
these, examine the output from style and see if it is trying to give you a helpful
message.

DICTION

The diction program is much simpler than style and its message is more readily
apparent. Diction looks at individual words or phrases and highlights ones that are
commonly misused. For example some authorities on style say that the word very
should be banned. Diction displays every sentence containing this word. An
example of the output you might see is

it was a[very]warm day.

The word or phrase that diction objects to is placed within square brackets.
Diction makes no attempt to understand or to parse its document. When it

sees the word very it objects, whatever the context. Thus it might display

that is the[very]reason why I kept quiet.

170

This use of very is very unlikely to offend anyone, yet diction is not clever enough
to distinguish it from any other use of very.

Other samples of the output from diction , all taken from Chapter 2 of this
book, are as follows

(1) moreover you might have a[number of]sessions in a day

Here the phrase `number of offends diction . It prefers alternatives such as `several'
or `many'. (Note that the input is converted to lower case by diction : the original
word `Moreover' has become `moreover'.)

(2) [the nature]of messages sent obviously depends on the user community.

Here diction is telling us that the words `the nature' serve no great purpose, and
can be eliminated if the sentence is re-written.

(3) a machine[which]only allows ...

Here `that' is preferred to `which'.
If you want an explanation of why diction has objected to a word or phrase,

you will find, in most UNIX implementations, a companion program to diction,
which provides such explanations. It may be called explain or suggest.

REACTION

The list of words and phrases that diction does not like runs to about 500 entries.
Given such a huge list of dislikes, it can hardly fail to find something objectionable
even in a small document.

There is, however, one advantage of diction over mothers-in-law and fathers-
in-law: you do not have to listen to it. If you are annoyed by its carping, you can
leave it in solitary confinement in the file system, and never invite it to look at your
documents.

Banishment of diction is one extreme; paying lip service to its every whim is
another. The best approach is a middle course. Experience of the use of diction at
Bell Laboratories shows that a typical user takes notice of just over half of
diction 's comments, and cheerfully ignores the rest.

SUMMARY OF ALL AIDS

The message from all the UNIX tools described in this Chapter can be
summarized as follows: if you want to produce beautiful and readable documents
you need to work hard. In nroff UNIX provides an adequate tool for formatting,
which allows painstaking people to produce really fine documents, and ordinary
people to produce reasonable ones.

UNIX tools to help you with style are less adequate. This is inevitable: human
teachers may try for years to get their pupils to write good English, and their
labours often end in total failure. It is unreasonable to expect simple programs to
do dramatically better. Do not expect style and diction to help you, therefore, if
your use of words is clumsy, your explanations ambiguous and your overall
organizing skills non-existent. Nevertheless these programs can assist you with
some of the more mechanical aspects of style, and can as a result tip the balance
between a document being unread and being acceptable. The authors of these two
programs deserve great credit for taking a promising first step into what may in
the future be an increasingly fruitful field.

171

CHAPTER 12

Programming

You taught me language; and my profit on't
Is, I know how to curse: the red plague rid you,

For learning me your language!

SHAKESPEARE, THE TEMPEST'

separate modules is valuable even in small programs ; for example our sample C
program was combined with a separate pre-written input/output module. A good
compiling system should allow modules to be compiled separately so that if one
module is changed it is only necessary to recompile that module, and not the whole
program . Most UNIX programming languages have good compiling systems.

The principle used is that a module is converted to a so-called object code
form , which can then be stored in a file (an objectfile). An object file is a binary file
very close in form to the final executable form of the program. A UNIX program
called a loader (or a linking loader) converts object files to their final executable
form. The great advantage of the loader is that it can combine together several
object files to make a single executable program. A large program can be compiled
as follows
(1) compile each module into an object file.
(2) use the loader to combine the object files of all the modules to produce the

executable program; then execute this program.
(3) if there turns out to be an error in any module , correct the source file for this

module and recompile it to a new object file; then go back to step (2).

Since loading is much faster than recompiling the above method provides an
attractive way of dealing with large modular programs.

Only advanced users need to know the details of the loader . The majority can
be ignorant even of its name (which is ld) since language processors generally
invoke the loader automatically.

EXTENSIONS

A potential disadvantage of the above mechanism is that you can have several
incarnations of a program, i.e.

• a source file for each module
• an object file for each module
• the executable program

This creates two problems. Firstly it uses a lot of file space; this can only be solved
by ruthless deletion of object files and executable programs that do not justify their
keep. Secondly there is the problem of keeping track of the names of all the files.
UNIX neatly solves this problem by using extensions of filenames. In Chapter 7,
when we introduced the idea of extensions, we gave the following examples
average.p a Pascal program
average.c a program in the C language
average.spec a specification of the program

Two further examples are
average.o the object file for the program
average the executable file of the program

This use of extensions to indicate the nature of a file is exploited by language
processors and indeed you are required to follow some of the conventions we have
shown, as we shall see shortly.

182

COMPILING A MULTI -MODULE PROGRAM

The mechanisms provided by most UNIX language processors for compiling
multi-module programs are so delightfully simple that you hardly even need to
know what an object file is. We shall illustrate this by considering the compilation
of a C program that consists of three modules: modulel .c, module2.c, and

module3.c.
To compile the program you first use the command

cc modulel .c modulel .c module3.c

or its equivalent which uses the `?' wildcard of the shell:

cc module?.c

The cc language processor deduces that if it compiles more than one file at a time
then it is dealing with a multi-module program and the user might want object files
retained. In our example it therefore automatically produces an object file (with a
.o extension) from each source file (.c extension) that it compiles. It thus-produces

the three object files modulel .o, module2.o and module3 .o. It also produces an a.out

file in the normal way.
If the user executes this a.out file and finds that there is an error in the second

module he duly makes the required correction to module2.c. He does not want to

recompile the other two modules since they are unchanged. He therefore
recompiles his program using the command

cc modulel .o module2 .c module3.o

This recompiles module2 .c, generating a new object file module2 .o, and then causes

the loader to integrate this new object file with modulel .o and module3.o to

generate a new a.out file. The overall result is that compilation is considerably
faster as the first and third modules are not recompiled.

The whole process of creating an executable program from a group of source
modules, or more generally the process of creating files that depend on other files,
can be further automated by using a superb UNIX program called make. The
principle is that you tell make how to generate each file using the others; when you

call make it looks at the datestamps on files, and if file x depends on file y, then

make will regenerate x if y has changed more recently than x. You can specify your
instructions to make by creating a file called makefile within your current

directory, and then you simply type

make

An example of a simple makefile , which compiles our multi-module program, is

a.out : modulel .o module2 .o module3.o
cc modulel .o module2 .o module3.o

The first line, which we call the dependency line, says that a.out depends on

modulel .o, module2 .o, and module3.o . To generate an a.out file from these files it is

necessary to execute the command(s) that follow the dependency line. (These
command lines are each preceded by tab characters to distinguish them from
dependency lines.) In our case there is a single command

183

cc modulel .o module2 .o module3.o

Make automatically knows that each file with a o extension depends on the
corresponding file with a c extension. It also knows that if file x.c has changed
more recently than x.o, then it should recompile the former to generate a new
version of the latter. Thus there is no need for us to tell it that modulel .o depends
upon modulel .c and so on. In general you can, however, have several dependency
lines, plus their associated command lines, within the same makefile.

The uses of the make command go far beyond compiling programs. It can be
used, for example, to make books out of individual chapters. Makefiles also serve
as valuable documentation of how files interdepend, and can even supplant the
README files we suggested in Chapter 7.

LANGUAGES AND PROCESSORS

The cc language processor has a host of options for controlling the compilation
process and the generation of files - you can, for example, send the final
executable program to a filename that is not a.out . Other language processors have
similar options. You will need to consult the documentation of your chosen
language processor for details.

When a program is divided into separately-compiled modules, programming
languages offer some notation for referencing one module from another. The
method used is totally dependent on the programming language; it often involves
concepts such as `external' or `common'.

Sadly, most programmers spend a lot of their time detecting and correcting
errors. Syntax errors in the use of a programming language are usually easy to
correct. Generally the language processor will not even generate an executable file
if a source program is syntactically wrong. The C language has a special
supporting program called lint, which can be used to examine a C source program
and look for errors and doubtful syntax that cc does not catch.

The more difficult errors arise when a program is syntactically correct but
does not do what it should. Programmers are divided on their approach to
debugging. Some believe there is no substitute for thought and experimentation;
others believe that special debugging systems are valuable. To cater for the latter
UNIX provides a family of debugging programs corresponding to the languages it
supports. These programs have names such as adb and sdb , and can be explored in
your local documentation.

In addition, for those who enjoy low-level programming, most UNIX systems
provide an assembler called as. You can, however, do most tasks in C without
recourse to such depths.

LIBRARIES

UNIX provides libraries of valuable functions to aid your programming. More-
over you can, if you wish, create your own libraries by using a program called ar.
Libraries have the extension a to distinguish them from other files. The advantage
of a library over an object file is that the loader can pick the functions you need
from the library rather than including the whole library in your executable

184

program. UNIX uses the term `archive' for these libraries - hence the use of the
letter a as their extension.

The UNIX Programmer's Manual gives a list of the built-in library routines
available. These include the functions in the stdio library we mentioned earlier,
plus many more. They are mainly designed for use from within C programs, but
can sometimes be used in other languages too.

The method of using a library is as follows. You place an include line in your
program so that the program can reference the objects in the library. This tells
your program about the specification of the library, but you also have to tell the
compiler to combine the library with your program. The built-in UNIX libraries
are stored in the directories /lib or / usr/lib . The compiler option - lx (it is really an
option implemented by the loader rather than the compiler) causes the library file
libx.a from within /lib or /usr/lib to be used. As a specific example, if you want to
use the built-in library of mathematical subroutines (sine, Bessel functions, etc.),
you include a file called math .h by placing the line

#include < math.h >

in your program. Given that this library is stored in the file libm.a , you put the
- Im option on the cc command to compile your program. You need to put this
option at the end of your cc command since the search of the library must come
after the compilation of your program - only then is it known which library
facilities are needed.

Lastly a piece of general advice about libraries, which carries over to most
other facilities of UNIX: before you plunge into implementing anything, leaf
through your UNIX documentation to find out what is already there. Many
programmers spend all their time re-inventing the wheel.

FOLLOWING THE UNIX STYLE

When you write programs you should try to follow the general UNIX style so that
your programs are easy and natural to use. Remember that nearly all the built-in
programs in the UNIX system were written in C, so C provides all the power you
need to follow the general style. In particular C provides mechanisms to allow
your program to examine the command line that caused it to be executed, e.g.

a.out - x

This enables the program to implement its own options - in the above case it
could look to see if it had an argument that set the x option and, if it was there,
behave in some special way.

Other languages available on UNIX may provide similar facilities, though
inevitably C has the most finely tuned ones.

SUMMARY

To summarize the message of this Chapter

• pick a programming language which is available on your UNIX and suits
your needs and your approach to life.

185

• learn the C language if you ever want to compete with Dudley.
• divide your programs into separate modules and then exploit UNIX's

excellent facilities for object files.

• try to design your programs to have a similar style and user interface to the
built-in UNIX programs - unless you really hate this style or think the
users of your program should be protected from the influence of hrmt.

186

The purpose of this final Chapter is to round off our description of UNIX by
covering some valuable commands that have not naturally fitted into any of the
preceding Chapters. At the end of this Chapter we give a summary of UNIX as a
whole.

DEVICES

Before we describe any more UNIX commands, we must fulfil a promise made in
Chapter 5: to explain more about communication with peripheral devices that may
be attached to your computer.

In Chapter 5 we explained that a device may be spooled, thus enabling several
people to use it simultaneously. When a device is spooled you do not communicate
with it directly; instead you use a program that does the spooling - lpr is an
example of such a program.

You may have a device on your computer for which spooling is unavailable
or inappropriate; you will need to communicate directly with such a device (and
thus no other user can use the device at the same time as you). UNIX makes direct
communication easy by treating devices exactly as if they were files. Each device is
represented by a `filename' of form

/dev/devicename

We shall call these names device filenames. If you type the command

is /dev

you will get a summary of all the device filenames available on your UNIX. Some
of your device filenames will be esoteric ones concerned with the inner workings of
your UNIX, but you should see some names you recognize . There should always
be one or more device filenames of the form ttyn where n is some number. These
correspond to the terminals attached to your UNIX; they are the same names that
are used in the output from the who and write commands.

There is a command

tty

which will tell you the device filename of the terminal you are using. We shall
assume that it is

/dev/ttyl l

The beauty of UNIX's device filenames is that they can be used exactly like
true filenames. For example you can say

cat afile > /dev/ttyll

to send output to your terminal. This does not, of course, do anything different
from a normal cat , since that too sends output to your terminal . However some
other user can type the above command and thus redirect cat's output to your
terminal rather than his. Indeed the way a command such as

write me

works is to look up me in a table of users - the same table used by the who

188

command - and then to redirect output to the device filename associated with me,

in our case /dev/ttyll.
Writing directly to someone else's terminal is not an act of a civilized person,

and the real value of device filenames comes when you have some special device
attached to your computer. Assume such a device is a tea-maker, called

/dev/teamaker . Before using the device you need to get Dudley and his friends to
write programs that control it and to put its name in the /dev directory of your
UNIX. Some devices, such as printers, just output the text sent to them, but
Dudley's programs for the tea-maker will need to interpret the text as commands.
We shall assume that Dudley has provided the two commands

spoons N (put N spoonfuls of tea in the pot)
boil (boil the water)

Given this, we can then reap the rewards of all Dudley's hard work by saying

$ cat > /dev/teamaker

spoons 2

boil
Ad

and then go and enjoy our tea.

PERFORMING COMMANDS IN THE FUTURE

We can now begin our description of some further UNIX commands. We start
with a remarkable command, the at command, which allows you to control the
future. You can specify that a given shell program, which is stored in a file, is to be
executed at some specified future time. The way you do this is to say

at time file

The time is normally a series of four digits representing the time on a twenty-four
hour clock. Thus 1430 is 2.30 p.m. There are also more elaborate ways of

specifying time, and you can even specify, with the time, a date several days or
months ahead. If you do not specify a date the command will be executed within

the next twenty-four hours.
The file, which we call an at file, must be the name of a file that contains a

shell program. Given that this program is to be executed in the future, when you
may not be logged in, the shell program must not communicate with your
terminal. It must not therefore use the standard input or output (or the standard

error output).
The at command is useful on busy time-sharing systems, where mammoth

programs are best run overnight. It is also useful for management functions, for
example updating tables or clearing up the file system, which again is best done in
the middle of the night when the system is not busy. (The superuser, who does the
management, may actually use her own special facility, called cron, which is even
more powerful than at. PC/IX does have cron, but the at command is not available.)

An at file can itself contain an at command, and thus at commands can
perpetuate themselves. A job that runs at three o'clock one morning can therefore

189

itself spawn a similar job that runs at three o'clock the next morning, and this can
spawn a further job, thus implementing a daily routine.

Some UNIXes allow the - m option on at . This causes you to be sent mail to
confirm that the at has indeed been executed. This option is almost part of the style
of UNIX, and other commands of a similar nature to at may have the same option;
its purpose is to re-assure the user that what he asked for did really happen.

As an example of the usage of at, assume that the file checknovel contains the
two lines

checknr chapter* > nrofferror
spell chapter* > spellerror

This checks for nroff errors and spelling errors in all the chapters of a book, and
sends the results to two files, nrofferror and spellerror . The checknovel file can be
executed at 3 a.m. by the command

at 0300 checknovel

The execution of at will use as its current directory the same directory that is now
the current directory, so we are assuming that all the chapter files are in this
directory.

A UNIX command of a similar nature to at is sleep . The command

sleep n

causes a process to go to sleep for n seconds . Thus if you had a shell program
containing the two commands

sleep 600
echo Wake up

then executing this program causes the words `Wake up' to be displayed ten
minutes (600 seconds) later. Such a shell program could be run in the background
while, in the foreground, you are reading one of Dudley's files that contains a
description of his programming adventures.

COMPARING FILES

There are several UNIX commands for comparing files. The diff command is
perhaps the most frequently used. Diff compares two files and identifies all the
lines where they differ. It produces its output in a form similar (but not identical)
to a sequence of ed commands to create one file from the other. Thus if you are a
master of ed , you will soon be good at unravelling diff's output too.

Consider the command

diff fl f2

where f2 is identical to fl except that

• a new line, which reads `You owe me one thousand pounds', has been
added after line 122.

• line 100, which contains the text `I owe you fifty pounds', has been deleted
from U.

190

The output from this diff command is

100d99
< I owe you fifty pounds
122a122
> You owe me one thousand pounds

The number 99 after the d in the first line and the number 122 after the a in the
third line are actually line numbers of the file U. If you really want to edit fl to
create f2 imagine these numbers are not there. The ` <' and `>' characters indicate
lines present in fl but not f2, and vice-versa.

There are thus two ways that the output from diff augments the ordinary ed
notation. The purpose of the extensions is to provide extra information that you
might need. If, however, you do want the output from diff to be true ed
commands, rather than the above approximation to them, you should use the - e
option. In our example

diff-eflf2

produces the output

122a
You owe me one thousand pounds

100d

Notice how the edits come out in back-to-front order, so that a change in an
earlier line does not upset the line number of a later one. Sometimes when you
have two similar files you can profitably delete one of them and use an edit
`script' such as the above to re-create it from the other one when the need arises.

Another command for comparing files is comm . Comm is designed to work on
files that have already been sorted into alphabetical order (e.g. by sort). An
example would be a list of spelling errors produced by the spell command -
indeed spell uses sort to sort its output. The syntax of the comm command is

comm [-[123]] file] filet

Comm compares file] with filet and produces three columns of output

Column 1: lines in file] but not filet
Column 2: lines in filet but not file]
Column 3: lines that occur in both files

The options specify the columns you want suppressed, e.g. - 3 suppresses column

3.
As an example of the use of comm assume you are using UNIX to keep the

accounts of a business and that you have two files

janlate late payers in January
feblate late payers in February

Assuming these files are sorted into alphabetical order, the command

comm - 12 janlate feblate

191

will display the third column of comm 's output, i.e. the names of those who paid
late in both January and February. (The name comm suggests this type of use:
finding common lines of files.)

The UNIX commands for comparing files are a good illustration of the value
of the material under the `SEE ALSO' heading of UNIX manual pages. For the
comm command, it reads

SEE ALSO

cmp(1), diff (1), uniq(1)

This tells you that if comm does not quite serve your purpose you should look at
the manual pages for cmp (a command that reports a difference in terms of line

and byte number), difl and uniq - all of which are described in the UNIX

Programmer's Manual.

FILE USAGE

We have emphasized that sooner or later you will always become short of file
space. To help you monitor how greedy you are, UNIX provides a command du.
This tells you how many `blocks' of disk space are occupied by your current
directory and by each of its sub-directories. The size of a block is normally 512
bytes (characters).

To get an overall picture of your disk usage, type du when you are in your
home directory. Try typing it each time you log in, and watch how your file usage
creeps inexorably upwards. You could even put a du command in your profile file,
so that you are told automatically of your file usage whenever you log in.

CHANGING YOUR PASSWORD

You can change your password at any time by using the passwd command. When
you first use UNIX one of your earliest acts may be to set a new password. The
passwd command understands the frailties of human nature, and tries to guard
against them. In particular it tries to protect you from theft, carelessness and
forgetfulness.

Assume you are called away from your terminal on some urgent matter (see
/dev/teamaker above), and you leave your terminal logged in. While you are away
some felon might sneak up to your terminal and change your password; he would
then have control over all your computer possessions. The passwd command
prevents this by requiring anyone who changes a password to quote the old
password.

It fights carelessness and forgetfulness by requiring you to type your new
password twice. This helps you remember it, and guards against you mistyping a
password and then not knowing what it is. Furthermore passwd guards against

192

another human frailty: laziness. It requires you, for your own protection, to type
passwords that are at least six characters long. However if you insistently keep
setting the same short password, or if your password is a mixture of letters and
other characters, it eventually relents this restriction.

The following shows a sample use of passwd

$ passwd

Changing password for me
Old password : cleverme

New password : genius

Retype new password: genius

(Although we show the passwords on the above display they do not, in fact,
appear on the screen for all to see. They are suppressed in the same way as when
you type a password to log in.)

SEVEN DEADLY SINS

Given that the passwd command discourages sloth in typing passwords, and

covetousness of your password by others, and that du monitors your gluttony for
file space, UNIX covers three of the Seven Deadly Sins with just two commands.
Although you might argue that diff, with its apparently tortuous output, causes
anger rather than curbs it, you at least have man to help assuage the anger. Envy
can be curbed by denying read permission on files, on the basis that what the eye
does not see the heart does not grieve for; anyone guilty of pride is reduced to

humility when they first try to master ed or nroff. There are, however, no programs

to curb lust.

PAGINATED PRINTING

We have seen that the cat command displays files exactly as they are , and that nroff
can be used to format a file in order to make it really good to look at. The pr
command comes between these two. Its main contribution is to divide a file up into
pages of standard size, with a heading and page number at the top of each page.
As its name implies, pr is especially useful for files that are to be printed, rather
than displayed on a screen.

If we applied pr to the start of our Greg Daimler novel, which is stored in the
file chapterl , its output would begin as follows

Dec 18 11 : 56 1983 chapterl Page 1

Greg Daimler entered the room . There were seven bodies on

the floor. He coughed. A body fell from the top of the

bookcase. He looked up. He saw ten more bodies stuck to

the ceiling.
The tractor outside stopped its engine.

The clock struck three.

At this point a door opened.

193

A tall and exceptionally beautiful girl entered the room.

She was wearing a low-cut and very tight dress.

As you can see the page heading has the current date and time, the file name and
the page number . Each page has a similar heading, though obviously the page
number differs from page to page. In addition to creating page headings , pr adds
blank lines at the foot of pages . There are a host of options on pr to give you
control over the exact format of headings , and the size of lines and pages.

If you type the option - 2 the printing comes out in two columns ; the option
- 3 causes 3 -column output , and so on . This is useful for printing , in a compact
form , files that consist of short lines.

If you use a command such as

pr fl f2 f3

then , following the normal UNIX style , pr will print each of the three files in turn.

CONTROLLING YOUR TERMINAL

In Chapter 5, when we discussed terminals, we referred to the stty command; this
can be used to set options associated with your terminal. If you type

stty

on its own you are told what the current settings are. (On some UNIX
implementations you may need to type stty all or stty everything.)

As an example of the use of stty the command

stty - echo

causes your terminal to stop echoing, i.e. characters you type at the keyboard no
longer appear on your display. To restore echoing you type

stty echo

This example is typical of the syntax of stty , which is different from that of
most other UNIX commands . Since stty does not have filenames as its arguments,
the normal rules for options are relaxed . Options are represented , much to hrmt's
disgust, by long words such as echo , rather than by a single letter. If the name of an
option is preceded by a minus sign the option is switched off, and if the name of
the option is not preceded by a minus sign it is switched on.

There is a host of options available on stty , but most users settle into a hide-
bound way of using their terminal and thus only need to consider using stty when
they change terminal . If you examine the output from typing stty on its own,
which , as we have said, displays the current option settings , you will get some idea
of the range of options available. A sample display is

$ Stty
Installed adaptors: monochrome and color

Default adaptor: monochrome

194

Mono adaptor currently selected

Color mode is 80 • 25 alphanumeric, color enabled,

with 8 bg colors and blinking

black border

brkint icrnl - ixany onlcr tab3

echo echoe echok

GAMES

To some , a computer is a tool for playing games; as a by-product it can also do
some ` useful ' things as well. Numerous computer games have been written for
UNIX: the games range from sophisticated chess-playing programs to games of
fantasy and imagination . On time-sharing UNIX systems the management may
try to suppress games - though often the end result of such restriction is to
increase the amount of game playing. If you explore Section 6 of your PC/IX

Programmer 's Manual , you will find what games are available on your UNIX. If
you use PC XENIX , you will have to write your own games , as none is provided
for you.

LOOKING AT THE END OF A FILE

It is often useful to be able to look at the last few lines of a file, for example to find
out how far someone has got with a report file they are preparing. You can do this
using the editor - specifically its p command - but an easier method is to use the
command

tail file

This displays the last few lines of the file. Tail has options to give some extra
control over the lines to be displayed, to the extent that it can even display
complete files. Some UNIX implementations provide a head command which is
complementary to tail.

If you want to find out about the general nature of a file, you can use the file
command. This command examines a given file and tries to make an intelligent
guess at what it contains - for example a C program or some nroff input.

COUNTING

The command

we [file] ...

gives you three statistics about the given files: the number of lines, the number of
words and the number of characters. An example of its use is

$ we report
481 3517 20796 report

Here the report file contains 481 lines, 3517 words and 20796 characters. The we
command is especially valuable as a component of a pipe, e.g.

$ who I we
9 45 270

195

The who command displays the names of all current users, one to a line. Hence the
number of lines produced by who, in our case 9, is the number of users. The other
two figures, 45 and 270 are in this case unwanted statistics. They could be
suppressed by the -1 option, which means `line count only', e.g.

who I we -1

The options - w (for words) and - c (for characters) serve a similar purpose to the
-I option.

VERSIONS OF UNIX

In this Chapter, as in previous ones, we have tried to describe IBM PC UNIX
facilities common to all UNIX implementations but have made occasional
remarks about features that will vary between implementations. We shall finish by
saying more about the different versions of UNIX. UNIX, like any successful
product, is undergoing continuous development and improvement. Paradoxically
the best improvements in software are ones that users need not be aware of.
Examples of such improvements - we shall call these evolutionary improvements
- would be

• a performance gain in an existing command
• a new command
• an improved command which offers all the options previously available,

but some new ones too.

The worst improvements are revolutionary improvements where some existing
facility disappears and is replaced by some new and different facility. In this case
users find that some of their techniques, perhaps perfected over several years, no
longer work. Such "improvements" really do need to be dramatic improvements if
their net effect is to make users happier.

Fortunately most UNIX improvements over the years have been evolution-
ary ones. That is why it is possible to write books on UNIX as a whole rather than
on one particular implementation.

UNIX development started at Bell Laboratories in 1969, and was mainly
based on the PDP-11 computer. It was not until 1975, and the so-called Sixth
Edition, that UNIX was made available widely outside Bell Laboratories. At that
stage there was work within Bell Laboratories to make UNIX portable, i.e. able to
be moved to computers other than the PDP-11. This was successful, largely
because UNIX is almost entirely based on the C language; once C has been
implemented on a new computer, UNIX can follow. Thus implementations of
UNIX were spawned for numerous computers, and it became a generally available

system. In addition to this portability work, UNIX itself was improved and the
end product was released as the Seventh Edition of UNIX the hugely successful
release that is popularly known as `Version Seven' or `V7'.

At this point a new force was introduced to UNIX development: the
University of California at Berkeley worked on implementations for VAX
computers. Some of their work has met with as much user acclaim as that of Bell
Laboratories itself, and `Berkeley UNIX' and `the Berkeley enhancements' have

196

become widely known. Berkeley UNIX has itself been issued in successive versions:
these have numbers such as 4.1BSD and 4.2BSD.

Bell Laboratories have also been developing UNIX. They have used a new
numbering system for releases after Version 7: we have had System III, System V,
and so on. Given the rapidly expanding market for UNIX, software houses have
devoted much effort to transferring (porting) UNIX to various different types of
computer, both big and small. During the porting process selected enhancements
are often made to the final product. The writers of both PC/IX (INTERACTIVE
Systems Corp.) and PC XENIX (Microsoft Corp.) have used some of the
Berkeley-developed programs as well as adding some of their own work. To get a
full appreciation, therefore, you must beaver away at reading the respective
manuals.

It is still customary to refer to these versions by quoting the Bell system level
that formed the basis of the porting. At the time of going to press, the current
releases of both PC XENIX and PC/IX are enhanced versions of System III.

If you find all this confusing, just forget it. Just as you can drive a car without
knowing the exact model, so you can use and enjoy your UNIX system without
being aware of its version number and parentage. Your local documentation will
describe the facilities that you have; the best attitude is to be thankful for what is
available rather than envious of someone who claims to have a later version than
you.

FILE INTERCHANGE WITH PC-DOS

Both PC/IX and PC XENIX provide programs for interchanging files with PC-
DOS (an alternative operating system which is available from IBM for their
Personal Computers).

You need such programs because the format of PC-DOS file storage is
different from the format used by PC/IX and PC XENIX. If your PC-DOS files are
on a diskette, it is usually best to load it in the A drive of the PC. You should not,
however, mount the diskette, since mounting is an operation used for devices that
contain UNIX file systems. When your PC-DOS diskette is loaded, you can then
use the transfer programs to copy files from the PC-DOS diskette to the UNIX file
system, or vice versa.

Both PC/IX and PC XENIX enable character files (represented in ASCII) and
binary files to be transferred to or from PC-DOS diskettes. Do not think, however,
that you will be able to load up all your favourite PC-DOS application programs
onto your UNIX system. Only data files can be usefully transferred.

All PC-DOS character files use a pair of characters, carriage-return (CR) and
linefeed (LF), to indicate the end of a line. UNIX uses a single LF character - we
referred to this as a `newline' earlier in the book. When transferring character files
from PC-DOS to UNIX, the unwanted CRs can be automatically removed.
Likewise, CRs can be inserted in the reverse transfer.

Unfortunately the commands for transferring files are different between
PC/IX and PC XENIX, so we present the two systems separately below. Note that,
in both cases, when you specify PC-DOS file names you must specify them in full
- you cannot use shell metacharacters to abbreviate names (e.g. abc* for abcdefg).

197

Moreover, you should use slashes (/) to separate the constituent parts of PC-DOS
file names, in place of the backslashes normally used in PC-DOS (e.g. a/b/c in place
of a\b\c).

PC/IX TRANSFER PROGRAMS

The PC/IX commands for transferring files to and from PC-DOS all have the `dos'
prefix, and perform as you might predict from the names. The default is to use the
A drive on the PC, but by specifying a -D option followed by the name of the
device driver, this can be overridden; thus other diskette drives or a hard disk PC-
DOS partition can be accessed. The -a (for ASCII) option is used to denote
character file transfer. This automatically takes care of carriage-return and linefeed
translations. The available commands are as follows:

dosdel file (deletes a PC-DOS file)
dosdir directory (lists the contents of a given PC-DOS directory)
dosread [-a] file] filet (copies the PC-DOS file called fzlel into the UNIX

file called filet)
doswrite [-a] file] filet (the reverse of dosread)

Note that reading and writing are performed by different commands. A -v option
can be specified on any of the above commands. This stands for verbose and causes
PC/IX to tell you more about what is going on; in particular, it can help verify that
the files you want to copy actually exist. In addition, the dosdir command has extra
options to give further information on each file in the given directory. For detailed
descriptions check your manual.

As an example, the command

dosread -a a/b/letter.txt aletter

copies the PC-DOS file in a\b\letter.txt, which is on a diskette in the A drive, to the
UNIX file aletter; CR characters in the file are deleted during the copying.

PC XENIX TRANSFER COMMANDS

The PC XENIX commands for file transfer have a slightly different approach to
the PC/IX commands. Generally the PC XENIX commands mirror built-in UNIX
commands such as cat and cp. PC XENIX, unlike PC/IX, assumes by default that
it is transferring a character file; it therefore automatically removes CR characters
when transferring from PC-DOS to PC XENIX, and inserts CR characters when
transferring the other way. This feature can be suppressed by using the -r option.

As an example of a PC XENIX transfer command, the command correspond-
ing to cat takes the form

doscat [-r] device:file

This displays the given file. The device is used to tell doscat the location and format
of the PC-DOS diskette. As an example, device might take the form /dev/fd096ds15.
This somewhat complicated string of characters means floppy diskette drive 0,
using a diskette with 96 tracks per inch, which is double-sided, with 15 sectors per
track (the standard for 1.2 megabyte diskettes). The -r option on the doscat

198

command means that CR characters are not to be given special treatment. This
option is not normally used.

If you redirect the output, you can use doscat to copy a file from PC-DOS. An
alternative, which allows files to be copied to or from PC-DOS, is the command

doscp [-r] file] file2

This command copies file] to filet (like the cp command); the -r option is used in
the same way as for doscat . The command can be used to copy files to or from PC-
DOS form; thus either filel or file2 should specify a PC-DOS file, and should take
the form device.filename. For example

doscp /dev/fd096ds15 : a/b/1etter .txt aletter

copies the PC-DOS file a\b\letter.txt to the UNIX file aletter . The PC-DOS file is
on a diskette in drive 0, and CR characters in the file are removed during the
copying. There is also a special form of doscp (as there is for cp) that is convenient
for copying several files in one go.

If you get tired of typing long commands such as the one above, it will be
worth your while to examine some default settings which are stored in the file
/etc/default/msdos. If you display this file you might see

$ cat /etc /default/msdos
A = /dev/fd096ds15
B = /dev/fd048ds9

The meaning of this is that A: can be used to replace any occurrence of
/dev/fd096ds15: within a PC XENIX transfer command, and that likewise B: can
be used for /dev /fd048ds9 : (which is the standard PC-DOS 2.0 360 kilobyte double-
sided diskette). Note that the A and B must be capital letters. If you wish to change
the values corresponding to A and B, you can do this by logging in as the superuser
and then editing the file /etc/default/msdos.

In addition to doscat and doscp , PC XENIX supports the following com-
mands, all of which are similar to built-in UNIX commands:

dosls device: directory
dosmkdir device: directory
dosrm device file
dosrmdir device: directory

The command

dosdir device: directory

lists the detailed contents of a given PC-DOS directory in the same format as the
dir command does within PC-DOS.

SUMMARY

We shall finish the book by returning to the point we made at the start: that ideas
are more important than details. Obviously you will need to learn enough details

199

to use the repertoire of commands that suits you, but you will only exploit the real
power of UNIX if you exploit its ideas. In particular you should

• organize your files in a hierarchy of separate directories, with no more than
a dozen or so files in each directory.

• exploit the UNIX aids for producing documents, even if your primary use
of UNIX is not as an aid to writing. Any project is useless without good
documentation.

• use pipes to build your own tailored commands out of other commands.
• where pipes are inadequate, write shell programs to build your own UNIX

commands.
• exploit others: before you do a job yourself browse round the file system to

see what facilities are already there to help you. See what you can gain from
the work of other users: communicate with your fellows using electronic
mail.

• no society can work unless the givers are in balance with the takers. Hence
if you develop anything that is generally useful, make it available to your
fellows. Better still, make each individual component of your work
available to others, so that they can build something of their own using
your modules.

All these points can be summed up in one: the way to achieve something big is
to create small and manageable units and combine them effectively. UNIX has
succeeded because it has provided an environment for doing this. Its users have
succeeded where they have exploited this environment.

200

References

Bourne, S. (1983). The UNIX system, Addison-Wesley, London.

Cherry, L.L. and W. Vesterman. (1981). Writing tools- the STYLE and DICTION

programs, Computer Science Technical Report 91, Bell Laboratories, Murray

Hill, N.J.

Deitel, H.M. (1983). An introduction to operating systems, Addison-Wesley,

Reading, Mass.

Feuer, A. and N.H. Gehani . (1982). "A comparison of the programming

languages C and PASCAL", Computer Surveys 14,1, pp. 73-92.

Kernighan , B.W. (1978). UNIXfor beginners - Second edition. (Sometimes found

in Volume 2 of UNIX Programmer 's Manual.)

Kernighan , B.W. (1981). Why Pascal is not my favorite programming language,
Computer Science Technical Report 100, Bell Laboratories , Murray Hill,

N.J.

Kernighan , B.W. and R . Pike. (1984). The UNIX programming environment,

Prentice-Hall, Englewood Cliffs, N.J.

Kernighan , B.W. and P . J. Plauger . (1976). Software tools, Addison-Wesley,

Reading, Mass.

Kernighan , B.W. and P . J. Plauger . (1981). Software tools in Pascal , Addison-

Wesley, Reading, Mass.

Kernighan, B.W. and D.M. Ritchie. (1978). The C programming language,

Prentice-Hall, Englewood Cliffs, N.J.

Knuth, D.E. (1973). The art of computer programming, Volume 1, Second edition,

Addison-Wesley, Reading, Mass.

Lister, A.M. (1979). Fundamentals of operating systems, Second edition,

Macmillan, London.

Lucas Phillips, C.E. (1952). The small garden, Pan, London (reprinted many times

since).

Ritchie, D.M. and K. Thompson. (1974). "The UNIX time-sharing system",

Comm. ACM 17,7, pp. 365-375; reprinted in Comm. ACM 26,1 (1983),

pp. 84-89.

Wilkes, M.V. (1972). Time-sharing computer systems, Macdonald/Elsevier,

London.

201

In this Appendix we show some examples of complete UNIX sessions . In each
case we follow our normal convention of using bold face type to identify material
typed by the user.

SESSION 1: SIMPLE MAIL

In this first simple session we log in and then hear that we have some electronic
mail. We read our mail, which consists of a single message that comes from the
user bill. Having displayed the message from bill, the mail system asks us what to
do next: we delete the message, since it is not worth preserving, and quit the mail
system. Our next UNIX command is to use mail again , this time to reply to bill.
Finally, as a matter of curiosity, we look to see who is currently logged in and then
we log out. Since bill is logged in, he should receive our mail straight away.

login: me type login name
password : cleverme (password not on screen)

You have mail.

$ mail read the mail

From bill Tue Jul 1 12:51:36

Welcome to UNIX.

If you want any help getting

started , let me know.

? d delete mail message
? q quit mail system
$ mail bill reply to bill

Thank you for your offer.

I may well contact you later.
terminate message

$ who see who is logged in

me console Jul 1 13:50

anne tty01 Jul 1 13:20
dudley tty02 Jul 1 4.10

$ Ad log out

SESSION 2: DOCUMENT PREPARATION

Here we use the ed editor to prepare a document and place it in the file mynews.
This document is to be processed by the nroff next formatter (using the mm
macros), and includes the requests HU and P.

Having typed the document we notice that the word `announce' has been
wrongly spelled as `announve'. We therefore search for the line containing this
word, and replace `announve' by `announce'. We then write the document to the
file mynews and quit the editor. (Up to this point the session closely mirrors
Sample Session 1 of the description of ed in Chapter 8; if you want to look at
further examples of editing, you should look at the remaining sample sessions in
Chapter 8.)

204

Having created the mynews file we apply a spelling check to it: the spell
program is silent, meaning that it detected no errors - it even accepted proper
names such as `Martin' and `Collins'. We then use nroff to format the document,
and the resultant output appears on the terminal. There is a centred page number
at the top of the document, and a lot of blank lines at the bottom. (We have
cheated a bit in displaying this output: we have made lines shorter and the page
shorter in order to fit on a page of this book.) Pleased with what we see, we execute
nroff again, this time sending its output to a printer. On the printed document the
section heading `Announcement' should come out in bold face.

login: me type login name

password: cleverme type password

$ ad enter the editor

a append some text

.SA 1 \" causes straight right margin

.HU "Announcement"

.P

I am pleased to announve

my engagement

to Jane , only daughter of

Major and Mrs . A.J. Collins of
25 Cathedral Avenue , Canterbury.

.P 0 \" new paragraph (not indented)
The wedding will take place at
St. Martin's
Church at 2.30 p.m. on Nov. 3.

/announve/

I am pleased to announve

s//announce/p

I am pleased to announce

w mynews

301

q
$ spell mynews

$ mm mynews

terminate text
search for `announve'
(result of search)
substitute and print
(revised line)
write the file
(size of file)
quit the editor
check spelling
format the document

-1-

Announcement

I am pleased to announce my engagement to

Jane, only daughter of Major and Mrs. A.J. Collins

of 25 Cathedral Avenue, Canterbury.
The wedding will take place at St. Martin's

Church at 2.30 p.m. on Nov. 3.

205

$ nohup mm mynews I Ipr & print it (in background)

$ A d log out

SESSION 3: PREPARING A PROGRAM

This is a session that is only of interest to programmers. It shows the preparation
and execution of a program in the C language.

On logging in we first change our current directory to the project directory,
which contains the files associated with our programming project. We then list the
files in this directory, to remind ourselves of what is there. As a result we recall that
the file average.c contains the program we want to work on. Assume that this file
contains the C program that we introduced in Chapter 12, i.e.

/* - - - finds the average of N numbers - - - */

#include < stdio.h >

main()
{

int n, k;

float sum, number;

scanf("%d",&n);
sum = 0;
for (k = 1; k < = n; k + +)
{ scanf("% f",&number);

sum + = number;
}
if (n > 0)

printf("Average = %f\n", sum/n);
else

printf("No numbers in data\n");
}

We wish to extend this program by adding, at the start, the extra lines

printf("Type count of numbers\n");
printf("Then type the numbers\n");

To accomplish this we use the ed editor, and insert these two extra lines before the
first executable line in the program - the first line containing `scan'. Unfortu-
nately we make an error in typing the second extra line: we omit the closing `)'.
Unaware of our small mistake we write the `improved' version of the program on
top of the previous version, and compile it using the cc language processor. We get
an error message.

Our next steps are to use the editor to correct our error, and then to re-
compile the corrected program. Cc is silent this time, and no news is good news: no
syntax errors were detected in our program, and hence an a.out executable
program will have been produced. We execute this program, supplying as data the

206

number `4', followed by the four numbers that we wish to be averaged. The

program produces the correct answer.
Finally we execute the program using the data in the data file, and are told the

average of the numbers in this file; the extra messages that we have added to our
program are still displayed even though the data is not being typed at the terminal.
Perhaps our change to the program was rather a foolish one.

login: me type login name

password: cleverme type password

$ cd project change directory

$ Is list files

a.out

average.c

data

manual

$ ed average.c

295

/scan/
scanf("%d",&n);

i

printf("Type count of numbers\n");

printf("Then type the numbers\n";

w

369

q
$ cc average.c

"average.c", line

$ ed average.c

369

11

11: syntax error

printf("Then type the

s/;/);/p
printf("Then type the

numbers\n";

numbers\n");

w

370

q
$ cc average.c

$ a.out

Type count of numbers

Then type the numbers

4

20 20 .5 21 20.5
Average = 20.500000

$ a.out <data
Type count of numbers

Then type the numbers

edit
(size of file)
search for `scan'
(result of search)
insert before this

terminate inserted text
write the file
(size of file)
quit the editor
compile
(error message)
edit again
(size of file)
display line 11
(line 11)
replace ';'by
(result of replacement)
write the file
(size of file)
quit the editor
re-compile
execute

count of numbers
numbers to be averaged
(program gives answer)
use data file
(unwanted messages -
see commentary)

207

Average = 167.456051 (average of data)

$ A d log out

SESSION 4: USING THE FILE SYSTEM TREE

Here we wish to assemble some articles for an issue of a magazine of which we are
the editor (in the literary sense rather than the ed sense). After logging in we create
a new directory , magazine , for the magazine issue, and we make this our current
directory. The magazine is to be built from four existing files:
(1) editorial , which is in our home directory
(2) smut , which is in derek 's home directory
(3) dirt, which is in the mag directory, a sub-directory within jill's home directory
(4) grime , which is in jack 's home directory

As editor, we plan to alter the articles in order to fit the style of the magazine. Jack
and jill wish to keep their original articles; they have asked us to make copies of
their articles, and then to alter our copies, rather than the originals. Derek is more
trusting: he gives us write permission on his smut file, so that we can change it as
we wish.

We decide to bring all four of the articles into our new directory, and to give
them the names articlel , article2, article3 and article4 . Figure A.1 shows the
position of the relevant files, including our new ones, in the file system tree.
Our first act is to move our editorial file from our home directory to the magazine
directory, renaming it as articlel . Secondly we make the filename article2 a
synonym for derek 's existing smut file. We do this `linking' by using the In
command. Thereafter any change in article2 causes a corresponding change in the
smut file - indeed they are the same file.

Our last act in building the new directory is to make copies of the
contributions from jill and jack . We can do this with the cp command. Unfortu-
nately our attempt to copy jack 's file fails, because we have not got the necessary
permissions to access his grime file. There are two possible reasons for this

root

F
jack jill derek me

F_ F_
I ... ^...

grime mag smut magazine editorial

dirt articlel article2 article3 article4

Figure A.1 The file system tree

• we have not got read permission for his grime file
• we have not got execute permission for one of the directories on the path to

grime , e.g. we may lack execute permission for jack's home directory.

208

We use the -I option on the is command to list the permissions on the grime file,

and find that the problem is that we have not got read permission for this file. We
cannot, of course, change the permissions on a file that jack owns, so all we can do

is to send him some mail.
Lastly we list the contents of our new directory in order to see that the

articlel , article2 and article3 files are indeed there, and to see their size. Notice

that, since we have linked to derek 's file rather than copied it, he is still the owner
(see third field of listing). The number `2' in the second field of the listing of the

article2 file shows that article2 is one of two synonyms of a file.

login: me

password: cleverme

$ mkdir magazine

$ cd magazine

$ my ../editorial articlel

$ In /usr/derek/smut article2

$ cp /usr/jilt/mag/dirt article3

$ cp /usr/jack/grime article4

cp: cannot open /usr/jack/grime

$ Is -1 /usr/jack/grime
-rw - - - - - - - 1 jack 5708 Jun 30

$ mail jack
Please let me read your

grime file.

$ Is -1

total 14

-rw-r--r--

-rw-rw-rw-

-rw-r--r--

$ Ad

type login name
type password
create new directory
change to this directory
move first article
link to second article
copy third article
try to copy

(error message)

look at permissions

10:17 grime

(only owner can read)
send mail

terminate message
list files
(blocks of file space used)

1 me 2112 Jun 27 17:58 articlel

2 derek 3329 Jun 25 15:37 article2

1 me 799 Jun 5 12:32 article3

log out

209

This Appendix, which is intended for quick reference, gives specifications of the
commands that are explained in this book. We show for each command the syntax,
the page number of the tutorial description within the body of the book, a brief
specification, and an example. We describe the major options that are available on
commands, including some not covered in the main text, but we have made no
attempt to give a comprehensive description of every single option. Indeed when the
options on a particular command are rarely used we have ignored them altogether.
Options vary somewhat between UNIX implementations, and the only definitive
statement of the options available to you is given by your local documentation.

At the end of the Appendix we give a further list of commands, which either
have not been mentioned in the book or have only been described in general terms.
These are mainly specialized commands, but do not regard them in any way as
second class: what is an off-beat specialist activity to one user is a vital mainstream
activity to another.

Commands are described using the same syntactic notation as the UNIX
manual pages. Note that a list of options, each of which can be a single letter or
digit, is specified in a manner such as

[- [xyz]]

This means that the option consists of a minus sign followed by any combination
of the letters x, y and z, written in any order. Thus possible settings of this option
are - z, - xy, - yx, - xyz and - yzx.

SPECIFICATIONS OF COMMANDS

at time [month day] [file] execute AT future time 189

the file, which should contain one or more shell commands, is remembered;
this remembered copy is then executed at the future time, either within the
next twenty-four hours or at the specified month and day. If thefile is omitted,
the standard input is used.

Example at 0920 dec 25 x (executes x on Xmas morning)

cat [file] ... conCATenate and output 54

copy files to the standard output.

Example cat partl part2 > afile (copies partl plus part2 to afile)

cd [directory] Change Directory

change current directory to directory - if omitted to home directory.

Example cd novel

chmod ddd file ... CHange MODe

61

59

change permission on files to ddd. Each d is a digit between 0 and 7, and digits
relate to owner, group, others, respectively. (There is also an alternative
syntax for describing permissions.)

Example chmod 660 afile (allows owner and group to read and write)

212

comm [-[123]] file] filet find COMMon lines 191

compare file] and filet, which are already sorted. The output is in three
columns: (1) lines only in file]; (2) lines only in file2; (3) common lines. The
options can be used to suppress any of these columns.

Example comm - 12 lost found (identifies common lines)

cp file] file2 CoPy 63

copy file] to filet (overwriting it if it previously existed). There is also a
variant of cp for copying a sequence of files.

Example cp /usr/john/his mine (makes a copy of someone else's file)

date give DATE

output the current date and time.

Example date

53

diction [file] ... check DICTION 170

identify, within the files, sentences that contain apparent misuse of English.
The files may be in nroff format.

Example diction chapter6 (checks diction of chapter6)

diff [-[beh]] file] filet find DIFFerences 190

identify the differences between file] and filet. The output is based on a
sequence of ed commands to create one file from the other. The b option
lessens the significance of blanks; the e option enforces strict ed format; the h
option does a `half-hearted' comparison.

Example diff newx oldx (finds differences between two versions)

du [- a] [- s] [file] ... summarize Disk Usage 192

display the amount of disk space, in units of blocks, occupied by the files.
Normally each file is a directory file, and du gives the total size of the files in
this directory, and in all its sub-directories. If no files are specified, the current
directory is assumed. The a (for all) option gives a more verbose analysis, and
covers individual files; the s (for summary) option gives a more terse analysis.

Example du (gives size of files within current directory)

echo [-n] [argument] ... ECHO 80

copy the arguments to the standard output. The n option suppresses the
newline at the end of the line, and thus would cause a subsequent echo to
come out on the same line.

Example echo Files starting with f are f* (gives files starting with f')

213

ed [file] EDit

edit the file (if omitted then editing starts with a null buffer).

Example ed afile

94

grep [- options] pattern [file] ... Globally find Reg. Exp., Print 73

output all the lines of the files that contain a match of the pattern, which is a
`regular expression' in ed notation. Some of the options are
c count matching lines
I give names of files that contain a match
n give line number of each match
v give the non-matching, not the matching, lines
y do not differentiate upper and lower case

Example grep program chapter* (matches lines containing program')

kill processlD KILL 84

kill the background process which is identified by the number supplied as the
processlD.

Example kill 4583

In file [name] LiNk two filenames 66

add the name as a filename in the current directory, and make this
synonymous with file. (If name is omitted, the name is assumed to be the last
component in the file pathname.)

Example In /usr/john/data x (makes x a synonym for john's data file)

lpr [-m] file ... output to LinePRinter 85

arrange for the files to be output on a printer. The printing goes on in the
background while other work proceeds. The m option causes you to be sent
mail when the printing has been completed. On PC/IX, Ipr is known as print.

Example Ipr chapter6 (prints chapter6)

Is [-[adlrstu]] file ... LiSt filenames 53

if a file is a directory (the normal case) give a list of the files within it; if a file is
not a directory just give its name. The most important options are
a list all files, even those whose names begin with a dot
d treat a directory file as an ordinary file - therefore do not give its

contents
I give a `long ' listing , which includes file properties (owner , permissions,

etc.)

The other options are concerned with the order in which the list of filenames
is to be sorted.

Example Is -I novel (gives a full listing of the novel directory)

214

mail [loginname] send or read MAIL 129

if a loginname is supplied, a message is sent to the user with this name; the
message comes from the standard input. If no loginname is supplied, this
causes the mail system to be entered in order to read any incoming mail.

Example mail john (sends mail to john)

mesg [n] [y] allow/inhibit MESsaGes 130

prevent (if n) or allow (if y) other people to use write to send messages to you.
If neither option is specified, a report of the current status is given.

Example mesg n (prevents others writing to you)

mkdir name ... MaKe DIRectory 60

create, within the current directory, new directories with the given names.

Example mkdir novel (creates novel directory)

my file] filet MoVe 63

rename filel as file2. Iffilet already exists the previous version is overwritten.
(There may also be variants of my for renaming directories or sequences of
files.)

Example my /novel/x x (moves x into current directory)

nroff [-option] ... [- mm] [file] ... (text formatter) 147

is prepared in a format suitable for a typesetter . The mm option specifies that
the mm macro library of requests is to be used . Other important options are
e put equal spacing between words in justified lines
Tname prepare output for name terminal

Example nroff - mm chapter6 (formats chapter6)

passwd set PASSWorD 192

start the dialogue for setting a new password.

Example passwd

pr [- option] ... file ... PRint 193

display the files, dividing them into pages with headers and footers. The most
important option is - N, where N is a digit: this gives N-column output.
There are also numerous options concerned with page layout, size, number-
ing, etc.

Example pr - 3 names (displays names in 3-column paginated form)

215

ps [- [al]] give Process Status 84

give information about your current processes. The a option covers all users'
processes, and the I option gives a long listing.

Example ps

pwd Print Working Directory 61

display the pathname of the current directory (i.e. the `working' directory).

Example pwd

rm [-options] file ... ReMove files 64

delete the files. The most important options are i (for interactive), which asks
you to confirm each deletion, and r, a drastic option that `recursively' deletes
a directory and all the files within it - including any sub-directories.

Example rm chapter6 (deletes chapter6)

rmdir directory ReMove DIRectory 66

delete the directory, which must be empty, i.e. all the files within it must
already have been deleted.

Example rmdir novel (deletes novel directory)

sh [file] ... execute SHell

execute the files as commands for the sh shell.

Example sh dolt (executes shell commands stored in dolt)

spell [- b] [file] ... check SPELLing

86

7

apply spelling checks on files, and display the words that appear to be wrong.
The files may be in nroff format. The b option is for those in favour of British
spelling.

Example spell - b chapter6 (checks the spelling of chapter6)

stty [option] ... Set terminal (TTY) options 194

set options controlling the behaviour of your terminal. If no options are given
the current settings are reported. Some of the most frequently used options are

even allow input characters with even parity
- even do not allow input characters with even parity
odd allow input characters with odd parity
- odd do not allow input characters with odd parity
echo echo input characters on the display
- echo do not echo input characters on the display
lease map lower case input characters into upper case
- lease do not map lower case input characters into upper case
nl only accept newlines to end input lines

216

- nl accept carriage returns to end input lines
tabs do not convert tab characters to spaces for display
- tabs convert tab characters to spaces for display
erase c set the erase key to be the c key

kill c set the kill key to be the c key

Example stty erase = (sets the `_ ' sign to be the erase key)

style [- option] ... [file] ... analyze STYLE 168

give statistical information about the style of files, which may be in nroff

format. The options can be used to display the sentences that have certain
properties, e.g.
a display all sentences and their lengths
e display sentences that begin with expletives
I N display sentences longer than N words
p display sentences that contain a passive verb
P display parts of speech
r N display sentences whose readability index exceeds N

Example style chapter6

tail [file] give TAIL

display the last few lines of file.

Example tail afile

tty

195

give terminal (TTY) name 188

give pathname of your terminal. (This fits the UNIX concept of treating
devices as files.)

Example tty

we [-[clw]] [file] ... give Word Count 195

output counts of the number of words, lines and characters in files. If only a
subset of these three counts is required, the c option can be used to select the
count of characters, and the I and w options can be used to select the counts of
lines and words, respectively.

Example we chapter6 (counts words, lines and characters in chapter6)

who [am I] say WHO is logged in 125

give information about all the users currently logged in. If `am I ' is specified,
then only information about the current user is given.

Example who

write loginname WRITE a message 126

send a message (which comes from the standard input) to the user with the
given loginname. The main purpose of write is for immediate and urgent
communication; otherwise mail is more civilized.

217

Example write john (sends message to john)

FURTHER COMMANDS

Programming

adb, sdb debuggers
as assembler
cc C compiler
Id loader
lint C program checker

In addition there are numerous other language processors, tools for building
compilers, etc.

Miscellaneous

ar maintainer of archive (library)
awk pattern matching language
cal calendar creator
calendar reminder service
cmp file comparator
csh alternative shell to sh

dd file copier - useful for mag. tapes etc. (but also see tar)
eqn, neqn preprocessors for mathematical typesetting
explain aid to understanding diction
file file :: nalyz?r
find file bloodhound
games see Section 6 of PC/IX documentation
learn teaching system
login log in a fresh user
make file builder
sleep time killer
sort sorter
tabs controller of tab positions on terminal
tar tape archiver
tbl preprocessor for typesetting of tables
tee T -junction in pipe
time command timer
tr character translator
uniq deleter of successive duplicate lines
uucp UNIX to UNIX file copier
vi screen editor for PC XENIX; also see INed for PC/IX

In addition there may be invaluable local commands, such as a help (or
apropos) system, checkmm and finger.

218

Index

,,82
[,74,212
[wildcard, 75
A convention, 42
Ad, 55, 68, 127
Al, 156
nq, 135
AS, 135
.,79,91,214
..,62,63,64
..., 74

77
\, 78
!, 131
#, 52
$,6,53,91
% as prompt, 52
&, 83, 85, 86
* wildcard , 76, 140
-,56,72
/,31,58,62
<, 81
>,55,80
>>, 80
? wildcard , 76, 183

a.out , 180, 184, 185, 206
access rights, 34
accounting, 17
adaptation, 29
adb, 184
apropos,123
ar command, 184
argument to a command, 54, 58, 72, 77
ASCII, 21, 77, 121
assembler, 184
at command, 189, 212
awk, 124

background , 15, 42, 83, 137, 190, 205
BACKSPACE key, 41
bad directory, 140
BASIC language , 94, 175

Bell Laboratories, 10, 150, 169, 171, 196,
197

Berkeley, 75, 196
bin directory, 30, 88-90, 181
binary file, 21, 26, 35, 67, 181
binary program, 87, 179
block, 22, 57, 66, 192
Bourne, S.R., 23, 75
BREAK key, 40, 52, 132
break-in, 42, 55, 85, 106, 135
British spellings, 72, 91
broken pipe, 140
browsing, 105, 109, 200
bug, 123
built-in command, 7, 88, 180
bus error, 141
byte, 21

C language, 9, 79, 121, 174-179, 182, 196,
206

C shell, 75, 138
calendar, 218
cat command, 7, 54-56, 63, 67, 188, 212
cc command, 180, 183, 184, 207
cd command, 61, 65, 212
character file, 20
checkmm command, 159, 190
Cherry, L.L., 168
child, 30
chmod command, 59, 74, 87, 141, 179, 212
cmp command, 192
coding system, 21
comm command, 191
command, 7, 8, 44, 70-75, 121

redefining, 90
user-defined, 85-89

command name, 88, 89
command prompt, 53
common data, 184
communicating processes, 17
communication, 17, 125-131, 200
compiling, 120, 174, 180, 181-185, 207
computer-aided instruction, 135

219

connect time, 17
console, 5, 126
context editor, 94
control character, 40
CONTROL key, 41
copy, see file
core dump, 140
cp command , 63, 74 , 137, 208, 213
CR key, 41
crash , 32, 134
cron, 189
csh, 75, 138
Ctrl key, 41
current directory , 27, 31, 53, 61, 65, 88, 91
cursor, 43, 94, 117

daisy-wheel printer, 144
date command, 53, 213
datestamp, 57
debugging, 184
Deitel, H.M., 13
DEL key, 40,41
deletion, see rm command
device, 22, 44, 188-189
device filename, 188
device-independence, 43, 166
diction command, 170-171, 213
diff command, 190, 213
directory, 26-34, 57, 58, 67, 79, 138

as a file, 26
creation, 60
execute, 36
protection, 36
small, 29, 31

disk, 14, 22, 31
disk crash, 32
diskette, 23, 31-32
display 5, 43
document, 8, 20
document preparation, 8, 121, 130,

144-171,199,204
documentation on UNIX, 9, 75, 120-125
down, 134
du command, 192, 213
Dudley Detail, 32

echo command, 80, 81, 92, 140, 213
ed command, see editor
editor, 7, 94-118, 191

[, 110,114
[A, 110
A, 110, 111
\, 110, 113

114
$, 96, 99, 110, 111
&, 111
*, 109, 114

96, 99, 105, 109
/,96
=,106
?, 98
address range , 101, 113
append command , 99, 107
argument, 101
backspace, 106
buffer , 95, 117, 134
change command , 99, 102
command, 95
command mode, 106
context search , 96, 98, 104, 107, 109
current file, 97, 102, 107
current line , 95, 97, 102, 104, 110
default assumptions , 95, 102
delete command , 99, 100, 101, 104
error message , 95, 98, 107
examples, 106, 115-117, 204
global replace, 113
global suffix, 104, 113
including a file, 114
insert command, 99
last line, 96
list command , 106, 147
metacharacter , 109, 112, 140
null command , 97, 109
null pattern, 104
pattern , 103, 104, 109, 110
print command , 97, 102, 106
print suffix , 103, 113
quit command, 105
read command, 114
replacement , 103, 112
search-and-replace, 113
space character , 98, 103, 104
substitute command , 103, 104, 112
tab, 106
TMP, 117
undo command, 104
wa command, 103
window, 117
wrap-around, 96, 98
write command , 102, 109
Write/append command, 103

electronic mail, see mail
em editor, 94
Enter key, 41, 135
environment, 91

220

EOF, 55, 128
eqn, 156
erase key, 41, 217
error in typing, 41
error message, 44, 65, 89, 136
errors, 132-141, 180
ESC key, 40
ex editor, 94
executable program, 179, 180, 182
execute permission, 34, 35, 36, 87, 180, 209
executing a command/program, 8, 139, 179
executing a directory, 36
explain command, 171
extension of filename, 79, 182-184
external data, 184

f77 command, 180
Feuer, A., 179
file, 6, 8, 20-37, 43, 92

access, 30, 31, 33
binary, 21
block, 22
character, 20
comparison, 190-192
copying, 33, 54, 63
creation, 33, 54, 56, 95, 106
deletion, 64
error, 137-139
interchange, 32, 197-199
management, 24
overwriting, 139
protection, 23
public, 24
sharing, 17, 23
size, 20, 22, 57, 213
temporary, 83

file command 195
file input, 14
file structure, 26-37
file system, 7, 20, 23-37, 63, 67
filename, 20, 27, 29, 57, 63, 76, 77-79, 80,

188
filter, 46, 82, 156
find command, 138
finger command, 126
floppy diskette, 23, 31-32
font, see nroff font
foreground, 84
Fortran, 79, 180
fragmentation, 22
freezing a display, 42
frozen terminal, 135
full-duplex, 42, 134

games, 121, 195
Gehani, N.H., 179
graphics, 43, 121
Great Pest, 35
grep command, 70, 73, 82, 110, 114, 122,

140, 214
group, 33, 35, 57, 66

hard copy, 5
head, 194
help, 123
hierarchy of files, 26 , 29, 199
history of UNIX, 10
HOME, 91
home directory, 27, 30, 33, 36, 53, 61, 65, 92
how command, 124
hrmt , 54, 95, 98, 105, 158
hung terminal, 134

IBM PC, 3
IBM PC AT, 3
i-number, 58, 67
implementation, 4
including a file, 114, 177, 185
INed, 118, 125
input, 40-43
input/output , 14, 44, 85
interpreter, 174
interrupt , 42, also see break-in
ISO, 21

jobletter files, 5
joining files, 54
junk mail, 130

Kent, 64
Kernighan , B.W., 47, 53, 179
keyboard, 5, 40,43
kill command , 84, 214
kill key, 41, 217
Kincaid, 168
Knuth, D.E., 30

I command, 42
Ii command, 59
Ic command, 59
language processor, 174
Id loader, 182
letter-quality printer, 145
library, 121, 184
limits on users, 15
line number, 214
line-based editor, 94

221

line-printer, 144, 214
lines of input, 40
linking, 28, 32, 66, 208
linking loader, 182
lint, 184
Lister, A.M., 13
In command, 66, 209, 214
loader, 87, 182
local editing, 41
logging in, 15-16, 40, 52, 92, 134
logging out, 15, 27, 68, 85, 92
login command, 218
login name, 15, 30, 33, 40, 128
lower case, 52, 214, 217
lpr command, 85, 122, 214
Is command, 6, 53, 56, 58, 60, 74, 77, 92,

209, 214
Lucas Phillips, C.E., 35

macro, see nroff macro
mail, 17, 40, 45, 53, 125-131 , 147, 190,

204, 209, 215
mail command , 129-130
mailbox, 129
maintenance, 28
make command, 183
man command, 122
management, 28, 30, 120, 189, 194
manual page, 122-126 , 165, 192, 212
matrix printer, 144
mbox, 129
menu, 125
mesg command, 130, 215
metacharacter, see editor
Micnet, 131
mkdir command, 60, 215
mm command, 159
mode, 34, 141
modularity, 83, 177
module of a program, 181
more command, 42
mounting, 32
multi-processing, 15
multi-user system, 12
my command, 63, 74, 181, 215

negn,156
nesting, 86
network, 40, 125, 128, 131
newline, 20, 57
NEWLINE key, 41
noclobber, 139
nohup,85

notation for syntax, 74
nroff, 144-168

\, 157
\&, 158
\e, 158
\font, 157
adjusting, 145
AE, 164
AL, 153
argument, 150
AS, 164
AT, 164
AU, 164
BL, 158
blank line, 149, 152, 155, 161, 162
bold font, 146, 147, 157
bp (begin page), 149
break,149
built-in requests, 150, 165
bullet, 158
centring, 163
closing quote, 158
comment, 149
dash, 166
displayed text, 154
double spacing, 162
DS and DE, 155, 163
em, 162, 166
en, 162
environment, 163
error, 158
figure, 154
rill, 148
filling, 145, 148, 155
font, 146, 157
footer, 145
footnote, 145
forbidden characters, 158

ft (font), 157, 163

Greek letter, 158
H, 152
house style, 159
HU, 152
hyphen,166
hyphenation, 146
indent , 148, 162
indentation, 148, 151, 155, 161, 166
indented paragraph, 153
input, 147
italic font, 146, 149, 157
justification, 145, 148
LE, 153
LI, 153

222

line break, 149, 159
line spacing, 163
list of requests, 167
Is (line spacing), 163
macro, 150, 164
macro library, 150, 164
man macros , 159, 165
mathematical symbol, 158
ML, 154
mm macros, 150
MT, 164
multiple columns, 164
of (no fill), 148
nr, 152
numbered list, 153
output, 147, 166
page, 149
page heading, 145, 164
page number, 145
page size, 161
paragraph, 151
paragraph/heading requests, 152
P, 152, 166
preprocessor, 156

punctuation, 160

quotes, 166

ragged margin, 145, 148
raw text, 147, 161
request, 148
Roman font, 146, 157
SA, 151
section, 151
section heading, 152
sentence, 160, 161
sp (blank lines), 162, 163
spacing, 145, 160, 161
tab, 156
tab, 163
table, 154, 156, 166
table of contents, 164
TC, 164
title page, 164
units, 162

nroff command, 147, 150, 160, 167, 204,
213, 215

number of links, 57, 61, 66

object code, 182
object file, 182, 183
open file, 137
operating system, 3-5, 13, 40, 120
opr command, 85
options, 56, 58, 71, 184, 185, 194, 212

output, 43
owner , 33, 35, 57, 66

page, 193, also see nroff
page command, 42
parent, 30, 63, 64, 92
parity, 217
partition of disk, 32
Pascal, 47, 175, 182
passwd command, 192, 215
password, 16, 33, 53, 134, 192
PATH, 91
pathname, 28, 30, 62-63 , 66, 88, 89, 138
pattern, 70, also see regular expression,

editor
PC DOS, 197-199
PC/IX, 3
PC/IX dos commands, 198

dosdel, 198
dosdir, 198
dosread, 198
doswrite, 198

PC XENIX, 3
PC XENIX dos commands, 198

doscat, 198
doscp,198
dosdir, 198
dosls, 199
dosmkdir, 199
dosrm, 199
dosrmdir, 199

PDP-11, 196
period, see.
peripheral, see device
permanent storage, 23, 32
permissions, 34-35, 57, 59, 63, 65, 67, 87,

137,180, 209
PID, 84
pipe, 45-47, 82-83 , 85, 88, 115, 122, 200
Plauger, P.J., 47, 95
porting, 197
postmark, 130
pr command , 193, 215
print, 5
print command, 85, 122, 214
printer, 44, 85, 147, 166
printing terminal, 5
process, 12-15, 16, 42, 44, 84, 126, 190
processlD, 84
profile, 64, 91, 131, 141, 192
program, 7
programmer, 9, 121
programming, 174-186, 203

223

programming language, 174
prompt , 6, 7, 52, 95
protection , 16, 17, 28, 33-37
ps command , 84, 126, 216
public file, 23
pwd command , 61, 137, 216

RATFOR, 47
raw-mode, 40
read permission, 34, 36, 209
read-only file, 36
readability grade, 168
README file, 79, 85, 184
recursive, 216
redirection, 43, 55, 70, 72, 80, 86, 88,

122, 180, 188
rehash, 89
regular expression, 109-112, 114
remote user, 129, 131
removable storage, 31
resilience, 32
response time, 13
RETURN key, 41, 52, 53
Ritchie, D.M., 10, 179
rm command, 64, 66, 140, 216
rmdir command, 66, 216
root, root , 16, 30, 31, 33, 58, 62, 88, 138
round-robin, 13
run, 8

scheduling algorithm, 13, 14, 17
screen 5,
screen editor, 94, 117
scrolling, 41
sdb, 184
search (see also grep command), 7
search path, 88, 91, 139
search-and-replace, 113
secrecy, 21
section of manual, 121
security, 15, also see protection

,emantics, 70
ession, 15
^t command, 91
i command, 75, 84, 86, 216
aring, 12-15, 44
aring files, 17
,11, 43-47, 70-92, 95, 115
lifferent, 75
,rogramming language, 90
11 command, 86
1 program, 86, 92, 200
+Itaneous writing, 67

single-user system, 12
sleep command, 190
small-is-beautiful, 10, 20, 28, 45, 200
software tools, 47, 83
sort command, 82, 191
source file, 182
source program, 21, 179
space character, 58, 91, 139
spell command, 7, 61, 71, 91, 123, 190,

191, 205, 216
spooling, 44, 85
standard error output, 44
standard input, 44, 46, 54, 72, 180
standard output, 44, 46, 54, 88, 180
statistics of file content, 195
statistics of style, 170
storage exhausted, 36-37
storage medium, xiii
stty command, 43, 194, 216
style command, 169-170, 217
style of UNIX commands, 70-75, 185, 190
sub-directory, 27
suggest command, 171
superuser, 13, 15, 16, 17, 30, 33, 34, 36,

89, 189
synonym for filename, 66
syntax, 70, 74

system call, 179
system program, 7-8, 9, 179
System III, xiv

tab, 217, 218
tail command , 195, 217
task, 12
tbl, 156
tee command, 47
telephone directory, 26
telephone line, 68
temporary file, 83
terminal, xiii, 5, 43, 54, 84, 92, 125, 134,

194-195
terminal characteristics, 43
text formatter, see nroff
Thompson, K., 10
time-out, 68
time-slot, 13, 14
timing, 218
tool, 8, 70, 75
tr command, 82
tree, 29-32 , 58, 61, 62
trotl'command, 46, 144, 162, 165, 215
tty, 84, 126, 141, 188
tty command, 188, 217

224

type-ahead , 42, 137
typesetting , 144, 159, 165
typewriter, 5
typing, 40

umask, 35
umount, 32
uniq command, 82
University of California, see Berkeley
UNIX implementation, 5
UNIX look-alike, xiv
UNIX Programmer's Manual, 9, 120, 179,

185, 195
UNIX version, 62, 196-199
unlink, 66, 140
up, 134
user-friendly, 4
usr directory, 30, 33, 88
usr/me directory, 53

uucp command, 131

Version Seven, 197
Vesterman, W., 168
vi editor, 94, 117

we command, 195, 217
who command, 125, 188, 196, 204, 217
WIBNI, 45
wildcard, 75, 80, 109, 112, 140
Wilkes, M.V., 13
window, 85
word, 54
word-processing, 9, 144
workfile, 181
working directory, see current directory

write command , 126-128 , 131, 188, 217
write permission, 34, 36, 66, 67, 138

225

Explore the Power of UNIX on
IBM's Personal Computers

F1

0

ISBN 0-201-10928-X

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234

