

Prof. Dr. Oscar Nierstrasz

Smalltalk-
Bits of History, Words of Advice
Glenn Krasner, Editor
Xerox Palo Alto Research Center

Addison-Wesley Publishing Company
Reading, Massachusetts • Menlo Park, California
London • Amsterdam • Don Mills, Ontario • Sydney

This book is in the
Addison-Wesley series in Computer Science
MICHAEL A. HARRISON

CONSULTING EDITOR

Cartoons drawn by Jean Depoian

Library of Congress Cataloging in Publication Data

Main entry under title:

Smalltalk-SO : bits of history, words of advice.

Bibliography: p.
Includes index.
1. Smalltalk-SO (Computer system) I. Krasner,

Glenn. II. Title: Smalltalk-eighty.
QA 76.8.S635S58 1983 001.64' .25 83-5985
ISBN 0-201-11669-3

Reprinted with corrections, June 1984

Copyright © 1983 by Xerox Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN o-i0l-11669-3
CDEFGHIJ-AL-8987654

Preface

The Software Concepts Group of Xerox Palo Alto Research Center
(PARC) has been working on the problem of how to give users access to
large amounts of computing power. We have concentrated our efforts
on the study of software systems, rather than on the creation of specific
hardware packages. Our method has been to develop a software system
called Smalltalk, to create applications in that system, and then, based
on our experiences developing the applications, to design the next sys­
tem. We have developed and used three major Smalltalk systems over
the last 10 years, as well as a few minor variations.

We have documented and released the latest of these systems, the
Smalltalk-SO system. We published a description of the system and a
complete specification of its implementation in the book, Smalltalk-BO:
The Language and Its Implementation. This first book, however, does
not cover the use of the system or programming style for writing large
applications in the system. These topics are covered in the forthcoming
books Smalltalk-BO: The Interactive Programming Environment and
Smalltalk-BO: Creating a User Interface and Graphical Applications.
Nor does the first book discuss implementation techniques beyond the
formal specification, which is the subject of this book, Smalltalk-BO:
Bits of History, Words of Advice.

To check the accuracy and the clarity of the first book, we invited a
number of groups outside of Xerox to build implementations of the
Smalltalk-SO system. Those groups uncovered problems with the writ­
ten description, and with the system itself, which we then corrected.
They also formed the beginning of a community of Smalltalk

iii

iv
Preface

implementors with whom we can discuss our ideas, and from whom we
can learn about successful and less successful implementation experi­
ences. Paul McCullough of Tektronix suggested that all the
implementors submit papers describing their experiences to a software
engineering journal or --to collect papers from each group into book
form. This book, then, is the outcome of that suggestion.

The papers in this book should be of value to other Smalltalk-SO
implementors. To implement the Smalltalk-SO system, one has to match
the specification with his or her own hardware environment. Each of
the groups represented in this book had different experiences with this
problem. In addition, some of the groups tested (or speculated about)
various schemes for better Smalltalk-BO virtual machine implementa­
tions.

In addition to Smalltalk-SO implementors, software engineers should
be interested in the papers in this book. Although they are written in
the context of Smalltalk-BO implementations, the papers cover the gen­
eral software engineering topics of managing large software projects,
virtual memory design and implementation, software caching mecha­
nisms, and mapping software needs onto hardware design.

The papers in this book raise more issues than they resolve.
Smalltalk is still quite young-the Smalltalk-BO system is just a snap­
shot of research in progress. There are many other issues that need to
be raised and many ideas that need to be tested before some of the reso­
lutions can be found. It is our hope that this collection of works will get
other implementors thinking about key issues in Smalltalk implemen­
tations.

Part One of this book is a collection of papers that provide some
background and history of the Smalltalk-SO implementation. The first
paper is by Adele Goldberg, manager of the Xerox PARC Software Con­
cepts Group (SCG); it describes the history of releasing the Smalltalk-SO
system to the non-Xerox world. Dan Ingalls, who has been the chief ar­
chitect of the many Smalltalk implementations, tells how the previous
systems led up to the Smalltalk-SO system. Glenn Krasner, also of SCG,
presents the design of the format of files that are used for sharing
Smalltalk-SO code among implementations. The last paper in this sec­
tion is by Allen Wirfs-Brock of Tektronix, and explores the various de­
sign decisions that Smalltalk-SO implementors may face.

In Part Two we present papers that describe the experiences four
implementors had in bringing their systems to life. Paul McCullough
writes about the process they went through at Tektronix, including a
step-by-step description taken directly from their logs. His paper points
out how valuable the outside implementors were at discovering prob­
lems with the system and its documentation. Joe Falcone and Jim
Stinger describe the experience they had at Hewlett-Packard bringing
up a couple of implementations. Peter Deutsch, of Xerox SCG, gives

V

Preface

some details of how he took advantage of hardware architecture to in­
crease the performance of his Smalltalk-BO implementation. Stoney
Ballard and Steve Shirron describe an implementation they made at
Digital Equipment Corp., which differs radically from the suggested im­
plementation of the storage manager, in order to provide improved per­
formance.

Descriptions of implementation experiences help others make their
design choices; actual measurements and analyses provide additional
concrete help. Part Three is a collection of measurements made by the
implementation groups. The first paper, by Kim McCall of Xerox SCG,
describes a set of benchmarks that is provided in the Smalltalk-SO sys­
tem to help measure the performance of an implementation. All the.im­
plementation groups were willing to run these benchmarks, and a
comparison of their results is included in the paper. This gives a num­
ber of implementations against which new implementors can measure
their progress. Rick Meyers and Dave Casseres of Apple Computer pro­
vide an interesting set of analyses of their MC68000-based implementa­
tion. David Ungar and David Patterson of the University of California
Berkeley give a before-and-after description of the process of measuring
an implementation, optimizing the time-consuming parts, and measur­
ing the effects of the optimizations. Joe Falcone made measurements of
the Hewlett-Packard implementation that compare static properties
with dynamic properties of the system. Finally, Tom Conroy and Ed
Pelegri-Llopart of UC Berkeley present an analytic model for measur­
ing the potential performance gains of a particular cache scheme for
Smalltalk-80 implementations.

In Part Four we present papers that look toward the future of
Smalltalk systems and propose ideas for extending the Smalltalk-BO
system beyond its initial form. The first paper is a description by Ted
Kaehler and Glenn Krasner of Xerox SCG of an object-oriented virtual
memory design. Steve Putz, also of SCG, presents a solution to the prob­
lem of coordinating changes made by many people to an evolving
Smalltalk-SO system. Jason Penney describes his implementation of a
file system at Tektronix, and discusses the use of the Smalltalk-80 sys­
tem for programming. From the University of Washington, Guy Almes,
Alan Borning, and Eli Messinger, present an analysis of the potential
for implementing the Smalltalk-80 system on the Intel iAPX432
microprocessor. Although they did not actually implement the system,
their paper provides a good analysis of how to match an object-oriented
system to object-oriented hardware. Applying compiler technology, Rob­
ert Hagmann of the University of California, Berkeley, proposes ways
to increase the performance of a Smalltalk-SO implementation. The last
paper, by Scott Baden of the University of California, Berkeley, pro­
poses hardware architecture support that would enhance the perfor­
mance of implementations.

vi
Preface

Acknowledg­
ments

We would like to thank the authors, their co-workers, and their organi­
zations for their contributions to this book, for their diligence during
the release and review process, and for their willingness to be open
about the strengths and weaknesses of their Smalltalk-SO implementa­
tions. We would also like to thank the Xerox Research management for
allowing us to release the Smalltalk-SO system, thus widening the com­
munity of Smalltalk implementors with whom we can share experi­
ences and insights.

Many people contributed to the production of this book. Each author
also acted as an editor of an early draft of another author's paper.
Janet Moreland helped coordinate this swapping with copying and
mailing. Doug Carothers answered legal questions. Ted Kaehler provid­
ed other bits of help, and Frank Zdybel added some words of his own.
Dave Robson built the translator that allowed us to deliver manuscripts
electronically. Eileen Colahan of the International Computaprint Corpo­
ration was extremely cooperative and flexible in turning these electron­
ic manuscripts into print. The cartoons in the book are by Ted Kaehler,
redrawn by Addison-Wesley artist Jean Depoian. Adele Goldberg
merged the images into the cover design with help from Rebecca
Cannara. Particular thanks go to production editor Fran Fulton for her
cooperation and patience, and to Jim DeWolf and Cheryl Wurzbacher of
Addison-Wesley.

Registered trademarks mentioned in this book are: AED-512, Ad­
vanced Electronic Design, Inc.; UNIX, Bell Laboratories; DEC,
DECSYSTEM, DECSYSTEM20, UNIBUS and VAX, Digital Equipment
Corporation; HP-IB, Hewlett-Packard; GPIB, National Instruments;
BitPadOne, Summagraphics Corporation; and Smalltalk-SO, Xerox Cor­
poration.

Palo Alto, California
June 1983

G. E. K.

PART ONE

PART TWO

Contents

Background

1 The Smalltalk-BO System Release Process
Adele Goldberg

2 The Evolution of the Smalltalk Virtual Machine

1

3

Daniel H. H. Ingalls 9

3 The Smalltalk-BO Code File Format Glenn Krasner 29

4 Design Decisions for Smalltalk-BO Implementors
Allen Wirfs-Brock 41

Experiences Implementing the Smalltalk-BO System

5 Implementing the Smalltalk-BO System: The
Tektronix Experience Paul L. McCullough

6 The Smalltalk-BO Implementation at Hewlett­
Packard Joseph R. Falcone, James R. Stinger

7 The Dorado Smalltalk-BO Implementation: Hard­
ware Architecture's Impact on Software
Architecture L. Peter Deutsch

B The Design and Implementation of
VAX/Smalltalk-BO
Stoney Ballard, Stephen Shirron

57

59

79

113

127

vii

viii
Contents

PART THREE Measurements and Analyses of Implementations 151

9 The Smalltalk-BO Benchmarks Kim McCall 153

10 An MC68000-Based Smalltalk-BO System
Richard Meyers, David Casseres 175

11 Berkeley Smalltalk: Who Knows Where the Time
Goes? David M. Ungar, David A. Patterson 189

12 The Analysis of the Smalltalk-BO System at
Hewlett-Packard Joseph R. Falcone 207

13 An Assessment of Method-Lookup Caches for
Smalltalk-BO Implementations
Thomas J. Conroy, Eduardo Pelegri-Llopart 239

PA RT FOUR Proposals for the Future of the Smalltalk-BO System 249

14 LOOM-Large Object-Oriented Memory for
Small talk-80 Systems
Ted Kaehler, Glenn Krasner 251

15 Managing the Evolution of Smalltalk-BO Systems
Steve Putz 273

16 Implementing a Smalltalk-BO File System and the
Smalltalk-BO System as a Programming Tool
D. Jason Penney 287

17 Implementing a Smalltalk-BO System on the Intel
432: A Feasibility Study
Guy Almes, Alan Barning, Eli Messinger 299

18 Preferred Classes: A Proposal for Faster
Smalltalk-BO Execution Robert Hagmann 323

19 Low-Overhead Storage Reclamation in the
Smalltalk-BO Virtual Machine Scott B. Baden 331

Index 343

)I

\

rf111'>;,zrw
err\ r{/2/~G t 'l /[~~

"f.K nJMi~~~orP\~i) o RE<,<;

,'\ ~ NG- AFTER A ~4'z,___ ~>", """""l~LK CR4<SH ~ /~/~ ,SMl'.lCL

~~~~-~-<, 





·oduction 

The Smalltalk-BO System 
Release Process 

Adele Goldberg 
Manager, Software Concepts Group 
Xerox Palo Alto Research Center 
Palo Alto, California 

The Smalltalk-80 system has its roots in the Xerox Palo Alto Research 
Center starting more than 10 years ago. During a decade of research, 
three major systems were designed, implemented, and tested with a va­
riety of users. The systems were named for the year in which they were 
designed. The first two were Smalltalk-72 and Smalltalk-76. The latest 
version, called the Smalltalk-80 system, was developed to be adaptable 
for implementation on a large number and variety of computers. 

The Smalltalk research efforts focus on increasing the support that 
computing systems can provide to users who are not computer scientists 
by profession. These efforts are centered on the visual impact of 
bitmapped graphics, on highly interactive user interfaces, and on in­
creased flexibility in terms of user programmability. Among the out­
comes of this work were the basic concepts of windows, menus (textual 
and iconic), and scroll bars. Implementations of these concepts are used 
to expand the virtual space of a display screen; they typically empha­
size the use of pointing devices rather than keyboards for selecting ob­
jects (documents, devices) and operations on objects (commands). 

In 1979 and 1980, requests and clearances were agreed upon within 
the Xerox Corporation to permit the dissemination of the Smalltalk-80 

Copyright © Xerox Corporation 1982. All rights reserved. 

3 



4 
The Smalltalk-80 System Release Process 

system to the non-Xerox world. The stated purposes of this dissemina­
tion were to: 

1. expand the community of Smalltalk programmers in order to gain 
more general experience with how people can use the language; 

2. expand the community of programming language researchers who 
study aspects of the Smalltalk style of programming; 

3. influence hardware designers to consider ways in which to provide 
increased performance for the Smalltalk style of interaction; and 

4. establish a standard for Smalltalk as an object-oriented program­
ming language and a graphics-based, interactive program develop­
ment environment. 

The dissemination was planned in three parts: a series of introductory 
articles, a book giving detailed system specifications, and a magnetic 
tape containing the system itself. The series of articles would provide 
an early and less formal introduction to the Smalltalk-80 system. Ulti­
mately, these articles were published in the August 1981 special issue 
of Byte magazine. The system specification was divided into two major 
components-the Virtual Machine and the Virtual Image. The Virtual 
Machine for a particular hardware system consists of an interpreter, a 
storage manager, and primitives for handling the input/output devices. 
The Virtual Image is a collection of objects that make up descriptions of 
classes providing basic data structures (including numbers), basic 
graphics and text, compiler, decompiler, debugger, and viewing and 
user interface support. The Virtual Image contains approximately 
10,000 objects. The proposed book would contain the formal specifica­
tions for the implementation of the Virtual Machine, as well as a de­
scription of the language and the interfaces to the objects in the Virtual 
Image. The proposed tape would contain a digital representation of the 
Virtual Image that could be loaded into a hardware system on which 
the Virtual Machine had been implemented. 

All systems running the Smalltalk-SO system would therefore look 
the same; each would have to support bitmapped graphics and a point­
ing device for controlling a cursor on the graphics display. The issue of 
protecting the software was resolved by copyrighting the Virtual Image 
and publicly disclosing the Virtual Machine; licensing under copyright 
grants the licensee the right to reproduce the Image only for incorpora­
tion into a hardware product of the licensee. Any unincorporated repro­
duction and distribution is prohibited. The modular approach to the 
Smalltalk design made this form of protection feasible. 



5 
Introduction 

An initial attempt to produce a book about the Smalltalk system de­
scribed the design of an unfinished system that was to be called 
Smalltalk-SO. Chapters of the book were written in the spring and sum­
mer of 1979. Since much of this written material described how to im­
plement the system, an appropriate review of the material required 
following the specifications and actually implementing the Virhial Ma­
chine. This was accomplished by involving members of software groups 
of several computer manufacturers in the process of review and imple­
mentation. Although the Smalltalk systems had received a great deal of 
publicity since Smalltalk-72 was first designed, few people outside Xe­
rox's research centers had actually used them before this review. 

The cautious invitation issued to six companies was to read the book 
material in order to understand the nature of the system. Reviewers 
were also invited to visit the Xerox Palo Alto Research Center in order 
to see a live demonstration of the system. If they were still interested in 
the system after reading the written material and participating in a 
demonstration, they were invited to enter the second phase of review­
an actual implementation. A company could only accept the invitation 
if it had (1) the required hardware (at least a 16-bit processor, a 
bitmapped display, and a way of indicating locations on the display), 
and (2) a software team on the project that consisted of regular employ­
ees only. 

Only four of those invited were able to enter the second phase of the 
review, Apple Computer, Digital Equipment Corporation, Hewlett­
Packard, and Tektronix. These four companies agreed to share in 
debugging the formal specification of the Virtual Machine. Problems 
encountered and general design advice would be exchanged with all 
participants. Besides assisting in completing a book about the system, 
this review process would test the ability of these manufacturers to suc­
cessfully create a full implementation of the Smalltalk-SO system based 
on the information provided in the book. Success would be measured by 
each manufacturer's ability to "read and adopt" the Virtual Image; a 
more subjective measurement would be the actual performance of the 
system on each manufacturer's hardware. 

By 1982, the review process was complete enough that a revision of 
the book was possible. Actually, the written material was treated much 
the way the Smalltalk software had been treated over the decade of re­
search- it was thrown away, with the exception of the (now debugged) 
formal specification of the Virtual Machine. All of the chapters were 
rewritten. Because of the volume of material that was to be disseminat­
ed, the book became three books-one for the programmer and lan­
guage designer (Smalltalk-BO: The Language and Its Implementation), 
one for the user and programming environments designer 
(Smalltalk-BO: The Interactive Programming Environment), and one for 



6 
The Smalltalk-BO System Release Process 

The Review 
Process 

the applications designer (Smalltalk-BO: Creating a User Interface and 
Graphical Applications). 

For their participation in the review process, each manufacturer re­
ceived a right to use the Smalltalk-80 Virtual Image in their research 
and in their developed hardware products. Thus the Virtual Machine 
has been provided outside Xerox without obligation, while the Virtual 
Image for use in conjunction with the Machine has been licensed under 
the auspices of copyright. That is, the reproduction and redistribution of 
the Virtual Image or portions of the Virtual Image are permitted only 
as incorporated into a product of these manufacturers/licensees. 

The first tape containing a Virtual Image was delivered February 17, 
1981. The image file contained 328 records, 512 bytes per record. The 
purpose of this tape was to debug the image file format, and to get the 
reviewers started loading in and running a version of Smalltalk. The 
image had two deficiencies: the source code for the class hierarchy was 
primarily a subset of the system, and the primitives called from each 
class had only preliminary class/method and number assignments. The 
reviewers were also provided a detailed memo instructing them how to 
read the image file format and summarizing the information provided 
in the book on formats for object pointers, object space, contexts, com­
piled methods, and classes. 

As part of the agreement, telephone consultation was available to the 
implementors. Any major bugs or discrepancies in the specifications 
were reported via telephone and logged. It was possible to monitor each 
implementor's progress with respect to their discovery of or compensa­
tion for the bugs. The process of revising the system image itself was 
carried out at Xerox with the aid of electronic mail: bug reports, bug 
fixes, status reports, and new ideas were typically communicated 
electronically. Eventually these communications evolved into a 
Smalltalk-80 subsystem called the Version Manager which supported 
(re-)configuration of new system releases. 

The second tape was delivered on July 24, 1981. In addition to the 
image file (this time 589 records long), the tape contained a file of the 
source code, a file into which the system writes its "audit trail" of 
changes, and three files containing traces generated by the 
Smalltalk-80 simulator as it executes the first bytecodes in the Virtual 
Image. The traces were made by running the formal specification of the 
interpreter written in Smalltalk-80 code (the code is included in the 
chapters of the book). 



7 
The Review Process 

The three traces, provided in all subsequent tape releases, show de­
creasing levels of detail over increasing durations. 

1. The first trace shows all memory references, allocations, 
bytecodes, message transmissions, returns, and primitive invoca­
tions for the first 115 bytecodes executed. 

2. The second trace shows only the bytecodes, message transmissions, 
returns, and primitives for the first 409 bytecodes. 

3. The third trace shows message transmissions, primitives, and re­
turns for the first 1981 bytecodes. 

The traces allow the implementors to compare their system's actual be­
havior with the "expected" behavior. 

This second tape contained a full system according to the specifica­
tion of the Smalltalk-80 Virtual Machine. All the source code had ei­
ther been rewritten according to the class hierarchy for Smalltalk-80, 
or had been translated from the Smalltalk-76 classes into the 
Smalltalk-80 syntax. However, this translated code was not the defini­
tion for the final system. 

The third tape was delivered four months later on November 18, 
1981. It contained the same kinds of files as were provided on the sec­
ond tape. By this time, however, the system user interface had been 
completely rewritten and a great deal of new functionality had been 
provided in the program development environment. The image file was 
now 977 records long. 

Once again, the Virtual Machine had been changed, in particular, 
several primitives were added. This time the changes were mostly those 
discussed and agreed upon by the implementors who attended the 
"First Ever Smalltalk-80 Implementors' Conference" held September 
24-25, 1981, in Palo Alto. Much of the discussion at this conference cen­
tered around the uses of reference counting, garbage collecting, and 
method caches. The Smalltalk-80 system design separates storage man­
agement from the Virtual Machine specification. The various 
implementors were able to try out several storage management 
schemes, as well as several different approaches to reference counting. 
Source code management was also discussed, notably the solution of 
making source code bona fide Smalltalk objects in a virtual memory 
system, rather than trying to use external text files. Benchmarks for 
comparing system implementations were specified, and agreement was 
reached on writing a book on implementation considerations (that is, 
the book in which this chapter appears). 

A fourth tape was later provided in order to distribute a Virtual Im­
age that had been used for some time and in which many bugs had 
been fixed and some new features added. In particular, the fourth im-



8 
The Smalltalk-80 System Release Process 

Additional 
Collaborations 

A Final Word 

age added a model interface to a file system. The image file was now 
1011 records long. The implementors who had been successful in run­
ning the third tape were able simply to load and run this fourth tape, 
without any changes to their Virtual Machine implementation. The 
goal of distributing system releases as Virtual Images was thus reached 
and the review process terminated. 

Prior to the delivery of the third image, an additional research license 
was given to the University of California at Berkeley in order to pro­
vide material for study by a graduate seminar on computer architecture 
(taught by Professors David Patterson, John Ousterhout, and Richard 
Fateman). The students in the seminar obtained an early version of the 
Hewlett-Packard implementation of the Smalltalk-SO Virtual Machine 
on which to run the Virtual Image provided by Xerox. After some ini­
tial use and study, the students wrote their own implementation in the 
C language for a VAX/780. The purpose in executing this license was to 
establish a close collaboration with a group of researchers experienced 
with the application of state-of-the-art hardware architecture technolo­
gy to high-level programming languages. 

Once the review process was completed, a special collaboration was 
formulated with the Fairchild Laboratory for Artificial Intelligence Re­
search (FLAIR). Several implementations had been carried out on hard­
ware systems consisting of an MC68000 processor, from which several 
clever ideas for improving the performance of the interpreter had been 
devised. The researchers at Xerox and FLAIR felt that by working to­
gether they could combine these clever ideas into a MC68000-based sys­
tem with better performance than so far demonstrated. At the time 
that this chapter was written, this implementation project was still un­
der way. 

The book review process, as envisioned by the research team, satisfied 
two needs: publication of research results, and setting a standard for a 
new form of personal computing. Publication took the form of written 
articles; the quantity of material and the integrated presentation of 
that material required a full book and a special issue of a magazine. 
The published system, however, was best appreciated in its dynamic 
form; publication was best served by distribution of the actual system 
software. Through this distribution, a shared system base has been cre­
ated. 



Introduction 

Figure 2.1 

The Evolution 
of the Smalltalk 
Virtual Machine 

Daniel H H Ingalls 
Software Concepts Group 
Xerox Palo Alto Research Center 
Palo Alto, California 

In this paper we record some history from which the current design of 
the Smalltalk-SO Virtual Machine springs. Our work over the past de­
cade follows a two- to four-year cycle that can be seen to parallel the 
scientific method and is shown in Fig. 2.1. The paper appears in two 

Implement 
Make a prediction 
based on theory 

Use 
Observe whether the 
prediction worked 

Copyright © Xerox Corporation 1982. All rights reserved. 

Formulate a theory 
based on 
experience 

9 



10 
The Evolution of the Smalltalk Virtual Machine 

Form Follows 
Function 

Smalltalk- 72 

sections that are relatively independent of one another. The first sec­
tion traces the evolution of the current design from the perspective of 
form following function. It follows the major implementation challenges 
and our solutions to them. The second section relates some of the meth­
odology which evolved in pursuing this cycle of reincarnation. Readers 
who are less interested in the details of Smalltalk can skip to the sec­
ond section and interpret our experience relative to other programming 
languages and systems. 

From the first Smalltalk interpreter to the definition of the 
Smalltalk-SO Virtual Machine, the Smalltalk language has been charac­
terized by three principal attributes: 

• Data stored as objects which are automatically deallocated, 

• Processing effected by sending messages to objects, 

• Behavior of objects described in classes. 

In spite of other opinions to the contrary, we consider these to be the 
hallmarks of the "object-oriented" style of computing. In this section we 
shall trace the evolution of the underlying machinery which has sup­
ported language systems in this style over the last ten years. Some of 
the changes have augmented the power of the language, and some have 
increased its efficiency. Each change can be seen as an attempt to bring 
the underlying machinery more into harmony with the day-to-day de­
mands of object-oriented programming. 

The very first Smalltalk evaluator was a thousand-line BASIC program 
which first evaluated 3 + 4 in October 1972. It was followed in two 
months by a Nova assembly code implementation which became known 
as the Smalltalk-72 system1• 

D Storage Management Objects were allocated from a linked list of 
free storage using a first-fit strategy. Objects which were no longer ac­
cessible were detected by reference-counting. They were then returned 
to the free storage list, with adjacent entries being automatically co­
alesced. Since pointers were direct memory addresses, compaction 
would have been complicated, and was not attempted. Contexts, the 
suspended stack frames, were managed specially as a stack growing 
down from high memory while normal allocation grew up from low 
memory. This separation reduced the tendency to leave "sandbars" 



Figure 2.2 

11 
Form Follows Function 

when returning values from deep calls, a problem in the absence of 
compaction. 

D Token Representation of Code All code was stored in a single tree 
made up of instances of Array (it was called Vector then), a variable­
length array of pointers. The code in this tree represented a pattern de­
scription, similar to Meta. Fig. 2.2 presents the Smalltalk-72 definition 
of a class of dotted-pair objects, followed by a few examples of its use. 
Responses printed by the system are underlined. 

to pair 
I head tail 
(isnew ::::;> 

(" head -- :. "tail -- :) 
.:::i: head::::;> 

(4 <- ::::;> 

(" head -- :) 
t head) 

.:::i: tail ::::;> 
(.::! <- ::::;> 

(" tail ._ :) 
t tail) 

.:::i: print ::::;> 
( " [ print. head print. 
". print. 
tail print. "] print)) 

~ 

"a -- pair 2 5 

~ 
a tail -- pair 3 7 
[2.[3.7]] 

b tail head 
3 

to is the defining word, as in LOGO. 
I declares instance variable names. 
isnew is true if an instance is just created. 
"means literally the next token, here the 

names head and tail. 
._ is a message like any other. 

: fetches the next value from the incoming. 

message stream . 
.:::i: matches the next literal token 

like the Smalltalk-BO message 
peekFor: 

false ::::;> (body) does nothing, but 
true ::::;> (body) evaluates the body, and 

then leaves the outer scope. 
In this way several such constructs 

work as a CASE statement. 

Here a pair is created, called a. 

a gets its tail changed. 

a 's tail ( = [ 3. 7J) gets the message head. 

The code was viewed by the interpreter as simply a stream of tokens. 
The first one encountered was looked up in the dynamic context, to de­
termine the receiver of the subsequent message. The name lookup be­
gan with the class dictionary of the current activation. Failing there, it 
moved to the sender of that activation and so on up the sender chain. 
When a binding was finally found for the token, its value became the 
receiver of a new message, and the interpreter activated the code for 
that object's class. 



12 
The Evolution of the Smalltalk Virtual Machine 

In the new context, the interpreter would begin executing the receiv­
er's code, matching it with the token stream which followed the original 
occurrence of the receiver. Various matching operators would select a 
route through the code which corresponded to the message pattern en­
countered. The matching vocabulary included matching a literal token, 
skipping a token, picking up a token literally, and picking up the value 
of a token. The latter operation invoked the same dynamic lookup de­
scribed above for the receiver. 

D Classes Most class properties were stored in a single dictionary. In­
stance variable names were denoted by a special code which included 
their offset in the instance. Class variables appeared in the same dictio­
nary as normal name/value pairs. Another entry gave the size of in­
stances, and another gave the "code" for the class. When a class was 
mentioned in code, it would automatically produce a new instance as a 
value. The unfortunate result of this special behavior was to make clas­
ses unable to be treated as ordinary objects. 

D Applications Smalltalk-72 was ported to the Alto2 as soon as the 
first machines were built, and it provided a stable environment for ex­
perimentation over the next few years. The Alto provided a large 
bitmap display and a pointing device, and thus made an ideal vehicle 
for working with graphical user interfaces. 

Development of the Smalltalk-72 system began with Textframes and 
Turtles. Textframes provided text display with independent composition 
and clipping rectangles; Turtles gave us line drawing capability, mod­
eled after Papert's experiments with turtle geometry3 • In both cases, 
Smalltalk's ability to describe multiple instances added considerable le­
verage to these primitive capabilities. Soon many interesting and useful 
applications were written, including a mouse-driven program editor, a 
structured graphics editor, an animation system and a music system. 
Finally, Smalltalk-72 served as the basis for an experimental curricu­
lum in object-oriented computing for high-school children4• 

D Shortcomings The Smalltalk-72 system was used heavily by a 
dozen people for four years. The many practical applications gave us a 
lot of experience with the power of classes and the message-sending 
metaphor. In the course of this work, we also became increasingly 
aware of many limitations in the Smalltalk-72 system. 

Dynamic lookup of tokens was both inefficient and unmodular. The 
dynamic lookup tempted some programmers to write functions which 
"knew" about their enclosing context. This code would then cause sub­
tle errors when apparently innocent changes were made in the outer 
level. 

SmaL 



Ualk-74 

13 
Form Follows Function 

The message stream model was complicated and inefficient. One 
could not tell what a given piece of code meant in isolation. This be­
came a problem as we attempted to build larger systems in which mod­
ularity was more of an issue. Also, a considerable amount of time was 
wasted on execution-time parsing (determining whether the result of a 
receiver expression should gobble the next token in the execution 
stream). 

As mentioned above, classes were not first-class objects. Also, as our 
experience increased, we came to realize the need for inheritance. This 
was felt first in the commonality of behavior of Arrays, Strings, and 
sub-Arrays. For the time being, we referred to common functions from 
these similar classes so as to factor the behavior, but it was clear that 
some sort of inheritance mechanism was needed. 

In 197 4 we produced a major redesign of the Smalltalk interpreter with 
the aim of cleaning up its semantics and improving its performance. 
While the redesign was a mixed success, Smalltalk-74 was the site of 
several advances which fed into the later systems. 

D Message Stream Formalism We succeeded in formalizing the oper­
ation of the interpreter, a step in the direction of simplicity and gener­
ality. For instance, we were able to provide a programmer-accessible 
object which represented the incoming message stream. Thus, not only 
could all the message stream operations be examined in Smalltalk, but 
the user could also define his own extensions to the message stream se­
mantics. While this was a local success, it did not solve either of the 
real problems: token interpretation overhead, and non-modularity of re­
ceiver-dependent message parsing. 

D Message Dictionaries Classes were given a message dictionary to 
allow primary message matching to be done by hashing. This did not do 
much for execution speed, since the previous interpreter had tight code 
for its linear scan, but it did help compilation a great deal since a single 
message could be recompiled without having to recompile all the code 
for the class. Unfortunately classes were still not able to be treated as 
normal objects. 

D BitBlt Smalltalk-74 was the first Smalltalk to use BitBlt as its 
main operation for bitmap graphics. The specification for BitBlt arose 
out of earlier experience with Turtle graphics, text display, and other 
screen operations such as scrolling and menu overlays. Our specifica­
tion of BitBlt has been used by others under the name RasterOp5• While 
the general operation was available to the Smalltalk programmer, 
much of the system graphics were still done in machiqe-coded primi­
tives, owing to inadequate performance of the token interpreter. 



14 
The Evolution of the Smalltalk Virtual Machine 

Smalltalk-76 

Experience with 
Smalltalk- 76 

D OOZE Smalltalk-74 was the system in which the OOZE ("Object­
Oriented Zoned Environment")6 virtual memory was first implemented. 
OOZE provided uniform access to 65K objects, or roughly a million 
words of data. Smalltalk-74 served as the development environment for 
OOZE, so that when Smalltalk-76 was designed, OOZE was debugged 
and ready for use. 

D Applications In addition to the previous applications which we had 
developed, Smalltalk-7 4 served as host to an information retrieval sys­
tem and complete window-oriented display interface. Owing to the vir­
tual memory support, it was possible to integrate many functions in a 
convenient and uniform user interface. 

In 1976 we carried out a major redesign of the Smalltalk language and 
implementation7 • It addressed most of the problems encountered in the 
previous four years of experience with Smalltalk: 

• Classes and contexts became real objects; 

• A class hierarchy provided inheritance; 

• A simple yet flexible syntax for messages was introduced; 

• The syntax eliminated message stream side-effects and could be 
compiled; 

• A compact and efficient byte-encoded instruction set was intro­
duced; 

• A microcode emulator for this instruction set ran 4 to 100 times 
faster than previous Smalltalks; and 

• OOZE provided storage for 65K objects-roughly the capacity of 
the Alto hardware. 

The design for this system was completed in November of 1976 and sev­
en months later the system was working. This included a full rewrite of 
all the system class definitions. 

The Smalltalk-76 design stood the test of time well. It was used for four 
years by 20 people daily and 100 people occasionally. A large portion of 
the design survives unchanged in the Smalltalk-80 system. However, 
the Smalltalk-76 design did have some snags which we encountered 
during our four-year experience. 

D Block Contexts Smalltalk-76 had to provide a mechanism for pass­
ing unevaluated code which was compatible with a compiled represen­
tation. A syntax was devised which used open-colon keywords for 



15 
Form Follows Function 

passing unevaluated expressions (the semantics were the same as the 
square bracket construct in the Smalltalk-SO language). This approach 
was supported by block contexts which allowed executing code remote­
ly. Since the Smalltalk-76 design had no experience to draw from, it 
was weak in several areas. 

One problem which was discovered in the process of supporting error 
recovery was that block contexts could not be restarted because they 
did not include their initial PC as part of their state. This was not nor­
mally needed for looping, since all such code fragments ended with a 
branch back to the beginning. Happily, we were able to fix this by de­
fining a new subclass. 

Two other problems were discovered with remote contexts when 
users began to store them as local procedures. For one thing, there was 
no check in the interpreter to recover gracefully if such a piece of code 
executed a return to sender after the originating context had already 
returned. Also, the system could crash if remote contexts were made to 
call one another recursively, since they depended on their home context 
for stack space, rather than having their own stack space. 

There were two other weaknesses with remote code. There was an 
assymmetry due to use of open-colon keywords. For example one would 
write 

newCursor showWhile:: [someExpression] 

to cause a different cursor to appear during execution of 
someExpression. But if the code contained a variable, action, which was 
already bound to remote code, one wanted that variable to be passed di­
rectly, as with a closed-colon keyword. The only way to handle this 
without needing a pair of messages with and without evaluation was to 
write 

newCursor showWhile [action eval]. 

This would do the right thing, but caused an extra remote evaluation 
for every level at which this strategy was exercised. Besides being cost­
ly, it was just plain ugly. 

Another weakness of remote contexts was that, while they acted 
much like nullary functions, there was no way to extend the family to 
functions which took arguments. 

Finally, there was a question about variable scoping within remote 
code blocks. Smalltalk-76 had no scoping, whereas most other languages 
with blocks did. 

All of these problems with RemoteContexts were addressed one way 
or another in the Smalltalk-SO design. 



16 
The Evolution of the Smalltalk Virtual Machine 

Experience with 
OOZE 

D Compilation Order The Smalltalk-76 interpreter assumed that the 
receiver of a message would be on the top of the execution stack, with 
arguments below it. The number of arguments was not specified in the 
«send" instruction, but was determined from the method header after 
message lookup. From the designer's perspective this seemed natural; 
the only other reasonable choice would be for the receiver to lie under­
neath the arguments, as in the Smalltalk-80 system. In this case it 
seemed necessary to determine the number of arguments from the se­
lector in order to find the receiver in the stack, and this looked both 
complex and costly to do at run time. There were two problems with 
having the receiver on the top of the stack. First the compiler had to 
save the code for the receiver while it put out the code for the argu­
ments. This was no problem for three of the compilers which we built, 
but one particularly simple compiler design foundered on this detail. 
The second problem with post-evaluation of receivers was that the or­
der of evaluation differed from the order of appearance in the code. Al­
though one should not write Smalltalk code which depends on such 
ordering, it did happen occasionally, and programmers were confused 
by the Smalltalk-76 evaluation scheme. 

D Instruction Set Limitations The Smalltalk-76 instruction set was 
originally limited to accessing 16 instance variables, 32 temps, and 48 
literals. These limits were both a strain on applications and on the in­
struction set. A year later we added extended instructions which re­
lieved these limits. This was important for applications, and it also took 
pressure off the future of the instruction set. With extended codes avail­
able, we had the flexibility to change the instruction set to better re­
flect measured usage patterns. For example we found that we could get 
rid of the (non-extended) instructions which accessed literals 33-48, be­
cause their usage was so low. Such measurements led us eventually to 
the present Smalltalk-SO instruction set. 

D Address Encoding In OOZE, object pointers encoded class informa­
tion in the high 9 bits of each pointer. This had the benefit of saving 
one word per object which would have been needed to point to the class 
of the object. In fact, it actually saved two words on many objects be­
cause classes contained the length of their instances. Variable length 
objects had separate class-parts for common lengths (0 through 8). How­
ever, the address encoding had several weaknesses. It squandered 128 
pointers on each class, even though some never had more than a couple 
of instances. It also set a limit on the number of classes in the system 
(512). This did not turn out to be a problem, although an earlier limit of 
128 did have to be changed. Finally, owing to the encoding, it was not 
possible to use object pointers as semantic indirection. For this reason, 
Smalltalk-76 could not support become: (mutation of objects through 
pointer indirection) as in later Smalltalks. 



Efficiency and 
Portability: 
Smalltalk- 78 

17 
Form Follows Function 

D Capacity While the OOZE limitation of 65K objects is small by to­
day's standards, it served well on the Alto. The Alto has a 2.5 megabyte 
disk, and with a mean object size of 16 words, OOZE was well matched 
to this device. 

D Interpreter Overhead OOZE had a couple of weaknesses in the area 
of performance, which only became significant after our appetites had 
increased from several years' experience. One was that the object table 
required at least one hash probe for every object access, even just to 
touch a reference count. Another was a design flaw in the management 
of free storage which required going to the disk to create a new tempo­
rary object if its pointer had been previously placed on a free list. We 
designed a solution to both of these problems. Temporary objects would 
be treated specially with pointers which were direct indexes into their 
object table. Freelists would only be consulted when an object "ma­
tured" and needed a permanent pointer assigned. Because temporary 
objects account for many accesses, much of the overhead of probing the 
permanent object table would be eliminated. Since Smalltalk-76's days 
seemed numbered, we did not take the time to implement this solution. 

In 1977 we began a project to build a portable computer capable of run­
ning the Smalltalk system. Known internally as NoteTaker, it began as 
a hand-held device for taking notes, but ended up as a suitcase-sized 
Smalltalk machine. Several factors converged to define this project. We 
wanted to be able to bring Smalltalk to conferences and meetings to 
break through the abstractions of verbal presentations. With the Intel 
8086 and other 16-bit microprocessors (the Z8000 and MC68000 were 
coming, but not available yet), we felt that enough computing power 
would be available to support Smalltalk, even without microcode. Final­
ly, portability seemed to be an essential ingredient for exploring the 
full potential of personal computing. 

The design challenge was significant. We were moving to an environ­
ment with less processing power, and the whole system had to fit in 1/4 
Mbyte, since there was no swapping medium. Also we faced transport­
ing 32K bytes of machine code which made up the Smalltalk-76 system, 
and it seemed a shame not to learn something in the process. The re­
sult of these forces was the design of Smalltalk-78. 

D Cloned Implementation The Smalltalk-78 implementation was sig­
nificant in that it was not built from scratch. We were happy enough 
with the basic model that we transported the entire Smalltalk level of 
the system from Smalltalk-76. In order to do this, we used the system 
tracer (seep. 24) which could write a clone of the entire system onto an 
image file. This file could then be loaded and executed by the 
Smalltalk-78 interpreter. The tracer had provisions in it for transmut-



18 
The Evolution of the Smalltalk Virtual Machine 

Figure 2.3 

ing object formats as necessary, and even for changing the instruction 
set used in the methods. 

D Indexed OT The Smalltalk-78 design centered around an indexed 
object table, which is the same design as in the Smalltalk-80 system. 
This greatly simplified object access and yet retained the indirection 
which made for easy storage management in Smalltalk-76. Reference 
counts were stored as one byte of the 4-byte table entry. Given an ob­
ject pointer in a register, a reference count could be incremented or 
decremented with a single add-byte instruction with an overflow check. 

D Small Integers Since there would not be room in core for more 
than lOK objects or so, it was possible to encode small integers (-16384 
to 16383) in part of the pointer space. Since object table indices would 
all be even (on the 8086, they were multiples of 4), we encoded small in­
tegers as two's complement integers in the high-order 15 bits, with the 
low-order bit turned on. With this design, allocation of integer results 
was trivial, integer literals could be stored efficiently, and integer val­
ues did not need to be reference counted. 

D In-line Contexts In order to save time allocating new contexts, and 
to take advantage of the stack-oriented instructions available in most 
microprocessors, the representation of contexts was redesigned. Instead 
of having a separate object for each context, a large object was allocated 
for each process, in which contexts could be represented as conventional 



19 
Form Follows Function 

stack frames. This special representation complicated the handling of 
blocks and the debugger, requiring an interface which referred to the 
process and an offset within the process. 

In addition to reduced allocation time, the time to transfer argu­
ments was eliminated by allowing the contexts to overlap; the top of 
one context's stack (receiver and arguments) was the base of the next 
context's frame. 

D Reduced Kernel- The Leverage of BitBlt We have always sought 
to reduce the size of the Smalltalk kernel. This is not only an aesthetic 
desideratum; kernel code is inaccessible to the normal user, and we 
have always tried to minimize the parts of our system which can not be 
examined and altered by the curious user. In this particular case, we 
were also moving to a new machine. While writing a certain amount of 
machine code seemed inevitable, we did not relish the idea of transcrib­
ing all 32K bytes of code which comprised the Smalltalk-76 kernel. For­
tunately, much of that bulk consisted of various routines to compose 
and display text, to draw lines and implement Turtle geometry, and to 
provide various interfaces to bitmap graphics such as moving rectan­
gles, and copying bits to buffers as for restoring the background under 
menus. 

The definition of BitBlt grew out of our experience with text, lines 
and other bitmap graphics. Now the constraints of the NoteTaker im­
plementation provided the motivation to implement all these capabili­
ties in Smalltalk, leaving only the one primitive BitBlt operation in the 
kernel. This was a great success in reducing the size of the kernel. The 
full NoteTaker kernel consisted of around 6K bytes of 8086 code. This 
figure did not include Ethernet support, real-time clock, nor any signifi­
cant support for process scheduling. 

D Performance The performance of the NoteTaker was interesting to 
compare with the Alto. The Smalltalk instruction rate improved by a 
factor of two, and yet the display of text was much slower (being in 
Smalltalk, rather than machine code). By adding a small primitive for 
the inner loop of text display and line drawing, this decrease was large­
ly compensated. User response for such actions as compiling was signifi­
cantly improved, owing to the faster execution and to the freedom from 
the swapping delays of OOZE. 

□ Mutability Smalltalk-78 used no encoding of object pointers other 
than for small integers. Class pointers and length fields (for variable­
length objects) were stored just as any other fields. It was therefore pos­
sible in this design to allow mutation of objects, and this was made 
available as the primitive method for become:. 



20 
The Evolution of the Smalltalk Virtual Machine 

TinyTalk 

Smalltalk-BO 

D Relevance We learned a great deal from the NoteTaker challenge, 
even though only 10 prototypes were built. We made the system much 
more portable, and had demonstrated that the new generation of 
microprocessors could indeed support Smalltalk. The decision not to 
continue the project added motivation to release Smalltalk widely. 

At the same time as the NoteTaker implementation, we performed an 
experiment8 to see if a very simple implementation could run on a con­
ventional microprocessor such as a Z80 or 6502. This implementation 
used marking garbage collection instead of reference-counting, and was 
able to use simple push and pop operations on the stack as a result. A 
method cache largely eliminated the overhead in message lookup and, 
since primitive codes were included in the cache, access to primitives 
was fast. The system did actually fit in 64K bytes with a little bit of 
room to spare. Another experiment which was done in conjunction with 
this implementation was to demonstrate that a special case of BitBlt for 
characters could run much faster than the general version. 

With Smalltalk-78 behind us, few changes were made to the Virtual 
Machine to produce the Smalltalk-80 Virtual Machine. The main 
change was an increase in power from allowing blocks with arguments. 
Beyond this, mostly we cleaned up many details, some of which sup­
ported more extensive cleanups in the Smalltalk level of the system. 

D Contexts Again We felt that the optimized contexts of 
Smalltalk-78 did not justify the loss in clarity which they entailed. So 
in the Smalltalk-80 language we reverted to Contexts as objects, leaving 
such optimizations up to implementors clever enough to hide their 
tricks entirely from Smalltalk. In order to simplify the management of 
Contexts in the Virtual Machine, we decided to use two sizes of contexts 
instead of making them truly variable-length. This meant that, if sepa­
rate free lists were managed for these two lengths, storage for contexts 
could be allocated and freed with relatively little fragmentation and co­
alescence overhead. 

D Blocks with Arguments While the syntax changed little in the 
Smalltalk-80 language ( open colon and other non-ASCII selectors were 
banished), our extended discussions of syntax led to the current descrip­
tion for blocks with arguments. In fact, this required no change to the 
Virtual Machine, but it had the feel of such a change in the language. 

0 BlockContexts We re-engineered BlockContexts in the Small­
talk-80 language. Smalltalk-78 had already handled their recursive ap­
plication by providing independent stack space for each invocation. Be­
yond this, mechanisms were defined for checking and diagnosing such 
anomalous conditions as returning to a context which has already re­
turned. 



Future Directions 

21 
Form Follows Function 

D Compilation Order Smalltalk-78 had perpetuated the post-evalua­
tion of receiver expressions so as to avoid delving into the stack to find 
the receiver. In the Smalltalk-SO language, however, we encoded the 
number of arguments in the send instruction. This enabled strictly left­
to-right evaluation, and no one has since complained about surprising 
order of evaluation. We suspect that this change will yield further fruit 
in the future when someone tries to build a very simple compiler. 

D Instruction Set In addition to revamping the send instructions, we 
made several other improvements to the instruction set. We completed 
the branch instructions by adding branch-if-true. We put in 2- and 
3-byte extensions to retain reasonable compactness without restricting 
functionality. We also added a few compact codes for returning true 
and false, and for pop-and-store into temps and fields of the receiver. 

D Methods The encoding of method headers followed the earlier 
Smalltalk-78 design. In order to simplify the allocation of contexts, a bit 
was included to indicate whether a large frame was necessary to run 
the method or not. 

While the present Smalltalk design has evolved over a decade now, that 
does not mean it is finished. As when one climbs a large mountain, the 
higher reaches are gradually revealed and it seems there is as much to 
do now as when we started. 

D Virtual Memory An obvious shortcoming of the Smalltalk-SO speci­
fication is that it does not include a virtual memory. There are several 
reasons for this. Our experience with OOZE suggested that object-ori­
ented approaches might be significantly better than simple paging, and 
we did not want to commit ourselves to one or the other. From our ex­
perience with porting the system from one interpreter to another, it 
was clear to us that implementors could experiment with the virtual 
memory issue fairly easily, while still working from the Smalltalk-SO 
image specification. The current object formats allow a simple resident 
implementation, and yet lend themselves to extension in most of the ob­
vious directions for virtual memory. 

D Reducing Concepts It is always useful to reduce the number of 
concepts in a language when possible. Smalltalk distinguishes many 
levels of refinement: subclassing, instantiation, blocks and contexts, to 
name a few. It is likely that some of these distinctions can be dissolved, 
and that a cleaner virtual machine design would result. 

D Typing and Protocols While the Smalltalk-SO language is not a 
typed language in the normal sense, there is nonetheless an implicit no­
tion of variable type in the protocol (full set) of messages which must be 



22 
The Evolution of the Smalltalk Virtual Machine 

Maintaining 
an Evolving 
Integrated 
System 

Applying the 
Smalltalk 
Philosophy 

understood by a given variable. We have described an experimental sys­
tem based on this notion of type9, and a serious treatment of this ap­
proach would likely involve changes to the Virtual Machine. 

□ Multiple Inheritance While the Smalltalk-80 system does not pro­
vide for multiple inheritance, we have described an experimental sys­
tem which supports multiple superclasses using the standard Virtual 
Machine10• This is another area in which serious use of the new para­
digm might suggest useful changes to the Virtual Machine. 

□ Tiny Implementations While, on one end of the spectrum, we seek 
to build vastly larger systems, we should not ignore the role of small 
systems. To this end, there is a great deal of room for experimentation 
with small systems that provide the essential behavior of the 
Smalltalk-80 system. Threaded interpreters offer simplicity and speed, 
and it shouldn't be difficult to capture the essence of message sending 
in an efficient manner. 

We have had considerable experience maintaining an evolving integrat­
ed system. In this section we cover several of the challenges and our so-
1 utions which support the Smalltalk approach to software engineering. 

One way of stating the Smalltalk philosophy is to "choose a small num­
ber of general principles and apply them uniformly." This approach 
has somewhat of a recursive thrust, for it implies that once you've built 
something, you ought to be using it whenever possible. For instance, the 
conventional approach to altering such kernel code as the text editor of 
a programming system is to use off-line editing tools and then reload 
the system with the new code and try it out. By contrast, Smalltalk's 
incremental compilation and accessibility of kernel code encourages you 
to make the change while the system is running, a bit like performing 
an appendectomy on yourself. 

The recursive approach offers significant advantages, but it also 
poses its own special problems. One of the benefits is that system main­
tainers are always using the system, so they are highly motivated to 
produce quality. Another benefit is high productivity, deriving from the 
elimination of conventional loading and system generation cycles. Con­
sistent with the Smalltalk philosophy as articulated above, things are 

, 



Figure 2.4 

The Snapshot 
Concept 

23 
Maintaining an Evolving Integrated System 

also simpler; the tools and the task are one, so there are fewer versions 
to worry about. The complementary side of this characteristic is that if 
the only version is compromised, you are "down the creek without a 
paddle." 

OOPS ! 
I JUST T~PE.D 

'PROCE:SSOR ~ NIL.>! 

The Alto had a particularly nice characteristic as a personal machine: 
being based on a removable disk pack, once you had installed your per­
sonal pack, any machine you used behaved as your personal machine. 
When we built the Smalltalk environment, based on an extensible pro­
gramming language, we arranged the system so that when you termi­
nated a working session, or quit, the entire state of your system was 
saved as a snapshot on the disk. This meant that as Smalltalk came to 
be a stand-alone environment, containing all the capabilities of most 
operating systems as well as the personal extensions of its owner, any 
Alto instantly took on that specialized power as soon as you inserted 
your disk and resumed your working session. The snapshot also served 
as a useful checkpoint in case of fatal errors. 

In the later virtual memory systems, OOZE automatically saved a 
snapshot from time to time, which could subsequently be resumed fol­
lowing catastrophes such as loss of power or fatal programming errors. 
The robustness of OOZE in this respect was remarkable, but owing to 
the finite latency period of the checkpointing process, it was necessary 
to act quickly when fatal errors were recognized, lest they be enshrined 
forever in the mausoleum of a snapshot. In such circumstances, the 
alert user would quickly reach around to the rear of the keyboard and 
press the "boot" button of the Alto before the next automatic snapshot. 



24 
The Evolution of the Smalltalk Virtual Machine 

Minimum Kernel 
for Maximum 
Flexibility 

The Fear of 
Standing Alone 

Standing A lone 
Without Fear: The 
System Tracer 

Then he could resume his work from a previous state saved a few min­
utes before. This process was known as "booting and resuming." The 
term came to be jokingly applied to other situations in life, such as un­
successful research efforts and other less serious endeavors. 

Most systems are built around a kernel of code which cannot easily be 
changed. In our Smalltalk systems, the kernel consists of machine code 
and microcode necessary to implement a virtual Smalltalk machine. 
You clearly want the kernel to be as small as possible, so that you en­
counter barriers to change as infrequently as possible. For example, in 
Smalltalk-72 it was a great improvement when the primitive read rou­
tine was supplanted by one written in Smalltalk, since it could then be 
easily changed to handle such extensions as floating-point constants. 

Speed comes into play here, because if the kernel is not fast enough, 
it will not support certain functions being implemented at a higher lev­
el. This was the case for text display in Smalltalk-76. Similarly, gener­
ality is important, for the more general the kernel is, the more kernel­
like functions can be built at a higher level. For example, the one BitBlt 
primitive in Smalltalk-BO supports line drawing, text, menus and 
freehand graphics. 

While Smalltalk-72 and -74 were used as long-lived evolving images, 
the systems as released were always generated from scratch, by reading 
a set of system definitions into a bootstrap kernel. With the 
Smalltalk-76 system, we took a bold step and opted to ignore support 
for system generation. The system was built in two parts: a Virtual Ma­
chine was written in microcode and machine code, and a virtual image 
was cross-compiled from a simulation done in Smalltalk-74. Although 
this paralleled our previous strategy, we knew that we would soon 
abandon support for Smalltalk-74, and thus the Smalltalk-76 system 
would be truly stand-alone. In other words, if a bit were dropped from 
the system image, or if a reference-count error occurred, there would be 
no way to recover the state of the system except to backtrack through 
whatever earlier versions of the system had been saved. As the system 
became more reliable, we went for days and then weeks without start­
ing over, and finally we realized that Smalltalk-76 was on its own. If 
this sounds risky to you, think of how we felt! 

While the foregoing approach may seem foolhardy, we actually had a 
plan: Ted Kaehler said that he would write a Smalltalk program, the 
system tracer, which would run inside of Smalltalk and copy the whole 
system out to a file while it was running. Considerable attention would 
have to be paid to the parts of the system which were changing while 
the process ran. Two months after the launch of Smalltalk-76, Ted's 
first system tracer ran and produced a clone without errors. While we 



Figure 2.5 

l 

25 
Maintaining an Evolving Integrated System 

all breathed a sigh of relief at this point, the full implications only 
dawned on us gradually. This truly marked the beginning of an era: 
there are many bits in the Smalltalk-80 release of today which are cop­
ies of those bits first cloned in 1977. 

The system tracer solved our most immediate problem of ensuring 
the integrity of the system. It caught and diagnosed inaccurate refer­
ence counts, of which there were several during the first few months of 
Smalltalk-76. Also, although it took four hours to run, it performed the 
function of a garbage collector, reclaiming storage tied up in circular 
structures, and reclaiming pointers lost to OOZE's zoning by class. The 
essential contribution of the system tracer, however, was to validate our 
test-pilot philosophy of living in the system we worked on. From this 
point on, we never started from scratch again, but were able to use the 
system we knew so well in order to design its follow-ons. 



26 
The Evolution of the Smalltalk Virtual Machine 

Figure 2.6 

Spawning and 
Mutation 

~ EcLD fJJG I~ E. PlooM ? 

t<ffP 1f-tE SFrrD Ur' A 
Tr\E -PoMPs KOIJI\JI I\Jb­

S'-i.ST£ 

As time passed we found that the system tracer had even more poten­
tial than we had imagined. For one thing, it offered an answer to the 
problem of using a fully integrated system for production applications. 
This problem manifests itself in several ways: a fully integrated system 
contains many components which are not needed in production, such as 
compiler, debugger, and various editing and communications facilities. 
Also, at a finer grain, much of the symbolic information which is re­
tained for ease of access may be wasteful, or even objectionable (for se­
curity reasons) in a production release of the system. 

The system tracer could be instructed to spawn an application with 
all unnecessary information removed. This could be done post facto, 
thus freeing application programmers from the integrated/production 
dichotomy until the final release of a product. In actual fact, since the 
goal of our research is integration, we never pursued the full potential 
of the system tracer to drop out such "product" applications. The clos­
est we came was to eliminate unnecessary parts of the system when we 
were short of space for certain large projects. 

The possibility of using the system tracer to produce mutations be­
came evident soon after its creation, and we took full advantage of this. 
For instance, prior to the Smalltalk-BO release, we wanted to convert 
from our own private form of floating-point numbers to the standard 
IEEE format. In this case, we simply included an appropriate transfor­
mation in the system tracer and wrote out a cloned image which used 
the new format. Then we replaced the floating-point routines in the 
Virtual Machine and started up the new image. Similar transforma­
tions have been used to change the instruction set of the Virtual Ma­
chine, to change the format of compiled methods, and to change the 
encoding of small integers. It was in this manner that Smalltalk-78 and 
-80 were built out of Smalltalk-76. 

1 



Figure 2.7 

The Virtual Image 

Conclusion 

27 
Conclusion 

It is hard to say how far one should take this approach. Sometimes a 
change is so fundamental that it requires starting again from the 
ground up, as we did from Smalltalk-74 to -76. Even in such cases 
though, it seems easiest to simulate the new environment in the old, 
and then use the simulation to produce the actual new system. 

-rHc:. 1//1:£_, nil/\JG-­

A&;ur .sn)lll..LTRL( 19 
-n+itT 1t/E:. PAINT 

DRIES /~:::,TtMlR/ i 

When we decided to release the Smalltalk-BO system, the question arose 
as to what form it should take. From the discussion above, it should be 
clear why we chose the virtual image (a fancier term for snapshot) for­
mat. This was the one way in which we could be sure that the release 
would set a standard. Any implementation, if it worked at all, would 
look and behave identically, at least in its initial version. At the same 
time, we tried to decouple the image format as much as possible from 
such implementation-related details as reference counting versus gar­
bage collection, machine word size, and pointer size. At the time of this 
writing, implementations exist which vary in all of these parameters. It 
should be possible to decouple similarly our choice of bitmap display 
representation, but this project was not of immediate interest to us. 

The evolution of the Smalltalk system is a story of good and bad de­
signs alike. We have learned much from our experiences. Probably the 
greatest factor that keeps us moving forward is that we use the system 
all the time, and we keep trying to do new things with it. It is this "liv-



28 
The Evolution of the Smalltalk Virtual Machine 

References 

ing-with" which drives us to root out failures, to clean up 
inconsistencies, and which inspires our occasional innovation. 

1. Goldberg, Adele, and Kay, Alan, Eds., "Smalltalk-72 Instruction 
Manual", Xerox PARC Technical Report SSL-76-6, 1976. 

2. Thacker, C. P., et al., "Alto: A Personal Computer", in Computer 
Structures: Readings and Examples, 2nd Edition, Eds. Sieworek, 
Bell, and Newell, McGraw-Hill, New York, 1981; (also Xerox 
PARC CSL-79-11), Aug. 1979. 

3. Papert, Seymour, Mindstorms, Basic Books, New York, 1980. 

4. Goldberg, Adele, and Kay, Alan, "Teaching Smalltalk", Xerox 
PARC Technical Report SSL-77-2, June 1977. 

5. Newman, William, and Sproull, Robert, Principles of Interactive 
Computer Graphics, 2nd Edition, McGraw-Hill, New York, 1979. 

6. Kaehler, Ted, "Virtual Memory for an Object-Oriented Lan­
guage", Byte, vol. 6, no. 8, Aug. 1981. 

7. Ingalls, Daniel H. H., "The Smalltalk-76 Programming System: 
Design and Implementation", Conference Record, Fifth Annual 
ACM Symposium on Principles of Programming Languages, 1978. 

8. McCall, Kim, "TinyTalk, a Subset of Smalltalk-76 for 64KB 
Microcomputers", Sigsmall Newsletter, Sept. 1980. 

9. Barning, Alan H., and Ingalls, Daniel H. H., "A Type Declaration 
and Inference System for Smalltalk", Ninth Symposium on Princi­
ples of Programming Languages, pp. 133-141, Albuquerque, NM, 
1982. 

10. _________________ "Multiple Inheri­
tance in Smalltalk-80", pp. 234-237, Proceedings at the National 
Conference on Artificial Intelligence, Pittsburgh, PA, 1982. 



' 

Introduction 

The Smalltalk-SO Code 
File Format 

Glenn Krasner 
Software Concepts Group 
Xerox Palo Alto Research Center 
Palo Alto, California 

In the Smalltalk-80 system, programmers define classes and methods 
incrementally by editing in system browsers. At some point, program­
mers may want to share their class descriptions with others using dif­
ferent Smalltalk-SO systems. Some means of communication is therefore 
required. We have chosen to use files as the means of communication, 
and call such files code files. 

Code files for the Smalltalk-80 system allow the programmer to com­
municate source code (class descriptions or parts of class descriptions) 
between one Smalltalk-80 system and another (possibly the same sys­
tem, later in time). The format of such files was devised as a result of a 
number of design considerations: 

• Restrictions on the allowable character set, 

• Whether to allow the code to be "readable" when printed on con­
ventional printers, 

• Whether to retain/allow more than one emphasis of the text (font 
and face changes), 

• Whether to include source code in the system image (core) or to 
place it on external files, 

Copyright © Xerox Corporation 1982. All rights reserved. 

29 



30 
The Smalltalk-BO Code File Format 

Background 

Constraints 
and Goals 

• Whether to allow for executable expressions in addition to source 
code of methods, and 

• Whether to provide for system crash recovery. 

The Smalltalk-SO code file format is restricted to contain a common set 
of characters ("printing" ASCII characters plus a small number of con­
trol characters). It gives up the ability to have multiple emphases of 
text in order to be as good (or as bad) on conventional printers as it 
would be on more capable printers (raster laser xerographic printers, 
for example). The approach taken keeps source methods on file storage 
to minimize the amount of core used, includes intermingling of execut­
able expressions with source code for methods, and provides for some 
amount of system recovery. 

The Smalltalk-SO system is powerful and comprehensible, in part be­
cause everything in the system is treated in a uniform way, as an ob­
ject. However, at the point where the Smalltalk-SO system meets the 
external world, this uniformity cannot be maintained. The external 
world does not consist of Smalltalk-SO objects, but rather of disk files, 
network communication, hardware storage devices, and printers. These 
define a much more limited structure of information. For example, disk 
files typically consist of collections of B-bit bytes; networks define a lim­
ited set of data that can be communicated; hardware storage devices de­
fine what kinds and, more importantly, how much information can be 
handled; and printers typically are restricted to a small number of 
characters as the only data they can handle. If the Smalltalk-BO pro­
grammer never had to meet this external world, there would be no 
problem. Everything he or she dealt with would be within the 
Smalltalk-BO system. For some programmers, this is sufficient. Most 
programmers, however, must meet the external world because they 
want to share information with some other system. The Smalltalk-BO 
code file format is a format for representing code objects (i.e., source 
code for methods or expressions), especially for communication via the 
media of electronic secondary storage and paper. 

The constraints and goals for the design of the format consisted of: 

• Having a format that would serve as a communications protocol 
among Smalltalk-BO systems and from a system to paper. We saw 

J 



The Code 
File Format 

31 
The Code File Format 

the paper version as being used by people not fortunate enough to 
have display-based browsers and, perhaps more importantly, as 
one in which algorithms or pieces of code could be published. 

• Having a format that could be printed without translation on con­
ventional printers. We are interested in first having the world 
build Smalltalk engines, with bit-map displays and good pointing 
devices and lots of computing power. Later, we expect them to want 
to use good printers; we are willing to wait before we require them 
to do so. 

• Having a format that would look satisfactory on paper. Often this 
means allowing multiple font and type face information, as well as 
formatting information. However, given the first goals, it means 
not having extra characters that describe such information clutter­
ing up the printed page. 

• Having the source code for the more than 4000 methods in the sys­
tem take up as little main memory as possible. We expect that 
reasonable Smalltalk-SO machines will have virtual memories, 
where space restrictions would not be a problem. However, the 
number of bytes taken up by the source code alone (more than a 
million) would preclude most current machines from having any 
resident implementation. Therefore the file format was to serve as 
a somewhat limited form of virtual memory. 

• Having a format that would include executable expressions. Typi­
cally what people want to communicate between systems includes 
method definitions, class descriptions, and class initialization ex­
pressions. By providing for executable expressions, all these desires 
can be met. 

• Minimizing the amount of disk space taken up. For example, one 
would not want an entire disk system to become full of text when 
only a small percentage of the text is actually needed. 

• Allowing a certain amount of recovery from system disasters. The 
Smalltalk-80 system is one in which it is possible to change almost 
anything. This provides great power and flexibility, but has the 
danger that a system change could destroy the system itself. It was 
desired that code files, since they are somewhat external to the 
system itself, could provide recovery from such disasters. 

Smalltalk-SO code files are defined as text files that contain only the 
"printing" ASCII characters, codes 32 (space) through 127 (DEL), plus 
carriage return, line feed, tab and form feed (codes 13, 10, 9 and 12, re-



32 
The Smalltalk-80 Code File Format 

File Streams 

spectively). The file is broken into chunks, which are sequences of char­
acters terminated by an exclamation point (!), with exclamation points 
within a chunk doubled. The meanings of chunks will be described in 
the sections to follow. 

Exclamation point was chosen for a number of reasons. It is not used 
as a Smalltalk-80 selector. It is used in English at the end of sentences, 
so it is a reasonable terminator. It tends not to appear in code, so it 
rarely has to be doubled. Also, it is thin, so we felt it would not be too 
obtrusive on the page. 

The interface between Smalltalk-80 objects and disk files is encapsulat­
ed by the Smalltalk-80 class FileStream. File Streams support sequen­
tial and random access of disk files through the following protocol 

class name 

superclass 

opening and closing 

openOn: aString 

File Stream 
External Stream 

Answer an instance of FileStream representing the disk file named 
aString. 

close 
Close the file. 

sequential accessing 
next 

Answer the character in the file after the current position, and update the 
position. 

nextPut: aCharacter 
Store aCharacter as the character of the file after the current position, 
and update the position. 

atEnd 
Answer true if the current position is at the end of the file, false if it is not. 

setToEnd 
Set the current position to be the end of the file. 

random accessing 
position 

Answer the current position. 
position: anlnteger 

Set the current position to be anlnteger. 

Two messages were added to FileStream to deal with chunks, one to 
read a chunk from the file, and another to write a chunk onto the file 



Code Files 
Used for 
Source 
Methods 

33 
Code Files Used for Source Methods 

fileln/Out 

nextChunk 
Answer a string that is the chunk starting at the current position, 
undoubling embedded exclamation points, and excluding the terminator. 

nextChunkPut: aString 
Write aString as a chunk starting at the current position, doubling embed­
ded exclamation points, and terminating it with an exclamation point. 

The Smalltalk-SO system relies on the code file format to read and 
write the source methods of the system. In this way, the files are used 
to communicate information from the system to itself at a later point in 
time. Each CompiledMethod in the system keeps a short (3-byte) 
encoding of the location of its source. This encoding includes which of 
four file streams contains the chunk of source code for that method anfi 
the position, within that file, of the first character of its chunk. A glob­
al array called SourceFiles points to the four file streams. 

The code for getting the source method in class CompiledMethod 
could be* 

getSource 
I sourcelndex sourceFile sourcePosition I 
sourcelndex ._ self sourcelndex. 
sourceFile ._ SourceFiles at: sourcelndex. 
sourcePosition ._ self sourcePosition. 
sourceFile position: sourcePosition. 
tsourceFile nextChunk 

Of the four file streams, one, SourceFiles at: 1, is a read-only file 
stream of source methods. It is known as the sources file. Periodically 
all the source code of the system may be condensed into this file. 

The second file stream, SourceFiles at: 2, is a file stream to which ev­
ery change to the system sources is appended. It is known as the chang­
es file. When a method is changed and recompiled, its new source code 
is appended to this file (and the encoding bytes of the CompiledMethod 
are changed to point at the new source). Periodically, the changes file 
may be condensed as well. Since this file grows while a programmer is 
working, the changes file may want to be condensed much more often 
than the sources file. The third and fourth file streams are currently 
unused. 

*For implementation efficiency, the code in the Smalltalk-SO system is not actually this, 
but provides the same function. 



34 
The Smalltalk-SO Code File Format 

Code Files 
Used for 
Shared Code 

The code in class CompiledMethodto store a new source code string 
could be 

storeSourceString: aString 
I sourceFile sourcePosition I 
sourceFile ,_ SourceFiles at: 2. 
sourceFile setToEnd. 
sourcePosition ,_ sourceFile position. 
self setSourcelndex: 2 

sourcePosition: sourcePosition. 
sourceFile nextChunkPut: aString. 

Because the changes file is only altered by appending to it, previous 
versions can always be found. Periodically, a Smalltalk-80 programmer 
will make a snapshot of the state of the system. If the system crashes at 
a later time, then, when the system is resumed at the point of snapshot, 
the compiled methods in the snapshot of the system will still point to 
their place in the files at the time the snapshot was made. The end of 
the file will contain changes added between the snapshot and the crash, 
and these can be recovered. For example, suppose a programmer 
changed the definition of getSource in class CompiledMethod once (ver­
sion A), then made a snapshot, then changed it twice (versions B and 
C), and the system crashed because of an error in C. Then the system 
can be restarted at the snapshot point, the source and compiled method 
for getSource will be version A, but versions B and C will be near the 
end of the changes file. The programmer could look at the end of the 
changes file, copy version B into the browser for compilation, and ig­
nore C. Then the programmer has recovered to the equivalent of just 
before the C change brought down the system. 

To improve recovery, the system also records several other things on 
the changes file. For example, whenever the user executes an expres­
sion in a code editor, the expression is appended as a chunk on the 
changes file. Also, when the user performs a system snapshot, a chunk 
consisting of the comment "------SNAPSHOT-----" is appended to the 
changes file, marking the occurrence of a snapshot. 

Besides storing the system sources, the code file format serves to com­
municate code and expressions between one system and another. For 
this we have added a level of syntax and semantics above the chunk 
level. The syntax and semantics are defined and implemented by the 
message fileln in class FileStream, 

J. 



35 
Code Files Used for Shared Codes 

fileln 
I aString sawExclamation I 
self position: 0. 
[self atEnd] 

whileFalse: 
[sawExclamation -- self peekFor: $ 1

• 

aString -- self nextChunk. 
sawExclamation 

ifFalse: [Compiler evaluate: aString] 
ifTrue: [(Compiler evaluate: aString) filelnFrom: self]] 

peekFor: aCharacter 
" Answer true and move past if next = aCharacter" 
self next = aCharacter 

ifTrue: [itrue] 
ifFalse: [self position: self position - 1. Halse] 

That is, when sent the message fileln, a file stream looks for an excla­
mation point. As long as it does not see one, it reads and has class Com­
piler evaluate the next chunk as a Smalltalk-80 expression. If it did see 
an exclamation point, then after the expression is evaluated, it hands 
the stream (itself) to the object that was returned as the value of the 
expression (see example below). 

In particular, the methodsFor: aString message sent to a class will re­
turn an instance of ClassCategoryReader that has its instance variable 
myClass set to the class, and its instance variable myCategory set to the 
string. The class category reader will respond to the filelnFrom: message 
by reading chunks from the file stream. Each chunk is presumed to be 
the source for a method, and, for each chunk, the class category reader 
has the compiler compile it and install the compiled method in the 
proper class and category. This continues until an empty chunk is 
found. 

filelnFrom: aFileStream 
I aString I 
[aFileStream atEnd or: [(aString -- aFileStream nextChunk) isEmpty]] 

whileFalse: 
[Compiler compile: aString 

forClass: myClass 
inCategory: myCategory] 

i self 

For example, the code for fileln, peekFor: aCharacter, and filelnFrom: 
aFileStream would appear in a code file as 



36 
The Smalltalk-SO Code File Format 

!FileStream methodsFor: 'filel/O' ! 
fileln 

I aString sawExclamation I 
self position: 0. 
[self atEnd] 

whileFalse: 
[sawExclamation +- self peekFor: $ 11 

aString +- self nextChunk. 

sawExclamation 
ifFalse: [Compiler evaluate: aString] 
ifTrue: [(Compiler evaluate: aString) filelnFrom: self]] 1 

peekFor: aCharacter 
"Answer true and move past if next = aCharacter" 

self next = aCharacter 
ifTrue: [itrue] 
ifFalse: [self position: self position - 1. ifalse] 11 

!ClassCategoryReader methodsFor: 'filel/O' ! 

filelnFrom: aFileStream 

I aString I 
[aFileStream atEnd or: [(aString +- aFileStream nextChunk) isEmpty]] 

whileFalse: 
[Compiler compile: aString 

forClass: myClass 
inCategory: myCategory] 

iself 11 

The class category reader created by the expression FileStream 
methodsFor: 'filel/O' will read and compile the methods for fileln and 
peekFor: aCharacter before returning control to the file stream; the 
reader created by ClassCategoryReader methodsFor: 'filel/O' will read 
in only the method for filelnFrom: aFileStream. 

The example shows a number of visual properties that make it easier 
to read code format files when they are printed. Each category is 
delimited by a short "methodsFor:" line; it is easy to locate the names 
of the class and the category for each. Each method is a visual chunk 
with all but its first line indented. This of course, depends on the pro­
grammer keeping the convention of including a tab before each line 
other than the message pattern. This convention is supported by the 
"format" command in the code editor. 

In addition to the source code for methods, the code file format and 
its interpretation allow any expression to be saved on a file. In particu­
lar, one may save an entire class description from a Smalltalk-80 sys­
tem. That file will consist of an expression defining the class, followed 
by an expression setting the global comment of the class, followed by 

L 



Code File 
Format for 
Both Source 
Methods and 
Shared Code 

37 
Code File Format for Both Source Methods and Shared Code 

the source code for the methods in the class, in the format described 
above. When a file stream on such a file, in this or some other system, 
is told to fileln, it will recreate the entire class description. 

Users could also define their own "readers," objects created with ex­
pressions preceded by an exclamation point, just as 
ClassCategoryReaders are created with the "methodsFor:" expressions. 
These user-defined readers would be used for creating an object with 
special external representation, just as class category readers create 
methods whose external representations are strings of characters for­
matted for readability. 

Note: In addition to this, since many classes have initialization code 
especially for class variables, if the message initialize is defined in the 
class, the expression chunk "<class> initialize!" will appear at the end 
of the file containing the class definition. Then, when the file is told to 
file in, the initialization code will be executed after the methods are 
compiled. 

The conventions for shared code given in the previous section are also 
followed in the two source code files. That is, the sources file is orga­
nized as a sequence of class descriptions in the above format, arranged 
alphabetically by class name, with form feeds between them. The com­
piled methods in the system point to the beginning of their chunks. In 
this way, printing out the sources file will give an alphabetical listing of 
the system sources with page breaks between each class. 

The changes file is a collection of chunks of the form 

! < class name> methodsFor: ' < category Name> '! 
< source method>!! 

The compiled methods in the system that point to the changes file also 
only point to the beginning of their chunks. The chunks appended to 
the changes file when the user evaluates an expression are in the exe­
cutable form 

< expression > ! 

This means that the sources file could be filed in to redefine the system 
classes to their state before changes were made, and the changes file 
could be filed in to redefine the changes and re-execute the expressions 
made since changes were started. The Smalltalk-SO system provides two 
ways of looking at the changes file for recovery, to create a view on a 
file whose contents are the last few thousand characters of the changes 
file and to create a Changelist browser to view the changes. 



38 
The Smalltalk-80 Code File Format 

Matching the 
Goals and 
Constraints 

The Smalltalk-80 code file format meets most of the goals and satisfies 
most of the constraints of its design. It serves as a communications for­
mat between systems. It is used extensively, not only for source code 
within a system, but also for exchanging source code between systems. 
In addition, because it is restricted to the standard ASCII character set, 
it can be printed on conventional printers as well as on more capable 
printers. 

The code files have a reasonable appearance on paper. Of course, this 
is a matter of taste. In a few years we will likely no longer consider its 
appearance reasonable because our opinions of "reasonable appearance" 
will change. Methods are "chunked" together, and the "methodsFor:" 
lines separate categories of methods. Except for the single exclamation 
point at the end of each method, there are no characters to distract the 
reader. The form feeds between class descriptions also help the read­
ability of the code. 

The amount of main memory required to handle sources is quite 
small, especially compared with the size of the source code itself. It re­
quires only 3 bytes per compiled method, plus the space taken up by 
the interpretation code (outlined in this paper). Compared with over a 
million bytes of source code, this is a great savings and considered 
worth the added complexity. 

The format includes executable expressions. The system currently 
uses this feature sparingly-for class descriptions and initialization, 
and for recording expressions evaluated by the user. However, the for­
mat provides a generality that can be exploited in the future. 

Disk space efficiency is a compromise in our design. Having one 
read-only sources file does help meet this goal since multiple systems 
can share this file. At Xerox, we often keep this shared file on a remote 
server, where multiple systems can access it and where it does not take 
up any local disk space. On the other hand, constantly appending to the 
changes file consumes disk space. The Smalltalk-SO development style 
often involves defining and redefining methods many times. Since each 
definition is appended to the changes file, this causes the file to grow. 
However, the user can invoke the system's ability to compact the 
changes file at any time by sending the message compactChanges to 
Smalltalk, an instance of SystemDictionary. 

Although using the changes file in this way is wasteful of disk stor­
age, there is the advantage that a considerable amount of recovery from 
system crashes is possible. By recording all code changes and many oth­
er user events on the changes file, the programmer can recover should 
the system go down. In particular, if a programmer is experimenting 
with the user interface code and makes a mistake that renders the in­
terface unusable, there will be a trail of the experiments when the sys­
tem is restarted. 



Other Paths 

L 

39 
Other Paths 

A couple of other directions in the design of the Smalltalk-BO code file 
format that we did not take are worth noting. One direction would have 
been to invent a standard representation for the Smalltalk-BO virtual 
memory, and insist that everyone's system use it. The advantages with 
this would have been that the source code would fit in the system and 
that no special mechanism would be needed to retain system sources. 
However, it would not solve the communication problem, nor the recov­
ery problem. 

Another idea we discussed was to store only comments and tempo­
rary variable names on the files; the other pieces of text could be gener­
ated by the system, as is currently done by the Decompiler. The benefits 
here are that fewer characters of disk space are needed and that code 
would appear in a consistent "pretty-printed" way. We decided that the 
disadvantages of this approach outweigh its advantages. Although it 
saves disk space in terms of the number of characters, there would be 
extra space used (either on disk or in main memory) to describe the 
mapping between comments and their place in the methods. This map­
ping would also involve a more complex computation. Another major 
disadvantage is that the code files would not be human readable. Also, 
we did not want to give up the flexibility of storing and displaying the 
code in the way it was typed, rather than in the pretty-printer's format. 
Keeping the sources "as is" seemed an easier approach than designing a 
more flexible pretty-printer, and even a flexible pretty printer would 
not provide that total flexibility. 

The Small talk-80 system uses only two of the four source file streams 
provided; it does not exploit the flexibility that four can provide. One 
could imagine ways to use two more files. For example, one of the files 
could be used as a read-only version of the condensed changes file, pro­
viding a level of system backup between the sources and changes file. 

Another direction that we did not pursue was to allow the text stored 
on the files to have multiple emphases (font and face changes) of the 
text. The Smalltalk-76 system1 had two formats that preserved empha­
ses, and produced listings that were easier to read and that allowed pro­
grammers to tailor the visual aspects of their code to suit their tastes. 
Since the Smalltalk-BO principles allow such tailoring in other areas of 
the system, tailoring source text ought to be allowed as well. U nfortu­
nately, we were unable to design a file format that allowed both em­
phasis description and direct printing of the file on conventional 
printers. Solutions to keeping emphasis descriptions always involved us­
ing non-ASCII characters or had extra characters which would clutter 
the page if directly printed. We assume that in the future more printers 
will be available that print many fonts and faces. When this is the case 
(or to help make this be the case), we hope that some other standard 
that preserves emphases wiH emerge. 



40 
The Smalltalk-SO Code File Format 

Conclusion 

References 

The Smalltalk-80 code file format was developed to allow communica­
tion between the flexible world of a Smalltalk-80 system and the less 
flexible world of disks, networks, storage devices and printers. It is used 
by the system to keep the source code for the methods on disk files, 
rather than within the memory of a resident system. It is also used to 
communicate changes between one system and another, and to provide 
a level of recovery from errors. The format is flexible enough to allow 
both code (source methods) and executable Smalltalk-80 expressions to 
be read in and/ or evaluated; it also includes a general mechanism to al­
low objects in the Smalltalk-80 system to read and interpret the files. 
The format satisfies its design constraints and leaves the door open for 
several useful extensions. 

1. Ingalls, Daniel H. H., "The Smalltalk-76 Programming System: 
Design and Implementation", Conference Record, Fifth Annual 
ACM Symposium on Principles of Programming Languages, 1978. 

' 



Abstract 

Introduction 

Design Decisions for 
Smalltalk-SO 
Implementors 

Allen Wirfs-Brock 
Tektronix, Inc. 
Beaverton, Oregon 

The Smalltalk-BO virtual machine specification describes the required 
behavior of any Smalltalk-BO interpreter. The specification takes the 
form of a model implementation of a Smalltalk-BO interpreter. An 
implementor of a Smalltalk-BO interpreter is not required to exactly 
copy the data structures and algorithms of the model interpreter. The 
only requirement is that any Smalltalk-BO interpreter exhibit external 
behavior which is identical to that described by the formal specification. 
The implementor is free to make design tradeoffs that may increase the 
performance of the implementation while preserving the required ex­
ternal behavior. This paper identifies some of the design decisions 
which face a Smalltalk-BO implementor and discusses several design 
trade-offs. 

The Smalltalk-BO virtual machine specification as it appears in 
Smalltalk-BO: The Language and Its Implementation 1 describes the re­
quired low level behavior of any Smalltalk-BO implementation. The 

Copyright @ Tektronix, Inc. 1982. All rights reserved. 

41 



42 
Design Decisions for Smalltalk-SO Implementors 

The Formal 
Specification 

specification takes the form of a Smalltalk-BO "program" which exhibits 
this behavior. One approach to the implementation of a Smalltalk-80 
interpreter is to literally translate this program into some appropriate 
implementation language. While this approach will result in an inter­
preter which exhibits the required behavior, the performance of the re­
sulting interpreter may be unsatisfactory. 

An alternate implementation approach is to construct an interpreter 
that uses algorithms and data structures which differ from those used 
in the formal specification. These would be chosen to optimize perfor­
mance for the host implementation environment. Such an interpreter 
may achieve higher performance but requires greater implementation 
effort. 

This paper presents an overview of the design decision space which 
confronts the implementors of Smalltalk-BO interpreters. Specifically, it 
examines some of the potential design trade-offs concerning the host 
hardware and implementation language, the interpreter data struc­
tures, the actual execution of Smalltalk-BO instructions, and the cre­
ation and destruction of objects. Even though the design issues are 
examined assuming an interpreter implementation utilizing a conven­
tional computer or microprocessor as a host, many of the trade-offs 
should be applicable to a microcoded or hardware implementation. 

The first part of the Smalltalk-SO virtual machine specification defines 
the virtual machine architecture. This includes the definition of the 
primitive data types, the instruction set, and the interface to the abject 
memory manager. The second part describes the internal operation of 
the object memory manager. An implementation of the Smalltalk-BO 
virtual machine is commonly referred to as a Smalltalk-BO interpreter. 
The formal specification completely defines the required behavior of a 
Smalltalk-BO interpreter. 

The formal specification takes the form of a collection of 
Smalltalk-BO methods which implement a Smalltalk-BO interpreter. It 
is, in effect, an implementation of a "model interpreter." Within this 
model the "registers" of the virtual machine are represented as 
Smalltalk-BO instance variables, the data structures are explicitly de­
fined via constant field offsets and bit masks, and the required seman­
tics of the interpreter are implicit in the behavior of the methods. The 
model bytecode interpreter implementation can be viewed as the defini­
tion of the correct behavior of a Smalltalk-80 implementation. 

L 



Figure 4.1 

43 
The Formal Specification 

The specification does not place any particular requirements upon 
the internal implementation of the object memory manager. Of course, 
it assumes that any implementation will correctly preserve stored data 
and that this data will be available to the interpreter when requested. 
The memory manager implementation chapter may also be viewed as a 
model for how an object memory manager may be implemented. 

An implementor of a Smalltalk-SO interpreter must design and con­
struct an interpreter whose behavior conforms to that defined by the 
formal specification. One method of accomplishing this is to directly 
translate the Smalltalk-SO methods of the model implementation into 
an appropriate implementation language. One might even consider us­
ing a program to perform this translation. Figure 4.1 gives an example 
of a method from the formal specification and Figure 4.2 shows how it 
might be translated into Pascal. 

The principal advantage of the direct translation approach is that it is 
a simple method of obtaining a semantically correct interpreter. It also 
is a very good way for an implementor to learn how the interpreter 
works internally. The principal disadvantage associated with this ap­
proach is that the resulting interpreter may exhibit disappointing per­
formance levels. The data structures and algorithms of the book's 
interpreter were selected to provide a clear definition of the required be­
havior; they will probably not be optimal for any particular host com­
puter. The challenge for a Smalltalk-SO implementor is to design an 
interpreter which will yield acceptable performance within some particu­
lar host environment. At Tektronix, we utilized the direct translation 
approach (see Chapter 5) and were able to very quickly build a working 
(but slow) Smalltalk-SO implementation. Experience gained from this 
initial implementation enabled us to later design a significantly im­
proved second generation interpreter. 

initializeGuaranteedPointers 
"Undefined Object and Booleans" 
nilPointer --- 2. 
falsePointer .- 4. 
truePointer .- 6. 
"and so on ... " 

pushConstantBytecode 
currentBytecode = 113 ifTrue: p self push: true Pointer]. 
currentBytecode = 114 ifTrue: [tself push: falsePointer]. 
currentBytecode = 115 ifTrue: [iself push: nilPointer]. 
currentBytecode = 116 ifTrue: [iself push: minusOnePointer]. 
currentBytecode = 117 ifTrue: [iself push: zeroPointer]. 
currentBytecode = 118 ifTrue: [iself push: onePointer]. 
currentBytecode = 119 ifTrue: [i self push: twoPointer]. 



44 
Design Decisions for Smalltalk-BO Implementors 

Figure 4.2 

The Host 
Processor 

const 
I Undefined Object and Booleans) 
nilPointer = 2; 
falsePointer = 4; 

truePointer = 6; 

I and so on ... l 
procedure pushConstantBytecode; 

begin 
case currentBytecode of 

113: push(truePointer); 
114: push(falsePointer); 
115: push(nilPointer); 
116: push(minusOnePointer); 
117: push(zeroPointer); 
118: push(onePointer); 
119: push(twoPointer); 

end I case l 
end r pushConstantBytecode l; 

The first major design decision which will confront a Smalltalk-SO 
implementor will be the choice of the hardware which will host the im­
plementation. In many situations the implementor will have little free­
dom in this area. Where the implementor has the freedom to select the 
host processor, there are a number of considerations which should enter 
into the decision process. 

A processor which is to host a Smalltalk-SO interpreter should be 
fast. An interpreter which executes 10,000 bytecodes per second may be 
perceived by a Smalltalk-SO programmer to be quite slow. The original 
Tektronix implementation, which could execute 3500 bytecodes per sec­
ond, was considered to be just barely usable. The Xerox Dolphin imple­
mentation executes 20,000 bytecodes per second and is considered to 
have "adequate" performance, while the Xerox Dorado at 400,000 
bytecodes per second has excellent performance (see Chapter 9). At 
10,000 bytecodes per second the interpreter will have, on the average, 
only 100 microseconds in which to fetch, decode, and execute each 
bytecode. At a more acceptable performance level of 100,000 bytecodes 
per second, the interpreter will have only 10 microseconds for each 
bytecode. 

A Smalltalk-SO host processor architecture must support a large 
amount of main memory (either real or virtual). The standard 
Smalltalk-SO virtual image consists of approximately 500,000 bytes of 

r 

j 



The 
Implementation 
Language 

45 
The Implementation Language 

Smalltalk-SO objects. To this must be added the space for interpreter, 
the interpreter's data structures, the display bitmap, and additional 
space to contain objects created dynamically as the system runs. The to­
tal requirements of the system will easily approach one million bytes of 
memory with even a modest application. Although it may be possible to 
configure a virtual image with fewer features and more modest memory 
requirements, this can be most easily done utilizing an operational 
Smalltalk-SO system. For this reason, the implementor will need a de­
velopment syst~m with at least 1 megabyte of main memory. 

By caching a number of variables which represent the execution 
state of a Smalltalk-SO method in internal registers, an implementation 
will probably get dramatically improved performance. A good host pro­
cessor should have sufficient internal registers to allow these values to 
be cached in its registers. The exact number of registers needed to con­
tain cached values will depend upon the specifics of the interpreter de­
sign. However, as a general rule, 8 is probably not enough while 32 is 
probably more than enough. For example, one of our implementations 
for the Motorola 68000 processor could have easily made use of several 
more than the 15 registers which were available. 

Smalltalk-SO interpreters frequently look up values in tables and fol­
low indirect references. For this reason it is desirable that the host pro­
cessor provide good support for indexed addressing and indirection. 

Hardware support for the Smalltalk-SO graphics model is another 
major consideration. Smalltalk-SO graphics is entirely based upon the 
manipulation of bitmaps. Although some implementations have simu­
lated this model using other display technologies (for example, by using 
a vector oriented raster terminal), the results have been less than satis­
factory (see Chapter 5). Acceptable results will only be achieved if an 
actual hardware bitmapped display is provided. A frequent concern of 
new implementors is the performance of BitBlt, the bitmap manipula­
tion operation. One concern is whether specific hardware support will 
be required for this operation. Our experience with the 68000 was that 
adequate BitBlt performance was easy to achieve with straightforward 
coding, while adequate bytecode interpreter performance was very diffi­
cult to achieve. This leads us to believe that a host processor capable of 
achieving adequate performance when interpreting bytecodes will prob­
ably perform adequately when BitBlt-ing. In particular, the processor's 
ability to perform shifting and masking operations will affect the over­
all performance of BitBlt. 

The choice of an implementation language for a Smalltalk-80 interpret­
er is typically a trade-off between the ease of implementation of the in­
terpreter and the final performance of the system. Implementors should 



46 
Design Decisions for Smalltalk-SO Implementors 

Object Pointer 
Formats 

consider using a high-level programming language as the first im ple­
men tation tool. A high-level language based interpreter can be quickly 
implemented and should be relatively easy to debug. Unfortunately, the 
final performance of such implementations may be disappointing. This 
may be the case even if a very good optimizing compiler is used. 

It is generally accepted that the code generated for a large program 
by an optimizing compiler will be "better" than that which a human 
assembly language programmer would write for the same problem. 
Conversely, for short code sequences, a human programmer can usually 
write better code than that generated by an optimizing compiler. Al­
though a Smalltalk-80 interpreter may appear to be a complex piece of 
software, it is actually a relatively small program. For example, our as­
sembly language implementation for the Motorola 68000 contains ap­
proximately 5000 instructions. Furthermore, a large portion of the 
execution time tends to be spent executing only a few dozen of the in­
structions. These instruction sequences are short enough that carefully 
written assembly code can achieve significantly better performance 
than optimized compiler generated code. Our 68000 bytecode dispatch 
routine consists of five instructions, while the bodies of many of the 
push and pop bytecodes consist of only one or two instructions. 

A successful Smalltalk-80 interpreter design will consist of an effi­
cient mapping of the virtual machine architecture onto the available 
resources of the host processor. Such a mapping will include the global 
allocation of processor resources (registers, preferred memory locations, 
instruction sequences, etc.) for specific purposes within the interpreter. 
An assembly language programmer will have complete freedom to 
make these allocations. Such freedom is typically unavailable to a high­
level language programmer who must work within a general purpose 
resource allocation model chosen by the designers of the compiler. 

The most common form of data manipulated by a Smalltalk-80 inter­
preter are Object Pointers (commonly referred to as Oops). An Oop rep­
resents either an atomic integer value in the range -16,384 to 16,383 or 
a reference to some particular Smalltalk-80 object. The formal specifi­
cation uses a standard representation for Oops. This representation de­
fines an Oop to be a 16-bit quantity. The least significant of the 16 bits 
is used as a tag which indicates how the rest of the bits are to be 
interpreted. If the tag bit is a O then the most significant 15 bits are 
interpreted as an object reference. If the tag bit is a 1 then the most 
significant 15 bits are interpreted as a 2's complement integer value. 

T 

l 



47 
Object Pointer Formats 

Note that the size of an Oop determines both the total number of ob­
jects which may exist at any time (32,76B) and the range of integer val­
ues upon which arithmetic is primitively performed. 

Because Oops are used so frequently by the interpreter, their format 
can have a large impact upon the overall performance of the interpret­
er. The most common operations performed upon Oops by the interpret­
er are testing the tag bit, accessing the object referenced by an Oop, 
extracting the integer value from an Oop, and constructing an Oop 
from an integer. 

Even though the standard Oop format pervades the formal specifica­
tion, use of a different format will not violate the criteria for confor­
mance to the specification. This is possible because the internal format 
of an Oop is invisible to the Smalltalk-BO programmer. 

There are several possible alternative Oop formats which may offer 
varying performance advantages. One alternative is to change the posi­
tion of the tag bit. 

Placing the tag bit in the least significant bit position (the position in 
the standard Oop format) is most appropriate for a processor which re­
flects the value of this bit in its condition codes. This is the case for the 
Xerox processors2 upon which the Smalltalk-BO system was originally 
developed, and for some common microprocessors. Using such a proces­
sor, the tag bit is automatically ntested" each time an Oop is accessed. 
A simple conditional branch instruction can then be used by the inter­
preter to choose between integer and object reference actions. Proces­
sors which lack this feature will require a more complex instruction 
sequence, shifting the Oop, a masking operation, and comparison to per­
form the same test. 

Placing the tag in the most significant bit position causes the tag to 
occupy the sign-bit position for 16-bit 2's complement processors. For a 
processor that has condition codes which reflect the value of the sign 
bit, a test of the tag becomes a simple branch on positive or negative 
value. 

Other factors which will affect the tag bit position might include the 
relative performance cost of setting the least significant bit as opposed 
to the most significant bit (is adding or logical or-ing a 1 less expensive 
than the same operation involving 32,76B) for converting an integer 
into an Oop, and the relative cost of shifts as opposed to adds for con­
verting Oops into table indices. 

The standard format uses a tag bit value of 1 to identify an integer 
value and a tag bit value of O to identify an object identifier. Inverting 
this interpretation has potentially useful properties, some of which are 
also dependent upon the choice of tag bit position. For example, if a tag 
value O is used to indicate an integer valued Oop and the tag occupies 
the least significant bit position, then Smalllnteger values are, in effect, 
2's complement values which have been scaled by a factor of 2. Such 



48 
Design Decisions for Smalltalk-SO Implementors 

The Object 
Memory 

values can be added and subtracted (the most common arithmetic oper­
ations) without requiring a conversion from the Oop format and the re­
sult will also be a valid Smalllnteger Oop. Only one of the operands of a 
multiplication operation will need to be converted from the Oop format 
for the operation to yield a valid Smalllnteger Oop. 

If a tag value of O is used to indicate object identifier Oops and the 
tag occupies the most significant bit position, then object identifier Oops 
can serve as direct indices into a table of 8-bit values on byte address­
able processors. This would allow reference counting to be implemented 
using an independent table of 8-bit reference-count values which is di­
rectly indexed using Oops. For a word addressed processor, the standard 
format allows Oops to be used to directly index a 2 word per entry ob­
ject table. 

The object memory implementation described in the formal specifica­
tion views the object memory as being physically divided into 16 physi­
cal segments, each containing 64K 16-bit words. Individual objects 
occupy space within a single segment. Object reference Oops are trans­
lated into memory addresses using a data structure known as the Ob­
ject Table. The object table contains one 32-bit entry for each of the 
32K possible object referencing Oops. Each object table entry has the 
following format: 

Bits 0-15 (lsb): 

Bits 16-19: 

Bit 20: 

Bit 21: 

Bit 22: 

Bit 23: 

Bits 24-31 (msb): 

The word offset of the object within its segment 

The number of the segment which contains the object 

Reserved 

Set if the Oop associated with this entry is unused 

Set if the fields of this object contain Oops 

Set if object contains an odd number of 8 bit fields 

This object's reference count 

For each segment there is a set of linked lists which locate all free 
space within the segment. In addition there is a single list which links 
all unassigned Oops and object table entries. Objects are linked using 
Oop references. 

The above design includes several implicit assumptions about the 
memory organization of the host processor. It assumes that the unit of 
memory addressability is a 16-bit word. It assumes that the processor 
uses a segmented address space and that each segment contains 64K 

T 



49 
The Object Memory 

words. Finally, it assumes that at most 1024K words (16 segments) are 
addressable. This organization may be considerably different from that 
of an actual host processor. Many processors support a large, byte ad­
dressable, linear address space. Although the formal specification's de­
sign can be mapped onto such a memory organization, such a mapping 
will result in reduced interpreter performance if it is carried out dy­
namically. 

An object memory design will consist of two inter-related elements, 
the organization of the actual object space and the format of the object 
table. The goal of the design will usually be to minimize the time re­
quired to access the fields of an object when given an Oop. However, if 
main memory is limited, the goal of the design may be to limit the size 
of the object table. A performance oriented object table will usually be 
represented as an array which is directly indexed by Oops (or a simple 
function on Oops). A hash table might be used for a space efficient ob­
ject table representation3• 

The most important component of an object table entry is the field 
which contains the actual address of the associated object within the 
object space. Ideally this field should contain the physical memory ad­
dress of the object represented so that it may be used without any 
masking or shifting operations. Such a format will permit the contents 
to be used to directly address the associated object, either by loading 
the field into a processor base register or by some type of indirect ad­
dressing mechanism. In this case, the size of the address field will be 
the size of a physical processor address. 

If the host processor's physical address is larger than the 20-bits used 
in the formal specification, the size of an object table entry will have to 
be increased beyond 32-bits or the size of the reference count and flag 
bits will have to be decreased. Since Oops are typically used as scaled 
indexes into the object table, it is desirable that the size of an object ta­
ble entry be a power-of-two multiple of the processor's addressable word 
size so that object table offsets may be computed by shifting instead of 
multiplication. For most conventional processors, 64-bits (8 bytes, four 
16-bit words, two 32-bit words) would be the next available size. Howev­
er, a 64-bit object table entry will require 256K bytes and will probably 
contain many unused bits. An alternate approach is to use separate 
parallel arrays to hold the address fields and the reference count/flag 
fields of each entry. This results in an effective entry size which is 
greater than 32-bits without requiring a full 64-bit entry. Decreasing 
the size of the reference-count field is another valid alternative. Since 
most reference count values are either very small (8 or less) or have 
reached the overflow value where they stick4, a reference-count field 
size of 3 or 4 bits should be adequate. The main consideration will be 
whether the host processor can efficiently access such a field. 



50 
Design Decisions for Smalltalk-SO Implementors 

The Bytecode 
Interpreter 

The bytecode interpreter performs the task of fetching and executing 
individual Smalltalk-SO bytecodes (virtual machine instructions). Before 
examining the actual functioning of the bytecode interpreter, we will 
consider the general question of time/space trade-offs within Small­
talk-SO implementations. A complete, operational Smalltalk-SO system 
requires approximately one million bytes of storage to operate. The ac­
tual interpreter will occupy only a small fraction of this. (Our first im­
plementation, which was very bulky, required approximately 12SK 
bytes for the interpreter. A lat~r assembly language implementation for 
the same host needed less than 25K bytes.) Since Smalltalk-SO inter­
preters seem to strain the computational resources of conventional pro­
cessors, most interpreter designs will tend towards reducing execution 
time at the expense of increasing the total size of the implementation. 

The model implementation in the formal specification takes an algo­
rithmic approach to interpretation. The interpreter fetches a bytecode, 
shifts and masks it to extract the operation code and parameter fields, 
and uses conditional statements to select the particular operation to be 
performed. While this approach is quite effective for illustrating the 
encoding of the bytecodes it is often not suitable for a production inter­
preter because of the computation required to decode each bytecode. A 
more efficient implementation technique for the bytecode dispatch oper­
ation may be to use the bytecode as an index into a 256-way dispatch 
table which contains the addresses of the individual routines for each 
bytecode. For example, rather than using one routine, as .in the exam­
ple in Fig. 3.1, there could be seven individual routines, each one opti­
mized for pushing a particular constant value. 

The model implementation exhibits a high degree of modularity. This 
is particularly true in the area of the interface between the bytecode in­
terpreter and the object memory manager. The bytecode interpreter 
makes explicit calls to object memory routines for each memory access. 
The performance of a production implementation can, however, be im­
proved by incorporating intimate knowledge of the object memory im­
plementation into the bytecode interpreter. Many object memory 
accesses may be performed directly by the interpreter without actually 
invoking separate routines within the object memory manager. 

As mentioned earlier, the selection of which interpreter state values 
to cache is a critical design decision for the bytecode interpreter. The 
designer must evaluate the cost of maintaining the cached values (load­
ing the values when a context is activated and storing some of the val­
ues back into the context when it is deactivated) relative to the actual 
performance gains from using the cached values. The evaluation should 
consider the average duration of an activation. Our observations indi­
cate that most activations span a small number of bytecodes (less than 

1 

I 



Memory 
Management 

51 
Memory Management 

10). Caching too much of the active context can thus lead to situations 
where considerable execution time is spent caching values that are not 
used over the span of the activation. 

The model implementation caches the actual Oop values of several 
context fields. This implies that these values must be decoded into real 
memory addresses (performing an object table lookup or conversion 
from Smalllnteger format) each time they are used. An alternative is to 
decode these values when they are fetched from the active context and 
to cache the addresses. This means that the cached program counter 
would be the actual address of the next bytecode and that the cached 
stack pointer would be the actual address of the top element of the ac­
tive context's stack. If this technique is used, care must be taken that 
the cached values are correctly updated, e.g., when the memory manag­
er changes the physical location of objects (performs a segment com­
pression). It is also essential that the values of the stack pointer and 
program counter field get updated when the active context changes. 

The Smalltalk-SO system's required support for multiple processes, 
when implemented in an obvious manner, can impose an overhead 
upon each bytecode. The formal specification requires that a process 
switch may occur before each bytecode is fetched. An obvious way to 
implement this requirement is to have a global boolean flag which indi­
cates ihat a process switch is pending, and to test this flag before fetch­
ing each bytecode. This technique has the disadvantage that the 
overhead of testing this flag occurs for each bytecode executed even 
though actual process switches are infrequent. Since the number of in­
structions required to implement most bytecodes is relatively small, this 
test can be a significant overhead. Alternative implementations tech­
niques can avoid this overhead. For example, the address of the 
bytecode dispatcher might be stored in a processor register. Routines 
which implement bytecodes would then terminate by branching to the 
address contained in the registers. A pending process switch could then 
be signaled by changing the address in the register to the address of the 
routine which performs process switches. When the current bytecode 
finishes, control would therefore be transferred to the process switcher. 

The routines of the formal specification's object memory manager may 
be grouped into two categories. The first category consists of those rou­
tines which support accesses to objects. The second category consists of 
those routines which support the allocation and deallocation of objects. 



52 
Design Decisions for Smalltalk-BO Implementors 

Object Allocation 

The access routines (such as fetchPointer:ofObiect: and 
storeByte:ofObject:withValue:) are used by the bytecode interpreter to 
store and retrieve the information contained in the fields of objects. In 
many implementations of the bytecode interpreter, these functions will 
not be performed by independent routines, but will be implicitly 
performed by inline code sequences within the routines of the interpret­
er. The object allocation and deallocation routines form the bulk of the 
memory manager. 

Collectively, the memory management routines will probably com­
prise the most complex part of a Smalltalk-SO interpreter implementa­
tion. In addition, unless great care is taken in their design, the 
percentage of execution time spent in these routines can easily domi­
nate the time spent in all other parts of the interpreter. Our initial im­
plementation was found to be spending 70% of its time within memory 
management routines (see Chapter 5). 

The bytecode interpreter normally requests the allocation of an object 
in two circumstances. The first circumstance is the execution of a prim­
itive method (most commonly the primitive new or new:) which explicit­
ly calls for the creation of a new object. The second circumstance is the 
activation of a new method. This implicitly requires the creation of a 
context object to represent the state of the activation. The formal speci­
fication provides a single generalized set of routines which handle both 
types of allocation requests. These routines perform the following ac­
tions. First they must assign an Oop which will be used to refer to the 
new object. Second they must find an area of free storage within the ob­
ject memory, large enough to contain the requested object. Next they 
must initialize any internal data structures (for example an object table 
entry or object length field) used to represent the object. Finally, they 
must initialize the fields of the object with a null value. 

Observation of actual Smalltalk-SO implementations indicates that 
the vast majority of allocation requests are for the creation of context 
objects (see Chapter 11). In addition, most of these requests are for the 
smaller of the two possible context sizes. A memory manager design 
which optimizes the creation of a small context object should thus yield 
better performance. 

There are a number of possible approaches to achieving such an opti­
mization. A memory manager might have a dedicated list of available 
contexts. These available contexts might be preinitialized and have pre­
assigned Oops associated with them. If the memory manager attempts 
to ensure that this list will not be empty (perhaps by using a back­
ground process to maintain the list), then a context could usually be al­
located by simply removing the first element from the list. 

l 



Storage 
Reclamation 

53 
Memory Management 

A memory manager might choose to dedicate a memory segment to 
the allocation of contexts. Since such a segment would only contain ob­
jects of a single size, the actual allocation and deallocation process 
should be simplified. 

Any scheme to optimize context allocation must, of course, conform 
to the formal specification's requirement that a context behaves as a 
normal Smalltalk-BO object. The representation of activation records 
(contexts) as objects contributes much to the power of Smalltalk-BO (it 
allows programs such as the Smalltalk-BO debugger to be implemented) 
but requires a large amount of system overhead to support. A major 
challenge to Smalltalk-BO implementors is to develop techniques to re­
duce this overhead while preserving the inherent power of context ob­
jects. 

Storage reclamation is the second major function of the Smalltalk-BO 
memory manager. While the Smalltalk-BO storage model allows a pro­
gram to explicitly request the creation of an object, it does not require a 
program to explicitly request that an object be deallocated. Once an ob­
ject has been allocated it must remain in existence as long as it is ac­
cessible from any other object. An object may only be deallocated if no 
references to it exist. It is the memory manager's responsibility to auto­
matically deallocate all inaccessible objects. This process is commonly 
referred to as garbage collection5• The classical method (called mark/ 
sweep) of performing garbage collection is to periodically halt process­
ing, identify all inaccessible objects, and then deallocate them. This is 
commonly done as a two-phase process. First all accessible objects are 
marked. This requires starting at some root object and traversing all 
accessible pointers in the system. Second, all unmarked objects are 
deallocated. With a large object memory, such a process may consume a 
considerable period of time (ranging from several seconds to several 
minutes). Because of the interactive nature of the Smalltalk-BO system, 
such delays are unacceptable. Instead, a garbage collection technique 
which distributes the storage reclamation overhead over the entire 
computation is required. The most commonly known technique for 
achieving this is reference counting. This is the technique used by the 
formal specification's model implementation. 

Reference counting requires that each object have associated with it 
a count of the number of pointers to it which exist in the system. Each 
time an Oop is stored into a field the reference count of the object asso­
ciated with the Oop is incremented. Since storing an Oop into a field 
must overwrite the previous contents of the field, the reference count 
associated with the old value is decremented. When the reference count 
of an object reaches zero, the object is deallocated. The deallocation of 



54 
Design Decisions for Smalltalk-SO Implementors 

A Second 
Generation 
Design 

an object invalidates any object references contained in it and hence 
will decrement their reference counts. This may recursively cause other 
objects to be deallocated. 

Although reference counting eliminates the long delays characteristic 
of mark/sweep collection, it introduces considerable overhead into the 
normal operations of the system. We have found that for our host pro­
cessor (a Motorola 68000), the code sequences that implement simple 
bytecodes such as the push and pop operations using reference counting 
are several times longer than the equivalent routines without reference 
counting. A Smalltalk-SO interpreter design that can decrease this over­
head should have greatly improved performance. 

There are several possible approaches to achieving this improved 
performance. One technique which reduces the actual counting over­
head is called deferred reference counting 6

• It is based upon the obser­
vations that the most frequent and most dynamic object references 
occur from context objects and that many of these references are quite 
transitory. For example, assigning an object to a variable causes the ob­
ject's reference count to be first increased by one as it is pushed onto 
the context's stack, then decreased by one as it is popped from the 
stack, and finally increased by one as it is stored into the variable. Our 
measurements show that "store instance variable" bytecodes (the most 
common means of creating an object reference from a non-context ob­
ject) account for less than 4% percent of the dynamically executed 
bytecodes. If the need to perform reference counting for references con­
tained within contexts is eliminated, then almost all of the reference 
counting overhead will have been eliminated. 

The first Tektronix Smalltalk-SO interpreter was implemented in Pas­
cal on a Motorola 68000 (see Chapter 5). Even though the performance 
of this implementation was so poor that it was only marginally useful, 
the experience gained from this effort enabled us to design a new inter­
preter which exhibits much better performance. In developing this sec­
ond generation interpreter we encountered many of the design trade­
offs mentioned in the previous sections of this paper. The new inter­
preter was designed and implemented by the author over a period of 
approximately nine months. 

We choose to continue using a 68000 as the host for the new inter­
preter but component advances enabled us to use a 10 Mhz processor 
with one memory wait state instead of an 8 Mhz processor with two 
wait states. We choose to implement the interpreter in assembly lan-



Summary and 
Conclusions 

55 
Summary and Conclusions 

guage. In addition, great care was taken in choosing the code sequences 
for all of the frequently executed portions of the interpreter. The com­
mon byte codes are all open coded with separate routines for each possi­
ble instruction parameter. 

The active context's stack pointer, instruction pointer, and home con­
text pointer are cached in 68000 base registers as 68000 addresses. The 
stack pointer representation was chosen such that 68000 stack-oriented 
addressing modes could be used to access the active context stack. Oth­
er registers are dedicated to global resources such as addressing the ob­
ject table and accessing free context objects. 

The Oop format chosen requires only a simple add instruction to con­
vert an Oop into an object table index. Object table entries can be di­
rectly loaded into base registers for accessing objects. A separate 
reference-count table is used. Deferred reference counting is used to 
limit the reference-counting overhead and to streamline the code se­
quences for push/pop bytecodes. Complete context objects are not creat­
ed for leaves of the message send tree. Context objects are only created 
if a method references the active context or causes another new context 
to be activated. 

The initial (before any tuning and without some optional primitives) 
performance benchmarks of our second generation interpreter (see 
Chapter 9) show that it is between five and eight times faster than our 
original implementation. We feel that these results demonstrate that it 
is feasible to build usable microprocessor based Smalltalk-80 implemen­
tations. 

For any given host processor, its performance as a Smalltalk-80 host 
can potentially vary widely depending upon how the Small talk-80 inter­
preter is implemented. The goal of a Smalltalk-SO implementor should 
be to achieve the best possible mapping of the Smalltalk-SO virtual ma­
chine specification onto the chosen host computer. To accomplish this, 
the implementor will need to intimately understand both the internal 
dynamic behavior of the Smalltalk-SO virtual machine and the idiosyn­
crasies of the host processor. We would recommend that an 
implementor gain an understanding of the behavior of the virtual ma­
chine by first using a high-level language to implement the interpreter 
as described by the formal specification. This implementation can then 
be used to study the actual behavior of the Smalltalk-SO system and ex­
plore design alternatives. Finally, a new implementation should be 
designed which takes maximum advantage of the characteristics of the 



56 
Design Decisions for Smalltalk-SO Implementors 

References 

host processor. We have presented a few of the design alternatives 
which should be considered by Smalltalk-SO implementors as they de­
velop their interpreters. 

1. Goldberg, Adele, and Robson, David, Smalltalk-BO: The Language 
and Its Implementation, Addison-Wesley, Reading, MA, 1983. 

2. Lampson, Butler W., "The Dorado: A High Performance Personal 
Computer," Xerox PARC Technical Report CSL-81-1, Jan. 1981. 

3. Kaehler, Ted, "Virtual Memory for an Object-Oriented Lan­
guage," Byte vol. 6, no. 8, pp. 378-387, Aug. 1981. 

4. Baden, Scott, "Architectural Enhancements for an Object-Based 
Memory System," CS-292R Class Report, Computer Science Div., 
Dept. of E.E.C.S., University of California, Berkeley, CA, Fall 1981. 

5. Cohen, Jacques; "Garbage Collection of Linked Data Structures", 
ACM Computing Surveys vol. 13, no. 3, pp. 341-367, Sept. 1981. 

6. Deutsch, L. Peter, and Bobrow Daniel G., "An Efficient Incremen­
tal Automatic Garbage Collector," Communications of the ACM 
vol. 19, no. 9, pp. 522-526, Sept. 1976. 







Introduction 

Implementing the 
Smalltalk-80 System: 
The Tektronix 
Experience 

Paul L. McCullough* 
Tektronix, Inc. 
Beaverton, Oregon 

The Tektronix Smalltalk-SO implementation went through a number of 
hardware and software phases. Our experience will probably prove to 
be similar to that of other research and prototype groups desiring to 
implement the Smalltalk-SO system. At best, we will point out some 
mistakes to avoid; at the very least we can provide an entertaining view 
of our successes and follies. 

This paper gives an overview of our initial hardware and software 
environments and our initial implementation design. We then present a 
fairly detailed account of debugging our first system. Next, we describe 
the evolution of our hardware, software, and development tools. We 
conclude with some observations and conclusions about the 
Smalltalk-SO system and its implications for the future. 

Readers should note that we were debugging both our implementa­
tion and the formal specification. Although we detected a number of er­
rors in the formal specification, these errors have since been corrected 
and are discussed herein to provide historical perspective. 

*Mr. McCullough is currently employed by Xerox Palo Alto Research Center, Palo Alto, 
California. Copyright © Tektronix, Inc., 1982. All rights reserved. 

59 



60 
Implementing the Smalltalk-80 System: The Tektronix Experience 

Initial Goals 

Initial 
Hardware 

Initially we had four goals for our Smalltalk-80 work: 

• Learn about the Smalltalk-80 system, in particular the implemen-
tation of the virtual machine, 

• Learn about programming in the Smalltalk-SO language, 

• Report on errors in the book draft, and 

• Implement the virtual machine, realizing that it would not be our 
final implementation. 

Tektronix had no previous experience with object-oriented software, so 
we were very interested in having a system with which we could 
interactively program in the Smalltalk-SO language, and in studying 
the Smalltalk-80 virtual machine. As part of our agreement with Xe­
rox, we were to use our implementation as a means to detect errors in 
the book draft and to identify ways in which the book might be made 
clearer. We realized that our initial implementation would suffer from 
performance problems, but felt that a timely implementation was more 
desirable than a high performance one. 

Our initial hardware consisted of: 

• Motorola 68000 processor (8 MHz) 

• 4 MHz proprietary bus 

• 768 Kbytes of RAM 

• Tektronix 4025 terminal 

• A microprocessor development system, used as a file server 

The choice of hardware was based on the availability of a Tektronix 
designed 6S000-based system, along with the need for a large, prefera­
bly linear, address space. We also wanted to use a processor amenable 
to the construction of personal workstations. The Tektronix 4025 termi­
nal is a raster graphics terminal, primarily oriented toward drawing 
vectors. While our bitmapped display was being designed, the 4025 
served as an interim display device. Because the initial Smalltalk-80 
virtual image did not depend on the use of a file system, we only used 
the microprocessor development system as a file server to load and 
store virtual images. 

, 



Software 
Development 
Environment 

Initial Software 

Object Memory 
Manager 

61 
Initial Software 

Our virtual machine was developed in a cross-compilation environment 
using a DECSYSTEM-20. The bulk of the virtual machine was written 
in a dialect of the proposed ISO Standard Pascal. This particular dialect 
of Pascal supports the independent compilation of modules and pro­
duces assembly language files which are assembled and linked. The re­
sulting executable file is downloaded to the 68000-based system over a 
1200 baud serial line. Though the 1200 baud line was an obvious bottle­
neck, the Pascal software already existed on the DECSYSTEM-20 and 
we had no desire to port it. 

According to Dan Ingalls: ((an operating system is a collection of things 
that don't fit into a language. There shouldn't be one"1. Taking those 
words to heart, we chose to implement our virtual machine on a system 
that had no operating system. This choice meant that we could not rely 
on runtime services normally provided by an operating system and had 
to write those portions that we needed, such as routines to handle 
input/ output to an RS-232 port and perform IEEE 32-bit floating point 
arithmetic. 

Our software implementation team consisted of three software engi­
neers. We chose to partition the programming task into three distinct 
parts: 

• Object Memory Manager 

• Interpreter and Primitives 

• BitBlt 

The initial object memory manager was, for the most part, a strict 
translation from Smalltalk-BO to Pascal of the methods presented in the 
formal specification. During the translation phase, we noted four minor 
typographical errors in the draft of the book involving improper bit 
masks, or incorrect variable, constant, or method names. We chose to 
implement the reference-counting garbage collector. Later, because the 
image creates circular garbage, we added a simple, recursive, mark­
sweep collector. The translation process took less than one week and re­
sulted in a working memory manager that maintained a very clear 
boundary between itself and the rest of the virtual machine. As dis­
cussed below, this clear differentiation is both a blessing and a curse. 

With minor changes due to different dialects of Pascal, we were able 
to run programs that tested the object memory manager on the 
DECSYSTEM-20 with its more sophisticated debugging and perform-



62 
Implementing the Smalltalk-80 System: The Tektronix Experience 

Interpreter and 
Primitives 

ance monitoring software. The test programs read the virtual image, 
then made calls to the various entry points in the memory manager. 
Then, with Pascal write statements and the debugger, we were able to 
examine the state of the object space and determine whether the mem­
ory manager was working correctly. These tests indicated several errors 
in the book's methods: for example, the method that determined where 
to find the last pointer of an object was incorrect for CompiledMethods, 
and the recursive freer needed an extra guard to prevent Smalllntegers 
from being passed off to the pointerBitOf: routine. 

At this point, we were able to run test programs that created in­
stances of classes, stored object pointers in other objects, destroyed such 
links and thus invoked the deallocation of objects, and performed com­
pactions of the object space. Further testing demonstrated that the 
book's method for swapPointersOf:and: was also incorrect. 

In order to speed up the performance of the deallocation portions of 
the memory manager, we modified the countDown: routine to call 
forAIIObjectsAccessibleFrom:suchThatDo: only when the object's refer­
ence count was going to drop to zero, thus saving a procedure activation 
that was usually unnecessary. 

A few other minor changes provided us with a memory manager that 
was tested on the DECSYSTEM-20. Thus, we had a great deal of assur­
ance that the memory manager would perform correctly on the 
68000-based system. Also, we felt that when problems were encountered 
in our implementation of the virtual machine, we could concentrate on 
looking for the problem in the bytecode interpreter or primitives, and 
could ignore the memory manager. In actual practice we made many, 
many runs of the virtual machine before any problems were found in 
the memory manager. We heartily recommend having a trustworthy 
memory manager. 

In parallel with the development of the object memory manager, we 
coded the bytecode interpreter and primitives. The interpreter and 
many of the primitives were written in Pascal. The arithmetic primi­
tives were coded in assembly language in order to simplify the mainte­
nance of the small integer tag bit. 

The outer block of the interpreter consists of a call to an initializa­
tion routine and a loop containing a very large case statement that acts 
as the bytecode dispatcher. While the memory manager was a fairly lit­
eral translation of the book's methods, much greater care was exercised 
in the construction of the interpreter. Code that in the book was several 
message sends was often collapsed into a single Pascal statement. We 
included in our interpreter the capability of producing traces which du­
plicate those supplied with the virtual image by Xerox. 

In order to give the reader a measure of the complexity of 
implementing an interpreter (in Pascal), we present the lengths (in 

l 



► 

BitBlt 

63 
Initial Software 

printer pages at 60 lines per page) of some of the major routines. These 
figures include the length of tracing code: 

• Looking up a message, including the perform: primitive: two and 
one-half pages 

• Sending a message (including cache lookup): one and one-half 
pages 

• Executing the current method, including the primitives written in 
Pascal: twelve pages 

• Returning a value from the active context: one and one-half pages 

• The scan characters primitive (used for text composition): three 
and one-half pages 

• Large integer primitives: four pages 

• Process primitives: five pages 

We strongly recommend that the first implementation of an interpreter 
be in a high-level language. By writing the virtual machine in a high­
level language, implementors gain a more thorough understanding of 
the virtual machine as well as a much more quickly completed imple­
mentation. 

The BitBlt primitive handles all graphics in the Smalltalk-80 system. 
Due to its importance, we decided to have one person concentrate on its 
implementation. The routines to implement BitBlt were written in as­
sembly language and closely reflect the structure of the BitBlt methods 
in the book. To assist in the debugging of BitBlt, there are many condi­
tionally assembled calls to the Pascal runtime print routines. The main 
BitBlt routine accepts one argument, the address of a Pascal record con­
taining the various BitBlt parameters. When called, the routines per­
form the following actions: 

• Clip the source parameters to the physical size of the source form 

• Clip the clipping rectangle to the true size of the destination form 

• Clip and adjust the source origin 

• Compute the masks necessary for the logical operations 

• Check for possible overlap of the source and destination forms 

• Calculate the offsets for the starting and ending words 

• Copy the bits as appropriate 



64 
Implementing the Smalltalk-80 System: The Tektronix Experience 

Summary of Runs 

Certain optimizations are performed for the special cases of clearing, 
setting, or complementing the destination forms. BitBlt is approximately 
2 Kbytes of assembly code. 

We maintained a fairly detailed log of our attempts to get the virtual 
machine up and running. The comments we made for each of these 
runs may be helpful to future implementors of the virtual machine. 
This summary should provide a sense of the types of errors and prob­
lems one should expect when implementing the virtual machine. 

1. Reached the first send, then encountered an error in a debugging 
routine we had written. 

2. Reached the first send again, encountered another error in a 
debugging routine. 

3. Encountered a Pascal compiler bug. 

4. Reached first send of the @ selector, and discovered that we had 
transcribed the constant for class Smalllnteger incorrectly. 

5. The method specified in the book for initializing the stack pointer 
of a new context was incorrect. 

6. We forgot to initialize the sender field when creating a context. 

7. In the book, the method returnValue:to: caused the reference count 
of the sender context to go to zero (thereby making the sender 
garbage) just before returning to that context. We had to explicitly 
increase the reference count of the sender context, perform the re­
turn, then explicitly decrement the reference count. 

8. We had decided to implement the "common selector" bytecodes 
using full message lookup. Unfortunately, the method header for 
selector = = in class Object did not specify the execution of a 
primitive. We patched the image to specify the correct primitive 
number. 

9. The first conditional branch we encountered failed because we did 
not advance the instruction pointer past the second byte of the in­
struction. 

10. We discovered that the source code for Smalllnteger < did not 
specify a primitive, resulting in an infinite recursion. We patched 
the image again. 

11. Discovered that other methods of class Smalllnteger did not have 
primitives specified. We retrenched to executing the following se­
lectors without lookup: class, = =, arithmetics, relationals. 

l 

l 



65 
Initial Software 

12. Selector at: failed. Our fault, in the routine positive168itValue0f: a 
">" should have been a "< ". 

13. Multiply primitive failed due to an assembly language coding er­
ror. 

14. All relational primitives written in assembly language had an in­
correct (and uninitialized) register specified. 

15. Made it through the first trace. (Listings of four traces of the in­
terpreter's internal operations were included with the first distri­
bution of the virtual image. Subsequent distributions included 
three traces.) 

16. The book's method for the primitive value: caused the stack to be 
off-by-one. 

17. Once again, we found an error initializing the stack pointer of new 
contexts. 

18. Again, the stack pointer is off. These three errors were caused by 
an incorrect constant in the book draft. 

19. A message selector was not found. Another run is necessary to de­
termine what happened. 

20. At the beginning of execution for a block, the cached stack pointer 
is one too large. In the past, message sends and returns have 
worked because the routine that stored the stack pointer 
decremented it. 

21. We had coded the at:put: primitive incorrectly: we forgot to have it 
return anything, hence the stack was off-by-one. 

22. We incorrectly coded the at:put: primitive with an uninitialized 
variable. 

23. The at:put: primitive had a > that should have been a > =. 

24. The Smalllnteger bitShift: primitive added in the Smalllnteger bit, 
but should have Or'ed it in. 

25. Interpreting lots of bytecodes, unfortunately not the correct ones. 
Apparently, we took a bad branch somewhere. 

26. We found that the book's methods for the bytecode "push self" did 
not necessarily work for block contexts. 

27. Almost through the fourth trace when the Smalllnteger division 
primitive failed to clear the high-order half of a register. The er­
ror was detected by a Pascal runtime check. 



66 
Implementing the Smalltalk-SO System: The Tektronix Experience 

28. Through the fourth trace when Sensor primMousePoint dies be­
cause of a clash between the interpreter and the Pascal runtimes. 

29. We are well beyond the fourth trace when we discover that the 
method frame:window:para:style:printing: has a MethodHeader ex­
tension that specifies primitive number 0. We had assumed that 
an extension always specified a valid primitive number, but find 
that it may also be used to specify a method with more than four 
arguments. 

30. We have changed all unimplemented primitives so that they fail, 
and now correctly handle primitive O in MethodHeader extensions. 
By now, we should have something up on the 4025 display, but do 
not. Investigating, we find that the book says that the bitmap for 
a Form is the first field, whereas the sources say it is the second 
field. 

31. We are halftoning the display. We have to make a few adjust­
ments to prevent overrunning the display. Halftoning will take a 
long time, approximately two hours. After a while, a runtime ex­
ception was raised by a Pascal support routine that contained a 
bug. 

32. The "T" for the TopView window title tab is present on the dis­
play. Interpreter stopped after sending copyTo: to a Smalllnteger. 

33. We have disabled halftoning to the 4025, continuing with the 
study of the problem of sending copyTo: to a Smalllnteger. 

34. The problem is that the BitBlt primitive, copyBits did not return 
anything, thus forcing the stack off by one. Similarly, beDisplay, 
and beCursor did not return anything. We have added more dis­
play memory to the 4025. 

35. Hurray! ''Top View" window title tab is on the screen. Pascal 
runtime checks detected an out-of-range scalar while setting up 
arguments for copyBits. We have always assumed that BitBlt argu­
ments are unsigned, but that is not so. We were told that BitBlt 
should do source clipping, so we will add that to BitBlt. 

36. The entire "Top View" window is on the display, then erased. We 
eventually crashed because we are out of object space, but unsure 
why. 

37. We are out of object space because the book's methods for super­
class send was incorrect: another level of indirection is necessary. 

38. We now have "Top View" window, Browser, and Transcript window 
on the display. Interpreter stopped when the mouseButtons primi­
tive failed. 

l 



67 
Initial Software 

39. We turned on halftoning to see what would happen. This was a 
mistake because windows are halftoned black and then white. We 
decided to reload and try again without halftoning. 

40. We have reached the idle loop, checking if the mouse 1s m any 
window. We changed the position of the mouse (by altering two 
memory locations) and placed it within the browser. The browser 
awoke and refreshed four of its panes. The fifth pane (code pane) 
caused an interpreter crash with a Pascal out-of-range error due 
to a minor bug in the mod primitive. 

41. Great excitement! We have refreshed the window containing a 
"Congratulations!!" message. Eventually we crashed because the 
Float < primitive fails. The system tried to put up a Notify win­
dow, but had difficulty because of other primitive failures. Howev­
er, it was able to put up messages in the Transcript window. For a 
system that is not yet fully implemented, it is amazingly robust. 
We noticed that certain BitBlt operations seem to put up incorrect 
information, then erase it. For example, putting up the "Top 
View" title tab, the text reads <'Top Vijkl" for a short time, and 
the incorrect part is then repainted. Investigation showed the 
method computeMasks to have a < selector that should have been 
a < =, an error carried over from the book. 

42. Generally poking around with the system. We have found that we 
need floating point primitives in order for scroll bars to work, so 
we have implemented all but the fractionalPart primitive. Rather 
than develop an IEEE Floating Point package, we acquired one 
from another group at Tektronix. We have also speeded up BitBlt 
by using 4010-style graphics commands with the 4025. 

43. We have implemented object memory statistics to report the num­
ber of fetchPointers, storePointers, etc. performed. We have also 
added a lookup cache for faster message send processing. A cleri­
cal error in the caching routines crashes the virtual machine. 

44. An uninitialized variable causes the cache to misbehave. 

45. The cache is functioning well. Our initial algorithm is to exclu­
sive-or the Oops of the receiver's class and the method, then ex­
tract bits 3-7 and index a 256 element array of 8 byte entries. The 
interpreter definitely runs faster with the cache. The cache con­
sists of the Oop of the selector, Oop of the receiver's class, Oop of 
the method, the most significant byte of the method header, and 
one byte indicating either the primitive index or 0. 

46. Tried a new hash function, shifting two bits to the left before the 
exclusive-or because we observed that the Oops of different selec-



68 
Implementing the Smalltalk-SO System: The Tektronix Experience 

Summary of 
Initial Software 

tors in the same class are very similar to one another. Some 
speedup was noted. 

47. Another hash function, this time adding the Oops rather than ex­
clusive-oring them. No noticeable change. We did move the mouse 
to the first pane of the Browser and crashed the system when the 
interpreter passed a Smalllnteger to the memory manager. 

48. Further examination of the previous problem shows that we did 
not cut the stack back far enough after a value: message. This bug 
was carried over into our code from the book, but only appears 
when sending value: within an iterative loop. 

49. We have fixed value:, now we need to write the perform: primitive. 

50. We have installed perform:, but get an infinite recursion because 
the floating point package is not IEEE format. We will write one 
in Pascal. 

51. With the new floating point code, we can now cut text, pop up 
menus, and so on. This is great! 

At this point, we added some simple performance monitoring code. We 
counted the number and type of object memory references, the number 
of bytecodes executed, and information concerning the performance of 
the lookup cache. For each bytecode executed, an average of just under 
10 object memory references were made. The majority were calls to 
fetchPointer:, then storePointer:, fetchByte:, and fetchClass:. The various 
lookup cache algorithms were found to perform either fairly well (50 to 
70% hit rate) or very poorly (20% or worse hit rate). Evidently, caching 
algorithms either perform quite well or miserably. 

We feel that we were able to implement a relatively complex piece of 
software in less than six weeks (that is, from nothing to a working sys­
tem) in less than 60 runs for several reasons: 

• We were fortunate to have very good software engineers. 

• We had a well-defined task. 

• Because it took so long to load the virtual image (about 10 min­
utes) from the file server and so long (again, 10 minutes) to 
download our virtual machine from the host, we were very careful 
in coding and in analyzing crashes. We were also sharing the hard­
ware with another group, so we made good use of our time on the 
machine. 

• The specification, though not without error, was well written. 

T 



The Second 
Virtual Image 

69 
The Second Virtual Image 

About this time, we received the second virtual image from Xerox Palo 
Alto Research Center (PARC). With this image, the handling of primi­
tive methods was much cleaner, access to BitBlt was improved, the ker­
nel classes were rewritten, and a source code management system was 
added. Several significant changes to the virtual machine specification 
were made, with the intention that these would be the final modifica­
tions. The s~cond image also made use of the process primitives, while 
the first image did not. 

Because a general cleanup of our interpreter seemed a good idea, and 
because a fair amount of the interpreter needed to be changed to sup­
port processes and new primitive numbers, we rewrote much of it. A 
history of our runs for the second virtual image follows: 

1. We got our "Initializing ... " message, and the system crashed be­
cause we were trying to initialize the cursor frame buffer. Since 
our bitmap display was not yet available, the presence of this code 
was premature. 

2. We are through one-third of the first trace, but a conditional 
branch bytecode branched the wrong way. 

3. Several problems noted: 

• Metaclass names no longer print properly on our traces. 

• We encountered off-by-one errors in stack operations while han­
dling bytecode 187 because we forgot to adjust the stack index. 

• We encountered off-by-one errors in stack operation for 
Smalllnteger //. 

• Our trace does not print operands for Smalllnteger * properly. 

• We need to carefully check the code for all stack operations. 

4. M68000 stack overflow causes parity errors. 

5. We are through trace 1, and three-quarters through trace 2 when 
Pascal detects an out-of-range scalar because the routine 
returnValue:to: returned to a deallocated block context. We had 
failed to increase a reference count. 

6. We are almost halfway through trace 3 when we hit an 
unimplemented process primitive. We also noticed the primitive 
return of an instance variable did not pop the receiver, thus caus­
ing the stack to be off-by-one. 



70 
Implementing the Smalltalk-80 System: The Tektronix Experience 

7. We are about 60% through trace 3 when we try to add nil to an 
instance of class Rectangle. Caused by our coding error: when a di­
rect execution send fails, we fail to tidy up the stack pointer. 

8. We find that we need to implement the process primitives. 

9. BitBlt fails to clear the high-order bits of a register causing a crash 
on the 21380th message sent. 

10. Sending the selector + to an Array fails. Stack is off-by-one be­
cause the copyBits primitive failed to return self. 

11. We find that the resume: primitive does not work due to an 
uninitialized variable. 

12. More problems with resume:, it fails to set a boolean. 

13. More problems with the resume: primitive: the process to be re­
sumed has nil as its instruction pointer because the initial instruc­
tion pointer is not set in primitiveBlockCopy. 

14. The resume: primitive works finally! Unfortunately, the wait prim­
itive does not because of an incorrectly coded branch. 

15. The wait primitive works, and we are through the third trace cor­
rectly. We forgot to code the setting of the success boolean for 
primitive become:, so a notify window is created. 

16. Fired up the system. We have executed more than 15,000,000 
bytecodes and it is still alive! 

In order to improve performance, we made many changes to the inter­
preter and the memory manager. Changes to the interpreter included 
the caching of absolute addresses in the interpreter, thus employing 
considerably fewer calls to the memory manager. For example, to ex­
tract the fields of a source form, rather than a fetchPointer call to the 
memory manager for every field, the interpreter merely cached an ab­
solute address and stepped through a range of offsets. Within the mem­
ory manager, many procedure calls were replaced with macro calls that 
were expanded by a macro preprocessor. Not only did this save the 
overhead of procedure calls, but quite often allowed common 
subexpression elimination to occur, thus actually decreasing the 
amount of compiler-generated code. 

We also sped up certain parts of the interpreter based on where we 
believed the interpreter was spending its time. With these optimiza­
tions, performance is approximately 4 70 bytecodes a second. 

An observation: Utilizing a raw computer (that is, one without an 
underlying operating system) to implement a Smalltalk-BO system is a 
double-edged sword: on the one hand, you can place data structures and 

T 



-

Second Version 
of the Hardware 

The Third 
Virtual Image 

Performance 
Modeling Tool 

71 
Performance Modeling Tool 

code anywhere in the system, and you have complete control of the 
hardware. On the other hand, the lack of performance monitoring tools 
and underlying file systems can be a problem because it takes time to 
implement them, rather than just interfacing to them. 

At about this time, we added floppy disks to the system, as well as a 
utility program that could save and restore arbitrary memory locations 
on the disks, thus freeing us from the microprocessor development sys­
tem file server. The 10 minute delay for the loading of a virtual image 
was reduced to about 45 seconds. A more dramatic change to the hard­
ware was the addition of our bitmap display. No longer would we have 
to translate bitmap operations to vector drawing commands on the 
4025, nor wait for a window to be halftoned. We also added a standard 
Tektronix keyboard and a mouse. In order for the mouse and keyboard 
(as well as portions of the Smalltalk-80 software) to work, we also added 
a one millisecond timer interrupt. 

As part of another project, a new M68000 processor board was made 
available to us. Recall that the bus that we were using ran at 4 MHz, 
which introduced wait states into the M68000. The new processor board 
used a one longword data cache and a one longword instruction cache 
to reduce bus requests. This resulted in a 70% speedup in system per­
formance, to approximately 800 bytecodes per second. 

At this point, our goal became to build a virtual machine that was 
clearly faster (approximately 4000 bytecodes per second), but to do it 
quickly and at r~latively low expense. The method we chose was to de­
velop a performance analysis tool and, using the results of the measure­
ments, to rewrite time consuming portions of the virtual machine in 
assembly language. The following sections summarize our findings and 
our techniques for speeding up the virtual machine. 

To monitor the execution of the virtual machine, we developed a simple 
analysis tool that was called by the one millisecond timer interrupt rou­
tine. Each time it was called, it stored the value of the interrupted 



72 
Implementing the Smalltalk-80 System: The Tektronix Experience 

The Results of 
Performance 
Monitoring 

M68000 program counter. By changing a memory location, a routine 
could be activated to print a histogram showing ranges of program 
addresses, the number of times the program counter was found to be 
within the range, and the percentage of time spent within the range. 
The size of the address range for each line of the histogram was 
selectable by the user. We mapped routine addresses to these ranges so 
that the histogram showed time spent in each routi~e. This tool proved 
to be invaluable in speeding up the virtual machine. 

Prior to utilizing this tool, we decided to measure how much time 
was spent in the interrupt service routine. The Smalltalk-80 virtual 
machine expects a timer interrupt every millisecond and the routine 
checks the mouse and keyboard motion registers. If a change has oc­
curred, the routine makes note of the change so that the bytecode dis­
patch loop can create a Smalltalk-SO event. Like much of our virtual 
machine, our timer interrupt routine was initially written in Pascal. 
Because the interrupt routine has many basic blocks, and the optimizer 
of the Pascal compiler operates only upon one basic block at a time, the 
interrupt service routine spent a great deal of time reloading registers 
with previously loaded values. We discovered that an amazing 30% of 
the M68000 cycles were going to the interrupt service routine! One of 
the first optimizations that we performed was to take the Pascal com­
piler-generated code and to perform flow analysis on it. The new inter­
rupt service routine consumed 9% of the M68000 cycles. Future plans 
call for hardware to track mouse and keyboard events, and for timers to 
interrupt the M68000 only when necessary (for example, when an in­
stance of class Delay has finished its wait period). 

The performance monitoring tool showed us some statistics that were 
surprising to us (the percentage figures presented below do not include 
time spent in the interrupt service routine nor the performance moni­
toring tool). Approximately 70% of the M68000 cycles were being spent 
in the memory manager, 20% in the interpreter and primitives, and 
10% in BitBlt. The bulk of the time in the memory manager was spent 
in only a few routines: fetchPointer:ofObject:, storePointer:ofObject:­
withValue:, fetchClassOf:, countUp:, countDown:, and two sets of routines 
generally referred to as the recursive freer and the niller. Previous sta­
tistics we gathered had indicated that fetchPointer:ofObject: and store­
Pointer:ofObject:withValue: were popular routines, but they were rela­
tively short and (so it seemed) should consume relatively little processor 
time. 



73 
The Results of Performance Monitoring 

Looking at the Pascal-generated code, we felt that we could do far 
better with assembly language, and we recoded all memory manager 
routines that the interpreter and primitives could call directly. 
Recoding fetchPointer:ofObject: resulted in a 4.5% speedup. Next, we 
recoded storePointer;ofObject:withValue: and achieved an additional 13% 
speedup. The major difference between these two routines is in refer­
ence counting: when storing pointers, reference counts must be updated; 
when fetching pointers they do not. Although we had previously con­
cluded that reference counting was an expensive operation, we now had 
measurements of just how expensive. After recoding in assembly lan­
guage all the routines callable by the interpreter and primitives, the 
system was an aggregate 19% faster. 

Next, we considered routines that were private to the memory man­
agement module. From the histograms, it was obvious that we spent a 
great deal of time initializing just-instantiated objects to nil pointers (or 
zeroes for non-pointer objects). This inefficiency again arose from the 
strict basic block analysis of the Pascal compiler. For the price of a pro­
cedure call to an assembly language routine, we were rewarded with a 
speedup of nearly 10%. 

Another major change to the memory manager came in the area of 
the so-called recursive freer. When an object's reference count drops to 
zero, this set of routines is activated to decrement the reference counts 
of the object's referents and, should their counts drop to zero, recursive­
ly free them. The first attempt at speeding up this process was done in 
Pascal and resulted in nearly a 10% speedup. Later on, we rewrote the 
recursive freer again in assembly language achieving an additional 
speedup. 

The instantiation of objects was also expensive because several proce­
dure calls were made. We rewrote this code (still in Pascal), collapsing 
several procedures into one. Later, the instantiation routines were re­
written in assembly language. 

Changes to the interpreter and primitives were done in an interest­
ing manner. Recall that we had a functioning, albeit slow, interpreter. 
With the belief that it is far better to change one thing at a time, rath­
er than everything at once, we modified a small portion of the inter­
preter and tested the change. Once the change was shown to be 
satisfactory, we changed another part of the interpreter. 

Initially, we rewrote the bytecode dispatch routine, but, in keeping 
with our philosophy of small changes, none of the bytecode interpreta­
tion routines. Thus, the assembly language bytecode dispatch routine 
set a boolean indicating that the assembly language dispatch had failed 
and that the Pascal routine would have to take over. Then we added 
bytecode interpretation routines, more or less one at a time. Eventually, 
we were able to discard the Pascal dispatch loop and bytecode inter­
preters completely. 



74 
Implementing the Smalltalk-BO System: The Tektronix Experience 

The Third and 
Fourth Images 

Once all the bytecode interpretation routines were completed, we 
turned our attention to the primitive routines. These changes were ac­
complished in a similar manner: initially, all assembly language primi­
tives failed, forcing the Pascal-coded primitives to run. We would then 
select a primitive, code it in assembly language, and test it. Once it was 
found to be acceptable, we selected another primitive to re-code. Final­
ly, the Pascal primitives were discarded. Rather than call high-frequen­
cy primitive routines, we included many of them in-line. 

In order to save some procedure calls to the memory manager when 
instantiating objects, the interpreter first tries to directly acquire the 
new object off the free lists. If the attempt fails, the interpreter calls 
the memory manager. Such "fuzzing" of the line between the pieces of 
the virtual machine seem necessary to achieve acceptable performance 
on current microprocessors. This demonstrates how a clear boundary 
between the memory manager and the rest of the virtual machine is 
both a blessing and a curse. 

The changes to the memory manager and interpreter eventually re­
sulted in a 3500 bytecode per second system. 

Our technique of making incremental changes to the virtual machine 
enabled us to use a working system and to bring up new virtual images 
as they were received from Xerox. A log of the attempts to run the 
third image follows: 

1. At Xerox, the display bitmap is simply an object in the object 
space. In our implementation, the display bitmap lives at a specif­
ic address, and we encountered a problem because this image 
sends the become: primitive to the current display object. We 
modified our code in the become: routine. 

2. We encountered a Pascal subscript-out-of-range error. The routine 
that returns instance variables was coded incorrectly, due to an 
error in the book's specification. 

3. There are some new primitives related to the Xerox implementa­
tion in the image. We modified our interpreter to understand 
them. 

4. A bit of Smalltalk folklore: "If 3 + 4 works, everything works." 
We typed 3 + 4 into a window and executed it . .It did not work be­
cause the Smalllnteger size message returned the wrong result. 



Some 
Observations 

75 
Some Observations 

5. Executing "Circle exampleOne" causes infinite recursion because 
the graphics classes were coded incorrectly by Xerox. They had 
not noticed this problem because the Xerox implementation of 
primitive new: did not comply with the formal specification, 
allowing their code to execute. 

6. The system is up and working. 

The fourth image was brought up on the first attempt. 

If we analyze the coding errors that we encountered in our various im­
plementations, we find that most fall into the following categories: 

• Off-by-one errors 

• Failing to return the correct object, or failing to return any object 
(leading to off-by-one errors) 

• Conditional branch reversals 

• Errors in the specification 

Perhaps the most painful part of debugging a virtual machine is finding 
the off-by-one errors. These errors typically arise in primitive handling 
and in the stack activation records. Certain primitives may fail, and 
Smalltalk-SO methods are expected to take over. During the develop­
ment of the virtual machine, it is quite common to damage the object 
references on the stack or to misadjust the stack pointer resulting in 
off-by-one errors. When returning from a procedure call in many stack 
machines (the M68000 is an example), if the processor's stack has an 
extra argument or does not have a return value, the correct return ad­
dress will not be found, and the processor will return to an erroneous 
location. The typical result is a system crash. In the Smalltalk-SO virtu­
al machine, the return address (actually the sender field) of the activa­
tion record (an instance of either class MethodContext or class 
BlockContext) is always in a known place, and a correct return can al­
ways be made and the machine will definitely not crash. Nonetheless, 
the interpreter (or primitives) may have pushed an incorrect result val­
ue or left garbage on the stack. Only later will this type of error mani­
fest itself. These errors can be time-consuming and relatively difficult 
to find. 

Errors resulting from conditional branch reversals are common, and 
are not further discussed here. 



76 
Implementing the Smalltalk-SO System: The Tektronix Experience 

Conclusions 

Acknowledg­
ments 

We certainly found our share of errors in the specification of the 
Smalltalk-SO virtual machine. This statement should not be taken as an 
affront to the Software Concepts Group at Xerox PARC. They were 
both developing and documenting two complex software products (the 
Smalltalk-SO system itself and the underlying virtual machine), and it 
was our job to point out discrepancies. Indeed, they produced an 
amazingly well constructed software system, and future implementors 
should have fewer problems with their own implementations. 

We have programmed very few application programs in the 
Smalltalk-SO language. However, we do have one very definite data 
point in this area. Our file system (see Chapter 16) was totally devel­
oped in the Smalltalk-SO system and in a relatively short time period. 
All debugging was done using the Smalltalk-SO system: we never used 
the Pascal or assembly language debugging tools. 

A final observation: the routines collectively known as primitives are 
about one-third to one-half of the implementation effort. Bear this in 
mind when scheduling an implementation. 

Our work with the Smalltalk-SO system has shown it to be a robust, 
well-engineered piece of software. The initial, albeit incomplete, virtual 
machine required six weeks of effort by three software engineers, pri­
marily using a high-level language. This resulted in a slow but useable 
system. By monitoring where the virtual machine spent its time, we 
were able to construct a system with adequate performance. For first­
time implementors, we heartily recommend a similar approach. 

Without question, the Smalltalk-SO system will have a strong impact 
on many areas of computer science, including language design, system 
architecture, and user interfaces. Perhaps most importantly, the system 
and language cause the user to think about problems in new ways. 

Many people contributed to our Smalltalk-SO effort. Allen Wirfs-Brock 
designed and implemented the Pascal-based interpreters and primitives 
and the initial assembly language enhancements. Jason Penney 
designed and implemented BitBlt, the floating point package, the floppy 
disk driver, and the assembly-enhanced interpreters. Joe Eckardt 
designed our excellent bitmap display and has made interesting modifi­
cations to the Smalltalk-SO code. Tom Kloos and John Theus designed 



I 
L 

References 

77 
References 

and maintained our M68000 system, as well as the interface to the 
mouse, keyboard, and floppy disks. Allen Otis graciously shared his 
hardware with us in the early days of the project and made some of the 
first measurements of the virtual machine. Larry Katz made many sug­
gestions for the improvement of the book and served as our unofficial 
kibitzer during the implementation and provided much food for 
thought. We would like to acknowledge the various managers (Jack 
Grimes, Don Williams, Dave Heinen, George Rhine, and Sue Grady) 
who had the foresight and wisdom to allow us to work on the project. 
Glenn Krasner, of Xerox PARC, provided answers to our questions and 
provided us with ideas for speeding up our implementation. And, we 
would like to thank Adele Goldberg and the Software Concepts Group 
of Xerox PARC for including us in the book review and implementation 
process. Without them, we would have naught. 

1. Ingalls, Daniel H. H., "Design Principles Behind Smalltalk", Byte 
vol. 6, no. 8, pp. 286-298, Aug. 1981. 



78 
Implementing the Smalltalk-80 System: The Tektronix Experience 

-:------1 ~I ~,n ~ 1'~\ ,. \ 

~ 

@ 

~ 

~~::,., ___ , 
ft / 

- , 

_1/ 

----~ u-__ 
--~ --___ 

00 ~ 
----= 

I 
~ 

l 



Introduction 

Smalltalk-SO 
Project at 
Hewlett­
Packard 

The Smalltalk-SO 
Implementation at 
Hewlett-Packard 

Joseph R. Falcone 
James R. Stinger* 
Computer Research Center 
Hewlett-Packard Laboratories 
Palo Alto, California 

This report describes ·one of the four test sites for the Smalltalk-SO re­
lease process: a personal computing research group at the Computer 
Research Center of Hewlett-Packard Laboratories in Palo Alto. The fol­
lowing sections present a history of the work at Hewlett-Packard, an 
overview of our implementation, a description of the development envi­
ronment, and some conclusions. A comprehensive analysis of the 
Hewlett-Packard implementation is in the companion paper (see Chap­
ter 12). 

The Smalltalk project at Hewlett-Packard Laboratories received author­
ization on December 8, 1980. Beginning in November of 1981 the proj­
ect slowed considerably, and the new year found nearly all development 
at a halt. The project officially closed on February 22, 1982, though 
some independent and academic work on the system continues. Theim-

*The views expressed herein are those of the authors, and do not necessarily represent 
the position of Hewlett-Packard or any commitment to products or services. Copyright © 
Joseph R. Falcone and James R. Stinger, 1982. All rights reserved. 

79 



80 
The Smalltalk-SO Implementation at Hewlett-Packard 

Project History 

plementation portion of the project produced nine releases on five dis­
tinct host architectures. Documentation review and background work 
took one person-year of our group's time. We produced the first release 
of HP Smalltalk in two months, and subsequent releases followed coin­
ciding with the availability of new Smalltalk images and new host com­
puters. The analysis of these systems consumed another person-year. 

This section describes our experience implementing a Smalltalk-80 
system according to the specifications distributed during the test pro­
gram. When the project began, neither the documentation nor the soft­
ware was complete, a fact which profoundly influenced the duration, 
scope, and direction of the project. 

The first three months of the project involved reviewing chapters of the 
Smalltalk-SO implementation guide and selecting the first host machine 
for the implementation. The first few chapters covered the underlying 
philosophy of Smalltalk and set the ground rules for an implementa­
tion. As time passed, the chapters concerned with the specifics of imple­
mentation began to arrive. 

The Smalltalk-SO language itself was the specification language used 
to describe the implementation. We felt that this hindered our efforts in 
two ways. First, it forced us to learn Smalltalk before we had our own 
system, and at a time when Xerox possessed the only Smalltalk-SO en­
gines (and even those were incomplete). Second, it introduced some 
unwelcome ambiguity into the specification. 

Initially we considered the HP 3000 Series 44 for the implementation 
host because of its stack architecture and position as the fastest HP 
processor then available (approximately 0.5 MIPS). This strategy 
seemed appropriate for the Smalltalk-SO virtual machine architecture 
as we understood it. However, after studying the matter further, we be­
came aware of several implementation obstacles. We determined that 
Smalltalk would perform significantly better on the Series 44 if we put 
it directly on the bare machine, instead of layering it on MPE, the HP 
3000 operating system. As there is a tight coupling between MPE and 
the microcode on the Series 44, the Smalltalk-SO virtual machine code 
on the bare Series 44 would have to satisfy the expectations of the mi­
crocode for MPE structures. We also were not sure how Smalltalk 
would behave in an environment with separate code and data segments 
(enforced by hardware), as is the case on the Series 44. We explored 
changing the microcode of the Series 44, but we felt that the task would 
take too much effort, especially since none of the members of the group 
had microcoding experience. We also considered modifying the 
Smalltalk-SO compiler to produce Series 44 machine code, but Xerox ad­
vised that this would be difficult without a working Smalltalk system 
on which to do it. Because of these problems, plus time restrictions, we 
decided to postpone putting Smalltalk on the HP 3000 Series 44. 



81 
Smalltalk-80 Project at Hewlett-Packard 

Instead, we decided to implement our first Smalltalk-80 system in 
Pascal under TOPS-20 on a DECSYSTEM-20 mainframe. Our selection 
of Pascal as the implementation language reflected the investigative 
nature of the project. We were not sure that a strongly-typed high-level 
language could implement the Smalltalk-80 virtual machine as speci­
fied, and it was an interesting exercise to try to do it and find out for 
ourselves. 

Around the middle of March we felt we had enough information 
about the Smalltalk-80 virtual machine to begin writing the interpret­
er. The first test release Smalltalk-80 image also arrived in March. The 
DEC-20 implementation proved sufficient and useful for the early 
stages when many subtle implementation points were unclear. In par­
ticular, the type and range checking in Pascal exposed many implemen­
tation problems as we progressed. Such experimentation with the 
manner of the implementation continued throughout the project. 

By the middle of April, the first version of the object memory manag­
er was operating. This version included dynamic memory management 
via reference counts. A month later, the interpreter managed to exe­
cute up to the first invocation of a primitive method. We had included a 
monitor which allowed us to observe the operation of the system via a 
motion picture display (see p. 103 for more details on the development 
environment). Two weeks later, on June 5, 1981, we reached a project 
milestone: we ran the first Smalltalk-80 test image successfully. This 
system on the DEC-20 became the first HP Smalltalk release. 

Although the system ran, we did not have graphics capability until 
the middle of the summer. This used an HP 264 7 terminal connected to 
the DEC-20 system, and unfortunately, it took 50 minutes to display a 
single Smalltalk screen. We knew from the start that our DEC-20 did 
not have a suitable graphics device, so as early as April we began to ex­
plore different approaches. We had already ordered a Lexidata 3400 bit­
mapped graphics system with an HP-IB (IEEE-488) interface for the 
proposed HP 3000 Series 44 implementation. Using a National Instru­
ments GPIBll-2 IEEE-488 interface, we could connect the Lexidata to 
the V AX-11/780 UNIX system owned by our department. After much 
discussion, we adopted this plan. We gained several advantages by 
transferring our efforts to VAX UNIX. First, it allowed us to use our 
Lexidata system as the graphics device. Second, it took advantage of the 
UNIX and C expertise of a team member. Third, and most importantly, 
it would give us a version of Smalltalk which could be portable across 
UNIX engines. 

In the process of moving from the DEC-20 to the VAX, we converted 
the entire system from Pascal to C. We developed editor command 
scripts for the code conversion to automate the process as much as pos­
sible. Over the course of the next month, as we completed various parts 
of the system on the DEC-20, we moved them to the VAX, so that by 
June 19 we had transferred the entire svstem. 



82 
The Smalltalk-BO Implementation at Hewlett-Packard 

The object memory was the first part of the system transferred to 
UNIX. Because of its dependence on the memory architecture of the 
host machine, the memory manager was almost completely rewritten. 
A version of it was running during the first week of May. We eventual­
ly rewrote about half of the original Pascal code as part of the move to 
UNIX. The recoding was necessary partly for reasons of efficiency and 
partly to take advantage of certain VAX features. In addition to rewrit­
ing the object memory manager, we redesigned the execution monitor, 
the memory inspector, and the input/output routines. Most of the 
small, frequently-called Pascal procedures became macros. The inter­
preter and primitive routines remained relatively unchanged. We also 
integrated the object memory inspector into the execution monitor, so 
that one could switch between them to examine objects during 
debugging. By the end of the conversion process, the HP Smalltalk-BO 
system consisted of 7500 lines of C code. Remarkably, it executed a 
dozen or so instructions after its first successful compilation on UNIX. 

Although some work continued on the DEC-20 Smalltalk-BO system, 
particularly with the graphics interface, most of our effort shifted to the 
UNIX version. By the end of June we had fast and slow versions of 
both the object memory manager and the bytecode interpreter. The fast 
versions coded many of the C procedures of the slow versions as macros. 
Although the fast versions were indeed faster, they were less useful for 
debugging since C debugger breakpoints could only be set on the initia­
tion or completion of a macro, leaving the intermediate steps of the ex­
pansion inaccessible. In addition, the slow version of object memory 
performed much error checking which efficiency considerations had 
eliminated from the fast version. Once the interpreter stabilized, we 
discarded the slow version of it, primarily to simplify version manage­
ment. 

A prime reason for moving the Smalltalk system to UNIX was to 
take advantage of certain tools, such as the C profiling facility prof It 
showed not only where the system was spending its time, but also how 
fast it was running. Using the information gained from the profiles we 
were able to improve the performance of the system considerably 
through the following techniques: 

1. We used structure casts overlaying object memory for contexts 
and other fixed-size objects to reduce access time. After setting up 
the base address, these casts allow direct access of all elements of 
the structure. 

2. We expanded small procedures with few invocations in-line. 

3. We recoded very small procedures as macros. 

4. We cached frequently accessed information in special variables, 
including the stack and instruction pointers as absolute addresses, 
and the current active context and method as base addresses. 

T 

l 



83 
Smalltalk-BO Project at Hewlett-Packard 

When the second image release arrived in June, instead of abandoning 
the first image and focusing our attention on converting the system to 
run the new release, we decided to work with the first image until it 
was fully functional. We felt the effort would pay off when getting the 
system to work on subsequent image releases. Unfortunately, the pur­
pose of the first image, as stated by Xerox, was merely to provide a ve­
hicle for debugging the Smalltalk-80 virtual machine interpreter. Thus, 
there was. no documentation available on the user interface for this 
first image; neither did we have a complete Smalltalk source listing. 
Also, the Lexidata graphics system was not available until the end of 
June. To help ease the problem of not having any graphics output be­
fore that time, we modified the scanword primitive to display any text 
on the session terminal that would normally appear on the graphics de­
vice. Thus, we saw text output a full two weeks before we saw our first 
Smalltalk screen. 

By the middle of August, keyboard input was working, including an 
appropriate mapping of the keys into the Smalltalk character set and a 
keyboard polling scheme that did not cause the system to wait for a 
character to be typed if none was in the buffer. 

In early September we started to convert the system for the second 
image while finishing the implementation for the first image. After 
solving a number of very elusive problems, everything except floating 
point worked. We were able to do 32 factorial in 14 seconds, 100 factorial 
in 90 seconds, and 200 factorial in 360 seconds. At this point our chief 
concern was simply getting Smalltalk to work, and the slow operation 
of the system was the least of our worries. 

By the end of September we had recompiled our first method in the 
browser, run the Turtle demo successfully, and managed to get the 
snapshot facility working. Early in October we discovered how to de­
clare variables which permitted more sophisticated top-level program­
ming. By the middle of October, the floating point primitives were 
working. One annoying problem with testing the system was that the 
code which executed after loading a Smalltalk snapshot refreshed all 
the windows and required some time-consuming reorganization on en­
try to the first browser pane. To get around this, we constructed work 
images which were snapshots of the system taken after these tasks had 
concluded. We also generated a version of the system which did not in­
corporate the object memory inspector or the execution monitor. We 
used this new sleek version for demonstrations and software develop­
ment, while we continued to debug with the original system. By this 
time the original system contained over 10,000 lines of C code. These 
systems constituted the second release of HP Smalltalk and the first on 
VAX UNIX. 

We began to make the changes necessary to run the second image in 
the beginning of September. By the first week in October the system 
executed up to the first invocation of the inputSemaphore primitive. 



84 
The Smalltalk-SO Implementation at Hewlett-Packard 

This was a major accomplishment since the second image had required 
a significant restructuring of the system. There were changes in 
input/output handling, primitive invocation, and process management 
(for multiple processes). We also discovered that some of the class Oops 
in the second image differed from those in the previous version. This 
was a recurring problem with each new release and the system would 
behave somewhat strangely until we remembered to check the class 
Oops. By the end of the first week in November the system was 95% 
functional with the second image, and only a few unimplemented prim­
itives remained. 

At about this time, Dave Patterson, representing the University of 
California at Berkeley, obtained a research license from Xerox enabling 
him to study the Smalltalk-SO system in his graduate seminar on com­
puter architecture. Dave requested a copy of our UNIX Smalltalk sys­
tem for his studies, and upon receiving clearance from Xerox to do so, 
we delivered the second release HP system to him. We expended very 
little effort in porting the system to their VAX; it took them considera­
bly longer to interface their graphics terminal to it. The experiences of 
the Berkeley Smalltalk group are discussed in Chapter 11. 

By early December the system was fully operational with the second 
image. This system featured an early version of the new Smalltalk-SO 
user interface, and it became the third release of HP Smalltalk. We 
provided this release to Berkeley for use in their studies, since it dif­
fered significantly from the previous one. 

Also in December, Xerox delivered the third Smalltalk-BO image. The 
system required only minor modifications for this new image, so it was 
running in a few days. However, there were some minor bugs that 
needed attention before it was fully functional. More serious were a 
number of problems with the Smalltalk code itself which made it neces­
sary to revise this image release (seep. 96). 

At this point we were ready to consider enhancements to the system. 
We added a more flexible image handler, a garbage collector, an opti­
mized object memory system, and a method lookup cache. In addition, 
we implemented the replaceFrom:to:with:startingAt: method as a primi­
tive to speed up string processing. The third image system with these 
modifications constituted the fourth release of a HP Smalltalk-BO sys­
tem. The project closed shortly after this release, and there have been 
no significant structural changes to the system since. All project mem­
bers went on to new assignments in the research center. 

Cancellation was a major, but not fatal, setback as we undauntedly 
reached another milestone on March 13, 1982 when the system execut­
ed the testStandardTests benchmark without error. Nagging object 
memory allocator problems had thwarted previous attempts to run the 
complete benchmark for some time. Unfortunately, as the project had 
been closed for nearly a month, we could only spare a few moments 



Overview of 
the System 

85 
Overview of the System 

here and there to work on the system. Debugging was usually done in 
pairs, and we found it particularly difficult to coordinate our schedules 
now that we were all working on different projects. But we were deter­
mined to attain full functionality, and, given our limitations, it was 
quite an achievement. 

Two weeks later, the fourth Smalltalk-BO image arrived from Xerox. 
Again, the modifications for this image were minor and took only a few 
days to make. Enhancements to this version of the HP Smalltalk-BO 
system include an improved object memory inspector, an increase in 
the speed of drawing lines by implementing the drawloopX:Y: primitive, 
and a new hard-copy facility for the Printronix line printer and the 
Versatec electrostatic plotter. The system also includes a mechanism 
for displaying Smalltalk screens on HP graphics terminals, at about 
three minutes per image-an improvement over the previous 50 min­
utes in the first release. 

On April 28, 1982 we released our fifth version of the Smalltalk-BO 
system, which we call HP Labs Smalltalk-84 for historical reasons re­
lated to our internal release numbering. This version was the first 
made available for use by staff at, Hewlett-Packard Laboratories Com­
puter Research Center. 

In parallel with the documentation and analysis of the system, we 
made a number of modifications to the fifth release. Many of these 
modifications were a direct result of having to explain our implementa­
tion in this and other technical reports. Documenting the system in de­
tail exposed many aspects that we had overlooked in our rush for 
implementation. In addition, the battery of tests used to generate the 
statistics in the companion report suggested many subtle ways to im­
prove performance. In tests this revised version of HP Smalltalk-84 exe­
cutes from 33% to 500% faster than our previous systems. We released 
this sixth version on September 13, 1982. 

Smalltalk is similar to other language implementations at Xerox Palo 
Alto Research Center in that it has its own virtual machine. The 
Smalltalk-BO virtual machine consists of a byte-oriented instruction set 
or bytecodes together with an associated support environment. Porting 
the Smalltalk-SO system to a new machine involves implementing a 
Smalltalk-BO virtual machine emulator to execute bytecodes and man­
age resources such as memory, time, files, and graphics. The distribu­
tion format for the Smalltalk-BO system is an image or snapshot, 
somewhat analogous to an APL workspace. 



86 
The Smalltalk-80 Implementation at Hewlett-Packard 

Interpreter 

The virtual machine is in three parts: the bytecode interpreter, the 
primitives, and the object memory. The interpreter dispatches and exe­
cutes the bytecodes. The primitives are the gateway through which the 
system makes requests to the underlying resource managers. The mem­
ory manager maintains a dynamic object store for the system. 

The interpreter is the core of the Smalltalk-BO virtual machine emula­
tor. The Smalltalk-BO virtual machine is an abstract architecture 
designed to execute Smalltalk and is similar to the P-machine of Pas­
cal. It is a stack machine with a byte-oriented instruction set encoded 
chiefly to conserve space. Its most unusual aspect is the message send 
facility, roughly analogous to procedure call in conventional architec­
tures. There are no computational instructions as such because message 
sends perform their function, with special cases to expedite the more 
popular ones (such as arithmetic and logical operations). The implemen­
tations of most bytecodes are only a few lines of code, but certain types 
of message sends require many lines of code for selector lookup and 
context activation, since the worst case amounts to a late-binding proce­
dure call. 

Our first implementation of the Smalltalk-BO virtual machine inter­
preter was a literal translation of the specification we were reviewing: 
each Smalltalk-BO method in the specification became a Pascal proce­
dure in the DEC-20 version. When we moved the system to UNIX, we 
converted many of these procedures into C parameterized macros and 
consolidated several sets of interrelated procedures. These changes 
helped to avoid the substantial overhead of procedure invocation for 
most simple operations. In fact, often the consolidated code took less 
time than the original with the embedded procedure call. The parame­
terized macro facility gave us the best of both worlds-we moved many 
short procedures into in-line code without sacrificing the documentation 
value of the calling structure. 

We structured the interpreter as a large switch statement encased in 
an instruction fetch loop. Early on we made several significant perfor­
mance enhancements: 

1. We moved most of the simple bytecode emulation into the switch 
cases to eliminate procedure call overhead (which is considerable 
on some hosts). 

2. We cached Oops and addresses of the active context and method to 
speed up the frequent bytecode fetch and stack push/pop opera­
tions. 

3. We also cached the Smalltalk-BO virtual machine instruction 
pointer (IP) and stack pointer (SP) in the form of C address point­
ers, instead of representing them as integer field offsets. 



87 
Overview of the System 

Since the cached IP and SP values change during execution, occasional­
ly it is necessary to synchronize them with their values in object memo­
ry. Some of these occasions are: 

1. Change of current active context. 

2. Access of the current active context (e.g., instVarAt: and 
instVarAt:put: primitives). 

3. Certain object memory management operations (e.g., compaction). 

The most complex operation in the interpreter is message selector look­
up. A message send enters the interpreter along with the class of its re­
ceiver and a selector. The current class below is initially the class of the 
receiver of the message. The algorithm implementing class behavior in­
heritance is as follows: 

1. Search for the selector in the message dictionary of the current 
class. 

2. If the selector is not found and the superclass of the current class 
is not nil, then set the current class to its superclass and go to (1). 

3. If the selector is not found or the search reaches the end of super­
class chain, then give a message not understood error. 

Unfortunately, even though message dictionary access is through a 
hash function, the inevitability of selector collisions and the attractive­
ness of behavior inheritance cause a fair amount of both linear diction­
ary searching and superclass chain traversal. We added a simple meth­
od cache which eliminated much of the overhead, especially during 
repetitive tasks. The clumping of both selector and class values required 
a hash scheme with unusual characteristics. The cache has 509 ele­
ments and the hash function is 

((selector bitShift: -1) bitXor: (class bitShift: -1) \ \ 509) bitShift: 2 

Using a large prime for the cache size distributes hashes more evenly 
and gives performance comparable to caches four times the size. Unfor­
tunately, any time the system changes the object pointer of a compiled 
method, selector, or class, Smalltalk invalidates the entire cache. A 
more sophisticated approach to cache management would be a welcome 
addition. 

We have recently modified the interpreter to transfer the receiver 
and arguments using the fast block move instruction on the VAX. This 
has significantly reduced the overhead of context initialization. 



88 
The Smalltalk-BO Implementation at Hewlett-Packard 

Primitives 
The system primitives are the roots of the Smalltalk-80 virtual ma­
chine. One can view the primitives as a collection of system calls, a li­
brary of procedures, or a set of very important methods. Primitives 
exist for two reasons: Smalltalk cannot implement all system functions 
(e.g., 1/0 and basic arithmetic), and more important, Smalltalk code of­
ten cannot perform well enough for certain special functions (e.g., 
graphics). 

We implemented most of the non-arithmetic primitives with UNIX 
system subroutines, and added additional software layers to handle er­
ror conditions, to interface with other software and hardware compo­
nents, and/ or to simulate particularly unusual operations. In all, a 
mass of over 100 C procedures implements the more than 80 primitives 
included in our system. 

While it is not possible to code some primitive operations in 
Smalltalk, not all of them have to be implemented underneath the sys­
tem. Indeed, some primitives begin life as Smalltalk methods and enter 
native code after careful evaluation of cost and benefit. As a result, 
some primitives remain as optional native implementation candidates, 
with backup Smalltalk code in place to execute if the associated primi­
tive routine is absent or fails. An example is the set of primitives which 
handle arbitrary precision arithmetic, all of which have Smalltalk code 
to execute if the primitive invocation balks. 

The term primitive does not refer to the complexity of the routine, 
though many are simple, straightforward functions. Rather, it describes 
the level of implementation-the lowest level possible. Our decision to 
develop the system in portable high-level languages was in direct con­
flict with this notion. However, since we could not modify the microcode 
on our VAX, we had no alternative for the prototype system and the 
performance of the primitives suffered accordingly. We feel that 
microcoded Smalltalk-80 virtual machine support could have improved 
performance by an order of magnitude over our existing system. 

One of the more unwieldy concepts in the implementation was that 
of primitive failure: how and where to look for it, and what to do about 
it. We implemented most primitives with relatively strict runtime 
checking of the classes and value ranges of receivers, arguments and 
their fields. The current system probably has too many checks for valid 
receivers and arguments, but in some cases these were vitally necessary 
and helped us considerably during the debugging phase. In particular, 
the copyBits primitive contains a number of such checks. This checking 
may be stricter than absolutely necessary given the way the 
Smalltalk-80 code actually uses the primitives. However, we did not feel 
the specification of the Smalltalk-80 virtual machine was precise 
enough to rule out the need for these checks. 

The addition of primitives for string processing 
(replaceFrom:to:with:startingAt:) and for line drawing (drawloopX:Y:) re-

r 

J 



89 
Overview of the System 

sulted in impressive performance gains for work in those domains. 
However, we did not implement the arbitrary precision arithmetic and 
the file system primitives. Currently the arbitrary precision arithmetic 
primitives default to backup Smalltalk code which is relatively slow. 
This is not a serious problem since most Smalltalk system arithmetic 
stays within the signed 15-bit range of immediate small integer objects. 
Unfortunately, we will have to redesign most of the Smalltalk file sup­
port code to incorporate a reasonable interface for sophisticated hierar­
chical file systems (like UNIX). The file interface supported by 
Smalltalk is very low level, using too much information about physical 
disc operation. We do not consider this approach appropriate even for 
implementations without an underlying file system. 

Currently, we use a Lexidata 3400 graphics system connected to a 
VAX UNIBUS via HP-IB. The physical pointing device, a 
Summagraphics Bitpad One with a four-button puck, operates through 
the Lexidata graphics processor. The routines for graphics device inter­
action shield the Smalltalk-SO system from the details of these lower 
levels. The Lexidata display memory is maintained by tracking the 
class Bitmap object associated with the current display form. Every 
time the bit map of the current display form changes, the graphics driv­
er sends a copy of the altered area to the Lexidata. Since the at:put: 
primitive can potentially change the bit map, it recognizes when the 
destination is the display bit map and invokes the graphics driver. 

The graphics system required much work to get to its present condi­
tion. We began with a 1280 x 1024 display optimized for white on black 
graphics and a track ball with illuminated throw switches. An HP-IB 
interface was designed especially for the Lexidata under a special con­
tract and this was our pathway into the host machine. As time passed, 
pieces of the system fell into place. We developed microcode to use the 
bit pad in place of the track ball. The bit plane logic was reversed to 
display a white dot when the corresponding bit is off for black on white 
graphics. Other parameters and microcode in the graphics processor 
were modified to enhance black on white graphics, but there were lim­
its to this. Regardless of mode, we could not use the system at its maxi­
mum resolution. We compromised for improved readability by using the 
graphics processor to double the pixels in both the X and Y dimensions 
so that a 640 x 480 Smalltalk screen neatly occupies the display. We 
even have room at the bottom of the display for system messages. In 
short, this experience was a baptism of fire in computer graphics. 

We did try to optimize copyBits by implementing the bit copying op­
erations in VAX assembly language. In this experimental version of 
copyBits we could copy an entire 640 x 480 pixel bit map in 0.08 second 
(about 10 times faster than the C routine). Unfortunately, the VAX bit 
operations work in the opposite direction of that needed for bit map 
manipulation. Our priorities prohibited modifying all of the bit map 



90 
The Smalltalk-SO Implementation at Hewlett-Packard 

management code for reverse bit ordering, which now included micro­
code in the Lexidata graphics processor. 

The current implementation of copyBits makes little use of the ex­
tended functionality of the graphics processor, such as area fill or poly­
gon moves. The Lexidata system does manage and update the cursor as 
it tracks the mouse. In addition, having a screen bit map that is sepa­
rate from CPU memory permits us to continuously display its contents 
without regard to processor operation. This is not the case with some 
integrated graphics configurations where display refresh consumes a 
significant percentage of CPU bandwidth. 

The buttons on our mouse conform to the Smalltalk-SO color scheme: 
red on left, yellow in middle, blue on right. Because we had four but­
tons, we could attach more functions to our mouse. The fourth one, the 
green or HP button, acts as a shift key for the other three buttons. The 
following extended functions are available on our system: 

1. green + red 

2. green + yellow 

3. green + blue 

Take a snapshot of the system. 

Stop the system. 

Print the screen. 

The HP system offers two flavors of snapshot. Besides the standard 
Smalltalk snapshot, we implemented a fiash freeze snapshot which 
saves the image without executing any Smalltalk code. This avoids the 
rather tedious motions of the standard mechanism, including restora­
tion of the display screen. The user may select this alternative snapshot 
through a mouse function or a monitor command. Since this facility 
permits snapshots at arbitrary bytecode boundaries, we must preserve 
more state information than is strictly necessary for saving an image 
via the Smalltalk mechanism. For example, the keyboard input buffer 
would not need to be kept if we had only the Smalltalk facility. The 
state information falls into three categories: 

Monitor State 

Cached Objects 

Bytecode count and current bytecode. Although this infor­

mation is not needed to resume execution, it is nonetheless 

useful, especially during debugging. When a system re­

sumes we always know the exact bytecode where it left off. 

Oops of the current cijsplay form, the current cursor bit 

map, the current input semaphore, the clock semaphore, 

and any new process waiting to be run. In addition, we 

save the Oops of all semaphores that have been signaled 

due to the occurrence of an input event. The Oop of the 

current active context is saved by storing it in the active 

context field of the current active process prior to taking a 

snapshot; similarly the cached stack pointer and cached in-

T 

Object 1 



~emory 

1/0 State 

91 
Overview of the System 

struction pointer are saved by storing their current values 

in the current active context. 

Cursor position, mouse position, last mouse buttons 

pressed, current sample interval, input polling interval, the 

time at which to signal the clock semaphore, the keyboard 

input buffer, and various indices and flags including the 

state of the link between the mouse and the cursor (linked 

or unlinked). 

The system can print screen images on Printronix line printers, 
Versatec electrostatic plotters, and Hewlett-Packard graphics terminals 
in a variety of resolutions and magnifications. Anytime during a session 
the user may request a copy of the screen via the mouse buttons or 
monitor. The screen image is sent to a general bit map spooler. 

We process external events and manage the input word buffer on a 
Smalltalk-SO virtual machine bytecode-synchronous basis. The system 
recognizes external events by (just before executing the next bytecode) 
explicitly polling the devices to determine whether they have changed 
state. One UNIX process implements all Smalltalk processes as well as 
the switching mechanism. The Smalltalk-SO system does not explicitly 
use the UNIX interrupt mechanism to support multiple processes. The 
system checks certain 1/0 queu.es after executing a fixed number of 
bytecodes since the last inspection. The user sets this inspection inter­
val at system initialization. 

The object memory itself is a simulator underneath the Smalltalk-SO 
virtual machine emulator, implementing a small-object dynamic stor­
age manager within the large virtual memory of our host machines. As 
mentioned before, there are two versions of our memory system. The 
slow or protected version checks field index bounds and operand classes 
at the interpreter/ object memory interface. The fast version does no 
checking and consists mainly of C macros. The protected version was 
very useful for detecting memory problems close to their source. 

Access to objects in Smalltalk is via object pointers (Oops) which can 
be either signed 15-bit immediate integers (small integer objects) or 
15-bit indexes into tables of state entries and field addresses (indirect 
object pointers). The 15-bit range of the object pointer (the other bit de­
cides between small integer and indirect pointer objects) limits the 
number of indirect objects in the system to 32767. This limit was not a 
factor in our research. 

The final Smalltalk-SO image is by no means small as it contains 
over 450 kilobytes of objects and requires at least half a megabyte with 
its object table. The suggested Xerox implementation uses a 20 bit ad­
dress into the object space, but our implementation uses 32-bit virtual 
addresses. This required a reorganization of the object table into sepa-



92 
The Smalltalk-SO Implementation at Hewlett-Packard 

rate tables for the state entries and the field addresses, but the results 
were favorable. 

Table 6.1 Hewlett-Packard Smalltalk-84 Image Format 

Word 
0-1 
2-3 

4 

5 

6 

7 

8 

9 
10-12 
13 
14-end of entries 
followed by 

Entry 
number of entries in the object table 
the length of the object space in 16-bit words 
system state object Oop 
offset to the first entry in the table (the first offset) 
object state header of the first active entry in the object 
table 
length in 16-bit words of the first active entry in the ob­
ject table 
Oop of the Class of the first active entry in the object ta­
ble 
offset to the second entry in the table (the second offset) 
the second active entry in the object table 
offset to the next entry in the table (the third offset) 
the remainder of the object table entries 
the fields of the objects in the table 

Because of host machine differences and efficiency considerations, the 
HP Smalltalk-SO system uses the image format in Table 6.1 which dif­
fers from the standard interchange format. The HP format uses a spe­
cial coding scheme to indicate free entries in the object table, whereas 
the interchange format does not eliminate the space wasted by these 
entries. This format is also space efficient and easy to load and save. 
The first 8 bytes contain the image size parameters as 32-bit unsigned 
integers. The number of object table entries is followed by the number 
of 16-bit words in the object fields space. Next, is the Oop of the system 
state object, used to restore Smalltalk and the support environment to 
their exact condition before a snapshot. 

The object table follows. It is not stored as an exact image of the sys­
tem object table (that would waste space). Each object table entry in the 
image is preceded by a 16-bit offset from which the next table entry lo­
cation is derived. For example: if the first active Oops in the system 
were 12, 16, 18, 26, and 56, then the offset values (in brackets) would 
be: 

[12] > 12 + [4] > 16 + [2] > 18 + [8] > 26 + [30] > 56 

The first of these offsets determines the location of the first used object 
table entry. Thereafter the offsets are used to skip the unused entries 
in between the active ones. 



93 
Overview of the System 

The field pointer portion of the object table entry in memory is ini­
tialized by cumulatively adding the object lengths to the base address of 
the memory allocated for the object space. Therefore, each object table 
entry in the snapshot consumes 8 bytes: 2 for the offset, 2 for the head­
er, 2 for the length, and 2 for the class. After the object table entries are 
read in, a single mass read brings the object field space into memory. 

Saving an image is similar, except that the object field space must be 
written on an object-by-object basis, since we cannot assume contiguous 
allocation on a used system. 

We convert the image from the standard interchange format into the 
HP format by the following transformations: 

1. Convert the interchange format state entries into the HP layout. 

2. Move the class and length from the fields of each object into the 
object table entry. 

3. Swap the bytes of all non-byte objects (our hosts use low­
byte/high-byte ordering rather than the high/low of the image in­
terchange format). 

4. Convert objects of class Float in the image from IEEE format to 
VAX format. The ranges are slightly different so the conversion 
program indicates when it encounters an IEEE floating point 
number which has no VAX format correspondent. 

5. Create the special HP system state objects in which the snapshot 
process saves relevant details so that the system may continue lat­
er from the same state. 

The conversion process takes less than a minute and includes a consis­
tency check on the interchange format image. 

The implementation of our object memory system differs from that 
in the Smalltalk-SO virtual machine specification. The system main­
tains two tables of object information: the first table contains the 16-bit 
state entries while the second table has the length and class Oops plus 
the pointer to the object fields for a size of 64-bits. Since the size of the 
entries in each table is a power of two, access is fairly efficient. Previ­
ous single table versions used either 96- or 80-bit entries which re­
quired multiplies by three or five for indexing. 

Each state entry contains an 8-bit reference count (used fully), and 6 
flag bits for the following conditions: 

1. Reference-count overflow and exemption. 

2. Object is permanent. 

3. Object table entry is available. 

I 



94 
The Smalltalk-80 Implementation at Hewlett-Packard 

4. Object contains pointers. 

5. Byte object is odd length. 

6. Object has a mark (from garbage collector). 

The two remaining bits are for future enhancements, such as a code bit 
for compiled method objects. We moved the length and class Oops from 
the fields of the object into this table for more efficient access. This 
change significantly improved performance for the protected version of 
object memory, and also reduced the load on the dynamic memory allo­
cator by two words per request, but in doing so increased static alloca­
tion by 128 kilobytes. With an object table that is three-quarters full, 
the actual waste from this is 32 kilobytes, which is negligible in a large 
virtual memory system. The length entry contains the actual number of 
words allocated to the object fields (not the same plus two for length 
and class, as suggested). The pointer to the fields is a 32-bit virtual ad­
dress instead of a 20-bit quantity divided into a 16-bit offset and a 4-bit 
segment number. 

Early in the implementation, we defined the interface through which 
the interpreter and primitives communicate with the object memory. 
The strict adherence to this interface permitted an easy transition from 
the DEC-20 to the VAX even though their memory systems differed 
considerably. The interface consists of: 

1. Instantiate pointer, word, and byte objects. 

2. Load and store pointer, word, byte and float values. 

3. Get object length and class. 

4. Test and convert small integer and pointer objects. 

5. Decrement and increment reference counts. 

6. Find first and next instance of a class. 

7. Swap object pointers. 

8. Query memory allocator state. 

The memory system initializes all objects upon instantiation. Word and 
byte objects need to have their fields set to zero, while pointer objects 
require nil values or 2's, which most architectures cannot do efficiently. 
The VAX has a block move instruction which, combined with a 
predefined array of nil values, is an efficient solution to this problem. 
The cost of using standard memory accesses to store nil in every field is 
excessive (since the average size is about 18 words). 

Reference-count activity dominates the time spent in the memory 
system. We implemented a straightforward strategy and attempted to 
reduce the amount of checking necessary to determine whether an ob-

l 



95 
Overview of the System 

ject actually must be reference counted. For example, the shortest path 
for the count decrement operation is 

check if small integer bit of Oop is set (is object a small integer?). 
ifFalse:[ fetch the header of the object pointed to by the Oop. 

check if exempt flag is set (is object free, permanent or overflow?). 
ifFalse:[ decrement reference count. 

check if reference count > zero. 
ifFalse: enter deallocation routine. ] ] 

The sequence for the count increment operation is 

check if small integer bit of Oop is set (is object a small integer?). 
ifFalse:[ fetch the header of the object pointed to by the Oop. 

check if exempt flag is set (is object free, permanent or overflow?). 
ifFalse:[ increment reference count. 

check if reference count > zero. 
(note: the byte arithmetic wraps around to zero on overflow.) 

ifFalse: set exempt flag in header to overflow] ] 

Measurements of our Smalltalk-SO object memory and similar dynamic 
memory systems indicate that count maintenance consumes from 20% 
to 40% of execution time. The implementors of the M3L machine1 dem­
onstrated the performance advantages of special reference-count hard­
ware. Reference-count maintenance is expensive because it congests 
data paths with extra traffic and requires ALU cycles during every 
count function. For example, a store pointer operation includes both a 
count down on the Oop at the destination and a count up on the source 
Oop. The cost of store pointer was the motivation behind its 
reimplementation in assembly language. 

The availability of virtual memory on our host machine was an ad­
vantage in the early phases of design. Makeshift memory systems could 
run even while wasting a lot of space or thrashing over lists. Thus a 
gradual evolution of object memory implementations progressed until 
the better ones emerged. The current version implements: 

1. A set of special allocation pools. 

2. A mechanism for coalescing blocks on the general free list. 

3. A marking garbage collector. 

The special allocation pools were the most significant addition to the 
system, and they differ considerably from the free lists described in the 
specification. There are four pools in the system: one for each of the 
three most popular sizes of pointer objects and a general pool for the 
rest. The three special pools take advantage of the allocation frequency 
of small contexts, points, and large contexts. Each special pool is a 



96 
The Smalltalk-SO Implementation at Hewlett-Packard 

Implementation 
Issues 

linked-list of fixed-length pieces of memory allocated at system initial­
ization and permanently residing in that pool. Only transactions requir­
ing pointer fields of the three sizes can use the special pools so there is 
no fragmentation in the pool. In our standard configuration, 16 
kilobytes of memory in the special pools satisfies over 97% of all instan­
tiation requests. 

The transaction traffic of the memory system is very different from 
that of most programming environments. The system allocates, 
accesses, and just as quickly deallocates megawords of memory in 
chunks typically less than 20 words. Since the special pools handle 
nearly all memory traffic, we have fragmentation effects from only 3% 
of allocations. Our memory allocator continuously coalesces and recy­
cles this space on the general free list, thus preventing most fragmenta­
tion problems. In view of these facts, we feel that the actual long term 
fragmentation is not serious enough to warrant dynamic compaction. 
Compaction does happen whenever we save and reload an image. This 
scheme suits our view of personal computer usage patterns well-load­
ing an image, working for a while, then saving the results-and since it 
takes less than 15 seconds to save and reload an image, we see little ad­
vantage to having a separate compactor. 

Cycles of inaccessible objects occur with reference-counting memory 
management schemes. Sadly, some of the occasions for cycle creation 
involve fundamental concepts in the language, such as sending a mes­
sage with a block as an argument (where the pointer to the block con­
text is in the temporary variable area of the home context). Periodically 
we run an auxiliary garbage collector to sweep the object table of all 
derelict objects caught in cycles. The cost of such a collector in CPU 
time is high, so it is advantageous to avoid running it. Because contexts 
are most frequently involved in these cycles, the system invokes the col­
lector when either of the two special allocation pools devoted to con­
texts becomes empty. By setting the sizes of these pools at system boot 
we can vary garbage collection frequency. The collector also runs when­
ever the object table becomes full, but this is a far less frequent occur­
rence. We found it necessary to lock out the garbage collector whenever 
the reference counts do not accurately reflect the condition of object 
memory. The current system requires collector lock-out in only a hand­
ful of situations. 

The Smalltalk-80 distribution process proceeded through five test re­
leases. Each new release posed a variety of problems which we usually 
resolved after a month or so of changes and corrections. Smalltalk 
proved to be an incredibly robust system-so robust that it could con­
tinue to run after bugs had corrupted major sections of data or code. 
For example, in implementing the primitive methods sometimes we did 
not push a result on the stack before returning. In spite of this, the sys-



97 
Overview of the System 

tern was able to execute many bytecodes before giving any indication 
that something had gone wrong. Problems such as this were often diffi­
cult to diagnose, even with the sophisticated debugging tools at our dis­
posal. 

We list here some of the problems and issues faced in implementing 
the Smalltalk-80 system in the hope that future implementors can ben­
efit from our experience. These problems are in six categories: arithme­
tic, primitive methods, input/output, object memory, programming, and 
general problems. 

D Arithmetic Problems Many of the problems in the arithmetic area 
were with floating point numbers. One problem was that we were not 
certain which floating point representation was used in the first test 
image. In particular, floating point objects in the first image were three 
words or 48-bits, which seemed to contradict the claim that the 
Smalltalk-80 system used IEEE standard 32-bit single precision format. 
As it turned out, it was IEEE format and the system simply ignored the 
third word. But this was bad news-the VAX did not have IEEE stan­
dard floating point arithmetic at that time. We had to convert all ob­
jects of class Float to VAX floating point format and hope that none 
would be outside the VAX range. Fortunately, no Smalltalk floating 
point numbers have exceeded this limit. And after we went through all 
of this, DEC introduced IEEE floating point support for the VAX. 

In another situation, the routine that extracted the fields of floating 
point numbers treated the fields as small integers (-16384 to 16383), 
when in fact they have a range of zero to 65535. This problem occurred 
in several places throughout the system and was the source of many 
bugs. As a result of these complications, we were well into converting 
the system for the second image before the floating point primitives 
went into operation. 

Another problem involved the initialization of the fields of 
LargePositivelnteger objects. When we first installed the special alloca­
tion pools in the memory system, we set the fields of all pool objects to 
nil upon deallocation. The only requirement to request memory from a 
special pool was to be the appropriate size-there was no pointer object 
check. Occasionally a large integer happened to be one of the sizes han­
dled by the special pools, and thus had nils in its fields. If one 
performed bit operations such as bitOr: on a large integer, these nil val­
ues could affect the result. Indeed, we found that when one added two 
large positive integers of certain values there were extraneous 2's in 
some of the lower digits of the result. The solution was to correct the al­
locator to ensure that it only initialized pointer objects with nils. 

A third arithmetic problem had to do with the / / operation. It was 
not clear from the original documentation for the first image just what 
the definition of / / was. As we began to use the system, occasionally we 



98 
The Smalltalk-80 Implementation at Hewlett-Packard 

would get a mysterious error 'Subscript out of bounds:' which did not 
seem to have any relation to what we were doing. We had spent quite 
some time searching for the cause when we discovered that the system 
was using the I I operation to compute the index for a table, and be­
cause it truncated in the wrong direction, it often produced a negative 
index. As the corresponding C operator differed from the Smalltalk def­
inition, we had some difficulty implementing the // operation correctly. 
Because of this confusion, the specification now includes both variants 
of the operation. 

D Problems with Primitive Methods There was confusion over the 
extent of error checking to include in the implementation of primitive 
methods. Because there were no specific guidelines in the documenta­
tion, we decided to implement comprehensive checking. We checked the 
class and range of the receiver and the arguments and their fields. 
However, we soon encountered problems with class checking. In some 
cases the receiver or argument need only belong to a specified class or 
any subclass thereof. The class check in this situation could be time 
consuming since it involves a traversal of the superclass chain. Rather 
than endure this overhead, we removed the class check in these cases. 
In general, we feel that this checking gave us a useful safety net to pro­
tect the system from corrupted code and other problems, but it is not 
clear that such checking would be desirable in a production system. 

During testing of the system with the slow version of object memory, 
we encountered many load word and store word range errors in the 
copyBits primitive. Some of these were caused by insufficient clipping of 
the source and destination forms. We eliminated them by adding more 
checks for clipping based on the sizes and relative positions of the 
source and destination forms. Other range errors stemmed from the 
way the BitBlt algorithm handled the transition from one row of the bit 
map to the next. When doing a preload on the last word of a bit map 
row, the next word loaded in computing the destination word comes 
from the next bit map row instead of the current row. This did no harm 
except when the last word of the last bit map row was at the end of the 
bit map. If it was, the next load word generated an error. We fixed this 
by checking whether the second load word goes past the end of the bit 
map. If it reaches the end of the bit map, we substitute zero for the sec­
ond load word value. This is not the most efficient solution to the prob­
lem, but it preserved our investment in the copyBits primitive (which 
no one wanted to rewrite). 

Another problem with copyBits on the third test image involved the 
coordinate arguments. In some instances, these coordinates contained 
floating point numbers instead of small integers. We had to check for 
floating point arguments in the makePoint routine. When the argu­
ments to makePoint were instances of class Float, the primitive convert-

T 

j 



99 
Overview of the System 

ed them to integers before making them into a coordinate point. The 
final image does not suffer from this problem. 

There was a rather simple problem with the swapPointersOf primi­
tive. An early implementation swapped the reference counts along with 
everything else. Since the reference counts must follow the Oop and not 
the table entry, the system behaved strangely until we realized what 
had happened and repaired the primitive. 

□ Input/Output Problems We had many problems with keyboard in­
put and character mapping. With each new Smalltalk-80 test release, 
we modified our keyhoard input routine to accept numeric ASCII codes 
instead of characters in order to determine the appropriate mapping. 
This process became easier with each new release and particularly after 
the second release which was the first to use the ASCII character set. 

With the second release came more problems as we had to find a way 
to input control key codes for those not in the ASCII character set (e.g., 
control-0 to control-9). Since the Smalltalk I/0 code could handle either 
ASCII-encoded or unencoded keyboards, we designated an escape se­
quence to input unencoded control characters (control- i followed by the 
character). In the final release, the Smalltalk methods for keyboard in­
put interfered with this scheme so we rewrote most of them. 

We found it difficult to implement the polling scheme for keyboard 
input on the first test image. Often the last character in the buffer 
would not appear on the screen until the user typed another character 
and it was interminably slow. Finally, after rewriting the keyboard in­
put primitives and maintaining better control of the buffer, the system 
improved, although it was still slow. With the second test image, key­
board input was to be interrupt-driven and synchronized with sema­
phores. Initially we simulated this behavior with another polling 
scheme. The system checks for keystrokes every n bytecodes, and if any 
are waiting, it places the key codes in an input buffer and signals the 
input semaphore. Recently we developed a way to eliminate polling for 
text input using an interrupt scheme based on UNIX intrinsics. This 
has improved overall system performance by eliminating the terminal 
buffer count check which was a part of polling. 

Our Smalltalk system manages the mouse in a similar manner. 
Whenever the system polls the keyboard, it also checks the mouse posi­
tion and mouse buttons for activity since the last poll. If there are any 
changes, the system generates appropriate event words, places them in 
the input buffer, and then signals the input semaphore. Various 
Smalltalk routines also query mouse position directly, posing some 
question about the need for our system code to do it as well. A series of 
experiments suggested that the system was more responsive with mouse 
position polling in both places. 



100 
The Smalltalk-SO Implementation at Hewlett-Packard 

D Object Memory Problems The problems with the object memory 
manager centered around allocation, reference count management, and 
garbage collection. At one point there was infrequent trashing of some 
of the fields of method and block contexts. Somehow the memory sys­
tem was allocating objects that were overlapping contexts. While we 
never discovered the source of the problem, we solved it for a while by 
isolating contexts into special allocation pools. The problem reappeared 
however, when running the interpreter on the final image. Again we 
redesigned the memory allocator, this time using linked lists for the 
pools instead of a table of pointers. We have had no problems with ob­
ject memory since. 

During testing of the interpreter on the second image we noticed 
that the memory system was allocating many small contexts while 
deallocating only a few through the reference counting mechanism. We 
later discovered that when performing sends we neglected to nil out the 
argument fields of the sender after transferring the arguments. This 
enabled cycles to develop involving block arguments and contexts. The 
correct transfer mechanism eliminated over 90% of these cycles. 

Shortly after investigating these cycles in object memory, we decided 
to add a marking garbage collector to our system. At the time, our pri­
mary motivation was to reduce the size of the special pools from which 
the system allocated contexts. In the process of implementing the gar­
bage collector we had to determine the root objects from which marking 
should proceed. We start from all cached object pointers, plus the Oop 
of the Smalltalk object. We were then faced with the problem of deciding 
when to activate the collector. Activation would certainly be tied to 
some sort of low watermark in the allocator, but should the collector 
proceed directly from there or be postponed to a safe period or a 
bytecode boundary? There are times when the garbage collector could 
do much damage, so it is vital to ensure that it cannot run during these 
periods. For example, sometimes the system temporarily increases the 
reference count of an object to ensure that it remains through a critical 
operation. During the interval between the artificial increment and dec­
rement operations the reference count is inconsistent, and intervention 
by the collector would discard such an artificially protected object. This 
is because the collector chases pointers to determine the number of ref­
erences to an object instead of relying on the reference count in the 
state header. To prevent intrusion during such operations, we devised 
critical section locks which disable and re-enable the collector. In addi­
tion, we make permanent (via a permanent bit in our object state head­
er) those objects that are not to go away under any circumstances (e.g., 
true). 

Once our garbage collector was working, we reduced the small con­
text pool size from 8192 to 256 contexts, a saving of nearly 300 
kilobytes of memory. Our investigations have shown that garbage col­
lections are relatively infrequent when browsing or text editing, but 

T 

I 



101 
Overview of the System 

that at least one occurs when compiling or decompiling a method, 
reclaiming as many as 500 objects. 

D Programming Problems As with any programming project involv­
ing more than one person, we found ourselves confronted with problems 
of version management, communication among the members of the 
team, and implications of changes made to the system. We found UNIX 
tools to be very useful for managing these situations. In most respects, 
the project was a model of modern software management. All of us had 
a background of software projects and we placed a heavy emphasis on 
software tools and techniques. In fact, we considered managing the soft­
ware effectively to be almost as important as implementing Smalltalk 
itself. Some of the management tools are described on p. 103. 

We had a resource problem in having to share our host machines 
with other projects, some of which involved signal processing. There 
were times when the load on the system was so heavy that it was hope­
less to attempt debugging the system. For demonstrations we would get 
the machine all to ourselves for acceptable performance. 

Global variables, of which there were many, gave us the usual prob­
lems with proper initialization and usage. We tried to localize state 
variables as much as possible to only those modules that used them. In 
spite of these precautions, global variables were the source of several 
bugs in the system. 

Macros were also a source of problems in coding the system. Since we 
tried to optimize code as much as possible by using macros, we some­
times nested them several levels deep. Upon expansion, these macros 
could get quite large-nearly 900 characters for the push macro, for ex­
ample. Increasing the size of these macros could produce complaints 
from the C preprocessor in some situations. We also had to parenthesize 
macro arguments to ensure the proper order of expansion. A significant 
difference between macros and procedures is that macro arguments are 
evaluated at each appearance in the definition instead of only once on 
procedure entry. For example, a macro may use an argument in a num­
ber of different places in the definition. If we pass it a function which 
always returns the same value, the macro will operate properly. How­
ever, if we pass a function like popStack, then at each appearance of 
the function in the definition it will return a different result (plus there 
will be too many stack pops). We used temporary variables within mac­
ro definitions to ensure that arguments are evaluated only once. 

We encountered an optimization problem with printing hard copy of 
the Smalltalk screen. The routine for dumping the screen to the printer 
worked fine until we ran the system through the C code optimizer. Af­
ter that, the hard copy routine would print only garbage. Later we dis­
covered that the c2 code optimizer for the VAX produced incorrect code 
for certain bit operations, and unless it has been changed, it still has 
this bug. 



102 
The Smalltalk-SO Implementation at Hewlett-Packard 

D General Problems The biggest general problem was with the in­
complete and sometimes erroneous details of the implementation given 
in the book. The agreement with Xerox made it our task to debug the 
documentation and image test releases. As we read through the chap­
ters, we found we had many questions and comments. For example, we 
had difficulty getting nested blocks to work. Our system was not prop­
erly initializing the instruction pointer for a nested block. The initial 
instruction pointer was coming from the home context instead of the 
active context as it should have been. The documentation did not make 
this detail clear, and we wasted some time tracking it down. 

Another problem was the result of a similar oversight. In early Sep­
tember, many of the methods in the first image were operational, but 
some still were not working and others gave 'message not understood' 
errors. There was no pattern to the failures and the cause seemed al­
most impossible to isolate. We had just about given up when, in a mar­
athon debugging session, we discovered that the Smalltalk compiler was 
using byte stores to set the 16-bit header word of new compiled method 
objects. Because byte ordering on our host machines is the opposite of 
that on Xerox systems, a method header constructed in this fashion had 
the bytes in reverse order. As this header encodes the number of liter­
als and temporaries as well as a special method flag, mere chance dic­
tated whether the byte-reversed header would affect the execution of 
the method. The final system avoids this problem by having primitives 
for compiled method creation and manipulation. 

A fascinating problem cropped up when we ran the Arc example pro­
vided with the third release image. The system mysteriously went into 
an infinite loop and eventually ran out of object table space through 
the activation of thousands of contexts! By tracing the execution of the 
interpreter and looking at the Smalltalk source code, we were able to 
determine the cause of the infinite loop. The method for the Arc exam­
ple included the following 

anArc - Arc new. 

Since Arc class did not understand the message new, it defaulted to the 
new message understood by Path class, the superclass of Arc class. The 
method for new in Path class contained the statement 

i super new initializeCollectionOf Points. 

Following the superclass chain, we made the transition from the 
metaclass to the class hierarchy by passing through Object class into 
Class and eventually ended up in Behavior. Here the method new had a 
primitive associated with it. However, since the receiver was an 
indexable object, the primitive failed and invoked the backup Smalltalk 
code which included 

self isVariable ifTrue: [iself new: O]. 

1 



Development 
Environment 

103 
Development Environment 

Since self was Arc class, we now followed a similar path starting at Arc 
class looking for a new: message. Again we found it in Path class, and 
the associated method contained 

isuper new initializeCollectionOfPoints: anlnteger. 

The infinite loop now begins, since we were again looking for the new 
method in the superclass of Path class and so on. This switching back 
and forth between new and new: continues until memory is exhausted. 
The final image release avoids this problem by having the new and new: 
methods in Path class use basicNew instead of new. The method for 
basicNew in Behavior has backup Smalltalk code which uses basicNew: 
instead of new:. Since Path class does not understand the basicNew: 
message, the basicNew: message in class Behavior is executed and it 
succeeds, avoiding the infinite loop. 

We had problems in making the transition of our system from one 
release of a Xerox Smalltalk image to the next. These problems were 
generally minor, although annoying. The most extensive changes oc­
curred in going from the first image to the second. In general, there 
were differences in some class Oops, and sometimes the structures of 
some objects changed. Unfortunately, in most cases we had to discover 
these differences ourselves. These should not be problems for future 
implementors since the documentation has been rewritten and there 
will be only one Smalltalk image to deal with. This image is the fifth or 
final one referred to herein. 

An extensive collection of development tools complements the 
Smalltalk system at Hewlett-Packard. These tools compose our software 
development environment, which consists of the following layers: 

1. The Smalltalk-BO system with its debugger. 

2. The Smalltalk-BO virtual machine execution monitor and object 
memory inspector. 

3. The UNIX operating system2, SCCS version controller, make sys-
tem builder, sdb symbolic debugger, and prof execution profiler. 

These levels offer access to different aspects of execution. For example, 
we have the capability of setting breakpoints at the Smalltalk-BO state­
ment level (Smalltalk debugger), the Smalltalk-BO virtual machine 
bytecode level (Smalltalk-80 virtual machine monitor), or the C source 
level (sdb). Often we use all three mechanisms to attack a problem from 



104 
The Smalltalk-80 Implementation at Hewlett-Packard 

Figure 6.1 

each particular level of detail. The same goes for performance evalua­
tion as we have the capability to tap in at any level to spy on the activi­
ties of the system. 

We structured the first level of our development environment using 
the hierarchical file system of UNIX. A read-only copy of the latest sta­
ble version of the system is in a source directory, and each of the proj­
ect members owns a subdirectory under it. Each member can modify, 
test, and debug sections of code in his subdirectory without affecting the 
other members who may also be debugging. This feature was made pos­
sible by the UNIX make facility for creating, maintaining, and install­
ing software. Someone working in a subdirectory who wants to put 
together a system using some changed source files simply asks make to 
build it. Make determines whether any source needs to be recompiled, 
and then loads the new code from the subdirectory and the rest from 
the source directory. Duplication is minimal as there is only one copy of 
the master source plus those pieces that people are working on in their 
subdirectories. 

The Source Code Control System (SCCS) was our primary tool for 
dealing with version management issues. Whenever one wants to make 
a change to a piece of the system, one asks SCCS for a modifiable copy 
of the latest version. If no one else has a copy out, SCCS acquiesces and 
places the copy in the subdirectory. After successful testing of the modi­
fications, one sends the modified copy back to SCCS and informs the 
system version manager of the change. The version manager asks SCCS 
to place a read-only copy of the new files into the source directory, and 
then gets make to build a new system. It is important that only well 
tested modifications make it to the source directory since all of the 
work in the subdirectories depends on the stability of that code. Fig. 6.1 
depicts an execution monitor command menu, and Fig. 6.2 shows an ex­
ecution monitor chain of context display. 

type ?? for the list of commands 
> > ?? 
>> 
System multiple step ms, single step ss, continue cs, run rs 

display state ds, update freq us, breakpoint bs, trace ts 
Image load li, inspect ii, save si 
Graphics reset rg, print pg 
Other monitor me, statistics sc, context chain cc, receiver update ru 
Window Help wh, Banner wb, Inspector wi, Smalltalk ws 

Context we, Receiver wr, Method wm 
Keys iC interrupt, iV quote, iX break, iZ suspend, i \core dump 

i upArrow, .- leftArrow, iT ifTrue:, iF ifFalse:, ii control 
ESC select, DEL delete, iW deleteWord, il[0-9] fonts 

* * default radix is Decimal - prefix with 0 for Octal, Ox for Hex 
* * Shell sh * Help ?? * Exit qq 

T 

j 

J 



Figure 6.2 

105 
Development Environment 

context class method receiver class 
7c3a 16 72cc 238a la < Point> 
7c06 16 552e Saa 66a < InputSensor > 
7c3e 16 232c 7908 3ef4 < StringHolderController > 
7d32 16 4bae 7908 3ef4 < StringHolderController > 
7cf6 16 650 7908 3ef4 < StringHolderController > 
7c74 16 660 7908 3ef4 < StringHolderController > 
7abe 16 632 7932 llf0 < StandardSystemController > 
7cb2 16 648 7932 llf0 < StandardSystemController > 
7d10 16 lae8 7932 llfO < StandardSystemController > 
7c96 16 650 7932 llf0 < StandardSystemController > 
7cae 16 660 7932 llf0 < StandardSystemController > 
7d5c 18 5606 7d6e 16 < MethodContext > 
79£8 18 784 798c 16 <Method.Context> 

active process: 7c40 priority= 4 

Central to the multi-level environment is the Smalltalk-BO virtual ma­
chine execution monitor (Fig. 6.1), a runtime facility offering the follow­
ing services: 

1. Transfer Smalltalk-BO images between object memory and the 
UNIX file system. 

2. Variable step and run modes for the Smalltalk-BO virtual machine 
interpreter. 

3. Manipulate Smalltalk-BO virtual machine-level breakpoints. 

4. Display the current state of the Smalltalk-BO virtual machine. 

5. Trace the chain of method and block contexts, as in Fig. 6.2. 

6. Print the contents of the display bit map on a hardcopy device. 

7. Enable Smalltalk-BO virtual machine functional tracing. 

8. Invoke the object memory inspector. 

In Fig. 6.3, a memory inspector subsystem command menu is presented. 
The last capability links the monitor to this inspector subsystem, a fam­
ily of services concerned with object memory state: 

1. Examine and change the current state of object memory. 

2. Create new instances of classes in object memory. 

3. Verify the current reference-count state of object memory. 

4. Invoke garbage collection for object memory. 



106 
The Smalltalk-BO Implementation at Hewlett-Packard 

type ?? for the list of commands 
< < ?? 
<< 
Load word lw, byte lb, float lf, string ls 
Store word sw, byte sb, float sf, string ss 
Length word wl, byte bl 
Show header hs, object os, context cs, method ms 
Reference Count display re, verification vc, garbage collection gc 
Instantiate Class with Words iw, withBytes ib, withPointers ip 
Window Help wh, Banner wb, Inspector wi, Smalltalk ws 

Context we, Receiver wr, Method wm 
** default radix is Decimal - prefix with 0 for Octal, Ox for Hex 
** answer 'y' or 'n' when asked 'more?' 

Figure 6.3 ** Shell sh * Help?? * Exit qq 

Figure 6.4 

To diagnose problems in dynamic memory management, we developed a 
facility to verify the reference counts of all objects in the system. It 
steps through the object table recording the number of pointers to each 
object and then checks this against the reference count field of each ob­
ject. The routine produces a listing of objects with reference count dis-

HP Labs Smalltalk-84 System 
> > ds 
I RSI AC 7ccal 13501316 I Next b0/260 + I Last 76/166 P+ 1 
>> 
OTE7ccal 1 VDfmPe[18 OTE7cbal 9VDfmPe[12 OTE135el 2VDfmpo[54] 
Se 7c92 <MethodConte #00 7c7c <Text> Hdr 0519= 0 5 s 12 
PC 85 #01 7ca8 < TextStyle > LOO 0130 A 0010 C < Array 
SP 7 #02 7cc0 <Point> L0l 0041 32D 
Me 135e < CompiledMet #03 0002 Nil L02 0dd6 U " height: " 
RM 0002 Nil #04 7ca4 <Rectangle> L03 1360 U "in:" 
Re 7cba <Paragraph> #05 7cda <Rectangle> L04 1362 A 1366 C < Compo 
TO 0061 48D #06 0a52 < DisplayScr L05 1302 U " lineAt:put: " 
Tl 0087 67D #07 0007 3D L06 1376 U " composeLine 
T2 000d 6D 
T3 0093 73D 
T4 7cdc < Composition 
SI 006£ 55D 
S2 0003 1D 
S3 7 cf2 < TextLinelnt 
S4 000d 6D 
S5 0061 48D 
S6 7cba <Paragraph> 
S7 0002 Nil 

#08 1560 <Form> 
#09 0001 OD 
#0a 7cd8 <Array> 
#Ob 000d 6D 

Index:inParagra ph 
L07 0lfe U " max: " 
L08 1378 U " rightX " 
L09 0ld0 U " last " 
L0a 12£4 U " updateCom 
L0b 12£6 U " trimLines: " 
#00 402lcd820a75820b756 
#10 75e287137c768142680 
#20 6c1011b399a4lc701214 
#30 8714d813e76b0al2c0d 
#40 6aa3de70da87701276 

1 



107 
Development Environment 

crepancies as well as those with permanent or overflow bits set. Usually 
all objects, except for a handful, have valid reference counts. The few 
exceptions are the objects cached by the system (e.g., the active con­
text), and the Smalltalk object (SystemDictionary) which has an artificial­
ly increased reference count to prevent accidental deallocation. 

Our system actually uses two displays: a graphics display for 
Smalltalk and a CRT terminal for the monitor and UNIX. Smalltalk, 
the monitor, and UNIX share the terminal keyboard. The presentation 
of information from the monitor facilities posed an interesting problem. 
It was impossible to squeeze everything into the 24 x 80 terminal for­
mat so we took a lesson from Smalltalk itself and implemented seven 
overlapping windows for the user interface. The user can select which 
windows to view and the system preserves the contents across selec­
tions. General command interaction uses a window consisting of the top 
four lines of the screen and the other windows do not overlap this re­
gion. Windows for diagnostic, inspector, and Smalltalk interaction fit 
into the other twenty lines. Fig. 6.4 shows the three vertically-over­
lapping 20 x 40 windows which display the active context, receiver, and 
compiled method components of the Smalltalk-SO virtual machine state. 
Most of the context and receiver information is in the leftmost 20 col­
umns of their windows, so having those windows overlap was not a 
problem. The user can also close the receiver window to get full view of 
the context and the method. 

class 
Small Integer 
Special Object 
Symbol 
String 
Association 
Metaclass 
Other 

Table 6.2 Notation for Displaying Objects 

example 
0205 258D 
0006 True 
0132 U "Array" 
0664 S " a string " 
0008 A 6£20 < Arc > 
73ea C <File> 
72cc <Turtle> 

description 
small integer value in decimal 
name of object 
( unique strings) U followed by string 
S followed by string 
A followed by value field 
C followed by class name 
class name within angle-brackets 

The user can have the context, receiver, and method windows of the 
Smalltalk-SO virtual machine state display dynamically updated with 
execution. The frequency of update is selectable, and performance is ac­
ceptable even for small granularity updates. One can watch the stack 
values, temporaries, and instance variables change, and display en­
hancements indicate the current positions of the stack pointer and pro­
gram counter. We follow a convention for single-line object descriptions 
in the window system. In all cases, we display the object pointer in 
hexadecimal format, and the additional object-specific information is 



108 
The Smalltalk-80 Implementation at Hewlett-Packard 

Future 
Directions 

described in Table 6.2. The motion-picture Smalltalk-BO virtual ma­
chine state display proved invaluable to the debugging effort. The per­
formance of the system under full display is quite good. 

Both the monitor and the inspector can escape to the UNIX shell to 
execute commands there. The monitor intercepts certain control char­
acters and will halt execution, kill the system, or dump the core image 
to a file on request. As a special feature, the monitor traps all fatal er­
rors and recursively invokes a new copy of itself to hunt for the cause. 
Then we can use the inspector to fix wayward values and continue exe­
cution. 

As Smalltalk enters the real world there is much speculation over fu­
ture directions for the system. Although the Smalltalk-80 distribution 
test process was thorough in eliminating problems in the system, many 
issues remain unresolved such as network interfacing and multiple in­
heritance, and there has been little time to implement the more ingen­
ious optimizations. Hence there is much room for improvement in the 
design. 

All of the test site implementations used high-level or assembly lan­
guage to implement an interpreter for the Smalltalk-BO virtual ma­
chine. Unfortunately, this approach produced significantly degraded 
performance compared to native mode execution of the processor (a 
penalty of 40 to 200 times slower). The elimination of the Smalltalk-80 
virtual machine as an intermediate stage could boost performance con­
siderably, but this would necessitate the implementation of a 
Smalltalk-80-to-native-code compiler. 

Early in our project we had investigated a native compiler strategy. 
Our bytecode execution frequency figures indicate that such an ap­
proach would be worthwhile. Over 70% of the Smalltalk-80 virtual ma­
chine bytecodes executed in normal usage (push, pop, store, jump, 
return) map to at most a few instructions in an ordinary computer. In 
addition, nearly B5% of all bytecodes executed (those above plus the 
special sends) translate to in-line sequences of instructions, including a 
procedure call escape for the exceptional cases. Only about 15% of 
Smalltalk execution requires the message lookup process where proce­
dures perform the late binding. Because the Smalltalk-80 virtual ma­
chine compiler is written in the Smalltalk-80 language, the 
development of a native code version requires a stable Smalltalk-80 sys­
tem to begin with. 

In spite of the myriad optimizations proposed and implemented, a 
Smalltalk-SO system seems doomed to lower performance than more 

T 



109 
Future Directions 

traditional programming systems. There are two areas where Smalltalk 
loses to other languages. One is the 15% of execution which requires 
message lookup. Message cache schemes lessen the penalty, but speed is 
still impaired by the symbol matching and indirection. The other area 
involves the automatic memory management provided by reference 
counting and/ or garbage collection mechanisms. The memory manager 
is very expensive to operate and it is not clear that performance prob­
lems in this area can be solved. This may impact the ultimate success 
or failure of Smalltalk, as users of traditional programming systems 
may be reluctant to give up performance in exchange for Smalltalk. 

Alternative implementation hosts also merit consideration. Although 
we have yet to implement the system on an HP 3000, we have derived 
performance estimates for the Smalltalk-80 virtual machine on the HP 
3000 and the HP 1000 A Series minicomputer systems. With its stack­
oriented architecture, an HP 3000 could be capable of 200,000 bytecodes 
per second. The HP 1000 A Series is a more attractive candidate be­
cause of its excellent price/performance ratio and compact packaging. 
Performance in excess of 100,000 bytecodes per second might be possi­
ble for an A Series processor with writable control store. 

Implementations can benefit from special hardware for functions 
which do not perform well on general-purpose processors. Xerox solved 
this problem by adding special-purpose microcode for such functions to 
their general-purpose hardware. We have already commented on how 
the performance of our primitives suffered from lack of access to micro­
code or hardware support. This situation is most serious for graphics 
operations where microcode or instruction cache support for block 
moves would expedite matters by at least a factor of 10. 

Since the Smalltalk-80 system is geared toward the personal comput­
ing community, the microprocessor is a natural area for investigation. 
However, most microprocessors do not have modifiable control stores 
and so special-purpose hardware may be the only efficient option to 
achieve acceptable performance. In fact, advances in VLSI design and 
fabrication have promoted the development of many such special-pur­
pose chips for graphics control, memory management, and 1/0 support. 
A native code compilation system integrating these chips with one of 
the new 16- or 32-bit microprocessors could be an excellent 
Smalltalk-80 host. 

There is also the issue of having an operating system alongside or 
underneath an implementation of the Smalltalk-80 system. The HP im­
plementation runs on top of UNIX, which has significant advantages 
and disadvantages over the strategies of other implementors in the test 
program. UNIX has many features which assist the development of pro­
totype software. For example, the debugging utilities are key compo­
nents of our development environment. However, there are a few points 
where the integration of UNIX into Smalltalk could have helped us, 



110 
The Smalltalk-SO Implementation at Hewlett-Packard 

Conclusions 

such as in multiprocess control. As it stands we simulate this feature on 
UNIX, thus incurring additional overhead. The file system was another 
area where UNIX could have helped. By integrating the UNIX hierar­
chical file system into Smalltalk, we could have structured the system 
source into a hierarchical collection of files reflecting class relationships 
instead of the single large file currently used. 

The Smalltalk-80 language itself is another direction for research. 
We find the language to be excellent for systems programming of appli­
cations with superior user interface characteristics. Contrary to popular 
belief, we do not feel that it is a programming language for the naive 
user community. Instead, it has proven itself to be a very good language 
for developing application kits to enable naive users to solve problems 
in limited domains, as in ThingLab 3• The object orientation lends itself 
especially well to the programming of graphics problems. As other lan­
guages incorporate similar graphics capabilities, it will be interesting to 
note how their user interfaces compare with Smalltalk's. 

There have been proposals to include types in Smalltalk, either 
through inference or declaration4•5• Each approach has its own merits, 
but more work needs to be done to determine the best way to integrate 
type structure into the system. In particular, we look forward to ways 
of using type information to optimize certain operations in the system. 

The Hewlett-Packard team was curious about Smalltalk and we ap­
proached the task of implementing the Smalltalk-80 system with both 
reservations and enthusiasm. And indeed, some of our reservations 
were warranted: the Smalltalk-80 language did not prove to be a work­
ingman's programming language and did not perform well enough on 
conventional hardware. The mystery surrounding Smalltalk for so 
many years had inspired grand expectations in us. In the end we were 
disappointed, but our curiosity was sated and we are perhaps better for 
it. The concepts embodied in Smalltalk have a heritage which goes back 
over 20 years, yet many have not achieved widespread acceptance by 
the research or marketing communities. There is little doubt now that 
the new economics of VLSI will make many of these concepts standard 
features of computing products. 

It remains to be seen however, whether Smalltalk itself will succeed 
in the marketplace. All during the project we dreamed of a 
Smalltalk-80 product. These visions gradually became a nightmare as 
we discovered the pitfalls of an environment with the flexibility of 
Smalltalk. A Smalltalk-80 user can break the system by changing a sin­
gle method. More important, one can make it incompatible with the 
distribution just as easily. From a product support standpoint, this 
would be chaos. Software distribution would be difficult to impossible. 

T 



Acknowledg­
ments 

References 

111 
References 

Application software could assume very little about the runtime envi­
ronment, since it might have been modified extensively by the user. In 
tracing down system problems, it would be tricky to determine whether 
the problem was in the distribution or in the changes made by the user. 
One solution would be to restrict what a user can change, but this de­
feats the whole purpose of Smalltalk. We can not see how an organiza­
tion could hope to provide any form of comprehensive support for a 
Smalltalk product. The only way we can envision Smalltalk in the mar­
ketplace is as an unsupported package. 

We would like to acknowledge the tenacious efforts of our fellow mem­
bers of the HPL Smalltalk team in coping with the vagaries of a distri­
bution test program. In particular, Alec Dara-Abrams for stalking the 
wild interpreter, Bob Shaw for graphics support beyond the call of duty 
on the Lexidata, and Bob Ballance for his work on the interpreter and 
primitives, especially in floating point and process control. Our project 
leader, Jim Stinger, provided technical arbitration and primitive design. 
Joe Falcone contributed in the object memory, development environ­
ment, and performance evaluation areas. 

There are others who contributed to the project in advisory and man­
agerial capacities. Ching-Fa Hwang, Dan Conway, and Sam Gebala 
helped review the chapters of the Smalltalk book and participated in 
the early discussions about target machines. We would also like to 
thank our department manager, Ted Laliotis, for his support through­
out and beyond the life cycle of the project. None of this would have 
been possible without the work of Jim Duley and Paul Stoft, who were 
responsible for bringing the Smalltalk-80 system to Hewlett-Packard. 
Finally, we express our appreciation to David Casseres, Ann Falcone, 
Karri Kaiser, Glenn Krasner, Rick Meyers, and Steve Muchnick for 
their editorial assistance. 

All of us involved with the Smalltalk-80 system at Hewlett-Packard 
appreciate the efforts of the Xerox Software Concepts Group. We grate­
fully acknowledge their support and tolerance during the test program. 

1. Sansonnet, J. P., et. al., "Direct Execution of LISP on a List-Di­
rected Architecture", Proceedings at the Symposium on Architec­
tural Support for Programming Languages and Operating 
Systems, Palo Alto, CA, pp. 132-139, March 1982. 



112 
The Smalltalk-80 Implementation at Hewlett-Packard 

2. Ritchie, Dennis M., and Thompson, Ken, "The UNIX Time-Shar­
ing System" Comm. ACM vol. 17, no. 2, pp. 365-375, July 1974. 

3. Borning, Alan H., "The Programming Language Aspects of Thing 
Lab, A Constraint-Oriented Simulation Laboratory", ACM Trans­
actions of Programming Languages and Systems vol. 3, no. 4, pp. 
353-387, Oct. 1981. 

4. Barning Alan H., and Ingalls, Daniel H. H., "A Type Declaration 
and Inference System for Smalltalk", Ninth Symposium on Princi­
ples of Programming Languages, pp. 133-141, Albuquerque, NM, 
1982. 

5. Suzuki, Nori, "Inferring Types in Smalltalk", Eighth Symposium 
on Principles of Programming Languages, Williamsburg, VA, pp. 
187-199, 1981. 

--✓- ✓~- - _,,--

( ~ . . (\ -~ f G[:__ \ 
,f..; ' rt f· - . . I I 

~ c:~:l:J ~::)~J~- 9cJSTE~ J ~jv . r, M~ 
'JD ~ nol)E. +\£1?-f.. J L£1 ,~'.t_ ) 

y~~~~~A'/ 

! f9 

- ~~~JZ..,,-r✓- ~ 

-~~ll 
~-~ 

. . . '·~ ·. ~ :. 

- - -
- ~----

1 



Abstract 

Introduction 

The Dorado Smalltalk-SO 
Implementation: 
Hardware Architecture's 
Impact on Software 
Architecture 

L. Peter Deutsch 
Software Concepts Group 
Xerox Palo Alto Research Center 
Palo Alto, California 

The implementation of the Smalltalk-BO virtual machine on the Dora­
do, an experimental high-performance microprogrammed personal com­
puter, was strongly influenced by a few attributes of the Dorado 
hardware architecture: a large microprogram memory, a hardware in­
struction prefetch and decoding unit, an effective memory cache, and 
the use of base registers for memory addressing. Each of these features 
substantially reduced the complexity and/or improved the performance 
of the Smalltalk implementation. 

The Dorado is an experimental high-performance microprogrammed 
personal computer, the latest and most powerful descendent of the Xe­
rox Alto. Because the Dorado is relatively easy to microprogram, and 
because it incorporates many architectural features for aiding 
implementors of higher-level languages, the Software Concepts Group 
chose the Dorado as the first target machine for implementing the 
Smalltalk-BO virtual machine. The first version of the implementation 

Copyright © Xerox Corporation 1982. All rights reserved. 

113 



114 
The Dorado Smalltalk-SO Implementation 

Emulator 
Architecture 

ran successfully in early 1981, after approximately six months' work by 
a single person. 

Three excellent papers on the Dorado hardware architecture have 
appeared elsewhere1, so we will only mention the machine's most im­
portant attributes. The Dorado is microprogrammed, with a 70 ns mi­
croinstruction time and a 36-bit microinstruction. The microprogram 
memory holds 4K microinstructions, all in RAM. The internal registers 
and data paths are 16 bits wide. The processor accesses main memory 
through a 4K-word cache, which can accept a reference every microin­
struction and deliver data 1 or 2 microinstructions after a read request. 
The processor includes pipelined hardware for prefetching and decoding 
macroinstructions. Later we will describe other details of the Dorado 
hardware in connection with their impact on the Smalltalk-80 virtual 
machine implementation. 

The Dorado microinstruction memory (microstore) holds 4K instruc­
tions. In the standard Dorado microcode, approximately 1300 microin­
structions implement I/0 controllers and 700 microinstructions 
implement a simple macroinstruction set inherited from the Alto2• (The 
I/0 control microcode is a consequence of the Dorado's I/0 architec­
ture, which emphasizes simple controller hardware and uses microcode 
multiprocessing to provide most of the control function.) The remaining 
2000 microinstructions are available for implementing other macroin­
struction sets and/ or extending the Alto instruction set: normally they 
implement an instruction set specialized for Mesa3• The hardware in­
struction fetch unit (IFU, described in more detail below) allows switch­
ing between instruction sets in less than a microsecond, simply by 
reloading an IFU register. 

In our Smalltalk-80 implementation, we had a number of choices: 

1. Keep the Alto and/ or the Mesa macroinstruction set, and imple­
ment the Smalltalk-80 virtual machine entirely in it/them. 

2. Keep the Alto macroinstruction set; implement the Smalltalk-80 
virtual machine mostly in microcode, and the remainder in Alto 
code. 

3. Discard the Alto microcode; implement the Smalltalk-80 virtual 
machine mostly in microcode, and partly in Smalltalk extended 
with special primitives for manipulating memory or the I/0 de­
vices directly. 



115 
Emulator Architecture 

4. Discard the Alto microcode; implement the Smalltalk-80 virtual 
machine entirely in microcode. 

We rejected approach 1 for performance reasons: although somewhat 
harder to write, microcode is approximately five times as fast as either 
Alto code or Mesa for straightforward instructions, and also offered the 
opportunity to fully exploit the available processor registers and the 
IFU. 

It was likely that the microstore was not large enough for 4; 4 would 
also have deprived us of the ability to write debugging aids in Alto code 
or Mesa, and to use the standard debugger (as opposed to a microcode 
debugger) during Smalltalk development. 

In finally choosing 2 over 3, we were motivated by several principal 
arguments: 

• We wanted the parts of the Smalltalk-80 system written in 
Smalltalk to be completely portable, i.e. not contain code specific to 
any particular storage or 1/0 system, and were willing to tolerate 
a larger non-Smalltalk kernel to achieve this. 

• Both the Dorado and the Dolphin, a less powerful machine for 
which we also wanted a Smalltalk implementation, already had 
Alto emulation microcode. Those parts of the Smalltalk system 
written in Alto code could be shared between the two implementa­
tions. We were also considering an implementation on the Alto, 
which has less powerful microcode and a smaller microstore. A sys­
tem architecture which allowed us to move small functional units 
of code between microcode and Alto code implementations was 
likely to be more transportable between the three machines. 

• Keeping the Alto emulator, which occupies less than 20% of the 
microstore, would relieve us of the 4K limit (by allowing us to 
write arbitrarily large fractions of the system in Alto code) without 
depriving us of a lot of microstore space. 

It is interesting to note that Interlisp-D4, where these desires were not 
as important, made the opposite choice. Interlisp-D originally adopted 
approach 2, later replacing it by 3. The Interlisp-D system now contains 
literally thousands of lines of machine-dependent source code written in 
Lisp: it has no clear division between a portable virtual machine and an 
implementation level, but the instruction set is much closer to the ma­
chine level and is much easier to implement efficiently. 

Two features of the hardware architecture helped reduce the cost of 
approach 2 compared to 3, specifically by reducing the cost of passing 
control and data between the two implementation levels: quick switch-



116 
The Dorado Smalltalk-80 Implementation 

ing between instruction sets in the IFU, and the fact that the Alto in­
struction set deliberately included a large number of undefined opcodes 
to which we could assign our own interpretation. We used these opcodes 
to optimize the transfer of information between the microcode and Alto 
code implementation levels. The appendix (p. 123) lists these opcodes in 
detail; we believe that any Smalltalk-80 implementation that uses a 
combination of microcode and an existing macroinstruction set will find 
this list a useful guide. 

In retrospect, this decision to split the implementation between two 
levels worked out extremely well. The decision gave us a great deal of 
flexibility to move parts of the Smalltalk kernel between Bcpl (a system 
programming language which compiles into Alto code), Alto assembly 
language, and microcode as we investigated its performance character­
istics. As it turned out, we only used Bcpl for initialization, since it 
could not generate our extended Alto instructions and since its subrou­
tine calling sequence is less efficient than a hand-coded one by a factor 
of about 3. Typical Smalltalk-80 benchmarks show between 5% and 
15% of the time being spent executing Alto code, and the remainder in 
Smalltalk microcode. 

In the final implementation, the main part of the system is 
implemented entirely in microcode: 

• Instruction set interpreter (with assistance from the IFU) 

• Process switching 

• Reference counting 

• Object allocation and deallocation 

In addition, the following primitive methods are implemented in micro­
code: 

• Small integer arithmetic 

• Subscripting and instance variable access: at:, at:put:, size, 
characterAt:, characterAt:put:, objectAt:, objectAt:put:, instVarAt:, 
instVarAt:put: 

• Object creation (new, new:) 

• Block context creation and execution: blockCopy:, value/value:, 
valueWithArguments: 

• Process scheduling (signal, wait, resume, suspend) 

• BitBlt (copyBits) 



Instruction 
Sequencing 

• Miscellaneous: asOop, 
performWithArguments: 

117 
Instruction Sequencing 

class, flushMessageCache, perform:, 

The following primitive methods for storage management were original­
ly implemented in microcode, but were later translated into Alto code 
for reasons explained below: refct, become:, asObject, somelnstance, 
next Instance. 

The following primitive methods are implemented in Alto code: 

• 16-bit large integer arithmetic 

• Floating point arithmetic 

• All 1/0 primitives (disk, Ethernet, display, keyboard, mouse) except 
BitBlt 

• The remaining storage management primitives: newMethod:header:, 
coreleft 

• Snapshot 

The following optional primitive methods are not implemented on ei­
ther the Dorado or the Dolphin: next, nextPut:, atEnd. 

When the interpreter microcode encounters a Smalltalk method that 
includes a call on a primitive, it consults a table stored in main memo­
ry to determine whether the primitive is implemented in microcode (the 
table contains a microcode dispatch address) or Alto code (the table con­
tains the address of an Alto code routine). In the latter case, the inter­
preter switches the IFU to Alto emulation, and the machine starts 
executing the Alto code that implements the primitive. The Alto code 
typically contains some special Smalltalk-specific instructions (described 
in the appendix on pg. 123) which allow it to interact with the 
Smalltalk world: LDSS instructions to access the receiver of the mes­
sage and its arguments, SETDS and LDFD/STFD instructions to access 
the instance variables of the receiver, and finally a PRET instruction to 
return the result of the primitive and resume Smalltalk execution. All 
these trapped opcodes are of course implemented in microcode. PRET 
switches the IFU back to the Smalltalk instruction set and resumes ex­
ecution with the next Smalltalk bytecode. 

The Dorado's Instruction Fetch Unit (IFU)5 prefetches and decodes in­
structions in a manner almost ideally matched to the Smalltalk instruc­
tion set. In fact the three language-oriented instruction sets designed at 
the Palo Alto Research Center (Lisp, Mesa, and Smalltalk) and the Do-



118 
The Dorado Smalltalk-SO Implementation 

Memory 
Management 

rado design influenced each other considerably. The IFU prefetches up 
to 6 bytes, accessing the memory through the same cache the processor 
uses, and only when the processor is not accessing it. The first 8-bit 
byte of an instruction indexes a 256-entry RAM. The entry in the RAM 
gives the address of the microcode that implements the instruction, says 
how many additional bytes the instruction uses (0, 1, or 2), and supplies 
a 4-bit parameter for any purpose the microcode wants. (For example, 
each group of Smalltalk "load" instructions uses the same microcode, 
but different parameter values corresponding to the offset of the desired 
variable within the context, instance, or literals.) The RAM also con­
tains information which allows the IFU to execute certain uncondition­
al jumps itself. The microcode that implements a given macroinstruc­
tion can read the parameter and the additional bytes from the IFU onto 
a convenient bus. The last microinstruction of each macroinstruction 
contains a field that informs the processor's control logic that the pro­
cessor should ask the IFU for a new dispatch address for the next mi­
croinstruction; under this arrangement, there is normally no delay at 
all between macroinstructions. Thus the overhead of fetching, decoding, 
and dispatching on macroinstructions, and returning to a central loop 
after a macroinstruction is finished, is reduced essentially to zero. This 
overhead may take up as much as 20% of the time in an interpreter 
implemented without hardware assistance6• 

The entire job of instruction sequencing and decoding is handled by 
the IFU. The microprogram only intervenes to restart the IFU for 
jumps, message sends, and returns, and when switching between the 
Smalltalk and Alto instruction sets. The IFU RAM actually holds up to 
four instruction sets at once, and the overhead of switching is less than 
a microsecond if the first instruction to be executed is in the memory 
cache. Only 2.4% of execution time is spent waiting for the IFU to sup­
ply a dispatch address; we cannot determine what fraction of this time 
is due to cache misses and what fraction to competition with the proces­
sor for cache cycles. For a deeper discussion of IFU performance, see the 
Dorado papers.7 

The Dorado provides hardware support for a paged virtual address 
space, but the Smalltalk-80 implementation makes no use of it­
Smalltalk initializes the page tables to map virtual addresses one-for­
one into real addresses. Recovering from a page fault at the microcode 
level is potentially complicated. A single Smalltalk instruction can 
make many memory references, so we would have had to adopt some 
combination of resuming execution of a Smalltalk instruction in mid­
flight, arranging all instructions to be restartable, and/ or letting the 

r 



Memory Cache 

119 
Memory Cache 

page fault handler complete the faulting reference. For this reason, and 
because past experience with a paged Smalltalk suggested that it would 
perform very badly if the working set exceeded real memory signifi­
cantly, we did not go to the trouble of observing the microcoding re­
strictions which would make recovery from faults possible. 

Recursive freeing of objects with zero reference count is implemented 
in microcode; the main loops of the compactor, but not the overall con­
trol, are also in microcode. This arrangement has worked out extremely 
well. In fact so little time is spent in recursive freeing (1.9%) that we 
might be able to move at least some cases of the rather complex recur­
sive freeing algorithm into Alto code as well with relatively little per­
formance penalty. This is partly a result of a minor interpreter change: 
when control returns from a context which has no other references to 
it, the interpreter essentially "unrolls" the top loop of the recursive fre­
er, i.e., there is a special loop which iterates through the fields of the 
context (but only up to the current position of the stack pointer), 
decrementing the reference counts and calling the actual recursive fre­
er if needed. 

The Dorado's memory cache is nearly as fast as the processor registers. 
A memory fetch in microinstruction N produces data in a register in 
microinstruction N + 1 which can be used for computation in microin­
struction N + 2. Memory stores are even faster, taking a single microin­
struction. The cache is pipelined, so a new fetch or store can be started 
in every microinstruction. As a result, we decided to implement even 
the very highest-bandwidth operations of the Smalltalk-SO implementa­
tion-pushing and popping quantities (particularly variables) on the 
stack-using memory references at the microcode level without signifi­
cant time penalty. Thus for example, the microcode that implements 
the "load local variable" instruction reads the local variable using the 
current context as a base and the parameter supplied by the IFU as the 
offset, increments a stack pointer held in a register, and then writes the 
value onto the stack (in main memory) using the stack pointer as an 
offset from another base register. 

In retrospect this decision was almost certainly correct. The memory 
references to the stack and the local variables in a context never cause 
cache misses. The bookkeeping required to manage a finite-size register 
stack (the Dorado has four 64-register stacks in the processor) would 
have been relatively complex, especially since Smalltalk does not al­
ways transfer control between contexts in LIFO order. However, this 
decision is critically dependent on the speed of the cache. If the cache 



120 
The Dorado Smalltalk-SO Implementation 

Registers 

had been only half as fast-taking 3 to 4 microinstructions to fulfill a 
request-it would probably have been better to store some of the cur­
rent context in registers. 

Despite its small size, the Dorado cache works effectively for 
Smalltalk. Our measurements show that cache misses account for only 
11 % of execution time. References to the stack and the current context 
never cause misses; most misses are caused by accesses to method dic­
tionaries during message lookup, and to method headers when starting 
execution of a method. 

The Dorado includes 256 16-bit working registers, organized as 16 
groups of 16 registers each. One of the 16 groups is current at any time, 
selected by a processor register called RBase. Microinstructions supply 
a 4-bit register address within the current group, which is concatenated 
with RBase to provide the full register address. The Smalltalk micro­
code uses three groups: 

• The "main" group, described in more detail just below 

• A group used only by the compactor and recursive freer 

• A group used almost exclusively by the process scheduler 

Because changing the RBase register ties up a microinstruction field 
that is also involved in many other operations (such as memory refer­
ences and constant generation), it is highly valuable to divide the regis­
ters into blocks according to major sections of the microcode control, to 
minimize the frequency of group switching. The convention we chose in 
the Smalltalk microcode was to define a single ''main" group to be cur­
rent throughout the entire microcode, except for local switching to ac­
cess individual registers in other groups, and self-contained routines 
like the recursive freer which would restore the "main" group to cur­
rency when they were done. 

Since the contents of the "main" group are a valuable indication to 
implementors as to what information should be held in machine regis­
ters, we list them here, in approximate order of decreasing utility: 

SPR 

9 temporary regis­
ters 

Nargs 

The stack pointer, relative to the base of the current con­

text 

Also used for passing arguments and results to and from 

microcode subroutines 

The number of arguments to the current method 



Base Registers 

Self 

SI 

MyPC 

Context 
Method 

121 
Base Registers 

The Oop (object identifier) of the current receiver 

A flag indicating whether the last (or current) primitive is 

"fast" (entered directly in response to a special selector) or 

"slow" (entered through method lookup) 

The byte PC (relative within the method), saved whenever 

control might switch to another context or to Alto code 

The Oop of the current context 

The Oop of the current method 

Note that direct pointers to the bodies of some of these objects (the re­
ceiver, context, and method) are also held in base registers, as described 
in the next section. 

The limitation of 16 readable registers was much less of a nuisance 
than might be expected. The original Dorado prototype had 32 groups of 
8 registers, which was a tremendous nuisance: the microcode shrank by 
about 15% from the prototype version simply through elimination of 
microinstructions whose main purpose was to switch register groups. 
Expansion to direct addressing of all 256 registers would probably elim­
inate only another 20 microinstructions: the figure is small because of 
our careful division of registers into meaningful groups. In other words, 
our experience indicates that for Smalltalk-SO implementation, there is 
a "knee" in the utility curve somewhere between 8 and 16 directly ac­
cessible registers. 

The Dorado also includes 4 stacks of 64 registers which can only be 
accessed through a pointer register, the processor stack pointer (StkP). 
The microinstruction format supports pushing and popping quantities 
in the current stack as easily as addressing the current block of 16 ad­
dressable registers. Unfortunately, StkP is awkward to load and read, 
and recovering from over- or underflow is even more difficult. For these 
reasons, we chose not to use these stacks to model the Smalltalk stack, 
but only for temporary storage within the microcode. When a 
microcoded primitive fails, or other exceptional condition arises, the mi­
crocode resets StkP to a standard state before continuing with the re­
covery code. As indicated in the earlier section on the memory cache, 
we believe this choice is better than using the processor stack for cach­
ing parts of Smalltalk contexts. 

The Dorado memory system provides 32 base registers which hold full 
28-bit virtual addresses; the microinstructions that reference memory 
normally provide 16-bit displacements relative to a current base regis-



122 
The Dorado Smalltalk-SO Implementation 

ter, switched under microprogram control. Consequently, the Smalltalk 
microcode dynamically maintains the following addresses in base regis­
ters at all times: 

TS 

ss 

RS 
cs 

The current context for accessing local variables (home 

context when executing a block, current context otherwise) 

The context used for execution and stack-always the cur­

rent context, even when executing in a block 

The receiver in the current context (self) 

The currently executing method (code) 

In addition, it loads the following addresses at system initialization: 

OTBase 

FreeLists 

MCacheBase 

SpecialBase 

The base of the object table (OT) 

The base of the table of free list heads 

The base of the message lookup cache 

The SpecialSelectors array, used to handle sends of special 

selectors (must also be reloaded after memory compactions) 

It is interesting to observe that the memory system is so fast, and the 
indirect or indexed addressing of registers so awkward, that the system 
actually runs (slightly) faster by putting the free list heads in memory 
than by putting them in addressable registers. 

This choice of base registers is fairly obvious, except for the issue of 
whether or not to maintain a pointer to the receiver. Maintaining such 
a pointer requires reloading it at each activation or return; not 
maintaining such a pointer requires indirect access through the OT at 
each reference to an instance variable. (More complicated schemes are 
also possible, such as a flag to indicate whether the base register has 
been reloaded since the last change of context.) Measurements indicate 
that references to instance variables are slightly more common than 
context switches, so we come out slightly ahead by always loading the 
base register at a context switch. 

While the base register model works well for memory references, 
loading a base register is awkward for two relatively minor reasons: 

• Base registers are 28 bits wide, but the Dorado's data paths are 
only 16 bits. Thus loading a base register takes at least 3 microin­
structions (one to select the register, and one to load each half). 

• Because the Dorado implementation packs flag bits into the OT 
along with the data address, exactly as described in the Smalltalk 



Microcode 
Multiprocessing 

Appendix: 
Extended Alto 
Instructions 

123 
Appendix: Extended Alto Instructions 

virtual machine documentation, a masking operation is required. 
Also, again because of the 16-bit architecture, two memory refer­
ences are required to fetch the OT entry. 

As a result of these problems, the standard subroutine which loads a 
base register with the address of an object whose Oop is known (essen­
tially the SETDS instruction described in the appendix below) takes 6 
microinstructions; over 10% of execution time is spent in this subrou­
tine (and various open-coded copies of it). By using 3 words per OT en­
try instead of 2, we could have eliminated the masking operation, 
saving 1 of the 6 microinstructions. However, besides adding 32K to the 
system's memory requirements, this design would have increased the 
cache working set size (and hence the wait time due to misses) signifi­
cantly, so there might well have been no net speed improvement. 

The Dorado micro-architecture includes multiple processes at the mi­
crocode level. The Smalltalk-SO emulator itself makes no use of this ca­
pability, which is primarily designed to allow a single processor to 
function effectively as a controller for multiple high-speed 1/0 devices. 
However, one of these processes can be awakened periodically, at inter­
vals as short as a few microseconds, to collect a histogram of the ad­
dress of the next microinstruction to be executed by the instruction set 
emulator. This facility proved invaluable in analyzing performance bot­
tlenecks in the Smalltalk microcode; essentially all the measurements 
reported in this paper were obtained from the micro-address histogram. 
One particularly interesting number was the amount of time spent 
waiting for cache misses; we computed this by looking at the number of 
samples at addresses of microinstructions that had to wait for memory 
data to arrive, compared to the instructions immediately preceding and 
following these. 

In the following descriptions of the extensions to the Alto instruction 
set, AC0-3 refer to four 16-bit registers which the Alto instruction set 
views as central registers, but which are addressable registers at the 
microcode level. 

Many of these instructions are designed for use only from Altocode 
primitives, and consequently can cause "primitive failure" under cer-



124 
The Dorado Smalltalk-80 Implementation 

Access to 
Smalltalk Data 

Conversion 
of Integers 

tain circumstances. Primitive failure means that the execution of the 
primitive code is abandoned, and the Smalltalk method is executed in­
stead. 

The instructions are arranged below in groups, with the most heavily 
used groups listed first. 

LDSSn 

SETDS 

LDFD n / LDFl 

STFD n / STFl 

LDNFD n / LDNFl 

STNFD n / STNFl 

IVAL 

WRDVAL 

MKINT 

AC0 +- word n relative to SS+SPR-Nargs, the location of 

receiver and arguments on the stack in the current 

context. N = 0 is the receiver, n = 1 is the first argument, 

etc. 

AC0 = an Oop. Sets the DS base register to the real 

memory address of the object, taken from the OT. Causes 

primitive failure if AC0 is a small integer rather than an 

Oop. 

AC0 +- word n relative to DS; for LDFl, n is taken from 

ACl rather than from the instruction itself. The 

parameters .LENGTH, .CLASS, and .FLDS define the 

offsets of the length word, class word, and first field of an 

object, e.g. the assembly-language instruction to load the 

second field of an object would be LDFD .FLDS + 1. 

AC0 = a new Oop to be stored at word n relative to DS. 

This instruction does reference counting (increases the 

reference count of the object identified by AC0, decreases 

the reference count of the old contents): use STNFD (below) 

to store a non-Oop without reference counting. 

AC0 +- word n relative to DS. Meant for use when the data 

being loaded are bits rather than Oops. Equivalent to 

LDFD in the current system, only provided for symmetry 

with STNFD. 

AC0 = a new value to store into word n relative to DS. 

Does not do reference counting (see STFD above). 

AC0 = a small integer; AC0 +- the value of the integer. 

Causes primitive failure if ACO is not a small integer. 

AC0 = an Oop of a Smalltalk LargePositivelnteger, or a 

Smalllnteger; AC0 +- the value of the number. Causes 

primitive failure if the Oop is not a Largelnteger, or if the 

value does not fit in one word. 

AC0 = an unsigned integer; AC0 +- the corresponding 

Smalltalk integer (small or large). 



Primitive Control 

Access to OT 

Access to 
Microcoded 
Primitives 

Compaction 

Miscellaneous 

Initialization and 
Post-mortem 

PRET 

PFAIL 

READOT 

SETOT 

SIGNAL 

CINST 

CLEANSTATE 

ACOMPACT 
CSEG 

CLOOP 

CRESUME 

RESUME 

SETCNT 
READCNT 

CONFIG 

SETOTBASE 

125 
Appendix: Extended Alto Instructions 

A primitive has completed successfully. AC0 = the value 

to return from the primitive. 

Cause primitive failure. 

Read the OT entry for a given Oop. AC0 = an Oop. AC0 -­

address word from OT, ACl ,_ flag word from OT. 

Set the OT entry for a given Oop. AC0 = an Oop, ACl = 

address word to store in OT, AC3 = flag word to store in 

OT. 

AC0 = a Semaphore. Does a "signal" operation on the 

semaphore. Used only by 1/0 interrupts and the low space 

notification mechanism. 

AC0 = the Oop of a class, ACl = the number of extra 

fields (for variable-length classes); AC0 -- the Oop of a 

newly created instance. DS is also set as for SETDS. 

Store all of Smalltalk's state into memory in preparation 

for a compaction or a snapshot. 

Start a compaction. AC0 = the Oop of the display bitmap. 

Prepare to compact the area of memory starting at AC0/1 

and going up to an end marker which is the maximum 

legal Oop + 3. 

Do the main compactor lOop. AC0/ 1 ,_ the end of the 

occupied area after compaction. AC2/3 -- the end of the 

occupied area just below the display bitmap, if the display 

bitmap was in the area being compacted. 

Resume Smalltalk execution after a compaction. 

Resume Smalltalk execution with the next bytecode. Used 

only during initialization, and for resuming after an 

interrupt. (All hardware interrupts cause control to go 

from the Smalltalk interpreter to Alto code.) 

Set the low-space trap parameter to AC0. 

AC0 ,_ the number of Oops left before a low-space trap 

will occur -1. 

AC0 ,_ the size of (real) memory in units of 32K, e.g. for a 

512K Dorado, AC0 +- 16 decimal. 

Initializes the microcode base register that points to the 

OT. AC0 = low address of OT, ACl = high address of OT. 



126 
The Dorado Smalltalk-SO Implementation 

References 

DEADSTART Initializes the system. AC3 = a pointer to a block of 

memory laid out as follows: 

0 base address of OT (low bits) 

1 (high bits) 

2 size of OT ( # of OT entries) 

3 the address of an 8K table for a microcode PC histogram, 

or 0 (low bits) 

4 (high bits). 

After initialization is done, Smalltalk execution begins, so control does 
not return to the instruction following the DEADSTART. 

READOUT AC0 = a pointer to a readout area in memory, into which 

are stored the following values: 

0 - Oop of current context (CONTEXT register) 

1 - current stack pointer (SPR register) 

2 - byte PC of current instruction (PCX register) 

3 - unused but reserved for future use 

4 - micro-PC from which crash occurred (LINK register) 

5-19 - unused but reserved for future use. 

1. Lampson, Butler W., "The Dorado: A High-Performance Personal 
Computer", Xerox PARC Technical Report CSL-81-1, Jan. 1981. 

2. Thacker, C. P., et. al., "Alto: A Personal Computer", in Computer 
Structures: Readings and Examples, 2nd Edition, Eds. Sieworek, 
Bell, and Newell, McGraw-Hill, New York, 1981; (also Xerox 
PARC Report CSL-79-11 Aug. 1979). 

3. Mitchell, James G., et. al., "Mesa Language Manual," Xerox 
PARC Report CSL-79-3, Apr. 1979. 

4. Burton, Richard R., et. al., (The Interlisp-D Group), "Papers on 
Interlisp-D'', Xerox PARC CIS-5, July 1981; (a revised version of 
Xerox PARC SSL-80-4). 

5. See ref ere nee 1. 

6. Markoff, John, "Smalltalk: A Language for the 80s", Info World, 
cover story, Jan. 24, 1983. 

7. See reference 1. 



Introduction 

Some History 

The Design and 
Implementation of 
VAX/Smalltalk-SO* 

Stoney Ballard 
Three Rivers Computer Corporation 
Pittsburgh, Pennsylvania 

Stephen Shirron 
Digital Equipment Corporation 
Marlboro, Massachusetts 

VAX/Smalltalk-BO is an implementation of the Smalltalk-BO system 
written for the VAX family of computers running with the VMS oper­
ating system. This version differs from standard Smalltalk-BO imple­
mentations by using a basic word size of 32 bits and an incremental 
compacting garbage collector. This paper describes the rationale for 
these changes, their implementation, and various tricks that were de­
veloped to enhance the performance of this version of the Small talk-BO 
virtual machine. We also discuss some ideas for future work aimed at 
improving the performance of paged virtual object systems. 

Our group at DEC (the Corporate Research Group) was involved in 
studying issues relating to personal workstations and graphics. We had 
been interested in the Smalltalk-72 and Smalltalk-76 systems for sever­
al years because they were the best examples of powerful personal 
workstation environments that we had seen. Consequently, we jumped 
at the chance to participate in the Smalltalk-BO review. 

*The work described in this paper was done at Digital Equipment Corp. Copyright © 
Stoney Ballard and Stephen Shirron 1982. All rights reserved. 

127 



128 
The Design and Implementation of VAX/Smalltalk-80 

The VAX Smalltalk-80 implementation was our second, the first hav­
ing been done for the PDP-11/23. The PDP-11 version was implemented 
as closely as possible to the virtual machine specification published in 
Smalltalk-BO: The Language and Its Implementation. This version was 
notable primarily for its execution speed, which resembled molasses in 
December. By the time we were out of ideas to speed it up, the PDP-11 
was executing about 5K bytecodes/ second. 

The PDP-11 version exhibited three major performance bottlenecks: 
the PDP-11 memory manager, the lack of writable microcode hardware, 
and the reference counter. 

The memory management hardware on the PDP-11/23 was designed 
to map a 64Kbyte virtual space into physical space by using eight sepa­
rate 8Kbyte segments. Our problem however, was not to map virtual 
space to physical, but rather to directly access the full 256Kbyte physi­
cal space of the PDP-11/23. This involved adjusting the map for every 
object access (as well as every object table access) to map it into the 
64Kbyte directly addressable range. Since some Smalltalk-80 objects 
are larger than 8Kbytes, we had to adjust the map to point at the par­
ticular field we wanted. This was particularly painful since it took 
about 30 instructions to adjust the map. By setting up map segments 
for the objects commonly used by the interpreter (e.g. the context, 
method, self) at context switch and process switch, we eliminated most 
of this overhead. Nevertheless, the interpreter spent about half of its 
time with map box adjustment. 

The PDP-11/23 had no writable ;microstore, so we wrote the bytecode 
interpreter and all the primitives in assembly language. If we had been 
able to write microcode, we could have achieved about a factor of two to 
four improvement in speed. The PDP-11 is not suitable for microcoding 
a Smalltalk-80 interpreter because the hardware is designed specifically 
for fetching and decoding its native instruction set. 

The reference-counting scheme caused serious performance problems. 
Updating the reference counts of objects and tracing objects whose 
counts had gone to zero was the primary source of memory manage­
ment overhead. Mapping problems aside, we felt that reference count­
ing was inherently inefficient anyway because of the many places in 
the code that were required to update reference counts. Reference 
counting is probably the best scheme to use for small machines since it 
reclaims space immediately as it becomes garbage. All other garbage 
collection schemes leave a relatively large amount of garbage lying 
around between collections. 

The space compactor was annoying since it caused the system to 
pause for several seconds whenever it ran. Our compactor was slow 
bqth because we compacted the whole memory at once, and because the 
memory map had to be constantly adjusted as it ran. 

After playing with the PDP-11 version for a while we came to sever­
al conclusions about the Smalltalk-80 system: 



129 
Some History 

1. A maximum of 32K objects is insufficient for a system that sup­
posedly integrates the whole environment into one object space. 
We felt that 10 to 100 times that number of objects would be 
needed to properly support a rich environment. Even the base 
Smalltalk-SO system suffers from the small object name space as 
seen in the non-uniform handling of methods. These objects 
should be broken into a literal vector and a bytecode vector, but 
weren't for performance reasons and because that would have 
added about 6K objects to the base system. This non-uniformity 
requires a great deal of the code to handle methods specially. 

2. The performance we achieved was clearly inadequate for real 
work. Compilation and browsing were far too slow to support rap­
id development work. Touch typing was virtually impossible since 
we could type faster than the input process could accept charac­
ters. We felt that a tenfold increase in speed would be needed be­
fore we would feel comfortable with the system. 

3. Fifteen-bit Smalllntegers are too small. Although this is somewhat 
of a minor problem, it would clean up the array indexing code 
substantially if a Smalllnteger was sufficient to index the largest 
possible array. 

4. The reference-counting scheme should be discarded in favor of an 
incremental compacting garbage collector. Not only would this 
eliminate the problem of reclaiming circular garbage (which re­
quired us to implement a -separate mark/sweep garbage collector), 
but would also reduce the work required when storing object 
pointers into other objects, especially contexts. Additionally, an in­
cremental compacting garbage collector eliminates the pauses due 
to compacting space. 

5. Some sort of virtual object storage is necessary to support large 
applications or sets of applications where millions of objects would 
be needed. Paging systems are commonly available and easy to 
use. We were interested in determining the performance of paging 
for a system like the Smalltalk-SO system, where the locality of 
reference between adjacent objects. is much smaller than in tradi­
tional language environments. 

These considerations led to our decision to implement a modified ver­
sion of the Smalltalk-SO virtual machine on a VAX-11/780. The VAX 
was an obvious choice for us since most groups at DEC had one, and it 
would be much easier for people to use the Smalltalk-80 system if it 
ran on computers accessible to them. To this end we decided to imple­
ment a portable system that could be used on any VAX running VMS. 
We realized, of course, that we would be giving up a fair amount of per­
formance by using a timesharing system. Our plan was to build a ver-



130 
The Design and Implementation of VAX/Smalltalk-80 

Word Size 
Changes 

sion for VMS, written in assembly code, and then convert it to run 
stand-alone with microcode assist. This latter phase has not yet been 
performed. 

The following sections give details of the characteristics of our 
Smalltalk-80 implementation (which we call VAX/Smalltalk-80) and 
some suggestions for future work. 

We reformatted the Smalltalk-80 image to use 31 bit object names and 
Smalllntegers, using the 32nd bit as a tag bit to distinguish between 
them. Object headers increased from 4 to 8 bytes. Non-Oop fields, such 
as those of BitMaps and Strings, were not changed. This reformatting in­
creased the size of the base image by about 50%. After reformatting, 
the average object size in the base image was 40 bytes. Fig. 8.1 shows 
typical object formats. 

A 4 byte size field allows objects up to 224 bytes long, leaving a byte 
for various flags and an age field (described below). Our size field was a 
byte count of the object, eliminating the "odd" bit from the object table 
entry. Objects were stored on longword (4 byte) boundaries because 
longword fetches are faster on the VAX if naturally aligned. Fig. 8.2 
shows the layout of the size field. 

The object name space is vastly larger than the 32K objects support­
ed by the standard Smalltalk-80 virtual machine. This not only allows 
keeping such things as the source code for the methods in the object 
space, but also allows us to use an incremental, compacting garbage col­
lector. Unlike reference-counting schemes, an incremental compacting 
garbage collector does not reclaim either the names of objects or the 
space they take as soon as they become inaccessible. This requires that 
the name space be su~tantially larger than the maximum number of 
names otherwise needed. Although we could support two billion objects 
with a 31-bit name, we are limited to a much smaller number by the 
size of the virtual space allocated by VMS to the Smalltalk-80 process. 

Although our version allocates 31 bits in an object reference for the 
name space, it is certainly feasible to allocate fewer (say 24) for the 
name reference and use the rest for tagging. Having tag bits in a refer­
ence can be useful when one object needs to appear in different guises 
depending on who references it. This would allow a "monitor" object to 
trap all messages from objects who refer to it as a monitor, but allow its 
''owner" to send messages to it directly, bypassing the monitoring. 
These tag bits could also be used to mark objects as being, for example, 
usable by the interpreter as CompiledMethods even if they are 
subclasses of CompiledMethod. Currently, the interpreter does not check 



Pointer Fields 

Word Fields 

Byte Fields 

Figure 8.1 

l 

131 
Word Size Changes 

MSB LSB 

Flags I Size 

Class 

Pointer Field 0 

Pointer Field 1 

MSB LSB 

Flags I Size 

Class 

Word 1 Word 0 

Word 3 Word 2 

MSB LSB 

Flags Size 

Class 

Byte 3 Byte 2 Byte 1 Byte 0 

Byte 7 Byte 6 Byte 5 Byte 4 

0 

4 

8 

12 

0 

4 

8 

12 

0 

4 

8 

12 



132 
The Design and Implementation of VAX/Smalltalk-80 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 

15 14 13 12 11 10 9 8 7 6 

I : : : : : : ~ize ~15:0~ 

Age - Age of the object in Flips 
P - Set if object has pointer fields* 
X- Unused 

Size - Size in bytes of the object 

5 4 3 2 

17 16 

: I 

1 0 

: I 

*The P field is duplicated here so that the scanner need not refer to the OTE (Object Ta­
Figure 8.2 ble Entry) to see if the object has pointer fields. 

Garbage 
Collection 

the class of objects such as CompiledMethods both for reasons of effi­
ciency, and to allow using subclasses of these classes. Having tag bits 
that assert the compatibility of such objects with the ones expected 
would lead to greater safety in the interpreter. 

In the standard virtual machine, only 15 bits are allocated for literal 
Smalllntegers. This is inadequate to index large arrays, so the indexing 
code must be able to use LargePositivelntegers as indices. Since a 31-bit 
Smalllnteger can index any array, our array primitives are simpler and 
faster. 

Converting Smalltalk-80 to use 32-bit words was surprisingly pain­
less. We found few places in the Smalltalk-80 code that depended on 
the word size. The worst one was that the decompiler found the first 
bytecode of a method by taking twice the number of literals and adding 
three (for the header and index origin). This prevented us from editing 
any of the methods to fix them, especially this one. We fixed this by 
creating a primitive that determined the initial PC of a method, and 
patching the initialPC method by hand to call this primitive. We recom­
mend that these dependencies be removed from Smalltalk-80 systems 
by adding a primitive that returns information about the field size. 

This is perhaps the most interesting aspect of our version, it is certainly 
where most of our effort went. The PDP-11 version (and prior experi­
ence with Lisp implementations) showed us that it is vitally important 



l 

The Baker 
Garbage 
Collector 

133 
The Baker Garbage Collector 

to have a reliable garbage collector early in the game. A buggy garbage 
collector has a tendency to randomly smash parts of objects in such a 
way that the damage does not come to light until much later. This 
makes the whole virtual machine rather difficult to debug, as you are 
not sure just which piece of code was responsible for the error. Since 
mark/sweep collectors can be simple enough to debug easily, we started 
out by using one. 

After debugging the virtual machine with the simple mark/sweep 
collector, we turned our attention to the implementation of an incre­
mental garbage collector. There were two candidates to choose from, 
the Baker1 and the Lieberman-Hewitt2. Since the Lieberman-Hewitt 
garbage collector was an elaboration of the Baker, and significantly 
more complicated, we decided to implement the Baker first. 

To gain a full understanding of this garbage collector, you should read 
Baker's work on the subject3. For those readers unfamiliar with this 
garbage collector, we present a brief description of it here. 

The Baker garbage collector is an incremental, compacting garbage 
collector. By incremental, we mean that the process of collecting gar­
bage is interleaved with the process of allocating space in such a way 
that the time required for collecting the garbage and compacting space 
is distributed fairly smoothly over time. The individual incremental ex­
ecutions of the collector have an upper bound on their time consump­
tion proportional to the size of the largest object. This corresponds to 
the time it takes to move an object from one place to another. Under 
normal circumstances, no pauses in execution due to the garbage collec­
tor operating are perceptible. 

The Baker garbage collector divides the virtual space into two equal­
sized regions, or semispaces, called Fromspace and Tospace. Objects are 
copied from Fromspace to Tospace (hence the names) as they are found 
to be accessible. These copied objects are compacted sequentially at one 
end of Tospace. A scanning pointer starts at the base of this region, and 
moves field by field through the objects that were copied previously to 
Tospace, copying objects in Fromspace that are referenced by them. In 
this way, the objects in Tospace act like the stack commonly used by a 
mark/sweep collector. This scanning and copying continues until the 
scanning pointer runs out of objects. Newly created objects are placed 
at the far end of Tospace, so that they are not scanned. Fig. 8.3 shows 
the layout of Tospace. 

In the original Baker scheme, whenever an object is copied, its old lo­
cation (in Fromspace) is marked as a "forwarding pointer," and the new 
address is placed there. An access to a copied object is redirected to the 
new copy, and the reference is changed to point to the new location. 



134 
The Design and Implementation of VAX/Smalltalk-BO 

Roots of the object space 
are placed here 
when flipping 

Next copied object 
goes here 

111111-

Scanning 
Pointer 
(scans to 

Figure 8.3 the right) 

Free Space 

Next new object 
goes here 

11111 : 

This is necessary for systems (such as Lisp) where objects are referenced 
by virtual address. 

The whole process is started by an operation called a "flip", which 
switches the identity of Fromspace and Tospace, and immediately cop­
ies all the objects known to the interpreter (the "roots" of the world) to 
the bottom of the new Tospace. Flips may occur any time after the 
scanning pointer has reached the end. 

We took the simplistic approach of flipping when there was 
insufficent space to satisfy an allocation request. This minimizes the 
copying activity at the expense of maximizing page faulting. Flipping 
when the scanning pointer runs out of objects to scan will minimize the 
number of pages needed for both semispaces by keeping the accessible 
objects as compacted as possible. It appears that the optimal time to flip 
should be dependent on the average lifetime of newly created objects, so 
that a flip will occur when the expected density of accessible objects 
falls below a reasonable value. The object of this tradeoff is to minimize 
the sum of the page faults due to accessing and creating objects and 
those due to copying objects. 

Objects that must be copied as roots are those objects that may not 
be transitively accessible from any other object copied as a root. It is a 



135 
The Baker Garbage Collector 

good idea to copy all the objects that are "wired into" the virtual ma­
chine to insure that they never get deleted under any circumstances. 
The registers of the virtual machine are defined to always be in 
Tospace, so any objects referred to by them must also be copied at flip 
time. The objects that must be copied include the current context, all 
the objects it refers to that are cached by the interpreter (e.g. the meth­
od, receiver, self), any semaphores waiting for external events, the 
ProcessorScheduler object, the current DisplayBitMap (if it is not in a 
special location), and all the objects used by the interpreter such as nil 
and the selector doesNotUnderstand. If a list of these objects other than 
those relating to the current context is maintained, the list can be 
scanned incrementally to reduce the time required to perform the flip. 
It is not necessary to copy the object Smalltalk (the symbol table) at this 
time, although it is known to the interpreter, because the interpreter 
never uses it. If it is live, then it must be reachable from at least one of 
the objects which are actually used by the interpreter. 

Whenever a reference to an object in Fromspace is stored into an ob­
ject in Tospace, the Fromspace object must be copied to Tospace. This is 
necessary because the scanner may have already passed the Tospace ob­
ject, or it is new. The interpreter registers are considered to always be 
in Tospace, since they are the first things scanned, so that object refer­
ences stored in them must be checked and the objects copied if neces­
sary. Although at first glance this seems to require more overhead than 
reference counting, it is actually much faster to test a flag than to in­
crement a reference count and handle overflows. In practice, only a 
small number of objects need to be copied when their references are 
stored, and this copying would have been done by the scanner anyway. 

The garbage collector is run (incrementally) every time an object is 
allocated. The amount of space to copy whenever a new object is creat­
ed should be adjusted so that the scanning pointer finishes at the time 
a flip is desired (as per the above discussion). This will tend to distrib­
ute the copying activity as smoothly as possible. The semispaces must 
be large enough so that the probability of running out of room before 
the scanning pointer finishes is negligible. In practice, the largest 
semispaces possible should be allocated, as the middle pages of the 
semispaces will never be used, and will only contribute to page table 
overhead. Our implementation was not tuned in this fashion. Our sys­
tem was set to copy four times as much space as we allocated so that 
we did not run out of room. 

The net effect of this garbage collector is to copy all the objects 
which are live by virtue of being accessible (transitively) by the inter­
preter, from one space to another, leaving behind all the garbage. This 
old space can then be reused starting at the next flip. 

With the Baker garbage collector objects are copied in a breadth-first 
order. This ordering has been shown to be substantially better than a 



136 
The Design and Implementation of VAX/Smalltalk-SO 

random ordering for reducing page faults, though not as good as depth­
first4. This ordering is largely invariant from one flip to the next, so 
that the copying will tend to proceed linearly through Fromspace, mini­
mizing the page faulting due to the copying. 

It is difficult to compare the performance of this garbage collector 
with reference counting schemes. There is no suitable analytical ap­
proach to this problem. We have not directly compared the two schemes 
in the same environment, but we can offer some observations based on 
our experience: 

1. Reference counting uses less space (virtual or physical) than any 
other incremental scheme, as long as circular garbage is rarely 
created. 

2. Smalltalk-BO systems would generate a fair amount of circular 
garbage if the programs did not explicitly unlink circular struc­
tures before deleting them. This manual intervention in what 
should be a completely automatic process of garbage collection is 
"unclean" because it prohibits easy sharing of circular data struc­
tures. 

3. The Baker garbage collector is closer to a "real time" process be­
cause the time an activation takes is no more than the time to 
copy the largest object. A reference counter may take time that is 
proportional to the size of the largest network of objects. 

4. Reference counting does not compact space incrementally. If ob­
jects are allocated from segments of limited size, the compaction 
time of a segment may be small enough to be unnoticeable. Seg­
mentation may make it substantially more difficult to allocate 
large objects, such as bitmaps for high-resolution printers. 

5. Reference counting is not sufficient by itself. An auxiliary 
mark/sweep garbage collector is needed to reclaim both circular 
garbage and objects whose reference counts have overflowed (if an 
overflow table is not used). 

6. The Baker garbage collector traces accessible objects, while refer­
ence counters trace the inaccessible objects. Which is more effi­
cient depends on the rate of garbage generation and of space 
flipping. The Lieberman-Hewitt garbage collector (see below) 
promises to radically reduce the amount of accessible storage that 
needs to be traced and copied, making it a clear winner in this 
category. 

7. A detailed look at the implementation of both schemes shows that 
the virtual machine code has fewer places where the space check­
ing for the Baker scheme must be performed, compared with the 
places where reference counts must be updated. In both schemes, 



137 
The Baker Garbage Collector 

storing an object pointer usually requires that the stored pointer 
be checked, but reference counters require that the overwritten 
pointer be dereferenced, while the Baker does not. 

For another comparison, it will be instructive to compare the processing 
necessary to perform a ~~store" with both reference counting and Baker. 
This is presented as a pseudo-Pascal code fragment in which the value 
of the ith field of object "objA" is stored into the jth field of the object 
"objB". The object table is expressed as an array of records containing 
the appropriate fields. 

First, the reference-counting version. 

store: objA intoField: j of: objB 
temp : = objB[j]; get the old value of objB[jJ 
if not isSmalllnteger(temp) then 

if ot[temp].refCount < > overflow then 
begin decrement refCount 

ot[temp].refCount : = ot[temp].refCount - 1; 
if ot[temp].refCount = 0 then 

deallocate(temp); if O then delete it 
recursive deallocation 

end; 
temp2 : = objA[i]; get the object pointer to store 
if not isSmalllnteger(temp2) then 

Smalllntegers have no reference count 
if ot[temp2].refCount < > overflow then 

if refCount hasn't overflowed 
ot[temp2].refCount : = ot[temp2].refCount + 1; 

increment refCount 
objB[j] : = temp2; then store it 

Next, the Baker version. 

store: objA intoField: j of: objB 
temp : = objA[i]; get the object pointer to store 
if ot[objB].space = Tospace then 

if the dest is in Tospace 
if not isSmalllnteger(temp) then 

and the source is not a Smalllnteger 
if ot[temp].space = FromSpace then 

moveObject(temp) 
objB[j] : = temp; 

and the source is in Fromspace 
move source from Fromspace to Tospace 
then store it 

Note that it is unnecessary to check if the destination object is in 
Tospace if it is the current context, since it would have either been cre­
ated there or moved there when it became current. 



138 
The Design and Implementation of VAX/Smalltalk-SO 

Modifications 
to the Baker 
Garbage 
Collector 

One difference between Smalltalk-SO object spaces and those of Lisp­
like systems is that Smalltalk-SO objects are referenced by name, 
whereas in Lisp, objects are typically referenced by virtual address. 
This allows us to eliminate the forwarding pointers needed in Lisp sys­
tems using the Baker garbage collector, since in Smalltalk-SO systems 
the object table is the only place that the actual address of an object is 
stored. We also use a flag in the object table entries to note in which 
semispace an object is stored. This could be done by comparing the vir­
tual address of the object with the base addresses of the spaces, but 
would be slower. 

The use of object names rather than virtual addresses is both a bless­
ing and a curse. The elimination of forwarding pointers simplifies the 
object accessing code, since no check need be made for a forwarding 
pointer, but adds an extra indirection for object accesses (the other be­
ing the virtual to physical mapping), and the difficult problem of 
reclaiming the names of objects which have become garbage. 

The indirect addressing caused by using object names rather than 
virtual addresses is not nearly as expensive as having to handle for­
warding pointers. The use of forwarding pointers requires that the 
accessing code test the virtual address pointer to see if it is in 
Fromspace, and if so, read the object header to determine if it is a for­
warding pointer. If it is, the source of the reference must be changed to 
point to the new location. This is more expensive (without special hard­
ware) than accessing objects indirectly through the object table. Most 
object references in Smalltalk-SO systems are to objects whose virtual 
address is cached by the interpreter (the context, method, and receiver) 
so that indirection through the object table is minimized. "Pure" objects 
need never be changed if they reference other objects by name, allowing 
them to be stored on read-only media like videodisks. An object table 
will take up about 10-20% of the space of the whole world of objects, 
but we don't feel that that is excessive given the benefits of naming. 

Garbage objects are reclaimed by virtue of not being seen by the gar­
bage collector, so there is no direct way to reclaim their names. One 
way to deal with this is to defer name reclamation until some conven­
ient time, such as overnight. Although a 31-bit name space is big 
enough to do this, the object table would become quite large and sparse. 
This would be difficult to manage, so we looked for a way of incremen­
tally reclaiming names. 

At first, we implemented a mechanism whereby a flag was set in the 
object table entry for objects that were either newly created or copied 
to Tospace. At flip time, we scanned the object table, freed those names 
without the flag set, and cleared the flags in those that were set. This 
resulted in a pause of several seconds at each flip, due to page faulting 



The 
Lieberman­
Hewitt 
Garbage 
Collector 

139 
The Lieberman-Hewitt Garbage Collector 

in the object table. We could have just checked the pointers in the ob­
ject table to find the ones that were still pointing at Fromspace, but we 
felt that the flag test was marginally faster. 

Eventually, Steve Shirron developed a properly incremental method 
of reclaiming names that works in the following way. 

Each object table entry has two flags, an "even" flag, and an "odd" 
flag. Each flip of the garbage collector alternates between being an 
"even" or an "odd" flip. As objects are created or copied to Tospace, the 
appropriate flag in the object table entry is set, without touching the 
other flag. A name reclaiming process is run incrementally every time 
a name is allocated. The name reclaimer scans the object table sequen­
tially, starting over at each flip. For each object table entry, it checks to 
see if both flags are clear. If so, the object is dead and the name is 
reclaimed. If not, the flag corresponding to the previous cycle is cleared. 
In this way, names of objects that died in cycle N are reclaimed in cycle 
N+l. 

The name reclaimer scans some number of entries each time it is ac­
tivated. Since it is not fatal for the name reclaimer to not be done when 
a flip occurs (it merely finishes scanning the object table first), the 
number of entries to scan each time is not critical. The number of 
entries scanned per activation should dynamically depend on the 
amount of free space left, the average object allocation size, and the 
amount of object table left to scan, so that it will finish just before a 
flip occurs. 

Lieberman and Hewitt observe that with the Baker garbage collector 
the cost of creating objects and garbage collection is not related to the 
objects' lifetimes5• Traditional environments commonly use stack stor­
age for temporary objects, especially activation records, because stack 
management is very inexpensive. Stacks have the nice property that 
they are always compacted, so that allocating and deallocating objects 
of varying sizes does not cause fragmentation of storage. Language en­
vironments such as C and Pascal follow a strict control hierarchy, and 
the lifetimes of their temporary objects (local variables and activation 
records) are directly related to this hierarchy. In these environments it 
is either illegal or impossible to pass a reference to a stacked object to a 
previous level. These restrictions allow traditional languages to manage 
space very efficiently. 

Most Lisp systems allow only hierarchical control flow so that they 
can allocate activation records on a stack. Temporary objects can be de­
clared to the compiler as "local" to a function activation, which allows 



140 
The Design and Implementation of VAX/Smalltalk-SO 

The Static 
Object Region 

them to be deallocated when the function returns. Lisps which allow 
multiprocessing, such as Interlisp, use either multiple stacks or a struc­
ture known as a ((spaghetti stack"6• Multiple stacks are difficult to 
manage because they may each grow to a potentially unbounded size. 
With spaghetti stacks, activation records are allocated from a heap and 
linked together. This facilitates the use of multiprocessing and environ­
ment closures. Even here, the cost of allocating activation records from 
a heap is not inordinately expensive because the virtual machine can 
deallocate them when they are deactivated. 

Smalltalk-SO activation records (contexts) are objects just like any 
other object in the environment. Since a method may hand a reference 
to its context to any other object in the system, contexts may not be au­
tomatically deallocated when returning from a message send. Contexts 
are created at a very high rate, which makes the Smalltalk-80 system 
have pretty much the worst space management problems. 

The Baker garbage collector is quite inefficient for Smalltalk-80 sys­
tems because the large number of contexts fill up free space rapidly, 
causing frequent flips. Since each flip causes all the accessible objects to 
be copied to the other semispace, the Baker garbage collector consumes 
too much time to be practical. 

The Lieberman-Hewitt garbage collector eliminates this problem by 
dividing the world into a lot of little Baker spaces. These spaces are set 
up so that objects of about the same age are in the same space. Newer 
objects are more likely to die than older objects, so newer spaces are 
collected more often than older spaces. Garbage collecting a small space 
is quite a bit cheaper than garbage collecting the whole world at once. 
The individual spaces are collected separately, allowing the use of small 
Tospaces. Unfortunately, dealing with references that cross space 
boundaries is complex. 

This "generation" scheme is ideal for Smalltalk-80 systems. The 
newest region will be filled with contexts rapidly, but when flipping the 
region, very few of the contexts will survive. This drastically reduces 
the amount of copying needed to maintain a compacted region. The 
scheme can be arranged so that a new generation is created whenever 
the newest region starts filling up with objects that have survived sev­
eral flips. 

We have not yet implemented the Lieberman-Hewitt garbage collector. 
There are several open questions about the details of this scheme that 
we want to answer before we try it. Instead, we implemented a scheme 



141 
The Static Object Region 

that is somewhat halfway between the Baker and the Lieberman­
Hewitt. This scheme involved the use of a separate region called the 
static object region. 

We noticed that of the approximately 700Kbytes of objects in the 
base Smalltalk-SO system, about 600Kbytes of them are relatively per­
manent, and need not be subject to the continual scrutiny of the Baker 
garbage collector. By dividing the objects into two groups, static and dy­
namic, we can remove most of the objects from the Baker regions and 
compact them together into the static object region. This region is not 
garbage collected dynamically because the objects in it are expected to 
have very long lifetimes. 

The Static Object Region and the Baker region are equivalent to the 
oldest and the newest generation in the Lieberman-Hewitt garbage col­
lector. By leaving out all the middle generations, we simplify the 
scheme at the expense of causing inefficiencies when running applica­
tions that generate lots of medium lifetime objects. 

Static objects are differentiated from dynamic objects by their age. 
Each object has a 6 bit (arbitrarily chosen) age field. This field is used 
to keep track of how many flips the object had survived. An object older 
than 63 flips was placed in the Static Object Region the next time the 
region was regenerated. Fig. 8.4 shows the resulting layout of each ob­
ject table entry. 
Whenever a snapshot is requested (which already causes a long pause) 
we scan through all objects looking for "old" ones. A space is created 
that is just big enough to hold them, and then they are copied to it. The 
object table entries for these objects are marked to indicate to the 
Baker collector that they should be ignored. This space is dumped to 
the snapshot file separately from the "dynamic" objects, so that it is 
easy to recreate when rolling in a snapshot. 

Dynamic objects referred to only by static objects must be saved by 
the Baker garbage collector. Instead of scanning all the static objects 
for references to dynamics, we use an "exit table." This table is a list 
of those static objects which may contain references to dynamic objects. 
The static objects referred to by this table are scanned by the Baker 
scanner and all dynamic object references found in them are handled 
appropriately. Each static object has a flag, which when set indicates 
that the static object has an entry in the exit table. Whenever an object 
reference is stored in another object, the flags are checked. If they indi­
cate that the destination is a static object without an entry in the exit 
table, and that the source is a dynamic object, an entry for that static 
object is placed in the table. If later, that static object ceases to have 
references to dynamic objects, it is not removed from the exit table. 
This does not appear to be the source of any inefficiency. Surprisingly, 
the exit table had fewer than 50 entries after running for several 



142 
The Design and Implementation of VAX/Smalltalk-SO 

Figure 8.4 

An Object Table Entry is a 32 bit word 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

I ST I NE I W I X I M I SO I SE I P I : Loc:atio~ (23>6) : 

15 14 13 12 11 10 9 8 7 6 5 4 3 

I : 

F - Set if OTE is free 
P - Set if object has pointer fields 

SE - Even flag for OTE sweeper 
SO - Odd flag for OTE sweeper 
M - Mark-used by Mark/Sweep GC 
W - Set if object has word fields 

NE - Set if object is Static and is not in exit table 
ST- Set if object is static 
X- Unused 

Location - Longword virtual address of object. 

2 1 0 

weeks, indicating that all but about 50 of the static objects only re­
ferred to other static objects. 

The become: primitive causes problems because it switches the object 
pointers of two objects which may be in different spaces. A static object 
converted to a dynamic is the most difficult to manage. Rather than 
scan all the statics looking for those which refer to this new dynamic 
object (which would take a while), we add the new dynamic to a list 
called the "becomelist". This list is scanned by the garbage collector at 
flip time so that all the objects referred to by it are copied into Tospace. 
This insures that the new dynamic object is not deleted in case it is re­
ferred to only by static objects. It is fairly rare to convert a static object 
to a dynamic object, so we are not concerned by the possibility that it 
dies but is not seen as garbage. The exhaustive garbage collector that is 
run at snapshot time will get rid of it if it has died. 

Converting a dynamic object to a static merely requires that the new 
static object be scanned for references to dynamic objects. If any are 
found, the new static is installed in the exit table. Only one object is 
scanned in this case, so no perceptible pause occurs. 



Virtual 
Object Space 

143 
Virtual Object Space 

Eventually, we have to collect the garbage that has accumulated in 
the static region. This is accomplished by an exhaustive mark/sweep 
garbage collector that is run at snapshot time. This same garbage col­
lector also compacts the dynamic objects so that there is no wasted 
space in the snapshot image. 

We found that the use of the static region resulted in a significant 
improvement in performance, more than doubling the apparent speed. 
Removing most of the objects from the Baker regions reduced page 
faulting substantially, because there were fewer objects to copy when a 
flip happened. 

The implementation of this scheme was relatively simple compared 
to the full Lieberman-Hewitt. We acquired a lot of useful statistics from 
this that should allow us to do a good job of implementing the 
Lieberman-Hewitt garbage collector. 

In order to support a very large number of objects, some "virtual ob­
ject" mechanism must be used. The Software Concepts Group has used 
variants of "object swapping" to achieve this with their OOZE and 
LOOM virtual object systems7• Since the VAX/VMS system supports a 
large paged virtual address space, we decided to use it directly to imple­
ment a virtual object scheme. This approach allowed us to defer issues 
relating to virtual memory performance until after we got the basic sys­
tem running. 

The virtual space is divided into several regions: two lMbyte "Baker" 
semispaces, 512Kbytes for the object table (ot), and approximately 
600Kbytes for the static object region. The object table is set at 128K 
objects. This number was derived by doubling the size until we stopped 
running out of room. Although we do not know how much page faulting 
is due to accessing the object table, we suspect that it is substantial. 

Ted Kaehler's paper (see Chapter 14) discusses the problems with 
straightforward paging systems (such as we used) and compares them 
with object swapping schemes. The gist of the argument against paging 
is that since there is a low locality of reference between adjacent objects 
in a page, and objects tend to be much smaller than pages, the majority 
of space in physical memory is taken up by useless objects that just 
happen to be on the same pages as useful objects. Object swapping 
schemes such as OOZE and LOOM compact the active objects into phys­
ical memory so that more active objects can fit at one time. This allows 
larger applications to run without faulting than with a paging system. 
Object swapping has two problems dealing with disks that like to trans-



144 
The Design and Implementation of VAX/Smalltalk-SO 

fer whole pages at once. First, a faulted-in object must be copied from 
the disk page buffer to the object region in core. This is probably not se­
rious compared to the time it takes to access the object on disk in the 
first place. The second problem is that when faulting-out an old object 
(when it has been modified), the disk page(s) it belongs in must first be 
read so that the adjacent objects are not trashed. Although it is possible 
to write all the objects you need to fault out compacted together and 
appended to the end of the file, this will not only cause problems deal­
ing with the fragmentation of the disk image, but makes for extra work 
in updating the directory of the objects on disk. 

The V AX/Smalltalk-80 system is more properly thought of as a 
"mapped real memory" than a true virtual object memory because of 
the excessive paging we encounter when we have less than about 
3Mbytes of real core for our use. A proper system should provide ade­
quate performance whenever the set of active objects fits into the avail­
able real memory. There may be more than a 100 to 1 ratio between all 
objects and the active objects in a production Smalltalk-80 system. A 
virtual object system should be able to support such a system with ease. 

Our goal is to design a hybrid of object swapping and paging that 
gives us a low faulting rate, yet runs on paged systems. This would al­
low us to use commonly available computers that have hardware to 
support paging, as well as allowing Smalltalk-80 systems to co-exist 
with other language environments on the same machine. 

Our approach is based on the observation that you can create a com­
pact set of active objects in a paged system merely by copying them 
from wherever they happen to be in virtual space into a region which is 
locked into core. Faulting out objects is accomplished by just copying 
them back. The disk activity of the paging system caused by this 
scheme is virtually identical to that of the object swappers. In addition, 
objects larger than a page need not be copied at all, allowing much 
larger objects than would be possible with an object swapper. A large 
linear virtual address space is helpful when implementing garbage col­
lectors such as the Baker. With a paged system, when Fromspace is 
empty the pages underlying it can be deleted completely. Pages needed 
for Tospace can be quickly created by using those released from 
Fromspace. If a large amount of garbage is collected in each pass, then 
the amount of physical memory required is much less than what both 
semispaces would ordinarily require. If you need more space than is 
available physically, paging will happen automatically. 

The Lieberman-Hewitt garbage collector would be a natural candi­
date for use here. Newer objects are accessed more frequently than 
older objects, so by keeping the newest regions in core and copying ob­
jects from older regions into a cache, we would obtain the benefits of 
both object swapping and incremental garbage collection. 



Paging 
Performance 

145 
Paging Performance 

The cache could be managed by combining the "clock" procedure8 

with a Baker-like semispace set. The clock procedure would repetitively 
scan a list of the cached objects. Those that had not been touched since 
the last scan would be copied back to their home (if they had been mod­
ified), those which had been touched would be copied to the other 
semispace. This would compact the cache incrementally. It is also possi­
ble to fault-out objects until a big enough hole is created to satisfy a 
faulted-in object, but this scheme may cause noticeable pauses whenev­
er a flurry of objects are faulted out, as each will probably cause a page 
fault when written back. Fortunately, most of the objects would not 
have been modified and therefore need not be copied back. Some experi­
mentation is called for here. 

The object table should be implemented as a hash table in order to 
eliminate page faulting when accessing active objects. Objects in the 
cache, and those in the newer regions would have their names placed in 
the hash table. 

The straightforward approach we have taken, although easy to imple­
ment, spends most of its time waiting in a page fault state when there 
are other users on the system. VMS allocates most unused core for 
faulted out pages, so when the Smalltalk-SO system is running by itself 
(on Sunday mornings) the performance improves several fold as disk 
accesses are usually unnecessary for page faults. A lot of the paging 
overhead is due to the Baker garbage collector and the object name 
reclaimer scanning their spaces. Since the pages touched by the name 
reclaimer, and many of the pages touched by the Baker scanner are 
completely predictable, a mechanism whereby the pager could be re­
quested to fault-in a page without suspending the program would have 
a substantial impact on the performance. Unfortunately, VMS does not 
have such a hook. We are looking into using a separate VMS process, 
mapped into the same space as the Smalltalk-SO process, to fault-in 
pages so that it would be suspended instead of the Smalltalk-SO process. 

Anything that reduces the rate at which garbage is created will have 
a favorable impact on paging rates because of the reduced garbage col­
lection activity. Smalltalk-SO systems seem to be much worse than mod­
ern compiled Lisp systems in the rate at which garbage is generated. 
This is attributable primarily to contexts, which must be allocated from 
the heap, and secondarily to the fact that Smalltalk-SO methods tend to 
require arguments packed into objects such as points and rectangles, 
which are almost immediately discarded. Editing text also creates a 



146 
The Design and Implementation of VAX/Smalltalk-SO 

Context 
Reclamation 

Dealing with a 
Timesharing 
System 

substantial amount of garbage as new strings are created for each mod­
ification. Some object-based systems allow variable-length objects to 
"grow" by allocating space for them that is larger than that actually 
needed. When an object such as a string needs more room, it can ex­
pand until it fills the contiguous chunk allocated for it by the memory 
system. If it needs more, it is automatically copied to a larger area. It 
may be worthwhile to use this technique in a Smalltalk-80 implementa­
tion. 

We noticed that we were generating about a megabyte per second of ob­
jects that did not survive even one space flip. We found that these ob­
jects were almost entirely contexts. Some method of reducing this 
garbage without compromising the flexibility of the context linkages 
had to be found. We could not just reclaim contexts when they were re­
turned from, since a reference to a context could be handed to another 
object. 

We found that there are only two occasions when a reference to the 
active context was handed out: the PushActiveContext bytecode, and 
when the context was placed on a process or semaphore queue. We as­
sumed that if either of these events happened, the current context and 
all its ancestors could be accessible by any other object, so must be 
reclaimed only by the garbage collector. Fortunately, these cases hap­
pen infrequently. If neither of these events occurred, the context could 
be reclaimed immediately upon returning. By maintaining a counter 
that is incremented every time a non-primitive send happens and 
zeroed when either of the special events happens, we reclaim contexts 
(small only) whenever we return and the counter is non-zero 
(decrementing the counter as we return). 

These reclaimed contexts are linked together on a free list, and are 
used instead of heap space if there is anything on the list. When the 
garbage collector does a space flip, this list is cleared because the con­
texts are then in the wrong space and it would be silly to copy them to 
the new Tospace. 

This little trick reclaims about 85-90% of the contexts. Occasionally, 
it is much worse (40-50%), apparently due to executing tight loops that 
perform a lot of blockCopys. 

The Smalltalk-80 system as distributed is not designed to either run 
background processes or co-exist on a timesharing system. This is due 
to the large number of places where the code loops waiting for a mouse 



The Message 
Cache 

147 
The Message Cache 

button. The system can be converted to one which is entirely event 
driven by inserting wait messages to an "any event" semaphore into 
the loops. We found these loops by noticing whenever the idle process 
was not running, yet nothing else seemed to be happening. We would 
then type control-C to interrupt the Smalltalk-80 system and find out 
who was responsible. The debugger was then used to edit and recompile 
the offending methods. Converting all the interaction to an event-driv­
en style allowed background Smalltalk-80 processes to run whenever 
the user was•not actively interacting with the Smalltalk-80 system. 

It is generally considered uncivil to run programs that are not doing 
anything worthwhile on a timesharing system. To fix this, we replaced 
the Smalltalk-80 idle process with one that called two special primi­
tives. The Smalltalk-80 code for this is as follows. 

idleLoop 
[true] whileTrue: 

[[Smalltalk collectGarbage] whileTrue. 
Smalltalk hibernate] 

The collectGarbage primitive performed an incremental activation of 
the garbage collector, returning false if there was nothing left to do. 
The hibernate primitive suspended the Smalltalk-80 VMS process, let­
ting other users run. The hibernate primitive returned whenever an ex­
ternal event happened. Since this loop runs at the lowest priority, it is 
preempted by any Smalltalk-80 process with something to do. 

This made us more popular with the other users of the VAX, and 
also reduced the overhead of the garbage collector when interacting 
with the Smalltalk-80 system in a bursty manner (which is usually the 
case). The Smalltalk-80 process itself also benefited from this because 
the VMS scheduler assigns a lower priority to compute-bound processes. 
By hibernating often enough, the Smalltalk-80 process would preempt 
other users running compilers and the like, leading to a snappier re­
sponse when browsing or editing. 

We implemented a message cache to speed up message lookup as 
recommended by the book. We found, however, that using a two-way 
set associative scheme was significantly better than the one-probe hash 
table described in the book. Our cache used a hash table where every 
key (constructed from the receiver's class and the selector Oop) had two 
possible locations in the cache, determined by the hash value and its 
complement. The location to store a message was determined by a ping­
pong scheme in which a flag was toggled whenever a message was in-



148 
The Design and Implementation of VAX/Smalltalk-BO 

The Image 
Preprocessor 

serted into the cache. If the flag was set, the direct hash value was 
used, if cleared, the complement was used. This allowed two messages 
with the same hash value to co-exist in the cache. More elaborate 
caches using 4- and 8-way sets are feasible, but the payoff is less since 
all possible locations may have to be checked when looking up a mes­
sage. In this cache we stored the full key for matching, the method's 
Oop, the fields of the method header and extension unpacked into bytes, 
and the address of the interpreter routine that handled that method. 
This latter information proved very helpful in speeding up the process­
ing of message sends. Our hit rate was typically better than 90% with a 
256 entry cache (two sets of 128 entries). 

The differences in word formats between the Xerox and DEC hardware 
forced us to write a program (in Con the VAX) that read the standard 
Smalltalk-80 image, massaged it, and wrote out an image in our format. 
This was done originally for the PDP-11 version, and was extensively 
modified for the VAX version. This preprocessor did the following con­
versions: 

1. Converted object headers to 32-bit word format. 

2. Converted the size fields to be bytecounts. 

3. Initialized the flags in the object header and object table entry. 

4. Converted all pointer fields to 32-bit words by sign extending 
Smalllntegers and zero extending Oops. 

5. Byte-reversed all the objects with byte fields (e.g. 
CompiledMethods) so that we could use the byte-addressing capa­
bility of the VAX directly. 

6. Bit-reversed all the words in bitmaps (our lsb is on the left of a 
scanline). 

7. Converted the IEEE format floating point numbers to DEC format. 

8. Converted LargePositivelntegers to Smalllntegers where possible. 

9. Patched CompiledMethod initialPC to call a primitive. 

10. Patched the PCs in all the contexts to reflect the increased storage 
taken by the literals. 



Performance 
Measurements 

Conclusions 

149 
Conclusions 

11. Reformatted the object table because of the different flags and 
addresses. 

12. Formatted the image header to have the information about the 
static region that we needed. 

This preprocessor also gathered information about the number and 
sizes of the various types of objects. 

It is difficult to come up with accurate performance figures for a system 
like this. Small changes in such things as the working set size have a 
major impact on the performance. Our performance monitoring soft­
ware could not distinguish between time due to page faults and time 
due to other users preempting the Smalltalk-80 system (it left them 
both out). The page fault rate depended on the long-term history of the 
Smalltalk-80 session, and the time it took to handle faults varied ac­
cording to the load on the VAX. 

With that in mind, when using a working set of 512, 512 byte pages 
(the largest our system let us have), we observed that we were getting 
about 250 page faults/second during compiling or browsing. We seemed 
to get between 15K and 25K bytecodes/second (on Sunday mornings) 
when compiling or browsing. 

We found that CPU time spent in the garbage collector code 
amounted to about 7% of the total when executing long tasks. Of 
course, the real time was substantially larger (except on Sunday morn­
ings) due to page faulting in the garbage collector. 

After using this version of Smalltalk-80 implementation for a while, we 
can make some useful observations: 

1. 32 bit fields are the way to go. 

2. Paging systems are very easy to use, but a lot of work needs to be 
done to achieve adequate performance. 

3. Incremental garbage collection is generally superior to reference 
counting, both in ease of implementation and performance. 

4. The Smalltalk-80 system is marginally usable on a f ·rn:-:sharing 
system with 40 users. 



150 
The Design and Implementation of VAX/Smalltalk-SO 

References 1. Baker, Henry G., "Actor Systems for Real-Time Computation," 
MIT Laboratory for Computer Science, MIT /LCS/TR-197, 1978. 

2. Lieberman, Henry, and Hewitt, Carl, "A Real Time Garbage Col­
lector Based on the Lifetimes of Objects," MIT AI Memo no. 569, 
1981. 

3. See reference 1. 

4. Stamos, James W., "A Large Object-Oriented Virtual Memory: 
Grouping Strategies, Measurements and Performance," Xerox 
PARC Technical Report SCG-82-2, May, 1982. 

5. See reference 1. 

6. Bobrow, Daniel G., and Wegbreit, Ben, "A Model and Stack Imple­
mentation of Multiple Environments," Communications of the 
ACM, vol. 10, pp. 591-602, 1973. 

7. Kaehler, Ted, "Virtual Memory for an Object-Oriented Lan­
guage," Byte vol. 6, no. 8, Aug. 1981. 







·oduction 

The Smalltalk-SO 
Benchmarks 

Kim McCall 
Software Concepts Group 
Xerox Palo Alto Research Cent-;•· 
Palo Alto, California 

At the first Smalltalk-SO "implementors meeting" on September 24-25, 
1981, several of the groups pursuing implementations expressed a de­
sire for some system facilities to help them measure the efficiency of 
their interpreters. Such facilities, which were unavoidably labeled 
"benchmarks," would provide' an objective means of comparing imple­
mentations, gauging the value of intended performance enhancements, 
and tracking the progress of individual implementations over time. 

This author was given the responsibility of adding such facilities to 
the system, and thus was born the class Benchmark found in the 
Smalltalk-SO virtual image. 

In this paper I: 

1. Describe the general framework of the timing and reporting facili­
ties in class Benchmark; 

2. Describe various individual tests (hereafter referred to as "bench­
marks"); 

3. Explain how to write a new benchmark; 

4. Suggest ways benchmarks can be used, i.e., how to gain useful in­
formation from them; and 

Copyright © Xerox Corporation, 1983. All rights reserved. 
153 



154 
The Smalltalk-SO Benchmarks 

The 
Benchmark 
Framework 

Reporting 

5. Present the results of running the standard system benchmarks in 
several different implementations. 

Class Benchmark contains a simple set of facilities for timing the execu­
tion of some block of code and reporting the result. The central message 
1S 

test: aBlock labeled: label repeated: nTimes. 

aBlock must be a BlockContext that contains the code to be timed; and 
label should be a string describing this code, i.e., describing the system 
behavior that is being timed. Since timings are recorded in milliseconds, 
it often happens (e.g., when testing atomic system functions such as 
pushing a value onto the stack or popping it off) that a single execution 
of aBlock would yield a value so small that it would be dwarfed by the 
roundoff error. So the method allows us to specify the number of times 
the block should be executed (nTimes). 

For example, 

Benchmark new 
test: [20 factorial] 
labeled: 'testing 20 factorial' 
repeated: 100 

would time 100 executions of the block 

[20 factorial] 

and report the result, using the label 'testing 20 factorial' for purposes of 
identification. 

Class Benchmark contains various facilities for reporting its results in a 
permanent, semi-permanent, or evanescent way. 

A report consists of: 

1) An identification line, giving the label, enclosed in square brack­
ets. 

2) A total time line, giving the number of times aBlock was executed 
and the total time (in seconds). 

3) If the number of executions of aBlock is greater than one, a single 
iteration line, giving the time (in microseconds) taken to execute 
aBlock once. 



Timing 

155 
The Benchmark Framework 

For example, if it took 26133 milliseconds to run 100 repetitions of [20 
factorial], the report would read 

[testing 20 factorial] 
100 repetitions timed at 26.133 seconds 
261330.0 microseconds per repetition. 

After each benchmark test, some feedback is printed in the 
SystemTranscript. The user can choose to print either the full report as 
described above or just the identification line. If she or he desires a 
more permanent record, the user may also elect to print a report on a 
file. For implementations that do not yet include a working file system, 
the report may be printed on a Stream. 

The default reporting behavior will be to print the full report in the 
Transcript. To change the default, the user sends the message 
setOutputParameters to the instance of class Benchmark that is going to 
perform the test. In response to setOutputParameters, the instance of 
Benchmark will invite the user to select among the various reporting 
options. 

In order to generate a file containing reports for a series of bench­
marks, class Benchmark provides the message testlist:. The 
setOutputParameters message is sent automatically in response to 
testlist:. There are built-in facilities in class Benchmark for comparing 
two output files in order to chart progress over time or to compare two 
different implementations. These facilities are invoked by the message 
compareOldTi mes: new Ti mes:outputT o:. 

The actual timing is done by the method 

time: aBlock repeated: nTimes 

This method times nTimes executions of aBlock and nTimes executions 
of an empty block (one that just returns nil), and then computes and re­
turns the difference. This should report the actual time spent executing 
aBlock nTimes times, and subtract out the overhead of the counting and 
execution control structures. In the code for 

time: aBlock repeated: nTimes 

some ca're was taken to insure that the control structures for counting 
up to nTimes would not dominate the execution of aBlock. For example, 
rather than using timesRepeat: for looping, we use an open coded loop. 
We also use a doubly-nested iteration loop when nTimes is large, to in­
sure that all the counting is done using Smalllnteger arithmetic. 



156 
The Smalltalk-SO Benchmarks 

The Standard 
System 
Benchmarks 

The Micro­
Benchmarks 

The Smalltalk-SO virtual image includes two different kinds of bench­
marks, those that measure specific parts of an interpreter and those 
that measure overall system performance. In order to be able to gauge 
the benefit of small changes to restricted parts of the interpreter, or to 
isolate specific areas in need of improvement, there is a set of bench­
marks that test the efficiency of each of the most basic, simple opera­
tions of the interpreter. These test the basic bytecodes and the 
primitives. There is also a set of more global benchmarks that test the 
performance of the system at the higher-level activities invoked by a 
typical Smalltalk-SO programmer, such as compiling, decompiling, using 
browser facilities, and inserting, formatting, and displaying text. We call 
these the micro-benchmarks and the macro-benchmarks respectively. 

Most of the micro-benchmarks consist of several repetitions of the par­
ticular bytecode or primitive to be tested. We need several repetitions of 
the very fast bytecodes in order to make the execution time of aBlock 
be so much greater than the execution time of the empty block that the 
rounded-off results will be meaningful. To keep the stack from 
overflowing, and to satisfy the demands of the compiler, the repetitions 
of the operation we intend to test are interspersed with pops or quick 
sends of the message = =. The micro-benchmarks all end with i nil. 
This makes aBlock's execution speed more directly comparable to the 
execution time of an "empty" block (which just returns nil). In the de­
scriptions of the individual micro-benchmarks below, I generally give 
the percentage of bytes in the block (ignoring the i nil) that actually exe­
cute the behavior we are trying to test. I will present the standard sys­
tem benchmarks in the order in which they occur in the method for 
setStandardTests in class Benchmark class. This list is intended to serve 
as a documentation reference, and the casual reader is invited to skip 
or skim it. 

Please note that the inclusion in the benchmarks of the = = message 
or other byte codes that we really didn't want to test may greatly alter 
the execution speed of the block and compromise the meaningfulness of 
the results. For example, I thought that I had implemented the quick 
push of a constant (like 1) onto the stack about as efficiently as possible, 
and I was perplexed to learn that a machine-coded MC68OOO implemen­
tation performed the testloadQuickConstant benchmark faster than my 
own microcoded implementation. After looking at the code that actually 
implements the Smalltalk-SO virtual machine instruction 16r76 (118 
decimal), I was even more perplexed, since my implementation looked 
considerably more efficient. Finally, I realized that most of the time re­
ported by the benchmark was going into the execution of (and return 
from) the = = message which I had included just to satisfy the compil-



157 
The Standard System Benchmarks 

er. (This MC68000 implementation gave better results because it uses a 
delayed reference-counting scheme that greatly expedites pushes, pops, 
and simple primitive operations.) 

testloadlnstVar 

testloadTempNRef 

testloadTempRef 

testloadQuickConstant 

testLoadliteralN Ref 

test Load literal Indirect 

testPopStore I nstVar 

This benchmark measures how quickly an in­
stance variable of the receiver can be pushed 
onto the stack. Because this variable is set to 
1, there is little reference-counting overhead 
on the push (although there may be more on 
the other operations in the block). 50% cf the 
bytes in the block are 16r0, a push of the re­
ceiver's first instance variable. 

This benchmark measures how quickly a vari­
able that is local to a method can be pushed 
onto the stack. Setting this variable to 1 
avoids most reference-counting overhead on 
the push. 50% of the bytes in the block are 
16r10, a push of the method's first local vari­
able. 

This benchmark also measures how quickly a 
variable that is local to a method can be 
pushed onto the stack, but because the vari­
able is set to some newly created point, the 
implementation's reference-counting mecha­
nism (if any) will be fully exercised. Again, 
50% of the bytes in the block are 16r10, a 
push of the receiver's first instance variable. 

This benchmark measures how quickly one of 
the "quick constants" (-1, 0, 1, 2, nil, true, false) 
can be pushed onto the stack. There is little 
reference-counting overhead on the push. 50% 
of the bytes in the block are 16r76, a push of 
the constant 1. 

This benchmark measures how quickly an or­
dinary literal (a constant generated at compile 
time) can be pushed onto the stack. Because 
we have used the constant 3, there is little 
reference-counting overhead on the push. 50% 
of the bytes in the block are 16r21, a push of 
the method's second literal. 

This benchmark measures how quickly the 
contents of an indirectly accessed variable 
(such as a class variable or a global variable) 
can be pushed onto the stack. Because our 
variable refers to class Point, there is little ref­
erence-counting overhead on the push. 50% of 
the bytes in the block are 16r41, an indirect 
push of the method's second literal. 

This benchmark measures how quickly a val­
ue can be popped off the stack and stored in 
an instance variable of the receiver. Because 
this value is the Smalllnteger 1, there is little 
reference-counting overhead on the push or 
the store. 50% of the bytes in the block are 
16r60, a pop of the top of the stack into the 
receiver's first instance variable. 



158 
The Smalltalk-80 Benchmarks 

testPopStore Temp 

test3plus4 

test3Iess Than4 

test3times4 

test3div4 

test16bitArith 

testlargelntArith 

testActivation Return 

testShortBranch 

This benchmark measures how quickly a val­
ue can be popped off the stack and stored in a 
local variable of the method. Again, since this 
value is 1, there is little reference-counting 
overhead. 50% of the bytes in the block are 
16r68, a pop of the top of the stack into the 
method's first local variable. 

This benchmark measures the speed of 
Smalllnteger addition. Because all values are 
Smalllntegers, there is little reference-count­
ing overhead. 25% of the bytes in the block 
are 16rB0, a quick send of the message +. 
This benchmark measures the speed of 
Smalllnteger comparison. Because all values are 
Smalllntegers, there is little reference-counting 
overhead. 25% of the bytes in the block are 
16rB2, a quick send of the message <. 

This benchmark measures the speed of 
Smalllnteger multiplication. Because all values 
are Smalllntegers, there is little reference­
counting overhead. 25% of the bytes in the 
block are 16rB8, a quick send of the message*. 

This benchmark measures the speed of 
Smalllnteger division. Because all values are 
Smalllntegers, there is little reference-count­
ing overhead. 25% of the bytes in the block 
are 16rBD, a quick send of the message //. 

This benchmark measures the speed of 16-bit 
integer arithmetic. Since some implementa­
tions use more than 15 bits to represent 
Smalllntegers (see Chapter 8), the reference­
counting overhead will depend on the repre­
sentation chosen for 16-bit integers. 25% of 
the bytes in the block are 16rB0, a quick send 
of the message +. 
This benchmark measures the speed of arith­
metic on integers greater than 216. The refer­
ence-counting overhead will depend on the 
exact representation chosen for these integers. 
25% of the bytes in the block are 16rB0, a 
quick send of the message +. 
This very important benchmark uses a call on 
a doubly-recursive method to measure the 
speed of method activation and return. There 
is little reference-counting overhead associat­
ed with knowing when to end the recursion, 
but there may be a great deal in managing 
the Contexts that represent the activations. 
About 12.5% of the bytes executed during this 
benchmark are 16rE0, a send of the method's 
first literal (in this case, the Symbol recur:), 
and about 12.5% are returns, split evenly be­
tween 16r78, a quick return of the receiver, 
and 16r7C, a return of the value on the top of 
the stack. 

This benchmark times the short jump to the 
false branch of a conditional. Although there 



testWhileLoop 

testArrayAt 

testArray A tPut 

testStringAt 

testStringAtPut 

testSize 

testPointCreation 

testStrearnNext 

testStreamNextPut 

testEO 

testClass 

testBlockCopy 

159 
The Standard System Benchmarks 

is not much reference-counting overhead, oth­
er operations may be so fast that reference 
counting takes a good proportion of the time. 
16.7% (1/6) of the bytes in the block are 
16r90, a short conditional branch. 

This benchmark measures the speed of exe­
cuting a simple "while loop." All loop-count­
ing uses Smalllnteger arithmetic. About 9% of 
the bytes in the block are 16rA3, long jump, 
and about 9% are 16r9D, a short conditional 
branch. 

This benchmark measures how quickly a val­
ue can be read from an Array. 25% of the 
bytes in the block are 16rC0, a quick send of 
the message at:. 

This benchmark measures how quickly a val­
ue can be stored into an Array. 20% of the 
bytes in the block are 16rCL a quick send of 
the message at:put:. 

This benchmark measures how quickly a val­
ue can be read from a String. 25% of the bytes 
in the block are 16rC0, a quick send of the 
message at:. 

This benchmark measures how quickly a val­
ue can be stored into a String. 20% of the 
bytes in the block are 16rC1, a quick send of 
the message at:put:. 

This benchmark measures how quickly a 
String can return its size. The Stiing will be 
reference counted in reference-counting im­
plementations. 33% of the bytes in the block 
are 16rC2, a quick send of the message size. 

This benchmark measures how quickly a Point 
can be created from two Smalllntegers. 25% of 
the bytes in the block are 16rBB, a quick send 
of the message @. 

l'his benchmark measures how quickiy the 
next value can be read from a Stream. About 
33% of the bytes in the block are 16rC3, a 
quick send of the message next. 

This benchmark measures how quickly the 
next value can be stored into a Stream. About 
25% of the bytes in the block are 16rC4, a 
quick send of the message nextPut:. 

This benchmark measures how quickly two 
objects can be compared for identity. About 
50% of the bytes in the block are 16rC6, a 
quick send of the message = =. 

This benchmark measures how quickly an ob­
ject can return its class. 33% of the bytes in 
the block are 16rC7, a quick send of the mes­
sage class. 

This benchmark measures how quickly a 
BlockContext can be created that has the cur­
rent context as its "home context." 25% of 



160 
The Smalltalk-80 Benchmarks 

testValue 

testCreation 

testPointX 

testloadThisContext 

testBasicAt 

testBasicA tPut 

testPerf orm 

testStringReplace 

testAsFloat 

testFloatingPointAddition 

testBitBL T 

testT extScanning 

the bytes in the block are 16rC8, a quick send 
of the message blockCopy:. 

This benchmark measures how quickly a sim­
ple BlockContext can be evaluated. 33% of the 
bytes in the block are 16rC9, a quick send of 
the message value. 

This benchmark measures how quickly a class 
can be instantiated. 33% of the bytes in the 
block are 16rCC, a quick send of the message 
new. 

This benchmark measures how quickly one co­
ordinate can be extracted from a Point. 33% of 
the bytes in the block are 16rCE, a quick send 
of the message x. 

This benchmark measures how quickly the 
current context can be pushed onto the stack. 
50% of the bytes in the block are 16r89, a 
quick push of the current context. 

This benchmark measures how quickly the 
value can be read from an unnamed (but 
indexed) field of a variable-length object. 25% 
of the bytes in the block are 16rE4, a send of 
the method's fifth literal, in this case the mes­
sage basicAt:. 

This benchmark measures how quickly a val­
ue can be stored into an unnamed (but 
indexed) field of a variable-length object. 20% 
of the bytes in the block are 16rF5, a send of 
the method's sixth literal, in this case the 
message basicAt:put:. 

This benchmark measures the speed of the 
perform: primitive. 20% of the bytes in the 
block are 16rFl, a send of the method's second 
literal, in this case the message perform:with:. 

This benchmark measures the speed of the 
String replacement primitive. 

This benchmark measures the speed of the 
Smalllnteger to Float conversion. 33% of the 
bytes in the block are 16rD1, a send of the 
method's second literal, in this case the mes­
sage asFloat. 

This benchmark measures the speed of the 
floating point number arithmetic. 25% of the 
bytes in the block are 16rB0, a quick send of 
the message + which must be looked up in 
class Float. 

This benchmark measures the speed of the 
BitBlt primitive. 33% of the bytes in the block 
are 16rD2, a send of the method's third liter­
al, in this case the message copyBits. 

This benchmark measures the speed of the 
primitive method that displays characters on 
the screen. 



The Macro­
Benchmarks 

161 
The Standard System Benchmarks 

The macro-benchmarks provide examples of the main activities in 
which a Smalltalk programmer is typically engaged. Since the 
Smalltalk-80 virtual image does not contain many applications besides 
the programming environment as a whole, most of the macro-bench­
marks test system support for programming activities. 

testClassOrganizer 

testPrintDefinition 

testPrintHierarchy 

testAIICallsOn 

testAlllmplementors 

test Inspect 

testCompiler 

testDecompiler 

testKeyboardlookAhead 

testKeyboardSingle 

testT extDisplay 

This benchmark measures the speed of con­
version between the textual and the structur­
al representations of a class organization. The 
example chosen is class Benchmark because its 
organization contains many categories. 

This benchmark measures how quickly a class 
definition, as it appears in the system brows­
er, can be generated. The example chosen is 
an instance of class Compiler because it has a 
moderate number of instance variables. 

This benchmark times the printing of a por­
tion of the Smalltalk-SO class hierarchy. The 
example chosen is class lnstructionStream be­
cause it has several subclasses. 

This benchmark measures how quickly all the 
methods in which a given selector is refer­
enced can be found. The example chosen is 
the selector printStringRadix: because it has a 
moderate number of senders. 

This benchmark measures how quickly all the 
implementors of a given selector can be found. 
The example chosen is the selector next be­
cause it has a moderate number of 
implementors. 

This benchmark measures how quickly a stan­
dard inspect window can be created. The ex­
ample chosen is an instance of class Compiler 
because it has a moderate number of instance 
variables. 

This benchmark measures the speed of the 
compiler on a slightly longer than normal 
method, one containing 87 tokens and compil­
ing into 73 bytecodes. 

This benchmark measures the speed of the 
Decompiler by decompiling all the methods in 
class lnputSensor. 

This benchmark gauges keyboard response, 
simulating a typist who is able to type ahead. 

This benchmark measures keyboard handling 
by simulating a typist who waits until each 
keystroke appears on the screen before typing 
the next one. 

This benchmark measures how quickly a 
paragraph can display itself. The paragraph 
chosen contains 13 lines with no font or em­
phasis changes. 



162 
The Smalltalk-SO Benchmarks 

Writing 
Your Own 
Benchmarks 

testT extFormatting 

testT extEditing 

This benchmark measures the system facili­
ties required to display a piece of source code 
in the system browser. First, the message pat­
tern is discovered and highlighted (by making 
it bold). Next, the line breaks are determined 
which will allow it to be displayed between 
certain margins. Finally, the text is displayed. 

This benchmark measures text-editing speed 
by repeatedly inserting characters into a 
string and redisplaying the string. 

Suppose you want to use the general benchmark facilities to test and 
record your system's performance of some tasks that are not already 
tested by class Benchmark. This is quite straightforward if you are test­
ing some large system function, such as compilation, that does not re­
quire user interaction. As explained above, you send an instance of 
Benchmark the message 

test: aBlock labeled: label repeated: nTimes 

where aBlock invokes the function whose speed you want to measure. 
But if you want to test a more atomic system facility, such as a primi­
tive specific to your implementation or a simple system facility, primi­
tive, or byte code for which I have not included a test (such as the 
performance of your low-level disk code), or if you want to test your sys­
tem's behavior at a task that involves user input, I have a few words of 
advice. 

First, advice for macro-benchmarks that require user input: It should 
be obvious that if the benchmark ever has to wait for input, the results 
will depend on the behavior of the user rather than that of the system. 
This is unacceptable. So unless you can be sure of feeding your bench­
mark all the input you need ahead of time (by "type ahead" for exam­
ple), you will need to figure out a more creative way to discover the 
results you want. The implementors at University of California, Berke­
ley, (see Chapter 11), have developed a "script" facility in which the in­
put events required to drive some application can be recorded and then 
played back later. This allows a script to drive an application or a 
benchmark, and thus avoids uneven waiting. 

Next, advice for the designers of new micro-benchmarks: The main 
problem in defining a benchmark is being sure that the benchmark ac­
tually tests what you mean it to test. The main problem here is making 
sure that that operation is not swamped by other extraneous computa-



163 
Writing Your Own Benchmarks 

tion. For example, if you want to test the speed of your BitBlt primitive, 
you might think of a simple way of getting a BitBlt to occur, such as 

Display reverse: (100@100 corner: 400@400) 

which uses BitBlt to complement the bits in a rectangle on the screen. 
But this would probably be a mistake, because several (costly) message 
sends are required to turn this high-level description of a particular 
BitBlt into a completely specified call on the primitive. The Smalltalk-SO 
"spy" facilities contained in class MessageTally can help you discover 
whether your proposed benchmark times primitive or higher-level exe­
cution. 

To solve this problem you need to find a much lower-level way of in­
voking the desired behavior. But sometimes you have to be very careful. 
For example, consider my original code for testing the speed of 
BlockContext creation. Smalltalk methods often call for unevaluated 
blocks of code to be passed as arguments. This happens, for example, in 
all code of the general form 

1 to: 10 do: [ :i I array at: i put: true]. 

When it sees something like this, the compiler realizes that it needs to 
create a BlockContext to serve as the second argument of the to:do: 
message. So it generates the following sequence of byte codes 

push ThisContext push0 (or 1 or 2, etc.) sendMsg: blockCopy: 

Now, I was interested in testing the speed of execution of this 
blockCopy: message. Since I wanted to follow my general rule of making 
sure that this operation was not swamped by other computation, I 
thought it would be smart to store the current context in a temporary 
variable and thus be able to get it onto the stack by a simple pushTemp 
instruction rather than a (at least in some implementation strategies) 
potentially more complicated pushThisContext instruction. The problem 
is that since the code that the benchmark repeatedly executes is itself 
passed as an unevaluated block, by the time this code is executed, my 
clever temporary variable no longer points at the current context, but 
rather at one further down the stack. This resulted in my benchmark 
testing an operation that would literally never be performed in any nor­
mal Smalltalk-SO system and that might go much slower (in certain 
very highly optimized implementations) than the behavior I had meant 
to test. 

The micro-benchmark designer should also be careful to consider the 
effect of other "filler" bytes, as discussed above. 



164 
The Smalltalk-SO Benchmarks 

How to Use 
Your Results 

A Brief 
Analysis of 
Early Results 

What can you learn from the results of your tests? The micro-bench­
marks can, of course, suggest parts of an implementation that need ad­
ditional work. They will often help identify local gross inefficiencies. 
They can also serve to confirm that a simple local modification was, in 
fact, an improvement. But I think it is a mistake to place a great deal 
of emphasis on micro-benchmark performance. It seems that there are 
only a few micro-benchmarks whose performance correlates strongly 
with global (macro-benchmark) performance. Microcoded machines with 
stringent control store limits would be especially ill-advised to spend 
micro-instruction space speeding up the relatively insignificant micro­
benchmarks. 

The macro-benchmarks appear to be a good measure of overall sys­
tem performance. Improvement in their performance correlates well 
with user-perceived system performance. I have found them very useful 
in gauging the effect of both small and large changes to my interpreter 
and in tracking my progress over time. For example, columns A and B 
of Table 9.1 compare the Dolphin interpreter before and after a change 
to the handling of the display that had a significant effect on perfor­
mance. At other times however, testing the macro-benchmarks has 
served primarily to quell my enthusiastic anticipation of the value of 
some intended enhancement. 

As this book attests, there are now several successful Smalltalk-SO im­
plementations. The standard system benchmarks have been run in each 
of these implementations, and the reports are presented below. There 
are several interesting lessons to be gleaned from these results, which I 
will explore here. 

It should be stressed that the figures we will be comparing were 
achieved on machines of vastly different speeds and hardware configu­
rations. Some of our figures are very early results. Some come from im­
plementations that were intended to teach the implementors about the 
structure of the interpreter and that placed very low priority on execu­
tion speed. Some implementations were written in high-level languages 
while others were written in microcode. None of these results is final, 
and none indicates the expected performance of any future products. 

I include these figures because the fact that they were achieved on 
vastly different machines and in pursuit of different goals allows us to 
do interesting cross-correlations. We can learn which of the micro­
benchmarks seem to be good predictors of the speed of the macro-



165 
A Brief Analysis of Early Results 

benchmarks (which is what we really care about). And we can glimpse 
the results of various strategies such as reference counting versus gar-
bage collecting. 

I will present the results in two tables. Table 9.1 gives raw times for 
each of the benchmarks, and Table 9.2 gives times as a proportion of 
the average (geometric mean) time across all implementations. The 
time reported for each benchmark is the execution time for the entire 
benchmark (rather than for a single repetition), i.e., that given in the 
report's "total time line." 

Table 9.1 The Benchmarks, Raw Times 

A B C D E F G H I J 
Micro Tests 
testLoadlnst Var 

4.47 3.72 0.28 5.85 27.6 3.85 23.41 10.62 5.89 10.02 
testLoadTempNRef 

4.37 3.07 0.28 5.97 26.2 2.78 23.3 10.62 5.92 9.71 
testLoadTempRef 

6.42 4.53 0.4 5.85 31.16 2.78 26.7 13.89 7.53 11.1 
testLoadQuickConstant 

7.31 5.14 0.5 11.7 46.19 5.37 38.58 19.65 11.89 17.9 
testLoadLiteralNRef 

4.46 3.11 0.28 6.03 25.51 2.88 19.22 10.62 6.02 10.9 
testLoadLiterallndirect 

7.33 5.06 0.49 6.6 29.0 3.92 24.49 15.41 8.13 11.9 
testPopStorelnst Var 

3.12 2.81 0.18 6.75 27.68 5.62 20.63 7.98 10.49 6.95 

testPopStoreTemp 
3.58 2.51 0.18 4.67 27.69 2.48 22.87 7.99 9.79 8.22 

test3plus4 
3.48 2.42 0.16 7.43 24.56 3.1 25.97 8.7 10.52 8.04 

test3lessThan4 
3.47 2.41 0.18 7.33 24.84 3.25 26.36 9.34 10.12 12.8 

test3times4 
6.58 4.59 0.4 8.38 25.43 3.98 28.83 10.22 7.41 10.8 

test3div4 
4.22 3.08 0.57 1.25 2.67 0.48 3.45 1.29 0.75 1.43 

testl 6bitArith 
5.55 5.57 0.65 0.88 11.75 2.07 405.6 133.45 0.59 135.7 

testLargelntArith 
6.38 0.65 0.08 0.08 1.17 0.27 43.1 14.31 0.06 14.3 

testActi vationReturn 
11.07 7.39 1.01 16.2 55.38 8.68 73.41 26.38 16.84 21.5 

l 



166 
The Smalltalk-SO Benchmarks 

Table 9.1 (Cont.) 

A B C D E F G H I J 

testShortBranch 
2.04 1.43 0.12 6.65 21.6 2.63 13.82 7.35 6.14 6.74 

test WhileLoop 
7.04 4.92 0.44 16.3 57.43 7.33 64.95 18.77 12.45 21.4 

testArrayAt 
2.48 1.7 0.19 4.03 30.71 1.65 13.74 5.73 2.51 5.85 

testArrayAtPut 
2.93 2.02 0.22 4.63 32.12 2.13 16.1 6.71 3.08 6.94 

testStringAt 
2.45 1.69 0.19 4.0 11.91 1.6 14.63 5.61 2.65 4.72 

testStringAtPut 
3.16 2.2 0.23 4.92 14.44 1.92 16.95 6.23 2.8 5.01 

testSize 
1.79 1.23 0.15 3.03 8.52 1.45 11.14 4.76 2.15 4.59 

testPointCreation 
1.66 1.17 0.37 1.67 5.52 1.4 6.29 4.3 1.28 3.37 

testStreamNext 
10.15 7.17 0.91 4.97 15.67 6.5 21.98 7.2 4.01 8.18 

testStreamNextPut 
12.32 8.77 1.05 5.88 28.71 7.58 26.26 9.33 5.18 9.84 

testEQ 
5.71 3.93 0.37 6.75 28.76 3.15 29.51 13.71 7.13 12.2 

testClass 
1.62 1.11 0.13 0.9 4.79 0.5 3.95 2.23 1.05 1.56 

testBlockCopv 
15.59 10.8 0.53 13.7 22.54 4.18 20.85 16.57 13.09 11.2 

test Value 
4.25 2.81 0.25 4.08 23.81 3.4 28.51 8.85 6.91 8.21 

testCreation 
4.03 2.78 0.35 6.65 32.58 3.82 16.37 11.04 4.13 7.33 

testPointX 
4.84 3.38 0.35 11.78 35.93 5.03 35.43 17.49 12.24 13.2 

testLoadThisContext 
6.04 4.19 0.4 5.9 29.76 3.05 33.72 14.21 5.36 10.6 

testBasicAt 
2.31 1.58 0.19 3.32 19.96 1.62 11.24 5.76 2.65 6.46 

testBasicAtPut 
2.79 1.91 0.22 3.85 31.89 2.15 13.91 6.44 2.76 6.63 

testPerform 
2.02 1.39 0.3 6.12 29.5 2.25 18.24 7.43 31.28 7.0 

l 



167 
A Brief Analysis of Early Results 

Table 9.1 ( Cont. ) 

A B C D E F G H I J 

testStringReplace 
0.88 0.61 1.06 0.17 2.24 0.183 0.62 0.38 19.38 0.23 

testAsFloat 
2.4 1.68 0.26 0.62 25.13 1.12 1.47 1.44 0.26 0.71 

test Flaa ti ngPointAddi tion 
2.81 1.96 0.25 0.73 18.86 0.88 2.57 1.63 0.38 1.04 

testBitBLT 
2.32 1.65 0.4 209.05 33.69 25.8:3 194.87 5.24 21.73 57.4 

testTextScanning 
1.65 1.16 0.32 21.78 3.44 4.0 7 17 1.01 22 2 29 

Macro Tests 

testClassOrganzzer 
12.3 8.51 1.25 16.03 80.79 8.58 65.02 24.53 16.82 27.4 

testPrintDefinition 
8.49 5.58 0.84 10.43 47.37 6.0 48.21 15.61 11.66 15.9 

testPrintHierarchy 
8.28 5.7R 1.0 9.82 44.44 5.87 :n.69 14.39 12.05 15.5 

testA 11Calls0n 
19.06 13.2 1.57 24.38 92.45 10.73 102.72 ,33.95 21.41 34.2 

testAl!Implemen tor;-; 

6.13 4.3 0.61 7.95 34.33 4.22 36.11 12.33 8.55 12.7 

testlnspcct 
15.55 10.6 1.83 19.08 f)!).23 10.65 91.81 30 ()9 19 3? '.211 R 

testCompiler 
19.9 13.7 2.17 27.25 134.09 15.15 127.42 50.54 27.11 58.2 

testDecompi ler 
12.29 8.45 1.34 17.38 68.5 9.8 73.53 24.21 17.4 25.5 

testKeyboardLookA head 
3.37 2.34 0.49 23.08 13.07 3.7 25.13 5.28 4.85 8.99 

test KPyboardSingle 
10.12 7.0 1.47 116.12 43.92 10.95 76.58 18.55 16.27 42.1 

testTextDisplay 
9.28 6.5 1.2 41.43 32.8 12.92 47.44 11.95 13.88 23.8 

testTextFormatting 
8.64 6.02 1.11 9.0 35.29 4.87 83.81 18.53 10.57 11.2 

testTextEditing 
24.83 17.3 4.07 135.2 95.23 28.03 186.39 37.1 37.03 60.3 



168 
The Smalltalk-80 Benchmarks 

Table 9.2 The Benchmarks Normalized to the Average 

A B C D E F G H I J 

Micro Tests 

testLoadlnst Var 
0.772 0.642 0.0483 1.01 4.77 0.665 4.04 1.83 1.02 1.73 

testLoadTempNRef 
0.801 0.563 0.0514 1.09 4.8 0.51 4.27 1.95 1.09 1.78 

tes tLoad TempRef 
0.958 0.676 0.0597 0.873 4.65 0.415 3.98 2.07 1.12 1.66 

testLoadQuickConstant 
0.74 0.521 0.0506 1.19 4.68 0.544 3.91 1.99 1.2 1.81 

testLoadLiteralNRef 
0.819 0.571 0.0514 1.11 4.68 0.529 3.53 1.95 1.1 2.0 

testLoadLiterallndirect 
0.989 0.683 0.0661 0.891 3.91 0.529 3.31 2.08 1.1 1.61 

testPopStorelnst Var 
0.581 0.523 0.0335 1.26 5.16 1.05 3.84 1.49 1.95 1.29 

testPopStoreTemp 
0.734 0.515 0.0369 0.957 5.68 0.508 4.69 1.64 2.01 1.69 

test3plus4 
0.669 0.465 0.0307 1.43 4.72 0.596 4.99 1.67 2.02 1.54 

test3lessThan4 
0.624 0.433 0.0324 1.32 4.46 0.584 4.74 1.68 1.82 2.3 

test3times4 
0.955 0.666 0.058 1.22 3.69 0.578 4.18 1.48 1.08 1.57 

test3div4 
2.82 2.06 0.381 0.835 1.78 0.321 2.3 0.862 0.501 0.955 

test16bitArith 
0.657 0.659 0.0769 0.104 1.39 0.245 48.0 15.8 0.0698 16.1 

testLargelntArith 
5.5 0.56 0.0689 0.0689 1.01 0.233 37.1 12.3 0.0517 12.3 

testActivationReturn 
0.756 0.505 0.069 1.11 3.78 0.593 5.02 1.8 1.15 1.47 

tes tShortBranc h 
0.543 0.381 0.032 1.77 5.75 0.701 3.68 1.96 1.64 1.8 

test WhileLoop 
0.623 0.435 0.0389 1.44 5.08 0.649 5.75 1.66 1.1 1.89 

testArrayAt 
0.736 0.504 0.0564 1.2 9.11 0.49 4.08 1.7 0.745 1.74 

testArrayAtPut 
0.74 0.51 0.0555 1.17 8.11 0.538 4.06 1.69 0.777 1.75 

testStringAt 
0.813 0.561 0.0631 1.33 3.95 0.531 4.86 1.86 0.88 1.57 

L 



169 
A Brief Analysis of Early Results 

Table 9.2 ( Cont. l 

A B C D E F G H I J 

testStringAtPut 

0.889 0.619 0.0647 1.38 4.06 0.54 4.77 1.75 0.787 1.41 

test Size 
0.744 0.511 0.0624 1.26 3.54 0.603 4.63 1.98 0.894 1.91 

testPointCreation 
0.825 0.582 0.184 0.83 2.74 0.696 3.13 2.14 0.636 1.68 

testStreamNext 
1.52 1.08 0.136 0.745 2.35 0.975 3.3 1.08 0.601 1.23 

testStreamNextPut 
1.46 1.04 0.125 0.697 3.41 0.899 3.11 1.11 n.614 1.17 

J testEQ 
0.854 0.588 0.0553 1.01 4.3 0.471 4.41 2.05 1.07 1.82 

f testClass 
1.33 0.91 0.107 0.738 3.93 0.41 3.24 1.83 0.861 1.28 

testBlockCop.,· 
1.65 1.14 0.0559 1.45 2.38 0.441 2.2 1.75 1.38 1.18 

test Value 
0.819 0.542 0.0482 0.786 4.59 0.655 5.5 1.71 1.33 1.58 

testCreation 
0.759 0.524 0.0659 1.25 6.14 0.72 3.08 2.08 0.778 1.38 

testPointX 
0}597 0.417 0.0432 1.45 4.43 0.621 4.37 2.16 1.51 1.63 

testLoadThisContext 
0.921 0.639 0.061 0.899 4.54 0.465 5.14 2:17 0.817 1.62 

lestBasic.At 
0.745 0.509 0.0612 1.07 6.43 0.522 3.62 1.86 0.854 2.08 

testBasicAtPut 
0.75 0.513 0.0591 1.03 8.57 0.578 3.74 1.73 0.742 1.78 

test Perform 
0.402 0.277 0.0598 1.22 5.88 0.448 :3.63 1.48 6.:2;:3 1.:3~ 

testStnngRep/acc 
1.21 0.838 l.46 0.234 3.08 0.251 0.852 U.522 26.6 0.316 

testAsF!oat 
1.97 1.38 0.214 0.509 20.6 0.92 1.21 1.18 0.214 0.583 

testFloatingPointAddition 
2.02 1.41 0.179 0.524 13.5 0.631 1.84 1.17 0.273 0.746 

testBitRLT 
0.162 0.115 0,028 14.6 2.36 1.81 13.6 o.;:367 1.52 4.02 

testTextScanning 
0.684 0.481 0.133 9.0:3 1 .4~3 1.66 2.97 0.419 0.912 0.949 



170 
The Smalltalk-SO Benchmarks 

Table 9.2 ( Cont. ) 

A B C D E F G H I .J 

Macro Tests 

testClassOrganizer 
0.771 0.533 0.0783 1.0 5.06 0.538 4.08 1.54 1.05 1.72 

testPrintDefinition 
0.808 0.531 0.0799 0.992 4.51 0.571 4.59 1.49 1.11 1.51 

testPrintHierarchy 
0.811 0.563 0.0979 0.961 4.35 0.575 3.69 1.41 1.18 1.52 

testAllCallsOn 
0.874 0.605 0.072 1.12 4.24 0.492 4.71 1.56 0.981 1.57 

testA lll mplemen tors 
0.78 0.547 0.0776 1.01 4.37 0.537 4.6 1.57 1.09 1.62 

testlnspect 
0.82 0.559 0.0965 1.01 3.65 0.562 4.84 1.59 1.02 1.4 

testCompiler 
0.702 0.484 0.0766 0.962 4.73 0.535 4.5 1.78 0.957 2.05 

testDecompiler 
0.756 0.52 0.0825 1.07 4.22 0.603 4.53 1.49 1.07 1.57 

tes tKeyboardLookA head 
0.614 0.426 0.0892 4.2 2.38 0.674 4.58 0.961 0.883 1.64 

testKeyboardSingle 
0.537 0.371 0.Q78 6.16 2.33 0.581 4.06 0.984 0.863 2.23 

testTextDisplay 
0.676 0.473 0.0874 3.02 2.39 0.941 3.46 0.87 1.01 1.73 

testTextFormatting 
0.822 0.573 0.106 0.856 3.36 0.463 7.98 1.76 1.01 1.07 

testTextEditing 
0.625 0.436 0.103 3.4 2.4 0.706 4.69 0.934 0.933 1.52 

Here is a brief description of each implementation, with references to 
the related chapters in this book. 

A. Xerox (see Chapter 7). Implementation written in microcode and 
machine code running on a 40Mhz Xerox Dolphin. 

B. Xerox (see Chapter 7). Implementation written in microcode and 
machine code running on a 44.5Mhz Xerox Dolphin with special 
display alignment. 

C. Xerox (see Chapter 7). Implementation written in microcode and 
machine code running on a Xerox Dorado. 

D. U.C. Berkeley (see Chapter 11). Implementation written in C run-



171 
A Brief Analysis of Early Results 

ning on a DEC VAX-11/780, under 4.lBSD UNIX. Uses AED-512 
over a RS-232 link for the display. Uses 32-bit Oops. 

E. Tektronix (see Chapter 5). Implementation written in Pascal and 
assembly language running on an 8Mhz MC68000. 

F. Tektronix (see Chapter 4). Implementation written in assembly 
language running on a lOMhz MC68000. 

G. Hewlett-Packard (see Chapter 6). Implementation written in high­
level language (C) running on a DEC VAX-11/780 with 4 
megabyte main memory running 4. lBSD UNIX. Portable among 
UNIX systems. ((By the book" implementation; limited optimiza­
tion. 16-bit and Largelnteger arithmetic performed with 
Smalltalk-80 code (no primitives); Float arithmetic using VAX for­
mat (not IEEE); some additional class and argument checking in 
primitives; standard reference-count management with 8-bit 
counts (contexts are reference counted); recursive marking gar­
bage collector. 

H. Apple (see Chapter 10). Implementation written in assembly lan­
guage running on a 5Mhz MC68000. Synchronization of CPU 
memory accesses and display memory accesses reduces the effec­
tive processor speed to about 4.5Mhz. 

I. Digital Equipment Corp. (see Chapter 8). Implementation written 
in assembly language, running on a DEC VAX-11/780 with 4 
megabyte main memory, under VMS. Smalllnteger and Float prim­
itives implemented; Largelnteger primitives not implemented. All 
primitives do class and argument checking. Incremental compact­
ing garbage collector. 

J. Digital Equipment Corp. (see Chapter 8). Implementation written 
in Bliss-32, running on a DEC VAX-11/780 with 4 megabyte main 
memory, under VMS. ((By the book" implementation using refer­
ence counting; moderately optimized. All arithmetic primitives 
implemented. All primitives do class and argument checking. 

One can see from the above data that some micro-benchmarks matter 
very little to overall performance. Performance on the division and 
Largelnteger benchmarks for example, does not seem to be a very good 
predictor of overall performance. As might be expected, performance on 
the String replace benchmark correlates strongly with performance on 
the text editing macro-benchmark, but not for example, with compiler 
performance. 

Another observation is that performance on the micro-benchmarks 
varies much more widely than performance on the macro-benchmarks. 
While this was to be expected, since the macro-benchmarks test perfor-



172 
The Smalltalk-SO Benchmarks 

mance over a much broader range of activities than do the micro­
benchmarks (thus smoothing out peaks and valleys), I was surprised at 
the magnitude of this difference between the smoothness of the macro­
benchmarks and the variations among the micro-benchmarks. (For the 
Dolphin implementation, the standard deviation for the micro-bench­
mark results is 0.86 while the standard deviation for the macro-bench­
marks is only 0.087.) This leads me to the hypothesis that, for any 
reasonably efficient interpreter, virtually all macro-level performance is 
determined by a very few micro-level factors. This hypothesis is sup­
ported by the observation that while the Dorado performance on most 
of the micro-benchmarks is on the order of 15-20 times as fast as the 
Dolphin, performance on the macro-benchmarks is only approximately 
10 times as fast. This appears to be due primarily to the relative speeds 
of activation and return in the two implementations. The 
activation/return benchmark correlates much more strongly with mac­
ro-level performance than do most other micro-benchmarks. So it ap­
pears that general system behavior is most strongly influenced by the 
speed of method activation and return. (This may be less true of ma­
chines with special stack hardware or other special hardware that 
would affect Smalltalk-80 bytecode performance in a non-uniform way.) 

From an analytic point of view, this hypothesis, that (within reason­
able bounds) overall system performance is most strongly determined 
by the speed of method activation and return, can be supported by two 
other general facts: method activation and return are by far the most 
expensive atomic operations the interpreter must perform; and a fairly 
high proportion of the byte codes encountered by a running interpreter 
cause activation or return. Of course, neither of these "facts" is univer­
sally true. The String replacement and BitBlt primitives can be much 
more expensive than an activation, so code that is very rich in these, 
such as text editing, can be expected to perform more like the relevant 
micro-benchmarks. Also, highly optimized code (such as that invoked by 
Smalltalk allCallsOn:) will "open code" important message calls rather 
than incurring the activation and return overhead and can therefore be 
expected to perform closer to the level predicted by the other bench­
marks. 

Exceptions to the general rule that macro-behavior is best predicted 
by the testActivationReturn benchmark are illustrated by the perform­
ance of implementation Don the testTextEditing and testKeyboardSingle 
macro-benchmarks. Most of D's normalized micro-benchmark scores fall 
in the range 0.8 to 1.6, but the scores for the display-intensive micro­
benchmarks testBitBL T and testTextScanning are much worse. The dis­
play configuration that D uses is much slower than other 
implemenations and accounts for these low scores. While performance 
on most macro-benchmarks is very near 1.0, as predicted by the majori­
ty of the micro-benchmarks, the scores for testTextEditing and 



Concluding 
Summary 

173 
Concluding Summary 

testKeyboardSingle are much worse (3.4 and 6.16) due to the fact that 
these are display-intensive macro-benchmarks. It is also worth noting 
that these particular macro-benchmarks seem to correlate strongly 
with user satisfaction. While D appears to be computationally accept­
able in other respects, its users are generally not satisfied with its re­
sponsiveness. 

Discoveries and warnings have been sprinkled throughout this paper; 
here is my chance to put them in one place. 

Many of the micro-benchmarks contain operations that I had not 
meant to test, but that I included simply to satisfy the demands of the 
compiler or stack management discipline. These operations, although 
fairly fast, may be slower than the operations being tested and this may 
distort somewhat the meaningfulness of these benchmarks. 

In writing your own benchmarks, you must be very careful to make 
sure that the operations you are trying to time are not swamped by 
other computation. For micro-benchmarks, it is good to look at the com­
piled code to see whether you have created the test you thought you 
had. 

Most of the micro-benchmarks are not very good predictors of overall 
system performance. The speed of certain specialized applications may 
correlate well with some specific micro-benchmarks, such as BitBlt or 
String replacement, but it appears from our data that the efficiency of 
activation and return is the overriding determinant of system perfor­
mance. 

Finally, let me stress again that the data I presented in the analysis 
section represent early or interim results, designed for very different 
purposes, written in different level languages, and running on vastly 
different hardware. None of these are final, and none indicate the 
expected performance of any future systems. We thank the 
implementors for their courage in allowing us to publish such prelimi­
nary measurements. 



174 
The Smalltalk-80 Benchmarks 

1£u£f<. m1w fl/c 
U)Oul!UG; £ /U£ED 

7<£/?ZJ/A.IG cJ;U ou,f 
,,,q/./1) rV £ L 

7() 

j 



Introduction 

History 

l 

An MC68000-Based 
Smalltalk-80 System 

Richard Meyers 
David Casseres 
Apple Computer Inc. 
Cupertino, California 

This paper describes some preliminary results of an MC68000-based im­
plementation of the Smalltalk-SO system. The implementation was con­
ducted as a research project by Apple Computer Inc. Our purpose in 
presenting this data is to provide to other implementors some of the in­
formation we wish we had known when we first set out to implement 
Smalltalk. 

Apple Computer began its Smalltalk-SO research project in early Octo­
ber 1980. The project has been staffed by one engineer (Rick Meyers) 
and, for about half of the last 18 months, by a technical writer (David 
Casseres). Apple has consistently viewed Smalltalk as a research effort, 
and has afforded the project the freedom from schedules and from mar­
keting considerations that allows research efforts to thrive. 

Our Smalltalk-80 implementation has been running since April 1981 
on a series of experimental Motorola MC68000-based computer systems. 
The Smalltalk-80 virtual machine described in this paper is a straight­
forward translation of the Xerox virtual machine specification to 68000 
assembly language. The bytecode interpreter, object memory system, 

Copyright © Apple Computer Inc., 1982. All rights reserved. 

175 



176 
An MC68000-Based Smalltalk-SO System 

Memory 
Layout 

Virtual 
Machine 
Structure 
and Size 

and primitive routines were written slowly and carefully by a single en­
gineer. Other engineers contributed the BitBlt (screen display), text 
scanning (textual display), and floating-point arithmetic routines. To 
date, only about three weeks of effort have been devoted specifically to 
optimizing the virtual machine, and the only major optimization is the 
message lookup cache described later in the paper. 

This paper reports on work in progress. The measurements reported 
were first made in June 1981 and were repeated in June and July 1982. 

The measurements were made on a Smalltalk-80 system configured to 
use about 793K bytes of memory. Estimates of the sizes of major system 
components are shown in Table 10.1. The virtual machine size includes 
BitBlt, text scanning, and the floating-point routines. The data does not 
include the program development system used to host Smalltalk, the 
file system and the device drivers, the system debugger, or the data 
areas used by program analysis tools. 

Area 

virtual machine data 
virtual machine code 
display memory 
object table (24K objects) 

Table 10.1 Memory Layout 

15K system-supplied objects (60K) 
9K user objects (36K) 

heap storage (10 heaps, 64K/heap) 
system supplied objects (407K) 
user objects (233K) 

Total 

Bytes 

4K 
21K 
32K 
96K 

640K 

793K 

At the time of this writing, our Smalltalk-80 virtual machine consists of 
21,088 bytes of Motorola 68000 assembly-language code. The major sys­
tem components have the following functions: 

• Initialization and Utilities: Global initialization, memory image in­
put, 1/0 operations, utilities 

j 



L 

177 
Virtual Machine Structure and Size 

• Fetch Loop: Bytecode fetch and dispatch 

• Bytecode and Primitive Tables: Addresses of bytecode and 
primitive routines 

• Bytecode Interpreter: Bytecode interpretation, except the major ac­
tivities such as send, return, and memory allocation 

• Send/Return: Send and superclass send, primitive dispatch, context 
switch, argument transfer and return 

• Multiprocessing: Process switch, semaphores, keyboard and time 
events 

• Memory Management: Memory allocation, reference counting, 
heap compaction, and garbage collection 

• Primitives: All primitives except for floating-point package, BitBlt 
and text scanning 

• BitBlt: Class BitBlt, method copyBits 

• Text Scanning: Class TextScanner, method scanCharactersFrom:to:­
last: in: rightX:stopConditions: displaying: 

• Analysis: Reference-count validation, statistics gathering and re-
porting 

Table 10.2 shows a breakdown of the virtual machine into its major 
components. The file system and device drivers are excluded from these 
measurements. The table also indicates time spent in each component 
of the virtual machine. 

Table 10.2 Virtual Machine Structure and Size 

Function Bytes Size % Time 
initialization & utilities 2,274 10.8% 1.9% 
fetch loop 18 0.1% 10.2% 
bytecode & primitive tables 802 3.8% 
bytecode interpreter 1,476 7.0% 16.0% 
send & return 1,132 5.4% 39.2% 
multi processing 1,338 6.3% 
memory management 1,650 7.8% 22.6% 
primitives (except those below) 5,128 24.3% 8.8% 
floating-point 3,162 15.0% 0.0% 
BitBlt 1,956 9.3% 0.5% 
text scanning 1,258 6.0% 0.7% 
analysis 894 4.2% 



178 
An MC68000-Based Smalltalk-SO System 

Virtual 
Machine Code 
Utilization 

A sampling technique was used to measure the approximate percentage 
of the total time spent executing each instruction of the virtual ma­
chine. The virtual machine program counter was sampled every 10 mil­
liseconds to construct a histogram of relative utilization for each 
possible program counter value. It should be noted that this technique 
fails to measure periodic activities which are based on interrupts, such 
as multiprocessing activity. 

The Smalltalk-80 memory image supplied by Xerox Palo Alto Re­
search Center contained a set of 35 benchmarks, included as methods in 
class Benchmark. The benchmarks test a number of individual 
bytecodes, common primitive operations, and several "macro" opera­
tions such as compilation and text formatting. The results of running 
Benchmark testStandardTests are reported in Chapter 9. The results re­
ported in this section were gathered during execution of the Benchmark 
1'macro" operations 

Benchmark new testCompiler 
Benchmark new testDecompiler 
Benchmark new testlnspect 
Benchmark new testTextEditing 
Benchmark new testTextFormatting 

Each of these tests was run five times in a period of just over 28 min­
utes; 170,922 samples were taken, one every 10 milliseconds. The time 
spent in each of the major system components is summarized in Table 
10.2 above and in Fig. 10.1. 

Several sections of the virtual machine deserve special attention. The 
bytecode fetch and dispatch, which usually requires five instructions, 
accounts for 10.2% of the total execution time. The relatively small 
(1132 bytes, 5.4% of total) send/return component of the system ac­
counts for 39.2% of the execution time. Prior to implementation of a 
method lookup cache, this percentage was 52.5%. 

The countDownOthers routine, which recursively decrements the ref­
erence counts for the fields of deallocated objects, requires 11.8% of the 
execution time. This fact, and the time spent in countDown, suggests 
that implementation strategies which avoid reference counting of con­
texts may yield substantial performance improvements. 

Overall patterns of utilization indicate the value of time optimization 
for send/return and the memory management functions, and space opti­
mization for most of the primitive operations, especially the floating­
point routines. Fig. 10.1 shows the space and time used by each major 
system component. 

~ 



l 

Space Occupied by Code 

Initialization & Utilities 

Multiprocessing 

Primitives other than Floatmg-point, 
BitBlt, & Tcext Scanning 

Text Scanning 

Analysis 

Figure 10.1 

179 
Virtual Machine Code Utilization 

Time Spent in Code 

Send~ Execute, & Return 

Primitives other than Floatmg-pomt. 
BitBlt, & Text Seannins 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

't 
l 
l 
t 
! 



180 
An MC68000-Based Smalltalk-SO System 

Bytecode and 
Primitive 
Frequencies 

The Smalltalk-BO virtual machine implements 256 individual bytecodes 
(instructions) and approximately 100 primitive operations. In designing 
and optimizing an implementation, it is vital to know which bytecodes 
and primitives occur most frequently, and which are rarely used. 

0 1 2 3 4 5 6 7 8 9 A B C D 

0 Push Instance Variable (0 to F) 

1 Push Temporary Variable (0 to F) 

2 
Push Literal Constant (0 to lF) 

3 

4 
Push Literal Variable (0 to lF) 

5 

6 Pop Instance Variable (0 to 7) Pop Temporary Variable (0 to 7) 

Push return from message 7 
self I true I false I nil 1 - 1 1 0 1 1 1 2 self I true I false I nil 

8 V Push rstore r pop rsend rsend rssuepnedr send pop dup. push ! 1 super stack TOS c'txt 

9 Jump (1 to 8) 

Jump (iii-4)*256+.iliiiili 

Jump on False (1 to 8) 

v Jump on True 
ii* 256 + .iliiiili 

ret. TOS 
~sg. 1 block 

l 
,, Jump on False 

ii• 256 + .iliiiili 

E 

A 

B 

C 

+ I - l < I > I<= I>= "-'= I \\ @ b"t I bit 
Shift: 

11 
And: 

Send Special Selector class block value value: Send Special Selector Copy: 

D Send Literal Selector (0 to F) with No Arguments 

E Send Literal Selector (0 to F) with 1 Argument 

F Send Literal Selector (0 to F) with 2 Arguments 

Notes: 

To look up a hex bytecode, find the high-order digit on the left and low-order digit at the top. 

□ 
□ 
□ 

Figure 10.2 

indicates a bytecode that is followed by one extension byte. 

indicates a bytecode that is followed by two extension bytes. 

indicates a bytecode that is not used. 

F 

bit 
Or: 

j 



181 
Bytecode and Primitive Frequencies 

Our implementation was instrumented to tally every bytecode and 
primitive executed. This instrumentation imposed a time overhead of 
about 22%, low enough to allow execution of reasonably large methods 
during analysis. 

Bytecode and primitive frequencies are both directly dependent on 
the methods being executed while data is collected. Two separate meas­
urements are reported here. In the first test we ran each of the Bench­
mark "macro" operations, listed above. Measurements continued 
through both the data collection and data reporting phases of the 
benchmarks. The second test consisted of browsing as rapidly as possi­
ble for about two minutes; it demonstrates the degree of variation in­
volved. 

Figure 10.2 is a bytecode summary matrix to aid in the interpreta­
tion of the bytecode frequency data. 

Table 10.3 lists the percentage of total bytecodes executed in each 
major bytecode category, while executing the "macro" operations. A to­
tal of 3,750,200 bytecodes were executed while collecting this data. 

Table 10.3 Bytecode Frequencies by Category in 
Benchmark Macro Tests 

Hex Code Operation Percentage 

00-0F push instance variable 7.3% 
10-lF push temporary variable 19.1% 
20-3F push literal constant 2.3% 
40-5F push literal variable 1.1% 
50-67 pop instance variable 1.9% 
68-6F pop temporary variable 3.9% 
70-77 push self, true, false, nil, -1, 0, 1, 2 14.4% 
78-7B return from message self, true, false, nil 1.8% 
7C-7D return TOS from message/block 4.7% 
80 extended push 1.3% 
81 extended store 1.4% 
82 extended pop 0.9% 
83 extended send 0.6% 
84 double extended send 0.0% 
85 superclass send 0.2% 
86 double extended superclass send 0.0% 
87 pop stack 3.7% 
88 duplicate TOS 0.1% 
89 push context 0.3% 
90-97 jump (1-8) 0.2% 

~ 
I,~ 

l 



182 
An MC68000-Based Smalltalk-SO System 

Hex Code 

98-9F 
A0-A7 
A8-AB 
AC-AF 
BO-BF 

CO-CF 

D0-DF 
E0-EF 
F0-FF 

Table 10.3 (Cont.) 

Operation 

jump on false (1-8) 
jump (iii-4)*256+jjjjjjjj 
jump on true ii*256+jjjjjjjj 
jump on false ii*256+jjjjjjjj 
send +, - , < , > , < =, > =, =, ,.._,, =, *, /, \ \, @, 

bitShift:, / /, bitAnd:, bitOr: 
send special selector, = =, class, blockCopy:, 

value, value: 
send literal selector with no arguments 
send literal selector with 1 argument 
send literal selector with 2 arguments 

Percentage 

4.8% 
2.1% 
0.0% 
2.2% 

11.2% 

7.1% 
3.4% 
2.5% 
1.4% 

In both of the tests, 18 of the 256 bytecodes accounted for over half of 
the bytecodes executed, as shown in Tables 10.4 and 10.5. Simple push 
operations (push self, push temporary variable, push 0, push 1) top both 
lists and account for over 30% of all bytecodes executed. 

Table 10.4 Most Frequent Bytecodes in Benchmark Macro Tests 

Hex Code Operation Percentage 
70 push self 6.7% 
10 push temporary variable 0 6.1% 
11 push temporary variable 1 4.6% 
12 push temporary variable 2 4.5% 
76 push 1 4.4% 
7C return TOS from message 3.9% 
87 pop stack top 3.7% 
BO send+ 3.7% 
01 push instance variable 1 2.4% 
AC jump on false (range 0 to 256) 2.2% 
co send special selector 0 2.0% 
B6 send= 1.9% 
Bl send - 1.7% 
A3 jump (range -256 to -1) 1.7% 
B4 send < = 1.5% 
75 push 0 1.4% 
81 extended store 1.4% 
78 return self 1.4% 

Total 55.2% 



183 
Bytecode and Primitive Frequencies 

Table 10.5 Most Frequent Bytecodes in Browsing Test 

Hex Code Operation Percentage 

10 push temporary variable 0 6.9% 
70 push self 5.4% 
7C return TOS from message 5.4% 
11 push temporary variable 1 4.9% 
12 push temporary variable 2 3.3% 
BO send+ 3.3% 
76 push 1 2.9% 
00 push instance variable 0 2.4% 
01 push instance variable 1 2.4% 
87 pop stack top 2.3% 
Bl send - 2.2% 
DO send literal selector O (no arguments) 2.1% 
80 extended push 1.9% 
co send special selector 0 1.8% 
78 return self 1.6% 
75 push 0 1.5% 
AC jump on false (range O to 256) 1.5% 
82 extended pop and store 1.5% 

Total 53.3% 

Primitive executions were tallied during execution of the Benchmark 
''macro" operations. Primitive executions resulting from "send special 
selector" bytecodes and those resulting from n-.->rmal send operations 
are included in the tally. Primitive failures are also included. The 20 
most frequent primitives are listed in Table 10.6. The top five primi­
tives account for over 50% of all primitive executions, and the top 20 
account for almost 95%. As expected, all of the most common primi­
tives are invoked directly from "send special selector" bytecodes. 

Table 10.6 Most Frequent Primitives in Benchmark Macro Tests 

Decimal# Class Method Count Percentage 
1 Smalllnteger + 138,803 18.2% 
7 Smalllnteger 73,339 9.7% 

60 Object at: 72,429 9.5% 
2 Smalllnteger 65,399 8.5% 
5 Smallinteger <= 58,746 7.7% 

110 Object 48,784 6.4% 



184 
An MC68000-Based Smalltalk-SO System 

Send 
Characteristics 

Decimal::; Class 

61 Object 
62 Object 
81 BlockContext 

4 Smalllnteger 
63 String 
66 ReadStream 
6 Smallinteger 
3 Smalllnteger 

80 ContextPart 
70 Behavior 

111 Object 
71 Behavior 
11 Smalllnteger 
12 Smalllnteger 

Total 

Table 10.6 (Cont. l 

Method 

at:put: 
size 
value/value: 
> 

at: 
next 
>= 
< 

blockCopy: 
new 
class 
new: 

II 

Count 

38,657 
36,075 
35,092 
34,170 
'27,256 
25,259 
13,010 
11,724 

9,894 
8,695 
6,402 
7,781 
6,039 
5,594 

Percentaf.{e 

5.0% 
4.7% 
4.6% 
4.4% 
3.3% 
3.3% 
1.7% 
1.5% 
1.3% 
1.1% 
1.1 o/t 

1.0% 
0.7% 
0.7% 

94.4% 

Message sends play a key role conceptually in the Smalltalk-SO lan­
guage, and have a major impact on the performance of Smalltalk-BO 
implementations. Three categories of bytecodes initiate send operations: 

• Integer and common primitive bytecodes 

• Special selector bytecodes 

• Send and superclass-send bytecodes. 

The final action taken as the result of a send can be any of the follow­
ing: 

• Primitive return of self 

• Primitive return of an instance variable 

• Successful execution of a primitive 

• Activation of a CompiledMethod. 

Sends involving primitives can either succeed or fail !usually because of 
improper argument classes). Our interpreter was modified to tally the 
various attributes of sends. The data in Table 10.7 was collected while 
executing the Benchmark "macro" operations. 



Number of 
Arguments 

Figure 10.3 

185 
Number of Arguments 

Table 10. 7 Analysis of Send Characteristics 

Bytecode Initiating Send Counts Percent 
Integer & common primitive bytecodes 515,099 51.9% 
Special selector bytecodes 173,164 17.4% 
Send and superclass-send bytecodes 305,065 30.7% 

Final Action Taken 
Primitive return of self 1,673 0.2% 
Primitive return of an instance variable 40,585 4.1% 
Successful execution of a primitive 733,779 73.9% 
Activation of a CompiledMethod 217,291 21.9% 

Primitives 
Primitive successes 733,779 96.8% 
Primitive failures 23,969 3.2% 

In optimizing the activation code within the virtual machine, it may be 
helpful to know the distribution of the number of arguments passed by 
sends. The virtual machine was instrumented to construct the histo­
gram shown in Fig. 10.3. Only sends resulting in activation of a 
CompiledMethod were considered. The data below is for the Benchmark 
"macro" operations. Zero-argument and one-argument sends occur with 
nearly equal frequency, and account for over 80% of all reported mes­
sages. 

Arguments Sends % of Total 

0 10 20 30 40 50 
0 96,130 

79,858 

2 23,823 

3 10,518 

4 4,455 

5 308 

6 1,462 

7 72 

8 270 



186 
An MC68000-Based Smalltalk-SO System 

Message 
Lookup 
Chaining 

Figure 10.4 

Performance 
Measurements 

The message lookup routines begin their search in the class of the re­
ceiver. If the message being sent is not in this class, the search contin­
ues up the superclass chain until an inherited message is found. Our 
interpreter was modified to gather statistics on the depth of search re­
quired. The method lookup cache was not in use when these statistics 
were collected. The data in Fig. 10.4 was gathered while executing the 
"macro" operations in class Benchmark. 

About half of all sends are to methods defined in the class of the re­
ceiver, requiring 0 depth of search. Searches of depth 1, 2, 3, and 4 oc­
cur with roughly equal frequencies of about 7 .5% to 15%. Relatively 
few messages require a search of depth 5 or more, but one search of 
depth 9 did occur. 

Depth Sends % of Total 
0 10 20 30 40 50 

0 242,792 

1 56,771 

2 38,024 

3 75,968 

4 64,234 

5 12,455 

6 4,404 

7 7,892 

8 20 

9 

Performance measurements are included here to allow comparisons 
with other Smalltalk-SO implementations. These measurements were 
made on a single-user Motorola MC68000-based system with the system 
clock running at 5 MHz. (A 4-byte register-to-register add takes 1.6 mi­
croseconds. A 4-byte move from an absolute memory location to a regis­
ter takes 3.2 microseconds. CPU memory accesses and display memory 
accesses are synchronized, slowing the CPU by 10-15% ). The measure-

j 



Acknowledg­
ments 

187 
Acknowledgments 

ments are a snapshot of work in progress as of July 1982. The only ma­
jor optimization in use was a 256-entry message lookup cache. The 
uninterpreted results of running Benchmark testStandardT ests are re­
ported in Chapter 9. 

A traditional test of system performance is the number of bytecodes 
per second the system can execute. Bytecodes vary tremendously in 
complexity, from simple operations such as pushing a literal zero on the 
stack or branching to another bytecode to very complex primitive oper­
ations such as floating-point divide, string-to-string copy, or BitBlt oper­
ations. Therefore, bytecode-per-second measurements are extremely 
dependent on the methods being executed. We had no trouble collecting 
measurements ranging from 5000 to about 30,000 bytecodes per second. 

Our analysis was done by modifying the virtual machine to count the 
actual number of bytecodes executed. This introduced an overhead of 
about 5%, which is compensated for in the final column of Table 10.8. 
Class Benchmark, method test:labeled:repeated: was also modified to al­
low collection of the bytecode counts. We have chosen to report data 
collected for each of the "macro" operations in class Benchmark. Mea­
surements reported are the average of three trials. The message lookup 
cache was in use when these measurements were taken. 

Table 10.8 Bytecodes/Second for Benchmark Macro Tests 

Activity Counts ms Elapsed Bytecodeslsec +5% 

compile dummy method 550,061 49,440 11,126 11,682 
decompile Form & Class 2,391,154 203,440 11,753 12,341 
create an Inspector 33,959 3,430 9,901 10,396 
format a bunch of text 258,750 20,880 12,396 13,012 
replace & redisplay test 350,985 38,580 9,098 9,552 

The authors wish to thank the management of Apple Computer, and es­
pecially John Couch, Wayne Rosing, Nellie Connors, and Ron Johnston 
for providing the equipment, the environment and the freedom needed 
to implement the Smalltalk-80 system successfully on the MC68000. 
Thanks also go to Bill Atkinson and David Hough, who helped with the 
engineering effort. 





Berkeley Smalltalk: 
Who Knows Where 
the Time Goes? 

David M Ungar 
David A. Patterson 
Computer Science Division 
Department of Electrical Engineering 
and Computer Sciences 
University of California, Berkeley 

Sad deserted shore, 
Your fickle friends are leaving. 
Ah but then you know 
It's time for them to go. 
But I will still be here 
I have no thought of leaving. 
I do not count the time. 
Who knows where the time goes? 
Who knows where the time goes? 

"Who Knows Where the Time Goes'"" 

We have implemented the Smalltalk-80 virtual machine in the C pro­
gramming language for the Digital Equipment Corp. VAX-11/780 un­
der Berkeley Unix. We call this system Berkeley Smalltalk (BS). An 
AED-512 terminal connected over a 9600-baud serial link serves as the 
display device. In four months one person wrote BS in about 9000 lines 

*[Denny, Sandy, "Who Knows Where the Time Goes?" (BMI) Winckler Music, Judy 
Collins (BMI), Irving Music, used by permission] 

Copyright© David M. Ungar, David A. Patterson, 1982. All rights reserved. 
189 



190 
Berkeley Smalltalk: Who Knows Where the Time Goes? 

Introduction 

Methodology 

of source code. Other Smalltalk-SO implementations on non-micropro­
grammable computers have suffered from poor performance. We believe 
that a straightforward, literal implementation of the specification can­
not achieve acceptable performance. This paper explains how the opti­
mizations in BS have increased performance fourfold. 

The Smalltalk-80 book1 includes a clear and intelligible definition of 
the Smalltalk-80 virtual machine. To learn about the performance con­
sequences of following this definition, we have measured key compo­
nents of: 

1. An interpreter that follows the book exactly; and 

2. Berkeley Smalltalk (BS), which meets the specification but does 
not mimic the definition in the book. 

The results of this study are shown in Table 11.1 below. Berkeley 
Smalltalk is 4.8 times faster than a straight-forward implementation. 
The rest of this paper details the steps behind this result. 

Table 11.1 Summary of All Optimizations 
(all times are in microseconds per bytecode) 

Activity By-the-book BS 

reference counting 50 (12%) 9.5 (11%) 

dispatching bytecodes 124 (31%) 10 (12%) 

BitBlt 0-100 (0-25%) 0-8.3 (0-10%) 

allocation and freeing 19 (5%) 5.2 (6%) 

OT indirection 29 (7%) 2.4 (3%) 

method lookup 36 (9%) 3.8 (5%) 

Subtotal 358 (89%) 39 (47%) 
other activities 44 (11%) 44 (53%) 

Total 402µs (100%) 83µs (100%) 

By-the-book/BS 

5.3 

12 
12 

3.7 
12 

9.4 

4.8 

First, we identified the activities or operations that distinguish a 
Smalltalk-80 system from a conventional non-interpreted language. 
These include: 

j 



191 
Methodology 

• Automatic free space reclamation (realized with reference counts), 

• Bytecode decoding, 

• Bitmap manipulation (BitBlt)2, 

• Allocating and freeing objects, 

• Object table (OT) indirections, and 

• Method lookup. 

We measured the cost of each activity by writing test programs in C3 

that simply looped and performed the operations as defined by the 
book. The CPU execution times of these programs were compared with 
dummy programs that looped without performing the measured opera­
tion. Although we never implemented a complete interpreter by-the­
book, we coded these key operations with as much ingenuity as those in 
BS. In this way, we hoped to measure only differences caused by under­
lying data structures rather than those attributable to clever '(hacks" 
in the code. 

Next, we derived a bytecode mix from a profile of a typical interac­
tive session of seven million bytecodes4• This mix is shown in Table 11.2 
below. 

Table 11.2 A Typical Dynamic Bytecode Distribution 

Instruction Type Frequency Explanation 

push 43% typically instance or temporary variable 
full sends 11% causes context switch 
direct arith prims 8% successful; another 2% fail 
short circuit sends 5% 
direct special prims 3% successful 
primitives 3% 0.3% fail 
return stack top 9% assume 1 en try on stack 
other returns 2% assume 1 entry on stack 
pop and store 5% typically instance or temporary variable 
pop 2% 
jump conditional 6% from Baden's measurements5 

jump unconditional 2% from Baden's measurements6 

store 1% 
unaccounted 1% 
Total 100% 

The Smalltalk-80 book and the BS source code gave us the types and 
numbers of key operations for each type of bytecode. Finally, we calcu-



192 
Berkeley Smalltalk: Who Knows Where the Time Goes? 

Reference 
Counting 

lated a weighted average for the mean number of key operations per 
bytecode. 

Multiplying the time per operation by the number of operations per 
bytecode gave us the time spent per bytecode on each operation (except 
BitBlt). To measure individual optimizations, we also computed the time 
spent by an implementation that performed all the optimizations but 
the one in question. Table 11.1 summarizes effects of optimizing these 
areas. We'll examine these areas individually in the following sections, 
discuss other optimizations, and draw some conclusions. 

Smalltalk-SO implementations, including BS, reclaim space by 
maintaining a reference count for every object. Two reference-count op­
erations are required when the virtual machine stores an object pointer 
(Oop): one to account for the destruction of the word's former contents, 
and one to account for the creation of a new reference. Each reference­
count operation must first verify that its operand represents a refer­
ence-counted object and not a small integer. Then it must increment or 
decrement the appropriate count and check for over- and underflow. 
When an object's reference count diminishes to zero, all of its refer­
ences must be destroyed by recursively decrementing the counts of the 
referenced objects. Only then can the virtual machine reuse the space. 
Although each reference-count operation is not expensive, the cumula­
tive time counting references threatens to throttle by-the-book imple­
mentations. 

We designed the Oop and OT structures to speed up reference count­
ing. We enlarged the book's reference-count variables from 8 to 32 bits 
to obviate overflow checking. The object table was split into separate 
arrays of reference counts, addresses, and flags to eliminate the multi­
plication needed to index an array whose elements are not a power of 2 
long. The Smalllnteger tag bit was moved to the high order bit of the 
Oop from the low order bit to avoid the right shift required to convert 
an Oop to an array index. 

Oops by-the-book. 
15 ... 1 0 
<OT Index> 0 
<Integer> 1 
Berkeley Oops 
15 14... 0 
0 <OTindex > 
1 <Integer > 



Reference­
Counting 
Operations Per 
Bytecode 

193 
Reference Counting 

The Berkeley Oop format also reduced the overhead of reference count­
ing by hastening the check to decide whether an object must be refer­
ence counted. Since the integers all have negative Oops, and the Oops 
not needing reference counting (invalid Oop, nil, true, false) have values 
0 through 3; a single signed comparison can ferret out nonreference­
counted Oops. A typical BS count operation became 25% faster-8.2µs 
to 6.3µs. 

BS incorporated many strategies from the Xerox Dorado7 and Dolphin 
implementations8 that reduce the number of reference-count operations. 
For example, when returning the top of stack, the result's Oop must be 
pushed onto the caller's stack. A straightforward implementation would 
copy the Oop into the new context and increment its reference count. 
Later, when freeing the callee's context, the implementation would dec­
rement the result's reference count. Instead, destructively moving the 
Oop obviates these two reference-count operations. After storing the 
Oop in the caller's context, BS destroys the old reference from the 
callee's context by nilling it out. Since the net number of references 
does not change, the reference count stays the same. An implementa­
tion can also avoid a decrement operation when it can guarantee that 
the target field contains a nonreference-counted object (e.g. nil). If the 
implementation can count on the new contexts of a field to be 
nonreference counted, it can avoid the increment. 

Perhaps the single most significant trick for optimizing reference 
counting is the stack management strategy we adopted from the Dorado 
implementation. A Smalltalk-SO interpreter must free a context on al­
most every return. Since the context may contain references to objects, 
a conventional implementation must sweep the entire context to free it. 
The stack occupies two-thirds of a context; most of the stack is never 
used. BS avoids sweeping the area above the top of the stack (TOS) by 
banishing references to objects from that area. Only nil, Smalllntegers, 
true, and false may reside there. Performing context freeing as part of 
the return operation whenever possible is another important optimiza­
tion. In addition to saving the overhead of invoking the recursive free­
ing routine, many other fields in a context are sure to be nonreference 
counted and are thus ignored. With these changes, recursive freeing ac­
counts for less than 2%9 of the execution time. Moving the sender Oop 
and result Oop instead of copying them saved four more count opera­
tions in the return bytecode. Tables 11.3 and 11.4 enumerate the refer­
ence-count operations required for a full send and return. 

Be warned: explicitly altering either the stack pointer or the fields 
above the top of stack (both pointless actions) can compromise the in­
tegrity of an implementation with this optimization. This hazard has 
not posed a problem for BS or the Dorado implementation. 



194 
Berkeley Smalltalk: Who Knows Where the Time Goes? 

Table 11.3 Reference-Count Operations for Full Sends 

Operation By-the-book BS 

decrement sender in new context 1 0 
increment new sender 1 0 
decrement old active context 1 0 
increment new active context 1 1 
decrement IP in old context 1 0 
increment IP in old context 1 0 
decrement SP in old context 1 0 
increment SP in old context 1 0 
increment context class 1 0 
decrement method in new context 1 0 
increment method in new context 1 1 
decrement receiver in new context 1 0 
increment receiver in new context 1 0 
decrement argument in new context 1 0 
increment argument in new context 1 0 
Total for full send 15 2 

Table 11.4 Reference-Count Operations for Returns 

Operation By-the-book BS 

decrement old active context 1 1 
increment new active context 1 0 
increment result 1 0 
decrement result 1 0 
increment old IP 1 0 
increment old SP 1 0 
Total to switch contexts 6 1 
decrement old sender 1 0 
decrement old IP 1 0 
decrement old SP 1 0 
decrement old unused field 1 0 
decrement old receiver 1 1 
decrement old method 1 1 
decrement old stack contents 12 1 
decrement context class 1 0 

Total to free old context 19 3 
Grand total for return 25 4 

j 



195 
Reference Counting 

This stack management strategy also reduced the number of refer­
ence-count operations for pushes and pops. It saved a decrement for 
each push and saved two reference-count operations per pop and store. 
It did force pop operations to nil out the old Oop. Three reference-count 
operations were saved for each integer primitive since they can succeed 
only with nonreference-counted Oops. Table 11.5 lists the number of 
counts for each type of bytecode. The optimizations removed 70% of the 
reference counting. 

Table 11.5 Reference-Count Operations by Bytecode 

Instruction type By-the-book BS By-the-book/BS 

push 2 1 2.0 
full sends 15 2 7.5 
direct arith prims 4 0 (infinite) 

special primitives 4 3 .67 
short circuit sends 2 2 1.0 
primitives 4 4 1.0 
return stack top 25 4 6.3 
other returns 26 5 5.2 
pop and store 2 1 2 

pop 0 1 0 
jump conditional 0 0 
jump unconditional 0 0 
store 3 2 1.5 
Mean counts per 
bytecode 6.1 1.5 4.1 

Multiplying the time per count by the number of counts per bytecode 
gave us the total time spent for each bytecode on reference counting. 
Table 11.6 presents these data and reinforces the importance of the ref­
erence-count optimizations; if BS did not include them, it would run 1.5 
times slower. 

Table 11.6 Cost of Reference Counting 

Measurement By-the-book BS By-the-book/BS 

mean counts per bytecode 6.1 1.5 4.1 
mean time per count 8.2µs 6.3µs 1.3 
mean count time per bytecode 50µs 9.5µs 5.3 
mean time per bytecode 124µs 83µs 1.5 

Fraction spent counting 40% 11% 3.6 



196 
Berkeley Smalltalk: Who Knows Where the Time Goes? 

Bytecode 
Decoding 

BitBlt 

Coping With an 
External Display 

The definition of bytecode decoding encompasses the computation 
performed identically for each bytecode. Both Dolphin and Dorado con­
tain fast hardware to decode bytecodes, a luxury absent from a conven­
tional computer like our VAX. In addition to the decoding itself, we 
included checking for process switches, fetching bytecodes, updating the 
virtual instruction pointer, and for BS, counting bytecodes. BS uses a 
256-way branch table to decode single-byte bytecodes completely. We 
combined the check for process switching and input polling into a single 
counter that is decremented and tested for each bytecode executed. Al­
though we did not measure this optimization by itself, we did duplicate 
the code for the directly executed primitives so they could be executed 
in-line. Open coding minimizes the number of subroutine calls; th~ most 
common bytecodes and primitives use none. We timed bytecode 
decoding for both BS and a by-the-book implementation. As Table 11.7 
shows, fast dispatching is critical-BS would be 2.5 times slower with­
out it. 

Table 11.7 Bytecode Dispatching 

Measurement By-the-book BS By-the-book/BS 

time to dispatch one 
bytecode 124,us 10,us 12 
mean time per bytecode 207,us 83µs 2.5 
% of time spent dispatching 60% 12% 5 

BitBlt10 is the workhorse of the Smalltalk-80 graphics system. It per­
forms all bitmap manipulation and text composition. The large amount 
of computation for this operation makes it a prime target for optimiza­
tion. BS uses an external display, and must pay communication costs 
for bitmaps as well as the computation costs. 

We found three techniques to cut communication costs to our external 
display: fill recognition, delayed output, and reordered output. 

□ Fill Recognition The bulk of the computation on bitmaps fills a 
rectangular area with all ones or all zeroes11 • These area fill operations 
involve 21 times more bits than other, more complex copying opera­
tions. BS determines which invocations of BitBlt merely fill areas and 
sends rectangle fill commands to the display for them. (BitBlt itself is 
optimized for this case with special-purpose routines.) 

j 



Measuring the 
BitBlt Optimization 

197 
BitBlt 

D Delayed Output Second, borrowing an idea from an HP version of 
Smalltalk12

, when displaying text, our output routine does not send in­
dividual character-sized blocks of pixels until the completion of an invo­
cation of the text composition primitive, scanCharacters. At that point 
BS sends a complete word-sized block. 

D Reordered Output Third, when sending a bitmap to the display de­
vice, the middle goes separately from the left and right edges. Since the 
middle is an integral number of bytes, no shifting is needed to align the 
pixels for the display device. Each row in the middle of the bitmap is 
sent as bytes, not bits. 

The only display optimization that can be easily compared to the speci­
fication in the book is the special purpose code for area fill. We meas­
ured the time to fill a 1000 by 1000 bitmap with the slow, general code, 
and the time to fill the same bitmap with the fast code for zero and one 
fill. The data in13 supplied the proportion of work done by BitBlt (num­
ber of bits) that could be done with the special-purpose fast code. A 
weighted average of the times then yields the mean time to fill a 1000 
by 1000 bitmap. Profile data supplied the midpoint proportion of total 
time spent per bytecode on BitBlt. To derive the time spent in BitBlt per 
bytecode for BS, we multiplied the time per bytecode by this percent­
age. We obtained the BitBlt time per bytecode of the unoptimized ver­
sion by multiplying this time by the ratio of the unoptimized time to fill 
a megabit to the BS time to fill a megabit. Table 11.8 shows the results 
of this calculation. We conclude that this optimization is important for 
sessions that involve graphics and text composition, it doubled the 
speed of the interpreter. 

Table 11.8 BitBlt Area Fill Optimization 

Measurement By-the-book BS By-the-book/BS 

time to fill 1000 x 1000 
zeroes 2100ms 92ms 23 

time to fill 1000 x 1000 
ones 2100ms 97ms 22 

time to fill 1000 x 1000 
mixed bits 2100ms 2100ms 1 

ratio of zero/ one fill to 
mixed bits 21 21 1 

avg. time per lM bits 2100ms 180ms 12 
% time copying 0-57% 0-10% 1-5.7 
copybits time per 

bytecode 0-IO0µs 0-8.3µs 1-12 
Mean time per bytecode 75µs-175µs 83µs 1-2.1 



198 
Berkeley Smalltalk: Who Knows Where the Time Goes? 

Allocation and 
Freeing 

Unix includes a library package for allocating and freeing areas of 
memory14, but it might be too general to be fast enough for a 
Smalltalk-80 system. The proliferation of dynamic objects in a 
Smalltalk-80 environment strains conventional memory allocators. In 
particular, every message send and return pair results in allocating and 
freeing a context object. Many Points are created and discarded in the 
graphics routines. The popularity of these two classes is shown in Table 
11.9, the percentage of allocation frequency by size based on measure­
ments15. 

Table 11.9 Sizes of Frequently Allocated Objects 

Size Allocation Frequency Comments 

18 84% size of small context 
2 9% size of point object 
28 1 % size of large context 
other 6% 

BS exploits this pattern with an algorithm outlined in the specification16. 
We observed that when a small object such as a context is freed, the 
probability of an allocation request for an object of the same size in the 
near future is high. The obvious strategy then is to hold onto the space 
and OT entry for the freed object, and to recycle it for the expected al­
location. Although the specification defines a small object as one with 
20 or fewer fields, we extended it to 40 to cover large contexts as 
suggested by Peter Deutsch. For each size of small object (0-40), BS 
maintains a pool of free objects on a linked list. Thus BS can allocate a 
small object by removing one from the appropriate list, setting its class 
and reference count, and nilling out the object's fields. If a pool runs 
dry, the Unix storage allocator is invoked to obtain a chunk of memory 
10 times the desired size. BS then divides the chunk into 10 free objects, 
and tosses them into the pool. If too many objects end up in the free 
pools, it is possible to run out of available OT slots. When this happens, 
OT entries must be released from the free objects. The memory space 
for large objects is obtained from the Unix allocator. 

We measured the cost of an allocation with a test program that re­
peatedly allocated and freed 100 context-sized objects with a LIFO disci­
pline. Both the Unix allocator and the BS allocator were measured. It 
will be useful for the analysis to trichotomize sends: 

1. We call sends to methods that simply return self or an instance 
variable short-circuit sends. The method header names the field to 
be returned. 



Object Table 
Indirection 

199 
Object Table Indirection 

2. Other sends result in the invocation of runtime interpreter sub­
routines. These are the primitives. 

3. The longest sends activate a new context and transfer control to 
the target method. We call these full sends. 

The frequency of full sends provided the context allocation frequency, 
and the total allocation frequency was obtained by dividing the number 
of contexts allocated per bytecode by the fraction of context allocations. 
The allocate, free, and nilling out time is just the product of the alloca­
tions per bytecode and the time per allocation. Table 11.10 shows this 
calculation. Our object allocation strategy bought only a modest im­
provement in overall performance. The Unix allocator is well-tuned, 
and the time allocating and freeing objects is amortized over the time 
spent using the objects. 

Table 11.10 Cost to Allocate and Free Object 

Measurement Unix allocator BS allocator Unix/BS 

time to allocate and free 130µs 21µs 6.2 
time to nil out object 19µs 19µs 1.0 
Total 149µs 40µs 3.7 
allocations per bytecode .13 .13 1 
alloc/free/nil time per bytecode 19µs 5.2µs 3.7 
mean time per bytecode 97µs 83µs 1.2 
Fraction of time spent 

allocating 20% 6% 3.2 

There are more tasks involved in storage management than just allo­
cating and freeing, but the large address space and physical memory of 
the VAX reduce the importance of most of them. BS usually needs 
about half a megabyte of physical memory, and fits comfortably on our 
4 megabyte time-shared VAX. In particular, we have not observed any 
thrashing, and thus have ignored dynamic compaction. Garbage collec­
tion flashes by so quickly on a 32-bit computer with plentiful memory 
that it can be hidden in the time needed to save an image on disk. 

To read or write a field of an object, the Smalltalk-80 virtual machine 
must first determine the object's memory address from the Object Ta­
ble. We optimized this object table indirection just as we optimized ref­
erence counting. Addresses, like counts, are stored in a separate array, 



200 
Berkeley Smalltalk: Who Knows Where the Time Goes? 

and the same Oop format that facilitates indexing the reference array 
speeds accesses to the object address array. We used test programs to 
time the cost of an indirection. Indirection is so simple that the array 
access costs dominates; the data structures in the book would double 
the time for each object table indirection on a VAX. 

Close scrutiny of the book and the BS source code yielded the num­
ber of indirections. BS avoids object table indirections by saving memo­
ry addresses of some objects in registers. In particular, it keeps the 
current receiver, active and home contexts, current method, top of 
stack, and next bytecode addresses in registers or local variables. Those 
primitives and bytecodes that do multiword transfers or read-modify­
write operations also keep addresses in registers. Scattering addresses 
around in registers complicates compaction, but except for garbage col­
lection, BS does not compact. Tables 11.11 and 11.12 enumerate the in­
directions performed for a full send and a return, respectively. The 
need to recursively free the old context increases the number of indirec­
tions for a by-the-book return. 

Table 11.11 Object Table Indirections for Full Sends 

Operation By-the-book BS 

fetch send 1 0 
copy receiver and argument 4 0 
initialize new context 5 0 
store old IP 1 0 
store old SP 1 0 
store new IP 1 0 
store new SP 1 0 
get address of new context 0 1 
get address of new method 0 2 
get address of new receiver 0 1 
Total 14 4 

Computing the indirections for the other operations was straightfor­
ward, except for the nonarithmetic primitives, where we cheated by as­
suming three indirections each. (These are only 6% of the bytecodes 
executed.) Table 11.13 gives the number of indirections required for 
each type of bytecode. A by-the-book implementation performs an indi­
rection for every bytecode simply to fetch it; caching this address of the 
next bytecode is every implementor's favorite optimization. The optimi­
zations are successful, they remove three-quarters of the indirections. 



201 
Object Table Indirection 

Table I 1.12 Object Table Indirections for Returns 

Operation By-the-book BS 

fetch bytecode 1 0 
pop result 1 0 
push result 1 0 
store old IP 1 0 

store old SP 1 0 
load new SP 1 0 
load new IP 1 0 

load new method register 1 0 
load new receiver register 1 0 
load active context 1 0 
get address of new method 0 1 
get address of new context 0 1 
get address of new receiver 0 1 
free context 2 2 
recursive free of context 18 0 
Total 30 5 

Table 11.13 Object Table Indirections per Bytecode 

Instruction Type By-the-book BS By-the-book/BS 

push 3 0 (infinite) 
full sends 14 4 3.5 
arith prim 4 0 (infinite) 
special prim 4 1.5 2.6 
primitives 5 3 1.7 
short circuit sends 3 0 (infinite) 
return stack top 28 5 5.6 
other returns 30 5 6.0 
pop and store 3 0 (infinite) 
pop 2 0 (infinite) 
jump conditional 2 0 (infinite) 
jump unconditional 1 0 (infinite) 
store 3 0 (infinite) 
Mean indirections per 
bytecode 7.0 1.2 5.8 

Finally, to obtain the time spent on object table indirection per 
bytecode, we multiplied by the number of indirections per bytecode. Ta­
ble 11.14 shows these results. These optimizations reduce indirection 



202 
Berkeley Smalltalk: Who Knows Where the Time Goes? 

Method 
Lookup 

from a major cost of the interpreter to merely 4% of the total cost. 
There have been proposals to use 32-bit Oops and eliminate the object 
table. Table 11.14 implies that eliminating the speed penalty of the in­
direction is a poor justification for abolishing the object table. There 
may of course, be other, more compelling reasons. 

Table 11.14 Cost of Object Table Indirection 

Measurement By-the-book BS By-the-book/BS 

mean indirections per bytecode 7.0 1.2 5.8 
time per indirection 4.2µs 2.0µs 1.2 
mean indirection time per 
bytecode 29µs 2.4µs 12 
mean time per bytecode llOµs 83µs 1.3 
Fraction spent indirecting 26% 3% 9.0 

Runtime type checking is a fundamental innovation of the Smalltalk-SO 
language. Every message send (procedure call) looks up the message's 
selector in the method dictionaries for the receiver's class (and 
superclasses). The Smalltalk-SO book recommends reducing the time 
spent for lookups with a cache. BS incorporates such a method lookup 
cache with 1024 entries. The cache slot is computed from the low-order 
10 bits of the result of performing an exclusive-or (the book uses and) of 
the receiver's class and the selector. Conroy and Pelegri (see Chapter 
13) have conducted a thorough study of Smalltalk-SO method cache be­
havior; Table 11.15 merely summarizes their findings for BS. The 
wisdom in the book is borne out, as BS would be 40% slower without 
the cache. 

Table 11.15 Method Caching 

Without With 
Measurement Cache Cache 

measured hit time 4.4µs 
measured miss time 187µs 284µ,s 
measured hit% 0% 94% 
mean lookup time 187µs 20µs 
mean lookups per bytecode .19 .19 
mean lookup time per bytecode 36µs 3.8µs 
mean time per bytecode 115µs 83µs 
Fraction of time for lookup 31% 5% 

Ratio 

9.4 
1.0 
9.4 
1.4 
6.2 



Other 
Optimizations 

Other 
Interpreter 
Activities 

Comparative 
Execution 
Times 

203 
Comparative Execution Times 

Many other optimizations exist in BS. Standard programming tricks 
speed recursive freeing and garbage collection for certain popular clas­
ses. Subroutine calls and other overhead are trimmed in sends and re­
turns. Floating point arithmetic is performed in hardware. Most of 
these optimizations are easily discovered and are unrelated to the 
distinguishing characteristics of the Smalltalk-SO system. 

As Table 11.1 shows, the activities we measured account for a total of 
40µs per bytecode in BS. BS has been instrumented to measure the 
bytecodes executed per CPU-second; this is about 12000 for typical in­
teractive sessions of browsing, editing, compiling, and so forth. Thus, BS 
spends 1/12000 second or 83µs per bytecode. That leaves 43µs unac­
counted for. This represents the "useful work", in the sense that it con­
tains no easy targets for optimization. It includes the execution of 
bytecodes and primitives. 

Although we have optimized these activities in the obvious ways (e.g. 
open coding), these are the least interesting optimizations. We therefore 
made the conservative assumption that the unoptimized interpreter 
would be no slower. 

How close is BS to an optimal Smalltalk-80 implementation? The 
fastest Smalltalk-80 implementation is Deutsch's Dorado interpreter. 
The Dorado is a powerful personal computer17 with a microcycle time 
three times faster than the VAX-11/780. The Dolphin is a more modest 
machine; it is considered to be adequate but not comfortable. We decid­
ed to examine two test cases: our typical interactive session and Baden's 
Towers of Hanoi benchmark18• Peter Deutsch measured the perfor­
mance of the Xerox implementations on the Hanoi benchmark. The 
numbers for the Xerox implementations for the typical interactive ses­
sion reflect the best estimates of the Software Concepts Group. The exe­
cution rate for BS was measured as described above. Table 11.16 

Table 11.16 Relative Performance (kilobytecodes per second) 

Case 

Interactive use 
Towers of Hanoi 

BS 

12 
23 

Dolphin 

30 
33 

Dorado 

400 
420 



204 
Berkeley Smalltalk: Who Knows Where the Time Goes? 

Conclusions 

Acknowledg­
ments 

compares BS execution speed for the two test cases. Although BS per­
forms well for a conventional machine, it suffers in comparison to the 
Xerox personal computers. 

We have several minor reservations about the results in this paper. 
First, our methods yielded only rough approximations. We ignored the 
effects of the VAX hardware cache hit rate on the running times of our 
test programs. Bytecode frequencies can be expected to vary. Second, 
major optimizations often have synergistic effects on code complexity 
and execution time. Finally, we did not explore some important areas 
(e.g. context changing overhead). The intended value of this work lies in 
ranking the different optimizable areas and in quantifying the benefits 
of optimization. For instance, it clearly shows that reference counting 
remains a more promising target than allocation and freeing. These 
measurements and calculations do however, reinforce the need to opti­
mize carefully and tune implementations of Smalltalk-80 virtual ma­
chines. When our optimizations in the measured areas were combined, 
they resulted in a fourfold improvement in performance. 

We would like to thank the Software Concepts Group for creating the 
Smalltalk-80 system and bringing it out into the light of day. In partic­
ular, we owe our gratitude to Peter Deutsch who has offered both 
quintessential and patient technical guidance, and to Adele Goldberg 
who issued our entry visa onto the "Isle of Smalltalk". We thank the 
students here at Berkeley involved with the Smalltalk project: Scott Ba­
den, Ricki Blau, Dan Conde, Tom Conroy, Dan Halbert, Ed Pelegri, 
Richard Probst, and Steve Sargent have contributed hard work, data, 
and insight to the task of understanding where the time goes. We owe a 
debt of thanks to Jim Stinger, Ted Laliottis, Bob Ballance, and the rest 
of the Smalltalk-80 group at HP Labs, who by permitting us to study 
their unfinished implementation, furnished us with a working model to 
study. Paul McCullough provided thoughtful and constructive com­
ments to help smooth out the rough spots in this paper. 

This effort was funded in part by Apple Computer and the State of 
California through the Microelectronics Innovation and Computer Re­
search Opportunities program, and sponsored by Defense Advance Re­
search Projects Agency, Department of Defense, Order No. 3803, 

j 



References 

205 
References 

monitored by Naval Electronic System c N ommand under Contract o. 
N00039-81-K-0251. 

1. Goldberg, Adele, and Robson, David, Smalltalk-BO: The Language 
and Its Implementation, Addison-Wesley, Reading, Mass., 1983. 

2. Ingalls, :Qaniel H. H., "The Smalltalk Graphics Kernel", Byte vol. 
6, no. 8, pp. 168-194, Aug. 1981. 

3. Ritchie, Dennis M., Johnson, Stephen C., Lesk, Michael E., and 
Kernigham, Brian W., "UNIX Time-Sharing System: The C Pro­
gramming Language", Bell System Technical Journal vol. 57, no. 
6, pp. 1991-2019, 1978. 

4. Conroy, Tom, and Pelegri-Llopart, Eduardo, "CPU Time Profile 
of Long Interactive BS Session", Private Communication, May 
1982. 

5. Baden, Scott, "High Performance Storage Reclamation in an Ob­
ject-Based Memory System", Master's Report, Computer Science 
Div., Dept. of E.E.C.S., Univ. of California, Berkeley, CA, June 9, 
1982. 

6. Ibid. 

7. Lampson, Butler, "The Dorado: A High-Performance Personal 
Computer", Xerox PARC Technical Report CSL-81-1, Jan. 1981. 

8. Deutsch, L. Peter, Berkeley Computer Systems Seminar, Fall 
1981. 

9. See reference 4. 

10. See reference 2. 

11. Cole, Clement T., Pelegri-Llopart, Eduardo, Ungar, David M., and 
Wayman, Russel J., ((Limits to Speed: A Case Study of a Smalltalk 
Implementation Under VM/UNIX", Class Report CS-292R, Com­
puter Science Div., Dept. of E.E.C.S., Univ. of California, Berkeley, 
CA, Fall 1981. 

12. Stinger, Jim, et. al., Private Communications, 1981. 

13. See reference 11. 

14. Joy, William N., and Babaoglu, Ozalp, UNIX Programmers Manu­
al, Computer Science Div., Dept. of E.E.C.S., Univ. of California, 
Berkeley, CA, Nov. 7, 1979. 



206 
Berkele y Smalltalk: Who Knows Wh ere the T" ime Goes? 

re erence 5. 15. See f 

16. See f re erence 1 

17. See f . re erence 7. 

re erence 5 18. See f 

l 



Introduction 

Approach 

The Analysis of the 
Smalltalk-SO System at 
Hewlett-Packard* 

Joseph R. Falcone 
Computer Research Center 
Hewlett-Packard Laboratories 
Palo Alto, California 

The implementation of Smalltalk at Hewlett-Packard Laboratories was 
the principal component of an investigation into personal computing 
environments. As we developed the implementation, we continually an­
alyzed its performance to achieve a better understanding of the system. 
This program began in earnest in March of 1981 when we embarked on 
the first implementation. By November, the entire project was winding 
down and we placed more emphasis on performance analysis to com­
plete it before the end. When the project closed in February of 1982, we 
had developed a vast body of performance data, collected by both pro­
grams and people. Since then only the performance analysis has contin­
ued (as an unofficial part-time activity). The HP Smalltalk project is 
described in more detail in Chapter 6. 

The Smalltalk-80 system is difficult to measure, given the variability of 
user interaction which is fundamental to it. Repeating the identical test 
twice was nearly impossible so we designated a general collection of 

*The views expressed herein are those of the author, and do not necessarily represent the 
position of Hewlett-Packard or any commitment to products or services. Copyright © 
Joseph R. Falcone, 1982. All rights reserved. 

207 

i 



208 
The Analysis of the Smalltalk-BO System at Hewlett-Packard 

Bytecode 
Measurements 

tasks as the basic test, touching all of the capabilities of the system at 
least once according to our view of personal computer usage patterns. 
During this test, the browser, compiler, decompiler, and window system 
are exercised in every conceivable way. With full performance monitor­
ing, the test covers millions of bytecodes and takes over six hours. Our 
test should not be confused with the testStandardTests benchmarks. 
Early investigative work on our system used the testStandardTests 
benchmarks until we noticed that the results bore little relation to sta­
tistics gathered from normal usage. Hence we felt that it was not useful 
as a personal computing performance test. 

In the following sections, we present measurements of the system 
compiled from many basic test experiments. The measurements cover a 
wide variety of system functions, from bytecode frequencies to memory 
access. These figures are probably accurate to within 10% for different 
mixes of Smalltalk-80 code. We conducted these tests on a pre-release 
version of the Smalltalk-80 system. 

Table 12.1 Smalltalk-SO Virtual Machine Bytecode Frequency 

SVM Bytecode Static% Dynamic% Cumulative 

push temporary variable 0 6.25% 6.48% 6.48% 
push self (receiver) 6.28% 5.73% 12.21% 
return stack top from message 3.22% 4.94% 17.15% 
push temporary variable 1 3.39% 4.74% 21.89% 
send+ 1.19% 3.65% 25.54% 
push temporary variable 2 2.12% 3.46% 29.00% 
push constant 1 2.61% 3.26% 32.26% 
send literal 0 with no args 1.66% 2.57% 34.83% 
pop stack top 7.03% 2.42% 37.25% 
send at: 0.77% 2.06% 39.31% 
jump on false 0*256 + next 0.86% 1.93% 41.24% 
push receiver variable 1 0.97% 1.72% 42.96% 
push receiver variable 0 0.97% 1.70% 44.66% 

send== 0.90% 1.62% 46.28% 
send- 0.83% 1.61% 47.89% 
extended pop and store (all) 1.09% 1.51% 49.40% 
push constant nil 1.33% 1.48% 50.88% 
return self (receiver) 2.55% 1.43% 52.31% 
send < = 0.18% 1.32% 53.63% 



209 
Bytecode Measurements 

Table 12.1 (Cont.) 

SVM Bytecode Static% Dynamic% Cumulative 

extended push (all) 0.68% 1.32% 54.95% 
jump -1 *256 + next 0.27% 1.29% 56.24% 
pop and store temporary 1 0.87% 1.27% 57.51% 
push constant 0 1.87% 1.26% 58.77% 
push temporary variable 3 1.27% 1.18% 59.95% 
extended store (all) 0.81% 1.17% 61.12% 
pop and branch on false 2 0.76% 1.15% 62.27% 
push temporary variable 6 0.42% 1.10% 63.37% 
send literal 1 with no args 1.21% 1.05% 64.42% 
push receiver variable 14 0.20% 1.05% 65.47% 
pop and store temporary 2 0.71% 1.03% 66.50% 
send> 0.32% 0.96% 67.46% 
send= 0.91% 0.94% 68.40% 
push temporary variable 4 0.82% 0.88% 69.28% 
send literal 0 with 1 arg 1.63% 0.85% 70.13% 
all others (213) 41.91% 29.87% 100.00% 

Table 12.1 lists the static and dynamic frequencies of the Smalltalk-SO 
virtual machine instruction set. This distribution is remarkably uni­
form. Most dynamic instruction frequencies show at least one instruc­
tion at over 10%1, but the highest in the Smalltalk-BO virtual machine 
is only 6.48% for pushing a temporary onto the stack, usually 
performed to work on an argument passed through the temporary vari­
able area. However, as the following section will show, there is some 
regularity by category of bytecodes. The top 17 bytecodes consume more 
than 50% of execution and the top 34 are over 70% out of 247 designat­
ed bytecodes. 

Pop stack top had the highest static frequency even though it was 
ninth in execution. The top three bytecodes in static frequency comprise 
one-fifth of all generated code. After that there is a steep drop and no 
bytecode rises above 3.39%. The less popular instructions tend to have 
higher static frequencies. Outside of the top 30, the bytecodes have a 
static/ dynamic frequency ratio of 4 to 3. 

There are 9 unused bytecodes in the Smalltalk-BO virtual machine 
instruction set, and the system never executed 18 other bytecodes in 
our tests. Twelve of these instructions were long jumps, and all were 
the longer varieties. The current Smalltalk compiler does not generate 
the pop and jump on true instructions. This is apparently to simplify 
the task of the decompiler. The other six untouched instructions were 
pushes and sends concerned with somewhat rare circumstances. 

r 

1! 



210 
The Analysis of the Smalltalk-SO System at Hewlett-Packard 

Send Bytecodes 

Table 12.2 Bytecode Frequency by Category 

Bytecode Category Static% Dynamic% Cumulative 

stack push 44.01% 44.37% 44.37% 
message send 29.00% 28.63% 73.00% 
stack pop and store 13.32% 10.80% 83.80% 
branch and jump 6.50% 8.59% 92.39% 
return 7.17% 7.61% 100.00% 

Table 12.2 groups the bytecodes into five categories for static and dy­
namic frequencies. The importance of message sends in Smalltalk is ev­
ident, but this can be misleading. The percentage of sends is so large 
because it includes both procedure calls and arithmetic and logical op­
erations (note the absence of a computational instruction category). 
Also, because many of the sends are special or primitive operations 
which do not result in the execution of Smalltalk code, the percentage 
of return instructions is much lower. 

Stack operations account for 55.17% of instructions executed, and 
71.37% are instructions other than sends. The frequency of stack push 
and pop instructions points out the necessity of having an optimized in­
dependent path to the stack frame of the active context. 

Although the message send is perhaps the most important part of 
Smalltalk, it comprises only about one-quarter of execution time. More 
importantly, nearly half are special sends which do not require a diction­
ary lookup for their selector. These special sends perform functions 
which are typically in the instruction set of a processor, such as arith­
metic and logical operations for small integers. 

Approximately every third instruction is a message send and sends 
requiring dictionary lookups occur every 6.67 bytecodes. Of the sends 
needing dictionary searches, 36.64% invoked primitives, and the rest 
resulted in the execution of a Smalltalk method which, along with pro­
cess switches, accounted for a context switch every 6.50 bytecodes. 

Of the special sends, 78.92% are arithmetic and logical operations. 
The remaining special sends fell further into the minority by a change 
in the third test image release which required 11 of the 16 cases to look 
up the selector in a special messages array rather than invoking a 
primitive directly. As a result, some of these special sends actually re­
sult in the execution of Smalltalk code if the selector in the array does 
not bind to a primitive for the receiver in question. Of course this al­
lows one to dynamically modify system behavior or to change this set of 
primitives if future requirements should dictate. These other special 
sends include high level operations such as instantiation, indexing, 
length and class query, block evaluation, and point coordinates. 

I 
l 



211 
Bytecode Measurements 

Table 12.3 Frequency of Message Sends by Flavor 

Flavor of Send Percentage Cumulative Percentage 

primitive 66.86% 66.86% 
method 21.42% 88.28% 
pseudo-primitive 11.72% 100.00% 

There are three flavors of message sends: 

Primitive 

Method 

Pseudo-primitive 

Those which invoke C or machine code routines. 

Those which activate Smalltalk code. 

Those which return directly after performing an operation 

encoded in the header of the compiled method. 

The method sends are the best known of those in Table 12.3. At about 
one-fifth of all sends executed, this indicates the amount of optimization 
possible through the proper choice of the set of primitives. The pseudo­
primitives, which offer an inexpensive way to access instance fields, ex­
ecute half as frequently as traditional method sends. In all, 78.58% of 
sends do not immediately result in the execution of Smalltalk code. This 
does not take into account those primitives which fail and then activate 
Smalltalk backup code (discussed later). 

Table 12.4 Frequency of Primitive Method Invocations by Type 

Type of Primitive 

arithmetic 
selector 
common 

Percentage 

56.30% 
28.66% 
15.04% 

Cumulative Percentage 

56.30% 
84.96% 

100.00% 

Primitive invocations also break down into three categories: 

Arithmetic 

Common 

Selector 

Arithmetic and logical operations invoked with no lookup. 

Operations invoked without lookup in the special messages 

array. 

Those sends where selector lookup associated a primitive 

with the method. 

As one might expect, the arithmetic primitive invocations dominate the 
statistics in Table 12.4. Overall, 71.34% of primitive invocations are di­
rect from bytecode dispatch and require no special handling. 



212 
The Analysis of the Smalltalk-80 System at Hewlett-Packard 

Table 12.5 Failures of Primitive Methods by Type 

Type of Primitive 

arithmetic 
selector 
common 

Percentage 

81.36% 
15.93% 

2.71% 

Cumulative Percentage 

81.36% 
97.29% 

100.00% 

Several interesting figures arise from Table 12.5 which shows primitive 
failures by type. Only 4.49% of primitive operations fail, and most of 
these are the result of small integer arithmetic range violations. In fact, 
arithmetic primitives are 2.6 times more likely to fail than selector 
primitives and 8 times more likely than common primitives. The true 
figure for arithmetic failures is probably even higher because we did 
not implement certain primitives in the selector category (e.g., large in­
teger arithmetic) and an invocation of one of them leads directly to a 
primitive failure. Still the failure rate for arithmetic primitives is only 
6.49%, a testament to the utility of signed 15-bit arithmetic. 

Table 12.6 Frequency of Message Sends by Flavor 
(adjusted for primitive failures) 

Flavor of Send 

successful primitive 
method and primitive backup 
pseudo-primitive 

Percentage 

63.86% 
24.42% 
11.72% 

Cumulative Percentage 

63.86% 
88.28% 

100.00% 

Comparing Table 12.6 with Table 12.3, we see that primitive failures 
account for only a three percent increase in the number of Smalltalk 
methods activated. This is a very small price to pay for significantly 
better performance than equivalent Smalltalk routines. 

Table 12. 7 Send Bytecode Frequency by Category 

Send Category Static % Dynamic% Cumulative 

special arithmetic 19.00% 37.65% 37.65% 
selector send 53.81% 32.71% 70.36% 
common send 19.74% 27.21% 97.57% 
extended selector 7.45% 2.43% 100.00% 

The SVM send instructions fall into the four categories listed in Table 
12.7. 



l 

213 
Bytecode Measurements 

1. Special Arithmetic. Arithmetic and logical operations invoked 
with no selector lookup. Their dynamic frequency is twice the stat­
ic, indicating the popularity of these operations. Together with the 
common send instructions, these dominate dynamic frequency at 
over 64%. 

2. Common Send. Special operations which either execute directly 
(five cases) or indirectly through the lookup of a selector in the 
special messages array. Although these bytecodes have a higher 
static frequency than special arithmetic sends, they execute 10% 
less of the time. 

3. Selector Send. An instruction specifying where the selector is 
found in the literal frame of the compiled method. These sends 
can access the first 16 literal selectors in the compiled method, 
and they take 0, 1, or 2 arguments. The static frequency concurs 
with our flavor analysis as selector send bytecodes constitute more 
than 50% of all sends in methods, but less than one-third of exe­
cution. 

4. Extended Selector. These are 2- and 3-byte extended versions of 
the regular selector sends for greater literal access range and/ or 
larger numbers of arguments. They come in two flavors: one is an 
ordinary message send to receiver; the other starts message look­
up in the superclass of the receiver. The 2-byte version can access 
the first 16 selectors with O to 7 arguments. The 3-byte version al­
locates a byte to the selector index and the argument count, with 
a range of O to 255 for each. These are rarely executed so their 
static frequency is triple the execution rate. 

Table 12.8 Send Bytecode Frequency 

Send Bytecode Static % Dynamic% Cumulative 

+ 4.10% 12.74% 12.74% 
selector 0, no args 5.84% 9.01% 21.75% 
at: 2.67% 7.18% 28.93% 

3.11% 5.66% 34.59% 
2.87% 5.64% 40.23% 

<= 0.64% 4.61% 44.84% 
selector 1, no args 4.16% 3.66% 48.50% 
> 1.09% 3.38% 51.88% 

3.13% 3.28% 55.16% 
selector 0, 1 arg 5.61% 2.97% 58.13% 
X 0.56% 2.73% 60.86% 
y 0.45% 2.71% 63.57% 
selector 0, 2 args 1.93% 2.42% 65.99% 



214 
The Analysis of the Smalltalk-80 System at Hewlett-Packard 

Table 12.8 (Cont.) 

Send Bytecode Static% Dynamic% Cumulative 

selector 1, 1 arg 3.10% 2.17% 68.16% 
@ 2.11% 2.07% 70.23% 
all others (66) 58.63% 29.77% 100.00% 

Table 12.8 is a closer look at the send bytecodes. Addition ( +) is the 
most popular message sent, executing at triple its static frequency. 
However, a selector send follows closely revealing the importance of the 
more flexible versions in spite of all the special cases. The next two 
entries in the table are primitive sends for array access (at:) and object 
equivalence ( = = ). The three other primitive sends in the table all deal 
with points-creation and access. The graphical nature of the 
Smalltalk-80 user interface increases the use of the coordinate point so 
that messages for point handling account for over 7.5% of all messages 
sent. Overall, the selector sends have much higher static frequencies 
than the rest. 

Table 12.9 Special Arithmetic Send Bytecode Frequency 

Bytecode Static% Dynamic% Cumulative 

+ 21.56% 33.85% 33.85% 
15.11% 14.96% 48.81% 

<= 3.35% 12.26% 61.07% 
> 5.74% 8.96% 70.03% 

16.47% 8.71% 78.74% 
@ 11.12% 5.50% 84.24% 
< 4.92% 4.53% 88.77% 
bitAnd: 2.01% 2.62% 91.39% 
bitShift: 1.96% 2.42% 93.81% 
>= 1.94% 1.79% 95.60% 

\\ 1.53% 1.57% 97.17% 
II 3.35% 1.06% 98.23% 

6.24% 0.86% 99.09% 
,..._,= 2.68% 0.63% 99.72% 
bitOr: 0.29% 0.26% 99.98% 
I 1.75% 0.02% 100.00% 

The statistics for special arithmetic sends in Table 12.9 are comparable 
to those for the computational instructions of conventional languages 
and architectures2• Additions occur over one-third of the time, and to-



215 
Bytecode Measurements 

gether with subtractions, comprise nearly half of arithmetic send execu­
tion. The sixth entry is a bit unusual-an instruction for creating a 
point from the receiver as the X value and the argument as the Y val­
ue. Multiplication and division account for only about 3.5% of special 
arithmetic sends. The static and dynamic frequencies show interesting 
differences. The execution frequency of < = is four times the static, 
while the opposite is true for @ and = where the static frequencies are 
twice the dynamic. The multiplication bytecode is fifth in static fre­
quency with a rate eight times its execution percentage. 

Table 12.10 Common Send Bytecode Frequency 

Bytecode Static% Dynamic% Cumulative 

at: 13.51% 26.41% 26.41% 
* 15.77% 20.81% 47.22% 

X 2.85% 10.02% 57.24% 
y 2.26% 9.95% 67.19% 
value:* 2.09% 6.86% 74.05% 
size 9.71% 4.91% 78.96% 
blockCopy: * 19.29% 4.75% 83.71% 
new 10.59% 4.57% 88.28% 
at:put: 7.18% 3.38% 91.66% 
class* 2.90% 3.05% 94.71% 
nextPut: 4.95% 1.87% 96.58% 
value* 2.67% 1.48% 98.06% 
new: 4.40% 1.47% 99.53% 
next 1.77% 0.47% 100.00% 
atEnd 0.00% 0.00% 100.00% 

Table 12.10 lists the frequencies for common send bytecodes. The selec­
tors marked by an asterisk in the table are those messages which do 
not require any dictionary lookup before invoking a primitive. Those 
without the asterisk get their selectors from a special messages array 
and then proceed via the normal send process. Array access (at:) and ob­
ject equivalence ( = =) constitute nearly one half of common send exe­
cution. Although array element loads (at:) are eight times more 
frequent than array element stores (at:put:), the opposite is true for 
streams. Writes on streams (nextPut:) are four times more frequent than 
reads (next). Nearly all of the common send instructions show signifi­
cant differences between static and dynamic frequencies, ranging as 
high as a 4 to 1 ratio in both directions. 



216 
The Analysis of the Smalltalk-SO System at Hewlett-Packard 

Table 12.11 Primitive Method Invocation Frequency 
(excluding arithmetic primitives) 

Class & Primitive Percentage Cumulative Percentage 

< Object > at: 25.89% 25.89% 
<Object> = = 19.91% 45.80% 
< BlockContext > value 8.10% 53.90% 
< Object> size 7.78% 61.68% 
<String> at: 5.76% 67.44% 
<Object> at:put: 5.75% 73.19% 
< BlockContext > blockCopy: 4.38% 77.57% 
< Behavior > new 4.25% 81.82% 
<Object> class 2.81% 84.63% 
< BitBlt > copy Bits 2.47% 87.10% 
all others (31) 12.90% 100.00% 

The 10 primitive methods in Table 12.11 total nearly 90% of all invoca­
tions. Array, string, and stream access account for nearly 40% of these. 
With a few exceptions, the leading non-arithmetic primitives perform 
very simple functions. The most notable exception is copyBits, a very 
complex primitive made even more so because of our external graphics 
display system. Two of the primitives manage block execution and ac­
count for over 12% by themselves. 

Table 12.12 Superclass Chain Traversals by Length 

Length of Traversal Percentage Cumulative Percentage 

0 (receiver) 56.20% 56.20% 
1 (superclass) 17.36% 73.56% 
2 6.72% 80.28% 
3 6.18% 86.46% 
4 5.33% 91.79% 
5 4.32% 96.11% 
7 2.11% 98.22% 
6 1.67% 99.89% 
8, 9 & 10 0.11% 100.00% 

Table 12.12 gives the number of links traversed to look up messages in 
the dictionaries of superclasses. The zero category corresponds to mes­
sages understood by the class of their receiver and therefore no links 
are traversed. The average traversal distance is 1.18, but the majority 
of messages never go to the superclass. Nearly 14% search four or more 
dictionaries, thus skewing the figures in that direction. l 



Push and Pop 
Bytecodes 

217 
Bytecode Measurements 

Table 12.13 Message Dictionary Probes by Number 

Number of Probes Percentage Cumulative Percentage 

1 (direct hit) 61.16% 61.16% 
2 11.97% 73.13% 
4 4.71% 77.84% 
3 4.08% 81.92% 
5 2.54% 84.46% 
9 1.45% 85.91% 
8 1.41% 87.32% 
12 1.34% 88.66% 
23 1.28% 89.94% 
6 1.19% 91.13% 
all others (31) 8.87% 100.00% 

The statistics in Table 12.13 for message lookup are for method cache 
misses. Our method cache hit rate is 93% for a 509 element cache. 
There is an average of 3.89 probes into each message dictionary after a 
cache miss. Combined with the superclass chain traversals, each send 
missing the cache requires an average of 8.48 probes of message diction­
aries, searching the message dictionaries of the class and superclass of 
the receiver in the typical case. The appearance of figures over 10 in 
the table is the result of very long hash collision chains. If a message 
dictionary is nearly full this will happen, but it is more likely that the 
very simple hash function used by Smalltalk is causing many collisions. 

Table 12.14 Push Bytecode Frequency by Category 

Push Category Static % Dynamic% Cumulative 

temporary variable 35.45% 44.45% 44.45% 
special 33.95% 29.57% 74.02% 
receiver variable 11.30% 17.19% 91.21% 
extended (all) 1.54% 2.97% 94.18% 
literal variable 8.97% 2.96% 97.14% 
literal constant 8.79% 2.86% 100.00% 

Push instructions can access four different memory areas in the 
Smalltalk-80 execution environment: 

1. Temporary Variable. The area just above the stack in a method 
context is the temporary frame where the Smalltalk-80 language 
passes arguments and allocates local and temporary variables. 



r 218 
The Analysis of the Smalltalk-BO System at Hewlett-Packard 

2. Receiver Variable. The instance variables of the receiver of the 
message. 

3. Literal Variable. A variable accessed through a pointer to an asso­
ciation in the literal frame of a compiled method. 

4. Literal Constant. A constant value in the literal frame of a com-
piled method. 

Table 12.14 lists the frequencies of these plus the special push instruc­
tions for frequently used constants and environment values, such as self 
(the receiver of the current message). The extended category includes 
all four flavors of push instructions. The static frequencies for literal 
access are triple the execution rate, which is less than 6%. Literal con­
stant access is particularly low because of the push constant instruc­
tions for 2, 1, 0, - 1, false, true, and nil. These seven bytecodes alone 
constitute 15. 71 % of all pushes. 

The access ranges of push instructions vary. The standard temporary 
and receiver variable push instructions can access the first 16 entries, 
while the literal frame pushes have a range of 32. The extended push 
instructions can access l,lp to 64 entries. When this range is not enough, 
other tactics are necessary. For example, to access instance variable 
number 73 of the receiver, we can do the following: 

1. Push self [the Oop of the receiver] 

2. Push literal constant n [73] 

3. Send at: 

This takes two pushes and a primitive invocation, so one can appreciate 
the value of the extended push instructions. 

Table 12.15 Push Bytecode Frequency 

Push Bytecode Static% Dynamic% Cumulative 

temporary variable 0 14.19% 14.61% 14.61% 
self (receiver) 14.26% 12.92% 27.53% 
temporary variable 1 7.70% 10.70% 38.23% 
temporary variable 2 4.81% 7.79% 46.02% 
constant 1 5.92% 7.34% 53.36% 
receiver variable 1 2.20% 3.88% 57.24% 
receiver variable 0 2.19% 3.82% 61.06% 
constant nil 3.03% 3.33% 64.39% 
extended (all) 1.54% 2.96% 67.35% 
constant 0 4.24% 2.84% 70.19% 

I 



Push Bytecode 

temporary variable 3 
temporary variable 6 
receiver variable 14 
temporary variable 4 
receiver variable 2 
temporary variable 7 
temporary variable 5 
literal variable 2 
all others (85) 

Table 12.15 (Cont.) 

Static% 

2.89% 
0.95% 
0.46% 
1.87% 
1.75% 
0.59% 
1.40% 
2.10% 

27.91% 

Byt . 118 
ecode Measurom.:.. 

Dynamic% Cumulative 

2.67% 72.86% 
2.48% 75.34% 
2.35% 77.69% 
1.99% 79.68% 
1.65% 81.33% 
1.62% 82.95% 
1.49% 84.44% 
1.30% 85.74% 

14.26% 100.00% 

Pushes involving the receiver and the first three temporary slots ac­
count for nearly half of execution in Table 12.15. These top four entries 
correspond roughly to usage of the first four parameters or local vari­
ables in an ordinary language subroutine. After the special push of con­
stant 1, there is a steep drop in execution percentage. There is little 
disagreement between static and dynamic frequencies for these instruc­
tions. 

Table 12.16 Special Push Bytecode Frequency 

Special Push Bytecode Static% Dynamic% Cumulative 

self (receiver) 42.00% 43.70% 43.70% 
constant 1 17.45% 24.82% 68.52% 
constant nil 8.92% 11.26% 79.78% 
constant 0 12.50% 9.61% 89.39% 
constant 2 4.02% 3.98% 93.37% 
active context 7.59% 3.13% 96.50% 
constant false 3.11% 1.91% 98.41% 
constant true 1.97% 1.45% 99.86% 
constant -1 0.53% 0.09% 99.95% 
stack top 1.91% 0.05% 100.00% 

The special pushes offer a shortcut for popular push operations. When 
it determines a value to be constant, the compiler can use the special 
push instructions to avoid additional memory accesses and to conserve 
space in the literal frame where it usually puts constants. However, in 
some cases the special pushes are the only mechanism for reaching cer-



220 
The Analysis of the Smalltalk-SO System at Hewlett-Packard 

tain environment values, such as the receiver of the current message 
and the active context. In Table 12.16, push self accounts for over 40% 
of special push execution, and the top four comprise nearly 90%. Both 
push -1 and duplicate stack top have a combined static frequency of 
nearly 2.5% (0.83% overall), but execute only once every 2400 pushes 
(or 5400 bytecodes). 

Table 12.17 Pop and Store Bytecode Frequency by Category 

Pop & Store Category Static % Dynamic% Cumulative 

pop and store temporary variable 25.16% 36.51% 36.51% 
pop stack top 52.77% 22.36% 58.87% 
pop and store receiver variable 7.84% 16.30% 75.17% 
extended pop and store (all) 8.15% 13.96% 89.13% 
extended store (all) 6.08% 10.87% 100.00% 

The pop and store instructions in Table 12.17 roughly parallel the push 
operations, with a few differences. The SVM prohibits storing directly 
into the literal frame of compiled methods, but one can modify literal 
variables through their association in the literal frame via the extended 
pop and store instructions. In addition, the range of the regular pop and 
store instructions for temporary and receiver variables is 8 entries in­
stead of 16. Because of these factors, the extended versions of the in­
structions total nearly 25% of all pop and stores executed. The pop 
stack top bytecode is also almost one-quarter, leaving regular tempo­
rary and receiver variable access at a little over half. The story is dif­
ferent for static frequencies where pop stack top leads at over 50%, 
more than double its dynamic rate. The other categories show dynamic 
frequencies from 40% to 100% higher than their static figures. 

The difference in execution between loads and stores on this system 
is interesting. The figures for temporary and receiver variable opera­
tions are very similar. However, the extended pop and store instruc­
tions execute over eight times more frequently than extended pushes 
(24.83% vs. 2.97%). This is because the only way to modify literal vari­
ables is through the extended pop and store instructions, whereas there 
is a separate regular bytecode for pushing literal variables. In addition, 
as noted, the range of pop and store instructions is more limited, hence 
forcing the use of extended instructions more frequently. Finally, pop­
ping the stack top is almost 500 times more frequent than duplicating it 
(22.36% vs. 0.05% ). 

j 



Return, Branch, 
and Jump 
By tee odes 

221 
Bytecode Measurements 

Table 12.18 Pop and Store Bytecode Frequency 

Pop & Store Bytecode Static% Dynamic% Cumulative 

pop stack top 52.77% 22.36% 22.36% 
extended pop and store (all) 8.15% 13.96% 36.32% 
temporary variable I 6.53% 11.76% 48.08% 
extended store (all) 6.08% 10.87% 58.95% 
temporary variable 2 5.36% 9.53% 68.48% 
receiver variable I 1.57% 4.36% 72.84% 
receiver variable 0 1.61% 3.99% 76.83% 
receiver variable 4 0.87% 3.44% 80.27% 
temporary variable 6 1.50% 3.26% 83.53% 
temporary variable 4 2.22% 3.11% 86.64% 
temporary variable 3 3.23% 2.89% 89.53% 
temporary variable 7 0.82% 2.82% 92.35% 
all others (7) 9.29% 7.65% 100.00% 

Table 12.18 provides a more detailed look at the pop and store 
bytecodes. Temporary variable O is not among the top 12, and in gener­
al, the frequency of variable access is not in numeric sequence. In fact, 
pop and store operations on temporary variable 1 are six times more 
frequent than those on variable O (11.76% vs. 1.82%). This indicates 
that methods manipulate temporary variables more than arguments, 
since temporary slot O is usually occupied by the first message parame­
ter. 

The system spends nearly one-sixth of execution on these transfer of 
control instructions. The return bytecodes are the most sophisticated of 
them, having to reset the sender as the active context upon leaving a 
method. The special case sends have diminished the importance of re­
turns by relegating their use to the relatively small percentage of meth­
od sends. We divide the other control transfer bytecodes into branches 
for the single-byte short versions and jumps for the multiple-byte long 
ones. These are not very significant either because the tiny size of 
Smalltalk methods leaves precious little space for much transfer of con­
trol. 

Table 12.19 Return Bytecode Frequency 

Return Bytecode 

stack top from Method 
self 
stack top from Block 

Static% 

44.90% 
35.54% 
14.08% 

Dynamic% 

64.83% 
18.82% 

8.10% 

Cumulative 

64.83% 
83.65% 
91.75% 



222 
The Analysis of the Smalltalk-80 System at Hewlett-Packard 

Table 12.19 (Cont.) 

Return Bytecode Static% Dynamic% Cumulative 

false 2.30% 5.59% 97.34% 
true 1.78% 2.63% 99.97% 
nil 1.40% 0.03% 100.00% 

Nearly three-quarters of all methods and blocks return top of stack as 
shown in Table 12.19. Most of the rest return self, while a very tiny 
portion return nil. Although the default return for Smalltalk-80 code is 
self, such returns account for less than 20%. The static frequencies of 
return self and stack top from block are nearly double their execution. 
At the other end, only one of every 3300 methods returns nil, raising 
doubts as to the value of this variant, which is executed once every 
43,802 bytecodes on average. 

Table 12.20 Branch and Jump Bytecode Frequency by Category 

Branch & Jump Category Static% Dynamic% Cumulative 

pop and branch on false 40.71% 49.50% 49.50% 
pop and jump on false 13.21% 22.56% 72.06% 
jump 27.46% 21.42% 93.48% 
branch 18.62% 6.52% 100.00% 
pop and jump on true 0.00% 0.00% 100.00% 

Because Smalltalk-80 methods tend to be very short, one expects to find 
low execution frequencies for long jumps, and the data in Table 12.20 
concurs. However, the most frequent unconditional transfers are the 
long jumps, outnumbering short branches by more than three to one. 
Overall, the conditional and unconditional short branches account for 
57.02% of transfers. The conditional branches and jumps execute over 
two and a half times more frequently than the unconditional ones. As 
noted before, the current compiler does not use the pop and jump on 
true instruction. 

Table 12.21 Branch and Jump Bytecode Frequency 

Branch & Jump Bytecode Static% Dynamic% Cumulative 

jump 0*256 + next 13.21% 22.56% 22.56% 
jump -1 *256 + next 4.21% 15.01% 37.57% 
pop and branch on false 2 11.63% 13.38% 50.95% 



Memory 
System 
Measurements 

Object/Class 
Distribution 

Branch & Jump Bytecode 

pop and branch on false 4 
pop and branch on false 3 
pop and branch on false 6 
jump 0*256 + next 
pop and branch on false 1 
pop and branch on false 5 
branch 1 
pop and branch on false 8 
all others (9) 

M 223 emory System M 
easurements 

Table 12.21 (Cont.) 

Static% Dynamic% Cumulative 

7.76% 8.53% 59.48% 
6.65% 7.33% 66.81% 
2.78% 6.59% 73.40% 

23.20% 6.39% 79.79% 
3.16% 5.10% 84.89% 
4.60% 4.77% 89.66% 
8.15% 3.44% 93.10% 
1.74% 2.81% 95.91% 

12.91% 4.09% 100.00% 

The first two entries in Table 12.21 comprise nearly 90% of all long 
jumps executed. The rest of the table is dominated by the short condi­
tional branch instruction. There is little consistency to the static and 
dynamic measurements. For the two unconditional long jumps in the 
table, the backward jump executes at more than three times its static 
frequency while the forward jump has a greater static frequency by 
nearly four to one. The branches and jumps in the others category have 
a low execution frequency but appear statically more than three times 
as often. 

The performance of the object memory system is vital to a Smalltalk-80 
implementation. We recognized this early, and we were able to improve 
memory system performance substantially through regular analyses of 
profile data. The following tables are the culmination of this effort. 

Table 12.22 Classes in the System by Number of Instances 

Class of Objects Percentage Cumulative Percentage 

Compiled Method 25.83% 25.83% 
Symbol 21.84% 47.67% 
Array 15.45% 63.12% 
String 9.11% 72.23% 
Association 3.81% 76.04% 
Point 2.91% 78.95% 
ClassOrganizer 2.80% 81.75% 
Method Dictionary 2.80% 84.55% 



224 
The Analysis of the Smalltalk-80 System at Hewlett-Packard 

Table 12.22 (Cont.) 

Class of Objects Percentage Cumulative Percentage 

Character 1.66% 86.21% 
Large Positive Integer 1.44% 87.65% 
RemoteString 1.40% 89.05% 
Metaclass 1.40% 90.45% 
Float 1.33% 91.78% 
Textlinelnterval 1.09% 92.87% 
all others (296) 7.13% 100.00% 

Table 12.22 ranks the classes in the system according to the number of 
extant instances of each. Compiled methods and symbols (selectors) 
comprise nearly half of the objects in the system, and over 75% of the 
objects are instances of the top five classes. With over 200 classes in the 
system, this indicates that many have very few instances. In fact, 
56.48% of classes (excluding metaclasses) have no instances at all and 
exist mainly for the behavior inherited by their subclasses; 26.38% 
have exactly one instance (a system controller, object, or dictionary). In 
all, 76.38% of all classes have fewer than 10 instances. This is a result 
of a particular sty le of Small talk programming making extensive use of 
an existing set of basic classes and certain paradigms. 

Table 12.23 Classes in the System by Memory Usage 

Class of Objects Percentage Cumulative Percentage 

CompiledMethod 34.69% 34.69% 
Array 13.19% 47.88% 
Symbol 11.72% 59.60% 
DisplayBitmap 9.76% 69.36% 
String 9.74% 79.10% 
Bitmap 8.62% 87.72% 
Method Dictionary 4.18% 91.90% 
ClassOrganizer 0.88% 92.78% 
Metaclass 0.77% 93.55% 
Dictionary 0.62% 94.17% 
Association 0.60% 94.77% 
all others (296) 5.23% 100.00% 

Table 12.23 lists the classes by the amount of memory used by their in­
stances. Compiled methods and symbols occupy nearly half the object 
space. The percentage for DisplayBitmap depends on the size of the dis­
play screen currently in use. In our case, a 640 x 480 pixel bit map was 

l 



Object Memory 
Access 

Memor S 225 
Y Ystem Measurements 

active. The leading classes result from code (CompiledM th d 
Symbol, MethodDictionary and Metaclass) at 64.55% aendo ' Array, 

graphics 
(DisplayBitmap and Bitmap) at 18.38% for a total of 82.93%. 

Table 12.24 Object Memory Accesses by Type 

Type of Access 

load pointer 
store pointer 
load word 
store word 
load byte 
store byte 

Percentage 

72.45% 
14.84% 
7.59% 
4.82% 
0.23% 
0.07% 

Cumulative Percentage 

72.45% 
87.29% 
94.88% 
99.70% 
99.93% 

100.00% 

The load pointer and store pointer routines fetch and store object point­
ers in memory. The word and byte routines deal only with non-pointer 
16- and 8-bit quantities. Because our interpreter caches the instruction 
and stack pointers, the memory access figures in Table 12.24 include 
neither stack push/pop operations nor bytecode instruction fetch. How­
ever, those aspects of execution have well-defined behavior and are· JrY 
easy to monitor. The bias introduced by such factors can be significant. 
For example, if we include bytecode fetches with the other memory 
accesses, the share of load byte operations increases from 0.23% to 
16.90%. This bias tends to cloud the real issues (bytecode fetch, like 
death and taxes, is inevitable). 

These figures show load pointer dominating the memory accesses. 
This is not surprising in an object-oriented memory system. Pointer ob­
ject accesses accounted for over 87% of all memory traffic. The memory 
system must endure nearly five accesses per bytecode, a figure which is 
due partly to the experimental nature of the system. A better imple­
mentation of the interpreter could reduce the number of accesses, but 
that was not our goal. 

Load and store operations occur 40 times more frequently for words 
than for bytes. At 12.41 % word accesses seem relatively high since they 
are not used by the system for any common operations. Instead, the in­
frequent but massive bit map operations are responsible for this rate of 
access. 

Table 12.25 Load Pointer Operations by Class 

Class of Object Percentage Cumulative Percentage 

MethodContext 27.55% 27.55% 
Method Dictionary 25.06% 52.61% 
Compiled Method 15.70% 68.31% 
Array 7.00% 75.31% 



226 
The Analysis of the Smalltalk-SO System at Hewlett-Packard 

Class of Object 

Class Array 
BlockContext 
Class String 
Class LargePositivelnteger 
all others (258) 

Table 12.25 (Cont.) 

Percentage 

4.95% 
3.11% 
1.29% 
1.25% 

14.09% 

Cumulative Percentage 

80.26% 
83.37% 
84.66% 
85.91% 

100.00% 

The breakdown of load pointer operations by classes in Table 12.25 
points out the memory intensive nature of some operations. The meth­
od and block context loads are for receiver and argument passing as 
well as operations occurring while they are neither the active nor the 
home context (since access to those are through a cache). The hash 
probes to the selector portion of message dictionaries comprise part of 
the method dictionary figure. The compiled method loads are from the 
literal frame for constants, pointers, and selectors. The array accesses 
correspond to the method pointer portion of the message dictionary-in 
other words, the method Oop fetch after a successful cache hit or 
search. 

Table 12.26 Store Pointer Operations by Class 

Class of Object Percentage Cumulative Percentage 

MethodContext 81.96% 81.96% 
BlockContext 8.43% 90.39% 
Point 1.95% 92.34% 
CompositionScanner 1.85% 94.19% 
DisplayScanner 1.23% 95.42% 
all others (102) 4.58% 100.00% 

Context initialization, including receiver and argument passing, domi­
nates store pointer operations in Table 12.26. Again this does not in­
clude operations on home or active contexts. Graphics and text 
manipulation consumes the remainder of the stores. 

Class of Object 

DisplayBitmap 
Bitmap 
Float 
Array 

Table 12.27 Load Word Operations by Class 

Percentage 

69.30% 
30.22% 

0.40% 
0.08% 

Cumulative Percentage 

69.30% 
99.52% 
99.92% 

100.00% 

j 



227 
Memory System Measurements 

Bit map access constitutes over 99% of word object loads and st 
Th b. . fl h b" ores. ese 1t maps come m two avors: t e 1t map associated with the dis-
play and subsidiary bit maps used as graphics workspaces to prepare 
material for BitBlt to the display bit map. In Table 12.27 the relatively 
high percentage for Bitmap loads results from the transfer of their con­
tents to the display bit map. Accordingly, Table 12.28 shows that store 
word operations are almost completely devoted to the display bit map, 
the eventual recipient of all words loaded. This indicates that the ma­
jority of graphics operations do not warrant the use of subsidiary bit 
maps, but rather operate directly on the display bit map. 

Table 12.28 Store Word Operations by Class 

Class of Object Percentage Cumulative Percentage 

DisplayBitmap 97.41% 97.41% 
Bitmap 2.06% 99.47% 
Float 0.31% 99.78% 
Array 0.11% 99.89% 
Large Positive Integer 0.11% 100.00% 

String processing accounts for nearly 75% of all byte loads in Table 
12.29. This is a result of the actions of the compiler, decompiler, and 
text editor. For byte stores, string processing declines by one-third as 
operations on large integer objects double their share to lead Table 
12.30. Compiled methods are rarely the subject of byte accesses, and in 
general, byte accesses account for a tiny fraction of all types, mainly be­
cause the bytecode instruction fetches have direct access to the current 
compiled method. 

Table 12.29 Load Byte Operations by Class 

Class of Object Percentage Cumulative Percentage 

String 67.96% 67.96% 
Large Positive Integer 25.46% 93.42% 
Symbol 6.50% 99.92% 
Compiled Method 0.08% 100.00% 



228 
The Analysis of the Smalltalk-SO System at Hewlett-Packard 

Allocation and 
Instantiation 

Table 12.30 Store Byte Operations by Class 

Class of Object Percentage Cumulative Percentage 

Large Positive Integer 52.26% 52.26% 
String 46.69% 98.95% 
CompiledMethod 0.66% 99.61% 
Symbol 0.39% 99.92% 

Table 12.31 Object Instantiation Types by Number 

Type of Instantiation Percentage Cumulative Percentage 

pointer object 98.34% 98.34% 
byte object 1.20% 99.54% 
word object 0.46% 100.00% 

Pointer objects dominate the instantiation statistics in Table 12.31. Byte 
objects show a relatively higher rate of instantiation than word objects, 
probably because of the fine granularity of string processing. Such ex­
tremely lopsided statistics lead one to seriously question the need for 
type distinctions between pointer and non-pointer objects. 

Table 12.32 Object Instantiation Types by Amount 

Type of Instantiation 

pointer object 
word object 
byte object 

Percentage 

99.11% 
0.49% 
0.40% 

Cumulative Percentage 

99.11% 
99.60% 

100.00% 

Table 12.32 shows the percentage of memory allocated to the three ob­
ject types. Pointer objects lead this category by an overwhelming mar­
gin with an even greater share than in Table 12.31. The next places are 
reversed, with word objects taking second. Though the system instanti­
ates byte objects more frequently than word objects, the average word 
object is more than three times larger. A breakdown by classes and 
sizes will further clarify this situation. 



229 
Memory System Measurements 

Table 12.33 Object Instantiations by Size in Words 

Size of Instantiation Percentage Cumulative Percentage 

18 words 83.86% 83.86% 
2 words 11.47% 95.33% 
38 words 1.90% 97.23% 
1 word 0.88% 98.11% 
all others (98) 1.89% 100.00% 

Instantiations are listed by object field size in Table 12.33. The three 
most popular sizes exceed 97% of all instantiations, suggesting a corre­
lation with the preceding type figures. These sizes are those chiefly 
used for small contexts, points, and large contexts, respectively. 

Table 12.34 Average Instantiation Size by Type 

Type of Instantiation 

pointer object 
word object 
byte object 
all objects 

Average Size in Words 

16.50 words 
14.53 words 
6.67 words 

16.38 words 

From Table 12.34, the average allocation size is less than 17 words. The 
memory system actually stores byte objects in words, sometimes wast­
ing an odd byte, as a relic from Xerox word-addressed memory architec­
tures. However, there are so few byte objects in the system that this 
waste is not significant. The system averages about one instantiation 
for every dozen bytecodes executed. This makes for an allocation rate of 
1.4 words per bytecode. 

Table 12.35 Pointer Object Instantiations by Class 

Class of Object Percentage Cumulative Percentage 

MethodContext 83.02% 83.02% 
Point 8.32% 91.34% 
BlockContext 4.18% 95.52% 
Rectangle 2.25% 97.77% 
all others (79) 2.23% 100.00% 



230 
The Analysis of the Smalltalk-80 System at Hewlett-Packard 

Method and block contexts comprise over 87% of pointer object instan­
tiations (Table 12.35). In Smalltalk, the system creates and activates a 
method context for every non-primitive send, thus leading to their 
prominent position in these statistics. Over 10% of instantiations are 
for points and rectangles. Applications use points for screen manage­
ment, since they are the fundamental reference for graphics operations. 

Table 12.36 Pointer Object Instantiations by Size 

Size of Object Percentage Cumulative Percentage 

18 words 85.28% 85.28% 
2 words 10.99% 96.27% 
38 words 1.93% 98.20% 
all others (37) 1.80% 100.00% 

In Table 12.36 note that point size objects (2 words) are more prevalent 
than the large context size (38 words). The typically short methods of 
Smalltalk rarely require the deep stack provided by a large context. 

The preceding tables actually underestimate the dominance of con­
texts in memory allocation. Context instantiations consume nearly 97 
out of every 100 words allocated by the system. This is because the av­
erage context size (18.44 words) exceeds the mean size for all other ob­
jects by 14.52 words, thus boosting the context share from 87% to 97%. 
For pointer objects alone, if we exclude contexts the average object size 
drops to 3.28 words. 

Even though bit maps are the most frequently accessed word objects, 
the system creates very few of them (only 3.69% of word object instan­
tiations). Floating point objects are the most frequently instantiated 
word objects and their size (2) is the most popular, both at 96.31 %. Most 
bit maps were at least 100 words, but so few were created that there 
was little impact on the average size of word objects. As evidence, the 
average size of word objects instantiated, excluding those of size 2, was 
341.72 words. 

Table 12.37 Byte Object Instantiations by Class 

Class of Object Percentage Cumulative Percentage 

Large Positive Integer 87.12% 87.12% 
String 12.59% 99.71% 
Compiled Method 0.17% 99.88% 
Symbol 0.12% 100.00% 



Memory 
Reclamation 

Large integers lead byte object instantiations by a substant· 1 . 
(Table 12.37), and together with strings, they encompass ne:.1;:rigi~ 
them. Smalltalk does create many large integers because certain s te 
functions use numbers greater than those small integer objects ca!sco: 
tain. A number of solutions are possible: redesign those system func­
tions to stay within the small integer range, implement the arbitrary 
precision arithmetic primitives in firmware or hardware, or increase 
the range of small integers through an implementation with 32-bit ob­
ject pointers. 

Table 12.38 Byte Object Instantiations by Size in Bytes 

Size of Object Percentage Cumulative Percentage 

2 bytes 37.91% 37.91% 
1 byte 22.94% 60.85% 
4 bytes 16.39% 77.24% 
0 bytes 8.59% 85.83% 
3 bytes 2.46% 88.29% 
16 bytes 1.88% 90.17% 
200 bytes 1.10% 91.27% 
9 bytes 0.91% 92.18% 
all others (94) 7.82% 100.00% 

As one might expect, the byte object instantiations exhibited a more 
uniform distribution of sizes than the other types (Table 12.38). This re­
flects the fact that text varies greatly even within an application, and 
could vary with choice of identifiers, different user interfaces, or foreign 
language systems. 

Table 12.39 Reference Count Size by Amount of Memory Reclaimed 

Size of Count Field 

2 bits 
3 bits 
4 bits 
5 bits 
6 bits 
7 bits 

Percent of Memory Reclaimed 

65.21% 
83.34% 
92.42% 
95.67% 
97.31% 
99.87% 

The number of bits necessary for reference counts can be important, es­
pecially for those considering hardware implementations of count 
caches and managers (see Chapter 19). Table 12.39 shows that 4 bits 

l 
I 

l 
! 



232 
The Analysis of the Smalltalk-BO System at Hewlett-Packard 

can reclaim over 90% of memory, while 6 bits can manage over 97%. 
Because of the availability of fast byte access and arithmetic on our 
host machines, our system uses an 8 bit reference count field in a 16-bit 
header with additional separate permanent object and count overflow 
or exemption flag bits. Using our reference-count verifier, we have 
found only a few non-permanent object counts over 255, while some of 
the permanent kernel objects have hundreds of references. 

Table 12.40 Pointer Chasing for Count Down Operations by Depth 

Percentage of Cumulative 
Count Down Extent Count Downs Percentage 

exempt 75.42% 75.42% 
decremented, > zero 20.55% 95.97% 
sons exempt 0.06% 96.03% 
son decremented, > zero 3.52% 99.55% 
grandsons exempt 0.20% 99.75% 
grandson decremented, > zero 0.18% 99.93% 
deeper levels (12) 0.07% 100.00% 

The most expensive side of the dynamic memory management scheme 
involves reference count decrement and the possible pointer chasing 
and object deallocation. There are nearly two reference count decre­
ments for every bytecode executed. Table 12.40 shows to what depth the 
associated pointer chasing went during experiments with the system. 
Objects with active reference counts accounted for 24.58% of count 
down invocations and the other 75.42% were on small integers or ob­
jects exempt from count management (either permanent or count over­
flow). Only 4.03% of count down invocations resulted in a decrement to 
zero and a subsequent deallocation for a rate of one every 13.61 
bytecodes. Nearly all of these deallocations caused some pointer chasing 
to decrement the counts of objects referenced from the fields of the now 
dead object; the average depth of such pointer chases was 1.13 levels. 

Table 12.41 Objects Disposed through Garbage Collection by Class 

Class of Object 

MethodContext 
Process 
BlockContext 

Percentage of 
Disposed 

49.61% 
18.74% 
13.49% 

Cumulative 
Percentage 

49.61% 
68.35% 
81.84% I 

l 



System 
Specifications 

Class of Object 

String 
Array 
Association 
all others (28) 

233 
System Specifications 

Table 12.41 (Cont.) 

Percentage of 
Disposed 

3.83% 
2.41% 
2.06% 
9.86% 

Cumulative 
Percentage 

85.67% 
88.08% 
90.14% 

100.00% 

Table 12.41 lists the trouble makers: the objects which compose inacces­
sible cycles. The high ranking of contexts has to do with the problem of 
passing a block context as an argument to a message and then having 
it passed down the line a few levels of sends. When it is all over, there 
is usually a three or four context cycle (almost invariably with at least 
one block context). 

The size of our implementation varies with the modules included in the 
compilation. Table 12.42 lists the major system modules and their speci­
fications. The primitive methods use over four times as much code as 
the bytecode interpreter itself. Although the memory and interpreter 
modules contain only about one-quarter of the code, they contain al­
most all of the macros and over half of the procedures in the system. 
We designed many of these procedures and macros as part of an imple­
mentation palette which we drew upon to build the system. As a result 
of this approach, some of them actually are never used. The extent of 
our development environment is apparent from its sheer size. The local 
routine module contains implementation-dependent code for the graph­
ics device among other things. 

Table 12.42 Module Specifications in the Hewlett-Packard Srnalltalk-84 
System 

Module # of Macros # of Procedures # of Statements 

primitive methods 5 109 4600 
development environment 18 34 2300 
object memory 103 54 2000 
local routines 0 50 1300 
bytecode interpreter 88 22 1000 
Totals 214 269 11,200 



234 
The Analysis of the Smalltalk-SO System at Hewlett-Packard 

The code size of our system ranges from 50 kilobytes in an optimized 
version using procedures to 100 kilobytes for the multi-level debug ver­
sion using in-line macros. The static data area ranges from 300 to 500 
kilobytes, and the dynamic allocation from 400 to 500 kilobytes. Total 
memory usage falls between 750 kilobytes and 1 megabyte. The system 
installed at HP Labs has 80 kilobytes of code, 350 kilobytes of static 
data, and 400 kilobytes of dynamic data. 

Throughout the implementation process, the execution profile of the 
system changed continually. At the beginning of July, the system was 
spending most of its time in the management of object memory. The top 
14 procedures consumed 90% of execution time, and object memory 
management accounted for over half of that. As the implementation 
progressed, we steadily improved the performance of the most expen­
sive routines. For example, we were able to reduce the overhead of ob­
ject memory allocation and freeing to less than 6%. In our latest 
version, the top 14 procedures consume less than two-thirds of the time 
and one must add up the first 31 routines to reach 90%. One-quarter of 
the time is spent in bytecode fetch, event recognition, and the execution 
of all bytecodes except sends. The major object memory operations of al­
location, garbage collection, and reference count management consume 
another 25%. The message send process takes 25% of the time, includ­
ing message binding and context initialization. Finally, primitive func­
tions use the final quarter of execution time. 

Table 12.43 VAX Instructions Executed for Each Bytecode Category 

Bytecode Category Minimum Maximum Average 

stack push 11 33 16 
stack pop and store 2 47 28 
return 43 81 46 
branch and jump 3 13 11 
message send 33 > 1000 120 

Recently we investigated the VAX assembly code generated from our C 
modules. The main interpreter loop is 12 instructions long. Table 12.43 
lists the additional instructions executed for each instruction category. 
The cost of maintaining contexts as separate objects plus the message 
lookup process contributed heavily to the relatively high figures for 
sends and returns. The 15-bit signed arithmetic required for small inte­
ger objects was also very expensive to implement on the VAX. 

The performance of the system also changed substantially over the 
course of several months. By the first week in July 1981, our system 



:a 

235 
8 Ystern Specificatio;; 

was executing around 500 bytecodes per CPU se d . 
con with I b" t 

memory, and over 1000 bytecodes per CPU second with fas 8 ow O ~ec 
week later we were at 750/1500 bytecodes per CPU tdmemory. A 

· B 1 s secon (fast/ slow memory vers10ns). y ear y eptember, the interpret . 
better than 2000 bytecodes per CPU second (fast mem eorr was :xecutmg 

. . Y version) Two 
weeks later it had mcreased to 2800 bytecodes per CPU d. Th 
fifth version of HP Smalltalk boosted this to 4000 bytecodessecon · de 

. . per secon . 
The fmal v~rsion of HP Smalltalk-84 performs at 5000 bytec d . o es per 
second on the average, with a peak rate around 25,000. 

Table 12.44 Hewlett~Packard Smalltalk-84 testStandardTests Benchmark 
Results 

Test Description Iterations Seconds Speed 

Loadlnst Var load instance variable 20,000 3.183 12,570 
Load Li terallndirect load literal indirect 20,000 3.500 11,430 
LoadLiteralNRef load literal constant 20,000 3.350 11,940 
LoadQuickConstan t load 100,000 15.950 12,540 
LoadTempNRef load 1 as a temp 20,000 3.384 11,820 
LoadTempRef load 0@0 20,000 3.851 10,390 
PopStorelnst Var store 1 in an inst. var. 200,000 24.083 16,610 
PopStoreTemp store 1 in a tern p 200,000 23.600 16,950 
16bitArith add 20000 plus 20000 10,000 442.783 3730 
3div4 divide 3 by 4 100,000 36.320 11,010 
3plus4 add 3 plus 4 100,000 27.752 14,410 
3times4 multiply 3 times 4 100,000 30.884 12,950 
Large In tArith add 80000 plus 80000 1000 47.034 4000 
ActivationReturn activations and returns 16,383 42.084 4090 
ShortBranch short branch on false 100,000 14.850 26,940 
WhileLoop simple while loop 10,000 7.800 11,540 
ArrayAt send at: to an array 20,000 15.000 5330 
ArrayAtPut send at:put: to an array 20,000 17.884 5590 
Size send size to a string 20,000 11.367 5280 
StringAt send at: to a string 20,000 17.284 4630 
StringAtPut send at:put: to a string 20,000 18.983 5270 
StringReplace replace part of a string 5000 67.385 4630 
BlockCopy send blockCopy: 0 20,000 22.000 3640 
Class send class to a point 20,000 4.334 13,840 
Creation send new to Point 20,000 16.608 3610 
LoadThisCon text load a context 20,000 4.620 8660 
PointX send x to a point 20,000 7.867 7630 
StreamNext send next to a stream 20,000 23.934 2510 



236 
The Analysis of the Smalltalk-SO System at Hewlett-Packard 

Conclusion 

Table 12.44 ( Cont. ) 

Test Description Iterations Seconds Speed 

StreamN ext Put send nextPut: to a stream 20,000 28.534 2800 
Value send value to a block 20,000 31.433 1910 
Compiler compile dummy method 5 140.932 3890 
Decompiler decompile Form and Class 1 645.200 3710 
Inspect create an inspector 1 10.500 3540 
TextFormatting format a bunch of text 5 63.633 4030 
TextEditing text replacement 20 215.667 3120 

Table 12.44 gives the results of running the testStandardTests set of 
benchmarks on the HP Smalltalk-84 system. Note that this is an earli­
er version of the benchmarks than the one in the current Smalltalk-SO 
image. The table includes the time in seconds reported by Smalltalk for 
running each entire test1 and the speed of execution in bytecodes per 
second. We ran the tests on a single-user VAX-11/780 with 4 
megabytes main memory under 4. lBSD UNIX. The system was in a 
normal configuration with display, keyboard, and mouse active. Clearly, 
the primitive method situation is the most serious. The benchmarks for 
primitive methods averaged about 5000 bytecodes per second, seriously 
limiting opportunities for greater speed. 

Our curiosity about the Smalltalk-BO system had lead us down a prim­
rose path. When the termination of the project washed away the path, 
we traded in our programming language robes for the lab coats of the 
pathologist. The result of our post mortem was simple: there was little 
hope for performance high enough to lure users away from traditional 
programming systems. Although we did not have the luxury of iterat­
ing and refining our implementation, the experience of those who did is 
very discouraging. No one in the test program was able to achieve per­
formance considerably above 25 KIPS. Even with microcode assist, it is 
difficult to imagine an implementation performing at better than 50% 
of native mode operation. In our experience, though users like the 
functionality of a Smalltalk system, they are unwilling to accept a sig­
nificant loss in performance. 



Acknowledg­
ments 

References 

237 
References 

The analysis of the Smalltalk-80 system at Hewlett-Packard Laborato­
ries was basically a post-mortem. Nearly all of the work described in 
this report happened after the project terminated. I appreciate the pa­
tience and understanding of my management during the period when I 
spent my spare time generating and analyzing the body of statistics. 

1. Clark, D. W., and Levy, H. M., "Measurement and Analysis of In­
struction Use in the VAX-11/780", Proceedings of the Ninth An­
nual Symposium on Computer Architecture, pp. 9-17, Austin, TX, 
1982. 

2. Ibid. 





An Assessment of 
Method-Lookup Caches 
for Smalltalk-SO 
Implementations 

Thomas J. Conroy 
Eduardo Pelegri-Llopart 
Computer Science Division 
Department of Electrical Engineering and 
Computer Sciences 
University of California, Berkeley 

A unique feature of the Smalltalk-80 language is the dynamic binding 
of methods to a message based on the class of its receiver. This binding 
requires a lookup of the selector in the message dictionaries of the su­
perclass chain for the receiver. A way to avoid this time-consuming pro­
cess is to cache the most frequently used information. In this paper, we 
present an assessment of the cost effectiveness of this mechanism. A 
theoretical analysis characterizes the behavior of the cache in terms of 
variables dependent on both the particular implementation and on the 
Smalltalk code being executed. One result is that the benefits of the 
cache heavily depend on the relation of the speed of the implementa­
tion to the speed of the cache accesses, and also on the instruction mix 
being executed. For software implementations of virtual machines, a 
method-cache can greatly enhance performance. We then present the 
implementation of the software method-cache in BS, the Smalltalk-80 
implementation at UC Berkeley (see Chapter 11). Measurements from 
this implementation show that the cache increased execution speed by 
37%. 

Copyright © Thomas J. Conroy and Eduardo Pelegri-Llopart 1982. All rights reserved. 

239 



240 
An Assessment of Method-Lookup Caches for Smalltalk-BO Implementations 

Introduction 

Analysis 

A unique feature of the Smalltalk-SO language is the dynamic binding 
of methods based on the class of the receiver. Conceptually, given a re­
ceiver and a message selector, the actions to perform are1

·
2

: 

1. Determine the class of the receiver, 

2. Search for the message selector in the message dictionaries of the 
receiver's superclass chain, and 

3. Retrieve the method associated with the message selector in the 
dictionary where the search succeeded. 

A direct implementation of this lookup process is time-consuming since 
a large number of bytecodes involve method-lookup. A solution to this 
problem is to cache3 the result of the whole lookup process. A cache can 
provide a fast by-pass of the lengthy search. 

A method cache stores combinations of receivers and message selec­
tors, allowing look-ups to be retrieved quickly when the combinations 
needed for the look-up are in the cache. For those combinations not 
found in the cache, a full look-up has to be done. An additional over­
head present in caching is the cost of trying to keep the more frequent­
ly required combinations on the cache. Clearly, the feasibility of this 
technique depends on how often the bypass succeeds and the relative 
cost of each alternative. 

The effect of the technique on the performance of an implementation 
is related to the cost of look-ups, the cost of the remaining components 
and the relative occurrence of each part. In this short paper we present 
an assessment of this cache mechanism using a simple theoretical anal­
ysis and measurements from a software implementation of the 
Smalltalk-SO virtual machine, (see Chapter 11). 

This analysis compares the behavior of a straightforward implementa­
tion of a Smalltalk-SO virtual machine to an implementation with a 
method-cache. Subscripted capital letters represent virtual machine im­
plementation-dependent quantities, while greek letters represent 
Smalltalk-SO code-dependent quantities. Specifically, 

• A with a subscript represents the time for completing a method 
look-up, 

• S represents the number of bytecodes/second (speed), and 



241 
Analysis 

• F represents the fraction of total time spent in doing method-look-
ups. 

We stress the distinction between Smalltalk-80 code-dependent and im­
plementation-dependent quantities because the former are constants in­
dependent of the implementation. For example, implementations may 
differ drastically in the number of bytecodes executed per second, but 
for the same Smalltalk-SO code, the number of method-lookups per 
bytecode would be identical. The following table lists the variables used 
and their definitions. 

Table 13.1 Parameters and Definitions 

Implementation Dependent Values 

Amiss method lookup time for a cache miss* 
Anc method lookup time without a cache 
Ahit method lookup time for a cache hit 

Implementation and Smalltalk Code Dependent Values 

AxK 

snc 
SxK 

Soptimal 

average method lookup time for an xK entry method cache 
number of bytecodes/sec without a cache 
number of bytecodes/sec with an xK entry method cache 
the number of bytecodes/ sec possible 
assuming zero access time for method lookup 
fraction of total time spent in lookup without a cache 
fraction of total time spent in lookup with an entry xK cache 
hit ratio (also depends on cache characteristics) 

Smalltalk Code Dependent Values 

/3 number of lookups/bytecode 

*Strictly speaking, Amiss and Anc also depend on the length of the superclass chain, and 
hence on the Smalltalk code being executed. 

An implementation will be characterized by: A . and Ah t' S and A , 
and 'f and /3. These values, together with the :

1

~uations 
1 

sho~n helm;, 
are used to obtain the remaining values of interest. 

The fraction of time spent doing method lookups is related to the 
number of lookups per bytecode, the lookup access time, and the num­
ber of bytecodes per second by the relationship F = S/3A. Applying this 
relationship to a cache and a non-cache implementation gives 

The average cache access is given by the usual relation 

AxK = 'fAhit + (l-'f)Amiss· 



242 
An Assessment of Method-Lookup Caches for Smalltalk-SO Implementations 

The speed (bytecodes per second) depends partly on how much time is 
spent in method lookup. S t· 1 assumes the time to be zer0. op 1ma 

If Toptimal and Tnc are the times required to execute N bytecodes at 
speeds soptimal and snc' then we have 

N Snc Tnc 
soptimal = -T-.­

optimal Tnc-total lookup time 

where total lookp time =N/3Anc· 
Replacing total lookup time by its value, and simplifying, we obtain 

s . - snc 
optimal - l-S QA nc fJ nc 

snc 
1-Fnc. 

Similarly, the speed of the cache implementation, SxK is derived. The 
difference is that the cache's average method lookup access time is used 
instead of the non-cache access time. 

If Tnc and TxK are the times required to execute N bytecodes at 
speeds snc and sxK we have 

S xK = N = S nc T nc 
Txk Tnc-total time gained by caching 

where total time gained by caching= N/3(Axk-AnJ 

obtaining, 

S Sn,. 
xK = 

1-S nc /3 (A nc -A xK) 
snc 

Using the equations above, the ratio sxK/Soptimal is computed. This ratio 
expresses how close the implementation comes to the theoretical lower 
limit of zero access time for method lookups, and may be expressed as 

1-Snc/3Anc 1 

1 + soptimal /3A xK 

Furthermore, the ratio sxK/Snc gives the factor increase in execution 
speed of a cache implementation compared to a non-cache implementa­
tion. This ratio can be written as 

1 

If we consider a given cache organization, and a fixed program behav­
ior, the speed increase has the form 1 /(1-KSn), where K =/3(Anc-AxK). 

One use of this formula is to determine the speed increase that a 
non-cache-implementation will get by using a caching scheme. In the 

l 



The 
Implementation 
in Berkeley 
Smalltalk 

Cache Structure 

243 
The Implementation in Berkeley Smalltalk 

next section we present a particular Smalltalk-SO implementation, and 
on p. 245 we present some measurements on its behavior. Implementors 
can use these measurements as guidelines to obtain for their particular 
case, approximations to the expected gains. 

Currently, Smalltalk-80 virtual machines are being implemented on 
general purpose computers. Smalltalk-SO implementors should consider 
adding a software cache for method-lookup. As an example of the con­
siderations involved, we now present, in some detail, the implementa­
tion used in BS. BS executes on the VAX-11 family of computers, under 
the UNIX operating system. The programming language used is C. The 
algorithms were coded with extreme care (sometimes checking the code 
produced by the C compiler), and macros were used whenever possible. 

The implemented cache is of the direct-mapped variety. The underlying 
data structure consists of four arrays, each with lK entries. The first 
three arrays have entries 2 bytes long (one VAX-11 word); the last one 
1 byte long. The first two arrays (CacheSel and CacheClass) contain the 
Oops of the combinations for selector and class that are cached. The re­
maining two (CacheMethod and CachePrimitive) contain the actual in­
formation: the method Oop, and an indication of whether it is a primi­
tive or not. 

The organization as separate arrays allows the use of the VAX-11 in­
dex mode to access all desired information. Thanks to a careful man­
agement of the available registers on the hardware, most of the time 
the fastest modes can be employed. Thus, to access CacheSel[i], if i is in 
register r0, we can simply use 

movw CacheSel[rO], 

Note that an implementation as a field in an array of records would 
produce much longer code, including shifts (or divides) to access the ap­
propriate entry in the array, plus additional code to access the field. 

Recently BS has been extended to include a playback facility. With 
this facility, a script of all the bytecodes executed in a session can be 
obtained, and later replayed to reproduce the session. In this way we 
have been able to study the effect of different cache sizes on the hit ra­
tio. For a particular interactive session of about 2M bytecodes, using as 
a hash function a simple EX-OR the hit ratios found were: 



244 
An Assessment of Method-Lookup Caches for Smalltalk-80 Implementations 

entries 
hit ratio 

Table 13.2 Hit Ratio and Cache Size 

64 128 256 512 1024 2048 4096 
65.3% 77.0% 86.1% 90.4% 93.1% 95.0% 95.4% 

This makes a cache of size lK or 2K the more adequate for most situa­
tions. 

D The lookup algorithm The lookup algorithm is simple. An entry on 
the cache is selected using some function of the class and selector Oops. 
Then a comparison is done to check the validity of the information as­
sociated to the entry. On a hit, the required information is already 
obtained. On a miss we have to go through the complete lookup search; 
when the correct binding is found, the entries in the cache are updated 
with the appropriate information. 

Clearly, the selection of the hashing function is important. Three 
simple functions are: 

1. hash(class,selector) ..- (class EXOR selector) AND cacheSize 

2. hash(class,selector) ..- (class AND selector) AND cacheSize 

3. hash(class,selector) ..- (class ADD selector) AND cacheSize 

As the difference in speed between an EXOR and an ADD is small, on 
the order of .07 us (approximate value for the 2 register versions of 
these instructions on a VAX-11/780), 1 and 3 have similar qualities. Al­
though AND requires two instructions on the VAX-11, it also has a 
similar speed. The total access time in the case of a hit, Ahit is reason­
ably small because of the explicit handling of registers done in C. 

The playback facility of BS has allowed us to compare the different 
functions. The results for the same sample as mentioned above are as 
follows: 

Table 13.3 Hit Ratio and Hash Function 

Function Hit Ratio Ahit AlK 

1. 93.1% 4.4 23.6 
2. 61.6% 4.5 111.82 
3. 94.8% 4.5 19.08 

It is clear that 2 is a loser and its use is discouraged. The function origi­
nally used in BS was l; its performance is acceptable. The best choice is 



Measurements 
in BS 

245 
Measurements in BS 

3, the hashing function currently being used in BS (and also in the Dol­
phin and Dorado implementations4

). 

We now present some measurements of the BS implementation. They 
show a 32-37% increase in the execution speed of the implementation. 

When these measurements were made, the hashing function used 
was the one referred to as 1 above; otherwise the implementation is the 
one presented there. Two different Smalltalk-80 programs were execut­
ed to obtain representative samples. One program was an interactive 
session of editing, browsing, and short arithmetic computations com­
prising 6.8 million bytecodes. The other was the Tower of Hanoi prob­
lem, a computation intensive problem, comprising 1.5 million bytecodes. 

On a VAX-11/780, the constants for cache accesses for BS are 

Ahit 4.4 µsec 
Anc 187 µsec 
A miss 284 µsec 

The data from the two programs and the computed results are summa­
rized in the table below. 

Table 13.4 Berkeley Smalltalk Results 

Parameter Interactive Tower of Hanoi 
<.p (hit ratio) 0.943 0.996 
/3 lookup/bytecode 0.186 0.078 

A1K µsec 20.4 5.52 
Sncbytecodes/sec 8,750 17,350 

soptimal bytecodes/sec 12,570 23,230 
S1K bytecodes/sec 12,000 23,000 
F 0.304 0.253 nc 
FlK 0.046 0.010 

81K1Soptimal 0.955 0.990 
s1K18nc 1.372 1.326 

The numeric values for the parameters and values were obtained using 
various mechanisms. Ahit was obtained from the V AX-11 code that 
accesses the cache. The exact time used by the sequence of instructions 
is difficult to measure because of the effect of the VAX-11/780 cache; 
timing the instruction loop gives an overly optimistic value since all the 



246 
An Assessment of Method-Lookup Caches for Smalltalk-BO Implementations 

Conclusions 

Acknowledg­
ments 

code ends up in the cache. A and A . were obtained by profiling the 
execution of the updating routines5• Th; difference between the Anc val­
ue and the Amiss is the time required to update the cache. The cache is 
updated every time there is a cache miss. The profile tool also gave the 
number of lookups and the number of bytecodes executed, used to de­
termine /3, and the number of misses, used to determine q,. Finally, S1K 

was obtained from the user time it took to execute the programs. The 
remaining values were obtained from the equations. 

There are several important points to make. The software cache 
achieves an average method access time of 20.4 microseconds for the in­
teractive session. The Tower of Hanoi problem is atypical and tends to 
give a best case result since the small amount of code generates few 
cache misses. Nevertheless note that both hit ratios are high, 94% and 
99%. The cache of lK entries increases execution speed by 37.2 percent 
(interactive), and 32.6 percent (Hanoi). Execution speed is slower than 
soptimal by only 4.5 percent (interactive) and 1.0 percent (Hanoi). (Note 
that, since the two execution profiles are different, we cannot compare 
the two executions directly.) 

Fast method access is important in achieving better Smalltalk-BO per­
formance. We have presented the main parameters and relations in­
volved in the method lookup process. From these it has been shown 
that the benefits of adding a method cache depend on the relation of 
the overall speed of the implementation to the speed of the cache 
accesses, as well as on the more traditional considerations of hit ratio 
and miss/hit access speeds. 

On an optimized VAX-11/7B0 implementation, the addition of a soft­
ware-supported method cache produced a nine-fold reduction of the 
time required by the lookup process. This by itself, increased the overall 
speed of the Berkeley Smalltalk-BO implementation by 37%. 

We heartily thank all the people on the Smalltalk island, both at 
Berkeley and at Xerox Palo Alto Research Center. We especially thank 
the two Daves, Dave Ungar for making BS a reality, and Dave 
Patterson for encouraging us to write this paper. Without them this 
work would have never existed. We also want to thank all the review­
ers, their comments largely increased the readability of this paper. 



References 

247 
References 

1. Goldberg, Adele, and Robson, David, Smalltalk-BO: The Language 
and Its Implementation, Addison-Wesley, Reading, Mass., 1983. 

2. Krasner, Glenn, "The Smalltalk-80 Virtual Machine", Byte vol. 6, 
no. 8, pp. 300-320, Aug. 1981. 

3. Lipway, J. S. "The Structural Aspects of the System/360 Model 85 
II: The Cache", IBM Systems Journal vol. 7, no. 1, pp. 15-21, 1968. 

4. Deutsch, L. Peter, Private Communication, 1982. 

5. Graham, Susan L., Kessler, Peter B., and McKursick, Marshall K., 
''Gprof: A Profiler Using Call Graphs", in Proceedings of the 
Sigplan Conference on Compiler Construction, June 1982. 









roduction 

LOOM-Large Object­
Oriented Memory for 
Smalltalk-SO Systems 

Ted Kaehler 
Glenn Krasner 
Software Concepts Group 
Xerox Palo Alto Research Center 
Palo Alto, California 

The Smalltalk-BO virtual machine is specified as a memory-resident sys­
tem containing up to 215 objects. When full, it typically occupies about 
2M bytes of memory. Unfortunately, many machines do not have this 
capacity in main memory, and many applications require, or will re­
quire, more than this capacity. To solve this space problem, one typical­
ly uses a virtual memory system in which the resident, "real" memory 
is used as a cache for the larger mass storage, "virtual" memory. 
LOOM, Large Object-Oriented Memory, is a virtual memory system 
designed and implemented for the Smalltalk-BO system. The most im­
portant feature of the LOOM design is that it provides virtual addresses 
that are much wider than either the word size or the memory address 
size of the computer on which it runs. 

LOOM is a single-user virtual memory system that swaps objects and 
operates without assistance from the programmer. Virtual memory sys­
tems may be characterized by the amount of attention that the pro­
grammer must pay to the transfers between virtual and real memories, 
by the extent to which the memory is shared among users, and by the 
granularity of transfer between memory levels. Overlay mechanisms 
are an example of systems that require much programmer attention, 
while all common paging systems require none1. Databases may be 

Copyright © Xerox Corporation, 1982. All rights reserved. 

251 



252 
LOOM~Large Object-Oriented Memory for Smalltalk-80 Systems 

The LOOM 
Design 

viewed as the extreme in allowing sharing; the virtual memory for 
Interlisp-D2 is one example of a single-user virtual memory. Most over­
lay systems transfer program segments, while paging systems transfer 
disk pages, and a few systems such as the OOZE virtual memory for 
Smalltalk-763 transfer objects. 

We view virtual memory design as a process of trying to determine 
what happens most often, making it go fast, and hoping that it will con­
tinue to be what happens most often. Our experience with previous 
Smalltalk systems gave us three major assumptions on which we based 
the LOOM design: programmers and users have a large appetite for 
memory, object-swapping is an efficient and effective scheme, and the 
Smalltalk-SO design for handling resident objects is worth keeping. 
From these assumptions and the desire to provide a large number of ob­
jects on a machine with a narrow word width, we created the major de­
sign decisions. 

• LOOM assumes that the object is the unit of locality of reference. 
It swaps individual objects between primary and secondary memo­
ry, and allows into main memory only those objects actually need­
ed by the interpreter. Unlike paging systems, LOOM packs objects 
in main memory at maximum density. 

• LOOM is designed for machines with 16-bit words. Fields of objects 
in main memory are 16 bits wide. 

• The address space of the secondary memory is large. LOOM allows 
as many as 231 objects. 

• The interpreter accesses objects in main memory exactly as it does 
in a resident Smalltalk-SO interpreter. When the necessary objects 
are already in main memory, the interpreter runs as fast as it did 
in the resident system. 

In order to allow the large number of possible objects, and yet treat the 
resident objects in the same way they are treated in a non-LOOM 
Smalltalk-SO implementation, we decided to create two different name 
spaces. The same object is identified by names from different spaces 
when it resides in different parts of the system, as shown in Fig. 14.1. 
The identifier of an object is called an Oop, which stands for "object 
pointer." An object in secondary storage has a 32-bit Oop (a long Oop), 
and each of its fields containing a pointer to another object holds that 



Figure 14.1 

l 

Smalltalk-BO •◄~---­
Interpreter 

To the interpreter, objects 
look very much like they did 
in resident Smalltalk-BO 

To the large secondary 
memory, main memory 
looks like a cache. 

253 
The LOOM Design 

Main Memory 
16-bit object pointers 

(short Oops) 
16-bit values in fields of objects 

Object Swappingl I 
Secondary Memory 

32-bit object pointers 
(long Oops) 

32-bit values in fields 

pointer as a 32-bit Oop. An object cached in main memory has a 16-bit 
Oop (a short Oop) and 16-bit fields. As in the resident Smalltalk-80 im­
plementation, main memory has a resident object table (ROT or some­
times called an OT), which contains the actual main memory address of 
each resident object. An object's short Oop is an index into the ROT, so 
that the object's address can be determined from its Oop with a single 
addition and memory reference. When an object is brought into main 
memory from disk, it is assigned a short Oop, and those of its fields that 
refer to other objects in main memory are assigned the appropriate 
short Oop. Fields pointing to objects that are not resident are handled 
specially, the details of which make up the crux of LOOM. 

Thus, when all objects in the working set are in main memory, 
LOOM behaves just like a resident Smalltalk-80 implementation-all 
objects have short Oops that index the ROT, providing their actual core 
address. When an object in core must access one of its fields that refers 
to an object that is not in core, something special must happen. LOOM 
brings that object into core, assigns it a short Oop, and resumes normal 
Smalltalk execution. The main memory resident space of 215 objects acts 
as a cache for up to 231 objects on the disk. 



254 
LOOM~ Large Object-Oriented Memory for Smalltalk-SO Systems 

The LOOM 
Details 

The 
Representation of 
Resident Objects 

Figure 14.2 

The important issues in the LOOM design implementation are: 

• The representation of resident objects, 

• The representation of objects in secondary memory, 

• The translation between representations, and 

• The identification of times when the translations must occur. 

Resident objects are represented in a manner similar to their represen­
tation in a resident Smalltalk-80 system. Each object has as its name in 
main memory, a short (16-bit) Oop. The Oop indexes the ROT in order 
to provide the starting address of the object's body, as shown in Fig. 
14.2. The ROT entry also has reference-count bits, and a few other bits, 
described later. The body of each object contains a word for the length 
of the body, a pointer to the object's class, and the object's fields. Each 
field is either a pointer to another object or a collection of "bits", in the 
same manner as resident Smalltalk-80 fields. We will only deal with 
pointer fields here. Each field (as well as the class pointer) that refers 

Indexed by 
short Oop 
(16-bits) 

ROT entry 
of an object 

Format of Objects in Main Memory 

Resident Object Table 
(ROT) 

.,__ 16-bits---+ 

Main Memory 
address of an 
Object Body 

Body of an Object 

------} 
Length 

Class 
..., 

Object 
Header 

Fields of 
the Object 



l 

The 
Representation of 
Objects in 
Secondary Memory 

________________ .£255 

The LOOM Details 

to another resident object contains the short Oo f th t b" t F" Ids . . P o a o ~ec . 1e 
that refer to non-resident obJects (objects on secondary storage) contain 
a short Oop of one of two types, a leaf or a lambda. 

In addition to these fields, resident objects in a LOOM system have 
three e~tra words. _Two of these words contain the long (32-bit) Oop of 
that obJect. The third word, known as the delta word, contains a delta 
reference count and some other bits. The short Oop of an object is not 
only an index into the ROT for that object's address, but is also the re­
sult of a hash function applied to that object's long Oop. See Fig. 14.3, 
p. 256. The algorithm for translating an object's short Oop to its long 
Oop is: 

1. Index the ROT with the short Oop to get the body address 

2. Load the long Oop from the first two words of the body 

The algorithm for translating an object's long Oop to its short Oop is: 

1. Convert the long Oop into a short Oop by applying the hash func-
tion 

2. Index the ROT with this short Oop to get a body address 

3. Look at the first two words of the body 

4. If they match the long Oop, then the short Oop is correct 

5. If not, create a new short Oop from the current one with a 
reprobe function (e.g., add 1), and go to step 2 

Secondary memory is addressed as a linear space of 32-bit words. Ob­
jects start with a header word that contains 16 bits of length and some 
status bits. Each pointer field in the object is 32 bits wide. Non-pointer 
fields (such as the bytes in Strings) are packed, with 4 bytes in each 
32-bit word. Resident Smalltalk-80 Smalllntegers are rather short to be 
occupying a full word on the disk. However, since they represent legiti­
mate object pointers, their 15 significant bits are stored along with a 
flag value in a 32-bit pointer field on the disk. The long Oops in pointer 
fields are 31-bit disk pointers, addressing as many objects as will fit into 
231 disk words (32-bit words). Fields of objects on secondary storage al­
ways refer to objects in secondary storage and do not change when the 
object to which they point is currently cached in main memory. As 
shown in Fig. 14.4, no information about primary memory is ever 
stored in secondary memory. Information such as an object's short Oop, 
its location in primary memory, or whether it is currently cached in 
primary memory are never recorded in secondary memory. 



256 
LOOM-Large Object-Oriented Memory for Smalltalk-80 Systems 

Finding an Object's Long Oop from I ts Short Oop 

Short OopI 

Apply hash 
function to 
long Oop 

ROT Object Body 

------} LongOop 

Delta 

Length 

Class 

Fields 

Finding an Object's Short Oop from Its Long Oop 

ROT 

... Short Oop 

~ This long Oop is not equal to ours. 

II 
~ Likewise, a miss. 

II 

M 
This long Oop is the one we are 
looking for. This object's short 
Oop is the answer . . 

Figure 14.3 



! 
A Short Oop-+ 

How Objects in Primary and Secondary Memory 
Refer to Other Objects. 

Hash a long Oop into the ROT and see 
if the object is cached in primary memory 

) 

257 
The LOOM Details 

The object A Long Oop➔ The object 
(in Primary Memory) 

The object's 
own long Oop 

(in Secondary Memory) 

The object's 
fields 

Primary Memory Secondary Memory 

Figure 14.4 
Objects here do not know if they 
are currently cached in main memory. 

When an object on secondary storage is brought into main memory, its 
fields must be translated from the long form to short form. The object is 
assigned an appropriate short Oop (one to which its long Oop hashes), a 
block of memory is reserved for it, and all of its fields are translated 
from long Oops to short Oops. Those fields that point to objects already 
in main memory are given the short Oops of those objects; those that 
point to objects not in main memory are handled in one of two ways, 
with leaves or with lambdas. 

D Leaves Leaves are pseudo-objects that represent an object on sec­
ondary storage. They have a short Oop hashed by that object's long Oop 
and a ROT entry, but their image in memory only contains a length 
word, disk address words, and the delta word. Their image contains no 
class word or fields, as shown in Fig. 14.5. Leaves therefore, only take 
up 4 words of memory, whereas the average object takes up 13. Leaves 
are created without looking at that object's image on secondary storage. 



258 
LOOM-Large Object-Oriented Memory for Smalltalk-BO Systems 

Figure 14.5 

This is very important, since a major cost in virtual memories is the 
number of disk accesses. The short Oop of the leaf may be treated as if 
it were the short Oop of the object; it may be pushed and popped on the 
stack, stored into fields of other objects, without ever needing the actual 
contents of that object. Its reference count can be incremented and 
decremented (seep. 262). 

ROT 

A Leaf 

Primary Memory 

Long 
- -

Oop 

Delta 

Length (4) 

The object in 
Secondary Memory 

Secondary Memory 

An object is always in one of three states. Either the entire object is in 
main memory, a leaf for the object is in main memory, or the object ex­
ists only on the disk. See Fig. 14.6. When the interpreter needs a field 
from an object which is represented by a leaf, the entire object with its 
fields must be brought into main memory from disk. Since the leaf con­
tains the disk Oop, the body is easy to find. After the body is translated 
into main memory form, its core address is stored into the leaf's OT en­
try, and the leaf body is discarded. Short Oop references to the object 
remain the same, but now the full object is actually there. Since a leaf 
can be substituted for an object body and vice versa with no effect on 
pointers to the object, LOOM is always free to make more room in main 
memory by turning resident objects into leaves. 

□ Lambdas Lambdas are the second way to represent fields of resi­
dent objects that refer to objects on secondary storage. Lambda is a 
place holder for a pointer to an object which has not been assigned a 
short Oop. Its purpose is to reduce the number of leaves in the system. 
Lambda is a pseudo-Oop, a reserved short Oop (the Oop 0) which is not 
the name of any resident object. Consider an object which has a lambda 
in one of its fields. To discover the actual value of that field, LOOM 
must go back to the object's image on secondary storage, look in that 

1 



Figure 14.6 

259 
The LOOM Details 

States of an Object in LOOM 

The entire object is 
in main memory 

I<~xpand a leaf 

The entire object is 
in main memory 

A leaf for this 
object is in 
main memory 

A leaf for this object 
is in main memory 

~ 
Contract 
to a leaf 

The object exists 
only in secondary 
storage 

Resolve a long Oop 
(Assign a short Oop) 

The object exists only 
in secondary storage 

Retire a 
short Oop 

field for a long pointer, and create a leaf or resident object. This means 
that the cost of fetching a lambda field is an extra disk reference. How­
ever, unlike leaves, lambdas do not take up ROT entries (they all use 
the single pseudo-ROT entry at 0) and they do not take up any main 
memory storage. Since the number of ROT entries is limited to 215, and 
main memory is a somewhat scarce resource, this saving can be impor­
tant. During an object's typical stay in main memory, some of its fields 
will not be referenced. If leaves are created for the values in those 
fields when the object is swapped in, and then destroyed again when 
the object is thrown out, much work is wasted. Putting lambdas into 
fields which will not be referenced during the object's current stay in 
primary memory saves both the space and the time needed to create 
and destroy many leaves. 

Determining whether to make the fields of an object be leaves or 
lambdas when the object is brought into main memory is a tricky busi­
ness. The choice of strategy strongly affects the performance of a 
LOOM system. Creating a leaf takes more time and uses up more mem­
ory and a ROT entry, but does not cause any extra disk accesses. A 
lambda will cause an extra disk access if the field it occupies happens 
to be referenced, but a lambda is faster to create. One way to make the 
decision between leaf and lambda is to rely on history; if a field was a 
lambda when this object was written to the disk one time, it is likely to 
remain a lambda during its next trip into main memory. Each pointer 
field of the disk contains a hint, the noLambda bit, and the object 
faulting code follows the advice of the hint. 



260 
LOOM~ Large Object-Oriented Memory for Smalltalk-SO Systems 

The Translation 
Between Object 
Representations 

When to Translate 

LOOM 
Implementation 
Details 

Object Faults 

Translating between the memory-resident and secondary-storage repre­
sentations of an object is straightforward. For those fields that contain 
short Oops, the Oop refers to an object or a leaf. The corresponding long 
Oop can be found in the header of the object or leaf. If the field refers 
to an object which has not yet been assigned a long pointer, a long 
pointer is assigned to the object and a copy is installed in the field. For 
those fields that contain lambdas, the field is guaranteed not to be 
changed from the object's previous disk image. (The object's disk image 
is read before it is written). If the object being translated still has some 
short pointers to it (has a positive in-core reference count), then it must 
be converted to a leaf instead of being deleted completely from core. 

We have already mentioned when the translation between representa­
tions must occur. When a field of an object being brought into main 
memory has the noLambda bit set, and that field refers to a non-resi­
dent object, then a leaf is created. A leaf is also created when a field of 
a resident object containing a lambda is accessed. When the interpreter 
needs to access a field in a leaf, the flow of control in LOOM begins (see 
Fig. 14.7). The leaf is expanded into a resident object; its fields are 
translated from long form to short form. This is called an object fault 
(because the similar situation in paging virtual memory systems, trying 
to access a page that is not resident, is called a page fault). The inverse 
operation, contracting an object into a leaf, may be done at any time. 
The final part of an object's journey into primary memory consists of 
destroying the leaf and reusing its short Oop and memory space. This 
can only be done when there are no longer any fields in any resident 
objects pointing to the leaf. 

Lambdas may be resolved into leaves and leaves may be expanded 
into full objects before they are needed, and this is called a prefetch. 
The complementary operations of contraction and prefetch of objects 
can both be done in the background. The exact order and mix of objects 
to prefetch or contract can be adjusted at run-time to optimize the per­
formance of secondary storage (disk head movement or network traffic). 

In this section, we provide some details of how LOOM may be 
implemented. In particular we discuss the discovery of object faults, ref­
erence-counting, and the assignment of the extra bits in the ROT entry 
and the delta word. 

Object faults occur when the interpreter tries to access a field in a leaf 
or a field in an object whose value is lambda. By the time the interpret­
er scrutinizes them, all objects must be full resident objects. How can 
leaves and lambdas be discovered without greatly slowing the speed of 
the interpreter? 



261 
LOOM Implementation Details 

The Flow of Control in LOOM 

The entire object 
is in main memory 

A leaf for this object 
is in main memory 

~ 

terpreter 
om an obj 
is a leaf 

Figure 14.7 

Expand 
the object 

have to co 
objects to 

Contract an object 
to a leaf ..u, 

nd needs t 
ong Oop i 
to a short 

The object exists only 
in secondary storage 

Resolve a 
long Oop 

\ 
In the very rare case 
that there is no empty 
ROT entry with the 
proper hash, contract 
objects until such an 
entry is freed 

The object exists only 
in secondary storage 

Retire a short Oop 
(Destroy the leaf) 



262 
LOOM~- Large Object-Oriented Memory for Smalltalk-SO Systems 

Reference 
Counting 

It has been our experience that implementations tend to have a sin­
gle subroutine (or expanded macro) that takes an Oop and sets up some 
base register to point to the actual address of that object. We call this 
subroutine "Otmap." It corresponds roughly to the ot:bits: method of the 
memory manager in the formal specification of the Smalltalk-SO virtual 
machine, in Smalltalk-BO: The Language and its Implementation4• 

Otmap is called if and only if you want to fetch or store a field of an ob­
ject. Note that this is exactly the condition where you must test for the 
object being a leaf. (Otmap may sometimes be used for other purposes­
for example a compaction routine may call Otmap to get the main 
memory address of the object in order to move it, but it wants to treat 
leaves and objects the same. These cases tend to be rare, so it is worth 
having a second subroutine for them.) We reserve one bit of the ROT 
entry to say whether the entry is for an object or a leaf. The Otmap 
subroutine tests this bit and calls the LOOM routines when the entry is 
a leaf. Since both words of the ROT entry are fetched anyway, this ex­
tra test usually only costs one or two extra instruction executions. 

Testing for lambda however, must be done on every field reference. In 
the worst case, this would mean testing occurs every time a field is 
fetched from an object and every time an object is pushed onto the 
stack. To decrease the number of tests, we include one bit in each resi­
dent object called "holds lambda." It is set by the LOOM routines 
whenever that object has a field that is a lambda. The interpreter guar­
antees that the current context, the home context, the current method, 
and the receiver all have no lambdas in them. If any of them does con­
tain a lambda, then the LOOM routines are called to make those fields 
into leaves. In this way, the most common fields fetched and all stack 
operations can work without testing for lambda. Note that these objects 
must be cleared of lambdas only when the active context changes. This 
occurs during message sends, returns, process switches, and during the 
execution of BlockContext value and value:. 

It is useful to note that the LOOM design actually will work with 
leaves alone, and without lambdas. When the expand routine brings an 
object into main memory, it turns all the fields into leaves and never 
creates a lambda. This approach tends to use more short Oops and 
main memory than the full LOOM design, but could be an intermediate 
stage in the implementation; providing a working virtual memory sys­
tem with only the modification to the Otmap subroutine. 

Although some Smalltalk-SO implementations use mark/sweeping gar­
bage collection, most implementations so far, including ours, use refer­
ence counting to identify garbage. Therefore we will describe the 
reference-counting scheme as it applies to LOOM. Reference counting 
serves two different purposes. One purpose is to detect when the total 
count of any object goes to zero. The other is to detect when the last 
short pointer to any object disappears so that the short pointer may be 



Other Data 
LOOM Holds for 
Each Object 

263 
LOOM Implementation Details 

reused. The resident Smalltalk-80 interpreter keeps reference counts of 
short pointers. This count is kept in the ROT. LOOM uses the ROT ref­
erence count to keep the number of short pointers to an object. In addi­
tion, every object on the disk contains a reference count which is the 
number of long pointers to the object. The total count is the sum of the 
number of short and long pointers to an object. Whenever a long Oop is 
converted to a short Oop and installed in a field in main memory, both 
counts for the object pointed at must change. To avoid a disk access to 
find and modify the long Oop count every time a field is converted, 
LOOM keeps a ''delta" or running change in the long Oop reference 
count for each object in main memory. The true long pointer reference 
count of any object is the count found on the disk in the object's header 
plus the count found in the ''delta" part of the object's delta word in 
main memory. Fig. 14.8 shows the ROT entry, object body, and disk im­
age of an object. The object has three short Oops pointing at it. It used 
to have pointers from 6 long Oops, but two were destroyed recently 
(they were probably converted to short Oops). The total number of ref­
erences to the object is seven. 

There are three sources of reference-count changes. One pointer can 
be stored over another, a long pointer can be converted to a short point­
er, and a short pointer can be converted back. Since the interpreter 
only deals with short Oops, every store consists of a short pointer re­
placing another short pointer. This high-bandwidth operation touches 
only the short pointer reference counts, so the existing code in the in­
terpreter does not need modification. When a leaf expands to a normal 
object, pointers in its fields change from long Oops to short ones. The 
expand-a-leaf routine increments the short count of that object and dec­
rements the delta of its long count. The inverse happens when the rou­
tine which shrinks objects into leaves converts short Oops to long ones. 

Consider the case when the short Oop count of an object goes to zero. 
The reference-count routine then looks at the object's long Oop count to 
see if the total count of the object is zero. If it is zero, the object is truly 
free, and its storage can be recycled. If not, the object is still held by 
some long pointers. When the short Oop reference count goes to zero, 
and the delta reference count is zero, then the object's long Oop count 
on disk need not change. Thus if the ultimate long pointer count of a 
leaf can be guessed correctly when the leaf is created, the disk count 
and delta count can be adjusted so that the leaf disappears from main 
memory without further disk references. 

As a help to the LOOM system, two other bits are added to the ROT en­
try for any object- ''clean" and nunTouched." Clean is cleared when­
ever a field of the object is changed; unTouched is cleared whenever a 
field of the object is read or changed. Clean tells the LOOM system that 
it need not rewrite the object's image on disk (unless of course, its true 
reference count changed). Clean is set when the object is newly created 



264 
LOOM~Large Object-Oriented Memory for Smalltalk-BO Systems 

Figure 14.8 

ROT Count 

3 

The Three Types of Reference Counts 

ROT Main Memory 

Count 

Example Reference Counts 

Di~k 
Count 

Secondary Memory 

There are a total of seven references to this object. 
Three are from short Oops and 
(6 + -2) = 4 are from long Oops. 

6 I 

-2 

or swapped in. U nTouched is set by a routine that sweeps core whenev­
er space is needed. Any object that the routine finds with unTouched 
still set has not been touched in an entire pass through memory, and is 
thus a candidate for being contracted (turned into a leaf). 

The activity which is most likely to cause LOOM to thrash is the res­
olution of lambdas. When a lambda needs to be resolved (turned into a 
leaf or discovered to be an existing short Oop), LOOM must first look at 
the disk image of the parent object. If the pattern of computation is 



LOOM 
Implemented 
in the 
Smalltalk-80 
Language 

265 
LOOM Implemented in the Smalltalk-SO Language 

such that the noLambda hint does not correctly predict which fields are 
needed by the interpreter, lambdas would have to be resolved often. 
Even so, lambda resolution is likely to happen soon after the parent 
was expanded, so keeping the most recently fetched disk pages in a 
cache relieves the need to go to the disk. When a lambda needs to be 
resolved, the LOOM procedure looks first in the cache of pages that is 
called the disk buffer. If it finds the object in the buffer, it can directly 
retrieve the long Oop for the lambda, saving one disk access. 

The LOOM design, though based on only a couple of simple principles, 
has a number of reasonably complex algorithms that require a substan­
tial amount of code. We were faced with the problem of whether to im­
plement LOOM's object swapping algorithms in a low-level language or 
a high-level language. Low-level implementations typically provide bet­
ter performance at the cost of some flexibility. 

We opted to implement the LOOM system in our favorite high-level 
system, the Smalltalk-80 system. A number of factors influenced this 
choice. The overriding factor was that for us, the Smalltalk-80 language 
was the most natural way to express and understand complex algo­
rithms. We are implementing LOOM on the Xerox Dorado computer5 

(see also Chapter 7). We believe that the Dorado has sufficient perfor­
mance and memory space so that the LOOM system will not be called 
very often. When LOOM is called, it will run with acceptable perfor­
mance. Also, once the system is up and running, we will have a com­
plete, debugged high-level description of the algorithms. Should we 
decide to reimplement LOOM on the Dorado or another machine in a 
lower-level language, only a translation of the code would be required. 
In addition, we designed LOOM not only as a working virtual memory 
system for our Smalltalk-80 work, but also as a test-bed for virtual 
memory techniques. Jim Stamos' master's thesis6 is an example of one 
e·,perimental technique based on simulation. We want further studies 
to use a real virtual memory system. 

Deciding to implement LOOM in the Smalltalk-80 language itself led 
to problems that might not be encountered in a low-level language im­
plementation. In particular, the amount of "machine state" that needs 
to be saved when switching between running the Smalltalk-80 inter­
preter for "user" and for LOOM was quite large. The amount is much 
larger than the amount of Smalltalk-80 virtual machine state that 
would have to be saved to run the LOOM code written in machine lan­
guage. Also, to avoid a fault on the faulting code, all of the code and 
other objects which comprise the implementation of LOOM must be 
guaranteed to stay in main memory at all times. 



266 
LOOM- · Large Object-Oriented Memory fur Smalltalk-SO Systems 

Alternative 
Smalltalk 
Virtual 
Memory 
Designs 

We handled the first problem, saving state, by reworking our inter­
preter. It now obeys the convention that within the execution of a 
bytecode, an object fault is possible only before any ''destructive" opera­
tions occur. In other words, before the interpreter writes into a field of 
any object or changes the reference count of any object, it reads fields 
from all objects needed by the current bytecode. In this way, the state 
we needed to save was only the "permanent" state that exists between 
bytecodes. Temporary state within a bytecode is not saved. In our sys­
tem then, if an object fault occurs, we back up the Smalltalk program 
counter, switch the interpreter to the LOOM system, handle the fault, 
and then restart the bytecode. 

The second problem, insuring that no object faults occur during the 
execution of the LOOM algorithms themselves, went through a couple 
of different designs. The first method we tried was to have the LOOM 
objects and the user's objects in the same Smalltalk-SO space, but to 
mark all the objects LOOM would ever need "unpurgable", and to guar­
antee that free space never went below a certain level. We made an al­
most-complete implementation of LOOM using this method on the 
Xerox Alto computer7 before moving onto the Dorado. The problem with 
LOOM and the user sharing the same Smalltalk is retaining the marks 
on objects that LOOM needs. If the user adds many methods to class 
Smalllnteger and its method dictionary grows, how does the new array 
in the dictionary get marked "unpurgable"? There are many similar 
cases. 

The LOOM implementation on the Dorado has two separate 
Smalltalk-SO systems in the same machine: a full-size system for user's 
programs, and a smaller one for LOOM. The LOOM system has some 
primitives that enable it to manipulate the bits inside of objects in the 
user system. (Note that because they use the same interpreter, the user 
system has these primitives also. However, they make no sense in the 
user system, so are never used.) Because the LOOM system uses only a 
small subset of the Smalltalk-SO system, it can be much smaller, and 
can be guaranteed to fit entirely within its portion of main memory and 
never cause an object fault. Fig. 14.9 provides a view of the communica­
tion between the systems. 

The LOOM virtual memory design is only one of many ways to imple­
ment a virtual memory for a Smalltalk-SO system. The advantages of 
the LOOM design are: 

1. It runs as fast as a resident Smalltalk-SO interpreter when the 
working set is in core, 



267 
Alternative Smalltalk Virtual Memory Designs 

Two Separate Smalltalks in the Same Machine 

t 
I 
I 
I 
I 
I 
I 
I 
I 

User's Smalltalk 

meally, these are the same 
interpreter. Only pointers to the 
interpreter state and location 
of the ROT change) 

ROT 

manipula 
user's R 

nt object 

Resident Objects 

r---
1 

Objects on I 
Secondary I 
Storage I 

~ 
L __ _ 

-----I 
Interpreter requests to LOOM: Loom manipulation of 

Expand a leaf 
Fix a lambda 
Make more space 
Make more ROT space 
Handle overflow 

reference counts 

Figure 14.9 

user's objects in 
secondary storage using 
normal smalltalk file 
and ethernet code 

4 Primitives 

Resident Objects 



268 
LOOM~Large Object-Oriented Memory for Smalltalk-SO Systems 

2. It uses 16-bit fields in core to conserve space, 

3. It allows the interpreter to avoid handling 32-bit Oops, which 
makes the interpreter smaller and faster on 16-bit machines, 

4. It only uses memory for objects that are actually referenced, and 

5. It provides a large, 32-bit virtual address space. 

Its major disadvantages are: 

1. It relies on fairly complicated algorithms to translate between the 
address spaces, 

2. It takes no advantage of current hardware technology for memory 
fault detection, and 

3. It must move objects between disk buffers and their place in mem­
ory. 

There are alternatives to many of the design decisions within LOOM 
and to using the LOOM design itself. 

LOOM was designed specifically to experiment with various methods 
of "grouping" objects on disk pages. If objects which are likely to be 
faulted on at the same time live on the same disk page, only the first 
fault actually has to wait for the disk. Static grouping restructures the 
arrangement of objects on disk pages while the system is quiescent. It 
reduces the number of disk accesses for both paged virtual memories 
and object swapping systems. Stamos extensively studied the advan­
tages of static grouping and compared LOOM to paged virtual memo­
ries8. LOOM is also designed for experiments in dynamic grouping. We 
have several algorithms in mind for moving objects on the disk while 
Smalltalk is running. These algorithms will endeavor to reduce faulting 
by dynamically placing related objects on the same disk page. 

We also mentioned that a LOOM system can be built that only uses 
leaves and not lambdas. Another alternative that we did not pursue is 
to use a marking garbage collection scheme for resident objects and ref­
erence counting for disk references. This should be possible using the 
delta reference-count scheme. 

LOOM is currently intended for use over a local area network. The 
design could be extended to bring many users, many machines, and 
large quantities of immutable data into the same large address space. If 
32-bit long Oops are not big enough, objects in secondary memory could 
be quad-word aligned, giving 236 bytes of address space. The LOOM al­
gorithms are parameterized for the width of long pointers, so that a 
change to 48-bit wide long Oops would not be difficult to do. 

The LOOM design may be used for non-Smalltalk systems. In partic­
ular, we have proposed a LOOM-like design to extend the address space 
of Interlisp-D. The design adds another level of virtual memory to the 



Learning from 
LOOM 

Acknowledg­
ments 

269 
Acknowledgments 

existing Interlisp-D paging system by treating a page as a single object 
and an existing page address as a short pointer. 

Our LOOM virtual memory system is in its infancy. We are only begin­
ning to make measurements on its performance. The design choices of 
the LOOM system are based on the belief that the way to design good 
virtual memory systems is to determine what happens most of the time, 
make it go fast, and hope it continues to happen most of the time. 
Many trade-offs were made to meet this goal. Some of the design 
choices we made apply to almost all Smalltalk-SO implementations and 
some were determined by our hardware/software environment. For ex­
ample, the general idea that object swapping saves main memory over 
paging applies to all Smalltalk-SO systems, but the relative cost of ob­
ject swapping versus paging can be heavily influenced by hardware sup­
port for one or the other. Since we know of no current hardware that 
supports object swapping, but we do know that a great deal of current 
hardware supports paging, paging has a tremendous advantage. Many 
of the costs of paging are hidden, such as the address computation on 
every memory reference, and the "built in" paging hardware on many 
machines. If those costs were brought into the open, and the same 
amount were spent on assisting object references, object oriented virtu­
al memories might have better cost-performance than paging systems. 

The LOOM design uses two levels of object addressing and translates 
between address spaces when necessary. Up to 231 objects residing on 
secondary storage are represented by a cache of 215 objects in main 
memory. These behave almost identically to resident Smalltalk-SO ob­
jects. When a reference from an object in main memory to one in sec­
ondary memory is made, an object fault occurs, the latter is brought 
into main memory, and processing continues. This design allows for a 
large virtual address space and a space- and speed-efficient resident 
space. Because the major algorithms in LOOM are written in Smalltalk 
itself, LOOM will be a major test-bed for new swapping algorithms and 
for new ways of reducing page faults by grouping objects in secondary 
storage. 

The design of LOOM was a true group effort. Jim Althoff and Steve 
Weyer proposed an early version to improve the speed of their work on 
programmer directed object overlays. Peter Deutsch worked out a de­
sign for an early version of the dual name spaces (short and long Oops). 



270 
LOOM~Large Object-Oriented Memory for Smalltalk-SO Systems 

References 

Dan Ingalls, Glenn, and Ted designed the three kinds of reference 
counts. Danny Bobrow said that leaves were not enough, and Larry 
Tesler suggested lambdas from the design of his operating system called 
Caravan. Ted, Dan, and Glenn worked out the final system design, and 
Ted and Diana Merry built a test version of the LOOM algorithms. Ted 
and Glenn did the Alto and Dorado implementations. 

1. Denning, Peter J., "Virtual Memory", Computing Surveys vol. 2, 
no. 3, Sept. 1970. 

2. Burton, Richard R., et al., (The lnterlisp-D Group), Papers on 
lnterlisp-D, Xerox PARC CIS-5, July 1981; (a revised version of 
Xerox PARC SSL-80-4). 

3. Kaehler, Ted, "Virtual Memory for an Object-Oriented Lan­
guage", Byte vol. 6, no. 8, Aug. 1981. 

4. Goldberg, Adele, and Robson, David, Smalltalk-BO: The Language 
and Its Implementation, Addison-Wesley, Reading, Mass., 1983. 

5. Lampson, Butler W., and Pier, Kenneth A., "A Processor for a 
High-Peformance Personal Computer'', Seven th In tern a tional 
Symposium on Computer Architecture, SigArch/lEEE, La Baule, 
France, May 1980; (also in Xerox PARC CSL-81-1, Jan. 1981.) 

6. Stamos, James W., "A Large Object-Oriented Virtual Memory: 
Grouping Strategies, Measurements, and Performance," Xerox 
PARC SCG-82-2, May 1982. 

7. Thacker, C. P., et al., "Alto: A Personal Computer", in Computer 
Structures: Readings and Examples, 2nd Edition, Eds. Sieworek, 
Bell, and Newell, McGraw-Hill, New York, 1981; (also Xerox 
PARC CSL-79-11, Aug. 1979. 

8. See reference 6. 



\ 

KUIJ,VI/JG- OUT oF fY1E.mOR'-j ( 
1S LIKE. oorn110c;.- TD Tl-+E 

8JD OF .:joup_ ROPE 

~~~-_/~ 

BuT l)J1T4 TliE LCOffl Vl(TIHtL

M£mote.y ,::Jou NE.U£fi?__ /-IA.VE

/0 WoRRY ABour T!-1A1

271

Introduction

A Research
Programming
Environment

Managing the Evolution
of Smalltalk-SO Systems

Steve Putz
Software Concepts Group
Xerox Palo Alto Research Center
Palo Alto, California

This paper describes a software system currently being used by the
Software Concepts Group (SCG) to help facilitate and document our de­
velopment of the Smalltalk-BO system. The central feature of this devel­
opment support system is a remote database containing information
about past and proposed changes to the Smalltalk-BO system, as well as
bug reports and an informal library of application programs. We call
the present program which maintains this database the Smalltalk-BO
version handler.

Three kinds of documentation which we have found to be important
in the development of the Smalltalk-8O system are:

1. Documentation of system changes and system release versions,

2. Documentation of known bugs and other problems, and

3. Maintenance of a software applications library.

The SCG Smalltalk-BO programming environment is used as an experi­
mental basis for the development of new concepts in user interfaces,
language, and system development tools. The system is modified in or­
der to repair bugs, to enhance existing functions, and to introduce new

Copyright © Xerox Corporation 1982. All rights reserved.

273

274
Managing the Evolution of Smalltalk-SO Systems

Past Practices

functionality. New versions of the system are released for use within
the group frequently. Since different people are often working on the
system at the same time, it is important to coordinate and document
changes to the system, so that inconsistencies are not introduced and
new bugs are kept to a minimum. Since each user has their own copy of
the system, those who are using the Smalltalk-80 system for creating
independent applications also need to know about changes to the sys­
tem, so they can maintain compatibility and take advantage of new fea­
tures. Documentation of problems found by users of the system can help
to warn other users, as well as serving as a list of "things to fix." It is
therefore very desirable to have a well maintained bug list which is
easy to update and access.

In addition to fixing and improving the Smalltalk-80 system itself,
SCG and other users often create small software applications or en­
hancements which may be of interest to others. We call these programs
and enhancements "goodies." It is useful to have easy availability and
documentation for these goodies in the form of a software applications
library. If popular, goodies may be incorporated into a later version of
the system.

In the early development of the Smalltalk-80 system, as with its precur­
sors, we had only some ad hoc and informal mechanisms for
maintaining the three kinds of system documentation mentioned earli­
er. At any given time, our current Smalltalk system would be more or
less stable depending on the current focus of activity. During a period of
rapid change and development, many people are doing systems pro­
gramming and new versions of the system may be created as often as
several times a day. Eventually this is followed by a more stable period
in which more people are doing applications and other independent ex­
periments; new versions of the system, with minimal changes, are then
released every few months or so.

During the periods of rapid system development, changes were fre­
quently made directly to the current system image, which was then
written out to become the new, current system. Although old versions
were always maintained for reference and recovery, no systematic docu­
mentation was kept of the changes made, other than verbal communi­
cation and some notes (written by the programmer) kept within the
system itself. Bugs were either communicated verbally or sometimes
listed on a whiteboard until fixed.

An Interim
Development
Support
Mechanism

275
An Interim Development Support Mechanism

During more stable periods, changes were collected in Smalltalk-80
code files and later applied to the system all at once. A more or less de­
tailed message would be distributed (via electronic mail) outlining the
changes in the new version. Problems and bugs were usually communi­
cated verbally and not necessarily written down.

An informal applications ("goodie") library evolved where users
placed Smalltalk-80 code files on a special file directory and announced
the new goodie via electronic mail. Usually little or no documentation
accompanied the announcement. The announcements were not system­
atically collected, so unfortunately there was not a satisfactory index of
what was available.

These informal methods worked reasonably well due to the small
number of people involved, and the relative simplicity of the changes
being made. One of the disadvantages was that less urgent information,
such as a small bug, was often forgotten. Another disadvantage was
that no detailed record was kept of why a particular change or fix was
made, and why it was done the way it was. Often the programmer is
not even fully aware of his implicit design decisions. As a result, some­
times an important part of a change would be accidentally undone or
interfered with by a later change.

During one period of especially frantic development, we decided that
some more formal mechanisms for dealing with documentation and sys ..
tern software were required in order to better support our needs for
communication about our changing Smalltalk-80 system. One reason
for this is that the Smalltalk-80 system is significantly larger and more
complex than earlier Smalltalk systems. Software tools for manipulat­
ing this information would be very helpful and would be much less te­
dious than the corresponding manual methods.

Although we planned to create software within the Smalltalk-80 sys­
tem itself for system development support, we started with a simple
mechanism consisting of a minimum of automation in order to gain
some preliminary experience. Fig. 15.1 is a diagram of the components
of the interim support system, outlining as an example the submission
of a bug fix report.

Initially we used an electronic mail system that was not part of the
Smalltalk-80 system in order to enter and collect messages about the
Smalltalk-80 system. Standard forms were used to send messages to a
special "mailbox" (called "Smalltalk80Support") regarding bug reports,

276
Managing the Evolution of Smalltalk-80 Systems

user fixes a bug and
places the code file
on a remote file server

II
{ Smal\taT System)

Figure 15.1

user sends an electronic
message describing the

bug fix

II
Mail System)

maintainer appends the
message to the appropriate

remote mail file

II
{ Mail System)

L1 Mail Server l_j t
► I File Server

user opens a mail browser
and may inspect or incorporate

the code files mentioned

II
(Smal\taT System)

bug fixes, system changes, "goodies," or miscellaneous comments about
the Smalltalk-BO system. Copies of these messages were also sent to a
Smalltalk-BO users' group called "Smalltalk8OUsers." Fig. 15.2 shows
the form used for submitting bug fixes. These messages were collected
daily by a system maintainer in a number of mail files on a remote file
server.

Subject: Smalltalk-BO Bug Fix: ShortDescription
To: Smalltalk80Support.PA
cc: SmalltalkBOUsersf.PA
Source-File: [Phylum]< Smalltalk80Support > FileName .st
From-Version: VersionDate
Bug: DescriptionOfBug
Fix: DescriptionOfFix
Methods Affected:

ListMethodsAffected

Figure 15.2 Reviewer: NameOfReviewer

Messages regarding software submissions (e.g., bug fixes or goodies) con­
tained the field Source-File indicating the name of a centrally-located
file containing the source code. Periodically new versions of the system
would be created based on the messages received. An electronic mes­
sage would then be sent documenting the new version.

A simple user interface was created for browsing the message files
from within the Smalltalk-8O system. The mail browser window shown
in Fig. 15.3 has two parts. The top part is a menu containing the titles
of the messages in the file. When the user selects a title, the corre­
sponding message is displayed in the lower part, Fig. 15.4.

277
Detecting Conflicts Between Software Submissions

I (t;'.i~,i~{ ~ :; /~',;/ ;:;, :r;~t~l~~,~~:~,~:~'.~~~\;/'.;.:~,,;;~ ~,_i;g
I Sn:,,:illthlt-80 Eug F.eport: Ye1 another reframe t)x bu

: '.~'.~::~:::~!;=;;;:;: ~:::: ;:;;~1/;~:~}\,~~:/:::.1~u1:'.:f, ~~~! ~.:i:.;~
I Sn:,allt-:,H:-:lO Eug Fix
I ;,mall 1-:,H: - ,l O Eu g F ll:
I ;:'.ma<l!Talk-,30 Eug FD: undo of the scrolling change
I s,-nalJT.;lk-:30 Eug Fix Slow ;,mal!ln1eger pnn11ng

Figure 15.3

Detecting
Conflicts
Between
Software
Submissions

F·rofft: t:1eu1,;..=;ch.pa

Sub_1ec1: ;:'.m,;JJ1-:,Jl:-BO Eug F1:-: i'.low ;,:ff,,:1l!ln1eger pnn,rn:s

To·. 1:.m.:1llt-:,H:80f'..uppori .P."-.

cc: Sn:,,;Jlt-:,lU,OUsers, PA

Source-File: (Phylum]' ,~m.:1111.:1H::=:oi:uppor1 ·!p,:Hn1Pnn1.s1

The JTLethod for ::'.fft:t11Int~~er pr1n.t 1: 1n:b.:1.:'.e i:~1d fft,:iriy

point.less i:i:1n1:;,-ers1onz. tu:-t".1.teen (hara.i:tJ:""f.3 .:1.nd d1g1t 1:,T,:ilues

The fltet.hod had obv1ou.:-ly tu:•en fixed up sever.,l 1.111,e,:., t,y
people '~i.i'ho d1dn·r h,:t,,'e the Uffte ro re,:1.c.~ 11 c.:t.refully, 1n

order tJ:1 sunri1::re rl".Lro1_1gh rhe ,.:r,3J'1ous .1unras

Fix: The d1gi1 buiier 1n Smalllnieger W,'JS changed irorn

String ro a.n .. ~rra.y, .:1.nd all rhe 1_1nnei:e;:;,:,.3.ry· con1:.'er.:-1on.:­
were rer1w"ed. Tlus flx speeds up Smalllnteger pnn11ng on

)(1(:-:::,

Sr,,alllnteger prm11.: 1n:base:

~:m,;Jl!nteger cl,"c:'5 111111.;}1.::e

Figure 15.4

This user interface also allows the Smalltalk-BO source code referenced
by a message to be inspected or incorporated into the user's
Smalltalk-BO system via additional pop-up menu commands. Fig. 15.5
shows the user invoking the browseSource command for the bug fix en­
try being viewed; Fig. 15.6 shows the file window obtained as a result.
The user is not allowed to modify the message text or the source code.

One of the problems encountered with this distributed approach to sys­
tem development and maintenance is avoiding (or at least detecting)
conflicts in work done by different people in parallel. The longer the
time span between system releases, the more likely that incompatible
conflicts will arise between system changes submitted by different

278
Managing the Evolution of Smalltalk-SO Systems

'.l I ,;rnal11.:1.ll:-t:O Bug Fix: [•1s.".llows ::;1,:,nng m10 .'".rgs ,:,,g
11 / :".mallr.3.11-:-80 Bug FJX: Fix refr.;,r,ei,n,:,,,e ,:.,nee! bug
17 I ,;,n.,l!T.:1.1,: -t:O E:u g filelnSourc e
l / / :::m.3J[r.3JL-t:t:1 Bug
~'. \ ,:.rr,.:1.111.31\>t:O B1-1g : w·.:\.", n,:,1 The l}esr ,_
~ :: / ,;m.,JJ r.,Jl; - :': 0 Bug F JX: "ne\ " - - · "b,3;:.1,: New" 1n •=•t•Je•
~ :: I ;_~fiL,:<llt..311:-80 Bug Fix: EeffL,:under of ,:1rgurrlenr 5T.J:,rers
~4 I Smallt.:tlk-t:O Bug Fix: undo oi 1.he scrolling ch,3nge

10-WWiiii?WfMIIWW◄M@-■■PIIIMMIDiiNI■
Frorn: r 1e-ur..sch.p.:1
,;ubJe,:r: ,;m.,111.,H;-:':(1 Bug Fi:-: :''.lo·.-: ,:,-.-,.3J]ln1eger pnnllng

To: :c_:,-.-,.3JJ1.3J!;:j(1:::uppor1.P."-.

,:,: ::·.,-.-,.3lJ1.3ll::':OTJ,.erc t .PA

So1_1r,:e-F 1le. [Phyl1.-1 rr,] ,:.rr,.31lt.3l\: .:0,:.1-1 pport lpd!ntF'nnr .ct

1: • .:rer,:.1on· Fet1~~

TY1e h1erb,:1d i1:1r /;-.i-,.:iJ)lnr.ei:,•i:-r pnr~,1= n \~1,::i.:e :l1d hi:..Y1y·

po1ntle,:.5 con1:ters1ons betv.teen i:h.:,r.:ii:rer,:. .:,rid d1g1r T,.T,:il1_1ez.

The ffLt:'Thod h,:id obT.r101_1,:.Jy been !"1xe1J 1_1p se-:rer,:d T!JYte~., by

people ,.,..1bo d1dn·r l:J,:"l,::re tl1e Tlffle to re.:id ll 1:.:tref1-1ll;t, 1n

order tJ:1 ,:,1_1r,::r1T.:re tbr1:11J gh the T .. ',:1r1ou.:. _11-1r1r.:1:

Feb. G / :':'.m,:l.llt .• :l.!L-80 Bug Fix: [,1sAllO'.Ol.' ;:;t,:,nn;: int,:, .".fs.5 i'-3g
rtfr.:1siLE'/n."l0 1,:re r:ani:l':'1 t1JJ ·~
cet another refr.:tine f1:,: bu•:.

~From ;''.m.:1JJt.3Jl;-:JI) oi Febru.:1ry ~~, Febru:1r;'
1·~:::~ ,:.,t ~: 17:01:, 3sn' 1

•

i~:~fft,:tllln te ~ er fflefr1od .:.For ·pnn tin:,;· 1

pr1nr 1=1n .. :i~=_'.tre.:isit t,.:i.:-e ti

11 :·
~ ceelt i

1iTr1_1e

[,=1~:_'.rre.:isit r1e: tPu 1 £­
.... ~elf rie:i:.:t1J:"d ~

[:: - h]
T.1.'h1leTrue

[[,1;1tt:iutfer .:it 1 l l + 1 .r p1Jr

:, - :, 1:,J

[11211t11_1ffer .:it: 11 - 1 + 1 put

[: 1:iJ

The d1~1t buffer 1n ~::irL-:rllinte~·er i1-T,:t.:. cb.:i11i•ed fri:1J"f1 ·=" ',1 ◄'b1leTrue

~:r.r1n ~- t.o ,::,i-i • .:::..rr,:iy·, ,:ii-1d all tbe u1u1ece,:,5,::i.r:,.:- con 1:.'er 510n: [.:ii.'.trt".:iHl r1e:-:rf1_1r i' ~·h.:1r.:1i:rer 1~l12-1rT• .. T.:1J1_1 e

i'[11 · 1rb1_1ffer ,:it 1 1 Tb1:. fix .:-peed.:. up ~:~ffL,:tlllnti=:~er pr1nt1n2 on

the [1olpL1n by . .:,b1:1_1t j ~ j 1]' I

t ... ·lethi:11::\ ,: .. i:....if e(ted

;:'.JIL,:111Inti:-ger pr1nr 1=1n b.3,.:.e

;:_~fft,:dllntl:'~er 1:l,:1 . .:-.:~ 1n1t1:ih.:e

Figure 15.5 Figure 15.6

users. In the Smalltalk-BO system, this usually occurs when two pro­
grammers have modified the same Smalltalk method definition.

In order to help solve this problem, we developed a program for ana­
lyzing Smalltalk-BO code files and reporting the ways in which they
conflict, i.e., by modifying the same method definition or other
Smalltalk object. This approach works very well since most Smalltalk
method definitions are very short and perform a very specific function.
Whenever two or more submissions define the same method, all con­
flicting definitions are appended to a "conflict report" file. It is then up
to the programmers involved to determine how to resolve the conflicts.
Often one of the definitions can be chosen over the others. Otherwise a

An On-Line
System
Development
Database

279
An On-Line System Development Database

new method must be written which merges or resolves the functionality
of the conflicting definitions. No automatic conflicts resolution was
attempted.

Although this tool is fairly crude, it has proven very useful for
detecting and resolving at least some conflicts which otherwise would
have gone undetected or surfaced later as annoying bugs.

After using the interim support mechanism for several months, we
were ready to create a development support system within the
Smalltalk-SO system itself. Since the Smalltalk-SO system did not then
interface with the Xerox internal electronic mail system, one of the
main disadvantages of the interim mechanism was that users were not
able to submit reports directly from the Smalltalk-SO system. In addi­
tion to allowing users to submit bug reports and software submissions
directly from within the Smalltalk-SO system, we wanted the new sys­
tem to provide a Smalltalk-style user interface for browsing, adding to,
and editing the system development database. Fig. 15. 7 shows the com­
ponents of the current support system involved in submitting a bug fix.

The new database, like the mail files of the interim system, resides
in a number of data files on a remote file server, accessible to any run­
ning Smalltalk-SO system. Since the database is accessed by
Smalltalk-8O systems rather than standard mail programs, we were
able to automatically include additional information, such as cross ref­
erences between related entries in the database.

user fixes a bug and
places the code file
on a remote file server

user submits a bug fix
report describing the

bug fix

user opens a changes browser
and may inspect, modify, or
incorporate database entries

Figure 15.7

the VersionHandler adds
an entry to the appropriate

remote database. file

{ Smalltalk-80 System} { Smalltalk-80 System}

t....._ ___ --t►► I File Server 1◄◄1-------~+ -----

280
Managing the Evolution of Smalltalk-80 Systems

Structure of
the Database

A Browser
Style User
Interface

The current version handler database is patterned strongly after the
mail files used in the interim system. The database contains three
kinds of entries: system versions, bug reports, and system changes (in­
cluding bug fixes and "goodies"). Each entry has a unique ID, and a
user supplied title and message body describing the entry. The system
adds fields specifying the date and the version of the Smalltalk-SO sys­
tem from which the entry has been generated. Additional fields may
contain various status conditions of the entry. Most fields are stored as
text in the header portion of the message; some special fields (e.g.,
whether an entry is new or old or has been deleted) are hidden from
the user.

System version entries also contain the ID's of the system changes
which differentiate the version from its predecessor. Thus a new version
can be generated from some previous version by automatically incorpo­
rating the appropriate changes into the user's Smalltalk-SO image. Ver­
sion entries also contain the ID's of all bug reports which apply to that
version.

In addition to containing a description of the bug, bug report entries
contain the ID's of available system changes that fix the bug.

System change entries contain the names of one or more remote files
containing Smalltalk-SO source code. If the change fixes a reported bug,
the change entry also contains the ID of the corresponding bug report
entry. No firm distinction is made between submissions which are actu­
ally changes or fixes to the Smalltalk-SO system and arbitrary user ap­
plications (i.e., goodies). Some changes get incorporated into later
versions of the system while others simply remain in the database for
optional retrieval.

The database is maintained by a special object, named
VersionHandler, which is in every Smalltalk-SO system. The
VersionHandler object acts as an interface to the actual database stored
on a remote file server. It is responsible for reading and writing por­
tions of the database and coordinating access among multiple
Smalltalk-SO systems.

The user creates Smalltalk windows for accessing the database by send­
ing Smalltalk messages to the VersionHandler. The top level commands
available to the user for accessing the database include:

• Open a version browser

Figure 15.8

281
A Browser Style User Interface

• Submit a bug report

• Submit a bug fix

• Submit a software goodie

• Create a new system version

Fig. 15.8 shows a workspace containing the Smalltalk messages used to
invoke these commands.

(_"c1py·r1g-ht (c·:i 1'.:-1::: 1, 19:::2 Xerox 1~"c1rp

.i>.JJ n gh t.c. reserc1e,:l.

System Support
i:,,:r ers1onH,=1r1d !er tirciTN5t' Rec en ti;,,r er :,1on:,
1<? er::.1onH,3r1dler bro1►~1 ;:,e ·r.....rers1on:=.
\l er:.:-.1onH,:111d.ler bro,.►1l5eI•,J e,.►•◄1 C;ooc.~ 1e:.,

i:,:;r ers1i::::inH,:tr1cf ler bro 1►'lseC~oi::::id 1es

i:,,.r er :...1onH,:111d ler brc:i,n-z,e Eiu g ~.

·=''}:tin
un,:Jo
1:opy

C Ut

p,:1.5tQ

,3CC8pt

'./ ers10nH,:1nd ler bu g.F:eport car, c e I

r er swnH.:md ler bu i F 1x

'JerswnH,3ndler su IJml r.Good.1e

Each of these commands causes a new window to be created. There are
three kinds of database browsers for the three kinds of database
records: version browsers, change browsers and bug report browsers.
These browsers differ only in their contents and the command menus
they provide. Fig. 15.9 shows a version browser in which the user is
selecting the browse changes command. Fig. 15.10 shows the changes
browser created as a result of the selection.

Fig. 15.11 shows the command menus provided by each kind of brows­
er. Selecting browse changes creates a browser on the changes which
make up the version. The browse goodies command creates a browser
on all changes which are not included in the current version. This is
equivalent to searching an applications library of user programs and op­
tional system enhancements. The retrieve version command is useful if
the version of the Smalltalk-80 system one is running is not the most re­
cent. By selecting retrieve version, the user can upgrade the system. The
system then automatically retrieves all the required changes.

The browse source files and file in changes commands in the changes
browser are similar to the special commands provided by the interim
mail browser. File in changes allows a user to incorporate a bug fix or
other change into the Smalltalk-BO system.

282
Managing the Evolution of Smalltalk-SO Systems

',JI:; ;:;m.3ll!,3Jl:
'·.i14 L!3r,:!J I'.'
..,,.. 1 _, .. .:..i. .. f.tfll r::, 1ntenrJ:t rele.:,..::e .:,e 1ji:iodies
T,? 16 ~:·i1t,:.dlt.:dl.-;:1(1 lrn,:i~e T,.:'er.:-1011 ~=-~T retne-.,:12 •,:er.:-1or1
'· . .' 1? t,,.·lay - 1nter1fft rele,:t..5e vl1tli n.:u-i-ted sn,:lpshot.z,

NMIIEHWIMl►ill M

E, 1. E, , B 4, B 14. E 1 r,. E ~" , f: ~ , E ~ 4. E ~ .'.

E . E: ', E: , E, •, E41 _ E~: E~"

1 ~

Iu-.:pei:r,=1r3 f,:1r [,:1-ticn.::1r:e"' ='Jj_,_-1 I r-:-rL, ~

• ◄ 1 r !T •1 :· In.:pe1:tJ:1r -upJ:dl:;'

•,:111J (Ot.cq:11:,.:1ni: tJ?:•:t 1n L 1.:t• ':e·.1.·.:

, lfu,::i~e •.Ter:.1,:111 ._·T,= 1:ir.-1=1r~·:i 1•.,;:tL ''i:-r:.11_
- 1nti:?flff1 r':'lf',3.:-,i:- tD:e-: IF/ t1li:- ,-1,~1,:.,:- t,1_1

- 1ntl:'flfrL rr=-le.:1...:;e
,:11:i li-u.:::i·::e ·.·er.:,~1:,11 ;_'.T

\7 1 i I\•'l.:i·y :; - 1n ter1frL -reie,:,.:,e •.r.·1 tb _:,n.:,p::}1,=1t.:

Vl$ ~...,map~: STIMMqll (Wi1b new

1-.: 1 o::: B1-11 F 1:,: · '·. ·er .:.1onH,:in1Jler ,:.,:1fftet1ffte.: li:-fr •,1:roni
1:·1i:I·~ 1~~1:1,:,d1e '.'er:.1,:,nH.:1n1Jler •=h-~n~·e.:

: 1J 1i:- F. u t,terE,.:11·1,J
,~· 11 ~ Bu:; f 1:,: Preoof !le p,,:1°:v,

·, I•,·!,3y 1·0 :c ~ 1~ 4.' 4;:; pu1

'.'":'f "~l(1rt . 1 ,~

f1l,:-, but nener t-r,:,Len 11_1 ntil :·fc:-d:r.:i.lL r~:e:1.:·.r=-F:,: 1-':'rt1=:,l''1e·.:"-

1 e =:,t .--11:ip.:Il, t tuft':' 1

Figure 15.9 Figure 15.10

Fig. 15.12 shmv::; the window obtained by selecting the browse bugs
command. Unlike the interim mail browser, the text description associ­
ated with an entry may be modified by simply editing the text which
appears in the database browser. Fig. 15.13 shows the user selecting the
file in changes command in order to try out an experimental change to
the Smalltalk-80 system. The goodie browser shown was obtained by
selecting the browse goodies command in the version browser.

bro•,,,vse changes
brov\'·se bugs

brov,,,•se buqs fixed
brO\•VSe qc,oclies
retr-ieve ver-sion

brov\'·se source files
bn:,·\'vse buqs fixed

file in cha.n~~es

Figure 15.11

.:.ion:
,:coe fixes IF~: t!l>" cJc,.se

BI B1_1 g Repoff: c trl-c a.nd browser s,: roll bars
B:: Bug F~eport: fr-:t.ffle/ffto,.Te not consistent 1n different
B4 Bug Repori [,1,.playText Pos111on1ng
B 14 Bug Report: rare IF 2 i1le error (1n open.,

■aP1fflfti&H@MiiiiMi·liilMi@iMMti@M8§d (

f_~,_, bJec t E:u ~ Ee port ~-.'tnr1 i: ,: ,:1i-:i:lp-.:tr1.:aon 1.:

inc on.::1.:-r.er.1 r

ri:-q1_11re: rL.,:,r r}-1i:- ,,:L.jI,:·u:tcr.:. 1H,:fT1:l1 ex.:11: tly,

, .=1r1d ::: 1~n1:1re 1:.:1~e d1fferen1:e.:.,

,:'11"1d there 1.: .. :, ffLes.:.,:i~e ~:_·.rr1ni :_,.:u-ite).:. • .:, th.:it doe.: .. :in

equ.:i11ty 1:0fftp.:ir1.:.on 1~nor1n~ ,:.:i.:-e FurtherfflC•re. :ill -:.p ..=:t

b1_1~, .::1nce I 1:.:in't per.::u.:ide li"ty.:.elf th.:it the

coirLp,:tr1:.on:. sho1-1ld all be 1:h,:t.n.~ed t(:i i:0Es1der (.:-,,.:,':'

but the 1ncon:.1sten1:y· 1:. bother:.offte

Figure 15.12

r the

C . 283
reating Database Entries

l=;ood lt:' Fa.st Bl l.ffl-:IP I / 1:=1

H1er.:1.rc hie al pr1n tJ:11_1 t 3.lld f1leo1_1 t of 5 ..,r
C 13 7 Bug F 1x: clean-up to Paragraph ·,rnouseSelect ·

1Yood1e Pre:3,:, Pnnnng for Spline 1=:'un.,.e::,
1=· 140 1=;ood1e: ~:~ub~~:.:-stefit BroT~•lser
1:"141 ·=;ood1e: Netv Pres.:-Pen .:1r1d ~~prucePen

1 (})ffl

:t.dJ.:, the 5t:'ffl,:11"1t11::., of fftUl 11ple

111her1t.:,n1:e rJ~I ,=.:H,,:,llr.:dL-,:;1_1, Ir 1.:. :, 1.:,1rly

re,:,..:.,:,n,:itile 1: 1:,Ji"1prot1t1:.e or :pee1J .:ir11:l :.p.:i,:e Vlh11: h

. .:::..1.:ir1 BorL1n~ :ir11J I ',1.T1:1r}:e1J 1:1ur quire .:i v.;r1-11le ·='i1:1,

.:,1·1d ',1,Th1c h ',1,'e lff1plefften re1:l 1:1T,,'er the 1.:1..:.t c 01_1 ple

I 51_1.:,pei:t there ',1nll be bui•: 111 tl11s i1r..=:t rele.:t.:-i:­

but I ',1,':1r1rei:1 r1:, 'iet 1r our 1n ,:1rcul.:1t1on)..:.~frer

N 1
:·

1:·, I sh,::111 speEd ·=' b11 oi t1Ji"te fft,=1J:1n~ .:.ure th.:it

1t ',1,'orl::. f1:,r the 1:1b~T101_1.:, 1:,:1.5e.:, ,:if ,:1e.:1n1n~ 1Jp tbe

i:ollect1on ,=111d ,:,tre,:1Iit h1er,:irch1e.:., :ind .::uppl.:ir1t1n~

Figure 15.13

c•1th

Creating
Database
Entries

There is also a special window used for creating each kind of database
record. The user sends a Smalltalk message to the VersionHandler re­
questing to submit a bug report, bug fix, goodie or new system version.
In response, a new window is created that contains a form for the user
to fill in. The entry is added to the database when the user selects the
accept command.

Figure 15.14 shows the window for creating a system change entry
which fixes some known bug. The lower half of the window contains a
bug report browser. The user selects the titles of the bug reports which
he has fixed. Before selecting accept, the user also fills in a title, his
name, and the name of the Smalltalk-80 code file he has already created.

284
Managing the Evolution of Smalltalk-SO Systems

Figure 15.14

The user can submit changes or goodies which are not bug fixes us­
ing a window which resembles just the top half of the bug fix window.
Bug reports are also submitted using a similar window.

:oystem cras.r, due to h1etdass rnstvars

(:'Ja.ss update b1_1 g
S,:roll1ng
~-~y·stefr1 '\l1lort:sp . .:t.ce
Bro\vser Inc ons1st.enc :,,·

I !J.,31:,Te 1nclude,J 1ri rh1:. .:,ystefft fft,:1:.~r 01 the tiu i; f1xe:.- .:-.n1J

ob-:.nou.:: :,?.:Sf.t:'11L 1:h.:1n·2,e.: : h-:-.T.:"=' .Je:-erred 1n, l1-11J1n~ fftO.St

-·ood 1e:. T,1lhlc h 1n tr1=11J1J1 e neT.11 f11n1= t11:.-ir1,:d1 t;-· T"Ve .:h1= u],J

h,:1T.re :1 ffleetin 2 on th 1: ,:.,:11:1n

1:· 1~'_::i- 1:;ood1e ~~:rr1_1, rured f:r.ji:}:er1n~· 1n EdPJ:1r
1~· 1 ::~ 1~~ood1e Ether p,:ttJ:h for dolph111.:

1~· 1 ,~;.ood1I:' t 1i:.-fe,:i1 E :~ti?nded \~lord .=:,ele1: r

ch,m~e:. ,:·11i, ,:·1~~. ,:•1>,. ,:•1~:c: ,:·1~:,. ,:·1 ,:·1 ';, ,_'1'4,

,:•)';'l, 1:• 14~. ,:• 144, ,:· 14 ,, ,:• 146, ,:• 14/, ,:• 14;',, ,:• 1 ,(I
r:'14'.; Bu~ Fix: brovrse.i!.J}1:·,:1JL;1=1n· 1ncon:.1st.ent T.1nth broT.1.Tse-.6..
•~146 Bug Fix: l;ey.".t'-J,:tlue: doe.c,r,'t ca.1_1se ,:\11 errnr 1i no mat

C 148 •:::ood1e: This and That
1:· 14:~ 1:~ooc.he: h1ore Pre.: . .:, Printer ;=:tuft
·~ 1 ':,o Bu~ FD: P.ei:t.,r,gle h,;,c;h

Figure 15.15

Fig. 15.15 shows a new system version being created. This is done by
selecting from a menu of the system changes (goodies) submitted since
the last version. A conflict detection program can then point out possi­
ble conflicts between the selected changes. (This is currently not done
automatically.) The ID's of any bugs which have not been fixed by the
selected changes are inherited and included in the new version. When­
ever a new version is created, the source files involved are automatical­
ly copied to a new sub-directory on the file server to freeze and
preserve the integrity of the new Smalltalk-BO system. The new system
may be released as a new image file, or, due to the large overhead of

Figure 15.16

285
Creating Database Entries

generating an entire system, it may be left as an interim release which
can be quickly generated from a previous image version each time it is
used.

Fig. 15.16 is a diagram of a portion of the database. Bug reports are
shown in the first column with lines connecting them with entries for
corresponding fixes, if any. The second column shows the changes (in­
cluding bug fixes) which have not yet been incorporated into any ver­
sion; these make up the "goodies" application library. The third column
shows changes entries connected by lines to the versions in which they
have been incorporated. The rectangular boxes denote image versions,
while the large ovals are interim release versions. The links between
version entries and bug reports are not shown. When the next version,
V9, is created, the changes C21, C22, and C23 will no longer be consid­
ered ngoodies."

Bug
Reports

Incorporated
Changes

"Goodies"

®-- -­
(§>------<§>- -

(§)-- --

System Versions

V6

image
version

interim
version

image
version

next
version

286
Managing the Evolution of Smalltalk-SO Systems

Conclusion

I I

The system version database has proved to be a very useful software
tool for managing and maintaining our Smalltalk-SO research system. It
has provided us with a convenient mechanism for documenting versions
of the Smalltalk-SO system. Each change made to the system has a cor­
responding entry in the database. This provides a complete history of
the system's evolution. The most popular feature is that users may sub­
mit or browse bug reports directly from their Smalltalk-SO system. The
database also provides a software applications library which may be
easily accessed and augmented.

Sy1tem Support Prawns

Vers1onHandler bro ~~:i~f ers1ons.
VerswnHandler bro crab gs.
Vers1onHandler

browseGood1es.

Vers10nHandler bro Sn~o~;e od1es.

Chips
Vers10nHandler bug Beer
Vers10nHandler bugFix "flX a reported bug"
VersionHandler subm1tGood1e

0
1'0~

llNQOff-

~T

0

Abstract

Background

Implementing a
Smalltalk-SO File System
and the Smalltalk-SO
System as a
Programming Tool

D. Jason Penney*
Tektronix, Inc.
Beaverton, Oregon

The Smalltalk-BO system may be used without any file system, but a
number of its features presuppose a working file system. Work must be
done to effect a file system on a new Smalltalk-SO implementation. This
paper describes the design and implementation of the file system for a
Tektronix Smalltalk-BO implementation and concludes with some reflec•­
tions on the use of Smalltalk-BO as a programming tool.

The Smalltalk-BO system is designed to be host machine independent.
The system uses files, but file systems tend to rely on the idiosyncrasies
of a particular host. Thus the Smalltalk-BO virtual image can support
files for a new implementation in an abstract manner. Higher-level
methods in the system usually deal with files through FileStream, a
subclass of ReadWriteStream. Files themselves have their functionality
partially separated out into abstract classes File, FileDirectory, and
FilePage. Fig. 16.1 shows the superclass relationships of these classes.

*Mr. Penney is currently employed by Servio Logic Corp., Portland, Oregon.
Copyright © Tektronix, Inc. 1982. All rights reserved. 287

288
Implementing a Smalltalk-BO File System

Figure 16.1

Description of
Chosen
Problem

Object ()
File ('fileDirectory' 'fileName' 'pageCache' 'serialNumber'

'lastPageNumber' 'binary' 'readWrite' 'error')
TekFile ('pageCacheOffset' 'lastPageAddress' 'creationDate'
'creationTime' 'modificationDate' 'modificationTime'
'firstPageMap')

Object()
FileDirectory ('directoryName' 'closed')
TekFileDirectory ('nextSerialNumber' 'medium' 'freelistFile'
'directoryFile' 'directoryStream')

Object ()
FilePage ('file' 'page' 'binary')
TekFilePage ('address')

The virtual image contains the details of one implementation in the
"concrete" subclasses of File, FileDirectory, and FilePage; to wit, AltoFile,
AltoFileDirectory, and AltoFilePage.

Implementors could implement the primitives these classes require,
reimplement subclasses of the abstract classes, or start from scratch.
The Alto classes presuppose a particular kind of disk and disk control­
ler, as well as the existence of system utilities to manage the disk.
Starting from scratch would require reimplementing FileStream, which
is the interface class for all file manipulation in the system. We eventu­
ally chose the second approach, creating T ekFile, T ekFileDirectory, and
TekFilePage.

Class FileStream divides files into fixed-length chunks of bytes, called a
FilePage. FilePage is intended to map directly to page-oriented media. A
FilePage is associated with a File, and has additional state such as the
page's pageNumber in the file, actual number of bytes used on the page,
and a hardware-related address.

A File contains such things as where to find its FilePages and the
String that represents the file's name. When the file is open, some of its
state is cached in the File instance.

A FileDirectory contains the necessary information to access all the
files within a given directory. It responds to some Stream messages such
as reset and next (but not atEnd). A FileDirectory can iterate over all of
its files (with do: but not reverseDo:). A FileDirectory keeps some of its
state in object memory when it is open, hence it responds to state-cach­
ing messages (open, close, and flush).

Alternate
Programming
Approaches

Design Constraints

Design Approach

289
Description of Chosen Problem

At Tektronix we did not have the luxury of an existing file system on
our Smalltalk-SO hardware. Thus it was not appropriate for us to try to
emulate the Alto file system or to make another existing file system
work on our hardware and map into the Smalltalk-SO FileStream class.

Since our virtual machine was originally implemented in Pascal, we
briefly considered writing the file system itself in Pascal and providing
a minimal interface in the Smalltalk-BO system. The disadvantage in
this approach is that the resulting file system would be largely opaque
to Smalltalk-SQ inspectors and debuggers. Instead we chose to design,
implement, and test the file system using Smalltalk and a small num­
ber of disk primitives.

Our primary constraint was that the file system had to be simple,
debuggable, and maintainable, so that we could use the file system in a
short amount of time.

The Alto file system puts enough redundant information on file data
pages so that a "scavenger" can recover significant amounts of a disk
after a disk crash. We felt that this should be in our own file system.

Since the Smalltalk-SO source file system manipulates one very large
file, it is necessary to be able to find the address of a specified page
number in the file with relatively little effort. In other words, the file
system should have reasonable performance for random access as well
as sequential access.

Abstract class FilePage allows a chunk of data bytes to be sandwiched
between a non-data header and trailer of a specified (possibly zero)
length. We use a header in TekFilePage to describe the data bytes on
the page. Since our disk driver does address checking and data
checksumming, we did not include these in the page header. The page
header does however, have redundant information (file serialNumber,
file pageNumber, previous page's address, next page's address) as well
as necessary state (size of data in bytes). Fig. 16.2 shows the organiza­
tion of a TekFilePage.

Instances of a concrete subclass of File are suppose to "open" them­
selves when issued the message findlastPageNumber. Since the last
page number (and the address of the last page) are quite useful for
appending a new page to the end of a file and truncating a page from
the end of an existing file, our concrete instances of T ekFile have
lastPageNumber and lastPageAddress as additional information for an
open file.

290
Implementing a Smalltalk-SO File System

Figure 16.2

The Smalltalk-BO
System's Role
in Initial
Design Effort

Directory Design

Figure 16.3

back Pointer

thisPageNumber

nextPointer

serial Number
header (24 bytes)

size

(unused)

data (1000 bytes)

Our first descriptions of file system design presupposed using Pascal.
Pascal will handle certain types of data structures (such as 32-bit ma­
chine integers) more gracefully than the Smalltalk-SO system will. Pas­
cal encourages fixed-length data typing. Sometimes this is acceptable,
since FilePage pages are fixed length. On the other hand, a file name is
merely a String of arbitrary length, which is not convenient at all with
Pascal data structures. For this and other reasons, we chose to use Pas­
cal for only the disk primitives.

Since we were free to design the directory in any way, we chose to im­
plement it as a sequential file in the format shown in Fig. 16.3. This
format allows the directory to be human readable as well as readable
by Smalltalk-SO classes. Many Smalltalk-SO classes support a self-de­
scription facility through the selectors readFrom: and storeOn:. These
selectors do their work on an accompanying Stream in a human-read­
able as well as Smalltalk-SO-readable form. Since a FileDirectory is
expected to deliver up a sequence of files in a Stream-like fashion, a
Smalltalk-80 directory can be naturally envisioned as a FileStream that
has a sequence of file definitions.

('Directory' ,1,1,12,2567 462400,41166,2567 462400,41166,11)
('FreeList',0,1188,1260,2567462400,41166,2567462400,41166,1)
('Smalltalk80.sources' ,2, 1242, 1259,2567 462400,41242,2567 462400,

60378,13)
Items for each file are in order:

1. fileN ame, a String
2. serialNumber, an Integer
3. lastPageNumber, an Integer
4. firstPageMap, an Integer
5. creationDate, seconds since 1 Jan 1901
6. creationTime, seconds since midnight
7. modificationDate, seconds since 1 Jan 1901
8. modificationTime, seconds since midnight
9. lastPageAddress, an integer

Design Details

Figure 16.4

291
Description of Chosen Problem

Our hardware provides random access to a variable number of "sectors"
1024 bytes long. There is exactly one TekFileDirectory for a medium.
The exact number of sectors available for each medium is available
through a primitive.

Each "medium" may have bad sectors-i.e., ones that the device
drivers will not handle without raising error conditions. One sector at a
fixed address is presupposed to be good. This sector with its prespecified
address is called a ''leader"; it provides information about the medium
as a whole.

Each sector on a medium (including the leader) is treated as a
TekFilePage. A TekFilePage has a 24-byte "header" and 1000 bytes of
data. "Data" refers to bytes that are handled by Stream messages next
and nextPut:.

The header on a TekFilePage contains a back pointer to the previous
TekFilePage within a file (or a nil-address if none), a pointer to the next
TekFilePage within a file (or nil), the serial number of the page's file,
the ordinal page number of this page in its file (i.e., "1" for the first
page in a file), and the number of data bytes that are actually in use on
this page (the size). All pages in a file except the last one are guaran­
teed to be full.

The header information in a TekFilePage is, strictly speaking, suffi­
cient to completely recover files on a crashed disk. Exceptions to this
are lost sectors containing file data and some information in the direc­
tory file such as creation/modification date and the String used for the
file name. On the other hand this is not enough information to allow
rapid nonhomogeneous access to a file, such as is required by the
Smalltalk-BO browser. To accomplish this an extra data structure is
written with each file in the system: pageMap pages. Fig. 16.4 shows
the organization of secondary structures on a meduim.

leader

pageMap for Directory

pages
1

pages
~ 251 ~ (other pageMaps)

to to
250 500

data pages
/

□-
r---.

292
Implementing a Smalltalk-SO File System

Implementation
Approach

The directory entry for a file specifies the address for the first pageMap
for that file. A file always has at least one pageMap page. A pageMap is
forward- and reverse-linked with other pageMaps. Its serialNumber is
the same as the one used for the FreeList file, so that a disk scavenger
will not confuse it with data. The pageNumber field of a pageMap page
is not used in practice. A pageMap contains 250 4-byte addresses in its
data section, each address corresponding to the appropriate page in a
file. For instance, if one wished to read the 300th page in a file, one
would read the first pageMap for the file, use the forward-link in that
pageMap to read another pageMap, and read the 50th address in that
pageMap to determine the correct address for the 300th page in the file.

As files are created on a given media, they must be given unique
serialNumbers. The next available serialNumber is written on the lead­
er page, using Integer storeOn:. The leader page's forward-link points to
the first pageMap page of the file which is the Directory file.

The first two file definitions in a directory file are special: The first is
the directory file itself (named "Directory") and the second is a relative­
ly large file that occupies all the unused pages in the system (named
"FreeList"). Both of these files are bona fide in the sense that they have
a serialNumber and a complete set of pageMaps. The serialNumber of
FreeList is zero, which signifies non-data. For the sake of consistency,
FreeList's ''data" pages are fully linked just like all other files in the
system.

There is a bootstrap problem involved with implementing a file system.
The source code for the new classes must be typed in by hand. The
physical media must be formatted with a Directory and a FreeList.
Once the file system is up and running, the very large file that contains
the commented sources for the system must be converted to reside on
the new format. Finally, one must recompile the file system methods,
adding comments and regenerating variable names.

Typing in the new classes was irritating but not difficult on our imple­
mentation. If one's interpreter runs at 3500 bytecodes per second, key­
board echo requires three to five seconds. Our virtual image had a built­
in performance problem that additionally delayed keyboard echo. Since
there is no source code system, all the new and untested methods lack
argument variable names, temporary variable names, and comments.

None of the file system could be tested until all necessary methods
were typed in and initialization code written to properly initialize a
new media. The debugging itself will be described later.

Managing
Windows

Using the Browser

293
Implementation Approach

Converting the source code to the file system format turned out to be
easy but time consuming. Our system already has software for saving
and restoring memory images on our disk media. We split the source
file into manageable chunks, converted the ASCII text to a
downloadable image (as if the text were executable processor code), and
saved the resulting memory-images on floppies using the existing non­
file system format. A small bit of code in a workspace was necessary to
read bytes off of a bogus TekFilePage onto a legitimate FileStream, and
a very large amount of time was necessary for the conversion (about 11
hours).

Before implementing the file system, we were familiar with the
Smalltalk-80 user interface, but we had only superficial experience with
it. Each of us had his favorite snapshot with his windows placed just
the way he liked it, but our interaction with the system was casual. We
typically would execute selected examples to show to visitors or com­
pose short methods to answer specific questions.

When we started the file system project, our placement of windows
underwent metamorphosis. The old arrangements changed as new
things came to light. For instance, the only kind of browser that we
ever had at first was a full five-pane System Browser. These are useful
because of their full generality. Unfortunately five panes take up a lot
of room on our 512 x 512 display, which in turn means that less of each
method ends up visible in the code pane. Since all of the code that we
were entering belonged in a single class category, "Files-Tektronix," we
quickly collapsed the System Browser and kept a Class Category Brows­
er instead, which has proportionately more room in the code part of the
browser.

Our typical display had a System Category Browser and a Workspace
to do development work in. A System Transcript, a collapsed System
Brower, and a collapsed System Workspace were kept off to the side. At
first we did not overlap the Category Browser and the Workspace. After
a little bit of use we reframed these two windows so that they did over­
lap substantially. Since we typically moved between the two windows,
making changes in one window and testing the changes in the other, it
was not necessary to see all of both windows at the same time. This was
a significantly better use of display space on our system.

The Browser worked pretty much as advertised. We added our classes
without any difficulty, but when we finished, we discovered that we had
misspelled an instance variable name. Several methods later in that
class, we decided to change the class definition. Much to our surprise,
when we changed the spelling of the instance variable, we did not get
any syntax error messages while the class was being recompiled. If we
had attempted to change the order of the instance variables, the actual

294
Implementing a Smalltalk-80 File System

Using the Editor

Using the
Debugger

roles of the instance variables would have reversed. This is because the
decompiler used the new instance variable names rather than the old.

The method category pane of the browser, which provides categories
of methods within a given class, was originally a nuisance. We chose to
ignore it initially. An odd thing was that as long as we added methods
to a new class, the selection in this pane read ''no messages" but if we
switched to another class and back, the selection would then change to
''As yet unclassified".

In general the text editor was a joy to use: all basic editing operations
conform nicely with user intuition. Some features are not intuitive, but
neither are they difficult to learn. For example, using control-F for
''ifFalse:" or control-[for inserting n[]".

We used a full-ASCII keyboard on our implementation, which caused
a special set of problems using the editor. Some of us were initially per­
plexed about how to type the back-arrow assignment symbol which is
pervasive in Smalltalk-SO code: it turns out that this maps into the
ASCII underscore character. A more serious problem was presented by
the unencoded keyboard interface. Xerox uses an unencoded keyboard
for their own Small talk-80 systems. An unencoded keyboard reports
only key-up and key-down activity on the keyboard. An unencoded key­
board is closer functionally to a piano than a typewriter.

Whereas an unencoded typewriter keyboard provides greater flexibil­
ity than a conventional encoded-ASCII keyboard, they are less common.
Our Smalltalk-SO hardware uses a readily available encoded-ASCII key­
board. The way Xerox has written lnputSensor and lnputState gave us a
little grief. We were unable to force a user interrupt with the control-C
character simply because no one at Xerox thought it would be possible
for a keyboard to generate a control-C character without causing a con­
trol-key event. Thus when one types a control-C on an untuned
Smalltalk-SO system with an encoded keyboard, one gets a garbage
character instead of the expected Notifier. The unencoded keyboard
also manifests itself as a problem with such things as control-0 through
control-9 (used for changing fonts), and control-[(which is different
from ASCII ESCAPE). Although the encoded keyboard was suitable for
use with the Smalltalk-SO system, the control-C problem caused us grief
when we were debugging the file system.

The debugger has done more to spoil us than any other single feature
in the user interface. All aspects are fully integrated. It was never nec­
essary for us to go to machine-level debuggers or anything else in order
for us to fully debug the file system.

The interpreter simulator, invoked whenever one selects ''step" or
''send", runs about 1000 times slower than the machine interpreter. On
our system this meant that the simulator ran at an effective 3 or 4
bytecodes per second. On at least one occasion we accidentally started

Typical
Programming
Problems

Syntax Errors

295
Typical Programming Problems

the simulator only to determine afterward that we would have to wait
longer than the MTBF of our hardware to allow the simulation to com­
plete.

During the course of "accepting" methods into the system and testing
our resulting code, we ran into a series of problems familiar to every
programmer. In our estimation, this is the part of the Smalltalk-80 sys­
tem that must distinguish itself: from a productivity standpoint, the
amount of time that it takes to effect an application and the resulting
reliability are paramount indices into a workbench's success.

Syntax errors on any system have a fairly limited number of causes, in­
cluding user unfamiliarity and "cockpit errors". Those of us accustomed
to higher level languages such as Pascal or Modula-II are familiar with
a definite syntax phase when entering new program text. Such strongly
typed languages attempt to limit certain kinds of errors by making a
large number of static checks on the program text. The Smalltalk-80
compiler makes relatively few static checks. It does little or no semantic
checking. Abnormal conditions are left to the objects involved during
execution to report. This is all right in principle, but there are some se­
mantic checks that the compiler does not do which could theoretically
be done.

One syntax error that occurred early on is worth mentioning. When
one writes a Smalltalk-80 conditional expression, it will look something
like

3 frob ifTrue: [T 1]
if False: [i 2].

However, if one wishes to code a whileFalse:, one might be tempted to
type

3 frob '' creates syntax error ''
whileFalse: [4 frob].

This latter construct gives a syntax error because the compiler requires
the receiver of a whileFalse: to be a literal block. Thus the correct syn­
tax for a whileFalse: using the previous example would be

[3 frob] whileFalse: [4 frob].

Once the novice user has discovered this, he may be tempted to write

296
Implementing a Smalltalk-SO File System

Off-by-One Errors

Learning Curve

[3 frob] " gets by compiler but doesn't work "
ifTrue: [i 1]
ifFalse: [i 2].

The compiler will accept this without complaint because it makes no re­
quirements on the receiver of an ifTrue:ifFalse:. However, when this
method is executed the response is a mustBeBoolean notifier, because
the receiver is a block instead of a boolean.

Programming languages that allow indexing data structures open
themselves up to off-by-one errors. Smalltalk-SO is such a language. The
first item in a Smalltalk-SO indexable collection is indexed by one in­
stead of zero. Some of us have grown accustomed to programming with
adjustable-offset indexes, which resulted in three off-by-one errors in
our initial attempts.

As with any problem, there is a "learning curve" involved with ap­
proaching a novel situation. In implementing the file system, we tra­
versed learning curves involved with file systems, disk hardware, and
the Smalltalk-SO system itself.

Familiarization with the abstract and concrete implementations of
File took a significant amount of the time necessary to implement the
file system. After that, there was a certain amount of raw familiariza­
tion that had to take place. For instance, is the correct selector to ap­
pen_d an object to an OrderedCollection addlast: or lastAdd:? (The
former is correct). Also, several times we discovered that we had made
inefficient use of existing methods.

Once we discovered that although we could add and update files
properly, we could not delete them from the directory. Closer examina­
tion revealed that close-ing a FileStream does not necessarily entail
shorten-ing a FileStream. In other words, there were indeed occasions
where hidden functionality of the supplied building blocks caused prob­
lems.

After we had corrected most of the rudimentary syntax and design
errors, a peculiar snag came to light. The system returns self from a
message in absence of some particular result that is expected. This is
reminiscent of the difference between procedures and functions in more
traditional languages. Unfortunately, unlike functions, a Smalltalk-SO
method can rely on "self" being returned from a message. This caused a
problem for us when the documentation for the abstract file classes
specified no particular result for TekFile read:. It turns out that this se­
lector is supposed to return the TekFilePage that it reads, not self. The
error that resulted from this misunderstanding was a doesNot­
Understand: message quite removed in time and execution from the ac­
tual source of the error.

Design Errors

Summary/
Conclusions

297
Summary/ Conclusions

After the first several hours of debugging, the remaining errors in the
system were all in our design. There were such things as Disk (a
TekFileDirectory) telling itself to close in the midst of closing itself.
There were some problems involving managing the pageMaps, particu­
larly on larger files.

Since problems in this category go directly back to the definition and
solution of the actual problem to be solved, these problems must reflect
the programmer/analyst more than the system itself. The impressive
part of the Smalltalk-80 system's performance in this regard is that the
turnaround from clerical, syntactic, and learning curve errors back to
design errors occurred quickly, even though the system itself was slow.

Design and implementation of concrete subclasses for the file system
took 43 hours over the space of two and a half weeks. A large part of
this time reflects the speed of our implementation as opposed to pro­
grammer time.

At the end of this time all of the higher file-related functions in the
system worked perfectly. Most debugging problems were due to our in­
complete understanding of the Smalltalk-80 system.

One measure of success of a workbench is the quality and applicabili­
ty of the tools that it offers. Our experience with workbenches in gener­
al is that if a tool indeed exists for the problem at hand, its interface is
poorly documented and its behavior erratic if not outright destructive.
This is the first workbench we have ever used in which we are willing
-albeit reluctantly-to use new and unfamiliar tools that are already
available. The integration of tools in the system is so complete that the
apparent reliability of higher level system components (such as brows­
ers and debuggers) is enhanced.

Like any large software system, the Smalltalk-80 system has its
share of bugs. By and large, bugs tend to remain isolated, although a
bug in a widely used component will have significant repercussions
throughout the system. To this extent the full integration of the system
is a double-edged sword: although compactness and ultimate reliability
are aided, one is also able to make changes that blow up the system.
Then again, the system uses snapshots and transaction files to help a
user regain his work in the event of a system crash.

Our final judgment is that yes, the Smalltalk-80 system is a good
programming tool. It would be simplistic to cite a single reason for our
decision, but one of the salient strengths of the system is its high reli­
ability and useability.

Implementing a
Smalltalk-SO System
on the Intel 432:
A Feasibility Study
GuyAlmes
Alan Borning
Eli Messinger
Department of Computer Science
University of Washington
Seattle, Washington

During autumn 1981, the authors carried out a feasibility study on the
implementation of the Smalltalk-SO language on the Intel iAPX 432.
This report presents the conclusions of that study, together with sup­
porting technical material.

Briefly, a Smalltalk implementation on the 432 would result in sev­
eral important advantages over Smalltalk on conventional computers.
These advantages include support for multilingual systems and for par­
allelism, including parallel garbage collection. There are also however,
some corresponding disadvantages that could prevent a Smalltalk im­
plementation on the 432 from being competitive with implementations
on conventional computers. These disadvantages include large storage
overhead per object, very heavy loading of the parallel garbage collec­
tor, and the possibility of insufficient microcode space. These difficulties
can probably be surmounted; some approaches to dealing with them are
discussed below.

Copyright© Guy Almes, Alan Borning, and Eli Messinger, 1982. All rights reserved.

299

300
Implementing a Smalltalk-SO System on the Intel 432

Introduction

Background

This report describes an effort to study the feasibility of a Smalltalk-80
implementation on the Intel 432. The main body of the report is divided
into three parts:

• The potential benefits of a Smalltalk-432 system.

• The principal threats to the feasibility of Smalltalk-432.

• A sketch of an implementation of Smalltalk-432.

A final section presents some conclusions and recommendations for fur­
ther study.

We assume that readers of this report are acquainted with the
Smalltalk-80 system. However, not all readers will know about the
Intel 432 processor, so in this section we give a brief description of the
features of the 432 that are particularly relevant to the task at hand.

The Intel iAPX 432 is a 32-bit microprocessor. It is designed to be a
processor for Ada; however, as we shall see, with suitable modifications
it may be an effective Smalltalk engine as well. Physically, the 432 con­
sists of a two-chip general data processor (GDP) and a single-chip inter­
face processor (IP). Standard 1/0 functions are handled separately by
one or more attached processors, which will typically be Intel 8086s.
The basic clock rate is 8 MHz. The 432 chips include microcode in read­
only memory; there is no user-modifiable microcode.

The 432 supports an object-oriented environment (although the
meaning of "object" is not the same as in Smalltalk). A 432 object is a
contiguous segment of memory, up to 64K bytes in length, containing
data and addresses. There can be up to 224 segments in a system. Each
segment has a type, which determines the operations that can be
performed on it. Addresses for these segments are called access descrip­
tors, and are protected addresses very similar to capabilities on systems
such as Hydra1·2·

3
• Two fields totaling 24 bits contain the unique identi­

fier for the object, 1 bit indicates whether the 32 bits in fact constitute
a valid access descriptor, and each of the remaining 7 bits indicates
whether the owner of the access descriptor has a given right for the
segment in question. These rights include "read rights" (can parts of
the segment be examined?), "write rights" (can the segment be modi­
fied?), and "delete rights" (can the access descriptor be deleted or over­
written?). Every access to a segment is checked automatically to see

Approaches to
Running
Smalltalk on
the 432

301
Approaches to Running Smalltalk on the 432

that the possessor of the access descriptor has the required rights, and
that the access is within the bounds of the segment:" The hardware and
microcode makes a distinction between data and access descriptors, so
that it is not possible to inadvertently treat 32 bits of data as an access
descriptor or vice versa.

The 432 is designed for multiprocessing. Many 432s can be connected
to a common memory, the maximum being determined by electrical
rather than logical characteristics. Within the common memory, process
objects represent tasks requiring servicing, and processor objects are the
representatives of the physical processors. This representation makes it
easy to add new processors without the need for making software modi­
fications.

Interprocess communication is handled by a port mechanism. A given
process can send an access descriptor for a message segment to a port
object, which can be received by any process with an access descriptor
for that port.

Objects can be allocated from a global heap or on a local stack. Par­
allel garbage collection for heap-allocated objects is supported. Using
Dijkstra's parallel garbage collection algorithm, objects are marked as
"white" (possibly inaccessible), "black" (accessible and traversed), or
"gray" (accessible but not traversed). The hardware supports parallel
garbage collection by marking each white object as gray when a pointer
to it is copied. A software garbage collector, running as a 432 process in
parallel with other processes, handles the rest of the work.

Papers on the 432 architecture have recently appeared in the litera­
ture. These include papers describing the port system4, the structured
address space5, and the structure of the operating system6•

There are a number of possible ways to run Smalltalk on the 432. The
best approach is probably to make a Smalltalk object be the same as a
432 object (in general), and to modify the microcode of the 432 to allow
it to execute Smalltalk bytecodes directly. A system that used this chip
would include both Smalltalk processors (STPs) and ordinary Ada
GDPs.

In the remainder of this section, we describe some of the alternatives
and indicate why the above approach was selected.

It would be very convenient to run Smalltalk on the 432 without
modification to the chip. One way of doing this would be to allocate a
set of 64K-byte 432 data segments to hold SmalJtalk objects, and to
handle Smalltalk object allocation and deallocation independently of
the facilities provided by the 432. This may in fact be the best way to
run Smalltalk on the 432 as it exists. However, if this is the case, then

302
Implementing a Smalltalk-BO System on the Intel 432

Benefits of
Smalltalk-432

the 432 is just being used as a rather slow conventional processor, with
no use being made of its special properties. If this is the best that can
be done, it would be better to select another processor.

A more attractive alternative, still using an unmodified 432, would
be to identify Smalltalk objects and 432 objects. There are two possibili­
ties for storing Smalltalk code: writing an interpreter for the present
bytecode set, or changing the Smalltalk compiler to emit mixed native
432 code and subroutine calls. We suspect that a software interpreter
for the present bytecode set would be quite slow. Nevertheless, such an
interpreter should be developed for at least two reasons:

• It might turn out to be acceptably fast.

• Even if it is too slow, it will yield valuable experience that will in­
form the eventual Smalltalk processor design. Specifically, it will
show how well the Smalltalk object to 432 object mapping works.

Once this interpreter is built, its designers will be able to judge the ex­
tent to which such an implementation is competitive with other
Smalltalk-SO systems.

Another alternative would be to mix native 432 code and subroutine
calls. A severe disadvantage of doing this is that there will be an enor­
mous expansion in code size, probably by 5 to 10 times. This expansion
would be acceptable only if done for those methods most frequently exe­
cuted. If a small set of very frequently executed methods can be identi­
fied, either statically or dynamically, then this set might be a candidate
for such expansion.

We are thus led to consider producing an additional 432 processor
type. In addition to the present Ada GDP and IP processors, there
would be a new Smalltalk processor (STP) designed as a modification of
the present Ada GDP processor. Our approach is to try to modify only
one of the two chips, by making changes to the microcode stored in its
ROM and in its PLAs. Again, we make Smalltalk objects and 432 ob­
jects be the same, since not doing so would lose whatever advantages
the 432 has over a conventional chip. The advantage of this approach is
that it is faster than other approaches; a disadvantage is that it does
not allow its implementors to change the interpreter or bytecode format
without replacing the processor chips.

The implementation of Smalltalk on a 432 would yield many benefits.
Some of these benefits improve the performance of the system, while
others make a Smalltalk system on the 432 qualitatively better than
Smalltalk systems on conventional machines.

Support for Large
Numbers of
Smalltalk Objects

Support for
Communication
with non­
Smalltalk
Programs

Support for
Parallelism

303
Benefits of Smalltalk-432

One of the most important benefits of implementing Smalltalk on the
432 would be its ability to handle systems of more than 32,000 objects.
Most existing Smalltalk implementations use 16-bit words for pointers,
and one bit is effectively lost in implementing Small Integers. It should
also be pointed out that a 432 implementation would share this benefit
with any other implementation with a large address space; an imple­
mentation on the Digital Equipment Corp. VAX, for example, can sup­
port similarly large numbers of objects.

Since the Smalltalk system moreover, is well suited for large ad­
vanced applications, this benefit could be crucial.

The design of the 432 system seems to lend itself particularly well to
the idea of a multi-lingual system. With Smalltalk and, for example,
Ada processes agreeing on the "432 protocol," communication between
them can be done.

A Smalltalk processor and a general Ada processor would have the
same notion of what 432 objects and messages are. Thus processes run­
ning concurrently in different languages would be able to share memo­
ry, and send messages to each other through 432 ports. No existing
Smalltalk implementations support such a multi-lingual system. The
Dolphin and Dorado systems at Xerox PARC, for example, run either
Smalltalk or Mesa, but never both within the same processor. This is
due in part to conflicting technical requirements of Mesa and Smalltalk
runtime environments.

One of the primary advantages of a 432-based Smalltalk system would
be support for parallelism. As described in the introduction, the 432 en­
vironment includes process and processor objects. Instances of the
Smalltalk class Process can be mapped in a straightforward way onto
the 432 process objects, so that in a system with multiple STPs,
Smalltalk processes could be executed in parallel.

There are a number of relatively simple ways of exploiting this par­
allelism:

• When filing in a class definition, each method is compiled sepa­
rately. It would be easy to make each of these compilations a
separate process, thus speeding up filing in considerably. The only
synchronization needed would be a lock on the method dictionary
when a new method was being inserted.

• There are a number of messages to dictionaries for doing searches
for example, to find all classes that implement a method for some
selector, to find all methods that invoke a given selector, to find all
references to a symbol, and so forth. All these searches could prof­
itably employ parallelism.

• Parallelism could also be used in graphics. When displaying a
paned window, or updating several windows, each pane or window

304
Implementing a Smalltalk-SO System on the Intel 432

Support for
Virtual Memory

Support for
Parallel Garbage
Collection

Support for
Object Filing

could have a separate process to display it. When displaying an
elaborate image, the display method could divide the work among
several processes. In general some synchronization between the
subprocesses would be necessary, but in many cases (e.g., when the
subimages were nonintersecting, or when they were or'd together
to form the entire image) the subprocesses could proceed asynchro­
nously.

There are other applications for which parallelism would be valuable,
but its use would require more sophisticated synchronization tech­
niques. In simulations for example, it is sometimes useful to have one
process perform the simulation, and a separate viewing process to dis­
play snapshots of the simulation's state.

Because a virtual memory scheme is in the design of the 432 system, it
will automatically accrue as a benefit to the Smalltalk system. This will
be especially important for applications with large numbers of objects.
The quality of the iMax virtual memory mechanism will be very impor­
tant for the quality of the Smalltalk implementation.

Similarly the parallel garbage collector, which is to be part of the stan­
dard 432 system, will also benefit the 432 Smalltalk implementation.

Because a storage manager will not have to be written anew for the
Smalltalk virtual machine, the task of implementation will be simpli­
fied. Also, because the garbage collector-as opposed to reference
counting techniques-will be able to collect circular structures,
Smalltalk users will not have to break loops explicitly to deallocate
them. (An anomaly of the Smalltalk object representation called "soft
fields" requires modification to the garbage collector. The soft field
technique is used to add a pseudo field to instances of some class. Soft
fields are implemented through the use of a global dictionary whose
entries contain a pointer to an object, paired with that object's soft
field. The problem then is that an object whose sole reference is from
the soft field dictionary is in fact garbage. Given the large overhead per
object already present, one might prefer to add a real field to Object to
point to a list of backpointers. This would remove this special case in
the garbage collector, at the cost of 4 more bytes per object.)

A scheme is planned for iMax that would allow 432 objects to be filed
away in an archival format, onto external memory7

• Thus Smalltalk ob­
jects could be stored and later retrieved from secondary memory after
an arbitrary amount of time. This scheme would allow Smalltalk pro­
grammers a more flexible facility than the saving of entire work-spaces.

Threats to
Smalltalk-432

Storage Overhead

305
Threats to Smalltalk-432

The Smalltalk-BO implementation on the 432 seems to be feasible, and
due to the advantages cited above would result in a qualitatively better
facility. There are several potential problems however, with the map­
ping of Smalltalk onto the 432 which could make the performance of
the resulting implementation unacceptable. At this point we do not be­
lieve that any of these threats is fatal, but they do serve to focus our at­
tention on the real issues in the rest of the study.

Release Three of the 432's architecture incurs an average storage over­
head of approximately 24 bytes per object. This breaks down as 16 bytes
for the object descriptor, and a minimum of 8 bytes for the "memory
image." On the other hand, in the model implementation of the
Smalltalk-BO system, there is only an 8-byte overhead per object; simi­
larly, the LOOM implementation has 14 bytes of overhead per object
(see Chapter 14).

Statistics show that the initial Xerox Smalltalk virtual memory con­
tains approximately 20K objects (including 4K method objects), with a
mean size of 20 bytes. However, since the 432 implementation would
use 32-bit object pointers (as opposed to 16-bit pointers on the Xerox
systems), the average object size would increase. At one extreme, where
no Smalltalk object contains a pointer to another object (e.g., strings),
the average size would remain at 20 bytes; at the other extreme, where
all Smalltalk objects are composed solely of pointers to other objects,
the average size would double to 40 bytes. Clearly the true average lies
somewhere in between. For the basic Smalltalk system, Ballard (see
Chapter 8) found that its size increased by 50% when going from 16 to
32 bit pointers, implying that the average object size increased to 30
bytes. For a big application program with more data than code, the av­
erage number of bytes per object might be somewhat larger.

Regardless of the average object size, the overhead remains 24 bytes
per object. Thus a system of 20K objects would incur approximately 0.5
Mbytes of overhead for about 0.6 Mbytes of objects. (Assuming here an
average object size of 30 bytes.) Also note that the 20K objects figure is
only for the Smalltalk system itself. A reasonably large application,
which takes advantage of the 432's ability to support more than 32K
objects, might use upwards of 100K objects, thus making the overhead
about 2.5 Mbytes for 3.0 Mbytes of objects.

It is thus clear that the Smalltalk-BO system on the 432 is practical
only with a virtual memory system; otherwise the number of objects
that could be used would be so restricted that one would lose all the ad­
vantages of moving from 16-bit to 32-bit pointers.

Also, even with virtual memory, the large per object storage over­
head will increase the amount of real memory required to support a

306
Implementing a Smalltalk-SO System on the Intel 432

Insufficient
Microcode Space

given working set of Smalltalk objects. This increases both the cost of a
given hardware configuration and the amount of disk traffic due to
swapping. The user should certainly not be forced into a constrained
style of programming where she or he becomes wary of using too many
objects; this would be very destructive of good Smalltalk programming
style. Any way that is found to reduce the storage overhead of 432 ob­
ject descriptors or memory images would certainly benefit Smalltalk.
However, even if the 24 bytes/object overhead is regarded as a fixed pa­
rameter of the 432, there are other things that can be done to reduce
the total overhead in a Smalltalk system.

One technique would be to represent some Smalltalk objects in other
ways than as full-fledged 432 objects, for example, by embedding their
representation in a pointer rather than storing it separately as a 432
object. Small integers are a prime candidate for such a representation,
but other objects could be so represented as well. This topic is discussed
on p. 316 below.

Experience with the Xerox Smalltalk system has shown the value of
implementing a good portion of the Smalltalk virtual machine in the
host system's micro-architecture. At a minimum, the bytecode inter­
preter, plus some critical primitives, must be implemented in microcode
if reasonable performance is to be achieved on the 432.

Clearly the size of the 432's microcode store is much smaller than
any of the Xerox systems. For example, the Xerox Alto has a 32-bit mi­
croinstruction, in comparison to the 432's 16-bit word. Further, the Alto
has lK of ROM and 3K of RAM available to the Smalltalk
implementor; the 432 has much less. In speaking of the microcode re­
quirements of the Smalltalk-BO system, Glenn Krasner8 says:

For the systems that we have implemented at Xerox, the
Smalltalk-BO Virtual Image consists of about 300K bytes of objects.
Our typical implementation of the Smalltalk-BO virtual machine is 6
to 12K bytes of assembly code, or 2K microcode instructions plus lOK
bytes of assembly code. Of this, about 40% is in the storage manager,
20% in the interpreter, and 40% in the primitive subroutines.

The 432 has a total of 4K microwords, of which a certain amount will
be left devoted to 432 system primitives (e.g., ports and object tables). A
rough guess would estimate this at 2K, thus leaving 2K for the
Smalltalk implementor. It is difficult to evaluate the extent to which
the PLAs and special-purpose data paths of the 432 microengine will
offset the smaller amount of microcode space.

There are several functions which should be implemented within the
microcode of the 432 in order to achieve reasonable performance. We
list them here in decreasing order of importance:

307
Threats to Smalltalk-432

• The standard object table functions-necessary. In order for
Smalltalk programs and Ada programs to be able to share the
same memory space, it is necessary that both have the same notion
of object table and access descriptor.

• The standard port functions-necessary. In order for Smalltalk
programs and Ada programs to be able to engage in interprocess
communication, it is necessary that both have the same notion of
port and carrier.

• The standard process and processor functions- necessary. In order
for Smalltalk processes to be dispatched in a uniform manner, it is
necessary that Smalltalk processes share the same structure and
dispatching functions as Ada processes. (Note that these three re­
quirements, taken together, require that the Smalltalk processor
support the standard 432 Carrier, Communication Segment, De­
scriptor Control, Object Table, Port, Process, Processor, Refinement
Control, and Type Definition Objects. It is not however, necessary
to support the standard 432 Context, Domain, Instruction, or Stor­
age Resource Objects.)

• The bytecode interpreter-necessary. The bytecode set of the
Smalltalk machine is a relatively simple set of instructions. Most
of them are simple push, store, and jump instructions. The others
are more complex instructions for sending a message to an object
and returning from such a send; these functions are similar both in
nature and complexity to the call-context and return instructions
on the standard GDP.

• The Smalltalk primitives-varying. The Smalltalk bytecodes do
not for example, include add or compare instructions per se. Rath­
er these functions are handled by invoking special methods, called
primitive methods, known to the Smalltalk virtual machine imple­
mentation. These methods are primitive for either of two reasons:

1. Intrinsic. Some primitives would be impossible or at least very
hard, to express as ordinary methods coded with ordinary
bytecodes. Examples are the Process Resume and BitBlt meth­
ods for process synchronization and icon manipulation, respec­
tively. Most of these primitives could be supported by sending a
request message to an Ada program executing on a standard
GDP, then receiving a reply from it.

2. Performance. Some primitives are invoked so frequently that
the system would be slower if they were handled by the stan­
dard message-sending scheme. Examples are the methods for
stream operations next, nextPut:, and atEnd. (Note that these

308
Implementing a Smalltalk-80 System on the Intel 432

Overloading of the
Garbage Collector

two motivations for making a method primitive are not mutual­
ly exclusive. Consider, for example, the at: and at:put: methods
for indexing into objects. They would be hard to implement as
ordinary methods both for intrinsic and performance reasons.
Those methods that are primitive only for intrinsic reasons can
often be implemented by auxiliary processes running either on
Ada GDPs or on attached processors. Those that are primitive
only for mild performance reasons might best be implemented
by means of standard Smalltalk methods or by auxiliary pro­
cesses as above. Many however, will best be implemented di­
rectly in the microcode. Various techniques for implementing
primitives other than directly in the microcode will be discussed
on p. 317 below.)

• Object creation -optional. We may decide to have actual allocation
of segments from Storage Resource objects be performed by an
auxiliary Ada process. It should be put into microcode only if there
is plenty of microcode to spare. Allocation of Smalltalk objects is
discussed in more detail in the implementation sketch.

• Large integer and floating point-optional. The primitives for
large integers and floating point numbers may also be handled by
an auxiliary Ada process. Since the floating-point microcode in the
standard 432 uses considerable space, there would be substantial
benefit in performing floating-point arithmetic using an auxiliary
Ada process.

Thus just what can be fit into microcode is bound to be a central issue.
However, a partial solution can be effected by implementing some of
the Smalltalk primitives "off board." Here, low-overhead linkage to
primitives will be very important. Possible implementation techniques
include using an attached processor (AP), an Ada co-process, or inter­
processor communication (IPC). We would expect that some combina­
tion of these techniques would be used in an eventual system. These
techniques are discussed in more detail in the implementation sketch.

A final major threat is the overloading of the garbage collector, since
Smalltalk will put a much heavier load on it than does Ada. In the 432
implementation of Ada, contexts and local variables for procedure calls
are not stored in the global heap, and so don't need to be reclaimed by
the parallel garbage collector. However, in the book implementation of
Smalltalk, all objects are allocated from a global heap.

If the garbage collector can keep up, then all is well. However, if
Smalltalk processes spend a significant amount of time blocked, waiting

309
Threats to Smalltalk-432

for the garbage collector to free up some storage, or if the garbage col­
lector consumes a large amount of processor or memory resources, then
performance will be improved if ways can be found to reduce the num­
ber of objects that need to be garbage collected. This could be done ei­
ther by reducing the number of real 432 objects created in the first
place, or by reclaiming some objects by means other than the parallel
garbage collector.

One place to look is contexts. In general, contexts must be allocated
from the heap, since it is possible, for example, to obtain a pointer to
the current context and store it into a global variable. However, in
most cases, contexts will be allocated and deallocated in a stack-like
fashion, and probably advantage could be taken of this fact. (The pres­
ence of block contexts, used for many control structures, complicates
the situation. Each block context includes a pointer to its "home con­
text", which will be some method context. When used to implement
such standard control structures as iterations through the elements of a
collection, the block context is only passed up the stack, and the meth­
od contexts still obey a stack discipline. However, there is no guarantee
that a pointer to the block context won't be bound to an instance or
global variable. Hence the presence of block contexts makes it more dif­
ficult to keep track of all the pointers into the stack.)

Another place to look is short-lived objects in general, that is objects
that are created, bound to temporary variables, and used in the course
of executing a method, but which are not returned or bound to an in­
stance or global variable.

For Ada, the 432 uses "level numbers" to help with this situation.
Each context object, along with that context's local variables/ objects,
contains a level number that is one greater than that of the calling con­
text. Upon termination of a context (i.e., a return instruction), the run­
time stack is popped by deallocating all objects whose level number
matches that of the terminating context. We devoted some effort to
studying whether modifications to the level-number scheme could be
used with Smalltalk, for example, just using level numbers for method
and block contexts. Unfortunately, none of the techniques we devised
had satisfactory characteristics. Generally, these techniques suffered ei­
ther from too much complexity, too little applicability, or too great an
overhead. We believe however, that reasonable solutions to this prob­
lem can be found with additional work. For example, in Ballard's VAX
implementation, which uses a garbage collector together with a limited
reference count scheme, only about 5% of the contexts needed to be
garbage collected (see Chapter 8).

This is an area that will require further investigation if in fact the
garbage collector threat materializes. Intelligent responses to this
threat will be based on detailed experience with running Smalltalk sys­
tems (for example, what is the rate of creation of method contexts,

310
Implementing a Smalltalk-SO System on the Intel 432

Implementation
Sketch

Representation of
Smalltalk Objects

System Types for
Smalltalk

block contexts, and other objects, and how frequently do they exhibit
stack-like behavior?) with the iMax Garbage Collector, and a detailed
review of current garbage collection literature. (See for example, the
October 1981 issue of Computing Surveys. This area is very active, part­
ly due to work on various kinds of Lisp machines.) If this area is pur­
sued, benefits will accrue not only to Smalltalk programmers, but also
to Ada programmers who desire to use the heap heavily.

This section presents approaches to several aspects of Smalltalk imple­
mentation. Areas discussed include the representation of Smalltalk ob­
jects, special system types for Smalltalk, allocation of Smalltalk objects,
ways of reducing storage overhead, execution of primitive methods,
communication between Smalltalk and Ada programs, and interfacing
to the display.

Smalltalk objects would be represented directly as 432-objects, each
with an object descriptor and a memory image. The object descriptor
would include the object's length and its system type, if any. The few
system types needed specifically for Smalltalk will be presented in a fol­
lowing section. The Smalltalk notion of class would be mapped directly
onto the Release Three 432 extended type notion. Thus Smalltalk ob­
jects that are not of some system type would contain an access descrip­
tor to a Type Definition Object, which would take the form of a
Smalltalk Class object.

With the exception of Smalltalk methods, all Smalltalk objects are
either pure data objects, e.g., strings, or pure access objects, e.g., dictio­
naries. In the case of pure data objects, they may be byte-addressed or
(16-bit) word-addressed, depending on the characteristics of the
Smalltalk class. In the case of pure access objects, they will use the re­
lease three notion of embedded values (seep. 316).

The Smalltalk system makes heavy use of several system types. Ordi­
nary Ada GDPs need only be able to access these types as generic ob­
jects, i.e., be able to access their fields, but not their peculiar operations.

D Class The first type is Class. Each object of this type describes
some Smalltalk Class, and includes the following kinds of information:

• How to create a new object of this Class, and

• Methods to be executed when a message is sent to an instance of
this Class.

Figure 17.1

311
Implementation Sketch

The format of this type is shown in Fig. 17.1. The first pointer leads to
another Class object, which is the Superclass of this Class. The second
leads to a Message Dictionary, which contains the Methods for all mes­
sages defined directly on this Class. The third pointer is actually an em­
bedded value, which includes:

• The number of fixed fields in an instance of this Class,

• Whether the instance's representation contains pointers or numer­
ic data,

• If data, whether it is organized as bytes or words, and

• Whether the object is indexable.

AD2:
I

jo
AD 1: '-..

/

ADO: '-..
/

Creation Parameters

Message Dictionary

Superclass

D Message Dictionary Just as in the model implementation, we re­
quire a Message Dictionary to be an array of pointers to Symbols with a
parallel array of pointers to Methods. This Message Dictionary is used
by the microcode which implements Message Send bytecodes.

D Method Another system-defined type is the Method, an analogue
of the Ada Instruction Segment. This type is the only Smalltalk class to
contain both data and pointers. The format of these objects is shown in
Fig. 17 .2. The byte-organized data, shown below the thick line, contain
the bytecodes for the Method. (A nice property of the 432 implementa­
tion is that the initial instruction address is always zero!) All but the
first pointers are literals, i.e., pointers to constants or global variable
objects. The first pointer is the Method Header, packed within an em­
bedded value. The representation for the Header is:

• Temporary Frame Size: 5 bits

• Argument Count: 5 bits

312
Implementing a Smalltalk-80 System on the Intel 432

Figure 17.2

• IsPrimitive: 2 bits

• Context Size: 1 bit

• Primitive Index: 8 bits

AD 1...:

A DO:

Bytes 0 ... :

' /

lo
Literals

Method Header

Bytecodes

The alignment of these data should be designed to simplify the
microcoding of the Send bytecodes. The IsPrimitive field has the follow­
ing four values:

00 Not a primitive Method.

01 The special primitive "return pointer to Self".

10 The special primitive "return a field from within Self". In
this case the primitive index can be used to indicate which

field.

11 An ordinary primitive. In this case the primitive index

tells which one.

D Contexts The other two system-types are Method Context and
Block Context. The Smalltalk Method Context is the activation record
that results from a message being sent to a receiving object, and corre­
sponds to the standard Ada Context object. Unlike the Ada Context ob­
ject however, Smalltalk Method Contexts are allocated from a global
heap and can persist after they return. The format of a Method Context
is shown in Fig. 17 .3.

Figure 17.3

313
Implementation Sketch

Stack

Temporaries

Arguments

AD 3: --- -➔ Receiver (SelD

AD2: ' / Method

AD 1: I [X]o IP & SP

ADO: '-
/ Sender

The fields in a Method Context are as follows:

• Pointer to the Sender, i.e., the Context that issued the Send in­
struction that caused this Context to be created. On the 432, this
pointer would lack DeleteRights.

• The Instruction Pointer and Stack Pointer embedded in one pseu­
do-access descriptor. The IP is a byte offset into the Method's
bytecode part. The SP is a pointer offset into the Context itself,
and indicates the top of the stack region of the Method Context.

• Pointer to the Method of which this Context is an invocation. This
pointer would also lack DeleteRights on the 432.

• Pointer to the receiving object (=Self). This pointer would also
lack DeleteRights on the 432.

• Next come zero or more arguments. These are the values pushed
on the stack by the sender prior to issuing the Send bytecode. The
number of these is specified by the Method Header, Fig. 17.2.

• Next come zero or more Temporaries, or local variables. The num­
ber of these is also specified by the Method Header, Fig. 17.2.

• Finally, there is room for the expression stack for this context.
This stack is initially empty, so the initial value of the SP must be
determined from the size of the Argument and Temporary frames.

314
Implementing a Smalltalk-80 System on the Intel 432

Figure 17.4

The Block Context system type is very much like the Method Context,
and is used to implement control structures other than ordinary Mes­
sage Sending. Like the Method Context and all other Smalltalk objects,
it is logically allocated from a heap. The format of the Block Context is
shown in Fig. 17.4.

AD 3:

AD2: ~~ 0

AD 1: X 0

ADO:

' /

/

Home Meth Context

Initial IP & Arg
Comments

IP & SP

Caller

Three fields of the Block Context differ from those in the Method Con­
text:

• The caller field of the Block Context points to the (Block or Meth­
od) Context that called this Block Context. Note that this may
differ from the Context that created the Block Context.

• An embedded value storing the initial IP and argument count re­
places the Method pointer of the Method Context. These values al­
low the interpreter to initialize the Block Context for a new call.
(The Method can be found via the Home Method Context pointer.)

• The Home Method Context points to the Method Context that cre­
ated the Block Context. It is used for locating the receiver and
temporaries of the Method.

Allocation/
Deallocation
of Objects

315
Implementation Sketch

The allocation and deallocation of Smalltalk objects poses several diffi­
culties:

• Smalltalk objects are allocated from global heaps. Their
deallocation cannot therefore, be performed simply because some
method has executed a return instruction. As mentioned earlier,
this threatens to overload the parallel garbage collector.

• Microcode space on the processor chip is at a premium. It would
conserve microcode sp ace if object allocation, including mainte­
nance of Storage Resource Objects and Object Tables, could be re­
moved from the microcode.

One consequence of the first point is that any implementation of
Smalltalk on the 432 (or any other machine) must pay serious attention
to efficient garbage collection of Smalltalk objects. This topic is dis­
cussed fully on p. 308.

The allocation of objects, on the other hand, is easier and gives us an
opportunity both to speed allocation and to save microcode space. We
propose that an Ada auxiliary process be assigned to maintain a data
structure that contains pointers to well-formed, unallocated segments.
This data structure would take the form of an access segment, with one
access descriptor for each of several commonly used sizes of segments.
(Since most Smalltalk objects are small, and since object images in the
432 come in chunks of 8 bytes, the sizes 8, 16, 24, 32, 40, 48, 56, 64
would take care of the vast majority of cases.) Each access descriptor in
this structure would be the head of a singly-linked list of unallocated
segments of a certain size. If the Smalltalk processor wants to ucreate"
a new Smalltalk object, it need only pull a segment of the right size off
the appropriate list. No carving of storage from heap SROs or allocation
of entries from object tables is needed. Also, the auxiliary process could
ensure that the segments it places in the list are all zeroed out. The
Smalltalk processor would only have to adjust the object descriptor to
indicate the proper actual size and type, and would have to put the
class access descriptor in the object.

This way of allocating objects should in fact be faster than doing the
actual manipulation of SROs and object tables required of the Ada 432.
In addition to entries in the list for each of the most common sizes,
there should also be a port for use in making requests for odd sizes.
(Handling this case by having a request-reply protocol via ports would
not be very fast, but it is general and simple and would only be used
rarely.) Another set of lists should be maintained specifically for the
two sizes of method contexts; here there would not even be any need for
setting the class/type in the object. One elegant possibility is to use
ports as the heads of the linked lists-pulling a segment off a list then

316
Implementing a Smalltalk-SO System on the Intel 432

Reducing Storage
Overhead

becomes the ordinary Receive Port primitive, synchronized access to the
list is taken care of, and the auxiliary process could use surrogate sends
to find out when certain sizes of segments are being used up. Further­
more, this auxiliary process could coordinate closely with the parallel
garbage collector to effectively recycle objects, rather than going
through the overhead deallocating objects by putting their storage back
into an SRO and deallocating their object table entries.

As discussed on p. 305, one of the threats to a 432 Smalltalk implemen­
tation is excessive storage overhead per object.

D Embedded Values One technique for reducing this overhead would
be to represent some Smalltalk objects in other ways than as full­
fledged 432 objects, for example, by embedding their representation in a
pointer rather than storing it separately as a 432 object. Note that any
object stored this way must be of an immutable class, since one isn't
sharing pointers to a mutable piece of storage. (The model implementa­
tion uses this technique to represent small integers. Instead of small in­
tegers being represented as an object pointer to an integer object, the
value of the integer is encoded directly into the object pointer.)

On the 432, if the "valid bit" of an access descriptor is turned off,
that access descriptor is not regarded as referencing any 432 object, and
the remaining 31 bits can be used to store the representation of some
object. Since we would have more bits available than in 16-bit imple­
mentations, more things than just small integers can be encoded. A rea­
sonable set of objects to be encoded in the access descriptor is as follows.
(We assume that bits 29-30 are used to disambiguate the different sorts
of objects so encoded, so that bits 0-28 are available for storing data. If
it were important, another bit could be squeezed out for representing
some of the classes by a more clever encoding.)

small integers

the constants true,
false, and nil

characters

These are integers between -228 and 228-1. Note
that this is much larger than the maximum
small integer in the 16-bit implementations,
and should mean that large integers would be
used even less frequently.

There would in fact be only a trivial space sav­
ing due to encoding these constants as embed­
ded values, since there is only one instance of
each. However, this will make life much sim­
pler for the garbage collector, since it will be
able to ignore these oft-encountered values.

There are exactly 256 distinct instances of this
class, representing the ASCII characters. As
with the above constants, there would only be

Techniques for
Executing
Primitives

317
Implementation Sketch

a trivial space saving due to this encoding; the
garbage collector would be the primary benefi­
ciary.

In the current version of the Smalltalk-BO system, points are mutable
objects. However, it would take a relatively small amount of work to
make them immutable. If this were done, small points would be anoth­
er good candidate for representation as embedded values. (Making
points be immutable would also eliminate some annoying sorts of bugs
arising from accidental sharing.) The x and y values of a small point
could be stored in 2's complement in the low-order 28 bits of the access
descriptor, 14 bits each. This is sufficient to hold points arising in near­
ly all graphics applications, save perhaps the generation of very high
resolution hardcopy images. There would also be a class LargePoint to
hold points with floating point values or large integer values, in analo­
gy with the Smalltalk classes LargePositivelnteger and LargeNegative­
lnteger.

Floating point numbers are another possible candidate for this repre­
sentation. They are stored in 32-bit fields on the 432, so if one is willing
to give up 2 bits of precision, they could be represented as embedded
values. However, as described on p. 306, it is likely that floating point
arithmetic will be handled by an auxiliarly Ada process running on an­
other chip, rather than on the Smalltalk chip. In this case, it would be
better to let floating point numbers be ordinary 432 objects, making it
easier to send them to the Ada process.

D Other Techniques for Reducing Storage Overhead Another-more
problematic-possibility for reducing the number of objects is to merge
some collections of objects into a single object. This sort of merging
should be used in only a few critical places, if at all; certainly the aver­
age programmer shouldn't need to think about it. As an example of this
technique, rather than maintaining each method object as a separate
segment, all the methods for a given class could be stored in a single
object, with 432 refinements being used to refer to individual methods.
There are about 4000 methods in the Smalltalk virtual image, so this
would reduce the number of objects by close to 4000, since most classes
have many methods. Making this modification might also improve
swapping behavior, but would have the disadvantage that all the code
for a given class would need to be in main memory at one time, rather
than just the methods being used.

As discussed on p. 306, several time-critical primitives will be directly
executed on the processor chip. Other primitives are best executed off
the chip. This section discusses several different ways of executing these
primitives.

318
Implementing a Smalltalk-80 System on the Intel 432

D Execution of Primitives on an Attached Processor One alternative
is to send requests for primitives to a port served by an attached proces­
sor. In the 432, this is the natural technique to use for i/ o primitives. It
may also be important for non-i/o primitives handled better by an at­
tached processor than by another 432 GDP. If BitBlt is not implemented
on the Smalltalk processor, it may be an example of this.

D Execution of Primitives by an Ada Process Here we devote an Ada
process to be a Smalltalk primitive server. Then, using inter-process
communication (i.e., ports), the Smalltalk system sends requests to the
Ada co-process to execute primitives. Again, this is a natural technique
to use on the 432, and if it works well, is the method of choice for most
non-i/o primitives handled off-board. The speed, and therefore the val­
ue, of this idea will hinge on both the execution speed of Ada programs,
and the speed of inter-process communications. Preliminary statistics
give an overhead of approximately 300 microseconds for such inter-pro­
cess communications.

One advantage of this technique is that the primitives will be coded
in Ada; this should simplify the implementation. Also, with this tech­
nique, the Ada co-process is not locked onto a particular GDP as it is
with the inter-processor communication technique discussed below.

Note that in both of these first two techniques, a message is sent to a
port, and a reply is received on another port. This means that the
implementors of Smalltalk can postpone or change the decision as to
whether a given primitive is implemented by an attached processor or
by an Ada process, and that no change to the microcode would be re­
quired. This flexibility would be achieved by having an access segment,
indexed by the primitive index, that mapped a primitive to a port. This
would make the first two techniques indistinguishable at the microcode
level.

D Execution of Primitives by a Dedicated GDP This technique de­
votes one GDP exclusively to the Ada primitive handler. Thus when
Smalltalk needs an off-board primitive executed, it sends a wake-up sig­
nal to the GDP and then sends its request. When the GDP is finished
handling the request, it sends itself a stop processor signal. Thus the
GDP is either working for the Smalltalk system, or it is blocked, wait­
ing for a wake-up signal from Smalltalk. The Intel 432 Architecture
Group suggested implementing this approach via the Lock instruction
on the standard GDP.

The advantage here is that we make use of the faster inter-processor
communications facilities of the 432. The disadvantage is that the sys­
tem becomes less general, since the Ada process must be resident on
the GDP whenever the Smalltalk processor is active. This alternative is
attractive only if the improved overhead is worth the reduced generali­
ty and dedicated processor.

Communication
between Smalltalk
and Ada Programs

Interface to
the Display

319
Implementation Sketch

As described in the introduction, one of the potential benefits of a 432
implementation of Smalltalk would be support for multi-lingual sys­
tems. In this section we outline how communication between Smalltalk
and Ada programs might take place.

Within the Smalltalk image, there would be "local representatives"
of Ada tasks with which the Smalltalk program could communicate.
These would be full-fledged Smalltalk objects to which one would send
messages in the usual way. Internally, these representatives would have
an access descriptor for a 432 port. The Smalltalk invocation messages
would thus run methods that would in turn send 432 messages to the
Ada task. There should be a Smalltalk class Ada Task that holds this
general sort of information, with subclasses of AdaTask used to repre­
sent particular Ada tasks.

Smalltalk and Ada will have different ideas about how data is to be
represented. For example, Smalltalk integers will be represented either
as embedded values or as large integers; Ada integers will be stored
simply as 32-bit quantities. To convert between these representations,
the class AdaTask should have a set of conversion messages that accept
certain Smalltalk objects as arguments and encode them on a byte
stream for eventual transmission to the Ada task. For example, the
message encodelnteger would take a (Smalltalk) integer argument and
a stream of bytes, and put out the 4 bytes representing the integer as a
32-bit quantity. An analogous set of messages would be used to convert
values returned by the Ada task back to Smalltalk objects.

A critical factor in the performance of a Smalltalk system, particularly
the user's perception of its performance, is the speed of the graphics.
There are a number of plausible ways in which the display can be con­
nected to the processor, as discussed below. In regard to the production
of a new version of the 432, the relevant question is whether BitBlt
should be supported on the chip; other decisions regarding the display
can be made independently. We conclude that to ensure flexibility,
BitBlt should indeed be supported on the 432, unless there is a severe
shortage of microcode space. While the 432 hardware doesn't have any
special facilities to support BitBlt, its performance would still be quite
adequate if it were implemented in microcode.

One way of connecting the bitmap display to the processor, used in
the Xerox machines, is to make the memory for the bitmap display be
simply part of the machine's main memory. This approach gives maxi­
mum flexibility. An unfortunate problem is that the maximum size of a
432 object is just short of what would be needed to represent the bitmap
as a single 432 object. The maximum size of a 432 object is 64K bytes. A
600x800 display would just fit, but a more generous size (lO00xlO00)
would not; such a limitation shouldn't be built into the system. With
some additional software complexity, the problem can be overcome by

320
Implementing a Smalltalk-SO System on the Intel 432

Conclusions

References

mapping the display memory onto several 432 objects. The 432 would
write some data into these objects, which would be reflected on the dis­
play. This approach clearly requires that BitBlt be implemented on the
432.

Another approach is to have the display memory be separate from
the machine's main memory, and to send messages to a separate dis­
play processor to make changes to it. For this approach to have accept­
able performance, there should be some high-level requests that can be
made of the display processor, for example, to display a paragraph or to
replicate a bit pattern along a given path. For flexibility and complete­
ness, low-level BitBlt requests should be supported as well. There would
need to be facilities for swapping fonts and the like into display memo­
ry. Even with this approach, there may well be occasions on which
BitBlt on the 432 itself would be valuable. For example, the programmer
might create an image in main memory-not displayed at all-and
only later show this image on the display.

Thus for maximum flexibility, we recommend that BitBlt be included
in the primitives supported by the 432 microcode, unless there is a se­
vere shortage of microcode space.

Our study of Smalltalk and the 432 leads us to conclude that the imple­
mentation we have described here is feasible. We have pointed to what
we believe to be the three chief technical threats, but we believe them
to be surmountable. The potential qualitative advantages of Smalltalk
on the 432 present real motivations to attempt its implementation.

1. Wulf, William A., Cohen, Ellis; Corwin, William, Jones, Anita,
Levin, Roy, Pierson, Charles, and Pollack, Frederick, "Hydra: The
Kernel of a Multiprocessor Operating System", Comm. of the
Assoc. for Computing Machinery vol. 17, no. 6, pp. 337-345, June
1974.

2. Wulf, William A., Levin, Roy, and Pierson, Charles, "Overview of
the Hydra Operating System Development", in Proceedings of the
Fifth Symposium on Operating Principles, Assoc. for Computing
Machinery, pp. 122-131, Austin, TX, Nov. 1975.

3. Wulf, William A., Levin, Roy, and Harbison, Samuel P.,
Hydra/C.mmp: An Experimental Computer System, McGraw-Hill,
New York, 1980.

321
References

4. Cox, George W., Corwin, William M., Lai, Konrad K., and Pollack,
Fred J., "A Unified Model and Implementation for Interprocess
Communication in a Multiprocessor Environment", Presented at
the Eighth ACM Symposium on Operating Systems Principles,
1981; (to be published).

5. Pollack, Fred J., Cox, George W., Hammerstram, Dan W., Kahn,
Kevin C., Lai, Konrad K., and Rattner, Justin R., "Supporting Ada
Memory Management in the iAPX-432", in Proceedings of the
Symposium on Architectural Support for Programming Languages
and Operating Systems, Assoc. for Comp. Machinery, pp. 117-131,
March 1982; (also distributed as SigArch Computer Architecture
News vol. 10, no. 2, and as SigPlan Notices vol. 17, no. 4).

6. Kahn, Kevin C., Corwin, William M., Dennis, T. Don, D'Hooge,
Herman, Hubka, David E., Hutchins, Linda A., Montague, John
T., and Pollack, Fred J., "iMAX: A Multiprocessor Operating Sys­
tem for an Object-Based Computer", in Proceedings of the Eighth
Symposium on Operating Systems Principles, Assoc. for Comp. Ma­
chinery, pp. 127-136, Dec. 1981; (also distributed as SigOps Review
vol. 15, no. 5).

7. Pollack, Fred J., Kahn, Kevin C., and Wilkinson, Roy M., "The
iMAX-432 Object Filing System", in Proceedings of the Eighth
Symposium on Operating Systems Principles, Assoc. for Comp. Ma­
chinery, pp. 137-147, Dec. 1981; (also SigOps Review vol. 15, no. 5).

8. Krasner, Glenn, "The Smalltalk-80 Virtual Machine", Byte vol. 6,
no. 8, pp. 300-320, Aug. 1981.

ct

L1ction

Pref erred Classes: A
Proposal for Faster
Small talk-80 Execution

Robert Hagmann
Computer Science Division
Department of Electrical Engineering and
Computer Sciences
University of California, Berkeley

A straightforward implementation of a Smalltalk-SO interpreter has
two main bottlenecks: memory management and message send/return
overhead. In addition, since Smalltalk-SO is a typeless language, it is
harder to compile than to interpret. This proposal addresses both the
send/return bottleneck and the difficulty of compilation by introducing
an optional limited typing mechanism for the Smalltalk-8O language.
The typing mechanism does not change the Smalltalk-SO semantics in
any way. Its sole purpose is to allow for a more efficient execution.

This proposal is for a Smalltalk-8O implementation strategy1 that is dif­
ferent from conventional interpreters. Where existing implementations
typically try to gain performance through caching and special casing of
high probability cases (see Chapter 11), this proposal explores the gains
made possible by using compiler technology. This strategy has not been
implemented, nor have all of the performance data needed to validate
the effectiveness of this proposal been collected. This paper presents
only one way to apply compiler technology to Smalltalk-8O implementa-

Copyright © Robert Hagmann 1982. All rights reserved.
323

324
Preferred Classes: A Proposal for Faster Smalltalk-SO Execution

Assumptionb

tions. The author hopes that by illustrating one technique that other
researchers will be motivated to explore alternate strategies.

Briefly, the idea is to "fix" the class of arguments and variables to
selected Smalltalk-80 methods by explicit declaration. By making the
"fixed" classes be only hints, the semantics would not change. Several
benefits could then occur. First, the target methods of some sends could
be identified at compile time. Second, translation to machine code in­
stead of bytecodes would be made easier since the class of all objects
used in some methods would be known at compile time. Finally, some
methods could be compiled in-line.

The proposals in this paper have some similarity to those of Borning
and Ingalls2• Where their proposal deals with compile time type check­
ing, this proposal addresses the issue of performance.

There are three assumptions that are necessary for this technique to be
efficient in speeding up Smalltalk-80 execution.

1. The overhead associated with the send and return bytecodes is
high.

2. A Smalltalk-80 application spends a large fraction of its time at or
near the leaves of the message-send tree: that is, in methods that
send no other messages other than to primitive methods.

3. A significant portion of methods executed dynamically do not ex­
ploit the polymorphic nature of the Smalltalk-80 language: that is,
the classes of the arguments and variables used by the method re­
main nearly constant over some relatively long time period.

The assumption that message sends and returns are a bottleneck was
confirmed by measuring several implementations. The percentage of ex­
ecution time attributable to send/return, excluding memory manage­
ment, for the Dorado and Dolphin are 38% and 34%3• For Berkeley
Smalltalk, the same statistic is about 30%4• Since memory management
during message send/ return is also a bottleneck for the Dorado and
Dolphin5, for these implementations about half of the execution time is
directly attributable to message-send and return bytecodes.

The second assumption has also been verified. In measurements of a
Smalltalk-80 interpretet>, it was found that 55% of all non-primitive
message sends go to methods that do no further non-primitive sends.
That is, 55% of all methods executed dynamically are at the leaves of
the message send tree. A second interesting result is that the leaf nodes

The Technique

325
The Technique

tend to be extremely short: 70% of the leaf nodes executed 5 or fewer
bytecodes before returning. The conclusion is that most methods exe­
cute at the leaves of the message-send tree and they tend to be small.

The final assumption is that a significant portion of the methods do
not exploit the polymorphic nature of the Smalltalk-80 language. In
particular, a large fraction of methods are executed with "fixed" classes
for the arguments and variables. That is, for many methods, the classes
of the arguments and variables nearly always are the same from call to
call. No direct evidence has been collected to verify this assumption.
However, one measurement has been made that makes this seem plau­
sible. As measured dynamically, for a given send bytecode in a given
method, the probability is 95% that the receiver is of the same class as
the last time this particular bytecode was executed7• This indicates a
strong lack of polymorphism for a large part of the system.

Of course, this measurement does not directly validate the third as­
sumption. Even though the class of the receiver was often the same, the
classes of the arguments and variables (if any) were not measured.
However, it is unlikely that the 5% of variability in receiver is distrib­
uted evenly over the system. Probably, many sends almost always have
the same receiver as the last time. It is also likely that similar results
hold for arguments and variables in methods.

For this final assumption to be true, there must be dynamically a
significant number of methods that are almost always presented with
the same classes for the arguments and variables as the last time.
While the number of methods for which this holds is unknown, it is cer­
tainly true for some methods. For example, some graphics methods
most certainly expect only to be passed an instance of class Point.

The proposal is to augment the Smalltalk-80 language with an optional
declaration of the class of arguments, instance variables and class vari­
ables. In addition, some methods would have optional declarations of
the class of the value returned from the method and/or the class of the
receiver. These declarations would define the preferred class of the ar­
gument, variable, return value, or receiver. This preferred class is the
class expected to match the actual class used in the method in the vast
majority of activations of the method. The receiver and arguments are
not forced to match: if at run time the actual class did not match the
preferred class, then the method would be executed by a conventional
interpreter. If however, the preferred classes match the actual classes
for all arguments and variables, then a more efficient method of execu­
tion could be performed.

326
Preferred Classes: A Proposal for Faster Smalltalk-SO Execution

Implementation

At least two other techniques for introducing the notion of types to
Smalltalk languages have been documented. One8 uses type inferencing,
and the other9 uses type declarations. This proposal is somewhat differ­
ent from either of these.

For the purpose of this paper, the use of pool dictionaries or the
Smalltalk-SO dictionary in a method would make it ineligible for this
technique. The problems involved in incorporating these dictionaries
appear not to be insurmountable, but they confuse the concept being
presented here.

Since the system would always interpret bytecodes when the actual
and preferred classes did not match, the Smalltalk-SO semantics would
not change. The only effect of the preferred classes would be that some
methods would run more efficiently.

The idea behind all of this is that the upper portions (near the root)
of the message-send tree are likely to be polymorphic. However, to per­
form some low level function, only a small locus of methods is used.
Many sends and much looping occur inside of this locus. If the bound­
ary of this locus can be identified and the classes passing over this
boundary checked, then the class of objects inside the locus might be
predicted. This would lead to faster execution of this small part of the
computation. The rule of thumb in conventional programming lan­
guages is that 10% of the code accounts for 90% of the execution. Typi­
cally most of this 90% is found in inner loops. If this conjecture is also
accepted for the Smalltalk-SO language, then this technique could effect
the vast majority of execution.

There is a danger in this approach: by having two execution strate­
gies for methods, the more efficient one with preferred classes might
tend to encourage programmers not to exploit the polymorphic nature
of the language. Programmers might tend to use the more restrictive
but more efficient style of programming rather than the fuller and
more powerful nature of the Smalltalk-SO language. If however, the ad­
dition of preferred classes to a collection of methods is viewed as an op­
timization step performed by the applications programmer after initial
system test, then the polymorphic nature of the Smalltalk-SO language
will be effectively preserved.

The implementation technique is to compile methods to machine code
as much as possible. For methods where the preferred classes are de­
clared, two types of compiled methods are produced: the existing com­
piled method and a new machine code compiled method. It is assumed
that a conventional interpreter is available to execute methods where

327
Implementation

there are no preferred classes and for use when the preferred classes do
not match the actual classes.

For methods where the preferred classes of all arguments, instance
variables, and class variables are declared, a variant of the message dic­
tionary will be used. This will be set up at compile time. The message
dictionary entry will be flagged to indicate machine code is to be exe­
cuted. The machine code for the method will be divided into two sec­
tions. The first section, called the prologue, will validate the class of the
arguments and variables. To do so, only a few instructions are executed
for each argument and variable. Variables will only be checked if they
are used in the method (unused instance and class variables need not
be checked). If the method explicitly uses self, the class of the receiver
will also be checked. If any of these tests fail, the method will be run by
the standard interpreter. If all these tests succeed, the second part of
the machine code, called the body, will be executed. The body is the ma­
chine code program to perform the method. The body would be all that
would be executed from other machine code methods when the classes
matched. That is, there will really be two entries to the machine code: a
checked (prologue) and an unchecked (body) entry. The first is used
when the classes of the arguments and variables cannot be predicted at
compile time. The second will be used when this prediction is possible.

More optimizations could occur during compilation. If the class of the
receiver of a send can be predicted at compile time and the target
method is short, then it could be compiled in-line. If the target method
is not short and the classes match, the send could be bound to the
unchecked entry. Finally, if the target method can be predicted, a hard
pointer to this method can be used instead of a lookup at execution
time. Primitives are prime candidates for these optimizations.

Additional information must be kept to allow the debugger to oper­
ate as usual. In case of an error, it must be possible to map from ma­
chine code and expanded in-line machine code to a more conventional
representation. This could be done with an auxiliary table for each ma­
chine code method that would set up the correspondence of program
counter values between the two types of methods. Code would be gener­
ated such that at each potential error point, the execution would clean­
ly map into the conventional representation. Dependency lists could be
kept to detect what methods need to be recompiled after another meth­
od is changed 10•

Sometimes during the execution of a method in machine code, the
class of the value returned by some message might not match the pre­
ferred class. In this case, the machine code form of the execution would
also need to be converted to interpreter form (i.e., compute the effective
program counter for the interpreter). The interpreter would then start
executing as usual.

328
Preferred Classes: A Proposal for Faster Smalltalk-80 Execution

For example, suppose the + primitive when called with a receiver
and argument of class Smalllnteger, returns either a Smalllnteger or
Largelnteger. The normal case is for a Smalllnteger to be returned. If a
Largelnteger is to be returned (possibly detected by testing the overflow
bit in machine code), the system would invoke full fault recovery to
convert the executing machine code form to the normal interpreter for­
mat. Once this is done, the interpreter would continue to execute the
method. It is hoped that this type of fault is a low probability event, so
that it would not add significant overhead.

By insuring the class of the receiver, arguments, and variables at
method entry, the class of all objects relevant to the computation at the
start of the method are known at compile time. By checking the class of
all objects returned by message sends where needed, the class of all ob­
jects would be known at compile time for the whole method.

The checking of the preferred class at method entry need not be too
time consuming. For class variables, checking could occur when they
are changed. If the setting did not match the preferred class, then the
object table could be flagged to not execute the machine code for those
methods that depend on this class variable. Conversely, the setting of a
class variable to the preferred class would re-enable the execution of
machine code. By doing the checking of class variables when they are
set, normal method execution would do no class variable checking. This
would be faster since it is presumed that variables are read more often
than they are written. The instance variables would have to be checked,
but this could also be reduced to checking a flag in the object if the set­
ting of the instance variables by the standard interpreter also caused a
check of the preferred class. Note that changing an instance or class
variable might involve converting existing suspended methods from the
machine to the bytecode form of execution. Finally, the arguments
would have to be checked. Since dynamically, most methods have few
arguments (an average of 1.3 has been reported11), this would take only
a few instructions. The number of machine instructions to check the
classes might be about six. This would make the checking be about
three times faster than executing a single bytecode in a conventional
interpreter. If the tests succeeded in the clear majority of the cases,
then this overhead would be acceptable.

The final question is that of execution efficiency. Will anything be
gained or lost by the use of this technique? Certainly there will be add­
ed complexity during compilation, debugging, and error handling. Addi­
tional space will be consumed with machine instructions, mappings
from bytecodes to machine instructions, and dependency lists. Addition­
al overhead will be incurred when sending messages to methods with
preferred classes when the actual classes do not match the preferred
classes. The interpreter must also do extra work when setting instance
and class variables that have preferred classes. But what savings can be

Conclusions

Acknowledg­
ments

329
Acknowledgments

obtained from running part of the system in machine code instead of
using a standard bytecode interpreter? If we assume:

1. Executing machine instructions is five times faster than interpre­
tation,

2. Half of all executed bytecodes are compiled to machine mode, and

3. Half of all messages sends are eliminated by compilation in-line or
direct calls without method lookup,

then the savings would be that half the execution would run five times
as fast, while the other half would run at nearly the same speed. This
means that a savings of about 40% could be obtained. Of course this
number is approximate and depends on the selection of the preferred
classes to be nearly correct. However, this shows that there is potential­
ly a large gain possible by using techniques like the one proposed here.

A technique to augment a conventional Smalltalk-80 interpreter has
been proposed. This technique uses the concept of a preferred class to
gain efficiency in those methods that do not use the polymorphic nature
of the Smalltalk-80 language. This technique allows for more efficient
compilation to machine code. Since the receiver class can sometimes be
identified at compile time, either the method lookup can be done at
compile time, or the method can be expanded in-line.

With the assumptions stated in the body of this paper, it seems possi­
ble that some form of optimizing compiler techniques can be used to
gain efficiency. Although only one technique was presented here (ex­
plicit declaration), many variations on this theme are possible. Type de­
duction, where the type is inferred from dynamic usage, seems equally
viable but requires more compiler sophistication12•

Professor David Patterson provided overall motivation, help, and guid­
ance for this work. Hewlett-Packard allowed Berkeley to run an early
version of their interpreter that was helpful in understanding
Smalltalk-80 implementations and allowed certain statistics to be ac­
quired. Xerox granted Berkeley access to documentation as well as
many personal discussions. In particular, L. Peter Deutsch was most

330
Preferred Classes: A Proposal for Faster Smalltalk-SO Execution

References

helpful in providing statistics and discussing alternate implementation
strategies. L. Peter Deutsch, Adele Goldberg, Glenn Krasner, and D. Ja­
son Penny also served as reviewers for this paper. Their comments were
most helpful and greatly improved the quality of this paper.

1. Goldberg, Adele, and Robson, David, Smalltalk-BO: The Language
and Its Implementation, Addison-Wesley, Reading, Mass., 1983.

2. Borning, Alan H., and Ingalls, Daniel H. H., "A Type Declaration
and Inference System for Smalltalk"; Ninth Symposium on Princi­
ples of Programming Languages, pp. 133-141, Albuquerque, NM,
1982.

3. Deutsch, L. Peter, Berkeley Computer Systems Seminar, Fall
1981.

4. Ungar, David M., Private Communication, 1982.

5. See reference 3.

6. Hagmann, Robert, "Some Smalltalk Performance Measurements
Emphasizing Compiler Performance and/ or Context Windows",
Unpublished Class Paper for CS292R, Computer Science Div.,
Dept. of E.E.C.S., Univ. of California, Berkeley, Fall 1981.

7. Deutsch, L. Peter, Private Communication, 1982.

8. Suzuki, Nori, "Inferring Types in Smalltalk", Eighth Symposium
on Principles of Programming Languages, pp. 187-199,
Williamsburg, VA, 1981.

9. See reference 2.

10. Mitchell, James A., "The Design and Construction of Flexible and
Efficient Interactive Programming Systems", Garland, N.Y., 1979;
(A Monograph of Mitchell's 1970 thesis at Carnegie-Mellon Uni­
versity).

11. See reference 7.

12. See reference 10.

Abstract

Introduction

Low-Overhead Storage
Reclamation in the
Smalltalk-80
Virtual Machine

Scott B. Baden
Computer Science Division
Department of Electrical Engineering and
Computer Sciences
University of California, Berkeley

Measurements of the Smalltalk-BO virtual machine indicate that 20%
to 30% of the time is spent managing storage. Following the work of
Deutsch, Bobrow, and Snyder1•2•3•4 , we introduce a strategy that reduces
the overhead of storage reclamation by more than BO%. We also discuss
the design of simple hardware to support this strategy, and compare
our approach to one using only software. We conclude by suggesting di­
rections for future research.

Last fall, Smalltalk came to Berkeley. Under the direction of Professor
David Patterson, students in the Computer Science department ported
the Smalltalk-BO virtual machine (SVM), generously provided by
Hewlett-Packard Laboratories, to a research VAX-11/7BO, and analyzed
several aspects of its performance5•6•7•

As a result of these studies, we discovered that a large percentage of
SVM execution time was spent managing storage-20% to 30%8•9 . Most

Copyright © Scott B. Baden 1982. All rights reserved.

331

332
Low-Overhead Storage Reclamation in the Smalltalk-SO Virtual Machine

Assumptions

SVMChanges

Hardware

of this overhead is due to management of activation contexts. According
to our statistics, context objects account for 82% of all object allocations
and deallocations, and references from the evaluation stack and from
local variables (both of which are contained by contexts) cause 91 % of
all reference-count operations.

These findings are encouraging: if the SVM could treat context ob­
jects as special objects, then it would save considerable time managing
them. Consistent with this reasoning we show how to reduce storage
reclamation overhead by a factor of five.

Our assumptions deal with changes to the SVM, both to its specification
and implementation, and to the processor that executes it.

An invariant of the SVM specification states that "the reference count
of an object must equal the number of references to that object"10• In
our implementation we will relax this invariant; the reference count of
an object will usually not include the references made from the n most
recent context activations. We call those contexts whose fields are not
reference counted volatile contexts11•

Owing to the presence of volatile contexts, an object might not be
free when its reference count reaches zero. This condition prevents the
SVM from reclaiming storage incrementally. Instead it reclaims storage
periodically, accounting for all the volatile references before freeing any
storage (we must ensure that the Smalltalk-80 virtual machine never
runs out of storage between reclamation phases).

In addition to relaxing the reference-count invariant we also relax
one other: that "all objects must be assigned an Oop"12. Usually, the
proposed SVM does not assign Oops to method contexts nor does it allo­
cate space in the object memory for them. Instead, the system stores
the contexts in FIFO order from a fixed region of physical memory.

Occasionally, nonlinearities in the context nesting sequence or other
exceptions will arise, causing the system to momentarily enforce
previously relaxed invariants. Later, we will show that these conditions
arise infrequently enough so that they do not degrade performance sig­
nificantly.

Although volatile contexts can be stored in main memory, they are
used like registers in a conventional CPU, so we provide a small regis­
ter cache, called the context cache.

Two registers, the Top Window Pointer and the Bottom Window
Pointer, mark the physical memory bounds of the volatile contexts. The

Reclamation

333
Assumptions

system uses these pointers, as in RISC-P3, to resolve references to con­
texts (e.g., is the context volatile-in the registers-or not?). All the
contexts between the two markers are volatile, while all the contexts
below the Bottom Window Pointer are stable (i.e., their fields are refer­
ence countable). In our implementation, the storePointer operation will
not do any reference counting if the destination field is volatile. To sim­
plify the cache design we assume that all contexts are 32 words deep.

To speed up storage reclamation, we provide a special memory, called
the Zero Count Table (ZCT), that indicates all the objects with a zero
reference count. The ZCT has 32K entries and is 1 bit wide (the depth
of the ZCT will always equal the number of possible Oops in the sys­
tem). It is capable of operating in both random access and content asso­
ciative modes. The system accesses the ZCT over its memory data and
address busses, using a special request line to distinguish the ZCT from
the object memory. The ZCT will behave like a Content Associative
Memory (CAM) when the system searches it for free objects-this be­
havior speeds up the search time considerably (compare with queues
elsewhere14•15·16). At all other times it behaves like a RAM. When an ob­
ject's reference count reaches zero the CPU sends the object's Oop over
the memory address bus and tells the ZCT to mark the appropriate en­
try (owing to possible volatile references to the object, it might not be
free).

The CPU suspends normal execution during the storage reclamation
phase. First, it accounts for the volatile references-a process we call
stabilization 17• To stabilize a register, the CPU increments the reference
count of its contents (a ref/ operation). During the stabilization phase, a
reference count may get incremented from zero to one-we call such a
zero reference count a spurious zero reference count. To prevent the
Smalltalk-SO virtual machine from freeing an object that had a spuri­
ous zero count, the CPU clears the ZCT entry on a zero to one reference
count transition.

After stabilizing the registers, the CPU frees any object marked in
the ZCT. During the reclamation phase further storage may become
free and so new ZCT entries will be set. When reclamation finishes, the
system volatilizes the registers by decrementing the reference count of
their contents (we call a reference-count decrement a refD).

The difference between our scheme and that of its predecessors lies
in the structure of the ZCT (Others used a queue.). Our implementation
of the ZCT is preferable to a queue for two reasons:

1. The table will not overflow.

2. The search time will depend on the number of free objects, and
not on the number of possible objects (i.e., there is no need to ex­
amine spurious zero counts).

334
Low-Overhead Storage Reclamation in the Smalltalk-80 Virtual Machine

Overhead

Experiments
and Their
Interpretation

General Method

There are three potential causes of overhead in a volatilizing system:

1. Window underflows and overflows.

2. Periodic stabilizations and revolatilizations.

3. Special case treatment of volatile contexts.

Since the depth of the stack is bounded, some sends will cause a win­
dow overflow and some returns will cause a window underflow. The sys­
tem must stabilize the bottom window in the cache on an overflow and
volatilize the top window in memory on an underflow. For an 8 deep
context cache, we found that only 3% of all message sends and returns
caused an overflow or an underflow; these conditions result in negligi­
ble overhead18•

There are certain cases where improper treatment of volatile con­
texts could cause the system to fail: non-linearities in the context nest­
ing sequence, caused by blocks (e.g., a message may return a block as a
result), and sending messages to contexts (e.g., sending a thisContext
message). We assume that these activities have a negligible cost. We
have observed that only 6% of all activations are due to blocks19, and it
is well known that messages to contexts happen much less frequently
than method activations and messages to other types of objects20•

Although we have provided a fixed region of memory devoted to con­
texts, this does not mean that we have imposed a hardwired limit on
the maximum context nesting depth. When the system overflows the
fixed region, it migrates least-recently used contexts into the object
memory21 • We believe that this exceptional case can be ignored-we
have observed a maximum context nesting depth of only 40 contexts in
an execution trace of 559K bytecodes22. Assuming that the sample is
representative, it would be reasonable to allocate a fixed region of, say,
64 contexts.

Experimental evidence shows that our scheme improves storage recla­
mation overhead by at least 80%. First we will discuss our general
method for gathering statistics; next, the experiments; and finally, our
conclusions.

We monitored a session involving the execution of system code and appli­
cation code-browsing, compiling, and execution of simple messages­
a total of 559K bytecodes were executed. To collect a more representa-

The Experiment

Figures of Merit

335
Experiments and Their Interpretation

tive sample we started the measurements after system initialization
had completed.

The H-P code was written exactly as specified in the Smalltalk speci­
fication23, hence it was highly modular and easy to change. We modified
the code by inserting non-invasive calls to special auditing routines. Ap­
propriate Oops, method headers, and other data were written onto disk.
Owing to its size (17 megabytes), the audit file was copied onto magnetic
tape. A context cache simulator was written and ran directly from the
magnetic tape audit files. Complete documentation for the audit tape
format appear$ in our previous work24.

Several activities were audited:

1. Bytecode Execution

2. Reference Counting

3. Deallocations and Allocations

4. Method Lookups

5. Context Activations and Returns

6. Primitive Successes and Failures

We measured the effects of volatilization in a non-volatilizing system.
There are two experimental variables: stabilization period (in bytecodes)
and context stack depth (in 32-word windows). First we introduce a set
of criteria for assessing the validity of our approach. Then we present
the numbers to support our claims.

We had to adjust our figures to account for four optimizations not
present in the Smalltalk-80 specification, that reduce reference-count­
ing activity by 50% 2

fi
2027 . These optimizations include: nilling the top of

stack on a pop, not reference counting explicit use of distinguished val­
ues (nil, true, false) in the push and return bytecodes, and not reference
counting when moving Oops (e.g., return top of stack).

Since we did not have access to a volatilizing Smalltalk-80 system,
we could not measure certain fine-grained activities such as spurious
zero counts, or overflowed queues. Hence, we could not quantify our
choice of ZCT implementation over that in the literature. However, we
can justify our choice from an analytic standpoint since it allows us to
place an upper bound on the cost of scanning for free objects. Resolu­
tion of this issue is a topic for future research.

We evaluate our results by reporting the net savings in:

1. Reference Counting,

2. Allocation Activities, and

336
Low-Overhead Storage Reclamation in the Smalltalk-80 Virtual Machine

Experimental
Results- The
Effects of
Volatilization

3. Deallocation Activities.

The savings in 2 and 3 equal the number of allocated and deallocated
method contexts. We do not include block contexts owing to the difficul­
ties with handling blocks (see p. 332). This omission will not affect our
results significantly because we observed that only 7% of all contexts
allocated are block contexts (in contrast to 6% of all activated con­
texts). The savings in 1 equals the number of reference counts of cached
method context fields (e.g., in active and deactivated contexts, also in
initialized, but inactive, contexts) minus a small overhead.

The Smalltalk-SO system has three types of reference-count opera­
tions, listed here in order of increasing time complexity:

1. Reference-count requests that cannot be satisfied (the object can­
not be reference counted).

2. Reference-count increment (ref[).

3. Reference-count decrement (refD).

1 is decided by a simple check of the object table. 2 or 3 occur
depending on the outcome of the check in 1, and 3 is accompanied by a
check for zero, since the object might be free.

We simplify the analysis of reference-count savings by ignoring refer­
ences from block contexts (they account for only 5% of all references28)

and by assuming a minimum cache depth of two windows. This latter
simplification forces most references contained by method contexts to
always be in the cache:

1. The home context.

2. The sender (the caller context for blocks) context.

3. A newly created context.

Only two of these three contexts need be cached at one time since the
SVM disposes of the sender context when activating a new one. To de­
termine the savings owing to volatilization we maintained separate
tallies for reference-count operations of volatile fields (as mentioned in
1 through 3 above) and nonvolatile fields. The tallies were broken down
further into refl's and refD's. Table 19.1 summarizes these data-it
shows that volatilization of contexts reduces reference counting by 91 %.

337
Experiments and Their Interpretation

Table 19.1 Savings Owing to Volatilization

Object

Volatile Contexts
Other Objects
Savings(%)

refl's

492890
65747

88

refD's

847979
66789

93

Two events reduce these savings:

1. Window underflows and overflows.

2. Periodic stabilization.

Totals

1340869
132536

91

To measure these reductions we simulate a register cache. The simula­
tor stacks the active contexts (in memory and in the registers) and
maintains the bounds of the cached contexts to keep track of
underflows and overflows.

On an overflow the SVM writes out part of the bottom window to
memory: the stack, header, and temporaries. When done writing it also
reference counts these fields. Owing to linear context nesting the SVM
can infer the sender from the top of stack pointer so the context header
is shortened to four fields.

On an underflow the SVM restores the top window in memory into
the registers and then it refD's the cached fields. The cost of an
underflow is the same as an overflow. Table 19.2 shows that for an 8
window cache, the additional reference-count operations caused by
underflows and overflows offsets the gains (of 91 %) by no more than
2%.

Activity

% overflows
% underflows
% degradation

Table 19.2 Cost of Overflows and Underflows

Cache Depth(# of Windows)

4
19
20
6

8
3.0
3.0
2.0

16
0.0
0.0
1.4

During reclamation the Smalltalk-BO virtual machine accounts for all
reference-countable cached references, so it does not reference count the
ip and sp fields of volatile contexts. When done it revolatilizes these
fields. Table 19.3 shows that this overhead degrades the savings (by
causing extra reference-count operations) by less than 1 % .

r
!

338
Low-Overhead Storage Reclamation in the Smalltalk-80 Virtual Machine

Table 19.3 Losses Owing to Periodic Stabilization and Volatilization

Cache Depth
4 Windows 8 Windows 16 Windows

Period Loss Loss Loss Loss Loss Loss
(Bytecodes) (Ops) (%) (Ops) (%) (Ops) (%)

8000 3354 0.2 6707 0.4 13414 0.8
16,000 1676 0.1 3354 0.2 6707 0.4
32,000 838 0.1 1676 0.1 3354 0.2
64,000 419 0.0 838 0.1 1676 0.1

128,000 210 0.0 419 0.0 838 0.1

Besides register examination, reclamation includes pointer chasing
(number of recursive refD's done), exclusive of those done to method
contexts, plus object deallocations. Since this work is also done incre­
mentally in a non-volatilizing system it does not affect reference-count­
ing activity but it does affect reclamation latency time. To calculate the
reclamation latency we assume that the SVM executes 128K
bytecodes/second and that it takes 400ns to execute an instruction or to
locate a free object in the ZCT. The Appendix shows that it takes 2.8µs
to free an object and 2.7 µs, on average, to ''chase a pointer". Table 19.4
shows the latency period for different combinations of the experimental
variables. The latency time is always less than 41ms (the time spent
stabilizing and volatilizing the cache is insignificant compared to the
time spent reclaiming29), so it does not slow down the system's response
time appreciably. Table 19.4 provides the information needed by an
implementor to adjust the reclamation period to suit any response time
constraints.

Table 19.4 Reclamation Latency Time

Reclamation Execution Fields Reclamation
Period (K BC) Time (ms) Frees Chased Time (ms)

8 63 136 811 3
16 125 271 1622 5
32 250 543 3245 10
64 500 1085 6489 21

128 1000 2170 12978 41

Evaluation

Conclusions

Acknowledg­
ments

339
Acknowledgments

For interactive use, we recommend 128K bytecode reclamation periods.
At this interval the accumulation of unusable storage is reasonable,
lOK words30, and the latency time is short, 41ms. We recommend an 8
window cache. Eight windows are far superior to four, but we appear to
reach a diminishing rate of return at 8; 16 windows do not improve per­
formance (i.e. overflow and underflow rates) significantly.

Our scheme reduces storage reclamation time by at least 80%-it
rarely allocates method contexts, avoiding 82% of the object allocations
and deallocations, and does 89% fewer reference-count operations than
a non-volatilizing implementation. Reclamation overhead is reduced to
4% to 5%, and generally, the SVM performance is improved by
22%-27%31 .

Although we have not considered the speedup due to the caching of
contexts in fast registers, we feel that it will be significant. We base our
choice of fast registers over slower memory on current trends which fa­
vor the inclusion of more processor registers32 •

Our results were based on a 400ns processor cycle time. If a faster or
slower one is available, then an implementor will adjust the reclama­
tion period to suit any response time requirements.

A Smalltalk-80 system can save considerable time managing dynamic
storage if it treats context objects as special objects. The hardware is in­
expensive and a 20% general improvement in performance is realizable.
The savings could be as high as 30%, depending on the implementation33•

Although the strategy looks attractive, we must caution the reader
that we have not dealt with two significant issues: how to reclaim cyclic
garbage, and how to handle the special cases mentioned on p. 332. In
the first case, we must resort to garbage collection or develop a scheme
to keep track of cycles34 • In the second case, the system implementor
must weigh the technique's benefits against its complexity. The special
cases are not straightforward and their complexity may make our
scheme appear less attractive, i.e., we may want to replace the refer­
ence-count technique by garbage collection. No clear-cut answer has
been found.

I'd like to thank my colleagues here at Berkeley: Ricki Blau, Clem Cole,
John Foderaro, Robert Hagmann, Peter Kessler, Ed Pelegri, Richard
Probst, Russell Wayman, and especially David Ungar, with whom I

340
Low-Overhead Storage Reclamation in the Smalltalk-SO Virtual Machine

Appendix­
Analysis of
Storage
Reclamation
Times

spent many enjoyable evenings discussing Smalltalk. At Xerox: Adele
Goldberg, Dan Ingalls, Ted Kaehler, Glenn Krasner; also Peter Deutsch,
who has shared with me and my colleagues a good deal of his insight
into the Smalltalk-80 system. At Hewlett-Packard, I'd like to thank Bob
Ballance, Ted Laliotis, and Jim Stinger. Without their help this work
would never have been possible.

Two faculty members have been instrumental in the execution of
this project: Yale Patt and my advisor David Patterson. Yale kindly of­
fered his time as second reader. Dave made Smalltalk a reality at
Berkeley. He provided a good deal of moral support-I am grateful for
his time and for his consideration throughout the project.

Reclamation consists of two activities: marking the entry as "free" in
the object table, and chasing its pointers. We present both algorithms,
assuming one 400ns machine instruction per step. We include branch­
ing probabilites at all decision steps (they are enclosed in square brack­
ets, e.g. "[0.24]"). These probabilities were reported in35 .

The freeing algorithm involves seven steps totaling 2.8µs:

1. Read and clear a ZCT entry.

2. Shift the Oop (to remove the tag bit).

3. Read the OT entry.

4. Set the "free" bit.

5. Write the OT entry back.

6. Thread the free object (in the object memory) into the free list.

7. Update the head-of-free-list pointer.

The pointer chasing algorithm involves 12 steps totaling 2. 7 µs:

1. Read the field.

2. Nil the field.

3. Was the field a Smalllnteger? If so, exit [0.10].

4. Shift the Oop to remove the tag bit.

5. Read the OT entry.

6. Extract the Permanent bit.

References

341
References

7. Is the object Permanent? If so, exit [0.80].

8. Read the reference count.

9. Decrement the count.

10. Write back the count.

11. Is the count zero? If not, exit [0.97].

12. Toggle the ZCT entry.

1. Deutsch, L. Peter, and Bobrow, Daniel G., "An Efficient Incremen­
tal Automatic Garbage Collector", Communications of the ACM
vol. 19, no. 9, pp. 522-526, Sept. 1976.

2. Deutsch, L. Peter, Lecture given to the Berkeley Smalltalk Semi­
nar, Feb. 5, 1982.

3. -------, Private Communication, 1982.

4. Snyder, Alan, "A Machine Architecture to Support an Object-Ori­
ented Language", Ph.D. Dissertation, MIT Laboratory for Comput­
er Science, MIT /LCS/TR-209, March 1979.

5. Baden, Scott, "Architectural Enhancements for an Object-Based
Memory System", CS292R Class Report, Computer Science Div.,
Dept. of E.E.C.S., Univ. of California, Berkeley, CA, Fall 1981.

6. Cole, Clement T., Pelegri-Llopart, Eduardo, Ungar, David M., and
Wayman, Russell J., "Limits to Speed: A Case Study of a
Smalltalk Implementation under VM/UNIX", CS-292R Class Re­
port, Computer Science Div., Dept. of E.E.C.S., Univ. of California,
Berkeley, CA, Fall 1981.

7. Hagmann, Robert, "Some Smalltalk Performance Measurements
Emphasizing Compiler Performance and/or Context Windows",
Unpublished Class Paper for CS292R, Computer Science Div.,
Dept. of E.E.C.S., Univ. of California, Berkeley, Fall 1981.

8. Cole, Clement T., Pelegri-Llopart, Eduardo, Ungar, David M.,
Wayman, Russell J., "Limits to Speed: A Case Study of a
Smalltalk Implementation Under VM/UNIX", CS-292R Class Re­
port, Computer Science Div., Dept. of E.E.C.S., Univ. of California,
Berkeley, Fall 1981.

9. See reference 2.

342
Low-Overhead Storage Reclamation in the Smalltalk-BO Virtual Machine

10. Ibid.

11. Ibid.

12. Ibid.

13. Patterson, David A., Sequin, Carlo H., "RISC I: A Restricted In­
struction Set VLSI Computer", Eighth Symposium on Computer
Architecture, Minneapolis, Minn., May 1981.

14. See reference 1.

15. See reference 4.

16. See reference 2.

17. Ibid.

18. Baden, Scott, "High Performance Storage Reclamation in an Ob­
ject-Based Memory System", Master's Report, Computer Science
Div., Dept. of E.E.C.S., Univ. of California, Berkeley, June 9, 1982.

11!- Ibid.

20. See reference 3.

21. Ibid.

22. See reference 18.

23. Goldberg, Adele, and Robson, David, Smalltalk-BO: The Language
and Its Implementation, Addison-Wesley, Reading, Mass., 1983.

24. See reference 18.

25. See reference 3.

26. Ungar, David, Private Communication, 1982.

27. See reference 18.

28. Ibid.

29. Ibid.

30. Ibid.

31. Ibid.

32. See reference 13.

33. See reference 18.

34. See reference 3.

35. See reference 18.

Applications 12, 14, 76, 273-286, 287-297
Benchn1arks 153-173, 187,203,208, 235-236
Cached interpreter state 45, 51, 55, 86, 120-

123
Code files 29-40, 275
Code representation 11, 14, 16, 21, 108
Contexts 10, 14-16, 18, 20, 100, 147, 312-314,

332
Display subsystems 60, 71, 81, 88-91, 189,

196197, 319 320
File systems 8, 32, 76, 287-297
Graphics

BitBlt 1:3, 18, 45, 61, 63, 88-91, 98, 196-
197, 319

Turtles (Pens) 12
Hardware considerations 45, 113 126
Image format 92, 149
Implementation languages 46. 5;3, 1 U 117.

302
Assembler 46, 114-117, 171
Bliss-~~2 1 71
C 81, 82,170,171
Pascal 43--44, 54, 61--62, 81, 171
Smalltalk-SO 41-44, 265-266

Implementors
Apple Computer Inc. 5, 171, 175-187
Digital Equipment Corp. 5, 127--150, 171

Index

Fairchild Laboratory for Artificial
Intelligence Research 8

Hewlett-Packard 5, 79-112, 171, 207-
237, 331

Tektronix Inc. 5, 45, 54- 55, 59- 78, 171,
287-297

University of California, Berkeley 8, 84,
170, 189-206, 239,243,245,324,331

Xerox Corp. 113-126, 170
Inheritance 22
Interpreter organization 114-117, 176-179,

233-234, 306-308
Measurements

BitBlt 197
Bytecode characteristics 181 184, 190

191, 196, 208-210, 217-223
Send characteristics 184--186, 210-217
Storage management 198-202, 223 233

Method lookup cache 87, 148, 202, 239-247
Multiple processes 51, 303-304
Mutation (Become) 19, 143
Operating system 70, 81, 109, 147--148

UNIX 82, 107-108, 109, 171
VMS 130, 171

Smalltalk systems
Smalltalk-72
Smalltalk-74

3, 5, 10-13
13-14

343

Smalltalk-76 3, 7, 14-17
Smalltalk-78 17-20
TinyTalk 20

Smalltalk-80 Implementor's Conference 7,
153

Snapshot/Crash recovery 23, 37, 90
Software development environment 61, 68,

71, 72, 82,101, 103-108, 149,181
Storage Management 10, 48-50, 52-54, 61-

62, 70, 91, 118-119, 128,176, 194-195, 305-
306, 315-317

344

Object Pointer formats 16, 18, 46-48, 55,
91,129, 130-132, 252-253, 303

Object table formats 93, 146, 253
Storage reclamation 53-54, 55, 95, 96,

100,102, 128-129, 130, 133-144147, 192-
193, 262-263, 304, 308-310, 331-342

Virtual Memory 21, 129, 144-146, 251-
271, 304
LOOM
Ooze

144, 251-271
14, 17, 25,144

Word size/Object body format
254-257, 310-314, 327-328

System cloning 1 7, 24, 26
Target Machines 80-81

Alto 12
DECSYSTEM-20 61---62, 81
Dolphin 44, 170, 172, 324
Dorado 44, 113-126, 170,324
iAPX-432 299-321

93, 130,

MC68000 45, 46, 54, 60---62, 171, 175-187
N oteTaker 1 7-20
PDP-11/23 128-129
VAX/11-780 81, 127-150, 171, 189, 201

Variable Typing 21, 323-330
Version management 6, 273-286
Virtual Image Traces 6-7
Virtual Images

First Image
Fourth Image
Second Image
Third Image

6, 64, 81
7, 74, 85
6,69, 83

7, 71, 74, 84

Smalltalk-SO: Bits of History, Words of Advice provides insights into
the implementation of the Smalltalk-SO system - a personal, inte­
grated, interactive programming environment. It will be of value to
Smalltalk-SO system implementors, as well as to system program­
mers in general.

This book is organized into four sections. The first section contains
papers discussing the history of the Smalltalk-SO system, and in par­
ticular the development of the Smalltalk-SO Virtual Machine. In the
second section the authors discuss their implementation experi­
ences. The third section provides measurements of key parts of the
implementations. The papers in the fourth section describe the
future paths that Smalltalk-80 implementors may take.

The authors of these papers are affiliated with five different corpo­
rations and two universities. Glenn Krasner, the editor, is a member
of the Software Concepts Group at the Xerox Palo Alto Research
Center (PARC). This book of implementation considerations is the
second in a series of four books on the Smalltalk-SO programming
environment.

Other books in the Addison-Wesley Smalltalk-SO Series:

Smalltalk-SO: The Language and Its Implementation (11371-6)

Smalltalk-SO: The Interactive Programming Environment (11372-4)

Smalltalk-SO: Creating a User Interface and Graphical Applications
(11370-8)

ADDISON-WESLEY PUILISHING COMPANY ISBN □ -201-11669-3

