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Introduction

If you want to write graphics programs—especially games—that look terrific and run
like greased lightning, you've come to the right place. Simply put, this is a book about
high-performance graphics programming for PCs. This book has every last bit of the
Mode X and X-Sharp 2-D and 3-D animation code that started many game authors on
their way, and much more: Hardware, software, performance, algorithms, animation,
you name it—anything and everything to do with PC graphics, explained thoroughly,
implemented in C and assembly language, and finally scraped down to the bare metal
so that it runs like nobody’s business.

This isn’t intended to be the only graphics book you’ll ever need; no one book can
do that. Neither is it a book about how to do any single sort of graphics—it’s not about
how to do a flight simulator, for example—nor is it an exhaustive, dry, reference book.
What this 75 is a book that will teach you, by example, about the key graphics elements
of PC graphics applications such as games, animation, visualization, CAD, graphing,
and yes, flight simulators, and will show you how to write top-flight graphics code.
What's even more important is that this book will show you how to explore further on
your own, how to keep expanding the limits of your graphics knowledge and skills. In
short, this book will give you a good start on PC graphics, along with a ton of working
code—enough so that you will have the core skills needed for commercial-quality game
graphics when you’re done—and will then be your springboard to bigger and better
things.

Who This Book Is for

This book is for anyone who wants to be a PC graphics programmer, and is not yet an
expert. Even intermediate graphics programmers will surely learn many new things
from this book, and novices should find this to be a treasure trove. This is the book I
wish I could have had ten years ago, when I wrote PC video games for a living; back
then, I could have opened this book to almost any page and learned something new
and useful. The only prerequisite for this book is that you must already be able to
program; it will also help a good deal if you're able to at least read C and assembly
language code, although there is no code in here that’s so complicated that, say, a Pascal
programmer couldn’t figure it out given good C and assembly reference books to help.

Basically, if you know how to program and want to write software with screaming
fast, great-looking PC graphics, read on!

Xxii
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Where all This Came From

When I had pulled together all the many years’ worth of material that make up this
book, I started to wonder when the making of this book had started; where exactly had
this particular accumulation of knowledge begun? In one sense, it began when Jeff
Duntemann’s Coriolis Group got into the book publishing business, and Jeff called to
ask if I wanted to do a book based on my years of writing about PC graphics. Did I
ever! Readers had been asking me for such a book for years, and I had actually tried to
get Jeff and a couple of other publishers to do it once or twice before, but all the pieces
had never fallen into place—until now. I leaped at the chance.

In another sense, this book began when Jon Erickson at Dr. Dobb’s Journal gave me
the chance back in 1990 to write a graphics column for 100,000 readers. It wasn’t until
I wrote for DDJ that I really understood what a remarkably large and diverse group
graphics programmers were, and how much they cared about their work. (One par-
ticularly instructive lesson came when I published an early version of Mode X that had
a mode set bug. Fixes rolled in from all over the net—and not one person was the
slightest bit mean or mean-spirited, bless their souls!)

The key to this book came way back in 1986, though—back when an 8 MHz AT
was a high-end system and an EGA was state of the art, at $500 to $1,000 a pop. While
living in Pennsylvania back then, I read an article in Programmers Journal (now long
gone, but a wonderful home-brewed mishmash of hardcore technical stuff and corny
puns in its day) about 8088 optimization—and I knew that the article, though well-
intentioned, was just wrong. In a fit of passion, I dashed off an article that politely but
thoroughly explained why the first article was mistaken, and sent my work off to /.
When I didn't hear from PJ for months, I figured they had round-filed my article. By
that time, I had other things on my mind anyway; I had decided it was time to see what
life was like at the heart of the microcomputer industry, and moved to Silicon Valley.

Right after I got to California, however, I had the pleasant surprise of opening the
mailbox one day to find a contract from PJ (for a princely $265, lousy money even then,
but a sale was and is a sale). Better yet, the West Coast Computer Faire was coming up,
and Robert Keller, the editor of P/, wanted to know if we could get together.

We could, and did, and Robert, his wife, and I went out for my first (and so far last,
but highly enjoyable) experience with Indonesian cuisine. On the way back, Robert
wanted to know if I would write a column for him. The idea intrigued me—there was
alot I wanted to write about in the areas of graphics and performance programming—
but although I had written some articles, I wasn't an experienced writer, wasn't sure I
could actually deliver good stuff on a regular basis, and was busy as heck with a highly
stressful job and a one-year-old child, so I hemmed and hawed. I think Robert thought
the problem was money, and that might indeed have been a factor; he had offered
$200 per column, probably all the old P/ crew (which ran on the shortest shoestring
I’ve ever seen or care to see) could comfortably manage. So as I made noncommittal
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noises, Robert drove like a maniac (a lost maniac, at that) through San Francisco,
bumping the price up in increments detectable only with a magnifying glass.

“Two-twenty-five,” Robert said.

“Well,” I said.

“Two-fifty.”

“Um.”

“Two-sixty,” he ventured.

“Ah.”

And so on; by the time we pulled up at my car, Robert had worked his way up to
$325, practically a dollar at a time. I was trying hard not to laugh by this point, and
though I was tempted to see whether he'd start going by quarters next, I actually did
want to do the column, and I was late getting home anyway. So I said okay, and we
shook hands, and that was really the beginning of all the pages you hold in your hand.
The twenty-two columns I did for P/ taught me how to write, how to meet a deadline,
how much fun it is to share information—and how much fun it is to get knowledge
back in return.

In the years since, I have written several books and innumerable articles and col-
umns, and I've enjoyed it all immensely—and my guess is that none of that would
have happened without Robert’s persistence in the face of limited resources. So thank
you, Robert!

What This Book Is all About

Many, many people have seen one or another of my articles over the years since Robert
got me started, and a sizeable number of them have asked where they can find the rest
of my work. Until recently, I have had to suggest they refer back to the original articles,
“but that’s a problem because the articles are spread out over about one hundred issues
of several magazines, some of which haven't been around for years now. Likewise, Power
Graphics Programming, which collected the early P/ articles, has been out of print for
years. Happily, with the help of Jeff Duntemann and the Coriolis Group, that problem
is now solved. The best of my performance programming articles were collected to-
gether last year in Zen of Code Optimization, (also from Coriolis Group Books) and
now the best of my graphics programming articles (from my columns in P/ and DD,
plus some articles I wrote for PC TECHNIQUES ) are gathered together in this book.
[ say “the best,” but what I really mean is “all the material that’s still useful”; I have
culled those articles that the passing of time has rendered irrelevant, but everything
else—nearly 50 articles in all—is in here. Better yet, I've gone over all the material,
updating it as needed, and improving it when I see that there’s a better way to explain
than my original approach. As I reread all this material in preparation for this book, I
was astonished at the broad range of topics covered, from VGA internals to 3-D animation,
from sprites to blurry-fast lines, circles, and ellipses. My readers and I have explored an
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amazingly eclectic set of graphics topics, touching on a great many important areas of
PC graphics, and always—a/ways—with both in-depth explanation and high-performance,
high-quality code as part of the package. You can talk all you want about concepts and
design and algorithms, and those all matter—but if you're doing graphics and you
don’t have pedal-to-the-metal code, you don't have anything much to speak of.

This book reflects my personal evolution as a graphics programmer over many years;
after all, I wasn’t born knowing this stuff! A large part of why I write articles is because
I invariably learn something new, and in reading this book you'll be taking much the
same journey of exploration that I've taken—but without the annoying and time-
wasting mistakes and wrong turns.

Another reason I write is the sheer pleasure of sharing what I've learned. Some of the
code and concepts in this book have gotten broad use in the real world, and every time
I hear of a nifty program that uses some of the code I've published, or that started with
my code (and there are a quite a few such programs), all the late-night hours that went
into these articles are justified. Even better, it truly warms my heart when someone
comes up to me at a conference or sends me e-mail thanking me for getting them
started with graphics. All the good stuff that helped all those people is in here—a
complete tour of performance programming for the VGA, the Mode X material that
made the unique, undocumented capabilities of that superb VGA game mode avail-
able to everyone, the X-Sharp 3-D code that jump-started many a game programmer,
a rich set of graphics primitives, and much more. Enjoy!

Or, as Mr. Spock might say, live long and write much fast graphics code.

What You’ll Find in This Book

This book covers three broad graphics topics: VGA programming, graphics primitives,
and animation. The topics are intertwined; for example, many of the graphics primi-
tive implementations use techniques developed in the discussion of VGA program-
ming, and the animation software builds heavily on the rest of the book. The book isn’t
as sequential as that might imply, however, because both the VGA and graphics are
such large and complex subjects that there is no linear way to discuss them. Instead,
this book discusses one particular feature or technique in depth at a time, with plenty
of code, and then another, and another, and so on. Over the course of the book, the
broad picture comes into focus, especially as new algorithms or features use features
discussed earlier, but in different ways. So if you sometimes feel like you need more
explanation of a particular topic, look in the index or read on; odds are it'll come up
again in another context, one in which it may well make more sense to you.

One important point is that while most of the code in this book is written specifi-
cally for the VGA, it is almost entirely applicable to Super VGAs, given some minor
changes for banking, although there is only a smattering of Super VGA-specific code.
Also, Parts I, II, and VIII are the only truly hardware-specific portions of this book;
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much of the rest of the code is easily ported to other environments. For example, it
took only a day to port X-Sharp from DOS to Windows. Also, VGA capability, though
no longer at the cutting edge, is near-universal nowadays, because almost every graph-
ics accelerator contains full VGA functionality; that means that it’s very worthwhile for
you to understand the VGA, all the more so because there is no equivalent standard for
accelerated graphics. Furthermore, widespread VGA compatibility means that the VGA
is the ideal hardware platform for us to use in our explorations, since it will allow the
software in this book to run on at least 95 percent of the PCs out there, and surely
more than three-quarters of all the computers in existence.

There are nine parts to this book, as follows:

Part I describes the core of the VGA, the internal workings that can be harnessed to
double, triple, and even quadruple graphics performance. This is the unglamorous but
essential foundation for much of the high-performance code to follow, and although
it’s not the most exciting part of the book, I suggest you at least skim through it for
maximum benefit from the splashy stuff later on. Part I covers only VGA 16-color
mode, but the VGA’s hardware is the same in 256-color mode, and, in fact, a thorough
understanding of the hardware in 16-color mode turns out to be essential for proper
understanding of Mode X later on.

Part II discusses the VGA’s powerful color capabilities, and lays the groundwork for
the Mode X discussion in Part VIII.

Part III kicks off the discussion of graphics primitives with a look at two ways to
draw lines fasz, and Part IV tackles drawing circles and ellipses similarly fast.

Part V covers the intricacies of filled polygons, the fundamental building block of
realtime 3-D graphics.

Part VI returns to lines and polygons, but in the context of antialiasing, the process
of smoothing graphics images to improve their perceived quality.

Part VII delves into several sorts of animation, both hardware-dependent (page-
flipping) and hardware-independent (dirty rectangles), leading into Part VIII, which
describes Mode X, and puts it to work in a full-fledged sprite-based animation program.

Part IX pulls together much of what we've covered in the rest of the book into the X-
Sharp 3-D package. X-Sharp uses Mode X and the page flipping and polygon-filling
code developed earlier to implement realtime 3-D animation, and goes on to add light-
ing, texture mapping, and more.

And after Part IX... Why, then it’s time for you to apply what you've learned, keep
exploring and learning, write your own graphics applications, and make some jaws

drop!

A Couple of Notes before We Begin

There are two things I need to attend to before we get underway. First, please be aware
that some of the listings in this book look rather compressed, in that some additional
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whitespace would make them more aesthetically pleasing, and arguably more readable.
Most of these listings were originally squeezed down to fit in the 300 to 400 lines of
listings that I was typically allowed for a magazine article; I tend to be aggressive in
getting as much functionality as possible into my published code, so even 400 lines
was almost always a tight fit. The good news is that the code has been well tested, by
thousands of readers (the bugs that did show up, like the Mode X mode set bug men-
tioned above, have been fixed in this book), so you can have a high level of confidence
that it works as advertised.

Second, I need to define a few basic graphics acronyms that may be unfamiliar to
some of you. VGA stands for Video Graphics Array, originally the graphics chip that
IBM put on the motherboards of Micro Channel machines, but now the base standard
for graphics for the PC world. Documented standard VGA modes go up to 640x480
resolution in 16 colors, and 320200 in 256 colors, although in this book we'll see
undocumented 256-color modes with resolutions up to 360x480. SVGA stands for
Super VGA, evolutionary descendants of the VGA with higher resolutions and more
colors; unfortunately, there is no standard for SVGA, because each manufacturer ex-
tended the VGA in a proprietary way. EGA is Enhanced Graphics Adapter, the direct
ancestor of the VGA and the graphics standard in the mid-1980s; the EGA was much
like the VGA, but had a maximum resolution of 640x350, and didn’t support any
256-color modes. CGA is Color/Graphics Adapter, the first graphics adapter for the PC,
back in 1981, with maximum resolution of 640x200 and a maximum of four simulta-
neous colors in graphics mode. MDA is Monochrome Display Adapter, the first black-
and-white adapter for the PC. The MDA supported only text mode, with no graphics
capabilities, leaving the door open for the Hercules Graphics Card (HGC) to set the
standard for graphics capabilities in monochrome mode. Partly because of its low cost,
the HGC was very popular for many years, but dirt-cheap VGAs replaced the HGC in
the early 1990s.
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The VGA

The VGA is the baseline adapter for modern IBM PC compatibles, present in virtually
every PC sold today or in the last several years. (Note that the VGA is often nothing
more than a chip on a motherboard, with some memory, a DAC, and maybe a couple
of glue chips; nonetheless, I'll refer to it as an adapter from now on for simplicity.) It
guarantees that every PC is capable of documented resolutions up to 640x480 (with
16 possible colors per pixel) and 320x200 (with 256 colors per pixel), as well as un-
documented—but nonetheless thoroughly standard—resolutions up to 360x480 in
256-color mode, as we'll see in Parts IT and VIII. In order for a video adapter to claim
VGA compatibility, it must support all the features and code discussed in this book
(with a very few minor exceptions that I'll note)—and my experience is that just about
100 percent of the video hardware currently shipping or shipped since 1990 is in fact
VGA compatible. Therefore, VGA code will run on nearly all of the 50,000,000 or so
PC compatibles out there, with the exceptions being almost entirely obsolete machines
from the 1980s. This makes good VGA code and VGA programming expertise valu-
able commodities indeed.

Right off the bat, I'd like to make one thing perfectly clear: The VGA is hard—
sometimes very hard—to program for good performance. Hard, but not impossible—
and that’s why I like this odd board. It’s a throwback to an earlier generation of micros,
when inventive coding and a solid understanding of the hardware were the best tools
for improving performance. Increasingly, faster processors and powerful coprocessors
are seen as the solution to the sluggish software produced by high-level languages and
layers of interface and driver code, and that’s surely a valid approach. However, there
are tens of millions of VGAs installed right now, in machines ranging from 6-MHz
286s to 90-MHz Pentiums. What’s more, because the VGAs are generally 8- or at best
16-bit devices, and because of display memory wait states, a faster processor isn't as
much of a help as you'd expect. The upshot is that only a seasoned performance pro-
grammer who understands the VGA through and through can drive the board to its
fullest potential.

Throughout this book, I'll explore the VGA by selecting a specific algorithm or
feature and implementing code to support it on the VGA, examining aspects of the
VGA architecture as they become relevant. You'll get to see VGA features in context,
where they are more comprehensible than in IBM’s somewhat arcane documentation,
and you'll get working code to use or to modify to meet your needs.

The prime directive of VGA programming is that there’s rarely just one way to
program the VGA for a given purpose. Once you understand the tools the VGA pro-
vides, you'll be able to combine them to generate the particular synergy your applica-
tion needs. My VGA routines are not intended to be taken as gospel, or to show “best”
implementations, but rather to start you down the road to understanding the VGA.

Let’s begin.
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An Introduction to VGA Programming

Most discussions of the VGA start out with a traditional “Here’s a block diagram of the
VGA” approach, with lists of registers and statistics. I'll get to that eventually, but you
can find it in IBM’s VGA documentation and several other books. Besides, it’s numb-
ing to read specifications and explanations, and the VGA is an exciting adapter, the
kind that makes you want to get your hands dirty probing under the hood, to write
some nifty code just to see what the board can do. What's more, the best way to under-
stand the VGA is to see it work, so let’s jump right into a sample of the VGA in action,
getting a feel for the VGA's architecture in the process.

Listing 1.1 is a sample VGA program that pans around an animated 16-color me-
dium-resolution (640x350) playfield. There’s a lot packed into this code; I'm going to
focus on the VGA-specific aspects so we don't get sidetracked. I'm not going to explain
how the ball is animated, for example; we'll get to animation in Parts VII, VIII, and IX
of this book. What I will do is cover each of the VGA features used in this program—
the virtual screen, vertical and horizontal panning, color plane manipulation, multi-
plane block copying, and page flipping—at a conceptual level, letting the code itself
demonstrate the implementation details. We'll return to many of these concepts in
more depth later in this book.

At the Core

A little background is necessary before we're ready to examine Listing 1.1. The VGA is
built around four functional blocks, named the CRT Controller (CRTC), the Sequence
Controller (SC), the Attribute Controller (AC), and the Graphics Controller (GC).
The single-chip VGA could have been designed to treat the registers for all the blocks
as one large set, addressed at one pair of I/O ports, but in the EGA, each of these
blocks was a separate chip, and the legacy of EGA compatibility is why each of these
blocks has a separate set of registers and is addressed at different I/O ports in the VGA.

Each of these blocks has a sizable complement of registers. It is not particularly
important that you understand why a given block has a given register; all the registers
together make up the programming interface, and it is the entire interface that is of
interest to the VGA programmer. However, the means by which most VGA registers
are addressed makes it necessary for you to remember which registers are in which
blocks.

Most VGA registers are addressed as internally indexed registers. The internal ad-
dress of the register is written to a given block’s Index register, and then the data for
that register is written to the block’s Data register. For example, GC register 8, the Bit
Mask register, is set to OFFH by writing 8 to port 3CEH, the GC Index register, and
then writing OFFH to port 3CFH, the GC Data register. Internal indexing makes it
possible to address the 9 GC registers through only two ports, and allows the entire
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VGA programming interface to be squeezed into fewer than a dozen ports. The down-
side is that two I/O operations are required to access most VGA registers.

The ports used to control the VGA are shown in Table 1.1 The CRTC, SC, and GC
Data registers are located at the addresses of their respective Index registers plus one.
However, the AC Index and Data registers are located at the same address, 3COH. The
function of this port toggles on every OUT to 3COH, and resets to Index mode (in
which the Index register is programmed by the next OUT to 3COH) on every read
from the Input Status 1 register (3DAH when the VGA is in a color mode, 3BAH in
monochrome modes). Note that all CRTC registers are addressed at either 3DXH or
3BXH, the former in color modes and the latter in monochrome modes. This provides
compatibility with the register addressing of the now-vanished Color/Graphics Adapter
and Monochrome Display Adapter.

The method used in the VGA BIOS to set registers is to point DX to the desired
Index register, load AL with the index, perform a byte OUT, increment DX to point to
the Data register (except in the case of the AC, where DX remains the same), load AL
with the desired data, and perform a byte OUT. A handy shortcut is to point DX to
the desired Index register, load AL with the index, load AH with the data, and perform
aword OUT. Since the high byte of the OUT value goes to port DX+1, this is equivalent to
the first method but is faster. However, this technique does not work for programming
the AC Index and Data registers; both AC registers are addressed at 3COH, so two
separate byte OUTs must be used to program the AC. (Actually, word OUTss to the AC

Table 1.1 The Ports Through which the VGA Is Controlled.

Register Address
AC Index/Data register 3COH (write with toggle)
AC Index register 3COH (read)
AC Data register 3C1H (read)
Miscellaneous Output register 3C2H (write)

3CCH (read)
Input Status O register 3C2H (read)
SC Index register 3C4H (read/write)
SC Data register 3C5H (read/write)
GC Index register 3CEH (read/write)
GC Data register 3CFH (read/write)
CRTC Index register 3B4H/3D4H (read/write)
CRTC Data register 3B5H/3D5H (read/write)
Input Status 1 register/
AC Index/Data reset 3 BAH/3DAH (read)
Feature Control 3BAH/3DAH (write)

3CAH (read)
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do work in the EGA, but not in the VGA, so they shouldn’t be used.) As mentioned
above, you must be sure which mode—Index or Data—the AC is in before you do an
OUT to 3COH; you can read the Input Status 1 register at any time to force the AC to
Index mode.

How safe is the word-OUT method of addressing VGA registers? I have, in the past,
run into adapter/computer combinations that had trouble with word OUTs; however,
all such problems I am aware of have been fixed. Moreover, a great deal of graphics
software now uses word OUTs, so any computer or VGA that doesn’t properly support
word OUT: could scarcely be considered a clone at all.

A speed tip: The setting of each chip’s Index register remains the
same until it is reprogrammed. This means that in cases where you
are setting the same internal register repeatedly, you can set the
Index register to point to that internal register once, then write to
the Data register multiple times. For example, the Bit Mask register
(GC register 8) is often set repeatedly inside a loop when drawing
lines. The standard code for this is:

MOV DX,03CEH ;point to GC Index register
MOV  AL,8 sinternal index of Bit Mask register
oUT DX, AX ;AH contains Bit Mask register setting

Alternatively, the GC Index register could initially be set to point to
the Bit Mask register with:

MOV DX,03CEH ;point to GC Index register

MOV AL,8 ;internal index of Bit Mask register
oUT  DX,AL ;set GC Index register
INC DX ;point to GC Data register

and then the Bit Mask register could be set repeatedly with the
byte-size OUT instruction:

ouT DX,AL ;AL contains Bit Mask register setting

which is generally faster (and never slower) than a word-sized OUT,
and which does not require AH to be set, freeing up a register. Of
course, this method only works if the GC Index register remains un-
changed throughout the loop.

Linear Planes and True VGA Modes

The VGA's memory is organized as four 64K planes. Each of these planes is a linear
bitmap; that is, each byte from a given plane controls eight adjacent pixels on the
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screen, the next byte controls the next eight pixels, and so on to the end of the scan
line. The next byte then controls the first eight pixels of the next scan line, and so on to
the end of the screen.

The VGA adds a powerful twist to linear addressing; the logical width of the screen
in VGA memory need not be the same as the physical width of the display. The pro-
grammer is free to define all or part of the VGA’s large memory map as a logical screen
of up to 4,080 pixels in width, and then use the physical screen as a window onto any
part of the logical screen. What's more, a virtual screen can have any logical height up
to the capacity of VGA memory. Such a virtual screen could be used to store a spread-
sheet or a CAD/CAM drawing, for instance. As we will see shortly, the VGA provides
excellent hardware for moving around the virtual screen; taken together, the virtual
screen and the VGA’s smooth panning capabilities can generate very impressive effects.

All four linear planes are addressed in the same 64K memory space starting at
A000:0000. Consequently, there are four bytes at any given address in VGA memory.
The VGA provides special hardware to assist the CPU in manipulating all four planes,
in parallel, with a single memory access, so that the programmer doesn’t have to spend
a great deal of time switching between planes. Astute use of this VGA hardware allows
VGA software to as much as quadruple performance by processing the data for all the
planes in parallel.

Each memory plane provides one bit of data for each pixel. The bits for a given pixel
from each of the four planes are combined into a nibble that serves as an address into
the VGA’s palette RAM, which maps the one of sixteen colors selected by display memory
into any one of sixty-four colors, as shown in Figure 1.1. All sixty-four mappings for all
sixteen colors are independently programmable. (We'll discuss the VGA's color capa-
bilities in detail starting in Chapter 11.)

The VGA BIOS supports several graphics modes (modes 4, 5, and 6) in which VGA
memory appears not to be organized as four linear planes. These modes exist for CGA
compatibility only, and are not true VGA graphics modes; use them when you need
CGA-type operation and ignore them the rest of the time. The VGA’s special features
are most powerful in true VGA modes, and it is on the 16-color true-VGA modes
(modes ODH (320x200), OEH (640x200), 10H (640%x350), and 12H (640x480))
that I will concentrate in this part of the book. There is also a 256-color mode, mode
13H, that appears to be a single linear plane, but, as we will see in Parts II and VIII of
this book, that’s a polite fiction—and discarding that fiction gives us an opportunity to
unleash the power of the VGA’s hardware for vastly better performance. VGA text
modes, which feature soft fonts, are another matter entirely, upon which we’ll touch
from time to time.

With that background out of the way, we can get on to the sample VGA program
shown in Listing 1.1. I suggest you run the program before continuing, since the ex-
planations will mean far more to you if you've seen the features in action.
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Figure 1.1 Video Data from Memory to Pixel

LISTING 1

1 L1-1.ASM

; Sample VGA program.
; Animates four balls bouncing around a playfield by using

stack
db

stack ends

MEDRES_VIDEO_MODE

VIDEO_SEGMENT

LOGICAL_SCREEN_WIDTH
LOGICAL_SCREEN_HEIGHT

PAGEO
PAGE1
PAGEO_OFFSET
PAGE1_OFFSET

segment para stack 'STACK®

512 dup(?)
equ 0
equ 0a000h
equ 672/8
equ 384
equ 0
equ 1
equ 0
equ L

;define for 640x350

page flipping. Playfield is panned smoothly both horizontally
and vertically.
By Michael Abrash.

video mode

; comment out for 640x200 mode
;display memory segment for
; true VGA graphics modes

;width in bytes and

height in scan

; Tines of the virtual screen

; we'll work with

;flag for page 0 when page flipping

;flag for page 1 when page flipping

;start offset of page 0 in VGA memory
OGICAL_SCREEN_WIDTH * LOGICAL_SCREEN_HEIGHT

;start offset of page 1 (both pages
; are 672x384 virtual screens)
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BALL_WIDTH equ 24/8 ;width of ball in display memory bytes
BALL_HEIGHT equ 24 ;height of ball in scan lines
BLANK_OFFSET equ PAGE1_OFFSET * 2 ;start of blank image
; in VGA memory
BALL_OFFSET equ BLANK_OFFSET + (BALL_WIDTH * BALL_HEIGHT)
;start offset of ball image in VGA memory

NUM_BALLS equ 4 ;number of balls to animate

; VGA register equates.

SC_INDEX equ 3c4h ;SC index register

MAP_MASK equ 2 ;SC map mask register

GC_INDEX equ 3ceh ;GC index register

GC_MODE equ 5 ;GC mode register

CRTC_INDEX equ 03d4h ;CRTC index register

START_ADDRESS_HIGH equ Och ;CRTC start address high byte
START_ADDRESS_LOW equ  0dh ;CRTC start address low byte

CRTC_OFFSET equ 13h ;CRTC offset register

INPUT_STATUS_1 equ 03dah ;VGA status register

VSYNC_MASK equ 08h ;vertical sync bit in status register 1
DE_MASK equ 0lh ;display enable bit in status register 1
AC_INDEX equ 03cOh ;AC index register

HPELPAN equ 20h OR 13h ;AC horizontal pel panning register

; (bit 7 is high to keep palette RAM
; addressing on)

dseg segment para common 'DATA’
CurrentPage db PAGE1 ;page to draw to

CurrentPageOffset dw PAGE1_OFFSET

; Four plane's worth of multicolored ball image.

BallPlaneOImage label byte ;blue plane image

‘db 000h, 03ch, 000h, 001h, Offh, 080h

db 007h, Offh, 0eOh, 00fh, Offh, 0fOh

db 4 * 3 dup(000h)

db 07fh, Offh, Ofeh, Offh, Offh, Offh

db 0ffh, 0ffh, Offh, Offh, Offh, Offh

db 4 * 3 dup(000h)

db 07fh, Offh, 0feh, 03fh, 0ffh, 0fch

db 03fh, 0ffh, O0fch, 01fh, 0ffh, 0f8h

db 4 * 3 dup(000h)
Ball1PlanelImage label byte ;green plane image

db 4 * 3 dup(000h)

db 01fh, Offh, 0f8h, 03fh, 0ffh, O0fch

db 03fh, Offh, 0fch, 07fh, Offh, Ofeh

db 07fh, O0ffh, 0feh, Offh, Offh, 0ffh

db 0ffh, O0ffh, O0ffh, Offh, Offh, Offh

db 8 * 3 dup(000h)

db 00fh, Offh, 0fOh, 007h, Offh, 0elh

db 001h, Offh, 080h, 000h, 03ch, 000h
BallPlane2Image label byte ;red plane image

db 12 * 3 dup(000h)

db 0ffh, Offh, O0ffh, 0ffh, 0ffh, Offh

db 0ffh, Offh, Offh, 07fh, Offh, Ofeh

db 07fh, 0ffh, 0feh, 03fh, 0ffh, Ofch

db 03fh, Offh, Ofch, 01fh, 0ffh, 0f8h

db 00fh, O0ffh, 0fOh, 007h, Offh, 0eOh

db 001h, Offh, 080h, 000h, 03ch, 000h
BallPlane3Image label byte ;intensity on for all planes,

; to produce high-intensity colors
db 000h, 03ch, 000h, 001h, Offh, 080h
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db 007h, Offh, 0eOh, 00fh, Offh, 0f0Oh

db 01fh, O0ffh, 0f8h, 03fh, 0ffh, 0fch

db 03fh, 0ffh, 0fch, 07fh, Offh, O0feh

db 07fh, O0ffh, 0feh, 0ffh, Offh, Offh

db 0ffh, O0ffh, Offh, Offh, Offh, Offh

db 0ffh, 0ffh, 0ffh, O0ffh, Offh, Offh

db 0ffh, 0ffh, O0ffh, 07fh, Offh, Ofeh

db 07fh, 0ffh, 0feh, 03fh, 0ffh, 0fch

db 03fh, 0ffh, Ofch, 01fh, 0ffh, 0f8h

db 00fh, Offh, 0f0h, 007h, Offh, OeOh

db 001h, Offh, 080h, 000h, 03ch, 000h
BallXx dw 15, 50, 40, 70 ;array of ball x coords
Bally dw 40, 200, 110, 300 ;array of ball y coords
LastBallX dw 15, 50, 40, 70 ;previous ball x coords
LastBally dw 40, 100, 160, 30 ;previous ball y coords
Bali1XInc dw 1,1,1,1 ;x move factors for ball
BailYInc dw 8, 8, 8, 8 ;y move factors for ball
BallRep dw 1,1, 1,1 ;# times to keep moving

; ball according to current
; increments
BallControl dw Bal10Control, BalllControl ;pointers to current
dw Ball2Control, Ball3Control ; locations in ball
; control strings

BalliControlString dw Bal10Control, BalllControl ;pointers to

dw Ball2Control, Ball3Control ; start of ball
:'control strings

; Ball control strings.

Bal10Control label word

dw 10, 1, 4, 10, -1, 4, 10, -1, -4, 10, 1, -4, 0
BalllControl label word

dw 12, -1, 1, 28, -1, -1, 12,1, -1, 28, 1,1, 0
Ball2Control label word

dw 20, 0, -1, 40, 0, 1, 20, 0, -1, O
Bal13Control label word

dw 8, 1, 0, 52, -1, 0, 44, 1, 0, 0

; Panning control string.

ifdef MEDRES_VIDEO_MODE

PanningControlString dw 32,1, 0, 34, 0,1, 32, -1, 0, 34, 0, -1, 0
else
PanningControlString dw 32,1, 0, 184, 0, 1, 32, -1, 0, 184, 0, -1, O
endif
PanningControl dw PanningControlString ;pointer to current location

; in panning control string
PanningRep dw 1 ;# times to pan according to current

; panning increments

PanningXInc dw 1 ;x panning factor

PanningYInc dw 0 ;¥ panning factor

HPan db 0 ;horizontal pel panning setting
PanningStart0ffset dw 0 ;start offset adjustment to produce vertical

; panning & coarse horizontal panning
dseg ends
; Macro to set indexed register P2 of chip with index register
; at P1 to AL.

SETREG macro P1, P2
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mov dx,P1
mov ah,al
mov al,pP2
out dx,ax
endm

cseg segment para public 'CODE’
assume cs:cseg, ds:dseg

start proc near
mov ax,dseg
mov ds,ax

; Select graphics mode.

ifdef MEDRES_VIDEO_MODE

mov ax,010h
else

mov ax,0eh
endif

int 10h

ES always points to VGA memory.

e we we

mov ax,VIDEO_SEGMENT
mov es,ax

; Draw border around playfield in both pages.

mov di,PAGEO_OFFSET
call DrawBorder ;page 0 border
mov di,PAGE1_OFFSET
call DrawBorder ;page 1 border

; Draw all four plane's worth of the ball to undisplayed VGA memory.

mov al,0lh ;enable plane 0
SETREG SC_INDEX, MAP_MASK

mov si,offset BallPlaneOImage

mov di,BALL_OFFSET

mov cx,BALL_WIDTH * BALL_HEIGHT

rep movsb

mov al,02h ;enable plane 1
SETREG SC_INDEX, MAP_MASK

mov si,offset BallPlanellmage

mov di,BALL_OFFSET

mov cx,BALL_WIDTH * BALL_HEIGHT

rep movsb

mov al,04h ;enable plane 2
SETREG SC_INDEX, MAP_MASK

mov si,offset BallPlane2Image

mov di,BALL_OFFSET

mov cx,BALL_WIDTH * BALL_HEIGHT

rep movsb

mov al,08h ;enable plane 3
SETREG SC_INDEX, MAP_MASK

mov si,offset BallPlane3Image

mov di,BALL_OFFSET

mov cX,BALL_WIDTH * BALL_HEIGHT

rep movsb
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; Draw a blank image the size of the ball to undisplayed VGA memory.

mov al,0fh ;enable all memory planes, since the
SETREG SC_INDEX, MAP_MASK ; blank has to erase all planes

mov di,BLANK_OFFSET

mov cx,BALL_WIDTH * BALL_HEIGHT

sub al,al

rep stosb

; Set VGA to write mode 1, for block copying ball and blank images.

mov
mov
out
inc
jmp
in

and
or

Jmp
out

dx,GC_INDEX

al,GC_MODE

dx,al ;point GC Index to GC Mode register
dx ;point to GC Data register

$+2 ;delay to let bus settle

al,dx ;get current state of GC Mode
al,not 3 ;clear the write mode bits

al,1l ;set the write mode field to 1

$+2 ;delay to let bus settle

dx,al

; Set VGA offset register in words to define logical screen width.

mov
SETREG

al,LOGICAL_SCREEN_WIDTH / 2
CRTC_INDEX, CRTC_OFFSET

; Move the balls by erasing each ball, moving it, and

; redrawing it,

then switching pages when they're all moved.

BallAnimationLoop:

mov
EachBallLoop:

bx,( NUM_BALLS * 2 ) - 2

; Erase old image of ball in this page (at location from one more earlier).

mov
mov
mov
call

si,BLANK_OFFSET ;point to blank image
cx,[LastBallX+bx]

dx,[LastBallY+bx]

DrawBall

; Set new last ball location.

mov
mov
mov
mov

ax,[Bal1X+bx]
[Lastball1X+bx],ax
ax,[BallY+bx]
[LastballY+bx],ax

; Change the ball movement values if it's time to do so.

dec
jnz
mov
lodsw

and
Jjnz
mov
Todsw
SetNewMove:

[BallRep+bx] ;has current repeat factor run out?
MoveBall
si,[BallControl+bx] ;it's time to change movement values

;get new repeat factor from
; control string

ax,ax ;at end of control string?
SetNewMove
si,[Ball1ControlString+bx} ;reset control string

;get new repeat factor
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mov
lodsw
mov
lTodsw
mov
mov

Move the ball.

MoveBall:

’

’

mov
add
mov
add

[BallRep+bx],ax ;set new movement repeat factor

;set new x movement increment
[BallXInc+bx],ax

;set new y movement increment
[BallYInc+bx],ax

[BallControl+bx],si ;save new control string pointer

ax,[Bal1XInc+bx]

[Ball1X+bx],ax ;move in x direction
ax,[BallYInc+bx]
[BallY+bx],ax ;move in y direction

Draw ball at new location.

mov
mov
mov
call

dec
dec
Jjns

si,BALL_OFFSET ;point to ball's image
cx,[Bal1X+bx]

dx,[Bal1Y+bx]

DrawBall

bx
bx
EachBallLoop

Set up the next panning state (but don't program it into the

VGA yet).

call

AdjustPanning

Wait for display enable (pixel data being displayed) so we know
we're nowhere near vertical sync, where the start address gets
latched and used.

call

WaitDisplayEnable

Flip to the new page by changing the start address.

mov
add
push
SETREG
mov
pop
mov
SETREG

ax,[CurrentPage0ffset]
ax,[PanningStartOffset]

ax

CRTC_INDEX, START_ADDRESS_LOW
al,byte ptr [CurrentPageOffset+l]
ax

al,ah

CRTC_INDEX, START_ADDRESS_HIGH

Wait for vertical sync so the new start address has a chance
to take effect.

call

WaitVSync

Set horizontal panning now, just as new start address takes effect.

mov
mov
in

mov

al,[HPan]
dx, INPUT_STATUS_1

al,dx ;reset AC addressing to index reg

dx,AC_INDEX
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mov al,HPELPAN

out dx,al ;set AC index to pel pan reg
mov al,[HPan]

out dx,al ;set new pel panning

; Flip the page to draw to to the undisplayed page.

xor [CurrentPage],1
jnz IsPagel
mov [CurrentPageOffset],PAGEO_OFFSET
Jjmp short EndFlipPage
IsPagel:
mov [CurrentPageOffset],PAGE1_OFFSET

EndFlipPage:

; Exit if a key's been hit.

mov ah,1

int 16h

jnz Done

jmp BalTAnimationLoop

; Finished, clear key, reset screen mode and exit.

Done:

mov ah,0 ;clear key

int 16h

mov ax,3 ;reset to text mode
int 10h

mov ah,4ch ;exit to DOS

int 21h

start endp

; Routine to draw a ball-sized image to all planes, copying from
; offset SI in VGA memory to offset CX,DX (x,y) in VGA memory in
; the current page.

DrawBall proc near

mov ax,LOGICAL_SCREEN_WIDTH

mul dx ;offset of start of top image scan line

add ax,cx ;offset of upper left of image

add ax,[CurrentPage0ffset] ;offset of start of page

mov di,ax

mov bp,BALL_HEIGHT

push ds

push es

pop ds ;move from VGA memory to VGA memory
DrawBallLoop:

push di

mov cx,BALL_WIDTH

rep movsb ;draw a scan line of image

pop di

add di,LOGICAL_SCREEN_WIDTH ;point to next destination scan line

dec bp

jnz DrawBalllLoop

pop ds

ret

DrawBall endp
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; Wait for the leading edge of vertical sync pulse.

WaitVSync proc near
mov dx, INPUT_STATUS_1
WaitNotVSyncLoop:
in al,dx
and al,VSYNC_MASK
Jjnz WaitNotVSynclLoop
WaitVSyncLoop:
in al,dx
and al,VSYNC_MASK
Jjz WaitVSyncloop
ret
WaitVSync endp

; Wait for display enable to happen (pixels to be scanned to
; the screen, indicating we're in the middle of displaying a frame).

WaitDisplayEnable proc near
mov dx, INPUT_STATUS_1
WaitDELoop:
in al,dx
and al,DE_MASK
jnz WaitDELoop
ret
WaitDisplayEnable endp

; Perform horizontal/vertical panning.

AdjustPanning proc near

dec [PanningRep] ;time to get new panning values?

jnz DoPan

mov si,[PanningControl] ;point to current location in

; panning control string

Todsw ;get panning repeat factor

and ax,ax ;at end of panning control string?

jnz SetnewPanValues

mov si,offset PanningControlString ;reset to start of string

Todsw ;get panning repeat factor
SetNewPanValues:

mov [PanningRep],ax ;set new panning repeat value

lodsw

mov [PanningXInc],ax ;horizontal panning value

Todsw

mov [PanningYInc],ax ;vertical panning value

mov [PanningControl],si ;save current Tocation in panning

; control string

; Pan according to panning values.

DoPan:
mov ax,[PanningXInc] shorizontal panning
and ax,ax
Js PanLeft ;negative means pan left
jz CheckVerticalPan
mov al,[HPan]
inc al ;pan right; if pel pan reaches

cmp al,8 ; 8, it's time to move to the
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jb SetHPan ; next byte with a pel pan of 0
sub al,al ; ancd a start offset that's one
inc [PanningStartOffset] ; higher
Jjmp short SetHPan
PanLeft:
mov al,[HPan]
dec al ;pan left; if pel pan reaches -1,
Jjns SetHPan ; it's time to move to the next
mov al,7 ; byte with a pel pan of 7 and a
dec [PanningStart0ffset] ; start offset that's one lower
SetHPan:
mov [HPan],al ;save new pel pan value
CheckVerticalPan:
mov ax,[PanningYInc] ;vertical panning
and ax,ax
Js PanUp ;negative means pan up
jz EndPan
add [PanningStartOffset], LOGICAL_SCREEN_WIDTH
;pan down by advancing the start
; address by a scan line
jmp short EndPan
PanUp:
sub [PanningStartOffset], LOGICAL_SCREEN_WIDTH
;pan up by retarding the start
; address by a scan line
EndPan:
ret

; Draw textured border around playfield that starts at DI.

DrawBorder proc near

; Draw the left border.

push di

mov cx,LOGICAL_SCREEN_HEIGHT / 16
DrawlLeftBorderlLoop:

mov al,0ch ;select red color for block

call DrawBorderBlock

add di,LOGICAL_SCREEN_WIDTH * 8

mov al,0eh ;select yellow color for block

call DrawBorderBlock

add di,LOGICAL_SCREEN_WIDTH * 8

Toop DrawLeftBorderLoop

pop di

; Draw the right border.

push di

add di,LOGICAL_SCREEN_WIDTH - 1

mov cX,LOGICAL_SCREEN_HEIGHT / 16
DrawRightBorderLoop:

mov al,0eh ;select yellow color for block

call DrawBorderBlock

add di,LOGICAL_SCREEN_WIDTH * 8

mov al,0ch ;select red color for block

call DrawBorderBlock

add di,LOGICAL_SCREEN_WIDTH * 8

loop DrawRightBorderLoop
pop di
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; Draw the top border.

push di

mov cX, (LOGICAL_SCREEN_WIDTH - 2) / 2
DrawTopBorderLoop:

inc di

mov al,0eh ;select yellow color for block

call DrawBorderBlock

inc di

mov al,0ch ;select red color for block

call DrawBorderBlock

loop DrawTopBorderLoop

pop di

; Draw the bottom border.

add di, (LOGICAL_SCREEN_HEIGHT - 8) * LOGICAL_SCREEN_WIDTH

mov cx, (LOGICAL_SCREEN_WIDTH - 2) / 2
DrawBottomBorderLoop:

inc di

mov al,0ch ;select red color for block

call DrawBorderBlock

inc di

mov al,Oeh ;select yellow color for block

call DrawBorderBlock

loop DrawBottomBorderLoop

ret

DrawBorder endp
; Draws an 8x8 border block in color in AL at Tocation DI.
; DI preserved.

DrawBorderBlock proc near

push di

SETREG SC_INDEX, MAP_MASK

mov al,0ffh

rept 8

stosb

add di,LOGICAL_SCREEN_WIDTH - 1
endm

pop di

ret

DrawBorderBlock endp
AdjustPanning endp

cseg ends
end start
Smooth Panning

The first thing you'll notice upon running the sample program is the remarkable smooth-
ness with which the display pans from side-to-side and up-and-down. That the display
can pan at all is made possible by two VGA features: 256K of display memory and the
virtual screen capability. Even the most memory-hungry of the VGA modes, mode
12H (640%480), uses only 37.5K per plane, for a total of 150K out of the total 256K
of VGA memory. The medium-resolution mode, mode 10H (640x350), requires only
28K per plane, for a total of 112K. Consequently, there is room in VGA memory to
store more than two full screens of video data in mode 10H (which the sample pro-
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scan line; after the CRT'C scans these 40 words for 640 pixels worth of data, it advances 40
words from the start of that scan line to find the start of the next scan line in memory.
This means that displayed scan lines are contiguous in memory. However, the Offset
register can be set so that scan lines are logically wider (or narrower, for that matter)
than their displayed width. The sample program sets the Offset register to 2AH, mak-
ing the logical width of the virtual screen 42 words, or 42 * 2 * 8 = 672 pixels, as
contrasted with the actual width of the mode 10h screen, 40 words or 640 pixels. The
logical height of the virtual screen in the sample program is 384; this is accomplished
simply by reserving 84 * 384 contiguous bytes of VGA memory for the virtual screen,
where 84 is the virtual screen width in bytes and 384 is the virtual screen height in scan
lines.

The start address is the key to panning around the virtual screen. The start address
registers select the row of the virtual screen that maps to the top of the display; panning
down a scan line requires only that the start address be increased by the logical scan line
width in bytes, which is equal to the Offset register times two. The start address registers
select the column that maps to the left edge of the display as well, allowing horizontal
panning, although in this case only relatively coarse byte-sized adjustments—panning
by eight pixels at a time—are supported.

Smooth horizontal panning is provided by the Horizontal Pel Panning register, AC
register 13H, working in conjunction with the start address. Up to 7 pixels worth of
single pixel panning of the displayed image to the left is performed by increasing the
Horizontal Pel Panning register from 0 to 7. This exhausts the range of motion pos-
sible via the Horizontal Pel Panning register; the next pixel’s worth of smooth panning
is accomplished by incrementing the start address by one and resetting the Horizontal
Pel Panning register to 0. Smooth horizontal panning should be viewed as a series of
fine adjustments in the 8-pixel range between coarse byte-sized adjustments.

A horizontal panning oddity: Alone among VGA modes, text mode (in most cases)
has 9 dots per character clock. Smooth panning in this mode requires cycling the
Horizontal Pel Panning register through the values 8, 0, 1, 2, 3, 4, 5, 6, and 7. 8 is the
“no panning” setting.

There is one annoying quirk about programming the AC. When the AC Index
register is set, only the lower five bits are used as the internal index. The next most
significant bit, bit 5, controls the source of the video data sent to the monitor by the
VGA. When bit 5 is set to 1, the output of the palette RAM, derived from display
memory, controls the displayed pixels; this is normal operation. When bit 5 is 0, video
data does not come from the palette RAM, and the screen becomes a solid color. The
only time bit 5 of the AC Index register should be 0 is during the setting of a palette
RAM register, since the CPU is only able to write to palette RAM when bit 5 is 0.
(Some VGAs do not enforce this, but you should always set bit 5 to 0 before writing to
the palette RAM just to be safe.) Immediately after setting palette RAM, however, 20h
(or any other value with bit 5 set to 1) should be written to the AC Index register to
restore normal video, and at all other times bit 5 should be set to 1.
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By the way, palette RAM can be set via the BIOS video interrupt
(interrupt 10H), function 10H. Whenever an VGA function can be per-
formed reasonably well through a BIOS function, as it can in the
case of setting palette RAM, it should be, both because there is no
point in reinventing the wheel and because the BIOS may well mask
incompatibilities between the IBM VGA and VGA clones.

Color Plane Manipulation

The VGA provides a considerable amount of hardware assistance for manipulating the
four display memory planes. Two features illustrated by the sample program are the
ability to control which planes are written to by a CPU write and the ability to copy
four bytes—one from each plane—with a single CPU read and a single CPU write.

The Map Mask register (SC register 2) selects which planes are written to by CPU
writes. If bit O of the Map Mask register is 1, then each byte written by the CPU will be
written to VGA memory plane 0, the plane that provides the video data for the least
significant bit of the palette RAM address. If bit 0 of the Map Mask register is 0, then
CPU writes will not affect plane 0. Bits 1, 2, and 3 of the Map Mask register similarly
control CPU access to planes 1, 2, and 3, respectively. Any of the sixteen possible
combinations of enabled and disabled planes can be selected. Beware, however, of writing
to an area of memory that is not zeroed. Planes that are disabled by the Map Mask
register are not altered by CPU writes, so old and new images can mix on the screen,
producing unwanted color effects as, say, three planes from the old image mix with one
plane from the new image. The sample program solves this by ensuring that the memory
written to is zeroed. A better way to set all planes at once is provided by the set/reset
capabilities of the VGA, which I'll cover in Chapter 3.

The sample program writes the image of the colored ball to VGA memory by en-
abling one plane at a time and writing the image of the ball for that plane. Each image
is written to the same VGA addresses; only the destination plane, selected by the Map
Mask register, is different. You might think of the ball’s image as consisting of four
colored overlays, which together make up a multicolored image. The sample program
writes a blank image to VGA memory by enabling all planes and writing a block of
zero bytes; the zero bytes are written to all four VGA planes simultaneously.

The images are written to a nondisplayed portion of VGA memory in order to take
advantage of a useful VGA hardware feature, the ability to copy all four planes at once.
As shown by the image-loading code discussed above, four different sets of reads and
writes—and several OUTs as well—are required to copy a multicolored image into
VGA memory as would be needed to draw the same image into a non-planar pixel
buffer. This causes unacceptably slow performance, all the more so because the wait
states that occur on accesses to VGA memory make it very desirable to minimize dis-
play memory accesses, and because OUTs tend to be very slow.
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The solution is to take advantage of the VGA’s write mode 1, which is selected via
bits 0 and 1 of the GC Mode register (GC register 5). (Be careful to preserve bits 2-7
when setting bits 0 and 1, as is done in Listing 1.1.) In write mode 1, a single CPU read
loads the addressed byte from all four planes into the VGA’s four internal latches, and
a single CPU write writes the contents of the latches to the four planes. During the
write, the byte written by the CPU is irrelevant.

The sample program uses write mode 1 to copy the images that were previously
drawn to the high end of VGA memory into a desired area of display memory, all in a
single block copy operation. This is an excellent way to keep the number of reads,
writes, and OUTs required to manipulate the VGA’s display memory low enough to
allow real-time drawing.

The Map Mask register can still mask out planes in write mode 1. All four planes are
copied in the sample program because the Map Mask register is still 0Fh from when
the blank image was created.

The animated images appear to move a bit jerkily because they are byte-aligned and
so must move a minimum of 8 pixels horizontally. This is easily solved by storing
rotated versions of all images in VGA memory, and then in each instance drawing the
correct rotation for the pixel alignment at which the image is to be drawn; we'll see this
technique in action in Chapter 34.

Don’t worry if you're not catching everything in this chapter on the first pass; the
VGA is a complicated beast, and learning about it is an iterative process. We'll be going
over these features again, in different contexts, over the course of the rest of this book.

Page Flipping

When animated graphics are drawn directly on the screen, with no intermediate frame-
composition stage, the image typically flickers and/or ripples, an unavoidable result of
modifying display memory at the same time that it is being scanned for video data.
The display memory of the VGA makes it possible to perform page flipping, which
eliminates such problems. The basic premise of page flipping is that one area of display
memory is displayed while another is being modified. The modifications never affect
an area of memory as it is providing video data, so no undesirable side effects occur.
Once the modification is complete, the modified buffer is selected for display, causing
the screen to change to the new image in a single frame’s time, typically 1/60th or 1/
70th of a second. The other buffer is then available for modification.

As described above, the VGA has 64K per plane, enough to hold two pages and
more in 640x350 mode 10H, but not enough for two pages in 640x480 mode 12H.
For page flipping, two non-overlapping areas of display memory are needed. The sample
program uses two 672x384 virtual pages, each 32,256 bytes long, one starting at
A000:0000 and the other starting at A000:7E00. Flipping between the pages is as
simple as setting the start address registers to point to one display area or the other—
but, as it turns out, that’s not as simple as it sounds.
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The timing of the switch between pages is critical to achieving flicker-free anima-
tion. It is essential that the program never be modifying an area of display memory as
that memory is providing video data. Achieving this is surprisingly complicated on the
VGA, however.

The problem is as follows. The start address is latched by the VGA’s internal cit-
cuitry exactly once per frame, typically (but not always on all clones) at the start of the
vertical sync pulse. The vertical sync status is, in fact, available as bit 3 of the Input
Status O register, addressable at 3BAH (in monochrome modes) or 3DAH (color).
Unfortunately, by the time the vertical sync status is observed by a program, the start
address for the next frame has already been latched, having happened the instant the
vertical sync pulse began. That means that it's no good to wait for vertical sync to
begin, then set the new start address; if we did that, we'd have to wait until the nexz
vertical sync pulse to start drawing, because the page wouldn' flip until then.

Clearly, what we want is to set the new start address, then wait for the start of the
vertical sync pulse, at which point we can be sure the page has flipped. However, we
can’t just set the start address and wait, because we might have the extreme misfortune
to set one of the start address registers before the start of vertical sync and the other
after, resulting in mismatched halves of the start address and a nasty jump of the dis-
played image for one frame.

One possible solution to this problem is to pick a second page start address that has
a 0 value for the lower byte, so only the Start Address High register ever needs to be set,
but in the sample program in Listing 1.1 I've gone for generality and always set both
bytes. To avoid mismatched start address bytes, the sample program waits for pixel data
to be displayed, as indicated by the Display Enable status; this tells us we’re somewhere
in the displayed portion of the frame, far enough away from vertical sync so we can be
sure the new start address will get used at the next vertical sync. Once the Display
Enable status is observed, the program sets the new start address, waits for vertical sync
to happen, sets the new pel panning state, and then continues drawing. Don’t worry
about the details right now; page flipping will come up again, at considerably greater
length, in later chapters.

As an interesting side note, be aware that if you run DOS software
under a multitasking environment such as Windows NT, timeslicing
delays can make mismatched start address bytes or mismatched
start address and pel panning settings much more likely, for the
graphics code can be interrupted at any time. This is also possible,
although much less likely, under non-multitasking environments such
as DOS, because strategically placed interrupts can cause the same
sorts of problems there. For maximum safety, you should disable
interrupts around the key portions of your page-flipping code, al-
though here we run into the problem that if interrupts are disabled
from the time we start looking for Dieplay Enable until we set the Fel
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Fanning register, they will be off for far too long, and keyboard, mouse,
and network events will potentially be lost. Also, disabling interrupts
won’t help in true multitasking environments, which never let a pro-
gram hog the entire CFU. This is one reason that pel panning, al-
though indubitably flashy, isn’t widely used and should be reserved
for only those cases where it's absolutely necessary.

Waiting for the sync pulse has the side effect of causing program execution to syn-
chronize to the VGA’s frame rate of 60 or 70 frames per second, depending on the
display mode. This synchronization has the useful consequence of causing the pro-
gram to execute at the same speed on any CPU that can draw fast enough to complete
the drawing in a single frame; the program just idles for the rest of each frame that it
finishes before the VGA is finished displaying the previous frame.

An important point illustrated by the sample program is that while the VGA’s dis-
play memory is far larger and more versatile than is the case with earlier adapters, it is
nonetheless a limited resource and must be used judiciously. The sample program uses
VGA memory to store two 672x384 virtual pages, leaving only 1024 bytes free to store
images. In this case, the only images needed are a colored ball and a blank block with
which to erase it, so there is no problem, but many applications require dozens or
hundreds of images. The tradeoffs between virtual page size, page flipping, and image
storage must always be kept in mind when designing programs for the VGA.

To see the program run in 640x200 16-color mode, comment out the EQU line for
MEDRES_VIDEO_MODE.

The Hazards of VGA Clones

Earlier, I said that any VGA that doesn’t support the features and functionality covered
in this book can’t properly be called VGA compatible. I also noted that there are some
exceptions, however, and we've just come to the most prominent one. You see, all
VGAs really are compatible with the IBM VGA'’s functionality when it comes to draw-
ing pixels into display memory; all the write modes and read modes and set/reset capa-
bilities and everything else involved with manipulating display memory really does
work in the same way on all VGAs and VGA clones. That compatibility isn't as airtight
when it comes to scanning pixels out of display memory and onto the screen in certain
infrequently-used ways, however.

The areas of incompatibility of which I'm aware are illustrated by the sample pro-
gram, and may in fact have caused you to see some glitches when you ran Listing 1.1.
The problem, which arises only on certain VGAs, is that some settings of the Row
Offset register cause some pixels to be dropped or displaced to the wrong place on the
screen; often, this happens only in conjunction with certain start address settings. (In

my experience, only VRAM (Video RAM)-based VGAs exhibit this problem, no doubt
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due to the way that pixel data is fetched from VRAM in large blocks.) Panning and
large virtual bitmaps can be made to work reliably, by careful selection of virtual bitmap
sizes and start addresses, but it’s difficult; that's one of the reasons that most commercial
software does not use these features, although a number of games do. The upshot is that if
youre going to use oversized virtual bitmaps and pan around them, you should take

great care to test your software on a wide variety of VRAM- and DRAM-based VGA:s.

Just the Beginning

That pretty well covers the important points of the sample VGA program in Listing 1.1.
There are many VGA features we didn’t even touch on, but the object was to give you
a feel for the variety of features available on the VGA, to convey the flexibility and
complexity of the VGA’s resources, and in general to give you an initial sense of what
VGA programming is like. Starting with the next chapter, we’ll begin to explore the
VGA systematically, on a more detailed basis.

The Macro Assembler

The code in this book is written in both C and assembly. I think C is a good develop-
ment environment, but I believe that often the best code (although not necessarily the
easiest to write or the most reliable) is written in assembly. This is especially true of
graphics code for the x86 family, given segments, the string instructions, and the asym-
metric and limited register set, and for real-time programming of a complex board like
the VGA, there’s really no other choice for the lowest-level code.

Before I'm deluged with protests from C devotees, let me add that the majority of
my productive work is done in C; no programmer is immune to the laws of time, and
C is simply a more time-efficient environment in which to develop, particularly when
working in a programming team. In this book, however, we’re after the sine gua non of
PC graphics—performance—and we can't get there from here without a fair amount
of assembly language.

Now that we know what the VGA looks like in broad strokes and have a sense of
what VGA programming is like, we can start looking at specific areas in depth. In the
next chapter, we'll take a look at the hardware assistance the VGA provides the CPU
during display memory access. There are four latches and four ALUs in those chips,
along with some useful masks and comparators, and it’s that hardware that’s the differ-
ence between sluggish performance and making the VGA get up and dance.
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Figure 2.1 is a simplified depiction of data flow around the ALUs. Each ALU has a
matching latch, which holds the byte read from the corresponding plane during the
last CPU read from display memory, even if that particular plane wasn’t the plane that
the CPU actually read on the last read access. (Only one byte can be read by the CPU
with a single display memory read; the plane supplying the byte is selected by the Read
Map register. However, the bytes at the specified address in all four planes are always
read when the CPU reads display memory, and those four bytes are stored in their
respective latches.)

Each ALU logically combines the byte written by the CPU and the byte stored in
the matching latch, according to the settings of bits 3 and 4 of the Data Rotate register
(and the Bit Mask register as well, which I'll cover next time), and then writes the result
to display memory. It is most important to understand that neither ALU operand
comes directly from display memory. The temptation is to think of the ALUs as com-
bining CPU data and the contents of the display memory address being written to, but
they actually combine CPU data and the contents of the last display memory location
read, which need not be the location being modified. The most common application
of the ALUs is indeed to modify a given display memory location, but doing so re-
quires a read from that location to load the latches before the write that modifies it.
Onmission of the read results in a write operation that logically combines CPU data
with whatever data happens to be in the latches from the last read, which is normally

undesirable.
f e —— —— 1
Display Memory
Plane 3
Dieplay Memory
Byte Plane 2 -
written
by
CPU
Display Memory
Plane O

1

Figure 2.1 VGA ALU Data Flow
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Occasionally, however, the independence of the latches from the display memory
location being written to can be used to great advantage. The latches can be used to
perform 4-byte-at-a-time (one byte from each plane) block copying; in this applica-
tion, the latches are loaded with a read from the source area and written unmodified to
the destination area. The latches can be written unmodified in one of two ways: By
selecting write mode 1 (for an example of this, see the last chapter), or by setting the
Bit Mask register to 0 so only the latched bits are written.

The latches can also be used to draw a fairly complex area fill pattern, with a differ-
ent bit pattern used to fill each plane. The mechanism for this is as follows: First,
generate the desired pattern across all planes at any display memory address. Generat-
ing the pattern requires a separate write operation for each plane, so that each plane’s
byte will be unique. Next, read that memory address to store the pattern in the latches.
The contents of the latches can now be written to memory any number of times by
using either write mode 1 or the bit mask, since they will not change until a read is
performed. If the fill pattern does not require a different bit pattern for each plane—
that is, if the pattern is black and white—filling can be performed more easily by
simply fanning the CPU byte out to all four planes with write mode 0. The set/reset
registers can be used in conjunction with fanning out the data to support a variety of
two-color patterns. More on this in Chapter 3.

The sample program in Listing 2.1 fills the screen with horizontal bars, then illustrates
the operation of each of the four ALU logical functions by writing a vertical 80-pixel-
wide box filled with solid, empty, and vertical and horizontal bar patterns over that
background using each of the functions in turn. When observing the output of the sample
program, it is important to remember that all four vertical boxes are drawn with exactly
the same code—only the logical function that is in effect differs from box to box.

All graphics in the sample program are done in black-and-white by writing to all
planes, in order to show the operation of the ALUs most clearly. Selective enabling of
planes via the Map Mask register and/or set/reset would produce color effects; in that
case, the operation of the logical functions must be evaluated on a plane-by-plane
basis, since only the enabled planes would be affected by each operation.

LISTING 2.1 L2-1.ASM

; Program to illustrate operation of ALUs and latches of the VGA's

; Graphics Controller. Draws a variety of patterns against

; a horizontally striped background, using each of the 4 available

; logical functions (data unmodified, AND, OR, XOR) in turn to combine
; the images with the background.

; By Michael Abrash.

stack  segment para stack 'STACK®
db 512 dup(?)
stack ends

VGA_VIDEO_SEGMENT equ 0a000h ;VGA display memory segment
SCREEN_HEIGHT equ 350
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SCREEN_WIDTH_IN_BYTES  equ 80
DEMO_AREA_HEIGHT equ 336 ;# of scan lines in area
; logical function operation
; is demonstrated in
DEMO_AREA_WIDTH_IN_BYTES equ 40 ;width in bytes of area
; logical function operation
; is demonstrated in
VERTICAL_BOX_WIDTH_IN_BYTES equ 10 ;width in bytes of the box used to
; demonstrate each logical function

; VGA register equates.

GC_INDEX equ 3ceh ;GC index register

GC_ROTATE equ 3 ;GC data rotate/logical function
; register index

GC_MODE equ 5 ;GC mode register index

dseg segment para common ‘'DATA'

; String used to label logical functions.

LabelString label byte

db *UNMODIFIED AND OR XOR

LABEL_STRING_LENGTH equ $-LabelString

; Strings used to label fill patterns.

FillPatternFF  db 'Fi11 Pattern: OFFh'

FILL_PATTERN_FF_LENGTH equ $ - FillPatternFF
Fill1Pattern00 db 'Fi11 Pattern: 000h'
FILL_PATTERN_OO_LENGTH equ $ - FillPattern00
Fil1PatternVert db 'Fill Pattern: Vertical Bar'
FILL_PATTERN_VERT_LENGTH equ $ - FillPatternVert
FillPatternHorz db 'Fil1l Pattern: Horizontal Bar'

FILL_PATTERN_HORZ_LENGTH equ $ - FillPatternHorz
dseg ends

; Macro to set indexed register INDEX of GC chip to SETTING.

SETGC macro  INDEX, SETTING

mov dx,GC_INDEX

mov ax,(SETTING SHL 8) OR INDEX
out dx,ax

endm

; Macro to call BIOS write string function to display text string
;  TEXT_STRING, of length TEXT_LENGTH, at location ROW,COLUMN.

TEXT_UP macro  TEXT_STRING, TEXT_LENGTH, ROW, COLUMN

mov ah,13h ;BIOS write string function

mov bp,offset TEXT_STRING ;ES:BP points to string

mov cx, TEXT_LENGTH

mov dx, (ROW SHL 8) OR COLUMN ;position

sub al,al ;string is chars only, cursor not moved
mov b1,7 ;text attribute is white (1ight gray)
int 10h

endm

cseg segment para public 'CODE’



assume
proc
mov
mov

start

cs:cseg, ds:dseg
near

ax,dseg

ds,ax

; Select 640x350 graphics mode.

mov
int

ax,010h
10h

; ES points to VGA memory.

mov
mov
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ax,VGA_VIDEO_SEGMENT

es,ax

; Draw background of horizontal bars.

mov

sub
mov
mov
mov
mov
BackgroundLoop:
mov
stosw
add
mov
stosw
add
dec
jnz

rep

rep

dx,SCREEN_HEIGHT/4

di,di
ax,0ffffh

;# of bars to draw (each 4 pixels high)
;start at offset 0 in display memory
;fi11 pattern for Tight areas of bars

bx,DEMO_AREA_WIDTH_IN_BYTES / 2 ;length of each bar
si,SCREEN_WIDTH_IN_BYTES - DEMO_AREA_WIDTH_IN_BYTES
bp, (SCREEN_WIDTH_IN_BYTES * 3) - DEMO_AREA_WIDTH_IN_BYTES

cx,bx

di,si
cx,bx

di,bp
dx
BackgroundLoop

;length of bar

;draw top half of bar

;point to start of bottom half of bar
;1ength of bar

;draw bottom half of bar

;point to start of top of next bar

; Draw vertical boxes filled with a variety of fil1l patterns
; using each of the 4 logical functions in turn.

SETGC  GC_ROTATE, 0
mov di,o0
call DrawVerticalBox
SETGC  GC_ROTATE, 08h
mov di, 10
call DrawVerticalBox
SETGC  GC_ROTATE, 10h
mov di,20
call DrawVerticalBox
SETGC  GC_ROTATE, 18h
mov di,30
call DrawVerticalBox
; Reset
SETGC  GC_ROTATE, 0
; Label the screen.
push ds

;select data unmodified
; logical function...

;...and draw box

;select AND logical function...
;...and draw box

;select OR logical function...

;...and draw box

;select XOR logical function...

i...and draw box

the logical function to data unmodified, the default state.
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pop es ;strings we'll display are passed to BIOS
; by pointing ES:BP to them

; Label the logical functions, using the VGA BIOS's
; write string function.

TEXT_UP LabelString, LABEL_STRING_LENGTH, 24, 0

; Label the fill patterns, using the VGA BIOS's
;s write string function.

TEXT_UP FillPatternFF, FILL_PATTERN_FF_LENGTH, 3, 42
TEXT_UP FillPattern00, FILL_PATTERN_OO_LENGTH, 9, 42
TEXT_UP FillPatternVert, FILL_PATTERN_VERT_LENGTH, 15, 42
TEXT_UP FillPatternHorz, FILL_PATTERN_HORZ_LENGTH, 21, 42

; Wait until a key's been hit to reset screen mode & exit.

WaitForKey:
mov ah,1
int 16h
Jjz WaitForKey

; Finished. Clear key, reset screen mode and exit.

’

Done:
mov ah,0 ;clear key that we just detected
int 16h
mov ax,3 ;reset to text mode
int 10h
mov ah,4ch ;exit to DOS
int 21h

start endp

; Subroutine to draw a box 80x336 in size, using currently selected

; logical function, with upper left corner at the display memory offset
; in DI. Box is filled with four patterns. Top quarter of area is

; filled with OFFh (solid) pattern, next quarter is filled with 00h

;  (empty) pattern, next quarter is filled with 33h (double pixel wide

; vertical bar) pattern, and bottom quarter is filled with double pixel
; high horizontal bar pattern.

; Macro to draw a column of the specified width in bytes, one-quarter
;  of the height of the box, with the specified fill pattern.

DRAW_BOX_QUARTER macro  FILL, WIDTH

local RowLoop, ColumnlLoop

mov al,FILL ;fi11 pattern

mov dx,DEMO_AREA_HEIGHT / 4 ;1/4 of the full box height
RowLoop:

mov cx,WIDTH
ColumnLoop:

mov ah,es:[di] ;1oad display memory contents into

; GC latches (we don't actually care
; about value read into AH)
stosb ;write pattern, which is logically
; combined with latch contents for each
; plane and then written to display
; memory
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Toop ColumnLoop
add di,SCREEN_WIDTH_IN_BYTES - WIDTH
;point to start of next line down in box
dec dx
jnz RowLoop
endm

DrawVerticalBox proc near

DRAW_BOX_QUARTER 0ffh, VERTICAL_BOX_WIDTH_IN_BYTES

;first fill pattern: solid fill
0, VERTICAL_BOX_WIDTH_IN_BYTES

;second fill pattern: empty fill
033h, VERTICAL_BOX_WIDTH_IN_BYTES

;third fi11 pattern: double-pixel

; wide vertical bars

DRAW_BOX_QUARTER

DRAW_BOX_QUARTER

mov dx,DEMO_AREA_HEIGHT / 4 / 4
;fourth fill pattern: horizontal bars in
; sets of 4 scan lines
sub ax,ax
mov si,VERTICAL_BOX_WIDTH_IN_BYTES ;width of fill area
HorzBarLoop:
dec ax ;0ffh fi11 (smaller to do word than byte DEC)
mov cx,si ;width to fill
HBLoopl:
mov b1,es:[di] ;load latches (don't care about value)
stosb ;write solid pattern, through ALUs
loop HBLoopl
add di,SCREEN_WIDTH_IN_BYTES - VERTICAL_BOX_WIDTH_IN_BYTES
mov cx,si ;width to fill
HBLoop2:
mov b1,es:[di] ;1load latches
stosb ;write solid pattern, through ALUs
loop HBLoop2
add di,SCREEN_WIDTH_IN_BYTES - VERTICAL_BOX_WIDTH_IN_BYTES
inc ax ;0 fi11 (smaller to do word than byte DEC)
mov cXx,si ;width to fill
HBLoop3:
mov b1,es:[di] ;1oad latches
stosb ;write empty pattern, through ALUs
loop HBLoop3
add di,SCREEN_WIDTH_IN_BYTES - VERTICAL_BOX_WIDTH_IN_BYTES
mov cx,si ;width to fill
HBLoop4:
mov bl,es:[di] ;load latches
stosb ;write empty pattern, through ALUs
loop HBLoop4
add di,SCREEN_WIDTH_IN_BYTES - VERTICAL_BOX_WIDTH_IN_BYTES
dec dx
Jjnz HorzBarlLoop
ret
DrawVerticalBox endp
cseg ends
end start

Logical function 0, which writes the CPU data unmodified, is the standard mode of
operation of the ALUs. In this mode, the CPU data is combined with the latched data
by ignoring the latched data entirely. Expressed as a logical function, this could be consid-
ered CPU data ANDed with 1 (or ORed with 0). This is the mode to use whenever
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you want to place CPU data into display memory, replacing the previous contents
entirely. It may occur to you that there is no need to latch display memory at all when
the data unmodified function is selected. In the sample program, that is true, but if the
bit mask is being used, the latches must be loaded even for the data unmodified func-
tion, as I'll discuss in the next chapter.

Logical functions 1 through 3 cause the CPU data to be ANDed, ORed, and XORed
with the latched data, respectively. Of these, XOR is the most useful, since exclusive-
ORing is a traditional way to perform animation. The uses of the AND and OR logical
functions are less obvious. AND can be used to mask a blank area into display memory,
or to mask off those portions of a drawing operation that dont overlap an existing
display memory image. OR could conceivably be used to force an image into display
memory over an existing image. To be honest, I havent encountered any particularly
valuable applications for AND and OR, but they’re the sort of building-block features
that could come in handy in just the right context, so keep them in mind.

Notes on the ALU/Latch Demo Program

VGA settings such as the logical function select should be restored to their default
condition before the BIOS is called to output text or draw pixels. The VGA BIOS does
not guarantee that it will set most VGA registers except on mode sets, and there are so
many compatible BIOSes around that the code of the IBM BIOS is not a reliable guide.
For instance, when the BIOS is called to draw text, it’s likely that the result will be
illegible if the Bit Mask register is not in its default state. Similarly, a mode set should
generally be performed before exiting a program that tinkers with VGA settings.

Along the same lines, the sample program does not explicitly set the Map Mask register
to ensure that all planes are enabled for writing. The mode set for mode 10H leaves all
planes enabled, so I did not bother to program the Map Mask register, or any other register
besides the Data Rotate register, for that matter. However, the profusion of compatible
BIOSes means there is some small risk in relying on the BIOS to leave registers set
propetly. For the highly safety-conscious, the best course would be to program data
control registers such as the Map Mask and Read Mask explicitly before relying on
their contents.

On the other hand, any function the BIOS provides explicitly—as part of the inter-
face specification—such as setting the palette RAM, should be used in preference to
programming the hardware directly whenever possible, because the BIOS may mask
hardware differences between VGA implementations.

The code that draws each vertical box in the sample program reads from display
memory immediately before writing to display memory. The read operation loads the
VGA latches. The value that is read is irrelevant as far as the sample program is con-
cerned. The read operation is present only because it is necessary to perform a read to
load the latches, and there is no way to read without placing a value in a register. This
is a bit of a nuisance, since it means that the value of some 8-bit register must be
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destroyed. Under certain circumstances, a single logical instruction such as XOR or
AND can be used to perform both the read to load the latches and then write to
modify display memory without affecting any CPU registers, as we'll see later on.

All text in the sample program is drawn by VGA BIOS function 13H, the write
string function. This function is also present in the AT’s BIOS, but not in the XT’s or
PC’s, and as a result is rarely used; the function is always available if a VGA is installed,
however. Text drawn with this function is relatively slow. If speed is important, a pro-
gram can draw text directly into display memory much faster in any given display
mode. The great virtue of the BIOS write string function in the case of the VGA is that
it provides an uncomplicated way to get text on the screen reliably in any mode and
color, over any background.

The expression used to load DX in the TEXT_UP macro in the sample program
may seem strange, but it's a convenient way to save a byte of program code and a few cycles
of execution time. DX is being loaded with a word value that’s composed of two inde-
pendent immediate byte values. The obvious way to implement this would be with:

MOV DL,VALUEL
MOV DH,VALUE2

which requires four instruction bytes. By shifting the value destined for the high byte
into the high byte with MASM’s shift- left operator, SHL (*100H would work also),
and then logically combining the values with MASM’s OR operator (or the ADD

operator), both halves of DX can be loaded with a single instruction, as in:

MOV DX,(VALUE2 SHL 8) OR VALUE1

which takes only three bytes and is faster, being a single instruction. (Note, though,
that in 32-bit protected mode, there’s a size and performance penalty for 16-bit in-
structions such as the MOV above; see my book Zen of Code Optimization for details.)
As shown, a macro is an ideal place to use this technique; the macro invocation can
refer to two separate byte values, making matters easier for the programmer, while the
macro itself can combine the values into a single word-sized constant.

A minor optimization tip illustrated in the listing is the use of INC
AX and DEC AX in the DrawVerticalBox subroutine when only AL ac-
tually needs to be modified. Word-sized register increment and dec-
rement instructions (or dword-sized instructions in 32-bit protected
mode) are only one byte long, while byte-sized register increment
and decrement instructions are two bytes long. Consequently, when
size counts, it is worth using a whole 16-bit (or 32-bit) register
instead of the low & bits of that register for INC and DEC—if you
don’t need the upper portion of the register for any other purpose,
or if you can be sure that the INC or DEC won't affect the upper
part of the register.
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The latches and ALUs are central to high-performance VGA code, since they allow
programs to process across all four memory planes without a series of OUT's and read/
write operations. It is not always easy to arrange a program to exploit this power, however,
because the ALUs are far more limited than a CPU. In many instances, however, additional
hardware in the VGA, including the bit mask, the set/reset features, and the barrel
shifter, can assist the ALUs in controlling data, as we'll see in the next few chapters.
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LISTING 3.1 L3-1.ASM

; Program to illustrate operation of data rotate and bit mask
; features of Graphics Controller. Draws 8x8 character at

; specified location, using VGA's 8x8 ROM font. Designed

;  for use with modes 0Dh, OEh, OFh, 10h, and 12h.

; By Michael Abrash.

stack segment para stack 'STACK'’

db
stack ends

512 dup(?)

VGA_VIDEO_SEGMENT equ

SCREEN_WIDTH_IN_

BYTES equ

FONT_CHARACTER_SIZE equ

; VGA register equates.

GC_INDEX
GC_ROTATE

GC_BIT_MASK
dseg segment
TEST_TEXT_ROW
TEST_TEXT_COL
TEST_TEXT_WIDTH

TestString
db

FontPointer

dseg ends

0a000h ;VGA display memory segment
044ah ;offset of BIOS variable
8 ;# bytes in each font char

equ 3ceh ;GC index register

equ 3 ;GC data rotate/logical function
; register index

equ 8 ;GC bit mask register index

para common ‘'DATA’

equ 69 ;row to display test text at

equ 17 ;column to display test text at

equ 8 ;width of a character in pixels

label byte

'Hello, world!',0 ;test string to print.

dd ? ;font offset

; Macro to set indexed register INDEX of GC chip to SETTING.

SETGC macro
mov
mov
out
endm

cseg segment
assume
start proc
mov
mov

INDEX, SETTING

dx,GC_INDEX

ax,(SETTING SHL 8) OR INDEX

dx,ax

para public 'CODE’
cs:cseg, ds:dseg

near
ax,dseg
ds,ax

; Select 640x480 graphics mode.

mov
int

ax,012h
10h

; Set driver to use the 8x8 font.

mov
mov
mov
int
call

ah,11lh
al,30h
bh,3

10h
SelectFont

;VGA BIOS character generator function,
; return info subfunction
;get 8x8 font pointer
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; Print the test string.

mov si,offset TestString

mov bx, TEST_TEXT_ROW

mov cx, TEST_TEXT_COL
StringOutLoop:

Todsb

and al,al

Jjz StringOutDone

call DrawChar

add cx, TEST_TEXT_WIDTH

Jjmp StringOutloop

StringOutDone:

; Reset the data rotate and bit mask registers.

SETGC  GC_ROTATE, 0
SETGC  GC_BIT_MASK, 0ffh

; Wait for a keystroke.

mov ah,1
int 21h

; Return to text mode.

mov ax,03h
int 10h

; Exit to DOS.
mov ah,4ch
int 21h

Start endp

; Subroutine to draw a text character in a 1inear'graph1cs mode
; (0Dh, OEh, OFh, 010h, 012h).

; Font used should be pointed to by FontPointer.

; Input:

; AL = character to draw

; BX = row to draw text character at

; CX = column to draw text character at

; Forces ALU function to "move".

DrawChar proc near
push ax
push bx
push cX
push dx
push si
push di
push bp
push ds

; Set DS:SI to point to font and ES to point to display memory.
1ds si,[FontPointer] ;point to font
moyv dx,VGA_VIDEO_SEGMENT
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mov

es,

dx ;point to display memory

; Calculate screen address of byte character starts in.

push
sub
mov
xchg
mov

pop
mul
push
mov
and
shr
shr
shr
add

ds

dx,
ds,
ax,
di,

ds
di
di

di,
cl,
di,
di,
di,
di,

;point to BIOS data segment
dx
dx
bx
ds:[SCREEN_WIDTH_IN_BYTES] ;retrieve BIOS

; screen width

;calculate offset of start of row
;set aside screen width
cX ;set aside the column
0111b ;keep only the column in-byte address
1
1
1 ;divide column by 8 to make a byte address
ax ;and point to byte

; Calculate font address of character.

sub
shl
shl
shl
add

; Set up the GC

mov
mov
mov
out

bh,bh

bx,1 ;assumes 8 bytes per character; use
bx,1 ; a multiply otherwise

bx,1 ;offset in font of character

si,bx ;offset in font segment of character
rotation.

dx,GC_INDEX

al,GC_ROTATE

ah,cl

dx,ax

; Set up BH as bit mask for left half,
; BL as rotation for right half.

mov
shr
neg
add
shl

bx,
bh,

cl

cl,
b1,

Offffh
cl

8
cl

; Draw the character, left half first, then right half in the

; succeeding byte, using the data rotation to position the character
; across the byte boundary and then using the bit mask to get the

; proper portion of the character into each byte.

; Does not check for case where character is byte-aligned and

; no rotation and only one write is required.

mov
mov
pop
dec
dec

CharacterLoop:

bp.
dx,

CcX
cX
cX

FONT_CHARACTER_SIZE
GC_INDEX
;get back screen width

; -2 because do two bytes for each char

; Set the bit mask for the left half of the character.
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mov al,GC_BIT_MASK
mov ah,bh
out dx,ax

; Get the next character byte & write it to display memory.
; (Left half of character.)

mov al,[sil ;get character byte
mov ah,es:[di] ;1oad latches
stosb ;write character byte

; Set the bit mask for the right half of the character.

mov al,GC_BIT_MASK
mov ah,bl
out dx,ax

; Get the character byte again & write it to display memory.
; (Right half of character.)

lodsb ;get character byte
mov ah,es:[di] ;1oad latches
stosb ;write character byte

; Point to next line of character in display memory.

add di,cx
dec bp
jnz CharacterlLoop
pop ds
pop bp
pop di
pop si
pop dx
pop cx
pop bx
pop ax
ret

DrawChar endp

; Set the pointer to the font to draw from to ES:BP.

SelectFont proc near

mov word ptr [FontPointer],bp ;save pointer
mov word ptr [FontPointer+2],es
ret
SelectFont endp
cseg ends
end start

The bit mask can be used for much more than bit-aligned fonts. For example, the
bit mask is useful for fast pixel drawing, such as that performed when drawing lines, as
we'll see in Chapter 14. It’s also useful for drawing the edges of primitives, such as filled
polygons, that potentially involve modifying some but not all of the pixels controlled
by a single byte of display memory.
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display memory need to be changed, because it allows full use of the VGA’s four-way
parallel processing capabilities for the pixels that are to be drawn, without interfering
with the pixels that are to be left unchanged. The alternative would be plane-by-plane
processing, which from a performance perspective would be undesirable indeed.

It’s worth pointing out again that the bit mask operates on the data in the latches,
not on the data in display memory. This makes the bit mask a flexible resource that
with a little imagination can be used for some interesting purposes. For example, you
could fill the latches with a solid background color (by writing the color somewhere in
display memory, then reading that location to load the latches), and then use the Bit
Mask register (or write mode 3, as we'll see later) as a mask through which to draw a
foreground color stencilled into the background color without reading display memory
first. This only works for writing whole bytes at a time (clipped bytes require the use of
the bit mask; unfortunately, were already using it for stencilling in this case), but it
completely eliminates reading display memory and does foreground-plus-background
drawing in one blurry-fast pass.

This last-described example is a good illustration of how Id suggest
you approach the VGA: As a rich collection of hardware resources
that can profitably be combined in some non-obvious ways. Don't let
yourself be limited by the obvious applications for the latches, bit
mask, write modes, read modes, map mask, ALUs, and set/reset
circuitry. Instead, try to imagine how they could work together to
perform whatever task you happen to need done at any given time.
I've made my code as much as four times faster by doing this, as
the discussion of Mode X in Fart VIll demonstrates.

The example code in Listing 3.1 is designed to illustrate the use of the Data Rotate
and Bit Mask registers, and is not as fast or as complete as it might be. The case where
text 7s byte-aligned could be detected and performed much faster, without the use of
the Bit Mask or Data Rotate registers and with only one display memory access per
font byte (to write the font byte), rather than four (to read display memory and write
the font byte to each of the two bytes the character spans). Likewise, non-aligned text
drawing could be streamlined to one display memory access per byte by having the
CPU rotate and combine the font data directly, rather than setting up the VGA’s hard-
ware to do it. (Listing 3.1 was designed to illustrate VGA data rotation and bit mask-
ing rather than the fastest way to draw text. We'll see faster text-drawing code soon.)
One excellent rule of thumb is to minimize display memory accesses of all types, espe-
cially reads, which tend to be considerably slower than writes. Also, in Listing 3.1 it
would be faster to use a table lookup to calculate the bit masks for the two halves of
each character rather than the shifts used in the example.

For another (and more complex) example of drawing bit-mapped text on the VGA,
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see John Cockerham’s article, “Pixel Alignment of EGA Fonts,” PC Tech Journal, January,
1987. Parenthetically, I'd like to pass along John’s comment about the VGA: “When
programming the VGA, everything is complex.”

He’s got a point there.

The VGA’s Set/Reset Circuitry

At last we come to the final aspect of data flow through the GC on write mode 0 writes: the
set/reset circuitry. Figure 3.3 shows data flow on a write mode 0 write. The only differ-
ence between this figure and Figure 3.1 is that on its way to each plane potentially the
rotated CPU data passes through the set/reset circuitry, which may or may not replace
the CPU data with set/reset data. Briefly put, the set/reset circuitry enables the pro-
grammer to elect to independently replace the CPU data for each plane with either 00
or OFFH.

What is the use of such a feature? Well, the standard way to control color is to set the
Map Mask register to enable writes to only those planes that need to be set to produce
the desired color. For example, the Map Mask register would be set to 09H to draw in
high-intensity blue; here, bits 0 and 3 are set to 1, so only the blue plane (plane 0) and
the intensity plane (plane 3) are written to.

Remember, though, that planes that are disabled by the Map Mask register are not
written to or modified in any way. This means that the above approach works only if

Bit Masks (4)

Display Memory
Barrel | Rf::é , P|a||:e 3
Shifter —
Display Memory
Byte Set/ Plane 2 :
written —Reset |/ > " —_—
by | | > % ;
cpPU Latch Display Memory
Set/ Plane 1
—{Reset § —
Display Memory
Plane O
Set/
—|Reset

-—) 5

§ Latch

1 {

Figure 3.3 Data Flow During a Write Mode 0 Write Operation
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Remember, though, that planes that are disabled by the Map Mask register are not
written to or modified in any way. This means that the above approach works only if
the memory being written to is zeroed; if, however, the memory already contains non-
zero data, that data will remain in the planes disabled by the Map Mask, and the end
result will be that some planes contain the data just written and other planes contain
old data. In short, color control using the Map Mask does not force all planes to con-
tain the desired color. In particular, it is not possible to force some planes to zero and
other planes to one in a single write with the Map Mask register.

The program in Listing 3.2 illustrates this problem. A green pattern (plane 1 set to
1, planes 0, 2, and 3 set to 0) is first written to display memory. Display memory is
then filled with blue (only plane 0 set to 1), with a Map Mask setting of 01H. Where
the blue crosses the green, cyan is produced, rather than blue, because the Map Mask
register setting of 01H that produces blue leaves the green plane (plane 1) unchanged.
In order to generate blue unconditionally, it would be necessary to set the Map Mask
register to OFH, clear memory, and then set the Map Mask register to 01H and fill
with blue.

LISTING 3.2 L3-2.ASM

; Program to illustrate operation of Map Mask register when drawing
; to memory that already contains data.
; By Michael Abrash.

stack  segment para stack 'STACK'
db 512 dup(?)
stack ends

EGA_VIDEO_SEGMENT equ 0a000h ;EGA display memory segment

; EGA register equates.

SC_INDEX equ 3c4h ;SC index register
SC_MAP_MASK equ 2 ;:SC map mask register

; Macro to set indexed register INDEX of SC chip to SETTING.

SETSC macro  INDEX, SETTING

mov dx,SC_INDEX
mov al,INDEX
out dx,al

inc dx

mov al,SETTING
out dx,al

dec dx

endm

cseg segment para public 'CODE'
assume cs:cseg

start  proc near

; Select 640x480 graphics mode.



mov ax,012h

int 10h

mov ax,EGA_VIDEO_SEGMENT
mov es,ax
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;point to video memory

Draw 24 10-scan-line high horizontal bars in green, 10 scan lines apart.

;map mask setting enables only
; plane 1, the green plane

;start at beginning of video memory

to draw

;# bytes per horizontal bar

;point to start of next bar

SETSC  SC_MAP_MASK,02h

sub di,di

mov al,0ffh

mov bp,24 :# bars
HorzBarlLoop:

mov cx,80*10

rep stosb ;draw bar

add di,80*10

dec bp

jnz HorzBarlLoop

’

Fill screen with blue, using Map Mask

; to blue plane only.

SETSC SC_MAP_MASK,01h
sub di,di

mov cx,80%480

mov al,0ffh

rep stosb

Wait for a keystroke.

ah,1
21h

mov
int

Restore text mode.

mov ax,03h
int 10h
; Exit to DOS.
mov ah,4ch
int 21h
start endp
cseg ends
end start

register to enable writes

;map mask setting enables only
; plane 0, the blue plane

:# bytes per screen

;perform fill (affects only
; plane 0, the blue plane)

Setting all Planes to a Single Color

The set/reset circuitry can be used to force some planes to 0-bits and others to 1-bits
during a single write, while letting CPU data go to still other planes, and so provides an
efficient way to set all planes to a desired color. The set/reset circuitry works as follows:

For each of the bits 0-3 in the Enable Set/Reset register (Graphics Controller regis-
ter 1) that is 1, the corresponding bit in the Set/Reset register (GC register 0) is ex-
tended to a byte (0 or OFFH) and replaces the CPU data for the corresponding plane.



46 [Z] Chapter3

For each of the bits in the Enable Set/Reset register that is 0, the CPU data is used
unchanged for that plane (normal operation). For example, if the Enable Set/Reset
register is set to 01H and the Set/Reset register is set to 05H, then the CPU data is
replaced for plane 0 only (the blue plane), and the value it is replaced with is OFFH (bit
0 of the Set/Reset register extended to a byte). Note that in this case, bits 1-3 of the Set/
Reset register have no effect.

It is important to understand that the set/reset circuitry directly replaces CPU data
in Graphics Controller data flow. Refer back to Figure 3.3 to see that the output of the
set/reset circuitry passes through (and may be transformed by) the ALU and the bit mask
before being written to memory, and even then the Map Mask register must enable the
write. When using set/reset, it is generally desirable to set the Map Mask register to
enable all planes the set/reset circuitry is controlling, since those memory planes which
are disabled by the Map Mask register cannot be modified, and the purpose of en-
abling set/reset for a plane is to force that plane to be set by the set/reset circuitry.

Listing 3.3 illustrates the use of set/reset to force a specific color to be written. This
program is the same as that of Listing 3.2, except that set/reset rather than the Map
Mask register is used to control color. The preexisting pattern is completely overwrit-
ten this time, because the set/reset circuitry writes 0-bytes to planes that must be off as
well as OFFH-bytes to planes that must be on.

LISTING 3.3 L3-3.ASM

; Program to illustrate operation of set/reset circuitry to force
; setting of memory that already contains data.
; By Michael Abrash.

stack  segment para stack 'STACK®
db 512 dup(?)
stack ends

EGA_VIDEO_SEGMENT equ 0a000h ;EGA display memory segment

; EGA register equates.

SC_INDEX equ 3c4h ;SC index register
SC_MAP_MASK equ 2 ;SC map mask register
GC_INDEX equ 3ceh ;GC index register
GC_SET_RESET equ 0 ;GC set/reset register

GC_ENABLE_SET_RESET equ 1 :GC enable set/reset register

; Macro to set indexed register INDEX of SC chip to SETTING.

SETSC macro INDEX, SETTING

mov dx,SC_INDEX
mov al,INDEX
out dx,al

inc dx

mov al,SETTING
out dx,al

dec dx

endm
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; Macro to set indexed register INDEX of GC chip to SETTING.

SETGC macro INDEX, SETTING

mov dx,GC_INDEX
mov al,INDEX
out dx,al

inc dx

mov al,SETTING
out dx,al

dec dx

endm

cseg segment para public 'CODE®
assume cs:cseg
start proc near

; Select 640x480 graphics mode.

mov ax,012h

int 10h

mov ax,EGA_VIDEO_SEGMENT

mov es,ax ;point to video memory

; Draw 24 10-scan-1ine high horizontal bars in green, 10 scan lines apart.

SETSC SC_MAP_MASK,02h ;map mask setting enables only
; plane 1, the green plane

sub di,di ;start at beginning of video memory

mov al,0ffh

mov bp.24 :# bars to draw

HorzBarlLoop:

mov cx,80*10 ;# bytes per horizontal bar

rep stosb ;draw bar

add di,80*10 ;point to start of next bar

dec bp

jnz HorzBarlLoop

; Fi11 screen with blue, using set/reset to force plane 0 to 1's and all
; other plane to 0's.

SETSC SC_MAP_MASK,0fh ;must set map mask to enable all
; planes, so set/reset values can
; be written to memory

SETGC GC_ENABLE_SET_RESET,0fh ;CPU data to all planes will be
; replaced by set/reset value

SETGC  GC_SET_RESET,O0lh ;set/reset value is 0ffh for plane 0
; (the blue plane) and 0 for other
; planes

sub di,di

mov cx,80*%480 ;# bytes per screen

mov al,0ffh ;since set/reset is enabled for all

; planes, the CPU data is ignored-
; only the act of writing is
; important
rep stosb ;perform fill (affects all planes)
; Turn off set/reset.

SETGC  GC_ENABLE_SET_RESET,O0
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; Wait for a keystroke.

mov ah,1
int 21h

; Restore text mode.

mov ax,03h
int 10h
; Exit to DOS.
mov ah,4ch
int 21h
start endp
cseg ends
end start

Manipulating Planes Individually

Listing 3.4 illustrates the use of set/reset to control only some, rather than all, planes.
Here, the set/reset circuitry forces plane 2 to 1 and planes 0 and 3 to 0. Because bit 1 of
the Enable Set/Reset register is 0, however, set/reset does not affect plane 1; the CPU
data goes unchanged to the plane 1 ALU. Consequently, the CPU data can be used to
control the value written to plane 1. Given the settings of the other three planes, this
means that each bit of CPU data that is 1 generates a brown pixel, and each bit that is
0 generates a red pixel. Writing alternating bytes of 07H and OEOH, then, creates a
vertically striped pattern of brown and red.

In Listing 3.4, note that the vertical bars are 10 and 6 bytes wide, and do not start
on byte boundaries. Although set/reset replaces an entire byte of CPU data for a plane,
the combination of set/reset for some planes and CPU data for other planes, as in the
example above, can be used to control individual pixels.

LISTING 3.4 L3-4.ASM

; Program to illustrate operation of set/reset circuitry in conjunction
; with CPU data to modify setting of memory that already contains data.
; By Michael Abrash.

stack segment para stack 'STACK'
db 512 dup(?)
stack ends

EGA_VIDEO_SEGMENT equ 0a000h ;EGA display memory segment
; EGA register equates.

SC_INDEX equ 3c4h ;SC index register
SC_MAP_MASK equ 2 ;SC map mask register
GC_INDEX equ 3ceh ;GC index register
GC_SET_RESET equ 0 ;GC set/reset register

GC_ENABLE_SET_RESET equ 1 ;GC enable set/reset register



s Macro

SETSC

; Macro

SETGC

cseg

start
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to set indexed register INDEX of SC chip to SETTING.

macro INDEX, SETTING

mov dx,SC_INDEX
mov al,INDEX
out dx,al

inc dx

mov al,SETTING
out dx,al

dec dx

endm

to set indexed register INDEX of GC chip to SETTING.

macro INDEX, SETTING

mov dx,GC_INDEX
mov al,INDEX
out dx,al

inc dx

mov al,SETTING
out dx,al

dec dx

endm

segment para public 'CODE’
assume cs:cseg
proc near

; Select 640x350 graphics mode.

mov ax,010h

int 10h

mov ax,EGA_VIDEO_SEGMENT

mov es,ax ;point to video memory

; Draw 18 10-scan-line high horizontal bars in green, 10 scan lines apart.

SETSC SC_MAP_MASK,02h ;map mask setting enables only
; plane 1, the green plane
sub di,di ;start at beginning of video memory
mov al,0ffh
mov bp,18 ;# bars to draw
HorzBarlLoop:
mov cx,80*10 ;## bytes per horizontal bar
rep stosb ;draw bar
add di,80*10 ;point to start of next bar
dec bp
jnz HorzBarLoop

; Fill screen with alternating bars of red and brown, using CPU data
; to set plane 1 and set/reset to set planes 0, 2 & 3.

SETSC  SC_MAP_MASK,0fh  ;must set map mask to enable all
; planes, so set/reset values can
; be written to planes 0, 2 & 3
; and CPU data can be written to
; plane 1 (the green plane)

SETGC  GC_ENABLE_SET_RESET,0dh ;CPU data to planes 0, 2 & 3 will be
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; replaced by set/reset value
SETGC  GC_SET_RESET,04h ;set/reset value is 0ffh for plane 2
; (the red plane) and 0 for other

; planes
sub di,di
mov cx,80*350/2 ;# words per screen
mov ax,07e0h ;CPU data controls only plane 1;

; set/reset controls other planes
rep stosw ;perform fill (affects all planes)

; Turn off set/reset.
SETGC GC_ENABLE_SET_RESET,0
; Wait for a keystroke.

mov ah,1
int 21h

; Restore text mode.

mov ax,03h
int 10h
; Exit to DOS.

mov ah,4ch
int 21h
start endp
cseg ends
end start

There is no clearly defined role for the set/reset circuitry, as there is for, say, the bit
mask. In many cases, set/reset is largely interchangeable with CPU data, particularly
with CPU data written in write mode 2 (write mode 2 operates similarly to the set/
reset circuitry, as we'll see in Chapter 5). The most powerful use of set/reset, in my
experience, is in applications such as the example of Listing 3.4, where it is used to
force the value written to certain planes while the CPU data is written to other planes.
In general, though, think of set/reset as one more tool you have at your disposal in
getting the VGA to do what you need done, in this case a tool that lets you force all bits
in each plane to either zero or one, or pass CPU data through unchanged, on each

write to display memory. As tools go, set/reset is a handy one, and it'll pop up often in
this book.

Notes on Set/Reset

The set/reset circuitry is not active in write modes 1 or 2. The Enable Set/Reset register
is inactive in write mode 3, but the Set/Reset register provides the primary drawing
color in write mode 3, as discussed in the next chapter.
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Be aware that because set/reset directly replaces CPU data, it does
not necessarily have to force an entire display memory byte to O or
OFFH, even when set/reset is replacing CPU data for all planes. For
example, if the Bit Mask register is set to 8OH, the set/reset cir-
cuitry can only modify bit 7 of the destination byte in each plane,
since the other seven bits will come from the latches for each plane.
Similarly, the set/reset value for each plane can be modified by that
plane’s ALU. Once again, this illustrates that set/reset merely re-
places the CPU data for selected planes; the set/reset value is then
processed in exactly the same way that CFU data normally ie.

A Brief Note on Word OUTSs

In the early days of the EGA and VGA, there was considerable debate about whether it
was safe to do word OUTs (OUT DX,AX) to set Index/Data register pairs in a single
instruction. Long ago, there were a few computers with buses that weren't quite PC-
compatible, in that the two bytes in each word OUT went to the VGA in the wrong
order: Data register first, then Index register, with predictably disastrous results. Con-
sequently, I generally wrote my code in those days to use two 8-bit OUTs to set in-
dexed registers. Later on, I made it a habit to use macros that could do either one
16-bit OUT or two 8-bit OUTs, depending on how I chose to assemble the code, and
in fact you'll find both ways of dealing with OUT's sprinkled through the code in this
part of the book. Using macros for word OUTs is still not a bad idea in that it does no
harm, but in my opinion it’s no longer necessary. Word OUTs are standard now, and
it's been a long time since I've heard of them causing any problems.
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In write mode 3, set/reset is automatically enabled for all four planes (the Enable
Set/Reset register is ignored). The CPU data byte is rotated and then ANDed with the
contents of the Bit Mask register, and the result of this operation is used as the contents
of the Bit Mask register alone would normally be used. (If this is Greek to you, have a
look back at Chapters 1 through 3. There’s no way to understand write mode 3 with-
out understanding the rest of the VGA’s write data path first.)

That’s what write mode 3 does—but what is it for?It turns out that write mode 3 is
excellent for a surprisingly large number of purposes, because it makes it possible to
avoid the bane of VGA performance, OUTs. Some uses for write mode 3 include lines,
circles, and solid and two-color pattern fills. Most importantly, write mode 3 is ideal
for transparent text; that is, it makes it possible to draw text in 16-color graphics mode
quickly without wiping out the background in the process. (As we'll see at the end of
this chapter, write mode 3 is potentially terrific for opaque text—text drawn with the
character box filled in with a solid color—as well.)

Listing 4.1 is a modification of code I presented in Chapter 3. That code used the
data rotate and bit mask features of the VGA to draw bit-mapped text in write mode 0.
Listing 4.1 uses write mode 3 in place of the bit mask to draw bit-mapped text, and in
the process gains the useful ability to preserve the background into which the text is
being drawn. Where the original text-drawing code drew the entire character box for
each character, with 0 bits in the font pattern causing a black box to appear around
each character, the code in Listing 4.1 affects display memory only when 1 bits in the
font pattern are drawn. As a result, the characters appear to be painted into the back-
ground, rather than over it. Another advantage of the code in Listing 4.1 is that the
characters can be drawn in any of the 16 available colors.

LISTING 4.1 L4-1.ASM

; Program to illustrate operation of write mode 3 of the VGA.
; Draws 8x8 characters at arbitrary locations without disturbing
;  the background, using VGA's 8x8 ROM font. Designed
; for use with modes 0Dh, OEh, OFh, 10h, and 12h.
; Runs only on VGAs (in Models 50 & up and IBM Display Adapter
; and 100% compatibles).
; Assembled with MASM
; By Michael Abrash
stack segment para stack °'STACK'
db 512 dup(?)
stack ends

VGA_VIDEO_SEGMENT equ 0a000h ;VGA display memory segment

SCREEN_WIDTH_IN_BYTES equ 044ah ;offset of BIOS variable

FONT_CHARACTER_SIZE equ 8 ;# bytes in each font char

; VGA register equates.

SC_INDEX equ 3c4h ;SC index register
SC_MAP_MASK equ 2 ;SC map mask register index
GC_INDEX equ 3ceh ;GC index register
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GC_SET_RESET equ 0 ;GC set/reset register index

GC_ENABLE_SET_RESET equ 1 ;GC enable set/reset register index

GC_ROTATE equ 3 ;GC data rotate/logical function
; register index

GC_MODE equ 5 ;GC Mode register

GC_BIT_MASK equ 8 ;GC bit mask register index

dseg segment para common ‘DATA'

TEST_TEXT_ROW  equ 69 ;row to display test text at

TEST_TEXT_COL equ 17 ;column to display test text at

TEST_TEXT_WIDTH equ 8 ;width of a character in pixels

TestString label byte

db 'Hello, world!',0 ;test string to print.
FontPointer dd ? ;font offset
dseg ends

cseg segment para public 'CODE’
assume cs:cseg, ds:dseg

start proc near
mov ax,dseg
mov ds,ax

; Select 640x480 graphics mode.

mov ax,012h
int 10h

; Set the screen to all blue, using the readability of VGA registers
; to preserve reserved bits.

mov dx,GC_INDEX

mov al,GC_SET_RESET

out dx,al

inc dx

in al,dx

and al,0f0h

or al,1 ;blue plane only set, others reset

out dx,al

dec dx

mov al,GC_ENABLE_SET_RESET

out dx,al

inc dx

in al,dx

and al,0f0h

or al,0fh ;enable set/reset for all planes

out dx,al

mov dx,VGA_VIDEO_SEGMENT

mov es,dx ;point to display memory

mov di,0

mov cx,8000h ;fi11 all 32k words

mov ax,0ffffh ;because of set/reset, the value
; written actually doesn't matter

rep stosw ;111 with blue

; Set driver to use the 8x8 font.

mov ah,11h :VGA BIOS character generator function,

mov al,30h ; return info subfunction

mov bh,3 ;get 8x8 font pointer

int 10h
call SelectFont
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; Print the test string, cycling through colors.

mov si,offset TestString

mov bx, TEST_TEXT_ROW

mov cx, TEST_TEXT_COL

mov ah,0 ;start with color O
StringOutLoop:

Todsb

and al,al

Jjz StringOutDone

push ax ;preserve color

call DrawChar

pop ax ;restore color

inc ah ;next color

and ah,0fh ;colors range from 0 to 15

add cx, TEST_TEXT_WIDTH

jmp StringOutLoop

StringOutDone:

; Wait for a key, then set to text mode & end.

mov ah,l

int 21h ;wait for a key
mov ax,3

int 10h ;restore text mode

; Exit to DOS.

mov ah,4ch
int 21h
Start endp
; Subroutine to draw a text character in a linear graphics mode
;  (0Dh, OEh, OFh, 010h, 012h). Background around the pixels that
; make up the character is preserved.
; Font used should be pointed to by FontPointer.

; Input:

; AL = character to draw

; AH = color to draw character in (0-15)
; BX = row to draw text character at

; CX = column to draw text character at

; Forces ALU function to "move".
; Forces write mode 3.

DrawChar proc near
push ax
push bx
push cX
push dx
push si
push di
push bp
push ds
push ax ;preserve character to draw in AL

; Set up set/reset to produce character color, using the readability
; of VGA register to preserve the setting of reserved bits 7-4.
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mov dx,GC_INDEX

mov al,GC_SET_RESET
out dx,al

inc dx

in al,dx

and al,0f0h

and ah,0fh

or al,ah

out dx,al

; Select write mode 3, using the readability of VGA registers
; to leave bits other than the write mode bits unchanged.

mov dx,GC_INDEX
mov al,GC_MODE
out dx,al

inc dx

in al,dx

or al,3

out dx,al

; Set DS:SI to point to font and ES to point to display memory.

1ds si,[FontPointer] ;point to font
mov dx,VGA_VIDEO_SEGMENT
mov es,dx ;point to display memory

; Calculate screen address of byte character starts in.

pop ax ;get back character to draw in AL
push ds ;point to BIOS data segment
sub dx,dx
mov ds,dx
xchg ax,bx
mov di,ds:[SCREEN_WIDTH_IN_BYTES] ;retrieve BIOS
; screen width
pop ds
mul di ;calculate offset of start of row
push di ;set aside screen width
mov di,cx ;set aside the column
and c1,0111b ;keep only the column in-byte address
shr di,1
shr di,1
shr di,1 ;divide column by 8 to make a byte address
add di,ax ;and point to byte

Calculate font address of character.

sub bh,bh

shl bx,1 ;assumes 8 bytes per character; use
shl bx,1 ; a multiply otherwise

shl bx,1 ;offset in font of character

add si,bx ;offset in font segment of character

; Set up the GC rotation. In write mode 3, this is. the rotation
; of CPU data before it is ANDed with the Bit Mask register to

; form the bit mask. Force the ALU function to "move". Uses the
; readability of VGA registers to leave reserved bits unchanged.

mov dx,GC_INDEX
mov al,GC_ROTATE
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out dx,
inc dx
in al,
and al,
or al,
out dx,

al

dx
0eOh
cl
al

Set up BH as bit mask for left half, BL as rotation for right half.

mov bx,0ffffh
shr bh,cl

neg cl

add cl,8

shl b1,cl

Draw the character, left half first, then right half in the

succeeding byte,

using the data rotation to position the character

across the byte boundary and then using write mode 3 to combine the
character data with the bit mask to allow the set/reset value (the

character color)

through only for the proper portion (where the

font bits for the character are 1) of the character for each byte.
Wherever the font bits for the character are 0, the background
color is preserved.

Does not check for case where character is byte-aligned and

no rotation and only one write is required.

mov bp,
mov dx,
pop cX
dec cXx
dec cXx

CharacterLoop:

B

:

Set the bit mask

mov al,
mov ah,
out dx,

FONT_CHARACTER_SIZE
GC_INDEX
;get back screen width
; -2 because do two bytes for each char

for the left half of the character.

GC_BIT_MASK
bh
ax

Get the next character byte & write it to display memory.
(Left half of character.)

mov al,
mov ah,
stosb

Set the bit mask

mov al,
mov ah,
out dx,

[sil] ;get character byte
es:[di] ;1oad latches
;write character byte

for the right half of the character.

GC_BIT_MASK
b1
ax

Get the character byte again & write it to display memory.
(Right half of character.)

lodsb

mov ah,

stosb

;get character byte
es:[di] ;1oad latches
;swrite character byte

Point to next line of character in display memory.



add

dec
jnz

pop
pop
pop
pop
pop
pop
pop
pop
ret
DrawChar

; Set the p

SelectFont
mov
mov
ret

SelectFont

cseg end
end
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di,cx

bp
CharacterlLoop

ds
bp
di
si
dx
(33
bx
ax

endp
ointer to the font to draw from to ES:BP.
proc near
word ptr [FontPointer],bp ;save pointer
word ptr [FontPointer+2],es

endp

s
start

The key to understanding Listing 4.1 is understanding the effect of ANDing the

rotated CP
pattern for

U data with the contents of the Bit Mask register. The CPU data is the
the character to be drawn, with bits equal to 1 indicating where character

pixels are to appear. The Data Rotate register is set to rotate the CPU data to pixel-
align it, since without rotation characters could only be drawn on byte boundaries.
g y

As | pointed out in Chapter 3, the CFU is perfectly capable of rotating
the data itself, and it's often the case that that's more efficient.
The problem with using the Data Rotate register is that the OUT
that sets that register is time-consuming, especially for propor-
tional text, which requires a different rotation for each character.
Also, if the code performs full-byte accesses to display memory—
that is, if it combines pieces of two adjacent characters into one
byte—whenever possible for efficiency, the CPU generally has to do
extra work to prepare the data so the VGA's rotator can handle it.

At the same time that the Data Rotate register is set, the Bit Mask register is set to
allow the CPU to modify only that portion of the display memory byte accessed that
the pixel-aligned character falls in, so that other characters and/or graphics data won't
be wiped out. The result of ANDing the rotated CPU data byte with the contents of
the Bit Mask register is a bit mask that allows only the bits equal to 1 in the original
character pattern (rotated and masked to provide pixel alignment) to be modified by
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the CPU; all other bits come straight from the latches. The latches should have previ-
ously been loaded from the target address, so the effect of the ultimate synthesized bit
mask value is to allow the CPU to modify only those pixels in display memory that
correspond to the 1 bits in that part of the pixel-aligned character that falls in the
currently addressed byte. The color of the pixels set by the CPU is determined by the
contents of the Set/Reset register.

Whew. It sounds complex, but given an understanding of what the data rotator, set/
reset, and the bit mask do, it’s not that bad. One good way to make sense of it is to refer
to the original text-drawing program in Listing 3.1 back in Chapter 3, and then see
how Listing 4.1. differs from that program.

Ifs worth noting that the results generated by Listing 4.1 could have been accomplished
without write mode 3. Write mode 0 could have been used instead, but at a significant
performance cost. Instead of letting write mode 3 rotate the CPU data and AND it with
the contents of the Bit Mask register, the CPU could simply have rotated the CPU data
directly and ANDed it with the value destined for the Bit Mask register and then set the Bit
Mask register to the resulting value. Additionally, enable set/reset could have been forced on
for all planes, emulating what write mode 3 does to provide pixel colors.

The write mode 3 approach used in Listing 4.1 can be efficiently extended to draw-
ing large blocks of text. For example, suppose that we were to draw a line of 8-pixel-
wide bit-mapped text 40 characters long. We could then set up the bit mask and data
rotation as appropriate for the left portion of each bit-aligned character (the portion of
each character to the left of the byte boundary) and then draw the left portions only of
all 40 characters in write mode 3. Then the bit mask could be set up for the right
portion of each character, and the right portions of all 40 characters could be drawn.
The VGAs fast rotator would be used to do all rotation, and the only OUTs required
would be those required to set the bit mask and data rotation. This technique could
well outperform single-character bit-mapped text drivers such as the one in Listing 4.1
by a significant margin. Listing 4.2 illustrates one implementation of such an approach.
Incidentally, note the use of the 8x14 ROM font in Listing 4.2, rather than the 8x8
ROM font used in Listing 4.1. There is also an 8x16 font stored in ROM, along with
the tables used to alter the 8x14 and 8x16 ROM fonts into 9x14 and 9x16 fonts.

LISTING 4.2 L4-2.ASM

; Program to illustrate high-speed text-drawing operation of
i write mode 3 of the VGA.
Draws a string of 8x14 characters at arbitrary locations
without disturbing the background, using VGA's 8x14 ROM font.
; Designed for use with modes 0Dh, OEh, OFh, 10h, and 12h.
; Runs only on VGAs (in Models 50 & up and IBM Display Adapter
; and 100% compatibles).
; Assembled with MASM
; By Michael Abrash

stack  segment para stack 'STACK'
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db 512 dup(?)
stack ends
VGA_VIDEQ_SEGMENT equ 0a000h ;VGA display memory segment
SCREEN_WIDTH_IN_BYTES equ 044ah ;offset of BIOS variable
FONT_CHARACTER_SIZE equ 14 :# bytes in each font char

; VGA register equates.

SC_INDEX equ 3c4h ;SC index register

SC_MAP_MASK equ 2 ;SC map mask register index
GC_INDEX equ 3ceh ;GC index register
GC_SET_RESET equ 0 ;GC set/reset register index
GC_ENABLE_SET_RESET equ 1 :GC enable set/reset register index
GC_ROTATE equ 3 ;GC data rotate/logical function
; register index

GC_MODE equ 5 :GC Mode register
GC_BIT_MASK equ 8 ;GC bit mask register index
dseg segment para common 'DATA'
TEST_TEXT_ROW equ 69 ;row to display test text at
TEST_TEXT_COL equ 17 ;column to display test text at
TEST_TEXT_COLOR equ Ofh ;high intensity white
TestString label byte

db 'Hello, world!",0 ;test string to print.
FontPointer dd ? ;font offset

dseg ends
cseg segment para public 'CODE'
assume cs:cseg, ds:dseg

start proc near
mov ax,dseg
mov ds,ax

; Select 640x480 graphics mode.

mov ax,012h
int 10h

; Set the screen to all blue, using the readability of VGA registers
; to preserve reserved bits.

mov dx,GC_INDEX

mov al,GC_SET_RESET

out dx,al

inc dx

in al,dx

and al,0f0h

or al,1 ;blue plane only set, others reset
out dx,al

dec dx

mov al,GC_ENABLE_SET_RESET

out dx,al

inc dx

in al,dx

and al,0f0h

or al,0fh ;enable set/reset for all planes
out dx,al

mov dx,VGA_VIDEO_SEGMENT

mov es,dx ;point to display memory

mov di,0
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mov cx,8000h ;fi11 all 32k words

mov ax,0ffffh ;because of set/reset, the value
; written actually doesn’'t matter

rep stosw ;Fi11 with blue

; Set driver to use the 8xl14 font.

mov ah,11h ;VGA BIOS character generator function,
mov al,30h ; return info subfunction

mov bh,2 ;get 8x14 font pointer

int 10h

call SelectFont

; Print the test string.

mov si,offset TestString
mov bx, TEST_TEXT_ROW

mov cx, TEST_TEXT_COL

mov ah, TEST_TEXT_COLOR
call DrawString

; Wait for a key, then set to text mode & end.

mov ah,1

int 21h ;wait for a key
mov ax,3

int 10h ;restore text mode

; Exit to DOS.

mov ah,4ch

int 21h
Start endp
; Subroutine to draw a text string left-to-right in a linear
; graphics mode (0Dh, OEh, OFh, 010h, 012h) with 8-dot-wide
; characters. Background around the pixels that make up the
; characters is preserved.
; Font used should be pointed to by FontPointer.

; Input:

; AH = color to draw string in

; BX = row to draw string on

; CX = column to start string at
;s DS:SI = string to draw

; Forces ALU function to "move”.
; Forces write mode 3.

DrawString proc near
push ax
push bx
push cx
push dx
push si
push di
push bp
push ds

; Set up set/reset to produce character color, using the readability
; of VGA register to preserve the setting of reserved bits 7-4.
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mov
mov
out
inc
in

and
and
or

out

VGA Write Mode 3

dx,GC_INDEX
al,GC_SET_RESET
dx,al

dx

al,dx

al,0f0h

ah,0fh

al,ah

dx,al

Select write mode 3, using the readability of VGA registers
to leave bits other than the write mode bits unchanged.

mov
mov
out
inc
in

or

out
mov
mov

dx,GC_INDEX

al,GC_MODE

dx,al

dx

al,dx

al,3

dx,al

dx,VGA_VIDEO_SEGMENT

es,dx ;point to display memory

Calculate screen address of byte character starts in.

push
sub
mov
mov

pop
mov
mul
push
mov
and
shr
shr
shr
add

ds ;point to BIOS data segment

dx,dx

ds,dx

di,ds:[SCREEN_WIDTH_IN_BYTES] ;retrieve BIOS
; screen width

ds

ax,bx irow

di ;calculate offset of start of row

di ;set aside screen width

di,cx ;set aside the column

c1,0111b ;keep only the column in-byte address

di,1

di,1

di,1 ;divide column by 8 to make a byte address
di,ax ;and point to byte

Set up the GC rotation. In write mode 3, this is the rotation
of CPU data before it is ANDed with the Bit Mask register to

form the bit mask. Force the ALU function to "move". Uses the
readability of VGA registers to leave reserved bits unchanged.

mov
mov
out
inc
in

and
or

out

Set up BH

mov
shr
neg
add
shl

dx,GC_INDEX
al,GC_ROTATE
dx,al

dx

al,dx
al,0e0h
al,cl

dx,al

as bit mask for left half, BL as rotation for right half.

bx,0ffffh
bh, ¢l

cl

cl,8
b1,¢1

Z] 63
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; Draw all characters, left portion first, then right portion in the
; succeeding byte, using the data rotation to position the character
; across the byte boundary and then using write mode 3 to combine the
; character data with the bit mask to allow the set/reset value (the
; character color) through only for the proper portion (where the

; font bits for the character are 1) of the character for each byte.
; Wherever the font bits for the character are 0, the background

; color is preserved.

; Does not check for case where character is byte-aligned and

; no rotation and only one write is required.

; Draw the left portion of each character in the string.

pop [33 ;get back screen width
push si
push di
push bx

; Set the bit mask for the left half of the character.

mov dx,GC_INDEX

mov al,GC_BIT_MASK

mov ah,bh

out dx,ax
LeftHalfLoop:

lodsb

and al,al

jz LeftHalfLoopDone

call CharacterUp

inc di ;point to next character location

Jjmp LeftHalfloop
LeftHalfLoopDone:

pop bx

pop di

pop si

; Draw the right portion of each character in the string.

inc di ;right portion of each character is across
: byte boundary

; Set the bit mask for the right half of the character.

mov dx,GC_INDEX

mov al,GC_BIT_MASK

mov ah,bl

out dx,ax
RightHalfloop:

lodsb

and al,al

jz RightHalfLoopDone

call CharacterUp

inc di ;point to next character location

Jjmp RightHalfLoop
RightHalflLoopDone:

pop ds

pop bp

pop di

pop si
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pop dx
pop cX
pop bx
pop ax
ret
DrawString endp

H

; Draw a character.

; Input:

;AL = character

;s CX = screen width

; ES:DI = address to draw character at

CharacterUp proc near

push cx
push si
push di
push ds

; Set DS:SI to point to font and ES to point to display memory.
1ds si,[FontPointer] ;point to font

; Calculate font address of character.

mov b1,14 ;14 bytes per character

mul b1

add si,ax ;offset in font segment of character

mov bp,FONT_CHARACTER_SIZE

dec cx ; -1 because one byte per char
CharacterLoop:

Todsb ;get character byte

mov ah,es:[di] ;1oad latches

stosb ;write character byte

; Point to next Tline of character in display memory.

add di,cx

dec bp

jnz Characterloop
pop ds

pop di

pop si

pop cX

ret

CharacterUp endp

; Set the pointer to the font to draw from to ES:BP.

SelectFont proc near
mov word ptr [FontPointer],bp ;save pointer
mov word ptr [FontPointer+2],es
ret

SelectFont endp

cseg ends

end start

2] 65
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In this chapter I've tried to give you a feel for how write mode 3 works and what it
might be used for, rather than providing polished, optimized, plug-it-in-and-go code.
Like the rest of the VGA’s write path, write mode 3 is a resource that can be used in a
remarkable variety of ways, and I don’t want to lock you into thinking of it as useful in
just one context. Instead, you should take the time to thoroughly understand what
write mode 3 does, and then, when you do VGA programming, think about how write
mode 3 can best be applied to the task at hand. Because I focused on illustrating the
operation of write mode 3, neither listing in this chapter is the fastest way to accom-
plish the desired result. For example, Listing 4.2 could be made nearly twice as fast by
simply having the CPU rotate, mask, and join the bytes from adjacent characters, then
draw the combined bytes to display memory in a single operation.

Similarly, Listing 4.1 is designed to illustrate write mode 3 and its interaction with
the rest of the VGA as a contrast to Listing 3.1 in Chapter 3, rather than for maximum
speed, and it could be made considerably more efficient. If we were going for perfor-
mance, we'd have the CPU not only rotate the bytes into position, but also do the
masking by ANDing in software. Even more significantly, we would have the CPU
combine adjacent characters into complete, rotated bytes whenever possible, so that
only one drawing operation would be required per byte of display memory modified.
By doing this, we would eliminate all per-character OUTs, and would minimize dis-
play memory accesses, approximately doubling text-drawing speed.

As a final note, consider that non-transparent text could also be accelerated with
write mode 3. The latches could be filled with the background (text box) color, set/
reset could be set to the foreground (text) color, and write mode 3 could then be used
to turn monochrome text bytes written by the CPU into characters on the screen with
just one write per byte. There are complications, such as drawing partial bytes, and
rotating the bytes to align the characters, which we'll revisit later on in Chapter 40,
while we're working through the details of the X-Sharp library. Nonetheless, the per-
formance benefit of this approach can be a speedup of as much as four times—all
thanks to the decidedly quirky but surprisingly powerful and flexible write mode 3.

A Note on Preserving Register Bits

If you take a quick look, you'll see that the code in Listing 4.1 uses the readable register
feature of the VGA to preserve reserved bits and bits other than those being modified.
Older adapters such as the CGA and EGA had few readable registers, so it was neces-
sary to set all bits in a register whenever that register was modified. Happily, all VGA
registers are readable, which makes it possible to change only those bits of immediate
interest, and, in general, I highly recommend doing exactly that, since IBM (or clone
manufacturers) may well someday use some of those reserved bits or change the mean-
ings of some of the bits that are currently in use.
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set/reset is to independently force any, none, or all planes to either of all ones or all
zeros on CPU writes. As we discussed in Chapter 3, this is a convenient way to force a
specific color to appear no matter what color the pixels being overwritten are. Set/reset
also allows the CPU to control the contents of some planes while the set/reset circuitry
controls the contents of other planes.

Write mode 2 is basically a set/reset-type mode with enable set/reset always on for
all planes and the set/reset data coming directly from the byte written by the CPU. Put
another way, the lower four bits written by the CPU are written across the four planes,
thereby becoming a color value. Put yet another way, bit 0 of the CPU byte is ex-
panded to a byte and sent to the plane 0 ALU (if bit 0 is 0, a 0 byte is the CPU-side
input to the plane 0 ALU, while if bit 0 is 1, a OFFH byte is the CPU-side input);
likewise, bit 1 of the CPU byte is expanded to a byte for plane 1, bit 2 is expanded for
plane 2, and bit 3 is expanded for plane 3.

It’s possible that you understand write mode 2 thoroughly at this point; nonetheless, I
suspect that some additional explanation of an admittedly non-obvious mode wouldn’t
hurt. Let’s follow the CPU byte through the VGA in write mode 2, step by step.

A Byte’s Progress in Write Mode 2

Figure 5.1 shows the write mode 2 data path. The CPU byte comes into the VGA and
is split into four separate bits, one for each plane. Bits 7-4 of the CPU byte vanish into
the bit bucket, never to be heard from again. Speculation long held that those 4 unused
bits indicated that IBM would someday come out with an 8-plane adapter that sup-
ported 256 colors. When IBM did finally come out with a 256-color mode (mode
13H of the VGA), it turned out not to be planar at all, and the upper nibble of the
CPU byte remains unused in write mode 2 to this day.

The bit of the CPU byte sent to each plane is expanded to a 0 or OFFH byte,
depending on whether the bit is 0 or 1, respectively. The byte for each plane then
becomes the CPU-side input to the respective plane’s ALU. From this point on, the
write mode 2 data path is identical to the write mode 0 data path. As discussed in
earlier articles, the latch byte for each plane is the other ALU input, and the ALU
either ANDs, ORs, or XORs the two bytes together or simply passes the CPU-side
byte through. The byte generated by each plane’s ALU then goes through the bit mask
circuitry, which selects on a bit-by-bit basis between the ALU byte and the latch byte.
Finally, the byte from the bit mask circuitry for each plane is written to that plane if the
corresponding bit in the Map Mask register is set to 1.

It’s worth noting two differences between write mode 2 and write
mode O, the standard write mode of the YGA. First, rotation of the
CPU data byte does not take place in write mode 2. Second, the
Set/Reset and Enable Set/Reset registers have no effect in write
mode 2.
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Figure 5.1 VGA Data Flow in Write Mode 2

Now that we understand the mechanics of write mode 2, we can step back and get
a feel for what it might be useful for. View bits 3-0 of the CPU byte as a single pixel in
one of sixteen colors. Next imagine that nibble turned sideways and written across the
four planes, one bit to a plane. Finally, expand each of the bits to a byte, as shown in
Figure 5.2, so that 8 pixels are drawn in the color selected by bits 3-0 of the CPU byte.
Within the constraints of the VGA’s data paths, that’s exactly what write mode 2 does.
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Figure 5.2 Bit-To-Byte Expansion in Write Mode 2

By “the constraints of the VGA’s data paths,” I mean the ALUs, the bit mask, and
the map mask. As Figure 5.1 indicates, the ALUs can modify the color written by the
CPU, the map mask can prevent the CPU from altering selected planes, and the bit
mask can prevent the CPU from altering selected bits of the byte written to. (Actually,
the bit mask simply substitutes latch bits for ALU bits, but since the latches are normally
loaded from the destination display memory byte, the net effect of the bit mask is usually to
preserve bits of the destination byte.) These are not really constraints at all, of course,
but rather features of the VGA; I simply want to make it clear that the use of write
mode 2 to set 8 pixels to a given color is a rather simple special case among the many
possible ways in which write mode 2 can be used to feed data into the VGA’s data path.

Write mode 2 is selected by setting bits 1 and 0 of the Graphics Mode register
(Graphics Controller register 5) to 1 and 0, respectively. Since VGA registers are read-
able, the correct way to select write mode 2 on the VGA is to read the Graphics Mode
register, mask off bits 1 and 0, OR in 00000010b (02H), and write the result back to
the Graphics Mode register, thereby leaving the other bits in the register undisturbed.

Copying Chunky Bitmaps to VGA Memory Using Write Mode 2

Let’s take a look at two examples of write mode 2 in action. Listing 5.1 presents a
program that uses write mode 2 to copy a graphics image in chunky format to the
VGA. In chunky format adjacent bits in a single byte make up each pixel: mode 4 of the
CGA, EGA, and VGA is a 2-bit-per-pixel chunky mode, and mode 13H of the VGA is
an 8-bit-per-pixel chunky mode. Chunky format is convenient, since all the information
about each pixel is contained in a single byte; consequently chunky format is often
used to store bitmaps in system memory.
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Unfortunately, VGA memory is organized as a planar rather than chunky bitmap in
modes 0DH through 12H, with the bits that make up each pixel spread across four
planes. The conversion from chunky to planar format in write mode 0 is quite a nui-
sance, requiring a good deal of bit manipulation. In write mode 2, however, the con-
version becomes a snap, as shown in Listing 5.1. Once the VGA is placed in write
mode 2, the lower four bits (the lower nibble) of the CPU byrte (a single 4-bit chunky
pixel) become eight planar pixels, all the same color. As discussed in Chapter 3, the bit
mask makes it possible to narrow the effect of the CPU write down to a single pixel.

Given the above, conversion of a chunky 4-bit-per-pixel bitmap to the VGA'’s planar
format in write mode 2 is trivial. First, the Bit Mask register is set to allow only the
VGA display memory bits corresponding to the leftmost chunky pixel of the two stored
in the first chunky bitmap byte to be modified. Next, the destination byte in display
memory is read in order to load the latches. Then a byte containing two chunky pixels
is read from the chunky bitmap in system memory, and the byte is rotated four bits to
the right to get the leftmost chunky pixel in position. This rotated byte is written to the
destination byte; since write mode 2 is active, each bit of the chunky pixel goes to its
respective plane, and since the Bit Mask register is set up to allow only one bit in each
plane to be modified, a single pixel in the color of the chunky pixel is written to VGA
memory.

The above process is then repeated for the rightmost chunky pixel, if necessary, and
repeated again for as many pixels as there are in the image.

LISTING 5.1 L5-1.ASM

; Program to illustrate one use of write mode 2 of the VGA and EGA by
; animating the image of an "A" drawn by copying it from a chunky

; bit-map in system memory to a planar bit-map in VGA or EGA memory.
; Assemble with MASM or TASM

; By Michael Abrash

Stack segment para stack 'STACK®

db 512 dup(0)
Stack ends
SCREEN_WIDTH_IN_BYTES equ 80
DISPLAY_MEMORY_SEGMENT equ 0a000h
SC_INDEX equ 3c4h ;Sequence Controller Index register
MAP_MASK equ 2 ;index of Map Mask register
GC_INDEX equ 03ceh ;Graphics Controller Index reg
GRAPHICS_MODE equ 5 ;index of Graphics Mode reg
BIT_MASK equ 8 ;index of Bit Mask reg

Data segment para common 'DATA'

; Current location of "A" as it is animated across the screen.

CurrentX dw ?
CurrentY dw ?
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RemainingLength dw ?

; Chunky bit-map image of a yellow "A™ on a bright blue background

Almage Tabel byte
dw 13, 13 ;width, height in pixels
db 000h, 000h, 000h, 000h, 0OOh, 000h, 000h
db 00%h, 099h, 099h, 099h, 099%h, 099h, 000h
db 009h, 099h, 099h, 099h, 099h, 099h, 000h
db 009h, 099h, 099h, 0e9h, 099h, 09%h, 000h
db 009h, 099h, 09eh, Oeeh, 099h, 099h, 000h
db 009h, 099h, Oeeh, 0%eh, 0e9h, 099h, 000h
db 009h, 09eh, 0e%h, 099h, Oeeh, 099h, 000h
db 009h, 09eh, Oeeh, Oeeh, Oeeh, 099h, 000h
db 009h, 09eh, 0e%h, 099h, Oeeh, 099h, 000h
db 009h, 09eh, 0e9h, 099h, Oeeh, 099h, 000h
db 009h, 099h, 099h, 099h, 099h, 099h, 000h
db 009h, 099h, 099h, 099h, 099h, 09%h, 000h
db 000h, 000h, 000h, 000h, 00OCh, 000h, 000h

Data ends

Code segment para public 'CODE'
assume cs:Code, ds:Data
Start proc near

mov ax,Data

mov ds,ax

mov ax,10h

int 10h ;select video mode 10h (640x350)

; Prepare for animation.

moy [CurrentX1,0
mov [CurrentY], 200
mov [RemainingLength],600 ;move 600 times

; Animate, repeating RemaininglLength times. It's unnecessary to erase
; the old image, since the one pixel of blank fringe around the image
; erases the part of the old image not overlapped by the new image.

AnimationLoop:

mov bx,[CurrentX]

mov cx,[CurrentY]

mov si,offset Almage

call DrawFromChunkyBitmap ;draw the "A" image

inc [CurrentX] ;move one pixel to the right

mov cx,0 ;delay so we don't move the
DelayLoop: ; image too fast; adjust as

; needed
Toop DelayLoop

dec [RemaininglLength]
jnz AnimationLloop
; Wait for a key before returning to text mode and ending.

mov ah,01h
int 21h
mov ax,03h
int 10h

mov ah,4ch
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int 21h
Start  endp
; Draw an image stored in a chunky-bit map into planar VGA/EGA memory
; at the specified location.

; Input:
H BX = X screen location at which to draw the upper left corner
: of the image

: CX = Y screen location at which to draw the upper left corner
H of the image

H DS:SI = pointer to chunky image to draw, as follows:

H word at 0: width of image, in pixels

H word at 2: height of image, in pixels

H byte at 4: msb/1sb = first & second chunky pixels,

3 repeating for the remainder of the scan line
H of the image, then for all scan lines. Images
; with odd widths have an unused null nibble

H padding each scan line out to a byte width

; AX, BX, CX, DX, SI, DI, ES destroyed.

DrawFromChunkyBitmap proc near
cld

; Select write mode 2.

mov dx,GC_INDEX

mov al,GRAPHICS_MODE
out dx,al

inc dx

mov al,02h

out dx.al

; Enable writes to all 4 planes.

mov dx,SC_INDEX
mov al,MAP_MASK
out dx,al

inc dx

mov al,ofh

out dx,al

; Point ES:DI to the display memory byte in which the first pixel
; of the image goes, with AH set up as the bit mask to access that
; pixel within the addressed byte.

mov ax,SCREEN_WIDTH_IN_BYTES

mul cX ;offset of start of top scan line
mov di,ax

mov cl,bl

and cl,111b

mov ah,80h ;set AH to the bit mask for the

shr ah,cl ; initial pixel

shr bx,1

shr bx,1

shr bx,1 ;X in bytes

add di,bx ;offset of upper Teft byte of image
mov bx,DISPLAY_MEMORY_SEGMENT

mov es,bx ;ES:DI points to the byte at which the

; upper left of the image goes
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; Get the width
mov
inc
inc
mov
inc
inc
mov
mov
out
inc

RowLoop:

push
push
push

ColumnLoop:
mov
out
mov
mov
shr
shr
shr
shr
stosb
ror
jc
dec

CheckMorePixels:
dec
jz
mov
out
mov
Todsb

stosb
ror
jc
dec

and height of the image.

cx,[si] ;get the width

si

si

bx,[si] ;get the height

si

si

dx,GC_INDEX

al,BIT_MASK

dx,al ;leave the GC Index register pointing
dx ; to the Bit Mask register

ax ;preserve the left column's bit mask
cx ;preserve the width
di ;preserve the destination offset

al,ah

dx,al ;set the bit mask to draw this pixel

al,es:[di] ;1oad the Tatches

al,[si] ;get the next two chunky pixels

al,1

al,l

al,l1

al,1 ;move the first pixel into the Isb
;draw the first pixel

ah,1 ;move mask to next pixel position

CheckMorePixels ;:is next pixel in the adjacent byte?
di ino

cX ;see if there are any more pixels
AdvanceToNextScanLine ; across in image

al,ah

dx,al ;set the bit mask to draw this pixel
al,es:[di] ;load the latches

;get the same two chunky pixels again
; and advance pointer to the next

; two pixels

;draw the second of the two pixels

ah,1 ;move mask to next pixel position
CheckMorePixels2 ;is next pixel in the adjacent byte?
di ;no

CheckMorePixels2:

loop

Jmp

ColumnLoop ;see if there are any more pixels
; across in the image
short CheckMoreScanLines

AdvanceToNextScanLine:

inc

si ;advance to the start of the next
; scan line in the image

CheckMoreScanLines:

pop
pop
pop

di ;get back the destination offset
cX ;get back the width
ax ;get back the left column's bit mask
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add di,SCREEN_WIDTH_IN_BYTES
;point to the start of the next scan
; 1Tine of the image

dec bx ;see if there are any more scan lines
jnz RowLoop ; in the image
ret

DrawFromChunkyBitmap endp
Code ends
end Start

“That’s an interesting application of write mode 2,” you may well say, “but is it
really useful?” While the ability to convert chunky bitmaps into VGA bitmaps does
have its uses, Listing 5.1 is primarily intended to illustrate the mechanics of write
mode 2.

For performance, it's best to store 16-color bitmaps in pre-separated
four-plane format in system memory, and copy one plane at a time
to the screen. Ideally, such bitmaps should be copied one scan line at a
time, with all four planes completed for one scan line before moving
on to the next. | say this because when entire images are copied one
plane at a time, nasty transient color effects can occur as one plane
becomes visibly changed before other planes have been modified.

Drawing Color-Patterned Lines Using Write Mode 2

A more serviceable use of write mode 2 is shown in the program presented in Listing 5.2.
The program draws multicolored horizontal, vertical, and diagonal lines, basing the
color patterns on passed color tables. Write mode 2 is ideal because in this application
color can vary from one pixel to the next, and in write mode 2 all that’s required to set
pixel color is a change of the lower nibble of the byte written by the CPU. Set/reset
could be used to achieve the same result, but an index/data pair of OUT's would be
required to set the Set/Reset register to each new color. Similarly, the Map Mask regis-
ter could be used in write mode 0 to set pixel color, but in this case not only would an
index/data pair of OUT' be required but there would also be no guarantee that data
already in display memory wouldn't interfere with the color of the pixel being drawn,
since the Map Mask register allows only selected planes to be drawn to.

Listing 5.2 is hardly a comprehensive line drawing program. It draws only a few
special line cases, and although it is reasonably fast, it is far from the fastest possible
code to handle those cases, because it goes through a dot-plot routine and because it
draws horizontal lines a pixel rather than a byte at a time. Write mode 2 would, how-
ever, serve just as well in a full-blown line drawing routine. For any type of patterned
line drawing on the VGA, the basic approach remains the same: Use the bit mask to
select the pixel (or pixels) to be altered and use the CPU byte in write mode 2 to select
the color in which to draw.
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LISTING 5.2 L5-2.ASM

Program to illustrate one use of write mode 2 of the VGA and EGA by

B

drawing lines

Assemble with

Stack  segment

in color patterns.

MASM or TASM

; By Michael Abrash

para stack °'STACK’

db 512 dup(0)
Stack ends
SCREEN_WIDTH_IN_BYTES equ 80
GRAPHICS_SEGMENT equ 0a000h ;mode 10 bit-map segment
SC_INDEX equ 3c4h ;Sequence Controller Index register
MAP_MASK equ 2 ;index of Map Mask register
GC_INDEX equ 03ceh ;Graphics Controller Index reg
GRAPHICS_MODE equ 5 ;index of Graphics Mode reg
BIT_MASK equ 8 ;index of Bit Mask reg
Data segment para common 'DATA’
Pattern0 db 16
db 0,1, 2,3, 4,5,6,7,8
db 9, 10, 11, 12, 13, 14, 15
Patternl db 6
db 2, 2, 2, 10, 10, 10
Pattern2 db 8
db 15, 15, 15, 0, 0, 15, 0, O
Pattern3 db 9
db 1, 1,1, 2, 2, 2, 4, 4, 4
Data ends

Code segment

assume

Start proc

mov
mov
mov
int

Draw 8 radial

mov
mov
mov
call

Draw 8 radial

mov
mov
mov
call

Draw 8 radial

mov
mov
mov
call

para pubtlic 'CODE"

cs:Code, ds:Data

near

ax,Data

ds,ax

ax,10h

10h ;select video mode 10h (640x350)

lines in upper left quadrant in pattern O.

bx,0

cx,0

si,offset Pattern0
QuadrantUp

lines in upper right quadrant in pattern 1.

bx,320

cx,0

si,offset Patternl
QuadrantUp

lines in lower left quadrant in pattern 2.

bx,0

cx,175

si,offset Pattern2
QuadrantUp
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; Draw 8 radial Tines in lower right quadrant in pattern 3.

mov bx, 320
mov cx,175
mov si,offset Pattern3

call QuadrantUp

; Wait for a key before returning to text mode and ending.

mov ah,01h
int 21h
mov ax,03h
int 10h
mov ah,4ch
int 21h

; Draws 8 radial lines with specified pattern in specified mode 10h
; quadrant.

; Input:

H BX = X coordinate of upper left corner of quadrant

H CX = Y coordinate of upper left corner of quadrant

H SI = pointer to pattern, in following form:

H Byte 0: Length of pattern

H Byte 1: Start of pattern, one color per byte

; AX, BX, CX, DX destroyed

QuadrantUp proc near

add bx,160

add cx,87 ;point to the center of the quadrant
mov ax,0

mov dx,160

call LineUp ;draw horizontal line to right edge
mov ax,1

mov dx,88

call LineUp ;draw diagonal Tine to upper right
mov ax,2

mov dx, 88

call LineUp ;draw vertical line to top edge

mov ax,3

mov dx,88

call LineUp ;draw diagonal line to upper left
mov ax,4

mov dx,161

call LineUp ;draw horizontal line to left edge
mov ax,b

mov dx,88

call LineUp ;draw diagonal 1ine to lower left
mov ax,6

mov dx, 88

call LineUp ;draw vertical Tine to bottom edge
mov ax,7

mov dx,88

call LineUp ;draw diagonal line to bottom right
ret

QuadrantUp endp

; Draws a horizontal, vertical, or diagonal line (one of the eight
; possible radial lines) of the specified length from the specified
; starting point.
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; Input:

H AX = l1ine direction, as follows:

H 3 2 1

H 4 * 0

H 5 6 7

H BX = X coordinate of starting point

H CX =Y coordinate of starting point
H Tength of line (number of pixels drawn)

(=}
>
I

; A11 registers preserved.

; Table of vectors to routines for each of the 8 possible lines.

LineUpVectors Tabel word
dw LineUp0, LineUpl, LineUp2, LineUp3
dw LineUp4, LineUp5, LineUp6, LineUp7

; Macro to draw horizontal, vertical, or diagonal line.

; Input:

H XParm = 1 to draw right, -1 to draw left, 0 to not move horz.
H YParm = 1 to draw up, -1 to draw down, 0 to not move vert.

H BX = X start location

H CX = Y start location
H DX = number of pixels to draw
H DS:SI = line pattern

MLineUp macro  XParm, YParm
local LineUpLoop, CheckMoreline

mov di,si ;set aside start offset of pattern
Todsb ;get length of pattern
mov ah,al
LineUpLoop:
lodsb ;get color of this pixel...

call DotUpInColor ;...and draw it
if XParm EQ 1

ing bx
endif
if XParm EQ -1
dec bx
endif
if YParm EQ 1
inc cx
endif
if YParm EQ -1
dec cXx
endif
dec ah ;at end of pattern?
Jjnz CheckMorelLine
mov si,di ;get back start of pattern
Todsb
mov ah,al ;reset pattern count
CheckMoreLine:
dec dx
jnz LineUpLoop
Jjmp LineUpEnd

endm
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LineUp proc near
push ax
push bx
push cX
push dx
push si
push di
push es
mov di,ax
mov ax,GRAPHICS_SEGMENT
mov es,ax
push dx ;save line length

H

; Enable writes to all planes.

mov dx,SC_INDEX
mov al,MAP_MASK
out dx,al

inc dx

mov al,0fh

out dx,al

; Select write mode 2.

mov dx,GC_INDEX

mov al,GRAPHICS_MODE
out dx,al

inc dx

mov al,02h

out dx,al

; Vector to proper routine.

pop dx ;get back line length
shl di,1
jmp cs:[LineUpVectors+di]

; Horizontal line to right.

LineUp0:
MLineUp 1, O

; Diagonal line to upper right.

LineUpl:
MLinetp 1, -1

; Vertical line to top.

LineUp2:
MLineUp 0, -1

; Diagonal line to upper left.

LineUp3:
MLineUp -1, -1
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; Horizontal line to left.

LineUp4:
MLineUp

; Diagonal line

LineUp5:
MLineUp

; Vertical line

LineUp6:
MLineUp

; Diagonal line

LineUp7:
MLineUp

LineUpEnd:
pop
pop
pop
pop
pop
pop
pop
ret

LineUp endp

-1, 0

to bottom left.

-1, 1

to bottom.

0,1

to bottom right.

1,1

es
di
si
dx
[
bx
ax

; Draws a dot in the specified color at the specified location.
; Assumes that the VGA is in write mode 2 with writes to all planes
; enabled and that ES points to display memory.

; Input:
: AL = dot color
H BX = X coordinate of dot
H CX = Y coordinate of dot
H ES = display memory segment
; A1l registers preserved.
DotUpInColor proc near

push bx

push cX

push dx

push di

; Point ES:DI to the display memory byte in which the pixel goes, with
; the bit mask set up to access that pixel within the addr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>