INTERNATIONAL EDITION

THE 80x86 IBM PC AND
CompATIBLE COMPUTERS
(VoLumes | & i)

ASSEMBLY LANGUAGE,

DESIGN, AND INTERFACING
4th Edition

\\ \ \

Y\
‘&

Muhammad Ali Mazidi
Janice Gillispie Mazidi

To view the website that accompanies this text,
please go to htip://www.prenhall.com/mazidi

THE 80x86 IBM PC AND CoMPATIBLE COMPUTERS
(VoLumes | & 1)

AsSEMBLY LANGUAGE, DESIGN, AND INTERFACING

Muhammad Ali Mazidi
Janice Gillispie Mazidi

Praised by experts for its clarity and topical breadth, this visually appealing text provides
an easy-to-understand, systematic approach to teaching the fundamentals of 80x86
assembly language programming and PC architecture. It offers readers a fun, hands-on
learning experience and reinforces concepts with numerous examples and review
questions. It uses the Debug utility to show what action the instruction performs, and then
provides a sample program to show its application. The text delves into architecture,
supporting chips, buses, interfacing techniques, system programming, hard disk
characteristics, and more.

The fourth edition:

* Covers all the 80x86 microprocessors from the 8088 to the Pentium Pro.

* Combines assembly and C programming, and covers C programming in
the last section of each chapter.

* Introduces the 80x86 instructions with examples of how they are used.
* Ensures a basic understanding of binary and hex numbering systems.

* Discusses and analyzes hardware differences among 8086, 286, 386,
486, Pentium, and Pentium Pro chips.

* Discusses 8-bit, 16-bit, and 32-bit interfacing of 80x86 microprocessors.

* Shows a real-world approach to PC system programming by using
fragments of programs from the IBM PC technical reference.

» Provides an overview of the USB bus.

This is a special international edition of an established title
widely used by colleges and universities throughout the world.
Pearson Education International published this special edition for ISBN 0-13-121975-8

the benefit of students outside the United States and Canada. 20000
If you purchased this book within the United States or Canada PPaI'SOrl_

you should be aware that it has been wrongfully imported without Education

the approval of the Publisher or the Author.

9iI7801311219755

Pearson International Edition

Not for Sale in the U.S.A. or Canada

THE 80x86 IBM PC
AND COMPATIBLE COMPUTERS

VOLUMES I & 11

Assembly Language, Design, and Interfacing

Fourth Edition

THE 80x86 IBM PC
AND COMPATIBLE COMPUTERS

VOLUMESI & 11

Assembly Language, Design, and Interfacing

Fourth Edition

Muhammad Ali Mazidi
Janice Gillispie Mazidi

PEARSON

M

" Prentice
Hall

Pearson Education International

If you purchased this book within the United States or Canada you should be aware that it has been
wrongfully imported without the approval of the Publisher or the Author,

Editor in Chief: Stephen Helba

Assistant Vice President and Publisher: Charles E. Stewart, Jr,
Production Editor: Alexandrina Benedicto Wolf

Design Coordinator: Diane Emsberger

Cover Designer: Jeff Vanik

Cover image: Digital Images

Production Manager: Matthew Ottenweller

Marketing Manager: Ben Leonard

This book was set in Times Roman by Janice Mazidi. It was printed and bound by Courier/Kendallville.
The cover was printed by Phoenix Color Corp.

Pearson Education LTD.

Pearson Education Australia PTY, Limited

Pearson Education Singapore, Pte, Lid

Pearson Education North Asia Lid

Pearson Education Canada, Ltd.

Pearson Educacidn de Mexico, S.A. de C.V.
Pearson Education -- Japan

Pearson Education Malaysia, Pte. Ltd

Pearson Education, Upper Saddle River, New Jersey

Earlier edition © 1995 by Muhammad Ali Mazidi and Janice Gillispie Mazidi

Copyright © 2003, 2000, 1998 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458,
All rights reserved. Printed in the United States of America. This publication is protected by Copyright
and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise, For information regarding permission(s), write to: Rights and Permissions
Department.

PEARSON

Prentice
Hall 1098765432
ISBN 0-13-121975-8

Regard man as a mine

rich in gems of inestimable value.
Education can, alone,

cause it to reveal its treasures,
and enable mankind

to benefit therefrom.

Baha'u'llah

DEDICATIONS

This book is dedicated to the memory of Muhammad Ali's parents, who
raised 10 children and persevered through more than 50 years of hardship
together with dignity and faith.

We feel especially blessed to have the support, love, and encouragement
of Janice's parents whose kindness, wisdom, and sense of humor have
been the bond that has welded us into a family.

In addition, we must also mention our two most important collaborations: our
sons Robert Nabil and Michael Jamal who have taught us the meaning

of love and patience.

We would also like to honor the memory of a dear friend, Kamran Lotfi.

CONTENTS AT A GLANCE

Assembly Language Programming on the IBM PC, PS, and Compatibles

INTRODUCTION TO COMPUTING, 1

THE 80x86 MICROPROCESSOR, 18

ASSEMBLY LANGUAGE PROGRAMMING, 49

ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMS, 82
BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C, 121
MACROS AND THE MOUSE, 150

SIGNED NUMBERS, STRINGS, AND TABLES, 173

MODULES: MODULAR AND C PROGRAMMING, 193

32-BIT PROGRAMMING FOR 386 AND 486 MACHINES, 220

0~ PEwWwhN O

Design and Interfacing of the IBM PC, PS, and Compatibles

9 8088, 80286 MICROPROCESSOR AND ISA BUS, 235

10 MEMORY AND MEMORY INTERFACING, 265

11 /O AND THE 8255; ISA BUS INTERFACING, 309

12 INTERFACING TO THE PC: LCD, MOTOR, ADC, AND SENSOR, 351
13 8253/54 TIMER AND MUSIC, 386

14 INTERRUPTS AND THE 8259 CHIP, 410

15 DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP, 447

16 VIDEO AND VIDEO ADAPTERS, 477

17 SERIAL DATA COMMUNICATION AND THE 16450/8250/51 CHIPS, 508
18 KEYBOARD AND PRINTER INTERFACING, 541

19 FLOPPY DISKS, HARD DISKS, AND FILES, 570

20 THE 80x87 MATH COPROCESSOR, 600

21 386 MICROPROCESSOR: REAL VERSUS PROTECTED MODE, 631
22 HIGH-SPEED MEMORY INTERFACING AND CACHE, 659

23 486, PENTIUM, PENTIUM PRO AND MMX, 690

24 MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS, 724

25 MS DOS MEMORY MANAGEMENT, 740

26 IC TECHNOLOGY AND SYSTEM DESIGN, 759

27 ISA, PCI, AND USB BUSES, 784

28 PROGRAMMING DOS, BIOS, & HARDWARE WITH C/C++, 808

APPENDICES

DEBUG PROGRAMMING, 825

80x86 INSTRUCTIONS AND TIMING, 847
ASSEMBLER DIRECTIVES AND NAMING RULES, 883
DOS INTERRUPT 21H AND 33H LISTING, 898

BIOS INTERRUPTS, 924

ASCII CODES, 940

I/O ADDRESS MAPS, 941

IBM PC/PS BIOS DATA AREA, 952

DATA SHEETS, 959

TIGTMMOoOOm>

vii

CONTENTS

PREFACE TO VOLUMES I AND i

CHAPTER 0: INTRODUCTION TO COMPUTING 1

SECTION 0.1: NUMBERING AND CODING SYSTEMS
Decimal and binary number systems 2
Converting from decimal to binary 2
Converting from binary to decimal 2
Hexadecimal system 3
Converting between binary and hex 4
Converting from decimal to hex 4
Converting from hex to decimal 4
Counting in base 10, 2, and 16 6
Addition of binary and hex numbers 6
2's complement 6
Addition and subtraction of hex numbers 7
Addition of hex numbers 7
Subtraction of hex numbers 7
ASCH code 8

SECTION 0.2: INSIDE THE COMPUTER 9
Some important terminology 9
Internal organization of computers 9
More about the data bus 10
More about the address bus 10
CPU and its relation to RAM and ROM 11
Inside CPUs 11
Internal working of computers 12

SECTION 0.3: BRIEF HISTORY OF THE CPU i3
CISC vs. RISC 14

CHAPTER 1: THE 80x86 MICROPROCESSOR 18

SECTION 1.1: BRIEF HISTORY OF THE 80x86 FAMILY
Evolution from 8080/8085 to 8086 19
Evolution from 8086 to 8088 19
Success of the 8088 19
Other microprocessors: the 80286, 80386, and 80486

SECTION 1.2: INSIDE THE 8088/8086 21
Pipelining 21
Registers 22

SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING
Assembly language programming 24
MOV instruction 24
ADD instruction 25

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS
Origin and definition of the segment 27
Logical address and physical address 27
Code segment 27
Logical address vs. physical address in the code segment
Data segment 29
Logical address and physical address in the data segment
Little endian convention 31
Extra segment (ES) 32
Memory map of the IBM PC 32
More about RAM 32
Video RAM 33
More about ROM 33
Function of BIOS ROM 33

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86 33
What is a stack, and why is it needed? 33
How stacks are accessed 34
Pushing onto the stack 34
Popping the stack 34
Logical address vs. physical address for the stack 35
A few more words about segments in the 80x86 36
Overlapping 36
Flag register 37
Bits of the flag register 38
Flag register and ADD instruction 38
Use of the zero flag for looping 40

SECTION 1.6: 80x86 ADDRESSING MODES 41
Register addressing mode 41
Immediate addressing mode 41
Direct addressing mode 42
Register indirect addressing mode 42
Based relative addressing mode 43
Indexed relative addressing mode 43
Based indexed addressing mode 44
Segment overrides 44

26

28

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING 49

SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAM 50

Segments of a program 50
Stack segment definition 51
Data segment definition 51

Code segment definition 52

SECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAM 54
.asm and .obj files 55
st file 55
PAGE and TITLE directives 56
crf file 56
LINKing the program 57
.map file 57

SECTION 2.3: MORE SAMPLE PROGRAMS 57
Analysis of Program 2-1 58
Various approaches to Program 2-1 60
Analysis of Program 2-2 62
Analysis of Program 2-3 62
Stack segment definition revisited 62

SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS 64
FAR and NEAR 64
Conditional jumps 64
Short jumps 64
Unconditional jumps 66
CALL statements 66
Assembly language subroutines 67
Rules for names in Assembly language 67

SECTION 2.5: DATA TYPES AND DATA DEFINITION 69
80x86 data types 69
Assembler data directives 69
ORG (origin) 69
DB (define byte) 69
DUP (duplicate) 70
DW (define word) 70
EQU (equate) 71
DD (define doubleword) 71
DQ (define quadword) 72
DT (define ten bytes) 72

SECTION 2.6: SIMPLIFIED SEGMENT DEFINITION 73
Memory model 74
Segment definition 74

SECTION 2.7: EXE VS. COM FILES 76

Why COM files? 76
Converting from EXE to COM 77

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMS §2

SECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION 83

Addition of unsigned numbers 83

CASE 1: Addition of individual byte and word data 83
Analysis of Program 3-1a 84

CASE 2: Addition of multiword numbers 85
Analysis of Program 3-2 86

Subtraction of unsigned numbers 87

SBB (subtract with borrow) 88

SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION 88

Multiplication of unsigned numbers 88
Division of unsigned numbers 90

SECTION 3.3: LOGIC INSTRUCTIONS AND SAMPLE PROGRAMS 93

AND 93
OR 93
XOR 94
SHIFT 95

COMPARE of unsigned numbers 9%
IBM BIOS method of converting from lowercase to uppercase 99
BIOS examples of logic instructions 100

SECTION 3.4 BCD AND ASCII OPERANDS AND INSTRUCTIONS 101

BCD number system 101

Unpacked BCD 102

Packed BCD 102

ASCII numbers 102

ASCII to BCD conversion 102

ASCII to unpacked BCD conversion 102
ASCH to packed BCD conversion 103
Packed BCD to ASCII conversion 104
BCD addition and subtraction 104

BCD addition and correction 104
DAA 105

Summary of DAA action 105

BCD subtraction and correction 105

Summary of DAS action 107

ASCI! addition and subtraction 109

Unpacked BCD multiplication and division 110
AAM 110

AAD 110

xii

SECTION 3.5: ROTATE INSTRUCTIONS 111
Rotating the bits of an operand right and left 111
ROR rotate right 111
ROL rotate left 112
RCR rotate right through carry 113
RCL rotate left through carry 113

SECTION 3.6: BITWISE OPERATION IN THE C LANGUAGE 114
Bitwise operators in C 114
Bitwise shift operators in C 115
Packed BCD-to-ASCII conversionin C 116
Testing bits in C 116

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C 121}

SECTION 4.1: BIOS INT 10H PROGRAMMING 122
Monitor screen in text mode 122
Clearing the screen using INT 10H function 06H 123
INT 10H function 02: setting the cursor to a specific location 123

INT 10H function 03: get current cursor position 124
Changing the video mode 124

Attribute byte in monochrome monitors 125

Attribute byte in CGA text mode 125

Graphics: pixel resolution and color 127

INT 10H and pixel programming 128

Drawing horizontal or vertical lines in graphics mode 128

Changing the background color 129

SECTION 4.2: DOS INTERRUPT 21H 130
INT 21H option (9: outputting a string to the monitor 130
INT 21H option 02: outputting a character to the monitor 130
INT 21H option O1: inputting a character, with echo 130
INT 21H option 0AH: inputting a string from the keyboard 131

Inputting more than the buffer size 132

Use of carriage return and line feed 134

INT 21H option 07: keyboard input without echo 135
Using the LABEL directive to define a string buffer 136

SECTION 4.3: INT 16H KEYBOARD PROGRAMMING 139
Checking a key press 139
Which key is pressed? 139

SECTION 4.4: INTERRUPT PROGRAMMING WITH C 141}

Programming BIOS interrupts with C/C++ 141
Programming INT 21H DOS functions calls with C/C++ 143
Accessing segment registers 144

Accessing the carry flag in int86 and intdos functions 144

Mixing C with Assembly and checking ZF 145
C function kbhit vs. INT 16H keyboard input 146

xiii

CHAPTER 5: MACROS AND THE MOUSE 150

SECTION 5.1: WHAT IS A MACRO AND HOW IS IT USED? 151

MACROQO definition 151

Comments in a macro 152
Analysis of Program 5-1 154
LOCAL directive and its use in macros 155

INCLUDE directive 158

SECTION 5.2: MOUSE PROGRAMMING WITHINT 33H 161

INT 33H 161

Detecting the presence of a mouse 161

Some mouse terminology 162

Displaying and hiding the mouse cursor 162

Video resolution vs. mouse resolution in text mode 163
Video resolution vs. mouse resolution in graphics mode 163
Getting the current mouse cursor position (AX=03) 163
Setting the mouse pointer position (AX=04) 166

Getting mouse button press information (AX=05) 166
Monitoring and displaying the button press count program 167
Getting mouse button release information (AX=06) 168
Setting horizontal boundary for mouse pointer (AX=07) 168
Setting vertical boundary for mouse pointer (AX=08) 168
Setting an exclusion area for the mouse pointer (AX=10) 169
Getting mouse driver information (version) (AX=24H) 169

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES 173

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS 174

Concept of signed numbers in computers 174
Signed byte operands 174

Positive numbers 174

Negative numbers 174

Word-sized signed numbers 175

Overflow problem in signed number operations 176
When the overflow flag is set in 8-bit operations 176
Overflow flag in 16-bit operations 177

Avoiding erroneous results in signed number operations 178
IDIV (Signed number division) 179

IMUL (Signed number multiplication) 180
Arithmetic shift 182

SAR (shift arithmetic right) 182
SAL (shift arithmetic left) and SHL (shtft left) 182
Signed number comparison 182

Xiv

SECTION 6.2: STRING AND TABLE OPERATIONS

184

Use of SI and DI, DS and ES in string instructions

Byte and word operands in string instructions
DF, the direction flag 185

REP prefix 186

STOS and LODS instructions 186
Testing memory using STOSB and LODSB
The REPZ and REPNZ prefixes 187
SCAS (scan string) 189

Replacing the scanned character 189
XLAT instruction and look-up tables 190
Code conversion using XLAT 190

SECTION 7.1: WRITING AND LINKING MODULES
Why modules? 194
Writing modules 194
EXTRN directive 194
PUBLIC directive 194
END directive in modules 195

185

185

187

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

Linking modules together into one executable unit

SEGMENT directive 198

Complete stack segment definition 198
Complete data and code segment definitions
Analysis of Program 7-2 link map 200

Modular programming and the new segment definition

SECTION 7.2: SOME VERY USEFUL MODULES
Binary (hex)-to-ASCII conversion 203
ASCIHI (decimal)-to-binary (hex) conversion
Binary-to-ASCII module 205
ASCII-to-binary module 207
Calling module 207

198

203

193

194

196

204

SECTION 7.3: PASSING PARAMETERS AMONG MODULES

Passing parameters via registers 208
Passing parameters via memory 208
Passing parameters via the stack 208

201

208

SECTION 7.4: COMBINING ASSEMBLY LLANGUAGE AND C 210

Why C? 210

Inserting 80x86 assembly code into C programs
C programs that call Assembly procedures

C calling convention 213

How parameters are returned to C 214
New assemblers and linking with C 215
Passing array addresses from C to the stack
Linking assembly language routines with C

212

216
217

211

XV

CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES 220

SECTION 8.1: 80386/80486 MACHINES IN REAL MODE 221
General registers are pointers in 386/486 222

386/486 maximum memory range in real mode: 1M 224
Accessing 32-bit registers with commonly used assemblers 224
Little endian revisited 226

SECTION 8.2: SOME SIMPLE 386/486 PROGRAMS 226
Adding 16-bit words using 32-bit registers 226
Adding multiword data in 386/486 machines 228
Multiplying a 32-bit operand by a 16-bit operand 229
32-bit by 16-bit multiplication using 8086/286 registers 229

SECTION 8.3: 80x86 PERFORMANCE COMPARISON 231
Running an 8086 program across the 80x86 family 231

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS 235

SECTION 9.1: 8088 MICROPROCESSOR 236
Microprocessor buses 236
Data bus in 8088 236
Address bus in 8088 238

3088 control bus 238
Bus timing of 8088 239
Other 8088 pins 240
SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS 242

8288 bus controller 242
Input signals 242

Qutput signals 243

8284 clock generator 244
Input pins 244

Output signals 245

SECTION 9.3: 8-BIT SECTION OF ISA BUS 248
A bit of bus history 246

Local bus vs. system bus 247
Address bus 247
Data bus 248

Control bus 249

One bus, two masters 249

AEN signal generation 249
Control of the bus by DMA 250
Bus boosting 250

8-bit section of the ISA bus 250

xvi

SECTION 9.4: 80286 MICROPROCESSOR 251
Pin descriptions 252

SECTION 9.5: 16-BIT ISA BUS 255
Exploring ISA bus signals 255
Address bus 256
Data bus 256
Memory and 1/O control signals 256
Other control signals 258
ODD and EVEN bytes and BHE 259
A20 gate and the case of high memory area (HMA) 260

CHAPTER 10: MEMORY AND MEMORY INTERFACING 265

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS 266
Memory capacity 266
Memory organization 266
Speed 267
ROM (read-only memory) 267
PROM (programmable ROM) or OTP ROM 268
EPROM (erasable programmable ROM) 268
EEPROM (electrically erasable programmable ROM) 269
Flash memory 270
Mask ROM 271
RAM (random access memory) 271
SRAM (static RAM) 271
DRAM (dynamic RAM) 273
Packaging issue in DRAM 273
DRAM, SRAM and ROM organizations 275
NV-RAM (nonvolatile RAM) 276

SECTION 10.2: MEMORY ADDRESS DECODING 276
Simple logic gate as address decoder 278
Using the 741.S138 as decoder 279

SECTION 10.3: IBM PC MEMORY MAP 280
Conventional memory: 640K of RAM 28I
BIOS data area 282
Video display RAM (VDR) map 282
ROM address and cold boot on the PC 283

SECTION 10.4: DATA INTEGRITY IN RAM AND ROM 284
Checksum byte 284
Checksum program 286
Use of parity bit in DRAM error detection 286
DRAM memory banks 286
Parity bit generator/checker in the IBM PC 288
748280 parity bit generator and checker 288

xvii

SECTION 10.5: 16-BIT MEMORY INTERFACING 289
ODD and EVEN banks 289
Memory cycle time and inserting wait states 291
Accessing EVEN and ODD words 292
Bus bandwidth 293

SECTION 10.6: ISA BUS MEMORY INTERFACING 295
Address bus signals 295
Memory control signals 295
ISA bus timing for memory 299
8-bit memory timing for ISA bus 299
ROM duplicate and x86 PC memory map 301
Shadow RAM 302
DIMM and SIMM memory modules 302

CHAPTER 11: I/O AND THE 8255; ISA BUS INTERFACING 309

SECTION 11.1: 8088 INPUT/OQUTPUT INSTRUCTIONS 310
8-bit data ports 310
How to use I/O instructions 311

SECTION 10.2: I/O ADDRESS DECODING AND DESIGN 312
Using the 74LS373 in an output port design 312
IN port design using the 74LS244 312
Memory map YO 314

SECTION 11.3: YO ADDRESS MAP OF X86 PCS 316
Absolute vs. linear select address decoding 316
Prototype addresses 300 - 31FH in the x86 PC 316
Use of simple logic gates as address decoders 316
Use of 74LS138 as decoder 318
IBM PC /O address decoder 318
Use of the 8255 in the IBM PC/XT 341
Port 61H and time delay generation 319

SECTION 11i.4: 8255 PPI CHIP 320
Mode selection of the 8255A 321

SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER 325
PC I/O Bus Extender 325
Buffering 300 - 31F address range 326
Installing the PC Bus Extender and booting the PC 327
Failure to boot 327
PC Interface Trainer 327
Design of the PC Trainer 328
The role of HI and H2 328
Connecting the Module Trainer to the PC and testing 328
Testing the 8255 port 329
Testing Port A 330

xviii

SECTION 11.6: YO PROGRAMMING WITH C/C++ AND VB 332

Visual C/C++ I/O programming 332
Visual C++ output example 332
Visual C++ input example 332

I/0 programming in Turbo C/C++ 334
I/0 programming in Linux C/C++ 335
Linux C/C++ program with I/0 functions 335

SECTION 11.7: 8-BIT AND 16-BIT YO TIMING IN ISA BUS 338

8-bit and 16-bit /O in ISA bus 338

[/0 signals of the ISA bus 339

8-bit timing and operation in ISA bus 34!

16-bit /O operation and timing in ISA bus 342
16-bit data ports instruction 342

16-bit I/O timing and operation via ISA bus 342
170 bus bandwidth for ISA 343

Interfacing 8-bit peripherals to a 16-bit data bus 344

CHAPTER 12: INTERFACING TO THE PC: LCD, MOTOR, ADC, AND

SENSOR

351

SECTION 12.1: INTERFACING AN LCD TO THE PC 352

LCD operation 352

LCD pin descriptions 352

Sending commands to LCDs 353

Sending data to the LCD 355

Checking LCD busy flag 356

LCD cursor position 357

LCD programming in Visual C/C++ 358
LCD timing and data sheet 358

SECTION 12.2: INTERFACING A STEPPER MOTOR TO A PC 362

Stepper motors 362

Step angle 363

Stepper motor connection and programming 364

Steps per second and RPM relation 365

The four-step sequence and number of teeth on rotor 365
Motor speed 366

Holding torque 366

Wave drive 4-slep sequence 367

SECTION 12.3: INTERFACING DACTO APC 368

Digital-to-analog (DAC) converter 368

MC1408 DAC (or DAC 808) 369

Converting IOUT to voltage in 1408 DAC 369
Generating a sine wave 369

Xix

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC 373
ADC devices 373
ADC 804 chip 373
Selecting an input channel 376
ADC(0848 connection to 8255 377
interfacing a temperature sensor to a PC 378
[LM34 and LM35 temperature sensors 378
Signal conditioning and interfacing the LM35to a PC 379

CHAPTER 13: 8253/54 TIMER AND MUSIC 386

SECTION 13.1: 8253/54 TIMER DESCRIPTION AND INITIALIZATION 387
Initialization of the 8253/54 388
Control word 388

SECTION 13.2: IBM PC 8253/54 TIMER CONNECTIONS AND
PROGRAMMING 391

Using counter 0 392

Using counter | 393

Using counter 2 393

Use of timer 2 by the speaker 394

Turning on the speaker via PB0 and PB1 of port 61H 394

Time delay for 80x86 PCs 394

Creating time delays in 8088/86-based computers 395

Time delays in 80x86 IBM PC for 286 and higher processors 395

SECTION 13.3: GENERATING MUSIC ON THE IBM PC 397
Playing "Happy Birthday" on the PC 399

SECTION 13.4: SHAPE of 8253/54 OUTPUTS 401
OUTY pulse shape in IBM BIOS 401
OUT]1 pulse shape in IBM BIOS 402
OUT2 pulse shape in IBM BIOS 402
8253/54 modes of operation 402
Testing the 8255/54 timer of the PC Interface Trainer 407

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 410

SECTION 14.1: 8088/86 INTERRUPTS 411
Interrupt service routine (ISR} 411
Difference between INT and CALL instructions 412
Categories of interrupts 413
Hardware interrupts 413
Software interrupts 413
Interrupts and the flag register 414
Processing interrupts 414
Functions associated with INT 00 to INT 04 415

SECTION 14.2: IBM PC AND DOS ASSIGNMENT OF INTERRUPTS 417
Examining the interrupt vector table of your PC 417
Analyzing an IBM BIOS interrupt service routine 419
INT 12H: checking the size of RAM on the IBM PC 419

SECTION 143: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 420
8259 control words and ports 421
Masking and prioritization of [RO - IR7 interrupts 426
OCW (operation command word) 426
OCW]1 (operation command word 1) 427
OCW?2 (operation command word 2) 427
Importance of the EOI (end of interrupt) command 429
OCW3 (operation command word 3) 429

SECTION 14.4: USE OF THE 8259 CHIP IN THE IBM PC/XT 430
Interfacing the 8259 to the 8088 in iIBM PC/XT computers 430
Initialization words of the 8259 in the IBM PC/XT 431
Sequences of hardware interrupts with the 8259 432
Sources of hardware interrupts in the IBM PC/XT 433
Sources of NMI in the IBM PC 433

SECTION 14.5: INTERRUPTS ON 80286 AND HIGHER 80x86 PCs 436
IBM PC AT hardware interrupts 436
8259 in master mode 436
8259 in slave mode 437
AT-type computers interrupt assignment 438
Case of missing IRQs on the AT expansion slot 438
80x86 microprocessor generated interrupts (exceptions) 439
Interrupt priority 441
More about edge- and level-triggered interrupts 441
[nterrupt sharing in the x86 PC 442

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 447
SECTION 15.1: CONCEPT OF DMA 448

SECTION 15.2: 8237 DMA CHIP PROGRAMMING 450
8237's internal control registers 453
Command register 453
Status register 454
Mode register 456
Single mask register 457
All mask register 457
Master clear/temporary register 458
Clear mask register 459

SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PC/XT 459
8237 and 8088 connections in the IBM PC 459
Channel assignment of the 8237 in the IBM PC/XT 463
DMA page register 463
DMA data transfer rate of the PC/XT 464

xxi

SECTION 15.4: REFRESHING DRAM USING CHANNEL 0 OF
THE 8237 465

Refreshing DRAM with the 8237 467

Refreshing in the IBM PC/XT 467

DMA cycle of channel ¢ 467

SECTION 15.5: DMA IN 80x86-BASED PC AT-TYPE COMPUTERS 468
8237 DMA #1 468
8237 DMA #2 469
Points to be noted regarding 16-bit DMA channels 470
DMA channel priority 471
/O cycle recovery time 471
DMA transfer rate 472

CHAPTER 16: VIDEO AND VIDEO ADAPTERS 477

SECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO
ADAPTERS 478

How to judge a monitor 478

Dot pitch 480

Dot pitch and monitor size 480

Phosphorous materials 480

Color monitors 481

Analog and digital monitors 481

Video display RAM and video controller 481

Character box 482

SECTION 16.2: VIDEO ADAPTERS AND TEXT MODE
PROGRAMMING 484

CGA (color graphics adapter) 484

Video RAM in CGA 484

Attribute byte in CGA text mode 485

MDA (monochrome display adapter) 486

Video RAM in MDA 486

Attribute byte in IBM MDA 487

EGA (enhanced graphics adapter) 487

EGA video memory and attribute 487

MCGA (multicolor graphics array) 488

VGA (video graphics array) 489

Video memory and attributes in VGA 489

Super VGA (SVGA) and other video adapters 491

SECTION 16.3: TEXT MODE PROGRAMMING USING INT 10H 491
Finding the current video mode 491
Changing the video mode 491
Setting the cursor position (AH=02) 493
Getting the current cursor position (AH=03) 493
Scrolling the window up to clear the screen {AH=06) 493

xxii

Writing a character in teletype mode (AH=0E) 494
Writing a string in teletype mode (AH=13H) 495
Character generator ROM 495

How characters are displayed in text mode 497
Character definition table in VGA 498

Changing the cursor shape using INT 10H 498

SECTION 16.4: GRAPHICS AND GRAPHICS PROGRAMMING 501
Graphics: pixel resolution, color, and video memory 501
The case of CGA 501
The case of EGA 502
Video memory size and color relation for EGA 502
The case of VGA 502
Video memory size and color relation for VGA 503
The case of SVGA graphics 503
INT 10H and pixel programming 504
Drawing horizontal or vertical lines in graphics mode 504

CHAPTER 17: SERIAL DATA COMMUNICATION AND THE
16450/8250/51 CHIPS 508

SECTICN 17.1: BASICS OF SERIAL COMMUNICATION 509
Half- and full-duplex transmission 510
Asynchronous serial communication and data framing 511
Start and stop bits 511
Data transfer rate 512
RS232 and other serial I/0Q standards 513
RS232 pins 513
Other serial 1/0O interface standards 514
Data communication classification 514
Examining the RS232 handshaking signals 514

SECTION 17.2: ACCESSING IBM PC COM PORTS USING DOS
AND BIOS 516

IBM PC COM ports 516

Using the DOS MODE command 517

Data COM programming using BIOS INT 14H 520

SECTION 17.3: INTERFACING THE NS8250/16450 UART IN
THE IBM PC 522

8250 pin descriptions 522

The 8250 registers 524

Limitation of the 8250/16450 UART and 16550 530

SECTION 17.4: INTEL 8251 USART AND SYNCHRONOUS
COMMUNICATION 531

Intel's 8251 USART chip 531

Synchronous serial data communication 531

SDLC (serial data link control) 535

Cyclic redundancy checks 535

xxiii

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING 541

SECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU 542
Scanning and identifying the key 542
Grounding rows and reading the columns 543

SECTION 18.2: PC KEYBOARD INTERFACING AND
PROGRAMMING 546
Make and break 546
IBM PC scan codes 546
BIOS INT 16H keyboard programming 549
Hardware INT 09 role in the IBM PC keyboard 551
Keyboard overrun 552
Keyboard buffer in BIOS data area 552
BIOS keyboard buffer 553
Tail pointer 553
Head pointer 553
PC keyboard technology 553

SECTION 18.3: PRINTER AND PRINTER INTERFACING IN
THE IBM PC 554

Centronics printer interface pins 554

Data lines and grounds 556

Printer status signals 556

Printer control signals 556

IBM PC printer interfacing 557

Programming the IBM PC printer with BIOS INT 17H 559

What is printer time-out? 560

ASCII control characters 560

[nner working of BYOS INT 17H for printing a character 561

SECTION 18.4: BIDIRECTIONAL DATA BUS IN PARALLEL

PORTS 562
SPP 562
PS/2 562
How to detect a PS/2-type bidirectional data bus 563
EPP 563
ECP 563

Using an LPT port for output 564

LCD connection to the parallel port 564

Stepper motor connection to the parallel port 564
Data input buffering 566

BIOS data area and LPT 1/O address 566

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES 570

SECTION 19.1: FLOPPY DISK ORGANIZATION 571
Capacity of the floppy disk 572
Formatting disks 572
Disk organization 572

Xxiv

Looking into the boot record 573

Directory 577

Bootable and nonbootable disks 579

FAT (file allocation table) 580

How to calculate sector locations of the FAT and the directory 582

SECTION 19.2: HARD DISKS 583
Hard disk capacity and organization 583
Partitioning 585
Hard disk layout 585
Hard disk boot record 585
Hard disk FAT 585
Clusters 585
Hard disk directory 585
Speed of the hard disk 585
Data encoding techniques in the hard disk 586
Interfacing standards in the hard disk 588
Interleaving 591
Low- and high-level formatting 592
Parking the head 592
Disk caching 592
Disk reliability 592

SECTION 19.3: DISK FILE PROGRAMMING 593
File handle and error code 593

CHAPTER 20: THE 80x87 MATH COPROCESSOR 600

SECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING-
POINT STANDARDS 601

IEEE floating point standard 601

IEEE single-precision floating-point numbers 602

IEEE double-precision floating-point numbers 602

Other data formats of the 8087 604

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING 605
Assembling and running 80x87 programs on the IBM PC 605
Verifying the Solution for Examples 20- 1 to 20-4 605
80x87 registers 607
Trig functions 612
Integer numbers 614

SECTION 20.3: 8087 HARDWARE CONNECTIONS IN THE I1BM
PC/XT 616

8087 and 8088 connection in the IBM PC/XT 616

How the 8088 and 8087 work together in the IBM PC/XT 618

XXv

SECTION 20.4: 80x87 INSTRUCTIONS AND TIMING 620
Real transfers 620
Integer transfers 621
Packed decimal transfers 621
Addition 621
Subtraction 621
Reversed subtraction 622
Multiplication 622
Division 622
Reversed division 622
Other arithmetic instructions 622
Compare instructions 623
Transcendental instrections 623
Constant instructions 624
Processor control instructions 625

CHAPTER 2]: 386 MICROPROCESSOR: REAL vs. PROTECTED MODE 631

SECTION 21.1: 80386 IN REAL MODE 632
What happened to the 80186/1887 632
80186/88 instructions 632
80286 Microprocessor 634
Major changes in the 80386 634
80386 Real mode programming 635
32-bit registers 635
Which end goes first? 636
General registers as pointers 636
Scaled index addressing mode 637
Some new 386 instructions 639
MOVSX and MOVZX instructions 639
Bit scan instructions 640

SECTION 21.2: 80386: A HARDWARE VIEW 641
Overview of pin functions of the 80386 642
Bus bandwidth in the 386 645
Data misalignment in the 386 646
1/0 address space in the 386 646

SECTION 21.3: 80386 PROTECTED MODE 647
Protection mechanism in the 386 647
Virtual memory 647
Segmentation and descriptor table 648
Local and global descriptor tables 651
64 Terabtyes of virtual memory 651
Paging 652
Going from a linear address to a physical address 653
The bigger the TLB, the better 654
Virtual 8086 mode 654

xxvi

CHAPTER 22: HIGH-SPEED MEMORY INTERFACING AND CACHE 659

SECTION 22.1: MEMORY CYCLE TIME OF THE 80X86 660
Introducing wait states into the memory cycle 660

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE
DRAMS 662
Memory access time vs. memory cycle time 662
Types of DRAM 662
DRAM (standard mode) 663
DRAM interfacing using the interleaving method 663
interleaved drawback 665
Page mode DRAM 667
Static column mode 669
Nibble mode 669
Timing comparison of DRAM modes 671

SECTION 22.3: CACHE MEMORY 672
Cache organization 673
Fully associative cache 673
Direct-mapped cache 674
Set associative 676
Updating main memory 678
Write-through 678
Write-back (copy-back) 678
Cache coherency 679
Cache replacement policy 679
Cache fill block size 679

SECTION 22.4: EDO, SDRAM, AND RAMBUS MEMORIES 680
EDO DRAM: origin and operation 680
SDRAM (synchronous DRAM) 682
Synchronous DRAM and burst mode 682
SDRAM and interleaving 683
Rambus DRAM 683
Overview of Rambus technology 683
Rambus protocol for block transfer 684

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX 690

SECTION 23.1: THE 80486 MICROPROCESSOR 691
Enhancements of the 486 691
CLK in the 80486 694
High memory area (HMA) and the 80486 695
386, 486 Performance comparison 695
More about pipelining 695

SECTION 23.2: INTEL'S PENTIUM 697
Features of the Pentium 699
Intel's overdrive technology 703

xxvii

SECTION 23.3: RISC ARCHITECTURE 704
Features of RISC 704
Comparison of sample program for RISC and CISC 707
IBM/Motorola RISC 709

SECTION 23.4: PENTIUM PRO PROCESSOR 710
Pentium Pro: internal architecture 710
Pentium Pro is both superpipelined and superscalar 711
What is out-of-order execution? 711
Branch prediction 714
Bus frequency vs. internal frequency in Pentium Pro 714

SECTION 23.5: MMX TECHNOLOGY 715
DSP and multimedia 715
Register aliasing by MMX 715
Data types in MMX 716

SECTION 23.6: PROCESSOR IDENTIFICATION IN INTEL X86 717
Program to identify the CPU 717
CPUID instruction and MMX technology 718

CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS 724

SECTION 24.1: MS DOS STRUCTURE 725
DOS genealogy 725
From cold boot to DOS prompt 725
DOS standard device names 728
More about CONFIG.SYS and how it is used 728
What is AUTOEXEC.BAT and how is it used? 729
Types of DOS commands 730

SECTION 24.2: TSR AND DEVICE DRIVERS 731
Executing but not abandoning the program 731
How to make a program resident 731
Invoking the TSR 732
Hooking into hardware interrupts 732
Replacing the CS:1P values in the interrupt vector table 732
Writing a simple TSR~ 732
TSR with hot keys 734
Hooking into timer clock INT 08 735
DOS is not reentrant 736
Device drivers 736
Device driver categories 737

CHAPTER 25: MS DOS MEMORY MANAGEMENT 740

SECTION 25.i: 80x86 PC MEMORY TERMINOLOGY AND
CONCEPTS 741

Conventional memory 741

Upper memory area 741

xxviii

IBM standard using ROM space in the upper memory area 742
Expanded memory 743

Extended memory 746

High memory area (HMA) 746

Shadow RAM 748

DOS MEM command 748

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING
HIGH 749
Loading high into HMA 749
Finding holes in the upper memory area 750
EMM386.EXE opticns and swilches 751
Loading high TSR and device driver into upper memory area 754
Emulating expanded memory and using UMB in
386/486/Pentium PC 755
How expanded memory is accessed 756

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN
CONSIDERATIONS 759

SECTION 26.1: OVERVIEW OF IC TECHNOLOGY 760
MOS vs. bipolar transistors 760
Overview of logic families 761
The case of inverters 761
CMOS inverter 762
Input, output characteristics of some logic families 762
History of logic families 763
Recent advances in logic families 764
Evolution of IC technology in Intel's 80x86 microprocessors 765

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN
CONSIDERATIONS 766

IC fan-out 766

Capacitance derating 768

Power dissipation considerations 770

Dynamic and static currents 771

Power-down option and Intel's SL series 771

Ground bounce 77t

Filtering the transient currents using decoupling capacitors 774

Bulk decoupling capacitor 774

Crosstalk 774

Transmission line ringing 775

SECTION 26.3: DATA INTEGRITY AND ERROR DETECTION
IN DRAM 776
Soft error and hard error 776
Mean time between failure (MTBF) and FIT for DRAM 777
Error detection and correction 778
ECL and gallium arsenide (GaAs) chips 780

XXix

CHAPTER 27: ISA, EISA, MCA, LOCAL, AND PCI BUS 784

SECTION 27.1: ISA, EISA, AND IBM MICRO CHANNEL 785

Master and slave 785

Bus arbitration 785

Bus protocol 785

Bus bandwidth 786

ISA buses 786

36-pin part of the ISA bus 789
Limitations of the ISA bus 791
IBM Micro Channel Architecture (MCA) 793
Major characteristics of MCA 794
EISA bus 795

EISA slot numbering 797

Bus performance comparison 798

SECTION 27.2: VL BUS AND PC1 LOCAL BUSES 799

Definition and merits of local bus 799

VL bus (VESA local bus) characteristics 801
PCI local bus 801

PCI local bus characteristics 801

Plug and play feature 804

PCI connector 804

PCI performance 804

CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH C/C++ 808

SECTION 28.1: BIOS & DOS INTERRUPT PROGRAMMING
WITHC 809

Programming BIOS interrupts with C/C++ 809

Finding the conventional memory size with INT 12H 811
INT 16H and keyboard access 812

Programming INT 21H DOS function calls with C/C++ 812
Accessing segment registers 812

Accessing the carry flag in int86 and intdos functions 814

SECTION 28.2: PROGRAMMING PC HARDWARE WITH C/C++ 815

Accessing 80x86 SEGMENT:OFFSET memory addresses 815
Accessing BIOS data area with C 815

Programming input/output ports with C/C++ 816
Revisiting playing music 816

Accessing parallel printer's (LPT1) data bus with C 816
Finding memory above 1MB: the extended memory size 819
Programming the CMOS RAM real-time clock (RTC) 820
Accessing the CMOS RAM bytes 820

Programming CMOS RAM with C/C++ 822

XXX

APPENDIX A: DEBUG PROGRAMMING 825

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 847

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 898

APPENDIX E: BIOS INTERRUPTS 924

APPENDIX F: ASCII CODES 940

APPENDIX G: /O ADDRESS MAPS 941

APPENDIX H: IBM PC/PS BIOS DATA AREA 952

APPENDIX I: DATA SHEETS 959

REFERENCES 967

INDEX 969

883

xxxi

PREFACE TO VOLUMES | AND |l

Purpose

This combined volume is intended for use in college-level courses in
which both Assembly language programming and 8Gx86 PC interfacing are dis-
cussed. It not only builds the foundation of Assembly language programming, but
also provides a comprehensive treatment of 80x86 PC design and interfacing for
students in engineering and computer science disciplines. This volume is intend-
ed for those who wish to gain an in-depth understanding of the internal working
of the IBM PC, PS, and 80x86 compatible computers. It builds a foundation for
the design and interfacing of microprocessor-based systems using the real-world
example of the 80x86 IBM PC. In addition, it can also be used by practicing tech-
nicians, hardware engineers, computer scientists, and hobbyists who want to do
PC interfacing and data acquisition.

Prerequisites

Readers should have a minimal familiarity with the IBM PC and the DOS
operating system in addition to having had an introductory digital course.
Knowledge of other programming languages would be helpful, but is not neces-
sary.

Although a vast majority of current PCs use 386, 486, or Pentium micro-
processors, their design is based on the IBM PC/AT, an 80286 microprocessor
system introduced in 1984. A good portion of PC/AT features, hence its limita-
tions, are based on the original IBM PC, an 8088 microprocessor system, intro-
duced in 1981. In other words, one cannot expect to understand fully the archi-
tectural philosophy of the 80x86 PC and its expansion slot signals unless the
80286 PC/AT and its subset, the IBM PC/XT, are first understood. For this rea-
son, we describe the 8088 and 80286 microprocessors in Chapter 9.

Contents of Volume |

A systematic, step-by-step approach has been used in covering various
aspects of Assembly language programming. Many examples and sample pro-
grams are given to clarify concepts and provide students an opportunity to learn
by doing. Review questions are provided at the end of each section to reinforce
the main points of the section. We feel that one of the functions of a textbook is
to familiarize the student with terminology used in technical literature and in
industry, so we have followed that guideline in this text.

Chapter 0 covers concepts in number systems (binary, decimal, and hex)
and computer architecture. Most students will have learned these concepts in pre-
vious courses, but Chapter 0 provides a quick overview for those students who
have not leared these concepts, or who may need to refresh their memory.

Chapter 1 provides a brief history of the evolution of x86 microproces-
sors and an overview of the internal workings of the 8086 as a basis of all x86
processors. Chapter 1 should be used in conjunction with Appendix A (a tutorial
introduction to DEBUG) so that the student can experiment with concepts being
learned on the PC. The order of topics in Appendix A has been designed to cor-
respond to the order of topics presented in Chapter 1. Thus, the student can begin
programming with DEBUG without having to learn how to use an assembler.

Chapter 2 explains the use of assemblers to create programs. Although
the programs in the book were developed and tested with Microsoft's MASM
assembler, any Intel-compatible assembler such as Borland's TASM may be used.

xxxiii

Chapter 3 introduces the bulk of the logic and arithmetic instructions for
unsigned numbers, plus bitwise operations m C.

Chapter 4 introduces DOS and BIOS interrupts. Programs in Assembly
and C allow the student to get input from the keyboard and send output to the
monitor. In addition, interrupt programming in C is described, as well as how to
put Assembly language code in C programs.

Chapter 5 describes how to use macros to develop Assembly language
programs in a more time-efficient and structured manner. We also cover INT 33H
mouse function calls and mouse programming,.

Chapter 6 covers arithmetic and logic instructions for signed numbers as
well as string processing instructions.

Chapter 7 discusses modular programming and how to develop larger
Assembly language programs by breaking them into smaller modules to be coded
and tested separately. In addition, linking Assembly language modules with C
programs is thoroughly explained.

Chapter 8 introduces some 32-bit concepts of 80386 and 80486 pro-
gramming. Although this book emphasizes 16-bit programming, the 386/486 is
introduced to help the student appreciate the power of 32-bit CPUs. Several pro-
grams are run across the 80x86 family to show the dramatic improvement in clock
cycles with the newer CPUs.

Contents of VVolume Il

Chapter 9 describes the 8088 and 286 microprocessors and supporting
chips in detail and shows how they are used in the original IBM PC/XT/AT. In
addition, the origin and function of the address, data, and control signals of the
ISA expansion slot are described.

Chapter 10 provides an introduction to various types of RAM and ROM
memories, their interfacing to the microprocessor, the memory map of the 80x86
PC, the timing issue in interfacing memory to the ISA bus, and the checksum byte
and parity bit techniques of ensuring data integrity in RAM and ROM.

Chapter 11 is dedicated to the interfacing of 1/O ports, the use of IN and
OUT instructions in the 80x86, and interfacing and programming of the 8255 pro-
grammable peripheral chip. We describe I/0 programming in several languages,
as well.

Chapter 12 covers the PC Interface Trainer and Bus Extender, which are
used to interface PCs to devices for data acquisition such as LCDs, stepper
motors, ADC, DAC, and sensors.

Chapter 13 discusses the use of the 8253/54 timer chip in the 80x86 PC,
as well as how to generate music and time delays.

Chapter 14 is dedicated to the explanation of hardware and software inter-
rupts, the use of the 8259 interrupt controller, the origin and assignment of IRQ
signals on the expansion slots of the ISA bus, and exception interrupts in 80x86
MICrOpProcessors.

Chapter 15 is dedicated to direct memory access (DMA) concepts, the use
of the 8237 DMA chip in the 80x86 PC, and DMA channels and associated sig-
nals on the ISA bus.

Chapter 16 covers the basics of video monitors and various video modes
and adapters of the PC, in addition to the memory requirements of various video
boards in graphics mode.

Chapter 17 discusses serial communication principles, the interfacing and
programming of National Semiconductor's 8250/16450/16550 UART chip, Intel's
8251 USART chip, and verifying data integrity using the CRC method.

Chapter 18 covers the interfacing and programming of the keyboard in
the 80x86 PC, in addition to printer port interfacing and programming. In addi-

xXxxiv

tion, a discussion of various types of parallel ports such as EPP and ECP is includ-
ed.

Chapter 19 discusses both floppy and hard disk storage organization and
terminology. We also show how to write Assembly language programs to access
files using INT 21H DOS function calls.

Chapter 20 examines the 80x87 math coprocessor, its programming and
interfacing, and 1EEE single and double precision floating point data types.

Chapter 21 explores the programming and hardware of the 386 micro-
processor, contrasts and explains real and protected modes, and discusses the
implementation of virtual memory.

Chapter 22 is dedicated to the interfacing of high-speed memories and
describes various types of DRAM, including EDO and SDRAM, and examines
cache memory and various cache organizations and terminology in detail.

In Chapter 23 we describe the main features of the 486, Pentium and
Pentium Pro and compare these microprocessors with the RISC processors.
Chapter 23 also provides a discussion of MMX technology and how to write pro-
grams to detect which CPU a PC has.

Chapter 24 describes the MS DOS structure and the role of CONFIG.SYS
and batch files in the 80x86 PC, the writing of TSR (terminate and stay restdent)
programs and device drivers.

Chapter 25 explains 80x86 PC memory terminology, such as convention-
al memory, expanded memory, upper memory block, high memory area, as well
as MS DOS memory management.

Chapter 26 provides an overview of the IC technology including the
recent advances in the IC fabrication, describes IC interfacing and system design
issues, and covers error detection and correction.

Chapter 27 is dedicated to the discussion of the various types of PC buses,
such as ISA, EISA, USB, their performance comparisons, the local bus and fea-
tures of the PCI local bus.

In Chapter 28 we show how to use C language to access DOS function
calls, BIOS interrupts, memory, input/output ports, and CMOS RAM of the
80x86.

Appendices

The appendices have been designed to provide all reference material
required for the topics covered in this combined volume so that no additional ref-
erences should be necessary.

Appendix A provides a tutorial introduction to DEBUG. Appendix B pro-
vides a listing of Intel's 8086 instruction set along with clock cycles for 80x86
microprocessors. Appendix C describes assembler directives with examples of
their use. Appendix D lists some commonly used DOS 21H function calls and
INT 33H mouse functions. Appendix E lists the function calls for various BIOS
interrupts. Appendix F provides a table of ASCII codes. Appendix G lists the 1/0
map of 80x86-based ISA computers. Appendix H provides a description of the
BIOS data area. Appendix I contains data sheets for various IC chips.

Lab Manual
The tab manual for this series is available on the following web site:

www.microdigitaled.com

XXXV

Acknowiedgments

This book is the result of the dedication, work and love of many individ-
uals. Our sincere and heartfelt appreciation goes out to all of them. First, we must
thank the original reviewers who provided valuable suggestions and encourage-
ment: Mr. William H. Shannon of the University of Maryland, Mr. Howard W.
Atwell of Fullerton College, Mr. David G. Delker of Kansas State University, Mr.
Michael Chen of Duchess Community College, Mr. Yusuf Motiwala of Prairie
View A&M University, and Mr. Donald T. Coston of ITT Technical Institute. We
were truly amazed by the depth and breadth of their knowledge of microproces-
sor-based system design in general and 80x86 PC architecture in particular. We
sincerely appreciate their comments and suggestions.

Thanks also must go to the many students whose comments have helped
shape this book, especially Daniel Woods, Sam Oparah, Herbert Sendeki, Greg
Boyle, Philip Fitzer, Adnan Hindi, Kent Keeter, Mark Ford, Shannon Looper,
Mitch Johnson, Carol Killelea, Michael Madden, Douglas McAlister, David
Simmons, Dwight Brown, Clifton Snyder, Phillip Boatright, Wilfrid Lowe,
Robert Schabel, John Berry, Clyde Knight, Robert Jones (all of DeVry Institute of
Technolgy), Lynnette Garetz (Heald College), Peter Woof (Southem Sydney
Institute, Lidcombe College of Tafe), M. Soleimanzadeh, Mark Lessley, Snehal
Amin, Travis Erck, Gary Hudson, Nathan Noel, Dan Bent, and Frank Fortman.

A word must also be said of our colleagues, especially the late Mr. Allan
Escher, whose encouragement set the making of this series into motion. For the
last 25 years, his dedication and love of microprocessor education were a source
of inspiration to many. A special thanks goes to Mr. James Vignali for his enthu-
siasm in discussing the internal intricacies of the 80x86 PC and his readiness to
keep current with the ever-changing world of the PC.

In addition, we offer our appreciation for the dedicated professionals at
Prentice Hall. Many thanks to Charles Stewart for his continued support and guid-
ance of this series.

Finaily, we would like to sincerely thank the following professors from
some outstanding engineering schools whose enthusiasm for the book, sugges-
tions, and kind words have been encouraging to us and made us think we are on
the right track: Dr. Michael Chwialkowski (Electrical Engineering Dept.,
University of Texas at Arlington), Dr. Roger S. Walker (Computer Science
Engineering Dept., University of Texas at Arlington), Dr. Behbood Zoghi
(Electronics Engineering Technology, Texas A&M University).

Xxxvi

ABOUT THE AUTHORS

Muhammad Ali Mazidi holds Master's degrees from both Southern
Methodist University and the University of Texas at Dallas, and currently is a.b.d.
on his Ph.D. in the Electrical Engineering Department of Southem Methodist
University. He is a co-founder and chief researcher of Microprocessor Education
Group, a company dedicated to bringing knowledge of microprocessors to the
widest possible audience. He also teaches microprocessor-based system design at
DeVry Institute of Technology in Dallas, Texas.

Janice Gillispie Mazidi has a Master of Science degree in Computer
Science from the University of North Texas. Afier several years experience as a
software engineer in Dallas, she co-founded Microprocessor Education Group,
where she is the chief technical writer, production manager, and is responsible for
software development and testing.

The Mazidis have been married since 1985 and have two sons, Robert
Nabil and Michael Jamal.

The authors can be contacted at the following address if you have any
comments, suggestions, or if you find any errors.

Microprocessor Education Group
P.O. Box 381970
Duncanville, TX 75138

email: mazidi@mail.dal.devry.edu
or: profinazidi@yahoo.com

The web site www.microdigitaled.com provides much support for this book.

XXxvii

CHAPTER

INTRODUCTION TO COMPUTING

To understand the software and hardware of the computer, one must first
master some very basic concepts underlying computer design. In this chapter
(which in the tradition of digital computers can be called Chapter 0), the fundamen-
tals of numbering and coding systems are presented. Then an introduction to the
workings of the inside of the computer is given. Finally, in the last section we give
a brief history of CPU architecture. Although some readers may have an adequate
background in many of the topics of this chapter, it is recommended that the material
be scanned, however briefly.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Whereas human beings use base 10 (decimal} arithmetic, computers use the
base 2 (binary) system. In this section we explain how to convert from the decimal
system to the binary system, and vice versa. The convenient representation of binary
numbers called hexadecimal also is covered. Finally, the binary format of the
alphanumeric code, called ASC/J, is explored.

Decimal and binary number systems

Although there has been speculation that the origin of the base 10 system
1s the fact that human beings have 10 fingers, there is absolutely no speculation
about the reason behind the use of the binary system in computers. The binary
system is used in computers because | and 0 represent the two voltage levels of on
and off. Whereas in base 10 there are 10 distinct symbols, 0, 1, 2, ..., 9, in base 2
there are only two, 0 and 1, with which to generate numbers. Base 10 contains digits
0 through 9; binary contains digits 0 and ! only. These two binary digits, 0 and 1,
are commonly referred to as bifs.

Converting from decimal to binary

One method of converting from decimal to binary is to divide the decimal
number by 2 repeatedly, keeping track of the remainders. This process continues
until the quotient becomes zero. The remainders are then written in reverse order
to obtain the binary number. This is demonstrated in Example 0-1.

Example 0-1
Convert 25, to binary.
Solution:
Quotient Remainder
2572 = 12 i LSB (least significant bit)
12/2 = 6 0
6/2 = 3 0
32 = 1 1
1/2 = 0 1 MSB (most significant bit)

Therefore, 25,5 = 11001,.

Converting from binary to decimal

To convert from binary to decimal, it is important to understand the concept
of weight associated with each digit position. First, as an analogy, recall the weight
of numbers in the base 10 system:

2 CHAPTER 0: INTRODUCTION TO COMPUTING

740683, =

x10? = 3
8x10t = 80
ex10° = 600
0x10° = 0000
x10f = 40000
7x10° = 700000

740683

By the same token, each digit position in a number in base 2 has a weight
associated with it:

110101, = o Decimal Binary
1% 2 = 1x1 = 1 1

ox 21 = 0x2 = 0 00

1x2° = 1x4 = 4 100

ox2° = 0x8 = 0 0000

ix2? = 1x16 = 16 10000

1x2° = 1x32 = 32 100000

53 110101

Knowing the weight of each bit in a binary number makes it simple to add
them together to get its decimal equivalent, as shown in Example 0-2.

Example (-2
Convert 11001, to decimal.
Solution:
Weight: 16 8 4 2 1
Digits: 1 1 0 0 1
Knowing the weight associated with each binary bit position allows one to
convert a decimal number to binary directly instead of going through the process of
repeated division. This is shown in Example 0-3.
Example (-3
Use the concept of weight to convert 39, to binary.
Solution:
Weight: 32 16 8 4 2 1
1 0 0 1 1 1
32+ 0+ 0+ 4+ 2+ 1=39

Therefore, 39,5 = 100111,.

Hexadecimal system

Base 16, the hexadecimal system as it is called in computer literature, is
used as a convenient representation of binary numbers. For example, it is much
easier for a human being 1o represent a string of Os and 1s such as 100010010110
asits hexadecimal equivalent of 836H. The binary system has 2 digits, Oand 1. The
base 10 system has 10 digits, O through 9. The hexadecimal (base 16} system must
have 16 digits. In base 16, the first 10 digits, 0 to 9, are the same as in decimal, and
for the remaining six digits, the letters A, B, C, D, E, and F are used. Table 0-1 shows
the equivalent binary, decimal, and hexadecimal representations for 0 to 15.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Converting between binary and hex

To represent a binary number
as its equivalent hexadecimal number,
start from the right and group 4 bits at
a time, replacing each 4-bit binary
number with its hex equivalent shown
in Table 0-1. To convert from hex to
binary, each hex digit is replaced with
its 4-bit binary equivalent, Converting
between binary and hex is shown in

Examples 0-4 and 0-5.

Converting from decimal to hex

Converting from decimal to

hex could be approached in two ways:

1. Convert to binary first and then con-
vert to hex. Experimenting with this

method is left to the reader.

2. Convert directly from decimal to hex
by the method of repeated division,
keeping track of the remainders. Ex-
ample 0-6 demonstrates this method

of converting decimal to hex.

Converting from hex to decimal

Conversion from hex to deci-
mal can also be approached in two

ways:

1. Convert from hex to binary and then

to decimal.

Table 0-1: Decimal, Binary, and Hex
7 i

Decimal - Binary : Hexadecimal
‘i 0 | 0000 0
1 0001 1
2 0010 2
3 0011 | 3
4 0100 4 |
5 0101 5
6 0110 6
______ 7 o1t | 7 |

8 1000 , 8
9 1001 | 9
10 1010 A
11 o1 B
12 1100 | C_
13 . 101D
14 1110 E
15 1111 F

2. Convert directly from hex to decimal by summing the weight of all digits.
Example 0-7 demonstrates the second method of converting from hex to decimal.

Example 0-4

Represent binary 100111110101 in hex.

Solution:

First the number is grouped into sets of 4 bits: 1001 1111 0101

Then each group of 4 bits is replaced with its hex equivalent:

1001 1111 0101
9 F 5
Therefore, 100111110101, = 9F5 hexadecimal.

Example 0-5

Convert hex 29B to binary.

Solution:
2 9 B
= 0010 100t 1011
Dropping the leading zeros gives 1010011011,

CHAPTER 0: INTRODUCTION TO COMPUTING

Example 0-6

(a) Convert 45, to hex.

Solution: Quotient Remainder
45/16 = 2 13 (hex D} (least significant digit)
2/16 = 0 2 (most significant digit)

Therefore, 45,3 = 2D

{b) Convert decimal 629 to hexadecimal.

Solution: Quotient Remainder
629/16 = 39 5 (least significant digit)
39/16 = 2 7
2/16 = 0 2 {most significant digit)

Therefore, 629, = 275 ;.

{c) Convert 1714 base 10 to hex.

Solution: Quotient Remainder
1714/16 = 107 2 (least significant digit)
107/16 = 6 11 (hex B)
6/16 = 0 6 (most significant digit)

Therefore, 1714, = 6B2 .

Example 0-7
Convert the following hexadecimal numbers to decimal.
(a) 6B216
Selution:
6B?2 hexadecimal = 2x169 = 2x1 =
11x161 = 11x16 = 176
6x162 = 6x256 = 153
1714
Therefore, 6B2 16~ 17 1410.
(b) 9F2D, 6
Solution:
9F2D hexadecimal = 13x160 = 13x1 - 13
2161 = 2x16 = 32
15%x162 = 15x256 = 3840
9x16° = 9x4096 = 36864
40749

Therefore, 9F2D16 = 40749]0.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Counting in bases 10, 2, and 16

To show the relationship between
all three bases, in Figure 0-1 we show the
sequence of numbers from 0 to 31 in deci-
mal, along with the equivalent binary and
hex numbers. Notice in each base that
when one more is added to the highest
digit, that digit becomes zero and a 1 is
carried to the next-highest digit position.
For example, in decimal, 9+ 1 =0 with a
carry to the next-highest position. In bi-
nary, | + 1 = 0 with a carry; similarly, in
hex, F + 1 =0 with a carry.

Table 0-2: Binary Addition

‘_A +B | Carry Sum
- 0+0 0 _ 0

0+1 0 1
C1+0 0 1
J1+1 | 0

Addition of binary and hex numbers

The addition of binary numbers is
a very straightforward process. Table 0-2
shows the addition of two bits. The dis-
cussion of subtraction of binary numbers
1s bypassed since all computers use the
addition process to implement subtrac-
tion. Alithough computers have adder cir-
cuitry, there 1s no separate circuitry for

Decimal Binary

0o00C
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
13 10019
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28

29

30

=
HOWo-IMn b WwhNEe O

=

Ay -
MY REN

11100
11101
111190
31 11111

)
@
=

-
OWWCOmbmmﬂmmﬁwNMO‘

[l il el el]
N oM

—
~J

P b b s e
o lwi@lvsii-AVeXs

Figure 0-1. Counting in 3 Bases

subtractors. Instead, adders are used in conjunction with 2 ¥ complement circuitry
to perform subtraction. In other words, to implement "x — 3", the computer takes
the 2’s complement of y and adds it tox. The concept of 2°s complement is reviewed
next, but the process of subtraction of two binary numbers using 2’s complement is
shown in detail in Chapter 3. Example 0-8 shows the addition of binary numbers.

Example 0-8
Add the following binary numbers. Check against their decimal equivalents.
Solution:
Binary Decimal
1101 13
1001 9
+ 10110 22
101100 44

2’s complement

To get the 2°s complement of a binary number, invert all the bits and then
add 1 to the result. Inverting the bits is simply a matter of changing all Os to 1s and
Is to 0s. This is called the [¥ complement. See Example 0-9.

CHAPTER 0: INTRODUCTION TO COMPUTING

Example 0-9

Solution:

Take the 2’s complement of 10011101.

10011101 binary number

01100010 I’s complement
1

01100011 2’s complement

Addition and subtraction of hex numbers

In studying issues related to software and hardware of computers, it is often
necessary to add or subtract hex numbers. Mastery of these techniques 1s essential.
Hex addition and subtraction are discussed separately below.

Addition of hex numbers

This section describes the process of adding hex numbers. Starting with
the least significant digits, the digits are added together. If the result is less than 16,
write that digit as the sum for that position. Ifitis greater than 16, subtract 16 from
it to get the digit and carry 1 to the next digit, The best way to explain this 1s by
example, as shown in Example 0-10.

Example 0-10

Solution:
23D9

+ 94BE
BR97

LSD: 9+ 14
1+13+11 = 25 25 - 16=9 with a carry to next digit
1+ 3+4 = 8

MSD: 2+9=B

Perform hex addition: 23D9 + 94BE.

It

23 23 — 16 = 7 with a carry to next digit

Subtraction of hex numbers

In subtracting two hex numbers, if the second digit ts greater than the first,
borrow 16 from the preceding digit. See Example 0-11.

Example 0-11

Solution:
59F
~ 2B8
2E7
LSD:

MSD:

Perform hex subtraction: 59F — 2B8.

8 from 15="7
11 from 25 (9 + 16) = 14, whichis E
2fromd(5-1)=2

SECTION 0.1: NUMBERING AND CODING SYSTEMS

ASCll code

The discussion so far has revolved around the representation of number
systems. Since all information in the computer must be represented by Os and s,
binary patterns must be assigned to letters and other characters. In the 1960s a
standard representation called ASCIT (American Standard Code for Information
Interchange) was established. The ASCII (pronounced "ask-E") code assigns binary
patterns for numbers O to 9, all the letters of the English alphabet, both uppercase
(capital) and lowercase, and many control codes and punctuation marks. The great
advantage of this system is that it is used by most computers, so that information
can be shared among computers. The ASCII system uses a total of 7 bits to represent
each code. For example, 100 0001 is assigned to the uppercase letter "A" and 110
0001 is for the lowercase "a", Often, a zero is placed in the most significant bit
position to make it an 8-bit code. Figure 0-2 shows selected ASCII codes. A
complete list of ASCII codes is given in Appendix F. The use of ASCII is not only
standard for keyboards used in the United States and many other countries but also
provides a standard for printing and displaying characters by output devices such
as printers and monitors,

The pattern of ASCII codes was designed to allow for easy manipulation of ASCII data. For example,
digits 0 through 9 are represented by ASCII codes 30 through 39. This enables a program to casily
convert ASCII to decimal by masking off the "3" in the upper nibble. As another example, notice in
the codes listed below that there is a relationship between the uppercase and lowercase letters.
Namely, uppercase letters are represented by ASCII codes 41 through 5A while lowercase letters are
represented by ASCII codes 61 through 7A. Looking at the binary code, the only bit that is different
between uppercase "A" and lowercase "a" is bit 5. Therefore conversion between uppercase and low-
ercase is as simple as changing bit 5 of the ASCII code.

Hex Symbol Hex Symbol
41 A 61 a
42 B 62 b
43 C 63 c
44 D 64 d
45 E 65 e
46 F 66 f
47 G 67 g
48 H 68 h
49 I 69 i
4A J BA j
48 K 6B k
4Cc L 6C I
4D M 6D m
4E N 6E n
4F O 6F 0
50 P 70 p
51 Q 71 q
52 R 72 r
53 S 73 s
54 T 74 t
55 u 75 u
56 v 76 v
57 w 77 w
58 X 78 X
59 Y 79 y
BA Z 7A z

Figure 0-2. Alphanumeric ASCIl Codes

8 CHAPTER 0: INTRODUCTION TO COMPUTING

%0 N ok o

SECTION 0.2:

Review Questions

Why do computers use the binary number system instead of the decimal system?
Convert 3419 to binary and hex.

Convert 1101012 to hex and decimal.

Perform binary addition: 101100 + 101.

Convert 1011002 to its 2°s complement representation.

Add 36BH + F6H.

Subtract 36BH — F6H.

Write "80x86 CPUs" in its ASCII code (in hex form).

INSIDE THE COMPUTER

In this section we provide an introduction to the organization and internal
working of computers. The model used is generic, but the concepts discussed are
applicable to all computers, including the IBM PC, PS/2, and compatibles. Before
embarking on this subject, it will be helpful to review definitions of some of the
most widely used terminology in computer literature, such as K, mega, giga, byte,
ROM, RAM, and so on,

Some important terminology

One of the most important features of a computer is how much memory it
has. Next we review terms used to describe amounts of memory in IBM PCs and
compatibles. Recall from the discussion above that a bit is a binary digit that can
have the value 0 or 1. A byte is defined as 8 bits. A nibble is half a byte, or 4 bits.
Aword is two bytes, or 16 bits. The following display is intended to show the relative
size of these units. Of course, they could all be composed of any combination of
zeros and ones.

Bit 0
Nibble 0000
Byte 00C0 Q000
Word 00C0 0000 0000 0000

A kilobyte is 219 bytes, which is 1024 bytes. The abbreviation K is often
used. For example, some floppy disks hold 356K bytes of data. A megabyte, or
meg as some call it, is 220 bytes. That is a little over 1 million bytes it is exactly
1,048,576, Moving rapidly u 3) the scale in size, a gigabyte is 230 bytes (over 1
billion), and a terabyte is 240 bytes (over 1 trillion). As an example of how some
of these terms are used, suppose that a given computer has 16 megabytes of memory.
That would be 16 x 220, or 24 x 220 which is 2%4. Therefore 16 megabytes is 224
bytes.

Two types of memory commonly used in microcomputers are RAM, which
stands for random access memory (sometimes called read/write memory),
and ROM, which stands for read-only memory. RAM is used by the computer for
temporary storage of programs that it is running. That data is lost when the computer
is turned off. For this reason, RAM is sometimes called volatile memory. ROM
contains programs and information essential to operation of the computer. The
information in ROM is permanent, cannot be changed by the user, and is not lost
when the power is turned off. Therefore, it is called nonvolatile memory.

Internal organization of computers

The internal working of every computer can be broken down into three
parts: CPU (central processing unit), memory , and I/O (input/output) devices (see
Figure 0-3). The function of the CPU is to execute (process) information stored in
memory. The function of I/O devices such as the keyboard and video monitor is to
provide a means of communicating with the CPU. The CPU is connected to memory

SECTION 0.2: INSIDE THE COMPUTER

and I/O through strips of wire called a bus. The bus inside a computer carries
information from place to place just as a street bus carnies people from place to place.
In every computer there are three types of buses: address bus, data bus, and control
bus.

For a device (memory or [/0) to be recognized by the CPU, it must be
assigned an address. The address assigned to a given device must be unique; no
two devices are allowed to have the same address. The CPU puts the address (of
course, in binary) on the address bus, and the decoding circuitry finds the device.
Then the CPU uses the data bus either to get data from that device or to send data
to it. The control buses are used to provide read or write signals to the device to
indicate if the CPU is asking for information or sending it information. Of'the three
buses, the address bus and data bus determine the capability of a given CPU.

Address bus
|]
Memory Peripherals
CPU {monitor,
{(RAM, ROM) printer, etc.)
] J
Data bus

Figure 0-3. Inside the Computer

More about the data bus

Since data buses are used to carry information in and out of a CPU, the more
data buses available, the better the CPU. If one thinks of data buses as highway
lanes, it is clear that more lanes provide a better pathway between the CPU and its
external devices (such as printers, RAM, ROM, etc.; see Figure 0-4). By the same
token, that increase in the number of lanes increases the cost of construction. More
data buses mean a more expensive CPU and computer. The average size of data
buses in CPUs varies between 8 and 64. Early computers such as Apple 2 used an
8-bit data bus, while supercomputers such as Cray use a 64-bit data bus. Data buses
are bidirectional, since the CPU must use them either to receive or to send data. The
processing power of a computer is related to the size of its buses, since an 8-bit bus
can send out 1 byte a time, but a 16-bit bus can send out 2 bytes at a time, which is
twice as fast.

More about the address bus

Since the address bus is used to identify the devices and memory connected
to the CPU, the more address buses available, the larger the number of devices that
can be addressed. In other words, the number of address buses for a CPU determines
the number of locations with which it can communicate. The number of locations
is always equal to 2%, where x is the number of address lines, regardless of the size
of the data bus. For example, a CPU with 16 address lines can provide a total of
65,536 (2'%) or 64K bytes of addressable memory. Each location can have a
maximum of 1 byte of data. This is due to the fact that all general-purpose
microprocessor CPUs are what is called byte addressable. As another example, the
IBM PC AT uses a CPU with 24 address lines and 16 data lines. In this case the
total accessible memory is 16 megabytes (224 = 16 megabytes). In this example
there would be 224 locations, and since each location is one byte, there would be 16
megabytes of memory. The address bus is a unidirectional bus, which means that
the CPU uses the address bus only to send out addresses. To summarize: The total
number of memory locations addressable by a given CPU is always equal to 2¥
where x 18 the number of address bits, regardless of the size of the data bus.

10 CHAPTER ¢: INTRODUCTION TO COMPUTING

CPU

Read/
write

Address bus

4 i L J y L y

RAM ROM Printer Disk Monitor Key-
| board
: : v ‘ r 1t A
Data bus
Control bus

Figure 0-4. Internal Crganization of Computers

CPU and its relation to RAM and ROM

For the CPU to process information, the data must be stored in RAM or
ROM. The function of ROM in computers is to provide information that is fixed
and permanent. This is information such as tables for character patterns to be
displayed on the video monitor, or programs that are essential to the working of the
computer, such as programs for testing and finding the total amount of RAM
installed on the system, or programs to display information on the video monitor.
In centrast, RAM is used to store information that is not permanent and can change
with time, such as various versions of the operating system and application packages
such as word processing or tax calculation packages. These programs are loaded
into RAM to be processed by the CPU. The CPU cannot get the information from
the disk directly since the disk is too slow. In other words, the CPU gets the
information to be processed, first from RAM (or ROM). Only if it is not there does
the CPU seek it from a mass storage device such as a disk, and then it transfers the
information to RAM. For this reason, RAM and ROM are sometimes referred to
as primary memory and disks are called secondary memory. Figure 0-4 shows a
block diagram of the internal organization of the PC.

Inside CPUs

A program stored in memory provides instructions to the CPU to perform
an action. The action can simply be adding data such as payroll data or controlling
a machine such as a robot. It is the function of the CPU to fetch these instructions
from memory and execute them. To perform the actions of fetch and execute, all
CPUs are equipped with resources such as the following:

. Foremost among the resources at the disposal of the CPU are a number of registers.

The CPU uses registers to store information temporarily. The information could be
two values to be processed, or the address of the value needed to be fetched from
memory. Registers inside the CPU can be 8-bit, 16-bit, 32-bit, or even 64-bit
registers, depending on the CPU. In general, the more and bigger the registers, the
better the CPU. The disadvantage of more and bigger registers is the increased cost
of such a CPU.

. The CPU also has what is called the ALU (arithmetic/logic unit). The ALU section

of the CPU is responsible for performing arithmetic functions such as add, subtract,
multiply, and divide, and logic functions such as AND, OR, and NOT.

. Every CPU has what is called a program counter. The function of the program

counter is to point to the address of the next instruction to be executed. As each
instruction is executed, the program counter is incremented to point to the address
of the next instruction to be executed. It is the contents of the program counter that
are placed on the address bus to find and fetch the desired instruction. In the IBM
PC, the program counter is a register called IP, or the instruction pointer.

SECTION 0.2: INSIDE THE COMPUTER

11

4. The function of the instruction decoder is (o interpret the instruction fetched into

1.

the CPU. One can think of the instruction decoder as a kind of dictionary, storing
the meaning of each instruction and what steps the CPU should take upon receiving
a given instruction. Just as a dictionary requires more pages the more words it
defines, a CPU capable of understanding more instructions requires more transistors
to design.

Internal working of computers

To demonstrate some of the concepts discussed above, a step-by-step
analysis of the process a CPU would go through to add three numbers is given next.
Assume that an imaginary CPU has registers called A, B, C, and D. It has an 8-bit
data bus and a 16-bit address bus. Therefore, the CPU can access memory from
addresses 0000 to FFFFH (for a total of 10000H locations). The action to be
performed by the CPU is to put hexadecimal value 21 into register A, and then add
to register A values 42H and 12H. Assume that the code for the CPU to move a
value to register A is 1011 0000 (BOH) and the code for adding a value to register
A is 0000 0100 (04H). The necessary steps and code to perform them are as follows,

Action Code Data
Move value 21H into register A BOH 21H
Add value 42H to register A 04H 42H
Add value 12H to register A 04H 12H

If the program to perform the actions listed above is stored in memory
locations starting at 1400H, the following would represent the contents for each
memory address location:

Memory address Contents of memory address

1400 {B0) the code for moving a value to register A
1401 (21} the value to be moved

1402 (04) the code for adding a value to register A
1403 (42) the value to be added

1404 (04) the code for adding a value to register A
1405 (12) the value to be added

1406 {(F4) the code for halt

The actions performed by the CPU to run the program above would be as
follows:
The CPU’s program counter can have a value between 0000 and FFFFH. The
program counter must be set to the value 1400H, indicating the address of the first
instruction code to be executed. After the program counter has been loaded with
the address of the first instruction, the CPU is ready to execute.

2. The CPU puts 1400H on the address bus and sends it out. The memory circuitry

3.

finds the location while the CPU activates the READ signal, indicating to memory
that it wants the byte at location 1400H. This causes the contents of memory
location 1400H, which is B0, to be put on the data bus and brought into the CPU.
The CPU decodes the instruction BO with the help of its instruction decoder
dictionary. When it finds the definition for that instruction it knows it must bring
into register A of the CPU the byte in the next memory location. Therefore, it
commands its controller circuitry to do exactly that. When it brings in value 21H
from memory location 1401, it makes sure that the doors of all registers are closed
exceptregister A. Therefore, when value 21H comes into the CPU it will go directly
into register A. After completing one instruction, the program counter points to the
address of the next instruction to be executed, which in this case is 1402H. Address
1402 is sent out on the address bus to fetch the next instruction,

. From memory location 1402H it fetches code 04H. After decoding, the CPU knows

that it must add to the contents of register A the byte sitting at the next address (1403).
After it brings the value (in this case 42H) into the CPUJ, it provides the contents of

12

CHAPTER (: INTRODUCTION TO COMPUTING

AR e

9.

10.
11
12.
13.

SECTION 0.3:

register A along with this value to the ALU to perform the addition. It then takes
the result of the addition from the ALU’s output and puts it in register A. Meanwhile
the program counter becomes 1404, the address of the next instruction.

. Address 1404H is put on the address bus and the code is fetched into the CPU,

decoded, and executed. This codeis again adding a value to register A. The program
counter is updated to 1406H.

. Finally, the contents of address 1406 are fetched in and executed. This HALT

struction tells the CPU to stop incrementing the program counter and asking for
the next instruction. In the absence of the HALT, the CPU would continue updating
the program counter and fetching instructions.

Now suppose that address 1403H contained value 04 instead of 42H. How
would the CPU distinguish between data 04 to be added and code (04? Remember
that code 04 for this CPU means move the next value into register A. Therefore,
the CPU will not try to decode the next value. It simply moves the contents of the
following memory location into register A, regardless of its value.

Review Questions

How many bytes is 24 kilobytes?

What does "RAM" stand for? How is it used in computer systems?

What does "ROM" stand for? How is it used in computer systems?

Why is RAM called volatile memory?

List the three major components of a computer system.

What does "CPU" stand for? Explain its function in a computer.

List the three types of buses found in computer systems and state briefly the pur-
pose of each type of bus.

State which of the following is unidirectional and which is bidirectional.

(a) data bus (b) address bus

If an address bus for a given computer has 16 lines, then what is the maximum
amount of memory it can access?

What does "ALU" stand for? What is its purpose?

How are registers used in computer systems?

What is the purpose of the program counter?

What is the purpose of the instruction decoder?

BRIEF HISTORY OF THE CPU

In the 1940s, CPUs were designed using vacuum tubes. The vacuum tube
was bulky and consumed a lot of electricity. For example, the first large-scale digital
computer, ENIAC, consumed 130,000 watts of power and occupied 1500 square
feet. The invention of transistors changed all of that. In the 1950s, transistors
replaced vacuum tubes in the design of computers. Then in 1959, the first IC
(integrated circuit) was invented. This set into motion what many people believe is
the second industrial revolution. [n the 1960s the use of IC chips in the design of
CPU boards became common. It was not until the 1970s that the entire CPU was
put on a single IC chip. The first working CPU on a chip was invented by Intel in
1971. This CPU was called a microprocessor. The first microprocessor, the 4004,
had a 4-bit data bus and was made of 2300 transistors. It was designed primarily
for the hand-held calculator but soon came to be used in applications such as
traffic-light controllers. The advances in IC fabrication made during the 1970s made
it possible to design microprocessors with an 8-bit data bus and a 16-bit address bus.
By the late 1970s, the Intel 8080/85 was one of the most widely used microproces-
sors, appearing in everything from microwave ovens to homemade computers.
Meanwhile, many other companics joined in the race for faster and better micro-
processors. Notable among them was Motorola with its 6800 and 68000 microproc-
essors. Apple’s Macintosh computers use the 68000 series microprocessors. Figure
0-5 shows a block diagram of the internal structure of a CPU.

SECTION 0.3: BRIEF HISTORY OF THE CPU

13

Address

bus
Program counter
Instruction register
| Instruction Control
decoder, timing, buses
and control
Flags ALU
Data
I I bus
Register A
Register B
Internal Register &
buses Register D

Figure 0-5. Internal Block Diagram of a CPU

CISC vs. RISC

Until the early 1980s, all CPUs, whether single-chip or whole-board,
followed the CISC (complex instruction set computer) design philosophy. CISC
refers to CPUs with hundreds of instructions designed for every possible situation.
To design CPUs with so many instructions consumed not only hundreds of thou-
sands of transistors, but also made the design very complicated, time-consuming,
and expensive. In the early 1980s, a new CPU design philosophy called RISC
(reduced instruction set computer) was developed. The proponents of RISC argned
that no one was using all the instructions etched into the brain of CISC-type CPUs.
Why not streamline the instructions by simplifying and reducing them from hun-
dreds to around 40 or so and use all the transistors that are saved to enhance the
power of the CPU? Although the RISC concept had been explored by computer
scientists at IBM as early as the 1970s, the first working single-chip RISC micro-
processor was implemented by a group of researchers at the University of California
at Berkeley in 1980. Today the RISC design philosophy is no longer an experiment
limited to research laboratories. Since the late 1980s, many companies designing
new CPUs (either single-chip or whole-board) have used the RISC philosophy. It
appears that eventually the only CISC microprocessors remaining in use will be
members of the 80x86 family (R086, BORE, 80286, 80386, 80486, 80586, etc.) and
the 680x0 family (68000, 68010, 68020, 68030, 68040, 68050, etc.). The 80x86
will be kept alive by the huge base of IBM PC, PS, and compatible computers, and
the Apple Macintosh is prolonging the life of 680x0 microprocessors.

Review Questions

1. What is a microprocessor?
Describe briefly how advances in technology have affected the size, cost, and avail-
ability of computer systems.

3. Explain the major difference between CISC and RISC computers.

CHAPTER 0: INTRODUCTION TO COMPUTING

SUMMARY

PROBLEMS

The binary number systern represents all numbers with a combination of
the two binary digits, 0 and 1. The vse of binary systems is necessary in digital
computers because only two states can be represented: on or off. Any binary number
can be coded directly into its hexadecimal equivalent for the convenience of humans.
Converting from binary/hex to decimal, and vice versa, is a straightforward process
that becomes casy with practice. The ASCII code is a binary code used to represent
alphanumeric data internally in the computer. It is frequently used in peripheral
devices for input and/or output,

The major components of any computer system are the CPU, memory, and
170 devices. "Memory” refers to temporary or permanent storage of data. In most
systems, memory can be accessed as bytes or words. The terms kilobyte, megabyte,
gigabyte, and terabyte are used to refer to large numbers of bytes. There are two
main types of memory in computer systems: RAM and ROM. RAM (random access
memory) is used for temporary storage of programs and data. ROM (read-only
memory) is used for permanent storage of programs and data that the computer
system must have in order to function. All components of the computer system are
under the control of the CPU. Peripheral devices such as 1/0 (input/output) devices
allow the CPU to communicate with humans or other computer systems. There are
three types of buses in computers: address, control, and data. Control buses are used
by the CPU to direct other devices. The address bus is used by the CPU to locate a
device or a memory location. Data buses are used to send information back and forth
between the CPU and other devices.

As changes in technology were incorporated into the design of computers,
their cost and size were reduced dramatically. The carliest computers were as large
as an average home and were available only to a select group of scientists. The
invention of transistors and subsequent advances in their design have made the
computer commonly available. As the limits of hardware innovation have been
approached, computer designers are looking at new design techniques, such as RISC
architecture, to enhance computer performance.

. Convert the following decimal numbers to binary.

(a) 12 (b) 123 (c) 63 (d) 128 (e) 1000
Convert the following binary numbers to decimal.
(a) 100100 (b) 1000001 (c) 11101 (d) 1010 (e) 00100010

Convert the values in Problem 2 to hexadecimal.

Convert the following hex numbers to binary and decimal.

(a) 2B9H (b) F44H (c)912H (d) 2BH (e) FFFFH
Convert the values in Problem 1 to hex.

Find the 2’s complement of the following binary numbers.

(a) 1001010 (b) 111001 (c) 10000010 (d) 111110001

Add the following hex values.

(a) 2CH+3FH (b) F34H+5D6H ({c) 20000H+12FFH (d) FFFFH+2222H
Perform hex subtraction for the following.

(a) 24FH-129H (b) FE9H-5CCH (c) 2FFFFH-FFFIFFH (d) 9FF25H-4DD99H
Show the ASCII codes for numbers 0, 1, 2, 3, ..., 9 in both hex and binary.
Show the ASCII code (in hex) for the following string:

"U.S.A. 15 a country” CR,LF

"in North America" CR,LF

CR is carriage return

LF is line feed

SUMMARY

15

11.

12,

13.

14.

15.

16.

17.

18.
19.
20.

Answer the following:

(a) How many nibbles are 16 bits?

{(b) How many bytes are 32 bits?

(c) If a word is defined as 16 bits, how many words is a 64-bit data item?

(d) What is the exact value (in decimal) of 1 meg?

{e) How many K is 1 meg?

(f) What is the exact value (in decimal) of giga?

(g) How many K is | giga?

(h) How many meg is 1 giga?

(1) If a given computer has a total of 8 megabytes of memory, how many bytes
(in decimal} is this? How many kilobytes is this?

A given mass storage device such as a hard disk can store 2 gigabytes of informa-

tion. Assuming that each page of text has 25 rows and each row has 80 columns

of ASCII characters (each character = 1 byte), approximately how many pages of

information can this disk store?

In a given byte-addressable computer, memory locations 10000H to 9FFFFH are

available for user programs. The first location is 10000H and the last location is

9FFFFH. Calculate the following:

(a) The total number of bytes available (in decimal)

(b) The total number of kilobytes (in decimal)

A given computer has a 32-bit data bus. What is the largest number that can be

carried into the CPU at a time?

Below are listed several computers with their data bus widths. For each com-

puter, list the maximum value that can be brought into the CPU at a time (in both

hex and decimal).

(a) Apple 2 with an 8-bit data bus

(b) IBM PS/2 with a 16-bit data bus

(c) IBM PS/2 model 80 with a 32-bit data bus

(d) CRAY supercomputer with a 64-bit data bus

Find the total amount of memory, in the units requested, fo