

Pearson
Education --

THE 80x86 IBM PC
AND COMPATIBLE COMPUTERS

VOLUMES I & II

Assembly Language, Design, and Interfacing

Fourth Edition

THE 80x86 IBM PC
AND COMPATIBLE COMPUTERS

VOLUMES I & II

Assembly Language, Design, and Interfacing

Fourth Edition

Muhammad Ali Mazidi
Janice Gillispie Mazidi

PEARSON

Prentice
Hall

Pearson Education International

If you purchased this book within the United States or Canada you should be aware that it has been
wrongfully imported without the approval of the Publisher or the Author.

Editor in Chief: Stephen Helba
Assistant Vice President and Publisher: Charles E. Stewart, Jr.
Production Editor: Alexandrina Benedicto Wolf
Design Coordinator: Diane Ernsberger
Cover Designer: JeffVanik
Cover image: Digital hnages
Production Manager: Matthew Ottenweller
Marketing Manager: Ben Leonard

This book was set in Times Roman by Janice Mazidi. It was printed and bound by CourierlKendallville.
The cover was printed by Phoenix Color Corp.

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd
Pearson Education North Asia Ltd
Pearson Education Canada, Ltd.
Pearson Educaci6n de Mexico, S.A. de c.v.
Pearson Education -- Japan
Pearson Education Malaysia, Pte. Ltd
Pearson Education, Upper Saddle River, New Jersey

Earlier edition © 1995 by Muhammad Ali Mazidi and Janice Gillispie Mazidi

Copyright © 2003, 2000, 1998 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.
All rights reserved. Printed in the United States of America. This publication is protected by Copyright
and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions
Department.

PEARSON

Prentice
Hall JO 9 8 7 6 5 4 3 2

ISBN 0-13-121975-8

Regard man as a mine
rich in gems of inestimable value.

Education can, alone,
cause it to reveal its treasures,

and enable mankind
to benefit therefrom.

Baha 'u 'Uah

DEDICATIONS

This book is dedicated to the memo!), of Muhammad Ali's parents, who
raised 10 children and persevered through more than 50 years of hardship
together with dignity and faith.

We feel especially blessed to have the support, love, and encouragement
of Janice's parents whose kindness, wisdom, and sense of humor have
been the bond that has welded us into a family.

In addition, we must also mention our two most important collaborations: our
sons Robert Nabil and Michael Jamal who have taught us the meaning
of love and patience.

We would also like to honor the memo!), of a dear friend, Kamran Lotti.

CONTENTS AT A GLANCE

Assembly Language Programming on the IBM PC, PS, and Compatibles

o INTRODUCTION TO COMPUTING, 1
1 THE 80x86 MICROPROCESSOR, 18
2 ASSEMBLY LANGUAGE PROGRAMMING, 49
3 ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMS, 82
4 BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C, 121
5 MACROS AND THE MOUSE, 150
6 SIGNED NUMBERS, STRINGS, AND TABLES, 173
7 MODULES: MODULAR AND C PROGRAMMING, 193
8 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES, 220

Design and Interfacing of the IBM PC, PS, and Compatibles

9 8088, 80286 MICROPROCESSOR AND ISA BUS, 235
10 MEMORY AND MEMORY INTERFACING, 265
11 1/0 AND THE 8255; ISA BUS INTERFACING, 309
12 INTERFACING TO THE PC: LCD, MOTOR, ADC, AND SENSOR, 351
13 8253/54 TIMER AND MUSIC, 386
14 INTERRUPTS AND THE 8259 CHIP, 410
15 DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP, 447
16 VIDEO AND VIDEO ADAPTERS, 477
17 SERIAL DATA COMMUNICATION AND THE 16450/8250/51 CHIPS, 508
18 KEYBOARD AND PRINTER INTERFACING, 541
19 FLOPPY DISKS, HARD DISKS, AND FILES, 570
20 THE 80x87 MATH COPROCESSOR, 600
21 386 MICROPROCESSOR: REAL VERSUS PROTECTED MODE, 631
22 HIGH-SPEED MEMORY INTERFACING AND CACHE, 659
23 486, PENTIUM, PENTIUM PRO AND MMX, 690
24 MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS, 724
25 MS DOS MEMORY MANAGEMENT, 740
26 IC TECHNOLOGY AND SYSTEM DESIGN, 759
27 ISA, PCI, AND USB BUSES, 784
28 PROGRAMMING DOS, BIOS, & HARDWARE WITH C/C++, 808

APPENDICES

A DEBUG PROGRAMMING, 825
B 80x86 INSTRUCTIONS AND TIMING, 847
C ASSEMBLER DIRECTIVES AND NAMING RULES, 883
D DOS INTERRUPT 21 HAND 33H LISTING, 898
E BIOS INTERRUPTS, 924
F ASCII CODES, 940
G 1/0 ADDRESS MAPS, 941
H IBM PCIPS BIOS DATA AREA, 952
I DATA SHEETS, 959

vii

CONTENTS

PREFACE TO VOLUMES I AND II

CHAPTER 0: INTRODUCTION TO COMPUTING

SECTION 0.1: NUMBERING AND CODING SYSTEMS 2
Decimal and binary number systems 2
Converting from decimal to binary 2
Converting from binary to decimal 2
Hexadecimal system 3
Converting between binary and hex 4
Converting from decimal to hex 4
Converting from hex to decimal 4
Counting in base 10, 2, and 16 6
Addition of binary and hex numbers 6
2's complement 6
Addition and subtraction of hex numbers 7
Addition of hex numbers 7
Subtraction of hex numbers 7
ASCII code 8

SECTION 0.2: INSIDE THE COMPUTER 9
Some important terminology 9
Internal organization of computers 9
More about the data bus 10
More about the address bus 10
CPU and its relation to RAM and ROM II
Inside CPUs II
Internal working of computers 12

SECTION 0.3: BRIEF HISTORY OF THE CPU 13
CISC vs. RISC 14

CHAPTER I: THE 80x86 MICROPROCESSOR 18

SECTION 1.1: BRIEF HISTORY OF THE 80x86 FAMILY 19
Evolution from 8080/8085 to 8086 19
Evolution from 8086 to 8088 19
Success of the 8088 19
Other microprocessors: the 80286. 80386, and 80486 19

ix

SECTION 1.2: INSIDE THE 8088/8086 21
Pipelining 21
Registers 22

SECTION 1.3: INTRODUCTION 10 ASSEMBLY PROGRAMMING 23
Assembly language programming 24
MOV instruction 24
ADD instruction 25

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS 26
Origin and definition of the segment 27
Logical address and physical address 27
Code segment 27
Logical address vs. physical address in the code segment 28
Data segment 29
Logical address and physical address in the data segment 30
Little endian convention 3 I
Extra segment (ES) 32
Memory map of the IBM PC 32
More about RAM 32
Video RAM 33
More about ROM 33
Function of BIOS ROM 33

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86 33
What is a stack, and why is it needed? 33
How stacks are accessed 34
Pushing onto the stack 34
Popping the stack 34
Logical address vs. physical address for the stack 35
A few more words about segments in the 80x86 36
Overlapping 36
Flag register 37
Bits of the flag register 38
Flag register and ADD instruction 38
Use of the zero flag for looping 40

SECTION 1.6: 80x86 ADDRESSING MODES 4 I
Register addressing mode 41
Immediate addressing mode 4 I
Direct addressing mode 42
Register indirect addressing mode 42
Based relative addressing mode 43
Indexed relative addressing mode 43
Based indexed addressing mode 44
Segment overrides 44

x

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING 49

SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAM 50
Segments of a program 50
Stack segment definition 51
Data segment definition 51
Code segment definition 52

SECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAM 54
.asm and .obj files 55
.1st file 55
PAGE and TITLE directives 56
.crf file 56
LINKing the program 57
.map file 57

SECTION 2.3: MORE SAMPLE PROGRAMS 57
Analysis of Program 2-1 58
Various approaches to Program 2-1 60
Analysis of Program 2-2 62
Analysis of Program 2-3 62
Stack segment definition revisited 62

SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS 64
FAR and NEAR 64
Conditional jumps 64
Short jumps 64
Unconditional jumps 66
CALL statements 66
Assembly language subroutines 67
Rules for names in Assembly language 67

SECTION 2.5: DATA TYPES AND DATA DEFINITION 69
80x86 data types 69
Assembler data directives 69
ORG (origin) 69
DB (define byte) 69
DUP (duplicate) 70
OW (defme word) 70
EQU (equate) 71
DO (defme doubleword) 71
DQ (define quadword) 72
DT (define ten bytes) 72

SECTION 2.6: SIMPLIFIED SEGMENT DEFINITION 73
Memory model 74
Segment definition 74

xi

SECTION 2.7: EXE VS. COM FILES 76
Why COM files? 76
Converting from EXE to COM 77

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMS 82

SECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION 83
Addition of unsigned numbers 83
CASE 1: Addition of individual byte and word data 83
Analysis of Program 3-1 a 84
CASE 2: Addition of multiword numbers 85
Analysis of Program 3-2 86
Subtraction of unsigned numbers 87
SBB (subtract with borrow) 88

SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION 88
Multiplication of unsigned numbers 88
Division of unsigned numbers 90

SECTION 33: LOGIC INSTRUCTIONS AND SAMPLE PROGRAMS 93
AND 93
OR 93
XOR 94
SHIFT 95
COMPARE of unsigned numbers 96
IBM BIOS method of converting from lowercase to uppercase 99
BIOS examples oflogic instructions 100

SECTION 3.4 BCD AND ASCII OPERANDS AND INSTRUCTIONS IOI
BCD number system 101
Unpacked BCD 102
Packed BCD 102
ASCII numbers 102
ASCII to BCD conversion 102
ASCII to unpacked BCD conversion 102
ASCII to packed BCD conversion 103
Packed BCD to ASCII conversion 104
BCD addition and subtraction 104
BCD addition and correction I 04
DAA 105
Summary of DAA action 105
BCD subtraction and correction 105
Summary ofDAS action 107
ASCII addition and subtraction 109
Unpacked BCD mUltiplication and division 110
AAM 110
AAD 110

xii

SECTION 3.5: ROTATE INSTRUCTIONS III
Rotating the bits of an operand right and left III
ROR rotate right III
ROL rotate left 112
RCR rotate right through carry 113
RCL rotate left through carry 113

SECTION 3.6: BITWISE OPERATION IN THE C LANGUAGE 114
Bitwise operators in C 114
Bitwise shift operators in C 115
Packed BCD-to-ASCII conversion in C 116
Testing bits in C 116

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C 121

SECTION 4.1: BIOS INT IOH PROGRAMMING 122
Monitor screen in text mode 122
Clearing the screen using INT 10H function 06H 123
INT 10H function 02: setting the cursor to a specific location 123
INT IOH function 03: get current cursor position 124
Changing the video mode 124
Attribute byte in monochrome monitors 125
Attribute byte in CGA text mode 125
Graphics: pixel resolution and color 127
INT 10H and pixel programming 128
Drawing horizontal or vertical lines in graphics mode 128
Changing the background color 129

SECTION 4.2: DOS INTERRUPT 21H 130
INT 21 H option 09: outputting a string to the monitor 130
INT 21 H option 02: outputting a character to the monitor 130
INT 21H option 01: inputting a character, with echo 130
INT 21 H option OAH: inputting a string from the keyboard 13 I
Inputting more than the buffer size 132
Use of carriage return and line feed 134
INT 21H option 07: keyboard input without echo 135
Using the LABEL directive to define a string buffer 136

SECTION 4.3: INT 16H KEYBOARD PROGRAMMING 139
Checking a key press 139
Which key is pressed? 139

SECTION 4.4: INTERRUPT PROGRAMMING WITH C 141
Programming BIOS interrupts with C/C++ 141
Programming INT 21 H DOS functions calls with C/C++ 143
Accessing segment registers 144
Accessing the carry flag in int86 and intdos functions 144
Mixing C with Assembly and checking ZF 145
C function kbhit vs. INT 16H keyboard input 146

xiii

xiv

CHAPTER 5: MACROS AND THE MOUSE 150

SECTION 5.1: WHAT IS A MACRO AND HOW IS IT USED? 151
MACRO definition 151
Comments in a macro 152
Analysis of Program 5-1 154
LOCAL directive and its use in macros 155
INCLUDE directive 158

SECTION 5.2: MOUSE PROGRAMMING WITH /NT 33H 161
INT 33H 161
Detecting the presence of a mouse 161
Some mouse terminology 162
Displaying and hiding the mouse cursor 162
Video resolution vs. mouse resolution in text mode 163
Video resolution vs. mouse resolution in graphics mode 163
Getting the current mouse cursor position (AX=03) 163
Setting the mouse pointer position (AX=04) 166
Getting mouse button press information (AX=05) 166
Monitoring and displaying the button press count program 167
Getting mouse button release information (AX=06) 168
Setting horizontal boundary for mouse pointer (AX=07) 168
Setting vertical boundary for mouse pointer (AX=08) 168
Setting an exclusion area for the mouse pointer (AX=10) 169
Getting mouse driver information (version) (AX=24H) 169

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES 173

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS 174
Concept of signed numbers in computers 174
Signed byte operands 174
Positive numbers 174
Negative numbers 174
Word-sized signed numbers 175
Overflow problem in signed number operations 176
When the overflow flag is set in 8-bit operations 176
Overflow flag in 16-bit operations 177
Avoiding erroneous results in signed number operations 178
IDIV (Signed number division) 179
IMUL (Signed number mUltiplication) 180
Arithmetic shift 182
SAR (shift arithmetic right) 182
SAL (shift arithmetic left) and SHL (shift left) 182
Signed number comparison 182

SECTION 6.2: STRING AND TABLE OPERATIONS
Use of SI and DI. OS and ES in string instructions

184
185

Byte and word operands in string instructions 185
OF. the direction flag 185
REP prefix 186
STOS and LODS instructions 186
Testing memory using STOSB and LODSB 187
The REPZ and REPNZ prefixes 187
SCAS (scan string) 189
Replacing the scanned character 189
XLAT instruction and look-up tables 190
Code conversion using XLAT 190

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING 193

SECTION 7.1: WRITING AND LINKING MODULES 194
Why modules? 194
Writing modules 194
EXTRN directive I 94
PUBLIC directive 194
END directive in modules 195
Linking modules togetber into one executable unit 196
SEGMENT directive 198
Complete stack segment definition 198
Complete data and code segment definitions 198
Analysis of Program 7-2 link map 200
Modular programming and tbe new segment definition 20 I

SECTION 7.2: SOME VERY USEFUL MODULES 203
Binary (hex)-to-ASCII conversion 203
ASCII (decimal)-to-binary (hex) conversion 204
Binary-to-ASCII module 205
ASCII-to-binary module 207
Calling module 207

SECTION 7.3: PASSING PARAMETERS AMONG MODULES 208
Passing parameters via registers 208
Passing parameters via memory 208
Passing parameters via tbe stack 208

SECTION 7.4: COMBINING ASSEMBLY LANGUAGE AND C 210
WhyC? 210
Inserting 8Ox86 assembly code into C programs 211
C programs tbat call Assembly procedures 212
C calling convention 2 I 3
How parameters are returned to C 214
New assemblers and linking witb C 215
Passing array addresses from C to the stack 216
Linking assembly language routines witb C 217

xv

xvi

CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES 220

SECTION 8.1: 80386/80486 MACHINES IN REAL MODE 221
General registers are pointers in 386/486 222
386/486 maximum memory range in real mode: 1M 224
Accessing 32-bit registers with commonly used assemblers 224
Little endian revisited 226

SECTION 8.2: SOME SIMPLE 386/486 PROGRAMS 226
Adding 16-bit words using 32-bit registers 226
Adding multiword data in 386/486 machines 228
Multiplying a 32-bit operand by a 16-bit operand 229
32-bit by 16-bit mUltiplication using 8086/286 registers 229

SECTION 8.3: 80x86 PERFORMANCE COMPARISON 231
Running an 8086 program across the 80x86 family 231

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS 235

SECTION 9.1: 8088 MICROPROCESSOR 236
Microprocessor buses 236
Data bus in 8088 236
Address bus in 8088 238
8088 control bus 238
Bus timing of 8088 239
Other 8088 pins 240

SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS 242
8288 bus controller 242
Input signals 242
Output signals 243
8284 clock generator 244
Input pins 244
Output signals 245

SECTION 9.3: 8-BIT SECTION OF ISA BUS 248
A bit of bus history 246
Local bus vs. system bus 247
Address bus 247
Data bus 248
Control bus 249
One bus, two masters 249
AEN signal generation 249
Control of the bus by DMA 250
Bus boosting 250
8-bit section of the ISA bus 250

SECTION 9.4: 80286 MICROPROCESSOR 251
Pin descriptions 252

SECTION 9.5: 16-BIT ISA BUS 255
Exploring ISA bus signals 255
Address bus 256
Data bus 256
Memory and I/O control signals 256
Other control signals 258
ODD and EVEN bytes and BHE 259
A20 gate and the case of high memory area (HMA) 260

CHAPTER 10: MEMORY AND MEMORY INTERFACING 265

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS 266
Memory capacity 266
Memory organization 266
Speed 267
ROM (read-only memory) 267
PROM (programmable ROM) or OTP ROM 268
EPROM (erasable programmable ROM) 268
EEPROM (electrically erasable programmable ROM) 269
Flash memory 270
Mask ROM 271
RAM (random access memory) 271
SRAM (static RAM) 271
DRAM (dynamic RAM) 273
Packaging issue in DRAM 273
DRAM, SRAM and ROM organizations 275
NV-RAM (nonvolatile RAM) 276

SECTION 10.2: MEMORY ADDRESS DECODING 276
Simple logic gate as address decoder 278
Using the 74LS 138 as decoder 279

SECTION 10.3: IBM PC MEMORY MAP 280
Conventional memory: 640K of RAM 281
BIOS data area 282
Video display RAM (VDR) map 282
ROM address and cold boot on the PC 283

SECTION 10.4: DATA INTEGRITY IN RAM AND ROM 284
Checksum byte 284
Checksum program 286
Use of parity bit in DRAM error detection 286
DRAM memory banks 286
Parity bit generator/checker in the IBM PC 288
74S280 parity bit generator and checker 288

xvii

xviii

SECTION 10.5: 16-BIT MEMORY INTERFACING 289
ODD and EVEN banks 289
Memory cycle time and inserting wait states 291
Accessing EVEN and ODD words 292
Bus bandwidtb 293

SECTION 10.6: ISA BUS MEMORY INTERFACING 295
Address bus signals 295
Memory control signals 295
ISA bus timing for memory 299
8-bit memory timing for ISA bus 299
ROM duplicate and x86 PC memory map 301
Shadow RAM 302
DIMM and SIMM memory modules 302

CHAPTER II: I/O AND THE 8255; ISA BUS INTERFACING 309

SECTION 11.1: 8088 INPUT/OUTPUT INSTRUCTIONS 310
8-bit data ports 310
How to use 110 instructions 311

SECTION 10.2: 110 ADDRESS DECODING AND DESIGN 312
Using the 74LS373 in an output port design 312
IN port design using tbe 74LS244 312
Memory map 110 314

SECTION 11.3: 110 ADDRESS MAP OF X86 PCS 316
Absolute vs. linear select address decoding 316
Prototype addresses 300 - 31 FH in tbe x86 PC 316
Use of simple logic gates as address decoders 316
Use of 74LS 138 as decoder 318
IB M PC I/O address decoder 3 18
Use oftbe 8255 in the IBM PCIXT 341
Port 61 H and time delay generation 319

SECTION 11.4: 8255 PPI CHIP 320
Mode selection of the 8255A 321

SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER 325
PC I/O Bus Extender 325
Buffering 300 - 31 F address range 326
Installing tbe PC Bus Extender and booting the PC 327
Failure to boot 327
PC Interface Trainer
Design of the PC Trainer
The role of H I and H2

327
328

328
Connecting the Module Trainer to the PC and testing 328
Testing the 8255 port 329
Testing Port A 330

SECTION 11.6: 110 PROGRAMMING WITH C/C++ AND VB 332
Visual C/C++ I/O programming 332
Visual c++ output example 332
Visual C++ input example 332
I/O programming in Turbo C/C++ 334
I/O programming in Linux C/C++ 335
Linux C/C++ program with I/O functions 335

SECTION 11.7: 8-BIT AND 16-BIT 110 TIMING IN ISA BUS 338
8-bit and 16-bit 110 in ISA bus 338
I/O signals of the [SA bus 339
8-bit timing and operation in ISA bus 341
16-bit 110 operation and timing in ISA bus 342
16-bit data ports instruction 342
16-bit 110 timing and operation via ISA bus 342
110 bus bandwidth for [SA 343
Interfacing 8-bit peripherals to a 16-bit data bus 344

CHAPTER 12: INTERFACING TO THE PC: LCD, MOTOR, ADC, AND
SENSOR 351

SECTION 12.1: INTERFACING AN LCD TO THE PC 352
LCD operation 352
LCD pin descriptions 352
Sending commands to LCDs 353
Sending data to the LCD 355
Checking LCD busy flag 356
LCD cursor position 357
LCD programming in Visual C/C++ 358
LCD timing and data sheet 358

SECTION 12.2: INTERFACING A STEPPER MOTOR TO A PC 362
Stepper motors 362
Step angle 363
Stepper motor connection and programming 364
Steps per second and RPM relation 365
The four-step sequence and number of teeth on rotor 365
Motor speed 366
Holding torque 366
Wave drive 4-step sequence 367

SECTION 12.3: INTERFACING DAC TO A PC 368
Digital-to-analog (DAC) converter 368
MCI408 DAC (or DAC 808) 369
Converting lOUT to voltage in 1408 DAC 369
Generating a sine wave 369

xix

xx

SECTION 12.4: INTERFACING AOC AND SENSORS TO THE PC 373
ADC devices 373
ADC 804 chip 373
Selecting an input channel 376
ADC0848 connection to 8255 377
Interfacing a temperature sensor to a PC 378
LM34 and LM35 temperature sensors 378
Signal conditioning and interfacing the LM35 to a PC 379

CHAPTER 13: 8253/54 TIMER AND MUSIC 386

SECTION 13.1: 8253154 TIMER DESCRIPTION AND INITIALIZATION 387
Initialization of the 8253/54 388
Control word 388

SECTION 13.2: IBM PC 8253/54 TIMER CONNECTIONS AND
PROGRAMMING 391

Using counter 0 392
Using counter I 393
Using counter 2 393
Use of timer 2 by the speaker 394
Turning on the speaker via PBO and PB I of port 61 H 394
Time delay for 8Ox86 PCs 394
Creating time delays in 8088/86-based computers 395
Time delays in 80x86 IBM PC for 286 and higher processors 395

SECTION 13.3: GENERATING MUSIC ON THE IBM PC 397
Playing "Happy Birthday" on the PC 399

SECTION 13.4: SHAPE of 8253/54 OUTPUTS 401
OUTO pulse shape in IBM BIOS 401
OUTI pulse shape in IBM BIOS 402
oun pulse shape in IBM BIOS 402
8253/54 modes of operation 402
Testing the 8255154 timer of the PC Interface Trainer 407

CHAPTER 14: INTERRUPTS AND THE 8259 cmp 410

SECTION 14.1: 8088/86 INTERRUPTS 411
Interrupt service routine (ISR) 411
Difference between INT and CALL instructions 412
Categories of interrupts 4 I 3
Hardware interrupts 413
Software interrupts 413
Interrupts and the flag register 414
Processing interrupts 414
Functions associated with INT 00 to INT 04 4 I 5

•

SECIlON 142: IBM PC AND DOS ASSIGNMENT OF INTERRUPTS 417
Examining the interrupt vector table of your PC 417
Analyzing an IBM BIOS interrupt service routine 419
INT 12H: checking the size of RAM on the IBM PC 419

SECIlON 143: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 420
8259 control words and ports 421
Masking and prioritization oflRO -IR7 interrupts 426
OCW (operation command word) 426
OCWI (operation command word I) 427
OCW2 (operation command word 2) 427
Importance of the EOI (end of interrupt) command 429
OCW3 (operation command word 3) 429

SECTION 14.4: USE OF THE 8259 CHIP IN THE IBM PCIXT 430
Interfacing the 8259 to the 8088 in IBM PCIXT computers 430
Initialization words of the 8259 in the IBM PC/XT 43 I
Sequences of hardware interrupts with the 8259 432
Sources of hardware interrupts in the IBM PC/XT 433
Sources ofNMI in the IBM PC 433

SECTION 14.5: INTERRUPTS ON 80286 AND HIGHER 8Ox86 PCs 436
IBM PC AT hardware interrupts 436
8259 in master mode 436
8259 in slave mode 437
AT-type computers interrupt assignment 438
Case of missing IRQs on the AT expansion slot 438
80x86 microprocessor generated interrupts (exceptions) 439
Interrupt priority 441
More about edge- and level-triggered interrupts 441
Interrupt sharing in the x86 PC 442

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 447

SECTION 15.1: CONCEPT OF DMA 448

SECTION 15.2: 8237 DMA CHIP PROGRAMMING 450
8237's internal control registers 453
Command register 453
Status register 454
Mode register 456
Single mask register 457
All mask register 457
Master clear/temporary register 458
Clear mask register 459

SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PC/XT 459
8237 and 8088 connections in the IBM PC 459
Channel assignment of the 8237 in the IBM PC/XT 463
DMA page register 463
DMA data transfer rate of the PC/XT 464

xxi

xxii

SECTION 15.4: REFRESHING DRAM USING CHANNEL 0 OF
THE 8237 465

Refreshing DRAM with the 8237 467
Refreshing in the IBM PC/XT 467
DMA cycle of channel 0 467

SECTION 15.5: DMA IN 80x86-BASED PC AT-lYPE COMPUTERS 468
8237 DMA #1 468
8237 DMA #2 469
Points to be noted regarding 16-bit DMA channels 470
DMA channel priority 471
I/O cycle recovery time 47 I
DMA transfer rate 472

CHAPTER 16: VIDEO AND VIDEO ADAPTERS 477

SECTION 16. I: PRINCIPLES OF MONITORS AND VIDEO
ADAPTERS 478

How to judge a monitor 478
Dot pitch 480
Dot pitch and monitor size 480
Phosphorous materials 480
Color monitors 48 I
Analog and digital monitors 48 I
Video display RAM and video controller 48 I
Character box 482

SECTION 16.2: VIDEO ADAPTERS AND TEXT MODE
PROGRAMMING 484

CGA (color graphics adapter) 484
Video RAM in CGA 484
Attribute byte in CGA text mode 485
MDA (monochrome display adapter) 486
Video RAM in MDA 486
Attribute byte in IBM MDA 487
EGA (enhanced graphics adapter) 487
EGA video memory and attribute 487
MCGA (multicolor graphics array) 488
VGA (video graphics array) 489
Video memory and attributes in VGA 489
Super VGA (SVGA) and other video adapters 491

SECTION 16.3: TEXT MODE PROGRAMMING USING INT lOH 491
Finding the current video mode 491
Changing the video mode 491
Setting the cursor position (AH=02) 493
Getting the current cursor position (AH=03) 493
Scrolling the window up to clear the screen (AH=06) 493

Writing a character in teletype mode (AH=OE) 494
Writing a string in teletype mode (AH=13H) 495
Character generator ROM 495
How characters are displayed in text mode 497
Character definition table in VGA 498
Changing the cursor shape using INT 10H 498

SECTION 16.4: GRAPHICS AND GRAPHICS PROGRAMMING 501
Graphics: pixel resolution, color, and video memory 50 I
The case ofCGA 501
The case of EGA 502
Video memory size and color relation for EGA 502
The case ofVGA 502
Video memory size and color relation for VGA 503
The case ofSVGA graphics 503
INT 10H and pixel programming 504
Drawing horizontal or vertical lines in graphics mode 504

CHAPTER 17: SERIAL DATA COMMUNICATION AND THE
16450/8250/51 CHIPS 508

SECTION 17.1: BASICS OF SERIAL COMMUNICATION 509
Half- and full-duplex transmission 5 I 0
Asynchronous serial communication and data framing 511
Start and stop bits 5 II
Data transfer rate 5 12
RS232 and other serial VO standards 513
RS232 pins 513
Other serial 1/0 interface standards 5 14
Data communication classification 514
Examining the RS232 handshaking Signals 514

SECTION 17.2: ACCESSING IBM PC COM PORTS USING DOS
AND BIOS 516

IBM PC COM ports 516
Using the DOS MODE command 517
Data COM programming using BIOS INT 14H 520

SECTION 17.3: INTERFACING THE NS8250116450 UART IN
THE IBM PC 522

8250 pin descriptions 522
The 8250 registers 524
Limitation of the 8250/16450 UART and 16550 530

SECTION 17.4: INTEL 8251 USART AND SYNCHRONOUS
COMMUNICATION 531

Intel's 8251 USART chip 531
Synchronous serial data communication 531
SDLC (serial data link control) 535
Cyclic redundancy checks 535

xxiii

xxiv

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING 541

SECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU 542
Scanning and identifYing the key 542
Grounding rows and reading the columns 543

SECTION 18.2: PC KEYBOARD INTERFACING AND
PROGRAMMING 546

Make and break 546
IBM PC scan codes 546
BIOS INT 16H keyboard programming 549
Hardware INT 09 role in the IBM PC keyboard 551
Keyboard overrun 552
Keyboard buffer in BIOS data area 552
BIOS keyboard buffer 553
Tail pointer 553
Head pointer 553
PC keyboard technology 553

SECTION 18.3: PRINTER AND PRINTER INTERFACING IN
THE IBM PC 554

Centronics printer interface pins 554
Data lines and grounds 556
Printer status signals 556
Printer control signals 556
IBM PC printer interfacing 557
Programming the IBM PC printer with BIOS !NT l7H 559
What is printer time-out? 560
ASCII control characters 560
Inner working of BIOS INT 17H for printing a character 561

SECTION 18.4: BIDIRECTIONAL DATA BUS IN PARALLEL
PORTS 562

SPP 562
PS/2 562
How to detect a PS/2-type bidirectional data bus 563
EPP 563
ECP 563
U sing an LPT port for output 564
LCD connection to the parallel port 564
Stepper motor connection to the parallel port 564
Data input buffering 566
BIOS data area and LPT lIO address 566

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES 570

SECTION 19.1: FLOPPY DISK ORGANIZATION 571
Capacity of the floppy disk 572
Formatting disks 572
Disk organization 572

--

Looking into the boot record 573
Directory 577
Bootable and nonbootable disks 579
FAT (file allocation table) 580
How to calculate sector locations of1he FAT and 1he directory 582

SECTION 19.2: HARD DISKS 583
Hard disk capacity and organization 583
Partitioning 585
Hard disk layout 585
Hard disk boot record 585
Hard disk FAT 585
Clusters 585
Hard disk directory 585
Speed of the hard disk 585
Data encoding techniques in the hard disk 586
Interfacing standards in 1he hard disk 588
Interleaving 591
Low- and high-level formatting 592
Parking the head 592
Disk caching 592
Disk reliability 592

SECTION 19.3: DISK FILE PROGRAMMING 593
File handle and error code 593

CHAPTER 20: THE 80x87 MATH COPROCESSOR 600

SECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING­
POINT STANDARDS 601

IEEE floating point standard 60 I
IEEE single-precision floating-point numbers 602
IEEE double-precision floating-point numbers 602
Other data formats of the 8087 604

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING 605
Assembling and running 80x87 programs on the IBM PC 605
VerifYing the Solution for Examples 20-1 to 20-4 605
80x87 registers 607
Trig functions 612
Integer numbers 614

SECTION 20.3: 8087 HARDWARE CONNECTIONS IN THE IBM
PC/XT 616

8087 and 8088 connection in the IBM PC/XT 616
How the 8088 and 8087 work together in the IBM PC/XT 618

xxv

xxvi

SECTION 20.4: 80x87 INSTRUCTIONS AND TIMING 620
Real transfers 620
Integer transfers 621
Packed decimal transfers 621
Addition 621
Subtraction 621
Reversed subtraction 622
Multiplication 622
Division 622
Reversed division 622
Other arithmetic instructions 622
Compare instructions 623
Transcendental instructions 623
Constant instructions 624
Processor control instructions 625

CHAPTER 21: 386 MICROPROCESSOR: REAL vs. PROTECTED MODE 631

SECTION 21.1: 80386 IN REAL MODE 632
What happened to the 801 861188? 632
80186/88 instructions 632
80286 Microprocessor 634
Major changes in the 80386 634
80386 Real mode programming 635
32-bit registers 635
Which end goes first? 636
General registers as pointers 636
Scaled index addressing mode 637
Some new 386 instructions 639
MOVSX and MOVZX instructions 639
B it scan instructions 640

SECTION 21.2: 80386: A HARDWARE VIEW 641
Overview of pin functions of the 80386 642
Bus bandwidth in the 386 645
Data misalignment in the 386 646
110 address space in the 386 646

SECTION 21.3: 80386 PROTECTED MODE 647
Protection mechanism in the 386 647
Virtual memory 647
Segmentation and descriptor table 648
Local and global descriptor tables 651
64 Terabtyes of virtual memory 651
Paging 652
Going from a linear address to a physical address 653
The bigger the TLB, the better 654
Virtual 8086 mode 654

CHAPTER 22: HIGH-SPEED MEMORY INTERFACING AND CACHE 659

SECTION 22.1: MEMORY CYCLE TIME OF THE 80X86 660
Introducing wait states into the memory cycle 660

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE
DRAMS 662

Memory access time vs. memory cycle time 662
Types of DRAM 662
DRAM (standard mode) 663
DRAM interfacing using the interleaving method 663
Interleaved drawback 665
Page mode DRAM 667
Static column mode 669
Nibble mode 669
Timing comparison of DRAM modes 671

SECTION 22.3: CACHE MEMORY 672
Cache organization 673
Fully associative cache 673
Direct-mapped cache 674
Set associative 676
Updating main memory 678
Write-through 678
Write-back (copy-back) 678
Cache coherency 679
Cache replacement policy 679
Cache fill block size 679

SECTION 22.4: EDO, SDRAM, AND RAMBUS MEMORIES 680
EDO DRAM: origin and operation 680
SDRAM (synchronous DRAM) 682
Synchronous DRAM and burst mode 682
SDRAM and interleaving 683
Rambus DRAM 683
Overview of Rambus technology 683
Rambus protocol for block transfer 684

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX 690

SECTION 23.1: THE 80486 MICROPROCESSOR 691
Enhancements of the 486 691
CLK in the 80486 694
High memory area (HMA) and the 80486 695
386,486 Performance comparison 695
More about pipelining 695

SECTION 23.2: INTEL'S PENTIUM 697
Features of the Pentium 699
Intel's overdrive technology 703

xxvii

xxviii

SECTION 23.3: RISC ARCHITECTURE 704
Features of RISC 704
Comparison of sample program for RISC and CISC 707
IBMlMotorola RISC 709

SECTION 23.4: PENTIUM PRO PROCESSOR 710
Pentium Pro: internal architecture 710
Pentium Pro is both superpipelined and superscalar 711
What is out-of-order execution? 711
Branch prediction 714
Bus frequency vs. internal frequency in Pentium Pro 714

SECTION 23.5: MMX TECHNOLOGY 715
DSP and multimedia 715
Register aliasing by MMX 715
Data types in MMX 716

SECTION 23.6: PROCESSOR IDENTIFICATION IN INTEL X86 717
Program to identifY the CPU 717
CPUID instruction and MMX technology 718

CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS 724

SECTION 24.1: MS DOS STRUCTURE 725
DOS genealogy 725
From cold boot to DOS prompt 725
DOS standard device names 728
More about CONFIG.SYS and how it is used 728
What is AUTOEXEC.BAT and how is it used? 729
Types of DOS commands 730

SECTION 24.2: TSR AND DEVICE DRIVERS 731
Executing but not abandoning the program 731
How to make a program resident 731
Invoking the TSR 732
Hooking into hardware interrupts 732
Replacing the CS:IP values in the interrupt vector table 732
Writing a simple TSR 732
TSR with hot keys 734
Hooking into timer clock INT 08 735
DOS is not reentrant 736
Device drivers 736
Device driver categories 737

CHAPTER 25: MS DOS MEMORY MANAGEMENT 740

SECTION 25.1: 80x86 PC MEMORY TERMINOLOGY AND
CONCEPTS 741

Conventional memory 741
Upper memory area 741

IBM standard using ROM space in the upper memory area 742
Expanded memory 743
Extended memory 746
High memory area (HMA) 746
Shadow RAM 748
DOS MEM command 748

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING
HIGH 749

Loading high into HMA 749
Finding holes in the upper memory area 750
EMM386.EXE options and switches 751
Loading high TSR and device driver into upper memory area 754
Emulating expanded memory and using UMB in
386/486IPentium PC 755
How expanded memory is accessed 756

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN
CONSIDERATIONS 759

SECTION 26.1: OVERVIEW OF IC TECHNOLOGY 760
MOS vs. bipolar transistors 760
Overview of logic families 761
The case of inverters 761
CMOS inverter 762
Input, output characteristics of some logic families 762
History of logic families 763
Recent advances in logic families 764
Evolution ofIC technology in Intel's 8Ox86 microprocessors 765

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN
CONSIDERATIONS 766

IC fan-out 766
Capacitance derating 768
Power dissipation considerations 770
Dynamic and static currents 771
Power-down option and Intel's SL series 771
Ground bounce 771
Filtering the transient currents using decoupling capacitors 774
Bulk decoupling capacitor 774
Crosstalk 774
Transmission line ringing 775

SECTION 26.3: DATA INTEGRITY AND ERROR DETECTION
IN DRAM 776

Soft error and hard error 776
Mean time between failure (MTBF) and FIT for DRAM 777
Error detection and correction 778
ECL and gallium arsenide (GaAs) chips 780

xxix

xxx

CHAPTER 27: ISA, EISA, MCA, LOCAL, AND PCI BUS 784

SECTION 27.1: ISA, EISA, AND IBM MICRO CHANNEL 785
Master and slave 785
Bus arbitration 785
Bus protocol 785
Bus bandwidth 786
ISA buses 786
36-pin part of the ISA bus 789
Limitations of the I SA bus 791
IBM Micro Channel Architecture (MCA) 793
Major characteristics of MCA 794
EISA bus 795
EISA slot numbering 797
Bus performance comparison 798

SECTION 27.2: VL BUS AND PCI LOCAL BUSES 799
Definition and merits of local bus 799
VL bus (VESA local bus) characteristics 80 I
PCI local bus 80 I
PCI local bus characteristics 80 I
Plug and play feature 804
PC I connector 804
PCI performance 804

CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH CIC++ 808

SECTION 28.1: BIOS & DOS INTERRUPT PROGRAMMING
WITHC 809

Programming BIOS interrupts with CIC++ 809
Finding the conventional memory size with INT 12H 811
INT I 6 H and keyboard access 812
Programming INT 21H DOS function calls with CIC++ 812
Accessing segment registers 812
Accessing the carry flag in int86 and intdos functions 814

SECTION 28.2: PROGRAMMING PC HARDWARE WITH CIC++ 815
Accessing 80x86 SEGMENT:OFFSET memory addresses 815
Accessing BIOS data area with C 815
Programming input/output ports with CIC++ 816
Revisiting playing music 816
Accessing parallel printer's (LPTI) data bus with C 816
Finding memory above 1MB: the extended memory size 819
Programming the CMOS RAM real-time clock (RTC) 820
Accessing the CMOS RAM bytes 820
Programming CMOS RAM with CIC++ 822

APPENDIX A: DEBUG PROGRAMMING 825

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 847

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 883

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 898

APPENDIX E: BIOS INTERRUPTS 924

APPENDIX F: ASCII CODES 940

APPENDIX G: VO ADDRESS MAPS 941

APPENDIX H: IBM PCfPS BIOS DATA AREA 952

APPENDIX I: DATA SHEETS 959

REFERENCES 967

INDEX 969

xxxi

PREFACE TO VOLUMES I AND II

Purpose

This combined volume is intended for use in college-level courses in
which both Assembly language programming and 80x86 PC interfacing are dis­
cussed. It not only builds the foundation of Assembly language programming, but
also provides a comprehensive treatment of 80x86 PC design and interfacing for
students in engineering and computer science disciplines. This volume is intend­
ed for those who wish to gain an in-depth understanding of the internal working
of the IBM PC, PS, and 80x86 compatible computers. It builds a foundation for
the design and interfacing of microprocessor-based systems using the real-world
example of the 80x86IBM PC. In addition, it can also be used by practicing tech­
nicians, hardware engineers, computer scientists, and hobbyists who want to do
PC interfacing and data acquisition.

Prerequisites

Readers should have a minimal familiarity with the IBM PC and the DOS
operating system in addition to having had an introductory digital course.
Knowledge of other programming languages would be helpful, but is not neces-
sary.

Although a vast majority of current PCs use 386, 486, or Pentium micro­
processors, their design is based on the IBM PC/AT, an 80286 microprocessor
system introduced in 1984. A good portion of PC/AT features, hence its limita­
tions, are based on the original IBM PC, an 8088 microprocessor system, intro­
duced in 1981. In other words, one cannot expect to understand fully the archi­
tectural philosophy of the 80x86 PC and its expansion slot signals unless the
80286 PC/AT and its subset, the IBM PCIXT, are first understood. For this rea­
son, we describe the 8088 and 80286 microprocessors in Chapter 9.

Contents of Volume I

A systematic, step-by-step approach has been used in covering various
aspects of Assembly language programming. Many examples and sample pro­
grams are given to clarifY concepts and provide students an opportunity to learn
by doing. Review questions are provided at the end of each section to reinforce
the main points of the section. We feel that one of the functions of a textbook is
to familiarize the student with terminology used in technical literature and in
industry, so we have followed that guideline in this text.

Chapter 0 covers concepts in number systems (binary, decimal, and hex)
and computer architecture. Most students will have learned these concepts in pre­
vious courses, but Chapter 0 provides a quick overview for those students who
have not learned these concepts, or who may need to refresh their memory.

Chapter I provides a brief history of the evolution of x86 microproces­
sors and an overview of the internal workings of the 8086 as a basis of all x86
processors. Chapter I should be used in conjunction with Appendix A (a tutorial
introduction to DEBUG) so that the student can experiment with concepts being
learned on the PC. The order of topics in Appendix A has been designed to cor­
respond to the order of topics presented in Chapter I. Thus, the student can begin
programming with DEBUG without having to learn how to use an assembler.

Chapter 2 explains the use of assemblers to create programs. Although
the programs in the book were developed and tested with Microsoft's MASM
assembler, any Intel-compatible assembler such as Borland's TASM may be used.

xxxiii

xxxiv

Chapter 3 introduces the bulk of the logic and arithmetic instructions for
unsigned numbers, plus bitwise operations in C.

Chapter 4 introduces DOS and BIOS interrupts. Programs in Assembly
and C allow the student to get input from the keyboard and send output to the
monitor. In addition, interrupt programming in C is described, as well as how to
put Assembly language code in C programs.

Chapter 5 describes how to use macros to develop Assembly language
programs in a more time-efficient and structured manner. We also cover INT 33H
mouse function calls and mouse programming.

Chapter 6 covers arithmetic and logic instructions for signed numbers as
well as string processing instructions.

Chapter 7 discusses modular programming and how to develop larger
Assembly language programs by breaking them into smaller modules to be coded
and tested separately. In addition, linking Assembly language modules with C
programs is thoroughly explained.

Chapter 8 introduces some 32-bit concepts of 80386 and 80486 pro­
gramming. Although this book emphasizes 16-bit programming, the 386/486 is
introduced to help the student appreciate the power of 32-bit CPUs. Several pro­
grams are run across the 80x86 family to show the dramatic improvement in clock
cycles with the newer CPUs.

Contents of Volume II

Chapter 9 describes the 8088 and 286 microprocessors and supporting
chips in detail and shows how they are used in the original IBM PCIXTI AT. In
addition, the origin and function of the address, data, and control signals of the
ISA expansion slot are described.

Chapter 10 provides an introduction to various types of RAM and ROM
memories, their interfacing to the microprocessor, the memory map of the 80x86
PC, the timing issue in interfacing memory to the ISA bus, and the checksum byte
and parity bit techniques of ensuring data integrity in RAM and ROM.

Chapter II is dedicated to the interfacing of I/O ports, the use of IN and
OUT instructions in the 80x86, and interfacing and programming of the 8255 pro­
grammable peripheral chip. We describe 1/0 programming in several languages,
as well.

Chapter 12 covers the PC Interface Trainer and Bus Extender, which are
used to interface PCs to devices for data acquisition such as LCDs, stepper
motors, ADC, DAC, and sensors.

Chapter 13 discusses the use of the 8253/54 timer chip in the 80x86 PC,
as well as how to generate music and time delays.

Chapter 14 is dedicated to the explanation of hardware and software inter­
rupts, the use of the 8259 interrupt controller, the origin and assignment of IRQ
signals on the expansion slots of the ISA bus, and exception interrupts in 80x86
microprocessors.

Chapter 15 is dedicated to direct memory access (DMA) concepts, the use
of the 8237 DMA chip in the 80x86 PC, and DMA channels and associated sig­
nals on the ISA bus.

Chapter 16 covers the basics of video monitors and various video modes
and adapters of the PC, in addition to the memory requirements of various video
boards in graphics mode.

Chapter 17 discusses serial communication principles, the interfacing and
programming of National Semiconductor's 8250/16450116550 UART chip, Intel's
8251 USART chip, and verifying data integrity using the CRC method.

Chapter 18 covers the interfacing and programming of the keyboard in
the 80x86 PC, in addition to printer port interfacing and programming. In addi-

tion, a discussion of various types of parallel ports such as EPP and ECP is includ­
ed.

Chapter 19 discusses both floppy and hard disk storage organization and
terminology. We also show how to write Assembly language programs to access
files using INT 21 H DOS function calls.

Chapter 20 examines the 80x87 math coprocessor, its programming and
interfacing, and IEEE single and double precision floating point data types.

Chapter 21 explores the programming and hardware of the 386 micro­
processor, contrasts and explains real and protected modes, and discusses the
implementation of virtual memory.

Chapter 22 is dedicated to the interfacing of high-speed memories and
describes various types of DRAM, including EDO and SDRAM, and examines
cache memory and various cache organizations and terminology in detail.

In Chapter 23 we describe the main features of the 486, Pentium and
Pentium Pro and compare these microprocessors with the RISC processors.
Chapter 23 also provides a discussion of MMX technology and how to write pro­
grams to detect which CPU a PC has.

Chapter 24 describes the MS DOS structure and the role ofCONFIG.SYS
and batch files in the 80x86 PC, the writing of TSR (terminate and stay resident)
programs and device drivers.

Chapter 25 explains 80x86 PC memory terminology, such as convention­
al memory, expanded memory, upper memory block, high memory area, as well
as MS DOS memory management.

Chapter 26 provides an overview of the IC technology including the
recent advances in the IC fabrication, describes IC interfacing and system design
issues, and covers error detection and correction.

Chapter 27 is dedicated to the discussion of the various types of PC buses,
such as ISA, EISA, USB, their performance comparisons, the local bus and fea­
tures ofthe PCI local bus.

In Chapter 28 we show how to use C language to access DOS function
calls, BIOS interrupts, memory, input/output ports, and CMOS RAM of the
80x86.

Appendices

The appendices have been designed to provide all reference material
required for the topics covered in this combined volume so that no additional ref­
erences should be necessary.

Appendix A provides a tutorial introduction to DEBUG. Appendix B pro­
vides a listing of Intel's 8086 instruction set along with clock cycles for 80x86
microprocessors. Appendix C describes assembler directives with examples of
their use. Appendix D lists some commonly used DOS 21 H function calls and
!NT 33H mouse functions. Appendix E lists the function calls for various BIOS
interrupts. Appendix F provides a table of ASCII codes. Appendix G lists the 110
map of 80x86-based ISA computers. Appendix H provides a description of the
BIOS data area. Appendix I contains data sheets for various IC chips.

Lab Manual

The lab manual for this series is available on the following web site:

www.microdigitaled.com

xxxv

xxxvi

Acknowledgments

This book is the result of the dedication, work and love of many individ­
uals. Our sincere and heartfelt appreciation goes out to all of them. First, we must
thank the original reviewers who provided valuable suggestions and encourage­
ment: Mr. William H. Shannon of the University of Maryland, Mr. Howard W.
Atwell of Fullerton College, Mr. David G. Delker of Kansas State University, Mr.
Michael Chen of Duchess Community College, Mr. Yusuf Motiwala of Prairie
View A&M University, and Mr. Donald T. Coston of ITT Technical Institute. We
were truly amazed by the depth and breadth of their knowledge of microproces­
sor-based system design in general and 80x86 PC architecture in particular. We
sincerely appreciate their comments and suggestions.

Thanks also must go to the many students whose comments have helped
shape this book, especially Daniel Woods, Sam Oparah, Herbert Sendeki, Greg
Boyle, Philip Fitzer, Adnan Hindi, Kent Keeter, Mark Ford, Shannon Looper,
Mitch Johnson, Carol Killelea, Michael Madden, Douglas McAlister, David
Simmons, Dwight Brown, Clifton Snyder, Phillip Boatright, Wilfrid Lowe,
Robert Schabel, John Berry, Clyde Knight, Robert Jones (all ofDeVry Institute of
Technolgy), Lynnette Garetz (Heald College), Peter Woof (Southern Sydney
Institute, Lidcombe College of Tafe), M. Soleimanzadeh, Mark Lessley, Snehal
Amin, Travis Erck, Gary Hudson, Nathan Noel, Dan Bent, and Frank Fortman.

A word must also be said of our colleagues, especially the late Mr. Allan
Escher, whose encouragement set the making of this series into motion. For the
last 25 years, his dedication and love of microprocessor education were a source
of inspiration to many. A special thanks goes to Mr. James Vignali for his enthu­
siasm in discussing the internal intricacies of the 80x86 PC and his readiness to
keep current with the ever-changing world of the PC.

In addition, we offer our appreciation for the dedicated professionals at
Prentice Hall. Many thanks to Charles Stewart for his continued support and guid­
ance of this series.

Finally, we would like to sincerely thank the following professors from
some outstanding engineering schools whose enthusiasm for the book, sugges­
tions, and kind words have been encouraging to us and made us think we are on
the right track: Dr. Michael Chwialkowski (Electrical Engineering Dept.,
University of Texas at Arlington), Dr. Roger S. Walker (Computer Science
Engineering Dept., University of Texas at Arlington), Dr. Behbood Zoghi
(Electronics Engineering Technology, Texas A&M University).

ABOUT THE AUTHORS

Muhammad Ali Mazidi holds Master's degrees from both Southern
Methodist University and the University of Texas at Dallas, and currently is a.b.d.
on his Ph.D. in the Electrical Engineering Department of Southern Methodist
University. He is a co-founder and chief researcher of Microprocessor Education
Group, a company dedicated to bringing knowledge of microprocessors to the
widest possible audience. He also teaches microprocessor-based system design at
DeVry Institute of Technology in Dallas, Texas.

Janice Gillispie Mazidi has a Master of Science degree in Computer
Science from the University of North Texas. After several years experience as a
software engineer in Dallas, she co-founded Microprocessor Education Group,
where she is the chief technical writer, production manager, and is responsible for
software development and testing.

The Mazidis have been married since 1985 and have two sons, Robert
Nabil and Michael Jamal.

The authors can be contacted at the following address if you have any
comments, suggestions, or if you find any errors.

Microprocessor Education Group
P.O. Box 381970
Duncanville, TX 75138

email: mazidi@mail.dal.devry.edu
or: profmazidi@yahoo.com

The web site www.microdigitaled.com provides much support for this book.

xxxvii

CHAPTER 0

INTRODUCTION TO COMPUTING

1

To understand the software and hardware of the computer, one must first
master some very basic concepts underlying computer design. In this chapter
(which in the tradition of digital computers can be called Chapter 0), the fundamen­
tals of numbering and coding systems are presented. Then an introduction to the
workings of the inside of the computer is given. Finally, in the last section we give
a brief history of CPU architecture. Although some readers may have an adequate
background in many ofthe topics ofthis chapter, it is recommended that the material
be scanned, however briefly.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

2

Example 0-1

Whereas human beings use base 10 (decimal) arithmetic, computers use the
base 2 (binary) system. In this section we explain how to convert from the decimal
system to the binary system, and vice versa. The convenient representation of binary
numbers called hexadecimal also is covered. Finally, the binary format of the
alphanumeric code, called ASCII, is explored.

Decimal and binary number systems

Although there has been speculation that the origin of the base 10 system
is the fact that human beings have 10 fingers, there is absolutely no speculation
about the reason behind the use of the binary system in computers. The binary
system is used in computers because I and 0 represent the two voltage levels of on
and off. Whereas in base 10 there are 10 distinct symbols, 0, 1,2, ... ,9, in base 2
there are only two, 0 and 1, with which to generate numbers. Base 10 contains digits
o through 9; binary contains digits 0 and I only. These two binary digits, 0 and I,
are commonly referred to as bits.

Converting from decimal to binary

One method of converting from decimal to binary is to divide the decimal
number by 2 repeatedly, keeping track of the remainders. This process continues
until the quotient becomes zero. The remainders are then written in reverse order
to obtain the binary number. This is demonstrated in Example 0-1.

Convert 25 10 to binary.

Solution:

25/2
12/2
612
3/2
112

Quotient
12
6
3
1
o

Remainder
1 LSB (least significant bit)
o
o

MSB (most significant bit)

Therefore, 25 10 = 11001 2,

Converting from binary to decimal

To convert from binary to decimal, it is important to understand the concept
ofweigbt associated with each digit position. First, as an analogy, recall the weight
of numbers in the base 10 system:

CHAPTER 0: INTRODUCTION TO COMPUTING

Example 0-2

740683
'0

~

3x 10 0 3
8x 10 ' 80

6xl02 600

Ox 10 3 0000

4x 10 4 40000

7xl0 5 700000
740683

By the same token, each digit position in a number in base 2 has a weight
associated with it:

110101 2 Decimal Binary
lx 2° lxl 1 1

Ox2' Ox2 0 00

lx2 2 lx4 4 100

Ox 2 3 Ox8 0 0000

lx2 4 lx 16 16 10000

lx2 5 lx32 32 100000
53 110101

Knowing the weight of each bit in a binary number makes it simple to add
them together to get its decimal equivalent, as shown in Example 0-2.

Convert 11 00 12 to decimal.

Solution:
Weight:
Digits:
Sum:

Example 0-3

16 8 4 2
0 0

16 + 8+ 0+ o + I = 25 10

Knowing the weight associated with each binary bit position allows one to
convert a decimal number to binary directly instead of going through the process of
repeated division. This is shown in Example 0-3.

Use the concept of weight to convert 3910 to binary.

Solution:
Weight: 32 16 8 4 2 I

I 0 0 I I I
32 + 0+ o + 4 + 2 + 1=39

Therefore, 3910 ~ 100111 2.

Hexadecimal system

Base 16, the hexadecimal system as it is called in computer literature, is
used as a convenient representation of binary numbers. For example, it is much
easier for a human being to represent a string of Os and I s such as 1000 I 00 I 0 II 0
as its hexadecimal equivalent of896H. The binary system has 2 digits, 0 and I. The
base \0 system has \0 digits, 0 through 9. The hexadecimal (base 16) system must
have 16 digits. In base 16, the first \0 digits, 0 to 9, are the same as in decimal, and
for the remaining six digits, the letters A, B, C, D, E, and F are used. Table 0-1 shows
the equivalent binary, decimal, and hexadecimal representations for 0 to 15.

SECTION 0.1: NUMBERING AND CODING SYSTEMS 3

4

Converting between binary and hex

To represent a binary number
as its equivalent hexadecimal number,
start from the right and group 4 bits at
a time, replacing each 4-bit binary
number with its hex equivalent shown
in Table 0-1. To convert from hex to
binary, each hex digit is replaced with
its 4-bit binary equivalent. Converting
between binary and hex is shown in
Examples 0-4 and 0-5.

Converting from decimal to hex

Converting from decimal to
hex could be approached in two ways:

1. Convert to binary first and then con­
vert to hex. Experimenting with this
method is left to the reader.

2. Convert directly from decimal to hex
by the method of repeated division,
keeping track of the remainders. Ex­
ample 0-6 demonstrates this method
of converting decimal to hex.

Converting from hex to decimal

Conversion from hex to deci­
mal can also be approached in two
ways:

I. Convert from hex to binary and then
to decimal.

Table 0-1: Decimal, Binary, and Hex

I[i>ecimal _Binary _: aexadecimall

,0 'OOOO-! ° Ii

1

2

3

4

0001

0010

0011

0100

I 5._-+-,,-0...-10 ... 1_

[--,~,--+-.,.~ ~ ~'-"~-
8 1000

-±=
41

,

5 i

_--,6",--- ',1 I 7!'
I

8
1--

I 9,IO",O ... I_-i-_ __9_,:

L-~ I' -1010 A

I~ --- ___ 1..,0 ... 1 1 -If-- B

: 12 1100 l __ -,C,,- i

1
I 13 1101

l~:~ _ I ~~~~
D

E

F

2. Convert directly from hex to decimal by summing the weight of all digits.
Example 0-7 demonstrates the second method of converting from hex to decimal.

Example 0-4
Represent binary 100111110 10 I in hex.

Solution:
First the number is grouped into sets of 4 bits: 1001 1111 0101
Then each group of 4 bits is replaced with its hex equivalent:

1001 1111 0101
9 F 5

Therefore, 100111110101 2 ~ 9F5 hexadecimal.

Example 0-5

Convert hex 29B to binary.

Solution:
2 9 B

~ 0010 1001 1011
Dropping the leading zeros gives 10100110 II.

CHAPTER 0: INTRODUCTION TO COMPUTING

Example 0-6

(a) Convert 45 10 to hex.

Quotient Remainder Solution:
45116
21\6

2 13 (hex 0)
o 2

(least significant digit)
(most significant digit)

Therefore, 4510 = 2016.

(b) Convert decimal 629 to hexadecimal.

Quotient Remainder Solution:
6291\6
39116
2/16

39 5 (least significant digit)
2 7
o 2 (most significant digit)

Therefore, 629 10 = 275 16.

(e) Convert 1714 base 10 to hex.

Quotient Remainder Solution:
1714/16
1071\6
6116

107 2 (least significant digit)
6 II (hex B)
o 6 (most significant digit)

Therefore, 171410 = 6B216.

Example 0-7

Convert the following hexadecimal numbers to decimal.

(a) 6B216

Solution:
6B2 hexadecimal =

Therefore, 6B2 16 = 171410.

(b) 9F2016

Solution:
9F20 hexadecimal =

2x16 0

llx16 1

6x16 2

2x1

llx16

6x256

13x16 0

2x 161

15x162

9x16 3

Therefore, 9F2016 = 4074910.

13x1

2x16

15x256

9x4096

2

176

1536

1714

SECTION 0.1: NUMBERING AND CODING SYSTEMS

13

32

3840

36864

40749

5

6

Counting in bases 10, 2, and 16

To show the relationship between
all three bases, in Figure 0-1 we show the
sequence of numbers from 0 to 31 in deci­
mal, along with the equivalent binary and
hex numbers. Notice in each base that
when one more is added to the highest
digit, that digit becomes zero and a I is
carried to the next-highest digit position.
For example, in decimal, 9 + I = 0 with a
carry to the next-highest position. In bi­
nary, I + I = 0 with a carry; similar/y, in
hex, F + I = 0 with a carry.

Table 0-2: Binary Addition . _= __ =_ --------,=_o~o_.
, I;

ii A+B:9lr.ry· SunL~

0+0 0 0

0+1 0

, 1+0 0
!~ --- -, -----

I

1 + I 1; 0;
"----- ---~- ~--, ____ ~I

Addition of binary and hex numbers

The addition of binary numbers is
a very straightforward process. Table 0-2
shows the addition of two bits. The dis­
cussion of subtraction of binary numbers
is bypassed since all computers use the
addition process to implement subtrac­
tion. Although computers have adder cir­
cuitry, there is no separate circuitry for

Decimal Binary

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

Figure 0-1 . Counting in 3 Bases

o
2
3
4
5
6
7
8
9
A
B
C
Ll
E
F

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
10
1E
1F

subtractors. Instead, adders are used in conjunction with 2 s complement circuitry
to perform subtraction. In other words, to implement "x - y", the computer takes
the 2's complement ofyand adds ittox. The concept of2's complement is reviewed
next, but the process of subtraction of two binary numbers using 2's complement is
shown in detail in Chapter 3. Example 0-8 shows the addition of binary numbers.

Examjlle 0-8

Add the fOllowing binary numbers. Check against their decimal equivalents.

Solution:

+

Hi nary
1101
1001

10110
101100

Decimal
13
9

22
44

2's complement

To get the 2's complement of a binary number, invert all the bits and then
add I to the result. Inverting the bits is simply a matter of changing all Os to I sand
1 s to Os. This is called the 1 s complement. See Example 0-9.

CHAPTER 0: INTRODUCTION TO COMPUTING

Example 0-9
Take the 2's complement of 100 III 0 I.

Solution:
10011101
01100010

binary number
I's complement

+ I
01100011 2's complement

Example 0-10

Addition and subtraction of hex numbers

In studying issues related to software and hardware of computers, it is often
necessary to add or subtract hex numbers. Mastery of these techniques is essential.
Hex addition and subtraction are discussed separately below.

Addition of hex numbers

This section describes the process of adding hex numbers. Starting with
the least significant digits, the digits are added together. If the result is less than 16,
write that digit as the sum for that position. If it is greater than 16, subtract 16 from
it to get the digit and carry I to the next digit. The best way to explain this is by
example, as shown in Example 0-10.

Perform hex addition: 2309 + 94BE.

Solution:
2309

+ 94BE
B897

LSO: 9 + 14
1+13+11
1+ 3 + 4

MSO: 2+9=B

23 23 - 16 = 7 with a carry to next digit

25 25 - 16 = 9 with a carry to next digit
8

Subtraction of hex numbers

Example 0-11

In subtracting two hex numbers, if the second digit is greater than the first,
borrow 16 from the preceding digit. See Example 0- I I .

Perform hex subtraction: 59F - 2B8.

Solution:
59F

- 2B8
2E7

LSD: 8 from 15 = 7
1 I from 25 (9 + 16) = 14, which is E

MSO: 2from4(5-1)=2

SECTION 0.1: NUMBERING AND CODING SYSTEMS 7

ASCII code

The discussion so far has revolved around the representation of number
systems. Since all information in the computer must be represented by Os and Is,
binary patterns must be assigned to letters and other characters. In the 1960s a
standard representation called ASCII (American Standard Code for Information
Interchange) was established. The ASCII (pronounced "ask-E") code assigns binary
patterns for numbers 0 to 9, all the letters of the English alphabet, both uppercase
(capital) and lowercase, and many control codes and punctuation marks. The great
advantage of this system is that it is used by most computers, so that information
can be shared among computers. The ASCII system uses a total of7 bits to represent
each code. For example, 1000001 is assigned to the uppercase letter "A" and 110
0001 is for the lowercase "a". Often, a zero is placed in the most significant bit
position to make it an 8-bit code. Figure 0-2 shows selected ASCII codes. A
complete list of ASCII codes is given in Appendix F. The use of ASCII is not only
standard for keyboards used in the United States and many other countries but also
provides a standard for printing and displaying characters by output devices such
as printers and monitors.

The pattern of ASCII codes was designed to allow for easy manipulation of ASCII data. For example,
digits 0 through 9 are represented by ASCII codes 30 through 39. This enables a program to easily
convert ASCII to decimal by masking off the "3" in the upper nibble. As another example, notice in
the codes listed below that there is a relationship between the uppercase and lowercase letters.
Namely, uppercase letters are represented by ASCII codes 41 through 5A while lowercase letters are
represented by ASCII codes 61 through 7 A. Looking at the binary code, the only bit that is different
between uppercase "A" and lowercase "a" is bit 5. Therefore conversion between uppercase and low­
ercase is as simple as changing bit 5 of the ASCII code.

Hex Symbol Hex Symbol
41 A 61 a
42 B 62 b
43 C 63 c
44 0 64 d
45 E 65 e
46 F 66 f
47 G 67 g
48 H 68 h
49 I 69
4A J 6A j
4B K 6B k
4C L 6C I
40 M 60 m
4E N 6E n
4F 0 6F 0

50 P 70 P
51 Q 71 q
52 R 72
53 S 73 s
54 T 74 t
55 U 75 u
56 V 76 v
57 W 77 w
58 X 78 x
59 Y 79 y
5A Z 7A z

Figure 0-2. Alphanumeric ASCII Codes

8 CHAPTER 0: INTRODUCTION TO COMPUTING

Review Questions

1. Why do computers use the binary number system instead ofthe decimal system?
2. Convert 3410 to binary and hex.
3. Convert 11010 12 to hex and decimal.
4. Perform binary addition: 101100 + 101.
5. Convert 1011002 to its 2's complement representation.
6. Add 36BH + F6H.
7. Subtract 36BH - F6H.
8. Write "80x86 CPUs" in its ASCII code (in hex form).

SECTION 0.2: INSIDE THE COMPUTER

In this section we provide an introduction to the organization and internal
working of computers. The model used is generic, but the concepts discussed are
applicable to all computers, including the IBM PC, PS/2, and compatibles. Before
embarking on this subject, it will be helpful to review definitions of some of the
most widely used terminology in computer literature, such as K, mega, giga, byte,
ROM, RAM, and so on.

Some important terminology

One of the most important features of a computer is how much memory it
has. Next we review terms used to describe amounts of memory in IBM PCs and
compatibles. Recall from the discussion above that a bit is a binary digit that can
have the value 0 or I. A byte is defined as 8 bits. A nibble is half a byte, or 4 bits.
A word is two bytes, or 16 bits. The following display is intended to show the relative
size of these units. Of course, they could all be composed of any combination of
zeros and ones.

Bit
Nibble
Byte
Word

a
0000

0000 0000
0000 0000 0000 0000

A kilobyte is 210 bytes, which is 1024 bytes. The abbreviation K is often
used. For example, some floppy disks hold 356K bytes of data. A megabyte, or
meg as some call it, is 220 bytes, That is a little over I million bytes; it is exactly
1,048,576. Moving rapidly UJ' the scale in size, a gigabyte is 230 bytes (over I
billion), and a terabyte is 24 bytes (over I trillion). As an example of how some
of these terms are used, suppose that a given computer has 16 megabytes of memory.
That would be 16 x 220, or 24 x 220, which is 224 Therefore 16 megabytes is 224
bytes.

Two types of memory commonly used in microcomputers are RAM, which
stands for random access memory (sometimes called read/write memory),
and ROM, which stands for read-only memory. RAM is used by the computer for
temporary storage of programs that it is running, That data is lost when the computer
is turned off. For this reason, RAM is sometimes called volatile memory. ROM
contains programs and information essential to operation of the computer. The
information in ROM is permanent, cannot be changed by the user, and is not lost
when the power is turned off. Therefore, it is called nonvolatile memory.

Internal organization of computers

The internal working of every computer can be broken down into three
parts: CPU (central processing unit), memory, and I/O (input/output) devices (see
Figure 0-3). The function of the CPU is to execute (process) information stored in
memory. The function ofI/O devices such as the keyboard and video monitor is to
provide a means of communicating with the CPU, The CPU is connected to memory

SECTION 0.2: INSIDE THE COMPUTER 9

CPU

and I/O through strips of wire called a bus. The bus inside a computer carries
information from place to place just as a street bus carries people Irom place to place.
In every computer there are three types of buses: address bus, data bus, and control
bus.

For a device (memory or lIO) to be recognized by the CPU, it must be
assigned an address. The address assigned to a given device must be unique; no
two devices are allowed to have the same address. The CPU puts the address (of
course, in binary) on the address bus, and the decoding circuitry finds the device.
Then the CPU uses the data bus either to get data from that device or to send data
to it. The control buses are used to provide read or write signals to the device to
indicate if the CPU is asking for information or sending it information. Of the three
buses, the address bus and data bus determine the capability of a given CPU.

Address bus
I

Memory Peripherals
(monitor,

(RAM, ROM) printer, etc.)

I
Data bus

Figure 0-3. Inside the Computer

10

More about the data bus

Since data buses are used to carry information in and out of a CPU, the more
data buses available, the better the CPU, If one thinks of data buses as highway
lanes, it is clear that more lanes provide a better pathway between the CPU and its
external devices (such as printers, RAM, ROM, etc.; see Figure 0-4). By the same
token, that increase in the number of lanes increases the cost of construction. More
data buses mean a more expensive CPU and computer. The average size of data
buses in CPUs varies between 8 and 64. Early computers such as Apple 2 used an
8-bit data bus, while supercomputers such as Cray use a 64-bit data bus. Data buses
are bidirectional, since the CPU must use them either to receive or to send data. The
processing power of a computer is related to the size of its buses, since an 8-bit bus
can send out 1 byte a time, but a 16-bit bus can send out 2 bytes at a time, which is
twice as fast.

More about the address bus

Since the address bus is used to identifY the devices and memory connected
to the CPU, the more address buses available, the larger the number of devices that
can be addressed. In other words, the number of address buses for a CPU determines
the number of locations with which it can communicate. The number of locations
is always equal to 2x, where x is the number of address lines, regardless of the size
of the data bus. For example, a CPU with 16 address lines can provide a total of
65,536 (2 16) or 64K bytes of addressable memory. Each location can have a
maximum of 1 byte of data. This is due to the fact that all general-purpose
microprocessor CPUs are what is called byte addressable. As another example, the
IBM PC AT uses a CPU with 24 address lines and 16 data lines. In this case the
total accessible memory is 16 megabytes (224 = 16 megabytes). In this example
there would be 224 locations, and since each location is one byte, there would be 16
megabytes of memory. The address bus is a unidirectional bus, which means that
the CPU uses the address bus only to send out addresses. To summarize: The total
number of memory locations addressable by a given CPU is always equal to 2X

where x is the number of address bits, regardless of the size of the data bus.

CHAPTER 0: INTRODUCTION TO COMPUTING

Address bus

l ~ l l l l
RAM ROM Printer Disk Monitor Key-

CPU board

1 ! t t t ~
Data bus

Read/
write Control bus

Figure 0-4. Internal Organization of Computers

CPU and its relation to RAM and ROM

F or the CPU to process information, the data must be stored in RAM or
ROM. The function of ROM in computers is to provide information that is fixed
and permanent. This is information such as tables for character patterns to be
displayed on the video monitor, or programs that are essential to the working of the
computer, such as programs for testing and finding the total amount of RAM
installed on the system, or programs to display information on the video monitor.
In contrast, RAM is used to store information that is not permanent and can change
with time, such as various versions ofthe operating system and application packages
such as word processing or tax calculation packages. These programs are loaded
into RAM to be processed by the CPU. The CPU cannot get the information from
the disk directly since the disk is too slow. In other words, the CPU gets the
information to be processed, first from RAM (or ROM). Only ifit is not there does
the CPU seek it from a mass storage device such as a disk, and then it transfers the
information to RAM. For this reason, RAM and ROM are sometimes referred to
as primary memory and disks are called secondary memory. Figure 0-4 shows a
block diagram of the internal organization of the PC.

Inside CPUs

A program stored in memory provides instructions to the CPU to perform
an action. The action can simply be adding data such as payroll data or controlling
a machine such as a robot. It is the function of the CPU to fetch these instructions
from memory and execute them. To perform the actions of fetch and execute, all
CPUs are equipped with resources such as the following:

I. Foremost among the resources at the disposal of the CPU are a number of registers.
The CPU uses registers to store information temporarily. The information could be
two values to be processed, or the address of the value needed to be fetched from
memory. Registers inside the CPU can be 8-bit, 16-bit, 32-bit, or even 64-bit
registers, depending on the CPU. In general, the more and bigger the registers, the
better the CPU. The disadvantage of more and bigger registers is the increased cost
of such a CPU.

2. The CPU also has what is called the ALU (arithmetic/logic unit). The ALU section
of the CPU is responsible for performing arithmetic functions such as add, subtract,
multiply, and divide, and logic functions such as AND, OR, and NOT.

3. Every CPU has what is called a program counter. The function of the program
counter is to point to the address of the next instruction to be executed. As each
instruction is executed, the program counter is incremented to point to the address
of the next instruction to be executed. It is the contents of the program counter that
are placed on the address bus to find and fetch the desired instruction. In the IBM
PC, the program counter is a register called IP, or the instruction pointer.

SECTION 0.2: INSIDE THE COMPUTER 11

r 12

4. The function of the instruction decoder is to interpret the instruction fetched into
the CPU. One can think of the instruction decoder as a kind of dictionary, storing
the meaning of each instruction and what steps the CPU should take upon receiving
a given instruction. Just as a dictionary requires more pages the more words it
defines, a CPU capable of understanding more instructions requires more transistors
to design.

Internal working of computers

To demonstrate some of the concepts discussed above, a step-by-step
analysis of the process a CPU would go through to add three numbers is given next.
Assume that an imaginary CPU has registers called A, B, C, and D. It has an 8-bit
data bus and a 16-bit address bus. Therefore, the CPU can access memory from
addresses 0000 to FFFFH (for a total of 10000H locations). The action to be
performed by the CPU is to put hexadecimal value 21 into register A, and then add
to register A values 42H and 12H. Assume that the code for the CPU to move a
value to register A is 1011 0000 (BOH) and the code for adding a value to register
A is 0000 01 00 (04H). The necessary steps and code to perform them are as follows.

Action
Move value 21 H into register A
Add value 42H to register A
Add value 12H to register A

Code
BOH
04H
04H

Data
21H
42H
12H

If the program to perform the actions listed above is stored in memory
locations starting at 1400H, the following would represent the contents for each
memory address location:

Memory address
1400
1401
1402
1403
1404
1405
1406

Contents of memory address
(BO) the code for moving a value to register A
(21) the value to be moved
(04) the code for adding a value to register A
(42) the value to be added
(04) the code for adding a value to register A
(12) the value to be added
(F4) the code for halt

The actions performed by the CPU to run the program above would be as
follows:

I. The CPU's program counter can have a value between 0000 and FFFFH. The
program counter must be set to the value 1400H, indicating the address of the first
instruction code to be executed. After the program counter has been loaded with
the address of the first instruction, the CPU is ready to execute.

2. The CPU puts 1400H on the address bus and sends it out. The memory circuitry
finds the location while the CPU activates the READ signal, indicating to memory
that it wants the byte at location 1400H. This causes the contents of memory
location 1400H, which is BO, to be put on the data bus and brought into the CPU.

3. The CPU decodes the instruction BO with the help of its instruction decoder
dictionary. When it finds the definition for that instruction it knows it must bring
into register A of the CPU the byte in the next memory location. Therefore, it
commands its controller circuitry to do exactly that. When it brings in value 21H
from memory location 140 I, it makes sure that the doors of all registers are closed
except register A. Therefore, when value 21 H comes into the CPU it will go directly
into register A. After completing one instruction, the program counter points to the
address ofthe next instruction to be executed, which in this case is 1402H. Address
1402 is sent out on the address bus to fetch the next instruction.

4. From memory location 1402H it fetches code 04H. After decoding, the CPU knows
that it must add to the contents of register A the byte sitting at the next address (1403).
After it brings the value (in this case 42H) into the CPU, it provides the contents of

CHAPTER 0: INTRODUCTION TO COMPUTING

register A along with this value to the ALU to perform the addition. It then takes
the result ofthe addition from the ALU's output and puts it in register A. Meanwhile
the program counter becomes 1404, the address of the next instruction.

5. Address 1404H is put on the address bus and the code is fetched into the CPU,
decoded, and executed. This code is again adding a value to register A. The program
counter is updated to 1406H.

6. Finally, the contents of address 1406 are fetched in and executed. This HALT
instruction tells the CPU to stop incrementing the program counter and asking for
the next instruction. [n the absence of the HALT, the CPU would continue updating
the program counter and fetching instructions.

Now suppose that address 1403H contained value 04 instead of 42H. How
would the CPU distinguish between data 04 to be added and code 04? Remember
that code 04 for this CPU means move the next value into register A. Therefore,
the CPU will not try to decode the next value. It simply moves the contents of the
following memory location into register A, regardless of its value.

Review Questions

1. How many bytes is 24 kilobytes"
2. What does "RAM" stand for? How is it used in computer systems?
3. What does "ROM" stand for? How is it used in computer systems?
4. Why is RAM called volatile memory?
5. List the three major components of a computer system.
6. What does "CPU" stand for? Explain its function in a computer.
7. List the three types of buses found in computer systems and state briefly the pur­

pose of each type of bus.
8. State which of the following is unidirectional and which is bidirectional.

(a) data bus (b) address bus
9. If an address bus for a given computer has 16 lines, then what is the maximum

amount of memory it can access?
[0. What does "ALU" stand for? What is its purpose?
II. How are registers used in computer systems?
12. What is the purpose of the program counter?
13. What is the purpose of the instruction decoder?

SECTION 0.3: BRIEF HISTORY OF THE CPU

In the 1940s, CPUs were designed using vacuum tubes. The vacuum tube
was bulky and consumed a lot of electricity. For example, the first large-scale digital
computer, ENIAC, consumed 130,000 watts of power and occupied 1500 square
feet. The invention of transistors changed all of that. In the 1950s, transistors
replaced vacuum tubes in the design of computers. Then in 1959, the first IC
(integrated circuit) was invented. This set into motion what many people believe is
the second industrial revolution. [n the 1960s the use ofIC chips in the design of
CPU boards became common. It was not until the 1970s that the entire CPU was
put on a single IC chip. The first working CPU on a chip was invented by Intel in
1971. This CPU was called a microprocessor. The first microprocessor, the 4004,
had a 4-bit data bus and was made of 2300 transistors. It was designed primarily
for the hand-held calculator but soon came to be used in applications such as
traffic-light controllers. The advances in IC fabrication made during the 1970s made
it possible to design microprocessors with an 8-bit data bus and a 16-bit address bus.
By the late 1970s, the Intel 8080/85 was one ofthe most widely used microproces­
sors, appearing in everything from microwave ovens to homemade computers.
Meanwhile, many other companies joined in the race for faster and better micro­
processors. Notable among them was Motorola with its 6800 and 68000 microproc­
essors. Apple's Macintosh computers use the 68000 series microprocessors. Figure
0-5 shows a block diagram of the internal structure ofa CPU.

SECTION 0.3: BRIEF HISTORY OF THE CPU 13

I

Flags ALU

I

Internal
buses

Figure 0-5. Internal Block Diagram of a CPU

else VS. Rise

I
Program counter

Instruction register

Instruction
decoder, timing,
and control

Register A

Register B

Register C

Register D

-

Address
bus

Control
buses

Data
bus

Until the early 1980s, all CPUs, whether single-chip or whole-board,
followed the CISe (complex instruction set computer) design philosophy. CISC
refers to CPUs with hundreds of instructions designed for every possible situation.
To design CPUs with so many instructions consumed not only hundreds of thou­
sands of transistors, but also made the design very complicated, time-consuming,
and expensive. In the early 1980s, a new CPU design philosophy called RiSe
(reduced instruction set computer) was developed. The proponents ofRISC argued
that no one was using all the instructions etched into the brain ofCISC-type CPUs.
Why not streamline the instructions by simplifying and reducing them from hun­
dreds to around 40 or so and use all the transistors that are saved to enhance the
power of the CPU? Although the RISC concept had been explored by computer
scientists at IBM as early as the 1970s, the first working single-chip RISC micro­
processor was implemented by a group of researchers at the University of California
at Berkeley in 1980. Today the RISC design philosophy is no longer an experiment
limited to research laboratories. Since the late 1980s, many companies designing
new CPU s (either single-chip or whole-board) have used the RISC philosophy. It
appears that eventually the only CISC microprocessors remaining in use will be
members of the 80x86 family (8086. 8088, 80286, 80386, 80486, 80586, etc.) and
the 680xO family (68000, 68010, 68020, 68030, 68040, 68050, etc.). The 80x86
will be kept alive by the huge base of IBM PC, PS, and compatible computers, and
the Apple Macintosh is prolonging the life of 680xO microprocessors.

Review Questions

I. What is a microprocessor?
2. Describe briefly how advances in technology have affected the size, cost, and avail­

ability of computer systems.
3. Explain thc major difference between CISC and RISC computers.

14 CHAPTER 0: INTRODUCTION TO COMPUTING

SUMMARY

The binary number system represents all numbers with a combination of
the two binary digits, 0 and 1. The use of binary systems is necessary in digital
computers because only two states can be represented: on or off. Any binary number
can be coded directly into its hexadecimal equivalent for the convenience of humans.
Converting from binary/hex to decimal, and vice versa, is a straightforward process
that becomes easy with practice. The ASCII code is a binary code used to represent
alphanumeric data internally in the computer. It is frequently used in peripheral
devices for input and/or output.

The major components of any computer system are the CPU, memory, and
I/O devices. "Memory" refers to temporary or permanent storage of data. In most
systems, memory can be accessed as bytes or words. The terms kilobyte, megabyte,
gigabyte, and terabyte are used to refer to large numbers of bytes. There are two
main types of memory in computer systems: RAM and ROM. RAM (random access
memory) is used for temporary storage of programs and data. ROM (read-only
memory) is used for permanent storage of programs and data that the computer
system must have in order to function. All components of the computer system are
under the control ofthe CPU. Peripheral devices such as I/O (input/output) devices
allow the CPU to communicate with humans or other computer systems. There are
three types of buses in computers: address, control, and data. Control buses are used
by the CPU to direct other devices. The address bus is used by the CPU to locate a
device or a memory location. Data buses are used to send information back and forth
between the CPU and other devices.

As changes in technology were incorporated into the design of computers,
their cost and size were reduced dramatically. The earliest computers were as large
as an average home and were available only to a select group of scientists. The
invention of transistors and subsequent advances in their design have made the
computer commonly available. As the limits of hardware innovation have been
approached, computer designers are looking at new design techniques, such as RISC
architecture, to enhance computer performance.

PROBLEMS

SUMMARY

1. Convert the following decimal numbers to binary.
(a) 12 (b) 123 (c) 63 (d) 128 (e) 1000

2. Convert the following binary numbers to decimal.
(a) 100100 (b) 1000001 (c) 11101 (d) 1010 (e) 00100010

3. Convert the values in Problem 2 to hexadecimal.
4. Convert the following hex numbers to binary and decimal.

(a) 2B9H (b) F44H (c) 912H (d) 2BH (e) FFFFH
S. Convert the values in Problem 1 to hex.
6. Find the 2's complement of the following binary numbers.

(a) 1001010 (b) 111001 (c) 10000010 (d) 111110001
7. Add the following hex values.

(a) 2CH+3FH (b) F34H+SD6H (c) 20000H+12FFH (d) FFFFH+2222H
8. Perform hex subtraction for the following.

(a) 24FH-129H (b) FE9H-SCCH (c) 2FFFFH-FFFFFH (d) 9FF2SH-4DD99H
9. Show the ASCII codes for numbers 0, 1,2,3, ... , 9 in both hex and binary.

10. Show the ASCII code (in hex) for the following string:
"U.S.A. is a country" CR,LF
"in North America" CR,LF
CR is carriage return
LF is line feed

15

II. Answer the following:
(a) How many nibbles are 16 bits?
(b) How many bytes are 32 bits?
(c) If a word is defined as 16 bits, how many words is a 64-bit data item?
(d) What is the exact value (in decimal) of I meg?
(e) How many K is I meg?
(f) What is the exact value (in decimal) of giga?
(g) How many K is I giga?
(h) How many meg is I giga?
(i) Ifa given computer has a total of 8 megabytes of memory, how many bytes

(in decimal) is this? How many kilobytes is this?
12. A given mass storage device such as a hard disk can store 2 gigabytes of inform a­

tion. Assuming that each page of text has 25 rows and each row has 80 columns
of ASCII characters (each character = I byte), approximately how many pages of
information can this disk store?

13. In a given byte-addressable computer, memory locations 10000H to 9FFFFH are
available for user programs. The first location is 10000H and the last location is
9FFFFH. Calculate the following:
(a) The total number of bytes available (in decimal)
(h) The total number of kilobytes (in decimal)

14. A given computer has a 32-bit data bus. What is the largest number that can be
carried into the CPU at a time?

IS. Below are listed several computers with their data bus widths. For each com­
puter, list the maximum value that can be brought into the CPU at a time (in both
hex and decimal).
(a) Apple 2 with an 8-bit data bus
(b) IBM PS/2 with a 16-bit data bus
(c) IBM PS/2 model 80 with a 32-bit data bus
(d) CRA Y supercomputer with a 64-bit data bus

16. Find the total amount of memory, in the units requested, for each of the following
CPUs, given the size of the address buses.
(a) 16-bit address bus (in K)
(b) 24-bit address bus (in meg)
(c) 32-bit address bus (in megabytes and gigabytes)
(d) 48-bit address bus (in megabytes, gigabytes and terabytes)

17. Regarding the data bus and address bus, which is unidirectional and which is bi-
directional?

18. Which register ofthe CPU holds the address of the instruction to be fetched?
19. Which section of the CPU is responsible for performing addition?
20. Which type of CPU (CISC or RISC) has the greater variety of instructions?

ANSWERS TO REVIEW QUESTIONS

SECTION 0.1: NUMBERING AND CODING SYSTEMS

1. Computers use the binary system because each bit can have one of two voltage levels: on and off.
2. 3410 = 1000102 = 2216
3. 110101 2 = 3516 = 5310
4. 1110001
5. 010100
6. 461
7. 275
8. 38 30 78 38 36 20 43 50 55 73

16 CHAPTER 0: INTRODUCTION TO COMPUTING

SECTION 0.2: INSIDE THE COMPUTER

1. 24,576
2. random access memory; it is used for temporary storage of programs that the CPU is running, such as

the operating system, word processing programs, etc.
3. read-only memory; it is used for permanent programs such as those that control the keyboard, etc.
4. the contents of RAM are lost when the computer is powered off
5. the CPU, memory, and I/O devices
6. central processing unit; it can be considered the "brain" of the computer, it executes the programs and

controls all other devices in the computer
7. the address bus carries the location (address) needed by the CPU; the data bus carries information in

and out of the CPU; the control bus is used by the CPU to send signals controlling I/O devices
8. (a) bidirectional (b) unidirectional
9. 64K, or 65,536 bytes

10. arithmetic/logic unit; it performs all arithmetic and logic operations
11 for temporary storage of information
12. it holds the address of the next instruction to be executed
13. it tells the CPU what steps to perform for each instruction

SECTION 0.3: BRIEF HISTORY OF THE CPU

1. a CPU on a single chip
2. The transition from vacuum tubes to transistors to ICs reduced the size and cost of computers and

therefore made them more widely available.
3. CISC computers use many instructions whereas RISC computers use a small set Qf instructions.

ANSWERS TO REVIEW QUESTIONS 17

CHAPTER!

THE 80x86 MICROPROCESSOR

18 CHAPTER 1: THE 80x86 MICROPROCESSOR

This chapter begins with a history of the evolution of Intel's family of
microprocessors. The second section is an overview of the internal workings of
80x86 microprocessors. An introduction to 80x86 Assembly language programming
is given in the third section. The fourth and fifth sections cover segments of
Assembly language programs and how physical addresses are generated. Finally,
the last section describes in detail the addressing modes of the 80x86.

SECTION 1.1: BRIEF HISTORY OF THE 80x86 FAMILY

In this section we trace the evolution ofIntel's family of microprocessors
from the late 1970s, when the personal computer had not yet found widespread
acceptance, to the powerful microcomputers widely in use today.

Evolution from 8080/8085 to 8086

In 1978, Intel Corporation introduced a 16-bit microprocessor called the
8086. This processor was a major improvement over the previous generation
8080/8085 series Intel microprocessors in several ways. First, the 8086's capacity
of 1 megabyte of memory exceeded the 8080/8085 's capability of handling a
maximum of 64K bytes of memory. Second, the 8080/8085 was an 8-bit system,
meaning that the microprocessor could work on only 8 bits of data at a time. Data
larger than 8 bits had to be broken into 8-bit pieces to be processed by the CPU. In
contrast, the 8086 is a 16-bit microprocessor. Third, the 8086 was a pipelined
processor, as opposed to the nonpipelined 8080/8085. In a system with pipelining,
the data and address buses are busy transferring data while the CPU is processing
information, thereby increasing the effective processing power of the microproces­
sor. Although pipe lining was a common feature of mini- and mainframe computers,
Intel was a pioneer in putting pipe lining on a single-chip microprocessor. Pipe lining
is discussed further in Section 1.2.

Evolution from 8086 to 8088

The 8086 is a microprocessor with a 16-bit data bus internally and exter­
nally, meaning that all registers are 16 bits wide and there is a 16-bit data bus to
transfer data in and out of the CPU. Although the introduction of the 8086 marked
a great advancement over the previous generation of microprocessors, there was
still some resistance in using the 16-bit external data bus since at that time all
peripherals were designed around an 8-bit microprocessor. In addition, a printed
circuit board with a 16-bit data bus was much more expensive. Therefore, Intel
came out with the 8088 version. It is identical to the 8086 as far as programming
is concerned, but externally it has an 8-bit data bus instead of a 16-bit bus. It has
the same memory capacity, 1 megabyte.

Success of the 8088

In 1981, Intel's fortunes changed forever when IBM picked up the 8088 as
their microprocessor of chuice in uesigning the IBM PC. The 8088-baseu IBM PC
was an enormous success, largely because IBM and Microsoft (the developer of the
MS-DOS operating system) made itan open system, meaning that all documentation
and specifications of the hardware and software of the PC were made public. This
made it possible for many other vendors to clone the hardware successfully and thus
spawned a major growth in both hardware and software designs based on the IBM
pc. This is in contrast with the Apple computer, which was a closed system, blocking
any attempt at cloning by other manufacturers, both domestically and overseas.

Other microprocessors: the 8D286, 80386, and 80486

With a major victory behind Intel and a need from PC users for a more
powerful microprocessor, Intel introduced the 80286 in 1982. Its features included
16-bit internal and external data buses; 24 address lines, which give 16 megabytes
of memory (224 = 16 megabytes); and most significantly, virtual memory The

SECTION 1.1: BRIEF HISTORY OF THE 80x86 FAMILY 19

80286 can operate in one of two modes: real mode or protected mode. Real mode
is simply a faster 8088/8086 with the same maximum of I megabyte of memory.
Protected mode allows for 16M of memory but is also capable of protecting the
operating system and programs from accidental or deliberate destruction by a user,
a feature that is absent in the single-user 8088/8086. Virtual memory is a way of
fooling the microprocessor into thinking that it has access to an almost unlimited
amount of memory by swapping data between disk storage and RAM. IBM picked
up the 80286 for the design of the IBM PC AT, and the clone makers followed IBM's
lead.

With users demanding even more powerful systems, in 1985 Intel intro­
duced the 80386 (sometimes called 80386DX), internally and externally a 32-bit
microprocessor with a 32-bit address bus. It is capable of handling physical memory
of up to 4 gigabytes (232). Virtual memory was increased to 64 terabytes (246). All
microprocessors discussed so far were general-purpose microprocessors and could
not handle mathematical calculations rapidly. For this reason, Intel introduced
numeric data processing chips, called math coprocessors, such as the 8087, 80287,
and 80387. Later Intel introduced the 386SX, which is internally identical to the
80386 but has a 16-bit external data bus and a 24-bit address bus which gives a
capacity of 16 megabytes (224) of memory. This makes the 386SX system much
cheaper. With the introduction of the 80486 in 1989, Intel put a greatly enhanced
version of the 80386 and the math coprocessor on a single chip plus additional
features such as cache memory. Cache memory is static RAM with a very fast access
time. Table I-I summarizes the evolution ofInte!'s microprocessors. It must be
noted that all programs written for the 8086/88 will run on 286, 386, and 486
computers. The advances made in the Pentium and Pentium Pro are summarized in
Chapter 9.

Table 1-1: Evolution of Intel's Micro~rocessors
,e--

'iProduct 8080 8085 I 8086 8088 80286 80386 80486 I ..
j --

! Year introduced 1974 1976 1978 19}9 1982 1985 1989

LClo9k rate (MHz) 2-3 3 - 8 :5-10.5-8 i 6.-16 i 16 - 33 25 - 5Q~
,

!l'Io, transistors ! 29,000)29,000 1130,000 I 4500 65QO 275,000 1.2 million!!

itPhvsical memolYu 64K 64K 1M 1M 16M 40 40 ' .--
i Internal data bus. 8 8 16 16 16 32 32

~

8 8 16 8 16 32 32 ',External data bl!~ i --I
Address bus 16 16 20 20 24 32 32 _.

I ! --

Data j 8 8 8,16 I 8, 16 8,J6 i 81
16,32 ' _8.,) 6, 32

Notes:
1. The 80386SX architecture is the same as the 80386 except that the external data bus is 16 bits in the SX as opposed to

32 bits, and the address bus is 24 bits instead of32; therefore, physical memory is 16MB.
2. Clock rates range from the rates when the product was introduced to current rates; some rates have risen during this time.

Review Questions

1. Name three features of the 8086 that were improvements over the 8080/8085.
2. What is the major difference between 8088 and 8086 microprocessors?
3. Give the size of the address bus and physical memory capacity of the following:

(a) 8086 (b) 80286 (c) 80386
4. The 80286 is a -bit microprocessor, whereas the 80386 is a -bit

microprocessor.
5. State the major difference between the 80386 and the 80386SX.

i

I
...J

6. List additional features introduced with the 80286 that were not present in the 8086.
7. List additional features of the 80486 that were not present in the 80386.

20 CHAPTER 1: THE 80x86 MICROPROCESSOR

EXECUTION UNIT (EU)

AH AL

BH BL

CH CL

OH OL

BP

01

SI

SP

multiplexed

bus

operands

'\ ALU 7
flags

Figure 1-1. Internal Block Diagram of the 8088/86 CPU
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1989)

SECTION 1.2: INSIDE THE 8088/8086

BUS INTERFACE UNIT (BIU)

CS

ES

SS

OS

IP

address
generation and

bus control

instruction
queue

I

In this section we explore concepts important to the internal operation of
the 8088/86, such as pipelining and registers. See the block diagram in Figure I-I.

Pipelining

There are two ways to make the CPU process information faster: mcrease
the working frequency or change the internal architecture of the CPU. The first
option is technology dependent, meaning that the designer must use whatever
technology is available at the time, with consideration for cost. The technology and
materials used in making ICs (integrated circuits) determine the working frequency,
power consumption, and the number of transistors packed into a single-chip micro­
processor. A detailed discussion of IC technology is beyond the scope of this book.
It is sufficient for the purpose at hand to say that designers can make the CPU work
faster by increasing the frequency under which it runs if technology and cost allow.
The second option for improving the processing power of the CPU has to do with
the internal working ofthe CPU. In the 8085 microprocessor, the CPU could either

SECTION 1.2: INSIDE THE 8088/8086 21

22

fetch or execute at a given time. In other words, the CPU had to fetch an instruction
from memory, then execute it and then fetch again, execute it, and so on. The idea
of pipe lining in its simplest form is to allow the CPU to fetch and execute at the
same time as shown in Figure 1-2. It is important to point out that Figure 1-2 is not
meant to imply that the amount of time for fetch and execute are equal.

nonpipelined
(e.g., 8085)

I fetch 1 I exec 1 I fetch 2 I exec 2

pipelined
(e.g., 8086)

I fetch 1 exec 1

fetch 2

Figure 1-2. Pipelined vs. Nonpipelined Execution

exec 2

fetch 3 exec 31

Intel implemented the concept of pipe lining in the 8088/86 by splitting the
internal structure of the microprocessor into two sections: the execution unit (EU)
and the bus interface unit (BIU). These two sections work simultaneously. The
BIU accesses memory and peripherals while the EU executes instructions pre­
viously fetched. This works only if the BIU keeps ahead of the EU; thus the BIU
of the 8088/86 has a butTer, or queue (see Figure I-I). The butTer is 4 bytes long in
the 8088 and 6 bytes in the 8086. If any instruction takes too long to execute, the
queue is filled to its maximum capacity and the buses will sit idle. The BIU fetches
a new instruction whenever the queue has room for 2 bytes in the 6-byte 8086 queue,
and for I byte in the 4-byte 8088 queue. In some circumstances, the microprocessor
must flush out the queue. For example, when a jump instruction is executed, the
BIU starts to fetch information from the new location in memory and information
in the queue that was fetched previously is discarded. In this situation the EU must
wait until the BIU fetches the new instruction. This is referred to in computer
science terminology as a branch penalty. In a pipelined CPU, this means that too
much jumping around reduces the efficiency of a program. Pipelining in the
8088/86 has two stages: fetch and execute, but in more powerful computers
pipelining can have many stages. The concept of pipelining combined with an
increased number of data bus pins has, in recent years, led to the design of very
powerful microprocessors.

Registers

In the CPU, registers are used to
store information temporarily. That in­
formation could be one or two bytes of
data to be processed or the address of data.
The registers of the 8088/86 fall into the
six categories outlined in Table 1-2. The
general-purpose registers in 8088/86 mi­
croprocessors can be accessed as either

AX
16-bit register

AH AL
8-bit reg. 8-bit reg.

16-bit or 8-bit registers. All other registers can be accessed only as the full 16 bits.
In the 8088/86, data types are either 8 or 16 bits. To access 12-bit data, for example,
a 16-bit register must be used with the highest 4 bits set to O. The bits of a register
are numbered in descending order, as shown below.

CHAPTER 1: THE 80x86 MICROPROCESSOR

8-bit register:

16-bit register:

Different registers in the 8088/86 are used for different functions, and since
some instructions use only specific registers to perform their tasks, the use of
registers will be described in the context of instructions and their application in a
given program. The first letter of each general register indicates its use. AX is used
for the accumulator, BX as a base addressing register, CX is used as a counter in
loop operations, and DX is used to point to data in I/O operations.

Table 1-2: Registers ofthe 8086/286 by Category

, ~l,l: I[category ~its , jR£gjster Names _

II General --l- 16 AX, BX, C2LOX u ___ _

I 8 'AH, AL, BH, BL, CH, CL, DH, DL
I ,

I'()inter I 16ISl'(~tack pointer), BP (base pointer) J
Index ___ l§ __ lSI (source index), DI (destination index) __ I

Segment 16 Tcs (code segment), DS (data segment), :

i -----;-- --i~ (stack segment), ES (extra segment) __ ,:

IIInstructio,n, +_l§ __ III' (jnst,ruction, pointer) il

Fla ! 16 ~illa""g,"rC"ecgl",' s""te'""r)'--_________ _
Note:
The general registers can be accessed as the full 16 bits (such as AX), or as
the high byte only (AH) or low byte only (AL).

Review Questions

1. Explain the functions of the EU and the BIU.
2. What is pipelining, and how does it make the CPU execute faster?
3. Registers of the 8086 are either __ bits or __ bits in length.
4. List the 16-bit registers of the 8086.

SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING

While the CPU can work only in binary, it can do so at very high speeds.
However, it is quite tedious and slow for humans to deal with Os and 1 s in order to
program the computer. A program that consists of Os and 1 s is called machine
language, and in the early days of the computer, programmers actually coded
programs in machine language. Although the hexadecimal system was used as a
more efficient way to represent binary numbers, the process of working in machine
code was still cumbersome for humans. Eventually, Assembly languages were
developed, which provided mnemonics for the machine code instructions, plus other
features that made programming faster and less prone to error. The term mnemonic
is frequently used in computer science and engineering literature to refer to codes
and abbreviations that are relatively easy to remember. Assembly language pro­
grams must be translated into machine code by a program called an assembler.
Assembly language is referred to as a low-level language because it deals directly
with the internal structure of the CPU. To program in Assembly language, the
programmer must know the number of registers and their size, as well as other details
of the CPU.

SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING 23

24

Today, one can use many different programming languages, such as Pascal,
BASIC, C, and numerous others. These languages are called high-level languages
because the programmer does not have to be concerned with the internal details of
the CPU. Whereas an assembler is used to translate an Assembly language program
into machine code (sometimes called object code), high-level languages are trans­
lated into machine code by a program called a compiler. For instance, to write a
program in C, one must use a C compiler to translate the program into machine
language.

There are numerous assemblers available for translating 80x86 Assembly
language programs into machine code. One of the most commonly used assemblers,
MASM by Microsoft, is introduced in Chapter 2. The present chapter is designed
to correspond to Appendix A: DEBUG programming. The program in this chapter
can be entered and run with the use of the DEBUG program. If you are not familiar
with DEBUG, refer to Appendix A for a tutorial introduction. The DEBUG utility
is provided with the DOS operating system and therefore is widely accessible.

Assembly language programming

An Assembly language program consists of, among other things, a series
of lines of Assembly language instructions. An Assembly language instruction
consists of a mnemonic, optionally followed by one or two operands. The operands
are the data items being manipulated, and the mnemonics are the commands to the
CPU, telling it what to do with those items. We introduce Assembly language
programming with two widely used instructions: the move and add instructions.

MOV instruction

Simply stated, the MOV instruction copies data from one location to
another. It has the following format:

MOV destination,source ;copy source operand to destination

This instruction tells the CPU to move (in reality, copy) the source operand
to the destination operand. For example, the instruction "MOV DX,CX" copies the
contents of register CX to register DX. After this instruction is executed, register
DX will have the same value as register CX. The MOV instruction does not affect
the source operand. The following program first loads CL with value 55H, then
moves this value around to various registers inside the CPU.

MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

CL,55H
DL,CL
AH,DL
AL,AH
BH,CL
CH,BH

;move 55H into register CL
;copy the contents of CL into DL (now DL=CL=55H)
;copy the contents of DL into AH (now AH=DL=55H)
;copy the contents of AH into AL (now AL=AH=55H)
;copy the contents of CL into BH (now BH=CL=55H)
;copy the contents of BH into CH (now CH=BH=55H)

The use of l6-bit registers is demonstrated below.

CX,468FH
AX,CX
DX,AX
BX,DX
DI,BX
SI,DI
DS,SI
BP,DI

;move 468FH into CX (now CH=46,CL=8F)
;copy contents of CX to AX (now AX=CX=468FH)
;copy contents of AX to DX (now DX=AX=468FH)
;copy contents of DX to BX (now BX=DX=468FH)
;now DI=BX=468FH
;now SI=DI=468FH
;now DS=SI=468FH
;now BP=DI=468FH

In the 8086 CPU, data can be moved among all the registers shown in Table
1-2 (except the flag register) as long as the source and destination registers match

CHAPTER 1: THE 80x86 MICROPROCESSOR

in size. Code such as "MaY AL,DX" will cause an error, since one cannot move
the contents of a 16-bit register into an 8-bit register. The exception of the flag
register means that there is no such instruction as "MaY FR,AX". Loading the flag
register is done through other means, discussed in later chapters.

If data can be moved among all registers including the segment registers,
can data be moved directly into all registers? The answer is no. Data can be moved
directly into nonsegment registers only, using the May instruction. For example,
look at the following instructions to see which are legal and which are illegal.

MOV AX,58FCH ;move 58FCH into AX (LEGAL)
MOV DX,6678H ;move 6678H into DX (LEGAL)
MOV SI,924BH ;move 924B into SI (LEGAL)
MOV BP,2459H ;move 2459H into BP (LEGAL)
MOV DS,2341 H ;move 2341 H into DS (ILLEGAL)
MOV CX,8876H ;move 8876H into CX (LEGAL)
MOV CS,3F47H ;move 3F47H into CS (ILLEGAL)
MOV BH,99H ;move 99H into BH (LEGAL)

From the discussion above, note the following three points:

1. Yalues cannot be loaded directly into any segment register (CS, OS, ES, or SS). To
load a value into a segment register, first load it to a nonsegment register and then
move it to the segment register, as shown next.

MOV AX,2345H
MOV DS,AX

MOV DI,1400H
MOV ES,DI

;Ioad 2345H into AX
;then load the value of AX into DS

;Ioad 1400H into DI
;then move it into ES, now ES=DI=1400

2. If a value less than FFH is moved into a 16-bit register, the rest of the bits are
assumed to be all zeros. For example, in "MaY BX,5" the result will be BX ~ 0005;
that is, BH ~ 00 and BL ~ 05.

3. Moving a value that is too large into a register will cause an error.

MOV
MOV

BL,7F2H
AX,2FE456H

ADD instruction

;ILLEGAL: 7F2H is larger than 8 bits
;ILLEGAL: the value is larger than AX

The ADD instruction has the following format:

ADD destination,source ;ADD the source operand to the destination

The ADD instruction tells the CPU to add the source and the destination
operands and put the result in the destination. To add two numbers such as 25H and
34H, each can be moved to a register and then added together:

MOV
MOV
ADD

AL,25H
BL,34H
AL,BL

;move 25 into AL
;move 34 into BL
;AL= AL+ BL

Executing the program above results in AL ~ 59H (25H + 34H ~ 59H) and
BL ~ 34H. Notice that the contents ofBL do not change. The program above can
be written in many ways, depending on the registers used. Another way might be:

SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING 25

MOV
MOV
ADD

DH,25H
CL,34H
DH,CL

;move 25 into DH
;move 34 into CL
;add CL to DH: DH = DH + CL

The program above results in DH = 59H and CL = 34H. There are always
many ways to write the same program. One question that might come to mind after
looking at the program above is whether it is necessary to move both data items into
registers before adding them together. The answer is no, it is not necessary. Look
at the following variation of the same program:

MOV
ADD

DH,25H
DH,34H

;Ioad one operand into DH
;add the second operand to DH

In the case above, while one register contained one value, the second value
followed the instruction as an operand. This is called an immediate operand. The
examples shown so far for the ADD and MOV instructions show that the source
operand can be either a register or immediate data. In the examples above, the
destination operand has always been a register. The format for Assembly language
instructions, descriptions of their use, and a listing of legal operand types are
provided in Appendix B.

The largest number that an 8-bit register can hold is FFH. To use numbers
larger than FFH (255 decimal), 16-bit registers such as AX, BX, CX, or DX must
be used. For example, to add two numbers such as 34EH and 6A5H, the following
program can be used:

MOV
MOV
ADD

AX,34EH
DX,6A5H
DX,AX

;move 34EH into AX
;move 6A5H into DX
;add AX to DX: DX = DX + AX

Running the program abovc gives DX = 9F3H (34E + 6A5 = 9F3) and AX
= 34E. Again, any 16-bit nonsegment registers could have been used to perform the
action above:

MOV
ADD

CX,34EH
CX,6A5H

;Ioad 34EH into CX
;add 6A5H to CX (now CX=9F3H)

The general-purpose registers are typically used in arithmetic operations.
Register AX is sometimes referred to as the accumulator.

Review Questions

1. Write the Assembly language instruction to move value 1234H into register BX.
2. Write the Assembly language instructions to add the values 16H and ABH. Place

the result in register AX.
3. No value can be moved directly into which registers?
4. What is the largest hex value that can be moved into a 16-bit register? Into an 8-bit

register? What are the decimal equivalents of these hex values?

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS

26

A typical Assembly language program consists of at least three segments:
a code segment, a data segment, and a stack segment. The code segment contains
the Assembly language instructions that perform the tasks that the program was
designed to accomplish. The data segment is used to store information (data) that
needs to to be processed by the instructions in the code segment. The stack is used
to store information temporarily. In this section we describe the code and data
segments of a program in the context of some examples and discuss the way data is
stored in memory. The stack segment is covered in Section 1.5.

CHAPTER 1: THE 80x86 MICROPROCESSOR

Origin and definition of the segment

A segment is an area of memory that includes up to 64K bytes and begins
on an address evenly divisible by 16 (such an address ends in OH). The segment
size of 64K bytes came about because the 8085 microprocessor could address a
maximum of64K bytes of physical memory since it had only 16 pins for the address
lines (2 16 = 64K). This limitation was carried into the design ofthe 8088/86 to ensure
compatibility. Whereas in the 8085 there was only 64K bytes of memory for all
code, data, and stack information, in the 8088/86 there can be up to 64K bytes of
memory assigned to each category. Within an Assembly language program, these
categories are called the code segment, data segment, and stack segment. For this
reason, the 8088/86 can only handle a maximum of64K bytes of code and 64K bytes
of data and 64K bytes of stack at any given time, although it has a range of I
megabyte of memory because of its 20 address pins (220 = I megabyte). How to
move this window of 64K bytes to cover all I megabyte of memory is discussed
below, after we discuss logical address and physical address.

Logical address and physical address

In Intel literature concerning the 8086, there are three types of addresses
mentioned frequently: the physical address, the offset address, and the logical
address. The physical address is the 20-bit address that is actually put on the address
pins of the 8086 microprocessor and decoded by the memory interfacing circuitry.
This address can have a range ofOOOOOH to FFFFFH for the 8086 and real-mode
286,386, and 486 CPUs. This is an actual physical location in RAM or ROM within
the I megabyte memory range. The offset address is a location within a 64K-byte
segment range. Therefore, an offset address can range from OOOOH to FFFFH. The
logical address consists of a segment value and an offset address. The differences
among these addresses and the process of converting from one to another is best
understood in the context of some examples, as shown next.

Code segment

To execute a program, the 8086
fetches the instructions (opcodes and op­
erands) from the code segment. The logi­
cal address of an instruction always

CS IP

consists of a CS (code segment) and an IP (instruction pointer), shown in CS:IP
format. The physical address for the location of the instruction is generated by
shifting the CS left one hex digit and then adding it to the IP. IP contains the offset
address. The resulting 20-bit address is called the physical address since it is put
on the external physical address bus pins to be decoded by the memory decoding
circuitry. To clarify this important concept, assume values in CS and IP as shown
in the diagram. The offset address is contained in IP; in this case it is 95F3H. The
logical address is CS:IP, or 2500:95F3H. The physical address will be 25000 + 95F3
= 2E5F3H. The physical address of an instruction can be calculated as follows:

1. Start with CS.

2. Shift left CS.

3.AddlP'

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS 27

28

Example 1-1

The microprocessor will retrieve the instruction from memory locations
starting at 2E5F3. Since IP can have a minimum value ofOOOOH and a maximum
of FFFFH, the logical address range in this example is 2500:0000 to 2500:FFFF.
This means that the lowest memory location of the code segment above will be
25000H (25000 + 0000) and the highest memory location will be 34FFFH (25000
+ FFFF). What happens if the desired instructions are located beyond these two
limits? The answer is that the value of CS must be changed to access those
instructions. See Example 1-1.

IfCS = 24F6H and IP = 634AH, show:
(a) The logical address
(b) The offset address
and calculate:
(c) The physical address
(d) The lower range
(e) The upper range of the code segment

Solution:
(a) 24F6:634A (b) 634A
(c) 2B2AA (24F60 + 634A)
(e) 34F5F (24F60 + FFFF)

(d) 24F60 (24F60 + 0000)

Logical address vs. physical address in the code segment

In the code segment, CS and IP hold the logical address of the instructions
to be executed. The following Assembly language instructions have been assembled
(translated into machine code) and stored in memory. The three columns show the
logical address ofCS:IP, the machine code stored at that address and the correspond­
ing Assembly language code. This information can easily be generated by the
DEBUG program using the Unassemble command.

Logical address
CS:IP

1132:0100
1132:0102
1132:0104
1132:0106
1132:0108
1132:010A
1132:010C
1132:010E
1132:0110
1132:0112

Machine language

aRcode and operand
B057
B686
B272
8901
88C7
B39F
B420
0100
0109
05351F

Assembly language
mnemonics and operand
MOV AL,57
MOV OH,86
MOV OL,72
MOV CX,OX
MOV BH,AL
MOV BL,9F
MOV AH,20
ADD AX,OX
ADD CX,BX
ADD AX,1F35

The program above shows that the byte at address I 132:0 I 00 contains BO,
which is the opcode for moving a value into register AL, and address 1132:0101
contains the operand (in this case 57) to be moved to AL. Therefore, the instruction
"MOY AL,57" has a machine code of B057, where BO is the opcode and 57 is the
operand. Similarly, the machine code B686 is located in memory locations
1132:0102 and 1132:0103 and represents the opcode and the operand for the
instruction "MOY DH,86". The physical address is an actual location within RAM
(or even ROM). The following are the physical addresses and the contents of each
location for the program above. Remember that it is the physical address that is put
on the address bus by the 8086 CPU to be decoded by the memory circuitry:

CHAPTER 1: THE 80x86 MICROPROCESSOR

Logical address
1132:0100
1132:0101
1132:0102
1132:0103
1132:0104
1132:0105
1132:0106
1132:0107
1132:0108
1132:0109
1132:010A
1132:0106
1132:010C
1132:0100
1132:010E
1132:010F
1132:0110
1132:0111
1132:0112
1132:0113
1132:0114

Data segment

Physical address
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
1142A
11426
1142C
11420
1142E
1142F
11430
11431
11432
11433
11434

Machine code contents
60
57
66
86
62
72
89
01
88
C7
63
9F
64
20
01
DO
01
09
05
35
1F

Assume that a program is being written to add 5 bytes of data, such as 25H,
12H, 15H, IFH, and2BH, where each byte represents a person's daily overtime pay.
One way to add them is as follows:

MOV
ADD
ADD
ADD
ADD
ADD

AL,OOH
AL,25H
AL,12H
AL,15H
AL,1FH
AL,26H

;initialize AL
;add 25H to AL
;add 12H to AL
;add 15H to AL
;add 1 FH to AL
;add 26H to AL

In the program above, the data and code are mixed together in the instruc­
tions. The problem with writing the program this way is that if the data changes,
the code must be searched for every place the data is included, and the data retyped.
F or this reason, the idea arose to set aside an area of memory strictly for data. In
80x86 microprocessors, the area of memory set aside for data is called the data
segment. Just as the code segment is associated with CS and IP as its segment
register and offset, the data segment uses register DS and an offset value.

The following demonstrates how data can be stored in the data segment and
the program rewritten so that it can be used for any set of data. Assume that the
offset for the data segment begins at 200H. The data is placed in memory locations:

08:0200 = 25
08:0201 = 12
08:0202 = 15
08:0203 = 1F
08:0204 = 26
and the program can be rewritten as follows:
MOV AL,O ;clear AL
ADD AL,[0200] ;add the contents of 08:200 to AL
ADD AL,[0201] ;add the contents of 08:201 to AL
ADD AL,[0202] ;add the contents of 08:202 to AL
ADD AL,[0203] ;add the contents of 08:203 to AL
ADD AL,[0204] ;add the contents of 08:204 to AL

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS 29

30

Notice that the offset address is enclosed in brackets. The brackets indicate
that the operand represents the address of the data and not the data itself. If the
brackets were not included, as in "MOV AL,0200", the CPU would attempt to move
200 into AL instead of the contents of offset address 200. Keep in mind that there
is one important difference in the format of code for MASM and DEBUG in that
DEBUG assumes that all numbers are in hex (no "H" suffix is required), whereas
MASM assumes that they are in decimal and the "H" must be included for hex data.

This program will run with any set of data. Changing the data has no effect
on the code. Although this program is an improvement over the preceding one, it
can be improved even further. Ifthe data had to be stored at a different offset address,
say 450H, the program would have to be rewritten. One way to solve this problem
would be to use a register to hold the offset address, and before each ADD, to
increment the register to access the next byte. Next a decision must be made as to
which register to use. The 8086/88 allows only the use of registers BX, SI, and DI
as offset registers for the data segment. In other words, while CS uses only the IP
register as an offset, OS uses only BX, DI, and SI to hold the offset address of the
data. The term pointer is often used for a register holding an offset address. In the
following example, BX is used as a pointer:

MOV
MOV
ADD
INC
ADD
INC
ADD
INC
ADD

AL,O
BX,0200H
AL,[BX]
BX
AL,[BX]
BX
AL,[BX]
BX
AL,[BX]

;initialize AL
;BX points to the offset addr of first byte
;add the first byte to AL
;increment BX to point to the next byte
;add the next byte to AL
;increment the pointer
;add the next byte to AL
;increment the pointer
;add the last byte to AL

The "INC" instruction adds 1 to (increments) it~ operand. "INC BX"
achieves the same result as "ADD BX,I". For the program above, if the offset
address where data is located is changed, only one instruction will need to be
modified and the rest of the program will be unaffected. Examining the program
above shows that there is a pattern of two instructions being repeated. This leads
to the idea of using a loop to repeat certain instructions. Implementing a loop
requires familiarity with the flag register, discussed later in this chapter.

Logical address and physical address in the data segment

The physical address for data is calculated using the same rules as for the
code segment. That is, the physical address of data is calculated by shifting OS left
one hex digit and adding the offset value, as shown in Examples 1-2, 1-3, and 1-4.

Example 1-2

Assume that OS is 5000 and the offset is 1950. Calculate the physical address of the byte.

Solution: os offset

151010101
The physical address will be 50000 + 1950 = 51950.

1. Start with OS.

2. Shift OS left.

3. Add the offset.

1510101010

151 1 1915101

CHAPTER 1: THE 80x86 MICROPROCESSOR

Example 1-3
If OS ~ 7FA2H and the offset is 438EH,
(a) Calculate the physical address.
(c) Calculate the upper range ofthe data segment.

Solution:
(a) 830AE (7FA20 + 438E)
(c) 8FAIF (7FA20 + FFFF)

Example 1-4

(b) Calculate the lower range.
(d) Show the logical address.

(b) 7FA20 (7FA20 + 0000)
(d) 7FA2:438E

Assume that the OS register is 578C. To access a given byte of data at physical memory location
67F66, does the data segment cover the range where the data is located? Ifnot, what changes need to
be made?

Solution:
No, since the range is 578CO to 678BF, location 67F66 is not included in this range. To access that
byte, OS must be changed so that its range will include that byte.

Example 1-5

Little end ian convention

Previous examples used 8-bit or I-byte data. In this case the bytes are stored
one after another in memory. What happens when 16-bit data is used? For example:

MOV
MOV

AX,35F3H
[1500],AX

;Ioad 35F3H into AX
;copy the contents of AX to offset 1500H

In cases like this, the low byte goes to the low memory location and the
high byte goes to the high memory address. In the example above, memory location
OS: 1500 contains F3H and memory location OS: 1501 contains 35H.

DS:1500 = F3 DS:1501 = 35

This convention is called little endian versus big endian. The origin of the
terms big endian and little endian is from a Gulliver s Travels story about how an
egg should be opened: from the little end or the big end. In the big endian method,
the high byte goes to the low address, whereas in the little endian method, the high
byte goes to the high address and the low byte to the low address. See Example 1-5.
All Intel microprocessors and many minicomputers, notably the Oigital VAX, use
the little endian convention. Motorola microprocessors (used in the Macintosh),

Assume memory locations with the following contents: OS:6826 ~ 48 and OS:6827 ~ 22.
Show the contents of register BX in the instruction "MOV BX,[6826]".

Solution:
According to the little endian convention used in all 80x86 microprocessors, register BL should
contain the value from the low offset address 6826 and register BH the value from offset address
6827, giving BL ~ 48H and BH ~ 22H.

OS:6826 ~ 48
OS:6827 ~ 22

BH BL

122 148 I

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS 31

32

along with some mainframes, use big endian. This difference might seem as trivial
as whether to break an egg from the big end or little end, but it is a nuisance in
converting software from one camp to be run on a computer of the other camp.

Extra segment (ES)

ES is a segment register used as an extra data segment. Although in many
normal programs this segment is not used, its use is absolutely essential for string
operations and is discussed in detail in Chapter 6.

Memory map of the IBM PC

F or a program to be executed
on the PC, DOS must first load it into
RAM. Where in RAM will it be
loaded? To answer that question, we
must first explain some very impor­
tant concepts concerning memory in
the Pc. The 20-bit address of the
8088/86 allows a total of 1 megabyte
(1024K bytes) of memory space with
the address range 00000 - FFFFF.
During the design phase of the first
IBM PC, engineers had to decide on
the allocation of the I-megabyte
memory space to various sections of
the Pc. This memory allocation is
called a memory map. The memory
map of the IBM PC is shown in Figure
1-3. Of this 1 megabyte, 640K bytes
from addresses 00000 - 9FFFFH were
set aside for RAM. The 128K bytes
from AOOOOH to BFFFFH were allo­
cated for video memory. The remain­
ing 256K bytes from COOOOH to
FFFFFH were set aside for ROM.

More about RAM

r------,cc· -.---­
OOOOOH

RAM
640K

Video Display
RAM 128K

ROM
256K

9FFFFH

AOOOOH

t-BEFEEH
COOOOH

FFFFFH

Figure 1-3. Memory Allocation in the PC

In the early 1980s, most PCs came with only 64K to 256K bytes of RAM
memory, which was considered more than adequate at the time. Users had to buy
memory expansion boards to expand memory up to 640K if they needed additional
memory. The need for expansion depends on the DOS version being used and the
memory needs of the application software being run. The DOS operating system
first allocates the available RAM on the PC for its own use and then lets the rest be
used for applications such as word processors. The complicated task of managing
RAM memory is left to DOS since the amount of memory used by DOS varies
among its various versions and since different computers have different amounts
of RAM, plus the fact that the memory needs of application packages vary. For this
reason we do not assign any values for the CS, OS, and SS registers since such an
assignment means specifying an exact physical address in the range 00000 -
9FFFFH, and this is beyond the knowledge of the user. Another reason is that
assigning a physical address might work on a given PC but it might not work on a
PC with a different DOS version and RAM size. In other words, the program would
not be portable to another PC. Therefore, memory management is one ofthe most
important functions of the DOS operating system and should be left to DOS. This
is very important to remember because in many examples in this book we have
values for the segment registers CS, OS, and SS that will be different from the
values that readers will get on their PCs. Therefore, do not try to assign the value
to the segment registers to comply with the values in this book.

CHAPTER 1: THE 80x86 MICROPROCESSOR

Video RAM

From AOOOOH to BFFFFH is set aside for video. The amount used and the
location varies depending on the video board installed on the Pc. Table E-2 of
Appendix E lists the starting addresses for video boards.

More about ROM

From COOOOH to FFFFFH is set aside for ROM. Not all the memory space
in this range is used by the PC's ROM. Of this 256K bytes, only the 64K bytes from
location FOOOOH - FFFFFH are used by BIOS (basic input/output system) ROM.
Some ofthe remaining space is used by various adapter cards (such as cards for hard
disks), and the rest is free. In recent years, newer versions of DOS have gained
some very powerful memory management capabilities and can put to good use all
the unused memory space beyond 640. The 640K-byte memory space from 00000
to 9FFFFH is referred to as conventional memory, while the 384K bytes from
AOOOOH to FFFFFH are called the UMB (upper memory block) in DOS 5 literature.
A complete discussion of the various memory terminology and configurations such
as expanded and extended memory appears in Chapter 25.

Function of BIOS ROM

Since the CPU can only execute programs that are stored in memory, there
must be some permanent (nonvolatile) memory to hold the programs telling the CPU
what to do when the power is turned on. This collection of programs held by ROM
is referred to as BIOS in the PC literature. BIOS, which stands for basic input-output
system, contains programs to test RAM and other components connected to the CPU.
It also contains programs that allow DOS to communicate with peripheral devices
such as the keyboard, video, printer, and disk. It is the function of BIOS to test all
the devices connected to the PC when the computer is turned on and to report any
errors. For example, if the keyboard is disconnected from the PC before the
computer is turned on, BIOS will report an error on the screen, indicating that
condition. It is only after testing and setting up the peripherals that BIOS will load
DOS from disk into RAM and hand over control ofthe PC to DOS. Although there
are occasions when either DOS or applications programs need to use programs in
BIOS ROM (as will be seen in Chapter 4), DOS always controls the PC once it is
loaded.

Review Questions

I. A segment is an area of memory that includes up to __ bytes.
2. How large is a segment in the 8086? Can the physical address 346EO be the starting

address for a segment? Why or why not?
3. State the difference between the physical and logical addresses.
4. A physical address is a __ -bit address; an offset address is a __ -bit address.
5. Which register is used as the offset register with segment register CS?
6. IfBX ~ 1234H and the instruction "MOV [2400],BX" were executed, what would

be the contents of memory locations at offsets 2400 and 240 I ?

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86

In this section we examine the concept of the stack, its use in 80x86
microprocessors, and its implementation in the stack segment. Then more advanced
concepts relating to segments are discussed, such as overlapping segments.

What is a stack, and why is it needed?

The stack is a section of read/write memory (RAM) used by the CPU to
store information temporarily. The CPU needs this storage area since there are only

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86 33

34

a limited number of registers. There must be some place for the CPU to store
information safely and temporarily. Now one might ask why not design a CPU with
more registers? The reason is that in the design of the CPU, every transistor is
precious and not enough of them are available to build hundreds of registers. In
addition, how many registers should a CPU have to satisfy every possible program
and application? All applications and programming techniques are not the same.
In a similar manner, it would be too costly in terms of real estate and construction
costs to build a 50-room house to hold everything one might possibly buy throughout
his or her lifetime. Instead, one builds or rents a shed for storage.

Having looked at the advantages of having a stack, what are the disadvan­
tages? The main disadvantage of the stack is its access time. Since the stack is in
RAM, it takes much longer to access compared to the access time of registers. After
all, the registers are inside the CPU and RAM is outside. This is the reason that
some very powerful (and consequently, expensive) computers do not have a stack;
the CPU has a large number of registers to work with.

How stacks are accessed

If the stack is a section of RAM, there must be registers inside the CPU to
point to it. The two main registers used to access the stack are the SS (stack segment)
register and the SP (stack pointer) register. These registers must be loaded before
any instructions accessing the stack are used. Every register inside the 80x86
(except segment registers and SP) can be stored in the stack and brought back into
the CPU from the stack memory. The storing of a CPU register in the stack is called
a push, and loading the contents of the stack into the CPU register is called a pop.
In other words, a register is pushed onto the stack to store it and popped off the stack
to retrieve it. The job of the SP is very critical when push and pop are performed.
In the 80x86, the stack pointer register (SP) points at the current memory location
used for the top of the stack and as data is pushed onto the stack it is decremented.
It is incremented as data is popped off the stack into the CPU. When an instruction
pushes or pops a general-purpose register, it must be the entire 16-bit register. In
other words, one must code "PUSH AX"; there are no instructions such as "PUSH
AL" or "PUSH AH". The reason that the SP is decremented after the push is to make
sure that the stack is growing downward from upper addresses to lower addresses.
This is the opposite of the IP (instruction pointer). As was seen in the preceding
section, the IP points to the next instruction to be executed and is incremented as
each instruction is executed. To ensure that the code section and stack section of
the program never write over each other, they are located at opposite ends of the
RAM memory set aside for the program and they grow toward each other but must
not meet. If they meet, the program will crash. To see how the stack grows, look
at the following examples.

Pushing onto the stack

Notice in Example 1-6 that as each PUSH is executed, the contents of the
register are saved on the stack and SP is decremented by 2. For every byte of data
saved on the stack, SP is decremented once, and since push is saving the contents
of a 16-bit register, it is decremented twice. Notice also how the data is stored on
the stack. In the 80x86, the lower byte is always stored in the memory location with
the lower address. That is the reason that 24H, the contents of AH, is saved in
memory location with address 1235 and AL in location 1234.

Popping the stack

Popping the contents of the stack back into the 80x86 CPU is the opposite
process of pushing. With every pop, the top 2 bytes of the stack are copied to the
register specified by the instruction and the stack pointer is incremented twice.
Although the data actually remains in memory, it is not accessible since the stack
pointer is beyond that point. Example 1-7 demonstrates the POP instruction.

CHAPTER 1: THE 80x86 MICROPROCESSOR

Example 1-6

Assuming that SP = 1236, AX = 24B6, DI = 85C2, and DX = 5F93, show the contents of the stack as
each of the following instructions is executed:

Solution:

88:1230

88:1231

88:1232

88:1233

PUSH AX
PUSH 01
PUSH OX

88:1234 _ B6

88:1235 24
88:1236 _

Example 1-7

START

SP =1236

After
PUSH AX
SP = 1234

- C2
85

B6

24

After
PUSH DI
SP =1232

- 93

5F

C2

85

B6

24

After
PUSH DX
SP = 1230

Assuming that the stack is as shown below, and SP = 18FA, show the contents of the stack and regis­
ters as each of the following instructions is executed:

Solution:
88:18FA

88:18FB

88:18FC

88:18FD

88:18FE

88:18FF

88:1900

POP ex
POP OX
POP BX

- 23

14

6B - 6B

2C 2C

91 91 - 91

F6 F6 F6 -START After After After
POPCX POPDX POP BX

SP = 18FA SP = 18FC SP = 18FE SP = 1900
CX =1423 DX = 2C6B BX = F691

Logical address VS, physical address for the stack

Now one might ask, what is the exact physical location of the stack? That
depends on the value of the stack segment (SS) register and SP, the stack pointer.
To compute physical addresses for the stack, the same principle is applied as was
used for the code and data segments. The method is to shift left SS and then add
offset SP, the stack pointer register. This is demonstrated in Example 1-8.

What values are assigned to the SP and SS, and who assigns them? It is the
job of the DOS operating system to assign the values for the SP and SS since memory
management is the responsibility of the operating system. Before leaving the
discussion of the stack, two points must be made. First, in the 80x86 literature, the
top ofthe stack is the last stack location occupied. This is different from other CPUs.

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86 35

36

Example 1-8

Second, BP is another register that can be used as an offset into the stack, but it has
very special applications and is widely used to access parameters passed between
Assembly language programs and high-level language programs such as C. This is
discussed in Chapter 7.

If SS ~ 3500H and the SP is FFFEH,
(a) Calculate the physical address of the stack. (b) Calculate the lower range.
(c) Calculate the upper range of the stack segment. (d) Show the logical address ofthe stack.

Solution:
(a) 44FFE (35000 + FFFE)
(c) 44FFF (35000 + FFFF)

(b) 35000 (35000 + 0000)
(d) 3500:FFFE

1-9

A few more words about segments in the 80x86

Can a single physical address belong to many different logical addresses"
Yes, look at the case ofa physical address value of 15020H. There are many possible
logical addresses that represent this single physical address:

Logical address (hex)
1000:5020
1500:0020
1502:0000
1400:1020
1302:2000

Physical address (hex)
15020
15020
15020
15020
15020

This shows the dynamic behavior of the segment and offset concept in the
8086 CPU. One last point that must be clarified is the case when adding the offset
to the shifted segment register results in an address beyond the maximum allowed
range of FFFFFH. In that situation, wrap-around will occur. This is shown in
Example 1-9.

What is the range of physical addresses if CS ~ FF59?

Solution:
The low range is FF590 (FF590 + 0000). The range goes to FFFFF and wraps around, from 00000 to
OF58F (FF590 + FFFF ~ OF58F), which is illustrated below. .

00000

OF58F

FF590

Overlapping

In calculating the physical address, it is possible that two segments can
overlap, which is desirable in some circumstances. For example, overlapping is
used in COM files, as will be seen in Chapter 2. Figure 1-4 illustrates overlapping
and nonoverlapping segments.

CHAPTER 1: THE 80x86 MICROPROCESSOR

-

NONOVERLAPPING
SEGMENTS

OVERLAPPING
SEGMENTS

CS =3000 [

30000

3FFFF

25000

CS =2500 [

34FFF

os =4050 I 40500

50000

SS = 5000 [
504FF

5FFFF

OS= 6321 [

63210

7320F

ss = 8210 [

82100

920FF

Figure 1-4. Nonoverlapping vs. Overlapping Segments

Flag register

The flag register is a 16-bit register sometimes referred to as the status
register. Although the register is 16 bits wide, only some of the bits are used. The
rest are either undefined or reserved by Intel. Six of the flags are called conditional
flags, meaning that they indicate some condition that resulted after an instruction
was executed. These six are CF, PF, AF, ZF, SF, and OF. The three remaining flags
are sometimes called control flags since they are used to control the operation of
instructions before they are executed. A diagram of the flag register is shown in
Figure 1-5.

The 16 bits of the flag register:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IR 'R 'R 'R 'OF 'OF 'IF 'TF 'SF 'ZF lu IAF lu ,PF lu ICF I

R=
U=
OF=
DF=
IF =

TF=

reserved
undefined
overflow flag
direction flag
interrupt flag
trap flag

Figure 1-5. Flag Register

SF=
ZF=
AF=
PF=
CF=

sign flag
zero flag
auxiliary carry flag
parity flag
carry flag

(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1989)

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86 37

38

Bits of the flag register

Below are listed the bits of the flag register that are used in 80x86 Assembly
language programming. A brief explanation of each bit is given. How these flag
bits are used will be seen in programming examples throughout the textbook.

CF, the Carry Flag. This flag is set whenever there is a carry out, either from d7 after
an 8-bit operation, or from dl5 after a 16-bit data operation.

PF, the Parity Flag. After certain operations, the parity of the result's low-order byte
is checked. Ifthe byte has an even number of I s, the parity flag is set to I; otherwise,
it is cleared.

AF, Auxiliary Carry Flag. If there is a carry from d3 to d4 of an operation, this bit
is set; otherwise, it is cleared (set equal to zero). This flag is used by the instructions
that perform BCD (binary coded decimal) arithmetic.

ZF, the Zero Flag. The zero flag is set to I if the result of an arithmetic or logical
operation is zero; otherwise, it is cleared.

SF, the Sign Flag. Binary representation of signed numbers uses the most significant
bit as the sign bit. After arithmetic or logic operations, the status of this sign bit is
copied into the SF, thereby indicating the sign of the result.

TF, the Trap Flag. When this flag is set it allows the program to single-step, meaning
to execute one instruction at a time. Single-stepping is used for debugging
purposes.

IF, Interrupt Enable Flag. This bit is set or cleared to enable or disable only the
external maskable interrupt requests.

OF, the Direction Flag. This bit is used to control the direction of string operations,
which are described in Chapter 6.

OF, the Overflow Flag. This flag is set whenever the result of a signed number
operation is too large, causing the high-order bit to overflow into the sign bit. In
general, the carry flag is used to detect errors in unsigned arithmetic operations. The
overflow flag is only used to detect errors in signed arithmetic operations.

Flag register and ADD instruction

In this section we examine the impact of the ADD instruction on the flag
register as an example of the use of the flag bits. The flag bits affected by the ADD
instruction are CF (carry flag), PF (parity flag), AF (auxiliary carry flag), ZF (zero
flag), SF (sign flag), and OF (overflow flag). The overflow flag will be covered in
Chapter 6, since it relates only to signed number arithmetic. To understand how
each of these flag bits is affected, look at Examples I -I 0 and I-I I.

Exam}>le 1-10

Show how the flag register is affected by the addition of 38H and 2FH.

Solution:
MOV
ADD

+

BH,38H
BH,2FH

38
2F
67

CF ~ 0 since there is no carry beyond d7

;BH= 38H
;add 2F to BH, now BH=67H

0011
0010
0110

1000
1111
0111

PF ~ 0 since there is an odd number of I s in the result
AF ~ I since there is a carry from d3 to d4
ZF ~ 0 since the result is not zero
SF ~ 0 since d7 of the result is zero

CHAPTER 1: THE 80x86 MICROPROCESSOR

Example 1-11

Show how the flag register is affected by

MOV AL,9CH ;AL=9CH
MOV DH,64H ;DH=64H
ADD AL,DH ;nowAL=O

Solution:
9C 1001 1100

+ 64 0110 0100
00 0000 0000

CF= I since there is a carry beyond d7
PF=I since there is an even number of Is in the result
AF = I since there is a carry from d3 to d4
ZF= I since the result is zero
SF=O since d7 of the result is zero

The same concepts apply for 16-bit addition, as shown in Examples 1-12
and 1-13. It is important to notice the differences between 8-bit and 16-bit opera­
tions in terms of their impact on the flag bits. The parity bit only counts the lower
8-bits of the result and is set accordingly. Also notice the CF bit. The carry flag is
set if there is a carry beyond bit diS instead of bit d7.

Example 1-12

Show how the flag register is affected by
MOV AX,34F5H ;AX= 34F5H
ADD AX,95EBH ;now AX= CAEOH

Solution:

+
34F5
95EB
CAEO

0011
1001
1100

CF = 0 since there is no carry beyond diS

0100 1111
0101 1110
1010 1110

PF = 0 since there is an odd number of I s in the lower byte
AF = I since there is a carry from d3 to d4
ZF = 0 since the result is not zero
SF = I since d IS of the result is one

Example 1-13

Show how the flag register is affected by
MOV BX,AAAAH ;BX= AAAAH
ADD BX,5556H ;now BX= OOOOH

Solution:

+
AAAA
5556
0000

CF = I since there is a carry beyond diS

1010
0101
0000

1010
0101
0000

1010
0101
0000

PF = I since there is an even number of I s in the lower byte
AF = I since there is a carry from d3 to d4
ZF = I since the result is zero
SF = 0 since diS of the result is zero

0101
1011
0000

1010
0110
0000

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86 39

40

Example 1-14

Notice the zero flag (ZF) status after the execution of the ADD instruction.
Since the result of the entire 16-bit operation is zero (meaning the contents ofBX),
ZF is set to high. Do all instructions affect the flag bits? The answer is no; some
instructions such as data transfers (MaY) affect no flags. As an exercise, run these
examples on DEBUG to see the effect of various instructions on the flag register.

Show how the flag register is affected by

Solution:

+

MOV
MOV
ADD
MOV
MOV

94C2
323E
C700

AX,94C2H
BX,323EH
AX,BX
DX,AX
CX,DX

1001
0011
1100

;AX=94C2H
;BX=323EH
;now AX=C700H
;now DX=C700H
;now CX=C700H

0100
0010
0111

1100
0011
0000

0010
1110
0000

After the ADD operation, the following are the flag bits:
CF = 0 since there is no carry beyond diS
PF = I since there is an even number of I s in the lower byte
AF = I since there is a carry from d3 to d4
ZF = 0 since the result is not zero
SF = I since diS ofthe result is I

Running the instructions in Example 1-14 in DEBUG will verify that MaY
instructions have no effect on the flag. How these flag bits are used in programming
is discussed in future chapters in thc context of many applications. In Appendix B
we give additional information about the effect of various instructions on the flags.

Use of the zero flag for looping

One of the most widely used applications of the flag register is the use of
the zero flag to implement program loops. The term loop refers to a set of instructions
that is repeated a number of times. For example, to add 5 bytes of data, a counter
can be used to keep track of how many times the loop needs to be repeated. Each
time the addition is performed the counter is decremented and the zero flag is
checked. When the counter becomes zero, the zero flag is set (ZF = I) and the loop
is stopped. The following shows the implementation of the looping concept in the
program, which adds 5 bytes of data. Register CX is used to hold the counter and
BX is the offset pointer (SI or or could have been used instead). AL is initialized
before the start of the loop. In each iteration, ZF is checked by the JNZ instruction.
JNZ stands for "Jump Not Zero" meaning that if ZF = 0, jump to a new address. If
ZF = I, the jump is not performed and the instruction below the jump will be
executed. Notice that the JNZ instruction must come immediately after the instruc­
tion that decrements CX since JNZ needs to check the affect of "DEC CX" on the
zero flag. If any instruction were placed between them, that instruction might affect
the zero flag.

ADDJP:

MOV
MOV
MOV
ADD
INC
DEC
JNZ

CX,OS
BX,0200H
AL,OO
AL,[BX]
BX
CX
ADD_LP

;CX holds the loop count
;BX holds the offset data address
;initialize AL
;add the next byte to AL
;increment the data pointer
;decrement the loop counter
;jump to next iteration if counter not zero

CHAPTER 1: THE 80x86 MICROPROCESSOR

Review Questions

1. Which registers are used to access the stack"
2. With each PUSH instruction, the stack pointer register SP is (circle one) incre-

mented/decremented by 2.
3. With each POP instruction, SP is (circle one) incremented/decremented by 2.
4. List three possible logical addresses corresponding to physical address 143FO.
5. The ADD instruction can affect which bits of the flag register?
6. The carry flag will be set to 1 in an 8-bit ADD ifthere is a carry out from bit .
7. CF will be set to I in a 16-bit ADD if there is a carry out from bit __ . -

SECTION 1.6: 80x86 ADDRESSING MODES

The CPU can access operands (data) in various ways, called addressing
modes. The number of addressing modes is determined when the microprocessor
is designed and cannot be changed. The 80x86 provides a total of seven distinct
addressing modes:

l. register
2. immediate
3. direct
4. register indirect
5. based relative
6. indexed relative
7. based indexed relative

Each addressing mode is explained below, and application examples are
given in later chapters as the reader understands Assembly language programming
in greater detail. Since the reader is now familiar with ADD and MOV instructions,
these are used below to explain addressing modes.

Register addressing mode

The register addressing mode involves the use of registers to hold the data
to be manipulated. Memory is not accessed when this addressing mode is executed;
therefore, it is relatively fast. Examples of register addressing mode follow:

MOV
MOV
ADD

BX,DX
ES,AX
AL,BH

;copy the contents of DX into BX
;copy the contents of AX into ES
;add the contents of BH to contents of AL

It should be noted that the source and destination registers must match in
size. In other words coding "MOV CL,AX" will give an error, since the source is
a 16-bit register and the destination is an 8-bit register.

Immediate addressing mode

In the immediate addressing mode, the source operand is a constant. In
immediate addressing mode, as the name implies, when the instruction is assembled,
the operand comes immediately after the opcode. For this reason, this addressing
mode executes quickly. However, in programming it has limited use. Immediate
addressing mode can be used to load information into any of the registers except the
segment registers and flag registers. Examples:

MOV
MOV
MOV

AX,2550H
eX,625
BL,40H

;move 2550H into AX
;Ioad the decimal value 625 into ex
;Ioad 40H into BL

SECTION 1.6: 80x86 ADDRESSING MODES 41

42

Example 1-15

To move infonnation to the segment registers, the data must first be moved
to a general-purpose register and then to the segment register. Example:

MOV AX,2550H
MOV DS,AX

In other words, the following would produce an error:

MOV DS,0123H ;illegal!!

In the first two addressing modes, the operands are either inside the
microprocessor or tagged along with the instruction. In most programs, the data to
be processed is often in some memory location outside the CPU. There are many
ways of accessing the data in the data segment. The following describes those
different methods.

Direct addressing mode

In the direct addressing mode the data is in some memory location(s) and
the address of the data in memory comes immediately after the instruction. Note
that in immediate addressing, the operand itself is provided with the instruction,
whereas in direct addressing mode, the address of the operand is provided with the
instruction. This address is the offset address and one can calculate the physical
address by shifting left the DS register and adding it to the offset as follows:

MOV DL,[2400] ;move contents of DS:2400H into DL

In this case the physical address is calculated by combining the contents of
offset location 2400 with DS, the data segment register. Notice the bracket around
the address. In the absence of this bracket it will give an error since it is interpreted
to move the value 2400 (l6-bit data) into register DL, an 8-bit register. Example
1-15 gives another example of direct addressing.

Find the physical address of the memory location and its contents after the execution of the following,
assuming that DS = 1512H.
MOY AL,99H
MOY [3518],AL

Solution:
First AL is initialized to 99H, then in line two, the contents of AL are moved to logical address
DS:3518 which is 1512:3518. Shifting DS left and adding it to the offset gives the physical address
of 18638H (15120H + 3518H = 18638H). That means after the execution of the second instruction,
the memory location with address 18638H will contain the value 99H.

Register indirect addressing mode

In the register indirect addressing mode, the address ofthe memory location
where the operand resides is held by a register. The registers used for this purpose
are SI, DI, and BX. If these three registers are used as pointers, that is, ifthey hold
the offset of the memory location, they must be combined with DS in order to
generate the 20-bit physical address. For example:

MOV AL,[BX] ;moves into AL the contents of the memory location
;pointed to by DS:BX.

CHAPTER 1: THE 80x86 MICROPROCESSOR

Example 1-16

Notice that BX is in brackets. In the absence of brackets, it is interpreted
as an instruction moving the contents of register BX to AL (which gives an error
because source and destination do not match) instead of the contents of the memory
location whose offset address is in BX. The physical address is calculated by
shifting OS left one hex position and adding BX to it. The same rules apply when
using register SI or Or.

MOV
MOV

CL.[Slj
[Olj,AH

;move contents of OS:SI into CL
;move contents of AH into OS:OI

In the examples above, the data moved is byte sized. Example 1-16 shows
16-bit operands.

Assume that OS = ll20, SI = 2498, and AX = 17FE. Show the contents of memory locations after
the execution of

MOV [Slj,AX

Solution:

The contents of AX are moved into memory locations with logical address OS:SI and OS:SI + I;
therefore, the physical address starts at OS (shifted left) + SI = 13698. According to the little endian
convention, low address 13698H contains FE, the low byte, and high address 13699H will contain 17,
the high byte.

Based relative addressing mode

In the based relative addressing mode, base registers BX and BP, as well as
a displacement value, are used to calculate what is called the effective address. The
default segments used for the calculation of the physical address (PA) are OS for
BX and SS for BP. For example:

MOV CX,[BXj+10 ;move OS:BX+10 and OS:BX+10+1 into CX
;PA = OS (shifted left) + BX + 10

Alternative codings are "MOY CX,[BX+IO]" or "MOY CX,IO[BX]".
Again the low address contents will go into CL and the high address contents into
CH. In the case of the BP register,

MOV AL,[BPj+5 ;PA = SS (shifted left) + BP + 5

Again, alternative codings are "MOY AL,[BP+5]" or "MOY AL,5[BP]".
A brief mention should be made of the terminology effective address used in Intel
literature. In "MOY AL,[BP]+5", BP+5 is called the effective address since the
fifth byte from the beginning of the offset BP is moved to register AL. Similarly in
"MOY CX,[BX]+I0", BX+IO is called the effective address.

Indexed relative addressing mode

The indexed relative addressing mode works the same as the based relative
addressing mode, except that registers DI and SI hold the offset address. Examples:

MOV
MOV

OX,[Slj+5
CL,[0Ij+20

;PA = OS (shifted left) + SI + 5
;PA = OS (shifted left) + 01 + 20

Example 1-17 gives further examples of indexed relative addressing mode.

SECTION 1.6: 80x86 ADDRESSING MODES 43

Example 1-17
Assume that DS ~ 4500, SS ~ 2000, BX ~ 2100, SI ~ 1486, DI ~ 8500, BP ~ 7814, and AX ~ 2512.
Show the exact physical memory location where AX is stored in each ofthe following. All values are
in hex.
(a) May [BX]+20,AX
(c) May [D1]+4,AX

(b) May [SI]+ IO,AX
(d) May [BP]+12,AX

Solution:
In each case PA ~ segment register (shifted left) + offset register + displacement.
(a) DS:BX+20 location 47120 ~ (12) and 47121 ~ (25)
(b) DS:SI+ 10 location 46496 ~ (12) and 46497 ~ (25)
(c) DS:D1+4 location 4D504 ~ (12) and4D505 ~ (25)
(d) SS:BP+12 location 27826 ~ (12) and 27827 ~ (25)

Based indexed addressing mode

By combining based and indexed addressing modes, a new addressing mode
is derived called the based indexed addressing mode. In this mode, one base register
and one index register are used. Examples:

MOV
MOV
MOV
MOV

CL,[BX][01]+8
CH,[BX][SI]+20
AH,[BP][01]+12
AH,[BP][Slj+29

;PA = OS (shifted left) + BX + 01 + 8
;PA = OS (shifted left) + BX + SI + 20
;PA = SS (shifted left) + BP + 01 + 12
;PA = SS (shifted left) + BP + SI + 29

The coding ofthe instructions above can vary; for example, the last example
could have been written

MOV AH,[BP+SI+29]
or
MOV AH,[SI+BP+29] ;the register order does not matter.

Note that "MOY AX,[SI][D1]+displacement" is illegal.

In many of the examples above, the MOY instruction was used for the sake
of clarity, even though one can use any insttuction as long as that instruction supports
the addressing mode. For example, the instruction "ADD DL,[BX]" would add
the contents of the memory location pointed at by DS:BX to the contents of register
DL.

Table 1-3: Offset Registers forYarious Se.gments
I

! Segment register: CS DS
ES ·1···· .. S_pS,SBP • Offset n~gisterfsJ: IP SI, or, BX. SI,DI,BX... ~

44

Segment overrides

Table 1·3 provides a summary of the offset registers that can be used with
the four segment registers of the 80x86. The 80x86 CPU allows the program to
override the default segment and use any segment register. To do that, specity the
segment in the code. For example, in "MaY AL,[BX]", the physical address of the
operand to be moved into AL is DS:BX, as was shown earlier since DS is the default
segment for pointer BX. To override that default, specify the desired segment in
the instruction as "MaY AL,ES:[BX]". Now the address of the operand being

CHAPTER 1: THE 80x86 MICROPROCESSOR

moved to AL is ES:BX instead of DS:BX. Extensive use of all these addressing
modes is shown in future chapters in the context of program examples. Table 1-4
shows more examples of segment overrides shown next to the default address in the
absence of the override. Table 1-5 summarizes addressing modes of the 8086/88.

Table 1-4: Sample Segment Overrides
I

.- .

! Instruction Seement Used Default Seement

MOV AX CS:[BPl CS:BP SS:BP

MOV DX ss:[Sn SS:SI DS:SI .
I

.

MOV AX DS:[BPl - ;DS:BP ISS:BP .• -
I

MOYCX,ES:[BX]+12 ._ IES:BX+12 __ iDS:BX+12

IMOV SS;fBX1[DI1+32 AX SS:BX+DI+32 i DS:BX +DI+ 32

T bl 15 S a e - : ummaryo f80 86 Add x reSSlDj(Md o es

I Addressinl! Mode Onerand i Default Sel!ment

Register reg none -

Immediate data none

Direct If offsetl DS - ..

I, Register indirect I [BX] :DS
•

[SI] DS

mil DS

Based relative [BX]+disp DS

rBP1+diso SS -

Indexed relative i[DI]+disp !DS

rSIl+diso iDS

Based indexed relative [BX] [SI]+disp IDS
,
i

SUMMARY

SUMMARY

[BX] [DI]+disp DS
,

[BP] [SI]+ disp SS

rBPlfDIl+ diso SS

Intel's 80x86 family of microprocessors are used in all IBM PC, PS, and
compatible computers. The 8088 was the microprocessor used by IBM in the first
PCs, which revolutionized the computing industry in the early 1980s. Each genera­
tion ofIntel microprocessors brought improvements in speed and processing power.

A typical Assembly language program consists of at least three segments.
The code segment contains the Assembly language instructions to be executed. The
data segment is used to store data needed by the program. The stack segment is
used for temporary storage of data. Memory within each segment is accessed by
combining a segment register and an offset register. The flag register is used to

45

indicate certain conditions after the execution of an instruction such as carry,
overflow, or zero result.

Assembly language instructions can use one of seven addressing modes.
An addressing mode is simply a method by which the programmer tells the CPU
where to find the operand for that instruction.

PROBLEMS

46

I. Which microprocessor, the 8088 or the 8086, was released first?
2. If the 80286 and 80386SX both have 16-bit external data buses, what is the differ­

ence between them?
3. What does "16-bit" or "32-bit" microprocessor mean? Does it refer to the internal

or external data path?
4. Do programs written for the 88/86 run on 80286-, 80386-, and 80486-based CPUs?
5. What does the term upward compatibility mean?
6. Name a major difference between the 8088 and 8086.
7. Which has the larger queue, the 8088 or 8086?
8. State another way to increase the processing power of the CPU other than increas­

ing the frequency.
9. What do "BIU" and "EU" stand for, and what are their functions?

!O. Name the general-purpose registers of the 8088/86.
(a) 8-bit (b) 16-bit

II. Which of the following registers cannot be split into high and low bytes?
(a) CS (b) AX (c) OS
(d) SS (e) BX (I) OX
(g) CX (h) SI (i) DI

12. Which of the following instructions cannot be coded in 8088/86 Assembly lan­
guage? Give the reason why not, if any. To verifY your answer, code each in
DEBUG. Assume that all numbers are in hex.
(a)MOV AX,27 (b) MOVAL,97F
(d) MOV CX,397 (e) MOV SI,9516
(g) MOV DS,BX (h) MOV BX,CS
(j) MOV AX,23FB9 (k) MOV CS,BH

13. Name the segment registers and their functions in the 8088/86.
14. IfCS ~ 3499H and IP ~ 2500H, find:

(a) The logical address
(b) The physical address
(c) The lower and upper ranges of the code segment

15. Repeat Problem 14 with CS ~ 1296H and IP ~ !OOH.
16. If OS ~ 3499H and the offset ~ 3FB9H, find:

(a) The physical address
(b) The logical address of the data being fetched
(c) The lower and upper range addresses of the data segment

17. Repeat Problem 16 using OS ~ 1298H and the offset ~ 7CC8H.

(c) MOV DS,9BF2
(I) MOV CS,3490
(i) MOV CH,AX
(I) MOV AX,DL

18. Assume that the physical address for a location is 0046CH. Suggest a possible
logical address.

19. If an instruction that needs to be fetched is in physical memory location 389F2 and

20.

CS ~ 2700, does the code segment range include it or not? If not, what value
should be assigned to CS if the IP must be ~ 1282?
Using DEBUG, assemble and unassemble the following program and provide the
logical address, physical address, and the content of each address location. The
CS value is decided by DOS, but use IP ~ 170H.
MOVAL,76H
MOVBH,8FH
ADDBH,AL
ADDBH,7BH
MOVBL,BH
ADDBL,AL

CHAPTER 1: THE 80x86 MICROPROCESSOR

PROBLEMS

21. Repeat Problem 20 for the following program from page 29.
MOV AL,O ;c1ear AL
ADD AL,[0200] ;add the contents ofDS:200 to AL
ADD AL,[0201] ;add the contents ofDS:201 to AL
ADD AL,[0202] ;add the contents ofDS:202 to AL
ADD AL,[0203] ;add the contents ofDS:203 to AL
ADD AL,[0204] ;add the contents ofDS:204 to AL

22. The stack is:
(a) A section of ROM
(b) A section of RAM used for temporary storage
(c) A 16-bit register inside the CPU
(d) Some memory inside the CPU

23. In problem 22, choose the correct answer for the stack pointer.
24. When data is pushed onto the stack, the stack pointer is , but

when data is popped off the stack, the stack pointer is ____ _
25. Choose the correct answer:

(a) The stack segment and code segment start at the same point of read/write mem­
ory and grow upward.
(b) The stack segment and code segment start at opposite points of read/write mem­
ory and grow toward each other.
(c) There will be no problem if the stack and code segments meet each other.

26. What is the main disadvantage of the stack as temporary storage compared to hav­
ing a large number of registers inside the CPU?

27. If SS ~ 2000 and SP ~ 4578, find:
(a) The physical address
(b) The logical address
(c) The lower range of the stack segment
(d) The upper range of the stack segment

28. If SP ~ 24FC, what is the offset address of the first location of the stack that is
available to push data into?

29. Assume that SP ~ FF2EH, AX ~ 329lH, BX ~ F43CH, and CX ~ 09. Find the
content of the stack and stack pointer after the execution of each of the following
instructions.

PUSH AX
PUSH BX
PUSH CX

30. In order for each register to get back their original values in Problem 29, show the
sequence of instructions that needs to be executed. Show the content of the SP at
each point.

31. The following registers are used as offsets. Assuming that the default segment is
used to get the logical address, give the segment register associated with each off­
set.
(a)BP (b)DI (c)IP
(d) SI (e) SP (I) BX

32. Show the override segment register and the default segment register used (if there
were no override) in each of the following cases.
(a) MOV SS:[BX],AX (b) MOV SS:[DI],BX
(c) MOV DX,DS:[BP+6]

33. Find the status of the CF, PF, AF, ZF, and SF for the following operations.
(a)MOV BL,9FH (b) MOV AL,23H (c) MOV DX,IOFFH

ADD BL,6lH ADD AL,97H ADD DX,!
34. Assume that the registers have the following values (all in hex) and that CS =

1000, DS ~ 2000, SS ~ 3000, SI ~ 4000, DI ~ 5000, BX ~ 6080, BP ~ 7000, AX
~ 25FF, CX ~ 8791, and DX ~ 1299. Calculate the physical address of the mem­
ory where the operand is stored and the contents of the memory locations in each
of the following addressing examples.
(a) MOV [SI],AL (b) MOV [Sl+BX+8],AH
(c) MOV [BX],AX (d) MOV [DI+6],BX
(e) MOV [DI][BX]+28,CX (I) MOV [BP][SI]+ IO,DX

47

(g) MOV [3600],AX (h) MOV [BX]+30,OX
(i) MOV [BP]+200,AX (j) MOV [BP+SI+lOO],BX
(k) MOV [SI]+50,AH (I) MOV [OI+BP+ lOO],AX.

35. Give the addressing mode for each of the following:
(a) MOV AX,OS (b) MOV BX,5678H
(c) MOV CX,[3000] (d) MOV AL,CH
(e) MOV [OI],BX (I) MOV AL,[BX]
(g) MOV OX,[BP+0I+4] (h) MOV CX,OS
(i) MOV [BP+6],AL (j) MOV AH,[BX+SI+50]
(k) MOV BL,[SI]+ lO (I) MOV [BP][SI]+ 12,AX

36. Show the contents of the memory locations after the execution of each instruction.
(a) MOV BX,129FH (b) MOV OX,8C63H

MOV [1450],BX MOV [2348],OX
OS: 1450 OS:2348
OS:1451 OS:2349

ANSWERS TO REVIEW QUESTIONS

48

SECTION 1.1: BRIEF HISTORY OF THE 80X86 FAMILY
1. (1) increased memory capacity from 64K to 1 megabyte; (2) the 8086 is a 16-bit microprocessor

instead of an 8-bit microprocessor; (3) the 8086 was a pipelined processor
2. the 8088 has an 8-bit external data bus whereas the 8086 has a 16-bit data bus
3. (a) 20-bit, 1 megaby1e (b) 24-bit, 16 megabytes (c) 32-bit, 4 gigaby1es
4. 16,32
5. the 80386 has 32-bit address and data buses, whereas the 80386SX has a 24-bit address bus and a

16-bit external data bus
6. virtual memory, protected mode
7. math coprocessor on the CPU chip, cache memory and controller

SECTION 1.2: INSIDE THE 8088/8086
1. the execution unit executes instructions; the bus interface unit fetches instructions
2. pipelining divides the microprocessor into two sections: the execution unit and the bus interface unit;

this allows the CPU to perform these two functions simultaneously; that is, the BIU can fetch instructions
while the EU executes the instructions previously fetched

3. 8, 16
4. AX, BX, CX, DX, SP, BP, SI, DI, CS, DS, SS, ES, IP, FR

SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING
1. MOV BX,1234H
2. MOV AX, 16H

ADDAX,ABH
3. the segment registers CS, DS, ES, and SS
4. FFFFH = 6553510, FFH = 25510

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS
1. 64K
2. a segment contains 64K by1es; yes because 346EOH is evenly divisible by 16
3. the physical address is the 20-bit address that is put on the address bus to locate a byte; the logical

address is the address in the form xxxx:yyyy, where xxxx is the segment address and yyyy is the offset into the
segment

4. 20, 16
5. IP
6. 2400 would contain 34 and 2401 would contain 12

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80X86
1. SS is the segment register; SP and BP are used as pointers into the stack
2. decremented
3. incremented
4. 143F:0000, 1000:43FO, 1410:02FO
5. CF, PF, AF, ZF, SF, and OF
6. 7
7. 15

CHAPTER 1: THE 80x86 MICROPROCESSOR

CHAPTER 2

ASSEMBLY LANGUAGE
PROGRAMMING

OBJECTIVES

Upon completion of this chapter, you will be able to:

~> Explain the difference between Assembly language instructions and
pseudo-Instructions

» Identify the segments of an Assembly language program
» Code sbnple,usembly language instructions
» Assemble, link,. and run a simple Assembly language program
» Code control transfer instructions snch as conditional and uncondi­

tional jnmps and call instructions
» Code Assembly language data directives for binary, bex, decbnal, or

ASCUdata
» Write an Assembly language program using either tbe fnll segment defi­

nition or the siJDplifiedsegment definition
» :E:t.pJaintbe dUference between COM and EXE files and list the advan­

tages of each

.

49

This chapter is an introduction to Assembly language programming with
the 80x86. First the basic form of a program is explained, followed by the steps
required to edit, assemble, link, and run a program. Next, control transfer instruc­
tions such as jump and call are discussed and data types and data directives in
80x86 Assembly language are explained. Then the full segment definition is dis­
cussed. Finally, the differences between" .exe" and ".com" files are explained.
The programs in this chapter and following ones can be assembled and run on any
IBM PC, PS and compatible computer with an 8088/86 or higher microprocessor.

SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAM

50

In this section we explain the components of a simple Assembly language
program to be assembled by the assembler. A given Assembly language program
(see Figure 2- I) is a series of statements, or lines, which are eiL'1er Assembly lan­
guage instructions such as ADD and MOV, or statements called directives.
Directives (also called pseudo-instructions) give directions to the assembler about
how it should translate the Assembly language instructions into machine code.
An Assembly language instruction consists of four fields:

[label:] mnemonic [operands] (;comment]

Brackets indicate that the field is optional. Do not type in the brackets.

I. The label field allows the program to refer to a line of code by name. The label
field cannot exceed 3 I characters. Labels for directives do not need to end with a
colon. A label must end with a colon when it refers to an opcode generating
instruction; the colon indicates to the assembler that this refers to code within this
code segment. Appendix C, Section 2 gives more information about labels.

2,3. The Assembly language mnemonic (instruction) and operand(s) fields together
perform the real work of the program and accomplish the tasks for which the pro­
gram was written. In Assembly language statements such as

ADD AL,BL
MOV AX,6764

ADD and MOV are the mnemonic opcodes and "AL,BL" and "AX,6764" are the
operands. Instead of a mnemonic and operand, these two fields could contain
assembler pseudo-instructions, or directives. They are used by the assembler to
organize the program as well as other output files. Directives do not generate any
machine code and are used only by the assembler as opposed to instructions,
which are translated into machine code for the CPU to execute. In Figure 2-1 the
commands DB, END, and ENDP are examples of directives.

4. The comment field begins with a ";". Comments may be at the end of a line or
on a line by themselves. The assembler ignores comments, but they are indispen­
sable to programmers. Comments are optional, but are highly recommended to
make it easier for someone to read and understand the program.

Model definition

The first statement in Figure 2-1 after the comments is the MODEL direc­
tive. This directive selects the size of the memory model. Among the options for
the memory model are SMALL, MEDIUM, COMPACT, and LARGE .

. MODEL SMALL ;this directive defines the model as small

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

SMALL is one of the most widely used memory models for Assembly
language programs and is sufficient for the programs in this book. The small
model uses a maximum of 64K bytes of memory for code and another 64K bytes
for data. The other models are defined as follows:

.MODEL MEDIUM ;the data must fit into 64K bytes
;but the code can exceed 64K bytes of memory

.MODEL COMPACT ;the data can exceed 64K bytes
;but the code cannot exceed 64K bytes

.MODEL LARGE ;both data and code can exceed 64K
;but no single set of data should exceed 64K

.MODEL HUGE ;both code and data can exceed 64K
;data items (such as arrays) can exceed 64K

.MODEL TINY ;used with COM files in which data and code
;must fit into 64K bytes

Notice in the above list that MEDIUM and COMPACT are opposites.
Also note that the TINY model cannot be used with the simplified segment defi­
nition described in this section.

Segment definition

As mentioned in Chapter I, the 80x86 CPU has four segment registers:
CS (code segment), DS (data segment), SS (stack segment), and ES (extra seg­
ment). Every line of an Assembly language program must correspond to one of
these segments. The simplified segment definition format uses three simple direc­
tives: ".CODE", ".DATA", and ".STACK", which correspond to the CS, DS, and
SS registers, respectively. There is another segment definition style called the foil
segment definition, which is described in Section 2.6.

Segments of a program

Although one can write an Assembly language program that uses only
one segment, normally a program consists of at least three segments: the stack
segment, the data segment, and the code segment.

.STACK

.DATA

.CODE

;marks the beginning of the stack segment
;marks the beginning of the data segment
;marks the beginning of the code segment

Assembly language statements are grouped into segments in order to be
recognized by the assembler and consequently by the CPU. The stack segment
defines storage for the stack, the data segment defmes the data that the program
will use, and the code segment contains the Assembly language instructions. In
Chapter I we gave an overview of how these segments were stored in memory.
In the following pages we describe the stack, data, and code segments as they are
defined in Assembly language programming.

Stack segment

The following directive reserves 64 bytes of memory for the stack:

.STACK 64

Data segment

The data segment in the program of Figure 2-1 defines three data items:
DATAl, DATA2, and SUM. Each is defined as DB (define byte). The DB direc­
tive is used by the assembler to allocate memory in byte-sized chunks. Memory

SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAM 51

can be allocated in different sizes, such as 2 bytes, which has the directive DW
(define word). More of these pseudo-instructions are discussed in detail in Section
2.5. The data items defined in the data scgment will be accessed in the code seg­
ment by their labels. DATA I and DATA2 are given initial values in the data scc­
tion. SUM is not given an initial value, but storage is set aside for it.

;THE FORM OF AN ASSEMBLY LANGUAGE PROGRAM
;NOTE: USING SIMPLIFIED SEGMENT DEFINITION

.MODEL SMALL

DATAl
DATA2
SUM

MAIN

MAIN

.STACK64

.DATA
DB 52H
DB 29H
DB ?
.CODE
PROC FAR
MOV AX,@DATA
MOV DS,AX
MOV AL,DATAl
MOV BL,DATA2
ADD AL,BL
MOV SUM,AL
MOV AH,4CH
INT 21H
ENDP
END MAIN

;this is the program entry pOint
;Ioad the data segment address
;assign value to DS
;get the first operand
;get the second operand
;add the operands
;store the result in location SUM
;set up to return to DOS

;this is the program exit pOint

Figure 2-1. Simple Assembly Language Program

52

Code segment definition

The last segment of the program in Figure 2-1 is the code segment. The
first line of the segment after the .CODE directive is the PROC directive. A pro­
cedure is a group of instructions designed to accomplish a specific function. A
code segment may consist of only one procedure, but usually is organized into
several small procedures in order to make the program more structured. Every
procedure must have a name defined by the PROC directive, followed by the
assembly language instructions and closed by the ENDP directive. The PROC and
ENDP statements must have the same label. The PROC directive may have the
option FAR or NEAR. The operating system that controls the computer must be
directed to the beginning ofthe program in order to execute it. DOS requires that
the entry point to the user program be a FAR procedure. From then on, either FAR
or NEAR can be used. The differences between a FAR and a NEAR procedure,
as well as where and why each is used, are explained later in this chapter. For
now, just remember that in order to run a program, FAR must be used at the pro­
gram entry point.

A good question to ask at this point is: What value is actually assigned to
the CS, DS, and SS registers for execution of the program? The DOS operating
system must pass control to the program so that it may execute, but before it does
that it assigns values for the segment registers. The operating system must do this
because it knows how much memory is installed in the computer, how much of it
is used by the system, and how much is available. In the IBM PC, the operating
system first finds out how many kilobytes of RAM memory are installed, allo­
cates some for its own use, and then allows the user program to use the portions
that it needs. Various DOS versions require different amounts of memory, and
since the user program must be able to run across different versions, one cannot

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

tell DOS to give the program a specific area of memory, say from 25FFF to
289E2. Therefore, it is the job of DOS to assign exact values for the segment reg­
isters. When the program begins executing, of the three segment registers, only
CS and SS have the proper values. The OS value (and ES, if used) must be ini­
tialized by the program. This is done as follows:

MOV AX,@DATA
MOVDS,AX

;DATA refers to the start of the data segment

Remember from Chapter I that no segment register can be loaded direct­
ly. That is the reason the two lines of code above are needed. You cannot code
"MOV DS,@DATA".

After these housekeeping chores, the Assembly language program
instructions can be written to perform the desired tasks. In Figure 2-1, the pr0-
gram loads AL and BL with DATA I and DATA2, respectively, ADDs them
together, and stores the result in SUM.

MOV AL,DATA1
MOV BL,DATA2
ADD AL,BL
MOV SUM,AL

The two last instructions in the shell are:

MOV AH,4CH
INT 21H

Their purpose is to return control to the operating system. The last two
lines end the procedure and the program, respectively. Note that the label for
ENDP (MAIN) matches the label for PROC. The END pseudo-instruction ends
the entire program by indicating to DOS that the entry point MAIN has ended. For
this reason the labels for the entry point and END must match.

Figure 2-2 shows a sample shell of an Assembly language program.
When writing your first few programs, it is handy to keep a copy of this shell on
your disk and simply fill it in with the instructions and data for your program.

;THE FORM OF AN ASSEMBLY LANGUAGE PROGRAM
; USING SIMPLIFIED SEGMENT DEFINITION

MAIN

MAIN

.MODEL SMALL

.STACK64

.DATA

;place data definnions here

.CODE
PROC FAR
MOV AX,@DATA
MOV DS,AX

;place code here

MOV
INT
ENDP

AH,4CH
21H

;this is the program entry point
;Ioad the data segment address
;assign value to DS

;set up to
;return to DOS

END MAIN ;this is the program exit point

Figure 2-2. Shell of an Assembly Language Program

SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAM 53

Review Questions

I. What is the purpose of pseudo-instructions?
2. are translated by the assembler into machine code, whereas

are not.
3. "W'n"te-an--;-A-ss-e-m-;-b7Iy-Ianguage program with the following characteristics:

(a) A data item named HIGH OAT, which contains 95
(b) Instructions that move HIGH OAT to registers AH, BH, and OL
(c) A program entry point named START

4. Find the errors in the following:
.MODEL ENORMOUS
.STACK
.CODE
.DATA

MAIN PROC
MOV
MOV
MOV
ADD
MOV

STARTENDP
END

FAR
AX,DATA
DS,@DATA
AL,34H
AL,4FH
DATA1,AL

SECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAM

54

Step

Now that the basic fonn of an Assembly language program has been
given, the next question is: How is it created and assembled? The three steps to
create an executable Assembly language program are outlined as follows:

Input Pro~ram Output
I. Edit the program keyboard editor myfile.asm
2. Assemble the program myfile.asm
3. Link the program myfile.obj

The MASM and LINK pro­
grams are the assembler and linker
programs for Microsoft's MASM
assembler. If you are using another
assembler, such as Borland's
TASM, consult the manual for the
procedure to assemble and link a
program. Many excellent editors or
word processors are available that
can be used to create andlor edit the
program. The editor must be able to
produce an ASCII file. Although
filenames follow the usual DOS
conventions, the source file must
end in ".asm" for the assembler
used in this book. This ".asm"
source file is assembled by an
assembler, such as Microsoft's
MASM, or Borland's TASM. The
assembler will produce an object
file and a list file, along with other

MASMorTASM myfile.obj
LINK or TLINK myfile.exe

myfile.lst

EDITOR
PROGRAM

~ myfile. asm

ASSEMBLER
PROGRAM

myfile.crf

myfile.obj other obj files

LINKER
PROGRAM

myfile.exe

myfile.map

Figure 2-3. Steps to Create a Program

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

files that may be useful to the programmer. The extension for the object file must
be ".obj". This object file is input to the LINK program, which produces the exe­
cutable program that ends in ".exe". The ".exe" file can be executed by the micro­
processor. Before feeding the ".obj" file into LINK, all syntax errors produced by
the assembler must be corrected. Of course, fixing these errors will not guarantee
that the program will work as intended since the program may contain conceptu­
al errors. Figure 2-3 shows the steps in producing an executable file.

Figure 2-4 shows how an executable program is created by following the
steps outlined above, and then run under DEBUG. The portions in bold indicate
what the user would type in to perform these steps. Figure 2-4 assumes that the
MASM, LINK, and DEBUG programs are on drive C and the Assembly language
program is on drive A. The drives used will vary depending on how the system is
set up.

C>MASM A:MYFILE.ASM <enter>

Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981,1988. All rights reserved.

Object filename [A:MYFILE.OBJj: A: <enter>
Source listing [NUL.LST]:A:MYFILE.LST <enter>
Cross-reference [NUL.CRFj: <enter>

47962 + 413345 By1es symbol space free

o Warning Errors
o Severe Errors

C>LINK A:MYFILE.OBJ <enter>

Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

Run File [A:MYFILE.EXEj:A:<enter>
List File [NUL.MAP): <enter>
Libraries [.LlB):<enter>
LINK: warning L4021: no stack segment

C>OEBUG A:MYFILE.EXE <enter>
-U CS:O 1 <enter>
1064:0000 B8661 0 MOV AX,1066
-01066:0 F <enter>
1066:0000 52 29 00 00 00 00 00 00-00 00 00 00 00 00 00 00 R)

-G <enter>
Program terminated normally
-0 1066:0 F <enter>
1066:0000 52 29 7B 00 00 00 00 00-00 00 00 00 00 00 00 00 R){
-Q <enter>
C>

Figure 2-4. Creating and Running the .exe File
Note: The parts you type in are printed in bold.

SECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAM 55

56

.asm and .obj files

The ".asm" file (the source file) is the file created with a word processor
or line editor. The MASM (or other) assembler converts the .asm file's Assembly
language instructions into machine language (the ".obj" object file). In addition to
creating the object program, MASM also creates the ".1st" list file .

. Ist file

The ".1st" file, which is optional, is very useful to the programmer
because it lists all the opcodes and offset addresses as well as errors that MASM
detected. MASM assumes that the list file is not wanted (NUL.LST indicates no
list). To get a list file, type in a filename after the prompt. This file can be dis­
played on the monitor or sent to the printer. The programmer uses it to help debug
the program. It is only after fixing all the errors indicated in the ".1st" file that the
".obj" file can be input to the LINK program to create the executable program.

One way to look at the list file is to use the following command at the
DOS level. This command will print myfile.lst to the monitor, one sceen at a time.

C>type myfile.lst I more

Another way to look at the list file is to bring it into a word processor.
Then you can read it or print it. There are two assembler directives that can be
used to make the ".1st" file more readable: PAGE and TITLE.

PAGE and TITLE directives

The format of the PAGE directive is

PAGE [linesj,[columnsj

and its function is to tell the printer how the list should be printed. In the
default mode, meaning that the PAGE directive is coded with no numbers coming
after it, the output will have 66 lines per page with a maximum of 80 characters
per line. In this book, programs will change the default settings to 60 and 132 as
follows:

PAGE 60,132

The range for number oflines is 10 to 255 and for columns is 60 to 132.
When the list is printed and it is more than one page, the assembler can be
instructed to print the title of the program on top of each page. What comes after
the TITLE pseudo-instruction is up to the programmer, but it is common practice
to put the name of the program as stored on the disk immediately after the TITLE
pseudo-instruction and then a brief description of the function of the program.
The text after the TITLE pseudo-instruction cannot be more than 60 ASCII char­
acters .

. crt file

MASM produces another optional file, the cross-reference, which has the
extension" .crf'. It provides an alphabetical list of all symbols and labels used in
the program as well as the program line numbers in which they are referenced.
This can be a great help in large programs with many data segments and code
segments.

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

LiNKing the program

The assembler (MASM) creates tbe opcodes, operands, and offset
addresses under tbe ".obj" file. It is tbe LINK program tbat produces tbe ready­
to-run version of a program that has tbe ".exe" (EXEcutable) extension. The
LINK program sets up tbe file so tbat it can be loaded by DOS and executed.

In Figure 2-4 we used DEBUG to execute tbe program in Figure 2-1 and
analyze tbe result. In the program in Figure 2-1, tbree data items are defined in
tbe data segment. Before running tbe program, one could look at tbe data in tbe
data segment by dumping tbe contents of DS:offset as shown in Figure 2-4. Now
what is tbe value for tbe DS register? This can vary from PC to PC and from DOS
to DOS. For tbis reason it is important to look at tbe value in "MOY AX,xxxx"
as was shown and use tbat number. The result of the program can be verified after
it is run as shown in Figure 2-4. When tbe program is working successfully, it can
be run at tbe DOS level. To execute myfile.exe, simply type in
C>A:myfile

However, since tbis program produces no output, tbere would be no way
to verify tbe results. When tbe program name is typed in at the DOS level, as
shown above, DOS loads tbe program in memory. This is sometimes referred to
as mapping, which means that tbe program is mapped into the physical memory
oftbe Pc.

.map file

When tbere are many segments for code or data, tbere is a need to see
where each is located and how many bytes are used by each. This is provided by
tbe map file. This file, which is optional, gives tbe name of each segment, where
it starts, where it stops, and its size in bytes. In Chapter 7 tbe importance of tbe
map will be seen when many separate subroutines (modules) are assembled sep­
arately and tben linked togetber.

Review Questions

I. (a) The input file to tbe MASM assembler program has tbe extension __ .
(b) The input file to tbe LINK program has tbe extension __ .

2. Select all tbe file types from the second column tbat are tbe output oftbe pro­
gram in tbe first column.

Editor
---Assembler

(a) .obj (b) .asm
(c) .exe (d) .1st

SECTION 2.3: MORE SAMPLE PROGRAMS

_=-Linker (e) .crf(f) .map
Now tbat some familiarity witb Assembly language programming in tbe

IBM PC has been achieved, in this section we look at more example programs in
order to allow tbe reader to master tbe basic features of Assembly programming.
The following pages show Program 2-1 and tbe list file generated when tbe pro­
gram was assembled. After tbe program was assembled and linked, DEBUG was
used to dump tbe code segment to see what value is assigned to tbe DS register.
Precisely where DOS loads a program into RAM depends on many factors,
including tbe amount of RAM on the system and tbe version of DOS used.
Therefore, remember tbat the value you get could be different for "MOY
AX,xxxx" as well as for CS in the program examples. Do not attempt to modify
tbe segment register contents to confonn to tbose in tbe examples, or your system
may crash!

SECTION 2.3: MORE SAMPLE PROGRAMS 57

Write, nm, and analyze a program that adds 5 bytes of data and saves the result. The data should be the
followtng hex numbers: 25, 12, 15, IF, and 2B.

PAGE 60,132
TITLE PROG2-1 (EXE) PURPOSE: ADDS 5 BYTES OF DATA

.MODEL SMALL

DATA IN
SUM-

MAIN

AGAIN:

MAIN

.STACK64

.DATA
DB 25H, 12H, 15H, 1 FH,2BH
DB ?

.CODE
PROC FAR
MOV AX,@DATA
MOV DS,AX
MOV CX,05
MOV BX,OFFSET DATA IN
MOV AL,O -
ADD AL,[BX]
INC BX
DEC CX
JNZ AGAIN
MOV SUM,AL
MOV AH,4CH
INT 21H
ENDP
END MAIN

;set up loop counter CX=5
;set up data pointer BX
;initialize AL
;add next data item to AL
;make BX point to next data item
;decrement loop counter
;jump if loop counter not zero
;Ioad result into sum
;set up return
;return to DOS

After the program was assembled and linked, it was run using DEBUG:

C>debug prog2-1.exe
-u cs:O 19
1067:0000 B86610
1067:0003 8ED8
1067:0005 B90500
1067:0008 BBOOOO
1067:0000 0207
1 067:000F 43
1067:001049
1067:0013 A20500
1067:0016 B44C
1067:0018 CD21
-d 1066:0 f

MOV
MOV
MOV
MOV
ADD
INC
DEC
MOV
MOV
INT

AX,1066
DS,AX
CX,0005
BX,OOOO
AL,[BX]
BX
CX
[0005],AL
AH,4C
21

1066:0000 251215 1F 2B 00 00 00-00 00 00 00 00 00 00 00 % ... +
-g

Program terminated normally
-d 1066:0 f
1066:0000 251215 1F 2B 96 00 00-00 00 00 00 00 00 00 00 % ... +
-q
C>

Program 2-1

58

Analysis of Program 2-1

The DEBUG program is explained thoroughly in Appendix A. The com­
mands used in running Program 2-1 were (1) u, to unassemble the code from cs:O
for 19 bytes; (2) d, to dump the contents of memory from 1066: 0 for the next F
bytes; and (3) g, to go, that is, run the program.

Notice in Program 2-1 that when the program was run in DEBUG, the
contents of the data segment memory were dumped before and after execution of
the program to verify that the program worked as planned. Normally, it is not nec­
essary to unassemble this much code, but it was done here because in later sec-

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

Turbo Assembler
test21.asm

Version 3.0 06/25/99 12:05:32 Page 1

1 0000
2 0000
3
4 0000
5 0000 251215 1F 2B
6 0005??
7
8 0006
9 0000

10 0000 B8 DODOs
11 0003 8E D8
12 0005 B9 0005
13 0008 BB OOOOr
14 OOOB BO 00
15 DODD 0207
16 OOOF 43
17 0010 49
18 0011 75 FA
19 0013 A2 0005r
20 0016 B4 4C
21 0018 CD 21
22 001A
23

.MODEL SMALL

.STACK64

. DATA
DATA IN DB 25H,12H,15H,1FH,2BH
SUM- DB ?

MAIN

AGAIN:

MAIN

.CODE
PROC
MOV
MOV
MOV
MOV
MOV
ADO
INC
DEC
JNZ
MOV
MOV
INT
ENDP
END

FAR
AX,@DATA
DS,AX
CX,05 ;set up loop counter CX=5
BX,OFFSET DATA IN ;set up data
AL,O ;initiaiize AL .
AL,[BX] ;add next data ijem to AL
BX ;make BX point to next
CX ;decrement loop counter
AGAIN ;jump if counter not zero
SUM,AL ;Ioad resuH into sum
AH,4CH ;set up return
21 H ;return to DOS

MAIN

Turbo Assembler
Symbol Table

Version 3.0 06/25/99 12:05:32 Page 2

Symbol Name

??DATE
??FILENAME
??TIME
??VERSION
@32BIT
@CODE
@CODESIZE
@CPU
@CURSEG
@DATA

IDATASIZE
FILENAME
INTERFACE

@MODEL
@STACK
@WORDSIZE
AGAIN
DATA IN
MAIN-
SUM

Groups & Segments

DGROUP
STACK

DATA
_TEXT

List File for Program 2-1

Type Value

Text "06/25/99"
Text "test21"
Text "12:05:32"
Number 0300
Text 0
Text TEXT
Text 0
Text 0101H
Text TEXT
Text DGROUP
Text 0
Text TEST21
Text DOH
Text 2
Text DGROUP
Text 2
Near TEXT:DOOD
Byte DGROUP:ODOO
Far TEXT:DOOD
Byte DGROUP:0005

Bit Size Align Combine Class

Group
16 0040 Para Stack
16 0006 Word
16 D01A Word

STACK
Public DATA
Public CODE

SECTION 2.3: MORE SAMPLE PROGRAMS 59

60

tions of the chapter we examine the jump instruction in this program. Also notice
that the first 5 bytes dumped above are the data items defined in the data segment
of the program and the sixth item is the sum of those five items, so it appears that
the program worked correctly (25H + 12H + 15H + IFH + 2BH = 96H). Program
2-1 is explained below, instruction by instruction.

"MOV CX,05" will load the value 05 into the CX register. This register
is used by the program as a counter for iteration (looping).

"MOV BX,OFFSET DATA_IN" will load into BX the offset address
assigned to DATA. The assembler starts at offset 0000 and uses memory for the
data and then assigns the next available offset memory for SUM (in this case,
0005).

"ADD AL,[BX]" adds the contents of the memory location pointed at by
the register BX to AL. Note that [BX] is a pointer to a memory location.

"INC BX" simply increments the pointer by adding I to register BX. This
will cause BX to point to the next data item, that is, the next byte.

"DEC CX" will decrement (subtract I from) the CX counter and will set
the zero flag high if CX becomes zero.

"JNZ AGAIN" will jump back to the label AGAIN as long as the zero
flag is indicating that CX is not zero. "JNZ AGAIN" will not jump (that is, exe­
cution will reSume with the next instruction after the JNZ instruction) only after
the zero flag has been set high by the "DEC CX" instruction (that is, CX becomes
zero). When CX becomes zero, this means that the loop is completed and all five
numbers have been added to AL.

Various approaches to Program 2-1

There are many ways in which any program may be written. The method
shown for Program 2-1 defined one field of data and used pointer [BX] to access
data elements. In the method used below, a name is assigned to each data item that
will be accessed in the program. Variations of Program 2-1 are shown below to
clarify the use of addressing modes in the context of a real program and also to
show that the 80x86 can USe any general-purpose register to do arithmetic and
logic operations. In earlier-generation CPUs, the accumulator had to be the des­
tination of all arithmetic and logic operations, but in the 80x86 this is not the case.
Since the purpose of these examples is to show different ways of accessing
operands, it is left to the reader to run and analyze the programs.

;from the data segment:
DATA1 DB 2SH
DATA2 DB 12H
DATA3 DB 1SH
DATA4 DB 1FH
DATAS DB2BH
SUM DB ?
;from the code segment:
MOV AL,DATA1 ;MOVE DATA1 INTO AL
ADD AL,DATA2 ;ADD DATA2 TO AL
ADD AL,DATA3
ADD AL,DATA4
ADD AL,DATAS
MOV SUM,AL ;SAVE AL IN SUM

There is quite a difference between these two methods of writing the
Same program. While in the first one the register indirect addressing mode was
used to access the data, in the second method the direct addressing mode was
used.

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

Write and run a program that adds four words of data and saves the result. The values will be 2340H,
IDE6H, 3BC7H, and 566AH. Use DEBUG to verify the sum is 0364.

TITLE PROG2-2 (EXE) PURPOSE: ADDS 4 WORDS OF DATA
PAGE 60,132

SUM

.MODEL SMALL

.STACK64

.DATA
DW
ORG
DW.

.CODE

234DH,1 DE6H,3BC7H,566AH
10H
?

MAIN PROC FAR

MAIN

MOV
MOV
MOV
MOV
MOV
ADD
INC
INC
DEC
JNZ
MOV
MOV
MOV
INT
ENDP
END

AX,@DATA
DS,AX
CX,04
DI,OFFSET DATA IN
BX,OO -
BX,[DI]
DI
DI
CX
ADD LP
SI,OFFSET SUM
[SIJ,BX
AH,4CH
21H

MAIN

;set up loop counter CX=4
;set up data pointer DI
;initialize BX
;add contents pointed at by [DI] to BX
;increment DI twice
;to point to next word
;decrement loop counter
;jump if loop counter not zero
;Ioad pointer for sum
;store in data segment
;set up return
;return to DOS

After the program was assembled and linked, it was run using DEBUG:
C>debug a:prog2-2.exe
1068:0000 B86610 MOV AX,1066
-D 1066:0 1F
1066:0000 4D 23 E6 10 C7 3B 6A 56-00 00 00 00 00 00 00 00 M#f.G;jV
1066:0010 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-G

Program temninated nomnally
-D 1066:0 1F
1066:0000 4D 23 E6 1 D C7 3B 6A 56-00 00 00 00 00 00 00 00 M#f.G;jV.
1066:0010 64 D3 00 00 00 00 00 00-00 00 00 00 00 00 00 00 dS
-0
C>

Program 2-2

Analysis of Program 2-2

First notice that the 16-bit data (a word) is stored with the low-order byte
first. For example, "2340" as defined in the data segment is stored as "4023",
meaning that the lower address, 0000, has the least significant byte, 40, and the
higher address, 0001, has the most significant byte, 23. This is shown in the
DEBUG display of the data segment. Similarly, the sum, 0364, is stored as 6403.
As discussed in Chapter I, this method oflow byte to low address and high byte
to high address operand assignment is referred to in computer literature as "little
endian."

Second, note that the address pointer is incremented twice, since the
operand being accessed is a word (two bytes). The program could have used
"ADD 01,2" instead of using "INC 01" twice. When storing the result of word
addition, "MOV SI,OFFSET SUM" was used to load the pointer (in this case
0010, as defmed by ORG OOIOH) for the memory allocated for the label SUM,

SECTION 2.3: MORE SAMPLE PROGRAMS 61

62

and then "MOY [SI],BX" was used to move the contents of register BX to mem­
ory locations with offsets 00 I 0 and 00 II. Again, as was done previously, it could
have been coded simply as "MOY SUM,BX", using the direct addressing mode.

Program 2-2 uses the ORG directive. In previous programs where ORG
was not used, the assembler would start at offset 0000 and use memory for each
data item. The ORG directive can be used to set the offset addresses for data
items. Although the programmer cannot assign exact physical addresses, one is
allowed to assign offset addresses. The ORG directive in Program 2-2 caused
SUM to be stored at DS:OO I 0, as can be seen by looking at the DEBUG display
of the data segment.

Write and run a program that transfers 6 bytes of data from memory locations with offset of 00 lOH to memory loca­
tions with offset of 0028H.

TITLE PROG2-3 (EXE) PURPOSE: TRANSFERS 6 BYTES OF DATA
PAGE 60,132

.MODEL SMALL

.STACK64

.DATA
ORG 10H

DATA_IN DB 25H,4FH,85H,1FH,2BH,OC4H
ORG 28H

COPY DB 6 DUP(?)

.CODE
MAIN PROC FAR

MOV AX,@DATA
MOV DS,AX
MOV SI,OFFSET DATA_IN
MOV DI,OFFSET COPY
MOV CX,06H

MOV_LooP: MOV AL,[Slj
MOV [Dlj,AL
INC SI
INC DI
DEC CX
JNZ MOV LOOP
MOV AH,4CH
INT 21H

MAIN ENDP
END MAIN

;SI points to data to be copied
;DI points to copy of data
;Ioop counter = 6
;move the next byte from DATA area to AL
;move the next byte to COpy area
;increment DATA pointer
;increment COPY pointer
;decrement LOOP counter
;jump if loop counter not zero
;set up to retum
;return to DOS

After the program was assembled and linked, it was run using DEBUG:

C>debug prog2-3.exe
-u cs:O 1
1069:0000 B86610 MOV AX,1066
-d 1066:0 2f
1066:0000 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
1066:001025 4F 85 1F 2B C4 00 00-00 00 000000000000 %O .. +D
1066:0020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-g

Program terminated normally
-d 1066:0 2f
1066:0000 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
1066:001025 4F 85 1F 2B C4 00 00-00 00 00 00 00000000 %O .. +D
1066:00200000000000000000-25 4F 851F 2B C4 00 00 %O .. +D
-q
C>

Program 2-3

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

Analysis of Program 2-3

The DEBUG example shows the data segment being dumped before the
program was run and after to verifY that the data was copied and that the program
ran successfully. Notice that C4 was coded in the data segments as OC4. This is
required by the assembler to indicate that C is a hex number and not a letter. This
is required if the first digit is a hex digit A through F.

This program uses two registers, SI and DI, as pointers to the data items
being manipulated. The first is used as a pointer to the data item to be copied and
the second as a pointer to the location the data item is to be copied to. With each
iteration of the loop, both data pointers are incremented to point to the next byte.

Stack segment definition revisited

One of the primary functions of the DOS operating system is to determine
the total amount of RAM installed on the PC and then manage it properly. DOS
uses the portion it needs for the operating system and allocates the rest. Since
memory requirements vary for different DOS versions, a program cannot dictate
the exact physical memory location for the stack or any segment. Since memory
management is the responsibility of DOS, it will map Assembly programs into the
memory of the PC with the help of LINK.

Although in the DOS environment a program can have multiple code seg­
ments and data segments, it is strongly recommended that it have only one stack
segment, to prevent RAM fragmentation by the stack. It is the function of LINK
to combine all different code and data segments to create a single executable pro­
gram with a single stack, which is the stack of the system. Various options for seg­
ment defmition are discussed in Chapter 7 and many of these concepts are
explained there.

Review Questions

1. What is the purpose of the INC instruction?
2. What is the purpose of the DEC instruction?
3. In Program 2-1, why does the label AGAIN have a colon after it, whereas

the label MAIN does not?
4. State the difference between the following two instructions:

MOV BX,DATA1
MOV BX,OFFSET DATA1

5. State the difference between the following two instructions:
ADD AX,BX
ADD AX,[BX)

SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS

In the sequence of instructions to be executed, it is often necessary to
transfer program control to a different location. There are many instructions in
the 80x86 to achieve this. This section covers the control transfer instructions
available in the 8086 Assembly language. Before that, however, it is necessary to
explain the concept of FAR and NEAR as it applies to jump and call instructions.

FAR and NEAR

If control is transferred to a memory location within the current code seg­
ment, it is NEAR. This is sometimes called intrasegment (within segment). If
control is transferred outside the current code segment, it is a FAR or intersegment
(between segments) jump. Since the CS:IP registers always point to the address
of the next instruction to be executed, they must be updated when a control trans-

SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS 63

64

fer instruction is executed. In a NEAR jump, the IP is updated and CS remains the
same, since control is still inside the current code segment. In a FAR jump,
because control is passing outside the current code segment, both CS and IP have
to be updated to the new values. In other words, in any control transfer instruc­
tion such as jump or call, the IP must be changed, but only in the FAR case is the
CS changed, too.

Conditional jumps

Conditional jumps, summarized in Table 2-1, have mnemonics such as
JNZ Gump not zero) and JC Gump if carry). In the conditional jump, control is
transferred to a new location if a certain condition is met. The flag register is the
one that indicates the current condition. For example, with "JNZ label", the
processor looks at the zero flag to see if it is raised. If not, the CPU starts to fetch
and execute instructions from the address of the label. IfZF = I, it will not jump
but will execute the next instruction below the JNZ.

Table 2-1: 8086 Conditional Jump Instructions

Mnemonic Condition Tested "Jump IF ••• ..
JA/JNBE (CF - 0) and (ZF - 0) above/not below nor zero
JAElJNB CF=O above or equal/not below
JB/JNAE CF = 1 below/not above nor equal
JBElJNA (CF or ZF) = 1 below or equal/not above
JC CF = 1 carry
JE/JZ ZF= 1 equallzero
JG/JNLE ((SF xor OF) or ZF) = 0 greater/not less nor equal
JGElJNL (SF xor OF = 0 greater or equal/not less
JL/JNGE (SF xor OR = 1 less/not greater nor equal
JLE/JNG «SF xor OF) or ZF) - 1 less or equal/not greater
JNC CF =0 not carry
JNElJNZ ZF=O not equal/not zero
JNO OF-O not overflow
JNP/JPO PF = 0 not parity/parity odd

JNS SF = 0 not sign

JO OF = 1 overflow
JP/JPE PF = 1 parity/parity equal
JS SF = 1 sign

Nole:
"Above" and "below" refer to the relationship of two unsigned values; "greater" and "less" refer
to the relationship of two signed values.
(Reprinted by pennission ofintel Corporation, Copyright Intel Corp. 1989)

Short jumps

All conditional jumps are short jumps. In a short jump, the address of the
target must be within -128 to + 127 bytes of the IP. In other words, the condition­
al jump is a two-byte instruction: one byte is the opcode of the J condition and the
second byte is a value between 00 and FF. An offset range of 00 to FF gives 256
possible addresses; these are split between backward jumps (to -128) and forward
jumps (to + 127).

In a jump backward, the second byte is the 2's complement of the dis­
placement value. To calculate the target address, the second byte is added to the

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

IP of the instruction after the jump. To understand this, look at the unassembled
code of Program 2-1 for the instruction JNZ AGAIN, repeated below.

1067:0000 886610
1067:0003 8ED8
1067:0005 890500
1067:0008 880000
1067·:000D 0207
1 067:000F 43
1067:001049
1067:0011 75FA
1067:0013 A20500
1067:0016 B44C
1067:0018 CD21

MOV
MOV
MOV
MOV
ADD
INC
DEC
JNZ
MOV
MOV
INT

AX,1066
DS,AX
CX,0005
8X,0000
AL,[8X]
8X
CX
OOOD
[0005],AL
AH,4C
21

The instruction "JNZ AGAIN" was assembled as "JNZ OOOD", and OOOD
is the address of the instruction with the label AGAIN. The instruction "JNZ
OOOD" has the opcode 75 and the target address FA, which is located at offset
addresses 0011 and 0012. This is followed by "MOV SUM,AL", which is locat­
ed beginning at offset address 0013. The IP value of MOV, 0013, is added to FA
to calculate the address oflabel AGAIN (0013 + FA = OOOD) and the carry is
dropped. In reality, FA is the 2's complement of -6, meaning that the address of
the target is -6 bytes from the lP of the next instruction.

Similarly, the target address for a forward jump is calculated by adding
the IP of the following instruction to the operand. In that case the displacement
value is positive, as shown next. Below is a portion of a list file showing the
opcodes for several conditional jumps.

0005 8A 47 02 AGAIN: MOV AL,[8X]+2
0008 3C 61 CMP AL,61H
OOOA 7206 J8 NEXT
OOOC 3C 7A CMP AL,7AH
OOOE 77 02 JA NEXT
0010 24 DF AND AL,ODFH
0012 8804 NEXT: MOV [SI],AL

In the program above, "JB NEXT" has the opcode 72 and the target
address 06 and is located at IP = OOOA and OOOB. The jump will be 6 bytes from
the next instruction, which is IP = OOOC. Adding gives us OOOCH + 0006H =
0012H, which is the exact address of the NEXT label. Look also at "JA NEXT",
which has 77 and 02 for the opcode and displacement, respectively. The IP of the
following instruction, 0010, is added to 02 to get 0012, the address of the target
location.

It must be emphasized that regardless of whether the jump is forward or
backward, for conditional jumps the address of the target address can never be
more than -128 to + 127 bytes away from the IP associated with the instruction
following the jump (- for the backward jump and + for the forward jump). Ifany
attempt is made to violate this rule, the assembler will generate a "relative jump
out of range" message. These conditional jumps are sometimes referred to as
SHORT jumps.

Unconditional jumps

"JMP label" is an unconditional jump in which control is transferred
unconditionally to the target location label. The unconditional jump can take the
following forms:

SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS 65

66

I. SHORT JUMP, which is specified by the fonnat "JMP SHORT label". This is a
jump in which the address of the target location is within -128 to + 127 bytes of
memory relative to the address of the current IP. In this case, the opcode is EB
and the operand is 1 byte in the range 00 to FF. The operand byte is added to the
current IP to calculate the target address. If the jump is backward, the operand is
in 2's complement. This is exactly like the J condition case. Coding the directive
"short" makes the jump more efficient in that it will be assembled into a 2-byte
instruction instead of a 3-byte instruction.

2. NEAR JUMP, which is the default, has the fonnat "JMP label". This is a near
jump (within the current code segment) and has the opcode E9. The target
address can be any of the addressing modes of direct, register, register indirect, or
memory indirect:
(a) Direct JUMP is exactly like the short jump explained earlier, except that the

target address can be anywhere in the segment within the range +32767 to
-32768 of the current IP.

(b) Register indirect JUMP; the target address is in a register. For example, in
"JMP BX", IP takes the value BX.

(c) Memory indirect JMP; the target address is the contents of two memory
locations pointed at by the register. Example: "JMP [OI]" will replace the
IP with the contents of memory locations pointed at by OI and OI+ I.

3. FAR JUMP which has the fonnat "JMP FAR PTR label". This is ajump out of
the current code segment, meaning that not only the IP but also the CS is replaced
with new values.

CALL statements

Another control transfer instruction is the CALL instruction, which is
used to call a procedure. CALLs to procedures are used to perfonn tasks that need
to be perfonned frequently. This makes a program more structured. The target
address could be in the current segment, in which case it will be a NEAR call or
outside the current CS segment, which is a FAR call. To make sure that after exe­
cution of the called subroutine the microprocessor knows where to come back, the
microprocessor automatically saves the address of the instruction following the
call on the stack. It must be noted that in the NEAR call only the IP is saved on
the stack, and in a FAR call both CS and IP are saved. When a subroutine is
called, control is transferred to that subroutine and the processor saves the IP (and
CS in the case of a FAR call) and begins to fetch instructions from the new loca­
tion. After finishing execution of the subroutine, for control to be transferred back
to the caller, the last instruction in the called subroutine must be RET (return). In
the same way that the assembler generates different opcode for FAR and NEAR
calls, the opcode for the RET instruction in the case of NEAR and FAR is differ­
ent, as well. For NEAR calls, the IP is restored; for FAR calls, both CS and IP are
restored. This will ensure that control is given back to the caller. As an example,
assume that SP = FFFEH and the following code is a portion of the program
unassembled in DEBUG:

12BO:0200 BB1295 MOV BX.9512
12BO:0203 E8FAOO CALL 0300
12BO:0206 B82F14 MOV AX.142F

Since the CALL instruction is a NEAR call, meaning that it is in the same
code segment (different IP, same CS), only IP is saved on the stack. In this case,
the IP address of the instruction after the call is saved on the stack as shown in
Figure 2-5. That IP will be 0206, which belongs to the "MOV AX,142F" instruc­
tion.

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

The last instruction of the called subroutine must be a RET instruction
which directs the CPU to POP the top 2 bytes of the stack into the IP and resume
executing at offset address 0206. For this reason, the number of PUSH and POP
instructions (which alter the SP) must match. In other words, for every PUSH
there must be a POP.

1280:0300 53 PUSH 8X
1280:0301

1280:0309 58 POP BX
1280:030A C3 RET

Assembly language subroutines

In Assembly language programming it
is common to have one main program and many
subroutines to be called from the main program.
This allows you to make each subroutine into a
separate module. Each module can be tested sep­

FFFC

FFFD

FFFE

12 :l
EE~
I 02 I~

arately and then brought together, as will be Figure 2-5. IP in the Stack
shown in Chapter 7. The main program is the
entry point from DOS and is FAR, as explained
earlier, but the subroutines called within the main program can be FAR or NEAR.
Remember that NEAR routines are in the same code segment, while FAR routines
are outside the current code segment. If there is no specific mention of FAR after
the directive PROC, it defaults to NEAR, as shown in Figure 2-6. From now on,
all code segments will be written in that format.

Rules for names in Assembly language

By choosing label names that are meaningful, a programmer can make a
program much easier to read and maintain. There are several rules that names
must follow. First, each label name must be unique. The names used for labels in
Assembly language programming consist of alphabetic letters in both upper and
lower case, the digits 0 through 9, and the special characters question mark (?),
period (.), at (@), underline U, and dollar sign ($). The first character of the
name must be an alphabetic character or special character. It cannot be a digit.
The period can only be used as the first character, but this is not recommended
since later versions ofMASM have several reserved words that begin with a peri­
od. Names may be up to 31 characters long. A list of reserved words is given at
the end of Appendix C.

Review Questions

1. If control is transferred outside the current code segment, is it NEAR or FAR?
2. If a conditional jump is not taken, what is the next instruction to be executed?
3. In calculating the target address to jump to, a displacement is added to the

contents of register _.,-_;
4. What is the advantage in coding the operator "SHORT" in an unconditional

jump?
5. A(n) jump is within - 128 to + 127 bytes of the current IP. A(n)

____ jump is within the current code segment, whereas a(n)
=-_,----;-_jump is outside the current code segment.

6. How does the CPU know where to return to after executing a RET?
7. Describe briefly the function of the RET instruction.
8. State why the following label names are invalid.

(a) GET.DATA (b) I NUM (c) TEST-DATA (d) RET

SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS 67

.CODE
MAIN PROC FAR ;THIS IS THE ENTRY POINT FOR DOS

MOV AX,@DATA
MOV DS,AX
CALL SUBR1
CALL SUBR2
CALL SUBR3
MOV AH,4CH
INT 21H

MAIN ENDP
,
SUBR1 PROC

RET
SUBR1 ENDP

8UBR2 PROC

RET
SUBR2 ENDP
,
SUBR3 PROC

RET
SUBR3 ENDP

END MAIN ;THIS IS THE EXIT POINT

Figure 2-6. Shell of Assembly Language Subroutines

SECTION 2.5: DATA TYPES AND DATA DEFINITION

68

The assembler supports all the various data types of the 80x86 micro­
processor by providing data directives that define the data types and set aside
memory for them. In this section we study these directives and how they are used
to represent different data types of the 80x86. The application of these directives
becomes clearer in the context of examples in subsequent chapters.

80x86 data types

The 8088/86 microprocessor supports many data types, but none are
longer than 16 bits wide since the size of the registers is 16 bits. It is the job of
the programmer to break down data larger than 16 bits (0000 to FFFFH, or 0 to
65535 in decimal) to be processed by the CPU. Many of these programs are
shown in Chapter 3. The data types used by the 8088/86 can be 8-bit or 16-bit,
positive or negative. If a number is less than 8 bits wide, it still must be coded as
an 8-bit register with the higher digits as zero. Similarly, if the number is less than
16 bits wide it must use all 16 bits, with the rest being Os. For example, the num­
ber 5 is only 3 bits wide (10 I) in binary, but the 8088/86 will accept it as 05 or
"0000 010 I" in binary. The number 514 is "10 0000 0010" in binary, but the
8088/86 will accept it as "0000 0010 0000 0010" in binary. The discussion of
signed numbers is postponed until later chapters since their representation and
application are unique.

Assembler data directives

All the assemblers designed for the 80x86 (8088, 8086, 80188, 80186,
80286, 80386, 80386SX, 80486, and Pentium) microprocessors have standard­
ized the directives for data representation. The following are some of the data

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

0000 19
0001 89
0002 12
0010
0010 32353931
0018
0018 00
0020

directives used by the 80x86 microprocessor and supported by all software and
hardware vendors of IBM PCs and compatibles.

ORG (origin)

ORG is used to indicate the beginning of the offset address. The number
that comes after ORG can be either in hex or in decimal. If the number is not fol­
lowed by H, it is decimal and the assembler will convert it to hex. Although the
ORG directive is used extensively in this book in the data segment to separate
fields of data to make it more readable for the student, it can also be used for the
offset of the code segment (IP).

DB (define byte)

The DB directive is one of the most widely used data directives in the
assembler. It allows allocation of memory in byte-sized chunks. This is indeed
the smallest allocation unit pennitted. DB can be used to define numbers in dec­
imal, binary, hex, and ASCII. For decimal, the D after the decimal number is
optional, but using B (binary) and H (hexadecimal) for the others is required.
Regardless of which one is used, the assembler will convert them into hex. To
indicate ASCII, simply place the string in single quotation marks ('like this'). The
assembler will assign the ASCII code for the numbers or characters automatical­
ly. DB is the only directive that can be used to define ASCII strings larger than
two characters; therefore, it should be used for all ASCII data defmitions.
Following are some DB examples:

DATAl
DATA2
DATA3

DATA4

DATA5

DATA6

25
10001001B
12H

;DECIMAL
;BINARY
;HEX

DB
DB
DB
ORG
DB
ORG
DB
ORG
DB

0010H
'2591'
0018H

;ASCII NUMBERS

? ;SET ASIDE A BYTE
0020H
'My name is Joe' ;ASCII CHARACTERS

DATAl DB 25
DATA2 DB 10001001 B
DATA3 DB 12H

ORG 0010H
DATA4 DB '259'

ORG 0018H
DATA5 DB ?

ORG 0020H

;DECIMAL
;BINARY
;HEX

0020 40 79 20 6E 61 60
65 20 69 73 20 4A
6F65

DATA6 DB 'My name is Joe'

;ASCII NUMBERS

;SET ASIDE A BYTE

;ASCII CHARACTERS

List File for DB Examples

Either single or double quotes can be used around ASCII strings. This
can be useful for strings which should contain a single quote such as "O'Leary".

DUP (duplicate)

DUP is used to duplicate a given number of characters. This can avoid a
lot of typing. For example, contrast the following two methods of filling six
memory locations with FFH:

SECTION 2.5: DATA TYPES AND DATA DEFINITION 69

ORG 0030H
DATA7 DB OFFH,OFFH,OFFH,OFFH,OFFH,OFFH ;FILL 6 BYTES WITH FF

ORG 38H
DATA8 DB 6 DUP(OFFH) ;FILL 6 BYTES WITH FF
; the following reserves 32 bytes of memory with no initial value given

ORG 40H
DATA9 DB 32 DUP (?) ;SET ASIDE 32 BYTES
;DUP can be used inside another DUP
; the following fills 10 bytes with 99
DATA10 DB 5 DUP (2 DUP (99» ;FILL 10 BYTES WITH 99

0030 ORG 0030H
0030 FF FF FF FF FF FF
0038

DATA7 DB OFFH,OFFH,OFFH,OFFH,OFFH,OFFH; 6 BYTES = FF
ORG 38H

0038 0006(FF

0040
00400020 (

??

DATA8 DB 6 DUP(OFFH) ;FILL 6 BYTES WITH FF

ORG 40H
DATA9 DB 32 DUP (?) ;SET ASIDE 32 BYTES

ORG 60H 0060
00600005(

0002(63
DATA10 DB 5 DUP (2 DUP (99)) ;FILL 10 BYTES WITH 99

I
List File for DUP Examples

0070
0070 03BA
0072 0954
0074 253F
0078

OW (define word)

OW is used to allocate memory 2 bytes (one word) at a time. OW is used
widely in the 8088/8086 and 80286 microprocessors since the registers are 16 bits
wide. The following are some examples of OW:

DATA11
DATA12
DATA13

DATA14
DATA15

ORG
DW
DW
DW
ORG
DW
DW

70H
954
100101010100B
253FH
78H

;DECIMAL
;BINARY
;HEX

9,2,7,OCH,00100000B,5,'HI' ;MISC. DATA
8 DUP (?) ;SET ASIDE 8 WORDS

954
100101010100B
253FH

;DECIMAL
;BINARY
;HEX

0078 0009 0002 0007 OOOC
0020 0005 4849

ORG 70H
DATA11 DW
DATA12 DW
DATA13 DW
ORG 78H
DATA14 DW 9,2,7,OCH,00100000B,5,'HI' ;MISC. DATA

0086 0008(
????

DATA15 DW
I

8 DUP (?) ;SET ASIDE 8 WORDS

List File for DW Examples

70

EQU (equate)

This is used to define a constant without occupying a memory location.
EQU does not set aside storage for a data item but associates a constant value with
a data label so that when the label appears in the program, its constant value will
be substituted for the label. EQU can also be used outside the data segment, even
in the middle of a code segment. Using EQU for the counter constant in the imme­
diate addressing mode:

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

OOAO
OOAO 000003FF
OOM 0008965C
00A8 5C2A57F2

COUNT EOU 25

When executing the instructions "MOY eX,eOUNT", the register ex
will be loaded with the value 25. This is in contrast to using DB:

COUNT DB 25

When executing the same instruction "MOY eX,eOUNT" it will be in
the direct addressing mode. Now what is the real advantage ofEQU? First, note
that EQU can also be used in the data segment:

COUNT EOU
COUNTER1 DB
COUNTER2 DB

25
COUNT
COUNT

Assume that there is a constant (a fixed value) used in many different
places in the data and code segments. By the use ofEQU, one can change it once
and the assembler will change all of them, rather than making the programmer try
to find every location and correct it.

DD (define doubleword)

The DD directive is used to allocate memory locations that are 4 bytes
(two words) in size. Again, the data can be in decimal, binary, or hex. In any case
the data is converted to hex and placed in memory locations according to the rule
of low byte to low address and high byte to high address. DD examples are:

DATA16
DATA17
DATA18
DATA19

ORG
DD
DD
DD
DD

OOAOH
1023
10001001011001011100B
5C2A57F2H
23H, 34789H,65533

ORG OOAOH
DD 1023

;DECIMAL
;BINARY
;HEX

DD 10001001011001011100B
DD 5C2A57F2H

;DECIMAL
;BINARY
;HEX

OOAC 00000023 00034789
OOOOFFFD

DATA16
DATA17
DATA18
DATA19 DD 23H,34789H,65533

List File for DD Examples

DC (define quadword)

DQ is used to allocate memory 8 bytes (four words) in size. This can be
used to represent any variable up to 64 bits wide:

OOCO

DATA20
DATA21
DATA22

OOCO C223450000000000
00C8 4948000000000000
OODO 0000000000000000

List File for DQ Examples

;HEX
ORG OOCOH
DO 4523C2H
DO 'HI'
DO ?

;ASCII CHARACTERS
;NOTHING

ORG OOCOH
DATA20 DO 4523C2H
DATA21 DO 'HI'
DATA22 DO ?

;HEX
;ASCII CHARACTERS
;NOTHING

SECTION 2.5: DATA TYPES AND DATA DEFINITION 71

DT (define ten bytes)

DT is used for memory allocation of packed BCD numbers. The applica­
tion ofDT will be seen in the multibyte addition of BCD numbers in Chapter 3.
For now, observe how they are located in memory. Notice that the "H" after the
data is not needed. This allocates 10 bytes, but a maximum of 18 digits can be
entered.

DATI',23
DATA24

ORG OOEOH
DT 867943569829
DT ?

;BCD
;NOTHING

OOEO ORG OOEOH
OOEO 299856437986000000 DATA23 DT 867943569829 ;BCD

;NOTHING
00

OOEA 000000000000000000 DATA24 DT ?
00

List File for DT Examples

-D 1066:0 100
1066:0000 19
1066:0010 32
1066:0020 4D
1066:0030 FF
1066:0040 00
1066:0060 63
1066:0070 BA
1066:0080 20
1066:0090 00
1066:00AO FF
1066:00BO 89
1066:00CO C2
1066:00DO 00
1066:00EO 29

DT can also be used to allocate 10-byte integers by using the "D" option:

DEC DT 65535d ;the assembler will convert the decimal
;number to hex and store n

Figure 2-7 shows the memory dump of the data section, induding all the
examples in this section. It is essential to understand the way operands are stored
in memory. Looking at the memory dump shows that all of the data directives use
the little endian format for storing data, meaning that the least significant byte is
located in the memory location of the lower address and the most significant byte
resides in the memory location of the higher address. For example, look at the
case of "DATA20 DQ 4523C2", residing in memory starting at offset OOCOH.
C2, the least significant byte, is in location OOCO, with 23 in 00C1, and 45, the
most significant byte, in 00C2. It must also be noted that for ASCII data, only the
DB directive can be used to define data of any length, and the use ofDD, DQ, or
DT directives for ASCII strings of more than 2 bytes gives an assembly error.
When DB is used for ASCII numbers, notice how it places them backwards in
memory. For example, see "DATA4 DB '2591'" at origin 1OH: 32, ASCII for 2,
is in memory location 10H; 35, ASCII for 5, is in llH; and so on.

89 12 00 00 00 00 00-00 00 00 00 00 00 00 00
35 39 31 00 00 00 00-00 00 00 00 00 00 00 00 2591
79 20 6E 61 6D 65 20-69 73 20 4A 6F 65 00 00 My name is Joe ..
FF FF FF FF FF 00 OO-FF FF FF FF FF FF 00 00
00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
63 63 63 63 63 63 63-63 63 00 00 00 00 00 00 cccccccccc
03 54 09 3F 25 00 00-09 00 02 00 07 00 DC 00 : .T. 7% ••••••••••
00 05 00 4F 48· 00 00-00 00 00 00 00 00 00 00 ••• OH •••••••••••
00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
03 00 00 5C 96 08 00-F2 57 2A 5C 23 00 00 00 \ ... rW*\# ...
47 03 00 FD FF'OO 00-00 00 00 00 00 00 00 00 B#E rH •••••
23 45 00 00 00 00 00-49 48 00 00 00 00 00 00
00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
98 56 43 79 86 00 00-00 00 00 00 00 00 00 00 9. VCy6 ,

Figure 2-7. DEBUG Dump of Data Segment

72 CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

Review Questions

I. The directive is always used for ASCII strings longer than 2 bytes.
2. How many bytes are defined by the following?

DATA_1 DB 6 DUP (4 DUP (OFFH»
3. Do the following two data segment definitions result in the same storage in

bytes at offset I OH and II H? If not, explain why.
ORG 10H ORG 10H

DATA_1 DB 72 DATA_1 DW 7204H
DATA_2 DB 04H

4. The DO directive is used to allocate memory locations that are __ bytes
in length. The DQ directive is used to allocate memory locations
that are bytes in length.

5. State briefly the purpose of the ORG directive.
6. What is the advantage in using the EQU directive to define a constant value?
7. How many bytes are set aside by each of the following directives?

(a) ASC_DATA DB '1234' (b) HEX_DATA OW 1234H
8. Does the little endian storage convention apply to the storage of ASCII data?

SECTION 2.6: FULL SEGMENT DEFINITION

The way that segments have been defined in the programs above is a
newer definition referred to as simple segment definition. It is supported by
Microsoft's MASM 5.0 and higher, Borland's TASM version I and higher, and
many other compatible assemblers. The older, more traditional definition is called
the foil segment definition. Although the simplified segment definition is much
easier to understand and use, especially for beginners, it is essential to master full
segment definition since many older programs use it.

Segment definition

The "SEGMENT" and "ENDS" directives indicate to the assembler the
beginning and ending of a segment and have the following format:

label SEGMENT [options]
;place the statements belonging to this segment here

label ENDS

The label, or name, must follow naming conventions (see the end of
Section 2.4) and must be unique. The [options] field gives important information
to the assembler for organizing the segment, but is not required. The ENDS label
must be the same label as in the SEGMENT directive. In the full segment defini­
tion, the ".MODEL" directive is not used. Further, the directives ". STACK" ,
".DATA", and ".CODE" are replaced by SEGMENT and ENDS directives that
surround each segment. Figure 2-8 shows the full segment definition and simpli­
fied format, side by side. This is followed by Programs 2-2 and 2-3, rewritten
using the full segment definition.

Stack segment definition

The stack segment shown below contains the line: "DB 64 DUP (?)" to
reserve 64 bytes of memory for the stack. The following three lines in full seg­
ment definition are comparable to ".STACK 64" in simple definition:

STSEG SEGMENT ;the "SEGMENT" directive begins the segment
DB 64 DUP (?) ;this segment contains only one line

STSEG ENDS ;the "ENDS" segment ends the segment

SECTION 2.6: FULL SEGMENT DEFINITION 73

;FULL SEGMENT DEFINITION
;-- stack segment -­
name1 SEGMENT

DB 64 DUP (?)
name1 ENDS
;-- data segment-­
name2 SEGMENT
;data definitions are placed here
name2 ENDS
;-- code segment -­
name3 SEGMENT
MAIN PROC FAR

ASSUME ...
MOV AX,name2
MOV DS,AX

MAIN ENDP
name3 ENDS

END MAIN

;SIMPLIFIED FORMAT
.MODEL SMALL
.STACK 64

. DATA
;data definitions are placed here

.CODE
MAIN PROC FAR

MOV AX,@DATA
MOV DS,AX

MAIN ENDP
END MAIN

Figure 2-8. Full versus Simplified Segment Definition

TITLE PURPOSE: ADDS 4 WORDS OF DATA
PAGE 60,132
STSEG SEGMENT

STSEG
DTSEG
DATA_IN

SUM
DTSEG

CDSEG
MAIN

MAIN
CDSEG

DB 32 DUP (?)
ENDS
SEGMENT
DW 234DH.1 DE6H,3BC7H,566AH
ORG 10H
DW ?
ENDS

SEGMENT
PROC FAR
ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
MOV
MOV
MOV
MOV
MOV
ADD
INC
INC
DEC
JNZ
MOV
MOV
MOV
INT
ENDP
ENDS
END

AX,DTSEG
DS,AX
CX,04
DI,OFFSET DATA_IN
BX,OO
BX,[DI]
DI
DI
CX
ADD_LP
SI,OFFSET SUM
[SIJ,BX
AH,4CH
21H

MAIN

;set up loop counter CX=4
;set up data pointer DI
;initialize BX
;add contents pointed at by [DI] to BX
;increment DI twice
;to point to next word
;decrement loop counter
;jump if loop counter not zero
;Ioad pOinter for sum
;store in data segment
;set up return
; retu rn to DOS

Program 2-2, rewritten with full segment definition

74 CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

TITLE
PAGE
STSEG

STSEG

PURPOSE: TRANSFERS 6 BYTES OF DATA
60,132
SEGMENT
DB 32 DUP (?)
ENDS

,--------
DTSEG

COPY
DTSEG

CDSEG
MAIN

MAIN
CDSEG

SEGMENT
ORG 10H
DB 25H,4FH,85H,1 FH,2BH,OC4H
ORG 28H
DB 6 DUP(?)
ENDS

SEGMENT
PROC FAR
ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
MOV
MOV
MOV
MOV
MOV
MOV
MOV
INC
INC
DEC
JNZ
MOV
INT
ENDP
ENDS
END

AX,DTSEG
DS,AX
SI,OFFSET DATA_IN
DI,OFFSET COPY
CX,06H
AL,[SI]
[DI],AL
SI
DI
CX
MOV_LOOP
AH,4CH
21H

MAIN

;SI pOints to data to be copied
;DI pOints to copy of data
;Ioop counter = 6
;move the next byte from DATA area to AL
;move the next byte to COpy area
;increment DATA pOinter
;increment COPY pointer
;decrement LOOP counter
;jump if loop counter not zero
;set up to return
;return to DOS

Program 2-3, rewritten with full segment definition

Data segment definition

In full segment definition, the SEGMENT directive names the data seg­
ment and must appear before the data. The ENDS segment marks the end of the
data segment:

DTSEG SEGMENT ;the SEGMENT directive begins the segment
;define your data here

DTSEG ENDS ;the ENDS segment ends the segment

Code segment definition

The code segment also begins with a SEGMENT directive and ends with
a matching ENDS directive:

CDSSEG SEGMENT ;the SEGMENT directive begins the segment
;your code is here

CDSEG ENDS ;the ENDS segment ends the segment

In full segment definition, immediately after the PROC directive is the
ASSUME directive, which associates segment registers with specific segments by

SECTION 2.6: FULL SEGMENT DEFINTION 75

assuming that the segment register is equal to the segment labels used in the pro­
gram. If an extra segment had been used, ES would also be included in the
ASSUME statement. The ASSUME statement is needed because a given
Assembly language program can have several code segments, one or two or three
or more data segments and more than one stack segment, but only one of each can
be addressed by the CPU at a given time since there is only onc of each of the seg­
ment registers available inside the CPU. Therefore, ASSUME tells the assembler
which of the segments defined by the SEGMENT directives should be used. It
also helps the assembler to calculate the offset addresses from the beginning of
that segment. For example, in "MOV AL,[BX]" the BX register is the offset of
the data segment.

Upon transfer of control from DOS to the program, of the three segment
registers, only CS and SS have the proper values. The DS value (and ES, if used)
must be initialized by the program. This is done as follows in full segmcnt defi­
nition:

MOV AX,DTSEG
MOV DS,AX

;DTSEG is the label for the data segment

SECTION 2.7: EXE VS. COM FILES

76

All program examples so far were designed to be assembled and linked
into EXE files. This section looks at the COM file, which like the EXE file con­
tains the executable machine code and can be run at the DOS level. At the end of
this section, the process of conversion from one file to the other is shown.

Why COM files?

There are occasions where, due to a limited amount of memory, one needs
to have very compact code. This is the time when the COM file is useful. The fact
that the EXE file can be of any size is one of the main reasons that EXE files are
used so widely. On the other hand, COM files are used because of their compact­
ness since they cannot be greater than 64K bytes. The reason for the 64K-byte
limit is that the COM file must fit into a single segment, and since in the 80x86
the size of a segment is 64K bytes, the COM file cannot be larger than 64K. To
limit the size of the file to 64K bytes requires defining the data inside the code
segment and also using an area (the end area) of the code segment for the stack.
One of the distinguishing features of the COM file program is the fact that in con­
trast to the EXE file, it has no separate data segment definition. One can summa­
rize the differences between COM and EXE files as shown in Table 2-2.

Table 2-2: EXE vs. COM File Format

EXE File COM File
unlimited size maximum size 64K bytes
stack segment is defined no stack segment definition
data segment is defined data segment defined in code segment
code data defined at any offset address code and data begin at offset 01 OOH
larger file (takes more memory) smaller file (takes less memory)

Another reason for the difference in the size of the EXE and COM files
is the fact that the COM file does not have a header block. The header block,
which occupies 512 bytes of memory, precedes every EXE file and contains
infonnation such as size, address location in memory, and stack address of the
EXE module.

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

Program 2-4, written in COM fonnat, adds two words of data and saves
the result. This fonnat is very similar to many programs written on the 8080/85
microprocessors, the generation before the 8088/86. This fonnat of first having
the code and then the data takes longer to assemble; therefore, it is strongly rec­
ommended to put the data first and then the code, but the program must bypass
the data area by the use of a JUMP instruction, as shown in Program 2-5.

TITLE PROG2-4 COM PROGRAM TO ADD TWO WORDS
PAGE 60,132
CODSG SEGMENT

ORG 100H
ASSUME CS:CODSG,DS:CODSG,ES:CODSG

;--THIS IS THE CODE AREA
PROGCODE PROC NEAR

MOV AX,DATA1
MOV SUM,AX
MOV AH,4CH
INT 21H

PROGCODE ENDP
;--THIS IS THE DATA AREA
DATA1 DW 2390
DATA2 DW 3456
SUM DW?

CODSG ENDS
END PROGCODE

Program 2-4

;move the first word into AX
;move the sum
;return to DOS

TITLE
PAGE
CODSG

PROG2-5 COM PROGRAM TO ADD TWO WORDS
60,132
SEGMENT
ASSUME CS:CODSG,DS:CODSG,ES:CODSG
ORG 100H

START: JMP PROGCODE ;go around the data area
;--THIS IS THE DATA AREA
DATA1 DW 2390
DATA2 DW 3456
SUM DW?
;--THIS IS THE CODE AREA
PROGCODE: MOV AX,DATA1

ADD AX,DATA1
MOV SUM,AX
MOV AH,4CH
INT 21H

,--------------------------------
CODse ENDS

END START

Program 2-5

;move the first word into AX
;add the second word
;move the sum

Converting from EXE to COM

For the sake of memory efficiency, it is often desirable to convert an EXE
file into a COM file. The source file must be changed to the COM fonnat shown
above, then assembled and linked as usual. Then it must be input to a utility pro­
gram called EXE2BIN that comes with DOS. Its function is to convert the EXE
file to a COM file. For example, to convert an EXE file called PROG I.EXE in
drive A, assuming that the EXE2BIN utility is in drive C, do the following:

SECTION 2.7: EXE VS. COM FILES 77

78

C>EXE2BIN A:PROG1 ,A:PROG1 ,COM

Notice that there is no extension of EXE for PROG 1 since it is assumed
that one is converting an EXE file, Keep in mind that for a program to be con­
verted into a COM file, it must be in the format shown in Programs 2-4 and 2-5,

SUMMARY

An Assembly language program is composed of a series of statements
that are either instructions or pseudo-instructions, also called directives,
Instructions are translated by the assembler into machine code. Pseudo-instruc­
tions are not translated into machine code: They direct the assembler in how to
translate the instructions into machine code, The statements of an Assembly lan­
guage program are grouped into segments, Other pseudo-instructions, often called
data directives, are used to define the data in the data segment. Data can be allo­
cated in units ranging in size from byte, word, doubleword, and quadword to 10
bytes at a time, The data can be in binary, hex, decimal, or ASCII.

The flow of a program proceeds sequentially, from instruction to instruc­
tion, unless a control transfer instruction is executed, The various types of con­
trol transfer instructions in Assembly language include conditional and uncondi­
tional jumps, and call instructions,

PROBLEMS

I, Rewrite Program 2-3 to transfer one word at a time instead of one byte,
2, List the steps in getting a ready-to-run program,
3, Which program produces the ",exe" file?
4, Which program produces the ",obj" file?
5, True or false: The ".1st" file is produced by the assembler regardless of

whether or not the programmer wants it.
6, The source program file must have the ",asm" extension in some assemblers,

such as MASM, Is this true for the assembler you are using?
7, Circle one: The linking process comes (after, before) assembling,
8, In some applications it is common practice to save all registers at the

beginning of a subroutine, Assume that SP = 1288H before a subroutine
CALL. Show the contents of the stack pointer and the exact memory contents
of the stack after PUSHF for the following:

1132:0450 CALL PROC1
1132:0453 INC BX

PROC1

PROC1

PRoe
PUSH AX
PUSH BX
PUSH ex
PUSH ox
PUSH SI
PUSH 01
PUSHF

ENOP

9, To restore the original information inside the CPU at the end of a CALL to a
subroutine, the sequence of POP instructions must follow a certain order,
Write the sequence of POP instructions that will restore the information in
Problem 8, At each point, show the contents of the SP,

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

10. When a CALL is executed, how docs the CPU know where to return?
II. In a FAR CALL, and are saved on the stack,

whereas in a NEAR CALL, is saved On the stack.
12. Compare the number ofbytcs of stack taken due to NEAR and FAR CALLs.
13. Find the contents of the stack and stack pointer aftcr execution of the CALL

instruction shown next.
CS : IP
2450:673A CALL SUM
2450:673D DEC AH

SUM is a near procedure. Assume the value SS: 1296 right before the
execution of CALL.

14. The following is a section of BIOS of the IBM PC which is described in
detail in Chapter 3. All the jumps below are short jumps, meaning that the
labels are in the range -128 to + 127.

IP Code
E06C 733F JNC ERROR1

E0727139 JNO ERROR1

E08C 8ED8 C8: MOV DS,AX

EOA7 EBE3 JMP C8

EOAD F4 ERROR1: HLT

Verify the address calculations of:
(a) INC ERRORI (b) INO ERRORI (c) JMP C8

15. Find the precise offset location of each ASCII character or data in the following:
ORG 20H

DATA1 DB '1-800-555-1234'
ORG 40H

DATA2 DB 'Name: John Jones'
ORG 60H

DATA3 DB '5956342'
ORG 70H

DATA4 DW 2560H,1000000000110B
DATA5 DW 49

ORG 80H
DATA6 DD 25697F6EH
DATA7 DQ 9E7BA21C99F2H

ORG 90H
DATA8 DT 439997924999828
DATA9 DB 6 DUP (OEEH)

16. The following program contains some errors. Fix the errors and make the
program run correctly. Verify it through the DEBUG program. This program
adds four words and saves the result.

TITLE PROBLEM (EXE) PROBLEM 16 PROGRAM
PAGE 60,132

,

.MODEL SMALL

.STACK32
-.~---------------------

.DATA
DATA DW

ORG
234DH,DE6H,3BC7H,566AH
10H

SUM DW ?
------------------------,

.CODE
START: PROC FAR

MOV AX,DATA
MOV DS,AX
MOV CX,04 ;SET UP LOOP COUNTER CX=4

PROBLEMS 79

80

MOV BX,O ;INITIALIZE BX TO ZERO
MOV DI,OFFSET DATA ;SET UP DATA POINTER BX

LOOP1: ADD BX,[DI] ;ADD CONTENTS POINTED AT BY [DI] TO BX
INC DI ;INCREMENT DI
JNZ LOOP1 ;JUMP IF COUNTER NOT ZERO
MOV SI,OFFSET RESULT ;LOAD POINTER FOR RESULT
MOV [SI],BX ;STORE THE SUM
MOV AH,4CH
INT 21H

START ENDP
END STRT

ANSWERS TO REVIEW QUESTIONS

SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAM
1. Pseudo-instructions direct the assembler as to how to assemble the program.
2. Instructions, pseudo-instructions or directives
3. .MODEL SMALL

.STACK64

.DATA
HIGH_DAT DB 95

.CODE
START PROC FAR
MOV AX,@DATA
MOV DS,AX
MOV AH,HIGH DAT
MOV BH,AH -
MOV DL,BH
MOVAH,4CH
INT 21H

START ENDP
END START

4. (1) there is no ENORMOUS model
(2) ENDP label does not match label for PROC directive
(3) .CODE and .DATA directives need to be switched
(4) "MOV AX,DATA" should be "MOV AX,@DATA"
(5) "MOV DS,@DATA" should be "MOV DS,AX"
(6) END must have the entry point label "MAIN"

SECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAM
1. (a) MASM must have the" .asm" file as input

(b) LINK must have the ".obi" file as input
2. Editor outputs: (b) .asm

Assembler outputs: (a) .obj, (d) .Ist, and (e) .crf files
Linker outputs: (c) .exe and (f) .map files

SECTION 2.3: MORE SAMPLE PROGRAMS
1. increments the operand, that is, it causes 1 to be added to the operand
2. decrements the operand, that is, it causes 1 to be subtracted from the

operand
3. a colon is required after labels referring to instructions; colons are not placed

after labels for directives
4. the first moves the contents of the word beginning at offset DATAl, the

second moves the offset address of DATA 1
5. the first adds the contents of BX to AX, the second adds the contents of the

memory location at offset BX.

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING

SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS
1. far 2. the instruction right below the jump 3. IP
4. the machine code for the instruction will take up 1 less byte
5. short, near, far
6. the contents of CS and IP were stored on the stack when the call was

executed
7. it restores the contents of CS:IP and returns control to the instruction

immediately following the CALL
8. (a) GET. DATA, invalid because "." is only allowed as the first character

(b) 1_NUM, because the first character cannot be a number
(c) TEST-DATA, because "-" is not allowed
(d) RET, is a reserved word

SECTION 2.5: DATA TYPES AND DATA DEFINITION
1. DB 2. 24
3. no because of the little endian storage conventions, which will cause the word

"7204H" to be stored with the lower byte (04) at offset 1 OH and the upper byte
at offset 11 H; DB allocates each byte as it is defined

4. 4, 8 5. it is used to assign the offset address
6. if the value is to be changed later, it can be changed in one place instead of

at every occurrence
7. (a) 4 (b) 2 8. no

ANSWERS TO REVIEW QU.ESTIONS 81

82

CHAPTER 3

ARITHMETIC AND LOGIC
INSTRUCTIONS AND PROGRAMS

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

In this chapter, most of the arithmetic and logic instructions are discussed
and program examples are given to illustrate the application of these instructions.
Unsigned numbers are used in this discussion of arithmetic and logic instructions.
Signed numbers are discussed separately in Chapter 6. Unsigned numbers are
defined as data in which all the bits are used to represent data and no bits are set
aside for the positive or negative sign. This means that the operand can be between
00 and FFH (0 to 255 decimal) for 8-bit data and between 0000 and FFFFH (0 to
65535 decimal) for 16-bit data. The last section of the chapter describes bitwise
operations in the C language.

SECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION

Addition of unsigned numbers

The form of the ADD instruction is

ADD destination,source ;des!. operand = des!. operand + source operand

The instructions ADD and ADC are used to add two operands. The desti­
nation operand can be a register or in memory. The source operand can be a register,
in memory, or immediate. Remember that memory-to-memory operations are never
allowed in 80x86 Assembly language. The instruction could change any of the ZF,
SF, AF, CF, or PF bits of the flag register, depending on the operands involved. The
effect of the ADD instruction on the overflow flag is discussed in Chapter 6 since
it is used in signed number operations. Look at Example 3-1.

Example 3-1
Show how the flag register is affected by

MOV AL,OFSH
ADD AL,OBH

Solution:

FSH
+ OBH
100H

11110101
+ 00001011

00000000

After the addition, the AL register (destination) contains 00 and the flags are as follows:
CF ~ 1 since there is a carry out from D7
SF ~ 0 the status of D7 of the result
PF ~ I the number of I s is zero (zero is an even number)
AF ~ I there is a carry from D3 to D4
ZF ~ I the result of the action is zero (for the 8 bits)

In discussing addition, the following two cases will be examined:

I. Addition of individual byte and word data
2. Addition of multi byte data

CASE 1: Addition of individual byte and word data

In Chapter 2 there was a program that added 5 bytes of data. The total sum
was purposely kept less than FFH, the maximum value an 8-bit register can hold.
To calculate the total sum of any number of operands, the carry flag should be
checked after the addition of each op~rand. Program 3-la uses AH to accumulate
carries as the operands are added to AL.

SECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION 83

84

Write a program to calculate the total sum of 5 bytes of data. Each byte represents the daily wages of
a worker. This person does not make more than $255 (FFH) a day. The decimal data is as follows:
125,235, 197,91, and 48.

TITLE PROG3-1A (EXE) ADDING 5 BYTES
PAGE 60,132

.MODEL SMALL

.STACK64

COUNT
DATA

SUM

MAIN

BACK:

OVER:

MAIN

. DATA
EQU
DB
ORG
DW

.CODE
PROC
MOV
MOV
MOV
MOV
MOV
ADD
JNC
INC
INC
DEC
JNZ
MOV
MOV
INT
ENDP
END

05
125,235,197,91,48
0008H
?

FAR
AX,@DATA
DS,AX
CX,COUNT ;CX is the loop counter
SI,OFFSET DATA;SI is the data pOinter
AX,OO ;AX will hold the sum
AL,[SI] ;add the next byte to AL
OVER ; II no carry, continue
AH ;else accumulate carry in AH
SI ; increment data pointer
CX ;decrement loop counter
BACK ;il not finished, go add next byte
SUM,AX ;store sum
AH,4CH
21 H ;go back to DOS

MAIN

Program 3-1a

Analysis of Program 3-1a

These numbers are converted to hex by the assembler as follows: 125 =
7DH, 235 = OEBH, 197 = OC5H, 91 = 5BH, 48 = 30H. Three iterations of the loop
are shown below. The tracing of the program is left to the reader as an exercise.

1. 1n the first iteration of the loop, 7DH is added to AL with CF = 0 and AH = 00. CX
= 04 and ZF = O.

2. 1n the second iteration of the loop, EBH is added to AL, which results in AL = 68H
and CF = 1. Since a carry occurred, AH is incremented. CX = 03 and ZF = O.

3. In the third iteration, C5H is added to AL, which makes AL = 2DH. Again a carry
occurred, so AH is incremented again. CX = 02 and ZF = O.

This process continues until CX = 00 and the zero flag becomes 1, which
will cause JNZ to fall through. Then the result will be saved in the word-sized
memory set aside in the data segment. Although this program works correctly, due
to pipe lining it is strongly recommended that the following lines of the program be
replaced:

Replace these lines Wrth these lines
BACK: ADD AL,[SI] BACK: ADD AL,[SI]

JNC OVER ADC AH,OO ;add 1 to AH if CF=1
INC AH INC SI

OVER: INC SI

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

The "ADC AH,OO" instruction in reality means add 00 + AH + CF and place
the result in AH. This is much more efficient since the instruction "JNC OVER"
has to empty the queue of pipelined instructions and fetch the instructions from the
OVER target eve!)' time the carry is zero (CF = 0).

The addition of many word operands works the same way. Register AX (or
CX or DX or BX) could be used as the accumulator and BX (or any general-purpose
16-bitregister) for keeping the carries. Program 3-lb is the same as Program 3-la,
rewritten for word addition.

Write a program to calculate the total sum of five words of data. Each data value represents the yearly
wages of a worker. This person does not make more than $65,555 (FFFFH) a year. The decimal data
is as follows: 27345,28521,29533,30105, and 32375.

TITLE PROG3-1B (EXE) ADDING 5 WORDS
PAGE 60,132
.MODEL SMALL
.STACK64

COUNT
DATA

SUM

MAIN

BACK:

MAIN

.DATA
EQU
OW
ORG
OW

.CODE
PROC
MOV
MOV
MOV
MOV
MOV
MOV
ADD
ADC
INC
INC
DEC
JNZ
MOV
MOV
MOV
INT
ENDP
END

05
27345,28521,29533,30105,32375
0010H
2DUP(?)

FAR
AX,@DATA
DS,AX
CX,COUNT ;CX is the loop counter
SI,OFFSET DATA;SI is the data pointer
AX,OO ;AX will hold the sum
BX,AX ;BX will hold the carries
AX,ISI] ;add the next word to AX
BX,O ;add carry to BX
SI ;increment data pointer twice
SI ;to point to next word
CX ;decrement loop counter
BACK ;if not finished, continue adding
SUM,AX ; store the sum
SUM+2,BX ;store the carries
AH,4CH
21H ;go back to DOS

MAIN

Program 3-1 b

CASE 2: Addition of multiword numbers

Assume a program is needed that will add the total U. S. budget for the last
100 years or the mass of all the planets in the solar system. In cases like this, the
numbers being added could be up to 8 bytes wide or more. Since registers are only
16 bits wide (2 bytes), it is the job of the programmer to write the code to break
down these buge numbers into smaller chunks to be processed by the CPU. If a
16-bit register is used and the operand is 8 bytes wide, that would take a total off our
iterations. However, if an 8-bit register is used, the same operands would require
eight iterations. This obviously takes more time for the CPU. This is one reason to
have wide registers in the design of the CPU. Large and powerful computers such
as the CRA Y have registers of 64 bits wide and larger.

SECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION 85

86

Write a program that adds the following two multiword numbers and saves the result:
DATAl = 548FB9963CE7H and DATA2 = 3FCD4FA23B8DH.

TITLE PROG3-2 (EXE) MULTIWORD ADDITION
PAGE 60,132
.MODEL SMALL
.STACK64

. DATA
DATA1 DO 548FB9963CE7H

ORG 0010H
DATA2 DO 3FCD4FA23B8DH

ORG 0020H
DATA3 DO ?

.CODE
MAIN PROC FAR

MOV AX,@DATA
MOV DS,AX
CLC ;clear carry before first addition
MOV SI,OFFSET DATA1 ;SI is pointer for operand1
MOV DI,OFFSET DATA2 ;DI is pOinter for operand2
MOV BX,OFFSET DATA3 ;BX is pointer for the sum
MOV CX,04 ;CX is the loop counter

BACK: MOV AX,[SI] ; move the first operand to AX
ADC AX,[DI] ;add the second operand to AX
MOV [BX],AX ; store the sum
INC SI ;point to next word of operand1
INC SI
INC DI ; point to next word of operand2
INC DI
INC BX ;point to next word of sum
INC BX
LOOP BACK ;~ not finished, continue adding
MOV AH,4CH
INT 21H ;90 back to DOS

MAIN ENDP
END MAIN

Program 3-2

Analysis of Program 3-2

In writing this program, the first thing to be decided was the directive used
for coding the data in the data segment. DQ was chosen since it can represent data
as large as 8 bytes wide. The question is: Which add instruction should be used?
In the addition of multibyte (or multiword) numbers, the ADC instruction is always
used since the carry must be added to the next-higher byte (or word) in the next
iteration. Before executing ADC, the carry flag must be cleared (CF = 0) so that in
the first iteration, the carry would not be added. Clearing the carry flag is achieved
by the CLC (clear carry) instruction. Three pointers have been used: SI for DATAl,
DI for DATA2, and BX for DATA3 where the result is saved. There is a new
instruction in that program, "LOOP XXXX", which replaces the often used "DEC
CX" and "JNZ XXXX". In other words:

LOOP xxxx ;is equivalent to the following two instructions

DEC CX
JNZ xxxx

When the "LOOP xxxx" is executed, CX is decremented automatically, and
ifCX is not 0, the microprocessor will jump to target address xxxx. IfCX is 0, the
next instruction (the one below "LOOP xxxx") is executed.

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

Subtraction of unsigned numbers

SUB dest,source ;dest = dest - source

In subtraction, the 80x86 microprocessors (indeed, almost all modem
CPUs) use the 2's complement method. Although every CPU contains adder
circuitry, it would be too cumbersome (and take too many transistors) to design
separate subtractor circuitry. For this reason, the 80x86 uses internal adder circuitry
to perform the subtraction command. Assuming that the 80x86 is executing simple
subtract instructions, one can summarize the steps of the hardware of the CPU in
executing the SUB instruction for unsigned numbers, as follows.

I. Take the 2's complement of the subtrahend (source operand).
2. Add it to the minuend (destination operand).
3. Invert the carry.

These three steps are performed for every SUB instruction by the internal
hardware of the 80x86 CPU regardless ofthe source and destination of the operands
as long as the addressing mode is supported. It is after these three steps that the
result is obtained and the flags are set. Example 3-2 illustrates the three steps.

Example 3-2
Show the steps involved in the following:

MOV AL,3FH ;Ioad AL=3FH
MOV BH,23H ;Ioad BH=23H
SUB AL,BH ;subtract BH from AL. Place result in AL.

Solution:
AL 3F ,0011 1111

-BH -23 -00100011
1C

0011 1111
+1101 1101
1 00011100

(2's complement)
CF=O (step 3)

The flags would be set as follows; CF = 0, ZF = 0, AF = 0, PF = 0, and SF = O. The programmer must
look at the carry flag (not the sign flag) to determine if the result is positive or negative.

After the execution of SUB, if CF = 0, the result is positive; if CF = I, the
result is negative and the destination has the 2's complement ofthe result. Normally,
the result is left in 2's complement, but the NOT and INC instructions can be used
to change it. The NOT instruction performs the I's complement of the operand;
then the operand is incremented to get the 2's complement. See Example 3-3.

Example 3-3

Analyze the following program:
;from the data segment:
DATA1 DB 4CH

. DATA2 DB 6EH
DATA3 DB?

;from the code segment:
MOV DH,DATA1
SUB DH,DATA2
JNC NEXT
NOT DH
INC DH

NEXT: MOV DATA3,DH

Solution:

;Ioad DH with DATA 1 value (4CH)
;subtract DATA2 (6E) from DH (4CH)
;if CF=O jump to NEXT target
;if CF=1 then take 1's complement
;and increment to get 2's complement
;save DH in DATA3

Following the three steps for "SUB DH,DATA2":
4C 01001100 01001100

- 6E 01101110 2's comp +10010010
- 22 011011110 CF=1 (step 3) the result is negative

SECTION 3.1: UNSIGNED ADDITION AND SVBTRACTION 87

SBB (subtract with borrow)

This instruction is used for multibyte (multiword) numbers and will take
care of the borrow of the lower operand. If the carry flag is 0, SBB works like SUB.
If the carry flag is I, SBB subtracts I from the result. Notice the "PTR" operand in
Example 3-4. The PTR (pointer) data specifier directive is widely used to specify
the size of the operand when it differs from the defined size. In Example 3-4,
"WORD PTR" tells the assembler to use a word operand, even though the data is
defined as a doubleword.

Example 3-4

Analyze the following program:

DATA A
DATA-B
RESU-LT

Solution:

DD 62562FAH
DD 412963BH
DO?

MOV
SUB
MOV
MOV
SBB
MOV

AX,wORD PTR DATA A
AX,wORD PTR DATA-B
WORD PTR RESULT,Ax
AX,wORD PTR DATA A +2
AX,wORD PTR DATA-B +2
WORD PTR RESULT+2,AX

;AX=62FA
:SUB 963B from AX
:save the result
:AX=0625
;SUB 0412 with borrow
;save the result

After the SUB, AX = 62FA - 963B = CCBF and the carry flag is set. Since CF = I, when SBB is

executed, AX = 625 - 412 - 1=212. Therefore, the value stored in RESULT is 0212CCBF.

Review Questions

I. The ADD instruction that has the syntax "ADD destination, source" replaces the
=,-.,-,,--;; operand with the sum of the two operands.

2. Why is the following ADD instruction illegal?
ADD DATA I,DATA 2

3. Rewrite the instruction-above in a correct form.
4. The ADC instruction that has the syntax "ADC destination, source" replaces the

= ___ .operand with the sum ofc--~=---o-"O""
5. The execution of part (a) below results in ZF - I, whereas the execution of part

(b) results in ZF = O. Explain why.
(a) MOV BL,04FH (b) MOV BX,04FH

ADD BL,OBlH ADD BX,OBlH
6. The instruction "LOOP ADD_LOOP" is equivalent to what two instructions?
7. Show how the CPU would subtract 05H from 43H.
8. If CF = I, AL = 95, and BL = 4F prior to the execution of "SBB AL,BL", what

will be the contents of AL after the subtraction?

SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION

88

One ofthe major changes from the 8080/85 microprocessor to the 8086 was
inclusion of instructions for multiplication and division. In this section we cover
each one with examples. This is multiplication and division of unsigned numbers.
Signed numbers are treated in Chapter 6.

In mUltiplying or dividing two numbers in the 80x86 microprocessor, the
use of registers AX, AL, AH, and DX is necessary since these functions assume the
use of those registers.

Multiplication of unsigned numbers

In discussing multiplication, the following cases will be examined: (I) byte
times byte, (2) word times word, and (3) byte times word.

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

byte x byte: In byte by byte multiplication, one of the operands must be
in the AL register and the second operand can be either in a register or in memory
as addressed by one of the addressing modes discussed in Chapter I. After the
multiplication, the result is in AX. See the following example:

RESULT DW

MOV
MOV
MUL
MOV

?

AL,25H
BL,65H
BL
RESULT,AX

;result is defined in the data segment

;a byte is moved to AL
;immediate data must be in a register
;AL= 25 x 65H
;the result is saved

In the program above, 25H is multiplied by 65H and the result is saved in
word-sized memory named RESULT. In that example, the register addressing mode
was used. The next three examples show the register, direct, and register indirect
addressing modes.

;from the data segment:
DATA1 DB 25H
DATA2 DB 65H
RESULT DW ?
;from the code segment:

or

or

MOV AL,DATA1
MOV BL,DATA2
MUL BL
MOV RESULT,AX

MOV
MUL
MOV

MOV
MOV
MUL
MOV

AL,DATA1
DATA2
RESULT,AX

AL,DATA1
SI,OFFSET DATA2
BYTE PTR [SI]
RESULT,AX

;register addressing mode

;direct addressing mode

;register indirect addressing mode

In the register addressing mode example, any 8-bit register could have been
used in place of BL. Similarly, in the register indirect example, BX or OJ could
have been used as pointers. If the register indirect addressing mode is used, the
operand size must be specified with the help of the PTR pseudo-instruction. In the
absence of the "BYTE PTR" directive in the example above, the assembler could
not figure out ifit should use a byte or word operand pointed at by SI. This confusion
would cause an error.

word x word: In word by word multiplication, one operand must be in AX
and the second operand can be in a register or memory. After the multiplication,
registers AX and OX will contain the result. Since word x word multiplication can
produce a 32-bit result, AX will hold the lower word and OX the higher word.
Example:

DATA3
DATA4
RESULT1

MOV
MUL
MOV
MOV

DW
DW
DW

2378H
2F79H
2 DUP(?)

AX,DATA3
DATA4
RESULT1,AX
RESULT1+2,DX

;Ioad first operand into AX
;multiply it by the second operand
;store the lower word result
;store the higher word result

SECTION 3,2: UNSIGNED MULTIPLICATION AND DIVISION 89

word x byte: This is similar to word by word multiplication except that
AL contains the byte operand and AH must be set to zero. Example:

;from the data segment:
DATA5 DB 6BH
DATA6 DW 12C3H
RESULT3 DW 2 DUP(?)

;from the code segment:

MOV
SUB
MUL
MOV
MOV
MOV

AL,DATA5
AH,AH
DATA6
BX,OFFSET RESULT3
[BX],AX
[BX]+2,DX

;AL holds byte operand
;AH must be cleared
;byte in AL multiplied by word operand
;BX points to storage for product
;AX holds lower word
;DX holds higher word

Table 3-1 gives a summary of multiplication of unsigned numbers. Using
the 80x86 microprocessor to perform multiplication of operands larger than 16-bit
size takes some manipulation, although in such cases the 8087 coprocessor is
normally used.

Table 3-1: Unsigned Multiplication Summary
II I

. Multi Iication 10 erand 1 0 erand 2 Result

!f."b.,Lyt"'e'-x----"bLyt=e'--_---'I_A_L _______ ---'I_re g"-i_st_er_o_r_m_em_o~ry'--_ :AX
I

Ii word x word ! AX register or E1~Irlol)' J]))(AX
I; word x byte AL = byte, AH = 0 register or memory ,DXAX

90

Division of unsigned numbers

In the division of unsigned numbers, the following cases are discussed:

1. Byte over byte
2. Word over word
3. Word over byte
4. Doubleword over word

In divide, there could be cases where the CPU cannot perform the division.
In these cases an interrupt is activated. In recent years this is referred to as an
exception. In what situation can the microprocessor not handle the division and must
call an interrupt? They are

I. if the denominator is zero (dividing any number by 00), and
2. if the quotient is too large for the assigned register.

In the IBM PC and compatibles, if either of these cases happens, the PC
will display the "divide error" message.

byte/byte: In dividing a byte by a byte, the numerator must be in the AL
register and AH must be set to zero. The denominator cannot be immediate but can
be in a register or memory as supported by the addressing modes. After the DIY
instruction is performed, the quotient is in AL and the remainder is in AH. The
following shows the various addressing modes that the denominator can take.

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

DATA7 DB 95
DATA8 DB 10
QOUT1 DB ?
REMAIN1 DB ?

;using immediate addressing mode will give an error
MOV AL,DATA7 ;move data into AL
SUB AH,AH ;clear AH
DIV 10 ;immed. mode not allowed!!

;allowable modes include:

;using direct mode
MOV
SUB
DIV
MOV
MOV

AL,DATA7
AH,AH
DATA8
QOUT1,AL
REMAIN1,AH

;using register addressing mode
MOV AL,DATA7
SUB AH,AH
MOV BH,DATAS
DIV BH
MOV QOUT1,AL
MOV REMAIN1,AH

;using register indirect addressing mode
MOV AL,DATA7
SUB AH,AH

;AL holds numerator
;AH must be cleared
;divide PV< by DATA8
;quotient = AL = 09
;remainder = AH = 05

;AL holds numerator
;AH must be cleared
;move denom. to register
;divide PV< by BH
;quotient = AL = 09
;remainder = AH = 05

;AL holds numerator
;AH must be cleared

MOV BX,OFFSET DATA8 ;BX holds offset of DATA8
;divide PV< by DATA8 DIV BYTE PTR [BX]

MOV QOUT2,AX
MOV REMAIND2,DX

word/word: In this case the numerator is in AX and OX must be cleared.
The denominator can be in a register or memory. After the DIV, AX will have the
quotient and the remainder will be in OX.

MOV PV<,1 0050 ;PV< holds numerator
SUB DX,DX ;DX must be cleared
MOV BX,100 ;BX used for denominator
DIV BX
MOV QOUT2,PV< ;quotient = AX = 64H = 100
MOV REMAIND2,DX ;remainder = OX = 32H = 50

word/byte: Again, the numerator is in AX and the denominator can be in
a register or memory. After the DIV instruction, AL will contain the quotient, and
AH will contain the remainder. The maximum quotient is FFH. The following
program divides AX =2055 byCL=IOO. ThenAL= 14H (20 decimal) is the quotient
and AH = 37H (55 decimal) is the remainder.

MOV
MOV
DIV
MOV
MOV

PV<,2055
CL,100
CL
QUO,AL
REMI,AH

;PV< holds numerator
;CL used for denominator

;AL holds quotient
;AH holds remainder

SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION 91

doubleword/word: The numerator is in AX and OX, with the most
significant word in OX and the least significant word in AX. The denominator can
be in a register or in memory. After the DIY instruction, the quotient will be in AX,
the remainder in OX. The maximum quotient is FFFFH.

;from the data segment:
OATA1 DO 105432
OATA2 OW 10000
QUOT OW ?
REMAIN OW ?
;from the code segment:

MOV AX,wORO PTR OATA1
MOV OX,WORO PTR OATA1+2
OIV OATA2
MOV QUOT,AX
MOV REMAIN,OX

;AX holds lower word
;OX higher word of numerator

;AX holds quotient
;OX holds remainder

In the program above, the contents of DX:AX are divided by a word-sized
data value, 10000. Now one might ask: How does the CPU know that it must use
the doubleword in DX:AX for the numerator? The 8086/88 automatically uses
DX:AX as the numerator anytime the denominator is a word in size, as was seen
earlier in the case of a word divided by a word. This explains why OX had to be
cleared in that case. Notice in the example above that DATA I is defined as DO but
fetched into a word-size register with the help of WORD PTR. In the absence of
WORD PTR, the assembler will generate an error. A summary of the results of
division of unsigned numbers is given in Table 3-2.

Table 3-2: Unsigned Division Summary

. Division

bvteibvte

wordlword

I Numerator Denominator

i AL = byte AH = 0 register or memg!y

i AX = word, DX = 0 .Jegister or memory

iOuotient iRem

jAL I IAH

IAX2 DX

ALI AH

AX2
If-w=o .. rd/b'''-''J-y'''te _____ -lic'AX=~=__"w .. o.,.r,,d'__ _____ _'r,,e'''g,..is".t,.er or ll1emgry --.-...... ~-c-----'-""'-'----1
" Iidoublewordiword DXAX = doubleword . register or memory DX
Notes:
I. Divide error interrupt if AL > FFH.
2. Divide error interrupt if AX >FFFFH.

Review Questions

I. In unsigned multiplication of a byte in DATAl with a byte in AL, the product will
be placed in register(s)

2. In unsigned multiplicalt~' o-n-o'f'-A"'X'-;-w-i'th BX, the product is placed in register(s)

3. In unsigned multiplication ofCX with a byte in AL, the product is placed in regis- .
ter(s)

4, In uns~ig-n-e-d;-d"i~v7is~io-n-oef-a"byte in AL by a byte in DH, the quotient will be placed
in and the remainder in

5, In unsigned division of a word in A"X"b'y-a-w-o-r'd in DATAl, the quotient will be
placed in and the remainder in ;-,...-c--;~""

6. In unsigned division of a word in AX by a byte in DATA2, the quotient will be
placed in and the remainder in =-=.,-__ _

7. In unsigned division ofa doubleword in DXAX by a word in CX, the quotient
will be placed in and the remainder in _____ _

92 CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

SECTION 3.3: LOGIC INSTRUCTIONS AND SAMPLE PROGRAMS

In this section we discuss the logic instructions AND, OR, XOR, SHIFT,
and COMPARE. Instructions are given in the context of examples.

AND

AND destination, source

This instruction will perfonn a logical
AND on the operands and place the result in the
destination. The destination operand can be a reg­
ister or in memory. The source operand can be a
register, in memory, or immediate.

F---,~-~"'T-'~ .---~ .. --

'I X I Y I XANDY
o i 0 I 0

,

If-_~l ' 0 J
!I~. l +.:. _0 O!
c 1 _: 1

Example 3-5

Show the results of the following:

MOV BL,35H
AND BL,OFH ;AND BL with OFH. Place the result in BL.

Solution:

35H
OFH
05H

00110101
00001111
00000101 Flag settings will be: SF = 0, ZF = 0, PF = 1, CF = OF = O.

AND will automatically change the CF and OF to zero and PF, ZF and SF
are set according to the result. The rest of the flags are either undecided or
unaflected. As seen in Example 3-5, AND can be used to mask certain bits of the
operand. It can also be used to test for a zero operand:

AND DH,DH
JZ XXXX

XXXX: ...

The above will AND DH with itself and set ZF = 1 if the result is zero,
making the CPU fetch from the target address XXXX. Otherwise, the instruction
below JZ is executed. AND can thus be used to test if a register contains zero.

OR

OR destination,source

The destination and source operands are
ORed and the result is placed in the destination.
OR can be used to set certain bits of an operand to
1. The destination operand can be a register or in
memory. The source operand can be a register, in
memory, or immediate.

,X
I -

. 0

- -11

XOR Y-_J Y

o· 0 ' 1--------:
0 ___ 1 _L 1

1 0
--------- ------.,

I 1 1 1 .
"'---------=~~------~~~~--"

The flags will be set the same as for the AND instruction. CF and OF will
be reset to zero and SF, ZF, and PF will be set according to the result. All other flags
are not affected. See Example 3-6.

The OR instruction can also be used to test for a zero operand. For example,
"OR BL,O" will OR the register BL with 0 and make ZF = 1 if BL is zero. "OR
BL,BL" will achieve the same result.

SECTION 3.3: LOGIC INSTRUCTIONS AND SAMPLE PROGRAMS 93

94

Example 3-6

Show the results of the following:

MOVAX,0504
OR AX,ODA68H

;AX = 0504
;AX = DF6C

Solution:

0504H
DA68H
DF6C

00000101 00000100.
1101 101001101000
1101 111101101100

XOR

XOR dest,src

Flags will be: SF =1 , ZF = 0, PF = 1, CF = OF = O.
Notice that parity is checked for the lower 8 bits only.

The XOR instruction will eXclusive-OR
the operands and place the result in the destination.
XOR sets the result bits to I iftheyare not equal;
otherwise, they are reset to O. The flags are set the
same as for the AND instruction. CF = 0 and OF
= 0 are set internally and the rest are changed
according to the result of the operation. The rules
for the operands are the same as in the AND and
OR instructions. See Examples 3-7 and 3-8.

IX y 1
.. , XXOR Y I

Example 3-7

I

0
,

0 '-I +
I '

--j-----ll
I[~"---+--"---+-----"
I

I.

0

I
------jl
o II

Show the results of the following:

MOV DH,54H
XOR DH,78H

Solution:

54H
78H
2C

Example 3-8

01010100
01111000
00101100 Flag settings will be: SF = 0, ZF = 0, PF = 0, CF = OF = O.

The XOR instruction can be used to clear the contents of a register by XORing it with itself.
Show how "XOR AH,AH" clears AH, assuming that AH = 45H.

Solution:

45H
45H
00

01000101
01000101
00000000 Flag settings will be: SF = 0, ZF = 1, PF =1 , CF = OF = O.

XOR can also be used to see if two registers have the same value. "XOR
BX,CX" will make ZF = 1 if both registers have the same value, and if they do, the
result (0000) is saved in BX, the destination.

Another widely used application of XOR is to toggle bits of an operand.
For example, to toggle bit 2 of register AL:

XOR AL,04H ;XOR AL with 0000 0100

This would cause bit 2 of AL to change to the opposite value; all other bits
would remain unchanged.

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

SHIFT

There are two kinds of shift: logical and arithmetic. The logical shift is for
unsigned operands, and the arithmetic shift is for signed operands. Logical shift
will be discussed in this section and the discussion of arithmetic shift is postponed
to Chapter 6. Using shift instructions shifts the contents of a register or memory
location right or left. The number of times (or bits) that the operand is shifted can
be specified directly if it is once only, or through the CL register if it is more than
once.

SUR: This is
the logical shift right. 0 I MSB LSB I CF
The operand is shifted . .
right bit by bit, and for
every shift the LSB (least significant bit) will go to the carry flag (CF) and the MSB
(most significant bit) is filled with O. Examples 3-9 and 3-10 should help to clarify
SHR.

Example 3-9

Show the result ofSHR in the following:

MOV AL,9AH
MOV CL,3 ;set number of times to shift
SHR AL,CL

Solution:

9AH; 10011010
01001101 CF=O (shifted once)
00100110 CF=l (shifted twice)
00010011 CF=O (shifted three times)

After three times of shifting right, AL = 13H and CF = O.

If the operand is to be shifted once only, this is specified in the SHR
instruction itself rather than placing I in the CL. This saves coding of one
instruction:

MOV
SHR

BX,OFFFFH
BX,1

;BX=FFFFH
;shift right BX once only

After the shift above, BX ~ 7FFFH and CF ~ I. Although SHR does affect
the OF, SF, PF, and ZF flags, they are not important in this case. The operand to be
shifted can be in a register or in memory, but immediate addressing mode is not
allowed for shift instructions. For example, "SHR 25,CL" will cause the assembler
to give an error.

Example 3-10

Show the results of SHR in the following:
;from the data segment:
DATA1 DW 7777H
;from the code segment:
TIMES EQU 4
MOV CL,TIMES 'CL=04
SHR DATA1,CL ;shift DATA1 CLtimes

Solution:
After the four shifts, the word at memory location DATAl will contain 0777. The four LSBs are lost
through the carry, one by one, and Os fill the four MSBs.

SECTION 3.3: LOGIC INSTRUCTIONS AND SAMPLE PROGRAMS 95

96

SHL: Shift left is
also a logical shift. It is the
reverse ofSHR. Afterevery
shift. the LSB is filled with
o and the MSB goes to CF.
All the rules are the same as
SHR.

CF--IMSB ----LSB!--O

Example 3-11

Show the effects of SHL in the following:

MOV DH,6
MOV CL,4
SHL DH,CL

Solution:
00000110

CF=O 00001100 (shifted left once)
CF=O 00011000
CF=O 00110000
CF=O 01100000 (shifted four times)

After the four shifts left, the DH register has 60H and CF = O.

Example 3-11 could have been coded as

MOV DH,6
SHL DH,1
SHL DH,1
SHL DH,1
SHL DH,1

COMPARE of unsigned numbers

CMP destination,source ;compare dest and src

The CMP instruction compares two operands and changes the flags accord­
ing to the result of the comparison. The operands themselves remain unchanged.
The destination operand can be in a register or in memory and the source operand
can be in a register. in memory, or immediate. Although all the CF, AF, SF, PF, ZF,
and OF flags reflect the result of the comparison, only the CF and ZF are used, as
outlined in Table 3-3.

DATA1

OVER:

The following demonstrates how the CMP instruction is used:

DW

MOV
CMP
JNC
SUB
INC

235FH

AX,OCCCCH
AX,DATA1
OVER
AX,AX
DATA1

;compare CCCC with 235F
;jump if CF=O

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

In the program above, AX is greater than the contents of memory location
DATAl (OCCCCH >235FH); therefore, CF = 0 and JNC (jump no carry) will go to
target OVER. In contrast, look at the following:

NEXT:

MOV
MOV
CMP
JNC
ADD
ADD

BX,7888H
CX,9FFFH
BX,CX
NEXT
BX,4000H
CX,250H

;compare 7888 with 9FFF

In the above, BX is smaller than CX (7888H < 9FFFH), which sets CF = I,
making "JNC NEXT" fall through so that "ADD BX,4000H" is executed. In the
example above, CX and BX still have their original values (CX = 9FFFH and BX
= 7888H) after the execution of "CMP BX,CX". Notice that CF is always checked
for cases of greater or smaller than, but for equal, ZF must be used. The next
program sample has a variable named TEMP, which is being checked to see if it has
reached 99:

TEMP DB?

MOV
CMP
JZ
INC

AL,TEMP
AL,99
HOT_HOT
BX

;move the TEMP variable into AL
;compare AL with 99
;if ZF=1 (TEMP = 99) jump to HOT_HOT
;otherwise (ZF=O) increment BX

;halt the system

The compare instruction is really a SUBtraction except that the values of
the operands do not change. The flags are changed according to the execution of
SUB. Although all the flags are affected, the only ones of interest are ZF and CF.
It must be emphasized that in CMP instructions, the operands are unaffected
regardless of the result of the comparison. Only the flags are affected. This is
despite the fact that CMP uses the SUB operation to set or reset the flags. Program
3-3 uses the CMP instruction to search for the highest byte in a series of 5 bytes
defined in the data segment. The instruction "CMP AL,[BX]" works as follows,
where [BX] is the contents of the memory location pointed at by register BX.

If AL < [BX], then CF = I and [BX] becomes the basis of the new comparison.
If AL > [BX], then CF = 0 and AL is the larger of the two values and remains the
basis of comparison.

Although JC (jump carry) and JNC (jump no carry) check the carry flag and
can be used after a compare instruction, it is recommended that JA (jump above)
and JB (jump below) be used for two reasons. One reason is that DEBUG will
unassemble JC as JB, and JNC as JA, which may be confusing to beginning
programmers. Another reason is that "jump above" and "jump below" are easier to
understand than "jump carry" and "jump no carry," since it is more immediately
apparent that one number is larger than another, than whether a carry would be
generated if the two numbers were subtracted.

Program 3-3 uses the CMP instruction to search through 5 bytes of data to
find the highest grade. The program uses register AL to hold the highest grade found
so far. AL is given the initial value of O. A loop is used to compare each of the 5
bytes with the value in AL. If AL contains a higher value, the loop continues to
check the next byte. If AL is smaller than the byte being checked, the contents of
AL are replaced by that byte and the loop continues.

SECTION 3.3: LOGIC INSTRUCTioNS AND SAMPLE PROGRAMS 97

98

Assume that there is a class of five people with the following grades: 69, 87, 96, 45, and 75.
Find the highest grade.

TITLE PROG3-3 (EXE) CMP EXAMPLE
PAGE 60,132
.MODEL SMALL
.STACK64

.DATA.
GRADES DB 69,87,96,45,75

ORG 0008
HIGHEST DB ?

MAIN

AGAIN:

NEXT:

MAIN

.CODE
PROC
MOV
MOV
MOV
MOV
SUB
CMP
JA
MOV
INC
LOOP
MOV
MOV
INT
ENDP
END

FAR
AX,@DATA
DS,AX
CX,5
BX,OFFSET GRADES
AL,AL
AL,[BX]
NEXT
AL,[BX]
BX
AGAIN
HIGHEST,AL
AH,4CH
21H

MAIN

;set up loop counter
;BX points to GRADE data
;AL holds highest grade found so far
;compare next grade to highest
;jump if AL still highest
;else AL holds new highest
;point to next grade
;contJnue search
;store highest grade

;90 back to DOS

Program 3-3
Program 3-4 uses the CMP instruction to detennine if an ASCII character

is uppercase or lowercase. Note that small and capital letters in ASCII have the
following values:

Letter Hex Binarv Letter Hex Binarv

A 41 01000001 a 61 01100001

B 42 01000010 b 62 01100010

C 43 01000011 c 63 01100011

...
y 59 01011001 v 79 01ll1O01

Z 5A 01011010 z 7A 01111010

As can be seen, there is a relationship between the pattern oflowercase and
uppercase letters, as shown below for A and a:

A 01000001 41H
a 01100001 61H

The only bit that changes is d5. To change from lowercase to uppercase,
d5 must be masked. Program 3-4 first detects if the letter is in lowercase, and if it
is, it is ANDed with 110 I llllB = Dill. Otherwise, it is simply left alone. To
detennine if it is a lowercase letter, it is compared with 61H and 7 AH to see if it is
in the range a to z. Anything above or below this range should be left alone.

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

TITLE PROG3-4 (EXE) LOWERCASE TO UPPERCASE CONVERSION
PAGE 60,132
.MODEL SMALL
. STACK 64

DATA1

DATA2

MAIN

BACK:

OVER:

MAIN

. DATA
DB
ORG
DB

.CODE
PROC
MOV
MOV
MOV
MOV
MOV
MOV
CMP
JB
CMP
JA
AND
MOV
INC
INC
LOOP
MOV
INT
ENDP
END

'mY NAME is jOe'
0020H
14DUP(?)

FAR
AX,@DATA
DS,AX
SI,OFFSET DATA1
BX,OFFSET DATA2
CX,14

;SI points to original data
; BX points to uppercase data
;CX is loop counter

AL,[SI]
AL,61H
OVER
AL,7AH
OVER
AL,11011111B
[BX],AL
SI
BX
BACK
AH,4CH
21H

MAIN

;get next character
;if less than 'a'

;then no need to convert
;if greater than 'z'
;then no need to convert
; mask d5 to convert to uppercase
;store uppercase character
;increment pOinter to original
;increment painter to uppercase data
;continue looping if CX > 0

;go back to DOS

Program 3-4
In Program 3-4, 20H could have been subtracted from the lowercase letters

instead of ANDing with 1101 1111 B. That is what IBM does, as shown next.

IBM BIOS method of converting from lowercase to uppercase
2357
2358

;-CONVERT ANY LOWERCASE TO UPPERCASE

EBFB 2359 K60: ; LOWER TO UPPER
EBFB 3C61 2360 CMP AL,'a' ;FIND OUT IF ALPHABETIC
EBFD 7206 2361 JB K61 ; NOT_CAPS_STATE
EBFF 3C7 A 2362 CMP AL,'z'
EC01 7702 2363 JA K61 ;NOT_CAPS_STATE
EC03 2C20 2364 SUB AL:a'-'P; ;CONVERT TO UPPERCASE
EC05 2365 K61:
EC05 8B1E1COO 2366 MOV BX,BUFFER_TAIL ;GET THE END POINTER

;TO THE BUFFER

(Reprinted by permls&on from "IBM Technical Reference" c. 1984 by International Business Machines Corporation)

Review Questions

1. Use operands 4FCAH and C237H to perform:
(a) AND (b) OR (c) XOR

2. ANDing a word operand with FFFFH will result in what value for the word oper-
and? To set all bits of an operand to 0, it should be ANDed with __ _

3. To set all bits of an operand to 1, it could be ORed with
4. XORing an operand with itself results in what value for"'th-e-o-p-e-ran'd?
5. Show the steps if value AOF2H were shifted left three times. Then show the steps

if AOF2H were shifted right three times.
6. The CMP instructions works by performing a(n) operation on the oper-

ands and setting the flags accordingly.
7. True or false. The CMP instruction alters the contents of its operands.

SECTION 3.3: LOGIC INSTRUCTIONS AND SAMPLE PROGRAMS 99

BIOS examples of logic instructions

In this section we examine some real-life examples from IBM PC BIOS
programs. The purpose is to see the instructions discussed so far in the context of
real-life applications.

When the computer is turned on, the CPU starts to execute the programs
stored in BIOS in order to set the computer up for DOS. If anything has happened
to the BIOS programs, the computer can do nothing. The first subroutine of BIOS
is to test the CPU. This involves checking the flag register bit by bit as well as
checking all other registers. The BIOS program for testing the flags and registers
is given followed by their explanation:

E05B
E05B
E05B
E05B FA
E05C B4D5
E05E 9E
E05F 734C
E061754A
E0637B48
E0657946
E0679F
E068 B105
E06AD2EC
E06C 733F
E06E B040
E070 DOEO
E0727139
E07432E4
E0769E
E0777634

E0797832
E07B 7A30
E07D 9F
E07E B105
E080 D2EC
E0827229
E084 DOE4
E0867025

306
307

309 START:
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

ASSUME CS:CODE,DS:NOTHING,ES:NOTHING,SS:NOTHING
ORG OE05BH

CLI
MOV
SAHF
JNC
JNZ
JNP
JNS
LAHF
MOV
SHR
JNC
MOV
SHL
JNO
XOR
SAHF
JBE

JS
JP
LAHF
MOV
SHR
JC
SHL
JO

AH,OD5H

ERR01
ERR01
ERR01
ERR01

CL,5
AH,CL
ERR01
AL,40H
AU
ERR01
AH,AH

ERR01

ERR01
ERR01

CL,5
AH,CL
ERR01
AH,1
ERR01

; DISABLE INTERRUPTS
; SET SF, CF, ZF, AND AF FLAGS ON

; GO TO ERR ROUTINE IF CF NOT SET
; GO TO ERR ROUTINE IF ZF NOT SET
; GO TO ERR ROUTINE IF PF NOT SET
; GO TO ERR ROUTINE IF SF NOT SET
; LOAD FLAG IMAGE TO AH
; LOAD CNT REG WITH SHIFT CNT
; SHIFT AF INTO CARRY BIT POS
; GO TO ERR ROUTINE IF AF NOT SET
; SET THE OF FLAG ON
; SETUP FOR TESTING
; GO TO ERR ROUTINE IF OF NOT SET
; SETAH = 0
; CLEAR SF, CF, ZF, AND PF
; GO TO ERR ROUTINE IF CF ON
; OR GO TO ERR ROUTINE IF ZF ON
; GO TO ERR ROUTINE IF SF ON
; GO TO ERR ROUTINE IF PF ON
; LOAD FLAG IMAGE TO AH
; LOAD CNT REG WITH SHIFT CNT
; SHIFT 'AF' INTO CARRY BIT POS
; GO TO ERR ROUTINE IF ON
; CHECK THAT 'OF' IS CLEAR
; GO TO ERR ROUTINE IF ON

337 ;----- READIWRITE THE 888 GENERAL AND SEGMENTATION REGISTERS
338 ; WITH ALL ONES AND ZEROES.
339

E088 B8FFFF 340
E08B F9 341
E08C 342 C8:
E08C 8ED8 343
E08E 8CDB 344
E090 8EC3 345
E0928CC1 346
E0948ED1 347
E0968CD2 348
E098 8BE2 349
E09A 8BEC 350
E09C 8BF5 351
E09E 8BFE 352
EOAO 7307 353
EOA2 33C7 354
EOA4 7507 355
EOA6 F8 356
EOA7 EBE3 357
EOA9 358 C9:

MOV
STC

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
JNC
XOR
JNZ
CLC
JMP

AX,OFFFFH

DS,AX
BX,DS
ES,BX
CX,ES
SS,CX
DX,SS
SP,DX
BP,SP
SI,BP
DI,SI
C9
AX,DI
ERR01

C8

; SET UP ONE'S PATIERN IN AX

; WRITE PATIERN TO ALL REGS

; TST1A
; PATIERN MAKE IT THRU ALL REGS
; NO - GO TO ERR ROUTINE

EOA90BC7 359 OR AX,DI ; ZERO PATIERN MAKE IT THRU?
EOAB 7401 360 JZ C10 ; YES - GO TO NEXT TEST
EOAD F4 361 ERR01: HLT ; HALT SYSTEM
(Reprinted by permission from "IBM Technical Reference" c. 1984 by International Business Machines Corporation)

100 CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

Line
310
311

312

313-316
317
318
319
320

321 - 323
324 - 335
340
341
343 - 352

353
354

355
356
357

359

360

Line-by-line explanation:

Explanation
CLI ensures that no interrupt will occur while the test is being conducted.
MOY AH,OD5H:
flag S Z - AC - P - C
D5H 1 1 0 1 0 1 0 1
SAHF (store AH into lower byte of the flag register) is one way to move data to flags.
Another is to use the stack

MOV AX,00D5H
PUSH AX
POPF

However, there is no RAM available yet to use for the stack because the CPU is tested
before memory is tested.
Will make the CPU jump to HLT if any flag does not work.
LAHF (load AH with the lower byte offlag register) is the opposite of SAHF.
Loads CL for five shifts.
"SHR AH,CL". By shifting AH five times, AF (auxiliary carry) will be in the CF position.
If no AF, there is an error. Lines 317 to 320 are needed because there is no jump condition
instruction for AF.
Checks the OF flag. This is discussed in Chapter 6 when signed numbers are discussed.
Checks the same flags for zero. Remember that JNZ is the same as lBE.
Loads AX with FFFFH.
STC (set the carry) makes CF ~ 1.
Moves the AX value (FFFFH) into every register and ends up with DI ~ FFFFH if the
registers are good.
Since CF~ 1 (remember STC) it falls through.
Exclusive-ORing AX and DI with both having the same FFFFH value makes AX = 0000
and ZF = 1 if the registers are good (see lines 343 - 352). If ZF ~ 0, one of the registers must
have corrupted the data FFFF, therefore the CPU is bad.
If ZF = 0, there is an error.
CLC clears the carry flag. This is the opposite of STC.
lumps to C8 and repeats the same process, this time with value 0000. The contents of AX
are moved around to every register until 01 = 0000, and at 353 the JNC C9 will jump since
CF = 0 by the CLC instruction before it went to the loop.
At C9, AX and 01 are ORed. If 0000, the contents of AX are copied successfully to all
registers, DI will be 0000; therefore, ORing will raise the ZF, making ZF = 1.
If ZF = 1, the CPU is good and the system can perform the next test. Otherwise, ZF = 0,
meaning that the CPU is bad and the system should be halted.

SECTION 3.4: BCD AND ASCII OPERANDS AND INSTRUCTIONS

In 80x86 microprocessors, there are many in­
structions that handle ASCII and BCD numbers. This
section covers these instructions with examples.

BCD number system

BCD stands for binary coded decimal. BCD is
needed because human beings use the digits 0 to 9 for
numbers. Binary representation of 0 to 9 is called BCD (see
Figure 3- I). In computer literature one encounters two
terms for BCD numbers:
(1) unpacked BCD (2) packed BCD

SECTION 3.4: BCD AND ASCII OPERANDS AND INSTRUCTIONS

Digit BCD

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Figure 3-1. BCD Code

101

102

Unpacked BCD

In unpacked BCD, the lower 4 bits of the number represent the BCD number
and the rest ofthe bits are O. Example: "0000 100 I" and "0000 0101" are unpacked
BCD for 9 and 5, respectively. In the case of unpacked BCD it takes I byte of
memory location or a register of 8 bits to contain it.

Packed BCD

In the case of packed BCD, a single byte has two BCD numbers in it, one
in the lower 4 bits and one in the upper 4 bits. For example, "0101 1001" is packed
BCD for 59. It takes only I byte of memory to store the packed BCD operands. This
is one reason to use packed BCD since it is twice as efficient in storing data.

ASCII numbers

In ASCII keyboards, when key "0" is activated, for example, "0 II 0000"
(30R) is provided to the computer. In the same way, 31 R (0 II 000 I) is provided
for key "1 ", and so on, as shown in the following list.

Key ASCII (hex)
o 30
1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39

Binary
011 0000
0110001
0110010
011 0011
011 0100
011 0101
011 0110
011 0111
0111000
011 1001

BCD (unpacked)
00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001

It must be noted that although ASCII is standard in the United States (and
many other countries), BCD numbers have universal application. Now since the
keyboard and printers and monitors are all in ASCII, how does data get converted
from ASCII to BCD, and vice versa? These are the subjects covered next.

ASCII to BCD conversion

To process data in BCD, first the ASCII data provided by the keyboard must
be converted to BCD. Whether it should be converted to packed or unpacked BCD
depends on the instructions to be used. There are instructions that require that data
be in unpacked BCD and there are others that must have packed BCD data to work
properly. Each is covered separately.

ASCII to unpacked BCD conversion

To convert ASCII data to BCD, the programmer must get rid of the tagged
"011" in the higher 4 bits of the ASCII. To do that, each ASCII number is ANDed
with "0000 1111" (OF H), as shown in the next example. This example is written in
three different ways using different addressing modes. The following three pro­
grams show three different methods for converting the 1 0 ASCII digits to unpacked
BCD. All use the same data segment:

ASC

UNPACK

DB
ORG
DB

'9562481273'
0010H
10 DUP(?)

In Program 3-5a, notice that although the data was defined as DB, a byte
definition directive, it was accessed in word-sized chunks. This is a workable
approach; however, using the PTR directive as shown in Program 3-5b makes the
code more readable for programmers.

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

AGAIN:

MOV
MOV
MOV
MOV
AND
MOV
ADD
ADD
LOOP

CX,S
BX,OFFSET ASC
DI,OFFSET UNPACK
AX,[BX]
AX,OFOFH
[DI],AX
01,2
BX,2
AGAIN

;BX paints to ASCII data
;01 points to unpacked BCD data
;move next 2 ASCII numbers to AX
;remove ASCII 3s
;store unpacked BCD
;point to next unpacked BCD data
;point to next ASCII data

Program 3-5a

AGAIN:

MOV
MOV
MOV
MOV
AND
MOV
ADD
ADD
LOOP

CX,S
BX,OFFSET ASC
DI,OFFSET UNPACK
AX,WORD PTR [BX]
AX,OFOFH
WORD PTR [DI],AX
01,2
BX,2
AGAIN

;CX is loop counter
;BX points to ASCII data
;01 points to unpacked BCD data
;move next 2 ASCII numbers to AX
;remove ASCII 3s
;store unpacked BCD
;point to next unpacked BCD data
;point to next ASCII data

Program 3-5b

AGAIN:

In both of the solutions so far, registers BX and or were used as pointers
for an array of data. An array is simply a set of data located in consecutive memory
locations. Now one might ask: What happens if there are four, five, or six arrays?
How can they all be accessed with only three registers as pointers: BX, or, and SI?
Program 3-5c shows how this can be done with a single register used as a pointer
to access two arrays. However, to do that, the arrays must be of the same size and
defined similarly.

MOV
SUB
MOV
AND
MOV
INC
LOOP

CX,10
BX,BX
AL,ASC[BX]
AL,OFH
UNPACK[BX],AL
BX
AGAIN

;Ioad the counter
;clear BX
;move to AL content of mem [BX +ASC[
;mask the upper nibble
;move to mem [BX +UNPACK] the AL
;make the pointer to point at next byte
;Ioop until it is finished

Program 3-5c
Program 3-5c uses the based addressing mode since BX+ASC is used as a

pointer. ASC is the displacement added to BX. Either DI or SI could have been used
for this purpose. For word-sized operands, "WORD PTR" would be used since the
data is defined as DB. This is shown below.

MOV AX,WORD PTR ASC[BX]
AND AX,OFOFH
MOV WORD PTR UNPACKED[BX],AX

ASCII to packed BCD conversion

To convert ASCII to packed BCD, it is first converted to unpacked BCD (to
get rid of the 3) and then combined to make packed BCD. For example, for 9 and
5 the keyboard gives 39 and 35, respectively. The goal is to produce 95H or "1001
0101", which is called packed BCD, as discussed earlier. This process is illustrated
in detail below.
Key A,;,S",C",,'''-.' __
4 34
7 37

Unpacked BCD
00000100
00000111

Packed BCD

01000111 or 47H

SECTION 3.4: BCD AND ASCII OPERANDS AND INSTRUCTIONS 103

104

ORG 0010H
VAL_ASC DB '47'
VAL_BCD DB ?
;reminder: the DB will put 34 in 0010H location and 37 in 0011H.

MOV
AND
XCHG
MOV
SHL
OR
MOV

AX,WORD PTR VAL_ASC ;AH=37,AL=34
AX,OFOFH ;mask 3 to get unpacked BCD
AH,AL ;swap AH and AL. :
CL,4 ;CL=04 to shift 4 times
AH,CL ;shift left AH to get AH=40H
AL,AH ;OR them to get packed BCD
VAL_BCD,AL ;save the result

After this conversion, the packed BCD numbers are processed and the result
will be in packed BCD fonnat. As will be seen later in this section, there are special
instructions, such as DAA and DAS, which require that the data be in packed BCD
form and give the result in packed BCD. For the result to be displayed on the monitor
or be printed by the printer, it must be in ASCII fonnat. Conversion from packed
BCD to ASCII is discussed next.

Packed BCD to ASCII conversion

To convert packed BCD to ASCII, it must first be converted to unpacked
and then the unpacked BCD is tagged with 011 0000 (30R). The following shows
the process of converting from packed BCD to ASCII.

Packed BCD
29H
0010 1001

VAL 1_BCD DB 29H
VAL3-ASC DW?

MOV
MOV
AND
MOV
SHR
OR
XCHG
MOV

Unpacked BCD
02H & 09H
00000010 & 0000 1001

AL,VAL 1_BCD
AH,AL
AX,OFOOFH
CL,4
AH,CL
AX,3030H
AH,AL
VAL3_ASC,AX

BCD addition and subtraction

ASCII
32H & 39H
011 0010 & 011 1001

;copy AL to AH. now AH=29,AL=29H
;mask 9 from AH and 2 from AL
;CL=04 for shift
;shift right AH to get unpacked BCD
;combine with 30 to get ASCII
;swap for ASCII storage convention
;store the ASCII

After learning how to convert ASCII to BCD, the application of BCD
numbers is the next step. There are two instructions that deal specifically with BCD
numbers: DAA and DAS. Each is discussed separately.

BCD addition and correction

There is a problem with adding BCD numbers, which must be corrected.
The problem is that after adding packed BCD numbers, the result is no longer BCD.
Look at this example:

MOV AL,17H
ADDAL,28H

Adding them gives 0011 I111B (3FR), which is not BCD! ABCD number can only
have digits from 0000 to 1001 (orO to 9). In other words, adding two BCD numbers
must give a BCD result. The result above should have been 17 + 28 ~ 45 (0100
0101). To correct this problem, the programmer must add 6 (0110) to the low digit:

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

3F + 06 = 45H. The same problem could have happened in the upper digit (for
example, in 52H + 87H = D9H). Again to solve this problem, 6 must be added to
the upper digit (D9H +60H = 139H), to ensure that the result is BCD (52 + 87 =
139). This problem is so pervasive that all single-chip CISC microprocessors such
as the Intel 80x86 and the Motorola 680xO have an instruction to deal with it. The
RISC processors have eliminated this instruction.

DAA

The DAA (decimal adjust for addition) instruction in 80x86 microproces­
sors is provided exactly for the purpose of correcting the problem associated with
BCD addition. DAA will add 6 to the lower nibble or higher nibble if needed;
otherwise, it will leave the result alone. The following example will clarify these
points:

DATA1 DB 47H
DATA2 DB 25H
DATA3 DB ?

MOV AL,DATA1 ;AL holds first BCD operand
MOV BL,DATA2 ;BL holds second BCD operand
ADD AL,BL ; BCD addition
DAA ;adjust for BCD addition
MOV DATA3,AL ;store result in correct BCD form

After the program is executed, the DATA3 field will contain 72H (47 + 25
= 72). Note that DAA works only on AL. In other words, while the source can be
an operand of any addressing mode, the destination must be AL in order for 0 AA
to work. It needs to be emphasized that DAA must be used after the addition of
BCD operands and that BCD operands can never have any digit greater than 9. In
other words, no A - F digit is allowed. It is also important to note that DAA works
only after an ADD instruction; it will not work after the INC instruction.

Summary of DAA action

l. If after an ADD or ADC instruction the lower nibble (4 bits) is greater than 9, or if
AF = 1, add 0110 to the lower 4 bits.

2. If the upper nibble is greater than 9, or ifCF = 1, add 0110 to the upper nibble.

In reality there is no other use for the AF (auxiliary flag) except for BCD
addition and correction. For example, adding 29H and 18H will result in 41 H, which
is incorrect as far as BCD is concerned.

Hex
29

+ 18
41

+--.9.
47

BCD
00101001

+ 0001 1000
01000001 AF = 1

+ 0110 because AF = 1 DAA will add 6 to the lower nibble
01000111 The final result is BCD.

Program 3-6 demonstrates the use ofDAA after addition of multi byte packed BCD
numbers.

BCD subtraction and correction

The problem associated with the addition of packed BCD numbers also
shows up in subtraction. Again, there is an instruction (DAS) specifically designed
to solve the problem. Therefore, when subtracting packed BCD (single-byte or
multibyte) operands, the DAS instruction is put after the SUB or SBB instruction.
AL must be used as the destination register to make DAS work.

SECTION 3.4: BCD AND ASCII OPERANDS AND INSTRUCTIONS 105

Two sets of ASCII data have come in from the keyboard. Write and run a program to :
I. Convert from ASCII to packed BCD.
2. Add the multibyte packed BCD and save it.
3. Convert the packed BCD result into ASCII.

TITLE PROG3-6 (EXE) ASCII TO BCD CONVERSION AND ADDITION
PAGE 60,132
.MODE SMALL
.STACK64

.DATA
DATA1_ASC DB '0649147816'

ORG 0010H
DATA2_ASC DB '0072687188'

ORG 0020H
DATA3_BCD DB 5 DUP (?)

ORG 0028H
DATA4_BCD DB 5 DUP (?)

ORG 0030H
DATA5_ADD DB 5 DUP (?)

ORG 0040H
DATA6_ASC DB

MAIN

MAIN

.CODE
PROC
MOV
MOV
MOV
MOV
MOV
CALL
MOV
MOV
MOV
CALL
CALL
MOV
MOV
MOV
CALL
MOV
INT
ENDP

10 DUP (?)

FAR
AX,@DATA
DS,AX
BX,OFFSET DATA1 ASC
DI,OFFSET DATA3 BCD
CX,10 -
CONV BCD
BX,OFFSET DATA2 ASC
DI,OFFSET DATA4 -BCD
CX,10 -
CONV BCD
BCD ADD
SI,OFFSET DATA5 ADD
DI,OFFSET DATA6-ASC
CX,05 -
CONV ASC
AH,4CH
21H

;BX points to first ASCII data
;01 points to first BCD data
;CX holds number bytes to convert
; convert ASCII to BCD
; BX points to second ASCII data
; 01 points to second BCD data
;CX holds number bytes to convert
; convert ASCII to BCD
;add the BCD operands
;SI points to BCD resu~
; 01 points to ASCII resu~
;CX holds count for convert
; convert resu~ to ASCII

; go back to DOS

;THIS SUBROUTINE CONVERTS ASCII TO PACKED BCD
CONV BCD PROC
AGAIN: MOV AX,[BX] ; BX=poin1er for ASCII da1a

XCHG AH,AL
AND AX,OFOFH
PUSH CX
MOV CL,4
SHL AH,CL
OR AL,AH
MOV [DI],AL
ADD BX,2
INC 01
POP CX
LOOP AGAIN
RET

CONV_BCD ENDP

;mask ASCI13s
;save the counter
;shift AH left 4 brts
;to get ready for packing
;combine to make packed BCD
;DI=pointer for BCD data
;point to next 2 ASCII bytes
;point to next BCD data
; restore loop counter

Program 3-6 (continued on the following page)

106 CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

;THIS SUBROUTINE ADDS TWO MULTIBYTE PACKED BCD OPERANDS
BCD ADD PROC

- MOV
MOV
MOV
MOV

BX,OFFSET DATA3_BCD ; BX=pointer for operand 1
DI,OFFSET DATA4_BCD ;DI=pointer for operand 2
SI,OFFSET DATA5_ADD ;SI=pointer for sum
CX,05

BACK:
CLC
MOV AL,[BX]+4
ADC AL,[DI]+4
OM
MOV
DEC
DEC
DEC
LOOP
RET

[SI] +4,AL
BX
01
SI
BACK

BCD_ADD ENDP

; get next byte of operand 1
; add next byte of operand 2
;correct for BCD addition
;save sum
;point to next byte of operand 1
;point to next byte of operand 2
; point to next byte of sum

;THIS SUBROUTINE CONVERTS FROM PACKED BCD TO ASCII
CONY ASC PROC
AGAIN2 MOV AL,[SI]

MOV AH,AL
AND AX,OFOOFH
PUSH CX
MOV CL,04
SHR AH,CL
OR AX,3030H
XCHG AH,AL
MOV [DI],AX
INC SI
ADD 01,2
POP CX
LOOP AGAIN2
RET

CONY ASC ENDP
- END MAIN

;SI=pointer for BCD data
;duplicate to unpack
;unpack
;save counter
;shift right 4 bits to unpack
;the upper nibble
;make it ASCII
;swap for ASCII storage convention
; store ASC II data
;point to next BCD data
;point to next ASCII data
;restore loop counter

Program 3-6 (continued/rom preceding page)

Summary of DAS action

I. If after a SUB or SBB instruction the lower nibble is greater than 9, or if AF = I,
subtract 0 II 0 from the lower 4 bits.

2. If the upper nibble is greater than 9, or CF = I, subtract 0110 from the uppernibble.

Due to the widespread use of BCD numbers, a specific data directive, DT,
has been created. DT can be used to represent BCD numbers from 0 to 1020 -I (that
is, twenty 9s). Assume that the following operands represent the budget, the
expenses, and the balance, which is the budget minus the expenses.

BUDGET DT 87965141012
EXPENSES DT 31610640392
BALANCE DT ? ;balance = budget - expenses

MOV CX,10 ;counter=10
MOV BX,OO ;pointer=O
CLC ;clear carry for the 1 st Heration

BACK: MOV AL,BYTE PTR BUDGET[BXl ;get a byte of the BUDGET
SBB AL,BYTE PTR EXPENSES[BX] ;subtract a byte from H
DAS ;correct the resu~ for BCD
MOV BYTE PTR BALANCE[BX1,AL ;save it in BALANCE
INC BX ;increment for the next byte
LOOP BACK ;continue until CX=O

SECTION 3.4: BCD AND ASCII OPERANDS AND INSTRUCTIONS 107

Notice in the code section above that (I) no H (hex) indicator is needed for
BCD numbers when using the DT directive, and (2) the use of the based relative
addressing mode (BX + displacement) allows access to all three arrays with a single
register BX.

In Program 3-7 the DB directive is used to define ASCII values. This makes
the LSD (least significant digit) be located at the highest memory location of the
array. In VALUEl, 37, the ASCII for 7 is in memory location 0009; therefore, BX
must be pointed to that and then decremented. Program 3-7 is repeated, rewritten
with the full segment definition.

TITLE PROG3-7 (EXE) ADDING ASCII NUMBERS
PAGE 60,132

.MODEL SMALL

.STACK 64

.DATA
VALUE 1 DB

ORG
VALUE2 DB

ORG
RESULT1 DB

ORG
RESULT2 DB

MAIN:
.CODE
MOV
MOV
CALL
CALL
MOV
INT

'0659478127'
0010H
'0779563678'
0020H
10 DUP (?)
0030H
10 DUP (?)

AX,@DATA
OS, AX
ASC ADD
CONVERT
AH,4CH
21H

;call ASCII addition subroutine
;call convert to ASCII subroutine

; go back to DOS

:THIS SUBROUTINE ADDS THE ASCII NUMBERS AND MAKES THE RESULT UNPACKED.
ASC ADD PROC

- CLC

BACK:

MOV
MOV
MOV
ADC
AAA
MOV
DEC
LOOP
RET

ASC_ADD ENDP

CX,10
BX,9
AL,VALUE1[BXl
AL, VALUE2[BXl

;clear the carry
;set up loop counter
;point to LSD
;move next byte of operand 1
;add next byte of operand 2
;adjust to make it ASCII

RESULT1[BX1,AL ; store ASCII sum
BX ;point to next byte
BACK

:THIS SUBROUTINE CONVERTS UNPACKED BCD TO ASCII
CONVERT PROC

MOV
MOV

BACK2:
MOV
MOV
OR
MOV
ADD
ADD
LOOP
RET

CONVERT ENDP

BX,OFFSET RESULT1
SI,OFFSET RESULT2
CX,05
AX,WORD PTR [BXl
AX,3030H
WORD PTR [SI1,AX
BX,2
SI,2
BACK2

; BX points to BCD data
;SI pOints to ASCII data
;ex is loop counter
;get next 2 ASCII bytes
; insert ASCII 3s
;store ASCII
;increment BCD pointer
; increment ASCII pointer

END MAIN

Program 3-7

108 CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

TITLE
PAGE
STSEG

STSEG

DTSEG
VALUE1

VALUE2

RESULT1

RESULT2
DTSEG

CDSEG
MAIN

MAIN

PROG3-7 (EXE) REWRITTEN WITH FULL SEGMENT DEFINITION
60,132
SEGMENT
DB 64 DUP (?)
ENDS

SEGMENT
DB '0659478127'
ORG 0010H
DB '0779563678'
ORG 0020H
DB 10 DUP (?)
ORG 0030H
DB 10 DUP (?)
ENDS

SEGMENT
PROC FAR
ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
MOV AX,DTSEG
MOV DS,AX
CALL ASC ADD ;cali ASCII add~ion subroutine
CALL CONVERT ; cali convert to ASCII subroutine
MOV AH,4CH
INT 21H ;gobacktoDOS
ENDP

;THIS SUBROUTINE ADDS THE ASCII NUMBERS AND MAKES THE RESULT UNPACKED.
ASC ADD PROC

- CLC

BACK:

MOV
MOV
MOV
ADC
AAA
MOV
DEC
LOOP
RET

ASC_ADD ENDP

CX,10
BX,9
AL,VALUE1 [BX)
AL,VALUE2[BX)

;clear the carry
;set up loop counter
;point to LSD
; move next byte of opera nd 1
;add next byte of operand 2
;adjust to make it unpacked BCD

RESULT1[BX),AL ;stare BCD sum
BX ; point to next byte
BACK

;THIS SUBROUTINE CONVERTS UNPACKED BCD TO ASCII
CONVERT PROC

MOV
MOV

BACK2:
MOV
MOV
OR
MOV
ADD
ADD
LOOP
RET

CONVERT ENDP
CDSEG ENDS

BX,OFFSET RESULT1
SI,OFFSET RESULT2
CX,05
AX,WORD PTR [BX)
AX,3030H
WORD PTR [SI),AX
BX,2
SI,2
BACK2

END MAIN

;BX points to unpacked BCD data
;SI points to ASCII data
;CX is loop counter
;get next 2 ASCII bytes
; insert ASCII 3s
;store ASCII
; increment BCD pointer
; increment ASCII pointer

Program 3-7, rewritten with full segment definition

ASCII addition and subtraction

ASCII numbers can be used as operands in add and subtract instructions the
way they are, without masking the tagged 011, using instructions AAA and AAS.

MOV
ADD
AAA
OR

AL,'5'
AL,'2'

AL,30

;AL=35
;add to AL 32 the ASCII for 2
;changes 67H to 07H
;OR AL with 30H to get ASCII

SECTION 3.4: BCD AND ASCII OPERANDS AND INSTRUCTIONS

0011 0101
0011 0010
0110 0111

109

110

If the addition results in a value of more than 9, AAA will correct it and
pass the extra bit to carry and add I to AH.

SUB
MOV
MOV
ADD
AM
OR

AH,AH
AL,'?'
BL,'S'
AL,BL

AX,3030H

;AH=OO
;AL=37H
;BL=35H
;37H+35H=6CH therefore AL=6C.
;changes 6CH to 02 in AL and AH=CF=1
;AX=3132 which is the ASCII for 12H.

Two facts must be noted. First, AAA and AAS work only on the AL register,
and second, the data added can be unpacked BCD rather than ASCII, and AAA and
AAS will work fine. The following shows how AAS works on subtraction of
unpacked BCD to correct the result into unpacked BCD:

MOV
MOV
SUB
AAS

AX,105H
CL,06
AL,CL

;AX=0105H unpacked BCD for 15
;CL=06H
;5 -6 = -1 (FFH)
;FFH in AL is adjusted to 09, and
;AH is decremented, leaving AX = 0009

Unpacked BCD multiplication and division

There are two instructions designed specifically for multiplication and
division of unpacked BCD operands. They convert the result of the multiplication
and division to unpacked BCD.

AAM

The Intel manual says that this mnemonic stands for "ASCII adjust multi­
plication," but it really is unpacked multiplication correction. If two unpacked BCD
numbers are multiplied. the result can be converted back to BCD by AAM.

MOV
AND
MOV
AND
MUL
AAM
OR

AL,'7'
AL,OFH
DL,'6'
DL,OFH
DL

AX,3030H

;AL=37H
;AL=07 unpacked BCD
;DL=36H
;DL=06 unpacked BCD
;AX=ALxDL. =07x06=002AH=42
;AX=0402 (7x6=42 unpacked BCD)
;AX=3432 result in ASCII

The multiplication above is byte by byte and the result is HEX. Using AAM
converts it to unpacked BCD to prepare it for tagging with 30H to make it ASCII.

AAD

Again, the Intel manual says that AAD represents "ASCII adjust for
division," but that can be misleading since the data must be unpacked BCD for this
instruction to work. Before dividing the unpacked BCD by another unpacked BCD,
AAD is used to convert it to HEX. By doing that the quotient and remainder are
both in unpacked BCD.

MOV
AND
AAD
MOV
DIV
OR

AX,3539H
AX,OFOFH

BH,OBH
BH
AX,3030H

;AX=3539. ASCII for 59
;AH=05,AL=09 unpacked BCD data
;AX=003BH hex equivalent of 59
;divide by OB
;3B I OB gives AL=07 ,AH=03
;AL=37H (quotient) AH=33H (rem)

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

As can be seen in the example above, dividing 59 by 8 gives a quotient of
7 and a remainder of 3. With the help of AAD, the result is converted to unpacked
BCD, so it can be tagged with 30H to get the ASCII result. It must be noted that
both AAM and AAD work only on AX.

Review Questions

l. For the following decimal numbers, give the packed BCD and unpacked BCD rep­
resentations.
(a) 15 (b) 99

2. Match the following instruction mnemonic with its function.
~ __ DAA (a) ASCII addition
~ __ DAS (b) ASCII subtraction
~ __ AAS (c) BCD subtraction
~ __ AAA (d) BCD addition

SECTION 3.5: ROTATE INSTRUCTIONS

In many applications there is a need to perform a bitwise rotation of an
operand. The rotation instructions ROR, ROL and RCR, RCL are designed specifi­
cally for that purpose. They allow a program to rotate an operand right or left. In
this section we explore the rotate instructions, which frequently have highly spe­
cialized applications. In rotate instructions, the operand can be in a register or
memory. If the number of times an operand is to be rotated is more than 1, this is
indicated by CL. This is similar to the shift instructions. There are two type of
rotations. One is a simple rotation of the bits of the operand, and the other is a
rotation through the carry. Each is explained below.

Rotating the bits of an operand right and left

ROR rotate right

In rotate right,
as bits are shifted from
left to right they exit
from the right end (LSB) and enter the left end (MSB). In addition, as each bit exits
the LSB, a copy of it is given to the carry flag. In other words, in ROR the LSB is
moved to the MSB and is also copied to CF, as shown in the diagram. If the operand
is to be rotated once, the I is coded, but ifit is to be rotated more than once, register
CL is used to hold the number of times it is to be rotated.

MOV AL,36H ;AL=0011 0110
ROR AL,1 ;AL=0001 1011 CF=O
ROR AL,1 ;AL=1000 1101 CF=1
ROR AL,1 ;AL=1100 0110 CF=1

or:
MOV AL,36H ;AL=0011 0110
MOV CL,3 ;CL=3 number of times to rotate
ROR AL,CL ;AL=1100 0110 CF=1

;the operand can be a word:

MOV BX,OC7E5H ;BX=1100 0111 11100101
MOV CL,6 ;CL=6 number of times to rotate
ROR BX,CL ;BX=1001 0111 0001 1111 CF=1

SECTION 3.5: ROTATE INSTRUCTIONS 111

ROL rotate left
MSB ___ LSB I]

In rotate left, as
bits are shifted from
right to left they exit the

CF

left end (MSB) and enter the right end (LSB). In addition, every bit that leaves the
MSB is copied to the carry flag. In other words, in ROL the MSB is moved to the
LSB and is also copied to CF, as shown in the diagram. Ifthe operand is to be rotated
once, the I is coded. Otherwise, the number of times it is to be rotated is in CL.

MOV BH,72H ;BH=0111 0010
ROL BH,1 ;BH=1110 0100 CF=O
ROL BH,1 ;BH=1100 1001 CF=1
ROL BH,1 ;BH=1001 0011 CF=1
ROL BH,1 ;BH=0010 0111 CF=1

or:
MOV BH,72H ;BH=0111 0010
MOV CL,4 ;CL=4 number of times to rotate
ROL BH,CL ;BH=0010 0111 CF=1

The operand can be a word:
MOV DX,672AH ;DX=0110 011100101010
MOV CL,3 ;CL=3 number of times to rotate
ROL DX,CL ;DX=0011 100101010011 CF=1

Write a program that finds the number of I s in a byte.

From the data segment:
DATA1 DB 97H
COUNT DB ?
From the code segment:

SUB BL,BL
MOV DL,B
MOV AL,DATA 1

AGAIN: ROL AL,1
JNC NEXT
INC BL

NEXT: DEC DL
JNZ AGAIN
MOV COUNT,BL

;clear BL to keep the number of 1 s
;rotate total of B times

;rotate it once
;check for 1
;if CF=1 then add one to count
;go through this B times
;if not finished go back
;save the number of 15

Program 3-8
Program 3-8 shows an application of the rotation instruction. The maxi­

mum count in Program 3-8 will be 8 since the program is counting the number of
I s in a byte of data. I fthe operand is a 16-bit word, the number of! s can go as high
as 16. Program 3-9 is Program 3-8, rewritten for a word-sized operand. It also
provides the count in BCD format instead of hex. Reminder: AL is used to make a
BCD counter because the DAA instruction works only on AL.

Write a program to count the number of 15 in a word. Provide the count in BCD.
DATAW1 OW 97F4H
COUNT2 DB ?

AGAIN:

NEXT:

SUB
MOV
MOV
ROL
JNC
ADD
DAA
DEC
JNZ
MOV

AL,AL
DL,16
BX,DATAW1
BX,1
NEXT
AL,1

DL
AGAIN
COUNT2,AL

;clear AL to keep the number of 1 s in BCD
;rotate total of 16 times
;move the operand to BX
;rotate it once
;check for 1. If CF=O then jump
;if CF=1 then add one to count
;adjust the count for BCD
;go through this 16 times
;if not finished go back
;save the number of 1 s in COUNT2

Program 3-9

112 CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

RCR rotate right through carry

In RCR, as bits
are shifted from left to
right, they exit the right
end (LSB) to the carry
flag, and the carry flag
enters the left end

L--_ ~I M~S~B-===-~LS~B~ -- CF
]

(MSB). In other words, in RCR the LSB is moved to CF and CF is moved to the
MSB. In reality, CF acts as ifit is part ofthe operand. This is shown in the diagram.
If the operand is to be rotated once, the I is coded, but ifit is to be rotated more than
once, the register CL holds the number oftimes.

CLC
MOV AL,26H
RCR AL,1
RCR AL,1
RCR AL,1

or:
CLC
MOV AL,26H
MOV CL,3
RCR AL,CL

;the operand can be a word
STC
MOV
MOV
RCR

BX,37F1H
CL,5
BX,CL

;make CF=O
;AL=0010 0110
;AL=0001 0011 CF=O
;AL=OOOO 1001 CF=1
;AL=1000 0100 CF=1

;make CF=O
;AL=0010 0110
;CL=3 number of times to rotate
;AL=1000 0100 CF=1

;make CF=1
;BX=0011 0111 1111 0001
;CL=5 number of times to rotate
;BX=0001 1001 1011 1111 CF=O

RCL rotate left through carry

In RCL, as bits are
shifted from right to left they
exit the left end (MSB) and
enter the carry flag, and the
carry flag enters the right end

I_CF
--,-I M_S_B ===~_Ls_B--,IJ

(LSB). In other words, in RCL the MSB is moved to CF and CF is moved to the
LSB. In reality, CF acts as ifit is part of the operand. This is shown in the diagram.
If the operand is to be rotated once, the I is coded, but ifit is to be rotated more than
once, register CL holds the number of times.

or:

STC
MOV
RCL
RCL

STC
MOV
MOV
RCL

BL,15H
BL,1
BL,1

BL,15H
CL,2
BL,CL

;the operand can be a word:

CLC
MOV
MOV
RCL

AX,191CH
CL,5
AX,CL

SECTION 3.5: ROTATE INSTRUCTIONS

;make CF=1
;BL=0001 0101
;0010 1011 CF=O
;01010110 CF=O

;make CF=1
;BL=0001 0101
;CL=2 number of times for rotation
;BL=0101 0110 CF=O

;make CF=O
;AX=0001 1001 0001 1100
;CL=5 number of times to rotate
;AX=0010 0011 10000001 CF=1

113

Review Questions

1. What is the value of BL after the following?
MOV BL,25H
MOV CL,4
ROR BL,CL

2. What are the values of DX and CF after the following?
MOV DX,3FA2H
MOV CL,7
ROL DX,CL

3. What is the value of BH after the following?
SUB BH,BH
STC
RCR BH,l
STC
RCR BH,l

4. What is the value of BX after the following?
MOV BX,FFFFH
MOV CL,5
CLC
RCL BX,CL

5. Why does "ROR BX,4" give an error in the 8086? How would you change the
code to make it work?

SECTION 3.6: BITWISE OPERATION IN THE C LANGUAGE

114

One of the most important and pow­
erful features of the C language is its ability
to perform bit manipulation. Due to the fact
that many books on C do not cover this
important topic, it is appropriate to discuss it
in this section. This section describes the
action of operators and provides examples.

Table 3-4: Bitwise AND, OR,
and EX·OR in C

A B A&B AlB AAB

Bitwise operators in C

While every C programmer is famil­
iar with the logical operators AND (&&),

0

0

1

1

0 0

1 0

0 0

1 1

0 0

1 1

1 1

1 0

OR (II), and NOT (!), many C programmers are less
familiar with the bitwise operators AND (&), OR (I),
EX-OR n, inverter (-), Shift Right (»),and Shift Left
«<). These bitwise operators arc widely used in soft­
ware engineering and control; consequently, their un­
derstanding and mastery are critical in system design
and interfacing. See Tables 3-4 and 3-5. The following
code shows Examples 3-5 through 3-7 using the C
logical operators. Recall that "Ox" in the C language
indicates that the data is in hex format.

Table 3·5: Bitwise
Inverter in C

Ox35 & OxOF = Ox05
Ox05041 OxDA68 = OxDF6C
Ox54 ' Ox78 = Ox2C
-Ox37 = OxC8

;* ANDing: see Example 3-5 *;
1* ~Ring: see Example 3-6 *;
;* XORing: see Example 3-7 *;
;* inverting 37H *;

A -A
o 1

1 0

The last one is like the NOT instruction in x86 microprocessors:
MOV AL,37H ;AL=37H
NOT AL ;AFTER INVERTING 37, AL=C8H

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

Bitwise shift operators in C

There are two bitwise shift operators in C: Shift Right (> » and Shift Left
(<<). They perform exactly the same operation as SHR and SHL in Assembly
language, as discussed in Section 3.3. Their format in C is as follows:

data» number of bits to be shifted
data « number of bits to be shifted

f* shifting right *f
f* shifting left *f

The following shows Examples 3-9 through 3-11 using shift operators in C.
Program 3-10 shows all of these examples with C syntax.

Ox9A» 3 = Ox13
Ox7777 » 4 = Ox0777
Ox6 « 4 = Ox60

f* shifting right 3 times: see Example 3-9 *f
f* shifting right 4 times: see Example 3-10 *f
f* shifting left 4 times: see Example 3-11 *f

f* Program 3-10 Repeats Examples 3-5 through 3-11 in C *f

#include <stdio.h>
mainO

{

// Notice the way data is defined in C for Hex format using Ox

unsigned char data_1 = Ox35;
unsigned int data _2 = Ox504;
unsigned int data _3 = OxDA66;
unsigned char data _4= Ox54;
unsigned char data _ 5=Ox78;
unsigned char data_6=Ox37;
unsigned char dataJ=Ox09A;
unsigned char temp;
unsigned int temp_2;

temp=data_1 &OxOF; /lANDing
printf("\nMasking the upper four bits of %X (hex) we get %X (hex)\n",data _1 ,temp);

temp_2=data_2Idata_3; /lORing
printf("The result of %X hex ORed with %X hex is %X hex\n",data_2,data_3,temp_2);

temp= data_ 4A data 5; f/EX-ORing
printf("The results oT%X hex EX-ORed with %X hex is %X hex\n",data_ 4,data_5,temp);

temp=-data_6; //INVERTING
printf("The result of %X hex inverted is %X hex\n",data_6,temp);

temp=dataJ»3; //SHIFTING Right
printf("When %X hex is shifted right three times we get %X hex\n",dataJ,temp);

printf("When %X hex is shifted right four times we get %X hex\n",Ox7777,Ox7777»4);

temp=(Ox6«4); f/SHIFTING Left
printf("When %X hex is shifted left %d times we get %X hex\n",Ox6,4,temp);

}

Program 3-10

Program 3-10 demonstrates the syntax of bitwise operators in C. Next we
show some real-world examples of their usage.

SECTION 3.6: BITWISE OPERATION IN THE C LANGUAGE 115

Packed BCD to ASCII conversion in C

Section 3.4 showed one way to convert a BCD number to ASCII. This
conversion is widely used when dealing with a real-time clock chip. Many of the
real-time clock chips provide very accurate time and date for up to ten years without
the need for external power. There is a real-time clock in every x86 IBM PC or
compatible computer. However, these chips provide the time and date in packed
BCD. In order to display the data, it needs to be converted to ASCII. Program 3-11
is a Cversion of the packed BCD-to-ASCII conversion example discussed in Section
3.4. Program 3-11 converts a byte of packed BCD data into two ASCII characters
and displays them using the C bitwise operators.

1* Program 3-11 shows packed BCD-to-ASCII conversion using logical bitwise operators in C *1

#include
mainO

{

<stdio.h>

unsigned char mybcd;Ox29; 1* declare a BCD number in hex *1
unsigned char asci_1 ;
unsigned char asci_ 2;
asci 1 ;mybcd&OxOf; 1* mask the upper four bits *1
ascC 1 ;asci_110x30; 1* make it an ASCII character *1
asci_2;mybcd&OxfO; 1* mask the lower four bits *1
asci 2;asci 2»4; 1* shift it right 4 times *1
ascC2;ascC210x30; 1* make it an ASCII character *1
printf("BCD data %X is %c , %c in ASCII\n",mybcd,asci_1 ,asci_2);
printf("My BCD data is %c if not converted to ASCII\n",mybcd);

}

Program 3-11

Notice in Program 3-11 that if the packed BCD data is displayed without
conversion to ASCII, we get the parenthesis ")". See Appendix F.

Testing bits in C

In many cases of system programming and hardware interfacing, it is
necessary to test a given bit to see if it is high. For example, many devices send a
high signal to state that they are ready for an action or to indicate that they have data.
How can the bit (or bits) be tested? In such cases, the unused bits are masked and
then the remaining data is tested. Program 3-12 asks the user for a byte and tests to
see whether or not DO of that byte is high.

1* Program 3-12 shows how to test bit DO to see if it is high *1
#include <stdio.h>
mainO

{
unsigned char status;
unsigned char temp;
printf("\nType in a Hex value\n");
scanf("%X" ,&status);
temp;status&Ox01 ;
if (temp;;Ox01)

printf("DO is high");
else printf("DO is low");
}

Program 3-12

IIget the data
IImask all bits except DO
I!ls it high?
1M yes, say so
1M no, say no

116 CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

SUMMARY

The assembly language version of Program 3-12 is as follows:

;assume AL=value (in hex)
ANDAL,01
CMPAL,01
JNE BELOW

BELOW:

Review Questions

1. What is the result of Ox2F&Ox27 ?
2. What is the result of Ox2FiOx27 ?
3. What is the result of Ox2F'Ox27 ?
4. What is the result of -Ox2F ?
5. What is the result of Ox2F» 3 ?
6. What is the result of Ox27 < < 4 ?

;MASK ALL BITS EXCEPT DO
;IS DO HIGH
;MAKE A DECISION
;YES DO IS HIGH
;DOIS LOW

7. In Program 3-11 if mybcd=Ox32, what is displayed if it is not converted to BCD?
8. Modify Program 3-12 to test 03.

The 8- or 16-bit dau. items in 80x86 computers can be treated as either
signed or unsigned data. Unsigned data uses the entire 8 or 16 bits for data
representation. Signed data uses the MSB as a sign bit and the remaining bits for
data representation. This chapter covered the arithmetic and logic instructions that
are used for unsigned data. The instructions ADD and SUB perform addition and
subtraction on unsigned data. Instructions ADC and SBB do the same, but also take
the carry flag into consideration. Instructions MULand DIV perform multiplication
and division on unsigned data. Logic instructions AND, OR, XOR, and CMP
perform logic operations on all the bits of their operands and were therefore included
in this chapter. Shift and rotate instructions for unsigned data include SHR, SHL,
ROR, ROL, RCL, and RCR. ASCII and BCD data operations for addition and
subtraction were also covered. Finally, bitwise logic instructions were demonstrated
using the C language.

PROBLEMS

SUMMARY

1. Find CF, ZF, and AF for each of the following. Also indicate the result of the addi­
tion and where the result is saved.
(a) MOV BH,3FH (b) MOV DX,4599H (c) MOV AX,255

ADD BH,45H MOV CX,3458H STC
ADD CX,DX ADC AX,OO

(d) MOV BX,OFFOlH
ADD BL,BH

(e) MOV CX,OFFFFH (f) MOV AH,OFEH
STC STC
ADC CX,OO ADC AH,OO

2. Write, run, and analyze a program that calculates the total sum paid to a salesper­
son for eight months. The following are the monthly paychecks for those
months: $2300, $4300, $1200, $3700, $1298, $4323, $5673, $986.

3. Rewrite Program 3-2 (in Section 3.1) using byte addition.
4. Write a program that subtracts two multibytes and saves the result. Subtraction

should be done a byte at a time. Use the data in Program 3-2.
5. State the three steps involved in a SUB and show the steps for the following data.

(a) 23H-12H (b) 43H-5lH (c) 99-99
6. Write, run, and analyze the result of a program that performs the following:

(1)(a) byte1 x byte2 (b) by tel x word1 (e) wordl x word2
(2) (a) by tel / byte2 (b) wordl / word2 (c) doubleword/bytel
Assume byte1=230, byte2=100, wordl=9998, word2=300 and doubleword =100000.

117

118

7. Assume that the following registers contain these HEX contents: AX = FOOO, BX
= 3456, and DX = E390. Perform the following operations. Indicate the result
and the register where it is stored. Give also ZF and CF in each case.
Note: the operations are independent of each other.
(a) AND DX,AX (b) OR DH,BL
(c)XORAL,76H (d) AND DX,DX
(e) XOR AX,AX (I) OR BX,DX
(g) AND AH,OFF (h) OR AX,9999H
(i) XOR DX,OEEEEH (j) XOR BX,BX
(k) MOV CL,04 (1) SHR DX,I

SHLAL,CL
(m) MOV CL,3 (n) MOV CL,5

SHR DL,CL SHL BX,CL
(0) MOV CL,6

SHLDX,CL
8. Indicate the status of ZF and CF after CMP is executed in each of the following

cases.
(a) MOV BX,2500

CMP BX,1400
(d) SUB AX,AX

CMPAX,OOOO

(b) MOV AL,OFFH
CMPAL,6FH

(e) XOR DX,DX
CMP DX,OFFFFH

(g) MOV BX,2378H (h) MOV AL,OAAH
MOV DX,4000H AND AL,55H
CMP DX,BX CMP AL,OO

9. Indicate whether or not the jump happens in each case.
(a) MOV CL,5 (b) MOV BH,65H

SUB AL,AL MOV AL,48H
SHL AL,CL OR AL,BH
JNC TARGET SHL AL, I

JC TARGET

10. Rewrite Program 3-3 to find the lowest grade in that class.
II. Rewrite Program 3-4 to convert all uppercase letters to lowercase.

(c) MOV DL,34
CMPDL,88

(I) SUB CX,CX
DECCX
CMP CX,OFFFFH

(c) MOV AH,55H
SUBDL,DL
OR DL,AH
MOVCL,AH
ANDCL,OFH
SHRDL,CL
JNCTARGET

12. In the IBM BIOS program for testing flags and registers, verify every jump (con­
ditional and unconditional) address calculation. Reminder: As mentioned in
Chapter 2, in forward jumps the target address is calculated by adding the dis­
placement value to IP of the instruction after the jump and by subtracting in back­
ward jumps.

13. In Program 3-6 rewrite BCD_ADD to do subtraction of the multibyte BCD.
14. Rewrite Program 3-7 to subtract DATA2 from DATAl. Use the following data.

DATAl DB '0999999999'
DATA2 DB '0077777775'

15. Using the DT directive, write a program to add two 1O-byte BCD numbers.
16. We would like to make a counter that counts up from 0 to 99 in BCD. What in­

struction would you place in the dotted area?
SUB AL,AL
ADD AL,I

17. Write Problem 16 to count down (from 99 to 0).
18. An instructor named Mr. Mo Allem has the following grading policy: "Curving of

grades is achieved by adding to every grade the difference between 99 and the
highest grade in the class." If the following are the grades of the class, write a
program to calculate the grades after they have been curved: 81, 65, 77, 82, 73,
55, 88, 78, 51, 91, 86, 76. Your program should work for any set of grades.

19. Ifwe try to divide 1,000,000 by 2:
(a) What kind of problem is associated with this operation in 8086/286 CPUs"
(b) How does the CPU let us know that there is a problem?

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

20. Which of the following groups of code perfonn the same operation as LOOP
XXX?
(a) DEC CL (b) DEC CH (c) DEC BX (d) DEC CX

JNZ XXX JNZ XXX JNZ JNZ XXX
21. Write a program that finds the number ofzeros in a l6-bit word.
22. In Program 3-2, which demonstrated multiword addition, pointers were updated by

two INC instructions instead of "ADD SI,2". Why?
23. Write a C program with the following components:

(a) have two hex values: datal=55H and data2=AAH; both defined as unsigned char,
(b) mask the upper 4 bits of datal and display it in hex,
(c) perfonn AND, OR, and EX-OR operations between the two data items and then

display each result,
(d) invert one and display it,
(e) shift left datal four times and shift right data2 two times, then

display each result.
24. Repeat the above problem with two values input from the user. Use the

scanf("%X") function to get the hex data.
25. In the same way that the real-time clock chip provides data in BCD, it also ex­

pects data in BCD when it is being initialized. However, data coming from the
keyboard is in ASCII. Write a C program to convert two ASCII bytes of data to
packed BCD.

26. Write a C program in which the user is prompted for a hex value. Then the data is
tested to see if the two least significant bits are high. Ifso, a message states "DO
and 01 are both high"; otherwise, it states which bit is not high.

27. Repeat the above problem for bits DO and 07.

ANSWERS TO REVIEW QUESTIONS

SECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION
1. destination
2. in BOx86 Assembly language, there are no memory to memory operations
3. MOV AX,DATA 2

ADD DATA 1,M
4. destination, Source + destination + CF
5. in (a), the byte addition results in a carry to CF, in (b), the word addition results in a carry to the high byte BH
6. DEC CX

7.
JNZ ADD LOOP

43H 0100 0011
- 05H 00000101
3EH

01000011
2's complement=+1111 1011

0011 1110
CF=O: therefore, the result is positive

8. AL = 95 - 4F - 1 = 45

SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION
1. AX 2. DX and AX 3. AX
5. AX, DX 6. AL, AH 7. AX, DX

SECTION 3.3: LOGIC INSTRUCTIONS AND SAMPLE PROGRAMS
1. (a) 4202 (b) CFFF (c) 8DFD
2. the operand will remain unchanged: all zeros 3. all ones
5. AOF2 = 1010 0000 1111 0010

shift left: 0100 0001 1110 0100 CF =1
shift again: 1000 0011 1100 1000 CF =0
shift again: 0000 0111 1001 0000 CF =1
AOF2 shifted left three times = 0790.
AOF2 = 1010 0000 1111 0010
shift right: 0101 0000 0111 1001 CF = 0
shift again: 0010 1000 0011 1100 CF = 1
shift again: 0001 0100 0001 1110 CF = 0
AOF2 shifted right three times = 141 E

6. SUB 7. false

ANSWERS TO REVIEW QUESTIONS

4. AL,AH

4. all zeros

119

SECTION 3.4: BCD AND ASCII OPERANDS AND INSTRUCTIONS
1. (a) 15 = 00010101 packed BCD = 0000 000100000101 unpacked BCD

(b) 99 = 1001 1001 packed BCD = 0000100100001001 unpacked BCD
2. DAA -- BCD addition: DAS -- BCD subtraction: AAS --.ASCII subtraction: AM -- ASCII addition

SECTION 3.5: ROTATE INSTRUCTIONS
1. BL= 52H, CF = 0 2. OX = DllFH, CF = 1
3. BH = COH 4. BX = FFEFH
5. the source operand cannot be immediate; to fix it:

MOV CL,4
ROR BX,CL

SECTION 3.6: BITWISE OPERATION IN THE C LANGUAGE

1. Ox27 2. Ox2F 3. Ox08
4. OxDO 5. Ox05 6. Ox70
7. 2
8.
f' This program shows how to test Bit 03 to see if it is high'f
#include <stdio.h>
mainO
{
unsigned char status;
unsigned char temp:
printf('\nType in a Hex valueln"):
scanf("%X" ,&status);
temp=status&Ox04:
if (temp==Ox04)

printf("D3 is high");
else printf("D3 is low"):
}

120 CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS

CHAPTER 4

BIOS AND DOS PROGRAMMING
IN ASSEMBLY AND C

OBJECTIVES

}) U$e1NT lOBl'IInetioo elillstoi
}) Clear tlte screen

Set t .. e~u~r'O$l~n
Wrltecltllfactersto tile screen In teXt mode
Draw lines ·on.·tltesereel1·lngrll,lti"~e

}} Cltange tlte video ~e
» UselNT 21B funeflon.eaU.to ..
» lnpnt eha~ete~fl'om~ll.e~erlloatd
» Outputilhatae~~tothes~n

» In,ut oroutp"t~t~~~
» U$e tIle·LAJ,J~~~e·~· •. ~·,,~~~til~e4)~~tI\i!t'~) \· .. · ... \ .••.•.. i(
» UseINT.16BJorkeY~~i~~..···.·· ...•.•••. · .. · •.•..••... · .•.... i>\ ..••.
» useC·rtinttlOn .. ·~~ .•. In~\~~~~~.~~.~otm .• I€)S)I.'I)()~.lnt~..,..pi$

.» Us.c in.nnc_~bl~'it~~~!<;.p~~tl'*~.

121

There are some extremely useful subroutines within BIOS and DOS that
are available to the user through the !NT (interrupt) instruction. In this chapter,
some of them are studied to see how they are used in the context of applications.
First, a few words about the interrupt itself. The !NT instruction is somewhat like
a FAR call. When it is invoked, it saves CS:IP and the flags on the stack and goes
to the subroutine associated with that interrupt. The !NT instruction has the
following format:

INT xx ;the interrupt number xx can be 00 - FFH

Since interrupts are numbered 00 to FF, this gives a total of 256 interrupts
in 80x86 microprocessors. Of these 256 interrupts, two of them are the most widely
used: !NT 10H and INT 21H. Each one can perform many functions. A list of these
functions is provided in Appendices D and E. Before the service of !NT 1 OH or !NT
21 H is requested, certain registers must have specific values in them, depending on
the function being requested. Various functions of INT 21 H and !NT lOH are
selected by the value put in the AH register, as shown in Appendices D and E.
Interrupt instructions are discussed in detail in Appendix B.

SECTION 4.1: BIOS INT 10H PROGRAMMING

00,00

24,00

INT 10H subroutines are burned into the ROM BIOS of the 80x86-based
IBM PC and compatibles and are used to communicate with the computer's screen
video. Much of the manipulation of screen text or graphics is done through !NT
10H. There are many functions associated with !NT 10H. Among them are
changing the color of characters or the background color, clearing the screen, and
changing the location ofthe cursor. These options are chosen by putting a specific
value in register AH. In this section we show how to use INT lOH to clear the
screen, change the cursor position, change the screen color, and draw lines on the
screen.

decimal hex

00,79 00,00 OO,4F

screen center screen center
12,39 OC,27

24,79 18,00 18,4F

Figure 4-1. Cursor Locallons (row,column)

122

Monitor screen in text mode

The monitor screen in the IBM PC is divided into 80 columns and 25 rows
in normal text mode (see Figure 4-1). This is the case for all monitors regardless of
whether they are color or monochrome, as long as they are in text mode. When the
computer is turned on, the monitor is set to the default text mode. The mode can be
changed, depending on the type of the monitor. Monitor types include MDA, CGA,
EGA, and VGA. The text screen is 80 characters wide by 25 characters long. Since

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

both a row and a column number are associated with each location on the screen,
one can move the cursor to any location on the screen simply by changing the row
and column values. The 80 columns are numbered from 0 to 79 and the 25 rows
are numbered 0 to 24. The top left comer has been assigned 00,00 (row ~ 00, column
~ 00). Therefore, the top right comer will be 00,79 (row ~ 00, column ~ 79).
Similarly, the bottom left comer is 24,00 (row ~ 24, column ~ 00) and the bottom
right comer ofthe monitor is 24,79 (row ~ 24, column ~ 79). Figure 4-1 shows each
location of the screen in both decimal and hex.

Clearing the screen using INT 10H function 06H

It is often desirable to clear the screen before displaying data. To use !NT
10H to clear the screen, the following registers must contain certain values before
INT 10H is called: AH ~ 06, AL ~ 00, BH ~ 07, CX ~ 0000, DH ~ 24, and DL ~
79. The code will look like this:

MOV
MOV
MOV
MOV
MOV
MOV
MOV
INT

AH,06
AL,OO
BH,07
CH,OO
CL,OO
DH,24
DL,79
10H

;AH=06 to select scroll function
;AL=OO the entire page
;BH=07 for normal attribute
;CH=OO row value of start point
;CL=OO column value of start paint
;DH=24 row value of ending point
;DL=79 column value of ending point
;invoke the interrupt

Remember that DEBUG assumes immediate operands to be in hex; there­
fore, OX would be entered as 184F. However, MASM assumes immediate operands
to be in decimal. In that case DH ~ 24 and DL ~ 79.

In the program above, one of many options of !NT 10H was chosen by
putting 06 into AH. Option AH ~ 06, called the scroll function, will cause the screen
to scroll upward. The CH and CL registers hold the starting row and column,
respectively, and DH and DL hold the ending row and column. To clear the entire
screen, one must use the top left cursor position of 00,00 for the start point and
bottom right position of 24,79 for the end point.

Option AH ~ 06 of !NT IOH is in reality the "scroll window up" function;
therefore, one could use that to make a window of any size by choosing appropriate
values for the start and end rows and columns. However, to clear the screen, the top
left and bottom right values are used for start and stop points in order to scroll up
the entire screen. It is much more efficient coding to clear the screen by combining
some of the lines above as follows:

MOV
MOV
MOV
MOV
INT

AX,0600H
BH,07
CX,OOOO
DX,184FH
10H

;scroll entire screen
;normal attribute
;start at 00,00
;end at 24,79 (hex = 18,4F)
;invoke the interrupt

INT 10H function 02: setting the cursor to a specific location

!NT IOH function AH ~ 02 will change the position of the cursor to any
location. The desired position of the cursor is identified by the row and column
values in OX, where DH ~ row and DL ~ column. Video RAM can have more than
one page of text, but only one of them can be viewed at a time. When AH ~ 02, to
set the cursor position, page zero is chosen by making BH ~ 00.

lt must be pointed out that after !NT 10H (or !NT 21 H) has executed, the
registers that have not been used by the interrupt remain unchanged. In other words,
these registers have the same values after execution of the interrupt as before the
interrupt was invoked. Examples 4-1 and 4-2 demonstrate setting the cursor to a
specific location.

SECTION 4.1: BIOS INT 10H PROGRAMMING 123

Example 4-1

Write the code to set the cursor position to row = 15 = OFH and column = 25 = 19H.

Solution:

MOV
MOV
MOV
MOV
INT

AH,02
BH,OO
DL,25
DH,15
10H

;set cursor option
;page 0
;co!umn position
;row position
;invoke interrupt 10H

Example 4-2

Write a program that (I) clears the screen and (2) sets the cursor at the center of the screen.

Solution:
The center of the screen is the point at which the middle row and middle column meet. Row 12 is at
the middle of rows 0 to 24 and column 39 (or 40) is at the middle of columns 0 to 79. Therefore, by
setting row = DH = 12 and column = DL = 39, the cursor is set to the screen center.

;clearing the screen
MOV AX,0600H
MOV BH,Ol
MOV ex,oooo
MOV DX,184FH
INT 10H

;scroll the entire page
;normal attribute
;row and column of top left
;row and column of bottom right
;invoke the video BIOS service

;selting the cursor to the center of screen

124

MOV AH ,02 ;set cursor option
MOV BH ,00 ;page 0
MOV DL,39 ;center column posilion
MOV DH,12 ;center row position
INT 10H ;invoke interrupt 10H.

INT 10H function 03: get current cursor position

In text mode, one is able to determine where the cursor is located at any
time by executing the following;

MOV
MOV
INT

AH,03
BH,OO
10H

;option 03 of BIOS INT 10H
;page 00
;interrupt 10H routine

After execution of the program above, registers DH and DL will have the
current row and column positions, and CX provides information about the shape of
the cursor. The reason that page 00 was chosen is that the video memory could
contain more than one page of data, depending on the video board installed on the
PC. In text mode, page 00 is chosen for the currently viewed page.

Changing the video mode

First it must be noted that regardless of what type of adapter is used (MDA,
CGA, EGA, MCGA, or VGA), all are upwardly compatible. For example, the VGA
emulates all the functions ofMCGA, EGA, CGA, and MDA. Similarly, the EGA
emulates the functions of CGA and MDA, and so on. Therefore, there must be a
way to change the video mode to a desired mode. To do that, one can use !NT 10H
with AH = 00 and AL = video mode. A list of video modes is given in Appendix E,
Table E-2.

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

I

Figure 4-2. Attribute Byte for Monochrome Monitors

Attribute byte in monochrome monitors

foreground intensity

o = normal intensity
1 = highlighted intensity
background intensity

o = nonblinking
1 = blinking

There is an attribute associated with each character on the screen. The
attribute provides information to the video circuitry, such as color and intensity of
the character (foreground) and the background. The attribute byte for each character
on the monochrome monitor is limited. Figure 4-2 shows bit definitions of the
monochrome byte attribute.

Foreground refers to the actual character displayed. Normal, highlighted
intensity and blinking are for the foreground only. The following are some possible
variations of the attributes above.

Binary
0000 0000
0000 0111
0000 1111
1000 0111
0111 0111
01110000
1111 0000

Hex ~R~e~s~ul~t __ ~~~~~~
00 white on white (no display)
07 white on black normal
OF white on black highlight
87 white on black blinking
77 black on black (no display)
70 black on white
Fa black on white blinking

For example, "0000011l" would give the normal screen mode where the
background is black and the foreground is normal intensity, nonblinking.
"00001111" would give the same mode with the foreground highlighted.
"0 III 0000" would give a reverse video screen mode with the foreground black and
the background normal intensity. See Example 4-3.

Attribute byte in eGA text mode

07 I 06 I 05 I 04 03 02 01 I DO

B i R G B I ! R G B
-----t background >-------j foreground

B = blinking
I = intensity

Since all color
monitors and their video cir­
cuitry are upwardly compat­
ible, in examples concerning
color, in this chapter we use
eGA mode, the common de­
nominator for all color moni­
tors. The bit definition of the
attribute byte in eGA text
mode is as shown in Figure
4-3. From the bit definition it
can be seen that the back­
ground can take eight differ­
ent colors by combining the

Both blinking and intensity are applied to fore-
ground only.

Figure 4-3. eGA Attribute Byte

prime colors red, blue, and green. The foreground can be any of 16 different colors
by combining red, blue, green, and intensity. Example 4-4 shows the use of the

SECTION 4.1: BIOS INT 10H PROGRAMMING 125

attribute byte in CGA mode. Table 4-1 lists the possible colors. As examples of
some possible variations look at the following cases:

Binary Hex Color effect
00000000 00 Black on black
00000001 01 Blue on black
0001 0010 12 Green on blue
0001 0100 14 Red on blue
0001 1111 IF High-intensity white on blue

Example 4-3

Write a program using INT 10H to:
(a) Change the video mode.
(b) Display the letter "0" in 200H locations with attributes black on white blinking (blinking letters

"0" are black and the screen background is white).
(c) Then use DEBUG to run and verify the program.

Solution:

(a) INT 10H function AH = 00 is used with AL = video mode to change the video mode. Use AL =
07 for monochrome (MDA), EGA, or VGA; otherwise, use any of the 80x25 text modes, or use AL =
03 for CGA, which all color monitors emulate.

MOV
MOV
INT

AH,OO
AL,07
10H

:SET MODE OPTION
;7 FOR MONOCHROME OR 03 FOR CGA TEXT
;MODE OF 80X25 FOR ANY COLOR MONITOR

(b) With TNT IOH function AH=09, one can display a character a certain number of times with spe­
cific attributes.

MOV
MOV
MOV
MOV
MOV
INT

AH,09
BH,OO
AL,44H
CX,200H
BL,OFOH
10H

;DISPLAY OPTION
;PAGEO
;THE ASCII FOR LEDER "D"
;REPEAT IT 200H TIMES
;BLACK ON WHITE BLINKING

(c) Reminder: DEBUG assumes that all the numbers are in hex.

C>debug
-A
1131:0100 MOV AH,OO
1131:0102 MOV AL,07
1131:0104 INT 10
1131:0106 MOV AH,09
1131:0108 MOV BH,OO
1131:010AMOV AL,44
1131:010C MOV CX,200
1131:010F MOV BL,FO
1131:0111 INT 10
1131:01131NT 3
1131:0114

;USE 03 IF MONITOR IS COLOR

Now see the result by typing in the command -G. Make sure that IP = 100 before running it.

As an exercise, change the BL register to other attribute values given earlier. For example, BL = 07
white on black, or BL = 87H white on black blinking.

126 CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

Example 4-4

Write a program that puts 20H (ASCII space) on the entire screen. Use high-intensity white on a
blue background attribute for any characters to be displayed.

Solution:

MOV
MOV
INT
MOV
MOV
MOV
MOV
MOV
INT

AH,OO
AL,03
10H
AH,09
BH,OO
AL,20H
CX,800H
BL,1FH
10H

;SET MODE OPTION
;CGA COLOR TEXT MODE OF 80X25

;DISPLAY OPTION
;PAGEO
;ASCII FOR SPACE
;REPEAT IT 800H TIMES
;HIGH INTENSITY WHITE ON BLUE

Graphics: pixel resolution and color
Table 4-1: The 16 Possible Colors In the text mode, the SCreen is

viewed as a matrix of rows and col­
umns of characters. In graphics
mode, the screen is viewed as a matrix
of horizontal and vertical pixels. The
number of pixels varies among moni­
tors and depends on monitor resolu­
tion and the video board. In this
section we show how to access and
program pixels on the screen. Before
embarking on pixel programming, the
relationship between pixel resolution,
the number of colors available, and
the amount of video memory in a
given video board must be clarified.
There are two facts associated with
every pixel on the screen, (I) the lo­
cation of the pixel, and (2) its attrib­
utes: color and intensity. These two
facts must be stored in the video
RAM. Therefore, the higher the
number of pixels and colors, the
larger the amount of memory that is
needed to store them. In other words,
the memory requirement goes up as
the resolution and the number of col­
ors on the monitor go up. The CGA
board can have a maximum of 16K
bytes of video memory due to its in-

U' R G » ,Color
' "---1

I~-l- ° ° ° black j l~fO ° I blue

° i ° 1 ° ' green
!

, -
! ° ; ° 1 I cyan -

° 1 ° ° red !

° 1 ° I 1 magenta J
'J
i
I

,

I ! ~1 1 ; ° 1 ! 1 I Iw .. h ite ____ _
f-- +--'--+1--"- -
I .. L i" ,0 : ° 9 [gray
~ i ° ° 1 jljght blue
! I 0' ... 1--+-' -"O h=· gh t green

° brow~n~ __ _

I

1 I oil 1 ,,' lig,h,t, cyan
~" --'---"--+;'" -
lill 1 . ° ° lligp,t red ___ _

I I _O"---,.-,--_'I",ig",h.t m ... a""g".e"nta=-_----"

, 1 I 1 ,~~-"O~y~ellow

lUll I j high intensity white

herent design structure. The 16K
bytes of memory can be used in three
different ways.

I. Text mode of 80 x 25 characters; This takes a total of 2K bytes (80 x 25 ~ 2000)
for the characters plus 2K bytes of memory for their attributes, since each character
has one attribute byte. That means that each screen (frame) takes 4K bytes, and that
results in CGA supporting a total of four pages of data, where each page represents
one full screen. In this mode, 16 colors are supported. To select this mode, use AL
~ 03 for mode selection in INT I OH option AH ~ 00.

2. Graphics mode 0[320 x 200 (medium resolution); In this mode there are a total of
64,000 pixels (320 columns x 200 rows ~ 64,000). Dividing the total video RAM
memory of 128K bits (16K x 8 bits ~ 128K bits) by the 64,000 pixels gives 2 bits

SECTION 4.1: BIOS INT lOR PROGRAMMING 127

for the color of each pixel. These 2 bits give four possibilities. Therefore, the 320
x 200 resolution CGA can support no more than 4 colors. To select this mode, use
AI. = 04.

3. Graphics resolution of640 x 200 (high resolution); In this mode there are a total of
128,000 pixels (200 x 640 = 128,000). Dividing the 16K bytes of memory by this
gives I bit (128,000/128,000 = I) for color. The bit can be on (white) or off (black).
Therefore, the 640 x 200 high-resolution CGA can support only black and white.
To select this mode, use AI. = 06.

The 160 x 100 low-resolution mode used with color TV sets was bypassed
in this discussion since no computer uses that anymore. From the discussion above
one can conclude that with a fixed amount of video RAM, as the resolution increases
the number of supported colors decreases. That is the reason that to create more
colors in VGA boards, one must increase the memory on the video board since there
must be a storage place to store the extra colors. Many VGA boards do provide the
capacity to expand the video RAM up to 1 megabyte or more.

INT 10H and pixel programming

To address a single pixel on the screen, use INT 10H with AH = OCH. The
X and Y coordinates of the pixel must be known. The values for X (column) and Y
(row) vary, depending on the resolution of the monitor. The registers holding these
values are CX = the column point (the X coordinate) and OX = the row point (Y
coordinate). [fthe display mode supports more than one page, BH = page number;
otherwise, it is ignored. To turn the pixel on or off, AI. = [or AI. = 0 for black and
white. The value of AI. can be modified for various colors.

Drawing horizontal or vertical lines in graphics mode

To draw a horizontal line, choose values for the row and column to point to
the beginning of the line and then continue to increment the column until it reaches
the end ofthe line, as shown in Example 4-5.

Example 4-5

Write a program to:
(a) Clear the screen.
(b) Set the mode to CGA of 640 x 200 resolution.
(c) Draw a horizontal line starting at column = 100, row = 50, and ending at column 200, row 50.

Solution:

BACK:

128

MOV
MOV
MOV
MOV
INT
MOV
MOV
INT
MOV
MOV
MOV
MOV
INT
INC
CMP
JNZ

AX,0600H
BH,O?
CX,OOOO
DX;184FH
10H
AH,OO
AL,06
10H
CX,100
DX,50
AH,OCH
AL,01
10H
CX
CX,200
BACK

:SCROLL THE SCREEN
:NORMALATIRIBUTE
:FROM ROW=OO,COLUMN=OO
;TO ROW=18H,COLUMN=4FH
;INVOKE INTERRUPT TO CLEAR SCREEN
;SETMODE
;MODE = 06 (CGA HIGH RESOLUTION)
;INVOKE INTERRUPT TO CHANGE MODE
;START LINE AT COLUMN =100 AND
;ROW=50
;AH=OCH TO DRAW A LINE
;PIXELS = WHITE
;INVOKE INTERRUPT TO DRAW LINE
;INCREMENT HORIZONTAL POSITION
;DRAW LINE UNTIL COLUMN = 200

As an exercise, put !NT 3 at the end of the program above and run it in
DEBUG to get a feeling of the concept. To draw a vertical line, simply increment
the vertical value held by the OX register and keep CX constant. The linear
equation y = rnx + b can be used to draw any line.

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

Changing the background color

CGA graphics medium resolution provides 16 colors. Option AH ~ OBH
can be used to change the background color as shown in Example 4-6. Running that
program in DEBUG causes the entire screen to change to blue, and when INT 3 is
invoked, all the registers are displayed in very large letters. The cursor gets lost as
well, since the screen is in graphics mode. To get out of that mode, simply type Q,
followed by the return key to get out of DEBUG and back to DOS. Then use the
DOS command "MODE C080" (the letters CO followed by the number 80) to get
back to the original screen mode.

Example 4-6
Write and run a program in DEBUG to:
(a) Change the video mode to 320 x 200 graphics with four colors (mode AL ~ 4)
(b) Make the entire screen blue

Solution:
;a

;b

MOV
MOV
INT

MOV
MOV
MOV
INT
INT

AH,OO
AL,4
10H

AH,OB
BH,O
BL,1
10H
3

;SETMODE
;CGA STANDARD 300X 200 WITH 4 COLOR

;SETCOLOR
;SET BACKGROUND COLOR
;BLUE (SEE TABLE 4-2)

;STOP

Review Questions

I. Interrupt 10H function calls perform what services?
2. The monitor in text mode has __ columns and __ rows, The top left position

is L,_) and the bottom right position is L,_),
3. Fill in the blanks in the following program, which clears the screen. Write com­

ments on each line stating the purpose of each line of code,
MOV AH,
MOV AL,
MOV BH,-
MOV CH,-
MOV CL,-
MOV DH,-
MOV DL,
INT 10H-

4. !NT 10 function AH ~ 03 was used. Afterward, DH ~ 05 and DL ~ 34. What does
this indicate?

5, What is the purpose of the attribute byte for monochrome monitors?
6. In text mode, there is one attribute byte associated with each __ on the screen.
7, Write the attribute byte to display background green, foreground white blinking.
8, State the purpose of the following program, which is for a monochrome monitor.

MOV AH,02
MOV BH,OO
MOV DX,OOOO
INT 10H
MOV AH,09
MOV BH,OO
MOV AL,2AH
MOV CX,SO
MOV BL,OFOH
INT 10H

SECTION 4.1: BIOS INT 10H PROGRAMMING 129

SECTION 4.2: DOS INTERRUPT 21H

130

!NT 2lH is provided by DOS in contrast to !NT lOH, which is BIOS-ROM
based. When MS-DOS (or its IBM version PC-DOS) is loaded into the computer,
INT 21 H can be invoked to perform some extremely useful functions. These
functions are commonly referred to as DOS !NT 2lH function calls. A partial list
of these options is provided in Appendix D. In this section we use only the options
dealing with inputting information from the keyboard and displaying it on the
screen. In previous chapters, a fixed set of data was defined in the data segment
and the results were viewed in a memory dump. Starting with this chapter, data will
come from the keyboard and after it is processed, the results will be displayed on
the screen. This is a much more dynamic way of processing information and is the
main reason for placing this chapter at this point of the book. Although data is input
and output through the keyboard and monitor, there is still a need to dump memory
to verify the data when troubleshooting programs.

INT 21 H option 09: outputting a string of data to the monitor

!NT 21 H can be used to send a set of ASCII data to the monitor. To do that,
the following registers must be set: AH = 09 and OX = the offset address of the
ASCII data to be displayed. Then !NT 2lH is invoked. The address in the OX
register is an offset address and OS is assumed to be the data segment. !NT 2lH
option 09 will display the ASCII data string pointed at by OX until it encounters the
dollar sign "$". In the absence of encountering a dollar sign, DOS function call 09
will continue to display any garbage that it can find in subsequent memory locations
until it finds "$". For example, to display the message "The earth is but one country",
the following is from the data segment and code segment.

DATA_ASC DB 'The earth is but one country','$'

MOV
MOV
INT

AH,09
DX,OFFSET DATA_ASC
21H

;Option 09 to display string of data
;DX= offset address of data
;invoke the interrupt

INT 21 H option 02: outputting a single character to the monitor

There are occasions when it is necessary to output to the monitor only a
single character. To do that, 02 is put in AH, DL is loaded with the character to be
displayed, and then !NT 2lH is invoked. The following displays letter "J".

MOV
MOV
INT

AH,02
DL,'J'
21H

;option 02 displays one character
;DL holds the character to be displayed
;invoke the interrupt

This option can also be used to display '$' on the monitor since the string
display option (option 09) will not display '$'.

INT 21 H option 01: inputting a single character, with echo

This functions waits until a character is input from the keyboard, then
echoes it to the monitor. After the interrupt, the input character will be in AL.

MOV
INT

AH,01
21H

;option 01 inputs one character
;after the interrupt, AL = input character (ASCII)

Program 4-1 combines INT lOH and !NT 21 H. The program does the
following: (I) clears the screen, (2) sets the cursor to the center of the screen, and
(3) starting at that point of the screen, displays the message "This is a test of the
display routine".

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

TITLE PR0G4-1 SIMPLE DISPLAY PROGRAM
PAGE 60,132

.MODEL SMALL

.STACK 64

. DATA
MESSAGE DB 'This is a test olthe display routine','$'

MAIN

MAIN

.CODE
PROC
MOV
MOV
CALL
CALL
CALL
MOV
INT
ENDP

FAR
AX,@DATA
DS,AX
CLEAR
CURSOR
DISPLAY
AH,4CH
21H

:THIS SUBROUTINE CLEARS THE SCREEN
CLEAR PROC

MOV
MOV
MOV
MOV
INT
RET

CLEAR ENDP

AX,0600H
BH,O?
CX,OOOO
DX,184FH
10H

;CLEAR THE SCREEN
;SET CURSOR POSITION
;DISPLAY MESSAGE

;GO BACK TO DOS

;SCROLL SCREEN FUNCTION
;NORMAL ATTRIBUTE
;SCROLL FROM ROW=OO,COL=OO
;TO ROW=18H,COL=4FH
;INVOKE INTERRUPT TO CLEAR SCREEN

:THIS SUBROUTINE SETS THE CURSOR AT THE CENTER OF THE SCREEN
CURSOR PROC

MOV
MOV
MOV
MOV
INT
RET

CURSOR ENDP

AH,02
BH,OO
DH,12
DL,39
10H

;SET CURSOR FUNCTION
; PAGE 00
;CENTER ROW
;CENTER COLUMN
;INVOKE INTERRUPT TO SET CURSOR POSITION

:THIS SUBROUTINE DISPLAYS A STRING ON THE SCREEN
DISPLAY PROC

MOV
MOV
INT
RET

DISPLAY ENDP

AH,09
DX,OFFSET MESSAGE
21H

END MAIN

Program 4-1

;DISPLAY FUNCTION
;DX POINTS TO OUTPUT BUFFER
;INVOKE INTERRUPT TO DISPLAY STRING

INT 21H option OAH: inputting a string of data from the keyboard

Option OAH of INT 2lH provides a means by which one can get data from
the keyboard and store it in a predefined area of memory in the data segment. To
do that, registers are set as follows: AH = OAH and DX = offset address at which
the string of data is stored. This is commonly referred to as a buffer area. DOS
requires that a buffer area be defined in the data segment and the first byte specifies
the size of the buffer. DOS will put the number of characters that carne in through
the keyboard in the second byte and the keyed-in data is placed in the buffer starting
at the third byte. For example, the following program will accept up to six characters
from the keyboard, including the return (carriage return) key. Six locations were
reserved for the buffer and filled with FFH. The following shows portions of the
data segment and code segment.

SECTION 4.2: DOS INTERRUPT 2lH 131

132

DATA1
ORG
DB

MOV
MOV
INT

0010H
6,7,6 DUP (FF)

AH,OAH
DX,OFFSET DATA1
21H

;0010H=06, 0012H to 0017H = FF

;string input option of INT 21 H
;Ioad the offset address of buffer
;invoke interrupt 21 H

The following shows the memory contents of offset OOIOH:

0010 0011 0012 0013 0014 0015 0016 0017
06 00 FF FF FF FF FF FF

When this program is executed, the computer waits for the information to
come in from the keyboard. When the data comes in, the IBM PC will not exit the
INT 2lH routine until it encounters the return key. Assuming the data that was
entered through the keyboard was "USA" <RETURN>, the contents of memory
locations starting at offset OOIOH would look like this:

0010
06

0011
03

0012
55

0013
53

0014
41

0015
OD
CR

0016
FF

0017
FF

U S A

The following is a step-by-step analysis:

0010H=06
0011 H=03

0012H=55H
0013H=53H
0014H=41 H
0015H=ODH

DOS requires the size of the buffer in the first location
the keyboard was activated three times (excluding the RETURN
key) to key in the letters U, S, and A
this is ASCII hex value for letter U
this is ASCII hex value for letter S
this is ASCII hex value for letter A
this is ASCII hex value for CR (carriage return)

One might ask where the value 03 in OOIIH came from. DOS puts that
value there to indicate that three characters were entered. How can this character
count byte be accessed? See the following:

MOV AH,OAH
MOV DX,OFFSET DATA1
INT 21H

;After data has been keyed in, next fetch the count value
MOV BX,OFFSET DATA1
SUB CH,CH ;CH=OO
MOV CL,[BX]+1 ;move count to CL

To locate the CR value ODH in the string and replace it, say with 00, simply code
the following line next:

MOV SI,CX
MOV BYTE PTR[BX+SI]+2,00

The actual keyed-in data is located beginning at location [BX]+2.

Inputting more than the buffer size

Now what happens if more than six characters (five, the maximum length
+ the CR = 6) are keyed in? Entering a message like "USA a country in North
America" <RETURN> will cause the computer to sound the speaker and the
contents of the buffer will look like this:

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

0010
06

0011
05

0012
55
U

0013
53
S

0014
41
A

0015
20
SP

0016
61
a

0017
00
CR

Location 0015 has ASCII 20H for space and 0016 has ASCII 6lH for "a"
and finally, the 00 for RETURN key at 0017. The actual length is 05 at memory
offset OOllH. Another question is: What happens if only the CR key is activated
and no other character is entered? For example, in the following,

DATA4
ORG
DB

20H
10,?,10 DUP (FF)

which puts OAH in memory 0020H, the 002lH is for the count and the 0022H is the
first location which will have the data that was entered. So if only the return key is
activated, 0022H has OOH, the hex code for CR.

0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 002A 002B 002C ..•
OA 00 OD FF FF FF FF FF FF FF FF FF FF

The actual number of characters entered is 0 at location 0021. Remember
that CR is not included in the count. It must be noted that as data is entered it is
displayed on the screen. This is called an echo. So the OAH option of !NT 21H
accepts the string of data from the keyboard and echoes (displays) it on the screen
as it is ke ed in.

;Program 4-2 performs the following, (1) clears the screen, (2) sets the cursor at the beginning of the third line
;from the top of the screen, (3) accepts the message "IBM perSonal COmpute~' from the keyboard,
;(4) converts lowercase letters of the message to uppercase, (5) displays the converted resu~s on the next line.

TITLE PR0G4-2
PAGE 60,132

.MODEL SMALL

.STACK 64

.DATA
BUFFER DB

ORG
DATAREA DB
DTSEG ENDS
CR EQU
LF EQU

MAIN

MAIN

.CODE
PROC
MOV
MOV
CALL
CALL
CALL
CALL
CALL
MOV
INT
ENDP

22,?,22 DUP (?)
18H
CR,LF,22 DUP (?),'$'

ODH
OAH

FAR
AX,@DATA
DS,AX
CLEAR
CURSOR
GETDATA
CONVERT
DISPLAY
AH,4CH
21H

:THIS SUBROUTINE CLEARS THE SCREEN
CLEAR PROC

MOV
MOV
MOV
MOV
INT
RET

CLEAR ENDP

AX,0600H
BH,07
CX,OOOO
DX,184FH
10H

Program 4-2 (continued on next page)

SECTION 4.2: DOS INTERRUPT 2lH

;BUFFER FOR KEYED-IN DATA

;AREA TO PLACE DATA AFTER CONVERSION

;CLEAR THE SCREEN
;SET CURSOR POSITION
;INPUT A STRING INTO BUFFER
;CONVERT STRING TO UPPERCASE
; DISPLAY STRING DATAREA

;GO BACK TO DOS

;SCROLL SCREEN FUNCTION
;NORMAL ATTRIBUTE
;SCROLL FROM ROW=OO,COL=OO
;TO ROW=18H,4FH
;INVOKE INTERRUPT TO CLEAR SCREEN

133

;THIS SUBROUTINE SETS THE CURSOR TO THE BEGINNING OF THE 3RD LINE
CURSOR PROC

MOV
MOV
MOV
MOV
INT
RET

CURSOR ENDP

AH,02
BH,OO
DL,01
DH,03
10H

;SET CURSOR FUNCTION
;PAGE 0
;COLUMN 1
;ROW3
; INVOKE INTERRUPT TO SET CURSOR

;THIS SUBROUTINE DISPLAYS A STRING ON THE SCREEN
DISPLAY PROC

MOV
MOV
INT
RET

DISPLAY ENDP

AH,09
DX,OFFSET DATAREA
21H

;DISPLAY STRING FUNCTION
;DX POINTS TO BUFFER
; INVOKE INTERRUPT TO DISPLAY STRING

;THIS SUBROUTINE PUTS DATA FROM THE KEYBOARD INTO A BUFFER
GETDATA PROC

MOV
MOV
INT
RET

GETDATA ENDP

AH,OAH
DX,OFFSET BUFFER
21H

; INPUT STRING FUNCTION
;DX POINTS TO BUFFER
; INVOKE INTERRUPT TO INPUT STRING

;THIS SUBROUTINE CONVERTS ANY SMALL LETTER TO ITS CAPITAL
CONVERT PROC

MOV
MOV
SUB
MOV
MOV
MOV

AGAIN: MOV

NEXT:

CMP
JB
CMP
JA
AND
MOV
INC
INC
LOOP
RET

CONVERT ENDP

BX,OFFSET BUFFER
CL,[BXj+1
CH,CH
DI,CX
BYTE PTR[BX+Dlj+2,20H
SI,OFFSET DATAREA+2
AL,[BXj+2
AL,61H
NEXT
AL,7AH
NEXT
AL,11011111B
[Slj,AL
SI
BX
AGAIN

END MAIN

;GET THE CHAR COUNT
;CX = TOTAL CHARACTER COUNT
;INDEXING INTO BUFFER
;REPLACE CR WITH SPACE
;STRING ADDRESS
; GET THE KEYED-IN DATA
;CHECK FOR 'a'
;IF BELOW, GO TO NEXT
;CHECK FOR 'z'
; IF ABOVE GO TO NEXT
;CONVERT TO CAPITAL
;PLACE IN DATA AREA
;INCREMENT POINTERS

;LOOP IF COUNTER NOT ZERO

Program 4-2 (continued/rom preceding page)

134

Use of carriage return and line feed

In Program 4-2, the EQU statement was used to equate CR (carriage return)
with its ASCII value ofODH, and LF (line feed) with its ASCII value ofOAH. This
makes the program much more readable. Since the result of the conversion was to
be displayed in the next line, the string was preceded by CR and LF. In the absence
ofCR the string would be displayed wherever the cursor happened to be. In the case
of CR and no LF, the string would be displayed on the same line after it had been
returned to the beginning of the line by the CR and consequently, would write over
some of the characters on that line.

Program 4-3 prompts the user to type in a name. The name can have a
maximum of eight letters. After the name is typed in, the program gets the length of
the name and prints it to the screen.

Program 4-4 demonstrates many of the functions described in this chapter.

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

TITLE PR0G4-3 READS IN LAST NAME AND DISPLAYS LENGTH
PAGE 60,132

.MODEL SMALL

.STACK 64 (7)

.DATA
MESSAGE1 DB

ORG
BUFFER1 DB

ORG
MESSAGE2 DB
ROW EOU
COLUMN EOU
CR EOU
LF EOU

MAIN

MAIN

CLEAR

.CODE
PROC
MOV
MOV
CALL
CALL
MOV
MOV
INT
MOV
MOV
INT
MOV
MOV
OR
MOV
MOV
MOV
INT
MOV
INT
ENDP

PROC
MOV
MOV
MOV
MOV
INT
RET
ENDP

CURSOR PROC
MOV
MOV
MOV
MOV
INT
RET

CURSOR ENDP
END

Program 4-3

'What is your last name?':$'
20H
9,7,9 DUP (0)
30H
CR,LF:The number of leiters in your name is: ':$'

08
05
ODH ;EOUATE CR WITH ASCII CODE FOR CARRIAGE RETURN
OAH ;EOUATE LF WITH ASCII CODE FOR LINE FEED

FAR
AX,@DATA
DS,AX
CLEAR
CURSOR
AH,09
DX,OFFSET MESSAGE1
21H
AH,OAH
DX,OFFSET BUFFER1
21H
BX,OFFSET BUFFER1
CL,[BX+1]
CL,30H
MESSAGE2+40,CL
AH,09
DX,OFFSET MESSAGE2
21H
AH,4CH
21H

AX,0600H
BH,07
CX,DOOO
DX,184FH
10H

AH,02
BH,OO
DL,COLUMN
DH,ROW
10H

MAIN

; DISPLAY THE PROMPT

;GET LAST NAME FROM KEYBOARD

;FIND OUT NUMBER OF LETTERS IN NAME
;GET NUMBER OF LETTERS
;MAKE IT ASCII
; PLACE AT END OF STRING
;DISPLAY SECOND MESSAGE

;GO BACK TO DOS

;CLEAR THE SCREEN

;SET CURSOR POSITION

INT 21 H option 07: keyboard input without echo

Option 07 of INT 2lH requires the user to enter a single character but that
character is not displayed (or echoed) on the screen. After execution of the interrupt,
the PC waits until a single character is entered and provides the character in AL.

MOV AH,07 ;keyboard input without echo
INT 21H

SECTION 4.2: DOS INTERRUPT 21H 135

136

Using the LABEL directive to define a string buffer

A more systematic way of defining the buffer area for the string input is to
use the LABEL directive. The LABEL directive can be used in the data segment
to assign multiple names to data. When used in data segment it looks like this:

name LABEL attribute

The attribute can be either BYTE, WORD, DWORD, FWORD, QWORD, or
TBYTE. Simply put, the LABEL directive is used to assign the same offset address
to two names. For example, in the following,

JOE LABEL BYTE
TOM DB 20 DUP(O)

the offset address assigned to JOE is the same offset address for TOM since the
LABEL directive does not occupy any memory space (see Appendix C for many
examples of the use of the LABEL directive). Next we show how to use this
directive to define a buffer area for the string keyboard input:

DATA_BUF
MAX_SIZE
BUF_COUNT
BUF_AREA

LABEL BYTE
DB 10
DB ?
DB 10 DUP(20H)

Now in the code segment the data can be accessed by name as follows:

MOV AH,OAH ;Ioad string into buffer
MOV DX,OFFSET DATA_BUF
INT 21H
MOV CL,BUF _COUNT ;Ioad the actual length of string
MOV SI,OFFSET BUF _AREA ;SI=address of first byte of string

This is much more structured and easier to follow. By using this method, it is easy
to refer to any parameter by its name. For example, using the LABEL directive,
one can rewrite the CONVERT subroutine in Program 4-2 as follows:

In that data segment the BUFFER is redefined as
BUFFER LABEL BYTE
BUFSIZE DB 22
BUFCOUNT DB ?
REALDATA DB 22 DUPC ')

and in the code segment, in place of the CONVERT procedure:
CONVERT PROC

MOV
SUB
MOV
MOV
MOV

AGAIN:

NEXT:

MOV
MOV
CMP
JB
CMP
JA
AND
MOV
INC
INC
LOOP
RET

CONVERT ENDP

CL,BUFCOUNT
CH,CH
DI,CX
BX,OFFSET REALDATA
BYTE PTR[BX+DI],20H
SI,OFFSET DATAREA
AL,[BX]
AL,61 H
NEXT
AL,7AH
NEXT
AL,11011111B
[SI],AL
SI
BX
AGAIN

;Ioad the counter
;CX=counter
;index into data field
;actual data address in buffer
;replace the CR with space
;SI=address of converted data
;move the char into AL
;check if is below 'a'
;if yes then go to next
;check for above 'z'
;if yes then go to next
;if not then mask it to capital
;move the character
;increment the pointer
;increment the pointer
;repeat if CX not zero yet
;return to main procedure

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

Write a program to perform the following:
(1) clear the screen
(2) set the cursor at row 5 and cclumn 1 of the screen,
(3) prompt "There is a message for you from Mr. Jones. To read it enter Y ". If the user enters 'Y' or 'y' then the
message "Hi! I must leave town tomorrow, therefore I will not be able to see you" will appear on the screen. If
the user enters any other key, then the prompt "No more messages for you" should appear on the next line.

TITLE PROGRAM 4-4
PAGE 60,132

.MODEL SMALL

.STACK 64

. DATA
PROMPT1 DB

DB
MESSAGE DB

PROMPT2
DTSEG
CR
LF

MAIN

OVER:

EXIT:

MAIN

CLEAR

CLEAR

CURSOR

CURSOR

DB
DB
ENDS
EQU
EQU

.CODE
PROC
MOV
MOV
CALL
CALL
MOV
MOV
INT
MOV
INT
CMP
JZ
CMP
JZ
MOV
MOV
INT
JMP
MOV
MOV
INT
MOV
INT
ENDP

PROC
MOV
MOV
MOV
MOV
INT
RET
ENDP

PROC
MOV
MOV
MOV
MOV
INT
RET
ENDP
END

Program 4-4

'There is a message for you from Mr. Jones. '
'To read it enter Y' :$'
CR,LF:Hi! I must leave town tomorrow, '
'therefore I will not be able to see you','$'
CR,LF:No more messages for you':$'

ODH
OAH

FAR
AX,@DATA
DS,AX
CLEAR
CURSOR
AH,09

;CLEAR THE SCREEN
;SET CURSOR POSITION
;DISPLAY THE PROMPT

DX,OFFSET PROMPT1
21H
AH,07 ;GET ONE CHAR, NO ECHO
21H
AL:Y' ;IF 'Y', CONTINUE
OVER
AL:y'
OVER
AH,09 ;DISPLAY SECOND PROMPT IF NOT Y
DX,OFFSET PROMPT2
21H
EXIT
AH,09 ; DISPLAY THE MESSAGE
DX,OFFSET MESSAGE
21H
AH,4CH
21H ;GO BACK TO DOS

;CLEARS THE SCREEN
AX,0600H
BH,07
CX,OOOO
DX,1S4FH
10H

;SET CURSOR POSITION
AH,02
BH,OO
DL,05 ;COLUMN 5
DH,OS ;ROWS
10H

MAIN

SECTION 4.2: DOS INTERRUPT 2lH 137

This is the same as Program 4-4, rewritten with full segment definition.

TITLE PROGRAM 4-4 REWRITTEN WITH FULL SEGMENT DEFINITION
PAGE 60,132
STSEG SEGMENT

DB 64 DUP (?)
STSEG ENDS

DTSEG SEGMENT
PROMPT1 DB 'There is a message for you from Mr. Jones. '

DB 'To read it enter Y' ,'$'
MESSAGE DB CR,LF,'Hi! I must leave town tomorrow, '

PROMPT2
DTSEG
CR
LF

CDSEG
MAIN

OVER:

EXIT:

MAIN

CLEAR

CLEAR

CURSOR

CURSOR
CDSEG

DB 'therefore I will not be able to see you','$'
DB CR,LF,'No more messages for you','$'
ENDS
EQU ODH
EQU OAH

SEGMENT
PROC FAR
ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
MOV AX,DTSEG
MOV DS,AX
CALL CLEAR ;CLEAR THE SCREEN
CALL CURSOR ;SET CURSOR POSITION
MOV AH,09 ;DISPLAY THE PROMPT
MOV DX,OFFSET PROMPT1
INT 21H
MOV AH,07 ;GET ONE CHAR, NO ECHO
INT 21H
CMP AL,'Y' ;IF 'V', CONTINUE
JZ OVER
CMP AL,'y'
JZ OVER
MOV AH,09 ;DISPLAY SECOND PROMPT IF NOT Y
MOV DX,OFFSET PROMPT2
INT 21H
JMP EXIT
MOV AH,09 ;DISPLAY THE MESSAGE
MOV DX,OFFSET MESSAGE
INT 21H
MOV AH,4CH
INT 21 H ;GO BACK TO DOS
ENDP

PROC
MOV
MOV
MOV
MOV
INT
RET
ENDP

PROC
MOV
MOV
MOV
MOV
INT
RET
ENDP
ENDS
END

AX,0600H
BH,07
CX,OOOO
DX,184FH
10H

AH,02
BH,OO
DL,05
DH,08
10H

MAIN

;CLEARS THE SCREEN

;SET CURSOR POSITION

;COLUMN 5
;ROW8

Program 4-4, rewritten with full segment definition

138 CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

Review Questions

1. TNT function calls reside m ROM BIOS, whereas TNT function calls are
provided by ~OS.

2. What is the difference between the following two programs?
MOV AH,09 MOV AH,OAH
MOV OX,OFFSET BUFFER MOV OX,OFFSET BUFFER
TNT 2lH TNT 2lH

3. TNT 2lH function 09 will display a string of data beginning at the location specified
in register OX. How does the system know where the end of the string is?

4. Fill in the blanks to display the following string using TNT 2lH.
MESSAGE 1 DB 'What is your last name7$'

MOV AH, __
MOV OX,
TNT 2lH--

5. The following prompt needs to be displayed. What will happen if this string is out­
put using TNT 21 H function 097
PROMPT! DB 'Enter (round to nearest $) your annual salary'

6. Use the EQU directive to equate the name "BELL" with the ASCII code for sound­
ing the bell.

7. Write a program to sound the bell.
8. Code the data definition directives for a buffer area where TNT 21 H Option OAH

will input a social security number.

SECTION 4.3: INT 16H KEYBOARD PROGRAMMING

The last section demonstrated the use ofINT 21H function AH=07, which
waits for the user to input a character. What if a program must run a certain task
continuously while checking for a keypress? Such cases require the use of TNT l6H,
a BIOS interrupt used exclusively for the keyboard.

Checking a key press

To check a key press we use TNT l6H function AH=Ol.

MOV AH,01
INT 16H

;check for key press
;using INT 16H

Upon return, ZF=O if there is a key press; ZF=l if there is no key press.
Notice that this function does not wait for the user to press a key. It simply checks
to see ifthere is a key press. The use of this function is best understood in the context
of examples. Program 4-5 sends the ASCII bell character, 07 hex (see Appendix F),
to the screen continuously. To stop the bell sound, the user must press any key.

Which key is pressed?

There are times when the program needs to know not only if a key has been
pressed but also which key was pressed. To do that, TNT 16H function AH=O can
be used immediately after the call to TNT l6H function AH=Ol.

MOVAH,O
INT 16H

;gel key pressed
;using INT 16H

Upon return, AL contains the ASCII character of the pressed key; its scan
key is in AH. Notice that this function must be used immediately after calling TNT
l6H function AH=Ol. Program 4-6 demonstrates how it works. Keyboard scanning
is discussed further in Chapter 18.

SECTION 4.3: INT 16H KEYBOARD PROGRAMMING 139

TITLE PROGRAM 4-5:KEYBOARD HIT USING INT 16H
;THIS PROGRAM SOUNDS THE BELL CONTINUOUSLY UNLESS ANY KEY IS PRESSED

.MODEL SMALL

.STACK

.DATA
MESSAGE DB 'TO STOP THE BELL SOUND PRESS ANY KEY$'

MAIN

AGAIN:

MAIN

.CODE
PROC
MOV
MOV
MOV
MOV
INT
MOV
MOV
INT
MOV
INT
JZ
MOV
INT
ENDP
END

AX,@DATA
DS,AX
AH,09
DX,OFFSET MESSAGE ;DISPLAY THE MESSAGE
21H
AH,02
DL,07
21H
AH,01
16H
AGAIN
AH,4CH
21H

;SENDING TO MONITOR A SINGLE CHAR
;SEND OUT THE BELL CHAR

;CHECK THE KEY PRESS
;USING INT 16H
;IF NO KEY PRESS STAY IN THE LOOP
;IF ANY KEY PRESSED GO BACK TO DOS

Program 4-5

TITLE PROGRAM 4-6: MODIFIED VERSION OF PROGRAM 4-5
;THIS PROGRAM SOUNDS THE BELL CONTINUOUSLY UNTIL 'Q' OR 'q' IS PRESSED

.MODEL SMALL

.STACK

.DATA
MESSAGE DB 'TO STOP THE BELL SOUND PRESS Q (or q) KEY$'

MAIN

AGAIN:

EXIT:

MAIN

.CODE
PROC
MOV
MOV
MOV
MOV
INT
MOV
MOV
INT
MOV
INT
JZ
MOV
INT
CMP
JE
CMP
JE
JMP
MOV
INT
ENDP
END

AX,@DATA
DS,AX
AH,09
DX,OFFSET MESSAGE
21H
AH,02
DL,07
21H
AH,01
16H
AGAIN
AH,O
16H
AL,'Q'
EXIT
AL,'q'
EXIT
AGAIN
AH,4CH
21H

;DISPLAY THE MESSAGE

;SOUND THE BELL BY SENDING OUT BELL CHAR

;CHECK FOR KEY PRESS
;USING INT 16H
;IF NO KEY PRESS KEEP SOUNDING THE BELL
;TO GET THE CHARACTER
;WE MUST USE INT 16H ONE MORE TIME
;IS IT'Q'?
;IFYES EXIT
;IS IT'q'
;IFYES EXIT
;NO. KEEP SOUNDING THE BELL
;GO BACK TO DOS

Program 4-6

Review Questions

I. Which function of INT 16H is used for key press detection?
2. In the above question, how do you know if a key is pressed?
3. In the above question, how can the ASCII value for the pressed key be obtained?
4. Indicate the main difference between !NT 2lH function AH~07, and !NT 16H func­

tionAH~OI.

5. Write a simple program to sound the bell unless letter 'X' is pressed. If 'X' is
pressed, the program should exit.

140 CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

SECTION 4.4: INTERRUPT PROGRAMMING WITH C

Although C is a high-level language, it has strong bit manipulation capa­
bility. For this reason, some programmers refer to C as a "high-level assembly"
language. For C/C ++ programmers who do not have detailed knowledge of 80x86
Assembly language programming but want to write programs using DOS function
calls INT 21 H and BIOS interrupts, there is help from compilers in the form of int86
and intdos functions. The int86 function is used for calling any of the PC's interrupts,
while the intdos function is used only for the INT 2lH DOS function calls.

Programming BIOS interrupts with C/C++

To use the int86 function, registers are first set to desired values, then int86
is called. Upon return from int86, the 80x86 registers can be accessed. In this regard,
int86 is just like the "INT #" instruction in 80x86 Assembly language. To access the
80x86 registers, use the union of the REGS structure already defined by the C
compiler. It has the following format, where regin and regout are variable names:

union REGS regin.regout;

The union of the REGS structure allows x86 registers to be accessed in
either their 16- or 8-bit format. The 16-bit registers are referred to as x; 8-bit registers
are referred to as h (for "halfWord"). This is shown in Table 4-2.

Table 4-2: REGS Union Elements and Assembly Equivalent

~=-_:~ 16-bit I
1---- !

8-bit __

C lan!!uage Assemblv Langua!!e Cl;anguage J Assemblv Lan\!uage_

___regm.x . ."ax"---__ t-__ AX _____ -+_ regin.h.al AL

~-- regin.h.ah I, __ _ __ ----'A .. H=--__ _

,

I regi.n_.,x,_ .bx ___ -+-____ "BX ___ t-___ regin.h.bl + BBHL
_+-_____ r_egin.h. bh

, regl n x.".c"'x~_--'- CX'-'---___ .1f-Iii regin.h.cl ___ +-___ C 'coL

'1----- ---L regin.h.ch -+1 ____ ~c.oH._~1
;~- r~gin.x.dx I' DX t' regin.h.dl ! R.L_~

I~ ___ ,r~in,x,si -_ "--1-, ======-S-I-- _-++-1 ====,-,re"i'g""in",.:h'-'._d:h~====+-I- DH -1

[[egin.x.di ------l. ~D~I ____ ~_,_ _ _______ 1

_! ____ Cy' !

The following code compares loading the registers and invoking the inter­
rupt in C and Assembly language.

1* Clanguage
union REGS regin,regout;
regin.h.ah=Ox25;
regin.x.dx=Ox4567;
regin.x.si=Ox1290;
intB6(interrupt#,®in,®out);

SECTION 4.4: INTERRUPT PROGRAMMING WITH C

Assembly language *f

1* may ah,25h ;AH=25H *f
1* moy dX,4567h ;DX=4567H *f
1* moy si,1290h ;SI=1290H *f
1* int# *f

141

Example 4-7

In the code above, interrupt # is a value from 00 to 255 (or OxOO to OxFF in
hex, using the C syntax for hexadecimal numbers), and ®in and ®out are the
addresses of the REGS variables. Upon returning from the int86 function, we can
access the contents of registers just as in 80x86 Assembly language programs. This
is shown as follows:

mydata=regout.h.ah;
myvalu=regout.x.bx;

1* mov mydata,ah ;assign AH to mydata *'
1* mov myvalu,bx ;assign BX to myvalu *'

Examples 4-7 and 4-8 demonstrate how int86 is used in C programming.
Example 4-9 shows how to access registers upon returning from int86. Example
4-10 uses !NT 21 H, AH = 30H to display the DOS version.

Use the int86 function to clear the screen. Show the equivalent !NT 10 instruction.
Solution:

1* example 4-7A using 16-bit registers *'
#include <dos.h> 1* int86 is part of this library *'
mainO
(
union REGS regin,regout;
regin.x.ax=Ox0600; 1* MOV AX,0600H *'
regin.h.bh=Ox07; '* MOV BH,07H *'
regin.x.cx=O; '* MOVCX,O *'
regin.x.dx=Ox184F; 1* MOV DX,184FH *'
int86(Ox10,®in,®out); I*INT10H *'
}

We can mix 8- and l6-bit registers as shown next:
1* example 4-7B using 8-bit registers *'
#include <dos.h> 1* int86 is part of this library *'
mainO
(
union REGS regin,regout;
regin.h.ah=6; 1* MOVAH,6 *'
regin.h.al=O; 1* MOVAL,O *'
regin.h.bh=07; 1* MOVBH,7 *'
regin.x.cx=O; '* MOVCX,O *'
regin.h.dl=Ox4F; '* MOV DL=4FH *'
regin.h.dh=Ox18; '* MOV DH=18H *'
int86(Ox10,®in,®out); '*INT10H *'
}

Example 4-8

Use function int86 with !NT l2H to find the size of conventional memory installed on a given PC.
Solntion:
!NT 12H provides the size of conventional memory in register AX.

#include <stdio.h>
#include <dos.h>
mainO
(
unsigned int convmem;
union REGS regin,regout;
int86(Ox12,®in,®out);
convmem=regout.x.ax;
printf("This PC has %dKB of Conventional memoryln" ,convmem);
}

142 CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

Example 4-9

Use the int86 function to perform the following functions.
(a) save the current cursor position, (b) set the cursor to row 12, column 8, and
(c) display the message "Hello" using the printffunction.

Solution:
#include <stdio.h>
#include <dos.h>
mainO
{
unsigned char oldrow;
unsigned char oldcol;
union REGS regin,regout;
regin.h.ah=3; ,'MOV AH,3 ;option 3tNT 10H "
regin.h.bh=O; 1* MOV SH,O ;page 0
int86(Ox10,®in,®out); 1* tNT 10H ;video INT
oldrow=regout.h.dh; 1* MOVoldrow,DH ;save row
oldcol=regout.h.dl; 1* MOV oldcol,DL ;save col
printf("Cursor was at row=%d,column=%d In",oldrow,oldcot);
regin.h.ah=2; " MOV AH,2 ;option 2 of int 10H
regin.h.bh=O; 1* MOV SH,O ;Page zero
regin.h.dl=8; 1* MOV DL,8 ;collocation
regin.h.dh=12; 1* MOV DH,12 ;row location
int86(Ox10,®in,®out); I*INT10H
printf("Helloln");
}

Example 4-10

Using function int86 with INT 21H option 30H, write a program to display the DOS version.

Solution:
#include <dos.h>
#include <stdio.h>
#include<conio.h>
mainO
{

union REGS regin,regout;
unsigned char minor, major;
clrscrO;
regin.h.ah=Ox30; I/get DOS version using AH=30H of INT 21 H
int86(Ox21,®in,®out);
minor=regout.h.ah;
major=regout.h.al;
printf("The DOS version on this PC is %d.%dln",major,minor);

}

Programming INT 21 H DOS function calls with C/C++

Although we can use the int86 function for INT 21 H DOS function calls,
there is a specially designated function, intdos, that can be used for DOS function
calls. The format of intdos is given below. Example 4-11 shows how to use intdos.

intdos(®in,®out); '* to be used for tNT 21 H only *'

"

*' "
"

*' *' *' *' *'

SECTION 4.4: INTERRUPT PROG~MMING WITH C 143

Example 4-11

Use !NT 21 H option 2AH to display the date in the form dd-mm-yy on the screen.
(a) Use intdos functions. (b) Use the int86 function.

Solution:

Upon returning from the INT 2lH function 2AH, OL contains the day, OH the month, ex the year.

(a) This program uses intdos.

#include <stdio.h>
#include <dos.h>
mainO
{
unsigned int year;
unsigned char month;
unsigned char day;
union REGS regin,regout;
regin.h.ah=Ox2A;
intdos(®in ,®out);
day=regout.h.dl;
month=regout.h.dh;
year=regout.x.cx;
printf("Today's date is %d-%d-%dln",month,day,year);
}

(b) In this program we can replace the intdos statement with

144

int86(Ox21,®in,®out)

Accessing segment registers

Both int86 and intdos allow access to registers AX, BX, ex, ox, SI, and
01, but not segment registers CS, OS, SS, and ES. In some of the interrupt services,
we need access to the segment registers as well. In such cases we must use int86x
instead of int86, and intdosx instead of intdos. In using int86x and intdosx, we must
also pass the argument SREGS. Functions int86x and intdosx have the following
formats.

int86x(interrupt #,®in,®out,®seg);
intdosx(®in.®out.®seg);
struct SREGS regseg; IIstruct SREGS given below

Functions int86x and intdosx provide access only to registers ES and OS
and not the segment registers es and SS. The contents of SS and CS cannot be
altered since their alteration will cause the program to crash. Fortunately, BIOS and
DOS function calls that use segment registers do not request the alteration of es
and SS. Example 4-12 shows how to get the values of interrupt vector tables.

Accessing the carry flag in int86 and intdos functions

Upon return from many of the interrupt functions, we need to examine the
carry flag. Functions int86, intdos, int86x and intdosx allow us to examine the carry
flag bit only, and no other flag bits are available through these functions. To access
the carry flag bit we write:

if(regout.x.cflag)

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

Example 4-12

The structures of word, byte, and segment registers are shown below.

union REGS {
struct WORD REGS {

unsigned int ax;
unsigned int bx;
unsigned int ex;
unsigned int dx;
unsigned int si;
unsigned int di;
unsigned int cflag;
} x;

struct BYTEREGS {
unsigned char al,ah;
unsigned char bl,bh;
unsigned char cl,ch;
unsigned char dl,dh;
} h;

} 'inregs;
union REGS 'outregs;

struct SREGS {
unsigned int es;
unsigned int cs;
unsigned int ss;
unsigned int ds;
} 'seregs;

Using INT 21 option 35H, get the CS;IP in the interrupt vector table for INT IOH.

Solution:
From Appendix 0, we have INT 21H, AH=35, and AL=interrupt number. Upon return, ES contains
the code segment (CS) value and BX has the instruction pointer (IP) value from the vector table.

#include <stdio.h>
#include <dos.h>
mainO
(
unsigned int ipvalu;
unsigned int csvalu;
union REGS regin,regout;
struct SREGS regseg;
regin.h.ah=Ox35; r MOV AH,35H "
regin.h.al=Ox10; r MOV AL, 1 OH "
int86x(Ox21,®in,®out,®seg);
r or we can use intdosx(®in,®out,®seg) *'
ipvalu=regout.x.bx; r MOV ipvalu,BX "
csvalu=regseg.es; '* MOV csvalu,ES *'
printf("The CS;IP of INT 10H is %X:%X \n" ,csvalu,ipvalu);
}

Mixing C with Assembly and checking ZF

The vast majority of interrupts in the PC use the carry flag to indicate special
conditions such as errors. For example, functions AH=3CH and AH=30H for INT
21H (see Appendix 0) both deal with files and need the carry flag to indicate certain
conditions. As discussed earlier, the REGS union provides only the CF (carry flag).
If the zero flag needs to be checked to see if certain conditions are met, the only
alternative is to mix C with assembly. This is called in-line Assembly, and is shown
in Program 4-7. Any x86 valid instruction can be used in a C program if it is prefixed
with "asm". In Program 4-7 a statement is displayed several times. Instead of using
a C "for" loop, register CX is used as a counter while "JNZ" checks the zero flag.

SECTION 4.4: INTERRUPT PROGRAMMING WITH C 145

II using in-line assembly to check the zero flag, this program displays a statement
/I a certain number of times, using the ex register for a counter
II thanks to Mark Lessley for his input on this example
#include <stdio.h>
#include <conio.h>
main()

{
unsigned char row=1 0;
unsigned char col=10; IIByte size data
unsigned int counter=5;
clrscr();

asm MOV CX,counter
AGAIN: asm MOV AH,2

asm MOVBH,O
asm MOV DH,row
asm MOV DL,col
asm INT 10H
asm PUSH CX

printf("This is a test!");
row++;
col++;

getch();
}

asm POPCX
asm DEC CX;
asm JNZ AGAIN

/lcx=counter
/I AH=02 of INT 10H to set cursor
/lpage 0
/I load the row value
/I load the column value
" call INT 10H to set cursor
/I save the counter

/lrestore the counter
/I decrement the counter
/I go back if ZF not high

Note: While C statements must end with a semicolon; it is optional for statements with the prefix asm.

Program 4-7

C function kbhit vs INT 16H keyboard input

The kbhit function is the C equivalent ofINT l6H in Assembly language.
Program 4-8 is a C version of Program 4-5.

I'keep sounding the bell unless any key is pressed"
#include <stdio.h>
#inciude <conio.h>
mainO
(
clrscrO;
printf("To Stop the Bell Sound Press Any Keyln");
while(!kbhit()) IIcontinue as long as there is no keyboard hit
printf("%c",OxO?); IIsend the Bell ASCII character to monitor
}

Program 4-8
Program 4-9 checks for a specific key while checking the key press by using

the getchO function in C.

"Keep sounding the bell unless 'Q' or 'q' is pressed "
#include <stdio.h>
#include <conio.h>
mainO
(
unsigned char data;
clrscrO;
printf("To Stop the Bell Sound Press Q or q Keyln");
do
(
while(!kbhit()) IIkeep sounding Bell unless a key is pressed

printf("%c" ,OxO?);
data=getchO; IIget the key press

}
while(!(data=='q'll data=='Q')); //continue as long as it is not Q or q
}

Program 4-9

146 CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

Review Questions

I. True or false. Function int86 can be used for any interrupt number.
2. True or false. Function intdos can be used for any interrupt number.
3. The int86 has arguments, whereas intdos has ~ ___ _
4. True or false. Operand regin.h.al accesses the 16-bit register.
5. Is the following code correct?

union REGS rin,rout;
rin.x.ax=Ox 1250;

6. To access segment registers we use (int86x, int86, intdos).
7. The int86x function has __ arguments and they are
8. True or false. In the int86x and intdosx functions, only "th-e'E"'S'-an-d"D=S-rc-eg-i:sters are

accessible.

SUMMARY

!NT 1 OH function calls provide the capability to manipulate text and
graphics on the screen. These interrupts reside in ROM BIOS because speed is an
important factor in these often-used routines. The function calls described in this
chapter include calls to clear or scroll the screen, change the video mode, and write
text or graphics to the screen. In text mode, the programmer works with a matrix
of 80 x 25 characters. In pixel mode, the programmer works with a matrix of pixels,
the number varying with the video mode used.

!NT 21H function calls are provided by DOS to perform many useful
functions. The function calls described in this chapter include calls to input or output
characters or strings to the monitor. !NT 16H function calls provide access to the
keyboard through the BIOS programs.

Interrupt programming can also be performed in the C programming
language through the use of structure REGS and C functions int86 and intdos. In
addition, Assembly language instructions can be coded into C programs when the
"asm" prefix is used. This is called in-line assembly.

PROBLEMS

SUMMARY

I. Write a program that:
(a) Clears the screen, and (b) sets the cursor position at row = 5 and column = 12.

2. What is the function of the following program?
MOV AH,02
MOV BH,OO
MOV DL,20
MOV DH,lO
!NT lOH

3. The following program is meant to set the cursor at position row = 14 and col = 20.
Fix the error and run the program to verify your solution.

MOV AH,02
MOV BH,OO
MOV DH,14H
MOV DL,20H
!NT 10H

4. Write a program that sets the cursor at row = 12, col = 15, then use the code below
to get the current cursor position in register OX with DH = row and DL = col. Is
the cursor position in DH and DL in decimal or hex? Verify your answer.

MOV AH,03
MOV BH,OO
!NT lOH

5. In clearing the screen, does the sequence of code prior to INT 10H matter? In set­
ting a cursor position? Verify by rearranging and executing the instructions.

147

148

6. You want to clear the screen using the following program, but there are some errors.
Fix the errors and run the program to verify it.

MOV AX,0600H
MOV BH,07
MOV CX,OOOO
MOV DX,184F
INT 10H

7. Write a program that:
(a) Clears the screen
(b) Sets the cursor at row = 8 and column = 14
(c) Displays the string "IBM Personal Computer"

8. Run the following program and dump the memory to verify the contents of memory
locations 0220H to 022FH if "IBM PC with 8088 CPU" is keyed in.

ORG 220H
BUFFER DB 15, 16 DUP (OFFH)
and for the code:

MOV AH,OAH
MOV DX,OFFSET BUFFER
INT 2lH

9. Write a program that:
(a) Clears the screen.
(b) Puts the cursor on position row = 15 and column = 20.
(c) Displays the prompt "What is your name?"
(d) Gets a response from the keyboard and displays it at row = 17 and column = 20.

10. Write a program that sets the mode to medium resolution, draws a vertical line in
the middle of the screen, then draws a horizontal line across the middle of the
screen.

11. Write a program to input a social security number in the form 123-45-6789 and
transfer it to another area with the hyphens removed, as in 123456789. Use the
following data definition.
SS AREA LABEL BYTE
SS SIZE DB 12
SS ACTUAL DB ?
SS DASHED DB 12 DUP (?)
SS NUM DB 9 DUP (?)

12. Write a program (use the simplified segment definition) to input two seven-digit
numbers in response to the prompts "Enter the first number" and "Enter the sec­
ond number". Add them together (using AAA, covered in Chapter 3) and display
the sum with the message "The total sum is: ".

13. Show how to use the union REGS to set AX =9878H, BH=90H, and CL=F4H.
14. Write a C function to set the cursor using int86. Then use it to set the cursor to

row=IO, col=20 and display the message "HELLO".
15. Write a C program with the following objectives.

(a) Clear the screen. Use int86.
(b) Set the cursor to somewhere around the middle of the screen. Use int86.
(c) Display the date and time continuously in the following format. Use intdos.

Time: hr:min:sec
Date: mon/day/yr

(d) A prompt should ask for "Q" to quit. Use C functions.
(e) When the user types in Q, it should quit displaying time and date and go back to

DOS. Use C functions.
16. A programmer has declared the REGS union as follows. Would this work?

union REGS imegs,outregs;
17. Write two versions of a C program that counts upward by increments of I and dis­

plays the count with a I-second delay in between counting. When any key is
pressed, it stops counting and goes back to DOS. The count should start from O.
(a) use the kbhit function (b) use the INT 16 function 01

18. Repeat the (b) version of the above program, with the user entering the initial
count instead of starting from zero.

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C

ANSWERS TO REVIEW QUESTIONS

SECTION 4.1: BIOS INT 10H PROGRAMMING
1. perform screen i/o
2. 80,25; 00,00 and 24,79
3. MOV AH,06 ;SELECT CLEAR SCREEN FUNCTION

MOV AL,OO ;AH=O TO SCROLL ENTIRE PAGE
MOV BH,07 ;BH=07 FOR NORMAL ATIRIBUTE
MOV CH,OO ;START AT ROW 00
MOV CL,OO ;START AT COLUMN 00
MOV DH,24 ;END AT ROW 24
MOV DL,79 ;END AT ROW 79
INT 10H ;INVOKE THE INTERRUPT

4. indicates that the cursor is at row 5, column 34
5. it provides information about the foreground and background intensity, whether the foreground is

blinking and/or highlighted
6. character
7. 10100111
8. the first time INT 10H is invoked, it sets the cursor to position 00,00; the second time it is invoked, it

displays the character '.' SO times with attributes of white on black, blinking.

SECTION 4.2: DOS INTERRUPT 21 H
1. 10H,21H
2. the leftmost code inputs a string from the keyboard into a buffer; the code on the right outputs a string

from a buffer to the monitor
3. the end of the string is the dollar sign '$'
4. OAH, OFFSET MESSAGE1
5. When the '$' within the string is encountered, the computer will stop displaying the string.
6. BELL EQU 07H
7. Using the EQU in Answer 6, the code segment would Include the following:

MOV AH,02
MOV DL,BELL
INT 21H

S. SS_AREA LABEL BYTE
SS SIZE DB 12
SS-ACTUALDB ?
SS::NUM DB 12 DUP (?)

SECTION 4.3: INT 16H KEYBOARD PROGRAMMING
1. INT 16H function AH=01
2. After return from INT 16H function AH=01, if ZF=1 there is no key press; if ZF=O then a key has been pressed.
3. If ZF=O, then we use INT 16H function AH=O to get the ASCII character for the pressed key.
4. INT 21 H waits for the user to press the key; INT 16H scans the keyboard, allowing the program to continue

executing other tasks while scanning for the key press.
5.

AGAIN: MOV AH,02
MOV DL,07
INT 21H
MOVAH,01
INT 16H
JZ AGAIN
MOVAH,O
INT 16H
CMPAL,'X'
JE EXIT
JMPAGAIN

EXIT: MOV AH,4CH
INT21H

;USE FUNCTION AH=02 OF INT 21 H
;SOUND THE BELL BY SENDING OUT BELL CHAR

;CHECK FOR KEY PRESS
;USING INT 16H
;IF NO KEY PRESS KEEP SOUNDING THE BELL
;TO GET THE CHARACTER
;WE MUST USE INT 16H ONE MORE TIME
;IS IT 'X'?
;IFYESEXIT
;NO. KEEP SOUNDING THE BELL
;GO BACK TO DOS

SECTION 4.4: INTERRUPT PROGRAMMING WITH C
1. true
2. false; only for the INT 21 H
3. 3,2
4. false
5. Yes; we can use any name. Other commonly used names are inregs,outregs, and r1,r2.
6. intS6x
7. four: INT #, ®in, ®out, ®seg
8. true

ANSWERS TO REVIEW QUESTIONS 149

CHAPTERS

MACROS AND THE MOUSE

OBJECTIVES

150 CHAPTER 5: MACROS AND THE MOUSE

In this chapter we explore the concept of the macro and its use in Assembly
language programming. The format and usage of macros are defined and many
examples of their application are explored. In addition, this chapter demonstrates
the use ofINT 33H to control mouse functions in Assembly language programs.

SECTION 5.1: WHAT IS A MACRO AND HOW IS IT USED?

There are applications in Assembly language programming where a group
of instructions performs a task that is used repeatedly. For example, INT 2lH
function 09H for displaying a string of data and function OAH for keying in data are
used repeatedly in the same program, as was seen in Chapter 4. So it does not make
sense to rewrite them every time they are needed. Therefore, to reduce the time that
it takes to write these codes and reduce the possibility of errors, the concept of
macros was born. Macros allow the progranuner to write the task (set of codes to
perform a specific job) once only and to invoke it whenever it is needed wherever
it is needed.

MACRO definition

Every macro definition must have three parts, as follows:

name MACRO dummy1,dummy2,,,.,dummyN

ENDM

The MACRO directive indicates the beginning of the macro definition and
the ENDM directive signals the end. What goes in between the MACRO and ENDM
directives is called the body oftbe macro. The namc must bc unique and must follow
Assembly language naming conventions. The dummies are names, or parameters,
or even registers that are mentioned in the body of the macro. After the macro has
been written, it can be invoked (or called) by its name, and appropriate values are
substituted for dummy parameters. Displaying a string of data using function 09 of
INT 21 H is a widely used service. The following is a macro for that service:

STRING MACRO
MOV
MOV
INT
ENDM

DATA1
AH,09
DX,OFFSET DATA1
21H

The above is the macro definition. Note that dummy argument DATAl is
mentioned in the body of macro. In the following example, assume that a prompt
has already been defined in the data segment as shown below. In the code segment,
the macro can be invoked by its name with the user's actual data:

MESSAGE1 DB 'What is your name?' ,'$'

STRING MESSAGE1

The instruction "STRING MESSAGE" invokes the macro. The assembler
expands the macro by providing the following code in the .LST file:

1
1
1

MOV
MOV
INT

AH,09
DX,OFFSET MESSAGE1
21H

The (1) indicates that the code is from the macro. In earlier versions of
MASM, a plus sign (+) indicated lines from macros.

SECTION 5.1: WHAT IS A MACRO AND HOW IS IT USED? 151

Comments in a macro

Now the question is: Can macros contain comments? The answer is yes,
but there is a way to suppress comments and make the assembler show only the lines
that generate opcodes. There are basically two types of comments in the macro:
listable and nonlistable. If comments are preceded by a single semicolon (;) as is
done in Assembly language programming, they will show up in the" .1st" file, but if
comments are preceded by a double semicolon (;;) they will not appear in the ".lst"
file when the program is assembled. There are also three directives designed to
make programs that use macros more readable, meaning that they only affect the
".lst" file and have no effect on the ".obj" or ".exe" files. They are as follows:

.LALL (List ALL) will list all the instructions and comments that are
preceded by a single semicolon in the" .lst" file. The comments preceded by a double
semicolon cannot be listed in the ".lst" file in any way .

.sALL (Suppress ALL) is used to make the list file shorter and easier to
read. It suppresses the listing of the macro body and the comments. This is
especially useful if the macro is invoked many times within the same program and
there is no need to see it listed every time. It must be emphasized that the use of
. SALL will not eliminate any opcode from the object file. It only affects the listing
in the ".lst" file .

. XALL (eXecutable ALL), which is the default listing directive, is used to
list only the part of the macro that generates opcodes.

Example 5-1 demonstrates the macro definition.

Example 5-1

Write macro definitions for setting the cursor position, displaying a string, and clearing the screen.

Solution:

CURSOR MACRO ROW,COLUMN
;THIS MACRO SETS THE CURSOR LOCATION TO ROW,COLUMN
;;USING BIOS INT 10H FUNCTION 02

MOV AH,02 ;SET CURSOR FUNCTION
MOV BH,OO ;PAGE 00
MOV DH,ROW ;ROW POSITION
MOV DL,COLUMN ;COLUMN POSITION
INT 10H ;INVOKE THE INTERRUPT
ENDM

DISPLAY MACRO STRING
;THIS MACRO DISPLAYS A STRING OF DATA
;;DX = ADDRESS OF STRING. USES FUNCTION 09 INT 21 H.

MOV AH,09 ;DISPLAY STRING FUNCTION
MOV DX,OFFSET STRING ;DX = OFFSET ADDRESS OF DATA
INT 21H ;INVOKE THE INTERRUPT
ENDM

CLEARSCR MACRO
;THIS MACRO CLEARS THE SCREEN
;;USING OPTION 06 OF INT 10H

MOV AX,0600H ;SCROLL SCREEN FUNCTION
MOV BH,O? ;NORMALATTRIBUTE
MOV CX,O ;FROM ROW=OO,COLUMN=OO
MOV DX,184FH ;TO ROW=18H,COLUMN=4FH
INT 10H ;INVOKE THE INTERRUPT
ENDM

Remember that the comments marked with ";;" will not be listed in the list file as seen in the list file
for Program 5-1.

152 CHAPTER 5: MACROS AND THE MOUSE

Using the macro definition in Example 5-1, write a program that clears the screen and then at each of
the following screen locations displays the indicated message:
at row 2 and column 4 "My name" at row 12 and column 44 "what is"
at row 7 and column 24 "is Joe" at row 19 and column 64 "your name?"

TITLE PROG5-1
PAGE 60,132

CLEARSCR MACRO
;THIS MACRO CLEARS THE SCREEN
;;USING OPTION De· OF INT 10H

MOV AX,0600H
MOV BH,07
MOV CX,O
MOV DX,1B4FH
INT 10H
EN OM

;SCROLL SCREEN FUNCTION
;NORMAL ATTRIBUTE
;FROM ROW=OO,COLUMN=OO
;TO ROW=1BH,COLUMN=4FH
;INVOKE THE INTERRUPT

DISPLAY MACRO STRING
;THIS MACRO DISPLAYS A STRING OF DATA
;;DX = ADDRESS OF STRING. USES FUNCTION 09 INT 21H.

MOV AH,09 ; DISPLAY STRING FUNCTION
MOV DX,OFFSET STRING ;DX = OFFSET ADDRESS OF DATA
INT 21H ;INVOKE THE INTERRUPT
EN OM

CURSOR MACRO ROW,COLUMN
;THIS MACRO SETS THE CURSOR LOCATION TO ROW,COLUMN
;;USING BIOS INT 10H FUNCTION 02

MOV AH,02 ;SET CURSOR FUNCTION
MOV BH,OO ; PAGE 00
MOV DH,ROW ; ROW POSITION
MOV DL,COLUMN ;COLUMN POSITION
INT 10H ;INVOKE THE INTERRUPT
EN OM

.MODEL SMALL

. STACK 64

.DATA
MESSAGE1 DB
MESSAGE2 DB
MESSAGE3 DB
MESSAGE4 DB

'My name ','$'
'is Joe','$'
'What is ','$'
'your name?', '$'

MAIN

MAIN

.CODE
PROC
MOV
MOV
.LALL

FAR
AX,@DATA
DS,AX

CLEARSCR
CURSOR 2,4
DISPLAY MESSAGE1
.XALL
CURSOR 7,24
DISPLAY MESSAGE2
.SALL
CURSOR 12,44
DISPLAY MESSAGE3
CURSOR 19,64
DISPLAY MESSAGE4
MOV AH,4CH
INT 21H
ENDP
END MAIN

Program 5-1

;LlST ALL
;INVOKE CLEAR SCREEN MACRO
;SET CURSOR TO ROm,COL 2
; INVOKE DISPLAY MACRO
;LlST ALL EXECUTABLE
;SET CURSOR TO ROW 7,COL 24
;INVOKE DISPLAY MACRO
;SUPPRESS ALL
;SET CURSOR TO ROW 12,COL 44
; INVOKE DISPLAY MACRO
;SET CURSOR TO ROW 19,COL 64
;INVOKE DISPLAY MACRO

;GO BACK TO DOS

SECTION 5.1: WHAT IS A MACRO AND HOW IS IT USED? 153

Analysis of Program 5-1

Compare the ".asm" and ".1st" files to see the use of .LALL, .xALL, and
.sALL. The .LALL directive was used for each macro and then .xALL was used
for two of them. From then on, all were suppressed.

Microsoft (R) Macro Assembler Version 5.10
PROG5-1

1/13/92 00:17:15
Page 1-1

0000
0000

0000
0000 4D 79 20 6E 61 6D

652024
0009 69 73 20 4A 6F 65
0010 576661 742069

7320 24
0019 79 6F 75 72 20 6E

61 6D 65 3F 24

0024
0000
0000 B8 OOOOs
0003 8E D8

TITLE PROG5-1
PAGE 60,132

CLEARSCR MACRO
;THIS MACRO CLEARS THE SCREEN
;;USING OPTION 06 OF INT 10H

MOV AX,0600H
MOV SH,07
MOV CX,O
MOV DX,184FH
INT 10H
ENDM

;SCROLL SCREEN FUNCTION
;NORMAL ATIRIBUTE
;FROM ROW=OO,COLUMN=OO
;TO ROW=18H,COLUMN=4FH
;INVOKE THE INTERRUPT

DISPLAY MACRO STRING
;THIS MACRO DISPLAYS A STRING OF DATA

;;DX = ADDRESS OF STRING. USES FUNCTION 09 INT 21H.
MOV AH,09 ;DISPLAY STRING FUNCTION
MOV DX,OFFSET STRING ;DX = OFFSET ADDRESS OF DATA
INT 21H ;INVOKE THE INTERRUPT
ENDM

CURSOR MACRO ROW,COLUMN
;THIS MACRO SETS THE CURSOR LOCATION TO ROW,COLUMN
;;USING BIOS INT 10H FUNCTION 02

MOV AH,02 ;SET CURSOR FUNCTION
MOV SH,OO ; PAGE 00
MOV DH,ROW ;ROWPOSITION
MOV DL,COLUMN ;COLUMN POSITION
INT 10H ;INVOKE THE INTERRUPT
ENDM

.MODEL SMALL

. STACK 64

. DATA
MESSAGE1 DB

MESSAGE2 DB
MESSAGE3 DB

'My name ','$'

'is Joe','$'
'What is ','$'

MESSAGE4 DB 'your name?' ,'$'

.CODE
MAIN PROC FAR

MOV AX,@DATA
MOV DS,AX
.LALL
CLEARSCR

;UST ALL
;INVOKE CLEAR SCREEN MACRO

List File for Program 5-1 (continued on next page)

154 CHAPTER 5: MACROS AND THE MOUSE

Microsoft (R) Macro Assembler Version 5.10
PROG5-1

1/13/92 00:17:15
Page 1-2

0005 B80600
0008 B707
OOOA B9 0000
OOOD BA 184F
0010 CD 10

0012 B4 02
0014 B700
0016 B6 02
0018 B2 04
001A CD 10

001C B4 09
001E BA 0000 R
0021 CD 21

0023 B4 02
0025 B7 00
0027 86 07
0029 8218
0028 CD 10

002D 84 09
002F 8A 0009 R
0032 CD 21

0056 844C
0058 CD 21
005A

1 ;THIS MACRO CLEARS THE SCREEN
1 ;
1
1
1
1
1

MOV AX,0600H ;SCROLL SCREEN FUNCTION
MOV BH,07 ;NORMALATTRIBUTE
MOV CX.O ;FROM ROW=OO,COLUMN=OO
MOV DX,184FH ;TO ROW=18H,COLUMN=4FH
INT 10H ;INVOKE THE INTERRUPT
CURSOR 2,4;CURSOR MACRO WILL SET CURSOR TO 2,2

1 ;THIS MACRO SETS THE CURSOR LOCATION
1 ;
1
1
1
1
1

MOV AH,02 ;SET CURSOR FUNCTION
MOV 8H,00 ;PAGE 00
MOV DH,2 ;ROW POSITION
MOV DL,4 ;COLUMN POSITION
INT 10H ;INVOKE THE INTERRUPT
DISPLAY MESSAGE1 ;INVOKE DISPLAY MACRO

1 ;THIS MACRO DISPLAYS A STRING OF DATA
1 .
1
1
1

1
1
1
1
1

1
1
1

MAIN

MOV AH,09 ; DISPLAY STRING FUNCTION
MOV DX,OFFSET MESSAGE1 ;DX = OFFSET ADDRESS OF DATA
INT 21 H ; INVOKE THE INTERRUPT

.XALL ;LlST ALL EXECUTA8LE
CURSOR 7,24 ;SET CURSOR TO ROW=7,COL= 24
MOV AH,02 ;SET CURSOR FUNCTION
MOV 8H,00 ; PAGE 00
MOV DH,7 ;ROWPOSITION
MOV DL,24 ;COLUMN POSITION
INT 10H ;INVOKE THE INTERRUPT
DISPLAY MESSAGE2 ;INVOKE DISPLAY MACRO
MOV AH,09 ;DISPLAY STRING FUNCTION
MOV DX,OFFSET MESSAGE2 ;DX = OFFSET ADDRESS OF DATA
INT 21H ;INVOKE THE INTERRUPT

.SALL ;SUPPRESS ALL
CURSOR 12,44 ;SET CURSOR TO ROW=12,COL=44
DISPLAY MESSAGE3 ;INVOKE DISPLAY MACRO
CURSOR 19,64 ;SET CURSOR TO ROW=19,COL=64
DISPLAY MESSAGE4 ;INVOKE DISPLAY MACRO
MOV AH,4CH
INT 21H
ENDP
END MAIN

;GO 8ACK TO DOS

List File for Program 5-1 (continuedJromprecedingpage)

LOCAL directive and its use in macros

In the discussion of macros so far. examples have been chosen that do not
have a label orname in the body of the macro. This is because if a macro is expanded
more than once in a program and there is a label in the label field of the body of the
macro, these labels must be declared as LOCAL. Otherwise, an assembler error
would be generated when the same label was encountered in two or more places.
The following rules must be observed in the body of the macro:

1. All labels in the label field must be declared LOCAL.
2. The LOCAL directive must be right after the MACRO directive. In other words, it

must be placed even before comments and the body of the macro; otherwise, the
assembler gives an error.

3. The LOCAL directive can be used to declare all names and labels at once as follows:
LOCAL name1,name2,name3

or one at a time as:
LOCAL
LOCAL
LOCAL

name1
name2
name3

To clarify these points, look at Example 5-2.

SECTION 5.1: WHAT IS A MACRO AND HOW IS IT USED? 155

Example 5-2

Write a macro that mUltiplies two words by repeated addition, then saves the result.

Solution:
The following macro can be expanded as often as desired in the same program since the
label "back" has been declared as LOCAL.

MULTIPLY MACRO VALUE1, VALUE2, RESULT
LOCAL BACK

, THIS MACRO COMPUTES RESULT = VALUE1 X VALUE2
;; BY REPEATED ADDITION
;;VALUE1 AND VALUE2 ARE WORD OPERANDS; RESULT IS A DOUBLEWORD

MOV BX,VALUE1 ;BX=MULTIPLIER
MOV CX,VALUE2 ;CX=MULTIPLICAND
SUB AX,AX ;CLEAR AX
MOV DX,AX ;CLEAR DX

BACK: ADD AX,BX ;ADD BX TO AX
ADC DX,OO ;ADD CARRIES IF THERE IS ONE
LOOP BACK ;CONTINUE UNTIL CX=O
MOV RESULT,AX ;SAVE THE LOW WORD
MOV RESULT+2,DX ;SAVE THE HIGH WORD
ENDM

Use the macro defmition in Example 5-2 to write a program that mUltiplies the following:
(I) 2000 x 500 (2) 2500 x 500 (3) 300 x 400

TITLE PROG5-2
PAGE 60,132

MULTIPLY MACRO VALUE1, VALUE2, RESULT
LOCAL BACK

;THIS MACRO COMPUTES RESULT = VALUE1 X VALUE2
;;BY REPEATED ADDITION
;;VALUE1 AND VALUE2 ARE WORD OPERANDS; RESULT IS A DOUBLEWORD

MOV BX,VALUE1 ;BX=MULTIPLIER
MOV CX,VALUE2 ;CX=MULTIPLICAND
SUB AX,AX ;CLEAR AX
MOV DX,AX ;CLEAR DX

BACK: ADD AX, BX ;ADD BX TO AX
ADC DX,OO ;ADD CARRIES IF THERE IS ONE
LOOP BACK ;CONTINUE UNTIL CX=O
MOV RESULT,AX ;SAVE THE LOWWORD
MOV RESULT +2,DX ;SAVE THE HIGH WORD
ENDM

,--------
.MODEL SMALL
. STACK 64

.DATA
RESULT1 DW
RESULT2 DW
RESULT3 DW

2 DUP (0)
2 DUP (0)
2 DUP (0)

,----------------------
MAIN

MAIN

.CODE
PROC FAR
MOV AX,@DATA
MOV DS,AX
MULTIPLY 2000,500,RESULT1
MULTIPLY 2500,500,RESULT2
MULTIPLY 300,400,RESULT3
MOV AH,4CH
INT 21H
ENDP
END MAIN

;GO BACK TO DOS

Program 5-2

156 CHAPTER 5: MACROS AND THE MOUSE

Notice in Example 5-2 that the "BACK" label is defined as LOCAL right
after the MACRO directive. Defining this anywhere else causes an error. The use
of a LOCAL directive allows the assembler to define the labels separately each time
it encounters them. The list file below shows that when the macro is expanded for
the first time, the list file has "770000". For the second time it is "770001", and for
the third time it is "??0002" in place of the "BACK" label, indicating that the label
"BACK" is local. To clarify this concept, try Example 5-2 without the LOCAL
directive to see how the assembler will give an error.

Microsoft (R) Macro Assembler Version 5.10
PROGS-2

1/13/92 00:33:14
Page 1-1

0000
0000
0040

0000
0000 0002 [

0000
1

0004 0002 [
0000

1
0008 0002 [

OOOC
0000

0000 88 OOOOs
0003 8E D8

0005 88 07DO 1
0008 89 01F4 1
0008 28 CO 1
OOOD 88 DO 1
OOOF 03 C3 1
0011 83 D2 00 1
0014 E2 F9 1
0016 A3 0000 R 1
0019 89 16 0002 R 1

TITLE PROG5-2
PAGE 60,132

MULTIPLY MACRO VALUE1, VALUE2, RESULT
LOCAL8ACK

;THIS MACRO COMPUTES RESULT = VALUE1 X VALUE2
;;8Y REPEATED ADDITION
;;VALUE1 AND VALUE2 ARE WORD OPERANDS; RESULT IS A DOUBLE

MOV BX,VALUE1 ;BX=MULTIPLIER
MOV CX,VALUE2 ;CX=MULTIPLICAND
SUB AX,AX ;CLEAR AX
MOV DX,AX ;CLEAR DX

BACK: ADD AX,BX ;ADD BX TO AX
ADC DX,OO ;ADD CARRIES IF THERE IS ONE
LOOP BACK ;CONTINUE UNTIL CX=O
MOV RESULT,AX ;SAVE THE LOW WORD
MOV RESULT+2,DX ;SAVE THE HIGH WORD
ENDM

.MODEL SMALL

.STACK64
STSEG ENDS

. DATA
RESULT1 DW 2 DUP (0)

RESULT2 DW 2 DUP (0)

RESULT3 DW 2 DUP (0)

.CODE
MAIN PROC FAR

ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
MOV AX,@DATA
MOV DS,AX
MULTIPLY 2000,500,RESULT1
MOV BX,200D ;BX=MULTIPLIER
MOV CX,500 ;CX=MULTIPLICAND
SUB AX,AX ;CLEAR AX
MOV DX,AX ;CLEAR DX

??OOOO: ADD AX, BX ;ADD BX TO AX
ADC DX,DO ;ADD CARRIES IF THERE IS ONE
LOOP ??OOOO ;CONTINUE UNTIL CX=O
MOV RESULT1,AX ;SAVE THE LOW WORD
MOV RESULT1+2,DX ;SAVE THE HIGH WORD

List File for Program 5-2 (continued on next page)

SECTION 5.1: WHAT IS A MACRO' AND HOW IS IT USED? 157

Microsoft (R) Macro Assembler Version 5.10
PROG5-2

1/13/92 00:33:14
Page 1-2

0010 BB 09C4 1
0020 B901F4 1
0023 2B CO 1
0027 03 C3 1770001:
0029 83 02 00 1
002C E2 F9 1
002E A3 0004 R 1
0031 89 16 0006 R 1

0035 BB 012C
0038 B90190
003B 2B CO
0030 8B DO
003F 03 C3
0041 830200
0044 E2 F9
0046 A3 0008 R
0049 89 16 OOOA R
0040 B44C
004F CD 21
0051

1
1
1
1
1770002:
1
1
1
1

MAIN

MULTIPLY 2500,500,RESULT2
MOV BX,2500 ;BX=MULTIPLIER
MOV CX,500 ;CX=MULTIPLICAND
SUB AX,AX ;CLEAR AX
ADD AX, BX ;ADD BX TO AX
ADC DX,OO ;ADD CARRIES IF THERE IS ONE
LOOP 770001 ;CONTINUE UNTIL CX=O
MOV RESULT2,AX ;SAVE THE LOWWORD
MOV RESULT2+2,DX ;SAVE THE HIGH WORD
MULTIPLY 300,400,RESULT3
MOV BX,300 ;BX=MULTIPLIER
MOV CX,400 ;CS=MULTIPLICAND
SUB AX,AX ;CLEAR AX
MOV DX,AX ;CLEAR OX
ADD AX,BX ;ADD BX TO AX
ADC DX,OO ;ADD CARRIES IF THERE IS ONE
LOOP 770002 ;CONTINUE UNTIL CX=O
MOV RESULT3,AX ;SAVE THE LOW WORD
MOV RESULT3+2,DX ;SAVE THE HIGH WORD
MOV AH,4CH
INT 21H ;GO BACK TO DOS
ENDP
END MAIN

List File for Program 5-2 (continuedjromprecedingpage)

158

INCLUDE directive

Assume that there are several macros that are used in every program, Must
they be rewritten every time? The answer is no if the concept of the INCLUDE
directive is known. The INCLUDE directive allows a programmer to write macros
and save them in a file, and later bring them into any file. For example, assume that
the following widely used macros were written and then saved under the filename
"MYMACROI.MAC".

CLEARSCR MACRO ;the clear screen macro

DISPLAY

REGSAVE

MOV AX,0600H
MOV SH,O?
MOV CX,OOOO
MOV DX,184FH
INT 10H
EN OM

MACRO STRING ;the string display macro
MOV AH,09
MOV DX,OFFSET STRING
INT 21H
ENDM

MACRO
PUSH AX
PUSH SX
PUSH CX
PUSH OX
PUSH 01
PUSH SI
PUSH SP
PUSHF
ENDM

;this macro saves all the registers

CHAPTER 5: MACROS AND THE MOUSE

REGRESTO MACRO ;this macro restores all the registers
POPF
POP BP
POP SI
POP DI
POP DX
POP CX
POP BX
POP AX
ENDM

Assuming that these macros are saved on a disk under the filename "MY­
MACRO I.MAC", the INCLUDE directive can be used to bring this file into any
".asm" file and then the program can call upon any of the macros as many times as
needed. When a file includes all macros, the macros are listed at the beginning of
the ".1st" file and as they are expanded, they will be part of the program. To
understand this, see the following program.

Program 5-3 includes macros to clear the screen, set the cursor, and display
strings. These macros are all saved under the "MYMACR02.MAC" filename. The
".asm" and ".1st" versions of the program that use the clear screen and display string
macros only to display "This is a test of macro concepts" are shown on the following
pages.

Notice that in the list file of Program 5-3, the letter "C" in front of the lines
indicates that they are copied from another file and included in the present file.

TITLE PROG5-3
PAGE 60,132

INCLUDE MYMACR02.MAC
.MODEL SMALL
. STACK 64

. DATA
MESSAGE1 DB 'This is a test of macro concepts','$'

.CODE
MAIN PROC FAR

MOV AX@DATA
MOV DS,AX
CLEARSCR ;INVOKE CLEAR SCREEN MACRO
DISPLAY MESSAGE1 ;INVOKE DISPLAY MACRO
MOV AH,4CH
INT 21H ;GO BACK TO DOS

MAIN ENDP
END MAIN

Program 5-3

Review Questions

1. Discuss the benefits of macro programming.
2. List the three parts of a macro.
3. Explain and contrast the macro definition, invoking the macro, and expanding the

macro.
4. True or false. A label defined within a macro is automatically understood by the as­

sembler to be local.
5. True or false. In the list file for Program 5-3, the "COO at the beginning of a line indi­

cates that it is a comment.

SECTION 5.1: WHAT IS A MACRO'AND HOW IS IT USED? 159

Microsoft (R) Macro Assembler Version 5.10
PROG5-3

1113/92 00:41:49
Page 1-1

0000
0000

0000

TITLE PROG5-3
PAGE 60,132

INCLUDE MYMACR02.MAC
C· MYMACR02 (MAC) FOR PROGRAM5-3
C·-------------------
C CURSOR MACRO ROW,COLUMN
C ;THIS MACRO SETS THE CURSOR LOCATION AT ROW,COLUMN
C ;;USING BIOS INT 10H FUNCTION 02
C MOV AH,02 ;SET CURSOR FUNCTION
C MOV BH,OO ; PAGE 00
C MOV DH,ROW ;ROWPOSITION
C MOV DL,COLUMN ;COLUMN POSITION
C INT 10H ;INVOKE THE INTERRUPT
C ENDM
C·---------------------
C DISPLAY MACRO STRING
C ;THIS MACRO DISPLAYS A STRING OF DATA
C ;;DX = ADDRESS OF STRING. USES FUNCTION 09 INT 21 H.
C MOV AH,09 ;DISPLAY STRING FUNCTION
C MOV DX,OFFSET STRING ;DX = OFFSET ADDRESS OF DATA
C INT 21H ;INVOKE THE INTERRUPT
C EN OM
C·---------------------
C CLEARSCR MACRO
C ;THIS MACRO CLEARS THE SCREEN
C ;;USING OPTION 06 OF INT 10H
C MOV AX,0600H ;SCROLL SCREEN FUNCTION
C MOV BH,07 ;NORMAL AITRIBUTE
C MOV CX,O ;FROM ROW=OO,COLUMN=OO
C MOV DX,184FH ;TO ROW=18H,COLUMN=4FH
C INT 10H ; INVOKE THE INTERRUPT
C ENDM
C;-------------------

.MODEL SMALL

.STACK 64

0000 54 68 69 73 20 69
7320 61 20 74 65
737420 6F 66 20
60 61 63 72 6F 20
63 6F 6E 63 65 70
747324

.DATA
MESSAGE1 DB 'This is a test of macro concepts','$'

0000
0000
0000 B8 OOOOs
0003 8E 08

0005 B80600

.CODE
MAIN PROC FAR
MOV AX,@DATA
MOV DS,AX
CLEARSCR ;INVOKE CLEAR SCREEN MACRO
MOX AX,0600H

List File for Program 5-3 (continued on next page)

160 CHAPTER 5: MACROS AND THE MOUSE

Microsoft (R) Macro Assembler Version 5.10
PROG5-3

1/13/92 00:41:49
Page 1-2

0008 B707
OOOA B90000
0000 BA 184F
0010 CD 10

0012 B4 09
0014 BA 0000 R
0017 CD 21
0019 B44C
001B CD 21
0010

1
1
1

MOV BH,07 ;NORMAL ATTRIBUTE
MOV CX,O ;FROM ROW=OO,COLUMN=OO
MOV DX,184FH ;TO ROW=18H,COLUMN=4FH
INT 10H ;INVOKE THE INTERRUPT
DISPLAY MESSAGE1 ;INVOKE DISPLAY MACRO
MOV AH,09 ;DISPLAY STRING FUNCTION
MOV DX,OFFSET MESSAGE1 ;DX =OFFSET ADDRESS OF DATA
INT 21H ;INVOKE THE INTERRUPT
MOV AH,4CH
INT 21 H ;GO BACK TO DOS

MAIN ENDP
END MAIN

List File for Program 5-3 (conlinuedJromprecedingpage)

SECTION 5.2: MOUSE PROGRAMMING WITH INTERRUPT 33H

Next to the keyboard, the mouse is one of the most widely used input
devices. This section describes how to use \NT 33H to add mouse capabilities to
programs.

INT33H

The original IBM PC and DOS did not provide support for the mouse. For
this reason, mouse interrupt INT 33H is not part of BIOS or DOS. This is in contrast
to \NT 2lH and \NT lOH, which are the DOS and BIOS interrupts, respectively.
\NT 33H is part of the mouse driver software that is installed when the PC is booted.

Detecting the presence of a mouse

While new PCs come with a mouse and driver already installed by the PC
manufacturer, many older-generation PCs in use do not have a mouse. Therefore,
the first task of any \NT 33H program should be to verify the presence of a mouse
and the number of buttons it supports. This is the purpose of \NT 33H function
AX=O. Upon return from \NT 33H, ifAX=O then no mouse is supported. If
AX=FFFFH, the mouse is supported and the number of mouse buttons will be
contained in register BX. Although most mice have two buttons, right and left, there
are some with middle buttons as well. See the following code.

MOV AX,O ;mouse inttialization option
INT 33H
CMP AX,O ;check AX contents upon retum from INT 33H
JE EXIT ;extt ifAX=O since no mouse available
MOV M_BUTTON,BX ;mouse is there, save the number of buttons

EXIT:

Notice the following points about the way \NT 33H is called.

1. In \NT 2lH and \NT IOH, the AH register is used to select the functions. This is not
the case in \NT 33H. In \NT 33H the register AL is used to select various functions
and AH is set to O. That is the reason behind the instruction "MOV AX,O".

2. Do not forget the "H" indicating hex in coding \NT 33H. In the absence of the "H",
the compiler asSumes it is decimal and will execute DOS \NT 21H since 33 decimal
is equal to 21H.

SECTION 5.2: MOUSE PROGRAMMING WITH INTERRUPT 33H 161

Example 5-3

Some mouse terminology

Before further discussion of lNT 33H, some terminology concerning the
mouse needs to be clarified. The mouse pointer (or cursor) is the pointer on the
screen indicating where the mouse is pointing at a given time. In graphics mode,
the mouse pointer (cursor) is an arrow; in text mode, the mouse pointer is a flashing
block. In either mode, as the mouse is moved, the mouse cursor is also moved. While
the movement of the mouse is measured in inches (or centimeters), the movement
of the mouse cursor (arrowhead) on the screen is measured in units called mickeys.
Mickey units indicate mouse sensitivity. For example, a mouse that can move the
cursor 200 units for every inch of mouse movement has a sensitivity of200 mickeys.
In this case, one mickey represents 11200 of an inch on the screen. Some mice have
a sensitivity of 400 mickeys in contrast to the commonly used 200 mickeys. In that
case, for every inch of mouse movement, the mouse cursor moves 400 mickeys.

Displaying and hiding the mouse cursor

The AX=OI function ofINT 33H is used to display the mouse cursor.

MOV AX,01
INT 33H

After executing the above code, the mouse pointer is displayed. If the video
mode is graphics, the mouse arrow becomes visible. If the video mode is text, a
rectangular block representing the mouse cursor becomes visible. In text mode, the
color of the mouse cursor block is the opposite of the background color in order to
be visible. It is best to hide the mouse cursor after making it visible by executing
option AX=02 of INT 33H. This is shown in Example 5-3. Try Example 5-3 in
DEBUG (remember to omit the "H" and place INT 3 as the last instruction when in
DEBUG). Then try it with mode AH=03 for INT IOH to see the mouse cursor in
text mode.

Ca) Use INT 10H option OF to get the current video mode and save it in BL; (b) set the video mode to
VGA graphics using option AH=IOH ofINT IOH; (c) initialize the mouse with AX=O, INT 33H;
(d) make the mouse visible; (e) use INT 2lH option AH=OI to wait for key press; (f) if any key is
pressed restore the original video mode.

Solution:
MaV AH,OFH ;get the current video mode
INT IOH
MaV BL,AL ;and save it
MaV AH,O ;set the video mode
MaV AL,IOH ;to VGA graphics
INT IOH
Mav AX,O ;initialize the mouse
INT 33H
MaV AX,OI ;make the mouse cursor visible
INT 33H
MaV AH,OI ;wait for key press
INT 2lH
Mav AX,2 ;when any key is pressed
INT 33H ;make mouse invisible
MaV AH,O
MaV AL,BL ;and restore original video mode
INT 10H

162 CHAPTER 5: MACROS AND THE MOUSE

Video resolution vs. mouse resolution in text mode

As discussed in Chapter 4, the video screen is divided into 640x200 pixels
in text mode. This means that in text mode of SOx25 characters, each character will
use SxS pixels (SO x S ~ 640 and 25 x S ~ 200). When the video mode is set to text
mode (AH~03 ofINT 10H), the mouse will automatically adopt the same resolution
of 640x200 for its horizontal and vertical coordinates. Therefore, in text mode when
a program gets the mouse cursor position, the values are provided in pixels and must
be divided by S to get the mouse cursor position in terms of character locations 0 to
79 (horizontal) and 0 to 24 (vertical) on the screen.

Video resolution vs. mouse resolution in graphics mode

In graphics, resolution is not only 640x200 but also 640x350 and 640x4S0.
When the video resolution is changed to these video modes, the mouse also adopts
the graphics resolutions. See Table 5-1.

Table 5-1: Video and Mouse Resolution for Some Video Modes

II Vid~o Mode I Video Res~lution I Type Mouse Res~lution I Characters per Screen -i
IIAL~03 I 640x200 I Text 640x200 . -----i- . 80x25 I

I AL~OEH .. ----1- 640x200 I Graphics 1.~x200 L 80x25 __ .. J.'
IIAL~OFH-------+n . 640x350 Graphics i 640x350· 80x44_ .1

!iAL~lOH I. 640x350 Graphics I 640x350 80x44 I
IIAL~llH I 640x480 . I Graphics: 640x480 80x601

liAL~12H 640x480 I Graphics I 640x480 80x60'

Getting the current mouse cursor position (AX=03)

Option AX~03 ofINT 33H gets the current position of the mouse cursor.
Upon return, the X and Y coordinates are in registers CX (horizontal) and DX
(vertical). BX contains the button status as follows: DO~ left button status, D I ~ right
button status, D2~ center button status. The status is I if down, 0 ifup. Notice that
the cursor position provided by this function is given in pixels. For example, the
position returned will be in the range of 0 - 639 (horizontal) and 0 - 199 (vertical)
for a 640x200 screen in most text and graphics video modes. However, the mouse
cursor position is often needed in terms of character positions such as SOx25 and
not in terms of pixels. To get the mouse cursor character position, divide both the
horizontal and vertical values ofCX and DX by S. See Programs 5-4 and 5-5.

TITLE PROGRAM 5-4: DISPLAYING MOUSE POSITION
;Performs the following tasks: (a) gets the current video mode and saves it, (b) sets the mode to a new video
;mode, (c) gets the mouse painter position, converts it to character position and displays it continuously unless a
;key is pressed, (d) upon pressing any key, it restores the original video mode and exits to DOS.
PAGE 60,132
CURSOR MACRO ROW,COLUMN

MOV AH,02H
MOV BH,OO
MOV DH,ROW
MOV DL,COLUMN
INT 10H
ENDM

DISPLAY MACRO STRING
MOV AH,09H
MOV DX,OFFSET STRING ;Ioad string address
INT 21H
ENDM

Program 5-4 (continued on the next page)

SECTION 5.2: MOUSE PROGRAMMING WITH INTERRUPT 33H 163

MESSAGE 1
MESSAGE-2
POS HO -
POS-VE
OLDVIDEO
NEWVIDEO

MAIN

AGAIN:

MAIN

.MODEL SMALL

.STACK
DATA
DB 'PRESS ANY KEY TO GET OUT ,'$'
DB 'THE MOUSE CURSOR IS LOCATED AT ','$'
DB 7,7, 'AND $'
DB 7,7,'$'
DB 7
DB OEH
.CODE

PROC
MOV AX,@DATA
MOV DS,AX
MOV AH,OFH
INT 10H
MOV OLDVIDEO,AL
MOV AX,0600H
MOV BH,07
MOV CX,O
MOV DX,184FH
INT 10H
MOV AH,OOH
MOV AL,NEWVIDEO
INT 10H
MOV AX,O
INT 33H
MOV AX,01
INT 33H
CURSOR 20,20
DISPLAY MESSAGE
MOV AX,03H -
INT 33H
MOV AX,CX
CALL CONVERT
MOV POS HO,AL
MOV POS-HO+1,AH
MOV AX,DX
CALL CONVERT
MOV POS VE,AL
MOV POS-VE+1,AH
CURSOR 5,20
DISPLAY MESSAGE 2;
DISPLAY POS HO -
DISPLAY POS-VE
MOV AH,of
INT 16H
JZ AGAIN
MOV AH,02
INT 33H
MOV AH,O
MOV AL,OLDVIDEO
INT 10H
MOV AH,4CH
INT 21H
ENDP

:current video mode
;new video mode

;get current video mode

;save it
:clear screen

:5et new video mode

: initialize mouse

:show mouse cursor

;get mouse location

;get the hor. pixel position
;convert to displayable data
;save the LSD
;save the MSD
;get the vert. pixel position
:convert
;save

:check for key press

;if no key press, keep monitoring mouse position
;hide mouse

;restore original video mode
;Ioad original video mode

;go back to DOS

;divide pixels position by 8 and convert to ASCII to make it displayable
;ax=pixels position (it is in hex)
;on return ax= two ASCII digits
CONVERT PROC

SHR
SHR
SHR
MOV
SUB
DIV
OR
RET

CONVERT ENDP

AX,1
AX,1
AX,1
BL,10
AH,AH
BL
AX,3030H

END MAIN

:divide
:by 8
:to get screen position by character

:divide by ten to convert from hex. to decimal
;make it ASCII
:return with AX=two ASCII digits

Program 5-4 (continued from preceding page)

164 CHAPTER 5: MACROS AND THE MOUSE

TITLE PROGRAM 5-5:MOUSE BOX PROGRAM
;Peliorms the following: (a) gets the current video mode and saves it, (b) sets the video mode to a new one and
;clears screen, (c) draws a colored box and gets the mouse position, (d) displays different messages depending
;on whether the mouse is clicked inside or outside the box Pressing any key will return to DOS.
;Thanks to Travis Erck and Gary Hudson for their input on this program

CURSOR MACRO ROW,COLUMN
MOV AH,02H
MOV BH,OO
MOV DH,ROW
MOV DL,COLUMN
INT 10H
ENDM

DISPLAY MACRO STRING
MOV AH,09H
MOV DX,OFFSET STRING ;Ioad string address
INT 21H
ENDM

FILL MACRO ROW START,COL START,ROW END,COL END,COLOR
LOCAL START,AGAIN - - -
MOV DX,ROW START

START: MOV CX,COL START
AGAIN: MOV AH,OCH-

MOV AL,COLOR
INT 10H
INC CX
CMP CX,COL END
JNE AGAIN-
INC DX
CMP DX,ROW END
JNE START-
ENDM

.MODEL SMALL

.STACK

.DATA
MESSAGE 1 DB 'AN EXAMPLE OF HOW TO USE INTERRUPT 33H FOR MOUSE.','$'
MESSAGE-2 DB'ITWORKS!','$'
MESSAGE-3 DB 'CLICK IN THE BOX TO SEE WHAT HAPPENS!','$'
MESSAGE-4 DB 'No, NO, NO I SAID IN THE BOX!','$'
MESSAGE-5 DB 'NOW PRESS ANY KEY TO GET BACK TO DOS. $'
OLDVIDEO- DB ?
NEWVIDEO DB 12H

.CODE
MAIN PROC

MOV AX,@DATA
MOV DS,AX
MOV AH,OFH ;get the current video mode
INT 10H
MOV OLDVIDEO,AL ;save it
MOV AX,0600H ;clear screen
MOV BH,O?
MOV CX,O
MOV DX,184FH
INT 10H
MOV AH,OOH ;set new video mode
MOV AL,NEWVIDEO
INT 10H
CURSOR 0,0
FILL 150,250,250,350,4 ;draw red box
CURSOR 1,1
DISPLAY MESSAGE 1;
CURSOR 5,22 -
DISPLAY MESSAGE 3;
MOV AX,OOOOH - ;initialize mouse
INT 33H
MOV AX,01H
INT 3 3H ;show mouse cursor

Program 5-5 (continued on next page)

SECTION 5.2: MOUSE PROGRAMMING WITH INTERRUPT 33H 165

BACK: MOV AX,03H ;check for mouse button press
INT 33H
CMP BX,OOOI H
JNE BACK
CMP CX,250
JB NOT INSIDE
CMP CX,3S0
JA NOT INSIDE
CMP DX,IS0
JB NOT INSIDE
CMP DX,2S0
JA NOT INSIDE
CURSOR 18,18
DISPLAY MESSAGE 2
JMP EXIT -

;now CX =COL and DX=ROW location
;check to see if left button is pressed
;If not keep checking
;see if on right side of box
;if less it must be outside box
;see if on left side of box
;if not then it is outside the box
;check for the top of the box
;if not then outside the box
;see if bottom of the box

;then it must be inside box
;indicate mouse is inside the box
;go prepare to exit to DOS

NOT INSIDE:
- CURSOR 20,18

DISPLAY MESSAGE 4
;indicate mouse is not inside box

EXIT: MOV AH,02H - ;hide mouse before exiting to DOS
INT 33H
CURSOR 22,18
DISPLAY MESSAGE 5
MOV AH,07 -
INT 21H
MOV AH,O
MOV AL,OLDVIDEO
INT 10H
MOV AH,4CH
INT 21H

;wait for a key press

;restore original video mode

;exit
;to DOS

MAIN ENDP
END

Program 5-5 (continued from preceding page)

166

Setting the mouse pointer position (AX=04)

This function allows a program to set the mouse pointer to a new location
anywhere on the screen. Before calling this function, the coordinates for the new
location must be placed in registers CX for the horizontal (x coordinate) and DX
for the vertical (y coordinate). These values must be in pixels in the range of 0 - 639
and 0 - 199 for 640x200 resolution. Coordinate (0,0) is the upper left corner of the
screen. For example, to set the mouse cursor at location 9x5 (on a 80x25 screen),
simply multiply both by 8 to get the pixel location. Therefore, a character coordinate
of9x5 becomes 72x40 in pixel coordinates.

Getting mouse button press information (AX=05)

This function is used to get information about specific button presses since
the last call to this function. It is set up as follows.

AX=05
BX=O for left button; 1 for right button; 2 for center button

Upon return;
AX=button status where

00= Left button, if 1 it is down and if 0 it is up
01 = Right button, if 1 it is down and if 0 it is up
02= Center button, if 1 it is down and if 0 it is up

BX=button press count
CX=x-coordinate at the last button press in pixels (horizontal)
OX=y-coordinate at the last button press in pixels (vertical)

Notice in function AX=05 that upon returning from !NT 33H, register AX
has the button status (up or down), while register BX has the number of times the
specific button is pressed since the last call to this function. Program 5-6 shows one
way to use this function.

CHAPTER 5: MACROS AND THE MOUSE

Monitoring and displaying the button press count program

Program 5-6 uses the AX~05 function to monitor the number of times the
left button is pressed and then displays the count. It prompts the user to press the
left button a number of times. When the user is ready to see how many times the
button was pressed, any key can be pressed.

TITLE PROGRAM 5-6: DISPLAY MOUSE PRESS COUNT
;THIS PROGRAM WAITS FOR THE MOUSE PRESS COUNT AND DISPLAYS IT WHEN
;ANY KEY IS PRESSED.
;PRESS ANY KEY TO GO BACK TO DOS
PAGE 60,132

CURSOR MACRO ROW,COLUMN
MOV AH,02H
MOV BH,OO
MOV DH,ROW
MOV DL,COLUMN
INT 10H
ENDM

DISPLAY MACRO STRING
MOV AH,09H
MOV DX,OFFSET STRING ;LOAD STRING ADDRESS
INT 21H
ENDM

.MODEL SMALL

.STACK

.DATA
MESSAGE 1 DB 'PRESS LEFT BUnON A NUMBER OF TIMES:LESS THAN 99.','$'
MESSAGC2 DB 'TO FIND OUT HOW MANY TIMES, PRESS ANY KEY','$'
MESSAGE-3 DB 'YOU PRESSED IT ','$'
P COUNT- DB ?,?, 'TIMES $'
MESSAGE 4 DB 'NOW PRESS ANY KEY TO GO BACK TO DOS' ,'$'
OLDVIDEO- DB ? ;current video mode
NEWVIDEO DB 12H ;new video mode

.CODE
MAIN PROC

MOV AX,@DATA
MOV DS,AX
MOV AH,OFH ;get current video mode
INT 10H
MOV OLDVIDEO,AL ;save it
MOV AX,0600H ;clear screen
MOV BH,07
MOV CX,O
MOV DX,184FH
INT 10H
MOV AH,OOH ;set new video mode
MOV AL,NEWVIDEO
INT 10H
MOV AX,O ;initialize mouse
INT 33H
MOV AX,01 ;show mouse cursor
INT 33H
CURSOR 2,1
DISPLAY MESSAGE 1
CURSOR 4,1 -
DISPLAY MESSAGE 2
MOV AH,07 - ;wait for key press
INT 21H
MOV AX,05H ;get mouse press count
MOV BX,O ;check press count for left button
INT 33H

Program 5-6 (continued on next page)

SECTION 5.2: MOUSE PROGRAMMING WITH INTERRUPT 33H 167

MOV AX,BX ;BX=bulton press count
MOV BL,10
DIV BL
OR AX,3030H ;convert it to ASCII
MOV P COUNT,AL ;save the number
MOV P-COUNT+1,AH
CURSOR 10,2
DISPLAY MESSAGE 3
DISPLAY P COUNT­
CURSOR 20,2
DISPLAY MESSAGE 4
MOV AH,07 - ;wait for a key press to get out
INT 21H
MOV AH,02 ;hide mouse
INT 33H
MOV AH,O ;restore original video mode
MOV AL,OLDVIDEO ;Ioad original vide mode
INT 10H
MOV AH ,4CH ;go back to DOS
INT 21H

MAIN ENDP
END MAIN

Program 5-6 (continued from preceding page)

168

Getting mouse button release information (AX=06)

This function is the same as AX =05 except that it provides infonnation
about the button release.

Cali with:
AX =06
BX = 0 for left button: 1 for right button; 2 for center button

Upon retu rn:
AX = button status where

DO = Left button, if 1 it is down and if 0 it is up
D1 = Right button, if 1 it is down and if 0 it is up
D2 = Center button, if 1 it is down and if 0 it is up

BX = button release count
CX = x coordinate at the last button release in pixels (horizontal)
DX = Y coordinate at the last button release in pixels (vertical)

Setting horizontal boundary for mouse pointer (AX=07)

When the mouse is initialized using the AX =0 function, the mouse cursor
can move anywhere on the screen. This function and the following one set the x and
y coordinate boundaries in which mouse movement is confined. Call as follows.

AX=07
CX = minimum x coordinate in pixels (0 - 639)
DX = maximum x coordinate in pixels (0 - 639)

Notice that CX must be less than OX; otherwise, they are swapped.

Setting vertical boundary for mouse pointer (AX=08)

This and the previous function allow a program to set the x and y coordinates
in which the mouse movement is confined.

AX = 08
CX = minimum y coordinate in pixels (0 - 199)
DX = maximum y coordinate in pixels (0 - 199)

Notice that CX must be less than OX; otherwise, they are swapped.

CHAPTER 5: MACROS AND THE MOUSE

Setting an exclusion (off-limits) area for the mouse pointer (AX=10H)

This function is used to set an area that is off-limits for the mouse cursor.
If the mouse cursor moves to the exclusion area, it disappears.

Call with:
AX = 10H
CX = upper x coordinate,
DX = upper y coordinate,

SI = lower x coordinate
DI = lower y coordinate

Getting mouse driver information (version) (AX=24H)

This function allows a program to determine which version of the mouse
driver is installed. It also indicates the type of mouse, such as an internal bus mouse
or an external mouse via a serial port type.

Call with:
AX = 24H

Upon return we have:
BH = major version BL = minor version (e.g., "7.20" 7 is major, 20 is minor)
CH = mouse type where

1 = bus mouse, 2 = serial mouse, 3 = InPort mouse,
4 = PS/2 mouse, 5 = HP mouse

CL= 0 if mouse is PS/2 type. If it is a serial mouse, the number is between 2 and
7, indicating the IRQ number being used (such as IRQ2, IRQ3, etc.).

Program 5-7 gives an example of a C program using the mouse. Interrupt
33H is called using the int86 C function to see ifthere is a mouse present. If there
is a mouse present, the program will print the number of buttons on the mouse.

II This program uses INT 33H to see if mouse driver is installed and if so it displays
II the number of buttons on the mouse
#include <stdio.h>
#include <dos.h>
#include <conio.h>
mainO
{
union REGS ri,ro;
clrscrO;
ri.x.ax=OxO; I/check to see if there is mouse
int86(Ox33,&ri,&ro);
if(ro.x.ax>O)

printf("lnlnYou have %d button(s) on the mouse on this PC",ro.x.bx);
else

printf("This PC has no mouseln");
}

Program 5-7

Review Questions

I. Which function of !NT 33H is used to detect the presence of a mouse in a PC? In
which register do we expect to get that information? In which register do we find
the number of buttons in the mouse?

2. The following code is an attempt to call !NT 33H function 2. Is it correct? If not,
correct it.

MOVAH,02
INT 33H

3. Why do we need to save the original video mode before changing it for the mouse?
4. In INT 33H function AX=03, how can a left button press be detected?
5. True or false. The mouse coordinate is the same as video mode.

SECTION 5.2: MOUSE PROGRAMMING WITH INTERRUPT 33H 169

SUMMARY

Macros are used by programmers to save time in coding and debugging.
Whenever a set of instructions must be performed repeatedly, these become ideal
candidates for a macro. Values can be passed to macros to be used by instructions
within the macro. Programmers can place several often-used macros within a file
that can be brought into one or more programs.

In recent years, the mouse has become a standard input device on the IBM
Pc. The original IBM PC BIOS and DOS did not provide for the mouse. INT 33H
is part of the mouse driver software that is installed when the PC is booted. Function
calls to INT 33H are used for mouse input and cursor control.

PROBLEMS

170

I. Every macro must start with directive and end with directive ___ _
2. IdentifY the name, body, and dummy argument in the following macro:

WORK HOUR MACRO OVRTME HR
- -

MOV AL,40 ;WEEKLY HRS
ADD AL,OVRTME_HR ;TOTALHRS WORKED
ENDM

3. Explain the difference between the .SALL, .LALL, and XALL directives.
4. What is the total value in registers DX and AX after invoking the following macro?

WAGES MACRO SALARY,OVERTIME,BONUSES
;TOTAL WAGES=SALARY + OVERTIME + BONUSES
SUB AX,AX ;CLEAR
MOV DX,AX ;AX AND DX
ADD AX,SALARY
ADD AX,OVERTIME
ADC DX,O ;TAKE CARE OF CARRY
ADD AX,BONUSES
ADC DX,O
ENDM

The macro is invoked as
WAGES 60000,25000,3000

5. In Problem 4, in the body of the macro, dummies were used as they are listed from
left to right. Can they be used in any order? Rewrite the body (leave the dum­
mies alone) by adding OVERTIME first.

6. In Problem 4, state the comments that are listed if the macro is expanded as:
.LALL
WAGES X,Y,Z

7. Macros can use registers as dummies. Show the ".1st" file and explain what the
macro in Problem 4 does if it is invoked as follows:

WAGES BX,CX,SI
8. Fill in the blanks for the following macro to add an array of bytes. Some blanks

might not need to be filled.
SUMMING MACRO COUNT,VALUES

LOCAL

AGAIN:

;;this macro adds an array of byte size elements.
;;ax will hold the total sum
MOV CX,.... ;size of array
MOV SI,OFFSET ;load offset address of array
SUB AX,AX ;clear ax
ADD AL,[SI]
ADC AH,O
INC SI
LOOP AGAIN
ENDM

;add bytes and takes care of carries
;point to next byte
;continue until finished

CHAPTER 5: MACROS AND THE MOUSE

PROBLEMS

9. Invoke and run the macro above for the following data.
In the data segment:
DATAl DB 89,75,98,91,65
SUMI OW ?

DATA2 DB 86,69,99,14,93,99,54,39
SUM2 OW?
DATA3 DB 10 DUP (99)
SUM3 OW?
(Hint: For the format, see Problem 10.)

10. Insert the listing directives in Problem 9 as follows and analyze the ".lst" file.
From the code segment:

.LALL
SUMMING 5,DATA 1 ;adding and saving data 1
.xALL
SUMMING ;adding and saving data2

.sALL ;adding and saving data3

11. Rewrite Problem 8 to have a third dummy argument for SUM. Then rework Prob­
lem 9.

12. Rewrite Program 5-2 using the DO directive for RESULT 1 , RESULT2, and RE­
SULT3.

13. Using INT 33H, write and test an Assembly language program to check the pres­
ence of a mouse in a Pc. If a mouse driver is installed, it should state the number
of buttons it supports. Ifno mouse driver is installed, it should state this.

14. Change the video mode of Program 5-4 to the following and verify the data given
in Table 5-1.
(a) 10H (b) l2H

15. Change the size and color of the box to the coordinates and color of your choice
in Program 5-5, then run and test it. Make the box large enough to display your
first name followed by your last name inside it.

16. Modify Program 5-6 to indicate the number of times the right button is pressed.
17. Repeat the above problem to indicate the number of times the right button is re­

leased,
18. Write an Assembly language program using !NT 33H to display the mouse driver

version and number of buttons supported by the mouse in a given Pc.
Note: The following are additional problem assignments for the mouse in C.

19. Write a C language version of Program 5-4. Your program performs the following.
(a) clears the screen
(b) saves the video mode and changes it to mode AL=OEH (640x200)
(c) gets the mouse pointer position continuously and displays it in the

80x25 character screen coordinate
(d) upon a pressing any key, it restores the original video mode and exits to DOS

20, Repeat the above problem. This time display the mouse pointer position in pixels.
Test it for video modes AL= 1 OH and AL= 12H.

21. Write a C language program to state (display) which mouse button is being
pressed at any given time. Upon pressing any key, the program goes back to DOS.

22. Write a C program version of Program 5-6 that performs the following:
(a) save the video mode and change it to one of the graphics modes
(b) ask the user to press the left button a number of times
(c) display the number when a key is pressed
(d) upon pressing any key, restore the original video mode and go back to DOS

23. Repeat the above problem for the right button.
24. Using !NT 33H functions AX=O and AX=24H, write a C program to display the

following:
(a) the number of mouse buttons
(b) the mouse type (bus mouse, serial mouse, PS/2 mouse, etc.)
(c) mouse driver version in a form such as "7.5"
(d) the IRQ number, if used by the mouse

171

ANSWERS TO REVIEW QUESTIONS

SECTION 5.1: WHAT IS A MACRO AND HOW IS IT USED?

1. Macro programming can save the programmer time by allowing a set of frequently repeated instructions to be
invoked within the program by a single line. This can also make the code easier to read.

2. The three parts of a macro are the MACRO directive, the body, and the ENDM directive.
3. The macro definition is the list of statements the macro will perform. It begins with the MACRO directive and

ends with the ENDM directive. Invoking the macro is when the macro is called from within an assembly language
program. Expanding the macro is when the assembly replaces the line invoking the macro with the assembly
language code in the body of the macro.

4. False. A label that is to be local to a macro must be declared local with the LOCAL directive.
5. False. The "C" at the beginning of a line indicates that this line of code was brought in from another file by the

INCLUDE directive.

SECTION 5.2: MOUSE PROGRAMMING WITH INTERRUPT 33H

1. AX=O; reg AX; number of buttons in reg. BX
2. It is wrong. Register AL=02 and AH=O.

MOVAX,02
INT 33H

3. In the absence of doing that, when we go back to DOS we lose our cursor if the mouse program has changed
the video to graphics.

4. We check the contents of register BX for value 01.
5. True

172 CHAPTER 5: MACROS AND THE MOUSE

CHAPTER 6

SIGNED NUMBERS, STRINGS, AND
TABLES

173

In the first section of this chapter we focus on the concept of signed numbers
in software engineering. Signed number operations are explained along with
examples. In the second section we discuss string operations and table processing.

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS

174

All data items used so far have been unsigned numbers, meaning that the
entire 8-bit or 16-bit operand was used for the magnitude. Many applications require
signed data. In this section the concept of signed numbers is discussed along with
related instructions.

Concept of signed numbers in computers

In everyday life, numbers are used that could be positive or negative. For
example, a temperature of 5 degrees below zero can be represented as -5, and 20
degrees above zero as +20. Computers must be able to accommodate such numbers.
To do that, computer scientists have devised the following arrangement for the
representation of signed positive and negative numbers: The most significant bit
(MSB) is set aside for the sign (+ or -) and the rest of the bits are used for the
magnitude. The sign is represented by 0 for positive (+) numbers and I for negative
(-) numbers. Signed byte and word representations are discussed below.

Signed byte operands

I 07 I 06 05 I 04 I 03 I 02 01 00

I sign I magnitude

In signed byte operands, D7 (MSB) is the sign and DO to D6 are set aside
for the magnitude of the number. IfD7 ~ 0, the operand is positive, and ifD7 ~ 1,
it is negative.

Positive numbers

The range of positive numbers that can be represented by the format above
is 0 to +127.

o 0000 0000
+1 0000 0001
+5 0000 0101

+127 0111 1111

If a positive number is larger than + 127, a word-sized operand must be used.
Word operands are discussed later.

Negative numbers

For negative numbers D7 is I, but the magnitude is represented in 2's
complement. Although the assembler does the conversion, it is still important to
understand how the conversion works. To convert to negative number repre­
sentation (2's complement), follow these steps:

1. Write the magnitude of the number in 8-bit binary (no sign).
2. Invert each bit.
3. Add I to it.

Examples 6-1, 6-2, and 6-3 demonstrate these three steps.

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

Example 6-1

Show how the computer would represent -5.

Solution:
I. 0000 0101

2. 1111 1010

3. 1111 1011

5 in 8-bit binary
invert each bit
add I (hex ~ FBH)

This is the signed number representation in 2's complement for -5.

Example 6-2

Show - 34H as it is represented internally.

Solution:
I. 0011 0100

2. 1100 1011
3. 1100 1100 (which is CCH)

Example 6-3

Show the representation for -12810.

Solution:
I. 1000 0000

2. 0111 1111
3. 1000 0000 Notice that this is not negative zero (-0).

From the examples above it is clear that the range of byte-sized negative
numbers is -I to -128. The following lists byte-sized signed numbers ranges:

Decimal Binarl! Hex
-128 1000 0000 80
-127 1000 0001 81
-126 1000 0010 82

-2 1111 1110 FE
-1 1111 1111 FF

0 0000 0000 00
+1 0000 0001 01
+2 0000 0010 02

+127 0111 1111 7F

Word-sized signed numbers

ISiPol
In 80x86 computers a word is 16 bits in length. Setting aside the MSB

(015) for the sign leaves a total of 15 bits (014 - DO) for the magnitude. This gives
a range of -32768 to +32767. If a number is larger than this, it must be treated as
a multiword operand and be processed chunk by chunk the same way as unsigned
numbers (as discussed in Chapter 3). The following shows the range of signed word
operands. To convert a negative to its word operand representation, the three steps
discussed in negative byte operands are used.

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS 175

Decimal Binary Hex
-32 768 1000 0000 0000 0000 8000
-32 767 1000 0000 0000 0001 8001
-32 766 1000 0000 0000 0010 8002
.
.
-2 1111 1111 1111 1110 FFFE
-1 1111 1111 1111 1111 FFFF

0 0000 0000 0000 0000 0000
+1 0000 0000 0000 0001 0001
+2 0000 0000 0000 0010 0002

...................

.
+32 766 0111 1111 1111 1110 7FFE
+32 767 0111 1111 1111 1111 7FFF

Overflow problem in signed number operations

When using signed numbers, a serious problem arises that must be dealt
with. This is the overflow problem. The CPU indicates the existence of the problem
by raising the OF (overflow) flag, but it is up to the programmer to take care of it.
The CPU understands only Os and 1 s and ignores the human convention of positive
and negative numbers. Now what is an overflow? If the result of an operation on
signed numbers is too large for the register, an overflow has occurred and the
programmer must be notified. Look at Example 6-4.

Example 6-4

176

Look at the following code and data segments:

DATA1
DATA2

DB +96
DB +70

MOV
MOV
ADD

AL,DATA1
BL,DATA2
AL,BL

:AL=0110 0000 (AL=60H)
:BL=0100 011 0 (BL=46H)
;AL=1010 0110 (AL=A6H= -90 invalid!)

+ 96 01 \0 0000
+ 70 010001 \0
+ 166 \0 \0 0110 According to the CPU, this is -90, which is wrong. (OF ~ 1, SF ~ 1, CF ~ 0)

In the example above, +96 is added to + 70 and the result according to the
CPU was -90. Why? The reason is that the result was more than what AL could
handle. Like all other 8-bit registers, AL could only contain up to + 127. The
designers of the CPU created the overflow flag specifically for the purpose of
informing the programmer that the result of the signed number operation is errone­
ous.

When the overflow flag is set in 8·bit operations

In 8-bit signed number operations, OF is set to 1 if either of the following
two conditions occurs:

1. There is a carry from 06 to 07 but no carry out of 07 (CF ~ 0).
2. There is a carry from 07 out (CF ~ 1) but no carry from 06 to 07.

In other words, the overflow flag is set to 1 if there is a carry from 06 to
07 or from 07 out, but not both. This means that if there is a carry both from 06
to 07 and from 07 out, OF ~ O. In Example 6-4, since there is only a carry from
06 to 07 and no carry from 07 out, OF ~ 1. Examples 6-5, 6-6, and 6-7 give further
illustrations of the overflow flag in signed arithmetic.

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

Example 6-5

Observe the results of the following:

MOV DL,-128 ;DL=1000 0000 (DL=80H)
MOV CH,-2 ;CH=1111 1110 (CH=FEH)
ADD DL,CH ;DL=0111 1110 (DL=7EH=+126 invalid!)

-128 10000000
+--.1 Illl lllO
-130 Olll 1110 OF=I, SF=O (positive), CF=I

According to the CPU, the result is + 126, which is wrong. The error is indicted by the fact that OF= I

Example 6-6

Observe the results of the following:

MOV AL,-2 ;AL=1111 1110 (AL=FEH)
MOV CL,-5 :CL=1111 1011 (CL=FBH)
ADD CL,AL ;CL=1111 1001 (CL=F9H=-7 which is correct)

-2 1111 1110
+ -2. Illl lOll

-7 Illl IDOl OF = 0 CF = 0 SF = I Ine<>ative\: the result is correct since OF = O.

Example 6-7

Observe the results of the following:

MOV DH,+7 :DH=OOOO 0111 (DH=07H)
MOV BH,+18 :BH=00010010 (BH=12H)
ADD BH,DH :BH=0001 1001 (BH=19H=+25, correct)

+7 000001ll
+ +18 0001 0010

+25 0001 IDOl OF = 0, CF = 0 and SF = 0 (positive).

Overflow flag in 16-bit operations

In a 16-bit operation, OF is set to I in either of two cases:

1. There is a carry from 014 to DIS but no carry out of DIS (CF = 0).
2. There is a carry from DIS out (CF = 1) but no carry from 014 to DIS.

Again the overflow flag is low (not set) ifthere is a carry from both 014 to
DIS and from DIS out. The OF is set to I only when there is a carry from 014 to
DIS or from 015 out but not from both. See Examples 6-8 and 6-9.

Example 6-8

Observe the results in the following:

MOV
MOV
ADD

6E2F
+ 1304

8203

AX,6E2FH
CX,13D4H
AX,CX

; 28,207
;+ 5,076
;= 33,283 is the expected answer

011011100010 1111
0001 DOll llOI 0100
10000010 0000 0011 = -32253 incorrect! OF = I CF = 0 SF = I

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS 177

Example 6-9

178

Observe the results in the following:

MOV
MOV
ADD

543F
+ 12EO

670F

DX,542FH
BX,12EOH
DX,BX

; 21,551
; + 4,832
;=26,383

OlDl 01000010 1111
00010010 l1lD 0000
0110011100001111 =26,383 (correct answer) OF=O,CF=O, SF=O

Avoiding erroneous results in signed number operations

To avoid the problems associated with signed number operations, one can
sign-extend the operand. Sign extension copies the sign bit (D7) of the lower byte
of a register into the upper bits of the register, or copies the sign bit of a 16-bit register
into another register. CBW (convert signed byte to signed word) and CWD (convert
signed word to signed double word) are used to perform sign extension. They work
as follows:

CBW will copy D7 (the sign flag) to all
bits of AH. This is demonstrated below. Notice
that the operand is assumed to be AL and the
previous contents of AH are destroyed.

7 0 7 0

,--I -----II I I I
AH AL

or:

MOV
CBW

MOV
CBW

AL,+96

AL,-2

;AL=0110 0000
;now AH=OOOO 0000 and AL=0110 0000

;AL=1111 1110
;AH=1111 1111 and AL=1111 1110

CWD sign extends AX. It copies D15 of AX to all bits of the DX register.
This is used for signed word operands. This is illustrated below.

15 o 15

II
ox

Look at the following example:
MOV AX,+260
CWD

Another example:
MOV
CWD

AX,-32766

o

AX

;AX=OOOO 0001 00000100 or AX=0104H
;DX=OOOOH and AX=0104H

;AX=1000 0000 0000 0010B or AX=8002H
;DX=FFFF and AX=8002

As can be seen in the examples above, CWD does not alter AX. The sign
of AX is copied to the DX register. How can these instructions help correct the
overflow error? To answer that question, Example 6-10 shows Example 6-4
rewritten to correct the overflow problem.

In Example 6-10, if the overflow flag is not raised (OF = 0), the result of
the signed number is correct and JNO Gump if no overflow) will jump to OVER.
However, if OF = 1, which means that the result is erroneous, each operand must
be sign extended and then added. That is the function of the code below the JNO
instruction. The program in Example 6-10 works for addition of any two signed
bytes.

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

Example 6-10

Rewrite Example 6-4 to provide for handling the overflow problem.

Solution:

DATA1
DATA2
RESULT

OVER:

DB +96
DB +70
DW?

SUB
MOV
MOV
ADD
JNO
MOV
CBW
MOV
MOV
CBW
ADD
MOV

AH,AH
AL,DATA1
BL,DATA2
AL,BL
OVER
AL,DATA2

BX,AX
AL,DATA1

AX,BX
RESULT,AX

;AH=O
;GET OPERAND 1
;GET OPERAND 2
;ADDTHEM
;IF OF=O THEN GO TO OVER
;OTHERWISE GET OPERAND 2 TO
;SIGN EXTEND IT
;SAVE IT IN BX
;GET BACK OPERAND 1 TO
;SIGN EXTEND IT
;ADD THEM AND
;SAVE IT

The following is an analysis of the values in Example 6-10. Each is sign
extended and then added as follows:

s
a
~
a

AH

000 0000
000 0000
000 0000

AL
0110 0000
0100 0110
10100110

+96 after sign extension
+ 70 after sign extension
+166

As a rule, if the possibility of overflow exists, all byte-sized signed numbers
should be sign extended into a word, and similarly, all word-sized signed operands
should be sign extended before they are processed. This will be shown shortly in
Program 6-1. Before discussing that, it is important to understand the division and
multiplication of signed operands.

IDIV (Signed number division)

The Intel manual says that IDIV means "integer division"; it is used for
signed number division. In actuality, all arithmetic instructions of the 8088/86 are
for integer numbers regardless of whether the operands are signed or unsigned. To
perform operations on real numbers, the 8087 coprocessor is used. Remember that
real numbers are the ones with decimal points such as "3.56". Division of signed
numbers is very similar to division of unsigned numbers discussed in Chapter 3.
Table 6-1 summarizes signed number division. It is very similar to Table 3-2, which
summarized unsigned number division.

Table 6-1: Signed Division Summary

'I Division iNumerator --1-'1 D~e ... n ... o,-"m in ... a"t"o ... r __ ~otie!lL~ Remainder

~ bj'le/byte I' AL = byte .. CBW i register or memo AL AH i'

'I wordlword AX = won!.CWD ~--

word/byte I AX = word - ---- --1------

doublewordlword

re ister or memo AX ! DX ~i
register or memory.fA""L~I-- -TA=H~---= I
,register or memory AX 2 DX . DXAX = doubleword !,

- - - _--_-'1

Notes:
1. Divide error interrupt if -127 > AL > + 127.
2. Divide error interrupt if -32767> AL > +32767.

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS 179

Table 6-2: Signed Multiplication Summary

Multiplication Operand 1 Operand 2 Result

byte x byte AL regi ster or memory AX I

word x word AX register or memory DXAX 2

word x byte AL=byteCBW register or memory DXAX 2

Notes:
I. CF '" I and OF = I if AH has part of the result, but if the result is not large enough to need the AH, the sign bit is copied to the

unused bits and the CPU makes CF = 0 and OF = 0 to indicate that.
2. CF = 1 and OF = I lfDX has part of the result, but if the result is not large enough to need the DX. the sign bit is copied to the

unused bits and the CPU makes CF = 0 and OF = 0 to indicate that.
One can use the J condjtion to fmd out which of the conditions above has occurred. The rest of the flags are undefined.

IMUL (Signed number multiplication)

-

Signed number multiplication is similar in its operation to the unsigned
multiplication described in Chapter 3. The only difference between them is that the
operands in signed number operations can be positive or negative; therefore, the
result must indicate the sign. Table 6-2 summarizes signed number multiplication;
it is similar to Table 3-1.

TITLE
PAGE

PROG6-1
60,132

FIND THE AVERAGE TEMPERATURE

.MODEL STMALL

. STACK 64

.DATA
SIGN DAT DB

- ORG
+13,-10, + 19, +14,-18,-9,+12,-19, +16

0010H
AVERAGE DW
REMAINDER DW

MAIN

BACK:

MAIN

.CODE
PROC
MOV
MOV
MOV
SUB
MOV
MOV
CBW
ADD
INC
LOOP
MOV
CBW
MOV
MOV
CWO
IDIV
MOV
MOV
MOV
INT
ENDP
END

?
?

FAR
AX,@DATA
DS,AX
CX,9
BX,BX
SI,OFFSET SIGN_DAT
AL,[Slj

BX,AX
SI
BACK
AL,9

CX,AX
AX,BX

CX
AVERAGE,AX
REMAINDER,DX
AH,4CH
21H

MAIN

;LOAD COUNTER
;CLEAR BX, USED AS ACCUMULATOR
;SET UP POINTER
;MOVE BYTE INTOAL
;SIGN EXTEND INTO AX
;ADDTOBX
;INCREMENT POINTER
;LOOP IF NOT FINISHED
;MOVE COUNT TO AL
;SIGN EXTEND INTO AX
;SAVE DENOMINATOR IN CX
;MOVE SUM TO AX
;SIGN EXTEND THE SUM
;FIND THE AVERAGE
;STORE THE AVERAGE (QUOTIENT)
;STORE THE REMAINDER

;GO BACK TO DOS

Program 6-1

180 CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

An application of signed number arithmetic is given in Program 6-\. It
computes the average of the following Celsius temperatures: +13, 40, +19, +14,
48, -<1,+12, 49, and +16.

The program is written in such a way as to handle any overflow that may
occur. In Program 6-1, each b)te of data was sign extended and added to BX,
computing the total sum, which is a signed word. Then the sum and the count were
sign extended, and by dividing the total sum by the count (number of bytes, which
in this case is 9), the average was calculated.

The following is the ".1st" file of the program above. Notice the signed
number format provided by the assembler.

Microsoft (R) Macro Assembler Version 5.10
PR0G6-1

12/30/91 06:14:2
Page 1-1

0000
0000

0000
0000 00 F6 13 OE EE F7

OC F710
0010
0010 0000
0012 0000

0014
0000
0000 B8 OOOOs
0003 8E 08

TITLE PR0G6-1 FIND THE AVERAGE TEMPERATURE
PAGE 60,132

.MODEL SMALL

.STACK64

. DATA
SIGN_OAT DB +13,-10,+19, +14,-18,-9,+12,-19, +16

ORG 0010H
AVERAGE OW?
REMAINDER OW ?

.CODE
MAIN PROC FAR

MOV AX,@DATA
MOV DS,AX
MOV CX,9 ;LOAD COUNTER 0005 B9 0009

0008 2B DB SUB BX,BX ;CLEAR BX, USED AS ACCUMULATOR
OOOA BE 0000 R
0000 8A 04
OOOF 98
0010 0308
0012 46
0013 E2 F8
0015 BO Og
0017 98
0018 8B C8
001A 8B C3
001C 99
0010 F7 F9
001F A3 0010 R
0022 89 16 0012 R
0026 B44C
0028 CD21
002A

BACK:

MAIN

List File for Program 6-1

MOV
MOV
CBW
ADD
INC
LOOP
MOV
CBW
MOV
MOV
CWO
IDIV
MOV
MOV
MOV
INT
ENDP
END

SI,OFFSET SIGN_OAT ;SET UP POINTER
AL,ISI] ;MOVE BYTE INTO AL

;SIGN EXTEND INTO AX
BX,AX ;ADD TO BX
SI ;INCREMENT POINTER
BACK ;LooP IF NOT FINISHED
AL,9 ;MOVE COUNT TO AL

;SIGN EXTEND INTO AX
CX,AX ;SAVE DENOMINATOR IN CX
AX,BX ;MOVE SUM TO AX

;SIGN EXTEND THE SUM
CX ;FIND THE AVERAGE
AVERAGE,AX ;STORE THE AVERAGE (QUOTIENT)
REMAINDER,DX ;STORE THE REMAINDER
AH,4CH
21H ;GO BACK TO DOS

MAIN

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS 181

ExamDle 6-11

Arithmetic shift

As discussed in Chapter 3, there are two types of shifts: logical and
arithmetic. Logical shift, which is used for unsigned numbers, was discussed
previously. The arithmetic shift is used for signed numbers. It is basically the same
as the logical shift, except that the sign bit is copied to the shifted bits. SAR (shift
arithmetic right) and SAL (shift arithmetic left) are two instructions for the arith­
metic shift.

SAR (shift arithmetic right)

SAR destination,count
IMS~-IMSB _LSB I-EJ

As the bits of the destination are shifted to the right into CF, the empty bits
are filled with the sign bit. One can use the SAR instruction to divide a signed
number by 2, as shown next:

MOV
SAR

AL,-10
AL,1

;AL=-10=F6H=1111 0110
;AL is shifted right arithmetic once
;AL=1111 1011=FDH=-5

Example 6-11 demonstrates the use of the SAR instruction.

SAL (shift arithmetic left) and SHL (shift left)

These two instructions do exactly the same thing. It is basically the same
instruction with two mnemonics. As far as signed numbers are concerned, there is
no need for SAL. For a discussion ofSHL (SAL), see Chapter 3.

Using DEBUG, evaluate the results ofthe following:

MOV AX,-9
MOV BL,2
IDIV BL :divide -9 by 2 results in FCH
MOV AX,-9
SAR AX,1 ;divide -9 by 2 with arithmetic shift results in FBH

Solution:

The DEBUG trace demonstrates that an IDIV of ~9 by 2 gives FCH (~4), whereas SAR ~9 gives

FBH (~5). This is because SAR rounds negative numbers down but IDIV rounds up.

182

Signed number comparison

CMP dest,source

Although the CMP (compare) instruction is the same for both signed and
unsigned numbers, the J condition instruction used to make a decision for the signed
numbers is different from the unsigned numbers. While in unsigned number
comparisons CF and ZF are checked for conditions oflarger, equal, and smaller (see
Chapter 3), in signed number comparison, OF, ZF, and SF are checked:

destination> source
destination = source
destination < source

OF=SF or ZF=O
ZF=1
OF=negation of SF

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

The mnemonics used to detect the conditions above are as follows:

JG Jump Greater
JGE Jump Greater or Equal
JL Jump Less
JLE Jump Less or Equal
JE Jump if Equal

jump if OF=SF or ZF=O
jump if OF=SF
jump if OF=inverse of SF
jump if OF=inverse of SF or ZF=1
jump of ZF = 1

Example 6-12 should help clarifY how the condition flags are affected by
the compare instruction. Program 6-2 is an example of the application of the signed
number comparison. It uses the data in Program 6-1 and finds the lowest tempera­
ture.

The concept of signed number arithmetic is so important and widely used
that even the RISe processors in their attempt to streamline the instruction set could
not eliminate these instructions.

Example 6-12

Show the DEBUG trace of the following instructions comparing several signed numbers.

Solution:

C>debug
-a 100

MOV AL,-5
CMP AL,-9
CMP AL,-2
CMP AL,-5
CMP AL,+7

1030:0100 mav al,-5
1030:0102 cmp al,-9
1030:0104 cmp al,-2
1030:0106 cmp al,-5
1030:0108 cmp al,7
1030:010A inl 3
1030:010B
-1=100,5

AX=OOFB BX=OOOO CX=OOOO OX=OOOO SP=CFOE BP=OOOO SI=OOOO 01=0000
OS=1030 ES=1030 SS=1030 CS=1030 IP=0102 NV UP 01 PL NZ NA PO NC
1030:01023CF7 CMP AL,F7

AX=OOFB BX=OOOO CX=OOOO OX=OOOO SP=CFDE BP=OOOO SI=OOOO 01=0000
OS=1030 ES=1030 SS=1030 CS=1030 IP=0104 NV UP 01 PL NZ NA PO NC
1030:01043CFE CMP AL.FE

AX=OOFB BX=OOOO CX=OOOO OX=OOOO SP=CFOE BP=OOOO SI=OOOO 01=0000
OS=1030 ES=1030 SS=1030 CS=1030 IP=0106 NV UP 01 NG NZ AC PO CY
1030:01063CFB CMP AL,FB

AX=OOFB BX=OOOO CX=OOOO OX=OOOO SP=CFDE BP=OOOO SI=OOOO 01=0000
OS=1030 ES=1030 SS=1030 CS=1030 IP=0108 NV UP 01 PLZR NAPE NC
1030:01083C07 CMP AL,07

AX=OOFB BX=OOOO CX=OOOO OX=OOOO SP=CFDE BP=OOOO SI=OOOO 01=0000
OS=1030 ES=1030 SS=1030 CS=1030 IP=010A NV UP 01 NG NZ NA PO NC
1030:010A CC INT 3

-q

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS 183

TITLE
PAGE

PR0G6-2
60,132

;FIND THE LOWEST TEMPERATURE

.MODEL SMALL

. STACK 64

. DATA
SIGN DAT DB +13,-10,+19,+14,-18,-9,+12,-19,+16

- ORG 0010H
LOWEST DB ?

.CODE
MAIN PROC FAR

MOV AX,@DATA
MOV DS,AX
MOV CX,S ;LOAD COUNTER (NUMBER ITEMS - 1)
MOV SI,OFFSET SIGN_DAT ;SET UP POINTER
MOV AL,ISI] ;AL HOLDS LOWEST VALUE FOUND SO FAR

BACK: INC SI ;INCREMENT POINTER
CMP AL,ISI] ;COMPARE NEXT BYTE TO LOWEST
JLE SEARCH ;IF AL IS LOWEST, CONTINUE SEARCH
MOV AL,ISI] ;OTHERWISE SAVE NEW LOWEST

SEARCH: LOOP BACK ;LOOP IF NOT FINISHED
MOV LOWEST,AL ;SAVE LOWEST TEMPERATURE
MOV AH,4CH
INT 21H ;GO BACK TO DOS

MAIN ENDP
END MAIN

Program 6-2

Review Questions

I. In an 8-bit operand, bit __ is used for the sign bit, whereas in a 16-bit operand,
bit __ is used for the sign bit.

2. Covert 16H to its 2's complement representation.
3. The range of byte-sized signed operands is - to + __ . The range of word-

sized signed operands is - to + __ ----;;:--
4. Explain the difference between a carry and an overflow.
5. Explain the purpose of the CBW and CWD instructions. Demonstrate the effect of

CBW on AL = F6H. Demonstrate the effect ofCWD on AX = l24CH.
6. The instruction for signed multiplication is . The instruction for signed di-

VISIOn IS

7. Explain th';:-e'd"ifti"'e-rence between the SHR (discussed in Chapter 3) and SAR instruc­
tions.

8. For each of the following instructions, indicate the flag condition necessary for
each jump to occur:
(a) JLE (b) JG

SECTION 6.2: STRING AND TABLE OPERATIONS

184

There are a group of instructions referred to as string instructions in the
8Ox86 family of microprocessors. They are capable of performing operations on a
series of operands located in consecutive memory locations. For example, while
the CMP instruction can compare only 2 bytes (or words) of data, the CMPS
(compare string) instruction is capable of comparing two arrays of data located in
memory locations pointed at by the SI and DI registers. These instructions are very
powerful and can be used in many applications, as will be shown shortly.

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

Use of 51 and 01, 05 and E5 in string Instructions

F or string operations to work, designers of the CPU must set aside certain
registers for specific functions. These registers must permanently provide the
source and destination operands. This is exactly what the 80x86 has done. In
8088/86 microprocessors, the SI and DI registers always point to the source and
destination operands, respectively. Now the question is: Which segments are they
combined with to generate the 20-bit physical address? To generate the physical
address, the 8088/86 always uses SI as the offset of the OS (data segment) register
and DI as the offset of ES (extra segment). This is the default mode. It must be
noted that the ES register must be initialized for the string operation to work.

Byte and word operands in string instructions

In each of the string instructions, the operand can be a byte or a word. They
are distinguished by the letters B (byte) and W (word) in the instruction mnemonic.
Table 6-3 provides a summary of all the string instructions. Each one will be
discussed separately in the context of examples.

Table 6-3: String Operation Summary
'I~~'=~-=~~-=" ~ - - - -~- -

'I Instruction Mnemonic Destination Source Prefix

'I move string byte MOVSB :ES:DI DS:SI REP

I move string word MOVSW ;ES:DI :DS:SI REP

I'store string byte STOSB ,ES:DI 'AL REP

store string word STOSW iES:DI iAX REP
,

load string byte LODSB AL DS:SI none

load string word LODSW AX DS:SI none

, comDare string byte CMPSB ES:DI DS:SI REPEIREPNE

I . d -lCMPSW
,

ES:DI DS:SI REPEIREPNE • compare strmg wor

I scan string byte SCASB ES:DI AL REPEIREPNE

l scan string word SCASW ES:DI lAX REPEIREPNE

OF, the direction flag

To process operands located in consecutive memory locations requires that
the pointer be incremented or decremented. In string operations this is achieved by
the direction flag. Of the 16 bits of the flag register (00 - 015), bit 11 (010) is set
aside for the direction flag (OF). It is the job of the string instruction to increment
or decrement the SI and DI pointers, but it is the job of the programmer to specifY
the choice of increment or decrement by setting the direction flag to high or low.
The instructions CLO (clear direction flag) and STO (set direction flag) are
specifically designed for that.

CLD (clear direction flag) will reset (put to zero) OF, indicating that the
string instruction should increment the pointers automatically. This automatic
incrementation sometimes is referred to as autoincrement.

STD (set the direction flag) performs the opposite function of the CLO
instruction. It sets OF to I, indicating to the string instruction that the pointers SI
and 01 should be decremented automatically.

SECTION 6.2: STRING AND TABLE' OPERATIONS 185

REP prefix

The REP (repeat) prefix allows a string instruction to perform the operation
repeatedly. Now the question is: How many times is it repeated? REP assumes that
CX holds the number of times that the instruction should be repeated. In other
words, the REP prefix tells the CPU to perform the string operation and then
decrements the CX register automatically. This process is repeated until CX
becomes zero. To understand some of the concepts discussed so far, look at
Example 6-13.

Example 6-13

186

Using string instructions, write a program that transfers a block of 20 bytes of data.

Solution:

in the data segment:
DATA1 DB 'ABCDEFGHIJKLMNOPQRST'

ORG 30H
DATA2 DB 20 DUP (7)

In the code segment:

MOV
MOV
MOV
CLD
MOV
MOV
MOV
REP

AX,@DATA
DS,AX
ES,AX

: INITIALIZE THE DATA SEGMENT
:INITIALIZE THE EXTRA SEGMENT

SI,OFFSET DATA1
DI,OFFSET DATA2
CX,20

:CLEAR DIRECTION FLAG FOR AUTOINCREMENT
;LOAD THE SOURCE POINTER
;LOAD THE DESTINATION POINTER
: LOAD THE COUNTER

MOVSB :REPEAT UNTIL CX BECOMES ZERO

In Example 6-13, after the transfer of every byte by the MOVSB instruction,
both the SI and DI registers are incremented automatically once only (notice CLD).
The REP prefix causes the CX counter to be decremented and MOVSB is repeated
until CX becomes zero. Notice in Example 6-13 that both DS and ES are set to the
same value.

An alternative solution for Example 6-13 would change only two lines of
code:

MOV CX,10
REP MOVSW

In this case the MOVSW will transfer a word (2 bytes) at a time and
increment the SI and DI registers each twice. REP will repeat that process until CX
becomes zero. Notice the CX has the value of 10 in it since 10 words is equal to 20
bytes.

STOS and LODS instructions

The STOSB instruction stores the byte in the AL register into memory
locations pointed at by ES:DI and increments (ifDF = 0) DI once. IfDF = I, then
DI is decremented. The STOSW instruction stores the contents of AX in memory
locations ES:DI and ES:DI+I (AL into ES:DI and AH into ES:DI+I), then incre­
ments DI twice (ifDF = 0). IfDF = I, DI is decremented twice.

The LODSB instruction loads the contents of memory locations pointed at
by DS:SI into AL and increments (or decrements) SI once ifDF = 0 (or DF = I).
LODSW loads the contents of memory locations pointed at by DS:SI into AL and
DS:SI+ 1 into AH. The SI is incremented twice if DF = O. Otherwise, it is
decremented twice. LODS is never used with a REP prefix.

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

Testing memory using STOSB and LODSB

Example 6-14 uses string instructions STOSB and LODSB to test an area
of RAM memory.

Example 6-14

Write a program that:
(I) Uses STOSB to store byte AAH into 100 memory locations.
(2) Uses LODS to test the contents of each location to see if AAH was there. If the test fails, the
system should display the message "bad memory".

Solution:
Assuming that ES and OS have been assigned in the ASSUME directive, the following is from
the code segment:

;PUT PATTERN MAAH IN TO 50 WORD LOCATIONS
MOV AX,DTSEG ;INITIALIZE
MOV DS.AX ;DS REG
MOV ES,AX ;AND ES REG
CLD ;CLEAR DF FOR INCREMENT
MOV CX,50 ;LOAD THE COUNTER (50 WORDS)
MOV DI.OFFSET MEM AREA ;LOAD THE POINTER FOR DESTINATION
MOV AX,OMAAH - ;LOAD THE PATTERN
REP STOSW ;REPEAT UNTIL CX=O
;BRING IN THE PATTERN AND TEST IT ONE BY ONE
MOV SI,OFFSET MEM AREA ;LOAD THE POINTER FOR SOURCE
MOV CX,100 - ;LOAD THE COUNT (COUNT 100 BYTES)

AGAIN: LODSB ;LOAD INTO AL FROM DS:SI
XOR AL,AH ;IS PATTERN THE SAME?
JNZ OVER ;IF NOT THE SAME THEN EXIT
LOOP AGAIN ;CONTINUE UNTIL CX=O
JMP EXIT ;EXIT PROGRAM

OVER: MOV AH.09 ;{ DISPLAY

EXIT:

MOV DX, OFFSET MESSAGE ;{ THE MESSAGE
INT 21 H ;{ ROUTINE

In the program in Example 6-14, first AAH is written into 100 locations by
using word-sized operand AAAAH and a count of 50. In the test part, LODS brings
in the contents of memory locations into AL one by one, and each time it is
eXclusive-ORed with AAH (the AH register has the hex value of AA). Iftheyare
the same, ZF = I and the process is continued. Otherwise, the pattern written there
by the previous routine is not there and the program will exit. This, in concept, is
somewhat similar to the routine used in the IBM PC's BIOS except that the BIOS
routine is much more involved and uses several different patterns of data for the test
and it can be used to test any part of RAM, either the main RAM or the video RAM.

The REPZ and REPNZ prefixes

These prefixes can be used with the CMPS and SCAS instructions for
testing purposes. They are explained below.

REPZ (repeat zero), which is the same as REPE (repeat equal), will repeat
the string operation as long as the source and destination operands are equal (ZF =

I) or until CX becomes zero.

REPNZ (repeat not zero), which is the same as REPNE (repeat not equal),
will repeat the string operation as long as the source and destination operands are
not equal (ZF = 0) or until CX become zero. These two prefixes will be used in the
context of applications after the explanation ofthe CMPS and SCANS instructions.

SECTION 6.2: STRING AND TABLE OPERATIONS 187

CMPS (compare string) allows the comparison of two arrays of data
pointed at by the SI and DI registers. One can test for the equality or inequality of
data by use of the REPE or REPNE prefixes, respectively. The comparison can be
performed a byte at a time or a word at time by using CMPSB or CMPSW.

F or example, if comparing "Euorop" and "Europe" for equality, the com­
parison will continue using the REPE CMPS as long as the two arrays are the same.

;from the data segment:
DATA1 DB 'Europe'
DATA2 DB 'Euorop'
;from the code segment:

CLD
MOV
MOV
MOV
REPE

SI,OFFSET DATA1
DI,OFFSET DATA2
CX,06
CMPSB

;DF=O for increment
;SI=DATA 1 offset
;DI=DATA2 offset
;Ioad the counter
;repeat until not equal or CX=O

In the case above, the two arrays are to be compared letter by letter. The
first characters pointed at by SI and DI are compared. In this case they are the same
('E'), so the zero flag is set to \ and both SI and DI are incremented. Since ZF = 1,
the REPE prefix repeats the comparison. This process is repeated until the third
letter is reached. The third letters "0" and "r" are not the same; therefore, ZF is reset
to zero and the comparison will stop. ZF can be used to make the decision as shown
in Example 6-\5.

Example 6-15
Assuming that there is a spelling of "Europe" in an electronic dictionary and a user types in
"Euorope", write a program that compares these two and displays the following message, depending
on the result:
1. If they are equal, display "The spelling is correct".
2. If they are not equal, display "Wrong spelling".

Solution:

DAT DICT
DAT-TYPED
MES-SAGE1
MESSAGE2

DB 'Europe'
DB 'Euorope'
DB 'The spelling is correct' ,'$'
DB 'Wrong spelling' ,'$'

;from the code segment:

188

CLD
MOV
MOV
MOV
REPE
JE
MOV
JMP

OVER: MOV
DISPLAY: MOV

INT

SI,OFFSET OAT DICT
DI,OFFSET OAT-TYPED
CX,06 -
CMPSB
OVER
DX,OFFSET MESSAGE2
DISPLAY
DX,OFFSET MESSAGE1
AH,09
21H

;DF=O FOR INCREMENT
;SI=DATA1 OFFSET
;DI=DATA2 OFFSET
;LOAD THE COUNTER
;REPEAT AS LONG AS EQUAL OR UNTIL CX=O
;IF ZF=1 THEN DISPLAY MESSAGE1
;IF ZF=O THEN DISPLAY MESSAGE2

One could juggle the code in Example 6-15 to make it more efficient and
use fewer jumps, but for the sake of clarity it is presented in this manner.

CMPS can be used to test inequality oftwo arrays using "REPNE CMPSB".
For example, when comparing the following social security numbers, the compari­
son will continue to the last digit since no two digits in the same position are the
same.

231-24-7659 564-77-1338

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

seAS (scan string)

The SeASB string instruction compares each byte of the array pointed at
by ES:D1 with the contents of the AL register, and depending on which prefix of
REPE or REPNE is used, a decision is made for equality or inequality. For example,
in the array "Mr. Gones", one can scan for the letter "G" by loading the AL register
with the character "G" and then using the "REPNE SeASB" operation to look for
that letter.

in the data segment:
OATA1 DB 'Mr. Gones'

and in the code segment:
CLO
MOV OI,OFFSET OATA1
MOV CX,09
MOV AL,'G'
REPNESCASB

;OF=O FOR INCREMENT
;OI=ARRAY OFFSET
;LENGTH OF ARRAY
;SCANNING FOR THE LETTER 'G'
;REPEAT THE SCANNING IF NOT EQUAL OR
;UNTIL THE CX IS ZERO

In the example above, the letter "G" is compared with "M". Since they are
not equal, DI is incremented and ex is decremented, and the scanning is repeated
until the letter "G" is found or the ex register is zero. In this example, since "G" is
found, ZF is set to I (ZF = I), indicating that there is a letter "G" in the array.

Replacing the scanned character

SeASB can be used to search for a character in an array, and if it is found,
it will be replaced with the desired character. See Example 6-16.

Example 6-16

Write a program that scans the name "Mr. Gones" and replaces the "G" with the letter "1",
then displays the corrected name.

Solution:

in the data segment:
OATA1 OB 'Mr. Gones':$'

and in the code segment:

OVER:

MOV
MOV
MOV
CLO

AX,@OATA
OS,AX
ES,AX

MOV OI,OFFSET OATA1
MOV CX,09
MOV AL:G'
REPNE SCASB
JNE OVER
OEC 01
MOV BYTE PTR [Oll'J'
MOV AH,09
MOV OX,OFFSET OATA1
INT 21H

;OF=O FOR INCREMENT
;ES:DI=ARRAY OFFSET
;LENGTH OF ARRAY
;SCANNING FOR THE LETTER 'G'
; REPEAT THE SCANNING IF NOT EQUAL OR
;UNTIL CX IS ZERO. JUMP IF Z=O
;OECREMENT TO POINT AT 'G'
'REPLACE 'G' WITH 'J'
;OISPLAY
'THE
;CORRECTEO NAME

In string operations, after each execution, the pointer is incremented (that
is, ifDF = 0). Therefore, in the example above, DI must be decremented, causing
the pointer to point to the scanned character and then replace it.

SECTION 6.2: STRING AND TABLE OPERATIONS 189

190

XLAT instruction and look-up tables

There is often a need in computer applications for a table that holds some
important information. To access the elements of the table, 8088/86 microproces­
sors provide the XLAT (translate) instruction. To understand the XLAT instruction,
one must fIrst understand tables. The table is commonly referred to as a look-up
table. Assume that one needs a table for the values ofx2, where x is between 0 and
9. First the table is generated and stored in memory:

0,1.4,9,16,25,36,49,64,81

Now one can access the square of any number from 0 to 9 by the use of
XLAT. To do that, the register BX must have the offset address of the look-up table,
and the number whose square is sought must be in the AL register. Then after the
execution of XLAT, the AL register will have the square of the number. The
following shows how to get the square of 5 from the table:

MOV
MOV
XLAT

BX,OFFSET SQUR_ TABLE
AL,05

;Ioad the offset address of table
;AL=05 will retrieve 6th element
;pull out of table the element
;and put in AL

After execution of this program, the AL register will have 25 (19H), the
square of 5. It must be noted that for XLAT to work, the entries ofthe look-up table
must be in sequential order and must have a one-to-one relation with the element
itself. This is because of the way XLAT works. In actuality, XLAT is one
instruction, which is equivalent to the following code:

;AH=O
;SI=OOOX

SUB
MOV
MOV

AH,AH
SI,AX
AL,[BX+SI] ;GET THE Sith ENTRY FROM BEGINNING

;OF THE TABLE POINTED AT BY BX

In other words, if there was no XLAT instruction, the code above would do
the same thing, and this is the way many RISC processors perform this operation.
Now why would one want to use XLAT to get the square ofa number from a look-up
table when there is the MUL instruction? The answer is that MUL takes longer.

Code conversion using XLAT

In many microprocessor-based systems, the keyboard is not an ASCII type
of keyboard. One can use XLAT to translate the hex keys of such keyboards to
ASCII. Assuming that the keys are 0 - F, the following is the program to convert
the hex digits of 0 - F to their ASCII equivalents.

data segment:
ASC_ TABL DB '0','1','2','3','4','5','6','7','8'

DB '9\'P\,'B','C','D','E','F'
HEX_VALU DB ?
ASC_VALU DB ?

code segment:
MOV
MOV
XLAT
MOV

BX,OFFSET ASC_ TABL
AL,HEX_VALU

ASC_ VALU,AL

;BX= TABLE OFFSET
;AL=THE HEX DATA
;GET THE ASCII EQUIVALENT
;MOVE ITTO MEMORY

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

SUMMARY

Review Questions

1. In string operations, register __ is used to point to the source operand and regis­
ter __ is used to point to the destination operand.

2. SI is used as an offset into the __ segment, and 01 is used as an offset into the
__ segment.

3. The __ flag, bit __ of the flag register, is used to tell the CPU whether to in­
crement or decrement pointers in repeated string operations.

4. State the purpose of instructions CLD and STD.
5. If a string instruction is repeatedly executed because of a REP prefix, how does the

CPU know when to stop repeating it?
6. In the following program segment, what condition will cause the REPNZ to fail?

MOV SI, OFFSET DATAl
MOV DI, OFFSET DATA2
MOV CX,LENGTH
REPNZ CMPSB

Signed number representation in the 8086/88 is achieved by using the MSB
(most significant bit) as a sign bit. In a byte operand, the sign bit is 07, and in a
word operand, the sign bit is 015. A sign bit of zero indicates a positive number,
and a sign bit of I indicates a negative number. Negative numbers are represented
in 2's complement. Signed addition and subtraction instructions use the same
instructions as unsigned addition and subtraction: ADD and SUB. However, signed
multiplication and division use the instructions IMUL and IDIV instead of MUL
and DIY. In signed number arithmetic, the programmer must check for the overflow
problem. An overflow occurs when either there is a carry into the MSB, or there is
a carry out and no carry into the MSB. The overflow problem can be avoided by
use of the sign extension instructions CBW and CWD.

Arithmetic shift instructions work similarly to the logic shift instructions
except that the arithmetic shift instructions must take the sign bit into account.
Therefore, they copy the sign bit into the shifted bits. The compare (CMP)
instruction works the same for signed numbers as it does for unsigned numbers, but
different conditional jump instructions are used after the CMP in programs.

The 80x86 has many instructions that operate on strings of data. These
instructions include STOS and LODS instructions to store and load data and the
SCAS scanning instruction. String operations use registers 01 and SI as pointers to
data in the extra and data segments. These instructions can be repeated by using
any of the various forms of the REP prefix. Whether the pointers DI and SI will be
incremented or decremented with each repetition depends on the setting of the
direction flag. There is also an instruction for table processing, the XLAT instruc­
tion.

PROBLEMS

I. Show how the 80x86 computer would represent the following numbers and verity
each with DEBUG.
(a) -23 (b) + 12 (c) -28H (d) +6FH
(e)-128 (1)+127 (g) +365 (h)-32767

2. Find the overflow flag for each case and verify the result using DEBUG.
(a) (+15)+(-12) (b) (-123)+(-127) (c) (+25h)+ (+34)
(d)(-127) + (+127) (e)(+IOOO) + (-1000)

3. Sign-extend the following and write simple programs in DEBUG to verity them.
(a)-I22 (b)-999h (c)+17h
(d) +127 (e) -129

SUMMARY 191

4. Modify Program 6-2 to fmd the highest temperature. Verify your program.
5. Which instructions are used to set and reset the direction flag? State the purpose

ofthe direction flag.
6. The REP instruction can be used with which of the following instructions"

(a) MOVSB (b) MOVSW (c) CMPSB
(d) LODSB (e) STOSW (I) SCASW

7. In Problem 6, state the source and destination operand for each instruction.
8. Write and verify a program that transfers a block of 200 words of data.
9. Use instructions LODSx and STOSx to mask the 3 from a set of SO ASCII digits

and transfer the result to a different memory location. This involves converting
from ASCII to unpacked BCD, then storing it at a different location; for example,

source destination
ASCII for '5' 00110101 00000101

10. Which prefix is used for the inequality case for CMPS and SCAS instructions?
11. Write a program that scans the initials "IbM" and replaces the lowercase "b" with

uppercase liB ".
12. Using the timing chart in Appendix B.2, compare the clock count of the instruction

XLAT and its equivalent to see which is more efficient.
13. Write a program using a look-up table and XLAT to retrieve the y value in the

equation y ~ x2 + 2x + 5 for x values of 0 to 9.

ANSWERS TO REVIEW QUESTIONS

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS
1. d7, d15
2. 16H= 0001 01102 in 2's complement: 111010102
3. -128 to +127; -32,768 to +32,767 (decimal)
4. an overflow is a carry into the sign bit; a carry is a carry out of the register
5. the CBW instruction sign extends the sign bit of a byte into a word; the CWD instruction sign extends the sign

bit of a word into a doubleword
F6H sign extended into AX = FFF6H
124C sign extended into DX AX would be DX = 0000 and AX = 124CH.

6. IMUL, IDIV
7. SHR shifts each bit right one position and fills the MSB with zero

SAR shifts each bit right one position and fills the MSB with the sign bit
in each; the LSB is shifted into the carry flag

8. (a) JLE will jump if OF is the inverse of SF, or if ZF = 1
(b) JG will jump if OF equals SF, or if ZF = 0

SECTION 6.2: STRING AND TABLE OPERATIONS
1. SI, DI
2. data, extra
3. direction flag, bit 11 or D10
4. CLD clears DF to 0; STD sets DF to 1
5. when CX = 0
6. if CX = 0 or the point at which DATA 1 and DATA2 are not equal

192 CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

CHAPTER 7

MODULES; MODULAR AND C
PROGRAMMING

193

In this chapter the concept of modules is presented along with rules for
writing modules and linking them together. Some vel)' useful modules will be given,
along with the methods of passing parameters among various modules. In the final
section we show how to combine Assembly language programs with C programs.

SECTION 7.1: WRITING AND LINKING MODULES

194

Why modules?

It is common practice in writing software packages to break down the
project into small modules and distribute the task of writing those modules among
several programmers. This not only makes the project more manageable but also
has other advantages, such as:

I. Each module can be written, debugged, and tested individually.
2. The failure of one module does not stop the entire project.
3. The task oflocating and isolating any problem is easier and less time consuming.
4. One can use the modules to link with high-level languages such as C, Pascal, or

BASIC.
5. Parallel development shortens considerably the time required to complete a project.

In this section we explain how to write and link modules to create a single
executable program.

Writing modules

In previous chapters, a main procedure was written that called many other
subroutines. In those examples, if one subroutine did not work properly, the entire
program would have to be rewritten and reassembled. A more efficient way to
develop software is to treat each subroutine as a separate program (or module) with
a separate filename. Then each one can be assembled and tested. After testing each
program and making sure that each works, they can all be brought together (linked)
to make a single program. To enable these modules to be linked together, certain
Assembly language directives must be used. Among these directives, the two most
widely used are EXTRN (external) and PUBLIC. Each is discussed below.

EXTRN directive

The EXTRN directive is used to notify the assembler and linker that certain
names and variables which are not defined in the present module are defined
externally somewhere else. In the absence of the EXTRN directive, the assembler
would show an error since it cannot find where the names are defined. The EXTRN
directive has the following format:

EXTRN name1 :type
EXTRN name2:type
EXTRN name1 :type,name2:type

;each name can be in a separate EXTRN

;or many can be listed in the same EXTRN

External procedure names can be NEAR, FAR, or PROC (which will be
NEAR for small models or FAR for larger models). The following are the types for
data names, with the number of bytes indicated in parentheses: BYTE (I), WORD
(2), DWORD (4), FWORD (6), QWORD (8), orTBYTE (10).

PUBUC directive

Those names or parameters defined as EXTRN (indicating that they are
defined outside the present module) must be defined as PUBLIC in the module
where they are defined. Defining a name as PUBLIC allows the assembler and
linker to match it with its EXTRN counterpart(s). The following is the format for
the PUBLIC directive:

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

PUBLIC name1
PUBLIC name2

PUBLIC name1, name2

;each name can be in a separate directive

;or many can be listed in the same PUBLIC

Example 7-1 should help to clarifY these concepts. It demonstrates that for
every EXTRN definition there is a PUBLIC directive defined in another module.
In Example 7-1 the EXTRN and PUBLIC directives were related to the name of a
FAR procedure.

END directive in modules

In Example 7-1, notice the entry and exit points of the program. The entry
point is MAIN and the exit point is "END MAIN". Modules that are called by the
main module have the END directive with no label or name after it. Notice that
SUBPROG I and SUBPROG2 each have the END directive with no labels after
them.

Example 7-1

Assume there is a program that constitutes the main routine, and two smaller subroutines named
SUBPROG 1 and SUBPROG2. The subprograms are called from the main routine. The following
shows the use of the EXTRN and PUBLIC directives:

Solution:

;one file will contain the main module:
EXTRN SUBPROG1:FAR
EXTRN SUBPROG2:FAR
.MODEL SMALL
.CODE

MAIN PROC FAR
...
CALL SUBPROG1
CALL SUBPROG2
...
MOV AH,4CH
INT 21H

MAIN ENDP
END MAIN

and in a separate file:
PUBLIC SUBPROG1
.MODEL SMALL
.CODE

SUBPROG1 PROC FAR
...
RET

SUBPROG1 ENDP
END

and in another file:
PUBLIC SUBPROG2
.MODEL SMALL
.CODE

SUBPR0G2 PROC FAR
...
RET

SUBPROG2 ENDP
END

SECTION 7.1: WRITING AND LINKING MODULES 195

Linking modules together into one executable unit

Assuming that each program module in Example 7-1 is assembled sepa­
rately and saved under the filenames EXAMPLE1.0BJ, PROC1.0BJ, and
PROC2.0BJ, the following shows how to link them together in MASM in order to
generate a single executable file:

C> LINK EXAMPLE1.0BJ + PROC1.0BJ + PROC2.0BJ

Program 7-1 shows how the EXTRN and PUBLIC directives can also be
applied to data variables. In Program 7-1, the main module contains a data segment
and a stack segment, but the subroutine modules do not. Each module can have its
own data and stack segment. While it is entirely permissible and possible that the
modules have their own data segments if they need them, generally there is only one
stack that is defined in the main program and it must be defined so that it is combined
with the system stack. Later in this chapter we show how to combine many segments
of different modules to generate one uniform segment for each segment of code,
data, and stack.

Use the program shells in Example 7-1 to:
I. Add two words.
2. Multiply two words.
Each one should be performed by a separate module. The data is defined in the main module, and the
add and multiply modules have no data segment of their own.

TITLE PROG7-1MM DEMONSTRATES MODULAR PROGRAMMING

SUBPROG1:FAR
PAGE 60,132

VALUE 1
VALUE2
SUM
PRODUCT

MAIN

MAIN

EXTRN
EXTRN
PUBLIC
. MODEL

SUBPROG2:FAR
VALUE1, VALUE2, SUM, PRODUCT
SMALL

.STACK 64

.DATA
OW
OW
OW
OW

.CODE
PROC
MOV
MOV
CALL
CALL
MOV
INT
ENDP
END

2050
500
2 DUP (?)
2 DUP (?)

FAR
AX,@DATA
DS,AX
SUBPROG1
SUBPROG2
AH,4CH
21H

MAIN

;CALL SUBPROG TO ADD VALUE1 + VALUE2
;CALL SUBPROG TO MUL VALUE1 • VALUE2

;GO BACK TO DOS

Program 7-1: Main Module

196 CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

;THIS PROGRAM FINDS THE SUM OF TWO EXTERNALLY DEFINED WORDS
;AND STORES THE SUM IN A LOCATION DEFINED BY THE CALLING MODULE

TITLE
PAGE

PR0G7-1M2 PROGRAM TO ADD TWO WORDS
60,132
EXTRN
EXTRN
EXTRN
PUBLIC
.MODEL
.CODE

SUBPROG1 PROC
SUB
MOV
MOV
ADD
ADC
MOV
MOV
RET

SUBPROG1 ENDP
END

VALUE1:WORD
VALUE2:WORD
SUM:WORD
SUBPROG1
SMALL

FAR
BX,BX
AX,VALUE1
DX,VALUE2
AX,DX
BX,OO
SUM,AX
SUM+2,BX

; INITIALIZE CARRY COUNT

;ADD VALUE1 + VALUE2
;ACCUMULATE CARRY
;STORESUM
;STORE CARRY

Program 7-1: Module 2

;THIS PROGRAM FINDS THE PRODUCT OF TWO EXTERNALLY DEFINED WORDS
;AND STORES THE PRODUCT IN A LOCATION DEFINED BY THE CALLING MODULE

TITLE
PAGE

PR0G7-1M3 PROGRAM TO MULTIPLY TWO WORDS
60,132
EXTRN
EXTRN
EXTRN
PUBLIC
.MODEL
.CODE

SUBPROG2 PROC
MOV
MOV
MUL
MOV
MOV
RET

SUBPR0G2 ENDP
END

VALUE1:WORD
VALUE2:WOR0
PRODUCT:WORD
SUBPROG2
SMALL

FAR
AX,VALUE1
CX,VALUE2
CX ;MULTIPLY VALUE1 • VALUE2
PRODUCT,AX ;STORE PRODUCT
PRODUCT+2,DX ;STORE PRODUCT HIGH WORD

Program 7-1: Module 3

Analysis of Program 7-1

Notice in the main module that each of the two subroutines was declared
with the EXTRN directive, indicating that these procedures would be defined in
another file. The extemal subroutines were defined as FAR in this case. In the files
where each subroutine is defined, it is declared as PUBLIC, so that other programs
can call it. In the main module, the names VALUEl, VALUE2, SUM, and PROD­
UCTwere defined as PUBLIC, so that other programs could access these data items.
In the subprograms, these data items were declared as EXTRN. These three
programs would be linked together as follows:

C> LINK PROG7-1MM.08J + PROG7-1M2 + PROG7-1M3

The linker program resolves extemal references by matching PUBLIC and
EXTRN names. The linker program will search through the files specified in the
LINK command for the external subroutines. Notice that the filenames are unrelated
to the procedure names. "MAIN" is contained in file "PROG7-1MM.OB]".

SECTION 7.1: WRITING AND LINKING MODULES 197

Example 7-2 shows the shell of modular programs using the simplified
segment definition. Modular programming with full segment definition is defined
later in this section.

Example 7-2

Create a shell for modular programming using the simplified segment definition.

Solution:

Modular program shells for the simplified segment directives are as follows.

The main file will contain:

.MODEL SMALL

. STACK 64

. DATA

.CODE
EXTRN SUBPROG1:NEAR
EXTRN SUBPROG2:NEAR

MAIN: MOV AX,@DATA ;this is the program entry point
MOV DS,AX
CALL SUBPROG1
CALL SUBPROG2
MOV AH,4CH
INT 21H
END MAIN ;this is the program exrt point

---and in a separate file: --------.----

.MODEL SMALL

.CODE
PUBLIC SUBPROG1

SUBPROG1 PROC
...
RET

SUBPROG1 ENDP
END

----and in another file: ----------

.MODEL SMALL

.CODE
PUBLIC SUBPR0G2

SUBPROG2 PROC
...
RET

SUBPR0G2 ENDP
END

198

Notice that in the main module of Example 7 -2, the name MAIN has a colon
after it and is used for the first executable instruction. This is the entry point of the
progrnm. The exit point of the program is indicated by the same label, which must
be named in the END directive. No program can have more than one entry and one
exit point. The label MAIN was chosen in this instance, but of course any name
could have been chosen. Remember that the END directives in other modules do
not have a label after the word "END". Program 7-2 is the same as Program 7-1,
rewritten for the full segment definition. Compare the two programs to see the ease
of the simplified segment definition. When using the simplified segment definition
shown in Example 7-2, procedures will default to NEAR for smail or compact
models and to FAR for medium, large, or huge models.

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

Modular programming and full segment definition

Program 7-2 uses full segment definition to redefine all the segments of
Program 7-1. An analysis of how the segments are combined as shown in the link
map follows the program. The code segments were not made PUBLIC in this
example. Notice that in order to combine various segments from different modules
into one segment, the segment names must be the same.

TITLE
PAGE

PROGl-2MM PROG7-1 REWRITTEN WITH FULL SEGMENT DEFINITION
60,132
EXTRN SUBPROG1 :FAR
EXTRN SUBPROG2:FAR
PUBLIC VALUE1, VALUE2, SUM, PRODUCT

STSEG SEGMENT PARA STACR 'STACK'

DB 100 DUP(7)
STSEG ENDS

DTSEG SEGMENT PARA 'DATA'
VALUE1 DW 2050
VALUE2 DW 500
SUM DW 2 DUP (7)
PRODUCT DW 2 DUP (7)
DTSEG ENDS

CODSG A SEGMENT PARA 'CODE'
MAIN - PROC FAR

ASSUME CS:CODSG_A,DS:DTSEG,SS:STSEG
MOV AX,DTSEG
MOV DS,AX
CALL SUBPROG1 ;CALL SUBPROG TO ADD VALUE1 + VALUE2
CALL SUBPROG2 ;CALL SUBPROG TO MUL VALUE1 • VALUE2
MOV AH,4CH
INT 21H ;GO BACK TO DOS
ENDP
ENDS
END MAIN

Program 7-2: Main Module

;THIS PROGRAM FINDS THE SUM OF TWO EXTERNALLY DEFINED WORDS
;AND STORES THE SUM IN A LOCATION DEFINED BY THE CALLING MODULE
TITLE PROG7-2M2 PROGRAM TO ADD TWO WORDS
PAGE 60,132

EXTRN VALUE1:WORD
EXTRN VALUE2:WORD
EXTRN SUM:WORD
PUBLIC SUBPROG1

CODSG B SEGMENT PARA 'CODE'
SUBPROO1 PROC FAR

ASSUME CS:CODSG B
SUB BX,BX - ;INITIALIZE CARRY COUNT
MOV AX,VALUE1
MOV DX,VALUE2
ADD AX,DX
ADC BX,OO
MOV SUM,AX
MOV SUM+2,BX
RET

SUBPROG1 ENDP
CODSG BENDS

- END

Program 7-2: Module 2

;ADD VALUE1 + VALUE2
;ACCUMULATE CARRY
;STORESUM
;STORE CARRY

SECTION 7.1: WRITING AND LINKING MODULES 199

;THIS PROGRAM FINDS THE PRODUCT OF TWO EXTERNALLY DEFINED WORDS
;AND STORES THE PRODUCT IN A LOCATION DEFINED BY THE CALLING MODULE
TITLE PR0G7-2M3 PROGRAM TO MULTIPLY TWO WORDS
PAGE 60,132

EXTRN VALUE1:WORD
EXTRN VALUE2:WORD
EXTRN PRODUCTWORD
PUBLIC SUBPROG2

CODSG C SEGMENT PARA 'CODE'
SUBPROG2 PROC FAR

ASSUME CS:CODSG C
MOV AX,VALUE1-
MOV CX,VALUE2
MUL CX ;MUL VALUE1 • VALUE2
MOV PRODUCT,AX ;STORE PRODUCT
MOV PRODUCT+2,DX ;STORE PRODUCT HIGH WORD
RET

SUBPROG2 ENDP
CODSG C ENDS

- END

Start Stop Length Name
OOOOOH 00063H 00064H STSEG
00070H 0007BH OOOOCH DTSEG
00080H 00092H 00013H CODSG A
OOOAOH 000B5H 00016H CODSG- B
OOOCOH OOODOH 00011 H CODSG:::C

Class
STACK
DATA
CODE
CODE
CODE

Program 7-2: Module 3 and the Link Map

Analysis of Program 7-2 link map

The link map shows the start and end of each segment. Notice that each
segment starts at a 16-byte boundary: 00070H, 00080H, etc. The code segment for
the main module has the name "CODSG A", starts at 00080H, and ends at 00092H,
taking a total ofOOOl3Hbytes. It was classified as 'CODE'. The next code segment
is defined under the name "CODSG _ B". Notice that it starts at the l6-byte boundary
OOOAOH since it was defined as PARA. This means that from 00093H to 0009FH
is unused. Similarly, the third module starts at OOOCOH. Notice that each code
segment is separate. They can all be merged together into one segment by using the
PUBLIC option. This is shown in Example 7-3. To merge the code segments
together, each code segment must have the same name and be declared PUBLIC.

Example 7-3

Show the link map for Program 7-2 rewritten to combine code segments (use PARA boundaries) using direc­
tive:
CDSEG SEGMENT PARA PUBLIC 'CODE'

Solution:
Start Stop Length Name
OOOOOH 00063H 00064H STSEG
00070H 0007BH OOOOCH DTSEG
00080H OOODOH 00051H CDSEG

Class
STACK
DATA
CODE

The following are the SEGMENT directives using word boundaries:
STSEG SEGMENT WORD STACK 'STACK'
DTSEG SEGMENT WORD 'DATA:
CDSEG SEGMENT WORD PUBLIC 'CODE'

The following is the link map when the program used WORD boundaries:
Start Stop Length Name Class
OOOOOH 00063H 00064H STSEG STACK
00064H 0006FH OOOOCH DTSEG DATA
00070H nnDAJlY 0003BH CDSEG CODE

200 CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

SEGMENT directive

In previous chapters, when a segment was defined using full segment
definition, no other attributes were mentioned after it. It was simply written

name SEGMENT

This kind of definition of segments was acceptable since there was only one
of each segment of code, data, and stack. However, when there are many modules
to be linked together, the segment definition must be adjusted. The complete segment
definition used widely in modular programming is as follows:

name SEGMENT alignment combine type class name

Appendix C (see SEGMEN1) gives a complete description of the fields of
the SEGMENT directive. A brief explanation of each field is given below.

The alignment field indicates whether a segment should start on a byte,
word, paragraph, or page boundary. For example, if WORD isgiven in the alignment
field, the segment will start at the next available word. When the WORD boundary
is used, if a previous segment ended at offset 0048H, the next segment will start at
004AH. The default alignment is PARA, meaning that each segment will start on a
paragraph boundary. A paragraph in DOS is defined as 16 bytes; therefore, each
segment will start on a l6-byte boundary. When PARA is used, if the previous
segment ended at 0048H, the next segment would begin at the next paragraph
boundary, which is 0050H. Paragraph boundaries end in 0; they are evenly divisible
by 16 (IOH).

The combine type field indicates to the linker whether segments of the same
type should be linked together. Typical options for combine type are STACK or
PUBLIC. An example below shows how to use this field in the stack segment
definition to combine the stack segment of a program with the system stack to
eliminate the "Warning: no stack segment" message generated by the linker. If the
combine type is PUBLIC, the linker will combine that segment with other segments
of the same type in other modules. This can be used to combine code segments with
various names under a single name.

The class name field has four options: 'CODE', 'STACK', 'DATA', and
'EXTRA'. It must be enclosed in single quotes. It is used in combining segments of
the same type from various modules.

Complete stack segment definition

The following stack segment definition in the main module will eliminate
the "Warning: no stack segment" message generated by the linker:

name SEGMENT PARA STACK'STACK'

Complete data and code segment definitions

The following is a data segment definition that can be used if no other
module has defined any data segment:

name SEGMENT PARA 'DATA'

If any other module has defined a data segment then PUBLIC should be
placed between PARA and 'DATA'. The following are the code and data segment
definitions to combine segments from different modules:

name SEGMENT PARA PUBLIC 'CODE'
name SEGMENT PARA PUBLIC 'DATA'

SECTION 7.1: WRITING AND LINKING MODULES 201

Example 7-4 rewrites Example 7-2 to define segments using the complete
segment definition.

Example 7-4

Create a shell for modular programming using the complete segment definition.

Solution:

The main file will contain:

TITLE PROG PROGRAM SHELL WITH COMPLETE SEGMENT DEFINITION
PAGE 60,132

EXTRN SUBPROG1:FAR
EXTRN SUBPROG2:FAR
PUBLIC :declare data here to be shared

STSEG

STSEG

DTSEG

DTSEG

CODSG A
MAIN -

SEGMENT PARA STACK 'STACK'
DB 100 DUP(?)
ENDS

SEGMENT PARA 'DATA'
:define data here
ENDS

SEGMENT PARA 'CODE'
PROC FAR
ASSUME CS:CODSG_A,DS:DTSEG,SS:STSEG
MOV AX,DTSEG
MOV DS,AX
CALL SUBPROG1 ;CALL SUBPROG
CALL SUBPROG2 ;CALL SUBPROG
,,'

MOV AH,4CH
INT 21H ;GO BACK TO DOS

MAIN ENDP
CODSG_A ENDS

END MAIN

----and in another file: ----.---------
TITLE SUBPROG1 PROGRAM ..
PAGE 60,132

EXTRN ...
PUBLIC SUBPROG1

CODSG B SEGMENT PARA 'CODE'
SUBPROO1 PROC FAR

ASSUME CS:CODSG B

;declare data that is defined ex1ernally
;declare procedures that are called ex1ernally

; the instructions that perform the work of the subroutine go here
RET

SUBPROG1 ENDP
CODSG BENDS

- END

----and in another file: -----------
TITLE SUBPROG2 PROGRAM TO ",
PAGE 60,132

EXTRN ...
PUBLIC SUBROG2

CODSG C SEGMENT PARA 'CODE'
SUBPROO2 PROC FAR

ASSUME CS:CODSG C

;declare data that is defined ex1ernally
;declare procedures that are called ex1ernally

; the instructions that perform the work of the subroutine go here
RET

SUBPROG2 ENDP
CODSG C ENDS

- END

202 CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

Review Questions

I. List three advantages of modular programming.
2. The directive is used within a module to indicate that the named variable can

be used by another module.
3. The directive is used within a module to indicate that the named variable was

defined in another module.
4. How does the system determine the entry and exit points of a program consisting of

more than one module?
5. What is a paragraph?
6. Write the directive used in complete segment defmition that will define the stack

segment so that it will be combined with the system stack.
7. If a word-sized data item named TOTAL was defined in module I, code the directive

to define TOTAL in module2.
8. If PARA were used for the alignment type of a code segment that ended at 56H,

where would the next code segment begin?
9. Write the code segment directives for a calling program and a module so that they

will be combined into one code segment.

SECTION 7.2: SOME VERY USEFUL MODULES

This section shows the development of two very useful programs that
convert from hex to decimal, and vice versa. Then they are rewritten as modules
that can be called from any program. Finally, the calling program is written.

Binary (hex)-to-ASCn (decimal) conversion

The result of arithmetic operations is, of course, in binary. To display the
result in decimal, the number is first converted to decimal, and then each digit is
tagged with 30H to put it in ASCII form so that it can be displayed or printed. The
first step is to convert the binary number to decimal. Look at the following example,
which converts 34DH to decimal.

34DH (3 X 162
)

(3 x 256)

768
845

+ (4 x 161
) + (D=13 x 160)

+ (4 x 16) + (13 x 1)

+ 64 + 13

Another method to convert a hex number to decimal is to divide it repeat­
edly by 10 (OAH), storing each remainder, until the quotient is less than 10. The
following steps would be performed:

34DH I A = 84 remainder 5
84H I A = 8 remainder 4
6 (< A, so the process stops)
Taking the remainders in reverse order gives: 845 decimal

Program 7-3 shows the conversion process fora word-sized (l6-bit) number
using the method of repeated division demonstrated above. Since a word-sized hex
number is between 0 and FFFFH, the result in decimal can be as high as 65535.
Therefore, a string length of 5 should be sufficient to hold the result. The binary
number to be converted is in data item BINNUM. Notice in Program 7-3 that as
each decimal digit (the remainder) is placed in DL, it is tagged with 30H to convert
it to ASCII. It is then placed in a memory area called ASCNUM. The ASCII digits
are placed in memory so that the lowest digit is in high memory, as is the convention
of ASCII storage in DOS.

SECTION 7.2: SOME VERY USEFUL MODULES 203

TITLE PROG7-3 CONVERT BINARY TO ASCII
;USING SIMPLIFIED SEGMENT DEFINITION
PAGE 60,132

.MODELSMALL

.STACK 64

.DATA
BINNUM DW 246DH

ORG 10H
ASCNUM DB 5 DUP ('0')

.CODE
B2ASC CON PROC FAR

AX,@DATA
DS,AX
BX,10

- MOV
MOV
MOV
MOV
ADD
DEC
MOV

SI,OFFSET ASCNUM
SI,5
SI
AX,BINNUM

;BX=10 THE DIVISOR
;SI = BEGINNING OF ASCII STRING
;ADD LENGTH OF STRING
;SI POINTS TO LAST ASCII DIGIT
;LOAD BINARY (HEX) NUMBER

BACK: SUB DX,DX ;DX MUST BE 0 IN WORD DIVISION
;DIVIDE HEX NUMBER BY 10 (BX=10)
;TAG '3' TO MAKE IT ASCII

DIV
OR
MOV
DEC
CMP
JA
MOV
INT

BX
DL,30H
[SI],DL
SI
AX,O
BACK
AH,4CH
21H

;MOVE THE ASCII DIGIT
;DECREMENT POINTER
;CONTINUE LOOPING WHILE AX > 0

;GO BACK TO DOS
B2ASC CON ENDP

- END

Program 7-3

204

ASCII (decimal)-to-binary (hex) conversion

When a user keys in digits 0 to 9, the keyboard provides the ASCII version
of the digits to the computer. For example, when the key marked 9 is pressed, in
reality the keyboard provides its ASCII version 00 III 00 I (39H) to the system. In
Chapter 3 we showed how in some cases, such as addition, the numbers can be
processed in ASCII and there is no need to convert them to hex (binary). However,
in the majority of cases the number needs to be converted to hex in order to be
processed by the CPU. Look at the example of converting decimal 482 to hex. The
following shows the steps to convert this number to hex:

482 1162 = 482 1 256 = 1
482 - (1 x 256) = 226 226/161 = 226/16 = 14 = E
226-(14x16)=2
482 deCimal = 1 E2 hexadecimal

However, a computer would use a different method since it works in binary
arithmetic, not decimal. First the 30H would be masked off each ASCII digit. Then
each digit is multiplied by a weight (a power of 10) such as I, 10, 100, or 1000 and
they are then added together to get the final hex (binary) result. Converting decimal
482 to hex involves the following steps. First a user types in '482' through the PC
ASCII keyboard, yielding 343832, the ASCII version of 482. Then the following
steps are performed:

2x1 = = 2
8 x 10 = 80 = SOH
4 x 100 = 400 = 190H

I E2 hexadecimal

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

Program 7-4 converts an ASCII number to binary. It assumes the maxi­
mum size of the decimal number to be 65535. Therefore, the maximum hex result
is FFFFH, a 16-bit word. It begins with the least significant digit, masks off the 3,
and multiplies it by its weight factor. Register CX holds the weight, which is I for
the least significant digit. For the next digit CX becomes 10 (OAH), for the next it
becomes 100 (64H), and so on. The program assumes that the least significant
ASCII digit is in the highest memory location of the data. This is consistent with
the conventions of storing ASCII numbers with the most significant digit in the lower
memory address and the least significant digit in the highest memory address. For
example, placing '749' at memory offset 200 gives offset 200 = (37), 201 = (34),
and 202 = (39). DOS 2lH function call OA also places ASCII numbers this way.

TITLE PROG7-4 CONVERT ASCII TO BINARY
PAGE 60,132

TEN
ASCNUM
STRLEN

BINNUM

.MODELSMALL

.STACK64

.DATA
DW
DB
DB
ORG
DW

10
'09325'
5
10H
o

.CODE
ASC2B CON PROC FAR

- MOV AX,@DATA
MOV DS,AX
SUB DI,DI
MOV SI,OFFSET ASCNUM
MOV BL,STRLEN
SUB BH,BH
DEC BX
MOV CX,1

AGAIN: MOV AL,[SI+BXl
AND AL,OFH
SUB AH,AH
MUL CX
ADD DI,AX
MOV AX,CX
MUL TEN
MOV CX,AX
DEC BX
JNS AGAIN
MOV BINNUM,DI
MOV AH,4CH
INT 21H

ASC2B CON ENDP
- END ASC2B_CON

Program 7-4

;CLEAR DI FOR THE BINARY(HEX) RESULT
;SI = BEGINNING OF ASCII STRING
;BL = LENGTH OF ASCII STRING
;BH=O USE BX IN BASED INDEX MODE
;BX IS OFFSET TO LAST DIGIT
;CX = WEIGHT FACTOR
;GET THE ASCII DIGIT
STRIP OFF '3'
:CLEAR AH FOR WORD MULTIPLICATION
;MULTIPLY BY THE WEIGHT
;ADD IT TO BINARY (HEX)RESULT
;MULTIPLY THE WEIGHT FACTOR
; BYTEN
; FOR NEXT ITERATION
;DECREMENT DIGIT POINTER
;JUMP IF COUNTER >= 0
;SAVE THE BINARY(HEX)RESULT

;GO BACK TO DOS

Programs 7-3 and 7-4 have been written and tested with sample data, and
now can be changed from programs into modules that can be called by any program.

Binary-to-ASCII module

Program 7-5 is the modularized Program 7-3. The procedure is declared as
public, so it can be called by another program. All values used are declared external
since the data will be provided by the calling program. Therefore, this module does
not need its own data segment. Notice the following points about the module:

I. Since this module will be called by another module, no entry point and exit point
were given. Therefore, the END directive does not have the label B2ASC_CON.

2. The module must return to the caller and not DOS as was the case in Program 7-4.
3. This module does not need its own data or stack segments.

SECTION 7.2: SOME VERY USEFUL MODULES 205

TITLE PR0G7-5 BINARY TO DECIMAL CONVERSION MODULE
PAGE 60,132
;this module converts a binary (hex) number up to FFFFH to decimal
; then makes ~ displayable (ASCII)
;CALLING PROGRAM SETS
; AX = BINARY VALUE TO BE CONVERTED TO ASCII

SI = OFFSET ADDRESS IM-IERE ASCII VALUE IS TO BE STORED
.MODEL SMALL
PUBLIC B2ASC CON
.CODE -

B2ASC CON PROC FAR
- PUSHF

PUSH BX
PUSH OX
MOV BX,10
ADD SI,4

B2A_LooP: SUB DX,DX
DIV BX
OR DL,30H
MOV [SI),DL
DEC SI
CMP AX,O
JA B2A LOOP
POP DX-
POP BX
POPF
RET

B2ASC CON ENDP
- END

Program 7-5

;STORE REGS CHANGED BY THIS MODULE

;BX=10 THE DIVISOR
;SI POINTS TO LAST ASCII DIGIT
;DX MUST BE 0 IN WORD DIVISION
;DIVIDE HEX NUMBER BY 10 (BX=10)
;TAG '3' TO REMAINDER TO MAKE IT ASCII
;MOVE THE ASCII DIGIT
;DECREMENT POINTER
;CONTINUE LOOPING IM-IILE AX > 0

;RESTORE REGISTERS

TITLE PROG7-e ASCII TO BINARY CONVERSION MODULE
PAGE 60,132
;this module converts any ASCII number between 0 to 65535 to binary
;CALLING PROGRAM SETS
; SI = OFFSET OF ASCII STRING
; BX = STRING LENGTH - 1 (USED AS INDEX INTO ASCII NUMBER)
;THIS MODULE SETS
; AX = BINARY NUMBER

.MODEL SMALL
EXTRN TEN WORD
PUBLIC ASC2B CON
.CODE -

ASC2B CON PROC FAR
- PUSHF

PUSH 01
PUSH CX
SUB 01,01
MOV CX,1

A2B_LooP: MOV AL,[SI+BX)
AND AL,OFH
SUB AH,AH
MUL CX
ADD DI,AX
MOV AX,CX
MUL TEN
MOV CX,AX
DEC BX
JNS A2B LOOP
MOV AX,DI
POP CX
POP 01
POPF
RET

ASC2B CON ENDP
- END

Program 7-6

;STORE REGS CHANGED IN THIS MODULE

;CLEAR 01 FOR THE BINARY (HEX) RESULT
;CX = WEIGHT FACTOR
;GET THE ASCII DIGIT
;STRIP OFF '3'
;CLEAR AH FOR WORD MULTIPLICATION
;MULTIPLY BY THE WEIGHT
;ADD IT TO BINARY (HEX) RESULT
;MULTIPLY THE WEIGHT FACTOR
; BYTEN
; FOR NEXT ITERATION
;DECREMENT DIGIT POINTER
;JUMP IF OFFSET >= 0
;STORE BINARY NUMBER IN AX
; RESTORE FLAGS

206 CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

ASCII-to-binary module

Program 7-6 is the modularized version of Program 7-4. Notice the follow­
ing points about the module:

1. TEN is defmed in the calling program.
2. This module must return to the caller and not DOS.

Calling module

Program 7-7 shows the calling program for the module that converts ASCII
to binary. This program sets up the data segment, inputs the ASCII data from the
keyboard, places it in memory, then calls the routine to convert the number to binary.
Finally, the hex result is stored in memory.

TITLE PROG7-7 CALLING PROGRAM TO CONVERT ASCII TO BINARY
PAGE 60,132

PUBLIC TEN
.MODEL SMALL
.STACK 64

.DATA
ASC AREA LABEL
MAlCLEN DB
ACT-LEN DB
ASC-NUM DB

- ORG
BINNUM DW
PROMPT1 DB
TEN DW

.CODE

BYTE
6
?
6 DUP (?)
10H
o
'PLEASE ENTER A 5 DIGIT NUMBER','$'
10

EXTRN ASC2B CON:FAR
MAIN PROC FAR -

MOV AX,@DATA
MOV DS,AX
;DISPLAY THE PROMPT
MOV AH,09
MOV DX,OFFSET PROMPT1
INT 21H
;INPUT STRING
MOV AH,OAH
MOV DX,OFFSET ASC AREA
INT 21H -
MOV SI,OFFSET ASC NUM
MOV BH,OO -
MOV BL,ACT LEN
DEC BX -
CALL ASC2B CON
MOV BINNUM,AX ;SAVE THE BINARY (HEX) RESULT
MOV AH,4CH
INT 21H ;GO BACK TO DOS

MAIN ENDP
END MAIN

Program 7-7

Review Questions

1. Show a step-by-step analysis of Program 7-3 with data F624H. Show the sequence
of instructions and the data values.

2. Show a step-by-step analysis of Program 7-4 with data ' 1456'. Show the sequence
of instructions and the data values.

SECTION 7.2: SOME VERY USEFUL MODULES 207

SECTION 7.3: PASSING PARAMETERS AMONG MODULES

208

Occasionally, there is a need to pass parameters among different Assembly
language modules or between Assembly language and BASIC, Pascal, or C lan­
guage programs. The parameter could be fixed values, variables, arrays of data, or
even pointers to memory. Parameters can be passed from one module to another
through registers, memory, or the stack. In this section we explore passing parame­
ters between Assembly language modules.

Passing parameters via registers

When there is a need to pass parameters among various modules, one could
use the CPU's registers. For example, if a main routine is calling a subroutine, the
values are placed in the registers in the main routine and then the subroutine is called
upon to process the data. In such cases the programmer must clearly document the
registers used for the incoming data and the registers that are expected to have the
result after the execution of the subroutine. In Chapter 4 this concept was demon­
strated with INT21H and INT IOH. Program 7-7 demonstrated this method. In that
program, registers BX and SI were set to point to certain data items before the
module was called, and the called module placed its result in register AX prior to
returning to the calling routine.

Passing parameters via memory

Although parameter passing via registers is widely used in many of the DOS
and BIOS interrupt function calls, the limited number of registers inside the CPU is
a major limitation associated with this method of parameter passing. This makes
register management a cumbersome task. One alternative is to pass parameters via
memory by defining an area of RAM and passing parameters to these RAM
locations. DOS and IBM BIOS use this method frequently. The problem with
passing parameters to a fixed area of memory is that there must be a universal
agreement to the address of the memory area in order to make sure that modules can
be run on the hardware and software of various companies. This kind of stand­
ardization is hard to come by. The only reason that BIOS and DOS use an area of
memory for passing parameters is because IBM and Microsoft worked closely
together to decide on the memory addresses. Another option, and indeed the most
widely used method of passing parameters, is via the stack, as discussed next.
Passing parameters via the stack makes the parameters both register and memory
independent.

Passing parameters via the stack

The stack is a very critical part of every program and playing with it can be
risky. When a module is called, it is the stack that holds the address where the
program must return after execution. Therefore, if the contents of the stack are
altered, the program can crash. This is the reason that working with the stack and
passing parameters through it must be understood very thoroughly before one
em barks on it.

Program 7 -8, on the following page, demonstrates this method of parameter
passing and is written with the following requirements. The main module gets three
word-sized operands from the data segment, stores them on the stack, and then calls
the subroutine. The subroutine gets the operands from the stack, adds them together,
holds the result in a register, and then returns control to the main module. The main
module stores the result of the addition. Following the program is a detailed stack
contents analysis that will show how the parameters are stored on the stack by the
main routine and retrieved from the stack by the called routine.

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

TITLE PROG7-8 PASSING PARAMETERS VIA THE STACK
PAGE 60,132

.MODEL SMALL
EXTRN SUBPROG6:FAR

.STACK 64

.DATA
VALUE 1 DW 3F62H
VALUE2 DW 1979H
VALUE3 DW ·25F1H
RESULT DW 2 DUP (?)

.CODE
MAIN PROC FAR

MOV AX,@DATA
MOV DS,AX
PUSH VALUE3 ;SAVE VALUE3 ON STACK
PUSH VALUE2 ;SAVE VALUE2 ON STACK
PUSH VALUE1 ;SAVE VALUE1 ON STACK
CALL SUBPROG6 ;CALL THE ADD ROUTINE
MOV RESULT,AX ;STORE
MOV RESULT+2,BX ; THE RESULT
MOV AH,4CH
INT 21H

MAIN ENDP
END MAIN

Program 7-8: Main Module

in a separate file:
TITLE
PAGE

SUBPROG6 MODULE TO ADD THREE WORDS BROUGHT IN FROM THE STACK
60,132
.MODEL SMALL
PUBLIC SUBPROG6
.CODE

SUBPR0G6 PROC
SUB
PUSH
MOV
MOV
MOV
MOV
ADD
ADC
ADD
ADC
POP
RET

SUBPR0G6 ENDP
END

FAR
BX,BX
BP
BP,SP
AX,[BPj+6
CX,[BPj+8
DX,[BPj+10
AX,CX
BX,OO
AX,DX
BX,OO
BP
6

Program 7-8: Module 2

;CLEAR BX FOR CARRIES
;SAVEBP
;SET BP FOR INDEXING
;MOV VALUE1 TO AX
;MOV VALUE2 TO CX
;MOV VALUE3 TO DX
;ADD VALUE2 TO VALUE1
;KEEP THE CARRY IN BX
;ADD VALUE3
;KEEP THE CARRY IN BX
;RESTORE BP BEFORE RETURNING
;RETURN AND ADD 6 TO SP TO BYPASS DATA

Stack contents analysis for Program 7-8

To clarify the concept of parameter passing through the stack, the following
is a step-by-step analysis of the stack pointer and stack contents. Assume that the
stack pointer has the value SP = l7FEH before the "PUSH VALUE3" instruction in
the main module is executed.

1. VALUE3 = 25FlH is pushed and SP = l7FC (remember little endian: low byte to
low address and high by1e to high address).

2. VALUE2 = 1979H is pushed and then SP = l7FA.
3. VALUE I = 3F62H is pushed and then SP = l7F8.

SECTION 7.3: PASSING PARAMETERS AMONG MODULES 209

4. CALL SUBPROG6 is a FAR call; therefore, both
CS and IP are pushed onto the stack, making SP =
17F4. Ifit had been a near call, only IPwould have
been saved.

5. In the subprogram module, register BP is saved by
PUSHing BP onto the stack, which makes SP =
17F2. In the subprogram, BP is used to access
values in the stack. First SP is copied to BP since
only BP can be used in indexing mode with the
stack segment (SS) register. In other words,
"MOV AX,[SP+4]" will cause an error. "MOV
AX,[BP)+6" loads VALUE I into AX. [BP]+6 =
17F2+6 = 17F8, which is exactly where VALUEI
is located. Similarly, BP+8 = 17F2+8 = 17FA is
the place where VALUE2 is located, and BP+ 10 =
17F2H+ I 0 = 17FCH is the location of VALUE3.

6. After all the parameters are brought into the CPU
by the present module and are processed (in this
case added), the module restores the original BP
contents by POPping BP from stack. Then SP =
17F4.

7. RET 6: This is a new instruction. The RETurns
shown previously did not have numbers right after

17FO
17FI
17F2

BP
17F3
17F4
17F5 IP

17F6
CS 17F7

17F8 62 VALUE1
17F9 3F
17FA 79 VALUE2
17FB 19
17FC F1 VALUE3
17FD 25
17FE

Program 7-8: Stack
Contents Diagram

them. The "RET n" instruction means first to POP CS:IP (IP only if the CALL was
NEAR) off the top of the stack and then add n to the SP. As can be seen from the
Program 7-8 diagram, after popping CS and IP off the stack, the stack pointer is
incremented four times, making SP = 17F8. Then adding 6 to it to bypass the six
locations of the stack where the parameters are stored makes the SP = 17FEH, its
original value. Now what would happen if the program had a RET instruction
instead of the "RET 6"? The problem is that every time this subprogram is executed
it will cause the stack to lose six locations. If that had been done in the example
above, when the same routine is called again the stack starts at I 7F8 instead of 17FE.
If this practice oflosing some area of the stack continues, eventually the stack could
be reduced to a point where the program would run out of stack and crash.

Review Questions

I. List one advantage and one disadvantage of each method of parameter passing.
(a) via register (b) via stack (c) via memory

2. Assume that we would like to access some parameters from the stack. Which of the
following are correct ways of accessing the stack?
(a) MOV AX,[BP)+20 (b) MOV AX,[SP)+20
(c) MOV AX,[BP+DI) (d) MOV AX,[SP+SI)

SECTION 7.4: COMBINING ASSEMBLY LANGUAGE AND C PROGRAMS

210

Although Assembly language is the fastest language available for a given
CPU, it cannot be run on different CPUs. For example, Intel's 80x86 Assembly
programs cannot be run on Motorola's 68000 series computers since the opcode,
mnemonics, register names, and size are totally different. Therefore, a portable
language is needed.

WhyC?

Although the dream of a universal language among the peoples of the world
is still unrealized, C language is becoming the universal language among all the
various CPUs. Today, a large portion of programs written for computers, from PCs
to supercomputers such as CRAY, are in the C language. C is such a universal
programming language that it can be run on any CPU architecture with little or no
modification. It is simply recompiled for that CPU. The fact that C is such a portable

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

language is making it the dominant language of programmers. However, C is not
as fast as Assembly language. Combining C and Assembly language takes advan­
tage of C's portability and Assembly's speed. Today it is very common to see a
software project written using 70 to 80% C and the rest Assembly language.

There are two ways to mix C and Assembly. One is simply to insert the
Assembly code in C programs, which is commonly referred to as in-line assembly.
The second method is to make the C language call an external Assembly language
procedure. In this section we first discuss how to do in-line assembly coding and
then show a C language program calling an Assembly procedure. Readers without
a C programming background can bypass this section without loss of continuity.
This section covers Borland's Turbo C++.

Inserting BOxBS assembly code into C programs

In this section we discuss in-lining with Borland's Turbo C++. For other C
compilers, consult their C manual. The following code demonstrates how to change
the cursor position to row = 10 and column = 20 in a C program. Assembly
instructions are prefaced with "asm", which is a reserved word. Microsoft uses the
keyword "_asm". Note that in Microsoft, not all interrupts may be supported in the
latest versions of Yisual C++. The following shows two variations of Borland's
format for in-line assembly.

1* version 1: using keyword asm before each line of in-line code */
1* Microsoft uses keyword "_asm" */
main 0
{
asm movah,2; 1* each line should end with semicolon or <CR> */
asm mov bh,O;
a5m movdl,20; /* comments must be C style, not ";" assembly style */
asm mov dh,10;
asm int 10h;
}

/* version 2: using the keyword asm before a block of in-line code */
/* Microsoft uses keyword "_asm" */
main 0
{
asm {
movah,2
movbh,O
movdl,20
movdh,10
int 10h

}
}

As shown above, each line of in-line code is prefaced by the keyword
"asm", or a block of in-line code is prefaced by "asm". Each line must end in a
semicolon or newline, and any comments must be in the correct form for C.

Example 7-5, on the following page, shows two programs that display a
string of data. Solution A uses C language exclusively. Solution B uses Borland's
Turbo C with in-line Assembly code. Notice that in mixing C with Assembly code,
Assembly directives such as OFFSET in "MOY OX,OFFSET MESSAGE" are not
recognizable by C.

Example 7-6 also shows in-line assembly. The in-line code sets the cursor
at row = 10 and column = 20 and then displays a string of data using a combination
of Borland C and Assembly.

SECTION 7.4: COMBINING ASSEMBLY LANGUAGE AND C PROGRAMS 211

Example 7-5

Solution A: A C language program

#include <stdio.h>
main ()
{

printf("The planet Earth. In");
}

Solution B: Turbo C with in-line Assembly

char canst "MESSAGE = "The planet Earth.ln$";
main ()
{

}

asm moYah,9
asm may dx, MESSAGE
asm int 21h

Example 7-6

212

Borland C and in-line Assembly code

main ()
{
int canst row = 10;
int canst column = 20;
char canst "MESSAGE = "The planet Earth. In$";

asm {
moYah,2
maY bh,O
may dl,column
may dh,row
int 10h r set cursor position"'
maYah,09
maY dX,MESSAGE
int 21 h r display message"'

}
}

C programs that call Assembly procedures

Although in-line assembly is fast and easy, in real-life applications it is
common to write Assembly language subroutines and then make them available for
C to call as if calling a C function, What is referred to in C language terminology
as afimction is called a procedure (subroutine) in Assembly language, Before
embarking on writing Assembly routines to be used with C, one must first understand
how parameters are passed from C to Assembly language, All high-level languages,
such as C, BASIC, FORTRAN, and Pascal, pass parameters to subroutines (func­
tions) that they are calling via the stack. Some of them pass the value itself (C,
Pascal), while some others pass the address of the value (BASIC, FORTRAN). In
BASIC, only the offset address is passed, while in FORTRAN both the segment and
offset addresses are passed. Even the order in which they pass parameters differs
among high-level languages, The terminology calling convention refers to the way
that a given language passes parameters to the subroutines it calls, The following
describes the C calling convention,

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

Example 7-7
extern cursor (int, int);
main ()
(
cursor (15,12);
printf("This program sets the curso~');
}

in cursor.asm: -
.MODEL SMALL
.CODE
PUBLIC CURSOR

;this procedure is written to be called by a C program
_CURSOR PROC

PUSH BP ;save the BP (it is being altered)
MOV BP,SP ; use BP as indexing into stack
MOV DH,[BP+4) ;get the x (row) value from stack
MOV DL,[BP+6) ;get the y (column) value from stack
MOV AH,02 ;set registers for INT call
MOV BH,OO
INT 10H
POP BP ;restore BP
RET

_CURSOR ENDP

C calling convention
1982
1983

How does C pass pa- 1984
BP SP=BP

rameters to functions? It is 1985
extremely important to un- 1986 IP BP +2 holds return address derstand this since failure to 1987
do so can cause getting the 1988 OF
wrong data from the stack

1989 00
BP+4 holds x value 15=FH

when trying to access it
198A DC through the Assembly sub-

routine. The following de- 198B 00
BP+6 holds y value 12=CH

scribes the C calling 198C
convention formixing Cwith
MASM Assembly language.
An Assembly language pro- Example 7-7 Stack Contents Diagram
cedure to be called by C must follow these rules:

I. The parameters are passed by value to the stack in reverse order of encountering
them. For example, in the function prog (x,y,z), first Z is passed, then y, and so on.

2. After parameters are passed in reverse order, C also saves the address (CS,IP). IfC
is compiled in the SMALL or COMPACT memory model (or if the procedure is
NEAR) only the IP is saved. If C is compiled for MEDIUM, LARGE, or HUGE
(or if the procedure is FAR), both CS and IP are passed to the stack (CS is passed
first, then IP).

3. BP must be saved on the stack and then the parameters must be accessed by the BP
register and displacement, since BP is the offset of the stack segment (SS) register.

4. The last instruction should be RET with no number after it, since it is the job of C
to restore the stack to its original place when it takes back control.

5. Any name shared publicly with C must be prefaced with an underscore, and only
the first eight cbaracters of the name are recognized by C.

6. C passes the parameters by value except for arrays, which are passed by reference.
7. IfC is compiled in the MEDIUM, HUGE, or LARGE model, use the FAR option

for the Assembly language procedure. If C is compiled with the SMALL model,
use the NEAR option for the Assembly language procedure.

To understand the concepts above, assume that there is a C function named
cursor (x,y), where x and y are the column and row values, respectively. Example
7-7 shows how x and y are passed to the stack and then accessed by Assembly code.
The step-by-step sequence of the stack contents is shown also.

SECTION 7.4: COMBINING ASSEMBLY LANGUAGE AND C PROGRAMS 213

When C calls the cursor function, it saves y first, then x, and then the return
address IP, and [mally, gives control to the Assembly code. The first instruction of
the assembly procedure must be saving the BP register, "PUSH BP". The last
instruction must be the RET instruction.

Notice that the first two instructions of the procedure must always be saving
BP and moving SP to BP. Similarly, the last two instructions must be popping BP
and RET. The body of Assembly code goes in between them. This way of accessing
arguments in the stack is standard, and saving any other registers will have no effect
on displacement calculation as long as the number of PUSH and POP instructions
are equal.

Example 7-8 shows the cursor routine rewritten to save all registers altered
by the routine. The stack contents analysis is shown in the diagram.

Example 7-8

214

.MODEL SMALL

.CODE
PUBLIC CURSOR
;this procedure is written to be called by C language

_CURSOR PROC
PUSH BP ; save the BP since contents are a~ered
MOV BP,SP
PUSH AX ;push regs altered by this module
PUSH DX
PUSH BX
MOV DH,[BP+4[;get x the row value from stack
MOV DL,[BP+6[;get y the column value from stack
MOV AH,02 ; set up for INT call
MOV BH,OO
INT 10H
POP BX ;restore registers
POP DX
POP AX
POP BP
RET

_CURSOR ENDP
END

197E BL
How parameters are 197F BH BX
retumedtoC 1980 DL DX

In the preceding sec- 1981 DH
tion we described how argu- 1982 AL AX
ments are passed from C to 1983 AH
the stack and from there to an 1984

BP Assembly procedure. What 1985 SP=BP

happens if a C function ex- 1986 IP pects to receive an argument? 1987
BP +2 holds return address

When C expects an argument 1988 OF
from an Assembly proce- BP+4 holds x value 15=FH

1989 00
dure, it expects to find the

198A DC returned parameter in certain BP+6 hold. y value 12=CH
register(s), depending on the 198B 00
size of the parameters as
shown in Table 7-1. Example 7-8 Stack Contents Diagram

Table 7-1: Returned Values from Assembly Procedures

Rel!ister Size C Data Type

AL 1 byte char short

AX 2 bytes int

DX:AX 4 bytes long

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

In Table 7-1 the register indicates the register used for the return value. If
the value returned is a pointer (address), AX will hold IP if it is NEAR and DX:AX
will hold CS:IP ifit is FAR. This is illustrated in Example 7-9, where the sum of x,
y, and z is returned to C through DX and AX as expected by C. DX has the higher
word and AX the lower word. In the stack frame illustration, first notice that since
the procedure is FAR, both CS and IP are saved on the stack. Therefore, to access
the C arguments, it is necessary to use BP+6, BP+8, and BP+ I 0 displacements.

As a rule, if the Assembly procedure is NEAR, the last argument passed by
C is accessed by the displacement ofBP+4, and ifit is FAR, it is accessed by BP+6
displacement. In order not to be bothered by these rules, new assemblers have
become more user friendly, as shown in the next topic.

Example 7-9

Three values ofint size are passed by a C function to an Assembly procedure. The assembly code
adds them together and returns the total sum back to C, which displays the result.

extern unsigned long sum (int, int, int);
{
mainO
printf("The sum is equal to %u", sum (500,6500,200»;
}
The following is sum.asm

.MODEL MEDIUM

.CODE
PUBLIC SUM
;this far procedure gets three words from the stack and adds
;them together. At the end DX:AX has the total sum

_SUM PROC FAR
PUSH BP ;save BP
MOV BP,SP ;use rt as SP
SUB AX,AX ;clear AX
MOV DX,AX ;and DX
ADD AX,[BP+6] ;add the first
ADC DX,O ;add the carry
ADD AX,[BP+8] ;add the second
ADC DX,O ;add the carry
ADD AX,[BP+l0] ;add the third
ADC DX,O ;add the carry
POP BP ;restore BP
RET ;go back to C

_SUM ENDP
END

New assemblers and linking
withC

17FO
17FI
17F2 BP
17F3
17F4 IP
17F5

17F6 CS
17F7
17F8
17F9
17FA
17FB
17FC
17FD

SP=BP

x value pointed at by BP+6

y value pointed at by BP+8

z value pointed at by BP+l0

In recent years some
Assemblers have made link­
ing with C much easier. Us­
ing MASM 5.1, orTASM 1.0
and higher, ends the need to
worry about the displace­
ment or about beginning the
names common to C and As­
sembly with an underscore or
about saving BP. The pro­
gram in Example 7-9 is re­
written on the following
page. Notice letter C in direc­
tive ".MODEL SMALL, C".
This automatically makes the Example 7-9 Stack Contents Diagram

SECTION 7.4: COMBINING ASSEMBLY LANGUAGE AND C PROGRAMS 215

assembler calculate [BP+n I for all the parameters. Compare these two programs to
see the convenience of the new assemblers. Example 7-9 in the new format follows .

. MODEL MEDIUM, C

.CODE
PUBLIC SUM
;this FAR procedure gets three words from the stack and adds
;them together. At the end DX:AX has the total sum

SUM PROC FAR DATA1:WORD, DATA2:WORD, DATA3:WORD
SUB AX,AX ;CLEAR AX
MOV DX,AX ;CLEAR DX
ADD AX,DATA1
ADC DX,O
ADD AX,DATA2
ADC DX,O
ADD AX,DATA3
ADC DX,O
RET

SUM ENDP
END

Passing array addresses from C to the stack

The C language passes variables to the stack by val ue and arrays by a pointer.
In other words, the offset address of the array is pushed onto the stack if the memory
model is SMALL or MEDIUM; otherwise, both the segment and offset address of
the array are pushed. Example 7-10 illustrates this point. It uses a C language array
to define daily wages for a five-day week, using an unsigned int (0 to 255 range
values) data defmition. It then uses Assembly code to add them and return the total
sum back to C to be displayed.

Example 7-10

216

int wages [5]- (154, 169, 98, 129, 245);
extern unsigned short weekpay(int wages[]);
mainO
(
printf('Weekly pay = %u", weekpay(wages));
}

weekpay.asm is as follows:
.MODEL MEDIUM
.CODE
PUBLIC WEEKPAY
;this procedure adds five bytes together.

;At the end AX has the total sum
WEEKPAY PROC FAR

- PUSH BP ;save BP
MOV BP,SP
PUSH SI ;save SI
SUB AX,AX
MOV CX,5
MOV SI,[BP+6]

AGAIN: ADD AL,[SI] ;add a day's wages
ADC AH,O
INC SI ;increment pointer to next wage
INC SI
LOOP AGAIN
POP SI
POP BP
RET

WEEKPAY ENDP
- END

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

SUMMARY

SUMMARY

Linking Assembly language routines with C

The following steps describe how to link Borland C++ with MASM
Assembly language routines.

I. Make sure that the Assembly language procedure declares the procedure as PUBLIC.
The procedure name should begin with an underscore. Forexample, if the procedure
is called "sum" in the C program, it should be "_sum" in the Assembly language
routine. Make the Assembly language procedure NEAR for the small model and
FAR for the medium model.

2. In the C program, declare the procedure as external.
3. Assemble the Assembly language program with MASM to produce the object file:

for example, module I.obj.
4. Compile the C program to produce the object file: for example, progl.obj.
5. Link them together to produce the executable file.

C> link prog I.obj + module I.obj

In Borland C++, they can be linked together as follows:

C> bec prog I.c module I.asm

The "bec" command will compile the C program. Use the TASM assembler
to assemble the Assembly language program, and then link them together. Note that
Borland C is case sensitive. If your procedure is called "_SUM" in the Assembly
language program and "sum" in the C program, the linker will not be able to link
them together. Make the procedure name lowercase in the Assembly language
program. If you are using Borland C++, it is recommended not to use the "cpp"
filename extension since this will cause the function name to be mangled, and
therefore the linker will not be able to find the function. If you must use the "cpp"
extension, you must compile the C program with the IS option to obtain an Assembly
language listing, then see how the function name was mangled and use that name in
your Assembly language program. For example, suppose that the function name
"sum" was listed as "@sumq$iii". In that case, all references to "sum" in the
Assembly language program will have to be changed to "@sumq$iii" in order to
allow the program to be linked with the C++ program.

Review Questions

I. A C program can either call an Assembly language program or use ___ coding
that inserts the Assembly language code into the C program.

2. Describe the C convention for passing parameters to functions.

Modular programming involves breaking down a project into independent
subprograms. Each subprogram accomplishes a specific set of tasks. Good pro­
gramming practices dictate that the input and output variables to each subprogram
be clearly documented. Variables within subprograms are defined by the EXTRN
and PUBLIC directives. These provide the means by which the computer can locate
variables. Various methods for passing parameters are used, including passing by
register, by memory, or by the stack.

The C programming language has gained widespread popularity because of
the ease with which code can be ported from one machine to another. However, it
is often desirable to include Assembly language programs because of the increased
speed that can be gained. Assembly language routines can be called by C programs,
or the Assembly language code can be coded directly into the C program by a
technique called in-line coding.

217

PROBLEMS

218

I. Fill in the blanks in the following program. The main program defines the data and
calls another module to add 5 bytes of data, then saves the result. Note: Some
blanks may not need anything .

DATAl
RESULT

HERE:

. MODEL SMALL

.STACK 100H

.DATA
PUBLIC
DB
DW
.CODE

25,12,34,56,98
?

EXTRN :FAR
MOY AX,@DATA
MOY DS,AX
CALL SUM
MOY AH,4CH
INT 21H
END

In another file there is the module for summing 5 bytes of data:
.MODEL SMALL
___ DATA I:BYTE
=,,-,--_RESULT: WORD

COUNT EQU 5
.CODE
=~---,SUM

SUM PROC
MOY BX,OFFSETDATAI
SUB AX,AX
MOY CX,COUNT
ADD AL, BYTE PTR [BX]
ADC AH,O
INC BX
LOOP AGAIN
MOY RESULT,AX
RET
ENDP
END

2. If a label or parameter is not defined in a module, it must be declared as __ .
3. If a label or parameter is used by other modules, it must be declared as in

the present module.
4. List the options for the EXTRN directive when it is referring to a procedure.
5. List the options for the EXTRN directive when it is referring to a data item.
6. List the options for the PUBLIC directive when it is referring to a procedure.
7. List the options for the PUBLIC directive when it is referring to a data item.
8. Convert Program 4-1 to the modular format, making each of the !NT subroutines a

separate module. Each module should be NEAR. Assemble and test the program.
9. Write a program that accepts two unsigned numbers (each less than 999) from the

keyboard, converts them to hex, takes the average, and displays the result on the
monitor. Use the hex-to-decimal and ASCII-to-hex conversion modules in the
text.

10. Write a program (similar to Program 7-1) with the following components.
(a) In the main program, two values are defined: 1228 and 52400.
(b) The main program calls two separate modules, passing the values by stack.
(c) In the first module, the two numbers are multiplied and the result is passed back

to the main module.

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

(d) The second module perfonns division of the two numbers (52400 fl22) and
passes both the quotient and remainder back to the main program to be stored.

(e) Analyze the stack and its contents for each module ifSP = FFF8H immediately
before the first CALL instruction in the main module.

II. Write an in-line assembly program to set the cursor to row 14, column 27, and then
display the message "This is a test".

12. Modify Example 7-8 to add twelve monthly salaries. The total yearly salary can­
not be higher than $65,535.

ANSWERS TO REVIEW QUESTIONS

SECTION 7.1: WRITING AND LINKING MODULES
1. (1) each mcdule can be developed individually, allowing parallel development of mcdules, which shortens

development time, (2) easier to locate source of bugs, (3) these modules can be linked with high-level languages
such as C

2. PUBLIC 3. EXTRN
4. the module that is the entry and exit point will have a label after the END statement
5. a paragraph consists of 16 bytes and begins on an address ending in OH
6. name SEGMENT PARA STACK 'STACK' 7. EXTRN TOTAL:WORD
8. 60H 9. name SEGMENT PARA PUBLIC 'CODE'

SECTION 7.2: SOME VERY USEFUL MODULES
1. 1st iteration: AX=F624 F624/A = 1890 remainder DL=2

2nd iteration:AX=189D 189D/A=0276 remainder DL=1
3rd iteration: AX=0276 0276/A=003F remainder DL=O
4th iteration:AX=003F 003F/A=6 remainder DL=3
5th iteration:AX=0006 0006/A=0 remainder DL=6
AX is now zero, so the conversion is complete: F624H=63012,o

2. 1st iteration: AL=36 06x1=6 01=6
2nd iteration:AL=35 05xA=32 01=6+32=38
3rd iteration:AL=34 04x64=190 DI=38+1C8
4th iteration:AL=31 01x03E8=03E8 DI=1C8+03E8=05BO
5th iteration:AL=30 Ox2710=0 DI=05BO
BX has been decremented from 4 to 0, is now -1, so the conversion is complete
01456,o=05BOH

SECTION 7.3: PASSING PARAMETERS AMONG MODULES
1. (a) by register; one advantage is the execution speed of registers; one disadvantage is that there is a limited

number of registers available so that not many values can be passed
(b) by stack; one advantage is it does not use up available registers; one disadvantage is that errors in
processing the stack can cause the system to crash
(c) by memcry; one advantage is a large area available to store data; one disadvantage is that the program
would not be portable to other computers

2. (a) and (c) are correct, (b)and (d) are not correct because SP cannot be used in indexing mode with SS

SECTION 7.4: COMBINING ASSEMBLY LANGUAGE AND C PROGRAMS
1. in-line
2. parameters are passed by value except for arrays, which are passed by reference; parameters are passed in

reverse order of argument list; after arguments are pushed onto the stack, C pushed CS:IP for FAR procedures
or IP for NEAR procedures

ANSWERS TO REVIEW QUESTIONS 219

220

CHAPTER 8

32-BIT PROGRAMMING FOR 386
AND 486 MACHINES

». DisCn~tkefllltjor ... iit~llill~~&~oa~~l}dtbel!0386t486

·.~<:.~.Z~~~!i'~lmodes ..
»···~~iltt~~~R:'ilri!grsiti'"s~':~tDtIlO8086t~6I11id386{486
» ..••. ~ •• :~t:~tet~~~~~.~.l!6l~.~eJjt~s~~anl~cr~ •
. » ... ·.l>i~aRl: ~t~'~.ittJci.!!J!.!lillD.·' ·.·~tJlge:.coI}Ven6\Jn.llt8$~RladljJteS:lt9res

do~l4lS\!or:¢;~IIJ1er~ .. .•.•.> >

» Co .. eprOlJ'li~$l!i~38~~I:6;ir,tatti.iIl~~lIg~~~edi-e$isttrs.aild .R~.diree-
tiv~: >........•...• :

» ~.·a~t"'~stilt~lIts.uslilg'lle~~teD4edr.\lgistersof.tII\1386f436
» Destrlbl::tlilrfA~~resllJl:ilJg", tbei!l~rell#d pertOl!RlaI}C~. {If 38614l!6 over pre-

VWMS gellora6QDs.ofmI£roJlFBeeSSO" . .

CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES

All programs discussed so far were intended for 16-bit machines such as
8088, 8086, and 80286 IBM and compatible computers. Although those programs
will run on 80386- and 80486-based machines with much improved speed, the true
power of 386 and 486 microprocessors shows up when they are switched to
protected mode. What is protected mode? As mentioned in Chapter I, the 386 and
486 can operate in two modes: real mode and protected mode. In real mode they
function essentially the same as 8086/286 machines with the exception that 32-bit
registers are available. They still have a capacity of addressing a maximum of I
megabyte of memory. More important, they run all MS-DOS programs without any
modification. In protected mode they can access up to 4 gigabytes of memory, but
they also require a very complex operating system, one of whose tasks is to assign
a privilege level of 0 to 3 (0 being the highest) to each program run on the CPU. At
this time only the Unix operating system is taking advantage of protected mode in
both the 386 and 486 microprocessors. In March 1992, IBM introduced OS/2
version 2.0, designed specifically for 386 systems. This is a 32-bit version of the
OS/2 operating system written to take advantage of protected mode in 386 and
higher microprocessors. This is in contrast to OS/2 version 1, which was designed
for 16-bit 80286 protected mode. The combination of32-bit processing power and
an operating system with multitasking and multiuser capability makes the 386 and
486 computers comparable to the minicomputers of the 1970s at a fraction of the
cost. The term multiuser refers to a system that can support more than one
terminallkeyboard at a time. Multitasking refers to systems that can execute mOre
than one program at a time.

In this chapter we discuss the characteristics of 386 and 486 microproces­
sors in real mode that affect programming. Then some program examples will be
given that use the 32-bit capability ofthese machines. Finally, a timing comparison
of several programs run across 80x86 machines will be given in order to appreciate
the speed of 386/486-based computers. Protected mode and other capabilities of
these processors are discussed further in Chapter 21.

SECTION 8.1: 80386/80486 MACHINES IN REAL MODE

31

I

In this section we concentrate on some of the most important differences
between the 8086/286 and 386/486 in real mode. One major difference is the
register size. While in the 8086/286 the maximum register size is 16 bits wide, in
the 386/486 the maximum size of registers has been extended to 32 bits. All register
names have been changed to reflect this extension. Therefore, AX has become EAX,
BX is now EBX, and so on, as illustrated below and outlined in Table 8-1. For
example, the 386/486 contains registers AL, AH, AX, and EAX with 8, 8, 16, and
32 bits, respectively. In the 86/286, register AX is accessible either as AL or AH or
AX, while in the 386/486, register EAX can be accessed only as AL or AH or AX
or EAX. In other words, the upper 16 bits of EAX are not accessible as a separate
register. The same rule applies to EBX, ECX, and EDX. Registers D1, SI, BP, and
SP have become EDI, ESI, EBP, and ESP, respectively. That means the 386/486
can access D1, EDI, SI, ESI, BP, EBP, SP, and ESP. All of these registers are
accessible in real mode.

15 8 7 0

I AH I AL I The 16-bit register AX

AX I of the 8086/80286.

16 15 8 7 0

I AH I AL I The 32-bit register EAX
of the 80386/486.

I AX
EAX

SECTION 8.1: 80386/80486 MACHINES IN REAL MODE 221

In addition to the CS, DS, SS, and ES segment registers, there are also two
new segment registers which are accessible in real mode: FS and GS. With the
addition of these new segment registers, there are a total of six segment registers,
making it possible to access 384K bytes (6 x 64 = 384), since each segment register
can access up to 64K bytes of memory. Again, all these registers are accessible in
real mode. Although both the flag register and IP are extended to 32 bits, only the
lower 16 bits are available in real mode. To access all 32 bits of these registers,
one must switch to protected mode. There are several control registers (CRO, CRI,
CR2, and CR3) in protected mode but only bit 0 of CRO is available in real mode.
Bit 0 ofCRO is the protection-enable bit. When power is applied to the 386/486, it
selects real mode automatically and PE (bit 0 of CRO) is low. To switch from real
mode to protected mode, this bit must be set to I. Again, only the Unix and OS/2
operating systems use protected mode at this time. MS-DOS, up to version S, is
not using the protected mode of the 386/486. This might change with future versions
of MS-DOS.

Table 8-1: Registers oftbe 80386/486 by Category

CategorY !Bits Register Names

General

Segment

Instruction

Fla

Control

32 EAX,EBX,ECX,EDX

16 AX,BX,CX,DX

8 AH AL BH BL CH CL DH,DL

32

i 16

32

16

16

32

,

ESP (extended SP), EBP (extended BP)

SP (stack Dointerl. BP (base pointer)

ESI (extended SI), EOI (extended OI)

lSI (source index), OI (destination index)
!

I CS (code segment), DS (data segment),
I

ISS (stack segment), ES (extra segment)

IFS (extra segment), GS (extra segment) i

I
----1" ,EIP (extended instruction pointe",rcL)~~~~~--i1

J
Note: Only bit 0 of CRO is available in real mode. All other control registers are available in protected mode only.

222

General registers are pOinters in 386/486

Another major change from 861286 to 386/486 is the ability of general
registers such as EAX, ECX, and EDX to be used as pointers. As shown in previous
chapters, AX, CX, and DX could not be used as pointers. For example, an instruction
such as "MOV CL,[AX]" would have cause an error in the 86/286 CPU since only
BX, SI, DI, and BP were allowed to be used as pointers to memory. This has
changed starting with the 80386 microprocessor. In the 386/486 CPU, the following
instructions are perfectly legal:

MOV AX,[ECX]
ADD SI,[EDX]
OR EBX,[EAX]+20

It must be noted that when EAX, ECX, or EDX are used as offset addresses,
DS is the default segment register. That means that SS is the default segment register

CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES

for ESP and EBP, CS for EIP, and DS for all other registers. The segment override
symbol (:) can be used to change the default segment register as shown next.

MOV AX,FS:[ECX] ;move contents of FS:ECX to AX

Calculation of physical addresses in real mode is the same as for the 86/286
as discussed in Chapter I. In the example above, the physical addresses can be
calculated by shifting left the segment register FS one hex digit and adding it to
offset ECX. For example, ifFS = 12EO and ECX = 00000120, the physical address
specified by FS:ECX would be 14000H (12EOO + 0120 = 14000H).

Table 8-2 summarizes addressing modes for the 386/486. There are addi­
tional addressing modes available for 386 and higher CPUs which will be covered
in future volumes.

l' bl 82 Add a e - : ressmg M d Ii th 80386/486 o es or e

Addres.inl!: Mode ODerand Default Sel!:ment

Rel!:ister register none

Immediate data none

Direct [OFFSETl DS

Register indirect [BX] DS

lSI] DS
I [DI] DS !

[EAX] DS

[EBX] DS

[ECX] DS

[EDX] DS

[ESI] DS

JEDIl DS

Based relative [BX]+disp DS

[BP]+disp SS

[EAX]+disp DS

[EBX]+disp DS

[ECX]+disp DS

[EDX]+disp DS
i

[[EBPl+disp SS

11m""'" reI",,, [DI]+disp DS

[SI]+disp DS

[EDI]+disp DS

[[ESIl+disp DS

Based indexed relative [R I] [R2]+disp If BP is used, segment

where RI and R2 are is SS; otherwise, DS is the

any of the above segment
Note. In based mdexed relative addressmg, dlSP IS optIonal.

SECTION 8.1: 80386/80486 MACHINES IN REAL MODE 223

224

386/486 maximum memory range in real mode: 1 M

There is a dilemma in the 386/486 working under DOS in real mode. Ifin
real mode the maximum range of memory is 1 M (00000 to FFFFFH), what happens
if a 32-bit register is used as an offset into the segment? The range of the 32-bit
offset is OOOOOOOOH to FFFFFFFFH; therefore, using a 32-bit register as an offset
will place the address range beyond 1 M. This is a situation that the programmer
must avoid in 386/486 computers working with DOS version 5 and lower. For
example, to execute the instruction "MOV AX,[ESI]", the programmer must make
the upper 16 bits ofESI all zeros. This means that the segment offset range in real
mode 386/486 under DOS is 0000 to FFFFH. The following are some cases oflegal
and illegal codings for real mode of the 386/486 under DOS.

ADD
ADD

MOV
ADD

EAX.[BX)
ECX,[DX)

AX,WORD PTR [ECX)
EBX,[EDX)

;LEGAL
;ILLEGAL! EDX CAN BE USED
;AS POINTER BUT NOT DX
;LEGAL
;LEGAL

Accessing 32-bit registers with commonly used assemblers

In Assembly language the directive" .386" is used to access the 32-bit
registers of 386/486 computers in real mode under DOS and to employ the new
instructions of the 386 microprocessor. Every new generation of 80x86 has some
new instructions that do not execute on lower processors, meaning that they are
upwardly compatible. In other words, using the" .386" directive in a program means
that the program must be run only on 386 and higher (486 and 586) computers and
cannot be run on 8088/86- and 286-based computers. In contrast, all programs in
previous chapters were written to be run on any 80x86 computer. The following are
additional assembler directives, which indicate the type of microprocessor sup­
ported by Microsoft's assembler (MASM) and Borland's Turbo assembler CIASM).

MASM TASM Meaning
.86 P8086 will run on any 80x86 computer (default)
.286 P286 will run on any 286 and higher computer; also

allows use of new 286 instructions
.386 P386 will run on any 386 and higher computer; also

allows use of new 386 instructions
.486 P486 will run on any 486 and higher computer; also

allows use of new 486 instructions

Program 8-1 demonstrates the use of the" .386" directive and the 80386
32-bit instructions. The simplified segment definition was used. The program used
the 32-bit register EAX to add and subtract values of various size to demonstrate
32-bit programming of the 386/486 under DOS. Now the question is how to run
this program and see the register contents in 386/486 machines. Unfortunately, the
DEBUG utility used in earlier chapters cannot be used since it shows only the 16-bit
registers. In many assemblers, including MASM and TASM, there are advanced
debugging tools that one can use to see the execution of the 386/486 programs. In
the case of MASM, the CodeView utility, and for TASM, the Turbo Debugger, are
tools that allow one to monitor the execution of the 386/486 in addition to 8086/88
and 286 programs.

Below is shown a trace of Program 8-1, using Microsoft's CodeView
program. To examine the 32-bit registers in Code View, press F2 to display
registers; then select the Options menu from the top of the screen, and a drop-down
menu appears. Select "386" from the drop-down menu to display the registers in
32-bit format.

CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES

Write a program using the 32-bit registers of the 386 to add the values 100000,200000, and 40000.
Then subtract from the total sum the values 80000, 35000, and 250. Place the result in memory loca­
tions allocated using the DO, doubleword directive, used for 32-bit numbers.

TITLE ADD AND SUBTRACT USING 32-BIT REGISTERS IN 386 MACHINES
PAGE 60,132

.MODEL SMALL

.386

.STACK 200H

.DATA
RESULT DD ?

.CODE
BEGIN: MOV AX,@DATA

MOV DS,AX
SUB EAX,EAX
ADD EAX, 1 00000 ;EAX = 186AOH
ADD EAX,200000 ;EAX = 186AOH + 30D40 H = 493E4H
ADD EAX,40000 ;EAX = 493E4H + 9C40H = 53020H
SUB EAX,80000 ;EAX = 53020H - 13880H = 3F7 AOH
SUB EAX,35000 ;EAX = 3F7AOH - 88B8H = 36EE8H
SUB EAX,250 ;EAX = 36338H - FAH = 36DEEH = 224750 decimal
MOV RESULT,EAX
MOV AH,4CH
INT 21H
END BEGIN

Program 8-1

t,tl. vifi""s.-:dih RUn •• t!4>. Opt:l.6h.i ~ngwiQ'. e&li!!. IIIII"!!.'I> !!,B-T~a.::."t$_

4833:0000 B83648 MOV

4833:0003 8E08 MOV

4833:0005 662BCO SUB

4833:0008 6605A0860100 ADD

4833:000E 660540000300 ADD

4833:0014 6605409COOOO ADD

4833:001A 662080380100 SUB

4833:0020 6620B8880000 SUB

4833: 0026 6620FAOOOOOO ~Vl;!

.. S33 , OD2C66A304()O ~
4833:0030 B44C MOV

4833:0032 C021 INT

4833:0034 0000 ADD

4833:0036 0000 ADD

4833:0038 0000 ADD

4833:003A 0000 ADD

4833:003C 0000 ADD

4833:003E 0000 ADD

>t

>t

>t

>

I I
AX,4836

DS,AX

EAX,EAX

EAX,000186AO

EAX,00030040

EAX,00009C40

EAX,00013880

EAX,000088B8

EAX .. OO.QOOOFA

Dw6i:d Per (00041.lIJIX
AH,4C

21

Byte Ptr [BX+SI] ,AL

Byte Ptr [BX+SI] ,AL

Byte Ptr [BX+SI] ,AL

Byte Ptr [BX+SI] ,AL

Byte Ptr [BX+SI] ,AL

Byte Ptr [BX+SI] ,AL

Program 8-1: CodeView Screen of Program Execution

SECTION 8.1: 80386/80486 MACHINES IN REAL MODE

EAX=000360EE
EBX=OOOOOOOO

ECX=OOOOOOOO

EOX=OOOOOOOO

ESP=00000200

EBP=OOOOOOOO

ESI=OOOOOOOO

EOI=OOOOOOOO

OS= 4836

ES= 4823

FS= 0000

GS= 0000

SS= 4837

CS= 4833

IP=0000002C

NV UP

EI NG

NZ AC

PE NC

OS:0004

00000000

225

Little endian revisited

In analyzing how the 386/486 stores 32-bit data in memory or loads a 32-bit
operand into a register, recall the little endian convention: The low byte goes to the
low address and the high byte to the high address. For example, an instruction such
as "MOV RESULT,EAX" in Program 8-1 will store the data in this way:

OFFSET
RESULT
RESULT+1
RESULT+2
RESULT+3

CONTENTS
dO-d7
d8-d15
d16-d23
d24-d31

Example 8-1

Assuming that SI=1298 and EAX = 4l992F56H, show the contents of memory locations after the in­
struction "MOV [SJ],EAX".

Solution: (in HEX)
DS:1298 = (56)
DS:1299 = (2F)
DS:129A = (99)
DS:129B = (41)

Review Questions

In the 80386/486, the bits of register EDX can be accessed either as DL, bits ~ to
~, or DH, bits ~ to ~, or DX, bits ~ to ~, or EAX, bits to

2. In the 386/486 segment size is __ bytes.
3. What is real mode? What is protected mode?
4. True or false: The instruction "MOV DX,[AX]" is illegal in the 8086 but "MOV

DX,[EAX]" is legal in the 386/486.
5. What is the default segment register when EAX is used as a pointer?
6. What is the purpose of the ".386" directive?
7. IfDI = l48F and EBX = 6B24l5F9, show the contents of memory after the instruc­

tion "MOV [DI],EBX" is executed.

SECTION 8.2: SOME SIMPLE 386/486 PROGRAMS

226

One way to increase the processing power of the microprocessor is to widen
the register size. This allows processing large numbers as a whole rather than
breaking them into smaller chunks to fit into small registers. The 32-bit registers
have become standard in all recent microprocessors. Powerful supercomputers use
64-bit registers. In this section we show revisions of some earlier programs using
the 32-bit capability ofthe 386/486 machines to see the impact of the wider registers
in programming. By comparing 32-bit versions of these programs with the l6-bit
versions, one can see the increased efficiency of 32-bit coding. The impact on speed
is discussed in the final section.

Adding 16-bit words using 32-bit registers

Program 3-1 bused l6-bit registers for adding several words of data. The
sum was accumulated in one register and another register was used to add up the
carries. This is not necessary when using 32-bit registers. First, refresh your
memory by looking at Program 3-1 b and then examine Program 8-2, a 32-bit version
ofthe same program, written for 386/486 CPUs.

CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES

TITLE
PAGE

DATA1
SUM
COUNT

BEGIN:

BACK:

REVISION OF PROGRAM 3-1B USING 32-BIT REGISTERS
60,132
.MODEL SMALL
.386
.STACK 200H
DATA
DD 27345,28521,29533,30105,32375
DD ?
EOU 5
.CODE
MOV
MOV
MOV
MOV
SUB
ADD
ADD
DEC
JNZ
MOV
MOV
INT
END

AX,@DATA
DS,AX
CX,COUNT
SI,OFFSET DATA 1
EAX,EAX
EAX,DWORD PTR[SI]
SI,4
CX
BACK
SUM,EAX
AH,4CH
21H
BEGIN

;CX is loop counter
;SI is data pOinter
;EAX will hold sum
;add next word to EAX
;SI pOints to next dword
;decrement loop counter
;continue adding
;store sum

Program 8-2

Rewrite Program 3-2 in Chapter 3 to add two 8-byte operands using 32-bit registers.

TITLE ADD TWO 8-BYTE NUMBER USING 32-BIT REGISTERS IN THE 386
PAGE 60,132

.MODEL SMALL

.386

.STACK 200H

.DATA
DATA 1 DO 548FB9963CE7H

ORG 0010H
DATA2 DO 3FCD4FA23B8DH

ORG 0020H
DATA3 DO?

.CODE
BEGIN: MOV AX,@DATA

MOV DS,AX
CLC ;clear carry before first addition
MOV SI,OFFSET DATA 1 ;SI is pOinter for operand1
MOV DI,OFFSET DATA2 ;DI is pointer for operand2
MOV BX,OFFSET DATA3 ;BX is pointer for the sum
MOV CX,02 ;CX is the loop counter

BACK: MOV EAX,DWORD PTR [SI] ;move the operand to EAX
ADC EAX,DWORD PTR [DI] ;add the operand to EAX
MOV DWORD PTR [BXJ,EAX ;store the sum
INC SI ;point to next dword of operand 1
INC SI
INC SI
INC SI
INC DI ;point to next dword of operand2
INC DI
INC DI
INC DI
INC BX
INC BX ;point to next dword of sum
INC BX
INC BX
LOOP BACK ;if not finished, continue adding
MOV AH,4CH
INT 21 H ;go back to DOS
END BEGIN

Program 8-3a

SECTION 8.2: SOME SIMPLE 386/486 PROGRAMS 227

Adding multiword data in 386/486 machines

In Program 3-2, two multi word numbers were added using 16-bit registers.
Each number could be as large as 8 bytes wide. That program required a total of
four iterations. Using the 32-bit registers of the 386/46 requires only two iterations,
as shown in Program 8-3a on the previous page. This loop version ofthe multiword
addition program is very long and inefficient. It can be made more efficient by
saving the flag register that holds the carry bit ofthe first 32-bit addition on the stack
and then adding four to each pointer instead of incrementing the pointers 4 times.
The loop is shown below in Program 8-3b.

;this revision of Program 3-1a shows how to save the flags
before updating the pOinters

BACK: MOV EAX,DWORD PTR [SI]
ADC EAX,DWORD PTR [DI]
MOV DWORD PTR [BX],EAX
PUSHF
ADD
ADD
ADD
POPF

SI,4
DI,4
BX,4

LOOP BACK

;move the operand to EAX
;add the operand to EAX
;store the sum
;save the flags
;point to next dword of operand1
:point to next dword of operand2
;point to next dword of sum
;restore the flags
;if not finished, continue adding

Program 8-3b
Due to the high penalty associated with branch instructions such as the

LOOP and lcondition instructions in the 386/486, it is better to use the nonloop
version of this program, shown in Program 8-4.

First notice thatthe data is stored exactly the same way as in the loop version
of the program. Data directive DQ is used to set up storage for the 8-byte numbers.
First, the lower dword (4 bytes) of DATA I is moved into EAX, and the lowerdword
ofDATA2 is added to EAX. Then the upper dword of DATA 1 is moved into EBX,
and the upper dword ofDATA2 is added to EBX, with any carry that may have been
generated in the addition of the lower dwords. EAX now holds the lower 4 bytes
of the result, and EBX holds the upper 4 bytes of the result.

Program 8-4 is much more efficient than using the loop concept. To see why
and for a discussion of the impact of branching instructions on the performance of
programs in the 80386/486, see Section 8.3.

TITLE ADD TWO 8-BYTE NUMBERS USING 32-BIT REGISTERS IN THE 386 (NO-LOOP VERSION)
PAGE 60,132

.MODEL SMALL

.386

.STACK 200H

.DATA
DATA1 DO 548FB9963CE7H

ORG 0010H
DATA2 DO 3FCD4FA23B8DH

ORG 0020H
DATA3 DO?

.CODE
BEGIN: MOV AX,@DATA

MOV DS,AX
MOV EAX,DWORD PTR DATA1 ;move lower dword of DATA1 into EAX
ADD EAX,DWORD PTR DATA2 ;add lower dword of DATA2 to EAX
MOV EBX,DWORD PTR DATA1+4 ;move upperdword ofDATA1 into EBX
ADC EBX,DWORD PTR DATA2+4 ;add upper dword of DATA2 to EBX
MOV DWORD PTR DATA3,EAX ;store lower dword of result
MOV DWORD PTR DATA3+4,EBX ;store upper dword of result
MOV AH,4CH
INT 21H
END BEGIN

Program 8-4

228 CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES

Multiplying a 32·bit operand by a 16-bit operand in the 386/486

As a final example of the power of
32-bit registers in 386/486 machines, in this
section we look at the multiplication of a
32-bit operand by a l6-bit operand. See Fig­
ure 8-1. Comparing the 386/486 version with
the 86/286 version of this program clearly
reveals the coding efficiency of the 32-bit
register of the 386/486 systems. First look at
the 386/486 version of the multiplication of
a 32-bit operand by a l6-bit operand, shown
in Program 8-5. Notice that the l6-bit oper­
and is placed in a 32-bit register in order to
perform 32-bit arithmetic.

Multiplying a 32-bit register:

I EAX I
by a 32-bit operand:

I I I
The product is stored in:

I EDX I EAX

Figure 8-1.386/486 Multiplication

Write a program using the 386/486 to multiply a 32-bit operand by a 16-bit operand.

TITLE
PAGE

DATA1
DATA2
RESULT

MAIN:

MULTIPLICATION OF DOUBLE WORD BY WORD USING 386/486
60,132
.MODEL SMALL
.386
.STACK 200H
DATA
DD 500000
DD 50000
DQ?
.CODE
MOV

;MULTIPLICAND (UP TO 32-BIT SIZE DATA)
;MULTIPLIER (UP TO 16-BIT SIZE)

;PRODUCT (UP TO 48-BIT SIZE)

MOV
MOV
MUL
MOV
MOV
MOV
INT
END

AX,@DATA
DS,AX
EAX,DATA1
DWORD PTR DATA2
DWORD PTR RESULT,EAX
DWORD PTR RESULT+4,EDX
AH,4CH
21H
MAIN

;32-BIT OPERAND
;TIMES 16-BIT OPERAND
;SAVE THE RESULT

Program 8·5
To appreciate the processing power of the 32-bit registers of the 386/486,

the next topic shows a revision of Program 8-5, using the 16-bit registers of the
8086/286 processors.

32·bit by 16·bit multiplication using 8086/286 registers

For the sake of clarity in the following discussion, word size WI and W2
will be used to represent the 32-bit multiplicand. To multiply that by the l6-bit
operand W3, the following algorithm must be followed. Assume that all values are
in hex.

+

W2W1
x W3

W3xW1
W3xW2

X3 X2 X1

W1DW
W2DW
W3DW

multiplicand
multiplier

a 32-bit result
a 32-bit result must be shifted left one hex
position, then added
a 48-bit result (X1, X2, X3 are word size)

;W2:W1 IS A 32-BIT MULTIPLICAND
;W3 IS A 16-BIT MULTIPLIER

SECTION 8.2: SOME SIMPLE 386/486 PROGRAMS 229

TITLE
PAGE

DATA1
DATA2
RESULT

MAIN:

X1 DW?
X2 DW?
X3 DW?

;X3X2X1 THE 48-61T PRODUCT RESULT

MOV
MUL
MOV
MOV
MOV
MUL
ADD
ADC
MOV

AX,w1
W3
X1,AX
X2,DX
AX,W2
W3
X2,AX
DX,O
X3,DX

;GET THE LOW WORD
;MULTIPLY
;SAVE THE LOW WORD OF THE PRODUCT
;SAVE THE HIGH WORD OF THE PRODUCT
;GET THE HIGH WORD
;MULTIPLY
;ADD THE MIDDLE 16-61T WORD
;PROPAGATE THE CARRY TO DX
;SAVE THE HIGH WORD RESULT

Now after understanding the process above, Program 8-6 will show how it
is actually coded. First, a DD directive is used to defme a 32-bit data instead of
using DW twice. Similarly, since there is no directive to define a 48-bit data, the
DQ (define quad word) directive is used, which defines a 64-bit operand. The
unused bits become zeros.

MULTIPLICATION OF DOUBLEWORD BY WORD USING 86/286
60,132
.MODEL SMALL
.STACK 200H
.DATA
DD 500000
DW 50000
DQ?
.CODE
MOV

;MULTIPLICAND (UP TO 32-BIT SIZE DATA)
;MULTIPLIER (UP TO 16-BIT SIZE)
;PRODUCT (UP TO 48-BIT SIZE)

MOV
MOV
MUL
MOV
MOV
MOV
MUL
ADD
ADC
MOV
MOV
INT
END

AX,@DATA
DS.AX
AX,wORD PTR DATA1
WORD PTR DATA2
WORD PTR RESULT,AX
WORD PTR RESULT + 2,DX
AX,wORD PTR DATA1 + 2
WORD PTR DATA2
WORD PTR RESULT + 2 ,AX
DX,O
WORD PTR RESULT + 4,DX
AH,4CH
21H
MAIN

;GET LOW WORD OF MULTIPLICAND
;MULTIPLY THE MULTIPLIER
;SAVE LOW WORD OF THE PRODUCT
;SAVE MIDDLE WORD OF PRODUCT
;GET THE HIGH WORD OF MULTIPLICAND
;MULTIPLY THE MULTIPLIER
;ADD THE MIDDLE 16-BIT WORD
;PROPAGATE THE CARRY TO DX
;SAVE THE HIGH WORD RESULT

Program 8-6

Comparing these two programs, one can see why the 32-bit registers have
become the standard for all new generations of microprocessors.

Review Questions

1. Compare the number of iterations for adding two 8-byte numbers for the following
CPUs.
(a) 8085 (a 8-bit) CPU
(b) 8086/88/286
(c) 386/486
(d) Cray supercomputer (64-bit system)

2. What data directives are used to define 32-bit and 64-bit operands?
3. What directive is used in MASM to inform the assembler that the program is using

386 instructions? In TASM?

230 CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES

SECTION 8.3: 80x86 PERFORMANCE COMPARISON

The newer generations of the 80x86 family not only have powerful main­
frame features such as protection capabilities, but they also execute the instructions
of previous generations much faster. In the preceding section it was seen how
efficient the 32-bit coding can be. In this section we compare the performance of
the 80x86 family of processors. To do that, the number of clock cycles (ticks) that
each instruction of a given program takes to execute for the 8086, 286, 386, and 486
CPUs will be examined. To fully understand the remaining material in this section,
it is necessary to review the introduction to Appendix B, Section B.2. The clock
cycles table in Appendix B does not show the total time taken for each processor to
execute. This is because such a calculation in terms of microseconds or milliseconds
depends on the hardware design of the system, primarily on the factors of working
frequency and memory design. Further discussion of the hardware and its impact
on the performance of the computer can be found in Chapter 21. Comparing the
performance of the 80x86 family can take one of two approaches:

1. Taking a program written for the 8086 and calculating the number of clocks taken
to execute it, unchanged, on each ofIntel's 8086, 80286, 386, and 486 microproc­
essors.

2. Modifying the same program for 32-bit processing of the 386/486 and then
calculating the total number of clocks to execute it for the 386 and 486 microproc­
essors.

Running an 8086 program across the 80x86 family

Intel has employed some very advanced techniques in pipelining to enhance
the processing power of386 and 486 microprocessors. For example, many instruc­
tions that took four or five clocks to execute on the 8086, take only one or two clocks
on the 386 and 486 machines. This is shown next.

Problem 3-lb showed a program that calculated the total sum of five words
of data. Since the loop is the most time-consuming part of this program, below is
shown a comparison of the total number of clocks taken for one iteration across all
ofIntel's 80x86 processors. The number of clocks for each instruction is taken from
Appendix B.

8086 286 386 486
BACK: ADD AX,[SI] 14 7 6 2

ADC BX,O 4 3 2 1
INC SI 2 2 2 1
INC SI 2 2 2 1
DEC CX 2 2 2 1
JNZ BACK 16/4 713 7/3 3/1

total clocks per iteration 40 23 21 9

To calculate the total clocks for the five iterations, simply multiply the total
number of clocks for one iteration by 5 and then adjust it for the last iteration, since
the number of clocks for no jump in the last iteration is less than forjump in previous
iterations. To adjust it, subtract the difference between the jump and no jump clock.
For example, the total clocks for the five iterations in the 8086 column is 40 x 5 =
200, so adjusting for the last iteration involves subtracting 12 (16 - 4 = 12) from
200, which results in 188 clocks. The same procedure followed for the 80286 results
in total clocks of (23 x 5) - 4 = Ill.

The data above shows clearly the power of the newer generation of the
80x86 family. The same program originally written for 8086 machines runs twice
as fast on Intel's 386 and four times faster on the 486 microprocessor. This plus the
fact that 386/486 microprocessors have 32-bit data buses transferring data in and
out of the CPU makes the case for the 386/486 even stronger. Now the question is

SECTION 8.3: 80x86 PERFORMANCE COMPARISON 231

232

how much faster will it run ifthe program is rewritten to utilize the 32-bit processing
power of the 386/486 CPU. This is shown next. Program 8-2 showed the 32-bit
version of the same program. The iteration section of the program and the number
of clocks for the 386 and 486 are as follows:

386 486
BACK: ADD EAX.DWORD PTR [SI] 6 2

ADD SI,4 2 1
DEC CX 2 1
JNZ BACK 7/3 3/1

total clocks per iteration 17 7

Multiplying for the five iterations gives (5 x 17) - 4 ~ 81 clocks for the
386 and (5 x 7) - 2 ~ 33 clocks for the 486. By comparing the results above, one
might conclude that rewriting all 16-bit programs for the 32-bit registers of the
386/486 is about 25% faster. That is true for some applications but not all. For
example, examine the case of adding multi byte operands shown next. Compare the
performance of Program 3-2 run across 80x86 CPUs. The following times assumed
two clock cycles for m (memory fetch).

8086 286 386 486
BACK: MOV AX,[SI] 10 5 4 1

ADC AX,[DI] 14 7 6 2
MOV [BX],AX 10 3 2 1
INC SI 2 2 2 1
INC SI 2 2 2 1
INC DI 2 2 2 1
INC DI 2 2 2 1
INC BX 2 2 2 1
INC BX 2 2 2 1
LOOP BACK 1715 (10)/4 (13)/11 7/6

total per iteration 53 37 37 17
for four iterations: 200 142 146 67

Now compare this result with the 32-bit version ofthe same program. The
modified version was discussed in the preceding section (Program 8-4) and the clock
count is as follows:

MOV EAX,DWORD PTR DATA1
ADD EAX,DWORD PTR DATA2
MOV EBX,DWORD PTR DATA1+4
ADC EBX,DWORD PTR DATA2+4
MOV DWORD PTR DATA3,EAX
MOV DWORD PTR DATA3+4,EBX

total clocks for the entire operation:

386
4
6
4
6
2
2

24

486
1
2
1
2
1
1

8

In the 386, the clock count is reduced from 146 to 24, and for the 486 it is
reduced from 67 to 8. Using the same hardware but changing the software to take
advantage of the 32-bit capability of the 386/486 sped up the processing power
6-fold (146 divided by 24) and 8.S-fold (67 divided by 8), respectively, for the 386
and 486. The discussion above clearly indicates there is a very heavy penalty
associated with branching in the advanced processors. It also shows that if one
wants to spend the resources and rewrite the old 16-bit programs for the new 32-bit
architecture, it can be well worth the effort.

CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES

SUMMARY

Review Questions

1. Compare the execution clocks (refer to Appendix B) for "ADD BX,AX" (ADD
reg,reg) for the 8086, 286, 386, and 486 CPUs.

2. Using the 8086 as a base, show the increase in speed as a percentage for each proc­
essor in Question I.

3. For instruction JNZ, compare the branch penalty for the 8086, 286, and 386. As­
sume that m~2.
(a) in clocks (b) in percent (notake/take x 100)

The 386/486 CPUs represent a major inprovement over the 8086/286 in
several areas. Not only are they much faster in terms of execution speed, they also
have much better processing power because they are 32-bit machines. They are also
capable of accessing an address range of 4 gigabytes of memory. The 386/486 was
designed in such a way that all programs written for the 8086/286 will run on it with
no modification. Other changes in the 3861486 include two additional segment
registers and the ability to use general registers as pointers.

PROBLEMS

1. In a 386/486 program, show the content of each register indicated in parentheses af­
ter execution of the instruction.
(a) MOV EAX,9823F4B6H (AL,AH,AX and EAX)
(b) MOV EBX,98SC2H (BL,BH,BX,EBX)
(c) MOV EDX,2000000 (DL,DH,DX,EDX)
(d) MOV ESI,120000H (SI,ES!)

2. Show the destination and its contents in each of the following cases.
(a) MOV EAX,299FF94H

ADD EAX,34FFFFH
(b) MOV EBX,SOO 000

ADD EBX,700 000
(c) MOV EDX,40 000 000

SUB EDX,J SOO 000
(d) MOV EAX,39393834H

AND EAX,OFOFOFOFH
(e) MOV EBX,9FE3SDH

XOR EBX,OFOFOFOH
3. Using the little endian convention show the contents of the destination in each case.

(a) MOV [SI],EAX ;ASSUME SI~2000H AND EAX~9823F4S6H
(b) MOV [BX],ECX ;ASSUME BX,348CH AND ECX~JF23491H
(c) MOV EBX,[Dl] ;ASSUME Dl~4044H WITH THE

;FOLLOWING DATA. ALL IN HEX.
DS:4044~(92)
DS:404S~(6D)

DS:4046~(A2)

DS:4047~(4C)

4. Compare the clock count for the 80x86 microprocessor in each case:
(a) Write a program for the 8086/286 to transfer SO words of data, one word

(16 bits) at a time. Do not use string instructions.
(b) Modify the program in part (a) to transfer 2 words (32 bits) at a time and

calculate the clock count for the 386 and 486.
In both parts (a) and (b), the clock count should be calculated for one iteration and
for all iterations.

SUMMARY 233

5. Instruction DAA, described in Chapter 3, works only on the AL register, regardless
of which oflntel's 80x86 microprocessors is used. Write a program that adds
two multibyte packed BCD numbers, each 10 bytes wide (use the DT directive)
and compare the clock count for one iteration if it is run on Intel's 8086, 286,
386, and 486 CPUs.

ANSWERS TO REVIEW QUESTIONS

SECTION 8.1: 80386/80486 MACHINES IN REAL MOOE
1. Ot07,8t015,Ot015,Ot031
2. 64K bytes
3. real mode is similar to the operation of 8086 machines; protected mode assigns a priority to programs and has

other advanced features that take advantage of the 386's power
4. true
5. OS
6. allows use of 386 instructions
7. OS:148F = F9, OS:1490 = 15, OS:1491 = 24, OS:1492 = 68

SECTION 8.2: SOME SIMPLE 386/486 PROGRAMS
1. (a) 8', (b) 4; (c) 2; (d) 1
2. OO,OQ
3. .386, P386

SECTION 8.3: 80X86 PERFORMANCE COMPARISON
1. 8086: 3 286: 2 386: 2 486: 1
2. 286 is a 33% improvement over 8086

386 is a 0% improvement over 286
486 is a 100% improvement over 386

3. (a) 8086: 8 286: 6 386: 6
(b) 8086:400 286:300 386:300

•

234 CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES ,

CHAPTER 9

8088, 80286 MICROPROCESSORS
AND ISABUS

Since the original IBM PCs used 8088 and 80286 microprocessors, this
chapter is a detailed hardware study of these two microprocessors, as well as the
major signals of the ISA bus. In Section 9.1, a detailed look at the 8088 CPU,
including pin descriptions, is provided. Two IC chips that support the 8088, the
8284 clock generator and the 8288 chip, are discussed in Section 9.2. Next, the
IBM PC address, data, and control buses are covered in Section 9.3. In Section
9.4, the 80286 microprocessor is discussed, including pin descriptions. Finally, in
Section 9.5, the PC's ISA buses are covered.

SECTION 9.1: 8088 MICROPROCESSOR

236

The first IBM PC used the 8088 microprocessor, and modern PCs still
carry that legacy. In this section, the function of each pin of the 8088 CPU is
described, as well as how the microprocessor chip is connected with some simple
logic gates to create the address, data, and control signals. The 8088 is a 40-pin
microprocessor chip that can work in two modes: minimum mode and maximum
mode. Maximum mode is used when we need to connect the 8088 to an 8087
math coprocessor. If we do not need a math coprocessor, the 8088 is used in min­
imum mode. First we look at the 8088 in minimum mode since it is much simpler
and easy to understand. Maximum mode and supporting chips are discussed in
Section 9.2.

In 1978 Intel introduced the 16-bit microprocessor called the 8086. It was
16-bit both internally and externally. A year later Intel introduced the 8088 to
allow the use of 8-bit peripheral chips and to make system boards cheaper. The
8088 is internally identical to the 8086, but has only an 8-bit external data bus.
Since the original IBM PC introduced in 1981 used the 8088, we explore the 8088
instead of the 8086.

Microprocessor buses

Every microprocessor-based system must have three sets of separate
buses: the address bus, the data bus, and the control bus. The address bus provides
the path for the address to locate the targeted device, while the data bus is used to
transfer data between the CPU and the targeted device. The control bus provides
the signals to indicate the type of operation being executed, such as read or write.
Next we discuss how these signals are provided by the 8088 microprocessor.

Data bus in 8088

Figure 9-1 shows the 8088/86 in minimum mode. Pins 9-16 (ADO -
AD7) are used for both data and addresses in the 8088. At the time of the design
ofthis microprocessor in the late 1970s, due to IC chip packaging limitations,
there was a great effort to use the minimum number of pins for external connec­
tions. Therefore, designers multiplexed the address and data buses, meaning that
Intel used the same pins to carry two sets of information: address and data. Notice
that the name of the pins reflects this dual function. In the 8088, the addressldata
bus pins are named ADO - AD7, "AD" for "address/data." The ALE (address latch
enable) pin signals whether the information on pins ADO - AD7 is address or data.
Every time the microprocessor sends out an address, it activates (sets high) the
ALE to indicate that the information on pins ADO - AD7 is the address (AO - A 7).
This information must be latched, then pins ADO - AD7 are used to carry data.
When data is to be sent out or in, ALE is low, which indicates that ADO - AD7
will be used as data buses (DO - 07). This process of separating address and data
from pins ADO - AD7 is called demultiplexing.

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

1 GND Vee 40 0
2 AD14 AD15 39 0
3 AD13 A16 38 0
4 AD12 A17 37 0
5 AD11 A18 36 0
6 AD10 A19 35 0
7 AD9 BHE/S7 34 0
8 AD8 8 MN/MX 33 0
9 AD7 RD 32
10AD6 0 HOLD 31 0
11 AD5 8 HLDA 30 0
12AD4 WR 29 0
13 AD3 6 lOiM 28 0
14AD2 DT/R 27 0
15 AD1 DEN 26 0
16 ADO ALE 25 0
17 NMI INTA 24 0
181NTR TEST 23 0
19 CLK READY 22 0
20GND RESET 21 0

Figure 9-1. The 8086 and 8088 in Minimum Mode
(Reprinted by permission of Intel Corporation. Copyright Intel. 1989)

Vee
L. MN/MX A19

A15

A8
ALE

IG 8088

AD7 AD7
1
0 Qr AD6

ADS

1 GND
2 A14
3 A13
4 A12
5 A11
6 A10
7 A9
8 A8
9 AD7
10AD6
11 AD5
12 AD4
13AD3
14AD2
15 AD1
16 ADO
17 NMI
181NTR
19 CLK
20 GND

.r-. ..
A04 74LS373
AD3
AD2
AD1 OC ADO ADO

".?

Figure 9-2. Role of ALE in Address/Data Demultiplexing

SECTION 9.1: 8088 MICROPROCESSOR

Vee 40 0
A15 39 0
A16 38 0
A17 37 0
A18 36 0
A19 35 0
SSO 34 0

8 MN/MX 33 0

0 Ro 32

8 HOLD 31 0
HLDA 30 0

8 WR 29 0
101M 28
DT/R 27 0
DEN 26 0
ALE 25 0

INTA 24 0
TEST 23

READY 22 0
RESET 21 0

A19

A15 12-bit
Address
bus

A8

A7
A6 8-bit AS
A4 Address
A3

bus A2
A1
AO

D7
D6
D5 Data
D4

bus D3
D2
D1
DO

237

238

Address bus in 8088

The 8088 has 20
address pins (AO - A 19),
allowing it to address a max­
imum of one megabyte of
memory (220 = 1M). Pins
ADO - AD7 provide the AO -
A 7 addresses with the assis­
tance of a latch. To demulti­
plex the address signals from
the addressldata pins, a latch
must be used to grab the
addresses. The most widely
used latch is the 74LS373 IC
(see Figures 9-2 and 9-3). We
can also use the 74LS573
chip since it is a variation of
the 74LS373 chip. ADO to
AD7 of the 8088 go into the
74LS373 latch. ALE pro­
vides the signal for the latch­
ing action. For the 8088, the
output of the 74LS373 pro­
vides the 8-bit address AO -
A7, while A8 - AI5 come
directly from the micro­
processor (pins 2 - 8 and pin
39). The last 4 bits of the
address come from A 16 -
A 19, pin numbers 35 - 38. In
any system, all addresses
must be latched to provide a
stable, high-drive-capability

GND

G OC
Enable

Output control

Function Table
Output Enable
Control G D Outout

L H H H
L H L L
L L X 00
H X X Z

Figure 9-3. 74LS373 D Latch
(Reprinted by permission of Texas Instruments, Copyright
Texas Instruments. 1988)

Table 9-1: Control Signal Generation

RD WR 101M Si2nal

0 1 0 MEMR

1 0 0 MEMW

0 1 1 lOR

1 0 I row
0 0 x Never happens

address bus for the system (see Figure 9-5).

8088 control bus

There are many control signals associated with the 8088 CPU; however,
for now we discuss those that deal with read and write operations. The 8088 can
access both memory and 110 devices for read and write operations. This gives us
four operations for which we need four control signals: MEMR (memory read),
MEMW (memory write), lOR (If 0 read), and lOW (1/0 write).

WR
I "\ lOW '" v I lOW v

I ~
MEMW ...

MEMW
101M '"

I .I v
~

MEMR '" v
I '\ MEMR

I
..I v

~
lOR

"-
RD 1 J .I v lOR

v ~

Figure 9-4. Control Signal Generation

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

The 8088 provides three pins for these control signals: RD, WR, and
101M. The RD and WR pins are both active low. 101M is low for memory and
high for I/O devices. From these three pins, four control signals are generated:
lOR, lOW, MEMR, and MEMW, as shown in Figure 9-4 and listed in Table 9-1.
Notice that all of these signals must be active low since they go into the RD and
WR inputs of memory and peripheral chips that are active low. Figure 9-5 shows
the use of simple logic gates (inverters and ORs) to generate control signals. One
can use CPLD (complex programmable logic devices) for that purpose and that is
exactly what chipsets do in today's PCs.

Vee
'C.- MN/MX

L
A19 I Latch II

A19 -

A8
... A8 I EN r Address

ALE
j Bus

I
AD7 EN A7

ADO I Latch I ... AD -
8088

D7 Data ... DO Bus

101M
]

,. MEMR
1m'

] f MEMW Control
WR ~

Signals " ..I ,. -
v lOR

0-/'
" v

-',./
lOW

Figure 9-5. Address, Data, and Control Buses In aOaa-based System

T1 T2 T3 T4

Clk

A8 X X A19

ADO X Address > AD7 float

ALE ~

MEMR

" ~_~ ___ ~-J/

Figure 9-6. ALE Timing

Bus timing of the 8088

In Figure 9-6 the timing for ALE is shown. The 8088 uses 4 clocks for
memory and 1/0 bus activities. For example, in the read timing, ALE latches the
address in the first clock cycle. In the second and third clock cycles, the read sig­
nal is provided. Finally, by the end of the fourth clock cycle the data must be at

SECTION 9.1: 8088 MICROPROCESSOR 239

the pins of the CPU to be fetched in. Notice that the entire read or write cycle time
is only 4 clock cycles. If the task of reading or writing takes more than 4 clocks
due to the slowness of memory or 110 devices, wait states (WS) can be requested
from the CPU. This will be demonstrated in Chapter 10.

Other 8088 pins

Pins 24 - 32 of the 8088 have different functions depending on whether
the 8088 is used in minimum mode or maximum mode. As stated earlier, maxi­
mum mode is used only when we want to connect the 8088 to an 8087 math
coprocessor. In maximum mode, the 8088 needs supporting chips to generate the
control signals, as described in the next section. Table 9-2 lists the functions of
pins 24 - 32 of the 8088 in minimum mode.

Table 9-2: Pins 24 - 32 in Minimnm Mode

Pin
24

25

26

27

28

29

30

31

J'(

240

Name and Function
INTA (interrupt acknowledge) Active-low output signal. Informs interrupt controller
that an INTR has occurred and that the vector number is available on the lower 8 lines
of the data bus.
ALE (address latch enable) Active-high output signal. Indicates that a valid address
is available on the external address bus.
DEN (data enable) Active-low output signal. Enables the 74LS245. This
allows isolation of the CPU from the system bus.
DTIR (data transmit/receive) Active-low output signal used to control the direction of
data flow through the 74LS245 transceiver.
[OIM (input-output or memory) Indicates whether address bus is accessing memory or
an 110 device. [n the 8088, it is low when accessing memory and high when accessing
110. This pin is used along with RD and WR pins to generate the four control signals
MEMR, MEMW, lOR, and lOW.
WR (write) Active-low output signal. Indicates that the data on the data bus is being
written to memory or an 110 device. U sed along with signal 101M (pin 28) to generate
the MEMW and lOW control signals for write operations.
HLDA (hold acknowledge) Active-high output signal. After input on HOLD, the
CPU responds with HLDA to signal that the DMA controller can use the buses.
HOLD (hold) Active-high input from the DMA controller that indicates that the device
is requesting access to memory and I/O space and that the CPU should release
control of the local buses.
KU (Keaa) ACtive-lOW output sIgnal. IMlcates tnat the aata IS oemg reaa (orougnt
in) from memory or [/0 to the CPU. Used along with signal 101M (pin 28) to generate
MEMR and [OR control signals for read operations.

Other pins of the 8088 are described below.

MN/MX (minimum/maximum)

Minimum mode is selected by connecting MN/MX (pin number 33)
directly to +5V; maximum mode is selected by grounding this pin.

NMI (nonmaskable interrupt)

This is an edge-triggered (going from low to high) input signal to the
processor that will make the microprocessor jump to the interrupt vector table
after it finishes the current instruction. This interrupt cannot be masked by soft­
ware, as we will see in Chapter 14.

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND (SA BUS

INTR (interrupt request)

INTR is an active-high level-triggered input signal that is continuously
monitored by the microprocessor for an external interrupt. This pin and INTA are
connected to the 8259 interrupt controller chip, as we will see in Chapter 14.

CLOCK

Microprocessors require a very accurate clock for synchronization of
events and driving the CPU. For this reason, Intel has designed the 8284 clock
generator to be used with the 8088 processor. CLOCK is an input and is connect­
ed to the 8284 clock generator. It acts as the heartbeat of the CPU. Any irregular­
ity causes the CPU to malfunction. The 8284 chip is used whether the 8088 is
connected in minimum mode or in maximum mode. The details of the 8284 chip
are covered in the next section.

READY

READY is an input signal used to insert a wait state for slower memories
and 110. It inserts wait states when it is low. The READY signal is needed to
interface the CPU to low-speed memories and 110 devices.

TEST

In minimum mode this is not used. In maximum mode, however, this is
an input from the 8087 math coprocessor to coordinate communications between
the two processors.

RESET

To terminate the present
activities of the microprocessor, a
high is applied to the RESET input
pin. A presence of high will force the
microprocessor to stop all activity
and set the major registers to the val­
ues shown in Table 9-3. The data in
Table 9-3 has certain implications in
the allocation of memory space to
RAM and ROM that we will clarify
next.

Table 9-3: IP and Segment Register
Contents after Reset

Register Contents
CS FFFF
IP 0000
DS 0000
SS 0000
ES 0000

(Reprinted by pennission ofIntel
Corporation, Copyright Intel Corp. 1983)

At what address does the 8088 wake up?

According to Table 9-3, when power is applied to the 8088, it wakes up
at physical address FFFFOH, since a CS:IP address ofFFFF:OOOO leads to a phys­
ical address of FFFFOH. Therefore, we must have a non-volatile memory such as
ROM at the FFFFOH address. This is discussed further in Chapter 10.

Review Questions

I. Describe the differences between the external data bus of the 8086 and 8088.
2. In the 8088, pins ADO - AD7 are used for both data and addresses. How does

the CPU indicate whether the information on these pins is data or an address?
3. The 8088 memory or 110 read cycles take __ clock pulses to complete.
4. If we do not need an 8087 math coprocessor, the 8088 is connected in

;:-;-;-_ mode.
5. Indicate whether each of the following pins are input pins, output pins, or

both.
(a)ADO-AD7 (b) ALE (c)A8-AI5

6. Give the status of the 101M and RD pins when MEMR is active.
7. Give the status of the 101M and WR pins when MEMW is active.

SECTION 9.1: 8088 MICROPROCESSOR 241

SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS
The original IBM PC introduced in 1981 used the 8088 in maximum

mode with a socket for the 8087 math coprocessor. In maximum mode, the 8088
requires the use of the 8288 to generate some of the control signals. In this sec­
tion we cover the 8088's supporting chips, the 8284 and 8288, and their use in
maximum mode. Modern microprocessors such as the Pentium have all these
chips incorporated into a single chip. Therefore, this section can be skipped unless
you are interested in the design of the original Pc.

Figure 9-7 shows the 8086/88 in maximum mode. Comparing Figure 9-7
with Figure 9-1, we see that pins 24 - 32 have different functions. To use the 8088
in maximum mode we must use the 8288 supporting chip. We describe the 8288
next and how it is used with the 8088 in maximum mode.

1 GND Vee 40 1 GND Vee 40 0
2 AD14 AD15 39 0 2 A14 A15 39 0
3 AD13 A16/S3 38 3 A13 A16/S3 38 0
4 AD12 A17/S4 37 0 4 A12 A17/S4 37 0
5 AD11 A18/S5 36 0 5 A11 A18/S5 36 0
6 AD10 A19/S6 35 0 6 A10 A19/S6 35 0
7 AD9 BHE/S7 34 0 7 A9 SSO 34 0
8 AD8

8
MNtMX 33 0 8 A8 8 MN/MX 33 0

9 AD7 RD 32 9 AD7 0 RD 32 0
10AD6 o RQ/GTO 31 10 AD6 8

RQlGTO 31 0
11 AD5 8 Ra/GT1 30 0 11 AD5 RQiGf130 0
12 AD4 6 lOCK 29 0 12 AD4 8 lOCK 29 0
13AD3 S2 28 0 13AD3 S2 28 0
14 AD2 S1 27 0 14AD2 S1 27
15 AD1 SO 26 0 15 AD1 SO 26 0
16ADO aso 25 16 ADO aso 25 0
17 NMI aS1 24 0 17 NMI aS1 24 0
181NTR TEST 23 0 181NTR TEST 23 0
19 ClK READY 22 0 19 ClK READY 22 0
20GND RESET 21 20GND RESET 21 0

Figure 9-7. The 8086 and 8088 in Maximum Mode
(Reprinted by pennission ofIntel Corpnration, Copyright Intel. 1989)

242

8288 bus controller

As shown in Figure 9-8, the 8288 is a 20-pin chip specially designed to
provide all the control signals when the 8088 is in maximum mode. The input and
output signals are described below.

Input signals

so, 51, 52 (status input)

Input to these pins comes /Tom the 8088. Depending upon the input /Tom
the CPU, the 8288 will provide one of the commands or control signals shown in
Table 9-4.

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

ClK (clock)

This is input from the 8284 clock
generator, providing the clock pulse to
the 8288 to synchronize all command and
control signals with the CPU. The 8284
chip is discussed later in this section.

AEN (address enable)

AEN, an active-low signal, acti­
vates the 8288 command output at least
115 ns after its activation. In the IBM PC
it is connected to the AEN generation cir­
cuitry.

CEN (command enable)

An active-high signal is used to
activate/enable the command signals and
DEN. In the IBM PC it is connected to
the AEN generating circuitry.

lOB (input/output bus mode)

An active-high signal makes the
8288 operate in input/output bus mode
rather than in system bus mode. Since the
IBM PC is designed with system buses, it
is connected to low.

0 1 lOB 8 Vee 20 p
0 2 ClK

2
SO 19 P 8 - 8 0 3 S1 S2 18 0

-
0 4 DT/R MCElPDEN 17 0

0 5 ALE DEN 16 0

0 6 AEN CEN 15 0

0 7 MRDC INTA 14 P
0 8 AMWC 10RC 13 0

0 9 MWTC AIOWC 12 0

0 10 GND 10WC 11 0

Figure 9-8. 8288 Bus Controller
(Reprinted by pennission of Intel Corporation,
Copyright Intel. 1983)

Table 9-4: Status Pins of the 8288 and Their Meaning

S2 SI SO Processor State 8288 Command
0 0 0 Interrupt acknowledge INTA
0 0 I Read input/output port roro:::
0 I 0 Write input/output port rowc,AIOwC
0 I I Halt None
I 0 0 Code access MRDC
1 0 I Read memory lVIRDC
I I 0 Write memory Mwl'C,AMWC
I I I Passive None

(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. \989)

Output signals

The following are the output signals of the 8288 bus controller chip.

MRDC (memory read command)

This is active low and provides the 'ME7r'1M>rnR (memory read) control signal.
It activates the selected device or memory to release its data to the data bus.

MWTC (memory write command), AMWC (advanced memory write)

These two active-low signals are used to tell memory to record the data
present on the data bus. These two are the same as the MEMW (memory write)
signal, the only difference being that AMWC is activated slightly earlier in order
to give extra time to slow devices.

SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS 243

244

10RC (110 read command)

IORC is an active-low signal that tells the 110 device to release its data to
the data bus. In the PC it is called the lOR (I/O read) control signaL

lowe (I/O write command), AIOWC (advanced I/O write command)

Both are active-low signals used to tell the 110 device to pick up the data
on the data bus. AIOWC is available a little bit earlL!£Jlive sufficient time to
slow devices. It is unused in the IBM Pc. In the PC, 10WC is labeled as lOW.

INTA (interrupt acknowledge)

An active-low signal will inform the interrupting device that its interrupt
has been acknowledged and will provide the vector address to the data bus. In the
IBM PC this is connected to INTA of the 8259 interrupt controller chip.

DTiR (data transmit/receive)

DTIR is used to control the direction of data in and out of the 8088. In the
IBM PC it is connected to DIR of the 74LS245. When the 8088 is writing data,
this signal is high and will allow data to go from the A side to the B side of the
74LS245, so that data is released to the system bus. Conversely, when the CPU is
reading data, this signal is low, which allows data to come in from the B to the A
side of the 74LS245 data transceiver chip so that it can be received by the CPU.

DEN (data enable)

An active-high signal will make the data bus either a local data bus or the
system data bus. In the IBM PC it is used along with a signal from the 8259 inter­
rupt controller to activate G of the 74LS245 transceiver.

MCE/PDEN (master cascade enable/peripheral data enable)

This is used along with the 8259 interrupt controller in master configura­
tion. In the IBM PC the 8259 is used as a slave; therefore, this pin is ignored.

ALE (address latch enable)

ALE is an active-high signal used to activate address latches. The 8088
multiplexes address and data through ADO - AD7 in order to save pins. In the
IBM PC, ALE is connected to the G input of the 74LS373, making demultiplex­
ing of the addresses possible.

8284 CLOCK GENERATOR

The 8284 is used in both minimum and maximum modes since it pro­
vides the clock and timing for the 8088-based system. Figure 9-9 shows the
8284A, an 18-pin chip especially designed for use with the 8088/86 microproces­
sor. It provides not only the clock and synchronization for the microprocessor, but
also the READY signal for the insertion of wait states into the CPU bus cycle. A
description of each pin and how it is connected in the IBM PC follows.

Input pins

RES (reset in)

This is an input active-low signal to generate RESET. In the IBM PC, it
is connected to the power-good signal from the power supply. When the power
switch in the IBM PC is turned on, assuming that the power supply is good, a low
signal is provided to this pin and the 8284 in turn will activate the RESET pin,
forcing the 8088 to reset; then the microprocessor takes over. This is called a cold
boot.

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

X1 and X2 (crystal in)

X I and X2 are the pins to
which a crystal is attached. The
crystal frequency must be 3 times
the desired frequency for the
microprocessor. The maximum
crystal for the 8284A is 24 MHz.
The IBM PC is connected to a
crystal of 14.31818 MHz.

F£ (frequency/clock)

This pin provides an
option for the way the clock is
generated. If connected to low,
the clock is generated by the
8284 with the help of a crystal
oscillator. If it is connected to
high, it expects to receive clocks

D

D

D

D

D

D

D

D

D

1 CSYNC

2 PClK

3 AEN1

4 RDY1

5 READY

6 RDY2

7 AEN2
8 ClK

9 GND

8 Vee 18 D
2
8 X1 17 D
4
A X2 16 D

AsvNc 15 D

EFJ 14 D

FIG 13 D

OSC 12 D

RES 11 D

RESET 10 D

at the EFI pin. Since the IBM PC Figure 9-9. 8284A Chip
uses a crystal, this pin is connect- (Reprinted by pennission of Intel Corporation.
ed to low. Copyright [ntel, 1983)

EFI (external frequency in)

External frequency is connected to this pin if FIC has been con­
nected to high. In the IBM PC this is not connected since a crystal is used
instead of an external frequency generator.

CSYNC (clock synchronization)

This active-high signal is used to allow several 8284 chips to be
connected together and synchronized. The IBM PC uses only one 8284;
therefore, this pin is connected to low.

RDY1 and AEN1

RDYI is active high and AENI (address enable) is active low.
They are used together to provide a ready signal to the microprocessor,
which will insert a WAIT state to the CPU read/write cycle. In the PC,
ROYI is connected to OMAWAIT, AENI is connected to RDY/WAIT.
This allows a wait state to be inserted by either the CPU or OMA.

RDY2 and AEN2

These function exactly like RDYI and AENI but are designed to
allow for a multiprocessing system. In the IBM PC, RDY2 is connected
to low, AEN2 is connected to high, which permanently disables this func­
tion since there is only one 8088 microprocessor in the system.

ASYNC

This is called ready synchronization select. An active low is used
for devices that are not able to adhere to the very strict RDY setup time
requirement. In the IBM PC this is connected to low, making the timing
design of the system easier with slower logic gates.

Output signals

RESET

This is an active-high signal that provides a RESET signal to the
8088. It is activated by the RES input signal discussed earlier.

SECTION 9.2: 8284 AND 8288 SUPP.ORTING CHIPS 245

OSC (oscillator)

This provides a clock frequency equal to the crystal oscillator and is TTL
compatible. Since the IBM crystal oscillator is 14.31818 MHz, OSC will provide
this frequency to the expansion slot of the IBM Pc.

ClK (clock)

This is an output clock frequency equal to one-third of the crystal oscil­
lator, or EFI input frequency, with a duty cycle of 33%. This is connected to the
clock input of the 8088 and all other devices that must be synchronized with the
CPU. In the IBM PC it is connected to pin 19 of the 8088 microprocessor and
other circuitry under the CLK88 label. This frequency, 4.772776 MHz (14.31818
divided by 3), is the processor frequency on which all of the timing calculations
of the memory and I/O cycle are based.

PClK (peripheral clock)

PCLK is one-half of CLK (or one-sixth of the crystal) with a duty cyc Ie
of 50% and is TTL compatible. In the IBM PC this 2.386383 MHz is provided to
the 8253 timer to be used to generate speaker tones, and for other functions.

READY

This signal is connected to READY ofthe CPU. In the IBM PC it is used
to signal the 8088 that the CPU needs to insert a wait state due to the slowness of
the devices that the CPU is trying to contact.

Review Questions

I. Pin RESET is an (input, output) for the 8284 and an ___ _
(input, output) for the 8088.

2. True or false. Regardless of whether the 8088 is in minimum or maximum
mode, the 8284 clock generator is needed to provide a reliable clock.

3. True or false. The 8288 is used to provide control signals for the 8088 when
it is in minimum mode.

4. The 8288 output pin controls the direction data flows in and out of
the CPU.

SECTION 9.3: 8-BIT SECTION OF ISA BUS

246

Previous sections have explained the 8088 CPU and supporting chips.
This section will explain how they are all connected in the original IBM PC to
produce the required buses to communicate with memory, input/output peripher­
als, and the 8-bit section of the ISA bus. The study of the 8-bit section of ISA is
the main topic of this section.

A bit of bus history

The original IBM PC introduced in 1981 used an 8088 microprocessor,
whose 8-bit data bus gave birth to the 8-bit section of the ISA bus. [n 1984 when
IBM introduced the IBM PC/AT using the 80286 microprocessor, the data bus
was expanded to 16 bits. The 8-bit data bus can be seen as a subsection of the 16-
bit ISA bus. Very often the 8-bit data bus was referred to as the IBM PCIXT
(extended technology) bus in order to differentiate it from the [BM PC AT
(advanced technology). Eventually the IBM PC AT bus became known as the [SA
(Industry Standard Architecture) bus since the term "PC AT' was copyrighted by
IBM. Throughout this book we use the terms PCIXT and PC interchangeably to
refer to the 8-bit portion of the IBM PC AT ([SA) bus. The following is the
description of the three main buses of IBM PC as generated by the 8088 and sup­
porting chips.

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

Local bus vs. system bus

In the discussion of PC
design we often see the tenns
local bus and system bus. The sys­
tem bus not only provides neces­
sary signals to all the chips
(RAM. ROM, and peripheral
chips) on the motherboard, but
also goes to the expansion slot for
any plug-in expansion card. In
contrast, the local bus is connect­
ed directly to the CPU. Any com­
munication with the CPU must go
through the local bus. There is a
bridge between the local bus and
the system bus to make sure they
are isolated from each other.
Sometimes the system bus is
referred to as a global bus. We use
tri-state buffers to isolate the local
bus and system bus. For example,
74LS245 is a widely used chip for
the data bus buffer since it is bidi­
rectional. See Figure 9-10. Figure
9-11 shows an example of local
and system buses. Figure 9- I I
gives an overview of the 8088 and
its supporting chips as designed in
the original Pc. Notice the role of
the 74LS245 and 74LS373 in iso-
lating the local and system buses.
Everything on the left of the 8288,
74LS373s, and 74LS245 repre­
sent the local bus and everything
on the right side of those chips are

Vee GND
A1 B1

A2 B2

A3 B3

A4 B4

A5 B5

A6 B6

A7 B7

A8 B8

G

Direction Enable
control

Function Table
Enable Direction Control

G DIR
L L
L H
H X

Oceration
B data to A bus
A data to B bus
Isolation

Figure 9-10. 74LS245 Bidirectional Buffer
(Reprinted by pennission of Texas Instruments, Copyright
Texas Instruments, \988)

the system bus. The 74LS245 and 74LS373s play the role of bridge to isolate the
local and system buses. Now let's look at each of the buses.

Address bus

Three 74LS373 chips in Figure 9-11 are used for two functions:
I. To latch the addresses from the 8088 and provide stable addresses to the entire

computer. The address bus is a unidirectional bus. The 74LS373 chips are
activated by control signals AEN and ALE. When AEN is low, the 8088 pro­
vides the address buses to the system. The 8288's ALE (connected to G)
enables the 74LS373 to latch the addresses from the CPU, providing a 20-line
stable address to memory, peripherals, and expansion slots. Demultiplexing
addresses AO - A 7 is perfonned by the 74LS373 connected to pins ADO -
AD7 of the CPU. The CPU's A8 - Al5 is connected to the second 74LS373,
and AI6 - Al9 to the third one. Half of the third 74LS373 is unused.

2. To isolate the system address buses from local address buses. The system
buses must be allowed to be used by the DMA or any other board through the
expansion slot without disturbing the CPU. This is achieved by the 74LS373s
through AEN. The AEN signal is described shortly.

SECTION 9.3: 8-BIT SECTION OF lSA BUS 247

fl,
MN/IIIIX

SO

r01 8088 S1
S2

ClK
8284A Ready

Reset

INTR
ADO-AD7

A8-A19

AEN

DO
'-+- INTA 07 r--..

SPIEN

8259

.--
r-

data) ~addrl

AEN

SO fJiIT.l\. CEN ClK
S1
S2 8288
DEN
DT/R
ALE AEN

RESET
(reset drive)

elk 8088

CONTRO lBUS

MR

MW

ME

ME

10 R
10 W

+
ADDRESSB US

AO
A19

G "
74LS373 20-bit

OE

AE N

D DIR
~ DATA BUS < 8-bit >g o

7
8-bit data 74lS245

• lOCAL BUS

(f)

~
-l
m
s:
(JJ

c
(f)

Figure 9-11. 8088 Connections and Buses in the PCIXT
(Reprinted by pennission from "'IBM Technical Reference" c. 1984 by International Business Machines Corporation)

T1

Clk

A8 X A19

ADO X Addres$
AD7

ALE ~

MEMR

DTiR

DEN

T2 T3 T4

X

> float
< Data > float

"-
"-

~------------~~
~----~------~~~

/ \'------~

Figure 9-12. ALE, DEN, and DTR Timing for the 8088 System

Data bus

248

The bidirectional data bus goes through the 74LS245 transceiver (see
Figures 9- \0 and 9-11). DTiR and DEN are the two signals that activate the
74LS245. DTIR goes to D1R of the 74LS245 and makes the transceiver transmit
information from the A side to the B side when DT/R is high. Conversely, when

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

DT/R makes DlR low, the transceiver transfers information from the B side to the
A side, thereby receiving information from the system data bus and bringing it to
the microprocessor. DEN (an active low signal) enables the 74LS245. This iso­
lates the data buses to make them either a local bus or a system bus. When the
74LS245 is not active, the system data bus is isolated from the local data bus.

Control bus

The four most important control signals of the IBM PC are lOR (lIO
read), lOW (lIO write), MEMR (memory read), and MEMW (memory write).
They are provided by the 8288 chip as shown in Figure 9-11. The timing for the
bus activity is shown in Figure 9-12.

One bus, two masters

While the 8088, the main processor, is designed for fetching and execut­
ing instructions, it is unacceptably slow for transferring large numbers of bytes of
data such as in hard disk data transfers. Instead, the 8237 chip is used for data
transfers of large numbers of bytes. The detailed function of this chip is explained
in Chapter 15. All that is needed here is to know that the 8237's job is to transfer
data and it must have access to all three buses to do that. Since no bus can serve
two masters at the same time, there must be a way to allow either the 8088 proces­
sor or the 8237 DMA to gain control over the buses. This is called bus arbitration
and is achieved by the AEN (address enable) generation circuitry.

AEN signal generation Table 9-5: AEN Bus Arbitration

When the system is turned on, the
8088 CPU is in control of all the buses.
The CPU maintains control as long as it is
fetching and executing instructions. As

AEN
0
I

Bus Control
Buses controlled by CPU
Buses controlled by DMA

can be seen from Figure 9-13, AEN is the output signal of the D flip-flop. Since
Q is either high or low, depending on the status of this signal, either the CPU or
the DMA can access the buses. Table 9-5 shows the role of AEN in bus arbitra­
tion.

HLDA to 8237
reset __ I~~ __ ~ __________________ ~ __ -,

cir cir
D3 Q3 D Q DO QO

AEN

74LS175 74LS175

clock clock
clock QO
pre Q « ::.M

o "'~'-----;O
OE C eLK
0::0
I.):

Vee
buffered AEN

o 8088 Buses
from clk88 of 8284A __ __ --1 1 8237 DMA Buses

Figure 9-13. AEN Generation Circuitry in the PCIXT
(Reprinted by pennission from "IBM Technical Reference" c. J984 by International Business Machines CO'1X>ration)

SECTION 9.3: 8-BIT SECTION OF ISA BUS 249

250

Control of the bus by DMA

How does AEN become high, handing control of the system buses to
DMA? The answer is that when DMA receives a request for service, it will noti­
fY the CPU that it needs to use the system buses by putting a LOW on HRQDMA
(this is the same as the HOLD signal in minimum mode of the 8088). This in turn
will provide a high on the D3 output of the 74LS175, assuming that the current
memory cycle is finished and that LOCK is not activated. [n the following clock
cycle, HLDA (hold acknowledge) is provided to the DMA and AEN becomes
high, giving control over the buses to the DMA.

Bus boosting

One more point that needs explaining is bus boosting ofthe control, data,
and address buses to provide sufficiently strong signals to drive various [C chips.
When a pulse leaves an IC chip it can lose some of its strength, depending on how
far away the receiving [C chip is located. [n addition, the more pins a signal is
connected to, the stronger the signal must be to drive them all. Therefore, the sig­
nals must be amplified. Stated another way, every pin connected to a given signal
has input capacitance, and the capacitances are in parallel; thus as far as that sig­
nal is concerned they are all added together, making one big capacitor load. This
requires that the signal be strong enough to drive all the inputs (see Chapter 26 for
more details on this topic). It is common to combine the functions of bus isolation
and bus boosting into a single chip. For example, 74LS373 chips are used to boost
the addresses provided by the 8088 microprocessor in addition to the bus isola­
tion mentioned earlier. The signals provided by the CPU need boosting since the
8088 is a CMOS chip. CMOS has a much lower driving capability than TTL, of
which 74LS373s are made. Likewise, the 74LS245 is used for both data bus
booster and data bus isolation. Details of IC interfacing and how 74LS245 chips
are used for signal amplification (boosting) are shown in Chapter 26.

8-bit section of the ISA bus

As stated earlier, the original IBM PC had an 8-bit data bus. Later with
the introduction of the 80286, the 16-bit version of the bus became available. The
80286 bus became known as the [SA bus. The 8-bit bus is a subset of the 16-bit
ISA bus and used in many peripheral boards. Figure 9-14 shows the 8-bit portion
of the ISA bus expansion slot. From that figure notice that addresses AO - A 19
and data signals DO - D7 are on the A side of the expansion slot. On the A side,
also notice the AEN pin. On the B side are found control signals [OR, lOW,
MEMR, and MEMW. The - sign on these and other control signals implies an
active low signal. [n Chapter II we use signals AO - A 19, DO - D7, AEN, lOR,
and lOW to design an [/0 interfacing card. The rest of the signals in Figure 9- 14
will be covered in subsequent chapters. The signals asscociated with interrupts
(IRQs) are covered in Chapter 14; signals associated with DMA (DREQs and
DACKs) are covered in Chapter 15.

Review Questions

I. The system bus can be accessed either by the CPU or by
2. The control signal that provides bus arbitration is -----
3. True or false. After a cold boot, DMA is given control of the buses.
4. The bidirectional data bus goes through the 74LS245 transceiver. Signal

~_;--. determines whether data is flowing from the A to B side or from the
B to A side.

5. Bus is required to provide strong signals to various [C chips
in the IBM Pc.

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

ME SIGNAL NA

GN
RESET DR

+5V D
IRQ

-5VD
DRQ

-12V D
OW

+12V D
GN

-SMEM

D
V
C

C
2
C
S
C
D

-SMEM R
-10
-10 R

-DAC K3

K1
DRQ

-DAC
DRQ 1

-REFRES
CL

IRQ
IRQ
IRQ
IRQ
IRQ

H
I<

;~

;~

K2 -DAC
T

SA
+5V D

OS
GN

/C
LE
C
C
D

,-

-

'"

REAR PANEL

,.--
r-B1 A1-

rl- -rl- -rl- -
r- -r- -- -- -- -
-B10 A10-
I- -
r- -
r- -rl- -r- -- -- -- -
-B20
r-

AZO-
'-

r- -rl- -
r- -- -- -- -
- -
- -- --rl- B31 A31=

'\

""

SIGNAL NAME

-I/O CH CK
SD7
SD6
SD5
SD4
SD3
SD2
SD1
SDO
-I/O CH RDY
AEN
SA19
SA18
SA17
SA16
SA15
SA14
SA13
SA12
SA11
SA10
SA9
SA8
SA7
SA6
SA5
SA4
SA3
SAZ
SA1
SAO

Figure 9-14. ISA (IBM PC AT) Bus Slot Signals Detail (8-bit Section)
(Reprinted by permission from '''IBM Technical Reference" c. 1985 by International Business Machines Corporation)

SECTION 9.4: 80286 MICROPROCESSOR

The 80286 is a 68-pin microprocessor available in either of two packag­
ing fonnats: Lee (leaded chip carrier) and PGA (pin grid array). This is in con­
trast to the 8088, which is a 40-pin DIP (dual in-line package). To package the 68-
pin Ie in DIP packaging would have made it a long Ie physically and conse­
quently more fragile. Such packaging would also necessitate a longer path for
some signals and as a result make it unsuitable for use in high-frequency systems.
Figure 9-15 shows the 80286 in Lee packaging.

The 80286 can work in one of two modes: real mode or protected mode.
[n real mode, the maximum memory it can access is 1M, OOOOOH to FFFFFH. To
access the entire 16M bytes of memory, OOOOOOH to FFFFFFH, it must work in
protected mode. In real mode, the 80286 is a faster version of the 8086 with a few
new instructions. When power is applied to the 80286, it starts up in real mode
and can be switched to protected mode at any time through a software instruction.
However, to use the 286 in protected mode requires an extremely complex mem­
ory management system. Since very few systems are using the 286 in protected
mode, it is not discussed here (even in protected mode it is still a 16-bit comput­
er, meaning that all registers are 16-bit, as opposed to 32-bit).

SECTION 9.4: 80286 MICROPROCESSOR 251

252

Pin descriptions

The following are pin descriptions of the 80286 microprocessor.

Pins AO - A23 (address bus)

These output signals provide a 24-bit address to be used by the decoding
circuitry to locate memory or 110. When providing an address for memory, all 24
pins must be used (AO - A23); therefore, it can access a maximum of 16M bytes
of memory (224 = 16M). To access an 1/0 address, only AO - A 15 are used. If the
1/0 address is a 16-bit address, AO - A IS are used to provide the address, and pins
AI6 - A23 are low. If the I/O address is an 8-bit address, only AO - A7 are used,
and A8 - A23 are all low.

Pins 00 - 015 (data bus)

These pins provide the 16-bit path for data to be transferred in and out of
the CPU. It must be noted that unlike the 8088, the data bus is not multiplexed.
The use of separate pins for address and data results in higher pin counts, but
saves time since it eliminates the need for a demultiplexer. This 2-byte data path
to the CPU allows the transfer of data on both bytes or on either byte, depending
on the operation. The 80286 coordinates the activity on the 00 - 0 IS data bus
with the help of AO and BHE.

Pin SHE (bus high enable)

This is an active-low output signal used to indicate that data is being
transferred on 08 - 015. Table 9-6 shows how BHE and AO are used to indicate
whether the data transfer is on 00 - 07, 08 - 0 IS, or the entire bus, 00 - 015.

Table 9-6: BHE, AO, and Byte Selection in tbe 80286

BHE AO Data Bus Status
0 0 Transferring 16-bit data on 00 - DIS
0 I Transferring a byte on the upper half of data bus 08 - 015
I 0 Transferring a byte on the lower half of data bus 00 - 07
I I Reserved (the data bus is idle)

(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1983)

Pin ClK (clock)

CLK is an input providing the working frequency for the 80286. The
processor always works on half of this frequency. For example, if CLK = 16
MHz, the system is an 8-MHz system. In other words, for the 80286 computer to
be an 8-MHz system, the CLK must be 16 MHz.

Pin M/iO (memory I/O select)

MIlO is an output signal used by the CPU to distinguish between 1/0 and
memory access. When it is high, memory is being accessed, and when it is low,
I/O is being addressed.

Pin COOIINTA (code/interrupt acknowledge)
This is an output signal used by the CPU to indicate whether it is per­

forming memory read/write of data or an instruction fetch. It is also used to dis­
tinguish between the action of inte~t acknowledge and 110 cycle. This signal,
along with the status signals and MIlO, is used to define the bus cycle.

Pins S1 and SO (status signals)

These status signals for the bus cycle are both output signals used by the
CPU along with WIO and COOIINTA to define the type of bus cycle.

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

CAP 1521

ERROR 1531

BUSY [E)
N.C. 1551

N.C.~

INTR~

N.C.~

NMI~

VSS~

PEREa@D

Vrx 1621

READY~

HOLD 1641

HLDA~

COD/INTA IS61

MliO 1671

LOCK~ Q

Figure 9-15. 80286 Microprocessor (Lee Packaging)
(Reprinted by pennission ofIntel Corporation. Copyright Intel Corp. 1983)

Pins HOLD and HLDA (hold and hold acknowledge)

134I AO

133IA1

@3JA2

~CLK

~vrx
129IRESET

j2SIA3

1271A4

~A5

~A6
1241A7

123I AS

122IA9

~A10

~A11

~A12

IJ!lA13

HOLD and HLDA allow the CPU to control the buses. HOLD is an input
signal to the 80286 and is active high. It is used by devices such as DMA to
request permission to use the buses. In response, the CPU activates the output sig­
nal HLDA by putting a high on it to inform the requesting device that it has
released the buses for the device's use. The DMA has control over the buses as
long as HOLD is high, and in response the CPU keeps HLDA high. Whenever the
DMA brings HOLD low, the CPU responds by making HLDA low, and regains
control over the buses.

RESET pin

This is an input signal and is active high. When there is a low-to-high
transition on RESET (and it stays high for at least 16 clocks), the 80286 initial­
izes all registers to their predefined values and the output pins of the 80286 will
have the status shown in Table 9-7. Of the above signals, the status of the fol­
lowing pins must be noted since they are used in the memory design of the IBM
PC AT computers: A20 = I, A21 = I, A22 = I, and A23 = 1.

As long as the RESET pin is high, no instruction or bus activity is
allowed. The contents of the instruction pointer and segment registers of the
80286 after RESET are shown in Table 9-8.

SECTION 9.4: 80286 MICROPROCESSOR 253

254

It must be noted tbat
when RESET of the 80286 is
activated, it forces the 80286
to enter into real mode. In
otber words, the CPU wakes
up in real mode. In real mode
the 80286 (indeed, all the
x86s from the 80286 to the
Pentium4) processor can
address only I megabyte
since it uses only address

Table 9-7. Pin State (Bus Idle) During Reset

Pin Name Si!!nal Level durin!! Reset
DO - DIS High impedance
AO - A23 High
WIR Low
MIlD High

(Reprinted by permission of Intel Corporation,
Copyright Intel Corp. 1983)

lines AO - A19. Since RESET also
causes A20 - A23 to be high, the
first instruction for the 286 must be
at physical address FFFFFOH. This
is due to tbe fact that at reset, CS ~
FOOO and IP ~ FFFO, making the
logical address of tbe first instruc­
tion FOOO:FFFO. This provides the
physical address ofFFFFOH on AO­
A 19, and since A20 - A23 is high at
reset, the physical address of tbe first
instruction must be FFFFFOH. This
is 16 bytes from the top of the 16M
address range of tbe 80286. The

Table 9-8: IP and Segment Registers
After RESET

Register Contents
CS FOOO
IP FFFO
OS 0000
SS 0000
ES 0000

(Reprinted by permission ofIntel
Corporation, Copyright Intel Corp. 1983)

80286 expects to have a far jump at location FFFFFOH and when the JMP is exe­
cuted, tbe 286 puts Os on pins A20 - A23, making it effectively a I M range real
mode system. Further implications of these facts are discussed in Chapter 10.

Pin INTR (interrupt request)

INTR is an input signal into the 80286 requesting suspension of the cur­
rent program execution. It is used for external hardware interrupt expansion along
witb the 8259 interrupt controller chip. See Chapter 14 for more information.

Pin NMI (nonmaskable interrupt request)

NMI is an active-high input signal. When this pin is activated, the 80286
will automatically perform INT 2, meaning tbat tbere is no INTA response since
INT 2 is assigned to it. See Chapter 14 for more details oftbis pin.

READY pin

READY is an active-low input signal used to insert a wait state and con­
sequently prolong the read and write cycle for slow memory and I/O devices.

LOCK, PEREQ, BUSY, ERROR, and PEACK

These five signals coordinate bus activities with the math coprocessor.

Figure 9-16 shows the 80286 timing. Notice the 2-clock cycle time for
read. This is discussed further in Chapter 10.

Review Questions

I. When power is applied to the 80286, which mode does it wake up in, real
mode or protected mode?

2. The 286 can access of memory in real mode and In

protected mode.
3. When RESET is set to high, what are tbe contents oftbe CS and IP registers?

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

Previous cycle Read cycle Next cycle

• ... ;
Tc Ts Tc Ts

• • .. • i ..
.. .. •

PClk
~ I

A23
AO X X

D15
DO

------------------~-------------i---------~'_~-'>------------

MEMR

DEN

DT/R

READY

:". /

--------~------~--~/ \'----

Figure 9-16. ALE, DEN, and DTR Timing for the 80286 CPU

SECTION 9.5: 16-BIT ISA BUS

The origin of technical specifications of many of today's x86 PCs is the
80286-based IBM PC/AT. Much of the PC/AT in tum is based on the original
8088-based IBM PC introduced in 1981. A major legacy of those original PCs is
the ISA (Industry Standard Architecture) bus slot. Remember that ISA is another
name for the PCI AT bus since PCI AT is a trademark copyrighed by IBM Corp. [n
this section we examine the address, data, and control buses of the [SA expansion
bus and some of the issues related to them. Whether the microprocessor used in a
PC is Intel's Pentium, 386, 486, or an equivalent AMD processor, if it has an ISA
bus slot, the material in this section is relevant and needs to be understood if you
want to design expansion cards for ISA slots.

Figure 9-17 shows the 80286 microprocessor, along with supporting
chips used in the original PCI AT computers. The address, data, and control buses
in this figure are used throughout the motherboard and are also provided to the
ISA expansion slot. In today's PC the 80286 is replaced with Intel's Pentium or
AMD's Athlon microprocessor, and all the control signals are provided by a
chipset. A chipset is an IC chip containing all the circuitry needed to support the
CPU in a given motherboard. For educational purposes throughout the book, we
use simple logic gates from the original PC to discuss some design concepts, even
though in the real world the Chipset uses CPLDs (Complex Programmable Logic
Devices) for design with all the circuitry details buried inside. Next, we examine
the major signals of the ISA expansion slot.

Exploring ISA bus signals

In Section 9.3 we discussed the 8-bit section of the ISA bus. The 8-bit
section uses a 62-pin connector to provide access to the system buses. In order to
maintain compatibility with the original PC, the 16-bit ISA slot used the 8-bit sec­
tion as a subset. A 36-pin connector was added to incorporate the new signals as
shown in Figure 9-18. In designing a plug-in peripheral card for the ISA slot we
need to understand the basic features of the ISA signals. The ISA bus has 24
address pins (AO - A23), 16 data pins (DO - DIS), plus many control signals.

SECTION 9.5: 16-BIT ISA BUS 255

256

82288 MruRJ MEMW Control
lOR Signals

lOW

t t .J::" 82284
D ClK MilO DO < >

J --c:. READY 07 16-bit

SO 8 08 < > Data Bus

S1 0 015

2 BHE BHE

8 AO (bus high enable)

6 A1
A2
... - ... ---.. 24-bit

A18 Address Bus
A19
A20 - ~
A21
A22
A23

A20
A20 control - Arbitration

Circuitry

Figure 9-17.80286 Block Diagram and Supporting Chips In the PC AT
Address bus

Addresses AO - A 19 are latched using ALE. These addresses are used
throughout the motherboard and are also provided to the 62-pin part of the ISA
slot as SAO - SA 19 (system address). See Figure 9-18. Notice that this is already
latched and cannot be latched again by a plug-in card. The A20 - A23 part of the
address is provided in the 36-pin section. In the 36-pin section of the ISA slot,
A 17 - A23 are also provided as LA 17 - LA23 (latchable address). We need to use
the ALE signal to latch these addresses in the design of plug-in cards. The ALE
signal is provided as BALE (buffered ALE) and can be used to latch LA 17 -
LA23.

Data bus

The data bus is composed of pins DO to 0 IS. The data bus is buffered by
a pair of 74ALS245 data bus transceivers that are used throughout the mother­
board to access memory and ports. They are also provided at the expansion slot
as SOO - SOlS (system data). However, it must be noted that SOO - S07 are pro­
vided at the 62-pin part in order to make it compatible with the original 8088-
based PCIXT, while S08 - SOlS show up on the 36-pin part. This allows the 16-
bit data bus to access any 16-bit peripheral. To select the upper byte or the lower
byte of 16-bit data, we use BHE (bus high enable). BHE is latched and used on
the system board and also provided at the expansion slot under SBHE (system bus
high enable). We will see how to use this pin below.

Memory and 110 control signals

lOR and lOW are the two control signals used to access ports throughout
the system. They show up on the 62-pin section of the ISA expansion slot. This

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

ME SIGNALNA

GN
RESET DR

+5VD
IRQ

-5VD
DRQ

-12V D
OW

+12V D
GN

-SMEM

D
V
C

C
2
C
S
C
D

-SMEM R
-10
-10 R

-DACK
DRQ

-DACK
DRQ

~~
1
1
H -REFRES

CL
IRQ
IRQ
IRQ
IRQ
IRQ

K

;l
;;

;!
-DACK2

T
BAL

+5V D
OS
GN

/C
E
C
C
D

-MEM CSl
-I/O CS 1

'1 IRQl
IRQl
IRQl
IRQl
IRQl

L

" 4
,U -DACK

DRQ
-DACK

DRQ
-DACK

DRQ
-DACK

DRQ
+5VD

-MASTE
GN

,0

7
7
C
R
D

REAR PANEL

r--
f-I- 81 Al-
f-I- -

f-- -
I- -
I- -
I- -I- -
f-- -
I-- -
f-- 810 Al0-
I-- -
I-- -
I-- -
I- -
I- -
I- -
I-- -
I-- -
;:820 A20-'-
I- -
I- -
I- -
I- -
I-- -
I-- -
I-- -
I- -
I- -
I-- -
1-831 A31-

'--

"-
r-

1-01 Cl-
I- -
I-- -
'--- -
~ -
~ -
~ -
I- -
I- -
1--010 Cl0-
~ -
~ -
~ -
~ -
~ -
~ -
I- -
~018 C18-

l....-

"-

Figure 9-18, ISA (IBM PC AT) Bus Slot Signals

r-- "

L--

"
r- "-

I....-

"

SIGNAL NAME

-I/O CH CK
SD7
SD6
SD5
SD4
SD3
SD2
SDl
SDO
-I/O CH RDY
AEN
SA19
SA18
SA17
SA16
SA15
SA14
SA13
SA12
SA11
SA10
SA9
SA8
SA7
SA6
SA5
SA4
SA3
SA2
SAl
SAO

SBHE
LA23
LA22
LA21
LA20
LA19
LA18
LA17
-MEMR
-MEMW
SD08
SD09
SD10
SDll
SD12
SD13
SD14
SD15

COMPONENT
SlOE

(Reprinted by pennission from "IBM Technical Reference" c. 1985 by International Business Machines Corporation)

SECTION 9.5: 16-BIT ISA BUS 257

258

~
E
§
§
§
§
§
E
E
'-t

~
E
E
E
E
~

Figure 9-19. ISA and PCI Expansion Slots in x86 Motherboard

makes them 8088 PCIXT compatible. We will discuss how these signals are used
in peripheral interfacing in Chapter II.

Signals MEMR, MEMW, SMEMR, and SMEMW are used to access
memory. There is a reason for duplicate memory read and write signals. To allow
access to any memory within the range of 16 megabytes, read/write control sig­
nals are provided to the 36-pin section of the ISA expansion slot under the desig­
nations of MEMR and MEMW, respectively.

To maintain compatibility with the original 8088-based PCIXT, MEMR
and MEMW are designated as SMEMR and SMEMW and are provided on the
62-pin part of ISA on the same strip as the XT bus systems. In other words,
MEMR and MEMW can be used to access memory in any location, but to access
memory within the 1 megabyte range, we must use SMEMR and SMEMW on the
62-pin part of the ISA bus. In this case they can be used only to address memory
locations 0 - FFFFFH. Of course, to allow the same signals, MEMR and MEMW,
from the support chip to show up in two distinctive places with two different
names and functions requires some extra logic circuitry. Such details are buried
inside the chipsets in today's pc.

Other control signals

Examining the ISA bus pins in Figure 9-18, we see numerous control sig­
nals that we have not seen before. The rest of the control signals in Figure 9-18
are related to the interrupt and DMA chips. IRQ and DMA signals are covered in
subsequent chapters.

Figure 9-19 shows the expansion slots in today's x86 Pc. In the vast
majority of them we have both ISA and PCI buses. The PCI bus is a much faster
and superior bus; it is discussed in Chapter 27. Some PC makers offer mother­
boards with PCI bus only and no ISA expansion slots.

CHAPTER 9: 8088,80286 MICROPROCESSORS AND ISA BUS

ODD and EVEN bytes and BHE

In the 36-pin section of the ISA bus there is a pin called SBHE that we
explain next. Pin C 1 is the same as the BHE pin from the 80286 that we studied
in the last section. The BHE pin has to do with the differences between the 8-bit
and l6-bit data bus CPUs. Like all general-purpose microprocessors, the memo­
ry (and 1/0) space of x86 microprocessors is byte addressable. That means that
every address location can provide a maximum of one byte of data. If the CPU
has an 8-bit data bus, like the 8088, then the addresses are designated as 0 to
FFFFFH, as shown in Figure 9-20.
Notice in Figure 9-20 that the bus width Table 9-9: Distinguishing Between Odd
for the data bus is only 8 bits. In other and Even Bytes
words, only 8 strips of wire connect the
CPU's data bus to devices such as mem­
ory and lIO ports. Since the vast major­
ity of memory and 1/0 devices also
have an 8-bit data bus of DO - D7, their
interfacing to CPUs with an 8-bit data
bus is simple and straightforward. The
CPU's DO - D7 data bus is connected
directly to the DO - D7 data bus of
memory and lIO devices. This is a per­
fect match. If the CPU has a 16-bit data
bus, like 8086/80286/80386SX micro­
processors, then the address spaces are
designated as odd and even bytes, as
shown in Figure 9-21. In such cases, the
DO - D7 byte is designated as even and
the D8 - D 15 byte as odd. To distin-
guish between odd and even bytes,
8086/286/386SX CPUs provide an
extra signal called BHE (bus high
enable). BHE, in association with the
AO pin, is used to select the odd or even
byte according to Table 9-9. In Figure
9-21, notice the odd and even banks.
They are called odd and even banks

BHE
0
0
1
1

AO
0 Even word
1 Odd byte
0 Even byte
1 None

07 DO
00000 .-------,
00001
00002

FFFFF
'------'

DO - Dl5
D8 - Dl5
DO- D7

since the memory chips have only an 8- Figure 9-20. Memory Byte Addressing
bit data bus of DO - D7 and two IC in 8088 (8-bit Data Bus)

Odd Bank
(BHE = 0)

015 08
00001 r------,
00003
00005

FFFFF
'-------'

Even Bank
(AO = 0)

07 DO
00000 r-----,
00002
00004

FFFFE
'------'

Figure 9-21. Odd and Even Banks of Memory in 16-bit CPUs (80286)

SECTION 9.5: 16-BIT ISA BUS 259

260

chips must be used, one for each byte. Although Figure 9-21 shows only I
megabyte of memory space, the concept of odd and even bytes applies to the
entire memory and I/O space of the x86 CPU. This is also the case for the 386 and
486 CPUs with a 32-bit data bus.

A20 gate and the case of high memory area (HMA)

A20 is an anomaly associated with 286 and higher microprocessors that
needs to be discussed. In the 8088, when the segment register added to the offset
is more than FFFFFH, it automatically wraps around and starts at OOOOOH.
However, in 80286 and higher processors in real mode, such a wrap-around will
not occur. Instead, the result will be 100000H, making A20 = I. The problem is
that A20 - A23 is supposed to be activated only when the CPU is in protected
mode. To control activation of A20, IBM used a latch controlled by the keyboard
in the original PC AT; however, with the introduction of PS computers, control of
A20 can also be handled by port 92H. One can use this A20 gate (as it is com­
monly called) to create a high memory area (HMA). This concept is important for
understanding HMA memory in x86 PCs and is discussed in Chapter 25. See
Examples 9-1 and 9-2 for clarification on this issue. Notice that the process of
enabling and disabling the A20 gate in Figure 9-17 is handled by a piece of soft­
ware called the A20 handler, which is provided with MS-DOS and Windows
operating systems.

Example 9-1

(a) If the A20 gate is enabled, show the highest address that 286 (and higher processors)
can access while still in real mode.

(b) How far high above I M is this address?

Solution:

(a) To access the highest physical location in real mode, we must have CS = FFFFH and
IP = FFFFH. We shift left the segment register CS and add the offset IP = FFFF:

CS shifted left one hex digit FFFFOH
adding the offset IP + FFFFH

10FFEFH

Therefore, the addresses FFFFOH - 10FFEFH are the range that the CPU can access
while it is in real mode. This is a total of 64K bytes.

(b) If the A20 gate is enabled, accessible memory locations above I Mare 100000 to
IOFFEF. This is a total of 65,520 bytes, or 16 locations short of 1M + 64K.

Example 9-2

Assume that CS = FF25H. Find the lowest and highest physical addresses for
(a) the 8088 (b) the 80286
Speci/)' the bit on A20.

Solution:

(a) The lowest physical address is FF2S0H and the highest is OF24FH (FF2S0H + FFFFH);
since there are only lines AO - A 19 in the 8088, the I is dropped.

(b) In the 286 the lowest address is the same as in the 8088, but the highest physical
address is lOF24F; therefore, A20 = I.

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

PROBLEMS

Review Questions

I. The first IBM PC AT used the microprocessor.
2. What is the advantage of using the 74LS573 chip address latch over the

74LS373?
3. What is the purpose of the A20 handler circuitry?
4. What address area is called the high memory area in the 80286?
5. Since the control signals MEMR and MEMW are available on the 62-pin part

of the expansion slot, why are they duplicated on the 36-pin part?

SUMMARY

This chapter began with a detailed examination of the 8088, including a
description of all input and output pins and their functions. The IBM PC always
uses the 8088 in maximum mode. Next, the 8284A clock generator was described,
as well as its role in providing timing synchronization for the IBM Pc. The 8288
bus controller was also described, which is essential for providing control signals
for the 8088 CPU in maximum mode. Then, the system buses were examined in
further detail in terms of their connections among the various IC chips and how
control over them is achieved. In addition, an overview of the core of the IBM PC
system, the CPU, the 8284A, and the 8288, was presented.

This chapter also explored the 80286 microprocessor. All the pins of the
80286 were described and an overview was given of the differences between real
and protected mode. The address, data, and control buses of the 286 were
described in terms of accessing the 16M memory range of the 80286. Finally, the
ISA bus architecture of the PC AT and the expansion slot were examined. It was
shown how these were designed so that devices could remain compatible with
PC/XT expansion slots but also take advantage of unique features of the PC AT,
such as extended memory.

PROBLEMS

SECTION 9.1: 8088 MICROPROCESSOR

I. State the main differences between the 8088 and 8086 pinouts. Are the two
chips interchangeable?

2. ALE is an (input, output) signal for the 8088.
3. What is the maximum number of bytes of memory addressable by the 8088,

and why?
4. RESET is an (input, output) signal for the 8088.
5. When the 8088 uses the pins for addresses, they are (input,

output, both in and out), but when they are used for data, they will be
=-___ (input, output, both in and out).

6. To use a math coprocessor with the 8088, one must connect the 8088 in
=-_---,;:-:-_.,-_(maximum, minimum) mode.

7. True or false. An address must be latched from pins ADO - AD7 in the 8088.
8. Which of the following signals is provided by the 8088 CPU in minimum

mode?
(a) INTR (b) ALE (c) WR (d) 101M

9. What is the advantage of demultiplexing address/data in the 8088 CPU?
10. What is the penalty (disadvantage) in terms of clocks in Problem 9?
II. ALE is activated in which T state?
12. Why are 8086-based systems more expensive compared to 8088-based sys­

tems?
13. To use the 8088 with the 8087 math coprocessor, is the minimum/maximum

pin connected to low or high?

261

262

14. When the input signal RESET in the 8088 is activated, what are the contents
of the IP and CS registers?
Use the following for the next 3 problems.
MEMR* MEMW*
(a) 0 0
(b) 0 I
(c) I 0
(d) I I
* Active low.

15. Which of the above control signals is activated during the memory read cycle?
16. Which one is activated during memory write?
17. Which of the above absolutely cannot happen at the same time?

SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS

18. In maximum mode in an 8088-based system, which chip provides the ALE
signal, the 8088 or the 8288?

19. Which of the following signals are provided by the 8288 chip?
(a) lOR (b) RESET (c) lOW
(d) NMI (e) MEMR (t) MEMW
Use the following for the next 3 problems.
MEMR* MEMW*
(a) 0 0
(b) 0 I
(c) I 0
(d) I I
* Active low.

20. Which of the above control signals is activated during the memory read cycle?
21. Which one is activated during memory write?
22. Which of the above absolutely cannot happen at the same time?

SECTION 9.3: 8-BIT SECTION OF ISA BUS

23. When the computer is RESET, which master takes over, the 8088 or DMA?
24. To latch all the address bits of the 8088, how many 74LS373 chips are need­

ed?
25. In the IBM PC, when AEN = 0 it indicates that the (8088 CPU,

DMA) is in charge of the buses. Which controls the buses when AEN = I?
26. Which chip is used for the following?

(a) bidirectional bus buffering
(b) unidirectional bus buffering

27. In the IBM PC, the 74LS373 is used for which of the following?
(a) address latch (b) isolating the address bus
(c) address bus boosting (d) all of the above

28. Draw a block diagram for the 8088 minimum mode connection to the
74LS373 and 74LS245. (ModifY Figure 9-5.)

29. To access the buses for interfacing with the CPU, AEN must be __ _
(low, high).

30. In the 74LS245, to allow the transfer of data rrom side A to B, DIR = __ _

and G ==-"'-'--77"70
31. Answer Problem 30 if data is transferred rrom side B to A.
32. In the 74LS245, what happens if G = 1 and DIR = O?
33. The 74LS245 chip is used for (address, data) buses.
34. To allow the passage of data through the 74LS373, G = ____ and OE

____ . When is the data actually latched?

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

SECTION 9.4: 80286 MICROPROCESSOR

35. True or false. The 80286 is available in both LCC and PGA packages.
36. The salesclerk at the local computer store says that the 80286 has 24 bits for

address and 16 bits for data; therefore, it has 224 times 2 bytes = 33,554,432
bytes = 32M memory space. Is this person right? Give justification for your
answer.

37. When AO = 0 and BHE = 0, which section of the data bus (the high byte or
the low byte or both) is transferring information?

38. When AO = 0, it makes the address an (odd, even) address.
39. True or false. IfCLK is 20 MHz, the 80286-based system is a 10-MHz sys­

tem.
40. True or false. The entire 16-megabyte memory space of the 80286 is accessi­

ble in real mode.
41. When power is applied to the 80286, it wakes up in (real,

protected) mode.
42. Indicate the contents of CS, IP, OS, SS, and ES when power is applied to the

286.
43. In what physical address does the 286 look for the first opcode?
44. JustifY your answer in Problem 43.

SECTION 9.5: 16-BITISA BUS

45. The ISA expansion slot of the 80286 has two parts. How many pins does each
part have? State also the number of pins for A, B, C. Which side is the com­
ponent side?

46. In the ISA bus, which part of the expansion slot provides signals A20 - A23?
47. In the ISA bus, which part of the expansion slot provides signals 08 - DIS?
48. Why is DO - 07 provided on the 62-pin part of the expansion slot?
49. The BHE signal is provided on the (62-pin, 36-pin) section ofthe ISA

bus. Why?
50. If CS = FC48H and IP = 7652H, find the status of A20 for each member of

the 8Ox86 family.
51. Which of the 8088 and 80286 microprocessors have the BHE pin?
52. To access memory anywhere in the 16M range, we must use and

--;cc;--= for the memory write and memory read control signals. Which part
of the ISA bus provides them?

53. True or false. In the 8088, there is no A20 pin.
54. True or false. The 62-pin part of the ISA bus is almost the same as the 62-pin

expansion slot of the original PC/XT.

ANSWERS TO REVIEW QUESTIONS

SECTION 9.1: 8088 MICROPROCESSOR
1. In the 8086, pins ADO - ADI5 are used for the data bus; the 8088 has an 8-bit exter­

nal data bus, pins ADO - AD7.
2. The ALE (address latch enable) pin signals whether the information is data or an

address.
3. 4
4. minimum
5. (a) both (b) output (c) output
6. 101M = 0 and RD = 0
7. 101M = 0 and WR = 0

ANSWERS TO REVIEW QUESTIONS 263

264

SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS
I. output, input
2. true
3. false
4. DTR

SECTION 9.3: 8-BIT SECTION OF ISA BUS
I. 8237 DMA 2. AEN
3. false 4. DTIR
5. buffering

SECTION 9.4: 80286 MICROPROCESSOR
I. real mode
2. 1 megabyte, 16 megabytes
3. CS ~ FOOOH and IP ~ FFFO

SECTION 9.5: 16-BIT ISA BUS
I. 80286
2. The advantage of the 573 is that all outputs are on one side and all inputs on the other,

which reduces noise in high-frequency systems and makes the circuit board easier to
design.

3. The A20 handler circuitry allows control of the A20 address bit by software, thereby
solving the problem associated with the A20 pin in the 80286.

4. 100000H - FFFFFFH
5. They are provided on the 36-pin part to allow access to extended memory.

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS

CHAPTER 10

MEMORY AND MEMORY
INTERFACING

265

This chapter explores memory and memory interfacing of the x86 Pc. We
first study the basics of semiconductor memory chips, then in Section 10.2 we
present memory address decoding using simple logic gates. The memory map and
memory space allocation of the PC are discussed in Section 10.3. Section lOA
explores the issue of data integrity in RAM and ROM. Section 10.5 discusses the
CPU's bus cycle time for memory and shows how to calculate bus bandwidth.
The specifics of memory cycle time for the ISA bus are covered in Section 10.6.

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS

266

In the design of all computers, semiconductor memories are used as pri­
mary storage for code and data. Semiconductor memories are connected directly
to the CPU and they are the memory that the CPU first asks for information (code
and data). For this reason, semiconductor memories are sometimes referred to as
primary memory. The main requirement of primary memory is that it must be fast
in responding to the CPU; only semiconductor memories can do that. Among the
most widely used semiconductor memories are ROM and RAM. Before we dis­
cuss different types of RAM and ROM, we discuss terminology common to all
semiconductor memories, such as capacity, organization, and speed.

Memory capacity

The number of bits that a semiconductor memory chip can store is called
its chip capacity. It can be in units of Kbits (kilobits), Mbits (megabits), and so
on. This must be distinguished from the storage capacity of computers. While the
memory capacity of a memory IC chip is always given in bits, the memory capac­
ity of a computer is given in bytes. For example, an article in a technical journal
may state that the 64M chip has become popular. In that case, although it is not
mentioned that 64M means 64 megabits, it is understood since the article is refer­
ring to an IC memory chip. However, if an advertisement states that a computer
comes with 64M memory, since it is referring to a computer it is understood that
64M means 64 megabytes.

Memory organization

Memory chips are organized into a number of locations within the IC.
Each location can hold I bit, 4 bits, 8 bits, or even 16 bits, depending on how it
is designed internally. The number of bits that each location within the memory
chip can hold is always equal to the number of data pins on the chip. How many
locations exist inside a memory chip depends on the number of address pins. The
number of locations within a memory IC always equals 2X where x is the number
of address pins. Therefore, the total number of bits that a memory chip can store
is equal to the number of locations times the number of data bits per location. To
summarize:

I . Each memory chip contains 2X locations, where x is the number of address
pins on the chip.

2. Each location contains y bits, where y is the number of data pins on the chip.
3. The entire chip will contain 2X x y bits, where x is the number of address pins

and y is the number of data pins on the chip.
4. The 2x x y is referred to as the organization of the memory chip, where x is

the number of address pins and y is the number of data pins on the chip.
5. For 2x, use Table 10-1 to give the number of locations in K or M units.
6. 2 IO = 1024 = I K. Notice that in common speech, I K is 1000 (as in discussing

salaries or distance), but in computer terminology it is 1024.

CHAPTER 10: MEMORY AND MEMORY INTERFACING

Speed
o ne 0 t e most Important c aractenstlcs 0 f h h f a

memory chip is the speed at which data can be accessed
from it. To access the data, the address is presented to the
address pins, and after a certain amount of time has
elapsed, the data shows up at the data pins. The shorter
this elapsed time, the better, and consequently, the more
expensive the memory chip. The speed of the memory
chip is commonly referred to as its access time. The
access time of memory chips varies from a few nanosec-
onds to hundreds of nanoseconds, depending on the Ie
technology used in the design and fabrication.

The three important memory characteristics of
capacity, organization, and access time will be used exten-
sively in this chapter and throughout the book. Many of
these topics will be explored in more detail in the context
of applications in this and future chapters. Table 10-1
serves as a reference for the calculation of memory organ-
ization. See Examples 10-1 and 10-2 for clarification.

Example 10-1

A given memory chip has 12 address pins and 8 data pins. Find:
(a) the organization (b) the capacity

Solution:

Table]11-1: Powers of2

£ 2x

10 IK
11 2K
12 4K
13 8K
14 16K
15 32K
16 64K
17 128K
18 256K
19 512K
20 1M
21 2M
22 4M
23 8M
24 16M

(a) This memory chip has 4096 locations (212 = 4096), and each location can hold 8 bits
of data. This gives an organization of 4096 x 8, often represented as 4Kx8.

(b) The capacity is equal to 32K bits since there is a total of 4K locations and each location
can hold 8 bits of data.

Example 10-2

A 512K memory chip has 8 pins for data. Find:
(a) the organization (b) the number of address pins for this memory chip

Solution:

(a) A memory chip with 8 data pins means that each location within the chip can hold 8 hits
of data. To find the number of locations within this memory chip, divide the capacity
by the number of data pins. 512K18 = 64K; therefore, the organization for this memory
chip is 64Kx8.

(b) The chip has 16 address lines since 216 = 64K.

ROM (read-only memory)

ROM is a type of memory that does not lose its contents when the power
is turned off. For this reason, ROM is also called nonvolatile memory. There are
different types of read-only memory, such as PROM, EPROM, EEPROM, Flash
ROM, and mask ROM. Each is explained next.

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS 267

268

PROM (programmable ROM) or OlP ROM

PROM refers to the kind of ROM that the user can bum infonnation into.
In other words, PROM is a user-programmable memory. For every bit of the
PROM, there exists a fuse. PROM is programmed by blowing the fuses. If the
infonnation burned into PROM is wrong, that PROM must be discarded since
internal fuses are blown pennanently. For this reason, PROM is also referred to
as OTP (one-time programmable). The process of programming ROM is also
called burning ROM and requires special equipment called a ROM burner or
ROM programmer.

EPROM (erasable programmable ROM)

EPROM was invented to allow changes in the contents of PROM after it
is burned. In EPROM, one can program the memory chip and erase it thousands
of times. This is especially useful during development of the prototype of a micro­
processor-based project. The only problem with EPROM is that erasing its con­
tents can take up to 20 minutes. All EPROM chips have a window that is used to
shine ultraviolet (UV) radiation to erase its contents. For this reason, EPROM is
also referred to as UV-erasable EPROM or simply UV-EPROM. Figure 10-1
shows the pins for a 64Kbit UV-EPROM chip. Notice the AO - AI2 address pins
and 00 - 07 (output) for DO - 07 data pins. The OE (out enable) is for the read
signal.

To program a UV-EPROM chip, the following steps must be taken:

I. Its contents must be erased. To
erase a chip, it is removed from
its socket on the system board
and placed in EPROM erasure
equipment to expose it to UV
radiation for 15 - 20 minutes.

2. Program the chip. To program a
UV-EPROM chip, place it in the
ROM burner (programmer). To
bum code and data into EPROM,
the ROM burner uses 12.5 volts
or higher, depending on the
EPROM type. This voltage is
referred to as VPP in the UV­
EPROM data sheet.

3. Place the chip back into its sock­
et on the system board.

As can be seen from the
above steps, in the same way that
there is an EPROM programmer
(burner), there is also separate
EPROM erasure equipment. The
main problem, and indeed the major
disadvantage of UV-EPROM, is that
it cannot be programmed while in the
system board (motherboard). To fmd
a solution to this problem, EEPROM
was invented.

D 1 VPP VCC 28 D

D 2 A12 PGM 27 D

D 3 A7 2 N.C. 26 D

D 4 A6 7 A8 25 D
6

D 5 A5 4 A9 24 D

D 6A4 A11 23 D

D 7 A3 OE 22 P
D 8 A2 A10 21 D

D 9 A1 CE 20 D

D 10 AO 07 19 D

D 11 00 06 18 D

D 12 01 05 17 D

D 13 02 04 16 D

D 14 GND 03 15 D

Figure 10-1. UV-EPROM Chip
(Reprinted by pennission ofIntel Corporation,
Copyright Intel Corp., 1987)

CHAPTER 10: MEMORY AND MEMORY INTERFACING

EEPROM (electrically erasable programmable ROM)

EEPROM has several advantages over EPROM, such as the fact that its
method of erasure is electrical and therefore instant, as opposed to the 20-minute
erasure time required for UV -EPROM. In addition, in EEPROM, one can select
which byte to be erased, in contrast to UV-EPROM, in which the entire contents
of ROM are erased. However, the main advantage of EEPROM is the fact that one
can program and erase its contents while it is still in the system board. It does not
require physical removal of the memory chip from its socket. In other words,
unlike UV-EPROM, EEPROM does not require an external erasure and pro­
gramming device. To utilize EEPROM fully, the designer must incorporate into
the system board the circuitry to program the EEPROM, using 12.5 V for VPP.
EEPROM with VPP of 5 - 7 V is available, but it is more expensive. In general,
the cost per bit for EEPROM is much higher than for UV-EPROM.

Table 10-2: Examples of ROM Memory Chips

Type Part Number Speed (DS) Capacity Ol'2aDizatioD PiDS VPP
UV-EPROM 2716 450 16K 2Kx8 24 25

EEPROM

Flash ROM

2716-1 350 16K 2Kx8 24 25
2716B 450 16K 2Kx8 24 12.5
2732A-45 450 32K 4Kx8 24 21
2732A-20 200 32K 4Kx8 24 21
27C32 450 32K 4Kx8 24 25
2764A-25 250 64K 8Kx8 28 12.5
27C64-15 150 64K 8Kx8 28 12.5
27128-20 200 128K 16Kx8 28 12.5
27C128-25 250 128K 16Kx8 28 12.5
27256-20 200 256K 32Kx8 28 12.5
27C256-20 200 256K 32Kx8 28 12.5
27512-25 250 512K 64Kx8 28 12.5
27C512-25 250 512K 64Kx8 28 12.5
27COIO-12 120 1M 128Kx8 32 12.5
27C201-12 120 2M 256Kx8 32 12.5
27C401-12 120 4M 512Kx8 32 12.5
28C16A-25 250 16K 2Kx8 24 5
2864A 250 64K 8Kx8 28 5
28C256-15 150 256K 32Kx8 28 5
28C256-25 250 256 32x8 28 5
28F256-20 200 256K 32Kx8 32 12
28F256-15 150 256K 32Kx8 32 12
28FO 1 0-20 200 1M 128Kx8 32 12
28F020-15 150 2M 256Kx8 32 12

Table 10-2 shows examples of some popular ROM chips and their char­
acteristics. Notice the patterns of the IC numbers. For example, 27128-20 refers
to UV-EPROM that has a capacity of 128K bits and access time of200 nanosec­
onds. The capacity of the memory chip is indicated in the part number and the
access time is given with a zero dropped. In part numbers, C refers to CMOS
technology. While 27xx is for UV-E PROM, 28xx is for EEPROM.

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS 269

Example 10-3

For ROM chip 27128, fmd the number of data and address pins, using Table 10-2.

Solution:

The 27128 has a capacity of 128K bits. Table 10-2 also shows that it has 16Kx8 organization,
which indicates that there are 8 pins for data, and 14 pins for address (2 14 = 16K).

CD «

liJ [JOO
<Xl « OIl N N CD

Vpp C P Vee N N ~ '" ~ 1 28 '" I'-
I'-N N N N A12 C 2 27 pl5GM N

Vpp Vpp A7 C 3 P N.C.
~ Vee Vee 26 --A12 A12 A6 C 4 25 PA8 PGM A14

A7 A7 A7 A7
A5 C 5 P A9

Vee Vee A13 A13
A6 A6 A6 A6 2764 24 A8 A8 A8 A8
A5 A5 A5 A5 A4 C 6 23 P A11 A9 A9 A9 A9
A4 A4 A4 A4 A3 C 7 22 P OE Vpp A11 Vpp Vpp
A3 A3 A3 A3 A2C 8 21 P A10 ~ c::5!:"Npp OE OE
A2 A2 A2 A2 A1 C 9 20 P CE A10 A10 A10 A10
A1 A1 A1 A1 AO C 10 19 P07 cr- ee: CE CE
AO AO AO AO 00 C 11 18 P06 07 07 07 07
00 00 00 00

01 C P 05
06 06 06 06

01 01 01 01 12 17 05 05 05 05
02 02 02 02 02 C 13 16 P04 04 04 04 04

GND GND GND GND GND C 14 15 p03 03 03 03 03
~

Figure 10-2. Pin Configurations for 27xx ROM Family

Flash Memory

270

Since the early 1990s, Flash ROM has become a popular user-program­
mable memory chip, and for good reasons. First, the process of erasure of the
entire contents takes only a few seconds, or one might say in a flash, hence its
name: Flash memory. In addition, the erasure method is electrical and for this rea­
son it is sometimes referred to as Flash EEPROM. To avoid confusion, it is com­
monly called Flash ROM. The major difference between EEPROM and Flash
memory is the fact that when flash memory's contents are erased the entire device
is erased, in contrast to EEPROM, where one can erase a desired section or byte.
Although there are some flash memories recently made available in which the
contents are divided into blocks and the erasure can be done block by block,
unlike EEPROM, no byte erasure option is available. Because Flash ROM can be
programmed while it is in its socket on the system board, it is widely used to
upgrade the BIOS ROM ofthe PC or the operating system on Cisco routers. Some
designers believe that flash memory will replace the hard disk as a mass storage
medium. This would increase the performance of computers tremendously, since
flash memory is semiconductor memory with access time in the range of 100 ns
compared with disk access time in the range of tens of milliseconds. For this to
happen, flash memory's program/erase cycles must become infinite, just like hard
disks. Program/erase cycle refers to the number of times that a chip can be erased
and programmed before it becomes unusable. At this time, the program/erase
cycle is 500,000 for Flash and EEPROM, 2000 for UV-EPROM, and infinite for
RAM and disks. In Table 10-2, notice that the part number for Flash ROM uses
the 28Fxx designation, where F indicates the Flash type ROM.

CHAPTER 10: MEMORY AND MEMORY INTERFACING

Mask ROM

Mask ROM refers to a kind of ROM whose contents are programmed by
the IC manufacturer. In other words. it is not a user-programmable ROM. The
terminology mask is used in IC fabrication. Since the process is costly, mask
ROM is used when the needed volume is high and it is absolutely certain that the
contents will not change. It is common practice to use UV -EPROM or Flash for
the development phase of a project, and only after the code/data have been final­
ized is mask ROM ordered. The main advantage of mask ROM is its cost, since
it is significantly cheaper than other kinds of ROM, but if an error in the data is
found, the entire batch must be thrown away.

RAM (random access memory)

RAM memory is called volatile memory since cutting off the power to the
IC will mean the loss of data. Sometimes RAM is also referred to as RAWM (read
and write memory), in contrast to ROM, which cannot be written to. There are
three types of RAM: static RAM (SRAM), dynamic RAM (DRAM), and NV­
RAM (nonvolatile RAM). Each is explained separately.

SRAM (static RAM)

Storage cells in static RAM memory are made of flip-flops and therefore
do not require refreshing in order to keep their data. This is in contrast to DRAM,
discussed below. The problem with the use of flip-flops for storage cells is that
each cell requires at least 6 transistors to build, and the cell holds only I bit of
data. In recent years, the cells have been made of 4 transistors, which is still too
many. The use of 4-transistor cells plus the use of CMOS technology has given
birth to a high-capacity SRAM, but the capacity of SRAM is far below DRAM.
Table 10-3 shows some examples of SRAM. SRAMs are widely used for cache
memory, which is discussed in Chapter 22. Figure 10-3 shows the pin diagram for
the 6116 SRAM chip. The 6116 has an organization of 2KxS, which gives a
capacity of 16 Kbits, as indicated in the part number. The following is a descrip­
tion of the 6116 SRAMpins.

AO - A 11 are for address inputs,
where 12 address lines gives 216 = 2K.

1/00 - 1107 are for data I/O,
where S-bit data lines gives an organiza­
tion of 2KxS.

WE (write enable) is for writing
data into SRAM (active low).

OE (output enable) is for read­
ing data out of SRAM (active low)

CS (chip select) is used to select
the memory chip.

The functional diagram for the
6116 SRAM is given in Figure 10-4.

Figure 10-5 shows the following
steps to write data into SRAM.
1 . Provide the addresses to pins AO -

All.
2. Activate the CS pin.
3. Make WE = 0 while RD = I.
4. Provide the data to pins 1100 - 1/07.
5. Make WE = I and data will be writ­

ten into SRAM on the positive edge
of the WE signal.

01 A7

02 A6

03 A5

04 A4

5 A3

6A2

7 A1

8 AO

9 100

10 101

11 102

12 GND

VCC24 0

A823

A922 0

WE 21 0

OE20 0

A10 190

CS 180

10717 0

106160

105150

104140

103130

Figure 10-3. 6116 2Kx8 SRAM

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS 271

272

AO--,.~~~====~::::~~~·r-----~~~~----~4--VCC
• ADDRESS • 128 X 128

All __ ~·~~~====LD=E=C=O~D=E:R~~:~.~ __ ~M~E=M==O~R~Y~A~R~RA~Y __ ~4--GND
I

1/00 rl.~~ ~=:!-Ijj;INjfp;;:unT:--n5:1---'-I~/O~C~O~N~T~R~O~L-'----J1=:::~~1
1/07 -+--.-J:!!!..--r ~>---H DATA t--'L......L ________________ -----l ••• ~

I-L- CIRCUIT y-

CS
OE­
WE-

CONTROL
CIRCUIT

'-----------'

Figure 10-4. Functional Block Diagram for 6116 SRAM

Address _~x~ _______ ~x~ ______ _

Data in

WE

" /
Data valid)

'.. . " .
--------~~:)'

: Data :
: set up !

Data !
hold:

Figure 10-5. Memory Write Timing for SRAM

~ .. tRe ..
Address >K Address valid X

CS " /
OE " /

Data out K Data valid

tAA
• ..

Figure 10-6. Memory Read Timing for SRAM

)

CHAPTER 10: MEMORY AND MEMORY INTERFACING

The following are steps to read data from SRAM. See Figure 10-6.
1. Provide the addresses to pins AO - A II. This is the start of the access

time (tAA).
2. Activate the CS pin.
3. While WE = I, a high-to-Iow pulse on the OE pin will read the data out of

the chip.

In the 6116 SRAM, the access time, tAA, is measured as the time elapsed
from the moment the address is provided to the address pins to the moment that
the data is available at the data pins. The speed for the 6116 chip can vary from
100 ns to IS ns.

Examine the read cycle time for SRAM in Figure 10-6. The read cycle
time (tRC) is defined as the minimum amount of time required to read one byte
of data. That is, from the moment we apply the address of the byte to the moment
we can begin the next read operation. In SRAM for which tAA = I 00 ns, tRC is
also 100 ns. This implies that we can read the contents of consecutive address
locations with each taking no more than 100 ns. Hence, in SRAM and ROM, tAA
= tRC. They are not equal in DRAM, as we will find in Chapter 22.

DRAM (dynamic RAM)

Since the early days of the computer, the need for huge, inexpensive
read/write memory was a major preoccupation of computer designers. In 1970,
Intel Corporation introduced the first dynamic RAM (random access memory). Its
density (capacity) was 1024 bits and it used a capacitor to store each bit. The use
of a capacitor as a means to store data cuts down the number of transistors need­
ed to build the cell; however, it requires constant refreshing due to leakage. This
is in contrast to SRAM (static RAM), whose individual cells are made of flip­
flops. Since each bit in SRAM uses a single flip-flop and each flip-flop requires
6 transistors, SRAM has much larger memory cells and consequently lower den­
sity. The use of capacitors as storage cells in DRAM results in much smaller net
memory cell size.

The advantages and disadvantages of DRAM memory can be summa­
rized as follows. The major advantages are high density (capacity), cheaper cost
per bit, and lower power consumption per bit. The disadvantage is that it must be
refreshed periodically, due to the fact that the capacitor cell loses its charge; fur­
thermore, while it is being refreshed, the data cannot be accessed. This is in con­
trast to SRAM's flip-flops, which retain data as long as the power is on, which do
not need to be refreshed, and whose contents can be accessed at any time. Since
1970, the capacity of DRAM has exploded. After the IK-bit (1024) chip came the
4K-bit in 1973, and then the 16K chip in 1976. The 1980s saw the introduction of
64K, 256](, and finally 1M and 4M memory chips. The I 990s saw the 16M, 64M,
and 256M DRAM chips. In 1980 when the IBM PC was being designed, 16K-bit
chips were widely used, but currently motherboards use 256K, 1M, 4M, 16M,
64M and 256M chips. Keep in mind that when talking about IC memory chips,
the capacity is always assumed to be in bits. Therefore, aiM chip means a 1-
megabit chip and a 256K chip means a 256K-bit chip. However, when talking
about the memory of a computer system, it is always assumed to be in bytes. For
example, if we say that a PC motherboard has 256M, it means 256 megabytes of
memory.

Packaging issue in DRAM

In DRAM it is difficult to pack a large number of cells into a single chip
with the normal number of pins assigned to addresses. For example, a 64K-bit
chip (64Kxl) must have 16 address lines and 1 data line, requiring 16 pins to send
in the address if the conventional method is used. This is in addition to VCC

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS 273

274

power, ground, and read/write control pins. Using the conventional method of
data access, the large number of pins defeats the purpose of high density and small
packaging, so dearly cherished by IC designers. Therefore, to reduce the number
of pins needed for addresses, multiplexingldemultiplexing is used. The method
used is to split the address into halves and send in each half of the address through
the same pins, thereby requiring fewer address pins. Internally, the DRAM struc­
ture is divided into a square of rows and columns. The first half of the address is

D 1 A8 GND16

D 2 DIN CAS 15

D 3 ijjf D OUT 14

D 4 RAS A613

D 5 AO A312

D 6 A2 A4 11

D 7 A1 A510

D 8 VCC A79

called the row and the second half is
called the column. For example, in
the case of DRAM of 64Kxl organi­
zation, the first half of the address is
sent in through the 8 pins AO - A 7,
and by activating RAS (row address
strobe), the internal latches inside
DRAM grab the first half of the
address. After that, the second half of
the address is sent in through the
same pins and by activating CAS
(column address strobe), the internal
latches inside DRAM latch this sec­
ond half of the address. This results
in using 8 pins for addresses plus
RAS and CAS, for a total of 10 pins,
instead of the 16 pins that would be
required without multiplexing. To
access a bit of data from DRAM, Figure 10-7. 256Kx1 DRAM

D

D

D

D

D

D

D

D

both row and column addresses must be provided. For this concept to work, there
must be a 2 by I multiplexer outside the DRAM circuitry while the DRAM chip
has its own internal demultiplexer. Due to the complexities associated with

Table 10-3: Examples of RAM Chips

Type Part Number Speed (ns) Capacity Organization Pins
SRAM 6116-1 100 16K 2Kx8 24

6116LP-70' 70 16K 2Kx8 24
6264-10 100 64K 8Kx8 28
62256LP-IO' 100 256K 32Kx8 28

DRAM 4116-20 200 16K 16Kxl 16
4116-15 150 16K 16Kxl 16
4116-12 120 16K 16Kxl 16
4416-12 120 64K 16Kx4 18
4416-15 150 64K 16Kx4 18
4164-15 150 64K 64Kxl 16
41464-8 80 256K 64Kx4 18
41256-15 150 256K 256Kxl 16
41256-6 60 256K 256Kxl 16
414256-10 100 1M 256Kx4 20
511000P-8 80 1M IMxl 18
514100-7 700 4M 4Mxl 20

NV-SRAM DSI220 100 16K 2Kx8 24
DSI225 ISO 64K 8Kx8 28
DSI230 70 256K 32Kx8 28

* LP indicates low power.

CHAPTER 10: MEMORY AND MEMORY INTERFACING

Example 10-4

DRAM interfacing (RAS, CAS, the need for external multiplexer and
refreshing circuitry), many small microprocessor-based projects that do
not require much RAM use SRAM instead of DRAM. Figure 10-7 shows
the pins for a DRAM chip. Notice the RAS and CAS pins. Also notice the
WE (write enable) pin for read and write actions. Table 10-3 provides
some examples of DRAM chips.

DRAM, SRAM, and ROM organizations

Although the organizations for SRAMs and ROMs are always
xS, DRAM can have xl, x4, x8, or even x16 organizations. In some mem­
ory chips (notably SRAM), the data pins are called 110. In some DRAMs
there are separate pins Din and Dout. The DRAMs with Ix organization
are widely used for parity bit as we will soon see in this chapter. See
Examples 10-4 and 10-5. As the density of the DRAM chips goes up, it
makes sense to use higher-density chips to save space on the printed cir­
cuit board. For that reason, the memory configuration for various PCs is
different depending on the date of manufacturing and the availability of
the memory chip at the time of the design.

Show possible organizations and number of address pins for the: (a) 256K DRAM chip, and
(b) 1M DRAM chip.

Solutiou:

(a) For 256K chips, possible organizations are 256Kxl or 64Kx4. In the case of256KxI,
there are 256K locations and each location inside DRAM provides I bit. The 256K
locations are accessed through the IS-bit address AO - A 17 since 218 = 256K. The chip
has only AO - AS physical pins plus RAS and CAS and one pin for data in addition to
VCC, ground, and the RlW pin that every DRAM chip must have. For 64Kx4, it
requires 16 address bits to access each location (2 16 = 64K), and each location inside
the DRAM has 4 cells. That means that it must have 4 data pins, DO - D3, S address
pins, AO - A7, plus RAS and CAS.

(b) In the case of a I M chip, there can be either IMxl or 256Kx4 organizations. For I Mxl,
there are AO - A9, 10 pins, to access 220 = I M locations with the help ofRAS and CAS
and one pin for data. The 256Kx4 has 9 (AO - AS) and 4 (DO - 03) pins, respectively,
for address and data plus RAS and CAS pins.

Example 10-5

Discuss the number of pins set aside for addresses in each of the following memory chips.
(a) 16Kx4 DRAM (b) 16KxS SRAM

Solution:
Since 214 =16K:
(a) For DRAM we have 7 pins (AO - A6) for the address pins and 2 pins for RAS and CAS.
(b) For SRAM we have 14 pins (AO - A 13) for address and no pins for RAS and CAS since
they are associated only with DRAM.

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS 275

NV-RAM (nonvolatile RAM)

While both DRAM and SRAM are volatile, there is a new type of RAM
called NV -RAM, nonvolatile RAM. Like other RAMs, it allows the CPU to read
and write to it; but when the power is turned off, the contents are not lost, just as
for ROM. NV -RAM combines the best of RAM and ROM: the read and writabil­
ity of RAM, plus the nonvolatility of ROM. To retain its contents, every NV­
RAM chip internally is made of the following components:

I. It uses extremely power-efficient (extremely low power consumption) SRAM
cells built out of CMOS.

2. It uses an internal lithium battery as a backup energy source.
3. It uses an intelligent control circuitry. The main job of this control circuitry is

to monitor the VCC pin constantly to detect loss of the external power sup­
ply. If the power to the VCC pin falls below out-of-tolerance conditions, the
control circuitry switches automatically to its internal power source, the lithi­
um battery. In this way, the internal lithium power source is used to retain the
NV -RAM contents only when the external power source is off.

It must be emphasized that all three of the components above are incor­
porated into a single IC chip, and for this reason nonvolatile RAM is much more
expensive than SRAM as far as cost per bit is concerned. Offsetting the cost, how­
ever, is the fact that it can retain its contents up to ten years after the power has
been turned off and allows one to read and write exactly the same as in SRAM.
See Table 10-3 for NV-RAM parts made by Dallas Semiconductor. In the x86
PC, NV-RAM is used to save the system setup. This NV-RAM in PC is com­
monly referred to CMOS RAM.

Review Questions

I. The speed of semiconductor memory is in the range of --;~--c--:-:-:
2. Find the organization and chip capacity for each of the following with the

indicated number of address and data pins.
(a) II address, 8 data SRAM (b) 13 address, 8 data ROM
(c) 8 address, 4 data DRAM (d) 9 address, I data DRAM

3. Find the capacity and number of pins set aside for address and data for mem­
ory chips with the following organizations.
(a) 16K.x8 SRAM (b) 32Kx8 EPROM (c) IMxI DRAM
(d) 256K.x4 DRAM (e) 64K.x8 EEPROM (f) 1Mx4 DRAM

4. Why is flash memory preferable to UV -EPROM in system development?
5. What kind of memory is used in the CMOS RAM of the x86 PC?

SECTION 10.2: MEMORY ADDRESS DECODING

276

Current system designs use CPLDs (complex programmable logic
devices), in which memory and address decoding circuitry are integrated into one
programmable chip. However, it is still important to understand how this task can
be performed with common logic gates. In this section we show how to use sim­
ple logic gates to accomplish address decoding. The CPU provides the address of
the data desired, but it is the job of the decoding circuitry to locate the memory
chip where the desired data is stored. To explore the concept of decoding circuit­
ry, we look at the use of NAND and 74LS 138 chips as decoders. In this discus­
sion we use SRAM or ROM for the sake of simplicity.

CHAPTER 10: MEMORY AND MEMORY INTERFACING

lAO

A19

A18 A17 A1SE?: D A14 ~)o---- r-----IC:

E

WR

'---,----,,---'

32Kx8

MEMR MEMW

Figure 10-S. Using Simple Logic Gate as Decoder

A19 AO
1 0000 1 1000 1 0000 1 0000 1 0000 1 =OSOOOH address of the first location

1 0000 11111 11111 11111 11111 1 = OFFFFH address of the last location

Figure 10-9. Address Range Assigned to Memory Chip in Figure 10-8

!.s:~A~1~6~~~~ A17
A18

A19

~9 M

D7 DO

A15

rt----ICS

DE

MEMR

64Kx8

1 1001 1 0000 1 0000 1 0000 1 0000 1 =90000H address of the first location

11001 1111 1111 1111 1111 = 9FFFFH address of the last location

Figure 10-10. Decoder and Its Associated Address Range

SECTION 10.2: MEMORY ADDRESS DECODING 277

278

Example 10-6

Referring to Figure 10-10 we see that the memory chip has 64K bytes of space. Show the cal­
culation that verifies that address range 90000 to 9FFFFH is comprised of 64K bytes.
Solution:
To calculate the total number of bytes for a given memory address range, subtract the two
addresses and add I to get the total bytes in hex. Then the hex number is converted to decimal
and divided by 1024 to get K bytes.

FFFF
+ I

9FFFF
-90000
OFFFF 10000 hex = 65,536 decimal = 64K

Simple logic gate as address decoder

As seen in the last section, memory chips have one or more CS (chip
select) pins that must be activated for the memory's contents to be accessed.
Sometimes the chip select is also referred to as chip enable (CE). In connecting a
memory chip to the CPU, the data bus is connected directly to the data pins of the
memory. Control signals MEMR and MEMW are connected to the OE and WR
pins of the memory chip, respectively (see Figure 10-8). In the case of the address
buses, while the lower bits of the
address go directly to the memory chip
address pins, the upper ones are used to
activate the CS pin of the memory
chip. It is the CS pin along with
RDfWR that allows the flow of data in
or out of the memory chip. In other
words, no data can be written into or
read from the memory chip unless CS
is activated. The CS input is active low
and can be activated using some simple
logic gates, such as NAND and invert­
ers. See Figures 10-8 and 10-10. Figure
10-9 shows the address range for the
design in Figure 10-8.

In Figure 10-10, notice that the
output of the NAND gate is active low
and that the CS pin is also active low.
That makes them a perfect match. Also
notice that AI9 - AI6 must be = 1001
in order for CS to be activated. This
results in the assignment of addresses
9000H to 9FFFFH to this memory
block. Figures 10-8 and 10-10 show
that for every block of memory, we
need a NAND gate. The 74LSI38 has
8 NAND gates in it; therefore, a single
chip can control 8 blocks of memory.
This was the method of memory
addressing decoding used before the
introduction of CPLD, and it is still the
best method if you do not have access
toCPLD.

Block Diagram

YO 0--- A Y1 0--

Y2 0--

-- B Y3 0--

Y4 0--

C
Y5 0--- Y6 0--

Y7 0--

- -G2A G2B G1

J r I,
Enable

Function Table
Inputs

Enable I Select Outputs
G1G2 CBA YOY1 Y2Y3Y4Y5Y6Y7
X H XXX HHHHHHHH
L X XXX HHHHHHHH
H L LLL LHHHHHHH
H L LLH HLHHHHHH
H L LHL HHLHHHHH
H L LHH HHHLHHHH
H L HLL HHHHLHHH
H L HLH HHHHHLHH
H L LLL HHHHHHLH
H L HHH HHHHHHHL

Figure 10-11. 74LS138 Decoder
(Reprinted by pennission of Texas Instruments,
Copyright Texas Instruments. 1988)

CHAPTER 10: MEMORY AND MEMORY INTERFACING

Address range COOOO - CFFFF is assigned to Y4

A16 A
A17 B
A18 C

G2A
G2B

A19 G1

'7 ,

Figure 10-12. 74LS138 as Decoder

Using the 74LS138 as decoder

YO P
Y1 P
Y2 P
Y3

~ Y4
Y5 P Vcc-
Y6 P MEMR-
Y7 P

Each Y controls
one block

11111111
D7 DO

AO
64Kx8
ROM

A15

Vpp

DE

CE

In the absence ofCPLD or FPGA as address decoders, the 74LSI38 chip
is an excellent choice. The 3 inputs A, B, and C of the 74LS 138 generate 8 active­
low outputs YO - Y7, as shown in Figure 10-1 LEach Y output is connected to the
CS ofa memory chip, allowing control of8 memory blocks by a single 74LS138.
This eliminates the need for using NAND and inverter gates. As shown in Figure
IO-ll, where A, B, and C select which output is activated, there are three addi­
tional inputs, G2A, G2B, and G I, that can be used for address or control signal
selection. Notice that G2A and G2B are both active low, while G I is active high.
If anyone of the inputs G I, G2A, or G2B is not connected, they must be activat­
ed permanently by either vee or ground, depending on the activation level.

In Figure 10-12, we have AO - A 15 going from the CPU directly to AO -
AIS of the memory chip. AI6 - AI8 are used for the A, B, and C inputs of the
74LS138. AI9 is controlling the GI pin of the 74138. For the 74138 to be
enabled, we need G2A = 0, G2B = 0, and G I = I. G2A and G2B are grounded.
When G I = I, this 74138 is selected. Depending on the status of pins A, B, and
C, one of the Y s is selected. To select Y 4, we need CBA = 100 (in binary). That
gives us the address range of COOOO to CFFFFH for the memory chip controlled
by the Y 4 output. For further clarification, see Example 10-7.

D7 DO

A14 A YO AO
A15 B Y1 16Kx8
A16 C Y2 ROM
A17 G2A Y3
A18 G2B Y4 A13
A19 G1 Y5 Vee Vpp

Y6
MEMR OE Y7

CE
Each Y controls
one block.

Figure 10-13. 74LS138 as Decoder (See Example 10-7)

SECTION 10.2: MEMORY ADDRESS DECODING 279

Example 10-7

Looking atthe design in Figure 10-13, find the address range for (a) Y4, (b) Y2, and (c) Y7, and
verilY the block size controlled by each Y.

Solution:

(a) The address range for Y 4 is calculated as follows.
Al9 Al8 Al7 A16 AIS A14 A13 Al2 All Ala A9 AB A7 A6 AS A4 A3 A2 Al AD
I I I I a a a a a a a a a a a a 0 a a a
I I I I a 0 I I I I I I I I I I I I I I

The above shows that the range for Y 4 is FOOOOH to F3FFFH. In Figure 10-13, notice that A 19,
A18, andAI7 must be I for the decoder to be activated. Y4 will be selected when A 16 AI5 AI4
= 100 (4 in binary). The remaining A 13 - AO wiJl be 0 for the lowest address and I for the high­
est address.

(b) The address range for Y2 is E8000H to EBFFFH.
Al9 AlB Al7 Al6 AIS

I

I

Al4 Al3 Al2 All Ala A9 A8
a a a a a a a

A7 A6 AS A4
a a a a
I I I I

A3 A2 Al AO
a a a a
I I I I

I I I a
I I I a a I I I I I I

(c) The address range for Y7 is FCOOOH to FFFFFH. Notice that FFFFF - FCOOOH = 3FFFH,
which is equal to 16,383 in decimal. Adding I to it because of the 0 location, we have 16,384.
16,38411024 = 16K, the block (chip) size.

Review Questions

I. The MEMR signal from the CPU is connected to the pin of the
ROM chip.

2. The MEMW signal from the CPU is connected to the pin of the RAM
chip.

3. The CS pin of the memory chip is normally an (active low,
active high) signal.

4. The 74LS 138 has total of outputs.
5. The Y output of the 74138 is (active low, active high).

SECTION 10.3: IBM PC MEMORY MAP

280

All x86 CPUs in real mode provide 20 address bits (AO - AI9). Therefore,
the maximum amount of memory that they can access is one megabyte. How this
1 M is allocated in the original PC is the main topic of this section. The 20 lines,
AO - A19, of the system address bus can take the lowest value of all Os to the high­
est value of all I s in binary. Converting these values to hexadecimal gives an
address range of OOOOOH to FFFFFH. This is shown in Figure 10-14. Any address
that is assigned to any memory block in the 8088-based original PC must fall
between these two ranges. This includes all x86 microprocessors in real mode.

The 20-bit address of the 8088 provides a maximum of 1M (1024K bytes)
of memory space. Of the J024K bytes, the designers of the original IBM PC
decided to set aside 640K for RAM, 128K for video display RAM (VDR), and
256K for ROM, as shown in Figure 10-15. In today's PC, 640K bytes is not that
much, but the standard of the personal computer in 1980 was 64K bytes ofmem­
ory. At that time, 640K seemed like more than anyone would ever need. Next we
discuss the memory map of the PC.

CHAPTER 10: MEMORY AND MEMORY INTERFACING

A19 AD

I 0000 I 0000 I 0000 I 0000 I 0000 I = OOOOOH minimum 20-bit address

1111 1111 1111 1111 1111 = FFFFFH maximum 20-bit address

Figure 10-14. 20-bit Address Range in Real-Mode for BOxB6 CPUs

Conventional memory: 640K of RAM

In the x86 PC, the addresses from 00000
to 9FFFFH, including location 9FFFFH, are set
aside for RAM. In early PCs, only 64K to 256K
bytes of RAM were on the motherboard and the
rest had to be expanded by adding a memory
expansion plug-in card. In those early models,
when a RAM memory board was installed, switch­
es had to be set to inform BIOS and DOS of the
added memory. In today's x86 PC this is done by
the CMOS set-up process and this information is
kept by the CMOS NV-RAM for the next cold
boot. Of the 640K bytes of memory, some is used
by the MS-DOS operating system (the amount
depends on the version of DOS) and the rest of the
available RAM is used by utilities and application
programs. This 640K bytes of memory is com-

FFFFF

COOOO
ROM 256K

FFFFF VDR 128K
ADOOO

9FFFF

RAM 640K

00000

Figure 10-15. Memory Map
of the IBM PC

monly referred to as conventional memory. Notice that even though the vast
majority of PCs use MS Windows for the operating system the above concepts are
still valid since DOS is embedded into Windows to run legacy applications.

Of the total amount of RAM installed, the first I K (00000 to 003FF =

1024 bytes) is set aside for the interrupt vector table (see Chapter 15). 00400 to
004FF is set aside for the BIOS temporary data area, as shown in Appendix H.
Finally, a certain number of kilobytes is occupied by the operating system itself.
The exact amount varies depending on the version of MS-DOS.

Example 10-8

Show the calculation that verifies that addresses 00000 to 9FFFFH comprise 640K bytes.

Solution:

To calculate the total number of bytes for a given memory address range, subtract the two
addresses and add I to get the total bytes in hex. Then the hex number is converted to decimal
and divided by 1024 to get K bytes.

9FFFF
- 00000

9FFFF

9FFFF
+ 00001

AOOOO hex = 655,360 decimal = 640K

SECTION 10.3: IBM PC MEMORY MAP 281

282

BIOS data area

As mentioned earlier, the BIOS data area is a section of RAM memory
used by BIOS to store some extremely important system information. A partial
list of that information is given in Figure 10-16. The full list of the BIOS data area
is in Appendix H. BIOS stores system information in the BIOS data area as it tests
each section of the PC. The operating system navigates the system hardware with
the help of information stored in the BIOS data area. For example, the BIOS data
area tells the operating system how many serial and parallel ports are installed in
the PC. We will examine this topic further in the serial and parallel port chapters.

Partial Listing of IBM PC RAM Memory Map for Interrupt, BIOS Data

MemorY Location Bytes Description
0000:0000 to 0000:03 FF 1024 interrupt table

0000: 0400 to 0000: 040 I 2 port address of com I
0000:0402 to 0000:0403 2 port address of com2
0000:0404 to 0000:0405 2 port address of com3
0000:0406 to 0000:0407 2 port address of com4

0000:0408 to 0000:0409 2 port address oflpt I
0000:040A to 0000:040B 2 port address oflpt2
0000:040C to 0000:040D 2 port address of Ipt3
0000:040E to 0000:040F 2 port address of Ipt4

0000:0410 to 0000:0411 2 list of installed hardware
0000:0412 to 0000:0412 I initialization flag

0000:0413 to 0000:0414 2 memory size (K bytes)

0000:0415 to 0000:0416 2 memory in I/O channel (if any)

0000:0417 to 0000:0418 2 keyboard status flag
0000:0419 to 0000:0419 I alternate key entry storage
0000:041A to 0000:041 B 2 keyboard buffer pointer (head)
0000:041 C to 0000:041D 2 keyboard buffer pointer (tail)
0000:041E to 0000:043D 32 key board bu ffer

0000:043E to 0000:0448 II diskette data area

0000:0449 to 0000:0449 current video mode

Figure 10-16. The BIOS Data Area in PC (See Appendix H for full listing)

Video display RAM (VORl map

To display information on the monitor of the PC, the CPU must first store
that information in memory called video display RAM (VDR). It is the job of the
video controller to display the contents of VDR on the screen. Therefore, the
address of the VDR must be within the CPU address range. In the x86 PC, from
AOOOO to BFFFFH, a total of 128K bytes of the CPU's addressable memory is
allocated for video. Of that 128K, only a portion is used for VDR, the amount
used depending on the mode in which the video system is being used (text or
graphics), and the resolution. For example, the monochrome video mode uses
only addresses starting at BOOOO up to 4K bytes of RAM, color graphics mode

CHAPTER 10: MEMORY AND MEMORY INTERFACING

uses addresses starting at B8000, and VGA has a starting address of AOOOO. See
Table 10-4. For more details of each video mode and how many bytes of memo­
ry are used in text and graphics modes and their resolution, see Chapter 16.
DOSlWindows can use the unused portion of the 128K-byte space allocated to
video, as we will see in Chapter 25.

Table 10-4: Video Display RAM Memory Map

Number of
Adapters Bytes Used Starting Address
CGA, EGA, VGA 16,384 (16 K) B8000H
MDA, EGA, VGA 4096 (4K) BOOOOH
EGA, VGA 65,536 (64K) AOOOOH

ROM Address and Cold Boot in the PC

When power is applied to a CPU it must wake up
at an address that belongs to ROM. Obviously, the first
code executed by the CPU must be stored in nonvolatile
memory. The IBM PC is no exception to this design rule.
After RESET the 8088 has the values shown in Table 10-5.
This means that upon RESET, the 8088 starts to fetch
information from CS:IP of FFFF:OOOO, which gives the
physical address FFFFOH. This is the reason that BIOS
ROM is located at the upper address range of the memory
map. As a result, when the PC is RESET, ROM BIOS is
the memory block that is accessed first by the CPU. The
ROM BIOS has, among other things, programs that do the
testing of the CPU, ROM, and RAM. After those tests, it
initializes all peripheral devices, sets up the system, and
loads the operating system from hard disk into DRAM and

Table 10-5: 8088
After RESET

CPU Contents
CS FFFFH
DS OOOOH
SS OOOOH
ES OOOOH
IP OOOOH
Flags Clear
Queue Empty

(Reprinted by permission
ofintel Corporation,
Copyright Intel 1989)

hands over the control of the PC to the operating system. Since the microproces­
sor starts to fetch and execute instructions from physical location FFFFOH there
must be an opcode sitting in that ROM location. In the x86 PC, the CPU finds
the opcode for the FAR jump, EA, at location FFFFOH and the target address of
the JUMP. You can verify that on your PC regardless of the microprocessor
installed on the motherboard. Example 10-9 shows one such case using a simple
Debug command. Notice in Example 10-9 that the date of ROM BIOS ofa PC
is stored in locations FOOO:FFF5 to FOOO:FFFD of BIOS ROM.

Example 10-9

Using the DEBUG dump command, verify the JMP address for the cold boot and the BIOS date.

Solution:

From the directory containing DEBUG, enter the following:

C>DEBUG
-D FFFF:O LF
FFFF:OOOO EA 5B EO 00 FO 30 31 2F-31 35 2F 3838 FF FC j['.p01/15/88. I
-Q
C>
The first 5 bytes showed the jump command."EA" and the destination "FOOOO:E05B". The next
8 bytes show the BIOS date, 01115/88.

SECTION 10.3: IBM PC MEMORY MAP 283

Example 10-10

Suppose that you buy a software package and encounter a problem installing and running it on
your computer. After contacting the technical support department of the manufacturer, you are
told that the package is good for the BIOS ROM date of 10/8/88, but you are not told how to
find the date. Use DEBUG to find the date for the ROM BIOS of a PC, PS, or compatible.

Solution:

In the DOS directory (or wherever you keep DEBUG), type the following at the DOS prompt:

C>OEBUG
-0 FOOO:FFF5 FFFO
FOOO:FFF5 30 31 2F-31 35 2F 38 38 FF 01/15/88.
-Q
C>

The BIOS data is stored at FOOO:FFF5 through FOOO:FFFD. In the above case, the BIOS data is
1115/88, which is earlier than the 10/8/88 date that you hoped to find.

Review Questions

I. What address range is called conventional memory? How many K bytes is
that?

2. If the starting physical address ofVDR is BOOOOH, what is the last address if
it uses 16K bytes of RAM?
(a) Show the beginning and ending physical addresses.
(b) Give the corresponding logical addresses.

3. If the total ROM memory space used by BIOS and other expansion boards is
92K bytes, how many bytes are still unused?

4. What are the contents ofCS and IP after the 8088 is reset (cold boot)?
5. What is the implication of Question 4?

SECTION 10.4: DATA INTEGRITY IN RAM AND ROM

284

When storing data, one major concern is maintaining data integrity. That
is, ensuring that the data retrieved is the same as the data stored. The same prin­
ciple applies when transferring data from one place to another. There are many
ways to ensure data integrity depending on the type of storage. The checksum
method is used for ROM, and the parity bit method is used for DRAM. For mass
storage devices such as hard disks and for transferring data on the Internet, the
CRC (cyclic redundancy check) method is employed. In this section we discuss
the checksum and parity methods. The CRC method is discussed in Chapter 17.

Checksum byte

To ensure the integrity of the contents of ROM, every PC must perform a
checksum calculation. The process of checksum will detect any corruption of the
contents of ROM. One of the causes of ROM corruption is current surge, either
when the PC is turned on or during operation. The checksum method uses a
checksum byte. This checksum byte is an extra byte that is tagged to the end of a
series of bytes of data. To calculate the checksum byte of a series of bytes of data,
the following steps can be taken.

I. Add the bytes together and drop the carries.
2. Take the 2's complement of the total sum, and that is the checksum byte,

which becomes the last byte of the stored information.

CHAPTER 10: MEMORY AND MEMORY INTERFACING

To perform the checksum operation, add all the bytes, including the
checksum byte. The result must be zero. I f it is not zero, one or more bytes of data
have been changed (corrupted). To clarifY these important concepts, see Examples
10-11 and 10-12.

Example 10-11

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3 FH, and S2H.
(a) Find the checksum byte.
(b) Perform the checksum operation to ensure data integrity.
(c) If the second byte 62H had been changed to 22H, show how checksum detects the error.

Solution:

(a) The checksum is calculated by first adding the bytes.

25H
+ 62H
+ 3FH
+ 52H
1 lBH

The sum is 118H, and dropping the carry, we get 18H. The checksum byte is the 2's
complement of 18H, which is E8H.

(b) Adding the series of bytes including the checksum byte must result in zero. This
indicates that all the bytes are unchanged and no byte is corrupted.

25H
+ 62H
+ 3FH
+ 52H
+ EBH
2 00 H (dropping the carry)

(c) Adding the series of bytes including the checksum byte shows that the result is not zero,
which indicates that one or more bytes have been corrupted.

25H
+ 22H
+ 3FH
+ 52H
+ EBH
1 COH dropping the carry, we get COHo

Example 10-12

Assuming that the last byte of the following data is the checksum byte, show whether the data
has been corrupted or not: 28H, C4H, BFH, 9EH, 87H, 6SH, 83H, SOH, A 7H, and 51 H.

Solution:
The sum of the bytes plus the checksum byte must be zero; otherwise, the data is corrupted
28H + C4H + BFH + 9EH + 87H + 6SH + 83H + SOH + A7H + 51H = SOOH
By dropping the accumulated carries (the 5), we get 00. The data is not corrupted. See Figure
10-17 for a program that performs this verification.

SECTION 10.4: DATA INTEGRITY IN RAM AND ROM 285

2411 ;----------------------------------
2412 ROS CHECKSUM SUBROUTINE
2413 ;----------------------------------

EC4C 2414 ROS CHECKSUM PROC NEAR ;NEXT ROS MODULE
~ ~

EC4C B90020 2415 MOV CX,8192 ;NUMBER OF BYTES TO ADD
EC4F 2416 ROS CHECKSUM CNT: ; ENTRY PT. FOR OPTIONAL ROS TEST
EC4F 32CO 2417 XOR AL,AL
EC51 2418 C26:
EC51 0207 2419 ADD AL,DS:[BX]
EC53 43 2420 INC BX ;POINT TO NEXT BYTE
EC54 E2FB 2421 LOOP C26 ;ADD ALL BYTES IN ROS MODULE
EC56 OACO 2422 OR AL,AL ; SUM ~ O?
EC58 C3 2423 RET

2424 ROS CHECKSUM ENDP

Figure 10-17. PC BIOS Checksum Routine
(Reprinted by permission from KIBM Technical Reference" c. 1984 by International BUSiness Machines Corporation)

286

Checksum Program

When the PC is turned on, one of the first thing the BIOS does is to test
the system ROM. The code for such a test is stored in the BIOS ROM. Figure
10-17 shows the program using the checksum method. Notice in the code how all
the bytes are added together without keeping the track of carries. Then, the total
sum is ORed with itself to see if it is zero. The zero flag is expected to be set to
high upon return from this subroutine. If it is not, the ROM is corrupted.

Use of parity bit in DRAM error detection

System boards or memory modules are populated with DRAM chips of
various organizations, depending on the time they were designed and the avail­
ability of a given chip at a reasonable cost. The memory technology is changing
so fast that DRAM chips on the boards have a different look every year or two.
While early PCs used 64K DRAMs, current PCs commonly use 256M chips. To
understand the use of a parity bit in detecting data storage errors, we use some
simple examples from the early PCs to clarifY some very important design con­
cepts. It must be noted that in today's PCs, these design concepts are still the
same, even though the DRAMs have much higher density and CPLDs are used in
place of TTL logic gates. You may wish to review DRAM organization and
capacity, covered earlier in this chapter, before proceeding.

DRAM memory banks

The arrangement of DRAM chips on the system or memory module
boards is often referred to as a memory bank. For example, the 64K bytes -of
DRAM can be arranged as one bank of 8 IC chips of 64Kxl organization, or 4
banks of 16Kx 1 organization. The first IBM PC introduced in 1981 used memo­
ry chips of 16Kxl organization. Figure 10-18 shows the memory banks for 640K
bytes of RAM using 256K and I M DRAM chips. Notice the use of an extra bit
for every byte of data to store the parity bit. With the extra parity bit, every bank
requires an extra chip of xl organization for parity check. Figure 10-19 shows
DRAM design and parity bit circuitry for a bank of DRAM. First, note the use of
the 74LSI58 to multiplex the 16 address lines AO - A15, changing them to the 8
address lines of MAO - MA7 (multiplexed address) as required by the 64Kxl
DRAM chip. The resistors are for the serial bus line termination to prevent under­
shooting and overshooting at the inputs of DRAM. They range from 20 to 50
ohms, depending on the speed of the CPU and the printed circuit board layout.

CHAPTER 10: MEMORY AND MEMORY INTERFACING

d7 ... d4 d3. dO Parity

Bank 3: 64K x 9
1 64Kx4 1 1 64Kx4 1 a

Bank 2: 64K x 9
1 64Kx4 1 1 64Kx4 1 a

Bank 1: 256K x 9
1 256Kx 41 1256KX41 1256K x 1 1

Bank 0: 256K x 9
1 256Kx 41 1 256Kx 41 1256K x 1 1

Note: 1 64K x 4 1 is a single 256K-bit chip

1 256K x 41 is a single 1 M-bit chip

Figure 10-18. A Possible Memory Configuration for 640K DRAM

8 mUHiplexed addresses
to all banks MAO to MA7 to all banks

1 --Bank 4 WE

74LS158 ~V
,--

AO-A3~ }A AO » I>
A8 -Al~~ } B A1 - !'.,.J>-

S A2 WE

~~ A3 64Kx1

J
A4 DRAM 74LS158 A5

A4-A7='fA

"
A6

A12-A15= }B A7
- S DO

Address ~ G 0 0
1 0

select '-- RASO--C RAS 00 3 2
0 D 4

CASO - -c CAS 7
6 5 parity M

74LS245

l DO 745280
- A -- B -

:[to all banks H~ - M07 C even
D7== MOO D

~07MO DIRG
E ,..J '-
F

--~~ V to all banks G odd f-
MEMR 1- 74LS74 H

RAMMJDRseIed ~D- D Qt-~g~ ~'JPa"iJ~ - I

-- '>
0: r-PCK to NMI

. "MEMR
--

i>o-t[)-MEMR Enable RAM PCK CLR
from PB4 of 8255 'V

PRE -- -t> 'L- MEMW V ...
Figure 10-19. DRAM Connection In the IBM PC

(Reprinted by permission from "IBM Technical Referenceft c. 1984 by International Business Machines Corporation)

SECTION 10.4: DATA INTEGRITY IN RAM AND ROM 287

288

A few additional observations about Figure 10-19 should be made. The
output of multiplexer addresses MAO - MA 7 will go to all the banks. Likewise,
memory data MOO - MD7 and memory data parity MDP will go to all the banks.
The 74LS245 not only buffers the data bus MOO - MD7 but also boosts it to drive
all DRAM inputs. Since the banks of the DRAMs are connected in parallel and
the capacitance loading is additive, the data line must be capable of driving all the
loads. Next we discuss how parity is used to detect RAM defects.

Parity bit generator/checker in the IBM PC

There are two types of errors that can occur in DRAM chips: soft error
and hard error. In a hard error, some bits or an entire row of memory cells inside
the memory chip get stuck to high or low permanently, thereafter always produc­
ing I or 0 regardless of what you write into the cell(s). In a soft error, a single bit
is changed from I to 0 or from 0 to I due to current surge or certain kinds of par­
ticle radiation in the air. Parity is used to detect such errors. Including a parity bit
to ensure data integrity in RAM is the most widely used method since it is the
simplest and cheapest. This method can only indicate if there is a difference
between the data that was written to memory and the data that was read. It cannot
correct the error as is the case with some mainframes and supercomputers. In
those computers and some of the x86-based servers, the EDC (error detection and
correction) method is used to detect and correct the error bit. The early IBM PC
and compatibles use the 74S280 parity bit generator and checker to implement the
concept of the parity bit. The study of that chip should help us to understand the
parity bit concept.

74S280 parity bit generator and checker

In order to understand the parity bit circuitry of Figure 10-19 it is neces­
sary first to understand the 74LS280 parity bit generator and checker chip. This
chip has 9 inputs and 2 outputs. Depending on whether an even or odd number of
ones appears in the input, the even or odd output is activated according to Table
10-6.

As can be seen from Table 10-6: 74280 Parity Check
Table 10-6, if all 9 inputs have
an even number of I bits, the
even output goes high, as in
cases I and 4. If the 9 inputs
have an odd number of high
bits, the odd output goes high,
as in cases 2 and 3. The way
the IBM PC uses this chip is
as follows. Notice that in

Case
1
2
3
4

Inputs

A-H I
Even 0
Even 1
Odd 0
Odd 1

Outputs

Even Odd
I 0
0 I
0 1
1 0

Figure 10-19, inputs A - H are connected to the data bus, which is 8 bits, or one
byte. The I input is used as a parity bit to check the correctness of the byte of data
read from memory. When a byte of information is written to a given memory loca­
tion in DRAM, the even-parity bit is generated and saved on the ninth DRAM
chip as a parity bit with use of control signal MEMW. This is done by activating
the tri-state buffer using MEMW. At this point, I of the 74S280 is equal to zero
since MEMR is high. When a byte of data is read from the same location, the par­
ity bit is gated into the I input of the 74S280 through MEMR. This time the odd
output is taken out and fed into a 74LS74. If there is a difference between the data
written and the data read, the Q output (called PCK, parity bit check) of the
74LS74 is activated and Q activates NMI, indicating that there is a parity bit error,
meaning that the data read is not the same as the data written. Consequently, it
will display a parity bit error message. For example, if the byte of data written to
a location has an even number of Is, A to H has an even number of 1 s, and I is

CHAPTER 10: MEMORY AND MEMORY INTERFACING

zero, then the even-parity output of 74280 becomes I and is saved on parity bit
DRAM. This is case I shown in Table 10-6. If the same byte of data is read and
there is an even number of I s (the byte is unchanged), I from the ninth bit DRAM,
which is I, is input to the 74S280, even becomes low, and odd becomes high,
which is case 2 in Table 10-6. This high from the odd output will be inverted and
fed to the 74LS74, making Q low. This means that Q is high, thereby indicating
that the written byte is the same as the byte read and that no errors occurred. If the
number of I s in the byte has changed from even to odd and the I from the saved
parity DRAM makes the number of inputs even (case 4 above), the odd output
becomes low, which is inverted and passed to the 7474 D flip-flop. That makes Q
= I and Q = 0, which signals the NMI to display a parity bit error message on
the screen.

Review Questions

1. Find the checksum byte for the following bytes: 24H, 76H, FSH, 98H, 89H,
7AH, 61H, C2H.

2. Show a simple program in Assembly language to find the checksum byte of
the 8 bytes of information (code or data) given in Question I. Assume that SI
equals the offset address of the data.

3. In a given PC we have only SI2K of memory on the motherboard. Show pos­
sible configurations and the number of chips used to add memory up to the
maximum allowed by the limits of conventional memory if we have each of
the following. Include the parity bit in your configuration and count.
(a) 64Kxl (b) 64Kx4 and 64Kxl

4. To detect corruption of information stored in RAM and ROM memories, sys-
tem designers use the method for RAM and the ___ _
method for ROM.

5. Assume that due to slight current surge in the power supply, a byte of RAM
has been corrupted while the computer is on. Can the system detect the cor­
ruption while the computer is on? Is this also the case for ROM?

SECTION 10.5: 16-BIT MEMORY INTERFACING

In the design of current x86 PCs, a single IC chip called a chipset has
replaced 100 or so logic ICs connected together in the original PC. As a result, the
details of CPU connection to memory and other peripherals are not visible for
educational purposes. The 16-bit bus interfacing to memory chips is one of these
details that is now buried within a chipset but still needs to be understood. In this
section we explore memory interfacing for 16-bit CPUs. We use the 286 as an
example but the concepts can apply to any 16-bit microprocessor. We also discuss
the topics of memory cycle time and bus bandwidth.

ODD and EVEN banks

In a 16-bit CPU such as the
80286, memory locations 00000 -
FFFFF are designated as odd and even
bytes as shown in Figure 10-20.
Although Figure 10-20 shows only I
megabyte of memory, the concept of
odd and even banks applies to the entire
memory space of a given processor with
a 16-bit data bus. To distinguish
between odd and even bytes, the CPU

Table 10-7: Distinguishing Between
Odd and Even Bytes

BHE AO
0 0 Even word DO - DIS
0 I Odd byte D8 - DIS
I 0 Even byte DO- 07
I I None

provides a signal called BHE (bus high enable). BHE in association with AO is
used to select the odd or even byte according to Table 10-7.

SECTION 10.5: 16-BIT MEMORY INTERFACING 289

290

00001
00003
00005

FFFFF

Odd Bank
(BHE = 0)

015 08

'--__I

00000
00002
00004

FFFFE

Figure 10-20. Odd and Even Banks of Memory

Parity d15 d12 d11 d8 Parity

1 256K x 1 1 1 256Kx 41 1 256Kx4 1 1 256Kx1 1

a 1 64Kx4 1 1 64Kx4 1 a

Even Bank
(AO = 0)

07 DO

'-----'

d7 d4

1 256K x 41

I64K x41

Figure 10-21. 640K Bytes of DRAM With odd and even banks deSignation

DO

07

AO
MEMR

--
--

--

74LS245

G
OIR

eet chip sel
decodin

08

015

BHE
MEMR

9 circuitry

74LS245

--

--

-
G

--OIR

to other even banks

/\
I I 4Kx8

DO AO

07
A1
A2

CS
...

A11

to other odd banks

1"1 4Kx8
'\J DO AO

A1
07

l' A2

CS
...

A11

Figure 10-22. 16-bit Data Connection in the 80286 System

d3 dO

1 256K x 41

1 64Kx4 1

A1
A2
A3

A12

A1
A2
A3

A12

A12 A1

CHAPTER 10: MEMORY AND MEMORY INTERFACING

Examine Figure 10-20 to see how the odd and even addresses are desig­
nated for the 16-bit wide data buses. Figure 10-21 shows 640 KB of DRAM for
16-bit buses. Figure 10-22 shows the connection for the 16-bit data bus. In Figure
10-22, notice the use of AO and BHE as bank selectors. Also notice the use of the
74LS245 chip as a data bus buffer.

Memory cycle time and inserting wait states

To access an external device such as memory or 110, the CPU provides a
fixed amount of time called a bus cycle time. During this bus cycle time, the read
and write operation of memory or 110 must be completed. Here, we cover the
memory bus cycle time. Bus cycle time for 110 devices is given in the next chap­
ter. For the sake of clarity we will concentrate on reading memory, but the con­
cepts apply to write operations as well. The bus cycle time used for accessing
memory is often referred to as MC (memory cycle) time. From the time the CPU
provides the addresses at its address pins to the time the data is expected at its data
pins is called memory read cycle time. While in older processors such as the 8088
the memory cycle time takes 4 clocks, in the newer CPUs the memory cycle time
is 2 clocks. In other words, in all x86 CPUs from the 286 to the Pentium, the
memory cycle time is only 2 clocks. If memory is slow and its access time does
not match the MC time of the CPU, extra time can be requested from the CPU to
extend the read cycle time. This extra time is called a wait state (WS). In the
1980s, the clock speed for memory cycle time was the same as the CPU's clock
speed. For example, in the 20 MHz 286/386/486 processors, the buses were work­
ing at the same speed of 20 MHz. This resulted in 2 x 50 ns ~ 100 ns for the mem­
ory cycle time (1/20 MHz ~ 50 ns). When the CPU's speed was under 100 MHz,
the bus speed was comparable to the CPU speed. In the 1990s the CPU speed
exploded to I GHz (gigahertz) while the bus speed maxed out at around 133
MHz. The gap between the CPU speed and bus speed is one of the biggest prob­
lem in the design of high-performance computers. To avoid the use of too many
wait states in interfacing memory to CPU, cache memory and other high-speed
DRAMs were invented. These are discussed in Chapter 22.

Example 10-13

Calculate the memory cycle time of a 20-MHz 8386 system with
(a) 0 WS,
(b) I WS, and
(c) 2 WS.
Assume that the bus speed is the same as the processor speed.

Solution:

1120 MHz ~ 50 ns is the processor clock period. Since the 386 bus cycle time of zero wait states
is 2 clocks, we have:

Memory cycle time with 0 WS
Memory cycle time with I WS
Memory cycle time with 2 WS

8038620 MHz
2 x 50 = 100 ns
100+50~150ns

100 + 50 + 500 = 200 ns

It is preferred that all bus activities be completed with 0 WS. However, if the read and write
operations cannot be completed with 0 WS, we request an extension of the bus cycle time. This
extension is in the form of an integer number of WS. That is, we can have I, 2, 3, and so on
WS, but no 1.25 WS.

SECTION 10.5: 16-BIT MEMORY INTERFACING 291

292

It must be noted that memory access time is not the only factor in slow­
ing down the CPU, even though it is the largest one. The other factor is the delay
associated with signals going through the data and address path. Delay associat­
ed with reading data stored in memory has the following two components:

I. The time taken for address signals to go from CPU pins to memory pins,
going through decoders and buffers (e.g., 74LS245). This, plus the time it
takes for the data to travel from memory to CPU, is referred to as a path delay.

2. The memory access time to get the data out of the memory chip. This is the
largest of the two components.

The total sum of these two must equal the memory read cycle time pro­
vided by the CPU. Memory access time is the largest and takes about 80% of the
read cycle time. See Example 10- I 4 for further clarification of these points.
These concepts are critical in the design of microprocessor-based products.

Example 10-14

A 20-MHz 80386-based system is using ROM of 150 ns speed. Calculate the number of wait
states needed if the path delay is 25 ns.

Solution:

If ROM access time is 150 ns and the path delay is 25 ns, every time the 80386 accesses ROM
it must spend a total of 175 ns to get data into the CPU. A 20-MHz CPU with zero WS provides
only 100 ns (2 x 50 ns = 100 ns) for the memory read cycle time. To match the CPU bus speed
with this ROM we must insert 2 wait states. This makes the cycle time 200 ns (100 + 50 + 50
= 200 ns). Notice that we cannot ask for 1.5 WS since the number of WS must be an integer.
That would be like going to the store and wanting to buy half an apple. You must get one com­
plete WS or none at all.

Accessing EVEN and ODD words

As you recall from earlier chapters, Intel defines 16-bit data as a word.
The address of a word can start at an even or an odd number. For example, in the
instruction "MOY AX,[2000]" the address of the word being fetched into AX
starts at an even address. In the case of "MOY AX,[2007]" the address starts at
an odd address. In systems with a I 6-bit data bus, accessing a word from an odd
addressed location can be slower. This issue is important and applies to 32-bit and
64-bit systems with 386 and Pentium processors, as we will see in Chapter 22.

As shown in Figure 10-23, in the 8-bit system, accessing a word is treat­
ed like accessing two bytes regardless of whether the address is odd or even.
Since accessing a byte takes one memory cycle, accessing any word will take 2
memory cycles. In the 16-bit system, accessing a word with an even address takes
one memory cycle. That is because one byte is carried on DO - D7 and the other
on D8 - D 15 in the same memory cycle. However, accessing a word with an odd
address requires two memory cycles. For example, see how accessing the word in
the instruction "MOY AX,[F617]" works as shown in Figure 10-24. Assuming
that DS = FOOOH in this instruction, the contents of physical memory locations
FF617H and FF618H are being moved into AX. In the first cycle, the 286 CPU
accesses location FF6 I 7H and puts it in AL. In the second cycle, the contents of
memory location FF618H are accessed and put into AH. The lesson to be learned
from this is to try not to put any words on an odd address if the program is going
to be run on a I 6-bit system. Indeed this is so important that there is a pseudo-op
specifically designed for this purpose. [t is the EYEN directive and is used as fol­
lows:

CHAPTER 10: MEMORY AND MEMORY INTERFACING

EVEN

VALUEl ow ?

This ensures that VALUE 1, a word-sized operand, is located in an even
address location. Therefore, an instruction such as "MOV AX,VALUEl" or
"MOV VALUEl,CX", will take only a single memory cycle.

07 DO

FFF51
FFF52 I-----l

FFF70
FFF71 1-----1

FFF91
FFF92 I-----l

MC (Memory Cycle)

Assume that OS = FOOO

"MOV AL,[FF51]" Odd byte takes 1 MC

"MOV AL,[FF52]" Even byte takes 1 MC

"MOV AX,[FF70]" Even word takes 2 MC

"MOV AX,[FF91]" Odd word takes 2 MC

Figure 10-23. Accessing Even and Odd Words in the 8-bit CPU

015 08 07 DO OS = FOOO
MOV AX,[F617]

FF617 FF616
1 st Memory Cycle (MC)

FF619 FF618
2nd MC

Figure 10-24. Accessing an Odd-Addressed Word In a 16-blt processor (80286)

Bus bandwidth

The main advantage of the l6-bit data bus is doubling the rate of transfer
of information between the CPU and the outside world. The rate of data transfer
is generally called bus bandwidth. In other words, bus bandwidth is a measure of
how fast buses transfer information between the CPU and memory or peripherals.
The wider the data bus, the higher the bus bandwidth. However, the advantage of
the wider external data bus comes at the cost of increasing the size of the printed
circuit board. Now you might ask why we should care how fast buses transfer
information between the CPU and outside, as long as the CPU is working as fast
as it can. The problem is that the CPU cannot process information that it does not
have. In other words, the speed of the CPU must be matched with the higher bus
bandwidth; otherwise, there is no use for a fast CPU. This is like driving a Porsche

SECTION 10.5: 16-BIT MEMORY INTERFACING 293

294

or Ferrari in frrst gear; it is a terrible underusage of CPU power. Bus bandwidth
is measured in MB (megabytes) per second and is calculated as follows:

bus bandwidth = (Ilbus cycle time) x bus width in bytes

In the above formula, bus cycle time can be either memory or 110 cycle
time. The 1/0 cycle time is discussed in Chapter II. Example 10-15 clarifies the
concept of bus bandwidth. As can be seen from Example 10-15, there are two
ways to increase the bus bandwidth. Either use a wider data bus, or shorten the
bus cycle time, or do both. That is exactly what 386,486, and Pentium processors
have done. While the data bus width has increased from 16-bit in the 80286 to 64-
bit in the Pentium, the bus cycle time is reaching a maximum of 133 MHz. Again,
it must be noted that although the processor's speed can go to I GHz or higher,
the bus speed is limited to around 133 MHz. The reason for this is that the signals
become too noisy for the circuit board if they are above 100 MHz. This is even
worse for the ISA expansion slot. The ISA bus speed is limited to around 8 MHz.
This is because the lSA slot uses large and bulky connectors and they are too
noisy for a speed of more than 8 MHz. In other words, in PCs with a 500 MHz
Pentium, the CPU must slow down to 8MHz when accessing the ISA bus. The
PCl bus was introduced to solve this limitation. It can go as high as 133 MHz and
its data bus width is 64-bit. Chapter 27 provides further discussion of bus band­
width.

Example 10-15

Calculate memory bus bandwidth for the following microprocessors if the bus speed is 20 MHz.

(a) 286 with 0 WS and 1 WS (I6-bit data bus)
(b) 386 with 0 WS and 1 WS (32-bit data bus)

Solution:

The memory cycle time for both the 286 and 386 is 2 clocks, with zero wait states. With the 20
MHz bus speed we have a bus clock of 1120 MHz = 50 ns.

(a) Bus bandwidth = (1/(2 x 50 ns» x 2 bytes = 20 Mbytes/second (MB/S)
With I wait state, the memory cycle becomes 3 clock cycles
3 x 50 =150 ns and the memory bus bandwidth is = (11150 ns) x 2 bytes = 13.3 MB/S

(b) Bus bandwidth = (1/(2 x 50 ns» x 4 bytes = 40 MB/S
With 1 wait state, the memory cycle becomes 3 clock cycles
3 x 50 =150 ns and the memory bus bandwidth is = (1/150 ns) x 4 bytes = 26.6 MB/S

From the above it can be seen that the two factors influencing bus bandwidth are:

I. The read/write cycle time of the CPU
2. The width of the data bus

Notice in this example that the bus speed of the 286/386 was given as 20 MHz. That
means that the CPU can access memory on the board at this speed. If this 286/386 is used on a
PC board with an lSA expansion slot, it must slow down to 8 MHz when communicating with
the lSA bus since the maximum bus speed for the lSA bus is 8 MHz. This is done by the chipset
circuitry.

CHAPTER 10: MEMORY AND MEMORY INTERFACING

Review Questions

1. True or false. If AO = 0 and BHE = I, a byte is being transferred on the DO -
D7 data bus from an even-address location.

2. True or false. If we have AO = I and BHE = 0, a byte is being transferred on
the DO - D7 data bus from an odd-address location.

3. True or false. Ifwe have AO = I and BHE = 0, a byte is being transferred on
the D8 - D IS data bus.

4. True or false. If we have AO = 0 and BHE = 0, a word is being transferred on
the DO - DIS data bus.

5. In the instruction "MOV AX,[2000]", the transferring of data into the accu-
mulator takes memo!), cycles for the 8088 and __ for the 80286.

6. A 16-MHz 286 has a memo!), cycle time of __ ns if it is used with a zero
wait state.

7. To interface a 10-MHz 286 processor to a 350-ns access time ROM, how
many wait states are needed?

SECTION 10.6: ISA BUS MEMORY INTERFACING

In Chapter 9 we covered the basics ofISA bus signals. In this section we
provide more details of the ISA bus for memo!), interfacing including the memo­
!)' read/write cycle time. In PCs with 386!4861Pentium microprocessors, the sig­
nals for the ISA expansion slots are provided by the chipset. The chipset makes
sure that the signals for the ISA slot conform with the ISA bus standard regard­
less of the CPU's speed and data width. The ISA bus specifications and timing for
memo!), are precise and must be understood if we want to design an ISA plug-in
card with on-board memo!),. Next, we review once more the signals related to
memo!), in the ISA expansion slot.

Address bus signals

SAO - SA19 (system address)

The system address bus provides the address signals for the desired mem­
o!)' (or I/O) location. The chipset latches these signals and holds them valid
throughout the bus cycle.

LA17 - LA23 (latchable address)

These signals, along with SAO - SA 19, allow access to 16M bytes of
memo!), space from the ISA expansion slot. The chipset does not latch these sig­
nals. They must be latched by the board designed for the expansion slot.

SBHE (system byte high enable)

Because it is an active low signal, when it is low it indicates that data is
being transferred on the upper byte (D8 - DIS) of the data bus.

SOD - S015 (system data bus)

The system data bus (SDO - SDI5) is used to transfer data between the
CPU, memo!)" and 110 devices.

Memory control signals

MEMW (memory write)

An active low control signal is used to write data into the memo!), chip.
This signal is connected to the WE (write enable) pin of the memo!), chip. This
signal can be used to access the entire 16M allowed by the ISA bus.

SECTION 10.6: ISA BUS MEMOR.Y INTERFACING 295

296

MEMR (memory read)

This active low control signal is used to read data from the memory chip.
It is connected to the OE (output enable) pin ofthe memory chip. This signal can
be used to access the entire 16M allowed by the ISA bus.

MEMW and MEMR are used for 16M memory. However, if the 1M
memory 00000 - FFFFFH is chosen, the following control signals must be used.

SMEMW (system memory write)

An active low control signal used to write data into a memory chip. This
signal is connected to the WE pin of the memory chip. This signal goes low when
accessing addresses between 0 and FFFFFH (0 and I M bytes).

SMEMW (system memory write)

An active low control signal used to read data from the memory chip.
This signal is connected to the OE pin of the memory chip. This signal goes low
when accessing addresses between 0 and FFFFFH (0 and I M bytes).

Although the ISA bus has a 16-bit data bus (DO - 015), either the 8-bit
section (DO - 07) or the entire 16 bits (DO - 015) can be used. This is decided by
the input pin MEMCS 16, as explained next.

MEMCS16 (memory chip select 16)

This is an input signal and is active low. When not asserted, it indicates
to the chipset that only the DO - 07 portion of the data bus is being used. Notice
that the 8-bit portion is the default mode and it is achieved by doing nothing to
this pin. In contrast, when this signal is asserted low, both the low byte and high
byte of the data bus (DO - 015) will be used for data transfer. Therefore, to use
the entire 16-bit data bus, this pin must be low.

The ISA bus allows the interfacing of slow memories by inserting wait
states into the memory cycle time. This prolonging of memory cycle time is avail­
able for both 8-bit and 16-bit data transfers. The standard 8-bit data transfer has 4
WS in the memory read cycle time. As a result, the default memory cycle time is
6 clocks. The standard 16-bit data transfer uses I WS in the memory cycle time.
That results in 3 clocks for the read/write cycle time. To shorten the memory cycle
time we use the ZEROWS pin as explained next.

ZEROWS (zero wait state)

This is an input signal and is active low. The standard 16-bit ISA bus
cycle time contains one WS unless ZEROWS is activated. By activating this pin
(making it low), we are telling the CPU that the present memory cycle can be
completed without a wait state. That results in performing the bus cycle time in 2
clocks. The standard 8-bit (SA bus cycle time contains 4 WS unless ZEROWS is
activated. That means that when both MEMCSI6 and ZEROWS are high (with­
out asserting them low), the 8-bit data bus (DO - 07) is being used and the data
transfer is completed in 6 clocks. This default 8-bit read/write cycle time with its
4 WS is sufficient for interfacing even slow ROMs to the ISA bus. IfMEMCS 16
= 1 and ZEROWS = 0, the 8-bit memory cycle time has I WS instead of 4.

SYSCLK (system clock)

This is is an output clock providing the standard 8 MHz ISA bus clock.
The 8 MHz clock results in 125 ns (1/8 MHz = 125 ns) period and all memory
and 110 ISA bus timing is based on this. Therefore, a zero WS read cycle time for
16-bit bus takes 2 x 125 ns = 250 ns. The standard 8-bit bus with its 4 WS will be
(2 + 4) x 125 ns = 750 ns. The 8-bit bus with ZEROWS asserted low has 1 WS,
making its memory cycle time (2 + I) x 125 ns = 375 ns. The SYSCLK pin is
located on the B side of the 62-pin section ofthe ISA bus.

CHAPTER 10: MEMORY AND MEMORY INTERFACING

SIGNAL NAME

GN
RESET DR

+5VO
IRQ

-5VO
ORQ

-12V 0
OW

+12V 0
GN

-SMEM

,~

V

,~
C
2
C
S
C
0

-SMEM
-10 :;~
-10 R

-OAC K
ORQ

-DAC
ORQ

K1
1

L~ -REFRES
C

IRQ
IRQ
IRQ
IRQ
IRQ

~~

'"
K2 -OAC

T
BA

+5VO
OS
GN

/C
LE
C

;~

-MEM CS 1
-I/O CS 1"

1 IRQ
IRQ
IRQ
IRQ
IRQ

11
1~
15
14

'"
-OACK

ORQ
-OACK

ORQ
-OACK

ORQ
-OACK

ORQ
+5VO

-MASTE
GN

5

7
7
C

;~

REAR PANEL

-
-B1 A1-
- -- -- -- -- -- -- -- -
'-B10 A10-- -- -- -
r- -
'- -- -- -- -
c-
_B20 A20-

'-- -- -- -- -
f- -
I- -- -- -- -
I- -
I-B31 A31-

L-

"\

.--
1-01 C1-
f- -
f- -
I- -
I- -
f- -
f- -
f- -
f- -
f-010 C10-
I- -
I- -
I- -
f- -
f- -
f- -
f- -
f-018 C18-

L--

"\

Figure 10-25, ISA (IBM PC AT) Bus Slot Signals

- '\

L-

"\

.-- '\

'--

"

SIGNAL NAME

-I/O CH CK
S07
SOO
S05
S04
S03
S02
S01
SOD
-I/O CH ROY
AEN
SA19
SA18
SA17
SA16
SA15
SA14
SA13
SA12
SA11
SA10
SA9
SA8
SA7
SA6
SA5
SA4
SA3
SA2
SA1
SAO

SBHE
LA23
LA22
LA21
LA20
LA19
LA18
LA17
-MEMR
-MEMW
S008
S009
S010
S011
S012
S013
S014
S015

COMPONENT
SlOE

(Reprinted by permission from "IBM Tecbnical Reference" c. 1985 by International Business Machines Corporation)

SECTION 10.6: ISA BUS MEMORY INTERFACING 297

298

IOCHRDY(IO Channel Ready)

This is an input signal into the ISA bus and is active low. By driving it
low, we are asking the system to extend the standard ISA bus cycle time. In
response to asserting of this signal, the system will insert wait states into the
memory (or 110) cycle time until it is deasserted. This is rarely used for memory
interfacing since the standard memory cycle time of the ISA bus provides plenty
of time.

Tc1 Tc2 Tc3 Tc4 Tc Ts

ISACLK2

SYSCLK

BALE ______ /"f\I...._--+ ___ '--__ -+-__ -+-__ --+ _____ /:
LA[23: 171 ___ ..:----I>---{'lllllIfflllffJ!(///I/////IIIIlI!ffllllllllll}IIII////b--(\..;.. __ ~

S~~~~~hW/~~.---+----+---~-_~ __ ~_~~
MEMR " ~

EMCS16WIIII/I/!1 WIIlllillll/l/!I/I/III(IIIIIIllffll4'II//II/IIIII/I{!//I//IIIIIII!(III/I/////ff#

ZEROWSWIIIIII/I////i///IIIIIIJ///i(J#/$/i/i/ll/!II!I : 0/(11111111/11//1(11/1/11/111$

~~~gl ~#////##//$ff#ffffff$(I//#$I$ia'/////lb-< H 
Figure 10-26. Standard 8-bit ISA Memory Read Cycle TIme (4 WS) 

ISACLK2 

SYSCLK 

BALE 

LA[23:17] 

SA[19:0] 
SBHE 

MEMR 

Ts Tc1 Tc2 Tc Ts 

------~~--~---+----~~~ 
___ ~~~ffffffjfflll/~~. __ _ 

1//h1ff~I....·~ __ ~ __ ~ __ ~ __ ~ 

\~~--~-~~~ 

MEMCS16 WIllIIIi!! Wll/1//$1I//I///h1$1IIIIIIII///////I//I///1I//1/ 
; ; 

ZEROWS 1IJ//l/llllllliJlll/ill/j////jlllll/l//iI//$u& I: 

~~~:gl -----+--<'Ii/l$III/I///////i(ff$Ib-<~;..-: _____ T-

Figure 10-27. Zero WS 8-bit ISA Memory Read Cycle TIme (1WS)

CHAPTER 10: MEMORY AND MEMORY INTERFACING

ISA bus timing for memory

Suppose that we are designing a data acquisition board for an ISA expan­
sion slot, and the board requires ROM. What would be the best approach? We can
use either the 8-bit or 16-bit data section of the ISA bus. There are some major
differences between them that must be noted. Next we look at each separately.

8-bit memory timing for ISA bus

In the case of using the 8-bit data bus, we use DO - 07 and AO - A 19 of
the 62-pin section of the bus. More importantly, the ISA bus provides plenty of
time for slow memories by inserting wait states into the read cycle time. First, we
must remember that the memory cycle time is only 2 clocks (with 0 WS) and the
maximum speed is 8 MHz. Since 1/8 MHz = 125 ns, the bus cycle time is 2 x 125
= 250 ns. In the case of the standard 8-bit read/write cycle time, the chipset
inserts 4 WS clocks into the read cycle time as shown in Figure 10-26. In the case
where ZEROWS is asserted low and MEMCS 16 = I, the read/write cycle time
has I WS for the 8-bit bus as shown in Figure 10-27. Figure 10-28 shows the
8-bit memory interfacing for the ISA bus.

256KxB
or

64KxB

ROMCSO#
o CE

MEMR# Vpp
o OE

SA[17:0] Vee
AD DR

DATA

EPROM
or

ROM

Figure 10-28. 8-blt ROM Connection to ISA Bus

16-bit memory timing for ISA bus

+5V

XD[7:0]

As mentioned earlier, the 8-bit data transfer is the default mode for the
ISA bus expansion slots. In order to perfonn the 16-bit data transfer using lines
DO - DIS, we must assert the MEMCS 16 pin low. A 16-bit data bus transfer is
twice as fast as an 8-bit data bus transfer. However, it also requires twice the board
space in addition to having a higher power consumption. The 16-bit data read
cycle time for the ISA bus with zero WS is shown in Figure 10-30. Notice that in
all the 2-clock bus cycle CPUs and systems, the first clock is set aside for the
addresses and the second clock is for data. [n order to get a zeros wait state bus
activity, the ZEROWS pin (active low) must be activated. This is because the
standard ISA bus cycle contains one wait state. The standard 16-bit ISA bus cycle
timing with I WS is shown in Figure 10-29, and Figure 10-30 shows the ISA
cycle with zero WS. Combining the effect of MEMCSI6 and ZEROWS pins
gives the infonnation in Table 10-8.

Another major issue in 16-bit [SA bus interfacing is the problem of odd
and even banks. For example, assume that we are interfacing two ROM chips to
DO - DIS of the [SA bus, one connected to DO - 07 and the other to D8 - DIS.
We must divide our infonnation (code or data) into two parts and burn each part
into one of the ROMs. [n many ROM burners, there is an option for splitting the
data into odd and even addressed by1es to support 16-bit data systems. The 16-bit
data connection to two ROMs for the ISA slot is shown in Figure 10-3 I.

SECTION 10.6: ISA BUS MEMORY INTERFACING 299

Ts Tc1 Tc2 Ts Tc1 Tc2 Ts

ISACLK2

SYSCLK

BALE

LA[23:171 ___ ...;....----'~III/!Ih-<'-i:---.;....----'W#;JIIIlIb-<'-';----:

S~~~~W/fflll/~~i---+----+-~X~~--~---~---~

MEMR ~~ _ _+---~~ ~~_-+ ___ ~~

EMCS16W11/////#A : I/j////////jp//ffl/II///{I/ff////& : ff//$//II$I///IIiIII//Jf//iII///ffffhj

ZEROWSW///////////I/I/J 'Wf!!I/H$hW/(Illl!!llllllli(l# wi(lfflllllllffli{lIIffldl//iJ

~J~~~ q/il/////~lllffil!!l//I///IIiMI/~~--'

Figure 10-29. Standard 16-bit ISA Memory Read Cycle Time (1 WS)

ISACLK2

SYSCLK

BALE

LA[23:17]

SA[19:0]
SBHE

MEMR

MEMCS16

ZEROWS

SO[7:0]
(READ)

Ts Tc Ts Tc Ts Tc

>@X >®<;
,

/!IIIIII//IO<. . X X

\ / \ /
; ;

f/#/ffllA , fffflfflll$llffll/J,0,: //I///IIi//JlfffflffffA. ;W

lillll//////ff$;IIA /If!(Ili/////$/iJIII/lA 111l1//11/I/I/III;!1/k,

/ffllll$IIIIII$.#/~II$/Ii//~$I/I/1
; : ; :

Figure 10-30. Zero WS 16-bit ISA Memory Read Cycle Time (0 WS)

Table 10-8: ISA Bus Memory ReadIWrite Cycle Time

MEMCS16 ZEROWS Data Bus Read Cycle Time
0 0 DO - DI5 250 ns
0 I DO - DI5 375 ns
I 0 DO - D7 375 ns
I I DO - D7 750 ns

300 CHAPTER 10: MEMORY AND MEMORY INTERFACING

64KxB
or +5V

12BKxB
ROMCSO#

o CE
Vpp MEMR#

OE

MEMW# Vee
WE

SA[16:0j
XD[15:Bj ADDR

DATA

64KxB
or

12BKxB

o CE
Vpp

OE
Vee

WE

ADDR XD[7:0j

DATA

Figure 10-31. 16-bit ISA Bus Connection to ROM

Example 10-16

Calculate the bus bandwidth of the ISA bus for (a) 0 WS, and (b) I WS. Assume that all the
data transfers are 16-bit (DO - D 15).

Solutiou:

Since the ISA bus speed is 8 MHz, we have 1/8 MHz =125 ns as a clock period. The bus cycle
time for zero wait state is 2 clocks; therefore, we have:

(a) ISA bus cycle time with 0 WS is 2 x 125 ns = 250 ns.
Bus bandwidth = 1/250 ns x 2 by1es = 8 megaby1eslsecond.

(b) ISA bus cycle time with I WS is 250 ns + 125 ns = 375 ns.
Bus bandwidth = 1/375 ns x 2 by1es = 5.33 megaby1es/second.

ROM duplicate and x86 PC memory map

The memory map for the I megaby1e memory range 00000 to FFFFFH is
the same for all x86-based PCs. See Figure 10-32. As shown in Chapter 9, when
286 microprocessors are powered up, the CPU is in real mode and fetches the first
opcode from physical memory location FFFFFOH. This is because CS = FOOOH,
IP = FFFOH, and A20 - A23 are all high. This leads to a physical address of
FFFFFOH, which is 16 by1es below the top of FFFFFFH, the 16 megaby1e maxi­
mum memory range of the 286. After execution of the fIrSt opcode, address pins
A20 - A23 all become Os. Address pins A20 - A23 will not be activated again
unless the 286 mode of operation is changed to protected mode. In other words,
while the CPU wakes up in real mode at address FFFFOH, the first opcode is

SECTION 10.6: ISA BUS MEMORY INTERFACING 301

302

L 000000 1-

RAM 09FFFF
Video [OAOOOO

Memory OBFFFF
oeoooo 1M
ODFFFF
OEOOOO
OEFFFF

/[OFOOOO
OFFFFF -100000
FDFFFF

Duplicate FEOOOO

~[
FEFFFF
FFOOOO
FFFFFF

fetched from FFFFFOH because A20 -
A23 are all high. This is one reason that
there is an exact duplicate of ROM at
addresses OFOOOO - OFFFFF and
FFOOOO - FFFFFF. This duplication
allows access of BIOS ROM in both
real and protected modes. This concept
applies to the 386/486 and Pentium PCs
and is shown in Figure 10-33. In these
processors, the 32-bit address bus pro­
vides the memory space of 00000000 to
FFFFFFFFH. We can verii'y this by
using the system tools software that
comes with Windows 9x and higher.
You can experiment with this by going
to Accessories, clicking on System
Tools, and then clicking on System
Information. Click on Hardware
Resources and then click on Memory. Figure 10-32. PC AT Memory Map

Shadow RAM

By using System Tools to
explore the system memory of Pentium
PCs, we can see the duplicates of ROM
in the RAM memory space. The reason
for that is the fact that the ROM access
time is too slow for the 100 MHz bus
speed. To speed up the ROM access
time, its contents are copied into RAM
and write protected. This is called
shadow RAM and provides the ROM's
contents to CPU at a much faster speed
than ROM. From this point forward,
every time the CPU needs to access the
ROM's contents, it will get the infor­
mation from RAM at a very high speed.
As long as the PC is on, the DRAM

RAM [
Video [Memory

/[
Duplicate

~[

-00000000
0009FFFF
OOOAOOOO
OOOBFFFF
oooeoooo 1M
OOODFFFF
OOOEOOOO
OOOEFFFF
OOOFOOOO
OOOFFFFF -00100000
FFFDFFFF
FFFEOOOO
FFFEFFFF
FFFFOOOO
FFFFFFFF

containing the ROM information is Figure 10-33. X86 PC Memory Map
write protected and will not be corrupt-
ed. It must be noted that the process of
creating shadow RAM is done when the system is booted, and when the PC is
turned off, shadow RAM's contents are lost.

DIMM and slMM memory modules

In the 1980s, PCs had sockets on the motherboard for DRAM chips. To
expand the memory of a PC, you had to buy memory chips and plug them into the
sockets. With the introduction of the 16-bit ISA bus, memory expansion boards
became common. The problem with the memory expansion cards was that you
were limited to the bus speed of the [SA expansion slot no matter how fast the
memory chip. This led to the idea of a memory module as a way to expand mem­
ory for x86 PCs (386 and higher). The connectors for memory modules are much
smaller in size and accommodate much faster memory than [SA connectors. It is
also much easier to insert them into the motherboard. The only problem was the
lack ofa standard connector. This was solved with the introduction of SIP (single
in-line package). Later, the S[MM (single in-line memory module) and D1MM

CHAPTER 10: MEMORY AND MEMORY INTERFACING

PROBLEMS

(dual in-line memoI)' module) were introduced. Currently, SIP is no longer in use,
and SIMM and DlMM are the dominant memoI)' modules. It is important to
notice that the use of memoI)' modules frees the motherboard designer from the
agonizing choice of which organization and speed of DRAM to use. All that is
required is to incorporate various organizations and speeds into the design of the
motherboard and let the user select options via the CMOS set-up process.

Review Questions

I. The MEMCSI6 pin of the ISA bus is an active (low, high) signal.
2. If MEMCS 16 ; high, which portion of the data bus is used?
3. The ZEROWS pin of the ISA bus is an active (low, high) signal.
4. If ZEROWS ; high, the 8-bit memoI)' cycle time takes __ clocks.
5. The ISA bus has a maximum frequency of8 MHz. Find its bus bandwidth for

OWS.

SUMMARY

This chapter began with an introduction to semiconductor technology.
Semiconductor memories were described in terms of their capacity, organization,
and speed. The different types of ROM and examples of how each is used were
examined. Address decoding for memoI)' was discussed and the use of DRAM in
the IBM PC was illustrated. This chapter explored the memoI)' map of the IBM
PC, how the I M of memoI)' is distributed among RAM, video display RAM, and
ROM. The organization and addressing of the 640K bytes of RAM called con­
ventional memoI)' was discussed. In addition, error checking of RAM and ROM
was explained. Also, 16-bit bus interfacing to memoI)' and bus bandwidth issues
for ISA buses were explored.

PROBLEMS

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS

I. What is the difference between a 4M memoI)' chip and 4M of computer mem­
OI)' as far as capacity is concerned?

2. True or false. The more address pins, the more memoI)' locations are inside
the chip.

3. True or false. The more data pins, the more each location inside the chip will
hold.

4. True or false. The more data pins, the higher the capacity of the memoI)' chip.
5. True or false. With a fixed number of address pins, the more data pins, the

greater the capacity of the memoI)' chip.
6. The speed of a memoI)' chip is referred to as its __ -..,., ___ _
7. True or false. The price of memoI)' chips varies according to capacity and

speed.
8. The main advantage of EEPROM over UV-EPROM is ,..-_____ _
9. True or false. SRAM has a larger cell size than DRAM.
10. Which of the following, EPROM, DRAM, and SRAM, must be refreshed

periodically?
II. Which memoI)' is used for cache?
12. Which of the following, SRAM, UV-EPROM, NY-RAM, DRAM, and cache

memoI)', is volatile memoI)'?
13. RAS and CAS are associated with which mernoI)'?

(a) EPROM (b) SRAM (c) DRAM (d) all ofthe above
14. Which memoI)' needs an external multiplexer?

(a) EPROM (b) SRAM (c) DRAM (d) all of the above

303

A16
to

A19

304

15. Find the organization and the capacity of memory chips with the following
pins.
(a) EEPROM AO - A14, DO - 07 (b) UV-EPROM AO - A12, DO - D7
(c) SRAM AO - All, DO - 07 (d) SRAM AO - A12, DO - D7
(e) DRAM AO - AIO, DO (t) SRAM AO - Al2, 00-7
(g) EEPROM AO - All, DO - D7 (h) UV-EPROM AO - AIO, DO - D7
(i) DRAM AO - AS, DO - D3 (j) DRAM AO - A 7, DO - D7

16. Find the capacity, address, and data pins for the following memory organiza-
tions.
(a) 16KxS ROM
(c) 64KxS SRAM
(e) 64KxS ROM
(g) 1 Mx4 DRAM
(i) 64KxS DRAM

(b) 32KxS ROM
(d) 256Kx4 DRAM
(t) 64Kx4 DRAM
(h) 4Mx4 DRAM

SECTION 10.2: MEMORY ADDRESS DECODING

17. Find the address range of the following memory design.

A 15 -....----...
A16
A17
A18
A19-""1-~

AO

A14

18. Using NAND gates and inverters, design decoding circuitry for the address
range OCOOOOH - OCOFFFH.

19. Find the address range for YO, Y3, and Y6 of the 74LS13S for the following
design. This is the ROM interfacing with the SOSS CPU in the original PC.

74LS138 not used 88Kx8

YO
AO ROM

A13 A
A14 8 Y1 A12

A15 C Y2 CS
Y3

ROM.A[()R Select
G2A Y4

Y5
__ DO

MEMR G28 Y6 D7
Y7

Reset G1

20. Using the 7413S, design the memory decoding circuitry in which the memo­
ry block controlled by YO is in the range OOOOOH to 03FFFH. Indicate the
size of the memory block controlled by each Y.

21. Find the address range for Y3, Y6, and Y7 in Problem 20.
22. Using the 7413S and OR gates, design memory decoding circuitry in which

the memory block controlled by YO is in the SOOOOH to S07FFH space.
Indicate the size of the memory block controlled by each Y.

23. Find the address range for YI, Y4, and Y5 in Problem 22.

CHAPTER 10: MEMORY AND MEMORY INTERFACING

PROBLEMS

24. The CS pin of the memory chip is active ~~ (low, high). What about the
RD pin?

25. Which one can accommodate more inputs, the 74138 or CPLD?

SECTION 10.3: IBM PC MEMORY MAP

26. Indicate the address range and total kilobytes of memory allocated to the
RAM, ROM, and video display RAM of the Pc.

27. What address range is called conventional memory, and how many K bytes is
it?

28. Can we increase the size of conventional memory? Explain your answer.
29. What are the contents of CS and IP in the 8088 upon RESET?
30. A user wants to add some EPROM to a PC. Can he/she use the address range

00000 - 9FFFFH? What happens if this range is used?
31. Give the logical and physical location where the BIOS ROM date is stored.
32. Suppose that the memory address range COOOOH - C7FFFH is used in a cer­

tain plug-in adapter card. How many K bytes is that, and is this memory in
the RAM or ROM allocated area?

33. If a video card uses only 4K bytes of VDR and the starting address is
BOOOOH, what is the ending address of this VDR?

34. In a certain video card the starting address is B8000H and it uses only 16K
bytes of memory. What is the ending address of this video card?

35. Why is ROM mapped where it is in the PC? Why can't we use addresses
starting at OOOOO?

36. When the CPU is powered up, at what physical address does it expect to see
the first opcode? In the PC, what opcode is there normally?

SECTION 10.4: DATA INTEGRITY IN RAM AND ROM

37. Find the checksum byte for the following bytes.
34H, 54H, 7FH, 11 H, E6H, 99H

38. For each ofthe following sets of data (the last byte is the checksum byte) ver­
ifY if the data is corrupted.
(a) 29H, ICH, 16H, 38H, and 6DH (b) 29H, ICH, 16H, 30H, and 6DH

39. To maintain data integrity, the checksum method is used for type
memory and the parity bit method for memory.

40. True or false. ROM is tested for corruption during a cold boot-up, but data
corruption in RAM can be detected any time the system is on.

41. A given PC needs only 320K bytes to reach the maximum allowed conven­
tional memory. Show the memory configuration using 256Kxl and 64KxI
memory chips. How many chips are needed? (Include the parity bit.)

42. Repeat Problem 41 if we have 256Kx4 and 64Kx4 chips in addition to 64xl
and 256Kxl.

43. Why is it preferable to use higher density memory chips in memory design?
44. True or false. To access DRAM, the RAS address is provided first and then

the CAS address.
45. True or false. The 74S280 is both a parity generator and a checker.
46. In the 74S280 we have 10010011 for A - H inputs and I = O. What is the sta­

tus of the even and odd output pins?
47. In the 74S280 we have 11101001 for A - H inputs and I = O. What is the sta­

tus of the even and odd output pins?
48. In the 74S280 we have 10001001 for A - H inputs and I = 1. What is the sta­

tus of the even and odd output pins?

305

306

SECTION 10.5: 16-BIT MEMORY INTERFACING

49. Odd and even banks are associated with which microprocessor, the 8088 or
the 80286?

50. How many memory chips are needed if we use 256Kx8, 256KxI, 64Kx8, and
64Kxl memory chips for conventional memory of the 80286 PC/compatible?

51. State the status of AO and BHE when accessing an odd-addressed byte.
52. State the status of AO and BHE when accessing an even-addressed word.
53. State the status of AO and BHE if we only want to access DO - D7 of the data

bus.
54. State the status of AO and BHE if we only want to access D8 - Dl5 of the data

bus.
55. What is the use of 74LS245 in memory interfacing?
56. What is the bus bandwidth unit?
57. Give the variables that affect the bus bandwidth.
58. True or false. One way to increase the bus bandwidth is to widen the data bus.
59. True or false. An increase in the number of address bus pins results in a high­

er bus bandwidth for the system.
60. Calculate the memory bus bandwidth for the following systems.

(a) 80286 of \0 MHz and 0 WS
(b) 80286 of 16 MHz and 0 WS

SECTION 10.6: ISA BUS MEMORY INTERFACING

61. Which of the control signals are used for ISA memory interfacing if the
address of memory is in the range of FOOOO - FFFFFH?

62. The ISA bus can access a maximum of __ bytes. Why?
63. The MEMCSI6 is an active __ signal. Is this an input signal?
64. Explain the use of the MEMCSI6 pin.
65. The ZEROWS is an active __ signal. Is this an input signal?
66. Explain the use of the ZEROWS pin.
67. If the MEMCSI6 pin is high, what portion of the data bus is being used?
68. If the MEMCSI6 pin is low, what portion of the data bus is being used?
69. If the ZEROWS pin is high, give the memory cycle time for an 8-bit data

transfer.
70. If the ZEROWS pin is high, give the memory cycle time for a 16-bit data

transfer.
71. If the ZEROWS pin is asserted low, give the memory cycle time for a 16-bit

data transfer. .
72. If the ZEROWS pin is asserted low, give the memory cycle time for an 8-bit

data transfer.
73. To achieve the best data transfer rate for ISA bus memory interfacing, what

should be the status of the MEMCS 16 and ZEROWS pins?
74. Fill the blanks for following cases.
MEMCS 16 ZEROWS Data bus used Read Cycle time Bus Bandwidth

o 0
o I
I 0
I I

75. Why do we use DIMM and SIMM sockets for memory expansion instead of
the ISA bus slot?

CHAPTER 10: MEMORY AND MEMORY INTERFACING

ANSWERS TO REVIEW QUESTIONS

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS
1. nanoseconds
2. (a) 2Kx8, 16K bits (b) 8Kx8, 64K (c) 64Kx4, 256K (d) 256Kxl, 256K
3. (a) 128K bits, 14 address, and 8 data (b) 256K, 15 address, and 8 data

(c) 1M, 10 address, and 1 data (d) 1M, 9 address, and 4 data
(e) 512K, 16, and 8 data (I) 4M, 10 address, and 4 data

4. It takes much less time to erase and does not need to be removed from the system
board.

5. NV-RAM

SECTION 10.2: MEMORY ADDRESS DECODING
1. OE
2. WE

3. active low
4. 8
5. active low

SECTION 10.3: IBM PC MEMORY MAP
1. 00000 - 9FFFFH, 640K bytes
2. (a) BOOOOH-BOFFFH (b) BOOO:OOOO - BOOO:OFFF
3. 256K - 92K = 164K
4. CS = FFFFH, IP = 0000
5. It indicates that the CPU fetches the first opcode at the physical address FFFFOH

when the system is turned on. Therefore, no RAM can be mapped into the last seg­
ment of the 8088; the memory space must be occupied by a cold boot ROM.

SECTION 10.4: DATA INTEGRITY IN RAM AND ROM
1. adding the bytes: 24H + 76H + F5H + 98H + 89H + 7AH + 61H + C2H = 44DH.

Dropping the carries, we get 4DH, and taking the 2's complement, we have B3H for
the checksum byte.

2. MOV SI,OFFSET DATA
MOVCX,08

;LOAD THE OFFSET ADDRESS
;LOAD THE COUNTER

SUBAL,AL
BOO: ADD AL,ISI]

INCSI
LOOP BOO

;ADD THE BYTE AND IGNORE THE CARRY
;POINT TO NEXT BYTE
;CONTINUE UNTIL count IS ZERO

3. Since the maximum limtt is 640K bytes, we need add only 128K bytes of RAM (640-
512 = 128).
(a) two banks each of 9 chips of 64Kxl, total = 18 chips
(b) two banks each two 64Kx4 to contain data and 64Kxl for partty, total = 6 chips

4. parity btt generation/checker, checksum
5. While the computer Is on, any corruption in the contents of RAM is detected by the

parity btt error checking circuttry when that data is accessed (read) again. However,
the ROM corruption is not detected sinca the checksum detection is performed only
when the system is booted.

SECTION 10.5: 16-BIT MEMORY INTERFACING
1. True
3. True
s. 2 and 1
7. 2WS

2. False
4. True
6. 125 ns

ANSWERS TO REVIEW QUESTIONS 307

SECTION 10.6: ISA BUS MEMORY INTERFACING
1. low
2. DO - D7
3. low
4. 6 clocks since 2 + 4 WS = 6
5. 8 megabytes Isec. See Example 10 -16.

308 CHAPTER 10: MEMORY AND MEMORY INTERFACING

CHAPTER 11

110 AND THE 8255;
ISA BUS INTERFACING

309

In addition to memory space, x86 microprocessors also have 1/0 space.
This allows it to access ports. Ports are used either to bring data into the CPU from
an external device such as the keyboard or to send data from the CPU to an exter­
nal device such as a printer. In this chapter we study 1/0 instructions and 110
design for x86 PCs. In Section 11.1 we discuss 110 instructions and programming.
In Section 11.2 we look at ways to design 110 ports for 8088-based systems. In
Section 11.3, the 1/0 map ofthe x86 IBM PC is given. The 8255 chip and its pro­
gramming are discussed in Section 11.4. The details of an 8255-based PC Trainer
connected to the ISA bus will be given in Section 11.5. 110 programming using
C/C++ and Visual Basic is covered in Section 11.6. Section 11.7 is dedicated to
16-bit data 110 ports for ISA buses.

SECTION 11.1: 80881NPUT/OUTPUT INSTRUCTIONS

310

All x86 microprocessors, from the 8088 to the Pentium, can access exter­
nal devices called ports. This is done using 110 instructions. The x86 CPU is one
of the few processors that have 110 space in addition to memory space. While
memory can contain both opcodes and data, 1/0 ports contain data only. There are
two instructions for this purpose: "OUT' and "IN". These instructions can send
data from the accumulator (AL or AX) to ports or bring data from ports into the
accumulator. In accessing ports, we can use an 8-bit or 16-bit data port. Since
8-bit data ports in the 8088 are the most widely used, we will concentrate on them
and introduce 16-bit data ports only in the last section of this chapter.

S-bit data ports

The 8-bit 110 operation of the 8088 is applicable to all x86 CPUs from the
8088 to the Pentium. The 8-bit port uses the 00 - 07 data bus to communicate
with 110 devices. In 8-bit port programming, register AL is used as the source of
data when using the OUT instruction and the destination for the IN instruction.
This means that to input or output data from any other registers, the data must first
be moved to the AL register. Instructions OUT and IN have the following for­
mats:

IngtJt:!;;ing Qat~ Outgutt;ing Dgta
Format: IN dest,source OUT dest,source

(1) IN AL,port# OUT port#,AL

(2) MOV DX,port# MOV DX, p~rU
IN AL,DX OUT DX,AL

In format (1), port# is the address of the port and can be from 00 to FFH.
This 8-bit address allows 256 input ports and 256 output ports. In this format, the
8-bit port address is carried on address bus AO - A 7. No segment register is
involved in computing the address, in contrast to the way data is accessed from
memory.

In format (2), the port# is also the address of the port, except that it can
be from 0000 to FFFFH, allowing up to 65,536 input and 65,536 output ports. In
this case, the 16-bit port address is carried on address bus AO - A15, and no seg­
ment register (OS) is involved. This is the way Intel Corporation expanded the
number of ports from 256 to 65,536 while maintaining compatibility with the ear­
lier 8085 microprocessors. The use of a register as a pointer for the port address
has an advantage in that the port address can be changed very easily, especially in
cases of dynamic compilations where the port address can be passed to OX.

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

How to use 1/0 instructions

I/O instructions are widely used in programming peripheral devices such
as printers, hard disks, and keyboards. The port address can be either 8-bit or 16-
bit. For an 8-bit port address, we can use the immediate addressing mode. The fol­
lowing program sends a byte of data to a fixed port address of 43H.

MOV
OUT

AL,36H
43H,AL

;AL=36H
;send value 36H to port address 43H

The 8-bit address used in immediate addressing mode limits the number
of ports to 256 for input plus 256 for output. To have a larger number of ports we
must use the 16-bit port address instruction.

To use the 16-bit port address, register indirect addressing mode must be
used. The register used for this purpose is OX. The following program sends val­
ues 55H and AAH to I/O port address 300H (a 16-bit port address). In other
words, the program below toggles the bits of port address 300H continuously.

BACK: MOV DX,300H ; DX = port address 300H
MOV AL,55H
OUT DX,AL ;toggle the bits
MOV AL,OAAH
OUT DX,AL ;toggle the bits
JMP BACK

Notice that we can only use register OX for 16-bit 1/0 addresses; no
other register can be used for this purpose. Also notice the use of register AL for
8-bit data. For example, the following code transfers the contents of register BL
to port address 378H.

MOV DX,378H
MOVAL,BL
OUT DX,AL

; DX=378 the port address
; load data into accumulator
;write contents of AL to port
;whose address is in DX

To bring into the CPU a byte of data from an external device (external to
the CPU) we use the IN instruction. Example 11-1 shows decision making based
on the data that was input.

Example 11-1

In a given 8088-based system, port address 22H is an input port for monitoring the temperature.
Write Assembly language instructions to monitor that port continuously for the temperature of
100 degrees. If it reaches 100, then BH should contain 'Y'.

Solution:

BACK: IN
CMP
JNZ
MOV

AL,22H
AL,lOO
BACK
BH, I Y

;get the temperature from port # 22H
; is temp = lOa?
;if not, keep monitoring
;temp = 100, load 'Y' into BH

Just like the OUT instruction, the IN instruction uses the OX register to
hold the address and AL to hold the arrived 8-bit data. In other words, OX holds
the 16-bit port address while AL receives the 8-bit data brought in from an exter­
nal port. The following program gets data from port address 300H and sends it to
port address 302H.

SECTION 11.1: 8088 INPUT/OUTPUT INSTRUCTIONS 311

MOV
IN
MOV
OUT

DX,300H
AL,DX
DX,302H
DX,AL

Review Questions

;Ioad port address
;bring in data

;send it out

I. In the x86 system, if we use only the 8-bit address bus AO - A 7 for port
addresses, what is the maximum number of (a) input, and (b) output ports?

2. The x86 can have a maximum of how many [/0 ports?
3. What does the instruction "OUT 24H,AL" do?
4. Write Assembly language instructions to accept data input from port 300H

and send it out to port 304H.
5. Write Assembly language instructions to place the status of port 60H in CH.

SECTION 11.2: 110 ADDRESS DECODING AND DESIGN

312

[n this section we show the design of simple 110 ports using TTL logic
gates 74LS373 and 74LS244. For the purpose of clarity we use simple logic gates
such as AND and inverter gates for decoders. [t may be helpful to review the
address decoding section for memory interfacing in the preceding chapter before
you embark on this section. The concept of address bus decoding for 110 instruc­
tions is exactly the same as for memory. The foHowing are the steps:
I. The control signals lOR and lOW are used along with the decoder.
2. For an 8-bit port address, AO - A 7 is decoded.
3. If the port address is 16-bit (using OX), AO - A 15 is decoded.

Using the 74LS373 in an output port design

In every computer, whenever data is sent out by the CPU via the data bus,
the data must be latched by the receiving device. While memories have an inter­
nallatch to grab the data, a latching system must be designed for simple 110 ports.
The 74LS373 can be used for
this purpose. Notice in Figure
II-I that in order to make the
74LS373 work as a latch, the
OC pin must be grounded. For
an output latch, it is common
to AND the output of the
address decoder with the con­
trol signal lOW to provide the
latching action as shown in
Figure 11-2.

IN port design using the
74LS244

Likewise, when data
is coming in by way of a data
bus, it must come in through a
three-state buffer. This is
referred to as tristated, which
comes from the term tri-state
buffer ("tri-state" is a regis­
tered trademark of National
Semiconductor Corp.).

Output
Control

L
L
L
H

7D
80

GND

G
Enable

Output control

Function Table
Enable
G D OutDut
H H H
H L L
L X 00
X X Z

Figure 11-1. 74LS373 D Latch
(Reprinted by permission of Texas Instruments. Copyright
Texas Instruments, 198&)

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

AO

system
data
bus

74LS373

00 ----+-1

00 J~EOS
07 07 ---I

G

A7==~

Figure 11-2. Design for "OUT 99H,AL"

Example 11-2

Show the design of an ouput port with an 1/0 address of3IFH using the 74LS373.

Solution:

31F9H is decoded, then ANDed with lOW to activate the G pin of the 74LS373 latch. This is
shown in Figure 11-3.

74LS373

00 ~ 00
system }o data

LEOs bus
07 07

AO
G OC

"'\
/ r ~ 7

A7
A9

lOW

Figure 11-3. DeSign for Output port address of 31FH
As was the case for memory chips, such a tri-state buffer is internal and

therefore invisible. For the simple input ports we use the 74LS244 chip. See
Figure 11-4 for the internal circuitry of the 74LS244. In Figure 11-4, notice that
since Gland G2 each control only 4 bits of the 74LS244, they both must be acti­
vated for the 8-bit input. Examine Figure 11-5 to see the use of the 74LS244 as
an entry port to the system data bus. Notice in Figures 11-5 and 11-6 how the
address decoder and the lOR control signal together activate the tri-state input.

The 74LS244 not only plays the role of buffer, but also provides the
incoming data with sufficient driving capability to travel all the way to the CPU.
Indeed, the 74LS244 chip is widely used for buffering and providing high driving
capability for unidirectional buses. The 74LS245 is used for bidirectional buses,
as seen in Chapter 9.

SECTION 11.2: 110 ADDRESS DEC.ODING AND DESIGN 313

314

Memory mapped 1/0

Communicating with 1/0
devices using IN and OUT instructions
is referred to as peripheral I/O. Some
designers also refer to it as isolated
liD. However, there are many micro­
processors, such as the new RISC
processors, that do not have IN and
OUT instructions. In such cases, these
microprocessors use what is called
memory-mapped liD. In memory­
mapped 1/0, a memory location is
assigned to be an input or output port.
The following are the differences
between peripheral 110 and memory­
mapped 1/0 in the x86 Pc.

1. In memory-mapped 110, we must
use instructions accessing memory
locations to access the 1/0 ports
instead of IN and OUT instruc­
tions. For example, an instruction
such as "MOV AL,[2000]" will

Vee 1<3
1A-1 1Y-1

1A-2 1Y-2

1A-3 1Y-3

1A-4 1Y-4

2A-1 2Y-1

2A-2 2Y-2

2A-3 2Y-3

2Y-4

0

2G

Figure 11-4. 74LS244 Octal Buffer
(Reprinted by pennission of Texas Instruments,
Copyright Texas Instruments, 1988)

access an input port of memory address 2000 and "MOV [201O],AL" will
access the output port.

2. In memory-mapped 1/0, the entire 20-bit address, AO - A 19, must be decod­
ed. This is in contrast to peripheral 110, in which only AO - A 15 are decoded.
Furthermore, since the 20-bit address involves both the segment and an off­
set, the OS register must be loaded before memory-mapped 110 is accessed.
For example, if physical memory address 35000H is used for the input port,
the following instructions can be used to access the port.

MOV AX,3000H ;Ioad the segment value
MOV OS,AX
MOV AL,[5000] ;bring in 1 byte from address 35000H

Physical address 35000H is generated by shifting left OS one hex digit and
adding it to offset address 5000 (30000 + 5000 = 35000H). Since all 20-bit
addresses are decoded, the decoding circuitry for memory-mapped 110 is
more expensive.

3. In memory-mapped 1/0 circuit interfacing, control signals MEMR and
MEMW are used. This is in contrast to peripheral 110, in which lOR and
lOW are used.

4. In peripheral 1/0 we are limited to 65,536 input ports and 65,536 output ports,
whereas in memory 110 the number of ports can be as high as 220 (1,048,576).
Of course, that many ports are never needed.

5. In memory-mapped 1/0, one can perform arithmetic and logic operations on
1/0 data directly without first moving them into the accumulator. In memory­
mapped 1/0, data can be transferred into any register, rather than into the
accumulator.

6. One major and severe disadvantage of memory-mapped 110 is that it uses
memory address space, which could lead to memory space fragmentation.

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

Example 11-3

Show the design of "IN AL,9FH" using the 74LS244 as a tri-state buffer.

Solution:

9FH is decoded, then ANDed with lOR. To activate OC of the 74LS244, it must be inverted
since OC is an active-low pin. This is shown in Figure 11-5.

AO
system

address
bus

A7

'\.
l'

80

switches [

87

~
lOR

74LS244

'" 1'1

1G I 2G

00

07 J
toOO-07
of system
data bus

Figure 11-5. Design for "IN AL,9FH"

80

switches [

87

D4

Figure 11-6. Input port design for "IN AL,5FH"
Review Questions

I

74LS244

~

~

r
I

00

J to system
data bus

07

I. Designers use a (latch, tri-state buffer) for output and a
=,------,---__ (latch, tri-state buffer) for input.

2. Why do we use latches in 110 design?
3. Why is the 74LS373 called the transparent latch?
4. To use the 73LS373 as a latch, OC must be set to permanently.
5. True or false. To access the maximum number of ports in the x86, we must

decode addresses AO - A15.
6. In memory-mapped 1/0, which signal is used to select the (a) output, and (b)

input devices?

SECTION 11.2: 110 ADDRESS DECODING AND DESIGN 315

SECTION 11.3: I/O ADDRESS MAP OF X86 PCS

316

from
expansion

slot

Designers of the original IBM PC decided to make full use ofl/O instruc­
tions. This led to assignment of different port addresses to various peripherals
such as LPT and COM ports, and other chips and devices. The list of the desig­
nated 110 port addresses is referred to as the UO map. Table 11-1 shows the I/O
map for the x86 PC. A much more detailed 110 map of the x86 PC is given in
Appendix G. Any system that needs to be compatible with the x86 IBM PC must
follow the I/O map of Table II-I. For example, the map shows that we can use
110 address 300 - 31F for a prototype card. This is shown below.

Absolute vs. linear select address decoding

In decoding addresses, either all of them or a selected number of them are
decoded. If all the address lines are decoded, it is called absolute decoding. If only
selected address pins are used for decoding, it is called linear select decoding.
Linear select is cheaper, since the less input there is, the fewer the gates needed
for decoding. The disadvantage is that it creates what are called aliases: the same
port with multiple addresses. In cases where linear select is used, we must docu­
ment port addresses in the 110 map thoroughly. In the first IBM PC, linear select
decoding was used and that resulted in large numbers of address aliases, as we
will see in future chapters. If you see a large gap in the I/O address map of the x86
PC, it is due to the address aliases of the original PC.

Prototype addresses 300 - 31FH in x86 PC

In the x86 PC, the address range 300H - 31 FH is set aside for prototype
cards to be plugged into the expansion slot. These prototype cards can be data
acquisition boards used to monitor analog signals such as temperature, pressure,
and so on. Interface cards using the prototype address space use the following sig­
nals on the 62-pin section of the ISA expansion slot:
I. lOR and lOW. Both are active low.
2. AEN signal: AEN = 0 when the CPU is using the bus.
3. AO - A9 for address decoding.

Use of simple logic gates as address decoders

Figure II -7 shows the circuit design for a 73LS373 latch connected to
port address 300H of an x86 PC via an ISA expansion slot. Notice the use of sig­
nals AO - A9 and AEN. AEN is low when the x86 microprocessor is in control of
the buses. After all, it is the job of the CPU to control all the peripheral devices
and not the DMA. In Figure 11-7, we are using simple logic gates such as NAND
and inverter gates for the 110 address decoder. These can be replaced with the
74LSI38 chip because the 74LS138 is a group of NAND gates in a single chip.

[XOO
74LS373 r--

from
buffered LEDs

- data bus

AO XD7
G OC r--

\. " I

~ A7
I

lOW
A9

AEN
-

Figure 11-7. Using Simple Logic Gate for 1/0 Address Decoder (1/0 Address 300H)

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

Hex Range
000 - OIF
020 - 03F
040 - 05F
060 - 06F
070 - 07F
080 - 09F
OAO - OBF
OCO - ODF
OFO
OFI
OF8 - OFF
IFO - IF8
200 - 207
20C - 20D
21F
278 - 27F
2BO - 2DF
2EI
2E2 & 2E3
2F8 - 2FF
300 - 31F
360 - 363
364 - 367
368 - 36B
36C - 36F
378 - 37F
380 - 38F
390 - 393
3AO-3AF
3BO - 3BF
3CO - 3CF
3DO-3DF
3FO - 3F7
3F8 - 3FF
6E2 & 6E3
790 - 793
AE2 & AE3
B90 - B93
EE2 & EE3
1390 - 1393
22EI
2390 - 2393
42EI
62EI
82E1
A2EI
C2EI
E2EI

Device
DMA controller I, 8237A-5
Interrupt controller I, 8259A, Master
Timer, 8254-2
8042 (keyboard)
Real-time clock, NMI mask
DMA page register, 74LS612
Interrupt controller 2, 8237A-5
DMA controller 2, 8237 A-5
Clear math coprocessor busy
Reset math coprocessor
Math coprocessor
Fixed disk
Game 110
Reserved
Reserved
Parallel printer port 2
Alternate enhanced graphics adapter
GPIB (adapter 0)
Data acquisition (adapter 0)
Serial port 2
Prototype card
PC network (low address)
Reserved
PC network (high address)
Reserved
Parallel printer port I
SDLC, bisynchronous 2
Cluster
Bisynchronous I
Monochrome display and printer adapter
Enhanced graphics adapter
Color/graphics monitor adapter
Diskette controller
Serial port I
Data acquisition (adapter I)
Cluster (adapter I)
Data acquisition (adapter 2)
Cluster (adapter 2)
Data acquisition (adapter 3)
Cluster (adapter 3)
GPIB (adapter I)
Cluster (adapter 4) .
GPIB (adapter 2)
GPIB (adapter 3)
GPIB (adapter 4)
GPIB (adapter 5)
GPIB (adapter 6)
GPIB (adapter 7)

Table 11-1: 110 Map for the x86 PC (See Appendix G for Further Demils)

SECTION 11.3: 110 ADDRESS MAP OF X86 pes 317

318

A4

A9

Use of 74LS138 as decoder

In current system board design,
CPLD (complex programmable logic
device) chips are used for supporting
logics such as decoders. In the absence
of CPLD, one could use NANOs,
inverters, and 74LS 138 chips for
decoders as we saw in the preceding
chapter for memory address decoding.
The same principle applies to I/O
address decoding. Figure 11-8 shows
the 74LS138. As an example of the use
of a 74LS 138 for an 110 address
decoder, examine Figure 11-9. Notice
how each Y output can control a single
device. Figure 11-9 shows the address
decoding for an input port located at
address 304H. The Y 4 output, together
with the lOR signal, controls the
74LS244 input buffer. Alternatively,
YO along with the lOW control signal
could be used to control a 74LS373
latch. In other words, each Y output
controls a single I/O device. Contrast
that with Figure 11-7. The 74LSI38 is
much more efficient than the use of
simple logic gates as decoders.

IBM PC 110 address decoder

Figure 11-10 shows a 74LS 138
chip used as an 110 address decoder in
the original IBM Pc. Notice that while
AO to A4 go to individual peripheral
input addresses, AS, A6, and A 7 are

Block Diagram

YO p-- A Y1 p-
Y2 p-

- B Y3 p-
Y4 p-

C
Y5 p-

- Y6 p-
Y7 p-

- -G2A G2B G1

J
0 I, I

Enable

Function Table
Inputs

Enable Select Outouts
G1G2 CBA YOY1 Y2Y3Y4Y5Y6Y7
X H XXX HHHHHHHH
L X XXX HHHHHHHH
H L LLL LHHHHHHH
H L LLH HLHHHHHH
H L LHL HHLHHHHH
H L LHH HHHLHHHH
H L HLL HHHHLHHH
H L HLH HHHHHLHH
H L LLL HHHHHHLH
H L HHH HHHHHHHL

Figure 11-8. 74LS138 Decoder
(Reprinted by pennission ofl'exa<; Instruments,
Copyright Texas Instruments, 1988)

responsible for the output selection of outputs YO to Y7. In order to enable the
74LS138, pins A8, A9, and AEN all must be low. While A8 and A9 will direct­
ly affect the port address calculations, AEN is low only when the x86 is in con­
trol of the system bus. Since all the peripherals are programmed by the x86, AEN
is low during CPU activity. See Table 11-2. We will discuss each Y output of
74LSI38 in Figure 11-8 in subsequent chapters.

74LS244

74LS138 - -XDO
switches buffered

AO A - data bus
A1 B
A2 C OCOC - XD7

AEN-o G2A

D T A3-o G2B
Y4

\. G1 r Port Address 304H /'
lOR

Figure 11-9. USing 74LS 138 for I/O Address Decoder

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

74LS138

A5---IA YO to 8237 CS (00 - OFH)
A6 B Y1 to 8259 CS (10 - 1FH)
A7 C Y2 to 8253 CS (40 - 4FH)

Y3 to 8255 CS (60 - 6FH)

Y4b---------~~~----~x~-
A8---{)j G2B

writing to
DMA page
register

A9 G2A
AEN G1 Y5 1c>-----1'-{)j

Y6 not used
writing into
NMI register

Y7 not used
lOW AEN = 0 when CPU in charge of buses

Figure 11-10. Port Address Decoding in the original IBM PC (PCIXT)

Table 11-2: Port Addresses decoding table on the Original PC

Gt

AEN
0
0

G2A G2B C B A

A9
0
0

AS A 7 A6 AS A4 A3 A2 At AO
0 0 0 o 0 0 0 0 0 00 Lowest port address
0 I I I I 1 1 I I FF Highest port

Port 61 H and time delay generation

Appendix G provides a detailed 110 map of the Pc. In order to
maintain compatibility with the IBM PC and run operating systems such
as MS-DOS and Windows, the assignment ofl/O port addresses must fol­
low the standard set in Appendix G. Port 61H is a widely used port, the
details of which are shown in Appendix G. We can use this port to gen­
erate a time delay, which will work in any PC with any type of processor
from the 286 to the Pentium. I/O port 61H has eight bits (DO - D7). Bit
D4 is of particular interest to us. In all 286 and higher PCs, bit D4 of port
61H changes its state every 15.085 microseconds (Ils). In other words, it
stays low for 15.085 Ils and then changes to high and stays high for the
same amount of time before it goes low again. This toggling of D4 bit
goes on indefmitely as long as the PC is on. Chapter 13 provides more
details on this topic. The following program shows how to use port 61H
to generate a delay of 112 second. In this program all the bits of port 31 OH
are toggled with a 1/2 second delay in between.

;TOGGLING ALL BITS OF PORT 310H EVERY 0.5 SEC
MOV DX,310H

HERE: MOV AL,55H ;Ioggle all bits
OUT DX,AL
MOV CX,33144 ;Delay=33144x15.085 us=0.5 sec
CALL TDELAY
MOV AL,OAAH
OUT DX,AL
MOV CX,33144
CALL TDELAY
JMP HERE

SECTION 11.3: I/O ADDRESS MAP OF X86 PCS 319

;CX=COUNT OF 15.085 MICROSEC
TOELAY PROC NEAR

PUSH AX
Wl: IN AL,61H

ANO AL,00010000B
CMP AL,AH
JE Wl
MOV AH,AL
LOOP Wl
POP AX
RET

TDELAY ENOP

; save AX

;waitfor 15.085 usee

;another 15.085 usee
;restore AX

In the above program, notice that when port 61 H is read, all the bits are
masked except D4. The program waits for D4 to change every 15.085 IlS before
it loops again.

Review Questions

I. What 1/0 address range is set aside for prototype cards?
2. In the x86 PC, give the status of the AEN signal when 1/0 ports are being

addressed by the CPU.
3. In decoding addresses for 1/0 instructions, why do we need to include AEN,

and what is the activation level?
4. Which bit of port 61H toggles every 15.085 Ils?
5. Calculate the time delay ifCX = 25,000 for Question 4.

SECTION 11.4: 8255 PPI CHIP

320

In this section we study
the 8255 chip, one of the most
widely used 1/0 chips. The 8255
is a 40-pin DIP chip (see Figure
11-11). It has three separately
accessible ports, A, B, and C,
which can be programmed,
hence the name PPI (program­
mable peripheral interface).
Notice that the individual ports
of the 8255 can be programmed
to be input or output. They can
also be changed dynamically, in
contrast to the 74LS244 and
74LS373, which are hard-wired.

Port A (PAO - PA7)

This 8-bit port A can be
programmed all as input or all
as output.

Port B (PBO - PB7)

This 8-bit port B can be

1 PA3
2PA2
3 PAl
4 PAO
5 RO
6 CS
7GNO
8 Al
9 AO
10 PC7
11 PC6
12 PC5
13 PC4
14 PCO
15 PCl
16 PC2
17 PC3
18 PBO
19 PBl
20 PB2

8
2
5
5
A

PA4 400
PA5 390
PA6 380
PA7 37
WR 360

RESET 350
00 34
01 330
02 32
03 310
D4 300
05290
06280
07 270

Vee 260
PB7 250
PB6 240
PB5 230
PB4 220
PB3 21 0

programmed all as input or all Figure 11-11. 8255 PPI Chip
as output. (Reprinted by permission of Intel Corporation,

Copyright Intel, 1983)

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

Port C (PCO - PC7)

This 8-bit port C can be all input or all output. It can also be split into two
parts, CU (upper bits PC4 - PC7) and CL (lower bits PCO - PC3). Each can be
used for input or output. Any of PCO to PC7 can be programmed individually.

RDandWR

These two active-low control signals are inputs to the 8255. If the 8255
is using peripheral 110 design, lOR and lOW of the system bus are connected to
these two pins. If the port uses memory-mapped 110, MEMR and MEMW acti­
vate them.

RESET

This is an active-high signal input into the 8255 used to clear the control
register. When RESET is activated, all ports are initialized as input ports. This pin
must be connected to the RESET output of the system bus or ground, making it
inactive. Like all IC input pins, it
should not be left unconnected.
This pin can be grounded. Table 11-3: 8255 Port Selection

AO, A1, and CS

While CS (chip select)
selects the entire chip, address pins
AO and A I select the specific port
within the 8255. These three pins
are used to access ports A, B, C, or
the control register, as shown in
Table 11-3.

Mode selection of the 8255A

CS Al AO Selects
0 0 0 Port A
0 0 I Port B
0 I 0 Port C
0 I I Control register
I x x 8255 is not selected

(Reprinted by permission of Intel Corporation,
Copyright Intel Corp. 1983)

While ports A, B, and C are used for 110 data, it is the control register that
must be programmed to select the operation mode of the three ports A, B, and C.
The ports of the 8255 can be programmed in any of the following modes.

I. Mode 0, simple 1/0 mode. In this mode, any of the ports A, B, CL, and CU
can be programmed as input or output. In this mode, all bits are out or all are
in. In other words, there is no control of individual bits. Mode 0 is the most
widely used mode in current system 110 interfacing design. For the rest of this
and the next chapter we use only this simple mode.

2. Mode I. In this mode, ports A and B can be used as input or output ports with
handshaking capabilities. This mode is not used due to timing incompatibili­
ty with devices such as the printer.

3. Mode 2. In this mode, port A can be used as a bidirectional 110 port with
handshaking capabilities. This mode is rarely used.

Notice from Figure 11-12 that we must set 07 = I to get the above 110
modes of 0, I, and 2. If 07 = 0, we have BSR mode. In BSR (bit set/reset) mode,
the bits of port C are programmed individually. This mode is also rarely used.

The 8255 chip is programmed in any of the above modes by sending a
byte (Intel calls it control word) to the control register of the 8255. For example,
to make ports A, B, and C output ports, we make 07 = 1 according to Figure 11-
12. To select simple 110 mode of 0, we need 1000 0000 as the control word.
Similarly, to get PB as input, and PA and all of PC as output, we must have 1000
0010 or 82H for the control word. Examples 11-4, 11-5, and 11-6 demonstrate
how the 8255 chip is programmed. Study these three examples in detail since they
will be the basis of many lab assignments.

SECTION 11.4: 8255 PPI CHIP 321

I 07 I D6 05 I 04 I 03 I 02 I 01 I DO I
I I I

Group A

Port C
L- (Upper: PC7 - PC4)

1 = input; 0 = output

PortA - 1 = input; 0 = output

Mode Selection
00 = Mode 0
01 = Mode 1
1x = Mode 2

11 = 1/0 Mode
10= BSR Mode

Figure 11-12.8255 Control Word Format (110 Mode)
(Reprinted by pennission ofIntel Corporation, Copyright Intel, 1983)

Example 11-4

Group B

Port C
- (Lower: PC3 - PCO)

1 = input; 0 = output

Port B
1 = input; 0 = output

Mode Selection
O=ModeO
1=Mode1

(a) Find the control word if PA = out, PB = in, PCO - PC3 = in, and PC4 - PC7 = out.
(b) Program the 8255 to get data from port A and send it to port B. In addition,
data from PCL is sent out to the PCU.
Use port addresses of 300H - 303H for the 8255 chip.
Solution:

(a) From Figure 11-12 we get the control word of 1000 0011 in binary or 83H.

(b) The code is as follows:

322

B8255C EQU 300H
CNTL EQU 83H

;Base address of 8255 chip
;PA=out,PB=in,PCL=in,PCU=out

MOY
MOV
OUT
MOY
IN
MOV
OUT
MOY
IN
AND
ROL
ROL
ROL
ROL
OUT

DX,B8255C+3 ;Ioad control reg. address (300H+3=303H)
AL,CNTL ;Ioad control byte
DX,AL ;send it to control register
DX,B8255C+ 1 ;Ioad PB address
AL,DX ;get the data from PB
DX,B8255C ;Ioad PA address
DX,AL ;send it to PA
DX,B8255C+2 ;load PC address
AL,DX ;get the bits from PCL
AL,OFH ;mask the upper bits
AL,I
AL,I
AL,I
AL,I
DX,AL

;shift the bits
;to upper position

;send it to PCU

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

Example 11-5

The 8255 shown in Figure 11-13 is configured as follows: port A as input, B as output, and all
the bits of port C as output.
(a) Find the port addresses assigned to A, B, C, and the control register.
(b) Find the control byte (word) for this configuration.
(c) Program the ports to input data from port A and send it to both ports B and C.

Solution:
(a) The port addresses are as follows:

AO
o
I

Port
PortA
Port B
Port C

CS
11000100
11 0001 00
11 0001 00
11000100

Al
o
o
I
I

o
I

Address
310H
311H
312H
313H Control register

(b) The control word is 90H, or 1001 0000.
(c) One version of the program is as follows:

MaY AL,90H ;control byte PA=in, PB=out, PC=out
MaY DX,313H ;Ioad control reg address
OUT DX,AL ;send it to control register
MaY DX,310H ;Ioad PA address
IN AL,DX ;get the data from PA
MaY DX,311 H ;Ioad PB address
OUT DX,AL ;send it to PB
MaY DX,312H ;Ioad PC address
OUT DX,AL ;and to PC

Using the EQU directive one can rewrite the above program as follows:
CNTLBYTE EQU 90H ;PA=in, PB=out, PC=out
PORTA EQU 310H
PORTB EQU 311H
PORTC EQU 312H
CNTLREG EQU 313H

MaY AL,CNTLBYTE
MaY DX,CNTLREG
OUT DX,AL
MaY DX,PORTA
IN AL,DX
;and so on.

DO .. 07

--
lOW

P\2 -<: lOR

----: }-A7~ AO
A1

A9-
AEN~

• DO
07

WR
RO

AO
A1

CS

Figure 11-13. 8255 Configuration for Example 11-5

SECTION 11.4: 8255 PPI CHIP

~ __ A

10-..... cu

323

Example 11-6

Show the address decoding where port A of the 8255 has an 1/0 address of 300H, then write a
program to toggle all bits ofPA continuously with a 114 second delay. Use INT 16H to exit if
there is a keypress.

Solution:
The address decoding for the 8255 is shown in Figure 11-14. The control word for all ports as
output is 80H. The program below will toggle all bits ofPA indermitely with a delay in between.
To prevent locking up the system, we press any key to exit to DOS.

AGAIN:

QSDELAY

WI:

QSDELAY

MOV
MOV
OUT
MOV
MOV
OUT
CALL
MOV
OUT
CALL
MOV
INT
JZ
MOV
INT

PROC
MOV
PUSH
IN
AND
CMP
JE
MOV
LOOP
POP
RET
ENDP

DX,303H
AL,80H
DX,AL
DX,300H
AL,55H
DX,AL
QSDELAY
AL,OAAH
DX,AL
QSDELAY
AH,OI
16H
AGAIN
AH,4CH
21H

NEAR
CX,16572
AX
AL,6IH
AL,OOO I OOOOB
AL,AH
WI
AH,AL
WI
AX

;CONTROL REG ADDRESS
;ALL PORTS AS OUTPUT

;1/4 SEC DELAY
;TOGGLE BIT

;CHECK KEYPRESS
;PRESS ANY KEY TO EXIT

;EXIT

;16,572xI5.085 usec=1I4 sec

Notice the use ofINT 16H option AH=OI where the keypress is checked. If there is no keypress,
it will continue. We must do that to avoid locking up the x86 Pc.

00 • • 00
07 D7 A

lOW WR B
A2 ----< lOR RO ----<

CL
----<)- AO AO

A7~ A1 A1 CU
A9-

AEN --< CS

Figure 11-14.8255 Configuration for Example 11-6

324 CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

Intel calls mode 0 the basic input output mode. The more commonly used
term is simple 110. In this mode, any of ports A, B, Or C can be programmed as
input or output. It must be noted that in this mode a given port cannot be both an
input and output port at the same time. One major characteristic of port C is that
one can program CL (PCO - PC3) and CU (PC4 - PC7) independently of each
other, as shown in Example I 1-4.

Review Questions

I. Find addresses for all 8255 ports if A 7 - A2 = I I I 101 is used to activate CS.
2. Find the control word for an 8255 in mode 0 (simple 110) if all the ports are

configured as output ports.
3. Find the control word for an 8255 in mode 0 (simple 1/0) if all the ports are

configured as input ports.
4. Program an 8255 with the following specifications. All ports are output ports.

Write 55H to the ports. After a delay, switch them all to AAH.
5. How are ports configured after the control register is loaded with 89H?

SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER
This section describes the PC Interface Trainer and the PC Bus Extender.

These cards allow students to access the PC buses and can be used to interface
real-world devices such as LCDs, stepper motors, and sensors to the x86 Pc.
These boards were designed by M. A. Mazidi to provide students with a relative­
ly inexpensive learning tool. They are available from the supplier listed at the fol­
lowing Web site.

www.microdigitaled.com

The above site for Micro Digital Education is designed to support this
and other textbooks by the authors.

PC 1/0 Bus Extender

The PC Bus Extender card is an ISA plug-in board that brings out some
of the ISA signals through a 50-pin cable. This card allows one to interface an
8255 110 board called the PC Interface Trainer to the x86 Pc. The PC Bus
Extender buffers only port addresses 300 - 3IFH. It does not have a plug-and-play
feature and must be used with an x86 PC in which 1/0 port addresses 300 - 31 FH
are free. Although some network cards use a portion of the address range 300 -
3 I FH, one can assign a different address space to them since these network cards
have plug-and-play features. The 50-pin cable used by the PC Bus Extender can
be as long as 5 feet.

74LS245

DO ---i
System

data bus from
expansion slot

1~5~~§~j D7 ---I G A7 ~p-----------~I
AEN A9 ./

Figure 11-15. Buffering 1/0 Address Range 300 - 31 FH

-XDO

buffered
data bus

DIR -XD7

I
lOR

SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER 325

GN

Buffering 300 - 31FH address range

When accessing the system bus via the expansion slot, we must make
sure that the plug-in card does not interfere with the working of system buses on
the motherboard. To do that we isolate (buffer) a range of VO addresses using the
74LS245 chip. In buffering, the data bus is accessed only for a specific address
range and access by any address beyond the range is blocked. Figure 11-15 shows
how the 110 address range 300H - 31FH is buffered with the use of the 74LS245.

74LS245

DO DO
01 D1
D2 02 To
D3 D3 Cable
D4 D4 Connector
D5 D5
D6 D6
D7 DIR OC D7

J ./

74LS244

lOR lOR
lOW lOW

AO AO To
A1 A1 Cable
A2 A2 Connector A3 A3
A4 A4
A5 1G 2G A5

~~
74LS244

A6 A6
A7 A7
A8 A8 To
A9 A9 Cable

AEN AEN Connector
RSTIRII RSTIRII

1G 2G
+5V

II
74LS138 ":" -:

GNO t- _ To Vcc of all IC chips of the A5 A

GNO t- add-in board A6-- B

To Cable Connector A8-- C Y4
A7--G G2A

~~=- AEN---O G2B
A9-- G1

D = pins B1, B31

Figure 11-16. Design of the PC Bus Extender Card

326 CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

Figure 11-16 shows the circuit for buffering all the buses in the Bus
Extender card. Notice the use of the 74LS244 to boost the address and control sig­
nals. This ensures the integrity of the signal transmitted via cables to the Trainer.

PC BUS EXTENDER CARD
1/0 (300-31 F)
DESIGNED BY M.A.MAZIDI© PIN 1 0 0

0 0
0 0
0 0
0 0

U4 Ul 0 0
0 u
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

U2 U3 0 0
0 0 0090900000

5
0 0

74LS244 0 0
0 0
0 0

0000000000

Figure 11-17. PC Bus Extender Card for ISA Bus

Installing the PC Bus Extender and booting the PC

PIN 2

PIN 50

The 50-pin cable with a female connector on each end brings the bus sig­
nals out of the Pc. In this way, the PC case can be closed and secure. Although
the cable is generally 2 or 3 feet long, it can be as long as 5 feet. The red (or some
other color) stripe on your cable indicates pin I. See Figure 11-17. When con­
necting the cable with connectors on both ends to HI, make sure that the red stripe
and pin I of H I match. Figure 11-18 shows the female connector. Figure 11-19
shows the connector cable with the stripe that indicates pin 1.

Install the card into an ISA expansion slot and turn on the PC power
switch. If the PC boots up, you are ready to do PC interfacing with the PC Trainer.
The PC Trainer is designed to be used specifically with the PC Bus Extender card.

Failure to boot

If the PC does not boot up properly, turn off the power to the PC and
remove the bus extender card. First examine it to make sure that all the ICs on the
Bus Extender card match the number and the direction as shown on the card.
Assuming that everything is exactly the same as shown on the board, the failure
of your PC to boot is due to 110 address conflict. This means that some other
card(s) installed in your PC is using a portion of 110 addresses 300 - 31FH that
are needed by the PC Bus Extender card. You need to free all the I/O addresses
300 - 31FH by changing switches on the plug-in board that caused the conflict
before installing the PC Bus Extender card.

PC Interface Trainer

The PC Trainer (see Figure 11-21) is a trainer designed to be used with
the PC Bus Extender discussed above. In version I of this Trainer, there were both
8255 and 8253 chips on board. Version 2 has only an 8255 chip on board in
which PA, PB, and PC are accessible via a terminal block. With the 8255 chip
installed on the module, one can perform real-world experiments such as inter­
facing an LCD, stepper motor, ADC, or sensors with the Pc. Next we discuss the
design of the PC Interface Trainer.

SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER 327

328

Design of the PC Trainer

Header I (HI) on the module brings in bus signals from the PC Bus
Extender by a 50-pin cable. As discussed above, the addresses provided to this
module are 300 - 3IFH. Addresses 300 - 303 are used for the 8255 chip. The
address decoding on the module is performed by the 74LS 138. As shown in
Figure 11-20, YO and YI are used on-board for the 8255 and 8253, respectively.
Y I, Y2, Y3, and Y 4 are provided through H2 for additional ports to be added off­
board.

The role of H1 and H2

Note the role of HI and H2 on the PC Trainer. HI is connected to the PC
Bus Extender cable, thereby bringing on-board the signals from the x86 PC ISA
expansion slot. H2 is used only if additional ports are needed. In other words, H2
is used exclusively for future expansion of your 110 ports where the address
decoding is already performed on the module by a 74LS138, while Y2, Y3, and
Y 4 provide the signal for the chip select. Notice that the H2 signals are identical
to the signals of HI except that pins 45, 47, and 49 provide the Y2, Y3, and Y4
outputs from the 74LS 138. Table 11-4 shows the 74LS 138 address assignment.

Connecting the Module Trainer to the PC and testing

The 50-pin
cable coming from the
PC Bus Extender goes
to HI of the PC
Interface Trainer. Notice
that the red stripe of
your cable indicates pin
I and must match pin I
of H I. In some versions
of the PC Trainer you
need to provide an exter­
nal +5 V DC source to
power the board. In newer
versions, it has an on­
board voltage regulator
that needs only an adaptor.
The LED should indicate
when the power is turned
on. Now you are ready for
testing the module.

(SOCket 1

••••••••••••••••••••••••• •••••••••••••••••••••••••
Socket 2 Socket 50

Figure 11-18. Female Connector for Cable

Key~

Colored stripe

.-/
Figure 11-19. Pin 1 on Connector Cable

Table 11-4: Address Assignment of the 74LS138 for PC Trainer

Selector Address Assi~ment

YO 300 - 303 Used by 8255 on the Module
YI 304 - 307 Used by 8253 (not available in newer versions)
Y2 308 - 30B Available via H2
Y3 30e - 30F Available via H2
Y4 310-313 Available via H2

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

8255

DOc> DO PAO
D7 D7 PA7

WR- WR
PBO
PB7

RD- RD PCO > AO- AO PC7 74LS138 A1- A1 8253
A2- A

g~ DO CLKO -A3- B YO 10---0 CS D7 GATO -
A4- C Y1 I'-' aUTO -

RESET I/IIR- I/IIR CLK1 -A5- G2A Y2 <b RD- RD GAT1 -
A6 ~ Y3 10-:1: AO- AO aUT1 -A7 }- G2B Y4 10_ .9 A1- A1 CLK2 f--

P.~N
AS-,;

AEN 74LS04
74~:rG1

GAT2 '--
~ cs aUT2 -

A9

Figure 11-20. PC Interface Trainer Decoding CircUitry

0 o B1 0 100001 H11 ~ H3 rgg rl H1 100001 H10
8255 88

00
00

'00 '00
00
00

00 00 00 ~ H6 in 00

JD
88

00
00 00 Cl o @
88

00 00 z 00 00
(!) o z

00 00
88 8 (!) 00 00 0 Vi 00

88
00

00 00 0
~ 00 00 Cl 00

I
H7 @ 00 00 00

00

~m
00 z 00

~ 88
00 (!)

88 00
00 00

'00
00

00 00
.-....r

00
00 00 ~
8

0 00 00
00 00

I
H8 w 08 00 00

H121Bl ~ 88
00 .,., 00 Cl m 00 - 00 z 00 00 '" 00

H9~ ~ ~ ~ ~
.,.,

88
(!)

N
;::': 0)

88
00 rasc)

()

~ a.
0 0

Figure 11-21. PC Interface Trainer Module (Version 1)

Testing the 8255 port

The headers on the board allow access to ports A, B, and C. Port address­
es for the 8255 are shown in Table 11-4. Following is a series of simple programs
to test ports A, B, and C of the 8255 using DEBUG. To perform the test, we write
55H (01010101 binary) and its complement AAH (10101010) to each port and
check the result using a logic probe.

SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER 329

330

Host PC

PC Bus Extender Card

Figure 11-22. PC Interface Trainer Connection

Testing Port A

5V Extemal
Power

To test Port A, go to DEBUG in the DOS directory and write the follow­
mgprogram:

C:\OOS>Oebug
-A 100
MOV AL,80
MOV OX,303
OlJT OX,AL
MOV AL,55
MOV OX,300
OlJT OX, AL
INT 3

-G~100 {RETlJRN)

After you run the above program, port A should have binary 010 10 10 I.
Use a logic probe to verifY the result. Repeat the above test by sending AAH to
Port A. Replace the line "MOY AL,55" with "MOY AL,AA" as shown below:

-A106
MOV AL,AA
-G~100

Using the logic probe, examine Port A to see if it contains binary
10101010. We can repeat the above tests for Ports B and C by simply changing
the port to 301 and then to 302. Example 11-7 shows a test program to toggle the
PA and PB bits. Notice that in order to avoid locking up the system, we use INT
16H to exit upon pressing any key. You can modifY Example 11-7 to toggle all
bits of PA, PB, and Pc. Make sure to put a message on the PC screen to prompt
the user to exit by pressing any key.

Notice that all the headers with the dual-row male connector are polar­
ized. They use the even pins as ground in order to prevent crosstalk. Such use of
even pins as ground allows the use of long cables to carry signals off the board
while suppressing the noise.

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

Example 11-7

Write a program to toggle all bits of PA and PB of the 8255 chip on the PC Trainer. Put a 112
second delay in between "on" and "off' states. Use !NT 16H to exit if there is a keypress.

Solution:
The program below toggles all bits of PA and PB indefinitely. Pressing any key exits the pro­
gram.

MOV DX,303H ;CONTROL REG ADDRESS
MOV AL,80H ;ALL PORTS AS OUTPUT
OUT DX,AL

AGAIN: MOV DX,300H ;PAADDRESS
MOV AL,55H
OUT DX,AL
INC OX ;PBADDRESS
OUT DX,AL
CALL HSDELAY ;112 SEC DELAY
MOV DX,300H ;PAADDRESS
MOV AL,OAAH
OUT DX,AL
INC OX ;PB ADDRESS
OUT DX,AL
CALL HSDELAY ;112 SEC DELAY
MOV AH,01
INT 16H ;CHECK KEYPRESS
JZ AGAIN ;PRESS ANY KEY TO EXIT
MOV AH,4CH ,
INT 21H ;EXIT

HSDELAY PROC NEAR
MOV CX,33144 ;33144x15.085 usec=1/2 sec
PUSH AX

W1: IN AL,61H
AND AL,00010000B
CMP AL,AH
JE W1
MOV AH,AL
LOOP W1
POP AX
RET

HSDELAY ENDP

Notice the use of !NT 16H option AH=O 1 where the keypress is checked. If there is no key­
press, it will continue.

How to get the PC Interface Trainer

You can the Bus Extender and PC Trainer from the vendors listed on the
www.microdigitaled.com site. The PCI bus version of the Trainer is under devel­
opment. See the above web site for more information.

Review Questions

I. What address range is used by the PC Bus Extender card?
2. True or false. The PC Bus Extender is a plug-and-play card.
3. What addresses are used by the 8255 chip on the PC Trainer board?
4. What addresses are decoded by the YI output of the 74LSI38 chip?
5. In the program that tests the 8255, why do we use !NT 16H?

SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER 331

SECTION 11.6: 110 PROGRAMMING WITH C/C++ AND VB

332

With the rise in popularity of C/C++ and Visual Basic in recent decades,
it is fitting to explore how these languages are used in xS6 I/O programming. In
this section we discuss I/O operation in C/C++ and Visual Basic. We discuss I/O
programming in Microsoft's Visual C/C++, Borland's Turbo C, Linux C/C++, and
Visual Basic environments.

Visual C/C++ 110 programming

Microsoft Visual C++ programming is one of the most widely used pro­
gramming languages on the Windows platform. Since Visual C++ is an object­
oriented language, it comes with many classes and objects to make programming
easier and more efficient. Unfortunately, there is no object or class for directly
accessing I/O ports in the full Windows version of Visual C++. The reason for
that is that Microsoft wants to make sure the xS6 system programming is under
full control of the operating system. This precludes any hacking into the system
hardware. This applies also to Windows NT. In other words, none of the system
!NT instructions such as !NT 21 Hand lIO operations that we have discussed in
previous chapters are applicable in Windows NT and its subsequent versions. To
access the lIO and other hardware features of the xS6 PC in the NT environment
you must use MS Developer's Software provided by Microsoft. The situation is
different in the Windows 9x (95 and 9S) environment. While INT 21 H and other
system interrupt instructions are blocked in Windows 9x, direct I/O addressing is
available. To access I/O directly in Windows 9x, you must program Visual C++
in console mode. The instruction syntax for I/O operations is shown in Table lI­
S. Notice the use of the undersign (_) in both the _ outp and jnp instructions. It
must also noted that while the x86 Assembly language makes a distinction
between the S-bit and 16-bit I/O addresses by using the OX register, there is no
such distinction in C programming, as shown in Table 11-5. In other words, for
the instruction "outp(port#,byte)" the port# can take any address value between
0000 - FFFFH.

Table 11-5. Input/Output Operations in Microsoft Visual C++

x86 Assembly Visual C++
OUT port#,AL outp(port#,byte)
OUT DX,AL outp(port#,byte)
IN AL,port# inp(port#)
IN AL,DX _inp(port#)

Visual C++ output example

Next we give some examples of lIO programming in Visual C++.
Reexamine Example 11-7 in Assembly language. The Visual C++ version of that
program is given in Example II-S. [n Example II-S, we are toggling all the bits
of PA and PB of the S255 in the PC Trainer. Notice the following points.
1. The use of the _sleep function to create a delay.
2. The use of kbhit to exit upon any key press.
3. The use of Ox in _outp(Ox300,OxSO) to indicate that the values are in hex.

Visual C++ input example

As an example of inputting data in Visual C++, examine Example 11-9.
We wrote the Assembly language version of this program in Example 11-5. In
Example 11-9, we are getting a byte of data from port A and sending it to both PB
and PC. Notice that when we bring a byte of data in, we save it using the variable

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

Example 11-8

Write a Visual c++ program to toggle all bits ofPA and PB oftbe 8255 chip on tbe PC Trainer.
Use tbe kbhit function to exit iftbere is a keypress.
Solution:
I rrested by Dan Bent
#include<conio.h>
#include<stdio.h>
#include<iostream.h>
#include<iomanip.h>
#include<windows.h>
void mainO

{
cout«setiosflags(ios::unitbut); II clear screen buffer
cout«"This program toggles the bits for Port A and Port B.";
_outp(Ox303,Ox80); IIMAKE PA,PB of 8255 ALL OUTPUT
do

l

{
_ outp(Ox300,Ox55);

outp(Ox30 I ,Ox55);
sleep(500);
outp(Ox3 00, OxAA);

_ outp(0x301,OxAA);
_sleep(500);
l
while(!kbhit());

Example 11-9

IISEND 55H TO PORT A
IISEND 55H TO PORT B
IIDELAY of 500 msec.
IINOW SEND AAH TO PA, and PB

Write a Visual C++ program to get a byte of data from PA and send it to botb PB and PC of
8255 in PC Trainer.
Solution:
#include<conio.h>
#include<stdio.h>
#include<iostream.h>
#include<iomanip.h>
#include<windows.h>
#include<process.h>
I rr ested by Dan Bent
void mainO

{

l

unsigned char mybyte;
cout«setiosflags(ios::unitbut); II clear screen buffer
system("CLS");
_outp(0x303,Ox90); IIPA=in, PB=out, PC=out
_sleep(5); Ilwait 5 milliseconds
mybyte= jnp(0x300); Ilget byte from PA
_outp(Ox301,mybyte); Iisend to PB
_sleep(5);
_ outp(Ox302,mybyte); Iisend to Port C
_sleep(5);
cout«mybyte; Iisend to PC screen also
cout«I'\n\n";

SECTION 11.6: 110 PROGRAMMING WITH CtC++ AND VB 333

Example 11-10

mybyte before we send it out. Make a habit of doing this every time you input
data. Avoid combining a bunch of input and output operations together in a sin­
gle line. That kind of dense code is very difficult for other programmers to read.
Also, notice how the "unsigned char mybyte" line dictates the size of data as
unsigned character. This allows the mybyte variable to be an 8-bit data, taking
values of 00 - FFH.

1/0 programming in Turbo C/C++

Borland is a major provider of software for the x86 PC. The company was
founded in the early 1980s and became one of the early pioneers in the develop­
ment of software for the x86 PC. They are also known by the name of Inprise.
Check their web site www.borland.com. Their Turbo CIC++ is a widely used pro­
gram compiler for x86 PCs. It supports I/O programming of ports as shown in
Table 11-6. It must be noted that these I/O functions are no longer supported in
Borland C++ Builder and you must write your own I/O functions using Assembly
language. See the Micro Digital Education web site www.microdigitaled.com for
more information on this and other topics.

Table 11-6: Input/Output Operation in Borland C++

x86 Assembly Turbo C++
OUT port#,AL outp(port#,byte)
OUT DX,AL outp(port#,byte)
IN AL,port# inp(port#)
IN AL,DX inp(port#)

Write a Borland (Inprise) Turbo C program to toggle all bits ofPA and PB of the 8255 chip on
the PC Trainer. Put a 500 ms (milliseconds) delay between the "on" and "off" states. Use the
kbhit function to exit if there is a keypress.

Solution:

#include<conio.h>
#include<stdio.h>
void mainO

334

{
printf("This program toggles the bits for Port A and Port B.");
outp(Ox303,Ox80); IIMAKE PA,PB of 8255 ALL OUTPUT
do

}

{
outp(0x300,Ox55);
outp(0x301,Ox55);
delay(500);
outp(0x300,OxAA);
outp(0x301,OxAA);
delay(500);
}
while(!kbhit());

IISEND 55H TO PORT A
IISEND 55H TO PORT B
IIDELAY of500 msec.
IINOW SEND AAH TO PA, and PB

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

Example 11-11

Write a Turbo C/C++ program to get a byte of data from PA and send it to both PB and PC of
the 8255 in the PC Trainer.

Solution:

#include<conio.h>
#include<stdio.h>
void mainO

(

}

unsigned char mybyte;
c1s0;
printf("This program gets a byte from PA and sends it to PB,PC and screen\n.");
outp(0x303,Ox90); IIPA=in, PB=out, PC=out
delay(5); Ilwait 5 milliseconds
mybyte=inp(0x300); Ilget byte from PA
outp(0x301,mybyte); lisend to PB
dealy(5);
outp(0x302,mybyte); Iisend to Port C
sleep(5);
printf("The input from PA is equal to %X in hex \n",mybyte);

1/0 programming in Linux C/C++

Linux is a popular operating system for the x86 Pc. You can get a copy
of the latest C/C++ compiler from http://gcc.gnu.org. Table 11-7 provides the
C/C++ syntax for I/O programming in the Linux OS environment.

Table 11-7. Input/Output Operations in Linux

x86 AssemblY Linux CtC++
OUT port#,AL outb(byte,port#)
OUT DX,AL outb(byte,port#)
IN AL,port# inb(port#)
IN AL,DX inb(port#)

Compiling and running Linux C/C++ programs with 1/0 functions

To compile the 1/0 programs of Examples 11-12 and 11-13, the follow­
ing points must be noted.
I. To compile with a keypress loop, you must link to library ncurses as follows:

> gcc -Incurses toggle.c -0 toggle
2. To run the program, you must either be root or root must change permissions

on executable for hardware port access.
Example: (as root or superuser)
> chown root toggle
> chmod 4750 toggle

Now toggle can be executed by users other than root. More information on
this topic can be found at www.microdigitaled.com.

SECTION 11.6: 110 PROGRAMMING WITH CtC++ AND VB 335

Example 11-12

Write a CIC++ program for a PC with the Linux OS to toggle all bits of PA and PB of the 8255
chip on the PC Trainer. Put a 500 ms delay between the "on" and "off' states. Pressing any key
should exit the program.

Solntion:

I I This program demonstrates low level 110
II using C language on a Linux based system.

II Tested by Nathan Noel II
#include <stdio.h> I I for printfO
#include <unistd.h> I I for usleepO
#include <sys/io.h> II for outb() and inbO
#include <ncurses.h> II for console i/o functions
int main 0

{
int n=O;
int delay=5 e5;

I I temp char variable
I I sleep delay variable

ioperm(Ox300,4,Ox300); II get port permission
outb(Ox80,0x303); II send control word

11----- begin ncurses setup ----------
11--- (needed for console i/o) -------

initscrO;
cbreakO;
noecho();
halfdelay(I);

II initialize screen for ncurses
I I do not wait for carriage return
I I do not echo input character
I I only wait for I ms for input
II from keyboard

11----- end ncurses setup ----------

do
{
printf("Ox55 \n\r");
refreshO;
outb(Ox55,Ox300);
outb(Ox55,0x301);
usleep(delay);
printf("OxAA In\r");
refreshO;
outb(Oxaa,Ox300);
outb(Oxaa,0x30 I);
usleep(delay);

n=getchO;

}
while(n<=O);

endwinO;
return 0;
}

336

II main toggle loop

I I display status to screen
II refreshO to update console
II send Ox55 to PortA (OIOIOIOIB)
II send Ox55 to PortB (OIOIOIOIB)

II wait for 500ms (5 e5 microseconds)
I I display status to screen
II refreshO to update console
II send 0xAA to PortA (IOIOIOIOB)
II send OxAA to PortB (IOIOIOIOB)

I I wait for 500ms
I I get input from keyboard
I I if no keypress in I ms, n=O
I I due to halfdelayO

I I test for keypress
I I if keypress, exit program
I I close program console for ncurses

I I exit program

CHAPTER 11: I/O AND THE 8255; ISA BUS INTERFACING

Example 11-13

Write a C/C++ program for a PC with the Linux OS to get a byte of data from port A and
send it to both port B and port C of the 8255 in the PC Trainer.

Solution:

I I This program gets data from Port A and
II sends a copy to both Port B and Port C.
II Tested by: Nathan Noel-- 2110/2002
11---
#include <stdio.h>
#include <unistd.h>
#include <sys/io.h>
#include <ncurses.h>

int main 0
{
int n=O;
int i=O;

II temp variable
II temp variable

ioperm(Ox300,4,0x300);/1 get permission to use ports
outb(Ox90,Ox303); II send control word for

initscrO;
cbreakO;
noechoO;
halfdelay(I);

II PortA=input, PortB=output, PortC=output

I I initialize screen for ncurses
I I do not wait for carriage return
I I do not echo input character
II only wait for lms for input

do I I main toggle loop
{
i=inb(0x300); II get data from PortA
usleep(le5); II sleep for lOOms

outb(i,0x30 I);
outb(i,0x302);

n=getchO;

}while(n<=O);

endwinO;
return (0);
}

I I send data to PortB
I I send data to PortC

I I get input from keyboard
I I if no keypress in I ms, n=O
I I test for keypress
I I if keypress, exit program

I I close program window
I I exit program

SECTION 11.6: 110 PROGRAMMING WITH CtC++ AND VB 337

I/O programming in Visual Basic

Microsoft's Visual Basic is a widely used programming language for the
x86 PC due to its quick development time. With all its capabilities, VB does not
allow direct access of VO ports. To solve this problem we have written a dll
(dynamic link library) program in CIC++ for the Visual Basic 110 access. The VB
source code for the 110 examples along with the dll files are available from the
www.microdigitaled.com web site.

Review Questions

l. Show how to send 99H to port address 300H in Visual CIC++.
2 Show how to send 99H to port address 300H in Borland Turbo CIC++.
3. Show how to send 99H to port address 300H in Linux CIC++.
4. Show how to bring a byte from the address 302H in Visual CIC++.
5. Show how to bring a byte from the address 302H in Linux CIC++.

SECTION 11.7: 8-BIT AND 16-BIT I/O TIMING IN ISA BUS

338

As we have seen, interfacing 8-bit devices such as the 8255 to the x86 PC
is a straightforward process because the 8-bit data pins match DO - D7 of the ISA
bus. Just as in 16-bit memory interfacing, there is a problem when we want to use
the 16-bit (DO - DIS) data bus of the x86 for 110 operations. In this section we
look at the timing and design of 16-bit data 110 and compare it with 8-bit I/O
operations. First, we examine a few issues concerning the ISA bus.

8-bit and 16-bit 1/0 in ISA bus

The tenn ISA computers encompasses IBM PC AT, PS, and any x86 PCs
with AT-type expansion slots, as explored in Chapter 9. These computers could
use the 286, 386, 486, Intel Pentium, or any x36 micoprocessor from AMD as
their CPU, but they have ISA-type expansion slots. The following points must be
noted about these types of computers:

I. In communications between the x86 CPU and 1/0 ports, typically 110 devices
are slow and cannot respond to the CPU's normal speed. In such situations,
wait states must be inserted into the I/O cycle. The 80286 and all higher
microprocessors (386, 486, Pentium, etc.) have two clocks for the 110 cycle
time when they are designed with 0 WS. In this regard, it is the same as mem­
ory cycle time for such processors. For example, a 100-MHz Pentium proce­
sor provides a total of 20 ns (2 x IOns since 1/200 MHz = I 0 nanoseconds)
for the 110 cycle time. While in recent years, memory speed has been increas­
ing steadily, there has not been a corresponding increase in the speed of 110
components such as ADCs (analog-ta-digital converters). In general, 1/0
devices are much slower than memory since the 110 is interfaced with nature
whereas memory is a semiconductor device. For example, a temperature .sen­
sor converts temperatures to voltage levels and the voltages are converted to
binary numbers using ADCs before they are provided to the CPU. The delays
associated with each stage of conversion add to the 1/0 response time, caus­
ing a severe bottleneck. This is only one of the reasons why the ISA expan­
sion slot speed is limited to 8 MHz, in spite of the fact that the CPU bus speed
is 100 MHz in the Pentium. Therefore, to interface with slow 110 devices, one
must insert wait states into the 1/0 cycle time to match the device speed.

2. When the CPU communicates with an ISA expansion slot, be it memory or a
peripheral 1/0 port, it can only use an 8- or 16-bit data bus, even if the CPU
is 32-bit, such as a 386, 486, or Pentium. In 386 and 486 PCs where the CPU

CHAPTER 11: I/O AND THE 8255; ISA BUS INTERFACING

has a 32-bit data bus, memory (or even a peripheral) on the motherboard uses
a 32-bit data bus, but when it goes to an ISA expansion slot it must use a 16-
bit bus. When designing a plug-in card for the ISA expansion slot of a moth­
erboard with a 32-or 64-bit CPU, we use the 8- or 16-bit data bus but not the
32/64 bit data buses. To access the x86's entire 32- or 64-bit data bus through
the expansion slot, we must use a PCI slot. This is discussed in Chapter 27.

3. The ISA bus speed is limited to 8 MHz. It does not matter that the x86 CPU
works on a frequency of 10 MHz or 100 MHz or even I GHz: When it com­
municates with devices (memory or I/O ports) through the ISA expansion
slots it must slow down to 8 MHz. That means inserting many wait states in
order to access the boards connected to ISA expansion slots. The good news
is that the chipset on the motherboard will do all the above tasks.

These three limitations are commonly referred to as I/O bottleneck since
they slow down the flow of information to/from the CPU when using I/O devices.

1/0 signals of the ISA bus

Just as in memory, the ISA bus supports both 8- and 16-bit I/O operations.
Furthermore, the problems associated with 8- and 16-bit data memory interfacing
discussed in Chapter 10 also exist in I/O interfacing of the ISA bus. The follow­
ing ISA slot pins are associated with I/O interfacing and must be understood.

SAO - SAg (system address)

The system address AO - A9 bus provides the I/O addresses. This limits
the I/O addresses supported by the ISA slot to 1024 ports.

SOO - S07 (system data bus)

The system DO - 07 8-bit data bus or DO - DIS 16-bit data bus provides
the data path between the CPU and the I/O device.

lOR and lOW

The lOR and lOW control signals are both active low and are connected
to the read and write pins of I/O devices.

IOCS16 (1/0 chip select 16)

This is an input into the ISA bus and is an active low signal. It informs
the system that the I/O operation uses the entire 16-bit data bus DO - DIS. If this
input is not driven low, the ISA bus uses the 8-bit data bus DO - 07.

ZEROWS (zero wait state)

ZEROWS is an input pin into the ISA bus and is active low. If this signal
is driven low, it tells the system that I/O and memory operations can be complet­
ed without any WS. We will see how this applies to I/O operation in this section.

lOCH ROY (1/0 channel ready)

This is an input signal into the ISA bus and is active low. By driving it
low, we are asking the system to extend the standard ISA bus cycle. In response
to asserting this pin, the system will insert wait states into the I/O or memory
cycle until it is deasserted. The function of this pin is the opposite of ZEROWS.
In other words, by asserting this pin we are extending the I/O (or memory) read
and write cycle time to allow the interfacing of slow devices to the ISA bus.

SECTION 11.7: 8-BIT AND 16-BIT -IIO TIMING IN ISA BUS 339

340

SIGNAL NAME

GN
RESET DR

+5VD
IRQ

-5VD
DRQ

-12V D
OW

+12V D
GN

-SMEM

D
V
C

C
2
C
S
C
D

-SMEM R
-10 W
-10 R

-DACK
,,~ DRQ

-DACK
DRQ

1
1
H -REFRES

CL
IRQ
IRQ
IRQ
IRQ
IRQ

K

;r
\~

n

-DACK2
T

BAL
+5VD

OS
GN

IC
E
C
C
D

-MEM CS1 6
-110 CS 1 6

1
IRQ1
IRQ1
IRQ1
IRQ1
IRQ1

2
5
4

5
5
6

-DACK
DRQ

-DACK
DRQ

-DACK
DRQ

-DACK
DRQ

+5V D
-MASTE

GN

6
7
7
C
R
D

REAR PANEL

-
I--B1 A1-
I-- -
r-- -
r-- -
I-- -
- -- -- -- -
-B10 A10-

f-I-- -
f-I-- -
f-I-- -
f-I-- -

r-- -
r-- -
r-- -
r-- -
r--
r-- B20 A20-

'-
I-- -
I-- -
I-- -
I-- -
r-- -
r-- -
r-- -
I-- -
I-- -
I--

A31= f-I--B31
~

"-
-

-01 C1-
- -- -- -- -- -- -- -- -
-010 C10-- -- -
- -- -- -- -
- -
-018 C18-

-

"-

Figure 11-23. ISA (IBM PC AT) Bus Slot Signals

,- '\

'--

"-
- '\

-

'\,

SIGNAL NAME

-110 CH CK
SD7
SD6
SD5
SD4
SD3
SD2
SD1
SDO
-110 CH RDY
AEN
SA19
SA18
SA17
SA16
SA15
SA14
SA13
SA12
SA11
SA10
SA9
SA8
SA7
SA6
SA5
SA4
SA3
SA2
SA1
SAO

SBHE
LA23
LA22
LA21
LA20
LA19
LA18
LA17
-MEMR
-MEMW
SD08
SD09
SD10
SD11
SD12
SD13
SD14
SD15

COMPONENT
SlOE

(Reprinted by permission from "IBM Technical Reference" c. 1985 by International Business Machines Corporation)

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

Tc1 Tc2 Tc3 Tc4 Tc Ts

ISACLK2

SYSCLK

BALE_~/T"\ __ -'-__ -'-__ --'-___ '--__ -'--_..J/1

S~~~~0.001/~~i ______ -,--____ -+ ______ ~ ____ ~ ____ --,-____ ~

lOR ~~-+ ______ ~ ____ ~ ____ ~ ______ ~~

IOCS16W'//////J/l W/i/J/lffij
.. ...

ZEROWSW///I!II/III/H/////////////II!///II!//////j/fJ/l/ . Wl/JlMI/////!I///////1II!Jj

(~~~gl 47M!I!I//////$/J4M$M!II;/(lff&-< h
;; ;

Figure 11-24. Standard 8-bit ISA 1/0 Read Cycle Time (4 WS)

8-bit UO timing and operation in ISA bus

It would be helpful to review the discussion of 8-bit memory operation
and interfacing in Chapter 10 since memory and I/O operations are very similar.
The I/O operation of the ISA bus defaults to 8-bit and uses the DO - D7 data bus
to transfer data between the I/O device and the CPU. It completes the read (or
write) cycle in 6 (2 + 4 WS) clocks if ZEROWS is not asserted low. In other
words, the default 1/0 operation for ISA bus has 4 WS and uses the 8-bit data bus.
This is an 8-bit standard 1/0 operation and is shown in Figure 11-24. With a max­
imum of 8 MHz for the ISA bus clock, 1/0 takes a total of 125 ns x 6 ; 750 ns.
Just like memory cycle time, we can shorten the I/O cycle time by asserting the
ZEROWS pin low. This will cause the I/O operation to be completed in 3 (2 + I

ISACLK2

SYSCLK

BALE

SA[19:0]
SBHE

lOR

Ts Tc1 Tc2 Tc Ts

--~~~--~--~----~~~
/I/////Ub-< : ~

\ r--1 ~----+----~~

IOCS16 ?/I///I//I/!i//$//
; . :

ZEROWS fi///!//!///I~$;mu/i/I/I;$!/lA /r+.-------i

SD[7:0]
(READ) ------+--~IHi$ff!IIH/ffII{/////!h-<'-':_-J>----:

Figure 11-25. Zero WS 8-bit ISA 110 Read Cycle Time (1 WS)

SECTION 11.7: 8-BIT AND 16-BIT 1/0 TIMING IN ISA BUS 341

342

WS) clocks instead of 6 (2 + 4 WS). Notice that the default is 4 WS unless
ZEROWS is asserted. This is shown in Figure 11-25. Now if the default 4 WS
110 cycle time is not long enough, we can extend it by driving the [OCHROY pin
low. The extension happens as long as the [OCHRDY pin is low. The maximum
extension is limited to lOWS.

16-bit I/O operation and timing in [SA bus

Review the discussion of l6-bit memory operations and interfacing in
Chapter 10 since memory and 110 operations are very similar. Just as in memory,
the 16-bit 110 port uses data bus DO - 015 to transfer data between the CPU and
110 devices. First let's look at 16-bit 110 instructions supported by the x86 fami­
ly. Similar to memory, the x86 allows the uses of DO - 015 for data transfer
between the CPU and 110 devices. It must be noted that in the 16-bit [/0 opera­
tion, the low byte uses DO - 07 and the high byte uses the 08 - 015 data bus. The
following is the 16-bit 1/0 instructions fonnat.

(1)

(2)

16-bit data ports instruction

Inputting Data
IN AX, port#

MOV OX, port#
IN AX, OX

Outputting Data
OUT port#, AX

MOV OX, port#
OUT OX,AX

Notice that we must use AX instead of AL in the 16-bit [/0. To use 16-
bit data 110, we need two port addresses, one for each byte. Again, this is because
110 space is byte addressable, just like memory space. Look at the following:

MOV AX,98F6H
OUT 40H,AX ;send out AX to port 308H & 309H

In this case F6H, the content of AL, goes to port address 40H while 98H,
the content of AH, is transferred to port address 41 H. The low byte goes to the
low port address and the high byte to the high port address. This is exactly like
memory data transfers in that the low byte goes to the low address location and
the high byte goes to the high address location (the little endian convention). This
principle works the same for 16-bit port addresses as shown below:

MOV OX,310H
MOV AX,98F6H
OUT OX,AX ;send out AX to port 310H & 311H

Again the F6H is sent to port address 31 OH using data path DO - 07 and
98H goes to port address 311 H using the 08 - 015 data path. Next we will con­
trast 8-bit and 16-bit 110 via the ISA bus.

16-bit 1/0 timing and operation via ISA bus

As mentioned earlier, 8-bit data transfer is the default mode for the [SA
bus expansion slots. To perform 16-bit data transfers using DO - 015, we must
assert the IOCS16 pin low. The 16-bit bus transfers data twice as fast as an 8-bit
data bus. However, it requires twice the board space in addition to an increase in
power consumption. The 16-bit data read cycle time for the ISA bus with one WS
is shown in Figure 11-26. This is the standard read cycle time in the ISA bus. In
other words, unlike memory, you cannot get zero wait state bus activity for 16-bit
I/O operations. Therefore, ZEROWS has no effect on 16-bit 1/0 operations, and
the standard 16-bit ISA bus cycle timing is completed in 3 clocks. While you can-

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

not shorten the 16-bit I/O bus cycle time, you can extend it by asserting the
IOCHRDY pin.

ISACLK2

SYSCLK

BALE

SA[19:01
SBHE

lOR

IOCS16

ZEROWS

SD[7:01
(READ)

Ts Tc1 Tc Ts

__ ~~~ __ ~ __ -+ __ ~/1

H4VH/H~~' ____ ~ ____ ~~~

$////$M(IA

.lll//I/

\'--+-----i----/

/1//////1/1

Figure 11-26. Standard 16-bit ISA I/O Read Cycle Time (1WS)

I/O bus bandwidth for ISA

The I/O bus bandwidth is the rate of data transfer between the CPU and
1/0 devices and is dictated by the bus speed and the data bus width used. Example
11-14 shows the calculation of bus bandwidth for the ISA bus.

Example 11-14

Find the ISA bus bandwidth for (a) 8-bit standard, (b) 8-bit with ZEROWS asserted, and
(c) 16-bit standard.

Solution:

Since the ISA bus speed is 8 MHz, we have 118 MHz = 125 nanoseconds for the bus clock.

(a) The standard 8-bit I/O bus cycle for ISA uses 4 WS. Therefore, the bus cycle time is 6
clocks. Now cycle time = 6 x 125 ns = 750 and the bus bandwidth is 11750 ns x I bytes = 1.33
megabytes/second.

(b) IfZEROWS is asserted in 8-bit I/O, we have 3 clocks for the I/O cycle time. Therefore, we
have a cycle time of 3 x 125 = 375 ns and 1/375 os x I byte = 2.66 megabyteslsecond for bus
bandwidth.

(c) For 16-bit 1/0 data transfers we must assert the IOCS16 pin. The 1/0 cycle time is 3 clocks.
Therefore, we have a bus bandwidth of II (3 x 125) x 2 = 5.33 megabytes/second. For 16-bit
1/0, we cannot assert ZEROWS to shorten the cycle time.

SECTION 11.7: 8-BIT AND 16-BIT 1/0 TIMING IN ISA BUS 343

344

Interfacing 8-bit peripherals to a 16-bit data bus

As mentioned in the last chapter, microprocessors with a 16-bit data bus
use odd and even byte spaces. This is done with the help of the AO and BHE pins
as shown below:

BI-IE
o
o
I

AO
o
I
o

Even-addressed words (uses DO - DIS)
Odd-addressed byte (uses D8 - DIS)
Even-addressed byte (uses DO - D7)

In interfacing l6-bit 110, the main issue is how to deal with odd and even
address ports. The fact that data for even-address ports is carried on data bus DO
- D7 and data for odd address ports is carried on D8 - D IS makes port design a
challenging issue. There are two solutions to this problem.

I. Simply use two separate PPI devices, such as the 8255. One is used for odd
addresses and the other for even addresses. For example, in a design using
this method, if port 74H is assigned to port A of the 8255, then port B has the
address 76H, port C the address 78H, and so on. Another problem is out­
putting the contents of register AX in an instruction such as "OUT 76H,AX".
In this case, AL is carried to the 8255 with odd port addresses on DO - D7 and
AH is carried to the other 8255 with even port addresses on D8 - DIS. This
is extremely awkward and confusing for the programmer. Figure 11-27 shows
the 8255 with odd and even port addresses.

2. The second solution is to connect all 8-bit peripheral ports to data bus DO -
D7. This is exactly what IBM PC/AT designers, and indeed all makers of the
x86 ISA bus, havc done. In such a design, one problem must be solved. What
happens when instructions such as "OUT 75H,AL" are executed? This is the
odd-address port and the data is provided by the CPU on D8 - D IS, but the
port is connected to DO - D7. To solve this problem, one must use a latch to
grab the data from bus D8 - DIS and provide it to DO - D7, where the port is
connected. The latch responsible for this is called the Hi/Lo byte copier in
ISA bus literature. In order for the HilLo byte copier to work properly, it
needs some logic circuitry. It is the function of the bus control logic circuitry
to detect the following cases and activate the H ilLo byte copier.

Case 1: Outputting a byte to odd-addressed ports

To write a byte to an odd-addressed port, the CPU provides the data on
its upper data bus (08 - DIS) and makes AO = 1 and BHE = 0 since the port
address is an odd address. For example, in the instruction "OUT 41 H,AL", the
contents of AL are provided to D8 - DIS while BHE = 0 and A7 - AO = 0100
0001. The bus control logic circuitry senses that the CPU is trying to send 8-bit
data to an odd address through its 08 - DIS data bus. It activates the HilLo byte
copier, which copies the data from D8 - D IS to DO - D7. The data is presented to
the 8-bit peripheral device, which is connected to the lower data bus, 00 - 07.

Case 2: Inputting a byte from odd-addressed ports

To read a byte from an odd-addressed port, the CPU expects to receive
the data on its upper data bus (D8 - DIS) and makes AO = I and BHE = O. For
example, in the instruction "IN AL,43", A 7 - AO = 0100 00 II and BHE = O. The
CPU expects the data to come in through D8 - DIS. The input port device is con­
nected to DO - D7. The bus control logic circuitry senses that the CPU is trying to
get 8 bits of data from a peripheral device through its D8 - DIS data pins. The port

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

07 DO

I I
A1 AO
A2 A1

A3

AO
to CS

A7
RO WR

RO WR

A3
to \,., CS

A7 BHE
A1 AO
A2 A1

I I
015 08

Figure 11-27. Odd and Even Ports with the 8255

8255
with even
addresses

8255
with odd

addresses

is connected to DO - 07. It activates the HiILo byte copier and copies the data
from DO - 07 to 08 - Dl 5 and the data is presented to the CPU. The details of
bus control logic circuits are quite involved and in today's PCs are buried in the
chipsets of x86 PCs.

Review Questions

I. In the I SA bus, we use address to locate the I/O devi ceo
2. What is the maximum number ofI/O devices the ISA bus supports?
3. What is role of the ZEROWS pin for I/O cycle time?
4. The IOCSI6 pin is an (input, output) signal.
5. To use the 16-bit I/O capability of the ISA bus we must assert pin ____ .
6. What is the minimum I/O cycle time for the 8-bit ISA bus?
7. What is the maximum bus bandwidth for the ISA bus?

SUMMARY

This chapter discussed the input/output ports of the x86 IBM PC and
compatible computers. First, the Assembly language instructions used to read to
or write from these ports were covered. This was followed by a look at the hard­
ware design of I/O ports. The differences between memory-mapped and periph­
eral I/O were discussed. We also discussed the I/O map of the x86 PC. Then the
8255 programmable peripheral chip was examined in terms of pin layout, pro­
gramming, mode selection, and port addressing. Then we described the PC
Interface Trainer and PC Bus Extender, which can be attached to a PC in order to
allow interfacing with real-world devices. Specific problems associated with
interfacing I/O ports to the 16-bit data bus of the PC were addressed. It was also
shown how to calculate the I/O cycle time and I/O bus bandwidth.

SECTION 11.7: 8-BIT AND 16-BIT 110 TIMING IN ISA BUS 345

346

PROBLEMS

SECTION 11.1: 8088 INPUT/OUTPUT INSTRUCTIONS

I. True or false. While memory contains both code and data, ports contain data
only.

2. In instruction "OUT 99H,AL", the port address is:
(a) 8 bits (b) 16 bits (c) both (a) and (b) (d) none of the above

3. In instruction "OUT DX,AL", the port address is:
(a) 8 bits (b) 16 bits (c) either (a) or (b) (d) none of the above

4. True or false. In instruction "IN AL,78H", register AL is the destination.
5. Explain what the instruction "IN AL,5FH" does.
6. In instruction "OUT DX,AL", assume that AL ~ 3BH and OX ~ 300H.

Explain what the instruction does.

SECTION 11.2: I/O ADDRESS DECODING AND DESIGN

7. In the execution of an OUT instruction, which control signal is activated?
8. In the execution of an IN instruction, which control signal is activated?
9. True or false. Segment register OS is used to generate a port's physical

address.
10. True or false. In "OUT 65H,AL", only address pins AO - A 7 are used by the

8088 to provide the address.
II. True or false. An input port is distinguished from an output port by the port

address assigned to it.
12. True or false. An input port is distinguished from an output port by the lOR

and lOW control signals.
13. (Latch, Tri-state buffer) is used in the design of input ports.
14. (Latch, Tri-state buffer) is used in the design of output ports.
15. (lOR, lOW) is used in the design of input ports.
16. (lOR, lOW) is used in the design of output ports.
17. Draw a logical design for "OUT 16H,AL" using AND and inverter gates in

addition to a 74 LS3 73.
18. Draw a logical design for "IN AL,8IH" using AND and inverter gates in addi­

tion to a 74LS244.
19. Show one implementation of Problem 17 using NAND and inverter gates. Use

as many as you need.
20. Show one implementation of Problem 18 using NAND and inverter gates. Use

as many as you need.
21. True or false. Memory-mapped I/O uses control signals MEMR and MEMW.
22. True or false. In memory-mapped I/O, one can perform logical and arithmetic

operations on the data without moving it into the accumulator fIrst.
23. Show the logical design of "MOV [0 I OO],AL" for memory-mapped I/O using

AND and inverter gates and a 74LS373 latch. Assume that OS ~ B800H.
24. Why is memory-mapped I/O decoding more expensive?

SECTION 11.3: I/O ADDRESS MAP OF x86 PCs

25. Show the circuit connection to the PC bus for the following instructions. Use
simple logic gates 74LS373 and 74LS244.
(a) OUT 309H,AL (b) IN AL,30CH

26. Repeat Problem 25 using a 74LS 138 for the decoder.
27. Show the design ofan 8255 connection to the PC bus using simple logic gates.

Assume port address 304H as the base port address for the 8255.

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

PROBLEMS

28. Show the design of an 8255 connection to the PC bus using a 74LS138.
Assume base address 31 CH.

29. [n the IBM PC, how many port addresses are available in the address space
commonly referred to as prototype?

30. Which one is more economical, linear address select or absolute address
decoding?

31. Explain address aliasing.
32. Which one creates aliases, the linear address select or absolute address decod­

ing?
33. True or false. To design an IBM PC compatible system, one must follow the

110 map of the Pc.
34. In accessing ports in the PC, why must the AEN = 0 signal be used in decod-

ing?
35. What port address is used for a fixed delay in the x86 PC?
36. [n x86 PC, the _ bit of port address _H toggles every _ microseconds.
37. In Problem 36, to get a 1/4 second delay, we need to load the CX with what

value?
38. In Problem 36, calculate the time delay ifCX = 38,000.

SECTION 11.4: 8255 PPI CHIP

39. How many pins of the 8255 are used for ports, and how are they categorized?
40. What is the function of data pins DO - D7 in the 8255?
41. What is the advantage of using the 8255 over the 74LS373 and 74LS244?
42. True or false. All three ports, A, B, and C, can be programmed for simple [/0.
43. True or false. [n simple I/O programming of port A of the 8255, we can use

PAO - PA3 for output and PA4 - PA 7 for an input port.
44. Show the decoding circuitry for the 8255 if we want port A to have address

68H. Use NAND and inverter gates.
45. Which of the following port addresses cannot be assigned to port A of the

8255, and why?
(a) 32H (b) 45H (c) 89H (d) BAH

46. [f 91H is the control word, indicate which port is input and which is output.
47. Find the control word if PA = input, PB = input, and PCO - PC7 = output.
48. In the 8255, which mode is used if we want to simply send out data?
49. Write a program to monitor PA for a temperature of 100. If it is equal, it

should be saved in register BL. Also, send AAH to port B and 55H to port C.
Use the port address of your choice.

50. Write a program in Assembly language to get a byte of the data from PA, con­
vert it to ASCII bytes, and store them in registers CL, All, and AL. For exam­
ple, an input of FFH will show as 255 (Note: FF in binary becomes 323535
in ASCII).

SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER

51. Give the 110 address space used by the PC Bus Extender. Indicate the reason
for use of this space.

52. A PC Bus Extender is tested on (plugged into) two different PCs. One of the
PCs does not boot up while the card is inserted but the same card works fme
on the second PC (it boots up and works with the PC Interface Trainer). What
do you think is the problem?

53. In the PC Interface Trainer, each Y output of the 74LS138 handles how many
ports? List the 110 address space for YO through Y 4.

54. Give the 110 address space used on the PC Trainer itself.
55. Give the 110 address space for the 8255 on the PC Trainer.

347

348

56. Give the I/O address space for Y I.
57. Give the I/O address space available for future additions on H2 of the PC

Trainer.
58. True or false. The PC bus extender uses power from the PC power supply for

its chips (74LS138, 74LS244, 74LS245, etc.).
59. True or false. The PC Interface Trainer needs an external power source.
60. Write a simple program in Assembly language (use DEBUG) that sends 99

hex to all ports of the 8255 on the PC Trainer.
61. Write the Assembly language code for the PC Trainer to get data from port A

and send it to ports Band C.
62. Examine the program below.

MOV AL,90H
MOV DX,303H
OUT DX,AL
MOV DX,300H
IN AL,DX
INC DX
OUT DX,AL
INC DX
OUT DX,AL

Explain what the program does.

SECTION 11.7: 8-BIT AND 16-BIT I/O TIMING IN ISA BUS

63. Explain the role ofZEROWS in I/O timing.
64. Explain the role ofiOCSI6 in 16-bit 110.
65. In the ISA bus, the default mode for 110 operation is (8-bit, 16-bit).
66. What is the clock speed for the ISA bus?
67. How many WS are used in the 8-bit standard 110 cycle?
68. In Problem 67, how much does it take to complete one I/O read cycle?
69. How many WS are used in the 8-bit I/O cycle when ZEROWS is asserted?
70. In Problem 68, how much does it take to complete one 110 read cycle?
71. How many WS are used in the l6-bit standard I/O cycle?
72. In Problem 71, how much does it take to complete one 110 read cycle?
73. The IOCSI6 pin is an (input, output) and an active __ (low, high)

signal.
74. The ZEROWS pin is an (input, output) and an active __ (low,

high) signal.
75. Calculate the bus bandwidth for 8-bit standard 110 of the ISA bus.
76. Calculate the bus bandwidth for 16-bit standard 110 of the ISA bus.
77. What is the function of the CHANRDY pin?
78. Explain how we can extend the i/O cycle time of the ISA bus.

CHAPTER 11: I/O AND THE 8255; ISA BUS INTERFACING

PROBLEMS

ANSWERS TO REVIEW QUESTIONS

SECTION 11.1: BOBB INPUTIOUTPUT INSTRUCTIONS
1. 256 input and 256 output ports
2. 65,536 input and 65,536 output ports
3. It sends the contents of B-bit register AL to port address 24H.
4. MOV DX,300H ;LOAD THE PORT ADDR

IN AL,DX ;GET THE DATA FROM PORT
MOV DX,304H ;LOAD THE PORT ADDR
OUT DX,AL ;SEND OUT THE DATA

5. IN AL,60H ;GET DATA FROM PORT ADDRESS 60H
MOV CH,AL ;GIVE THE COPY TO CH REG

SECTION 11.2: 110 ADDRESS DECODING AND DESIGN
1. latch, tri-state buffer
2. The CPU provides the data on the data bus only for a short amount of time.

Therefore, it must be latched before ~ is lost.
3. Assuming that OC = 0, the input data is transferred from D to Q when G goes

from low to high, making it available right away; but it is actually latched when
G goes from high to low. This reduces the time delay from D to Q.

4. low
5. true
6. MEMW* for output and MEMR* for input devices.

SECTION 11.3: 110 ADDRESS MAP OF x86 PC
1. 300 - 31FH
2. AEN = 0
3. The 1/0 devices are programmed by the CPU; therefore, with AEN = 0 it will

make sure that the 1/0 device is accessed by the addresses provided by the
CPU and not the DMA. AEN is active low when the CPU is using the buses.

4. D4 bit
5. 25,000 x 15.085 ~ = 377.125 ms

SECTION 11.4: 8255 PPI CHIP
1. F4H, F5H, F6H, F7H for PA, PB, PC, and control register, respectively
2. 80H (see Figure 11-12)
3. 9BH (see Figure 11-12)
4. MOV AL,80H

OUT CONTREG,AL
MOV AL,55H
OUT PORTA,AL
OUT PORTB,AL
OUT PORTC,AL
CALL DELAY
MOV AL,OAAH
OUT PORTA,AL
OUT PORTB,AL
OUT PORTC,AL

5. All are simple 1/0. PA and PB are both out. PCO - PC3 and PC4 - PC7 are
both in (see Figure 11-12).

349

350

SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER
1. 300-31FH
2. false
3. 300 - 303H
4. 304 - 307H
5. To avoid locking up the PC.

SECTION 11.6: I/O PROGRAMMING WITH C/C++ AND VB
1. _outp(Ox300,Ox99);
2. outp(Ox300,Ox99);
3. outb(0x99,Ox300);
4. mdata= _inp (Ox302);
5. mdata=inb(Ox302);

SECTION 11.7: 8-BIT AND 16-BIT I/O TIMING IN ISA BUS
1. AO-A9
2. With ten address lines, AO-A9, we get 1024 I/O devices.
3. By asserting it, we tell the system board to shorten the I/O bus cycle time.
4. input
5. IOCS16
6. 3 clock cycles (only 1WS) if we assert ZEROWS. That gives us 3 x 125 ns =

375 ns
7. The maximum bus bandwidth is achieved with the 16-bit data bus and it is

1/(3 x 125 ns) x 2 = 5.33 megabytes per second.

CHAPTER 11: 110 AND THE 8255; ISA BUS INTERFACING

CHAPTER 12

INTERFACING TO THE PC:
LCD, MOTOR, ADC, AND SENSOR

351

In this chapter we show PC interfacing to some real-world devices such
as an LCD, stepper motor, ADC and DAC devices, and sensors. Section 12.1
describes interfacing and programming of an LCD. In Section 12.2, stepper motor
interfacing is described. DAC (digital-to-analog converter) interfacing to PC is
shown in Section 12.3 and ADC (analog-to-digital converter) interfacing to PC is
shown in Section 12.4. Sensors, such as temperature sensors, and their interfacing
are also described in Section 12.4.

SECTION 12.1: INTERFACING AN LCD TO THE PC

352

This section describes the operation modes of LCDs, then describes how
to program and interface an LCD to a PC via the 8255 of the PC Interface Trainer.

LCD operation

In recent years the
LCD is replacing LEDs (seven­
segment LEDs or other multi­
segment LEDs). This is due to
the following reasons:

1. The declining prices of
LCDs.

2. The ability to display num­
bers, characters, and graph­
ics. This is in contrast to
LEDs, which are limited to
numbers and a few charac­
ters.

3. Incorporation of the
refreshing controller into
the LCD itself, thereby
relieving the CPU of the
task of refreshing the LCD.
In the case of the LED, it
must be refreshed by the
CPU (or in some other
way) to keep displaying the
data.

4. Ease of programming for
both characters and graphics.

LCD pin descriptions

Table 12-1: Pin Descriptions for LeD

Pin Symbol I/O Description
I VSS -- Ground

2 VCC -- +5V power supply

3 VEE -- Power supply

to control contrast
4 RS I RS-O to select

command register,
RS=I to select
data register

5 R/W I R1W-O for write,
R/W=] for read

6 E 1/0 Enable
7 DBO 110 The 8-bit data bus
8 DBI 110 The 8-bit data bus
9 DB2 110 The 8-bit data bus
10 DB3 1/0 The 8-bit data bus
11 DB4 110 The 8-bit data bus
12 DB5 110 The 8-bit data bus
13 DB6 110 The 8-bit data bus
14 DB7 110 The 8-bit data bus

The LCD discussed in this section has 14 pins. The function of each pin
is given in Table 12-1. Figure 12-1 shows the pin positions for various LCDs.

vee, VSS, and VEE: While VCC and VSS provide +5V and ground,
respectively, VEE is used for controlling the LCD contrast.

RS, register select: There are two registers inside the LCD and the RS
pin is used for their selection as follows. If RS = 0, the instruction command code
register is selected, allowing the user to send a command such as clear display,
cursor at home, etc. If RS = I, the data register is selected, allowing the user to
send data to be displayed on the LCD (or data to be retrieved).

RIW, read/write: R/W input allows the user to write information into the
LCD or read information from it. R/W = I when reading and R/W = 0 when writ­
ing.

CHAPTER 12: INTERFACING TO THE PC

I 2 14

000000000000000 0 0
00 13 14

II II OO~ : : I
2

00
1 00

0 o 1111111111111111111111111111 0
DMCl610A 14 DMCl6106B 2 I DMC2026I
DMCI 606C DMCl6207 DMC24227
DMCI6117 DMCl6230 DMC24 138
DMCI6128 DMC20215 DMC32132
DMCl6129 DMC32216 DMC32239
DMC1616433 DMC40131
DMC20434 DMC40218

..
Figure 12-1. Pin PosItions for Vanous LeOs from Optrex

E, ena ble: The Table 12-2: LCD Command Codes

Code Command to LCD Instruction

I (Hex) Register
I Clear display screen
2 Return home
4 Decrement cursor Jshift cursor to left)

enable pin is used by the
LCD to latch information pre­
sented to its data pins. When
data is supplied to data pins, a
high-to-Iow pulse must be
applied to this pin in order for
the LCD to latch in the data
present at the data pins. This
pulse must be a minimum of
450 ns wide.

6 Increment cursor (shift cursor to right)

DO - D7: The 8-bit
data pins are used to send
information to the LCD or
read the contents of the
LCD's internal registers.

To display letters and
numbers, we send ASCII
codes for the letters A - Z, a -
Z, and numbers 0 - 9 to these
pins while making RS = I.

There are also

5
7
8
A
C
E
F
10
14
18
IC
80
CO
38

Shift display right
Shift display left
Display off, cursor off
Display off, cursor on
Display on, cursor off
Displayon,cnrsoron
Display on, cursor blinking
Shift cursor position to left
Shift cursor position to right
Shift the entire display to the left
Shift the entire display to the right
Force cursor to be...IDnningof I st line
Force cursor to beginning of 2nd line
2 lines and 5x7 matrix

instruction command codes
that can be sent to the LCD in
order to clear the display or
force the cursor to the home
position or blink the cursor.
Table 12-2 lists the instruc­
tion command codes.

Note: This table is extracted from Table 12-4.

Sending commands to LeOs

To send any of the commands from Table 12-2 to the LCD, make pin RS
= 0, and send a high-to-Iow pulse to the E pin to enable the internal latch of the
LCD. The connection of an 8255 to an LCD is shown in Figure 12-2.

SECTION 12.1: INTERFACING AN LCD TO THE PC 353

354

8255 LCD
+5V

Vee 10k
Vee POT
Vss

RD E

PBO
A1 1 PB1

PB2
Circuitry RESET

Figure 12-2. 8255 Connection to LCD

Notice the following for the connection in Figure 12-2:

\. The LCD's data pins are connected to Port A of the 8255.
2. The LCD's RS pin is connected to PBO of Port B of the 8255.
3. The LCD's RfW pin is connected to PBI of Port B of the 8255.
4. The LCD's E pin is connected to PB2 of Port B of the 8255.
5. Both Ports A and B are configured as output ports.

;The following sends all the necessary commands to the LCD
MOV AL,38H ;initialize LCD for 2 lines & 5x7 matrix
CALL COMNDWRT ;write the command to LCD
CALL DELAY ;wait before issuing the next command
CALL DELAY ;this command needs lots of delay
CALL DELAY
MOV AL,OEH
CALL COMNDWRT
CALL DELAY
MOV AL,Ol
CALL COMNDWRT
CALL DELAY
MOV AL,06
CALL COMNDWRT
CALL DELAY

COMNDWRT PROC
PUSH DX
MOV OX, PORTA
OUT DX,AL

;send command for LCD on, cursor on
;write the command to LCD
;wait before issuing the next command
;clear LCD

;wait
;command for shifting cursor right

;wait

;this procedure writes commands to LCD
; save OX

isend the code to Port A
MOV DX,PORTB ;port B address
MOV AL,OOOOOlOOB ;RS~O,R/W~O,E~l for H-TO-L pulse
OUT DX,AL
NOP

i to Port B
;wait for high-to-low pulse to be

NOP ; wide enough
MOV AL,OOOOOOOOB;RS~O,R/W~O,E~O for H-TO-L pulse
OUT DX,AL
POP OX
RET

COMNDWRT ENDP

; restore OX

;return to caller

CHAPTER 12: INTERFACING TO THE PC

In the above program, we must wait before issuing the next command;
otherwise, it will jam the LCD. A delay of 20 ms should work fme. We can use
the port 61H delay generation shown in Chapter II. The code is shown below.

Sending data to the LCD

In order to send data to the LCD to be displayed, we must set pin RS ; I,
and also send a high-to-Iow pulse to the E pin to enable the internal latch of the
LCD. The following code sends characters to the LCD. Again, it places sufficient
time delays between each data issue to ensure that the LCD is ready for new data.

MOV AL, 'Y' ;display 'Y' letter
CALL DATWRIT ;issue it to LCD
CALL DELAY ;wait before issuing the next character
MOV AL,'E' ; display , E' letter
CALL DATWRIT ;issue it to LCD
CALL DELAY ;wait before issuing the next character
MOV AL,'S' ; display '8' letter
CALL DATWRIT ;issue it to LCD
CALL DELAY ;wait

;data write to LCD without checking the busy flag
;AL~char sent to LCD

DATWRIT PROC
PUSH OX ;save OX
MOV DX,PORTA
OUT DX,AL
MOV AL,OOOOOI0IB
MOV DX,PORTB
OUT DX,AL
MOV AL,OOOOOOOIB
OUT DX,AL
POP DX
RET

DATWRIT ENDP

;DX~port A address
;issue the char to LCD
;RS~l,R/W~O, E~1 for H-to-L pulse
;port B address
;make enable high

;RS~I,R/W~O AND E~O for H-to-L pulse

;delay generation using the PB4 bit of port 61H

DELAY PROC
MOV CX,1325 1,325xI5.085 usec~20 msec
PUSH AX

WI: IN AL,61H
AND AL,OOOI0000B
CMP AL,AH
JE WI
MOV AH,AL
LOOP WI
POP AX
RET

DELAY ENDP

SECTION 12.1: INTERFACING ~ LCD TO THE PC 355

356

Checking LCD busy flag

The above programs used a time delay before issuing the next data or
command. This allows the LCD a sufficient amount of time to get ready to accept
the next data. However, the LCD has a busy flag. We can monitor the busy flag
and issue data when it is ready. This will speed up the process. To check the busy
flag, we must read the command register (R/W = 1, RS = 0). The busy flag is the
07 bit of that register. Therefore, if R/W = 1, RS = O. When 07 = 1 (busy flag
= 1), the LCD is busy taking care of internal operations and will not accept any
new information. When D7 = 0, the LCD is ready to receive new information. It
is recommended by the LCD manufacturer's data sheet to monitor the busy flag
before sending the data or command codes to the LCD. This ensures that the LCD
is ready to receive data. See the code below.

; wri ting to LCD with checking the busy flag, AL~char

MOV AL,38H
CALL COMNDWRT
MOV AL,OEH
CALL COMNDWRT
MOV AL,Ol
CALL COMNDWRT
MOV AL,06
CALL COMNDWRT
MOV AL, ' Y'
CALL DATWRT
MOV AL, ' E'
CALL DATWRT
MOV AL,'S'
CALL DATWRT

;--------------

DATWRT PROC
CALL LCD READY
PUSH DX ;save DX
MOV DX, PORTA

;initialize LCD for 2 lines & 5x7
;write the command to LCD
;send conunand for LCD on, cursor on
;write the cornmand to LCD
;clear LCD

icomrnand for shifting cursor right

;display 'Y' letter
;issue it to LCD
; display 'E' letter
;issue it to LCD
; display 'S' letter
;issue it to LCD

;DX~port A address
OUT DX, AL ; issue the char to LCD
MOV AL,OOOOOlOlB ;RS~l,R/W~O, E~l for H-to-L pulse
MOV DX, PORTB
OUT DX,AL
NOP
NOP

iport B address
;make enable high

MOV AL,OOOOOOOIB ;RS~l,R/W~O AND E~O for H-to-L
OUT DX,AL
POP DX
RET

DATWRT ENDP

;------------

CHAPTER 12: INTERFACING TO THE PC

COMNDWRT PROC
LCDREADY
PUSH DX
MOV DX,PORTA
OUT DX,AL
MOV DX,PORTB
MOV AL,OOOOOlOOB
OUT DX,AL
NOP
NOP
MOV AL,OOOOOOOOB
OUT DX,AL
POP DX
RET

COMNDWRT ENDP

i----------------
LCDREADY PROC

PUSH AX
PUSH DX

;save OX

isend the code to Port A
; Port B address
;RS~O,R/W~O,E~l for H-TO-L pulse
; to Port B
;wait for high-to-low pulse to be
iwide enough
;RS~O,R/W~O,E~O for H-TO-L pulse

; restore ox
;return to caller

MOV AL,90H ;PA~input to read LCD status, PB~OUT
MOV DX,CNTPORT ;DX~control port address
OUT DX,AL
MOV AL,OOOOOllOB

MOV DX, PORTB
OUT DX,AL
MOV DX, PORTA

AGAIN: IN AL, DX
ROL AL,l
JC AGAIN
MOV AL,BOH
MOV DX,CONTPORT
OUT DX,AL
POP DX
POP AX
RET

LCD READY ENDP

LCD cursor position

;issue to control reg
;RS~O busy flag is a
;cornmand R/W~l,E~l (L-to-H for E)
;port B address
iissue it to port B
;port A address
;read r-ommand reg busy flag is 07
;send busy flag to carry flag
;IF CF~l LCD not ready try again
imake PA=QDT to send character
;DX~control port address
iissue to 8255 1 8 control reg

In the LCD, one can put data at any location. For the 20x2 LCD, the
address for the first location of line I is SOH, and for line 2 it is COHo The fol­
lowing shows address locations and how they are accessed.

RS
o

RIW DB7
o I

DB6 DBS
A A

DB4
A

DB3
A

DB2
A

OBI
A

DBO
A

where AAAAAAA = 0000000 to 0 I 00 III for line I and AAAAAAA =
1000000 to 1100111 for line 2. See Table 12-3. The upper address range can go
as higb as 0100111 for the 40-character-wide LCD while for the 20-character­
wide LCD it goes up to 010011 (19 decimal = 10011 binary). Notice that the
upper range 0100111 (binary) = 39 decimal, which corresponds to locations 0 to
39 for the LCDs of 40x2 size. From the above discussion we can get the address­
es of cursor positions for various sizes of LCDs. See Figure 12-3. Note that all
the addresses are in hex.

SECTION 12.1: INTERFACING AN LCD TO THE PC 357

16 x

20 x
20 x

20 x

As an example of setting the cursor at the fourth location of line 1 we
have the following:

MOV AL,83H ;LINE 1 POSITION 4
CALL COMNDWRT

and for the 6th location of the 2nd line we have:

MOV AL,OC5H
CALL COMNDWRT

Notice that since the location addresses are in hex, 0 is the fIrst location.

LCD programming in Visual C/C++

In Chapter 11 we showed how to program the x86 PC 1/0 port using
CIC++ for MS Visual CIC++, Borland Turbo CIC++, and Linux CIC++.
Example 12-1 shows LCD programming using Visual CIC++. For other envi­
ronments, you can modifY and test Example 12-1.

LCD timing and data sheet

Figures 12-4 and 12-5 show timing diagrams for LCD write and read tim­
ing, respectively. Notice that the write operation happens on the H-to-L pulse of
the E pin while the read is activated on the L-to-H pulse of the E pin. Table 12-4
provides a more detailed list of LCD instructions.

Table 12-3: LCD Addressing

DB7 DB6 DBS DB4 DB3 DB2 DBt DBO
Line 1 min 1 0 0 0 0 0 0 0
Line 1 max) 1 0 1 0 0 1 1 1
Line 2 (min) 1 I 0 0 0 0 0 0
Line 2 (max) 1 1 1 0 0 1 1 1

2 LCD 80 81 82 83 84 85 86 through 8F
CO C1 C2 C3 C4 C5 C6 through CF

1 LCD 80 81 82 83 through 93
2 LCD 80 81 82 83 through 93

CO C1 C2 C3 through 03
4 LCD 80 81 82 83 through 93

co C1 C2 C3 through 03
94 95 96 97 through A7
04 05 06 07 through E7

40 x 2 LCD 80 81 82 83 through A7
CO Cl C2 C3 through E7

Note: All data is in hex.

Figure 12-3. Cursor Addresses for Some LCOs

358 CHAPTER t2: INTERFACING TO THE PC

Example 12-1

Write a Visual C/C++ program to display "Hello" on line I starting at the sixth position.

Solution:

#include<conio.h>
#include<stdio.h>
#include<iostream.h>
#include<iomanip.h>
#include<windows.h>
Iitested by Dan Bent
void mainO

{
unsigned int i;
char message[51~"Hello";
cout< <setiosflags(ios:: unitbu!);

outp(0x303,Ox80);
_ outp(0x300,0x38);

outp(Ox301,Ox04);
outp(Ox30 I, OxOO);
sleep(500);

_ outp(Ox300,OxOE);
_ outp(0x301,Ox04);
_ outp(0x301,OxOO);

sleep(250);
_ outp(0x300,OxOI);

outp(0x3 0 I, Ox04);
_ outp(0x30 I ,0xOO);

sleep(250);
outp(0x300,Ox06);
outp(0x301,Ox04);

_ outp(0x301,OxOO);
sleep(250);

outp(0x300,Ox85);
_outp(Ox301,Ox04);

outp(Ox301,OxOO);
sleep(250);

Ilwrite data to LCD

I I control word for Port A, B, C
Ilinit LCD for 2 lines & 5x7 matrix
IIRS~O,RIW~,E~1 for H-to-L pulse
IIRS~O,RIW~O,E~O for H-to-L pulse

Iidelay 500 milliseconds
Iisend command for LCD on, cursor on
IIRS~,RIW~,E~I for H-to-L pulse
//RS~O,R!W~,E~O for H-to-L pulse

Iidelay 250 milliseconds
Ilclear LCD
IIRS~O,RIW~,E~1 for H-to-L pulse
IIRS~O,RIW~,E~O for H-to-L pulse

Iishift cursor right
IIRS~O,RIW~,E~1 for H-to-L pulse
IIRS~O,RIW~O,E~O for H-to-L pulse

Ilmove cursor to beginning ofline
IIRS~O,RIW~,E~1 for H-to-L pulse
IIRS~O,RIW~,E~O for H-to-L pulse

for(i~O;i<strlen(message); i++)
{
_ outp(0x300,(int)message[i]);
_outp(0x301,Ox05); IIRS~I,RIW~O,E~I for H-to-L pulse
_outp(Ox301,OxOI); IIRS~I,RlW~O,E~O for H-to-L pulse

sleep(250); Iidelay 250 milliseconds
}

}

SECTION 12.1: INTERFACING AN LCD TO THE PC 359

360

DO-D7----------~(~ ___ D_am __ ~)r:----------

E tDSW
• I :

RS

~~--~-------+~
tPWH = Enable pulse width = 450 ns (minimum)

tosw = Data set up time = 195 ns (minimum)

tH = Data hold time = IOns (minimum)

tAS ~ Setup time prior to E (going high) for both RS and R/W ~ 140 ns (minimum)

tAH = Hold time after E has come down for both RS and RIW = 10 os (minimum)

Figure 12-4. LCD Write Timing

DO - 07 -------------«k Data)>---------
~1----•• ~ ~ ____________ -J

tD

E

~L------------
RS

~--~--------~~
tD = Data output delay time

tAs ~ Setup time prior to E (going high) for both RS and R/W ~ 140 ns (minimum)

tAH = Hold time after E has come down for both RS and RlW = 10 ns (minimum)

Note: Read requires an L-to-H pulse for the E pin.

Figure 12-5. LCD Read Timing

Review Questions

1. The RS pin is an ___ (input, output) pin for the LCD.
2. The E pin is an (input, output) pin for the LCD.
3. The E pin requires an (H-to-L, L-to-H) pulse to latch in information

at the dam pins of the LCD.
4. For the LCD to recognize information at the data pins as data, RS must be set

to __ (high, low).
5. Give the command codes for line I, first character, and line 2, first character.

CHAPTER 12: INTERFACING TO THE PC

Table 12-4: List of LCD Instructions

lExecution

~ ~onilS"''''''''i
Time

Instruction
gj = = === Description (Max) ========

Clear Display o 0 o 0 o 0 o 0 0 1 Clears entire display and sets DD 1.64 ms
RAM address 0 in address counter

Return Home o 0 o 0 o 0 o 0 1 - Sets DD RAM address 0 as address 1.64 ms
counter. Also returns display being
shifted to original position. DD RAM
contents remain unchanged.

Entry Mode o 0 o 0 0 0 01 lID S Sets cursor move direction and specifies 40 f1S
Set shift of display. These operations are

performed during data write and read.
Display On/ o 0 o 0 o 0 1 DeB Sets On/Off of entire display (D), 4Ol-'s
Off Control cursor On/Off (C), and blink of cursor

position character (B).
Cursor or o 0 o 0 o 1 S/eP/L- - Moves cursor and shifts display with- 40 f1S
Di~llY Shift out changing DD RAM contents.
Function Set o 0 0 0 1 DL N F - - Sets interface data length (DL), num- 4Ol-'s

ber of display lines (L), and character
font(n

SetCGRAM o 0 o 1 AGe Sets CG RAM address. CG RAM dau 40 f1S
Address is sent and received after this settil)g,
SetDDRAM 001 ADD Sets DD RAM address. DD RAM dati 40 f1S
A ~s ."nt ~nrl ., ~ft"T thi. .

Read Busy o 1 BF Ae Reads Busy flag (BF) indicating inter- 40 f1S
Flag & Address nal operation is being performed and

reads address counter contents.
Write Data 1 0 Write Data Writes data into DD or CG RAM. 40 f1S
CG ocDD RAM
Read Data 1 1 Read Data Reads data from DD or CG RAM. 40 f1S
CGcrDDRAM
Notes:
1. Execution times are maximum times when fcp or fose is 250 kHz.
2. Execution time changes when frequency changes. Example: When fcp or fose is 270 kHz: 40 J.lS ' 250 I

270 = 37 J.lS.
3. Abbreviations:

DDRAM Disp1ay data RAM
CGRAM Charncter generator RAM
ACC CG RAM address
ADD DD RAM address, corresponds to cursor address
AC Address counter used for both DD and CG RAM addresses.
lID = I Increment lID = 0 Decrement
S=I Accompanies display shift
SIC = I D~shift· SIC = 0 Cursor move
RIL= I S· to the rlgbt; RIL = 0 Shift to the left
DL= I 8 bits, DL = 0: 4 bits
N=I lline,N=O: I line
F=I 5x lOdots,F=O: 5x7dots
BF= I JnternaI opetation; BF = 0 Can accept instruction

SECTION 12.1: INTERFACING AN LCD TO THE PC 361

SECTION 12.2: INTERFACING A STEPPER MOTOR TO THE PC

362

This section begins with an overview of the basic operation of stepper
motors. Then we describe how to interface a stepper motor to the PC using the PC
Trainer. Finally, we use Assembly language programs to demonstrate control of
the angle and direction of stepper motor rotation.

Stepper motors

A stepper motor is a widely used device that translates electrical pulses
into mechanical movement. In applications such as disk drives, dot matrix print­
ers, and robotics, the stepper motor is used for position control. Every stepper
motor has a permanent magnet rotor (also called the shaft) surrounded by a stator
(see Figure 12-6). The ,-------------------,
most common stepper
motors have four stator
windings that are paired
with a center-tapped
common as shown in
Figure 12-7. This type
of stepper motor is com­
monly referred to as a
four-phase stepper motor.
The center tap allows
the change of current
direction in each of two
coils when a winding is
grounded, which results
in a polarity change of
the stator. Notice that
while a conventional
motor shaft runs freely,
the stepper motor shaft
moves in a fixed repeat-
able increment, which
allows one to move it to
a precise position. This
repeatable fIXed move­
ment is possible as a
result of the basic mag­
net theory where poles
of the same polarity
repel and opposite poles
attract. The direction of
the rotation is dictated
by the stator poles. The
stator po les are deter­
mined by the current
sent through the wire
coils. As the direction of
current is changed, the
polarity is also changed
causing the reverse

Average
South

A

B

A

§
S

N

§
B

Average
North

motion of the rotor. The '=---:-:::-::-:=--:---:-::-__ --;-______ --'
stepper motor discussed Figure 12-6. Rotor Alignment

CHAPTER 12: INTERFACING TO THE PC

here has a total of 6 leads: 4 leads
representing the four stator wind-
ings and two commons for the cen­
ter tapped leads. As the sequence
of power is applied to each stator
winding, the rotor will rotate.
There are several widely used
sequences where each has differ­
ent degree of precision. Table 12-5
shows the normal 4-step sequence.

AB=~~=J1-~ COM

g =+~=::?--J-COM COM

It must be noted that '= __ -:-::--=---=-:-:-_:-:-::---,-:-____ --'
although we can start with any of Figure 12-7. Stator Windings
the sequences in Table 12-5, once Configuration
we start we must continue in the
proper order. For example, if we start with step 3 (OlIO) we must continue in the
sequence of steps 4, 1,2, and so on.

Table 12-5: Normal 4-Step Sequence

Clockwise

1
Step # WindinltA WindingB Windillg C Winding_D Counter-

1 1 0

2 1 1

3 0 1

4 0 0

Step angle

How much movement is
associated with a single step? This
depends on the internal construc­
tion of the motor, in particular the
number of teeth on the stator and
the rotor. The step angle is the
minimum degree of rotation asso­
ciated with a single step. Various
motors have different step angles.
Table 12-6 shows some step
angles for various motors. In

0 1 clockwise

0 0 t 1 0

1 1

Table 12-6: Stepper Motor Step Angles

Step Angle Steps per Revolution
0.72 500
1.8 200
2.0 180
2.5 144
5.0 72
7.5 48
15 24

Table 12-6, notice the term steps per revolution. This is the total number of steps
needed to rotate one complete rotation or 360 degrees (e.g., 180 steps x 2 degrees
= 360).

It must be noted that perhaps contrary to one's initial impression, a step­
per motor does not need to have more terminal leads for the stator to achieve
smaller steps. All the stepper motors discussed in this section have 4 leads for the
stator winding and 2 com wires for the center tap. Although some manufacturers
have set aside only one lead for the common signal instead of two, they always
have 4 leads for the stators.

With this background on stepper motors, next we see how we can inter­
face them with the PC.

SECTION 12.2: INTERFACING A.STEPPER MOTOR TO THE PC 363

Stepper motor connection and programming

Example 12-2 shows the programming of the stepper motor as connected
in Figure 12-8. Study this example very carefully since it contains some very
important points on motor interfacing.

Example 12-2

364

Describe the 8255 connection to the stepper motor of Figure 12-8 and code a program to rotate
it continuously.

Solutiou:

The following steps show the 8255 connection to the stepper motor and its programming.

I. Use an ohmmeter to measure the resistance of the leads. This should identiry which COM
leads are connected to which winding leads.

2. The common wire(s) are connected to the positive side of the motor's power supply. In many
motors, +5 V is sufficient.

3. The four leads of the stator winding are controlled by the four bits of port A (PAO - PA3).
However, since the 8255 lacks sufficient current to drive the stepper motor windings, we
must use a driver such as the ULN2003 to energize the stator. Instead of the ULN2003, we
could use transistors as drivers. However, notice that if transistors are used as drivers, we
must also use diodes to take care of inductive current generated when the coil is turned off.
One reason that the ULN2003 is preferable to the use of transistors as drivers is that the
U LN2003 has an internal diode to take care of back EMF.

MOV
MOV
OUT
MOV

AGAIN:MOV
INT
JNZ
MOV
MOV
OUT
MOV

HERE: LOOP
ROR
JMP

EXIT:

AL,80H
DX,CNTRLPORT
DX,AL
BL,33H
AH,OI
16H
EXIT
AL,BL
DX,PORTA
DX,AL
CX,20000
HERE
BL,I
AGAIN

;LOAD CONTROL PORT ADDRESS
;PORT AS OUTPUT

;CHECK KEY PRESS
;EXIT UPON KEY PRESS

;DELAY

In the above program we are sending the sequence 33H, 66H, CCH, and 99H to the
stepper motor continuously. The motor keeps moving unless a key is pressed.

By changing the value of DELAY, we can change the speed of rotation. In your program
use a fixed time delay. The fixed time delay generation was shown in Chapter 11.

CHAPTER 12: INTERFACING TO THE PC

8255

PAO

PA1

PA2

PA3

ULN2003 Connection
for Stepper Motor
Pin 8 = GND
Pin 9 = +5V

ULN2003 Stepper Motor

o
'--__ -:--+ COM

COM

+5V

Use a separate power supply
for the motor

Figure 12-8. 8255 Connection to Stepper Motor

Steps per second and RPM relation

The relationship between the RPM (revolutions per minute), steps per
revolution, and steps per second is intuitive and is as follows.

RPM x Steps per revolution
Steps per second =

60

The four-step sequence and number of teeth on rotor

The switching sequence shown above in Table 12-5 is called the 4-step
switching sequence since after four steps the same two windings will be "ON".
How much movement is associated with these four steps? After completing every
four steps, the rotor moves only one tooth pitch. Therefore, in a stepper motor
with 200 steps per revolution, its rotor has 50 teeth, since 4 x 50 = 200 steps are
needed to complete one revolution. This leads to the conclusion that the minimum
step angle is always a function of the number of teeth on the rotor. In other words,
the smaller the step angle, the more teeth the rotor passes. See Example 12-3.

Looking at Example 12-3, one might wonder what happens if we want to
move 45 degrees since the steps are 2 degrees each. To allow for finer resolutions,
all stepper motors allow what is called an 8-step switching sequence. The 8-step
sequence is also called half-stepping since in following the 8-step sequence each
step is half of the normal step angle. For example, a motor with a 2-degree step
angle can be used as a I-degree step angle if the sequence of Table 12-7 is applied.

SECTION 12.2: INTERFACING A. STEPPER MOTOR TO THE PC 365

Example 12-3

Give the number of times the 4-step sequence in Table 12-5 must be applied to a
stepper motor to make an 80-degree move if the motor has a 2-degree step angle.

Solution:
A motor with a 2-degree step angle has the following characteristics:
Step angle: 2 degrees Steps per revolution: 180
Number of rotor teeth: 45 Movement per 4-step sequence: 8 degrees
To move the rotor 80 degrees, we need to send 10 four-step sequences right after each other,
since lOx 4 steps x 2 degrees = 80 degrees.

Motor speed

The motor speed, measured in steps per second (steps/s), is a function of
the switching rate. Notice in Example 12-2 that by changing the length of the time
delay loop, we can achieve various rotation speeds.

Holding torque

The following is the definition of the holding torque: "With the motor
shaft at standstill or zero RPM condition, the amount of torque, from an external
source, required to break away the shaft from its holding position. This is meas­
ured with rated voltage and current applied to the motor." The unit is ounce-inch
(or kg-em).

Wave drive 4-step sequence

Table 12-7: Half-Step 8-Step Sequence

Clockwise Step # Winding A WindingB WindingC Winding D Counter-
1 1 0 0 1 clockwise

2 1 0 0 0

t 3 1 1 0 0

l
4 0 1 0 0
5 0 1 1 0
6 0 0 1 0
7 0 0 1 1
8 0 0 0 1

Table 12-8: Wave Drive 4-Step Sequence

Clockwise Step # Winding A Winding B Winding C Winding D Counter-

l
1 1 0 0 0 clockwise

2 0 1 0 0 t 3 0 0 1 0

4 0 0 0 1

366 CHAPTER 12: INTERFACING TO THE PC

In addition to the 8-step sequence and the 4-step sequence discussed ear­
lier, there is another sequence called the wave drive 4-step sequence. It is shown
in Table 12-8. Notice that the sequence of Table 12-8 is simply the combination
of the wave drive 4-step and normal4-step normal sequences shown in Tables 12-
5 and 12-7, respectively. Experimenting with the wave drive 4-step is left to the
reader. Example 12-4 shows the Turbo C++ version of the program to turn the
stepper motor clockwise.

Example 12-4

Write a Turbo C++ program to turn the stepper motor clockwise continuously. Pressing any key
should exit the program.

Solution:

I (fuming the stepper motor clockwise continuously
#include <conio.h>
#include <stdio.h>
mainO
{
outp(Ox303,Ox80); IICONFIGURE 8255 AS OUT
printf(''\n Turning the Stepper motor clockwise. Press any key to exit this program\n");
do
{
outp(0x300,Ox99);
delay(500); 11500 msec

outp(0x300,Oxcc);
delay(500); 11500 msec

outp(Ox300,Ox66);
delay(500); 11500 msec
outp(0x300,Ox33);
delay(500); 11500 msec
}

while(!kbhit()); IIPRESS ANY KEY TO STOP
retum(O);
}

Notice that if a given motor requires more current than the ULN2003 can
provide, we can use transistors, as shown in Figure 12-9.

Review Questions

1. Give the 4-step sequence of a stepper motor if we start with 0110.
2. A stepper motor with a step-angle of 5 degrees has __ steps per revolution.
3. Why do we put a driver between the 8255 and the stepper motor?

SECTION 12.2: INTERFACING A STEPPER MOTOR TO THE PC 367

Vee 2N2222

Use TIP 110 part for Q1 - Q4
if motor needs several amps.

+V Motor

A

B

C

D

COM

COM

To
Motor

Figure 12-9: Using Transistors or Stepper Molor Driver

368

SECTION 12.3: INTERFACING DAC TO THE PC

This section will show how to interface a DAC (digital-to-analog con­
verter) to a PC via the 8255 of the PC Interface Trainer. Then we demonstrate how
to generate a sine wave on the scope using the DAC.

Digital-to-analog (DAC) converter

The digital-to-analog converter (DAC) is a device widely used to convert
digital pulses to analog signals. In this section we discuss the basics of interfac­
ing a DAC to a PC.

Recall from your digital electronics book the two methods of making a
DAC: binary weighted and Rl2R ladder. The vast majority of integrated circuit
DACs, including the MC 1408 used in this section, use the Rl2R method since it
can achieve a much higher degree of precision. The first criterion for judging a
DAC is its resolution, which is a function of the number of binary inputs. The
common ones are 8, 10, and 12 bits. The number of data bit inputs decides the
resolution of the DAC since the number of analog output levels is equal to 2n,
where n is the number of data bit inputs. Therefore, the 8-input DAC such as the
MC1408 provides 256 discrete voltage (or current) levels of output. Similarly, the
12-bit DAC provides 4096 discrete voltage levels. Although there are l6-bit
DACs, they are expensive.

CHAPTER 12: INTERFACING TO THE PC

MC1408 DAC (or DAC 808)

In the MCI408 (DAC808), the digital inputs are converted to current
(lout). By connecting a resistor to the lout pin, we convert the result to voltage.
The total current provided by the lout is a function of the binary numbers at the
DO - D7 inputs of the 1408 and the reference current (Iref), and is as follows.

D7 + D6 + D5 + D4 + D3 + D2 + D1 + DO)

2 4 8 16 32 64 128 256

where DO is the LSB, D7 is the MSB for the inputs, and Iref is the input current
that must be applied to pin 14. The Iref current is generally set to 2.0 mAo Figure
12-10 shows the generation of current reference (setting Iref= 2 mA) by using the
standard 5-V power supply and I K, 1.5K ohm standard resistors. Some also use
the zener diode (LM336), which overcomes any fluctuation associated with the
power supply voltage. Now assuming that Iref = 2 mA, if all the inputs to the
DAC are high, the maximum output current is 1.99 rnA (verifY this for yourself).

Converting lout to voltage in 1408 DAC

We connect the output pin lout to a resistor, convert this current to volt­
age, and monitor the output on the scope. However, in real life this can cause inac­
curacy since the input resistance of the load where it is connected will also affect
the output voltage. For this reason, the Iref current output is isolated by connect­
ing it to an op amp such as the 741 with Rf = 5K ohms for the feedback resistor.
Assuming that R = 5K ohms, by changing the binary input, the output voltage
changes as shown in Example \2-5.

Example 12-5

Assuming that R = 5K and Iref = 2 mA, calculate Vout for the following binary inputs:

(a) 10011001 binary (99H) (b) 11001000 (C8H)

Solution:

(a) lout = 2 mA (153/255) = 1.195 mA and Vout = 1.195 mA x 5K = 5.975 V

(b) lout = 2 mA (200/256) = 1.562 rnA and Vout = 1.562 mA x 5K = 7.8125 V

Generating a sine wave

To generate a sine wave, we first need a table whose values represent the
magnitude of the sine of angles between 0 and 360 degrees. The values for the
sine function vary from -1.0 to +1.0 for 0 to 360 degree angles. Therefore, the
table values are integer numbers representing the voltage magnitude for the sine
of theta. This method ensures that only integer numbers are output to the DAC by
the x86 processor. Table 12-9 shows the angles, the sine values, the voltage mag­
nitude, and the integer values representing the voltage magnitude for each angle
with 30-degree increments. To generate Table 12-9, we assumed the full-scale
voltage of 10V for the DAC output. Full-scale output of the DAC is achieved
when all the data inputs of the DAC are high. Therefore, to achieve the full-scale
IOV output, we use the following equation.

Vout = 5 V + (5 x sin e)

SECTION 12.3: INTERFACING DA.C TO THE PC 369

8255

PAO DO

PA7 D7

I

+5V +5V

I
: 1k

Vref(+)
Vcc ;'

Vref(-) 1.5k

2~5k +
DAC

lout

808 C You
Comp.

R= ,T 100 pF ...,~b-

Vee Range
-12V control

IGND
.-L

To scope
t=0-10V

5KPOT

Figure 12-10. 8255 Connection to DAC808

370

To find the value sent to the DAC for various angles, we simply multi­
ply the Vout voltage by 25.60 because there are 256 steps and full-scale Vout is
10 volts. Therefore, 256 steps / 10 V = 25.6 steps per volt. To further clari/)' this,
look at Example 12-6.

Example 12-6

Veri/)' the values of Table 12-9 for the following angles: (a) 30 (b) 60.

Solution:
(a) Vout = 5 V + (5 V x sin 9) = 5 V + 5 x sin 30 = 5 V + 5 x 0.5 = 7.5 V

DAC input values = 7.5 V x 25.6 = 192 (decimal)
(b) Vout = 5 V + (5 V x sin 9) = 5 V + 5 x sin 60 = 5 V + 5 x 0.866 = 9.33 V

DAC input values = 9.33 V x 25.6 = 238 (decimal)

The following program sends the values of Table 12-9 to the DAC.
; in data segment

TABLE DB 128,192,238,255,238,192,128,64,17,0,17,64,128
;in code segment
iPA is assumed to be output

A1: MOV CX,12 icount
MOV BX,OFFSET TABLE
MOV DX,PORTA ;port A address

NEXT: MOV AL, [BX]
OUT DX,AL
INC BX
CALL DELAY ;let DAC recover
LOOP NEXT
JMP A1 ; do it again

To produce a simple stair-step sine wave, we can use Example 12-7.
Example 12-8 uses the Turbo C++ math functions to generate the look-up table
values. You can use Visual C++ instead.

CHAPTER 12: INTERFACING TO THE PC

Example 12-7

In order to generate a stair-step ramp, set up the circuit in Figure 12-10 and connect the output
to an oscilloscope. Then write a program to send data to the DAC to generate a stair-step ramp.

Solution:

MOV AL,80H ;PA~OUT

MOV DX,303H
OUT DX,AL
MOV DX,300H

AGAIN: MOV AH,Ol
INT 16H ;CHECK KEY PRESS
JNZ STOP ;EXIT UPON KEY PRESS
SUB AL,AL

BACK: OUT DX,AL
INC AL
CMP AL,O
JZ AGAIN
CALL DELAY ;LET DAC RECOVER
JMP BACK

STOP: ; EXIT

Table 12-9: Angle v. Voltage Magnitude for Sine Wave

Angle e Vout (Voltage Magnitude) Values Sent to DAC (decimal)

(degrees) Sin e 5 V + (5 V x sin e) (Voltage Mag x 25.6)

0 0 5 128
30 0.5 7.5 192
60 0.866 9.33 238
90 1.0 10 255
120 0.866 9.33 238
150 0.5 7.5 192
180 0 5 128
210 -0.5 2.5 64
240 -0.866 0.669 17
270 -1.0 0 0
300 -0.866 0.669 17
330 -0.5 2.5 64
360 0 5 128

Review Questions

1. In a DAC, input is (digital, analog) and output is __ (digital, ana-
log). Answer for ADC input and output as well.

2. DAC808 is a(n) __ -bit D-to-A converter.
3. The output ofDAC808 is in (current, voltage).

SECTION 12.3: INTERFACING DAC TO THE PC 371

372

Volts

10

9
8
7
6

5 +-----'
4
3
2
1
o ~~~--~--~--~--~--~--~~==~--~===4--_4---- Degrees

30 60 90 120 150 180 210 240 270 300 330 360

Figure 12-11. Angle v. Voltage Magnitude for Sine Wave

Example 12-8

Write a Turbo c++ to generate a sine wave on PA. Use the c++ math functions to generate the
look-up table values. Pressing any key should exit the program.
Solution:
IIGENERATING SINE WAVE VIA A DAC CONNECTED TO PORT A
#include <conio.h>
#include <stdio.h>
#inc1ude <math.h>
mainO
{
outp(Ox303,Ox80); IICONFIGURE 8255 AS OUT
unsigned char vi; Ilvl IS A BYTE SIZE DATA
float Vout,magnitude;
int a;
printf("ln Press any key to exit this prograrnln");
do
{

for (a=0;a<360;a++)
{
Vout=5.0+(5.0 * sin «3.14*a)/180));
magnitude=Vout * 25.6;
v I =(char)magnitude;
delay(1);
outp(Ox300, v I);
}

}
while(!kbhit());
return(O);
}

IIFOR THE FULL 360 DEGREES

INOLTAGE MAGNITUDE
INALUE SENT TO DAC
IIMAKE IT A BYTE SIZE

IIOUTPUT IT TO PORT A

IIPRESS ANY KEY TO EXIT

CHAPTER 12: INTERFACING TO THE PC

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC
This section will explore interfacing ADC (analog-to-digital converter)

chips and temperature sensors to a PC. After describing the ADC chips, we show
how to interface them to the PC using the PC Interface Trainer. Then we exam­
ine the characteristics of the LM3/35 temperature sensor and show how to inter­
face it with proper signal conditioning.

ADC devices

Analog-to-digital converters are among the most widely used devices for
data acquisition. Digital computers use binary (discrete) values, but in the physi­
cal world everything is analog (continuous). Temperature, pressure (wind or liq­
uid), humidity, and velocity are a few examples of physical quantities that we deal
with every day. A physical quantity is converted to electrical (voltage, current)
signals using a device called a transducer. Transducers are also referred to as sen­
sors. There are sensors for temperature, velocity, pressure, light, and many other
natural quantities, and they produce an output that is voltage (or current).
Therefore, we need an analog-to-digital converter to translate the analog signals
to digital numbers so that the PC can read them. Next we describe an ADC chip.

ADC0848 chip

The ADC0848 IC is an analog-to­
digital converter in the family of the
ADC0800 series from National
Semiconductor Corp. Data sheets for this
chip can be found at their web site,
www.national.com. From there, go to
Products> Analog-Data Acquisition> A-to­
D Converter-General Purpose.

The ADC0848 has a resolution of 8
bits. It is an 8-channel ADC, thereby allow­
ing it to monitor up to 8 different analog
inputs. See Figures \2-12 and 12-13. The
ADC0844 chip in the same family has 4
channels. The following is the discussion of
the pins of the ADC0848.

CS: Chip select is an active low
input used to activate the 848 chip. To access
the 848, this pin must be low.

RD (read): This is an input signal
and is active low. ADC converts the analog
input to its binary equivalent and holds it in
an internal register. RD is used to get the
converted data out of the 848 chip. When CS
= 0, if the RD pin is asserted low, the 8-bit

02 CH1

03 CH2

04 CH3

05 CH4

06 CH5

7 CH6

9 CH8

10 AGNO

11 Vref

12 OGNO

VCC24

CS23 0

WR22 0

INTR 21 0

OBO/MA020 0

OB1/MA1 19 0

OB2/MA218D

OB3/MA317D

0B4/MA416D

OB515 0

086140

OB713 0

digital output shows up at the DO - D7 data Figure 12-12. ADC0848 Chip
pins. The RD pin is also referred to as output
enable (OE).

Vref is an input voltage used for the reference voltage. The voltage con­
nected to this pin dictates the step size. For the ADC0848, the step size is
Vret7256 since it is an 8-bit ADC and 2 to the power of 8 gives us 256 steps. See
Table 12-10. For example, if the analog input range needs to be 0 to 4 volts, Vref
is connected to 4 volts. That gives 4V/256 = 15.62 mV for step size. In another
case, if we need the step size of 10 mV then Vref= 2.56 V, since 2.56 V/256 = 10
mY.

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC 373

374

I I
CH1 - GND Vee ---- ADC0848 -CH8 --.. AGND

.. Vref INTR

WR CS RD

f i f

Figure 12-13. ADC0848 Block Diagram

D
D
D
D

O/MAO
1/MA1
21MA2
3/MA3

D4/MA4

D 7

DBO - DB7 are the digital data output pins. With a DO - 07 output, the
848 must be an 8-bit AOC. The step size, which is the smallest change, is dictat­
ed by the number of digital outputs and the Vref voltage. To calculate the output
voltage, we use the following formula:

step size

where Dout = digital data output (in decimal), Yin = analog input voltage, and
step size (resolution) is the smallest change, which is Vref/256 for an 8-bit AOC.
See Example 12-9 for clarification. Notice that DO - 07 are tri-state buffered and
that the converted data is accessed only when CS = 0 and a low pulse is applied
to the RD pin. Also, notice the dual role of pins DO - 07. They are also used to
send in the channel address. This is discussed next.

MAO - MA4 (multiplexed address). The AOC0848 uses multiplexed
address/data pins to select the channel. Notice in Figure 12-13 that a portion of
the OBO - OB7 pins are also designated as MAO - MA4. The DO - 07 pins are
inputs when the channel's address is sent in. However, when the converted data is
being read, DO - 07 are outputs. While the use of multiplexed address/data saves
some pins, it makes the I/O interfacing more difficult as we will soon see.

WR (write; a better name might be "start conversion"). This is an input
into the AOC0848 chip and plays two important roles: (I) It latches the address
of the selected channel present on the DO - 07 pins, and (2) it informs the
AOC0848 to start the conversion of analog input at that channel. IfCS = 0 when
WR makes a low-to-high transi- Table 12-10: ADC0848 Yrefvs. Step Size
tion, the AOC0848 latches in
the address of the selected chan­
nel and starts converting the
analog input value to an 8-bit
digital number. The amount of
time it takes to convert is a max­
imum of 40 microseconds for
AOC0848. The conversion time
is set by an internal clock.

Yref(V) Step size (mY)
5 19.53
4 15.62

2.56 10
1.26 5
0.64 2.5

Note: Step size = Yref/256.

CHAPTER 12: INTERFACING TO THE PC

Example 12-9

For a given ADC0848, we have Vref= 2.56 V. Calculate the DO - D7 output if the ana­
log input is: (a)J.7 V, and (b) 2.1 V.
Solution:

Since the step size is 2.561256 = 10m V, we have the following.
(a)Dout = 1.7V/IO mV=170 in decimal, which gives us 10101011 in binary for D7-DO.

(b)Dout = 2.IV/10 mV=210 in decimal, which gives us 11010010 in binary for D7-DO.

CUI- CUS are 8 channels of the Vin analog inputs. In what is called sin­
gle-ended mode, each of the 8 channels can be used for analog Yin where the
AGND (analog ground) pin is used as a ground reference for all the channels.
These 8 channels of input allow us to read 8 different analog signals, but not all
at the same time since there is only a single DO - D7 output. We select the input
channel by using the MAO - MA4 multiplexed address pins according to Table
12-11. In Table 12-11, notice that MA4 = low and MA3 = high for single-ended
mode. The ADC0848 can also be used in differential mode. In differential mode,
two channels, such as CHI and CH2, are paired together for theVin(+) and Vin(-)
differential analog inputs. In that case Vin = CHI(+) - CH2(-) is the differential
analog input. To use ADC0848 in differential mode, MA4 = don't care, and MA3
is set to low. For more on this, see the ADC0848 data sheet on the www.nation­
al.com web site.

Table 12-11: ADC0848 Analog Channel Selection (Single-Ended Mode)

Selected Analoe; Channel MA4 MA3 MA2 MAl MAO
CHI 0 I 0 0 0
CH2 0 I 0 0 I
CH3 0 I 0 I 0
CH4 0 I 0 I I
CH5 0 I I 0 0
CH6 0 I I 0 I
CH7 0 I I I 0
CH8 0 I I I I

Note: Channel IS selected when CS = 0, RD =1, and an L-to-H pulse IS apphed to WR.

VCC is the +5 volt power supply.
AGND, DGND (analog ground and digital ground). Both are input pins

providing the ground for both the analog signal and the digital signal. Analog
ground is connected to the ground of the analog Yin while digital ground is con­
nected to the ground of the VCC pin. The reason that we have two ground pins is
to isolate the analog Vin signal from transient voltages caused by digital switch­
ing of the output DO - D7. Such isolation contributes to the accuracy of the digi­
tal data output. Notice that in the single-ended mode the voltage at the channel is
the analog input and AGND is the reference for the Yin. In our discussion, both
the AGND and DGND are connected to the same ground; however, in the real
world of data acquisition, the analog and digital grounds are handled separately.

lNTR (interrupt; a better name might be "end of conversion"). This is an
output pin and is active low. It is a normally high pin and when the conversion is

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC 375

picked up. After INTR goes low, we make CS = 0 and apply a low pulse to the
RD pin to get the binary data out of the ADC0848 chip. See Figure 12-14.

CS_--,

WR __ ---!

DO - D7 ---1rC-h-a-n!-' A-d-d-re-ss-l---------------f Data out

INTR

Latch address End conversion RD ______________________________ --,

Note: CS is set to low for both RD and WR pulses. :
Read~

Figure 12-14. Selecting a Channel and Read Timing for ADC0848

Selecting an input channel

The following are the steps for data conversion by the ADC0848 chip.
I. While CS = 0 and RD = I, provide the address of the selected channel (see

Table 12-11) to the DBO - DB7 pins and apply a low-to-high pulse to the WR
pin to latch in the address and start the conversion. The channel's addresses
are 08H for CHI, 09H for CH2, OAH for CH3, and so on, as shown in Table
12-11. Notice that this process not only selects the channel, but also starts the
conversion of the analog input at the selected channel.

2. While WR = I and RD = I, keep monitoring the INTR pin. When INTR goes
low, the conversion is finished and we can go to the next step. IfINTR is high,
keep polling until it goes low, signalling end-of-conversion.

3. After the INTR has become low, we must make CS = 0, WR = I, and apply
a low pulse to the RD pin to get the data out of the 848 IC chip.

8255
5V 0

ADC0848 1 PC1 RD Vcc
pco WR CH1 -

CH2
PAO DO/MAO CH3 -

D1/MA1 CH4 -
D2IMA2 CH5 - 10k
D3IMA3 CH6 - POT
D4IMA4 CH7 -

AGND
PA7 D7 Vref -02.56 V
PBO

INTR GND CS
-=~=-

~

Figure 12-15. 8255 Connection to ADC0848 for CH2

376 CHAPTER 12: INTERFACING TO THE PC

ADC0848 connection to 8255

The following is a summary of the connection between the 8255 and the
ADC0848 as shown in Figure 12-15.

PAO - PA7 to DO - D7 of ADC:
PBOtolNTR
PCOtoWR
PCl to RD

Channel selection (out), data read (in)
Port B as input
Port C as output
Port C as output

Notice the following facts about the above connection.
I. Port A is an output when we select a channel, and it is an input when we read

the converted data.
2. We must monitor the INTR pin ofthe ADC for end-of-conversion; therefore,

we configure PB as input. Since both WR and RD are inputs into ADC, Port
C is configured as an output port.

The following program is for Figure 12-15. It selects channel 2. After
reading its data, the data is converted from binary (hex) to ASCII. In the program,
CL = least significant digit (LSD) and AL = most significant digit (MSD).

Bl:

MOV AL,82H ;PA=OUT,PB=IN, PC=OUT
MOV DX,CNT_PORT
OUT DX,AL
MOV AL,09
MOV DX,PORT_A
OUT DX,AL
MOV AL,02
MOV DX,PORT C
OUT DX,AL -

;CHANNEL 2 ADDRESS (Table 12-11)

;WR=O,RD=l

CALL DELAY ;few usec
MOV AL,03 ;WR=l,RD=l
OUT DX,AL ;TO LATCH CHANNEL ADDRESS
CALL DELAY ;few usec
MOV AL,92H ;PA=IN,PB=IN, AND PC=OUT
MOV DX,CNT PORT
OUT DX,AL-
MOV DX,PORT_B
IN AL,DX
AND AL,Ol
CMP AL,Ol
JNE Bl
MOV AL,Ol
MOV DX,PORT_C
OUT DX,AL

;GET READY TO MONITOR INTR
;MONITOR INTR
;MASK ALL BITS EXCEPT INTR
;IS IT HIGH?
;KEEP MONITORING FOR LOW
;WR=l,RD=O TO READ DATA

MOV DX,PORT_A ;PORT_A TO GET DATA
IN AL,DX ;GET THE CONVERTED DATA

;converting OO-FFH hex value to decimal and then to ASCII.
; AL,AH,CL will have decimal values in ASCII

MOV BL,10
SUB AH,AH
DIV BL
MOV CL,AH
SUB AH,AH
DIV BL

;rnake them all ASCII
OR AX,3030H
OR CL,30H

;CLEAR AH FOR WORD/BYTE DIV
;AXlBL
;SAVE LSD IN CL REG
,
;AXlBL FOR 2ND DIGIT

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC 377

378

Notice the conversion of the above data to ASCII. In order to display
ADC input on a screen or LCD, it must be converted to ASCII. However, to con­
vert it to ASCII, it must be converted to decimal first. To convert a 00 - FF hex
value to decimal we keep dividing it by 10 until the remainder is less than 10.
Each time we divide it by \0 we keep the quotient as one of our decimal digits.
In the case of an 8-bit data, dividing it by 10 twice will do the job. For example,
if we have FFH it will become 255 in decimal. To convert from decimal to ASCII
format, we OR each digit with 30H. Now all we have to do is to send the digits
to the PC screen by using INT 21 H or send them to the LCD as was shown in the
first section of this chapter. One advantage of using C/C++ programs is that such
a conversion is done by the compiler.

Interfacing a temperature sensor to PC

Transducers are used to con-
vert physical quantities such as tern- Table 12-12: Thermistor Resistance
perature, light intensity, flow, and vs. Temperature
speed to electrical signals.
Depending on the transducer, the
output produced is in the form of
voltage, current, resistance, or
capacitance. For example, tempera­
ture is converted to electrical signals
using a transducer called a thermis­
tor. The thermistor responds to tem­

Temperature (C)
0
25
50
75
100

Tf(Kohms)
29.490
10.000
3.893
1.700
0.817

perature change by changing its From Wilham Kleltz, Dlgtial Electromcs
resistance. However, its response is
not linear, as shown in Table 12-12.

The complexity associated with wntmg software for such nonlinear
devices has led many manufacturers to market the linear temperature sensor.
Simple and widely used linear temperature sensors include the LM34 and LM35
series from National Semiconductor Corp. They are discussed next.

Table 12-13: LM34 Temperature Sensor Series Selection Guide

Part Temperature Range Accuracy Output
Scale
LM34A -50 F to +300 F +2.0 F 10 mV/F
LM34 -50 F to +300 F +3.0 F 10 mV/F
LM34CA -40 F to +230 F +2.0 F 10 mV/F

LM34C -40 F to +230 F +3.0 F 10 mV/F
LM34D -32 F to +212 F +4.0 F 10 mV/F

..
Note: Temperature range IS In degrees FahrenheIt.

LM34 and LM35 temperature sensors

The sensors of the LM34 series are precision integrated-circuit tempera­
ture sensors whose output voltage is linearly proportional to the Fahrenheit tem­
perature. The LM34 requires no external calibration since it is inherently cali­
brated. It outputs 10 mV for each degree of Fahrenheit temperature. Table 12-13
is the selection guide for the LM34. The LM35 series sensors are also precision
integrated-circuit temperature sensors whose output voltage is linearly propor­
tional to the Celsius (centigrade) temperature. The LM35 requires no external cal­
ibration since it is inherently calibrated. It outputs 10m V for each degree of centi­
grade temperature. Table 12-14 is the selection guide for the LM35.

CHAPTER 12: INTERFACING TO THE PC

Table 12-14: LM35 Temperature Sensor Series Selection Guide

Part Temperature Range Accuracy Output Scale
LM35A -55Cto+150C +1.0 C 10 mVIF
LM35 -55 Cto+150C +1.5 C 10 mV/F
LM35CA -40Cto+ll0C +1.0 C 10 mVIF
LM35C --40 C to +110 C +1.5 C 10 mVIF
LM35D OCto +100 C +2.0 C 10 mVIF

. .
Note: Temperature range IS ill degrees CelsIUs .

Signal conditioning and interfacing the LM35 to a PC

Signal conditioning is a widely used term in the world of data acquisition.
The most common transducers produce an output in the form of voltage, current,
charge, capacitance, and resistance. However, we need to convert these signals to
voltage in order to send input to an A-to-D converter. This conversion (modifica­
tion) is commonly called signal conditioning. Signal conditioning can be a cur­
rent-to-voltage conversion or a signal amplifica-
tion. For example, the thermistor changes resist­
ance with temperature. The change of resistance
must be translated into voltages in order to be of
any use to an ADC. Look at the case of connecting
an LM35 to an ADC0848. Since the ADC0848 has
8-bit resolution with a maximum of 256 steps and
the LM35 (or LM34) produces 10 mV for every
degree of temperature change, we can condition
Yin of ADC0848 to produce a Vout of 2560 mV
(2.56 V) for full-scale output. Therefore, in order to
produce the full-scale Vout of 2.56 V for the
ADC0848, we need to set Vref = 2.56. This makes
Vout of the ADC0848 correspond directly to the
temperature as monitored by the LM35. This is
shown in Table 12-15.

I

I

Analog world
(temperature,
pressure, etc.)

~
Transducer I

~
Signal

conditioning

• ADC I
~

Figure \2-17 shows connection of the tem­
perature sensor to CH2 of the ADC0848. Notice
that we use the LM336-2.5 zener diode to fix the
voltage across the 10K POT at 2.5 volts. The use of

I Microprocessor I
the LM336-2.5 should overcome any fluctuations Figure 12-16. Getting
in the power supply. The LM336 has three leads. Data to the CPU
However, the thIrd lead IS unconnected.

Table 12-15: Temperature v. Vout of the ADC0848

Temp. (C) Vin (mY) Vout (D7 - DO)
0 0 00000000
1 10 00000001
2 20 00000010
3 30 00000011
10 100 00001010
30 300 00011110

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC 379

5V
8255 ADC0848 I PC1 RD Vee LM35 or

PCO \I\IR CH1 - LM34

PAO DOIMAO r---..
D1IMA1 CH2 -J,......J D21MA2 CH3 -
D3IMA3 CH4 - .,. GND
D4IMA4

2.Sk

-
Vref

fr ~ ';i
PA7 AGND

10k
PSO D7 Set to

GND CS
2.56 V

I 1
-L

Figure 12-17. 8255 Connection to ADC0848 and Temperature Sensor

ADCBOB/B09

380

Another popular ADC is the ADC808/809 chip. It has eight input chan­
nels allowing it to convert 8 different analog inputs. See Figure 12-18. It is an 8-
bit ADC. The following is the pin description of the ADC808/809 chip.

OE (output enable): This is an input signal and is active high. ADC con­
verts the analog input to it. binary equivalent and holds it in an internal register.
OE is used to get the converted data out of the ADC808 chip. If a low-to-high
pulse is applied to the OE pin, the 8-bit digital output shows up at the DO - D7
data pins. The OE pin is also referred to as RD (read).

SC (start conversion): This is an input pin and is used to infonn the
ADC808 to start the conversion process. If we apply a low-to-high pulse to this
pin, the ADC808 starts converting the analog input value of Yin to an 8-bit digi­
tal number. The amount of time it takes to convert varies depending on the CLK
value. When the data conversion is complete, the EOC (end of conversion) pin is
forced low by the ADC808.

CLK is an input pin and is connected to an external clock source. The
CLK speed dictates the conversion time. While the ADC0848 uses an internal
clock, for the ADC808 the clock source is external. This way one can contol the
conversion speed.

EOC (end of conversion): This is an output pin and is active low. It is a
normally high pin and when the conversion is finished, it goes low to signal the
CPU that the converted data is ready to be picked up. After EOC goes low, we
send a low-to-high pulse to the OE pin to get the data out of the ADC808 chip.

Vref(+) and Vref(-) are both input voltages used for the reference volt­
age. The voltage connected to these pins dictates the step size. For the
ADC808/809, the step size is [Vret{+) - Vret{ -»)/256, since it is an 8-bit ADC
and 2 to the power of8 gives us 256 steps. For example, if the analog input range
needs to be 0 to 4 volts, Vref(+) is connected to 4 volts and Vref(-) is grounded.
That gives 4V/256 = 15.62 mV for the step size. In another case, if we need the
step size of \0 m V, Vref = 2.56 V since 2.56 V 1256 = 10m V. Notice that if we
connect the Vret{ -) input to a voltage other than ground, the step size is calcu­
lated based on the differential value of the Vret{ +) - Vref(-) inputs.

CHAPTER 12: INTERFACING TO THE PC

INO _ GNO Clock Vee 00 ---_ ADC8081809 -IN7:=:::: 07
__ "~IVref(+) EOCI--__

-_ .. ~IVref(-) OE ~_-

SCALECBA

(LSB)

Figure 12-18. ADC808/809

DO - D7 are the digital data output pins. These are tri-state buffered and
the converted data is accessed only when OE is forced high. While the analog
input voltage is in the range 0 to +SV, the output DO - D7 is given in binary.

INO - IN7 are the 8 channels of the Vin analog inputs. These 8 channels
of input allow us to read 8 different analog signals. However, they cannot all be
read at the same time since there is only a single DO - D7. We select the input
channel by using the A, B, C address selector pins according to Table 12-16.

A, B, C, and ALE. The input channel is selected by using the A, B, C,
and ALE pins. These are input signals into the ADC808/809 and the channel is
selected according to Table \2-16. To select a channel, we provide the channel
address to the A, B, and C pins according to Table 12-16 and then apply an L-to­
H pulse to the ALE pin to latch in the address.

Table 12-16: ADCSOS/S09 Analog Channel Selection

Selected Analo~ Channel C B A
INO 0 0 0
IN1 0 0 1
IN2 0 1 0
IN3 0 1 1
IN4 1 0 0
IN5 1 0 1
IN6 1 1 0
IN7 1 1 1

Note: Channel is selected when OE ~ 0, and an L-to-H pulse is applied to ALE.

How to read ADC808/809 data

Comparing the ADC808/809 with the ADC0848 shows that the
ADC808/809 has a clock pin. This means that we must provide an external clock
source. Therefore, the conversion speed varies according to the speed of the
external clock source. Also, notice that the ADC8081809 has no CS pin.

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC 381

382

The following are the steps to select a channel and read its data.
I. Provide the channel address (see Table 12-16) to pins A, B, and C.
2. Apply an L-to-H pulse to the ALE pin to latch in the channel address.
3. Apply an L-to-H pulse to the SC pin to start the conversion of analog input to

digital data.
4. After the passage of8 clocks, the EOC pin will go low to indicate that the data

is converted and ready to be picked up. We can either use a small time delay
~~~~~~oc=~~~~~~~~~~ 
it goes low. Notice that if you use a time delay to wait before you read the 
data, the size of the delay varies depending on the speed of the clock con­
nected to the clock pin of the ADC808/809. 

5. Apply an L-to-H pulse to the OE pin and read the data. 

Review Questions 

l. In the ADC0848, the INTR signal is an (input, output). 
2. To begin conversion, send a(n ) pulse to _~_ 
3. Which pin of the ADC0848 indicates end-of-conversion? 
4. The LM35 provides __ mV for each degree of __ (Fahrenheit, Celsius) 

temperature. 
5. Both the ADC0848 and ADC808 are -bit converters. 

SUMMARY 

This chapter discussed PC interfacing to real-world devices such as 
LCDs, ADCs, DACs, and stepper motors. First, we described the operation modes 
of LCDs, then described how to program the LCD by sending data or commands 
to it via the 8255. Next, we showed stepper motor interfacing to the PC. DAC and 
ADC devices and their applications were also discussed. ADC and temperature 
sensors and their interfacing were explored. The issue of signal conditioning and 
its importance in sensor interfacing was discussed as well. 

PROBLEMS 

SECTION 12.1: INTERFACING AN LCD TO THE PC 

1 . The LCD discussed in this section has (4, 8) data pins. 
2. Describe the function of pins E, R/W, and RS in the LCD. 
3. What is the difference between the VCC and VEE pins on the LCD? 
4. Clear LCD is a (command code, data item) and its value 

is hex. 
5. What is the hex value of the command code for display on, cursor on? 
6. Give the state ofRS, E, and RIW when sending a command code to the LCD. 
7. Give the state ofRS, E, and RIW when sending data character 'Z' to 

the LCD. 
8. Which of the following is needed on the E pin in order for a command 

code (or data) to be latched in by the LCD? 
(a) H-to-L pulse (b) L-to-H pulse 

9. True or false. For the above to work, the value of the command code 
(data) must be already at the DO - 07 pins. 

CHAPTER 12: INTERFACING TO THE PC 



PROBLEMS 

10. There are two methods of sending streams of characters to the LCD: 
(1) checking the busy flag, or (2) putting some time delay between each char­
acter without checking the busy flag. Explain the difference and advantage 
and disadvantage of each method. Also explain how we monitor the busy 
flag. 

II. For a 16x2 LCD the location of the last character of line I is 8FH (its com­
mand code). Show how this value came about. 

12. For a 16x2 LCD the location of the first character of line 2 is COH (its com­
mand code). Show how this value came about. 

13. For a 20x2 LCD the location of the last character of line 2 is 93H (its com­
mand code). Show how this value came about. 

14. For a 20x2 LCD the location of the third character of line 2 is C2H (its com­
mand code). Show how this value came about. 

15. For a 40x2 LCD the location of the last character of line I is A7H (its com­
mand code). Show how this value came about. 

16. For a 40x2 LCD the location of the last character of line 2 is E7H (its com­
mand code). Show how this value came about. 

17. Show the value (in hex) for the command code for the 10th location, line I on 
a 20x2 LCD. Show how you got your value. 

18. Show the value (in hex) for the command code for the 20th location, line 2 on 
a 40x2 LCD. Show how you got your value. 

19. Rewrite the COMNDWRT r-----------------, 
procedure (shown in 
Section 12.1) if port Cis 
used for control signals. 
Assume that PC4=RS, 
PC5=RIW, PC6=E. 

20. Repeat the above program 
for a data write procedure. 
Send the string "Hello" to 
the LCD without checking 
the busy flag. 

LCD 
8255 

PAO DO 

PA7 D7 

PC41--.....J 
PC51----' 
PC61-____ .....J 

V +5V 
cc 

LCD Connection for Problem 19 

SECTION 12.2: INTERFACING A STEPPER MOTOR TO THE PC 

10K 
POT 

21. If a motor takes 90 steps to make one complete revolution, what is the step 
angle for this motor? 

22. Calculate the number of steps per revolution for a step angle of 7.5 degrees. 
23. Finish the normal4-step sequence clockwise if the first step is 0011 (binary). 
24. Finish the normal4-step sequence clockwise ifthe first step is 1100 (binary). 
25. Finish the normal4-step sequence counterclockwise if the first step is 1001 

(binary). 
26. Finish the normal 4-step sequence counterclockwise if the first step is 0110 

(binary). 
27. What is the purpose of the ULN2003 placed between the 8255 and the step­

per motor? Can we use that for 3A motors? 

383 



384 

28. Which of the following cannot be a sequence in the nonnal 4-step sequence 
for a stepper motor? 
(a) CCH (b) DDH (c) 99H (d) 33H 

29. What is the effect of a time delay between issuing each step? 
30. In Question 29, how can we make a stepper motor go faster? 

SECTION 12.3: INTERFACING DAC TO THE PC 

31. True or false. DAC 1408 is the same as DAC0808. Are they pin compatible? 
32. Find the number of discrete voltages provided by the n-bit DAC for the fol­

lowing. 
(a) n=8 (b) n=1O (c) n=12 

33. For DAC1408, ifIref= 2 rnA show how to get the lout of 1.99 when all inputs 
are high. 

34. Find lout for the following inputs. Assume Iref= 2 rnA for DAC 1408. 
(a) 10011001 (b) 11001100 (c) 11101110 
(d) 00100010 (e) 00001001 (f) 10001000 

35. To get a smaller step, we need a DAC with ~~ (more, fewer) digital inputs. 
36. To get full-scale output what should be the inputs for DAC? 

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC 

37. Give the status ofCS and WR in order to start conversion for the ADC0848. 
38. Give the status of CS and WR in order to get data from the ADC0848. 
39. In the ADC0848 what happens to the converted analog data? How do we 

know that the ADC is ready to provide us the data? 
40. In the ADC0848 what happens to the old data if we start conversion again 

before we pick up the last data? 
41. In the ADC0848 INTR is an (input, output) signal. What is its func-

tion in the ADC0848? 
42. For an ADC0848 chip, find the step size for each of the following Vref. 

(a) Vref= 1.28V (b) Vref= IV (c) Vref= 1.9V 
43. In the ADC0848 what should be the Vref value if we want a step size of 20 

mv? 
44. In the ADC0848 what should be the Vrefvalue if we want a step size of 5 mv? 
45. In the ADC0848 how is the analog channel selected? 
46. With a step size of 19.53 m V, what is the analog input voltage if all outputs 

are I? 
47. With Vref = 1.28V, find the Yin for the following outputs. 

(a)D7-DO=111l11l1 (b)D7-DO=100JlOOI (c)D7-DO=1101100 
48. What does it mean when it is said that a given sensor has a linear output? 
49. The LM34 sensor produces mv for each degree of temperature. 
50. What is signal conditioning? 

ANSWERS TO REVIEW QUESTIONS 

SECTION 12.1: INTERFACING AN LCD TO THE PC 

1. Input 
4. High 

2. Input 
5. BOH and COh 

3. H-to-L 

CHAPTER 12: INTERFACING TO THE PC 



SECTION 12.2: INTERFACING A STEPPER MOTOR TO THE PC 

1. 0110,0011,1001,1100 for clockwise, and 0110,1100,1001.0011 for 
counterclockwise 

2. 72 
3. Because the 8255 does not provide sufficient current to drive the stepper 

motor. 

SECTION 12.3: INTERFACING DAC TO THE PC 

1. Digital,analog. In ADC the input is analog, the output is digital. 
2. 8 
3. current 

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC 

1. output 
2. L-to-H WR pin 
3. INTR 
4. 10,both 
5. 8 

ANSWERS TO REVIEW QUESTIONS 385 



386 

CHAPTER 13 

8253/54 TIMER AND MUSIC 

OBJECTIVES 

Uponeompletlon of this ehapter, you wHlt;eable to: 

» Desel'lbethe fun.n of _hpmolthe81~)~ '1"'(prog ... mmable,,~ry~J 
tilnf)r) . . . ... .. ... ..•....... ..... .... . .. •.. ............. ; ....•...• 

}) ,rogramthethreeCOUJlters.,thellJ53/$4bY.Il$flof"eehip!$eontr~.~ •• ······· 
>} Diagram how the 8253/54 timerJseonneeted iltthelBM' PC 
» Prod.uee the "beflP".soun4In thel)JM'~bY programming lhfl825l_r 
» Write programs to play songs oathe IBM PC 
}). Diagram the output pulsll$ef the 82$3/54 timer 
» Describe the various medes ·ef the our Signal in the 8253/54 

CHAPTER 13: 8253/54 TIMER AND MUSIC 



In the PC there is a single clock used to synchronize activities of all 
peripheral chips connected to the CPU. That clock, which has the highest frequency 
in the system, belongs to the 80x86 CPU. There are functions within the PC that 
require a clock with a lower frequency. The 8253/54 PIT (programmable interval 
timer) is used to bring down the frequency to the desired level for various uses such 
as the beep sound in the Pc. This chapter will first describe the 8253/54 timer and 
show the processes of initializing and programming it. Then interfacing and the use 
of the 8253/54 in the IBM PC are discussed. The third section will show how the 
8253/54 can be used to generate various frequencies, including musical notes on the 
PC. Section 13.4 describes the various shapes of8253/54 output pulses. 

SECTION 13.1: 8253/54 TIMER DESCRIPTION AND INITIALIZATION 

The 8253 chip was used in the IBM PC/XT, but starting with the IBM PC 
AT, the 8254 replaced the 8253. The 8254 and 8253 have exactly the same pinout. 
The 8254 is a superset of the 8253, meaning that all programs written for the 8253 
will run on the 8254. The following are pin descriptions of the 8253/54. 

AO, A1, CS 

Inside the 8253/54 timer, there 
are three counters. Each works inde­
pendently and is programmed sepa­
rately to divide the input frequency by a 
number from 1 to 65,536. Each counter 
is assigned an individual port address. 
The control register common to all three 
counters has its own port address. This 
means that a total of 4 ports are needed 
for a single 8253/54 timer. The ports are 
addressed by AO, AI, and CS, as shown 
in Table 13-1. Each ofthe 3 counters has 
3 pins associated with it, CLK (clock), 
GATE, and OUT, as shown in Figure 
13-1. 

elK 

Table 13-1: Addressing 8253/54 
~-- -.- , -=- .- - - ~==~-~,I' 

ICS I Al i AO jPort 

If-Q I 0 1 0 !counter 0 -- !I' 
L~+ U_ICounter I _,. 

I~ ~ I Counter 2-----l 

i,O_' _1_, I I Control registe[_ ,I 

L 1 i x lx 1 8253/54is not selected j 
(Reprinted by permission of Intel Corporation, Copyright 
Intel Corp. 1983) 

CLK is the input clock frequency, which can range between 0 and 2 MHz 
for the 8253. For input frequencies higher than 2 MHz, the 8254 must be used; the 
8254 can go as high as 8 MHz, and the 8254-2 can go as high as 10 MHz. 

OUT 

Although the input frequency is a square wave of33% duty cycle, the shape 
of the output frequency coming from the OUT pin after being divided can be 
programmed. Among the options are square-wave, one-shot, and other square-shape 
waves of various duty cycles but no sine-wave or saw-tooth shapes. 

GATE 

This pin is used to enable or disable the counter. Putting HIGH (5 V) on 
GATE enables the counter, whereas LOW (0 V) disables it. In some modes a O-to-I 
pulse must be applied to GATE to enable the counter. 

00- 07 

The DO - 07 data bus ofthe 8253/54 is a bidirectional bus connected to DO 
- 07 of the system data bus. The data bus allows the CPU to access various registers 
inside the 8253/54 for both read and write operations. RD and WR (both active low) 
are connected to lOR and lOW control signals of the system bus. 

SECTION 13.1: 8253/54 TIMER DESCRIPTION AND INITIALIZATION 387 



388 

Initialization of the 8253/54 

Each of the three count­
ers of the 8253/54 must be pro­
grammed separately. In order to 
program any of the three count­
ers, the control byte must first be 
written into the control register, 
which among other things tells 
the 8253/54 what shape of output 
pulse is needed. In addition, the 
number that the input clock 
should be divided by must be 
written into that counter of the 
8253/54. Since this number can 
be as high as FFFF (l6-bit data) 
and the data bus for the 8253/54 
timer is only 8 bits wide, the divi­
sor must be sent in one byte at a 
time. The 8253/54 must be initial­
ized before it is used. 

Control word 

Figure 13-2 shows the 
one-byte control word of the 
8253/54. This byte, which is sent 
to the control register, has the fol­
lowing bits. 

07 [ 1 24 J Vee 

06 [ 2 23 J WR 
05 [ 3 22 J RO 
04 [ 4 8 21 CS 

03 5 20 J A1 

02 6 2 19 J AD 

01 7 18 J ClK2 

00 8 5 17 J OUT 2 

ClKO 9 16 J GATE 2 
aUTO 10 3 15 J ClK 1 

GATED 11 14 J GATE 1 
GNO [ 12 13 J OUT 1 

Block diagram 
Microprocessor Counter 

interface input/output 

A , ClKO 

( 07-00 GATED , V aUTO 

RO : 8253 ClK 1 
WR GATE 1 

, OUT1 

AD 
ClK2 

A1 
GATE 2 

OUT2 

CS Y 
Figure 13-1. 8253 Pin and Function Diagram 
(Reprinted by permission of Intel Corporation, Copyright Intel 
Corp. 1983) 

DO chooses between a 
binary number divisor of 0000 to 
FFFFH or a BCD divisor of 0000 
to 9999H. The lowest number 
that the input frequency can be 
divided by for both options is 
000 I. The highest number is 216 

for binary and 104 for BCD. To get the highest count (65,536 decimal and 10000 
BCD), the counter is loaded with zeros. 

Dl, D2, and D3 are for mode selection. There are six possible modes that 
determine the shape of the output signal. 

Mode 0 Interrupt on terminal count 
Mode 1 Programmable one-shot 
Mode 2 Rate generator 
Mode 3 Square wave rate generator 
Mode 4 Software triggered strobe 
Mode 5 Hardware triggered strobe 
D4 and D5 are for RLO and RL I. The data bus of the 8253/54 is 8 bits (I 

byte), but the number that the input frequency can be divided by (divisor) can be as 
high as FFFFH. Therefore, RLO and RLI are used to indicate the size of the divisor. 
RLO and RLI have three options: (I) read/write the most significant byte (MSB) 
only, (2) read/write the least significant byte (LSB) only, (3) read/write the LSB first 
followed immediately by the MSB. 

The options for RLO and RL I show that programmers cannot only write the 
value of the divisor into the 8253/54 timer but read the contents of the counter at 
any given time, as well. Since all counters are down counters, and the count register 
is decremented, the count register's contents can be read at any time, thus using the 
8253/53 as an event counter. 

D6 and D7 are used to select which ofthe three counters, counter 0, counter 
I, or counter 2, is to be initialized by the control byte. 

CHAPTER 13: 8253/54 TIMER AND MUSIC 



07 06 05 04 03 02 01 00 

I SC1 I SCO I RL 1 I RLO I M2 I M1 I MO I BCD I 
I I I I I 

--~ 
--_ .. 

10 i Binary counter (16-bit) 

1 : BCD" (4 decades) 

'''-~. " 

0 0 10 IModeO 
. " , 

10 0 11 I Mode 1 

IX 1 0 iMode2 

X 1 !1 Mode 3 

11 0 10 Mode 4 

11 0 ' 1 
L : Mode .5 .... 

0 -~Io --rC~u~nter latching operation 

,0 11 Readnoad LSB only 

11 
1

0 Readnoad MSB only 

11 11 Read/load LSB first, then MSB 
-" 

'-0--" 10-- 'Iselect counter 0 --
,0 ~ , Select counter 1 

1 b- _ ·0 I Select ~_u_n_te_r 2 ___ --J 

,1T __ .Llllle",ga=-1 -- ---

Figure 13-2. 8253/54 Control Word Format 
(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1983) 

Example 13-1 

Pin CS of a given 8253/54 is activated by binary address A 7 - A2 ~ 100 10 I. 
(a) Find the port addresses assigned to this 8253/54. 
(b) Find the configuration for this 8253/54 if the control register is programmed as follows. 

Solution: 

MOV AL,OOllOllO 
OUT 97H,AL 

(a) From Table 13-1, we have the following: 
CS A1AO Port 
1001 01 00 Counter 0 
1001 01 01 Counter 1 
1001 01 10 Counter 2 
1001 01 II Control register 

Port address (hex) 
94 
95 
96 
97 

. " 

1 

! 

, 
~ 

(b) Breaking down the control word 00 II 0 II 0 and comparing it with Table 13-1 indicates counter 0 
since the SC bits are 00. The RL bits of II indicates that the low-byte read/write is followed by 
the high byte. The mode selection is mode 3 (square wave), and finally binary counting is 
selected since the DO bit is O. 

SECTION 13.1: 8253/54 TlMERDESCRlPTlON AND INITIALIZATION 389 



To program a given counterofthe 8253/4 to divide the CLK input frequency, 
one must send the divisor to that specific counter's register. In other words, although 
all three counters share the same control register, the divisor registers are separate 
for each counter. This is shown in Example 13-3. 

Regarding the options bit DO of the control byte, it must be noted that in 
BCD mode, if we program the counter for 9999, the input frequency is divided by 
that number. However, to divide the frequency by 10,000 we must send in 0 for both 
high and low bytes, as shown in Example 13-2. 

We can program any of the counters for divisors of up to 65,536 if we use 
the binary option for DO. To program the counter for the divisor of 65,536, the 
counter must be loaded with 0 for the low byte and another 0 for the high byte of 
the divisor. In that case, 00=0 for the control byte. 

Example 13-2 

Use the port addresses in Example 13-1 to program: 
(a) counter 0 for binary count of mode 3 (square wave) to divide CLKO by number 4282 (BCD) 
(b) counter 2 for binary count of mode 3 (square wave) to divide CLK2 by number C26A hex 
(c) Find the frequency ofOUTO and OUT2 in (a) and (b) ifCLKO =\.2 MHz, CLK2 = 1.8 MHz. 

Solution: 

(a) To program counter 0 for mode 3, we have 00110111 for the control word. Therefore, 
MOV AL,37H ;counter 0, mode 3, BCD 
OUT 97H,AL ;send it to control register 
MOV AX,4282H ;Ioad the divisor (BCD needs H for hex) 
OUT 94H,AL ;send the low byte 
MOV AL,AH ;to counter 0 
OUT 94H,AL ;and then the high byte to counter 0 

(b) By the same token: 
MOV AL,B6H 
OUT 97H,AL 
MOV AX,C26AH 
OUT 96H,AL 
MOV AL,AH 
OUT 96H,AL 

;counter2, mode 3, binary(hex) 
;send it to control register 
;Ioad the divisor 
;send the low byte 
;to count 2 
;send the high byte to counter 2 

(c) The output frequency for OUTO is 1.2MHz divided by 4282, which is 280 Hz. Notice that the 
program in part (a) used instruction "MOV AX,4282H" since BCD and hex numbers are 
represented in the same way, up to 9999. For OUT2, CLK2 of 1.8 MHz is divided by 49770 
since C26AH = 49770 in decimal. Therefore, OUT2 frequency is a square wave of36 Hz. 

Example 13-3 
Using the port addresses in Example 13-1, show the programming of counter I to divide CLK I by 
10,000, producing the mode 3 square wave. Use the BCD option in the control byte. 

Solution: 

390 

MOV 
OUT 
SUB 
OUT 
OUT 

AL,77H 
97H,AL 
AL,AL 
95H,AL 
95H,AL 

;counterl, mode 3, BCD 
;send it to control register 
;AL =0 load the divisor for 10,000 
;send the low byte 
;and then the high byte to counter I 

CHAPTER 13: 8253/54 TIMER AND MUSIC 



Review Questions 

1. True or false. Any code written for the 8253 will work on the 8254. 
2. The 8253/54 can be used to (divide, mUltiply) a square-wave digital 

fre<J.l!ency. 
3. IfCS ofthe 8253/54 is activated by A7 - A2 = OliO 00 binary, find the port address 

for this timer. 
4. Find the control byte to program counter 2 for mode I (programmable one-shot), 

BCD count, low byte, folJowed by high-byte RlW. 
5. True or false. To divide input frequency CLKI by 5065, we must send the 5065 to 

the control register. 
6. For Question 5, give the port address using the ports in Question 3. 
7. To divide the CLK frequency by 52,900, which option for DO of the control byte 

must be selected, and why? 
8. If DO =0 in the control byte, what is the highest number for the divisor? 

SECTION 13.2: IBM PC 8253/54 TIMER CONNECTIONS AND 
PROGRAMMING 

The IBM PC uses a 74LS138 to decode addresses for CS of the 8253 as 
shown in Figure 13-3. The port addresses are selected as indicated in Table 13-2, 
assuming zeros for x's. Chapter 12 contains a complete discussion of port selection. 

Table 13-2: 8253/4 Port Address Calculation in the PC 

!I " ---__ Binary Addre~s_. __--_----J-:---- I 
I AEN A9 A8 A7 A6 A5 A4 ;A3 A2 Al AO He:"'x~A""d""d"'re"'s~s9!~F"'un"'c...,t"'io"'n-~.~J 
:1 ° O __ O~~O~x ix~O ___ I ___ 40 I Counter ° _~ 
II ° ° __ 10 ---,-1----,"0,-- x ____ :x~_ 1 _______ 41 iCounter_1 __ ~.~~ -j 

'111 ° -0 10 lOx lx.~x~1 0 i 42 I.Coun_te_r 2 _ 
I'i o'oCo-- i-O-1--0~x--~ Ix x 1 I ~-I--- 43Controlregis~erJ, 
I - ~- ~-

8253 

LS138 cs 
AS A g AO AO 

AI AI 
A6 B 

A7 C Y2 
A8 G2B 

~ A9 G2A 
AEN fu GI P 

Figure 13-3. 8253 Port Selection In the PC/XT 

The three clocks of the 8253, CLKO, CLKI, and CLK2, are alJ connected 
to a constant frequency of 1.1931817 MHz. This frequency is from PCLK of the 
8284 chip after it has been divided by 2 with the use of 0 flip-flop 72LS 175, as 
shown in Figure 13-4. PCLK of the 8284 (discussed in Chapter 9) is 2.3863633 
MHz and must be divided by 2 since the maximum alJowed input frequency ofCLK 
of the 8253 is 2 MHz. GATEO and GATE I, which enable counter 0 and counter I, 
respectively, are connected to HIGH (5 V), thereby making those two counters 
enabled permanently. GATE2 of counter 2 can be enabled or disabled through PBO 
of port B of the 8255. Now that the input frequency to each timer is known, 
programming and applications of each counter in the PC can be explained. 

SECTION 13.2: IBM PC 8253/54 TIMER CONNECTIONS AND PROGRAMMING 391 



8253 

t------j ClKO 

+5V 

Speaker---'-P=B=01'--__ -l 
Enable 8255 

(Divide by 2) Port 6 
74LS175 
D 

1.19 MHz 

'-__ RESET 
2.383 MHz 

PCLK of 8284 

GATEO 

OUTO 

+5V 

18.2 Hz to IRQO 
of 8259 

74LS74 
D 
ClK 
Pr 

DREQO 

of 8237 
DMA 

D--aClR 

r---~ to cassette circuitry 

f-"=+---::-::-:--1 to PC5 of 8255 

PB1 
8255 
Port 61 

speaker data 

to speaker 
driving circuitry 

74LS38 
open collector 

Figure 13-4. 8253 Chip Connections in the PC 

392 

Using counter 0 

CLKO of counter 0 is 1.193 MHz, and GATED is connected to high 
permanently. OUTO of counter 0 is connected to IRQO (the highest-priority inter­
rupt) of the 8259 interrupt controller to provide time-of-day (TOD) interrupt, among 
other services. The next question is: How often is IRQO activated, or in other words, 
what is the output frequency? IRQO is activated 18.2 times per second, or put another 
way, the OUTO frequency is 18.2 Hz. If the frequency ofCLKO is 1.193 MHz and 
the output frequency should be 18.2 Hz, the counter must be programmed to divide 
1.193 MHz by 65,536. The wave shape is a square wave (mode 3 of the 8253) in 
order to trigger IRO on the positive edge of each pulse of the square wave so that a 
high pulse will not be mistaken for a multiple interrupt. Using the above information 
and Figure 13-2, the control word can be calculated in the following way: 

DO ~ 0 for the binary (or hex) value of the counter divisor. The timer is 
decremented after every input pulse until it reaches zero and then the original value 
is loaded again. Therefore, to divide the input frequency by 65,536, the timer is 
programmed with Os for both high and low bytes. 

D3 D2 Dl ~ 011, mode 3, for the square-wave output of 18.2 Hz frequency. 
D4 D5 ~ II for reading/writing the LSB first, followed by the MSB. 
D7 D6 ~ 00 for counter O. 

Summarizing the above gives the following control word: 
07 06 05 04 03 02 01 00 
o 0 1 1 0 1 1 0 = 36H 

The programming of counter 0 is as follows: 
MOV AL,36H ;control word 
OUT 43H,AL ;to control register of 8253 
MOV AL,OO ;00 LSB and MSB of the divisor 
OUT 40H,AL ;LSB to timer 0 
OUT 40H,AL ;MSB to timer 0 

CHAPTER 13: 8253/54 TIMER AND MUSIC 



The IBM PC BIOS shows the same process as follows: 

22 TIMER EQU 40H 

E277 B036 695 MOV AL,36H ;SET TIM O,LSB,MSB,MODE 3 
E279 E643 696 OUT TIMER+3,AL ;WRITE TIMER MODE REG 
E27B BOOO 697 MOV AL,O 
E27D E640 698 OUT TIMER,AL ;WRITE LSB TO TIMER 0 REG 

E284 E640 704 OUT TIMER,AL ;WRITE MSB TO TIMER 0 REG 

It must be noted that the function of IRO is not only taking care of the 
time-of-day clock. BIOS also uses this interrupt to see if the motor on the floppy 
disk drive needs to be turned off. It also allows the user to use this interrupt for 
user-defined applications. At the rate of 18.2 Hz (or every 54.94 ms), BIOS will 
make this interrupt available by going to the vector table ofINT lCH. The user can 
define CS:IP ofa service routine at the vector location belonging to INT lCH and 
use it for any purpose, as will be seen in Chapter 14. If the user is not using this 
interrupt, control will automatically be returned to BIOS. 

Using counter 1 

In counter I, CLKI is connected to 1.193 MHz and GATE is high perma­
nently. OUT I generates a periodic pulse required to refresh DRAM memory of the 
computer. This refreshing must be done at least every 15 [lS for each cell. As will 
be discussed in Chapter 15, in the IBM PCIXT the task of refreshing DRAM is 
performed by the 8237 DMA. It is up to the 8253's counter I to inform DMA 
periodically, lest the allowed time pass. To achieve this, OUT! will provide DMA 
a pulse of approximately 15 [lS duration or 66,278 Hz. This means that counter I 
must divide the input frequency 1.19318 MHz by 18 (1.l9318 MHz divided by 18 
= 66,278 Hz). Now why does the pulse have a duration of 15 [ls? It is because there 
are 128 rows that must be refreshed in DRAMs of 64K- and 256K-bit capacity, and 
ifthey are refreshed every 15 [lS, that makes a 15 x 128 = 1. 92 ms refreshing period 
just below the required 2 ms. This will be explained in more detail in Chapter 15. 
Using Figure 13-2, the control byte can be figured out as follows: 

DO = 0 for binary option 
D3 D2 Dl = 010 for mode 2 shape output. In this mode, OUT! stays high 

for a total of 18 pulses and goes low for one pulse. This action is repeated 
continuously (see Section 13.4). 

D5 D4 = 01 for the LSB only, since the byte is less than FF. CLKI is divided 
by 18; therefore, 18 is the LSB and there is no need for the MSB. 

D7 D6 = 0 I for counter I 
D7 .•• DO 
0101 0100 = 54H for the control word 
The programming ofthe 8253 counter I in the IBM BIOS is listed as follows, 

with slight modifications for the sake of clarity: 

MOV 
OUT 
MOV 
OUT 

Using counter 2 

AL,54H 
43H,AL 
AL,18 
41H,AL 

; the control word 
; to control register 
; 18 decimal, the divisor 
; to counter 1 

The output of counter 2 is connected to two different devices: the speaker 
and PC5 of the 8255. In early models of the IBM PCIXT, it was also connected to 
the cassette circuitry. That option has been eliminated in all the IBM PC and PS/2 
computers builtin recent years. Since counter 2 in the IBM PC is used to play music, 
it is important to understand counter 2 programming thoroughly. 

SECTION 13.2: IBM PC 8253/54 T-IMER CONNECTIONS AND PROGRAMMING 393 



394 

Use of timer 2 by the speaker 

In the IBM PC, CLK2 is connected to a frequency of 1.19318 MHz and 
GATE2 is programmed by PBO of port 6lH (port B). The IBM PC uses counter 2 
to generate the beep sound. Although BIOS uses timer 2 for the beep sound, it can 
be changed to play any musical note, as will be shown in the next section. The beep 
sound has a frequency of 896 Hz of mode 3 (square wave). Dividing the input 
frequency of 1.19318 MHz by 896 Hz gives 1331 (0533 hex) for the value to be 
loaded to counter 2. This gives the following control word: 

D7 ... DO 
1011 0110 ~ B6H for binary option, mode 3 (square wave), LSB 

first, then MSB, counter2. The program would be as follows: 

MOV 
OUT 
MOV 
OUT 
MOV 
OUT 

AL,OB6H 
43H,AL 
AL,33H 
42H,AL 
AL,05 
42H,AL 

or as IBM BIOS has written: 
TIMER EQU 40H 

MOV 
OUT 
MOV 
OUT 
MOV 
OUT 

AL,10110110B 
TIMER+3,AL 
AX,533H 
TIMER+2,AL 
AL,AH 
TIMER+2,AL 

;control word 

;Iow byte 

;high byte 

;SET TIM 2,LSB,MSB,BINARY 
;WRITE THE TIMER MODE REG 
;DIVISOR FOR 1000 HZ (896 HZ) 
;WRITE TIMER 2 CNT - LSB 

;WRITE TIMER 2 CNT - MSB 

Turning on the speaker via PBO and PB1 of port 61 H 

The process of turning on the speaker is the same for all IBM PCs and 
compatibles from 8088-based to 80486 and Intel's Pentium-based systems. As can 
be seen from Figure 13-4, GATE2 must be high to provide the CLK to timer 2. This 
function is performed by PBO of port 6lH. Again from Figure 13-4, OUT2 oftimer 
2 is ANDed with PB I of port 6lH, then is input to the driving circuitry of the speaker. 
Therefore, to allow OUT2 to go to the speaker, PB I of port 61 H must be set to high 
as well. The following is the code to tum the speaker on, which is exactly the same 
as the IBM BIOS's code to sound the BEEP. 

IN AL,61 H ;GET THE CURRENT SETTING OF PORT B 
MOV AH,AL ;SAVE IT 
OR AL,00000011B ;MAKE PBO=1 AND PB1=1 
OUT 61 H,AL ;TURN THE SPEAKER ON. 

{HOW LONG THE BEEP SHOULD SOUND GOES HERE} 
MOV AL,AH ;GET THE ORIGINAL SETTING OF PORT B 
OUT 61 H,AL ;TURN OFF THE SPEAKER 

The amount of time that a musical note is played is referred to as its time 
delay and is produced with the help of the main 80x86 processor in the Pc. 

Time delay for 80x86 pes 

CPU-generated time delays are often needed for various applications. 
Since creating delays is different in 8088/86 PCs versus 80286, 386, 486, and 
Pentium IBM-compatible PCs, they are described separately. 

CHAPTER 13: 8253/54 TIMER AND MUSIC 



Creating time delays in 8088/86-based PCIXT, PS/2, and compatibles 

In these PCs, the following routine can be used to generate a time delay: 
MOV CX,N 

AGAIN: LOOP AGAIN 
Every LOOP instruction in the 8088/86 CPU takes a total of 17 clocks to 

be executed; therefore, the time delay is approximately N x T period x 17. For 
example, ifCX = 28,000 and the system frequency is 4.7 MHz (the T= 210 ns for 
the original PC/XT), that gives an approximate time delay of 100 ms (28,000 x 210 
ns x 17). The reason that the delay is said to be approximate is that every so often 
the CPU is frozen to allow the DMA to refresh memory. In other words, the time 
for the above delay is really little more than \00 ms. In 8088-based IBM PCIXT 
BIOS, IBM designers used the above method to generate the delay for the BEEP 
sound as shown next: 

SUB 
G7:LOOP 

DEC 
JNZ 

CX,CX 
G7 
BL 
G7 

With CX = 65,536, "LOOP G7" gives a delay of250 ms (210 ns x 65,536 
x 17 = 234 ms), taking into consideration the time for refreshing the system memory. 
BL contains the number of 250-ms delays. If the 8088/86 working frequency is 8 
MHz (as in the IBM PS/2 model 25), then T = 125 ns (118 MHz = 125 ns) and the 
above time delay is much shorter. This means that the delay is not only frequency 
dependent but also CPU dependent, since in the 80286 the LOOP instruction takes 
8 clocks instead of 17 clocks as in the 8088/86. The same instruction takes II and 
7 clocks in 386 and 486 CPUs, respectively, as shown in Appendix B. This is the 
reason that starting with the PC AT and all 80286, 80386, 80486, and Intel Pentium 
computers, IBM provides a scheme to create a time delay using hardware that is not 
only frequency but also CPU independent. 

Time delays in 80x86 IBM PC (for 286 and higher processors) 

The following method of creating fixed hardware time delays was first 
implemented in the IBM PC AT and continued in all 286, 386, 486, and Pentium­
based IBM and compatible computers. This makes sense since all these processors 
have working frequencies of 6 to 66 MHz in addition to the fact that the LOOP 
instruction timing varies among the processors. To create a processor independent 
delay, IBM made PB4 of port 6lH toggle every 15.085 IlS. That means that by 
monitoring PB4 of port 61 H, a fixed time delay can be obtained, as shown next from 
IBM PC AT BIOS. Upon entering this subroutine called WAITF, register CX must 
hold the number of 15.085 IlS time delays needed. 

;(CX) = COUNT OF 15.085 MICROSECOND 
WAITF PROC NEAR 

PUSH AX 
WAITF1: 

WAITF 

IN 
AND 
CMP 
JE 
MOV 
LOOP 
POP 
RET 
ENDP 

AL,61H 
AL,10H 
AL,AH 
WAITF1 
AH,AL 
WAITF1 
AX 

;CHECK PB4 
;DID IT JUST CHANGE 
;WAIT FOR CHANGE 
;SAVE THE NEW PB4 STATUS 
;CONTINUE UNTIL CX BECOMES 0 

SECTION 13.2: IBM PC 8253/54 TIMER CONNECTIONS AND PROGRAMMING 395 



It must be noted that in 286, 386, 486, and Intel Pentium-based IBM and 
compatible PCs, port B (port 6IH) is used both as input and output, in contrast with 
8088/86-based IBM computers, in which port B is used only as output. 

Now a time delay of any duration can be created regardless of the CPU 
frequency as long as it is a 286 and higher Pc. For example, to create a half-second 
delay, set CX =33,144 (33,144 x 15.085 J.1s =112 second), and then call the above 
routine as done by IBM PC AT BIOS: 

MOV CX,33144 
CALL WAITF 

; 1/2-second delay 

Example 13-4 
Using the BIOS WAITF routine, show how to create a 1.5-second time delay. 

Solution: 
Since the 1.5-second delay requires the counter to be set to 99,436 (1.5115.085 J.1s = 99,436) and the 
maximum value of CX is 65,536, the following method is used to generate the 1.5-second delay. 

MOV BL,03 
BACK: MOV CX,33144 ; II2-second delay 

CALL WAITF 
DEC BL 
JNZ BACK 

Review Questions 

I. What port addresses are assigned to the 8253/54 timer on the PC motherboard? 
2. Of the three counters of the 8253/54 timer on the PC motherboard, which one is 

used for the speaker, and what port address belongs to it? 
3. True or false. In the PC, counters 0 and I are used for internal system use. 
4. True or false. While the user can program counter 2, users cannot program counters 

o and I since they are for system use only. 
5. True or false. In the PC, while GATEO and GATE I are high permanently, GATE2 

can be controlled by the user. 
6. In the PC, how is GATE2 controlled by the user? 
7. What is the approximate time delay generated by the following sequence of instruc­

tions if the CPU is: 
(a) 8088 of 5 MHz (b) 8086 of 8 MHZ 

MOV AL,250 
BACK: SUB CX,CX 
AGAIN: NOP 

LOOP AGAIN 
DEC AL 
JNZ BACK 

8. Find the time delay generated by the following code using the method of monitor­
ing PB4 of port 61H in 286,386,486, and Pentium PCs and compatibles. 

MOV DL,200 
BACK: MOV CX.16572 ;delay=16572 x 15.085 microsec 
WAIT: IN AL,61H 

AND AL,10H ;check PB4 
CMP AL,AH ;did it just change 
JE WAIT ;wait for change 
MOV AH,AL ;save the new PB4 status 
LOOP WAIT ;continue until CX becomes 0 
DEC DL 
JNZ BACK ;try until DL is 0 

396 CHAPTER 13: 8253/54 TIMER AND MUSIC 



SECTION 13.3: GENERATING MUSIC ON THE IBM PC 

Example 13-5 

As mentioned earlier, counter 2 is connected to the speaker and it can be 
programmed to output any frequency that is desired. First, look at the list of piano 
notes and their frequencies given in Figure 13-5. Since the input frequency to 
counter 2 is fixed at 1.1931817 MHz for all 80x86-based IBM computers and 
compatibles, programs for playing music found in this section can run on any of 
them without modification. To play music, the input frequency of 1.1931817 MHz 
is divided by the desired output frequency to get the value that must be loaded into 
counter 2. This is shown in Example 13-5. 

Show the values to be loaded into counter 2 in order to have the output frequency for the notes 
(a) D3, (b) A3, and (c) A4. 

Solution: 

From Figure 13-5, notice that the frequency for note D3 is 147. The value that must be loaded into 
counter 2 is 1.1931 MHz divided by 147, which is 8116. Going through this procedure for each note 
gives the following: 

Value Loaded into Counter 2 
Note Freguency Decimal Hex 
D3 147 Hz 8116 lFB4 
A3 220Hz 5423 152F 
A4 440Hz 2711 OA97 

Now that the values to be loaded into counter 2 are known, the program for getting the speaker to 
sound the notes for a certain duration is shown in Example 13-6. 

For a delay of250 ms in 80286 and higher IBM compatibles, the following 
routine can be used. 

;this 250 ms delay can work only on 286,386,486, and Pentium PCs 

DELAY 

WAIT: 

DELAY 

PROC 
MOV 
PUSH 

IN 
AND 
CMP 
JE 
MOV 
LOOP 

POP 
RET 
ENDP 

NEAR 
CX,16578 
AX 

AL,61H 
AL,10H 
AL,AH 
WAIT 
AH,AL 
WAIT 

AX 

; 16578 x 15.08 microsec = 250 ms 

;check PB4 
;did it just change? 
;wait for change 
;save the new PB4 status 
;decrement CX and continue 
;until CX becomes 0 

SECTION 13.3: GENERATING MUSIC ON THE IBM PC 397 



_.-r----"--

I 
An 27.50C 

L AO# BOb 29.135 B() .30.868 , 
r 32.703 

! I C 1# 0 ' b 34.648 vi 
~. 36.708 0 , # E Ib 38.891 
u' ; 

E, 41.203 
f 43.654 .J r- I # G Ib 46.249 1 
C, 48.999 G , # A Ib 51.913 
PI 55.000 A 1# B Ib 58.270 61 ,<:~ i 

I 
~ JJ 

i 

~ 2 65.406 c. - -. 
I 
c, # o "b 69.296 73A': C' D ; # 

, 
IJ 2 r--- I E 2b 17.782 
f 2 82407 , 

I F - 87.307 

I 
F 2 # o 2 b 92499 ! 

O2 97999 O2 # A. 2 b 103.83 
A 2 11000 

I A 2# B 2 b 116.54 q 123.47 
~ 

(' / 130.81 
I C 3# 0 ,b 138.59 ~ .3 

1 0.3 146.83 
I o 3 # E 3 b 155.56 E 3 164.81 I 
; F 3 174.61 

I F , # o , b ! 85.00 r 196.00 , 

! 

C;# A :3 b 207.65 
'v j 

I 
A. , 220.0C 

A "3 # B .3 b 233.08 B , 246.94 
C ~ 261.63 Middle C 

C 4 # D 4 b 277.18 ._. -_.-. . -
0 4 293.66 o 4 # E 4b 311.13 c4329.63 
- 349 2:'0 

c 4 # C 4 b 369.99 4 

G 4 39,99 0 4 # A 4b 415.31 
A 4 440.00 

A 4~ B 4 b 466.16 
[3 4 493.88 
('. 

523.25 
I C 5 # o 5 b 554.37 ~ 5 

L.J :' 58.7.j~ 
D 'J # E 5 b 622.25 

l :' 
6:,9.26 

F 5 698.46 

I 
F 5 # G Sb 739.99 G S 783.99 
G 5 # A Sb 830.61 A c 880.00 , 

I A S# 8 Sb 932.33 J 

B 5 987.7: 
r 1046.5 I 

C 6# Orb ! 1087 ',-, 6 
06 ! '74.7 0 

o 6# r- -b 1244 .. 5 _. b 
l6 n18.5 
f 6 13969 

F 6 # 0 6 b 1480.0 
G 6 1568.0 

G 6 # A 6b 1661.2 
.A 6 : 760.0 .A 6# B 6 b 1864.7 H ~ 1975.5 , 

--j ~ 0 ~-. 

C 7 2093.0 I 

I 

C 7 # 0 7 
b 2217.5 7 1.349.,) , 

2489.0 --' 7 
D 7 # E 7 b E 7 2637.0 

F 7 2793.8 J 
Fi # G 7 b 2960.0 C73136.0 

,,- .. G 7 # A 7b .3322.4 ,. 
.\ 3520.C P ,I # a ;b 3729.3 '--', / 

B i 395' .1 
08 4 :860 i I 

Figure 13-5. Plano Note Frequencies 

398 CHAPTER 13: 8253/54 TIMER AND MUSIC 



A delay of 5 ms between notes can be achieved in the same way. 

DELAY_OFF PRoe 
MOV 
PUSH 
IN 
AND 
eMP 
JE 
MOV 
LOOP 
POP 
RET 
ENDP 

NEAR 
eX,331 
AX 
AL,61H 
AL,10H 
AL,AH 
WAIT 
AH,AL 
WAIT 
AX 

WAIT: 

DELAY 

G7: 

ELAY 

;331 x 15.08 micro sec = 5 ms 

;check PB4 
;did it just change? 
;wait for change 
;save the new PB4 status 
;continue until ex becomes 0 

The following creates a delay for the SOSS-based PCIXT of 4.7 MHz. 

PRoe 
SUB 
LOOP 
RET 
ENDP 

NEAR 
eX,ex 
G7 

Another way to get an approximate DELAY_OFF of 5 ms for the S088 
PC/XTof4.7-MHz computers is 

DELAY_OFF 

G1: 

PRoe 
MOV 
LOOP 
RET 
ENDP 

NEAR 
eX,1400 
G1 

Playing "Happy Birthday" on the PC 

;1400 x 210 ns x 17 =5 ms 

This background should be sufficient to develop a program to play any song. 
The tune for the song "Happy Birthday" is given below. 

Lyrics Notes Freg. 1Hz) Duration 
hap U- 262 1/2 
py C4 262 1/2 
birth D4 294 1 
day C4 262 1 
to F4 349 1 
you E4 330 2 
hap C4 262 1/2 
py C4 262 1/2 
birth D4 294 1 
day C4 262 1 
to G4 392 1 
you F4 349 2 
hap C4 262 1/2 
py C4 262 1/2 
birth C5 523 1 
day A4 440 1 
dear F4 349 1 
so E4 330 1 
so D4 294 3 
hap B4b 466 1/2 
py B4b 466 1/2 
birth A4 440 1 
day F4 349 1 
to G4 392 1 
you F4 349 2 

SECTION 13.3: GENERATING MUSIC ON THE IBM PC 399 



Example 13-6 

Program counter 2 to play the following notes: D3, A3, A4, for durations of2S0, SOO, and SOO ms, re­
spectively. Place a S-ms silence between each note. 

Solution: This program uses the values calculated in Example 13-S. 

MOV AL,OB6H ;control byte:counter2,lsb,msb,binary 
OUT 43H,AL ;send the control byte to control reg 

;load the counter2 value for D3 and play it for 2S0 ms 
MOV AX,IFB4H ;for D3 note 
OUT 42H,AL ;the low byte 
MOV AL,AH 
OUT 42H,AL ;the high byte 

;turn the speaker on 
IN AL,6lH ;get the current setting of port b 
MOV AH,AL ;save it 
OR AL,OOOOOOllB ;makepbO=1 andpbl =1 
OUT 6lH,AL ;turn the speaker on 
CALL DELAY ;play this note for 2S0 ms 
MOV AL,AH ;get the original setting of port b 
OUT 6IH,AL ;turn off the speaker 
CALL DELAY OFF ;speaker off for this duration 

;load the counter2 value for A3 and play it for SOO ms 
MOV AX,IS2FH ;for A3 note 
OUT 42H,AL ;the low byte 
MOV AL,AH 
OUT 42H,AL ;the high byte 

;turn the speaker on 
IN AL,6lH ;get the current setting of port b 
MOV AH,AL ;save it 
OR AL,OOOOOOllB ;make PBO =1 and PBl =1 
OUT 61 H,AL ;turn the speaker on 
CALL DELAY ;play for 2S0 ms 
CALL DELAY ;play for another 2S0 ms 
M 0 V AL,AH ;get the original setting of port b 
OUT 61 H,AL ;turn off the speaker 
CALL DELAY OFF ;speaker off for this duration 

;load the counter2 value for A4 and play it for SOO ms 
MOV AX,OA97H ;for A4 note 
OUT 42H,AL ;the low byte 
MOV AL,AH 
OUT 42H,AL ;the high byte 

;turn the speaker on 

400 

IN AL,61H 
MOV AH,AL 
OR AL,OOOOOOIIB 
OUT 6IH,AL 
CALL DELAY 
MOV 
OUT 
CALL 

AL,AH 
6IH,AL 
DELAY OFF 

;get the current setting of port b 
;save it 
;make PBO =1 and PBl =1 
;turn the speaker on 
;play for 2S0 ms 
;get the original setting of port b 
;turn off the speaker 
;speaker off for this duration 

CHAPTER 13: 8253/54 TIMER AND MUSIC 



In previous examples conceming counter 2, values loaded into that counter 
were calculated by dividing 1.1931817, the input to CLK2, by the desired OUT2 
frequency. The 80x86 can do that calculation as well, by loading 1.1931817 MHz 
into registers DX:AX and then dividing it by the desired output frequency using the 
DIV instruction. As a result, the AX register will have the values needed to be loaded 
into the counter. 

Review Questions 

I. Find the frequency and the value that must be loaded into the register for counter 2 
to play the following notes. 
(a) C4 (b) D3 (c) E4 (d) F4 

2. Write pseudocode to program counter 2 to playa note. 
3. Of the steps in Question 2, which must the 80x86 be involved in, and why? 

SECTION 13.4: SHAPE OF 8253/54 OUTPUTS 

ClkO 

This section begins with a discussion of the shape of output pulses of the 
8253/54 for all three counters of the IBM PC. Then the various modes of the 8253/54 
are discussed. 

ClkO = 1.193 MHz 

ouro Jr-------1� �-� -~ __ -1III-----'.---1III-----,'------l11-1 _-,I 

Clk1 

( 32768 x 838 ns )( 32768 x 838 ns 

( T .. 65536 x 838 ns = 54.9 rna 

F._'_ "'18.2Hz 
1838 nt 54.9 rna 

liUiriJiJ 

) 
)( 

T = 65536 x 838 ns ) 

Clk1 .. 1.19318 MHz 

OUT' J Irl --~LJ~------lI~1 --~LJI 

)( ) T = 18 x 838 ns = 15.09 mlcrosec ( 
F = 66278Hz 

Clk2 

Clk2 '" 1.19318 MHz 

OUT2 J 111---, .-------111-1 --, ~ 
'---_111 f---' '----11 f-I --,I 

( 
( 

666 x 838 na )( 
T = (666 + 665) x 838 ns 

T = 1331 x 838 ns -1.1153 msec 

F=1 = S96.5 Hz 

T 

665 x 838 ns 

)( T=1.1153ms ) 

Figure 13-6. 8253/54 Out Timing Diagrams in the PC 

OUTO pulse shape in IBM BIOS 

As was seen in Section 13.2, IBM BIOS programmed counter 0 to create 
mode 3, which is a square-wave shape. Since counter 0 is loaded with the number 
65,536 and the clock period of input frequency 838 ns (111.193 MHz = 838 ns), the 
period of the OUTO pulse is equal to 65,536 x 838 ns = 54.9 ms (18.2 Hz). Now if 
the number N loaded into the counter is even, both the high pulse and low pulse are 
the same length (N12 x 838 ns). If the number N is odd, the high pulse is (N + 1)/2 

SECTION 13.4: SHAPE OF 8253/54 OUTPUTS 401 



402 

x 838 ns and the low pulse is (N - I )/2 x 838 ns wide. In other words, if the number 
loaded into counter is an odd number, the high portion of the square-wave output 
pulse is slightly wider than the low portion. In the case of counter 0, BIOS loads it 
with the value 65,536, which is an even number; therefore, the high portion and the 
low portion of each output pulse is equal to 32,768 x 838 ns. Another important note 
is that OUTO continuously sends out square-wave pulses. This is due to the fact that 
when the PC is turned on, BIOS programs load the counter once and let it go. That 
means that there is no need to reprogram it every time when the count reaches zero 
since 8253/54 automatically reloads the value 65,536 when the counter counts down 
to O. This automatic reloading is done internally without the help of the 80x86 CPU. 
Note that GATEO is permanently set to high, making counter 0 enabled permanently. 

OUT1 pulse shape in the IBM BIOS 

IBM BIOS programmed counter I in mode 2, rate generator, with the value 
18 loaded into the counter. With a eLKI period of838 ns, OUTI will be high for a 
total of 17 x 838 ns and will go low for one pulse of838 ns, which makes the period 
T of OUT! equal to 18 x 838 ns. At the end of the eighteenth pulse, counter I 
internally, without the help of the 80x86 CPU, reloads the original value of 18 and 
the process continues as long as the power is on. Note that GATEI is set high 
permanently, making counter I enabled permanently. 

OUT2 pulse shape in the IBM BIOS 

Although the mode 3 square wave was discussed under counter 0, there is 
one difference between the square waves for counter 0 and counter 2. As mentioned 
earlier, if the number Nloaded into the counter is even, both the high pulse and low 
pulse are the same length (Nl2 x 838 ns). However, iffhe number N is odd, the high 
pulse is (N + I )/2 x 838 ns and the low pulse is (N - I )/2 x 838 ns. IBM BIOS loads 
the value 1331 into counter 2. Since 1331 is an odd number, the OUT2 pulse is high 
for a total of (1331 + 1)/2 = 666 x 838 ns and is low for a total of (1331 - 1)/2 = 

665 x 838 ns. This is shown in Figure 13-6. In other words, the duty cycle of the 
system is slightly more than 50%, but the period, T, is still 1331 x 838 ns ((666 + 
665) x 838 ns). Next we discuss all 6 modes ofthe 8253/54. 

8253/54 modes of operation 

The 8253/54 has a total of six modes of operation, modes 0 through 5. These 
six modes of operation are available to each ofthe three counters inside fhe 8253/54. 
Next we describe each mode with examples. It must be noted that fhese examples 
are given only to clarify the concepts behind these modes and you must not program 
your PC's 8253/54 counters for these values, although you can connect an 8253/54 
to the PC bus and test these examples. The 6 modes of the 8253/54 fall into two 
categories as far as activation is concerned. In the first category, after the counter is 
programmed, OUT will have the desired output only if GATE = 1. In the second 
category, after fhe counter is programmed, OUT will have the desired OUT only if 
a O-to-I pulse is applied to fhe GATE. This second category is called hardware 
triggerable. It is also called programmable. Next we describe each mode. 

Mode 0: interrupt on terminal count 

The output in this mode is initially low, and will remain low for the duration 
of the count if GATE = 1. The width of the low ouput is as follows. 

Width of low pulse = N x T 

where N is the clock count loaded into counter, and T is the clock period of 
the CLK input. When the terminal count is reached, the output will go high and 
remain high until a new control word or new count number is loaded. 

CHAPTER 13: 8253/54 TIMER AND MUSIC 



Example 13-7 
Assume that GATE I ~ I and CLK] ~ I MHz, and the clock count N ~1000. Show the output 
of OUT I if it is programmed in mode O. 

Solution: 

The clock period of CLKI is I ~s; therefore, OUT! is low for 1000 x I ~s ~ I ms, before it goes 
high, as shown in the following diagram. 

GATE1 = 1 
OUT1 ___ 1000x1~s=1 ms 

WR 

In this mode, if the GATE input becomes low at the middle of the count, 
the count will stop and the output will be low. The count resumes when the gate 
becomes high again. This in effect adds to the total time the output is low. The 
amount added is the time that the GATE input was kept low. 

Example 13-8 

In Example 13-7, assume that GATE I becomes zero for 400 ~s. What is the width of the low pulse 
forOUT!? 

Solution: 

It is 1000 ~s + 400 ~s ~ ]400 ~s, as shown next. 

GATE1 = 1 

OUT1 

400 ~s 

_--______ 1400 ~s 

WR 

Mode 1: programmable one-shot 

This mode is also called hardware triggerable one-shot. The triggering 
must be done through the GATE input by sending a O-to-I pulse to it. In 8253/54 
modes that are programmable (triggerable) such as mode 1, the following two steps 
must be performed for the counter to work. 

1. Load the count registers. 
2. A O-to-l pulse must be sent to the GATE input to trigger the counter. 

Contrast this with mode 0, in which the counter produces the output 
immediately after the counter is loaded as long as GATE ~ 1. In mode 1 after sending 
the O-to-l pulse to GATE, OUT becomes low and stays low for a duration of N x T, 

SECTION 13.4: SHAPE OF 8253/54·0UTPUTS 403 



Example 13-9 

then becomes high and stays high until the GATE is triggered again. This is like any 
one-shot, in that when it is triggered the output is activated and stays active for a 
period of time, then returns to the inactive state. In the case of the 8253/54, we can 
program the period in which the one-shot is active. The width of the low pulse at 
the ouput is N x T where T is the clock period of CLK and N is the count number. 
If, at the middle of the count, GATE is triggered again, the counter is reloaded with 
N and the count starts all over again. See Example 13-9. 

(a) IfCLKI = I MHz and N = 500, show the output for OUT! ifit is programed for mode I. 
(b) Assume that after ISO clock pulses, GATE I is retriggered. Show the output for OUT I. 

Solution: 

(a) Notice that OUT! becomes low only when GATE I goes from 0 to I. 

GATE1 

OUT1 

500~s 

WR 

(b) If GATE I is retriggered after ISO clock pulses, COUNT! is reloaded with N = 500 and 

the count starts all over again, making the OUT! pulse duration 650 fiS as shown next. 

GATE 1 

OUT1 

404 

1_150~S ---- 500 ~s 

WR 
_------ 650 ~S 

Notice in this mode that the count starts only when a O-to-I pulse is applied 
to the GATE input. This is the reason it is called programmable or hardware 
triggerable. This is unlike many other modes where the counter starts upon loading 
the count. In other words, in the hardware triggerable after loading the count, we 
must also send a O-to-I pulse to the GATE input to trigger the count. 

Mode 2: rate generator 

Mode 2 is also calleddivide-by-N counter. In this mode, if GATE = I, OUT 
will be high for the N x T clock period, goes low only for one clock pulse, then the 
count is reloaded automatically, and the process continues indefinitely. This mode 
in effect produces a divide-by-N counter. In this mode, the period of OUT is equal 
to (N + I) x Twhere for N x T, OUT is high and for I clock pulse, OUT is low. See 
Example 13-10. 

CHAPTER 13: 8253/54 TIMER AND MUSIC 



Example 13-10 
If CLK2 ~ I MHz, GATE2 ~ I, and N ~750, show OUT2 if COUNT2 is programmed for mode 2. 

Solution: 

Notice that the count is reloaded automatically and the counter countinues to produce OUT2. 

GATE2 = 1 

OUT1 

1"S~ __________ -, 

--'-----7-S-0-"-S------,U- N U- N ---U 
WR 

Mode 3: square wave rate generator 

In this mode if GATE~I, OUT is a square wave where the high pulse is 
equal to the low pulse if N is an even number. In that case, the high part and low 
part of the pulse have the same duration and are equal to (NI2) x Twhere N is the 
clock count and T is the CLK period. In this mode, the count is reloaded automat­
ically when the terminal count is reached, thereby producing a continuous square 
wave with frequency of liN of the CLK frequency. Mode 3 is similar to mode 2, 
except that OUT in mode 3 is a square wave of 50% duty cycle. If N is an odd 
number, the high pulse is one clock pulse longer, as discussed in the case ofOUT2 
of the Pc. 

Mode 3 in reality divides the CLK input by N, producing a square wave just 
like the input, except that the frequency is divided by N. This mode is widely used 
as a frequency divider and audio-tone generator, as we saw in the case of the IBM 
Pc. In this mode, if the GATE input becomes low, the count down will stop and the 

Example 13-11 
IfCLK2 ~I MHz, GATE I ~I, N ~1000, show OUT! if COUNT! is programmed for mode 3. 

Solution: 

Since the clock period is I J.ls, OUT! is high for 500 J.ls and low for 500 J.ls, producing the square 
wave of I ms period continuously, as shown next. 
GATE1 = 1 

OUT1 

i_500~s_ -500~s-

I I 1- 1000 .. "-5------..... _ 
1000 "5 

WR 

count will resume only after GATE ~ I. See Example 13-11. 

Mode 4: software triggered strobe 

In this mode if GATE ~ I, the output will go high upon loading the count. 
It will stay high for the duration of N x T, where N is the count and T is the clock 
period. After the count reaches zero (terminal count), it becomes low for one clock 
pulse, then goes high again and stays high until a new command word or new count 
is loaded. To repeat the strobe, the count must be reloaded again. In other words, 
this mode does not automatically reload the count upon reaching the terminal count. 

Mode 4 is similar to mode 2, except that the counter is not reloaded 
automatically. In this mode, ifthe GATE input becomes low, the count will stop and 
the output will be high. The count resumes only when the gate becomes high again. 

SECTION 13.4: SHAPE OF 8253/54 OUTPUTS 405 



Example 13-12 

If CLKO ~ I MHz, GATEO ~ I, and N ~ 600, show the shape of OUTO where counter 0 is 
programmed for mode 4. 

Solution: 

Since the CLKO period is I J.lS, after the count is loaded OUTO will be high for 600 J.lS and will go 

low for I J.lS. Then it will go high again and stay high until the counter is reprogrammed, as shown be­
low. 

GATED = 1 
OUTO J- 600 ~s ----u 

WR 

This in effect adds to the total time the output is high. The amount added is the hme 
that the GATE input is kept at O. See Example 13-12. 

In this mode also notice that the count starts the moment the count is written 

Example 13-13 

IfCLKI ~ I MHz, and N ~ 400, show the output for OUTI ifit is programmed for mode 5. 

Solution: 

Notice that the count starts only when the O-tol pulse is applied to GATE!. 

GATE1 = 1 

OUT1 
_____ ~-----400~S------U 

WR 

into the counter. This is the reason it is called software triggered. Mode 5 is similar 
to this except that the triggering must be done by the GATE input, as described next. 

Mode 5: hardware triggered strobe 

This mode is similar to mode 4 except that the triggering must be done with 
the GATE input. In this mode, the count begins only when a O-to-I pulse is sent to 
the GATE innn! Thi, i, nnlike mode 4 where the . ,tarted unon " A; ,the 

Example 13-14 

In Example 13-13, assume that GATE I is retriggered after 150 pulses. Show the output for OUT!. 

Solution: 
If GATE I is retriggered after 150 clock pulses into the countdown, COUNT! is reloaded with 
N ~ 400 and the counts begins again, making the OUT! pulse duration 550 J.lS, as shown next. 

_150)..15 _ 

GATE1 = 1 

550 ~s -u OUT1 

WR 

406 CHAPTER 13: 8253/54 TIMER AND MUSIC 



SUMMARY 

count, as long as GATE = 1. In other words, in this mode after the count is loaded, 
we must also send a low-to-high pulse to the GATE to start the counter. 

Testing the 8253154 timer of the PC Interface Trainer 

In Section 12.7 we discussed the PC Interface Trainer. The Trainer has an 
8253/54 timer. Table 13-3 shows its port addresses. To test the 8343/54 timer, we 
program counter 0 to divide the TTL-output crystal frequency by 5000, as follows: 

1. Connect one of the SIP pins of the OSC in H9 to the SIP pin ofCLKO in H8. 
2. ConnectGATEO in H8 to VCCon Table 13-3: 8253/54 Port Addresses 

HI! 
3. Now go to DEBUG and run this 

program: 

C:I>DOSIDEBUG 
-A100 
MOVAL,37 
MOV DX,0307 
OUT DX,AL 
MOVAX,5000 
MOVDX,304 
OUT DX,AL 
MOVAL,AH 
OUT DX,AL 
INT3 

-G=100 {RETURN} 

I 

I 

Counter Address 

o 304H .. _-" .. _,-- - - ---------

1 , 305H ---~ I 

2 306H 

Control register 307H 

Using the scope, examine the frequency at OSC and OUTO pins. The OSC 
pin has the frequency of the crystal oscillator. Some modules have a I-MHz and 
some have a 2-MHz TTL-output crystal oscillator. Check yours to see which is 
installed. This program divides the OSC frequency (a square wave) by 5000 using 
the mode 3 (square wave) option of the 8253/54 timer. Use the OSCOPE to verify. 

Review Questions 

1. In the PC, why is there no need to reprogram the counter 0 register when the 
counter reaches O? 

2. True or false. In the mode 3 square-wave-shape output of the 8253/54, the duty cy­
cle is not exactly 50% ifthe divisor is an odd number. 

3. Assume that we have connected an 8253/54 to a PC and programmed counter 0 for 
a divisor of200 in mode 2 (rate generator). IfCLKO = 3 MHz, find the time that 
OUTO is high and low. Assume that GATEO = 5 V. 

4. Answer Question 3 ifit is programmed for mode 3 (square wave). 

This chapter began with a look at the pin layout of the 8253 programmable 
interval timer chip. We showed how to program the three counters ofthe 8253 by 
use of the control word. Next we explained how the 8253/54 timer is connected in 
the IBM PC and gave examples of how it was programmed in BIOS. We showed 
how to turn on the speaker and produce the beep sound for any desired time interval. 
Once these concepts were mastered, we showed how to program the 8253/54 to play 
a song on the IBM Pc. Finally, timing considerations were covered in tenns of the 
shape of 8253/54 output waves. 

PROBLEMS 

SUMMARY 

SECTION 13.1: 8253/54 TIMER DESCRIPTION AND INITIALIZATION 
Note: Problems 1 - 10 are not necessarily IBM PC compatible. 

407 

, 



408 

I. True or false. Each of the 8253/54 counters must be programmed independently. 
2. CLK of the 8253/54 is an (input, output) (square, sine) wave. 
3. Design the decoder for the 8253/54, where A7 - A2 -0010 II is used to activate CS. 

Use NAND and inverters only. Give the port address for each port of this design. 
4. Which of the following addresses cannot be assigned to counter 0 of the 8253/54, 

and why? 23H, 54H, 97H, 5lH, FCH, 59H 
5. Give the highest number by which a single counter of the 8253/54 can divide the in­

put frequency, and what value is loaded into the counter. Give your answer for 
both binary and BCD options. 

6. True or false. If the divisor is larger than 255, we must send the low byte first, then 
the high byte to the counter. 

7. Find the control word to program counter I for mode 3, binary count, low byte first, 
followed by high byte. 

8. Write a program for Problem 7 ifCLKI ~l.6 MHz and OUT! ~1200 Hz. Use the 
port addresses in Problem 3. 

9. Repeat Problem 8 for OUT! ~ 250 Hz. 
10. In Problem 8, what would be the OUT! frequency if it is programmed for the 

maximum divisor? What if the maximum divisor BCD option were used? 

SECTION 13.2: IBM PC 8253/54 TIMER CONNECTIONS, PROGRAMMING 

II. State the CLK frequency of all three counters of the 8253/54 in the IBM Pc. 
12. State the source of CLK in Problem II. 
13. What port addresses are assigned to the 8253/54 in the PC? Can they be changed? 
14. State the function of each counter in the 8253/54 of the Pc. 
15. True or false. A PC user can program counter 2 only, and should not program 

counters 0 and l. 
16. State the status of the GATE input for each of the counters of 8253/54 in the Pc. 
17. Why is a time delay based on the microprocessor's instruction clock count not 

widely used? 
18. Find the time delay generated by the following sequence of instructions, assuming 

that it is for an 8-MHz 8088. 

AGAIN: 
SUB CX,CX 
NOP 
NOP 
NOP 
LOOP AGAIN 

19. True or false. A fixed hardware time delay is 

20. 

available only in PCs with 80286, 386, 486, 
or Pentium microprocessors. 
Write a program to generate a 10-second delay 
using a fixed hardware delay. 

SECTION 13.3: GENERATING MUSIC ON 
THE IBM PC 

21. To generate the following notes, state the valu 
programmed into the divisor of counter 2 in 
the Pc. A3, G5, B6 

22. Write a program to play the song "Mary Had a 
Little Lamb," shown at the right. 

SECTION 13.4: SHAPE OF 8253/54 OUTPUTS 

23. In which mode is counter 0 in the PC pro­
grammed? 

24. State the duty cycle and duration of the high 
and low parts of OUTO in the Pc. 

Lyrics 
Mar 
y 
had 
a 
lit 
tie 
lamb 
lit 
tie 
lamb 
lit 
tie 
lamb 
Mar 
y 
had 
a 
lit 
tie 
lamb 
whose 
fleece 
was 
white 
as 
snow. 

Note 
E4 

04 
C4 
04 
E4 
E4 
E4 
04 
04 
04 
E4 
G4 
G4 
E4 
04 
C4 
04 
E4 
E4 
E4 
E4 
04 
04 
E4 
04 
C4 

''''J\i,"'' 'i''''" I 
294 1 
262 1 
294 1 
330 1 I 
330 1 . 
330 2 
294 1 
294 1 
294 2 
330 1 
392 1 
392 2 
330 1 
294 1 
262 1 
294 1 
330 1 
330 1 
330 1 
330 1 
294 1 
294 1 
330 1 
294 1 
262 4 

"Mary Had a Little Lamb" 

CHAPTER 13: 8253/54 TIMER AND MUSIC 



25. In which mode is counter I in the PC programmed? 
26. State the duty cycle and duration of the high and low parts of OUT! in the Pc. 
27. In which mode is counter 2 in the PC normally programmed? 
28. State the duty cycle and duration ofthe high and low parts of OUT2 in the IBM 

PC for each of the following divisors. 
(a) 1200 (b) 1825 

29. Assume that CLKI ~ 1.5 MHz. Show OUT! for mode I ifN ~ 1200. 
30. Assume that CLK2 ~ 1.8 MHz. Show OUT2 for mode 5 ifN ~ 1450. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 13.1: 8253/54 TIMER DESCRIPTION AND INITIALIZATION 

1. true 
2. divide 
3. 60H is the base address and 63H is the address for Ihe control register 
4. B3H 
5. False; it must be sent to the counter 1 register. 
6. the port address of 61 H 
7. DO =0 since the maximum BCD number is 10,000 but the binary (hex) option goes as high as 65,536 
8. 65,536 

SECTION 13.2: IBM PC 8253/54 TIMER CONNECTIONS AND PROGRAMMING 

1. 40H, 41H, 42H, and 43H 
2. counter 2 at port 42H 
3. true 
4. true 
5. true 
6. using PBO of port address 61 H 
7. The inner loop is 17 ... 3 =20 clocks since NOP takes 3 T state clocks. Therefore the inner loop is 

65,536 x 20 =1,310,720 T states. 
delay = N x (65,536 x 20 x T) 
N = number of outer loop 

(a) delay = 250 x 65,536 x 20 x 200 ns = 65.536 seconds since 1/5 MHz = 200 ns 
(b) delay = 250 x 65,536 x 20 x 125 ns = 40.96 seconds since 1/8 MHz = 125 ns 

8. Monitoring of PB4 of port address 61 provides us 16,572 x 15.085 fls = 0.25 sec. 
200 x 0.25 sec. = 50 secs. 

SECTION 13.3: GENERATING MUSIC ON THE IBM PC 

1. Since CLK2 =1.193187 MHz, we must divide this input frequency by the desired OUT2 frequency of each note 
to get the value to be loaded into counter 2. Therefore, we have: 
(a) 262, 4554 (b) 147, 8116 (c) 330, 3616 (d) 349, 3419 

2. The sequence is as follows 
(a) Load the control byte for the 8253/54. 
(b) Load the divisor into port 42H. 
(c) Get the status of port 61 and save it. 
(d) Turn the speaker on by setting high both PBO and PB1. 
(e) Let the 8253/54 play the note. 
(t) Use the 80x86 to generate a time delay for the duration of the note. 
(g) Turn off the speaker by restoring the original status of port 61. 

3. all of them except step (e) since playing of the notes is performed by the 8253/54, independent of 
the 80x86 

SECTION 13.4: SHAPE OF 8253/54 OUTPUTS 

1. If GATE is high after the counter counts to zero, the 8253/54 automatically reloads the original divisor and 
continues. 

2. true 
3. The total number of pulses is 201. This means that it stays high 200 and goes low for one pulse. Since 

T =333 ns, we have 200 x 333 ns = 66,600 ns for high pulse and 333 ns for low pulse duration. 
4. Since the divisor is an even number we have a square wave of 50% duty with 100 x 333 ns = 33300 ns 

for each of the high and low parts of the square pulse. 

ANSWERS TO REVIEW QUESTIONS 409 



CHAPTER 14 

INTERRUPTS AND THE 8259 CHIP 

410 

OBJECTlVES 
'-,'.'\"; 

Upon completion oftbisdl.p~r.You ~'~e.ble"t~;i~,'·' 
» Explailillow til, IBM l>temu~lilt'frlPtf.bYU.ihl*th.· Ii ~·t ~J.i~litl~J~~.' ..• ,· 

» 
» 
)} 

» 

ble.an(Iil\llertupf. servie~ fi)l!l~l~. 

rer 
» ElI'Jailltllepl1rpose of.1l of tile 4C1~ntlrol·~ol:dsj)ft_ei825!J·.l!l~.j~~.!k 

» 
» 

stt __ ill\' t_eyarii pr~'Il"ltI1l1l"'.'.'. 

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



This chapter first discusses the concept of interrupts in the 8088/86 CPU, 
then in Section 14.2 we look at the interrupt assignment of the IBM PC and MS 
DOS. The third section examines the 8259 interrupt controller chip in detail, and 
use of the 8259 chip in the IBM PC/XT is discussed in Section 14.4. In Section 14.5, 
hardware interrupts and use of the 8259 chip in 80x86-based PC AT computers are 
discussed. We also discuss sources of hardware interrupts in the PC, followed by a 
discussion on methods of writing software to take advantage of interrupts. 

SECTION 14.1: 8088/86 INTERRUPTS 

Example 14-1 

An interrupt is an external event 
which informs the CPU that a device needs 
its service. In the 8086/88 there are a total 
of256 interrupts: !NT 00, INT 01, ... ,!NT 
FF (sometimes called TYPEs). Vvben an 
interrupt is executed, the microprocessor 
automatically saves the flag register (FR), 
the instruction pointer (IP), and the code 
segment register (CS) on the stack, and goes 
to a fixed memory location. In 80x86 PCs, 
the memory location to which an interrupt 
goes is always four times the value of the 
interrupt number. For example, !NT 03 will 
go to address OOOOCH (4 x 3 ~12 ~OCH). 
Table 14-1 is a partial list of the interrupt 
vector table. 

Interrupt service routine (ISR) 

Table 14-1: Interrupt Vector 

INT Physical ; Logical 

Number Address iAddress ~I 
INT 00 100000 0000'0000 I - --!~--

INTO] 100004 

• INT 02 00008 

i INT.Q] .. OOOOC 

INT04 00010 

INT05 00014 

'0000:00 04
1 

081 ... J. 10000:00 

~ 
1 
0000:00 

0000:00] 

QOOO:OO] 
1 ,~. 

.f."l~~· T-FF----jI~~~~3-F-C----jI.=~~00:03F~J 

For every interrupt there must be a program associated with it. Vvben an 
interrupt is invoked it is asked to run a program to perform a certain service. This 
program is commonly referred to as an interrupt service routine (ISR). The interrupt 
service routine is also called the interrupt handler. When an interrupt is invoked, 
the CPU runs the interrupt service routine. Now the question is, where is the address 
of the interrupt service routine? As can be seen from Table 14-1, for every interrupt 
there are allocated four bytes of memory in the interrupt vector table. Two bytes are 
for the IP and the other two are for the CS of the ISR. These four memory locations 
provide addresses of the interrupt service routine for which the interrupt was 
invoked. Thus the lowest 1024 bytes (256 x 4 ~ I 024) of memory space are set aside 
for the interrupt vector table and must not be used for any other function. Figure 
14-1 provides a list of interrupts and their designated functions as defined by Intel 
Corporation. 

Find the physical and logical addresses in the interrupt vector table associated with: 
(a) !NT l2H (b) !NT 8 

Solution: 

(a) The physical addresses for !NT l2H are 00048H - 0004BH since (4 x 12H ~8H). That means 
that the physical memory locations 48H, 49H, 4AH, and 4BH are set aside for the CS and IP 
of the ISR belonging to !NT 12H. The logical address is 0000:0048H - 0000:004BH. 

(b) For !NT 8, we have 8 x 4 ~32 ~20H; therefore, memory addresses 00020H, 00021H, 00022H, 
and 00023H in the interrupt vector table hold the CS:IP of the !NT 8 ISR. 
The logical address is 0000:0020H - 0000:0023H. 

SECTION 14.1: 8088/86 INTERRUPTS 411 



cs 
0003FC IP 

} INT FF 

cs 

00018 IP 
} INT06 

CS 

00014 IP 
} INT 05 

CS 

00010 IP 
} INT 04 signed number overflow 

CS 

OOOOC IP 
} INT 03 breakpoint 

CS 
} INT02 NMI 

00008 IP 

CS 

00004 IP 
} INT 01 single-step 

CS 

00000 IP 
} INT 00 divide error 

Figure 14-1: Intel's List of Designated Interrupts for the 8086/88 
(Reprinted by pennission of Intel Corporation. Copyright Intel Corp. 1989) 

412 

Difference between INT and CALL instructions 

If the INT instruction saves the CS:IP of the following instruction and jumps 
indirectly to the subroutine associated with the interrupt, what is the difference 
between that and a CALL FAR instruction, which also saves the CS:IP and jumps 
to the desired subroutine (procedure)? The differences can be summarized as 
follows: 

1. A "CALL FAR" instruction can jump to any location within the I megabyte address 
range of the 8088/8'6 CPU, but "INT nn" goes to a fixed memory location in the 
interrupt vector table to get the address of the interrupt service routine. 

2. A "CALL FAR" instruction is used by the programmer in the sequence of instructions 
in the program but an externally activated hardware interrupt can come in at any 
time, requesting the attention of the CPU. 

3. A "CALL FAR" instruction cannot be masked (disabled), but "INT nn" belonging 
to externally activated hardware interrupts can be masked. This is discussed in a 
later section. 

4. A "CALL FAR" instruction automatically saves only CS:IP of the next instruction 
on the stack, while "INT nn" saves FR (flag register) in addition to CS:IP of the next 
instruction. 

S. At the end of the subroutine that has been called by the "CALL FAR" instruction, 
the RETF (return FAR) is the last instruction, whereas the last instruction in the 
interrupt service routine (ISR) for "INT nn" is the instruction IRET (interrupt 
return). The difference is that RETF pops CS, IP off the stack but the IRET pops off 
the FR (flag register) in addition to CS and IP. 

CHAPTER 14: INTERRUPTS AND THE 8259 cmp 



Categories of interrupts 

"INT nn" is a 2-byte instruction where the first byte is for the opcode and 
the second byte is the interrupt number. This means that we can have a maximum 
of 256 (INT 00 - INT FFH) interrupts. Of these 256 interrupts, some are used for 
software interrupts and some are for hardware interrupts. 

Hardware interrupts 

As we saw in Chapters 9 and 10, there are three pins in the 80x86 that are 
associated with hardware interrupts. They are INTR (interrupt request), NMI 
(nonmaskable interrupt), and INTA (interrupt acknowledge). The use ofINTA will 
be discussed in Section 14.3. INTR is an input signal into the CPU which can be 
masked (ignored) and unmasked through the use of instructions CLI and STI. 
However, NMI, which is also an input signal into the CPU, cannot be masked and 
unmasked using instructions CLI and STI, and for this reason it is called a 
nonmaskable interrupt. INTR and NMI are activated externally by putting 5 V on 
the pins of NMI and INTR of the 80x86 microprocessor. When either of these 
interrupts is activated, the 80x86 finishes the instruction which it is executing, 
pushes FR and the CS:IP of the next instruction onto the stack, then jumps to a fixed 
location in the interrupt vector table and fetches the CS:IP for the interrupt service 
routine (ISR) associated with that interrupt. At the end of the ISR, the IRET 
instruction causes the CPU to get (pop) back its original FR and CS: IP from the 
stack, thereby forcing the CPU to continue at the instruction where it left off when 
the interrupt came in. 

Intel has embedded "INT 02" into the 80x86 microprocessor to be used only 
for NMI. Whenever the NMI pin is activated, the CPU will go to memory location 
00008 to get the address (CS:IP) of the interrupt service routine (ISR) associated 
with NMI. Memory locations 00008, 00009, OOOOA, and OOOOB contain the 4 bytes 
of CS:IP of the ISR belonging to NMI. In contrast, this is not the case for the other 
hardware pin, INTR. There is no specific location in the vector table assigned to 
INTR. The reason is that INTR is used to expand the number of hardware interrupts 
and should be allowed to use any "INT nn" which has not been previously assigned. 
The 8259 programmable interrupt controller (PIC) chip can be connected to INTR 
to expand the number of hardware interrupts up to 64. In the case of the IBM PC, 
one Intel 8259 PIC chip is used to add a total of 8 hardware interrupts to the 
microprocessor. IBM PC AT, PS/2 80286, 80386, 80486, and Intel Pentium com­
puters use two 8259 chips to allow up to 16 hardware interrupts. The design of 
hardware interrupts and the use of the 8259 in the IBM PCIXT are covered in 
Sections 14.3 and 14.4, while 80x86-based AT-type PC interrupts are covered in 
Section 14.5. 

Software interrupts 

If an ISR is called upon as result of the execution of an 80x86 instruction 
such as "INT nn", it is referred to as a software interrupt since it was invoked from 
software, not from external hardware. Examples of such interrupts are DOS "INT 
21H" function calls and video interrupts "INT 10H", which were covered in Chapter 
4. These interrupts can be invoked in the sequence of code just like a CALL or any 
other 80x86 instruction. Many of the interrupts in this category are used by the MS 
DOS operating system and IBM BIOS to perform essential tasks that every com­
puter must provide to the system and the user. Within this group of interrupts there 
are also some predefined functions associated with some of the interrupts. They are 
"INT 00" (divide error), "INT 01" (single step), "INT 03" (breakpoint), and "INT 
04" (signed number overflow). Each is described below. These interrupts are shown 
in Figure 14-1. Aside from "INT 00" to "INT 04", which have predefined functions, 
the rest of the interrupts from "INT 05" to "INT FF" can be used to implement either 
software or hardware interrupts. 

SECTION 14.1: 8088/86 INTERRUPTS 413 



414 

Interrupts and the flag register 

Among bits DO to 015 of the flag register, there are two bits that are 
associated with the interrupt: 09, or IF (interrupt enable flag), and 08, or TF (trap 
or single-step flag). In addition, OF (overflow flag) can be used by the interrupt. 
See Figure 14-2. 

The 16 bits of the flag register: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

IR IR IR IR IOF IDF IIF ITF ISF IZF lu IAF lu IPF lu ICF I 

R~ reserved SF~ sign flag 
U~ undefined ZF~ zero flag 
OF~ overflow flag AF~ auxiliary carry flag 
DF~ direction flag PF~ parity flag 
IF ~ interrupt flag CF~ carry flag 
TF~ trap flag 

Figure 14-2. Flag Register 
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1989) 

The interrupt flag is used to mask (ignore) any hardware interrupt that may 
come in from the INTR pin. IfiF ~ 0, all hardware interrupt requests through INTR 
are ignored. This has no effect on interrupts coming from the NMI pin or "INT nn" 
instructions. The instruction CLI (clear interrupt flag) will make IF ~ O. To allow 
interrupt requests through the INTR pin, this flag must be set to one (IF ~ 1). The 
STI (set interrupt flag) instruction can be used to set IF to 1. Section 14.3 will show 
how to use STI and CLI to mask or allow interrupts through the INTR pin. The trap 
flag (TF) is explained below when "INT 0 1 ", the single-step interrupt, is discussed. 

Processing interrupts 

When the 8088/86 processes any interrupt (software or hardware), it goes 
through the following steps: 

1. The flag register (FR) is pushed onto the stack and SP is decremented by two, since 
FR is a 2-byte register. 

2. IF (interrupt enable flag) and TF (trap flag) are both cleared (IF ~ 0 and TF ~ 0). 
This masks (causes the system to ignore) interrupt requests from the INTR pin and 
disables single-stepping while the CPU is executin!: the interrupt service routine. 
Depending on the nature of the interrupt procedure, a programmer can unmask the 
INTR pin by the STI instruction. 

3. The current CS is pushed onto the stack and SP is decremented by 2. 
4. The current IP is pushed onto the stack and SP is decremented by 2. 
5. The INT number (type) is multiplied by 4 to get the physical address of the location 

within the vector table to fetch the CS and IP of the interrupt service routine. 
6. From the new CS:IP, the CPU starts to fetch and execute instructions belonging to 

the ISR program. 
7. The last instruction of the interrupt service routine must be IRET, to get JP, CS, and 

FR back from the stack and make the CPU run the code where it left off. 

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



Functions associated with INT 00 to INT 04 

As mentioned earlier, interrupts INT 00 to INT 04 have predefined tasks 
(functions) and cannot be used in any other way. The function of each is described 
next. 

INT 00 (divide error) 

This interrupt belongs to the category of interrupts referred to as conditional 
or exception interrupts. Internally, they are invoked by the microprocessor whenever 
there are conditions (exceptions) that the CPU is unable to handle. One such 
situation is an attempt to divide a number by zero. Since the result of dividing a 
number by zero is undefined, and the CPU has no way of handling such a result, it 
automatically invokes the divide error exception interrupt. In the 8088/86 micro­
processor, out of 256 interrupts, Intel has set aside only INT 0 for the exception 
interrupt. There are many more exception-handling interrupts in 80286, 80386, 
80486, and Pentium CPUs, which are discussed in Section 14.5. INT 00 is invoked 
by the microprocessor whenever there is an attempt to divide a number by zero. In 
the IBM PC and compatibles, the service subroutine for this interrupt is responsible 
for displaying the message "DIVIDE ERROR" on the screen if a program such as 
the following is executed: 

MOV 
SUB 
DIV 

AL,92 
CL,CL 
CL 

;AL=92 
;CL=O 
;92/0=undefined result 

INT 0 is also invoked if the quotient is too large to fit into the assigned 
register when executing a DIV instruction. Look at the following case: 

MOV 
MOV 
DIV 

AX,OFFFFH 
BL,2 
BL 

;AX=FFFFH 
;BL=2 
;65535/2 =32767 larger than 255 
;maximum capacity of AL 

Put INT 3 at the end of the above two programs in DEBUG and see the 
reaction of the Pc. For further discussion of divide error interrupts due to an 
oversized quotient, see Chapter 3. 

INT 01 (single step) 

In executing a sequence of instructions, there is often a need to examine the 
contents ofthe CPU's registers and system memory. This is often done by executing 
the program one instruction at a time and then inspecting registers and memory. This 
is commonly referred to as single-stepping, or performing a trace. Intel has desig­
nated INT 01 specifically for implementation of single-stepping. To single-step, the 
trap flag (TF), D8 of the flag register, must be set to 1. Then after execution of each 
instruction, the 8086/88 automatically jumps to physical location 00004 to fetch the 
4 bytes for CS:IP of the interrupt service routine, whose job is, among other things, 
to dump the registers onto the screen. Now the question is, how is the trap flag set 
or reset? Although Intel has not provided any specific instruction for this purpose 
(unlike IF, which uses STI and CLI instructions to set or reset), one can write a 
simple program to do that. The following shows two methods of making TF= O. The 
first is: 

PUSHF 
POP 
AND 
PUSH 
POPF 

AX 
AX, 1111111 011111111 B 
AX 

SECTION 14.1: 8088/86 INTERRUPTS 415 



416 

and the second method is: 

PUSHF 
MOV 
AND 
POPF 

BP,SP 
[BPI + 0,1111111011111111B 

Recall that TF is D8 of the flag register. The analysis of the above two 
programs is left to the reader. To make TF =1, one simply uses the OR instruction 
in place of the AND instruction above. 

INT 02 (nonmaskable interrupt) 

All Intel 80x86 microprocessors have a pin designated NMI. It is an 
active-high input. Intel has set aside INT 2 for the NMI interrupt. Whenever the 
NMI pin of the 80x86 is activated by a high (5 V) signal, the CPU jumps to physical 
memory location 00008 to fetch the CS:IP ofthe interrupt service routine associated 
with NMI. Section 14.4 contains a detailed discussion of its purpose and application. 

INT 03 (breakpoint) 

To allow implementation of breakpoints in software engineering, Intel has 
set aside INT 03 solely for that purpose. Whereas in single-step mode, one can 
inspect the CPU and system memory after the execution of each instruction, a 
breakpoint is used to examine the CPU and memory after the execution of a group 
of instructions. In recent years, some very powerful software debuggers have been 
written using INT 1 and INT 3. Even in writing simple programs on the IBM PC, 
the use of single-step (trace) and breakpoints (INT 3) is indispensable. One inter­
esting point about INT 3 is the fact that it is a I-byte instruction. This is in contrast 
to all other interrupt instructions ofthe form "INT nn", which are 2-byte instructions. 

INT 04 (signed number overflow) 

This interrupt is invoked by a signed number overflow condition. There is 
an instruction associated with this, INTO (interrupt on overflow). For a detailed 
discussion of signed number overflow, see Chapter 6. If the instruction INTO is 
placed after a signed number arithmetic or logic operation such as IMUL or ADD, 
the CPU will activate INT 04 if OF = I. In cases where OF = 0, the INTO instruction 
is not executed but is bypassed and acts as a NOP (no operation) instruction. To 
understand that, look at the following example. 

MOV 
MOV 
ADD 
INTO 

AL,DATA1 
BL,DATA2 
AL,BL ;add BL to AL 

Suppose in the above program that DATAl =+64 = 0100 0000 and DATA2 
= +64 = 0100 0000. The INTO instruction will be executed and the 8086/88 will 
jump to physical location 0001OH, the memory location associated with INT 04. 
The carry from D6 to D7 causes the overflow flag to become 1. 

+ 
+ 64 
+ 64 
+128 

01000000 
01000000 
10000000 OF=1 and the result is not +128 

The above incorrect result causes OF to be set to 1. INTO causes the CPU 
to perform "INT 4" and jump to physical location 00010H of the vector table to get 
the CS:IP of the service routine. Suppose that the data in the above program was 
DATAl =+64 and DATA2 =+ 17. In that case, OF would become 0; the INTO is not 
executed and acts simply as a NOP (no operation) instruction. 

CHAPTER 14: INTERRUPTS AND THE 8259 cmp 



Review Questions 

I. True or false. When any interrupt (software or hardware) is activated, the CPU 
jumps to a fixed and unique address. 

2. There are __ bytes of memory in the interrupt vector table for each "!NT nn". 
3. How many K bytes of memory are used by the interrupt vector table, and what are 

the beginning and ending addresses of the table? 
4. The program associated with an interrupt is referred to as ____ _ 
5. What is the function of the interrupt vector table? 
6. What physical memory locations in the interrupt vector table hold the CS:IP of !NT 

IOH? 
7. The 8086/88 has assigned !NT 2 to NMI. Can that be changed? 
8. Which interrupt is assigned to divide error exception handling? 

SECTION 14.2: IBM PC AND MS DOS ASSIGNMENT OF INTERRUPTS 

Of the 256 possible interrupts in the 80x86, some are used by the PC 
peripheral hardware (BIOS), some are used by the Microsoft Disk Operating 
System, and the rest are available for programmers of software applications. Table 
14-2 lists many of the PCIXT interrupts, the logical and physical addresses of their 
service subroutines, and their purpose. Some interrupts are explained throughout 
this book. It must be mentioned that depending on the computer and the DOS 
version, some logical addresses could be different from those shown in Table 14-2. 

Examining the interrupt vector table of your PC 

Example 14-3 shows how to use DEBUG's dump command to examine the 
interrupt vector table of a PC, regardless of which 80x86 CPU it contains. 

Example 14-2 

For a given ISR, the logical address is FOOO:FF53. Verify that the physical address is FFF53H. 

Solution: 
Since the logical address is FOOO:FF53, this means that CS = FOOOH and IP = FF53H. Shifting left the 
segment register one hex digit and adding it to the offset gives the physical address FFF53H. 

Example 14-3 

(a) Use the DEBUG dump command to dump the contents of memory locations 00000 - 0002FH. 
(b) Find the CS:IP of divide error, NMI, and !NT 8. 

Solution: 
(a) It is very possible that the data you get on your PC will be different from the following dump, 
depending on the DOS version, the BIOS chip date of your PC, and activation of shadow memory. 

C>debuq 
-0 0000:0000-002F 
0000:0000 E8 56 2B 02 56 07 70 00-C3 E2 00 FO 56 07 70 00 . V+. V .p ..... V .p. 

0000:0010 56 07 70 00 54 FF 00 FO-47 FF 00 FO 47 FF 00 FO V.p.T ... G ... G ... 

0000:0020 A5 FE 00 FO 87 E9 00 FO-DD E6 00 FO DO E6 00 FO ................ 

(b) For the divide error interrupt (!NT 0), CS:IP is located at addresses 0, 1,2,3. Remember that 
because of the little endian convention, the low address has the low value; therefore, IP =56E8H and 
CS =022BH. By the same token, NMI's !NT 2 is located at the vector table addresses of 8,9, A, and 
B. Therefore, we have IP =E2C3H and CS =FOOOH. The CS:IP of !NT 8 ISR is located in 
addresses starting at 00020 since 8 x 4 =32 =20H, IP = FEA5, CS = FOOO. 

SECTION 14.2: IBM PC AND MS DOS ASSIGNMENT OF INTERRUPTS 417 



Table 14-2: IBM PCIXT Interrupt System 

InterruQt Logical Addr. Physical Addr. Purpose 

0 00E3:30n 03EA2 Divide error 
I 0600:08ED 068ED Single-step (trace command in DEBUG) 
2 FOOO:E2C3 FE2C3 N onmaskable interrupt 
3 0600:08E6 068E6 Breakpoint 
4 0700:0147 07147 Signed number arithmetic overflow 
5 FOOO:FF54 FFF54 Print screen (BIOS) 
6, 7 reserved 
8 FOOO:FEA5 FFEA5 IRQO of 8259 (BIOS timer interrupt) 
9 FOOO:E987 FE987 IRQ 1 of 8259 (BIOS keyboard interrupt) 
A IRQ2 of 8259 (reserved) 
B IRQ3 of 8259 (reserved for serial com2) 
C IRQ4 of 8259 (reserved for serial coml) 
D IRQ5 of 8259 (reserved for hard disk XT) 
E FOOO:EF57 FEF57 IRQ6 of 8259 (floppy diskette) 
F 0070:0147 00847 IRQ7 of 8259 (parallel printer LPTl) 
10 FOOO:F065 FF065 Video VO (BIOS) 
11 FOOO:F84D FF84D Equipment configuration check (BIOS) 
12 FOOO:F841 FF841 Memory size check (BIOS) 
13 FOOO:EC59 FEC59 Disk I/O (BIOS) 
14 FOOO:E739 FE739 RS-232 I/O (BIOS) 
15 FOOO:F859 FF859 Cassette VO (BIOS) 
16 FOOO:E82E FE82E Keyboard I/O (BIOS) 
17 FOOO:EFD2 FEFD2 Parallel printer I/O (BIOS) 
18 F600:0000 F6000 Load ROM BASIC 
19 FOOO:E6F2 FE6F2 Load boot-strap (BIOS) 
lA FOOO:FE6E FFE6E Time-of-day (BIOS) 
!B 0070:0140 00840 Ctrl-Brk control (BIOS) 
IC FOOO:FF53 FFF53 Timer control 
1D FOOO:FOA4 FFOA4 Video parameters table 
IE 0000:0522 00522 Floppy disk parameters table 
IF 00E3:0B07 01937 Graphics character table (DOS 3.0 and up) 
20 PSP:OOOO DOS program terminate 
21 Relocatable DOS function calls 
22 PSP:OOOA DOS terminate address 
23 PSP:OOOE DOS Ctrl-Brk exit address 
24 PSP:0012 DOS critical error-handling vector 
25 Relocatable DOS absolute disk read 
26 Relocatable DOS absolute disk write 
27 Relocatable DOS terminate but stay resident (TSR) 
28 - 2E Reserved for DOS 
2F Relocatable Multiplex interrupt 
30 - 3F Reserved for DOS 
40 FEC59 Diskette I/O (XT) 
41 FE401 Fixed (hard) disk parameters (XT) 
42 - 5F Reserved for DOS 
60 - 66 User defined 
67 Expanded memory manager 
68 - 7F Not used 
80 - 85 Reserved for BASIC 
86 - FO BASIC interpreter 
FI-FF Not used 

(Reprinted by permission from "IBM BIOS Technical Reference" c. 1987 by International Business Machines Corporation) 

418 CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



Example 14-4 

From the CS:IP address of the ISR, it is possible to determine who provides 
the service: DOS or BIOS. This is shown in Example 14-4. 

Examine the answers for Example 14-3(b) to determine whether DOS or BIOS provides the ISR for 
the divide error and NMI. 

Solution: 

In the case of INT 0 (divide error), the logical address for CS:IP is 022B:56E8. This results in a physi­
cal address of 07998H for the divide error interrupt service routine. This area of memory 
belongs to MS DOS, as discussed in Chapter II. For NMI interrupt 2, we have a logical address of 
CS:IP =FOOO:E2C3, which corresponds to physical address FE2C3H. This is the BIOS ROM area. 

Analyzing an IBM BIOS interrupt service routine 

To understand the structure of an ISR, we examine the interrupt service 
routine ofINT 12H from IBM BIOS. The interrupt 12H service is available on any 
PC with an 80x86 microprocessor. 

INT 12H: checking the size of RAM on the IBM PC 

IBM PC BIOS uses INT 12H to provide the amount of installed conven­
tional (0 to 640K bytes) RAM memory on the system. By system is meant both the 
motherboard and expansion boards. One of the functions of the BIOS POST 
(power-on self-test) is to test and count the total K bytes of conventional RAM 
memory installed on the system and write it in memory locations 00413H and 
00414H, which have been set aside for this purpose in the BIOS data area. In Chapter 
11, we showed the data area used by BIOS. The job ofINT 12H is to copy that value 
from memory locations 00413H and 00414H into AX and return. In other words, 
after executing INT 12H, AX will contain the total K bytes of conventional RAM 
memory on the system. This value is in hex and must be converted to decimal to get 
values of I to 640K bytes. The interrupt service routine for INT 12H looks as follows 
in the IBM PC Technical Reference. 

PROC 
STI 
PUSH 
SUB 
MOV 
MOV 
POP 
IRET 
ENOP 

FAR 

OS 
AX,AX 
OS,AX 
AX,[0413] 
OS 

;interrupt back on 
;save segment 
;set OS = 0 
;for BIOS data area 
;conv mem size in 413,414 
;recover segment 
;return to caller 

As mentioned in Chapter II, addresses 400H to 4FFH are used by the IBM 
BIOS data area, and addresses from 500H to 5FFH are set aside for DOS and the 
BASIC language parameters. When IBM developed the PS/2 computers and needed 
more data area for BIOS, they used a few K bytes from the top of installed RAM in 
the 640K conventional memory area. This is the reason that in the IBM PS and 
compatibles, the total RAM for the 640 conventional memory given in AX is a few 
(I to 2) K bytes less than the actual installed RAM size since these few K bytes are 
used by the extended BIOS data area. 

It must be noted that although BIOS finds the size of conventional RAM 
memory in the system when the computer is turned on, INT 12H can be run at any 
time to retrieve that information. This is shown in Example 14-5. 

SECTION 14.2: IBM PC AND MS-DOS ASSIGNMENT OF INTERRUPTS 419 



Example 14-5 

Execute INT 12H followed by INT 3 (breakpoint) in DEBUG. Verify the memory size. 

Solution: 
C>OEBUG 

-a 

1131:0100 1NT 12 

1131: 0102 1NT 3 

1131: 0103 

-G 

AX=0280 BX=OOOO CX=OOOO OX=OOOO 8P=FFEE BP=OOOO 81=0000 01=0000 

08=1132 E8=1132 88=1132 C8=1132 1P=0102 NV UP E1 PL NZ NA PO NC 

1131: 0102 CC 1NT 3 

-Q 
AX=0280 which is in hex format. Converting it to decimal gives a size of 640K bytes of memory 
installed on this computer. 

Example 14-6 

Use the DEBUG D (dump) command to dump memory locations 0040:0000 to 0040:001FH and 
inspect the contents oflocations 0040: 13 and 0040: 14. Does this match the result of Example 14-5? 

Solution: 
C>OEBUG 

-0 0040:0000 1F 

0040:0000 F8 03 F8 02 00 00 00 00-78 03 78 02 00 00 00 00 ........ x.x .... . 

0040: 0010 6F 94 00 80 02 40 02 00-00 00 22 00 22 00 66 21 0 ... @ .......... f! 

-Q 

Location 13 contains 80 and 14 contains 02; 0280 matches the result of Example 14-5. 

Review Questions 

1. Find the logical address, CS, and IP values for the ISR if it is located at the ROM 
physical address of FF065H. 

2. In Question I, if the ISR belongs to INT 10H, find the exact contents of memory lo­
cations in the interrupt vector table. 

3. Assume that after using the dump command of DEBUG to dump a section of the in­
terrupt vector table, we have the following: 
0000:0030 ................. -57 EF 00 FF 00 00 00 00 
To what interrupt number does the above dump belong? 

4. For Question 3, show the logical address and exact values for CS, IP ofthe ISR. 
5. In a given IBM PS/2 model 25, the documentation states that the motherboard 

comes with 512K bytes of RAM, but running the INT 12H shows AX ~ OIFE. 
Explain the difference. 

6. Which one is the last instruction in the ISR of INT 12H, RET or lRET? 

SECTION 14.3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 

420 

The 80x86 has only pins INTR and INTA for interrupts, but one can use 
these two pins to expand the number of interrupts. Intel Corporation has provided 
an IC chip called the 8259 programmable interrupt controller (PIC) to make the job 
of expanding the number of hardware interrupts much easier. See Figures 14-3 and 
14-4. This section covers the 8259 IC chip pins and programming options. Note that 
this section is about the 8259 chip. The ports and programs covered in this section 
are not related to the PC. 

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



CASO-CAS2 

CASO, CASI, 
and CAS2 can be used to 
set up several 8259 chips 
to expand the number of 
hardware interrupts of 
the 8088/86 up to 64 by 
cascading the 8259 chips 
in a master-slave con­
figuration. This section 
will focus on slave mode. 
Section 14.5 discusses 
both the master and slave 
configurations as used in 
PC/AT-type computers. 
To use the 8259 in slave 
mode, the chip must be 
programmed and CASO 
to CAS2 are ignored. 

S'P/EI'J 

Pin description 

CS' [ 1 28 P Vee 
WR[ 2 27 P AO 
RD [ 3 26 P INTA 
D7 [ 4 8 25 P IR7 
D6 [ 5 24 P IR6 
D5 [ 6 2 23 P IR5 
D4[ 7 22 P IR4 
D3 [ 8 5 21 P IR3 
D2 [ 9 20 P 1R2 
DI [ 10 9 19 P IRI 
DO [ 11 

A 
18 P IRO 

CASO [ 12 17 piNT 
CAS 1 [ 13 16 P SPiEN 

GND [ 14 15 P CAS 2 

Block diagram 

+Vcc GND 

SP/EN (slave 
programming/enable) in 
buffered mode is an out­
put signal from the 8259 
to activate the trans­
ceiver (EN). In nonbuf­
fered mode it is an input 
signal into the 8259, 
SP= I for the master and 
SP=O for the slave. 

Host processor r r 
In!erface ¢==:) 
DO ~ 07 Interrupt inputs 

E IRO 

RD ~ E IR 1 

WR ~ E IR2 

CS ~ 8259A E IR3 

AO ~ E IR4 

INT E E IR5 

INTA ~ E IR6 

INT 
Cascade interface ¢==:) E IR7 

CASO-CAS2 

SP/EN ~ !NT is an output 
that is connected to 
INTR of the 80x86. Figure 14-3. 8259A Programmable Interrupt Controller 

(Reprinted by permission ofInte! Corporation, Copyright Intel Corp. 1983) 

Jl'\ITA 

!NTA is input to the 8259 from INTA of the 80x86. 

IRO -IR7 

Inputs IRO to IR 7 (interrupt request) are used as hardware interrupts. When 
a HIGH is put on any ofiRO to IR7, the 8088/86 will jump to a vector location. For 
each IR there exists a physical memory location in the interrupt vector table. The 
80x86 has 256 hardware or software interrupts (!NT 00 - !NT FF). 

8259 control words and ports 

The four control words associated with 
the 8259 are ICWI (initialization command 
word), ICW2, ICW3, and ICW4. lCW3 is used 
in master mode only and is discussed in Section 
14.5. As can be seen from the pins of the 8259, 
there is only one address line AO to communi­
cate with the chip. Table 14-3 shows the values 
that AO and CS must take to initialize the 8259. 

Table 14-3: 8259 Initialization 

Fsl AO I Initializati~nJI 
'I Q_J!ICW1____ .J 
, I " 

I~ I I ICW2, ICW3, ICWLi 

LL, x i 8259 is not address~ 
(Reprinted by permission of Intel Corporation, 
Copyright Intel Corp. 1983) 

SECTION 14.3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 421 



Example 14-7 
Find the address for ICWI - ICW4 if chip select is activated by A7 - Al = 0010011. 

A7 A6 
o 0 
o 0 

Solution: 

AS A4 
1 0 
1 0 

A3 
o 
o 

A2 
1 
1 

A1 
1 
1 

AO 
o 
1 

The above shows 26H to be the port for ICWI and 27H the port for ICW2, ICW3, ICW4. 

422 

ICW1 (initialization command word 1) 

In looking at Table 14-3, the question might arise: How can the 8259 make 
a distinction between ICW2, ICW3, and ICW4 when they are sent to the same 
address? This is one of the functions ofICWI. DO, the LSB ofICWI, will tell the 
8259 ifit should look for ICW4 or not. In a similar manner, ifDI is high it knows 
that the system is configured in slave mode and it should not expect any ICW3 in 
the initialization sequence. The initialization sequence must always start with ICWI, 
followed by ICW2, and finally the last one, if needed. There is no jmnping ahead. 
D2 is always set low (= 0) for the 80x86. D3 chooses between level triggering or 
edge triggering of the input signals IRO - IR 7. In edge triggering, a low-to-high input 
is recognized as an interrupt request. In level triggering, a high on the IR is 
recognized as an interrupt request. D4 must always be high. D5, D6, and D7 are all 
low for the 80x86 microprocessors (they are used only for the 8080/85). See Figure 
14-5. 

ICW2 (initialization command word 2) 

It is the function of ICW2 to assign interrupt numbers to IRO - IR7. While 
the lower three bits, DO, D I, and D2, vary from 000 to III, they, along with D3 -
D7 (T3 through T7), form the 8-bit!NT type number assigned to the corresponding 
IRO through IR 7. That means that D3 - D7 can only be programmed according to 
the assignment of the !NT type, with the lower bits being provided by the 8259, 
depending on which ofIRO to IR7 is activated. See Figure 14-5. 

ICW3 (initialization command word 3) 

ICW3 is used only when 2 or more 8259s are cascaded. In this mode, a 
single 8259 can be connected to 8 slave 8259s, thereby providing up to 64 hardware 
interrupts. In cascade mode, there are separate ICW3 words for the master and the 
slave. For the master, it indicates which IR has a slave connected to it, and a separate 
ICW3 informs the slave which IR of the master it is connected to. See Figure 14-6. 

ICW4 (initialization command word 4) 

DO indicates the processor mode (PM), the choice of microprocessor. DO 
equals I for the 8088/86 and 0 for the 8080/8085. When DI, which is AEOI 
(automatic end of interrupt), is high it eliminates the need for an EOI instruction to 
be present before the IRET (interrupt return) instruction in the interrupt service 
routine. When D I is zero, the EO! must be issued using the OCW (operation 
command word) to the 8259. In other words, ifDI =0, the last three instructions of 
the interrupt service routine for IRO - IR 7 must be issuing the EO! followed by IRET. 
The significance of this is discussed shortly when the OCW is discussed. D2 and 
D3 are for systems where data buses are buffered with the use of bidirectional 
transceivers. The 8259 can work either in buffered or nonbuffered mode. D4 is for 
SFNM (special fully nested mode). This mode must be used when the 8259 is in 
master mode and then D4 = I; otherwise, it is O. D5 - D7 must be zero, as required 
by the 8259. See Figure 14-6. 

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



INTA INT 

~ J 
Control Logic 

1 'I 

In-

service 
Priority 

Register Resolver 

(ISR) (IRR) 

Interrupt Mask Regiser (IMR) 

Internal bus 

Figure 14-4. Partial Block Diagram of the 8259A 
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1983) 

ICW1 

AO 07 06 05 04 03 02 

IRO 
IR1 
IR2 
IR3 
IR4 
IRS 
IR6 
IR7 

01 DO 

l 0 -' 0 I 0 I 0 I 1 I LTIM I 0 I SNGL I IC4 I 

AO 

I 1 

I I J 
ri =ICW4 needed 
I 0 = no ICW4 needed ----'-----'1 = single 
o = cascade mode I 

•.. J 

Always 0 for the xB6 

'---______ --111 =Ievel trig. input .' I 
~_o_=e_d_ge_tn_'g_. i_np~_t ___ , __ • 

'------------------1. Always 0 f~rthe x86 .--- ! 

07 06 

I T7 I T6 

I I 

05 

I T5 

I 

ICW2 

04 03 02 01 DO 

I 
I I I I 

~-------'-'--l 

T7 - TO Is the interrupt assigned to IRO olthe 8259.----J 

Figure 14-5. ICW Formats (ICW1 and ICW2) for the 8259 
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1983) 

SECTION 14.3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 423 



AD 07 06 05 

ICW3 (Master Device) 

04 03 02 01 00 

1 = IR input has a slave 
'---------- 0 = IR input does not have 

ICW3 (Slave Device) a slave 

AD 07 06 05 04 

ICW4 

AD 07 06 05 04 

03 02 01 

03 02 01 

00 

SLAVE ID 1 

01234567 
0101010-1-

00110011 
00001111 

00 

l 1 I 0 I 0 I 0 I SFNM I BUF I MS I AEOI I PM I 

! 1 = spec. fully il 

! nested mode f-------' 
; 0 = not sp. fully 

nested mode 
, 0 
1 1 
I, 1 

x 
o 
1 

1 
1 =for x86 
o =for 8085 

,. --- --

! 1 =auto EOI 
o =normal EOI .J 

non buffered mode 
buffered mode slave 
buffered mode master 

Note: Buffered mode is used in systems which require buffering on the data bus. 
The 8259's SPfEl'\I pin goes low when its data bus output is enabled; therefore, 
SPfEN can be used to enable a transceiver/buffer for the data bus output. 

Figure 14-6. ICW Formats (ICW3 and ICW4) for the 8259 
(Reprinted by pennission ofIntel Corporation, Copyright Intel Corp. 1983) 

424 CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



Example 14-8 

(a) Find the ICWs of the 8259 ifit is used with an 8088/86 CPU, single, level triggering IRs, and 
IRO is assigned "!NT 50H". The 8259 is in slave buffered mode with normal EOI. 

(b) Show the program to initialize the 8259 using the port addresses in Example 14-7. 
(c) Find the addresses associated with IRO, IRI, and IR2 in the interrupt vector table. 

Note: This example is not PC-compatible and is given only for an exercise. 

Solution: 

(a) From Figure 14-5, we get the following for each of the ICWs: 

ICWI 
00=1 
01 =1 
02=0 
D3 =1 
04=1 
05 =06=07=0 

ICW4needed 
single 
this is always zero for 80x86 CPUs 
level triggering 
required by the ICWI itself 
this is always zero for 80x86 CPUs 

This gives ICWI = 00011011 = 1BH. To get ICW2, look at Table 14-4. Always equate ICW2 to the 
!NT # assigned to IRO: ICW2 = 01010000 = 50H. Notice that "!NT nn", assigned to IRO, can decide 
only bits 07 - 03 (T7 - T3 in Figure 14-5) ofICW2. This means that the "!NT nn" assigned to IRO 
must have the lower three bits = 000; therefore, it can take either values of XOH or X8H, where X is a 
hex number. For example "!NT 45H" cannot be assigned to IRO. 

No ICW3 is needed since it is single and not cascaded. 

ICW4 
00=1 
Dl =0 
02 =0;03=1 
04=0 
05 =06=07=0 

8088/86 
normal (we must issue EO! before lRET instruction) 
slave buffered mode 
not nested 
required by the ICW 4 

We get ICW4 =00001001 =09H. 

(b) The program is as follows: 

MOV 
OUT 
MOV 
OUT 
MOV 
OUT 

AL,IBH 
26H,AL 
AL,50H 
27H,AL 
AL,09 
27H,AL 

;ICWI 
;TOPORT26H 
;ICW2 
;TOPORT27H 
;ICW4 
;TO PORT 27H 

(c) If "!NT 50H" is assigned to IRO, then IRI and IR2 have "!NT 51H" and "!NT 52", respectively, 
and so on. The vector memory locations associated with the IRs are as follows: 

IRO (Pin of 8259) 
IRO 
IRI 
IR2 

!NT 
50H 
51H 
52H 

Vector Location 
Logical Address Physical Address 
0000:0140H-0143 00140H-00143 
0000:0144H-0147 00144H-00147 
0000:0148H-014B 00148H-0014B 

SECTION 14.3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 425 



Example 14-9 

Table 14-4: INT Numbers for Hardware Interrupts in Example 14-8 

Bina Data for ICW2 : 8259 Interrupt I II 
iD7D6D5D4 DJD2DIDO INT 

'10 I 0 I 10 0 0 0 +-- IRO----+_!NT 50 ~I 
I 0 I 0 I -+L 0 0 I IRI!!NT 511 

Ir~eu----4L 010 __ ._, _. IR2 L !NT 52 =J 
II~ I 0 I 10 0 I I I IR3 : !NT 53_ jl 
~LJl_I -*._I_~_-t- IR4 L !NT 54 I 

lieu 0 I 10 1_0 __ 1_ I IR5_+ !NT55J, 

I~ 0 I U_I _0 --------+- IR6 ___ I_!NT ~---ll 
~ 0 _~ I _ I I _"--- IR7 I !NT 57 _ .~ 

Masking and prioritization of IRO - IR7 interrupts 

One might ask what happens if more than one of IRO - IR 7 is activated at 
the same time? Can we mask any ofthe interrupts? What about responding to another 
interrupt while an interrupt is being serviced? To answer all these questions, the 
function of the oew (operation command word) must be understood. This is 
discussed next. 

OCW (operation command word) 

After leW!, IeW2, and 
leW4 have been issued in se­
quence to the 8259 chip in order 
to initialize it, the 8088/86 is 
ready to receive hardware inter­
rupts through the 8259's1RO -IR7 
pins. After the process of initiali­
zation, the oew (operation com­
mand word) can be sent to mask 
any of IRO - IR7, or change the 

Table 14-5: Addresses for 8259 OCWs r . , 
I~CS I AO I Operation Command Word II 

I~ ! 0 IOeW2,OeW3 -J 
II 0 I 1 IOeWI '------- I! 

[I i. x J 8259 is not addressed _ ~ 
priority assigned to each IR. There are three operation command words: OeWI, 
OeW2, and OeW3. See Table 14-5. With the help of oews, a programmer can 
dynamically change the priority associated with each of IRO - IR 7, or mask any of 
them. Example 14-9 shows how the oews are sent to the 8259. 

Find the port addresses for the oews of the 8259 in Example 14·7. 

Solution: 
From Table 14-5 and Example 14-7: 

A7 A6 A5 
o 0 1 
o 0 

426 

A4 A3 
o 
o 

A2 Al AO 
o 
1 

~ 26H Port for OeW2 and OeW3 
~ 27H Port for oewl 

Figure 14·7 shows the oews for the 8259. Below is a discussion of each. 
Before discussing the oews, the existence of three registers inside the 8259 must 
be noted. They are the ISR (in-service register), IRR (interrupt request register), and 
IMR (interrupt mask register). See Figure 14-4. 

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



OCW1 (operation command word 1) 

OCWI is used to mask any ofIRO - IR7. Logic I is for masking (disabling) 
and 0 is for unmasking (enabling). For example, 11111000 is the OCWI to enable 
(unmask) IRO, IRL IR2, and disable (mask) the rest (JR3 - IR7). When this byte is 
written to the 8259 (by making AO ~ I and CS ~Iow), it goes into the internal register 
called IMR (interrupt mask register). 

Example 14-10 

Write the code to unmask (enable) IRO - IR7. Use the ports in Example 14-9. 

Solution: 

To enable IRO - IR7, use 0 for MO - M7 in OCWI ofFigure 14-7. 

OCWI =00000000 =OOH 

MOV AL,OO 
OUT 27,AL 

;OCWI to unmask IRO - IR7 
;issue OCWI to IMR 

There are occasions when one needs to know which IR is disabled and which 
one is enabled. In that case, simply read OCWI, which is the contents ofIMR. For 
example, to read OCW I using the port addresses in Example 14-10, code "IN 
AL,27H". By examining the contents of AL, one can find out which IRs are enabled 
and which ones are disabled. 

OCW2 (operation command word 2) 

This command word is used to assign a specific priority to the IRs. Three 
methods for assigning priority to IRO - IR 7 are discussed below. 

Fully nested mode 

This assigns the highest priority to IRO and the lowest to IR 7. In this case, 
ifIR3 and IRS are activated at the same time, first IR3 is served and then IRS. What 
happens ifIR3 is being served when both IR2 and IR4 request service? In that case, 
IR3 is put on hold, then IR2 is served. After IR2 is served, IR3 is completed and 
finally IR4 is served. This is the default mode when the 8259 is initialized. The 8259 
can be programmed to change the default mode to assign the highest priority to any 
IR. For example, the following shows OCW2 ifIR6 has been assigned the highest 
priority, then IR 7 has the next priority, and so on. 

IRO IR1 IR2 IR3 IR4 IR5 IR6 IR7 interrupt pin on 8259 

2345670 priority O~highest and 7~lowest 

Automatic rotation mode 

In this scheme, when an IR has been served it will take the lowest priority 
and will not be served until every other request has had a chance. This prevents 
interrupt starvation, where one device monopolizes the interrupt service. 

Specific rotation mode 

In this scheme the 8259 can be programmed to make the rotation follow a 
specific sequence rather than IRO to IR 7, which is the case for the automatic rotation 
mode. In this mode, the IR served will be stamped as the lowest priority, meaning 
that it will not be served until every other request has had a chance. The only 
difference between this mode and automatic rotation is the sequence of rotation. 

SECTION 14-3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 427 



OCW1 

AO 07 06 05 04 03 02 01 DO 

1 I M7 I M6 I M5 M4 I M3 I M2 M1 MO I 
I I I I I I I I 

----- -- -----

Interrupt Mask 
1 =Mask Set 

OCW2 
o =Mask Reset _.- - ------- -- - ---- -

AO 07 06 05 04 03 02 01 DO 

I 0 I R J SL I EOI 0 I 0 I L2 I L 1 LO I 
,J 

I I - ---- -
~ Nonspecific EOI command IR Level to Be 
10 f 1 • Specific EOI command I Acted Upon 

, , 

I 1 0,1 1 Rotate on nonspecific EOI command I 

!01T2345617 
, : 

, 1 00 I Rotate in automatic EOI mode (set) i 

-10110101011 
-

, 0100 ' Rotate in automatic EOI mode (clear) -
1 1 1 Rotate on specific EOI command 00111001H 

~ Set priority command I '--0 01 0, 0 J111l1L 

~ 0 i No operation 
, 

L - -
, I 

, ~ I _ 
- --

OCW3 

AO 07 06 05 04 03 02 01 DO 

l 0 I 0 I ESMM\ SMM 0 \ 1 \ 
P \ RR RIS 

\ 
~ I 

Read Register Command _] 
0 1 1 o i 1 --, 

- - o 0 i n'-1-~ 
I Special Mask Mode 

I 

No action READ 1 READ 
o 1 1 0 1 1 IR reg , IS reg 
o I 0 I 1 ! -----~ 1 ----- I -

11',[6 action ! Reset Set -- --

Special I Special 1 = Poll Command 

I Mask I Mask -.J ~ = No Poll Command , 

l 
-. -- ---- 1 

Figure 14-7, DeW Format for the 8259 
(Reprinted by permission ofIntel Corporation, Copyright Intel Corp. 1983) 

428 CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



Having concluded this brief description of priority schemes, the following 
will discuss the OCW2 bits. 02 - 00 are used to assign a new priority scheme to an 
IR other than the default. For example, to assign the highest priority to IR6, use 02 
- 00 ~ 110. 04 - 03 must always be 0 for OCW2. 05, EO! (end of interrupt), is 
used to issue an end-of-interrupt command to the 8259. This is a very important 
function and is widely used in IBM BIOS. The following paragraph discusses this 
at length. 06 (SL, select) and 07 (R, rotation) bits are used to program the 8259 for 
the various priority schemes discussed earlier. A frequently used bit combination 
for OCW2 in the IBM PCIXT, AT, PS/2, and compatibles is 0010000 ~ 20H. 

Importance of the EOI (end of interrupt) command 

Why is it necessary to issue an EOI command to the 8259? To understand 
the answer to this question, consider the following case. Assume that an 8259 has 
been initialized and is in the default fully nested mode (where IRO has the highest 
priority and IR7 the lowest). Now aSSume that IR3 is activated and the CPU 
acknowledges the interrupt by sending back a signal through !NTA. Then the CPU 
goes to the vector table and gets CS:IP of the interrupt service routine and starts to 
execute the routine. When the CPU acknowledges IR3, the 8259 marks (sets to 1) 
the bit associated with IR3 in its ISR (in-service register) to indicate that this is being 
serviced now. Issuing EO! to the 8259 indicates that servicing IR3 is now complete 
and the bit associated with IR3 in register ISR can be reset to zero, thereby allowing 
IR3 to come in again. Of course, the EOI must be issued at the end of the service 
routine; otherwise, IR3 might keep interrupting itself again and again. If it is not 
issued and the CPU goes back to the main program after it finishes servicing IR3, 
it will not be able to be serviced again since in the ISR register the bit indicates that 
IR3 is being serviced. The important point of this is that the last three instructions 
of any interrupt service routine for IRO - IR 7 must be issuing the EO!, followed by 
lRET (see Example 14-11). It should be noted that while IR3 is being serviced, all 
ofIR2, IRl, and IRO are allowed to come in and interrupt it since they have higher 
priority, but no lower-priority interrupts ofIR4 - IR7 are responded to. For example, 
ifIR3 is being serviced and IRI is activated, only IRO can interrupt, and IR2, IR4 -
IR 7 will not be responded to. If the programmer has failed to issue the EO! at the 
end of IR 1 and IR3, he has simply put these two IRs out of circulation in addition 
to IR2, IR4, IR5, IR6, and IR7. Only IRO will be responded to by the 8259, since 
the ISR has marked IR3 and consequently all the lower-priority interrupts IR4 -
IR 7. Then IRI puts the lower-priority IR2 out of circulation. 

Example 14-11 
Show the last 3 instructions of the interrupt service routine for IRI of the 8259 in Example 14-8. 

Solution: 
Before the interrupt service routine returns control to the main program, it issues OCW2 to the 8259. 

!NT SERV PROC FAR 

MOV AL,20H 
OUT 26H,AL 
IRET 

;routine for IRI 

;the EO! byte for OCW2 
;to port designated for OCW2 
;return from ISR to the main program 

OCW3 (operation command word 3) 

OCW3 is used, among other functions, to read the 8259's internal registers 
IRR (interrupt request register) and ISR (in-service register). 00 and 01 allow the 
program to read these registers in order to see which of IRO - IR 7 is pending for 
service and which one is being served (as mentioned earlier, OCW 1 is used to peek 
into the IMR). The rest of the bits are for changing the masking mode and other 
advanced functions of the 8259. Interested readers should refer to Intel manuals. 

SECTION 14.3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 429 



Review Questions 

I. A single 8259 can add up to hardware interrupts to an 80x86 CPU. 
2. INTR is an (input, output) signal for the 8259 but it is an (in-

put, output) signal for the 80x86. 
3. True or false. CASO, CASI, and CAS2 are used for master/slave mode only. 
4. Indicate the logic level (high or low) on input pins AO and CS in order to send 

ICWI to the 8259. 
5. True or false. ICWs can be sent to the 8259 in random order. 
6. The 8259 can receive ICWs in the sequence ICWI, ICW2, ICW3, ICW4 or ICWI, 

ICW2, ICW4. How does it know which option is being programmed? 
7. True or false. When the ISR (interrupt service routine) ofIR5 is being executed, the 

8259 prevents requests from the same interrupt by marking bit IR5 in its in-serv­
ice register. 

8. True or false. Fully nested mode is the default mode. 
9. In fully nested mode, which IR has the highest priority? 
10. Assume that an 8259 is configured in fully nested mode and the CPU is executing 

the interrupt service routine for IR5. During the execution ofIR5, which inter­
rupts can come in and which ones are blocked? 

SECTION 14.4: USE OF THE 8259 CHIP IN THE IBM PCIXT 

The 8088-based PCIXT uses only one 8259 chip to extend the number of 
hardware interrupts to eight, but starting with the 286 and higher processor comput­
ers, two 8259 chips are used to extend the hardware interrupts up to 15. Since the 
PCIXT is a subset of the PC AT, we discuss the hardware interrupts of the AT 
computers in a later section. 

Interfacing the 8259 to the 8088 in IBM PCIXT computers 

To interface the 8259 
to the 8088, there must be 
two port addresses assigned 
to the 8259. One is for ICWI 
and the second one is for 
ICW2 and ICW4. Figure 14-
8 shows the address decoding 
for the 8259 in the IBM 
PCIXT. Since the chip select 
is activated by Y I and all the 
x's for don't care must be 
zero, the addresses can be 
calculated in the manner in­
dicated as shown in Table 14-

A 5 
A 6 

7 

8 
A 

A 

A 9 
AE 

"""\. 

~.rc 
~ 

LS138 

A P 
B Y1 
C ~ G2B AO 

G2A P 
G1 p 

8259A 

-
CS 

AO 

6. These are the port 
addresses that were given in 
Chapter 12. 

Figure 14-8. Chip Select Decoder of the 8259A 

Table 14-6: Port Addresses ofICWs and OCWs 
I' "~~---,l 

I Binary Address ----- j Hex Ii! 

!'AEN~9 A8 A 7 A6 AS A4 A3 A2 Al AO i Address Function 

.1 0 0 10 0 1 x jx x x 020lPOIi address ICWI .... 1 

1 0 00 0 1 x Ix x x 1 ---llL [Port addresses ICW2 ICW3 ICW4 I 

! 

lG ~ ~ ~ ~ ~--_.I::~~ ~ __ 'l~~-" I::: :::::::e~~~~2, OCW3! 

430 CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



Initialization words of the 8259 in the IBM PCIXT 

Next the IBM Pc/XT initialization words for the 8259 will be explained. 
From earlier discussions and Figure 14-5, the following configuration for the control 
words ICW!, ICW2, and ICW4 can be calculated: 

ICW1 
00=1 
01=1 
02=0 
03=0 
04=1 
05=06=07=0 

IBM PC/XT Configuration 
ICW4 needed 
single 
for BOxB6 this must be zero 
edge triggering 
required by ICW1 itself 
Os for BOBB/B6-based systems 

ICW1 = 00010011 = 13H 

As was explained in Section 14.2, out of the 256 interrupts of the 8088/86, 
IBM PCIXT designers assigned !NT 08 - !NT OF for expansion of hardware 
interrupts. These interrupts are used by IRO - IR 7 of the 8259 and commonly referred 
to as IRQO - IRQ7. !NT 08 is for IRQO, !NT 09 is for IRQ 1, and so On. It is the 
function ofICW2 to inform the 8259 which interrupt numbers are assigned to IRQO 
- IRQ7. This is done by equating ICW2 of the 8259 to the interrupt number assigned 
to IRQO. In other words, ICW2 is the interrupt number for IRO, which in the case 
of the IBM PC/XT and compatibles is TNT 08. The 8259 is only programmed only 
for the value ofIRQO, so the 8259 generates the TNT numbers for IRI through IR7. 
These are listed in Table 14-7. Summarizing the above discussion gives ICW2 ~ 
0000 1000 ~ 08H. 

Table 14-7: IBM PCIXT Har~~are Interrupts 

C 
_. 

Binary Data ICW2 j 8259 Interrupt 

ID7D6D5 D4 iD3D2DJDO Input lINT Type. 
~. 

I: :: 
0 1 0 0 0 IRO IINT()8 -1-- - ,----------
0 11 0 _0 fIRI lINT 09 

0 i 1 0 0 ilR2 INTOA 

!O 0 ,. - 0 0 0 1 1 IR3 

1 
I 

j 

II 

-1 iINTOB 

Ito 0 0 .... 11 0 0 IIR4 jINTOC ~ o 0 0 0 11 1 0 1 'IR5 
i
INTOD 

~O 0 0 0 

,19 0 0 0 

i 1 1 0 IR6 IINTOE 
I 

11 1 IIR7 jINTOF 

ICW3 is used only when mUltiple 8259 chips are connected in master/slave 
mode, which is the case in 80286, 386, 486, and Pentium PCs. This discussion is 
presented in Section 14.5. Next the ICW4 configuration will be examined. 

ICW4 
00=1 
01=0 
02=0,03=1 
04=0 
05=06=07=0 

IBM PC Configuration 
BOBB/B6 
normal (issue EOI before IRET) 
slave buffered mode 
not nested 
required by ICW4 

ICW4 = 00001001 = 09H 

SECTION 14.4: USE OF THE 8259'CHIP IN THE IBM PCIXT 431 

I 



LOC OBJ 
0020 
0021 

E1B4 
E1B4 B013 
E1B6 E620 
E1B8 B008 
E1BA E621 
E1BC B009 
E1BE E621 

This gives the following code for 8259 initialization. 

MOV AL,13H ;the ICW1 
OUT 20H,AL 
MOV AL,8 ;the ICW2 
OUT 21H,AL 
MOV AL,9 ;the ICW4 
OUT 21H,AL 

The IBM PC/XT BIOS version of the above program is as follows; 

LINE 
19 INTAOO 
20 INTA01 

SOURCE 
EQU 20H 
EQU 21H 

;8259 PORT 
;8259 PORT 

553 ; INITIALIZE THE 8259 INTERRUPT CONTROLLER CHIP 
554 ; -------------------------------------------------
555 C21: 
556 
557 
558 
559 
560 
561 

MOV 
OUT 
MOV 
OUT 
MOV 
OUT 

AL,13H 
INTAOO,AL 
AL,8 
INTA01,AL 
AL,09 
INTA01,AL 

; ICW1 - EDGE, SNGL, ICW4 

;SETUP ICW2 - INT TYPE 8 (8-F) 

;SETUP ICW3 - BUFFERED,8086 MODE 

(Reprinted by permission from "IBM 610S Technical Reference" c. 1984 by International Business Machines Corporation) 

E217 BA2100 
E21A BOOO 
E21C EE 
E21D EC 
E21E OACO 
E220 7515 
E222 BOFF 
E224 EE 
E225 EC 
E226 0401 
E228 750D 

Now that the 8259 is initialized, it is ready to accept an interrupt on any of 
the inputs IRQO - IRQ7, thereby expanding the number of hardware interrupts for 
the 8088/86. What if the 8259 IC is defective? The 8259 is tested by a program in 
BIOS. There is a collection of programs in BIOS that is responsible for testing and 
initialization of the CPU and peripheral chips. This is commonly referred to as the 
POST (power-on self-test). 

Since it is possible that one of the bits of the IMR (interrupt mask register) 
has become stuck to zero or one during the fabrication of the chip and escaped 
detection, the following program from IBM BIOS tests the IMR of the 8259 chip 
by writing Os and Is to it and reading them back. Reminder: To access the IMR, use 
OCWl, which has the port address 2lH in the IBM PC (see Table 14-6). In the 
following program, if the test fails, the system will beep. 

620 :TEST THE IMR REGISTER 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 

MOV 
MOV 
OUT 
IN 
OR 
JNZ 
MOV 
OUT 
IN 
ADD 
JNZ 

DX,0021 
AL,O 
DX,AL 
AL,DX 
AL,AL 
D6 
AL,OFF 
DX,AL 
AL,DX 
AL,1 
D6 

;POINT INTR. CHIP ADDR 21 
;SET IMR TO ZERO 

;READ IMR 
;IMR=O? 
;GO TO ERR ROUTINE IF NOT 0 
;DISABLE DEVICE INTERRUPTS 
;WRITE TO IMR 
;READ IMR 
;ALL IMR BIT ON? 
;NO - GO TO ERR ROUTINE 

(Reprinted by permission from "IBM BIOS Technical Reference" c. 1984 by International Business Machines Corporation) 

432 

Sequences of hardware interrupts with the 8259 

When a high is put on any of IRO - IR7, how does the microprocessor 
become involved? As mentioned earlier, INTA ofthe 8088/86 is connected to INTA 
of the 8288 bus controller, and INTR of the 8259 is connected to INTR of the 
8088/86. The following is the sequence of events after an IR ofthe 8259 is activated. 

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



I. After an IR is activated, the 8259 will respond by putting a high on INTR, thereby 
signaling the CPU for an interrupt request. 

2. The 8088/86 puts the appropriate signals on SO, S I, and S2 (SO = 0, S I = 0, and S2 
= 0), indicating to the 8288 that an interrupt has been requested. 

3. The 8288 issues the first INTA to the 8259. 
4. The 8259 receives the first INTA and does internal housekeeping, which includes 

resolution of priority (if more than one IR has been activated) and resolution of 
cascading. 

5. The 8288 issues the second INTA to the 8259. 
6. The second INTA pulse makes the 8259 to put a single interrupt vector byte on the 

data bus which the 8088/86 will latch in. The value of the single byte depends on 
ICW2 and which IR has been activated, as discussed earlier. 

7. The 8088/86 uses this byte to calculate the vector location, which is four times the 
value of the INT type. 

8. The 8088/86 pushes the flag register onto the stack, clears IF (Interrupt Flag) and 
TF (Trap Flag), thereby disabling further external interrupt requests and disabling 
single-step mode, and finally pushes the present CS:IP registers onto the stack. 

9. The 8088/86 reads CS:IP of the interrupt service routine from the vector table and 
begins execution ofthe interrupt routine. 

Next we see which devices in the IBM PCIXT use the 8 hardware interrupts, 
IRQO to IRQ7, of the 8259. 

Sources of hardware interrupts in the IBM PC/XT 

With the use of the 8259, the IBM PC/XT has 8 interrupts, IRO to IR7, plus 
NMI of the 8088/86. First the assignment ofiRO to IR7 will be discussed, then NMI 
and its use in the IBM PCIXT. 

Of the 8 interrupts for the 8259, IBM has used two of them, IRO and IRI, 
for internal use of the system. The other six, IR2 through IR7, are available through 
the expansion slots. Of those used internally, IRO is for channel 0 of the 8253 timer 
to update the time-of-day (TOD) clock, and IRI is dedicated to the keyboard. IRI 
is activated whenever the serial-in-parallel-out shift register of the keyboard has a 
byte of data. IR2 to IR7 are generally used with the following assignments. The 
following two are used on the motherboard: 

INT 
INT 

08 
09 

IRQO 
IRQt 

channel 0 of 8253 timer to update TOD 
keyboard input data 

The following are available through the expansion slot bus and used widely 
in industry, as indicated. Figure 14-9 summarizes the hardware interrupt assignment 
in the IBM PC/XT. 

INT 
INT 
INT 
INT 
INT 
INT 

OAH 
OSH 
OCH 
ODH 
OEH 
OFH 

IRQ2 
IRQ3 
IRQ4 
IRQ5 
IRQ6 
IRQ? 

Sources of NMI in the IBM PC 

reserved 
serial COM2 
serial COMt 
alternative printer 
floppy disk 
parallel printer LPTt 

The last hardware interrupt to be discussed for the 8088/86 computer is the 
NMI (nonmaskable interrupt). This interrupt is actually one of the pins of the CPU 
(similar to the TRAP pin in the 8080/85), and unlike INTR there is no need for the 
INTA pin to acknowledge it. Furthermore, it cannot be masked (disabled) by 
software as is the case for INTR, which can be masked at any time through use of 
the instruction CLI (clear interrupt flag). It is for this reason that the IBM PC has 
used the NMI for parity bit checking of DRAM to make sure that all read/write 
memory is working properly. In the absence of RAM memory, the operating system 
would not be loaded and the computer could not function. 

SECTION 14.4: USE OF THE 8259·CHIP IN THE IBM PC/XT 433 



Enable NMI 
using port AOH 

8087 interrupt request ----.., 
L-...r<-... 

motherboard RAM parity check 

1/0 channel check -----' 

8259 

INTA 
Timer channel 0 
ofthe 8253 IRO 

INTR 
IR1 

keyboard available 1R2 

com 2 IR3 

IRQ2to IRQ7 com 1 IR4 
available throug parallel 

IR5 
expansion slots 

printer Lpt2 

floppy disk IR6 

parallel IR7 
printer Lpt1 

Figure 14-9. PC/XT Sources of Hardware Interrupts 

8088 
NMI 

50 

51 

52 

INTR 

(Reprinted by permission from "IBM BIOS Technical Reference" c. 1984 by International Business Machines Corporation) 

interrupt from 808 

SW20f 
installation switch 1 

PCK ----< 
parity check 

enable 110 check-J'v~--' 
from PB5 of 8255 

1/0 Channel Check 
from expansion slot 

1I0Chck 110 channel check 
to pe6 of 8255 

Figure 14-10. Sources of NMI in the PC/XT 

1 +5V 

PRE 
07 0 Q 

"WmR"'T'N'"M"1 "R.=g -----l) 
through port 
address AOH 

CLR 

from RESET of CP'l}----' 

8088 

NMI 

(Reprinted by permission from "IBM BIOS Technical Reference" c. 1984 by International Business Machines Corporation) 

434 CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



E2C3 
E2C3 
E2C350 
E2C4 E462 
E2C6A8CO 
E2C87415 

E2CEA840 
E2DO 7504 

E2D6 

... 
E2DF 
E2DF 58 
E2EO CF 

If the NMI is so Important to the system, which devices can activate it, and 
can they be masked at all? First, as can be seen from Figure 14-10, there are three 
sources of activation of the NMI: 

1. NPIRQ (numerical processor interrupt request) 
2. Read/write PCK (parity check) 
3. IOCHK (input/output channel check) 

Since three different sources can activate NMI, how does the system know 
which one is requesting interrupt service at any given time? The IBM PC system 
recognizes which of these interrupt requests has been activated by checking input 
port C of the 8255. It looks at PC6 of the 8255 to see if it is IOCHK and at PC7 to 
see if it is PCK. The NMI service routine software must check PC6 and PC7 and 
determine which one has requested service. If neither of these two is requesting 
service, the request must have come from the 8087 coprocessor on the motherboard 
(in IBM terminology, planer). IBM BIOS checks the source of each and as it finds 
them, displays an appropriate messages on the video screen. The BIOS code is 
shown next. 

746 ORG OE2C3H 
747 NMUNT PROC NEAR 
748 PUSH AX ;SAVE ORIG CONTENTS OF AX 
749 IN AL,PORT_C 
750 TEST AL,OCOH ;PARITY CHECK? 
751 JZ D14 ;NO, EXIT FROM ROUTINE 

752 ;ADDR OF ERROR MSG 
753 TEST AL,40H ;1/0 PARITY CHECK 
754 JNZ D13 ;DISPLAY ERROR MEG 
755 ;MUST BE PLANER 
756 D13: 
757 } sends the message to 

} video and halts the system . 
762 D14: 
763 POP AX ;RESTORE ORIGINAL AX 
764 IRET 
765 NMI INTENDP 

(Reprinted by permission from "IBM BIOS Technical Reference" c. 1984 by International Business Machines Corporation) 

E5BC B080 
E5BE E6AO 

Is there any way that NMI can be masked? The answer is yes. As can be 
seen from Figure 14-10, NMI is masked by a RESET signal from the CPU with 
CLR of the D flip-flop when the computer is first turned on. It can also be unmasked 
or masked through port AOH by setting D7 of the data bus to I (unmask) or 0 (mask). 
Again from the IBM PCIXT BIOS we see the following: 

1261 
1262 
1263 
1284 

ENABLE NMIINTERRUPTS 

MOV AL,80H ;ENABLE NMI INTERRUPTS 
OUT OAOH,AL 

(Reprinted by permission from "IBM BIOS Technical Reference" c. 1984 by International Business Machines Corporation) 

Review Questions 

I. True or false. The IBM PC/XT uses only one 8259. 
2. What ports are assigned to ICWs in the PCIXT? 
3. In the PC/XT, the IRQ are (edge-, level-triggered). 
4. Of the 256 possible interrupts of the 8088, which ones are assigned to IRQO - IRQ7 

of the 8259? 
5. True or false. IRQO and IRQI can be used by the system but not by the user. 
6. Which IRQ of the 8259 is available on the expansion slot? 
7. True or false. The 80x86 can mask and unmask the NMI by using the STI and CLI 

instructions. 
8. True or false. If there is a problem with the memory of the PC, NMI is activated. 

SECTION 14.4: USE OF THE 8259 CHIP IN THE IBM PCIXT 435 



SECTION 14.5: INTERRUPTS ON 80286 AND HIGHER 80x86 PCs 

IRQ8 -----> 
IRQ9 -----> 

IRQ1D ~ 

IRQ11 -----> 
IRQ12 ~ 

IRQ13 ~ 

IRQ14 -----> 
IRQ15 ~ 

When the first PC was introduced, only the six hardware interrupts, IRQ2 
- IRQ7, were available through the PCIXT expansion slot. The other two, IRQO and 
IRQ 1, were used by the motherboard. With the introduction of the 80286-based PC 
AT, another eight interrupts, IRQ8 - IRQI5, were added. IBM implemented the 
additional hardware interrupts with the use of a second 8259 programmable interrupt 
controller. To make their computers IBM compatible, all clone makers followed 
IBM's lead. Subsequent 386, 486, and Intel Pentium-based PCs and PS computers 
have remain faithful to the original IBM PC AT computer. In this section we study 
the hardware interrupts and hardware interrupt assignment for 286 and later PCs. 

IBM PC AT hardware interrupts 

In the design of the 80286-based IBM PC AT, IBM designers had to make 
sure that it was compatible with the 8088-based PCIXT. This lead to the use ofIRQO 
and IRQl for the system timer and keyboard, respectively, as was the case in the 
PCIXT. IBM made the first 8259 a master, and added the second 8259 in slave mode. 
To do that, it connected the INT pin of the slave 8259 to IRQ2 of the master 8259. 
The master and slave 8259s communicate with each other through pins IRQ2, INT, 
CASO, CASl, and CAS2. See Figure 14-11. A detailed discussion of 8259 design 
in master and slave modes in IBM PC AT and compatibles follows. 

1 I INTA IRQO -----> INTA INTA 
IRQ1 -----> 

INTR IRQ2 

8259 
IRQ3 -----> 

INTR INTR 

SLAVE 
IRQ4~ 8259 

IRQ5~ MASTER 80286 

IRQ6 -----> SP/EN f--
80386 
80486 

SP/EN IRQ7~ Pentium 

II CASO ~tr CAS1 NMI 
-!> CAS2 Vee 

System board 07 of 

parity check Port 70H 

1/0 Channel 
parity check 

(expansion slot) 

Figure 14-11. 8259 Chips In Master/Slave Relation for 286 and Higher PCs 

436 

8259 in master mode 

To implement the 8259 in master mode, the following steps must be taken: 
1. The 8259 SP/EN pin must be connected to 5 V, Vee, to make it the master in 

nonbuffered mode. See Figure 14-11. 
2. CASO, CASI, and CAS2 of the master 8259 are connected to the same pins of the 

slave 8259. CASO, CASI, and CAS2 are outputs for the master 8259. 
3. !NT and !NTA pins of the master are connected to INTR and INTA of the CPU. 
4. IRQ2 of the master is connected to the !NT pin of the slave 8259. 
5. The master 8259 must be programmed specifically to operate in master mode. This 

is done through the ICWs, as will be demonstrated below. 

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



The port addresses assigned to the master are the same as the port addresses 
in the PCIXT, 20H and 21 H. The following is a program to initialize the 8259 master 
from the IBM PCI AT BIOS Technical Reference, with slight modifications for the 
sake of clarity. 

;INITIALIZE THE 8259 INTERRUPT # 1 CONTROLLER CHIP 

MOV 
OUT 
MOV 
OUT 
MOV 
OUT 
MOV 
OUT 

AL,11H 
20H,AL 
AL,8 
21H,AL 
AL,04H 
21H,AL 
AL,01H 
21H,AL 

;ICW1 - EDGE, MASTER, ICW4 

;SETUP ICW2 - INTERRUPT TYPE 8 (8-F) 

;SETUP ICW3 - MASTER LEVEL 2 

;SETUP ICW4 - MASTER x86 MODE 

ICWI, ICW2, and ICW4 for the 8259 master are basically the same as in 
the PC/XT 8259, with some minor differences. In the ICWI initialization, 01 of 
the ICWI is 0 since it is used in cascade mode. Cascade mode is chosen whenever 
there is more than one 8259. ICW2 is the same in the PCIXTand the PC AT. ICW4 
in the PC AT is in nonbuffered mode. In nonbuffered mode, masterlslave is 
determined by the SP pin (see the SP/EN pin description). The most important 
difference is ICW3. In cascade mode, ICW3 must be coded into both master and 
slave 8259s. In the case of the master, it must be informed which of the IRQs has a 
slave 8259 connected to it. Since IRQ2 of the master is connected to !NTR of the 
slave 8259, we have 00000100 = 04H for ICW3. See Figure 14-6. 

8259 in slave mode 

To implement the 8259 in slave mode, the following steps must be taken; 
I. SP/EN must be grounded (SPIEN = 0) for the 8259 in slave mode for nonbuffered 

mode. See Figure 14-11. 
2. CASO, CASI, and CAS2 of the slave 8259 are connected to the same pins of the 

master 8259. These signals are inputs for the slave 8259. 
3. !NTA of the slave is connected to !NTA of the 80x86. 
4. The !NT pin of the slave 8259 is connected to IRQ2 of the slave. 
5. The slave 8259 must be programmed specifically through its ICWs to operate in 

slave mode. 
Since the second 

8259 must be accessed in­
dependent of the first 8259, 
the port addresses assigned 
to it are different and must 
be unique. These addresses 
in IBM PC AT and compat­
ibles are shown in Table 14-
8. The following is a 

Table 14-8: Port Addresses for the Slave 8259 
in ISA PCs 

program to initialize the slave 8259 from the IBM PC/AT BIOS Technical Refer­
ence, with slight modification for the sake of clarity. 

;INITIALIZE THE 8259 INTERRUPT # 2 CONTROLLER CHIP 
--------------------------------------------------------------
MOV 
OUT 
MOV 
OUT 
MOV 
OUT 
MOV 
OUT 

AL, 11 H ;ICW1 - EDGE, SLAVE, ICW4 
AOH,AL 
AL,70H ;SETUP ICW2 -INTERRUPT TYPE 70H (70-77) 
A1H,AL 
AL,02H ;SETUP ICW3 - SLAVE LEVEL 2 
A1H,AL 
AL,01 H ;SETUP ICW4 - x86 MODE SLAVE 
A1H,AL 

In the above codes notice ICW2 and ICW3. They are different from the 
master 8259 in the following way. In the IBM PC AT, IRO - IR7 of the second 8259 
are designated as IRQ8 - IRQ 15 and were assigned the interrupt type numbers !NT 

SECTION 14.5: INTERRUPTS ON 80286 AND HIGHER 80x86 PCs 437 



438 

70H to INT 77H. This is reflected in the value for ICW2. The 8259 used in slave 
mode must be informed of the IRQ number of the master that is connected to its 
INT out pin. This is the function ofICW3. Since IRQ2 of the master is connected 
to INT of the slave, ICW3 =00000010. See Figure 14-6. The following is the INT 
number assigned to IRQ8 - IRQI5 of the second 8259. 

IRQ8 
IRQ9 
IRQ10 
IRQ11 
IRQ12 
IRQ13 
IRQ14 
IRQ15 

INT 70H 
INT 71H 
INT72H 
INT 73H 
INT 74H 
INT 75H 
INT 76H 
INT77H 

AT-type computers interrupt assignment 

In the PCIXT, IRQ2 is available through the expansion slot. However, in 
AT-type computers, since IRQ2 is used as an input from the second 8259, IBM had 
to replace it with another IRQ. IRQ9 (i.e., IRI of the second 8259) is used in place 
ofIRQ2. Looking at the ISA expansion slot 62-pin section (see Chapter 10), we see 
IRQ9 in place of IRQ2 on exactly the same pin. The replacement of IRQ2 with 
IRQ9 makes the AT computers PCIXT compatible. For this scheme to work, IRQ9 
must be redirected to IRQ2 internally by the software, and that is exactly what IBM 
has done. The following is the code from the IBM AT BIOS showing the process of 
redirecting IRQ9 to IRQ2. 

;--HARDWARE INT 71 H --(IRQ LEVEL 9) TO INT OAH (IRQ 2) 
;REDIRECT SLAVE INTERRUPT 9 TO INTERRUPT LEVEL 2 

RE DIRECT PROC NEAR 
- PUSH AX 

MOV AL.20H 
OUT OAOH,AL 
POP AX 
INT OAH 
IRET 
ENDP 

;SAVE (AX) 
'EOI 
;TO SLAVE INTERRUPT CONTROLLER 
;RESTORE (AX) 
;GIVE CONTROL TO HARDWARE LEVEL 2 
;RETURN 

In the above code notice the issuing of EO! (end of interrupt) to the slave 
8259. This redirection process shown above makes any changes in the design of the 
hardware and software of plug-in boards using the IRQ2 unnecessary. In such 
plug-in boards, hardware interrupts come in through the same pin on the 62-pin 
expansion slot, are captured by IRQ9, and redirected to IRQ2. This is as if the IRQ2 
had responded directly to the interrupt. 

Case of missing IRQs on the AT expansion slot 

Examining the AT bus we see that of the 8 interrupts, IRQ8 to IRQI5, two 
of them, IRQ8 and IRQI3, are missing. In IBM PC/AT 286 and higher computers, 
IRQ8 is used on the motherboard by the Motorola MCI46818 real-time clock 
CMOS RAM chip. Therefore, it is not available on the expansion slot pin. As was 
discussed in Section 14.3, the IBM PC/XT used NMI for parity bit checking of RAM 
both on the motherboard and memory expansion RAM cards through the slot, in 
addition to interrupts from the 8087 math coprocessor. Starting with the AT-type 
286 and higher PCs, IRQI3 (INT type 75H) is used for the interrupt associated with 
the math coprocessors. Although IRQ 13 captures the 80287 math coprocessor 
interrupt, it is still handled by NMI for the sake of compatibility with the PC/XT. 
The following code (again with slight modification for clarity) from BIOS of the 
IBM PC AT documentation shows this process. 

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



;---HARDWARE INT 75H--(IRQ LEVEL 13 )------­
; SERVICE X287 INTERRUPTS 

THIS ROUTINE FIELDS X287 INTERRUPTS AND CONTROL 
IS PASSED TO NMI INTERRUPT HANDLER FOR 
COMPATIBILITY 

PROC 
PUSH 
SUB 
OUT 
MOV 
OUT 
OUT 
POP 
INT 
IRET 
ENDP 

NEAR 
AX 
AL,AL 
OFOH,AL 
AL,20H 
OAOH,AL 
20H,AL 
AX 
02 

;SAVE (AX) 

;REMOVE THE INTERRUPT REQUEST 
;ISSUE EOI 
;TOSLAVE 
;TO MASTER 
;RESTORE (AX) 
;GIVE CONTROL TO NMI(INT TYPE 2) 
;RETURN 

Again notice in the above code the issuing of an end-of-interrupt (EOI) 
command to both 8259s. For the discussion of how and why the 80x87 math 
coprocessors get the attention of the CPU in case it encounters a problem, see 
Chapter 20. 

Notice on the ISA expansion slot that IRQIO, IRQIl, IRQI2, IRQI4, and 
IRQI5 are on the 32-pin section and IRQ9, IRQ3, IRQ4, IRQ5, IRQ6, and IRQ7 
are on the 62-pin section. Table 14-9 shows the hardware interrupt assignment in 
286, 386, 486, and Pentium IBM and compatible computers. 

Table 14-9: Hardware Interrupt Assignment for I;;;SA~P~C~s~~~~~, 

IIIRO lINT Numbt:~ iUse 

I IR 0 ___ I INT 08 : 8254 TIMER-"O"'U'--'T""O ____ _ 

IINT09H 
, 

IIR Keyboard 

:~IR~=-~---+i IN",-,-,T,--O",A,",H"'--~----I"-" """"''''-''''''~~'--'= 

IIR INTOBH 

IR04 'INTOCH --- . I Serial JJort COMI (angCOM3) 

IRQ5 INTODH i Parallel port 2: LPT2 

IR06 INTOEH i Floppy disk Controller -----

IIRQ7 iINTOFH i Parallel port I: LPTi 
, 

iCMOS real-time clock 
: 

IIR08 i INT70H ,-

IRQ9 INT71H Software redirected to INT OAH --

IROIO INT72H Available 
, 

~-"---~-

, 

IIRQIl lINT 73H [Available -
I 

:IROI2 :INT74H 
" 

IPS/2mouse -- ~.- -I 

IRQI3 I Math cOJJrocessor :1 iINT75H . ~- --

Ii 

IROl4 INT76H !Hard disk 

IRQI5 INT77H !Available 

80x86 microprocessor generated interrupts (exceptions) 

As mentioned in Section 14.1, when the CPU encounters an unusual 
situation such as dividing a number by zero, it generates an exception. The 8088/86 
had only one exception, divide error or !NT O. In the 8088/86, Intel Corporation left 
the first 32 interrupts (!NT 00 to !NT IFH) reserved for future microprocessors. 

SECTION 14.5: INTERRUPTS ON'S02S6 AND HIGHER SOxS6 PCs 439 



However, designers of the first IBM PC ignored this and assigned many of these 
interrupts to hardware and software interrupts on the system. By not adhering to 
Intel's specifications, IBM has created a massive headache for software designers 
of protected mode 386 and later systems. This is due to the fact that Intel continued 
to assign the processor exception cases generated by the 80x86 CPU to INT 5 and 
higher with each new member of the x86 family. This is shown in Table 14-10. 

Many of the interrupts in Table 14-10 are used by the x86 in protected mode. 
Since the IBM OS/2, Microsoft Windows, and NT operating systems use the x86 in 
protected mode, they have to map all these interrupts to new interrupts to avoid 
interrupt conflict with the IRQs of the PC. Note that Pentium exceptions are the 
same as the 486, with the addition of !NT 12H for machine check. 

Table 14-10: 80x86 Microprocessor Interrupt Assignment r-- --., 
IIFI~nt",e~rr,-,u"",tT8""08~6~/~88",-~~~~,z",8",6~~~~~=3,,,,86~~~~~~4,-,8",§.~ __ ~., ~~~; 

I 00 I Divide error., ! Divide error _ . I Divide error _ Di."ide errOf
n 

" W I Single step i Single step ,Single step Single step 
, • debugging debugging !1r-= ___ j ________ -+I_-l.exQ~"'ti"'o:"n"'s ___ __'e"'XCeJltignS 

! 02 , I,Nonmaskable I Nonmaskable I Nonmaskable Nonmaskable 
, ____ I mterrupt i intefl')l.QL ----l.iIJ,tefl't!llt interruJlt __ ~ 

fill. I Breakpoint I Bre~oint I Breakpoitlt ___ --+'1 B.,.reakpoint----l 

'I 04 I :~~oct;tected I :~~oct;tected I ~~~,,,,od'."':,-te_c_te_d __ -+l ~".v,-,~~~ct;t_e_ct_e_d_--III 
! 05 , Bound range I Bou~d range i Bound range II 

-+-________ -',~e~xc~e~e~d~e=d i exceeded I exceeded .' .---Ji 
"'0"'6'---___ -4 I Invalid instruction I Invalid instru9t!On I Invalid instructio!L~1 

I

, 07 __ ~ _____ +,1 ;.,v .. o:""i;",,~~:so_r_n_o_t_---"! ;:~;~~:s_o_r_n_o_t_--!"I ; .. : ... :"i;~~~sor not JI 

08 IDouble exception Double exception IDouble exception 
1 _____ +1._._ _______ ! detected detected jg.etected 

1 09 I Coprocessor . Coprocessor (Reserved) 
Iii protectiol} error rotection error 

lOA Invalid task state I Invalid task state Invalid task state 
I'c--___ -+ _______ --+'s"'e="e"n ... t_ I segment I segment _.n.m_ 

I Segment not present' Segment not Segment not 

---1--------11- resen~ ____ -+"'r"'e"'se""n"'t'- ____ _I 

OB 

OC I Stack fau lt Stack fault -

i OD : Protection fault I Prote~tion fault 

OE I_ IPage faulL 

I ~ ~~---+---------I co.p,roces 
sor elIor Coprocessor error 

--,- -----

Note: Pentium as assigned a new exception called machme check wIth !NT 12H. 
(Reprinted by permission ofIntel Corporation, Copyright Intel Corp. 1990) 

Stac k fault 
-, .,-

I Protection fault 

I Page fault 

Coprocessor error 

I Alignment check 

440 CHAPTER 14: INTERRUPTS AND THE 8259 cmp 



Interrupt priority 

The last 
topic in this section 
is the concept ofpri­
ority for INT 00 to 
INTFFH. What hap­
pens if two inter­
rupts want the 
attention of the CPU 
at the same time? 
Which has priority? 
As far as the 80x86 
is concerned, the 

Table 14-11: 80286 Interrupt Priority 

I Order Interru t 

'2 I 

i~3 ______ ~N~M~I~ ______________ __ 

11e=4'---___ ~Ic'cPc'cr"0,,ce"'s""s""or~xtension segment overrun 

115 IINTR 

INTR pin is considered a single interrupt. Therefore, the resolution of priority among 
the IRQs is up to the 8259. Assume that the INT instruction (such as INT 21 H) and 
INTR both want to be processed. The INT instruction has a higher priority than 
either INTR or NMI. Ifboth NMI and INTR are activated at the same time, NMI is 
responded to first since NMI has a higher priority than INTR. Table 14-11 shows 
the interrupt processing order for the 80286 microprocessor from Intel's manual (I 
is the highest priority). 

For the IRQs coming 
through INTR, the 8259 re­
solves priority depending on 
the way the 8259 is pro­
grammed. In the 80x86 IBM 
PC, PS, and compatibles, 
IRQO has the highest priority 
and IRQ7 is assigned the 
lowest priority. It must be 
noted that since IRQ8 -
IRQ 15 of the slave 8259 are 
connected to IRQ2 of the 
master 8259, they have 
higher priority than IRQ3 to 
IRQ7 of the master 8259. 
Figure 14-12 shows the IRQO 
- IRQ 15 priority. 

IROO 
IR01 
IROB 
IR09 
IR010 
IR011 
IR012 
IR013 
IRQ14 
IR015 
IR03 
IR04 
IR05 
IR06 
IR07 

HIGHEST PRIORITY 

LOWEST PRIORITY 

Figure 14-12. IRQ Priority in the x86 PC 

More about edge- and level-triggered interrupts 

As discussed previously, in the 8259 there are two ways to activate the 
interrupt input IRQ, depending upon how it is programmed. One is level-triggered 
mode and the other is edge-triggered mode. 

Level-triggered mode 

In level-triggered mode, the 8259 will recognize a high on the IRQ input as 
an interrupt request. The request on the IRQ line must remain high until the first 
INTA is acknowledge from the 8259. It is only then that the high must be removed 
from the IRQ input immediately. If the IRQ input remains high after the end-of-in­
terrupt (EOI) command has been issued, the 8259 will generate another interrupt on 
the same IRQ input. Therefore, to avoid multiple interrupt generation, the IRQ input 
must be brought low before the EO! is issued 

Edge-triggered mode 

In edge-triggered mode, the 8259 will recognize an interrupt request only 
when a low-to-high pulse is applied to an IRQ input. This means that after the 
low-to-high transition on the IRQ input, the 8259 will acknowledge the interrupt 

SECTION 14.5: INTERRUPTS ON 80286 AND HIGHER 80x86 PCs 441 



442 

request by activating INTA and the high-level input will not generate further 
interrupts even after the EO! is issued. Therefore, the designer does not need to 
worry about quickly removing the high to avoid generating multiple interrupts, as 
is the case for level-triggered mode. This is due to the fact that in edge-triggered 
mode, before another interrupt can be requested, the IRQ input must be brought 
back to low. Notice in both edge- and level-triggered modes that the IRQ must stay 
high until after the falling edge of the first INTA pulse in order to acknowledge the 
interrupt request. It is interesting to note the role of the IRR (interrupt request 
register) of the 8259. In level-triggered mode, the IRR latch is always ready to 
recognize a high on the IRQ as a request for interrupt. But in edge-triggered mode, 
the IRR latch is disabled after the request is acknowledged and will not latch another 
interrupt until that IRQ input goes back to low. The disadvantage of edge-triggered 
mode is the problem of false interrupt caused by a good-sized spike as a result of 
noise on the IRQ line, especially in high-speed systems. This, plus the concept of 
interrupt sharing, is discussed next. 

Interrupt sharing in the x86 PC 

In the design of the IBM PCI AT, each IRQ is assigned to a single device 
only and no two devices can use the same IRQ line to get the attention of the cpu. 
This limitation has caused some headaches in recent years due to the fact that we 
are running out of IRQs available to new peripheral devices. Another source of 
problems is the edge-triggered IRQ. Since the PC AT IRQs are positive edge-trig­
gered, they are susceptible to false interrupts as a result of noise (spike) on the IRQ 
input. This problem has led the designers of new bus systems such as EISA and 
Micro Channel to change the IRQ from edge triggering to level triggering. In both 
EISA and Micro Channel buses, the interrupts are level triggered and each IRQ can 
be shared among two or more devices. The interrupt sharing in these buses in concept 
is similar to NMI sharing discussed in Section 14.4. As we saw in Section 14.4, the 
NMI can be activated by several different sources, but it is thc job of BIOS to detect 
who the source is and respond to that source only. In the same way, BIOS of EISA 
and Micro Channel PCs are equipped to detect the source of IRQ activation if an 
IRQ is shared among several devices. For further discussion of these buses, see 
Chapter 27. 

Review Questions 

1. True or false. Cascading 8259s refers to a scheme of connecting multiple slave 
8259s to a single master 8259. 

2. True or false. In cascading the 8259, we must program all 8259s for ICW3. 
3. True or false. There is no difference between ICWI of the master and slave 8259 of 

the PC AT. 
4. What port addresses are assigned to the slave 8259 in the PC AT? 
5. Indicate the port addresses used by the ICWs of the slave 8259 in the PC AT. 
6. What port addresses are used by the OCWs of the slave 8259 in the PC AT? 
7. IfICW2, ICW3, ICW4 all go into the same port address, how does the 8259 avoid 

getting confused? 
8. Since ICWI and OCW2 share the same port address on the 8259, how does it distin­

guish between them? 
9. IfOCW2 and OCW3 share the same port address, how does the 8259 distinguish be­

tween them? 
10. If a given design has used IRQ2 for some ISR, does this make it incompatible with 

the AT system? 
II. True or false. IRQ 13 is used for math processor error detection in AT machines. 
12. If any of IRQ8 - IRQ 15 is activated, an EO! must be issued to both 8259s. Why? 
13. Which has the higher priority, IRQ 10 or IRQ?? 
14. What port addresses are used to issue the EO! to the slave 8259? 
15. With 286 and later processors, an invalid instruction causes an exception. Which 

interrupt is assigned to it by Intel? 

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



SUMMARY 

This chapter began with a look at the interrupt vector table, which is used 
to store the CS:IP of the interrupt service routine that services the interrupt. The 
differences between INT and CALL instructions were outlined and the two major 
categories of interrupts, hardware and software, were explored. We also described 
how the IBM PC executes interrupts. Next we looked at the assignment of interrupts 
by BIOS and DOS. Then the 8259 programmable interrupt controller chip was 
examined in terms of its pin layout, control word programming, and priority 
handling. How the 8259 is interfaced into the IBM PC was covered, as well as 
addressing and programming specific control words. The various sources of hard­
ware interrupts, both maskable and nonmaskable, were discussed. Finally, use of 
8259 chips in 80286 and higher microprocessors was discussed. 

PROBLEMS 

SECTION 14.1: 8088/86lNTERRUPTS 

1. Assume that the 8088/86 is executing an instruction with 17 clock counts. Mean­
while, the lNTR pin is activated. Does the CPU finish the current instruction be­
fore it responds to lNTR? How does the CPU resume from where it left off? 

2. Give the logical and physical addresses in the interrupt vector table associated with 
each of the following interrupts. 
(a) lNT 5 (b) lNT 21H 

3. What does ISR stand for, and what is it? Give another name for ISR. 
4. Where is the address of each ISR kept? 
5. Compare the number of bytes of stack memory used by each of the following. 

(a) CALL FAR (b) interrupt activation 
6. Vector table addresses 003F8H - 003FB belong to which interrupt? 
7. Give the logical and physical addresses used by the interrupt vector table. 
8. How many bytes are used by the interrupt vector table, and why? 
9. Why should we not use the first lK of address space in 8088/86-based systems? 
10. Indicate the interrupt(s) set aside for exception handling in the 8088/86. 
11. Give the interrupt number (type) assigned to each of the following. 

(a) divide error (b) single step (c) NMI 
12. True or false. When an interrupt through lNTR is executed, IF = 0 and TF = O. 
13. True or false. CLI blocks both INTR and NMI. 
14. Show how to set TF to high. 
15. Show how to set IF to each of the following. 

(a) low (b) high 
16. True or false. Instruction lNTO is executed only if the overflow flag is high (OF 

=1). 
17. The last instruction in the ISR is , whereas the last instruction in a 

FAR subroutine is --;--c---

18. What is the difference between RETF and IRET in terms of stack activity? 
19. Show the stack frame where CS, IP, and FR are stored for both an interrupt and a 

CALL FAR routine. Assume that SP = FFEOH. 
20. In which of the following sequences are the stack contents popped off by lRET? 

(a) IP, FR, CS (b) FR, IP, CS (c) FR, CS, IP (d) none of the above 

SECTION 14.2: IBM PC AND MS DOS ASSIGNMENT OF lNTERRUPTS 

21. Answer the following questions, assuming that vector table locations 0000:001 C 
to 0000:001 F have the contents indicated below. 
0000:0010 ............................ -............. 47 FF 00 FO 
(a) Which interrupt does this belong to? 
(b) What is the logical address and physical address of the ISR? 

SUMMARY 443 



444 

22. In Problem 21, does BIOS or DOS provide the service? 
23. INT 12H provides the size of which of the following memories? 

(a) high memory area (b) extended memory 
(c) conventional memory (d) expansion memory installed in the expansion slot 

24. If the start of an ISR is located in BIOS ROM at FFE6EH, what are the values of 
CS and IP in the vector table? 

25. In Problem 24, if the ISR belongs to INT lCH, show the exact contents of the vec­
tor table. 

26. In what BIOS data area location is the size of conventional memory stored? 

SECTION 14.3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 

Note: These problems are not necessarily IBM PC compatible. 

27. True or false. In the 8259, to program ICWl, we must have AO =1 and CS =0. 
28. For the 8259, indicate which of the following is input and which is output. 

(a) IRO - IR7 (b) INT (c) INTA 
(d) AO (e) CS (f) RD 

29. Find the addresses for each ICW of the 8259 ifCS is activated by A7 - Al =lOOI 
OlO. 

30. Find the ICWI and ICW2 if the 8259 is used with an 8088/86, single, edge trigger­
ing, no ICW 4, and IRO is assigned INT 88H. 

31. Show the programming of ICWO and ICW2 in Problem 30. Use the port addresses 
of Problem 29. 

32. Which of the following interrupts cannot be assigned to IRO of the 8259, and why? 
(a) 99H (b) 98H (c) CCH 
(d) 22H (e) lOH (f) F8H 

33. Find the INT type number assigned to IRO and IR7 if IR3 is assigned INT IBH. 
34. Find the INT number assigned to IRO, IR4, and IR6 ifIR2 is assigned INT 32H. 
35. Which of the OCWs is used to mask a given IR of the 8259? 
36. EO! is issued by which of the OCWs? 
37. What is the default mode for the prioritization ofIRO to IR 7? 
38. Find the port addresses assigned to each of the OCWs in Problem 29. 
39. Show the program to enable IR2 and IR4 and mask the rest of the IRs. Use the port 

addresses in Problem 38. 
40. OCW2, OCW3, and ICWI go to the same port address in the 8259 when AO =0 

and CS = O. How does the 8259 distinguish between them? How does it distin­
guish between OCW2 and OCW3 since both go to the same port address? 

SECTION 14.4: USE OF THE 8259 CHIP IN THE IBM PCIXT 

41. Why is signal AEN used in accessing the 8259 in the PC? 
42. The PCIXT uses the 8259 in (single, cascade) mode. 
43. Indicate the IRQs level of triggering in the IBM PC (edge-, level-triggered). 
44. What interrupt numbers are assigned to the 8259 in the PCIXT? 
45. What port addresses are assigned to the 8259 in the PCIXT? 
46. True or false. IRQO and IRQ I are used by the system board and are not available. 
47. Which of the IRQs of the 8259 are available on the expansion slot? 
48. Indicate on which side, A or B, of the expansion slot IRQs are located. 
49. What is the binary and hex value for the EO!, and to which port is it issued in the 

IBM PC? 
50. Which IRQ has the highest priority, and why? 
51. True or false. The 8288 chip issues two INTAs to the 8259 when INTR of the 8088 

is activated. 
52. True or false. In the PCIXT, there is more than one source ofNMI activation. 
53. In the PCIXT, can NMI be blocked? If yes, how? 
54. True or false. In the PCIXT, the parity bit error from both memory of the system 

board and the memory board ofthe expansion slot can activate NMI. 

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



SECTION 14.5: INTERRUPTS ON 80286 AND HIGHER 80x86 PCs 

55. True or false. In the 80x86 PC, INTR ofthe 80x86 comes from the primary (mas-
ter) 8259 chip. 

56. True or false. INTA from the 80x86 goes to both 8259 chips in the 80x86 PC. 
57. In the 80x86, what port addresses are assigned to the 8259s? 
58. In the 80x86 PC, what interrupt numbers are assigned to the second 8259 chip? 
59. What IRQs are available on the AT expansion slot? 
60. Why is there no IRQ2 on the AT expansion slot? Is there any replacement for it? 
61. Discuss the issuing of EO! for the IRQs of the primary and secondary 8259 with 

specific answers for the following. 
(a) Give the port addresses it is issued to. 
(b) Explain in what cases it must be issued to both 8259s. 

62. True or false. With every generation of the 80x86, more exception interrupts are 
added but they are downward compatible. 

63. True or false. The !NT instruction and the exception interrupt have a lower priority 
than NMI. 

64. True or false. The NMI has a higher priority than !NTR. 
65. IfNMI, IRQIO, and IRQ6 are all activated at the same time, explain the sequence 

when the system responds and executes them. 
66. IfIRQ3, IRQ7, and IRQI5 are all activated at the same time, in what order are 

they serviced? What impact does issuing EOI have on servicing them? 
67. The failure to issue EO! at the end of the ISR blocks the servicing OfIRQs with 

~--;-~c.-~ (lower, higher) priority. 
68. Explain the implications if the STI instruction is the first instruction of an ISR. 
69. Explain the implications if there is no STI instruction in an [SR. 
70. Which chip takes care of the priority ofthe various IRQs, the 80x86 or the 8259? 
71. True or false. STI and CLI have no impact on the !NT instruction, exception, and 

NMI. 
72. What is the activation level for the IRQs in thc IBM PC as set by BIOS? 
73. Of IRQ I 0 and IRQ4, which has the higher priority, and why? 
74. Give the advantages oflevel-triggered interrupts. 
75. Discuss interrupt sharing and state which PC buses are equipped with that. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 14.1: 8088/86 INTERRUPTS 
1. true 
2. 4 
3. 1 K bytes beginning at 00000 and ending at 003FFH 
4. interrupt service routine (ISR) or interrupt handler 
5. to hold the CS:IP of each ISR 
6. 00040H, 41H. 42H, and 43H 
7. No; it is internally embedded into the CPU. 
8. INTO 

SECTION 14.2: IBM PC AND MS DOS ASSIGNMENT OF INTERRUPTS 
1. FOOO:F065, CS = FOOO and IP = F065 
2. INT 10H is assigned memory locations 00040H, 41 H, 42H, and 43H in the interrupt vector table. That means 

that we have 00040 = (65), 00041 = (FO), 00042 = (00), and 00043 = (FO). 
3. The dash (-) tells us this is the 8th boundary; therefore, the 0000:0038 address in interrupt vector table 

belongs to INT 14 (OE hex). 
4. The logical address is FOOO:EF57; therefore, CS = FOOO and IP = EF57. 
5. The calculation shows that it is 510K bytes. This means that the other 2K bytes are used by the 

extended BIOS data area and are not available to the user's application programs. 
6. IRET 

ANSWERS TO REVIEW QUESTIONS 445 



SECTION 14.3: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 
1. 8 
2. output, input 
3. true 
4. CS = 0 and AO = 0 
5. false 
6. The bit D1 in ICW1 indicates if it is for single or cascade. If cascade, it expects to receive all ICWs, 

from 1 to 4, but if it is single, it does not expect ICW3. 
7. true 
8. true 
9. IRO 
10. Higher-priority interrupts IRO, IR1, IR2, IR3, IR4 can come in, but IR6 and IR7 are blocked since they have 

lower priority. 

SECTION 14.4: USE OF THE 8259 CHIP IN THE IBM PCIXT 
1. true 
2. 20H and 21 H 
3. edge 
4. INT 08 to INT OFH 
5. true 
6. IRQ2 through IRQ7 
7. false 
8. true 

SECTION 14.5: INTERRUPTS ON 80286 AND HIGHER 80x86 PCs 
1. true 
2. true 
3. true 
4. AOH and A1H 
5. ICW1 uses AOH while ICW2, ICW3, and ICW4 use A1H. 
6. OCW1 uses A 1 H while OCW2 and OCW3 use AOH. 
7. ICW1 sets the stage for the sequence of ICW2, ICW3, and ICW4. After the ICW2 is sent in, ICW3 must be 

sent in (if cascaded) and then ICW4. If single, ICW3 is bypassed, and if no ICW4 is needed in ICW1, that leaves 
only ICW2 using the port. 

8. Notice that D4 in ICW1 is 1, while it is 0 in OCW2. 
9. Notice that D3 and D4 differ in OCW2 and OCW3. 
10. No, since in place of IRQ2, IRQ9 is activated and then it is redirected to IRQ2 by BIOS. 
11. true 
12. The EOI must be sent to the slave 8259 since it originates the interrupt request but also to the master 8259 

since the slave sends the request through IRQ2 of the master. 
13. IRQ10 
14. The EOI is an OCW2; therefore, it must go to port address AOH. 
15. INT06 

446 CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 



CHAPTER 15 

DIRECT MEMORY ACCESSING; 
THE 8237 DMA CHIP 

447 



For a computer to work efficiently, there must be a way to transfer a large 
amount of data in a short amount of time. In the IBM PC, this is accomplished with 
the help of what is called direct memory access (DMA), and that is the subject of 
this chapter. In Section 15.1, the concept of OM A is explained. In Section 15.2, the 
Intel 8237 DMA chip is described. The third section studies the 8237's connection 
to the 8088/86 CPU in the IBM PC/XT. Section 15.4 shows an example of the use 
of DMA in refreshing DRAM memory. Finally in Section 15.5, the DMA for 
80x86-based PC AT-type computers is discussed. 

SECTION 15.1: CONCEPT OF DMA 

448 

In computers there is often a need to transfer a large number of bytes of data 
between memory and peripherals such as disk drives. In such cases, using the 
microprocessor to transfer the data is too slow since the data first must be fetched 
into the CPU and then sent to its destination. In addition, the process of fetching and 
decoding the instructions themselves adds to the overhead. For this reason, Intel 
created the 8237 DMAC (direct memory access controller) chip, whose function is 
to bypass the CPU and provide a direct connection between peripherals and memory, 
thus transferring the data as fast as possible. While the 8237 can transfer a byte of 
data between an 110 peripheral and memory in only 4 clocks, the 8088 would take 
39 clocks: 

BACK: MOV 
OUT 
INC 
LOOP 

AL,[SI] 
PORT,AL 
SI 
BACK 

;total clocks 

Number of Clocks 
10 
10 
2 

17 
39 

One problem with using DMA is that there is only one set of buses (one set 
of each bus: data bus, address bus, control bus) in a given computer and no bus can 
serve two masters at the same time. The buses can be used either by the main CPU 
80x86 or the 8237 DMA. Since the 80x86 has primary control over the buses, it 
must give permission to DMA to use them. How is this done? The answer is that 
any time the DMA needs to use the buses to transfer data, it sends a signal called 
HOLD to the CPU and the CPU will respond by sending back the signal HLDA 
(hold acknowledge) to indicate to the DMA that it can go ahead and use the buses. 
While the DMA is using the buses to transfer data, the CPU is sitting idle, and 
conversely, when the CPU is using the bus, the DMA is sitting idle. After DMA 
finishes its job it will make HOLD go low and then the CPU will regain control over 
the buses. See Figure IS-I. 

For example, if the DMA is to transfer a block of data from memory to an 
I/O device such as a disk, it must know the address of the beginning of the block 
(address of first byte of data) and the number of bytes (count) it needs to transfer. 
Then it will go through the following steps. 

I. The peripheral device (such as the disk controller) will request the service ofDMA 
by pulling DREQ (DMA request) high. 

2. The DMA will put a high on its HRQ (hold request), signaling the CPU through its 
HOLD pin that it needs to use the buses. 

3. The CPU will finish the present bus cycle and respond to the DMArequest by putting 
high on its HLDA (hold acknowledge), thus telling the 8237 DMA that it can go 
ahead and use the buses to perform its task. HOLD must remain active high as long 
as 0 MA is performing its task. 

4. DMA will activate DACK (DMA acknowledge) which tells the peripheral device 
that it will start to transfer the data. 

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



CPU 

5. DMA starts to transfer the data from memory to peripheral by putting the address 
of the first byte of the block on the address bus and activating MEMR, thereby 
reading the byte from memory into the data bus; it then activates lOW to write it to 
the peripheral. Then DMA decrements the counter and increments the address 
pointer and repeats this process until the count reaches zero and the task is finished. 

6. After the DMA has finished its job it will deactivate HRQ, signaling the CPU that 
it can regain control over its buses. 

This above discussion indicates that DMA can only transfer information; 
unlike the CPU, it cannot decode and execute instructions. Notice also that when 
the CPU receives a HOLD request from DMA, it finishes the present bus cycle (but 
not necessarily the present instruction) before it hands over control of the buses to 
the DMA. This is in contrast to a hardware interrupt, in which the CPU finishes the 
present instruction before it responds with INTA. One could look at the DMA as a 
kind of CPU without the instruction decoder/executer logic circuitry. For the DMA 
to be able to transfer data it is equipped with the address bus, data bus, and control 
bus signals lOR, lOW, MEMR, and MEMW. 

Data Bus 
v 

DREQ 

I II< I 
HRQ Disk 

DMA DACK Memory 
Controller 

HLDA 
, 
--

~ 
Address Bus 

Control Bus (lOR, lOW, MEMR, MEMW) 

Figure 15-1. DMA Usage of System Bus 

Review Questions 

I. True or false. When the DMA is working, the CPU is sitting idle. 
2. True or false. When the CPU is working, the DMA is sitting idle. 
3. True or false. No bus can serve two masters at the same time. 
4. True or false. The main CPU (SOx86) has control over all the system buses. 
5. To get control over the system bus the (INTR, HOLD) pin of the SOxS6 is 

activated. 
6. The SOxS6 CPU informs the peripheral that it relinquishes control over the system 

bus through its pin. 
7. The HOLD is an (input, output) for the SOxS6 cpu. 
S. The HLDA is an (input, output) for the SOxS6 CPU. 

SECTION 15.1: CONCEPTOFDMA 449 



SECTION 15.2: 8237 DMA CHIP PROGRAMMING 

The Intel 8237 DMA controller is a 40·pin chip. It has four channels for 
transferring data, and each must be used for one device. For example, one is used 
for the floppy disk, one for the hard disk, and so on. Of course, only one device can 
use the DMA to transfer data at a given time. With every channel there are 2 
associated signals, DREQ (DMArequest) and DACK (DMA acknowledge). DREQ 
is an input to DMA coming from the peripheral device (such as the hard disk 
controller) and DACK is an output signal from the 8237 going to the peripheral 
device. From the 8237 DMA, there is only one HOLD and one HLDA that are 
connected to HOLD and HLDA of the 80x86. This means that four channels from 
four different devices can request use of the system buses, but DMA decides who 
gets control based on the way its priority register has been programmed. Every 
channel of the 8237 DMAmust be initialized separately for the address of the data 
block and the count (the size of the block) before it can be used. This initialization 
involves writing into each channel: 

I. The address of the first byte of the block of data that must be transferred (called the 
base address). 

2. The number of bytes to be transferred (called the word count). 

After initialization, each channel can be enabled and controlled with the use 
of a control word. There are many modes of operation and these various modes and 
options must be programmed into the 8237's internal registers. To access these 
registers, the 8237 provides 4 address pins, AD - A3, along with the CS (chip select) 
pin. Since each channel needs separate addresses for the base address and the word 
count, a total of 8 ports is set aside for those alone. Table 15-la shows the internal 
addresses of the 8237 registers for each channel. Example 15-1 shows how these 
addresses are generated. 

Example 15-1 

Find the port addresses for the base address and word count of each channel of the 8237 for Figure 
\5-2 (CS is activated by A7 - A4 =\00\ binary). 

Solution: 

From Table 15-la, one can get the addresses found in Table 15-2. 

8237 

AO ..., AO :: A1 ~ A1 
A2 

, 
A2 ::: 

J\ 
A3 / A3 

A4 
A5 ~ P r -

CS 
A6 ~LJ A7 

Figure 15-2. Diagram for Example 15-1 

450 CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



Table 15-1a: 82371~ernaI Addresses for Writing Transfer Addresses and Counts 

~~H- :Register . RIW CS lOR lOW A3_A2 Al AO 

__ --1FritL_.~-O---1 ~_O ° -,O,--,,-O __ ~ ° Base and current address ------ - - ---

I Currentadcire.".s"'s _____ _ iRead 10 0 I ° OLL_Ji 
, 

il---- I Base and current word count 

.:-C::urrent word count 

u :Write -10 I ° 0 0 0 u L ____ ~ 

Read ___ --&_O I ° ° ° 
,Base and current ... a ... d,.-d,,-re,--s---.s __ _ WritelO _I ° ° ° 

, __ ._ c Cll.rr~nt .aocldr~____ 1 Read -,-,0,--",-0_-,1_-,0,,- ° 
,~-. ,13ase ami current word coullt I Write 10 ° ° ° 

I 

I 

° 
° I 

Current word c"'o"'u"n .... t _____ ,R,e"'a"d"---__ -+I 0 ° _ L --,,-0 ---,O,---,,---,I~-~i 

2 ,Base and current add ... re ... s""s _____ -+"Write ___ -" O~~I_~O~ ° I ° ° 
If-__ ~~urrent address __ .. I Read 10 ° ---'-I--"O'----I'---"O--'~'- i! 

l_ Base and current word count I Write ,lo~~I-~O--'O'-----I- ° .... ___ ~ 
: __ -t-Current word count "R""ea""d"---__ -J.I"-O ° I ° I ° I 

3 __ JBase and current address i Write jO __ ~I"----,O"----,,O ___ I_ I 0 'j,'1 
I Current address I Read __ ",10,--",-0_-,1_ ° -,I~-,-I--,O,--__ _ 

Base and c\IITentw=or .. d __ c ... o"'u"n .... t ___ --+I ..... Wr!!e _____ ".--.O ___ 1 _ ° ° I I I I 

,Current word count _ i Read 1o ° I ° I II 
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1983) 

Table 15-1b: 8237 Internal Addresses for Commands/Status 

A3 _ [ A2 AI. _ AO I lOR lOW I Opera~ion 
_--,,-o_~-,o"---+- 0_ , ° ---l_-'I~_lI ... R-..e:..ad"-stl!tu,.,s-'re""g,.i"'st'""er'--__ _ ----

i---"--C--O,,--- 0J_ ° I ° Write_ command register I 

I ° ° I ° I I Illegal 
I_-i---"O_-l----"-O_-'---"-I_+_ I ° I Write reque"s __ t ... re'"'g,..is-..te .... r~ __ _ 

,J- O---r--I,---+---,O,---+-~O~ -I, _1_+' I"ll",eb'a",I __ 

I,-' ___ I_+- ° I ° I I ° Write sin Ie J1lask register bit 
J. 

t' ~I~+-~O,--+- I I ° I -,-"Ill",eb'ga",I __ _ 

.-_. I _--"O--l----'...I _1,-__ 1__ I --,,-I _-l----"-O_+I W"-,,f1=' te, mode register 

I ° ° ~_ ° -+~I~-+II=ll=eg=a~l ____ _ 

C'-I _1'--_11--_-,-1 O_+-_O"----L_-'----L_-"-O ._1 Clear byte pointer-,Ofl"'ipt'---'cfl"'o"'p____ .1", 

I I ° -+-~I~-+---,O,---+-~"-. _ ~Read temporary register 
I 'I 1 ° 1 1 ° Master clear 

I Ii 

'~ J-:I :: =:=~:~··_t-,-: -~:--~t-I-.-_ =: -11~:~;""k reg_is_te_r-____ -_-~-n-=~II'11 
J " 1 '1 1 1 I ° Write all mask register bits " 
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1983) 

SECTION 15.2: 8237 DMA CHIP PROGRAMMING 451 



Table 15-2: 8237 A Address Selection for Example 15-1 
-~~-~=----------- --- ---------

Binary Address .Hex Read! 

A7 A6 AS A4 A3A2AIAO 'Address Function Write 

I 0 0 I 0 0 0 0 .90 .<::HANO memory address register ..:..RiW 
, 

I I 0 0 I 
IC-'---- . '0 , 0 0 I 91 ... CHANO count n:gister . RlW 
I, I 
!f 

"1 Ii 

III 
II 

III 
I 

0 0 
1
0 

0 0 I 
1

0 

0 0 I 
1

0 

0 0 10 

0 0 I 
1

0 

0 0 I 10 

.. _-------

0 I 0 92 CHANIll1~mory address regist~_1YW 

0 I 93 I CHAN I count regi~t~r RlW 

0 0 94 i CHAN2 memory address register RlW 
--_.--' 

I 0 I 195 
! . 

I CHAN2 count register RIW 

I 0 
1

96 1 CHAN3 memory address register RIW 

I I I 197 I CHAN3 count register 'RIW L -' 

The two sets of information needed in order to program a channel of the 
8237 DMA to transfer data are (1) the address of the first byte of data to be 
transferred, and (2) how many bytes of data are to be transferred. 

For set 1, the channel's memory address register must be programmed. 
Since the memory address register ofthe 8237 is 16 bits and the data bus of the 8237 
is 8 bits, one byte at a time, right after each other, is sent in to the same port address. 
For set 2, the channel's count register is programmed. The count can go as high as 
FFFFH. Since the count register is 16 bits and the data bus of the DMA is only 8 
bits, it takes two consecutive writes to program that register. This is shown in 
Example 15-2. 

Example 15-2 

Assume that channel 2 of the DMA in Example 15-1 is to transfer a 2K (2048) byte block of data 
from memory locations starting at 53400H. Use the port addresses of Example 15-1 for the DMA to 
program the memory address register and count register of channel 2. 

Solution: 

The port address for the channel 2 memory address register and count register in Example 15-1 are 
94H and 95H, respectively. The initialization will look as follows: 

MOV 
OUT 
MOV 
OUT 
MOV 
OUT 
MOV 
OUT 

AX,3400H 
94H,AL 
AL,AH 
94H,AL 
AX,2048 
95H,AL 
AL,AH 
95H,AL 

;load lower 4 digits of start address 
;send out the low byte of the address 

;send out the high byte of the address 
;load block size into AX 
;send out the low byte of the count 

;send out the high byte of the count 

The contents of the memory address and count registers can be read in the same manner (low byte 
first, then high byte) to monitor these registers at any time. From looking at the above program one 
might ask, since the system address bus is 20 bits and the memory address is 53400H, why does this 
program use 16-bit addresses? This is a limitation ofthe 8237 DMA. In the 8237, not only is the regis­
ter holding the address of the block 16 bits, but in addition there are only 16 address pins that carry 
the addresses. The IBM PC solves this problem by using an external 4-bit register to hold the upper 
bits of the address in 1M memory range. How to do that is discussed in Section 15.3. 

452 CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



ExamDle 15-3 

8237's internal control registers 

Although the 8237 has four channels and each channel must be programmed 
separately for the base address and count, there is only one set of control/command 
registers used by all channels. These registers are shown in Table 15-la. To under­
stand how to access those registers, look at Example 15-3. 

Of these 8 registers, only the most essential ones will be explained in detail 
here. The reader can refer to Intel manuals for information concerning others. The 
functions of 8237 pins are described in Section 15.4 in the context of some real-life 
designs, such as the IBM PCIXT. 

Use the circuit in Example 15-1 to find the address of the 8237 DMA control registers. 

Solution: 

Using Table 15-lb and substituting for A7 - A3 gives the information in Table 15-3. 

!able 15-3: :Address Selection for Example 1-;;;5~-3~~~ ~~~~~c~~~~~~ .~~~~ 
I' 

I Binary Address~ I Read! 
! 

iA3A2AIAO iHex A7A6A5A4 I Re!!ister Name Write .. 

IL () 0 I 11 0 0 0 198 .... I S tatus/ command register RIW ... -

~I II 0 0 I 199. i Request register :W -----J I 

: I 0 I 0 19A I Single mask register bit . IW 
." 11 0 01 

,I 0 Ql 'I 0 I ... I 19B .1 Mode register IW 
, 

III 0 0 I 11 I 0 0 9C ! Clear byte pomter I W. ~~~_ ~. 
11 0 0 I II 0 I .,"19..,D"---~-l.1 M....,.a",sterc\ear/temporary register i RIW ... jl· 

!~Q.O-,,--,I~~II.~,---1,--,0"-----.jc'19,.,E"- I Clear mask register IW "I', 

11. 0 0 I 11 I I I i9F I Mask register bits Iw d 

Command register 

This is an 8-bit register used for controlling the operation of the 8237 (see 
Figure 15-3). It must be programmed (written into) by the CPU. It is cleared by the 
RESET signal from the CPU or the master clear instruction of the DMA. The 
function of each bit is described below. 

The 8237 is capable of transferring data (I) from a peripheral device to 
memory (reading from disk), (2) from memory to a peripheral device (writing the 
file into disk), or (3) from memory to memory. One example of the use of the 
memory-to-memory option is what is called shadow RAM. In computers such as 
386- and 486-based systems, the access time of ROM is too long. However, the 
system can copy the ROM into a portion of RAM and allow the CPU to access it 
from RAM, which has a much shorter access time than ROM. 

DO gives the option to use only channels 0 and I for transferring a block of 
data from memory to memory. Why the need for two channels? Channel 0 must be 
used for the source and channel I for the destination. Channel 0 reads the byte into 
a temporary register inside the 8237, and then channel I will write it to the 
destination. This is in contrast to I/O-to-memory or memory-to-lIO transfers, in 
which the data is read into the data bus and transferred to the destination, all without 
being saved anywhere temporarily. 

SECTION 15.2: 8237 DMA CHIP PROGRAMMING 453 



Dl is used only when the memory-to-memory option is enabled and can be 
used to disable the memory incrementationldecrementation of channel 0 in order to 
write a fixed value into a block of memory. 

D2 is used to enable or disable DMA. 
D3 gives the option to choose between the normal memory cycle of 4 clock 

pulses and compressed timing of2 clock pulses per memory cycle. There are 4 clock 
pulses per byte after the initial delay, assuming that the high byte address is already 
latched. If every byte oftransfer requires both high-byte and low-byte addresses, an 
extra clock pulse for the address latch is required, which makes the bus cycle 5 clock 
pulses. The same is the case for the compressed option, making it 3 clock ticks per 
bus cycle. 

D4 gives the option of using the four channels on fixed priority or rotating 
priority. If fixed priority is chosen, DREQO has the highest priority and DREQ3 has 
the lowest priority. If more than one DREQ is activated at the same time, it will 
always respond to the one with the highest priority. In rotating mode, DREQO again 
has the highest priority and DREQ3 the lowest, but the system rotates through 
DREQO, DREQI, DREQ2, and DREQ3 in that order, servicing one request from 
each ifpresent. In other words, when DREQO is served it will not be given a chance 
until the rest of the DREQs are given a chance. This prevents monopolization by 
the DREQ with the highest priority. 

D5 allows time for the write signal to be extended for slow devices. 
D6 gives the option of programming the activation level ofDREQ. It can 

be an active-high or active-low signal. 
D7 gives the option of programming the activation level of DACK. It can 

be an active-high or active-low signal. 
The command byte is issued to this re~er through port address X8H, 

where X is the combination provided to activate CS, as shown in Example 15-4. 

Example 15-4 

Program the command register of the 8237 in Example 15-3 for the following options: no memory-to­
memory transfer, normal timing, fixed priority, late write, DREQ and DACK both active high. 

Solution: 
From Figure 15-3, the command byte would be 10000000 =80H and the program is 

MOV AL,80H 
OUT 98H,AL 

;load the command byte into AL 
;issue the command byte to port 98H 

Example 15-5 

Assume that the CPU is doing some very critical processing and that the 8237 DMA should be 
disabled. Use the ports in Example 15-3 to show the program. 

Solution: 
To disable the 8237, send 0000 0100 =04H to the command register as follows: 

454 

MOV AL,04H 
OUT 98H,AL 

Status register 

This is an 8-bit register that can only be read by the CPU through the same 
port address as the command register. This register is often referred to as RO (read 
only) in PC documentation. As mentioned above, the port is X8 hex, where X is for 
CS. It contains various information about the operating state of the four channels. 
The lower four bits, DO - D3, are used to indicate if channels 0 - 3 have reached 

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



I 07 I 06 I 

thelf TC (terminal count). TC is set high when the count register has been decre­
mented to zero. This gives the option to monitor the count register by software. This 
monitoring also can be done by hardware through the EOP pin of the 8237, as we 
will see in the next section. The upper four bits, D4 - D7, of the status register keep 
count of pending DMA requests. This information can be used by the CPU to see 
which channel has a pending DMA request. See Figure 15-4. 

05 I 04 I 03 I 02 I 01 I DO I 
---- ------

,0 = Memory-ta-memory disable 
1 = Memory-la-memory enable 

-

. 
I 0 = Channel 0 address hold disable i 

1 = Channel 0 address hold enable 
1 

Ix = II bit DO = 0 , 

~ 

~--~~-.. ------- ---- ----~ 

'0 = Controller enable 
I 1 = Controller disable 
L •• ___ 

10 = Normal timing I 

1 = Compressed timing I 

Ix= IlbitO= 1 ! 
, 

10 =Fixed priority 
.. 

11 =Rotating priority 

I 0 = Late write sei~~tk,n 
11 = Extended write selection 
!x=llbit3=1 

11-----_· ---------- .. 
o = DREQ sense active high 

L_1 = DREQ sense active low , 
- --------- ---

j 0 = DACK sense active low 

l_~. :~~~~ s~~.se _~~~v~_~~~~_ 

Figure 15-3. 8237 Command Register Format 
(Reprinted by pennission afInte! Corporation, Copyright Intel Corp. 1983) 

I 07 I 06 I 05 I 04 I 03 I 02 I 01 I DO I 
Lr1 =Channel 0 has re~_~~ed TC uJ 

.... --- -
1 1 Channel 1 has reached TC 

1 =Channel 2 has reached TC i 

1 =Channel 3 has reached TC 

1 =Channel 0 request 
... -~ . 

1 =Channel 1 request .J 
1 =Channel 2 request I 

'------- I 

1 -Channel 3 request 
1 

Figure 15-4. 8237 Status Register Format 
(Reprinted by pennissioo of Iote! Corporation, Copyright Inte! Corp. 1983) 

SECTION 15,2: 8237 DMA CHIP PROGRAMMING 455 



I 07 

I 

Mode register 

This register can only be written to by the CPU through port address XBH, 
where X is the address combination for CS activation. Of the 8 bits of the mode 
register, the lower two, DO and Dl, are used for channel selection. The other 6 bits 
are used to select various operation modes to be used for the channel selected by 
bits DO and D 1. D2 and D3 specify data transfer mode. In the write transfer option 
DMA transfers from an 110 device (such as a disk) to memory by activating lOR 
and MEMW. Reading from memory to an 110 is a read transfer and is achieved by 
activating MEMR and lOW. The verify transfer is called pseudo and is like a read 
or write except that it does not generate any control signals, such as lOR, MEMR, 
etc. D4 is used for autoinitialization. If enabled, the memory address register and 
the count register are reloaded with their original values at the end of a DMA data 
transfer (when the count register becomes zero). In this way those registers are 
programmed only once and the original values are saved internally. D5 gives the 
option to increment or decrement the address. D6 and D7 determine the way the 
8237 is used. The options are: 

1. Demand mode, where the transfer of data continues until DREQ is deactivated or 
the terminal count has been reached. This ensures that the DMA can finish the job 
without interruption even though it means monopolization of the system buses by 
DMA for the duration of the transfer of the entire block of data. 

2. Block mode, which is the same as demand mode except that DREQ can be 
deactivated after the DMA cycle starts and the process of data transfer will go on 
until the TC (terminal count) state has been reached. In other words, there is no need 
to keep the DREQ high for the duration of the data transfer. 

3. Single mode, where if DREQ is held active, the DMA transfers one byte of data, 
then allows the 80x86 to gain control of the system bus by deactivating its HRQ for 
one bus cycle. This process goes on alternating access to the system bus between 
the CPU and DMA until the TC has been reached, and then autoinitialization will 
happen if that choice has been made in the control word. This is thc option used in 
all PC, PS, and compatibles since the DMA and CPU alternately share the system 
buses, allowing both to do their job without either monopolizing the buses. 

4. Cascade mode, in which several DMAs can be cascaded to expand the number of 
DREQs to more than 4. This option is used in IBM PC AT and higher computers, 
as we will see in Section 15.5. The 8088 PCIXT uses only one 8237. Example 15-6 
shows the programming of the mode register. 

06 I 05 I 04 I 03 02 I 01 I 00 I 
I I I I I 

_. 

'00::; Channel 0 select 
, 
I 

I i 01 ::; Channel 1 select 

I 

,10::; Channel 2 select 
: 11 ::; Channel 3 select - - ._- - - J 

!OO ~-Verify transfer l : 01 ::; Write transfer 
10 ::; Read transfer 

~ 11 = Illegal 
iXX::; If bits 6 and 7::; 11 -_. 

0::; Autoinitialization disable 
11 ;: Autoinitialization enable i 
I 0 ::; Address increment select 

I 
i 1 ::; Address decrement select 

I 
----- -

I 00 ::; Demand mode select 

J 
01 ::; Single mode select 
10 ::; Block mode select 
11 = Cascade mode select 

Figure 15-5. Mode Register Format 
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1983) 

456 CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



Single mask register 

This register can only be written to by the CPU through port address XA 
hex, where X is for CS. Of the 8 bits of this register, only three are used. DO and Dl 
select the channel. D2 clears or sets the mask bit for that channel. It is through this 
register that the DREQ input of a specific channel can be masked (disabled) or 
unmasked (enabled). For example, if the value 00000101 is written to this register, 
it will mask (block) DREQ I and the DMA will not respond to DREQ of channel I 
when DREQ I is activated. While the command register can be used to disable the 
whole DMA chip, this register allows the programmer to disable or enable a specific 
channel. The only problem is that only one channel can be masked or unmasked at 
a time. To mask or unmask more than one channel, the all mask register is used. 
Figure 15-6 shows the single mask register format. 

I 07 I 06 I 05 I 04 1 03 I 02 I 01 I 00 J 
I I I I I I 

I 00 = Select Channel 0 mask bit 
01 = Select Channel 1 mask bit 

I Don't care I 10 = Select Channel 2 mask bit 
I I 11 = Select Channel 3 mask bit 

1 0 - Clear mask bit 
11 = Set mask bit 

Figure 15-6. 8237 Single Mask Register Format 
(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1983) 

All mask register 

In function, this register is similar to the single mask register except that all 
4 channels can be masked or unmasked with one write operation. For example, if 
000000 lOis written to this register, it will mask the OUT of channel 1 and unmask 
(enable) the other channels. See Figure 15-7. Again this register can only be written 
to by the CPU through the port address XFH, where X is for CS activation. 

I 07 I 06 I 05 I 04 1 03 I 02 I 01 I 00 I 
I I I I 

I 
I Don't care I o = Clear Channel 0 mask bit 

, 1 - Set Channel 0 mask bit 

1 0 = Clear Channel 1 mask bit 
i 1 = Set Channel 1 mask bit 

! 

1 

1 

I 

1 
I 
I 

I 0 = Clear Channel 2 mask bit -] 
! 1 = Set Channel 2 mask bit 

I 0 _ Clear Channel 3 mask bit I 
! 1 = Set Channel 3 mask bit 

~ 

Figure 15-7. 8237 All Mask Register Format 
(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1983) 

SECTION 15.2: 8237 DMA CHIP PROGRAMMING 457 



Example 15-6 

Program the 8237's mode register of Example 15-3 to select channel 2 to transfer from memory to VO 
using autoinitialization, address increment, single-byte transfer. 

Solution: 
From Figure 15-5, with these options, the mode register must have 01011010 =5AH. The port 
address for the command register is 9BH, which results in 

MOV AL,5AH 
OUT 9BH,AL 

Example 15-7 

Program the 8237 of Example 15-3 to enable channel 2. 

Solution: 
From Figure 15-6, the value for the single mask register to enable (unmask) channel 2 is 0000 00010 
=02H and is sent to port 9AH as follows: 

MOV AL,02 
OUT 9AH,AL 

Master clearltemporary register 

This regj.s.ter must only be written to by the CPU through port address XDH, 
where X is for CS activation. The byte sent to this register does not matter since it 
simply clears the status, command, request, and mask registers and forces the DMA 
to the idle cycle. This is the same as activating the hardware RESET ofthe 8237. If 
an attempt is made to read from this register, DMA will provide the last byte of data 
that was transferred during the memory-to-memory transfer. Note that when the 
DMA is doing an VO-to-memory or memory-to-VO transfer, it transfers the data 
directly between these two sections of the computer without bringing it into the 
DMA, but in memory-to-memory transfers it must bring each byte into the DMA 
before it sends it to the destination, since it has to switch the contents of the address 
bus for the source and destination. This is similar to string instruction MOVSB, 
except that it is performed by the DMA instead of the CPU. 

Clear mask register 

This r~ter can be written to by the CPU only through port address XEH, 
where X is for CS. The bit patterns written to it do not matter. Its function is to clear 
the mask bits of all 4 channels, thereby enabling them to accept the DMA request 
through the DREQs. 

Review Questions 

1. How many address bits are used to select a register inside the 8237? 
2. For an 8237, why are addresses XOH to XFH used to access its internal registers? 
3. True or false. To use a channel to transfer data, both the memory address register 

and count register for that channel must be programmed. 
4. State the functions of the memory address register and the count register. 
5. Show instructions to program channel 0 memory address and count registers to 

transfer 4K starting from offset l440H. Use port addresses from Example 15-1. 
6. In the fixed-priority scheme, which channel has the highest priority? 
7. True or false. Programming some control registers is optional (depending on how 

the 8237 is used), but the command register must al~s be programmed. 
8. True or false. The command register is accesse~ CS =0 and A3 - AO =1000. 
9. True or false. The mode register is accessed by CS =0 and A3 - AO = 10 11. 
10. True or false. The level of activation, high or low, for DREQ and DACK of each 

channel can be programmed. 

458 CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PCIXT 

As shown in Figure 
15-8, the 8237 OMA has 8 lOR 40 A7 
addresses, AO - A 7. Four of lOW 2 39 A6 
these, AO - A3, form a bidi- MEMR 3 38 A5 
rectional address bus, send- MEMW 4 37 A4 
ing addresses into the 8237 to +5V 5 36 EOP 
select one of the 16 possible 

READY 6 8 35 A3 registers, assuming that chip 
HlDA 7 34 A2 select is activated. In the IBM 2 

PC, chip select is activated by ADSTB 8 33 Al 

YO of the 74LS138 as shown AEN 9 3 32 AO 

in Figure 15-9. The address HRQ 10 31 Vee 

selection of the registers in- CS 11 7 30 DBO 

side the 8237 is summarized ClK 12 A 29 DBl 

as shown in Table 15-4, as- RESET 13 28 DB2 
suming zero for each x. The DACK2 14 27 DB3 
conditions for A6, A 7, A8, DACK3 15 26 DB4 
A9, and AEN were discussed DREQ3 16 25 DACKO 
in Chapter 12 and will not be DREQ2 17 24 DACKl 
repeated here. From Table DREQl 18 23 DB5 
15-4 it can be seen that port DREQO 19 22 DB6 
addresses 0 to 7 are assigned GND 20 21 DB7 
to the 4 channels, and 08 - OF 
are assigned to the control 

Figure 15-8: 8237 A DMA Pin Layout registers commonly used by 
all the channels. (Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 

1983) 

8237A 

AO AO 
Al A1 
A2 A2 
A3 A3 

LS138 
A5 A YO DMACS 

CS AS B 

~ A7 C 

A8 G2B ~ 
A9 G2A g 

AEN -J>n- G1 D 

Figure 15-9. Chip Selection of the 8237 A in the PC/XT 

8237 and 8088 connections in the IBM PC 

Since the OMA must be capable of transferring data between I/O and 
memory without any interference from the CPU, it must have all the required 
control, data, and address buses. Looking at Figure 15-10, one can see that the 8237 
has its own data bus, 00 - 07. This is a bidirectional bus connected to the system 
bus 00 - 07. It also has all four control buses, lOR, lOW, MEMR, and MEMW. 
However, its address bus, AO - A 7, is only 8 bits. If the 8237 can transfer up to 64K 
bytes of data between I/O and memory, it must have 16 address lines, AO - A15. 
Where are the other 8 address pins, A8 - A15? The answer is that the high byte of 

SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PCIXT 459 



Vee v,, 
Microprocessor 

Interface 

AO·A3 f---7 
DREQ 1 

A4-A7 <C-- DREQ2 
DBO - DB7 f---7 DREQ3 

ADSTB <C--
<C-- DACKO 

AEN 

8237A DACK1 
MEMR <c--O DACK2 

MEMW <C--O ----7 DACK 3 

lOR +---'XJ 
lOW ~ --------1 HRQ 

READY <>----7 HlDA 

RESET o-----? ~ EOP 

ClK <>----7 

the 16-bit address 
changes only once, while 
DO - 07 are used by the 
8237 to send out the up­
per part of the address 
whenever AO - A 7 rolls 
over from FF to 
00. There must be a de­
vice to latch and hold the 
A8 - Al5 part of the ad­
dress from the DO - 07 
data bus. This is the func­
tion of the 74LS373. The 
function of the AOSTB 
(address strobe) is to ac­
tivate the latch whenever 
the 8237 provides the up­
per 8-bit address through 
the data bus. Similar to 
ALE, the AOSTB goes 
high only when DO - 07 
are used to provide the 
upper address, meaning 
that as long as AOSTB 
stays low, DO - 07 are a 
normal data bus. Figure 
15-11 diagrams the 8237 

Figure 15-10. Block Diagram of the 8237A DMA 
(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1983) 

Table 15-4: PC 8237 Internal Register Port Addresses 

r~~nary Address . __ .J Hex 
I : 

I A7 A6 AS A4 i A3 A2 Al AO I Address Function 

Read/ 

Write 

o 0 0 x 0 0 0 000 ,CHANO memo ister RIW I I~~~--~~~~~--~~~~~~~~--~~ .~ 

fQQ 0 x 0 0 0 I .~:-"-O-"-I __ --+"CO'H,""A,-,N,-,-"-O-"c"-oun=t-,r""eg,,.i,,,st,,,,er,--- IRIW j 
~_Jl 0 x,--------+I,,-o ----"'---'----"-_'-" dy_W------i 0 I 0 02 CHANI memory address register. 

I 0 O-,O"----,,x'------l'1 o"----"'----!... 0 I I .,03 CHAN I count register :RIW 
I 

:~ : :: 1° , .~ __ ~Io~~~~ 
I 0 0 04 CHAN2 memory address regjster 

I 0 I 05 CHAN2 count register 
"-'-----.. --I-"J :;"-"--- i 

o 0 ,,-0 --,x"------+I 0,,-----,----, I I 0 .06 CHAN3 memory address_ re ister 'RIW 

'0 0 0 10 X I count register , 

0 0 0 I 0 0 0 108 I Status/command rellister RIW 
! 

x 

I I I '07 ICHAN3 

0 0 0 x I 0 0 I 109 I Reguest register . W i 

i 0 0 0 x I 0 I 0 OA I Single mask rellister bit W .. 

0 0 0 x ' I 0 I I OB 1 Mode register lw. ---

: I I Clear byte pointer 
, 

o 0 0 x I 0 0 OC W f-"----" .. -

, 0 0 0 x I I 0 I 10D I Master clear/temoorarv rellister RIW 

0 0 0 x II I I 0 W , 10E I Clear mask }'~ster 
I! 

0 0 0 i I I I I 10F I Mask register bits .bY.. jI x --

circuit connection. 

460 CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



Example 15-8 

It should be noted that AO - A3 and all control buses are bidirectional, so 
that when programming the 8237 they can be used to communicate with the internal 
registers. As long as the CPU is idle and the DMA is in control transferring data, AO 
- A 7 and all the control buses are unidirectional. 

One last point about AO - AI5 from the 8237 is that the system bus can be 
used by the CPU only when the 8237 is not functioning. This is ensured through the 
AEN signal. This signal was discussed in Chapter 9 and is summarized here. 

AEN 
o 80x86 is in control of the system bus 
1 8237 DMA is in control of the system bus 

If the 8237 DMA is programmed to transfer data from memory locations starting at offset 3450H to 
an I/O device, explain the role of AO - A7, DO - D7, and ADSTB pins of8237 in producing the 16-bit 
addresses AO - A15. 

Solution: 

The upper byte of the address, A8 - A15, is provided through the data bus, DO - D7, and ADSTB goes 
high, making the 74LS373 latch the 34H. The lower part of the address 50 is provided through AO-
A 7. As the addresses are incremented producing 50, 51, 52, and so on, the AO - A 7 are changed in 
every memory cycle until DMA reaches address 34FFH. At this point, AO - A 7 is rolled over and DO -
D7 will provide 35H to the 74LS373 latch. The process continues until the count reaches zero. 

The rest of the pins in Figure 15-10 are described below. 

RESET is the input coming from the RESET of8284. 

CS is from the 74LSI38 decoder, as shown earlier. 

READY input is from the RDYDMA of the wait-state generation circuitry. 
The purpose of this is to extend the memory cycle of the DMA. 

CLK is from the CLK of the 8284 and is equal to the working frequency, 
which is 4.7 MHz (210 ns clock cycle) in the PCIXT. 

HOLD and HLDA are connected to the pins with the same name on the 
80x86 CPU. 

EOP (end of process) is inverted and becomes TC (terminal count). This 
signal is activated whenever the count register of any of the four channels is 
decremented to zero. This signal could be used with the DACK of a specific channel 
to prevent mUltiple DMA requests from that channel at the same time or could be 
used to inform the requesting device that the DMA has finished the job and it should 
deactivate its DREQ. In other words, EOP is a hardware pin indicating that the 
counter has reached zero. Using software one can monitor the count register of each 
channel by reading the status register, as was shown in Section 15.2. 

DREQO and DACKO are the signals for channel 0 and are used for 
refreshing DRAM as explained in Section 15.4. While the DREQ is active high, the 
DACKO is programmed to be active low by BIOS, as shown in Section 15.4. 

DREQI - DREQ3 and DACKI - DACK3 are the signals for channel I to 
channel 3, and are available through the expansion slot. The assignment of these 
channels is discussed next. 

SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PCIXT 461 



RESET 
from decoder ---0 

from ROY to OMA 

OMAclock 

HlOA 

to and from [ 
buffered 

control buses 

from counter 10REQO 
of 8253 Timer 

[ 

OREQl 
from OREQ2 

expansion 
slot OREQ3 

00 -----<t+7-:::l 

from AEN = 1 
buffered OMA in control 
address )., 
A3AO (5 

8237 

RESET 

CS 
ROY 

ClK 

HlOA 

lOR 
lOW 
MEMR 
MEMW 

AO AO 
A3 

A4 

A7 A7 

74lS244 

f+'::-::-:I »--7 HRQ OMA 

Terminal count to exp 

OACKO 

OACKO'i:)---4----7 OACKO BRO 

OACK1D---- OACKl 
OACK2 OACK2 to expansion slots 

OACK30-t-f~ 

07111t~~~A~0~sT~B~J 

00 
00 

G A8 

01 
02 

74lS373 

03 A15 
07 

OE 

00 RA 

01 RB 

02 QO A16 

03 Ql A17 

AO WA Q2 A18 

Al WB Q3 A19 

OMAAEN Read 

Write 
Write OMA page reg 

port 80H 74lS670 

Figure 15-11. The 8237 DMA Circuit Connection in the PC/XT 
(Reprinted by pennission from "IBM Technical Reference" c. 1984 by International Business Machines Corporation) 

462 CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



Channel assignment of the 8237 in the IBM PCIXT 

In the IBM PC/XT, each ofthe four channels of the 8237 is assigned in the 
following fashIOn. 

I. Channel 0 for refreshing DRAM. In the PCI AT and compatibles this practice was 
abandoned. 

2. Channel I is unused, but in many implementations it is used for networks. 
3. Channel 2 usually is used for the floppy disk controller. 
4. Channel 3 normally is used for the hard disk controller. 

Inspecting IBM BIOS shows that 8237 channels I, 2, and 3 have been 
initialized by programming the mode register. The mode register, which must be 
sent to port address OBH, is as follows for channell (from Figure 15-5): 

01,00 = 01 for channel 1 
03,02 = 00 for verify transfer 
04 = 0 autoinitialization disable 
05 = 0 for address increment 
07,06 = 01 for single byte mode 

D7 DO 
0100 0001 = 41 H mode register for channel 1 

For channels 2 and 3, the value for the mode register is the same except that 
DO and D I are changed to 10 and II, respectively. Therefore, channels 2 and 3 have 
mode register values of 42 and 43. The program could look like the following code. 

MOV 
MOV 
OUT 
MOV 
OUT 
MOV 
OUT 

DX,OOOBH 
AL,41H 
DX,AL 
AL,42H 
DX,AL 
AL,43H 
DX,AL 

;Ioad the mode register address 
;chan1 mode reg value. 

;chan2 mode reg value 

;chan3 mode reg value 

The way IBM BIOS does the initialization is slightly more compact: 
E136 B20B 474 MOV DL,OBH ;DX=OOOB 

E142 
E144 
E146 
E146 
E147 
E149 

B103 
B041 

EE 
FECO 
E2FB 

481 
482 
483 C18A: 
484 
485 
486 

MOV CL,3 
MOV AL,41H ;SET MODE FOR CHANNEL 1 

OUT DX,AL 
INC AL ;POINT TO NEXT CHANNEL 
LOOP C18A 

(Reprinted by permission from "IBM BIOS Technical Reference" c. 1984 by Intemational Business Ma­
chines Corp.) 

These channels are programmed by the device that uses them when the 
device is installed. For example, the hard disk controller ROM programs channel 
3 according to its specifications. 

DMA page register 

Since the 8237 can provide only AO - A15, the 74LS670 4x4 file register is 
used to provide the rest of the A 16 - A 19 physical address bits for each of the 4 
channels. See Figure 15-13. These registers can only be written to by the 8086/88 
CPU through the DO - D3 data bus using the OUT instruction. Since the 74LS670 
is a 4x4 register, there are four port locations assigned, one for each of them. As 
discussed in Chapter 12 and shown in Figure 15-12, the 74LSI38 is used to decode 
the addresses. The address calculation of those ports is as follows assuming that x's 
are all zero: 

SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PC/XT 463 



AENA9A8A7A6A5A4A3A2A1AO ~H~ex~ __________ ~~ __ 
o 0 0 1 0 0 x x x 0 0 = 80 4-bit reg (not used PC/Xl) 
o 0 0 1 0 0 x x x 0 1 = 81 4-bit reg for channel 2 
o 0 0 1 0 0 x x x 1 0 = 82 4-bit reg for channel 3 
o 0 0 1 0 0 x x x 1 1 = 83 4-bit reg for channel 1 

Of these four registers (each 4-bit), only three are used since channel 0 is 
used for refreshing DRAMs and does not require the upper 4-bit address (as will be 
seen in the next section). To read from these registers, 8237's DACK must be 
programmed to be active low using the command mode register. Depending on 
which DREQ is active, it can read the contents of its designated register as follows: 

DAGK2 
RB 
1 
1 
o 
o 

DAGK3 
RA 
1 
o 
1 
o 

channel 1 
channel 3 
channel 2 
never happens since DAGK2 and DAGK3 can 
never be active at the same time 

Writing into the DMA page register is done only by the 8088 CPU since 
addresses AO and Al from the CPU are connected to WA and WB, respectively, as 
shown in Figure 15-12. The reading of the page register can happen only when the 
DMA is in control since RA and RB are connected to DACK3 and DACK2 and 
DACK is not activated until the related DREQ is activated. 

LS138 
AS A 
A6 B 
A7 C 

G2B Y4 
A8 
A9 G2A 

AEN G1 

lOW 

74LS670 
DO 
01 
02 
03 

AO 
A1 

DO QO 
01 
02 
03 

WA 
WB 

Read 

,-_qWrlte 

Q1 

Q2 

Q3 

Figure 15-12. DMA File Register Address Decoding (PC/Xl) 

464 

DMA data transfer rate of the PCIXT 

It takes many more clocks to transfer one byte of data between an I/O device 
and memory using the 8088 CPU than using the 8237 DMA chip. What is the data 
transfer rate ofDMAchannels 1,2, and 3? The wait-state circuitry inserts one clock 
into the memory cycle of channels 1 - 3 through the RDYDMA signal. Since the 
DMA on its own requires 5 clock pulses, that gives a total of 6 clock pulses for DMA 
channels 1 - 3. In between each DMA cycle there is one CPU memory cycle, which 
is 4 clock pulses. This gives a total of 10 clock pulses for the transfer of every byte 
of data by channels 1 - 3. Since every clock pulse is 210 ns (114.7 MHz) in the IBM 
PC/XT, it takes lOx 210 ns = 2100 ns for the transfer of one byte of data by the 
DMA. Thus the transfer rate of the 8237 in the IBM PCIXT is 476,190 bytes per 
second (112100 ns = 476,190). This assumes that there is no other device inserting 
a wait state into the memory cycle. Both DMA and the 8088/86 CPU work on the 
same 4.7 MHz frequency, unlike other 80x86 PCs. 

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



Read enable 

RA 
RB 2 x4 decode 

00 / QO 
01 4x4 Q1 
02 

, 
register Q2 / / 

03 / / Q3 

WA ' 
WB / I 2 x 4 decode 

Write enable 

Figure 15-13. Inside the 74LS670 
(Reprinted by permission of Texas Instruments, Copyright Texas Instruments Corporation, 1988) 

Review Questions 

I. What port addresses are assigned to the 8237 in the PCIXT? 
2. What port address is assigned to the command register of the 8237 in the PCIXT? 
3. If the 8237 has only AO - A 7, how is the 16-bit address AO - AI5 provided? 
4. What is the function of ADSTB? Is it an out or in signal pin for the 8237? 
5. The 8237 in the IBM PCIXT is programmed to have channel_ as the highest pri­

ority and channel_ as the lowest priority. 
6. Which IC chip provides the 4-bit address A 16 - A 19 of the memory location ac­

cessed by the DMA? 
7. What port addresses are assigned to the DMA file register? 
8. In the IBM PCIXT, which DMA channels are used internally by the motherboard 

for refreshing DRAM, and which are available through the expansion slot? 
9. In the IBM PCIXT for DMA 8237 channels 1,2, and 3, what is the DMA data-trans­

fer bus cycle? How much time is that if each clock is 210 ns? 
10. Rework Question 9 for channel O. 

SECTION 15.4: REFRESHING DRAM USING CHANNEL 0 OF THE 8237 

Since DREQO has the highest priority in the 8237, the PC designers at IBM 
assigned to it the task of refreshing DRAM. In other words, if the floppy disk and 
the request for the refresh come at the same time, DMA will take care ofthe refresh 
request before answering the disk request for service. Otherwise, DRAM would lose 
its data. At power up, BIOS initializes channel 0 of the 8237 to prepare it for the 
DRAM refreshing task. The following shows the values for the various registers 
and then the programming ofthe 8237 for initialization. 

I. The memory address register is 0000, which does not need to be programmed and 
can use the default value of 0000. 

2. The count register is FFFF for all the 64K locations written to port address 0 I. 
3. The mode register that must be sent to port address OBH is as follows: 

01,00 = 00 for channel 0 
03,02 = 10 for read transfer 
04 = 1 autoinitialization 
05 = 0 for address increment 
07,06 = 01 for single byte mode 

D7 DO 
0101 1000 = 58H 

SECTION 15.4: REFRESHING DRAM USING CHANNEL 0 OF THE 8237 465 



466 

4. The command register that is written to port address 08H is as follows: 

DO = 0 memory-to-memory disable 
01 = x 
02 = 0 OMA controller enable 
03 = 0 normal timing 
04 = 0 fixed priority 
05 = 0 late write 
06 = 0 OREQ active high 
07 = 0 DACK active low 

07 DO 
0000 0000 - DOH 

5. The single mask register bit that goes to port address OAH is as follows: 

01,00 
02 
07,06,05,04,03 

07 DO 
0000 0000 = DOH 

= 00 for channel 0 
= 0 for clear mask bit to allow DREQO to come in 
= xxxxx 

The initialization process is as follows: 

MOV 
OUT 
OUT 
MOV 
OUT 
MOV 
OUT 
MOV 
OUT 

AL,OFFH 
01,AL 
01,AL 
AL,58H 
OBH,AL 
AL,OO 
08,AL 
AL,OO 
OAH,AL 

;count register value 
; to count register of chanD (Low Byte) 
; to count register of chanD (High byte) 
;mode register value 
;write to mode register 
;command register value 
;write to command register 
;single mask register value 
;write to single mask register 

The IBM BIOS version of the same program is: 

........................ 
0008 26 DMA08 EQU 08;DMA STATUS REG PORT ADDR 
0000 27 DMA EQU 00 ;DMA CHAN 0 ADDR REG PORT ADDR 

............................ 
464 ;INITIALIZE AND START DMA FOR MEMORY REFRESH 

..................... .................... 
E12F BOFF 470 MOV AL,OFFH;SET CNT OF 64K FOR RAM REF 
E131 E601 471 OUT DMA+1,AL 
E133 50 472 PUSH AX 
E134 E601 473 OUT DMA+1,AL 
E136 B202 474 MOV DL,OBH ;DX=OOOB 
E138 B058 475 MOV AL,058H ;SET DMA MODE,CHO,READ 

;AUTO INIT 
E13A EE 476 OUT DX,AL ;WRITE DMA MODE REG 
E13B BOOO 477 MOV AL,OO ;ENABLE DMA CONTROLLER 
E13D E608 478 OUT DMA+8,AL ;SETUP DMA COMMAND REG 
E13F 50 479 PUSH AX 
E140 E60A 480 OUT DMA+10,AL ;ENABLE CHAN 0 FOR REFRESf-

............................. 
(Reprinted by permission from "IBM BIOS Technical Reference" c. 1984 by International Business Machines Corp) 

Notice in lines 472 and 479 the "PUSH AX" instruction in between two 
OUT instructions. These PUSH instruction have no software significance except to 
prevent any hardware timing problems associated with two consecutive OUT 
instructions issued to the same peripheral chip. 

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



Refreshing DRAM with the 8237 

DRAM cells must be refreshed at least once every 15.6 microseconds. This 
rule applies to all DRAMs regardless oftheir capacity. Inside DRAMs, the storage 
cells are arranged in a matrix ofrows and columns (always 4 arrays of n by n cells). 
It would be impossible to refresh all the cells one at a time; therefore, refreshing is 
done one row at time. When a row is refreshed, all the columns in that row are 
refreshed at the same time, so there is no need to refresh each column in every row 
individually. Now one might ask, what happens when the density of DRAM goes 
up with every new generation of memory chips? Does it mean that all rows in I M­
and 4M-bit memory chip have to be refreshed? The answer is yes. If the answer is 
yes, doesn't this take up too much time? To avoid taking too much time for 
refreshing, DRAM designers arranged the matrices ofrows and columns in such a 
way that for every 128 rows refreshing needs to be done only once every 2 ms, or 
to put it another way, every cell regardless of the size of the DRAM chip must be 
refreshed once every 15.61ls (2 ms divided by 128). For example, in 64K-bit chips 
refreshing the 128 rows need only be done every 2 ms. In the 256K-bit chips there 
are 256 rows, all of which must be refreshed within 4 ms (4 ms divided by 256 = 
15.6 Ils). The case is the same for 1M bit chips; the 512 rows must be refreshed 
within 8 ms. Again, dividing 8 ms by 512 rows gives 15.61ls per row. This is the 
standard rule in the industry and will remain so for the foreseeable future even 
though the capacity of DRAMs is approaching 64M bits. 

DRAM Number of Number of Minimum Refresh Time 
Ca~acit'L Cell Matrices Rows for All Rows for One Row 
64Kb 4 -- 128x128 128 2ms 15.61ls 
256Kb 4 -- 256x256 256 4ms 15.61ls 
1Mb 4 -- 512x512 512 8 ms 15.6 J.lS 

4Mb 4 -- 1 024xl 024 1024 16 ms 15.61ls 

Refreshing in the IBM PCIXT 

In the IBM PC/XT, DREQO is activated by a special pulse every 15.06 
microseconds to perform the task of refreshing the DRAMs. In Chapter 13 we 
discussed how this pulse is generated by the 8253 timer chip. As seen above, DMA's 
channel 0 is initialized by BIOS for the count of65,536 starting at memory location 
00, incrementing addresses with options ofread transfer, autoinitialization, incre­
ment address, and single-byte mode. The DMA continuously does the read transfer 
cycle by activating MEMR, providing the addresses to the inputs of DRAMs and 
activating RAS, thereby sequentially cycling through all 128 rows as required by 
the DRAMs. In the course of the READ transfer, DMA provides the MEMR and 
lOW control signals, but only MEMR is used to perform refreshing. lOW control 
is unused since no data is available at the DOUT of the DRAMs. Some call this 
reading the data and writing them to a dummy port. It must be made clear that when 
a row is being refreshed by activation of the RAS, every row of every bank of 
memory on the system is being refreshed at the same time. 

DMA cycle of channel 0 

Since channel 0 is used to refresh DRAM, the wait-state circuitry will not 
insert any wait state into its cycle time. This is in order to shorten refreshing time. 
Therefore the 8237's cycle time is its default of 4 clocks for channel O. This gives 
a total of 128 rows x 4 clock cycles x 210 ns = 0.10752 ms for the time to refresh 
DRAMs every 2 ms. Dividing this number by 2 ms (1.93 ms since 128 x 15.09 =1.93 
ms) gives 5%. In other words, only 5% of the time, the CPU cannot access memory 
since DRAM cannot be accessed during refreshing. The method ofrefreshing the 
DRAMs just discussed is commonly referred to as RAS-only refresh and is shown 
in Figure 15-14, along with the partial refresh circuitry of the PC. 

SECTION 15.4: REFRESHING DRAM USING CHANNEL 0 OF THE 8237 467 



:~ ==><_~R~OW~ __ ~><~ ___ _ 
RAS--~ 

,,~---_/ 
CAS = High D, W = Don't care 

for 256K x 1 and 256K x 4 AS is don't care 

RAS to bankO 

RA5 to bank1 

RAS to bank2 

RAS to bank3 

frOm{ -
8237 MEMR 
DMA DACKO ----l--' 

Figure 15-14. RAS' Only Refresh Timing in the IBM PC/XT 

Review Questions 

1. Give the port addresses used by the base address and count registers of channel O. 
2. Who activates the DREQ of channel 0, and how often? 
3. Why is the 8237 programmed to make channel 0 the highest-priority channel? 
4. Each row of the DRAM, regardless of its size, must be refreshed every _.,,---_ 
5. True or false. While the DRAM is being refreshed, the CPU cannot access it. 
6. What is cycle time of channel 0 of the DMA in the PCIXT? 

SECTION 15.5: DMA IN 80x86-BASED PC AT-TYPE COMPUTERS 

468 

In Section 15.4, DMA in 8088-based PCIXT computers was discussed. 
Starting with the PC AT, IBM added an extra 8237 DMA, and clone makers 
followed IBM. In this section we discuss DMA in the 286, 386, 486, and Pentium 
PC, PS, and compatibles. The 8088-based PCIXT had only three DMA channels 
available through the expansion slot. All these channels were designed for 8-bit data 
transfer. To expand the capability of the PC, designers of the 80286 IBM PC AT 
added the second 8237 and made it a 16-bit data transfer DMA. 

8237DMA#1 

To maintain compatibility with the PC/XT, DREQI, DREQ2, and DREQ3 
ofDMA #1 are available through the expansion slot and are for 8-bit data transfer 
capable of transferring data between 8-bit 1/0 and the 16-MB memory range of the 
PC AT. The ports assigned to DMA#I are exactly the same as in the PC/XT. IBM 
abandoned the idea of refreshing DRAM using DMA channel 0 and instead replaced 
it with DRAM refresher circuitry. This made channel 0 available through the AT 
expansion slot. The signal associated with channel 0 is DREQO and DACKO and is 
accessed though the 36-edge ofthe PC AT bus. The following points must be noted 
regarding channels 0, 1,2, and 3 ofDMA #1 in 80x86 PC AT-type computers. 

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA cmp 



I. Channels 0, I, 2, and 3 can be used only for data transfer between 8-bit I/O and 
system memory. The system memory address can be on an odd-byte or even-byte 
boundary. 

2. Since the count register is a 16-bit register, each of channels 0, I, 2, and 3 can transfer 
up to a 64K byte block of data. 

3. Each channel 0, 1,2, or 3 can transfer data in 64K byte blocks throughout the 16M 
system memory address space. The memory addresses are provided as follows: 

A23 A16 A15 AO 
Provided by the DMA page register Provided by 8237 DMA#1 

In the design of the PC AT and consequently all ISA bus computers, different 
port addresses are assigned to the DMA page registers of channels 0 - 4 than in the 
PC/XT. This is shown next: 

Page Register 
DMA channel 0 
DMA channel 1 
DMA channel 2 
DMA channel 3 

8237DMA#2 

I/O Port Address (Hex) 
0087 
0083 
0081 
0082 

Table 15-5: 80x86 Second DMA Ports 
...... _--".-==-

I 

Address Register Function 
II (Hex) .. 

The second 8237 DMA 
is connected as master (level I) 
and its channel 0 is used for 
cascading ofDMA#1 as shown 
in Figure IS-IS. The other three 
channels of this DMA are avail­
able through the expansion slot 
(36-edge) under DREQ5 and 
DACK5, DREQ6 and DACK6, 
and DREQ7 and DACK7 desig­
nations. These three channels 
must be used for 16-bit data 
transfer. The port addresses are 
assigned to the 8237 DMA#2, 
as shown in Table 15-5. In this 
address assignment, even ad­
dresses are assigned to the reg­
isters of the 8237 since it is 
connected to DO - D7 of the 
system bus. The HilLo copier 
discussed in Chapter 12 is not 
applicable in this instance since 
it works only when the 80x86 
CPU is accessing the ports and 
in AT-type computers a master 
other than the 80x86 CPU 
motherboard can take over the 
system bus. This is done by the 
AT expansion pin master and is 
available to channels 5, 6, and 7 
only. 

lOCO CHO memory address register I 
, 

OC2 CHO word count register -, 
OC4 .. CHI memory address register i , 
OC6 iCHI word count register ! 

OC8 i CH2 memory address register 

.Q<:::A._. ___ .. __ ICH2 word count register 

OCC. i CH3 memory address register 

iOCE 
I 

ICH3 word count register 

Ii 000 ICommandistatus register , 
i 

1:
002 i Reguest register . -----,----- J 

1
004 I Mask register i 

~ 
I 
I I!P.P6 I Mode regIster 

IlQ.D8_ .. l~lear byte pointer Ii 

il~O=D~A~ ___ +,1 M=aster clea,rregister ._ .. __ ._~I 
'I DOC. m •• Clear mas.k re ister·--·-ll 

. ODE All mask re ister =:=J 

SECTION 15.5: DMA IN 80x86-BASED PC AT-TYPE COMPUTERS 469 



8237 #1 

DRQO ~ 

DACKO , 
DRQO } 36-pln slot 
DACKO 

DRQl I' 
DACKI 

~ 

, 
DRQ2 

80286 8237 #2 DACK2 HLDRQ / 

HLDRQ DRQO I' HOLDA DRQ3 
DACKO DACK3 

DRQl 

J 
DACKI 
DRQ2 
DACK2 62-pin slot 

DRQ3 
DACK3 

HOLDA 
, , 

DRQl , 
DACKI 
DRQ2 , 

DACK2 
DRQ3 , 
DACK3 

,- } DACK5 
DRQ6 
DACK6 36-pln slot 

DRQ7 
DACK7 

Figure 15-15. 80286 (and Higher) PC/AT DMA 

470 

Points to be noted regarding 16-bit DMA channels 

Channels 5, 6, and 7 ofDMA #2 are used exclusively for 16-bit data transfer 
between the 16MB memory address space and 110 peripherals. The following points 
must be noted regarding their use. 

1. Channels 5, 6, and 7 must be used for 16-bit data transfers between 16-bit system 
memory and 16-bit 1/0 adapters. Notice that the 110 must support 16-bit data. 

2. The number of 16-bit (2-byte) words to be transferred is programmed into the count 
register of channels 5, 6, and 7. Since the count register is a 16-bit register, each 
channel can transfer up to 65,536 words or 128K bytes between 110 and memory. 

3. The memory address for a DMA memory transfer must be on an even-byte address 
boundary. 

4. Channels 5, 6, and 7 transfer data in blocks that have a maximum size of 128K bytes 
throughout the 16M system memory. 

5. Since channels 5, 6, and 7 cannot transfer data on an odd-byte boundary, AO and 
BHE are both forced to O. The rest of the addresses are provided as follows: 

A23 A17 A16 AI 

Provided by the OMA page register Provided by 8237 DMA#2 

6. DMA #2 can be accessed (programmed) by another master from the expansion slot 
using the MASTER input signal on the 36-pin part of the ISA bus. 

The following are the port addresses assigned to the DMA page registers of 
both the DMA#I and DMA#2. Notice that channels 0 - 3 page register addresses 
are different than in the PC/XT. 

PC/AT ISA-type Computers 
Page Register 
DMA channel 0 
DMA channel 1 
DMA channel 2 
DMA channel 3 
DMA channel 5 
DMA channel 6 
DMA channel 7 
Refresh 

DMA Page Reg Ports 
1/0 Port Address (Hex) 
0087 
0083 
0081 
0082 
0088 
0089 
008A 
008F 

It must be noted that in the case of channels 5, 6, and 7, only the 7 bits (A23 
- A I 7) of the desired memory address are provided by the DMA page register. These 
7 bits can be programmed into the page register with data bits D7 through D I, and 
as a result, DO is ignored. 

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



DMA channel priority 

The BIOS of the PC AT programs both DMAs to have channel 0 as the 
highest priority. This means that of the 7 DMA channels available through the 
expansion slot of the 80x86 ISA bus PC, channel 0 has the highest priority and 
channel 7 the lowest priority. This is due to the fact that the master DMA (8237 #2) 
has channel 0 as the highest priority and since the slave 8237 #1 is connected to it, 
channels 0 through 3 have higher priority than channels 5, 6, and 7. Therefore, we 
have the following: 

channel 0 
channel 1 
channel 2 
channel 3 
channel 5 
channel 6 
channel 7 

80x86 ISA DMA Channels Priority 
Highest priority 

Lowest priority 

1/0 cycle recovery time 

In the IBM PC/AT and indeed all the ISA bus systems, two back-to-back 
I/O instructions to the same chip are not allowed. The following code is from the 
PC AT technical reference. It shows that instruction "JMP SHORT $+2" must be 
inserted before the second OUT command to the same chip because "MOV AL,AH" 
will not allow enough recovery time for the chip. 

OUT 
JMP 
MOV 
OUT 

10_ADD,AL 
SHORT $+2 
AL,AH 
10_ADD,AL 

;first 110 instruction 
;insert this to allow enough time 
, 
;second 110 instruction 

The JMP is a 2-byte instruction that will empty the 80x86 CPU queue and 
thus will provide enough recovery time for the DMA chip. Now after the above 
explanation, we can examine the PC AT BIOS for the initialization of both 8237s. 

DMA08 EQU 008H ;DMASTATUS REGISTER PORT ADDRESS 
DMA EQU OOOH ;DMA CH 0 ADDRESS REG PORT ADDRESS 
DMA18 EQU ODOH ;2ND DMA STATUS PORT ADDRESS 
DMA1 EQU OCOH ;2ND DMA CH 0 ADDRESS REG ADDRESS 

................................. 

................................. 
MOV AL,40H ;SET MODE FOR CHANNEL 0 
OUT DMA+OBH,AL 
MOV AL,OCOH ;SET CASCADE MODE ON CHANNEL 4 
OUT DMA18+06H,AL 
JMP $+2 ;110 DELAY 
MOV AL,41H ;SET MODE FOR CHANNEL 1 
OUT DMA+OBH,AL 
OUT DMA18+06H,AL ;SET MODE FOR CHANNEL 5 
JMP $+2 ;110 DELAY 
MOV AL,42H ;SET MODE FOR CHANNEL 2 
OUT DMA+OBH,AL 
OUT DMA18+06H,AL ;SET MODE FOR CHANNEL 6 
JMP $+2 ;110 DELAY 
MOV AL,43H ;SET MODE FOR CHANNEL 3 
OUT DMA+OBH,AL 
OUT DMA18+06H,AL ;SET MODE FOR CHANNEL 7 

SECTION 15.5: DMAIN 80x86-BASED PC AT-TYPE COMPUTERS 471 



Example 15-9 

In the PC AT BIOS initialization, verify the following 
(a) port address for the mode register ofDMA#I, (b) port address for the mode register ofDMA#2 
(c) options used for the mode register of channel 0, (d) options used for the mode register of channel 4 

Solution: 

(a) In the instruction "OUT DMA+OBH,AL", since DMA is equated with address 00, the port address 
is OBH, which is compatible with the PC/XT. 

(b) DMAI8 =ODOH; therefore, DMAI8 +06H =OD6H, which is compatible with Table 15-5. 
(c) AL=40H is sent to the mode register of channel 0, which gives the following from Figure 15-4: 

enable verify operation, disable autoinitialization, enable address increment, enable single transfer 
mode. 

(d) For channel 4, since it is used for the cascading of the second 8237, all the options are the same as 
channel 0 (see part c of this example) except that D7 D6= II, making the control word for the 
mode register COH, as shown in the instruction "MOY AL,OCOH". 

DMA transfer rate 

In the 80286 and higher PCs, both the DMAand the CPU clock speeds vary, 
depending on the system. For example, the original PC/AT used 6 MHz for the 80286 
and 3 MHz for the 8237. To calculate the DMA data transfer rate of any 80x86 ISA 
system, we must know the clock speed and the cycle time for both the CPU and 
DMA. Example 15-10 shows such a calculation. 

Example 15-10 
In the 286 PC AT, the 80286 is at 6 MHz and 3MHz for the DMA. The CPU bus cycle uses one wait 
state and the bus cycle for the DMA is 5 clocks. Calculate the DMA data transfer rate if the 
system bus is used alternately by the CPU and DMA. 

Solution: 

For the 80286 with 0 wait states, it uses 2 clocks as was shown in Chapter 11. Now for one WS we 
have 3 x 167 nsec =500 nsec memory bus cycle for the CPU since 116 MHz =167 nsec. For the DMA 

of3 MHz we have 5 x 333 =1665 nsec for the cycle time. Since every CPU cycle is alternated by the 
DMA cycle, we have the bus data transfer rate of 11(500 +1665) ns =451 Kbytes/sec. In this example 
we assumed the CPU cycle is the memory cycle and not an VO instruction cycle, which is normally 
longer. 

Table 15-6 provides the CPU and DMA speed and cycle times for some of 
the IBM PS/2 models. In this table it must be noted that IBM does not use the 8237 
chip since the maximum speed of the 8237 is 5 MHz. Instead, an ASIC (applica­
tion-specific IC) that is completely compatible with the 8237 is used. 

Table 15-6: CPU and DMA Speed and Cycle Time for PS/2 

r- Icpu-sp~ed Cycle Time DMASpeed DMA Cycle Time (ns) . 
Model (MHz) WS (ns) I (MHz) -_. ... -

~-- -- -~----

10 MHz I 1300 ns IIOMHz ._- 300 ns 
i 

60 16 MHz iL ___ 1125 ns --10 MHz -_ .. - 300 ns 

601E 20 MHz 0 100 ns il0MHz 300ns I -

472 CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



Example 15-11 

Calculate the data transfer rate of channels 5, 6, and 7 for the PS/2 model 60, assuming that the DMA 
cycle is alternated with CPU memory access time. 

Solution: 
From Table 15-6, adding the CPU and DMAcyc1e times we have 125 +300 =425 ns. Data transfer 
rate is 2 x (1/425 ns) = 4.7 Mbytes/second. Remember that channels 5, 6, and 7 are 16-bit channels. 

In Figure 15-16, notice how the DMA first reads the data from memory by 
the "MiiE""M~Rii signal and immediately writes the same data into an 110 device such as 
a disk controller, by activating lOW. 

OMA Idle OMA T1 OMAT2 OMAn OMAT4 OMA Idle 

OMAclock 

OREQ ~ 

AEN L 
OACK 

AD < A23 '~----~-----+--~)~I --
MEMR 

lOW 

DO 
015 ~----~------~------~----~k~-'~: ---

set·up hold 

Figure 15-16. DMA Memory Read and 1/0 Write Bus Cycle for Many 286 and Later PCs 

It must be noted that since channels 5, 6, and 7 require that the data be on 
an even-boundary address and MS DOS does not conform to this standard, in the 
PC AT the hard disk does not use a 16-bit DMA channel. Instead, 80x86 string 
instructions are used to transfer between I/O and memory. 

Review Questions 

l. True or false. In the AT-type 80x86 PCs, all channels of the DMA #1 are available 
on the expansion slot. 

2. How many channels of the DMA are available on the AT bus? 
3. Indicate on what part of the AT (62- or 36-pin) bus the channels of the DMA are ac­

cessible. 
4. True or false. The port addresses assigned for DMA#l on the PC AT are the same 

as in the PC/XT. 
5. True or false. All the port addresses for DMA#2 are even port addresses. 
6. True or false. Channels 0 - 4 can access only I M address space of the PC AT, not 

the entire 16M. 
7. The DMA page register for channels 0 - 4 must provide ___ bits of the address. 
8. True or false. In the PC AT, the DMA page register addresses for DMA#I is not 

compatible with the PC/XT. 
9. True or false. Channels 5, 6, and 7 can be used for 8- or 16-bit data transfers. 
10. Why is bus control in the IBM PC, PS, and compatibles alternated between DMA 

and the CPU? 

SECTION 15_5: DMA IN 80x86-BASED PC AT-TYPE COMPUTERS 473 



SUMMARY 

DMA, direct memory access, is a system that accesses memory directly 
without going through the CPU. This chapter began with a look at how bus 
arbitration is achieved between the CPU and DMA by use of control signals DREQ, 
DACK, HRQ, HLDA, and HOLD. DMA is implemented in the PC by use of the 
8237 A DMA chip, which has 4 channels for transferring data, each of which is used 
for a separate device such as a floppy or hard disk. Each channel is programmed 
separately by sending it the base address and word count for the data transfer. The 
8237 contains 8 control registers. In the PCIXT channel 0 is used for refreshing 
DRAM (highest priority), channell is often used for networks, and channe12 is for 
the floppy disk controller. 286 AT and later PCs use two 8237s. The second allows 
16-bit transfers and is accessible through the expansion slot. 

PROBLEMS 

474 

SECTION 15.1: CONCEPT OF DMA 

1. Compare the rate of data transfer between the 8088 CPU and DMA. For DMA, as­
sume that it takes 4 clocks to transfer a byte. How many times faster is DMA? 

2. Calculate the time needed to transfer 512 bytes by the 8088 and by DMA in Prob­
lem 1. Assume 200 ns for each clock period. 

3. Explain the difference between the CPU's response to signals INTR and HOLDR. 
4. For the CPU, HOLDR is an (input, output) signal and HOLDA is an 

;-__ (input, output) signal. 
5. In response to activation of HOLDR, the CPU finishes the current be-

fore handing the buses to DMA. 
(a) instruction (b) bus cycle (c) subroutine 

6. The DMA cannot take over the buses until signal is activated by the CPU. 
7. Why it is much less expensive to design a DMA chip than a CPU chip? 
8. At what point does the CPU regain control over the buses? 

SECTION 15.2: 8237 DMA CHIP PROGRAMMING 

9. 
10. 

11. 

12. 
13. 

14. 
15. 

16. 

17. 

18. 
19. 
20. 

21. 
22. 

There are total of port addresses assigned to an 8237. 
Which of the following port address cannot be assigned to the 8237 DMA, and 
why? (This question is not PC compatible.) 
(a) 88H (b) 80H (c) 92H (d) FOH 
For a DMA channel to transfer data it must have two sets of information. State 
these. How many port addresses are assigned to each set? 
Explain why a total of 8 port addresses are set aside for the 8237 channels. 
IfCS is activated by A7 - A4 ~0101, give the port addresses assigned to the four 
channels of the 8237. 
In Problem 13, what are the port addresses of the 8237 internal control registers? 
Which register inside the 8237 is used to program the activation level (low or 
high) of the DREQ and DACK pins? In Problem 14, what port address is that? 
In fixed priority, which channel has the highest priority? Which has the lowest? 
How is this different from rotating priority? 
Assume that the 8237 is programmed for fixed priority. If DREQ2 and DREQ4 
are activated at the same time, who gets serviced first? 
The (80x86 CPU, 8237 DMA) resolves channel priority. 
State the function of the status register TC bits in the 8237. Can we write into it? 
Program the mode register in Problem 14 for I/O-to-memory transfer, autoinitiali­
zation, address decrement, and block mode for channel 2. 
Program the single mask register in Problem 14 to enable channel 3. 
Show the programming of the memory address and count registers of channel 3 to 
transfer 8K bytes of data from 1/0 to memory starting at address 1500H. 

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



PROBLEMS 

SECTION IS.3: 8237 DMA INTERFACING IN THE IBM PC/XT 

23. To access a memory block, explain how many address bits are provided by the 
8237, and how they are provided. 

24. The 8237 can access 64K-byte blocks of memory. Explain how the 8237 in the 
IBM PC can access the entire I M address range. 

2S. True or false. For every DREQ there is a DACK in the 8237. 
26. True or false. For every DREQ there is a HOLD in the 8237. 
27. State if each of the following pins is input, output, or both for the 8237. 

(a) HOLD (b) HOLDA (c)DREQs (d)DACKs (e)A3-AO 
(t)ADDSTB (g) lOR (h) lOW (i) MEMR Gl MEMW 

SECTION IS.4: REFRESHING DRAM USING CHANNEL 0 OF THE 8237 

28. Why was channel 0 used in the PC/XT for DRAM refreshing? 
29. Each cell of DRAM must be refreshed every __ seconds. 
30. If a given DRAM has 2048 rows, each row must be refreshed within __ ms 

before it loses the data. 
31. Why are DRAMs refreshed one row at time rather than one cell at a time? 
32. In the PC/XT, what does the CPU do while the 8237 is refreshing DRAM? 

SECTION IS.5: DMA IN 80x86-BASED PC AT-TYPE COMPUTERS 

33. True or false. In the 80x86 PC AT-type computers, the use of channel 0 for DRAM 
refreshing was abandoned. 

34. In PC AT-type computers, how many channels are available through the expansion 
slot? Indicate on what part (62-pin or 36-pin) they are available. 

3S. How wide is the page register for OMA channels in PC AT computers, and why? 
36. True or false. The port addresses for 8237 #2 are the same in the XT and AT. 
37. True or false. In the PC AT, the port addresses assigned to channels 0 - 4 of the 

8237 # I are the same as in the PCIXT. 
38. Why are the port addresses assigned to DMA#2 of the PC AT all even addresses? 
39. State which channels of the PC AT must be used for an 8-bit data transfer and 

which for a 16-bit data transfer. 
40. True or false. Channels 0 - 3 of the PC AT must be used to transfer data in the 1M 

address range. 
41. The starting address for the memory address registers of channels 0 - 3 must be 

an boundary address. 
(a) even (b) odd (c) does not matter 

42. The starting address for the memory address registers of channels S - 7 must be an 
.,...,. __ ~ boundary address. 
(a) even (b) odd (c) does not matter 

43. If channels 2 and 6 count registers are both programmed for value 16,384 calcu­
late how many bytes are transferred by each channel. Show your calculation. 

44. IfDREQ2 and OREQ6 are activated at the same time, who gets serviced first? 
4S. If a DMA cycle is alternated with the CPU cycle, calculate the rate of data transfer 

by DMA for the following cases for 16-bit channels. The first column gives the 
CPU memory cycle time and CPU speed. For the DMA the first number is the cy­
cle time and the second number is the OMA speed. 

CPU ..,O"'Ml.lA"---___ _ 
(a) 3 clocks at 2S MHz 4 clocks at 8 MHz 
(b) 2 clocks at 33 MHz 3 clocks at \0 MHz 
(c) 4 clocks at SO MHz 3 clocks at 16 MHz 

46. In early PCs, the DMA clock speed was the same or half the CPU speed. Do you 
think it is the same for the 80486 or Pentium PCs? Explain your answer. 

47. Why do you think there are two separate performance benchmarks for memory-in­
tensive and disk-intensive applications? 

48. Although 386 and higher PCs have 32-bit address buses, the OMA uses only 24-
bit addresses in IS A-type PCs. Explain why and state the implication. 

475 



ANSWERS TO REVIEW QUESTIONS 

SECTION 15.1: CONCEPT OF DMA 
1. true 
2. true 
3. true 
4. true 
5. HOLD 
6. HLDA 
7. input 
B. output 

SECTION 15.2: B237 DMA CHIP PROGRAMMING 
1. AO, A1, A2, A3, andCS 
2. because AO - A3 gives rise to only 16 possibilities, 0 - F hex 
3. true 
4. The memory address of the first byte of the block of data to be transferred is loaded in the memory 

address register and the number of bytes to be transferred is loaded into the count byte register. 
5. MOV AX, 1440H ;LOAD LOWER 4 DIGITS OF START ADDRESS 

OUT 90H,AL ;SEND OUT THE LOW BYTE OF THE ADDRESS 
MOVAL,AH 
OUT90H,AL 
MOVAX,4048 
OUT 91H,AL 
MOVAL,AH 
OUT 91H,AL 

6. channel 0 
7. true 
8. true 
9. true 
10. true 

;SEND OUT THE HIGH BYTE OF THE ADDRESS 
;LOAD BLOCK SIZE INTO AX 
;SEND OUT THE LOW BYTE OF THE COUNT 

;SEND OUT THE HIGH BYTE OF THE COUNT 

SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PCIXT 
1. 00 - OF hex 
2. OB hex 
3. It is provided through the DO - D7 data pins of the 8237 to the 74LS373 latch only whenever AO - A7 rolls over 

from FF to 00. 
4. The 8237 informs the 74LS373 to latch A8 - A15 using the ADSTB pin. The ADSTB is an out-signal pin for the 

8237. 
5. 0,3 
6. the 74LS670 (a file register), which is a simple 16-bit register organized in 4x4 fashion 
7. 80H - 83H, one for each of four channels 
B. Channel 0 and channels 1, 2, and 3 are available through the expansion slot. 
9. It is 5 clocks or 1.051's 
10. 4 clocks or 840 ns 

SECTION 15.4: REFRESHING DRAM USING CHANNEL 0 OF THE 8237 
1. 00 port address for the address register and 01 for count register 
2. The B253/54 timer channel, every 15 I's 
3. This is due to the fact that memory refreshing must be done within a fixed period of time; otherwise, the DRAM 

contents are lost. To do that, channel 0 must be assigned the highest priority. 
4. 2 ms 
5. true 
6. 4 x 210 =B40 ns 

SECTION 15.5: DMA IN BOXB6-BASED PC AT-TYPE COMPUTERS 
1. true 2. only 7 
3. channels 1 - 3 on the 62-pin and channels 0, 5, 6, and 7 on the 36-pin 
4. true 5. true 
6. false 7. A16 - A23 
8. true 9. False; they can be used only for 16-bit data transfers. 
10. This is because in the mode register initialization, the DMAis programmed for the single mode. This means 

476 

that for every DMA cycle there is a CPU cycle in between, making the DMA bus bandwidth much lower than if the 
DMA had control over the buses for the entire duration of the data transfer. The real reason is that the buses 
must be released by DMA in order to allow refreshing of DRAM before it loses the data. 

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 



CHAPTER 16 

VIDEO AND VIDEO ADAPTERS 

477 



Although the quality of video monitors has improved dramatically since the 
introduction of the first IBM PC in 1981, the principles behind them have remained 
the same. This chapter will look at the video system of the IBM PC and 80x86 
compatibles. In Section 16.1 we describe the fundamental concepts of video 
monitors, then in Section 16.2 we look at all the various popular IBM PC video 
monitor adapters, such as MDA, CGA, EGA, and VGA. In Section 16.3 we show 
text mode programming of these adapters using INT lOH. Section 16.4 will look at 
graphics mode and graphics programming using INT 10H. 

SECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO ADAPTERS 

Video monitors use a method called raster scanning to display images on 
the monitor screen. This method uses a beam of electrons to illumine phosphorus 
dots, called pixels, on the screen. This electron gun rasters from the top left comer 
of the screen to the bottom right, one line at a time. As the gun turns on and off, it 
moves from left to right toward the end of the line, at which time it is turned off to 
move back to the beginning of the next line. This moving back while the gun is off 
is called horizontal retrace. When it reaches the bottom right of the screen, the gun 
is turned off and moves to the top left of the screen. This turning off and moving 
back to the top is called vertical retrace. Figure 16-1 shows two methods of 
scanning. One is noninterlaced (normal) scanning and the other is interlaced 
scanning. The concept for both is the same, but in interlaced scanning (which is the 
same method used in television sets), each frame is scanned twice. First the odd 
lines are scanned and then the gun comes back to scan the even lines. This method 
can create flicker, but allows better vertical resolution at a cheaper cost. Noninter­
laced monitors provide much better flicker-free images than interlaced monitors and 
for this reason are widely used as monitors of most PCs. 

hOrizonta' 
I-etl-ace 

--,-. ~--~, 
.-------------~:.o-

I ever: line 

oed line 

- ---------------------';---

~---
_~=-=:o~ 

'. 

--------~ vertical 
retrace -----

Figure 16-1 . CRT Scanning Methods 

478 

How to judge a monitor 

The resolution of the screen depends upon the following factors: 
l. The number of pixels (dots) per scanned line 
2. The speed at which the gun can turn on and off the phosphorus coating on the surface 

of the tube 
3. The speed at which it can scan and retrace a horizontal line 
4. The number of scan lines per screen (frame) 
5. The speed at which it finishes one frame and performs the vertical retrace. 

CHAPTER 16: VIDEO AND VIDEO ADAPTERS 



While in a television set, horizontal scanning is done at the rate of 15,750 
times per second (15.75 KHz) and vertical scanning at 60 times per second (60 Hz), 
on the IBM PC monochrome monitor using the monochrome display adapter 
(MDA) the frequencies are 18.432 KHz and 50 Hz, respectively. Knowing these 
two frequencies enables one to calculate the maximum number of scan lines per 
screen by dividing the horizontal frequency by the vertical one as follows: 

number of scanned lines per screen = horizontal frequency (HF) 
(not all visible) vertical frequency (VF) 

Example 16-1 
In a IBM PC monochrome monitor with HF =18.432 KHz and VF =50 Hz, calculate the number of 
scanned lines per screen. 

Solution: 

The number of scanned lines = HFNF; therefore, 18,432 divided by 50 = 368 lines per screen. 

Not all 368 horizontal lines in Example 16-1 are visible on the screen since 
some lines are for overscan and some are used for vertical retrace time. Overscan 
refers to the lines above or below the visible portion of the screen; these lines ensure 
clear edges at the top and bottom of the screen. In the IBM PC MDA, only 350 lines 
are visible on screen and of the remaining 18 (368 - 350), some (about 3 or 4) are 
used for overscanning. The time that would have been taken for scanning the rest 
(approximately 14) is used for the vertical retrace. Now that the number of scan 
lines is known, the next question is, how many pixels (dots) are there per line? This 
is calculated by dividing the video frequency (sometimes called dot frequency) by 
the horizontal frequency: 

number of pixels per scan line = 
(not all visible) 

dot frequency 
horizontal frequency 

In the IBM monochrome display adapter (MDA), dot frequency is 16.257 
MHz, which when divided by HF =18.43 KHz, gives 882 pixels per line. Again, all 
882 are not visible. With the IBM PC monochrome adapter, only 720 pixels are 
visible for each scan line. The time set aside for the remaining 162 is used for the 
time taken by horizontal retrace and overscanning on the left and right sides of the 
screen. Again, this overscanning allows sharp edges on the right and left sides of 
the screen. From the above discussion it can be seen that the three most critical 
factors in a monitor are: 

I. The video frequency (also referred to as dot rate, pixel rate, or video bandwidth) 
2. The horizontal frequency 
3. The vertical frequency 

From these three parameters, the number of pixels per line and the number 
of lines per screen can be calculated, keeping in mind that not all pixels and lines 
are visible on the screen, due to overscanning and retrace times. The number of 
visible pixels is given by the manufacturer of the adapters or monitors. Looking at 
Table 16-1 for the IBM monochrome adapter, the number of pixels is 720 x 350, 
which means that there are 720 pixels per line and 350 lines per screen, giving a 
total of252,000 pixels. The total number of pixels (dots) per screen is a major factor 
in assessing a monitor's resolution, which is one of its most critical characteristics. 
The total number of pixels per screen is determined by the size of the pixel and how 
far apart pixels are spaced. For this reason one must look at what is called the dot 
pitch in monitor specifications. 

SECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO ADAPTERS 479 



Dot pitch 

Dot pitch is the distance in between adjacent pixels (dots) and is given in 
millimeters. For example, a dot pitch of 0.31 means that the distance between pixels 
is 0.31 mm. Consequently, the smallerthe size of the pixel itself and the smaller the 
space in between them, the higher the total number of pixels and the better the 
resolution. Dot pitch varies from 0.6 inch in some low-resolution monitors to 0.2 
inch in higher-resolution monitors. In some video monitor specifications, it is given 
in terms of the number of dots per square inch, which is the same way it is given for 
laser printers, for example, 300 DPI (dots per inch). 

Dot pitch and monitor size 

Monitors, like televisions, are advertised according to their diagonal size. 
For example, a 14-inch monitor means that its diagonal measurement is 14 inches. 
There is a relation between the number of horizontal and vertical pixels, the dot 
pitch, and the diagonal size of the image on the screen. The diagonal size of the 
image must always be less than the monitor diagonal size. The following simple 
equation can be used to relate approximately these three factors to the diagonal 
measurement. It is derived from the Pythagorean theorem: 

(image diagonal size)2 = (number of horizontal pixels x dot pitch)2 
+ (number of vertical pixels x dot pitch)2 

Since the dot pitch is in millimeters, the above size would be in mm, so it 
must be multiplied by 0.039 to get the size of the monitor in inches. 

As can be seen from the above discussion, one can use a lower vertical 
frequency to get a higher number of vertical pixels. However, this can result in 
flickering, as happens in 1024 x 768 interlaced monitors. The interlaced method is 
a cheap way of increasing the vertical pixels by halving the vertical frequency and 
making the frame be scanned in two successive sweeps of odd and even fields. 

Example 16-2 

A manufacturer has advertised a 14-inch monitor of 1024 x 768 resolution with a dot pitch of 0.28. 
Calculate the diagonal size of the image on the screen. It must be less than 14 inches. 

Solution: 

The calculation is as follows: 
(diagonal size)2 = (1024 x 0.28 mm)2 + (768 x 0.28 mm)2 

diagonal size (inches) = 358 mm x 0.039 inch per mm = 13.99 inches 

480 

Phosphorous materials 

Another factor that determines the quality of the monitor is the phosphorus 
material used, since the brightness of the pixels depends on two factors: 

I. The intensity of the electron beam, which decides how bright or dark each pixel 
should be. This can be controlled by software, as will be seen in Section 16.4. 

2. The phosphorous material used. After the pixel has been illumined, some phospho­
rous materials retain their brightness for longer periods of time than others. This 
characteristic, called persistence, is fixed in the monitor and cannot be changed. In 
the early IBM PC monochrome monitors, a high-persistence type of phosphorus 
was used to create a better look on the monitor in case there was a need for frequency 
compensation. In situations where the frequency cannot be adjusted, such as the 
IBM monochrome monitors, a phosphorus with longer persistence is used to 
compensate. 

CHAPTER 16: VIDEO AND VIDEO ADAPTERS 



Color monitors 

In color monitors the principles are the same, except that every phosphorus 
dot is made of three colors: red, green, and blue, hence the name RGB 
(red/greenlblue) monitors. Color monitors require three different wires to carry 
three electronic beams, one for each color, unless the monitor is of the composite 
brand. In composite monitors there is one single wire that carries all three colors. 
The process of combining, then separating, the three colors diminishes the quality 
of the image compared to true RGB monitors. In older RGB monitors, for every 
color wire there was a separate gun, but in newer models a single gun carries three 
wires for the three beams. Another difference between color and monochrome 
monitors is the presence of the shadow mask on color monitors. The shadow mask 
is a metal plate with many holes that is placed just before the phosphorus-coated 
screen in order to coordinate the shooting of the electron beam of each gun through 
a single hole. This ensures that the red gun illumines the red dot only, the blue gun 
illumines the blue dot only, and the green gun illumines the green dot only. 

Since each pixel has three dots of color: red, green, and blue, how is the dot 
pitch measured? The answer is that the dot pitch on color monitors is the distance 
between two dots of the same color, or as some manufacturers advertise, the distance 
between two consecutive holes of the shadow mask. While in monochrome moni­
tors, it is by changing the intensity ofthe electron gun that the shades of gray-black­
white are generated, in color monitors it is out of the combination of the three 
primary colors that all other colors are generated. In other words, by changing the 
intensity of the red, green, and blue triad, one can create all the colors (see the next 
section for some examples). 

Analog and digital monitors 

Another monitor characteristic to be explained is digital versus analog. In 
digital monitors such as the MDA- and CGA-based monitors, one uses a number of 
bits to specify variations of color and intensity. To increase these variations one must 
employ large numbers of bits. Analog monitors, because they can accommodate 
many more variations, have much better quality pictures. To understand the differ­
ence between digital and analog systems, imagine that we have defined a tempera­
ture of 20 degrees as cold and 100 degrees as hot. These would be represented in 
digital as 0 and I for cold and hot, but an analog system could accommodate 
temperature variations of 20 to 100 in increments of one, allowing many more 
variations. Another example is the state ofa light bulb. In digital it is represented as 
o and I for on and off. In analog, one can accommodate many more variations, 
similar to the concept of using a dimmer switch. 

Video display RAM and video controller 

Communication between the system board (motherboard) and the video 
display monitor is through the video adapter board Among the components every 
video board must have is a video controller and video display RAM. The information 
displayed on the monitor (either text or graphics) is stored in memory called video 
display RAM (VDR), also called video buffer. In order for the information to be 
displayed, it must be written first into video RAM by the CPU; then it is the job of 
the video adapter's controller (processor) to read the information from video RAM 
and convert it to the appropriate signals to be displayed on the screen. In other words, 
there is a separate controller, often called a CRT controller or video processor, apart 
from the main 80x86 CPU. The video controller's sole job is to take care of the video 
section of the computer. Since the CRT controller is built specifically for that 
purpose, it can perform the tasks associated with video much more efficiently than 
can a CPU such as the 80x86. That also means that video RAM must be accessible 
to both the main processor and the video processor. In the IBM PC and compatibles, 
of I megabyte of addressable memory, from address AOOOOH to BFFFFH is set 
aside for video display RAM. Of this 128K bytes of memory, only some is used; the 
amount depends on the resolution of the video adapter and the selected mode: text 

SECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO ADAPTERS 481 



mode or graphics. For example, when displaying text the IBM monochrome adapter 
uses only 4K bytes of memory, starting at memory address BOOOOH. Of this 4K 
bytes, 2K bytes are for the full screen of characters (80 characters per line and 25 
lines per screen = 2000 bytes) and another 2000 bytes are for the attributes. The 
attribute byte provides various information, such as color, intensity, and blinking, 
to the video circuitry. As will be seen later, every time a byte of character data is 
accessed, its attribute is automatically fetched as well. The memory requirement of 
each video board and the number of colors that it can handle will be given in the 
next section. 

If the same video display RAM is accessed by both the microprocessor and 
the video controller, how can two masters access the same RAM at the same time? 
There are several solutions to this dilemma. 

1. The CPU can access the video RAM only during the time when the video controller 
is doing the retrace. 

2. To use a more expensive, specially designed kind of RAM called VRAM (video 
RAM). This kind of RAM allows the transfer of data by the video controller at a 
much higher rate than is allowed by normal DRAM. 

3. Another approach used in some high-performance graphics system is to use dual-port 
RAMs. This kind of RAM has two sets of data pins, allowing both the CPU and 
video controller to access the video RAM with much less conflict, since it eliminates 
the time wasted by a multiplexer. 

It must be noted that if the CPU tries to access the VDR while the video 
controller is accessing it, the CPU is blocked since the screen must be refreshed by 
the video controller before it is lost. In other words, the video controller has a higher 
priority than the main CPU in accessing the VDR. Ifby software manipulation one 
blocks the video controller's access to the VDR, it will result in snow on the screen. 

Video systems have improved dramatically in recent years, due to the fact 
that the speed of the CPU has reached 50 MHz and can therefore transfer data from 
(or to) the VDR at a much faster rate during the retrace time. 

Character box 

Video boards can be programmed in two modes: text and graphics. While 
in graphics mode the individual pixels are accessed and manipulated, in text mode 
characters, which are a group of pixels, are accessed. In text mode, horizontal and 
vertical pixels are grouped into what are called character boxes. Each character box 
can display a single character. The size of the character box matrix varies from 
adapter to adapter. For example, in IBM's MDA (monochrome display adapter) 
there is a 9 pixel by 14 pixel character box. Since every character is 9 pixels wide 
and 14 pixels high, one can calculate the number of character columns per screen 
by dividing the number of pixels on a horizontal line by 9, and can calculate the 
number of rows per screen by dividing the number of pixels on a vertical line by 14. 
Conversely, one can calculate the horizontal and vertical pixels by using the size of 
the character box, number of rows, and the number of columns per screen: 

pixels per scan line = number of character columns x pixel width of char. box 
raster lines = number of rows per screen x pixel height of char. box 

Example 16-3 

If the MDA character box is 9 x 14 (9 pixels wide and 14 pixels high) and the resolution ofMDA is 
720 x 350, verifY the fact that MDA in text mode can display 80 x 25 characters per screen. 

Solution: 
720 horizontal scan lines divided by 9, the width of character box, gives 80 columns of characters. 
Dividing 350 vertical pixels by 14, the height of the character box, results in 25 rows of characters. 

482 CHAPTER 16: VIDEO AND VIDEO ADAPTERS 



Example 16-4 

In a given adapter, the character box is S x 14 and the adapter in text mode displays SO x 25 
characters. Calculate the pixel resolution. 

Solution: 

The total number of horizontal pixels is 640 (S x SO) and the vertical number is 350 (14 x 25). There­
fore, it has 640 x 350 resolution. 

To get better-looking characters, the character box size must be increased, 
which translates to more pixels horizontally and vertically. From the above discus­
sion, one can conclude that for a fixed-size monitor to display a fixed number of 
rows and columns of characters, the number of horizontal and vertical pixels is the 
most important factor. Since the number of horizontal and vertical pixels is directly 
proportional to the horizontal and vertical dot frequencies, in judging CRT monitors 
one must look for higher HF (horizontal frequency), VF (vertical frequency), and 
DF (dot frequency). Figure 16-2 illustrates the character box. 

Figure 16-2. Character Boxes 
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1983) 

While in early PCs, monitors had fixed frequencies, the advent of multi sync 
monitors in recent years has allowed variation of these three frequencies to be input 
from various video boards. This means changing the video adapter board but staying 
with the same multisync monitor as the technology and the need changes. 

The next section will describe various video adapters for the IBM PC and 
their characteristics in detail, such as number of pixels and color capabilities. 

Review Questions 

1. The way images are displayed on the monitor screen is referred to as -c------,~-
2. If the dot frequency (DF) is increased but HF and VF remain constant, it will in-

crease the number of (horizontal, vertical) scan lines. 
3. True or false. The smaller the dot pitch, the better the monitor. 
4. Ofthe three frequencies DF, HF, and VF, state which has the: 

(a) highest frequency (b) lowest frequency 
5. True or false. In the design of monitors, for a fixed-size monitor one must increase 

the dot pitch to get more pixels. 
6. True or false. For any information to be displayed it must be stored in the VDR. 
7. True or false. The VDR memory address range (memory space) must be accessible 

to both the main CPU and the video processor. 
S. True or false. To display crisper characters, one must design more pixels into the 

character box. 

SECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO ADAPTERS 483 



SECTION 16.2: VIDEO ADAPTERS AND TEXT MODE PROGRAMMING 

When the IBM PC was introduced in 1981, it had two video monitor 
options: MDA (monochrome display adapter) and CGA (color graphics adapter). 
While CGA allowed both graphics and text mode options, MDA allowed only text 
mode. Although CGA had color for both graphics and text, the text was not very 
crisp. On the other hand, MDA had excellent text but did not support graphics. Not 
until 1985 was EGA (enhanced graphics adapter) introduced in order to provide both 
graphics and text on the same monitor. In 1987, when IBM introduced the new PS/2 
line of products, they also introduced new video standards called VGA (video 
graphics adapter) and MCGA (multicolor graphics array). In MDA and CGA, IBM 
used the Motorola 6845 CRT controller to design the adapter board and in EGA used 
a set of proprietary LSI chips, but in all these three cases the adapter board had to 
be plugged into one of the expansion slots. Starting with PS models, IBM put the 
video circuitry on the motherboard. PS/2 models 25 and 30 use MCGA, and models 
50, 60, and 80 use VGA. Currently, many manufacturers make VGA-compatible 
adapter plug-in boards. This section discusses each of these boards separately, then 
text mode programming is explained. 

Table 16-1: Adapter Characteristics 

484 

CGA was one oftwo display adapters offered with the IBM PC when it was 
introduced to the market in 1981. Unlike MDA, which could only support text 
applications, CGA had the capability of providing both text and graphics on the 
screen. In addition, it supported color. Since its character box is 8 x 8, text resolution 
was not as good as MDA, which forced users to choose between the good text quality 
ofMDA and the color and graphics capability of CGA. CGA displays a maximum 
of80 characters per line and 25 lines per screen with a resolution of only 640 x 200. 
It used the Motorola 6845 CRT controller. Programming modes are selected using 
INT 10H video subroutines contained in the ROM BIOS. Table 16-2 shows video 
modes for CGA. 

Video RAM in eGA 

The video display RAM of the CGA starts at B8000H and goes up to 16K 
bytes. However, to implement the entire 16K bytes of video RAM using static RAM 
would be too expensive and for that reason DRAM is used. For the CGA starting 
at memory location B800:0000, even addresses hold the characters to be displayed 
and odd addresses the attributes of characters as shown next: 

CHAPTER 16: VIDEO AND VIDEO ADAPTERS 



Address 
Logical Physical 
B800:0000 B8000 
B800:0001 B8001 
B800:0002 B8002 
B800:0003 B8003 

B800:07CE B87CE 
B800:07CF B87CF 

Contents 
row 1, column 1 character 
attribute for row 1, column 1 character 
row 1 column 2 character 
attribute for row 1, column 2 character 

row 25, column 80 character 
attribute for row 25, column 80 character 

If the full screen text of 80 x 25 takes 4K bytes (2K bytes for the characters 
and 2K bytes for the attributes), then 16K bytes of memory can hold 4 pages of text 
at any given time. Only one page can be viewed at a time, and one can switch to one 
of the other 3 pages at any time without delay. The page that is being displayed at 
any given time is commonly referred to as the active page. Since the 40 x 25 text 
option requires only 2000 bytes for both characters and attributes, the 16K bytes of 
VDR can hold a maximum of 8 pages of text. 

Table 16-2: Video Modes for CGA 

Il AL', Pix~T~hars. I Char.;;J;e~~;;;;~ors I Bu~er Pa~es I .. St~li 
I'~H I 320x 200 i 40 x 25 8x 8 I Text 16* 8 -+ B8000h-j1 

l~~: i ~!~: ~~~ I :~: ~~ ::: . I~::: -- I - ~:*~! I ::~~:jl 
I 03H. 640 x 200180 x 25Jx8 !Tt<xt I 16 ~ 4 '---+-B8000h~. 
'. 04H . 320 x 200 i 40 x 25 i 8 x 8 I Graphics------i 4, I 1.. I B8000h .II 
II 05H ; 320 x 200 I 40 x 25 8 x 8 I Graph~_' _ ~j 1 __ 1 B8000hj' 
I06H.J 640 x 200 I 80 x 25 8 x 8 I Graphics~ 2 1 B8000h ! 
• Color burst off. 

D7 

B 

Attribute byte in eGA text mode 

As mentioned earlier, even addresses are for the characters to be displayed 
and odd addresses are for the attributes. Graphics mode is discussed separately in 
the next chapter. The bit definition of the attribute byte in text mode of eGA is as 
shown in Figure 16-3. 

From the above bit definition it can be seen that the background and 
foreground can take 8 and 16 different colors, respectively, by combining the 
primary colors red, blue, and green. Table 16-3 lists those possible colors. Example 
16-5 demonstrates how the attribute byte is used. 

D6 I D5 I D4 D3 D2 I D1 I DO 

R G B I R G B 

Background Foreground 

B = blinking, I = intenSity 
Both blinking and intensity are applied to foreground only. 

Figure 16-3. eGA Text Mode Attribute Byte 

SECTION 16.2: VIDEO ADAPTERS AND TEXT MODE PROGRAMMING 485 



Example 16-5 
Find the attribute byte (in binary and hex) for the following color options: 
(a) blue on black (b) green on blue (c) high-intensity white on blue. 

Solution: 
Binary 

(a) 00000001 
(b) 0001 DOlO 
(c) 0001 Illi 

Hex Color Effect 
01 Blue on black 
12 Green on blue 
IF High-intensity white on blue 

MDA (monochrome display adapter) Table 16-3: The 16 Possible Colors 

MDA was one of two display 
adapters offered with the IBM PC 
when it was introduced to the market 
in 1981. It supported a monochrome 
monitor which displayed 80 alphanu­
meric characters per line and 25 lines 
per screen and used Motorola's 6845 
CRT controller. The resolution of 
MDA proved very useful for text ap­
plications, but users who needed to 
use graphics had to use the other 
adapter offered with the IBM PC at 
that time, CGA. MDA characteristics 
are shown in Table 16-4. 

Video RAM in MDA 

, , 

I 

0 1 

0 

0 

0 

0 

0 

0 

0 

1 

I 

1 
, 

I 

I 

R G 

0 0 

0 0 

0 1 

0 1 I 

I 0 

1 0 

1 I 

I I i 

0 0 

o i 0 

oil 
i 

, 

0 I 

1 0 

B Color - II 
0 Black 

1 Blue 

0 Green 

1 Cvan 

0 Red 

I Magenta 
i 

0 ,Brown 

1 1 White 

0 Grav 
~~~ 

I Light blue

0 Light green 1
I

I Light cyan
"---

0 Lil!ht red
,

,
-~~

MDA uses video RAM
addresses starting at BOOOOH. This is
in contrast to CGA, with memory
starting at B8000H. As shown below,
the starting physical address of the
video RAM in the monochrome is
BOOOOH or BOOO:OOOO using seg­
ment:offset. Starting at BOOOO, the
contents of even locations are the
characters to be displayed and the odd
locations are the attributes of each
character.

1 1 0 1 Light magenta -il , ,

Yellow

Address
Logical Physical "'C-"'o'-'nt"'e"'nt"'s':--_c-c-_,----____ _
BOOO:OOOO BOOOO row 1, column 1 character
BOOO:0001 B0001 attribute for row 1, column 1 character
BOOO:0002 B0002 row 1, column 2 character
BOOO:0003 B0003 attribute for row 1 ,column 2 character

BOOO:07CE B07CE
BOOO:07CF B07CF

row 25, column 80 character
attribute for row 25,column 80 character

Table 16-4: Video Modes for MDA
il

I AL ~ Pixels

ICharacterl Text!! u~l_c II

Characters! Box ~ -i:~G=ra"lp~!t.~i~c"s~i~C=ol~o"r"s~ 1_. p Paa~!!:eess ~ I Start !

Text L Mono 8 r I!OOOOhll

486 CHAPTER 16: VIDEO AND VIDEO ADAPTERS

Attribute byte in IBM MDA

The attribute byte for the characters of MDA uses the same background­
foreground scheme as CGA; however, since it supports only black and white, not
all possible combinations can be used. Figure 16-4 shows bit definitions of the
monochrome byte attribute.

I 07 I 06 I 05 J 04 -' 03 -' 02 I 01 I 00 I
I J I I

~ For~gr~und int ensity " -_. -- .. --.. ~

j 0 = n~rmal inte nsity
intensity , 1 = highlighted

..
Background int ensity

--~

j 0 = nonblinkin g
'1 = blinkin

Figure 16-4. Attribute Byte in MDA

Example 16-6

Find the attributes associated with following attribute bytes in MDA.
(a) 07H (b) OFH (c) 70H

Solution:

(a) 07H ~ 00000111 gives background black, foreground normal intensity, nonblinking.
(b) OFH ~ 00001111 gives the same as (a) except with foreground highlighted.
(c) 70H ~ 01110000 gives black on white, a reverse video screen mode in which the foreground is

black and the background is white, nonblinking.

EGA (enhanced graphics adapter)

The EGA adapter, introduced in 1985, gave the PC user the best charac­
teristics of both MDA and CGA, since it could be configured to emulate either. It
had graphics and 16 color capabilities, like the CGA but with much improved
resolution. Although its resolution of 640 x 350 was still not as good as MDA, it
was a significant improvement over the resolution of CGA. IBM used a set of
proprietary LSI chips as a CRT controller instead of the Motorola 6845 chip. As
shown in Table 16-5, all previous modes of CGA and MDA (modes 0 - 7) are
supported in addition to new modes ODH - IOH.

EGA video memory and attribute

Although the EGA video board can accommodate a maximum of 256K
bytes of memory, it can use only 128K bytes of memory space from AOOOOH to
BFFFFH. When in graphics mode, the starting address is at AOOOOH, but in text
mode the address location varies depending on which mode it is emulating, as shown
in Table 16-5. EGA can emulate both CGA and MDA. When EGA is programmed
to emulate CGA text, the address for the video is B8000H, but for the MDA
emulation the address is BOOOOH. EGA in graphics mode can display 16 colors out
of 64 possible colors. Section 16.4 will discuss relating the number of colors
supported to memory installed on the video boards.

SECTION 16.2: VIDEO ADAPTERS AND TEXT MODE PROGRAMMING 487

Table 16-5: Video Modes for EGA

II

I

I

I
! 1

,

I Character Text! Buffer I i

I
I

. I Characters
,

i' AL Pixels Box Graphics Colors Paees Start

OOH 320 x 350 40 x 25 8 x 14 Text I 16* 8 B8000h

OIH 320 x 350 I 40x25 8 x 14 Text 16 8 B8000h

, 02H 640 x 350 80 x25 8 x 14 Text 16* 8 B8000h

03H 640 x 350 80 x 25 8 x 14 Text 16 8 B8000h

04H 320 x 200 40x25 8x8 _. Graphics 4 1 B8000h

05H 320 x 200 40x25 8x8 Graphics 4* 1 B8000h

06H 640 x 200 80 x 25 8x8 Graphics 2 1 B8000h
I

07H J 720 x 350 i 80x 25 9 x 14 Text Mono 4 I BOOOOh

JlliH. - OCH not used for'pC PS

ODH 320 x 200 40 x 25 8x8 Graphics 16 2/4 AOOOOh ..
I

OEH " 640 x 200 80 x 25 8x8 iGraphics 16 112 AOOOOh

OFH I 640 x 350 ! 80 x 25 I 9 x 14 I Graphics Mono 1 AOOOOh II

GOH I 640 x 350 I 80x 25 8 x 14 I Graphics 16 2 AOOOOh
• Color burst off.
Note: Modes 08, 09, and OAB are used only by the IBM PC Jr.; OBH and OCH are used by the EGA video BIOS and
are not available.

MeGA (multicolor graphics array)

The MeGA video system is used with analog monochrome or color moni­
tors on PS/2 models 25 and 30. It has improved resolution and color selection over
CGA. The advantage of analog systems is their improved color and shading
capabilities. In MeGA there are up to 64 brightness levels in monochrome monitors
and in color monitors there are up to 262,144 colors of which 256 at a time can be
selected for a palette. Table 16-6 gives video modes for MeGA. Notice that it
emulates all ofCGAmodes 0 - 6 in addition to two new modes, llH and 13H.

Table 16-6: Video Modes for MCGA

I Character

AL Pixels Characters Box

OOH 320x 400 40x25 8x16

Text! I

Graphics I Colors

Buffer I

Paees Start

Text 16* 8 B8000h

OIH 320 x 400 40x25 i 8x16 Text 16 8 B8000h

02H 640 x 400 80 x 25 8 x 16 'Text 16* 8 B8000h

03H 640 x 400' 80 x 25 8 x 16 Text 16 8 B8000h

04H 320 x 200 40 x 25 8 x 8 Graphics 4 1 B8000h

~ 13H 320 x 200 40 x 25 : 8 x 8 Graphics 256 1 AOOOOh
• Color burst off.

488 CHAPTER 16: VIDEO AND VIDEO ADAPTERS

VGA (video graphics array)

VGA is a single-chip video controller designed by IBM which performs
many tasks previously done by several chips in EGA. However, many use the term
VGA to refer to the entire adapter. VGA is used with analog monochrome or color
monitors on PS/2 models 50, 60, 80, and 90. It has excellent resolution ofup to 720
x 400 for text modes and 640 x 480 for graphics modes. In many PC and compatible
computers, VGA is already on the motherboard, but it can also be purchased as an
adapter board to be plugged into one of the expansion slots. Table 16-7 shows video
modes for VGA. Notice that it emulates all the modes ofCGA, MDA, EGA, plus
new modes llH, l2H, and l3H, which are not available with the earlier adapters.

Table 16-7: Video Modes for VGA

'I I
I

, Character Text! Buffer
,

I

,

AL Pixels 1 Characters Box . Gr~hics Colors Pal!es Start ,

OOH ! 360 x 400. 40x25 9 x 16 Text 16* 8 B8000h

Ii
I 360 x 400

,

!Text
I

OlH 40 x 25 , 9 x 16 16 8 B8000h

02H i 720 x 400 80 x25 I 9 x 16 Text 16* 8 I B8000h

03H 1720 x 400 80x 25 i 9 x 16 Text 16 8 B8000h

04H • 320 x 200 i 40 x 25 ! 8x8 Graphics I 4 , I B8000h

05H : 320 x 200 ! 40 x 25 I 8x8 I Graphics I 4* I B8000h

i 640 x 200 L
,

I 06H 80 x25 8x8 I GrllJLhics 2 I I B8000h

07H 1720 x 400 80 x 25 I 9 x 16 Text Mono 8 BOOOOh

08H - OCH not used --,

I

ODH I 320 x 200! 40 x 25 8 x 8 I GraphICS 16 8 AOOOOh _~
, ,

AOOOOh II OEH 1640 x 200 I 80 x 25 8x8 !Graphics i 16

I
4

i I

'I
I

I Graphics I

'.1

OFH ,640 x 350 i 80 x 25 I 8 x 14 Mono 2 AOOOOh

10H : 640 x 350 ! 80x 25 i 8 x 14 I Graphics : 16 I 2 AOOOOh

I 640 x 480 I

I

iGraphics i

i
IIH 80 x 30 i 8 x 16 2 I I AOOOOh

12H i 640 x 480 ; 80x 30 I 8 x 16 Gr3JLhics .i. 16 I AOOOOh

13H 1320 x 200 I 40 x 25 ! 8x8 Graphics I 256 I AOOOOh ,
• Color burst off.

Video memory and attributes in VGA

Up to I megabyte of DRAM can be installed on VGA boards. This extra
memory is used to store pixels and their attributes. Since in graphics mode, VGA
can display up to 256 colors out of 262,144 possible colors at once, it requires I
.megabyte of DRAM to store them. How the 1M of memory is mapped into the
128K-byte address space AOOOOO - BFFFFH is discussed in Section 16.3, which
covers text mode programming.

When VGA is programmed to emulate CGA text, the address for the video
is B8000H, but for MDA emulation the address is BOOOOH. This is in order to be
compatible with previous adapters. When VGA is in text mode it uses mode 3, as
we will see in the next section.

SECTION 16.2: VIDEO ADAPTERS AND TEXT MODE PROGRAMMING 489

Table 16-8' Video Modes and Their Definitions ,
. ... r·· ..

i
,

I I Colors Mode i AL
!

Pixels I. Chars
,

Box T/G Buf Start ,

I ..

' 8 x 8 IText OOH :,320 x 200 40 x 25 16* CGA 8 B8000h ..

',I '320 x 350 40x25 8 x 14 'Text 16* IEGA
!

8 B8000h
' ,

1 360 x 400 40x25 9 x 16 I Text I 16* IVGA ..

I

8 IB8000h:
320 x 400 40 x 25 8 x 16 I Text 116* IMCG 8 ,B8J)OOh I

Ii OlH 1320X2001 40x25 I 8 x 8 IText 16 ICGA ..

I

8 B8000h

:, . 320 x 350 I 40 x 25 '8 x 14 Text , 16 iEGA 8 B8000h .
, ,

IVGA

I:
1360 x 400 I 40 x 25 '9 x 16 Text 116 .. 8 B8000h

40 x 25 8 x 16 Text 16 I MCGA : 8 B8000h ,320 x 400 ..
1

, ~Q2H '640 x 200 80 x 25 8x8 Text .. 16* :CGA 8 IB8000h
I

f---. 640 x 350 80 x 25 8 x 14 Text 16* EGA 8 'B8000h
,

IB8000h 720 x 400 80 x 25 9 x 16 I Text 16* VGA 8
.~ ... --. .

640 x <1:00 80 x 25 8 x 1Q [Text
,

16* 1 MCGA 8 !

" 03H i 640 x 200 1 80 x 25 • 8 x 8 IText 16"----II-"C=G~A~ __
.! iB8000hji

8 IB8000hi'

8 B8000h 1

B8000h, I~ I~.

:640 x 3~p 80 x 25 i 8 x 14 Text 16

. 1720 x 400 80 x 25 9 x 16 Text 16

.. [640 x 400 80 x 25 8 x 16 iText 16

" 04H 1320 x 200 I 40 x 25 I 8 x 8 Graphics I 4

r05H 1320x200i 40x25 ! 8x8Graphicsi 4*

! 06H 1640 x 200 1 80 x 25 I 8 x 8 I GraQhics I 2

EGA

VGA 8 ----

'MCGA I 8 ----+

, , , !CGA EGA VGA MCGA 1 1

iCGA EGA VGA MCGA 1

'CGA,EGA,VGA,MCGA 1

I B8000h I

IB8000hl

B8000h'

I: I , ' , ,

, 07H 1720 x 350. 80 x 25 .. :9 x 14 I Text IMono IMDA

B8000h!

___ ~ ~ ! BOOOOh !

,720 x 350 80 x25 9 x 14 Text EGA 4. I BOOOOh I,
1

19xj6 8 jBOOOOh I '720 x4001 80 x 25 Text IVGA

08H - OCH not used
,I

1 , I I ---'I

ODH 320 x 200 40 x25 I 8 x 8 GraQhics 16 !EGA . I 2/4 I AOOOOhl
I : 320 x 200 40 x 25 : 8 x 8 'GraQhics 16 VGA I 8 AOOOOh I I , ,-- I···

,I OEH '640 x 200 I 80 x 25 8 x 8 I GraQhics 16 EGA i 112 AOOOOhJ
~

II 1 640 x 200 I 80 x 25
i

8 x8 'I GraQhics 16 VGA 4 AOOOpllj .. L

!..QHIJ 640 x 350 i 80 x 25 i 9 x 14lGr~QhicslMono IEGA -----------+- AOOOOhl

640 x 350' J!O x 25 I 8 x 14.:CJraQhics I Mono iVGA 1 . i 2 +- . AOOOOhl

IOH ,640 x 350 80 x 25 18 x)4 . GraQhicsI 4 IEGA 1 112 AOOOOh ~
,8 x 14 GraQhicsl

I
640 x 350j 80 x 25 16 .'yGA 1 2 I AOOOOhj

'r-Ulli 640 x 480 I 80 x 30 8 x 16 I GraQhics 2 'VGA,Mc:9A 1 'AOOOOh' I I
i 12H '640 x480 I 80 x 30 1 8 x161 GraQhics 16 'VGA 1 iAOOOOhII .. j.--

II 13H 320 x 200 I 40 x 25 J 8x 8 I GraQhics 1256 .lVg~,MCGA 1 AOOOOh I
• Color burst off,

490 CHAPTER 16: VIDEO AND VIDEO ADAPTERS

Super VGA (SVGA) and other video adapters

Aside from video standards mentioned so far, there are some other adapters
that are widely used. Among them are HGC, 8514/A, XGA, and SVGA. The
Hercules Graphics Card (HGC) introduced in 1982 by Hercules Computer Technol­
ogy adds the graphics option to monochrome monitors. This allows both text and
graphics pixel programming on monochrome monitors. While 85141 A and XGAare
standards set by IBM for high-performance PCs and workstations, SVGA is the
commonly used standard. Both SVGA and XGA support up to 1024 x 768 resolution.
The 8514/A video standard was not pushed by IBM; therefore, it never became a
widely used standard. However, XGA is popular with some developers. This is due
to the fact that IBM is providing the documentation to video board makers.

Review Questions

I. True or false. CGA supports both text and graphics modes.
2. What colors are defined by the following attribute bytes in CGA text mode?

(a) 0 (b) 14H
3. The character displayed is the (foreground, background).
4. True or false. Blinking is available to both background and foreground.
5. True or false. MDA supports both text and graphics modes.
6. The MDA video address starts at
7. True or false. EGA supports both t'-e-xc-t -an-d'-gr-a-p'h7ic-s-m-ode programming.
8. True or false. Any program written for MDA or CGA will run on EGA.
9. True or false. VGA emulates MDA, CGA, and EGA.
10. True or false. A program written for VGA native mode will run on EGA.

SECTION 16.3: TEXT MODE PROGRAMMING USING INT 10H

In the IBM PC and 80x86 compatibles, programming the video screen is
handled by a set of Assembly language programs burned into the BIOS ROM chip.
These programs can be accessed through the use ofthe !NT I OH instruction. Certain
registers must be set to fixed values prior to invoking the !NT 10H instruction.
Functions are selected through the value put in register AH. In this section we
examine some of these options, with emphasis on text mode programming. At the
end of this section, character generator ROM is discussed. Graphic mode options
are discussed in Section 16.4.

Finding the current video mode

To find the current video mode set AH = OF and use !NT IOH as follows:

MOV
INT

AH,OFH
10H

;AH=OF

Reminder: DEBUG assumes that numbers are in hex. If you are assembling
the above program in DEBUG, make sure to remove the H, and also put !NT 3 as
the last instruction.

The current video mode is also stored in the BIOS data area in location
00449H. You can verify that by dumping that memory location using DEBUG.

Changing the video mode

To change the video mode, use !NT IOH with AH = 00 and AL = video
mode. A list of video modes is given in Tahle 16-8. Regardless of what mode is
selected, all of modes MDA, CGA, EGA, and MCGA are supported by the VGA
monitor. In the same manner, EGA emulates the functions of CGA and MDA since
every new board is downwardly compatible. Example 16-7 shows the use of !NT
10H functions.

SECTION 16.3: TEXT MODE PROGRAMMING USING INT 10H 491

Example 16-7

Write the following program on an EGA or VGA monitor using INT 10H to:
(a) change the video mode to 03
(b) display letter "A" in 80 locations with the attributes of red on blue
(cl use the DEBUG utility to run and verify the program
(d) use DEBUG to dump the video RAM contents

Solution:

(a) MOV AH,OO
MOV AL,03
!NT IOH

;set mode option
;CGA text mode of 80x25
;monitor is monochrome

(b) Using !NT IOH function AH = 09, one can display a character a certain number of times with
specific attributes.

MOV
MOV
MOV
MOV
MOV
!NT

AH,09
BH,OO
AL,41H
CX,50H
BL,14H
10H

;display option
;page 0
;ASCII for letter "A"
;repeat it 80 (50h) times
;Red on blue

(c) Reminder: DEBUG assumes that all the numbers are in HEX.

C>debug
-A
1131:0100 MOV AH,OO
1131:0102 MOV AL,03
1131:0104 INT 10
1131:0106 MOV AH,09
1131:0108 MOV BH,OO
1131:010A MOV AL,41
1131:010C MOV CX,50
1131:010F MOV BL,14
1131:0111 INT 10
1131: 0113 INT 3
1131: 0114

Now see the result by typing in command -G. Make sure that IP =100 before you run it.

(d) When EGA and VGA monitors emulate CGA in text mode, the video memory address starts at
B8000H. Dumping memory immediately after running the above program gives the following.
Notice the character and the attribute byte stored in even and odd addresses.

-0 B800:0 4F
B800:0000 41 14 41 14 41 14 41 14-41 14 41 14 41 14 41 14 A.A.A.A.A.A.A.A.
B800:0010 41 14 41 14 41 14 41 14-41 14 41 14 41 14 41 14 A.A.A.A.A.A.A.A.
B800:0020 41 14 41 14 41 14 41 14-41 14 41 14 41 14 41 14 A.A.A.A.A.A.A.A.
B800:0030 41 14 41 14 41 14 41 14-41 14 41 14 41 14 41 14 A.A.A.A.A.A.A.A.
B800:0040 41 14 41 14 41 14 41 14-41 14 41 14 41 14 41 14 A.A.A.A.A.A.A.A.

492 CHAPTER 16: VIDEO AND VIDEO ADAPTERS

Example 16-8
Modify Example 16-7 using mode 7 to emulate MDA. Use attribute 87H (white on black blinking).

Solution:
The following shows the code as it would be entered in DEBUG.

1131:0100 MOV AH,OO
1131:0102 MOV AL,07
1131:0104 INT 10
1131:0106 MOV AH,09
1131:0108 MOV BH,OO
1131:010A MOV AL,41
1131:010e MOV eX,50
1131:010F MeV BL,87
1131:0111 INT 10
1131:0113 INT 3
1131: 0114

After running the above program, we dump the MDA video buffer starting at memory address BOOO:O
and see the data and attribute bytes.

-0 BOOO:O F
BOOO:OOOO 41 87 41 87 41 87 41 87-41 87 41 87 41 87 41 87 A.A.A.A.A.A.A.A.

Setting the cursor position (AH = 02)

The cursor position is set by making AH = 2, DH = row, and DL = column.
In, addition, BH = 0 for page 0, the active page being viewed. The following sets
the cursor to row 12, column 28.

MOV
MOV
MOV
MOV
INT

AH,02
BH,O
DH,12
DL,28
10H

;set the cursor option
;page 0
;row 12
;co128
;invoke interrupt

Getting the current cursor position (AH = 03)

To get the current cursor position, AH = 03 of !NT 10H must be used:

MOV
MOV
INT

AH,03
BH,O
10H

;get cursor position
;page 0

After running the above code, registers DH and DL have the row and column
positions of the cursor (in hex), respectively. Register ex provides information
about the cursor shape. See Examples 16-16, 16-17, and 16-18.

Scrolling the window up to clear the screen (AH = 06)

The options 06 and 07 are called scroll functions. They are used to scroll
a part or all of the screen up or down. One of the most widely used applications of
option AH = 06 is to clear the screen, as shown next.

SECTION 16.3: TEXT MODE PROGRAMMING USING INT lOR 493

Example 16-9

MOV
MOV
MOV
MOV
MOV
MOV
MOV
INT

AH,06
AL,O
BH,07
CL,O
CH,O
DL,79
DH,24
10H

;scroll up option
;the entire screen
;normal attribute
;col 0 (top left col)
;row 0 (top left row)
;col 79 (bottom right col)
;row 24 (bottom right row)

A more efficient version of the above code is

MOV
MOV
MOV
MOV
INT

AX,0600H
BH,O?
CX,O
DX,184FH
10H

;18H=24 AND 4FH=79

Writing a character in teletype mode (AH = DE)

Although INT 21 H option AH = 02 can be used to write a single ASCII
character to the screen, there are occasions such as in TSR (terminate and stay
resident) routines in which DOS functions (we will show why in Chapter 24) should
not be used. In these cases, option AH = OEH ofINT IOH of BIOS ROM is used,
and this is commonly done in TSR programming. Function AH = OEH writes an
ASCII character in register AL to the monitor at the current cursor position and
moves the cursor to the next position. If the ASCII number is 07H (bell), 08H
(backspace), ODH (carriage return), or OAH (line feed), it performs the appropriate
action.

ASCII value 07 is for the bell. It is a nonprinting character; the speaker beeps if it is sent to the moni­
tor. Write code to sound the bell twice with some time delay in between.

Solution:

WAIT:

494

MOV AH,OEH ;write character option
MOV AL,07 ;sound the bell
MOV BH,O ;page 0
INT IOH
SUB CX,CX ;CX=O
LOOP WAIT ;waste some time
INT 10H ;sound the bell again

AH = OEH can be used to display a string of characters as shown next:

MYDATA

AGAIN:

DB 'HELLO'

MOV CX,5
MOV SI,OFFSET MY DATA
LODSB
MOV AH,OEH
INT 10H
LOOP AGAIN

;CX=number of bytes
;DS:SI string address
;Ioad character into AL
;option OEH of INT 10H

;display the next char

The above method of displaying a string without using INT 21 H was the
method used in TSR programs until option AH =13H of INT 10H was introduced.
Function AH = 13H is discussed next.

CHAPTER 16: VIDEO AND VIDEO ADAPTERS

Writing a string in teletype mode (AH =13H)

This is the string version of option OE. The early PC/XT BIOS did not
support this function. It is available on PCIXTofBiOS date 1/10/1986 and all later
versions. It is used widely in TSR programs to display a string of ASCII data. The
following are the register values prior to the interrupt call. Example 16- I 0 demon­
strates the use of this option.

AH =13H
AL=O
AL=1
AL=2

AL=3

BL=attribute

BL=has string's attribute. No update for cursor position.
BL=has string's attribute. Cursor position is updated.
string contains both character and attributes. Each character is
followed by attribute. No update for cursor position.
string contains both character and attributes. Each character is
followed by attribute. Cursor position is updated.

BH=page number
CX=string length
DH=row position
DL=column position
ES:BP=starting address of string

Example 16-10

Write a program to display 'HELLO' at screen location row 3, column 25 using BIOS INT IOH.

Solution:
MYDATA DB

MOY
MOY
MOY
MOY
MOY
MOY
MOY
MOY
MOY
INT

'HELLO'

AX,l300H
BL,O?
BH,O
CX,5
DH,3
DL,25
BP,OFFSET MYDATA
SI, SEG MYDATA
ES,SI
IOH

Character generator ROM

;AH = 13H option AL =0
;normal attribute
;video page 0
;display 5 characters
;at row 3
;and column 25
;offset of string
;get the segment address
;ES =segment of string

To display characters on the screen, every video board must have access to
the pixel patterns ofthe characters. In CGA, the patterns are burned into BIOS ROM
starting at FOOO:FA60H. To decipher the patterns, fIrst remember that the CGA
character box is 8x8. Therefore, for every ASCII character there must be 64 (8 x 8
=64) bits for each pattern. This means that every 8 bytes of the ROM provides the
pattern for one character. Now let's see the patterns by using DEBUG.

A>DEBUG
-D FOOO:FA6E L4F
FOOO:FA60 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF 00 00
FOOO:FA70 00 00 00 00 00 00 7E 81-A5 81 BD 99 81 7E 7E FF
FOOO:FA80 DB FF C3 E7 FF 7E 6C FE-FE FE 7C 38 10 00 10 38
FOOO :FA90 7C FE 7C 38 10 00 38 7C-38 FE FE 7C 38 7C 10 38
FOOO:FAAO 38 7C FE 7C 38 7C 00 00-18 3C 3C 18 00 00 FF FF

SECTION 16.3: TEXT MODE PROGRAMMING USING INT 10H 495

Starting with FA6E, the first 8 bytes are for blank (null), resulting in all ODs.
The second 8 bytes are for the patterns for happy face, and so on. Inspecting the
contents of ROM BIOS reveals the following character definition table.

Address Patterns in Hex ASCII Hex Dec
FOOO:FA6E 00,00,00,00,00,00,00,00 NULL 00 00
FOOO:FA76 7E,81,AS,81,BD,99,81,7E HAPPY FACE 01 01
FOOO:FA7E 7E,FF,DB,FF,C3,E7,FF,7E
.
FOOO:FBEE 7C,C6,CE,DE,F6,E6,7C,00 0 30 48
FOOO:FBF6 30,70,30,30,30,30,FC,00 1 31 49
· · .
FOOO:FC36 78,CC,CC,7C,OC,18,70,OO 9 39 57
·
FOOO:FC76 30,78,CC,CC,FC,CC,CC,00 A 41 65
FOOO:FC7E FC,66,66,7C,66,66,FC,00 B 42 66
· · .
FOOO:FD3E FE,C6,8C,18,32,66,FE,OO Z SA 90
· ·
FOOO:FD76 00,00,78,OC,76,CC,76,00 a 61 97
FOOO:FD7E EO,60,60,7C,66,66,DC,00 b 62 98
·
FOOO:FE36 00,00,CC,CC,CC,7C,OC,F8 y 79 121
FOOO:FE3E 00,00,FC,98,30,64,FC,00 z 7A 122
·

FOOO:FE66 00,10,38,6C,C6,C6,FE,00 DELTA 7F 127

For example, for the happy face character we have 7E, 81, AS, 81, BD, 99,
81, and 7E for the hex patterns of the bits that form the character of the screen.
Example 16-11 demonstrates this.

Exam Ie 16-11

Draw the patterns for the happy face (02H) and letter "A" (41H) on an 8x8 box.

Solution:
See Figure \6-5.

Hex Binary Hex B;~ary

7E 01111110 30 00110000
,)1, ~ '0000001 78 01111000
A~=, '0100101 CC 11001100
81 10000001 CC lIDO! 100
BD 10111101 FC 11111100
99 10011001 CC 11001100
81 10000001 CC 11001100
/:..- 0' 11 1 110 DC 00000000

Figure 16-5. Diagram for Example 16-11

496

BIOS ROM contains only the patterns for the first 128 ASCII characters
(00 - 7FH). For the extended character (80 - FFH) patterns, the GRAFTABL utility
in MS-DOS can be used.

CHAPTER 16: VIDEO AND VIDEO ADAPTERS

How characters are displayed in text mode

To see how characters are displayed on the screen, analyze the MDA block
diagram shown in Figure 16-6. For CGA, the process of generating the signals is
exactly the same as in MDA except that the video circuitry generates R (red), B
(blue), G (green), as well as vertical, horizontal, intensity, and dot pattern signals.

The function of the rnultiplexerin Figure 16-6 is to allow access to the video
RAM by both the CPU and 6845 CRT controller. The character generator ROM has
patterns for all the ASCII characters. We just examined the content of this ROM
holding the CGA patterns. First, the 6845 CRT controller is initialized by the CPU.
Then to display characters, the 80x86 CPU writes the characters and their attributes
into the video RAM. The job of the CRT controller is to fetch the characters and
send them to the character generator ROM to get the patterns of every character on
each row for the scan lines. As shown in Figure 16-6, the RAO - RA4 (row address)
output pins from the 6845 fetch the specific row of the character and send it to a
parallel-in-serial-out register (often referred to as a serializer). The job of this
register is to provide the patterns to the video circuitry, one at a time, to be output
serially to the monitor with the attribute.

multiplexer

microprocessor AO - A11
address bus • AO - A11

MAO - MA11 •
• evan odd

address address

2KbytesRAM 2K bytes RAM

characters attributes

micr oproces8or data I. 'f

AO

decoder

lOR or
lOW

lOW

---?
---i

---?

-

6845

MAO-MA11 =-
RS 00-07

A

,
CS

RAO-RA4
Enable

RIW ClK

data bus ~ • selector

~

8-blt latch

" character

generator

character clock

I
divider I parallel inl

I r------i serial out
register

oscillator

~
dot clock

1:..

Horizontal sYnchronization

Vertical synchronization

Display enable

Cursor

Figure 16-6. IBM PC Monochrome Block Diagram

L
I'

'---7

J a-bit data
'\

;.

video

process
circuitry

attribute
decoder

vert. sy"
f- pin 9 ofe

c.
onnector

- hariz. sy
pin 8 ote

nco
onnector

rvideo dot patterns

r-Intenslty

(Reprinted by permission from "IBM Technical Reference Options and Adapters" c. 1981 by International Business Machines
Corporation)

SECTION 16.3: TEXT MODE PROGRAMMING USING INT lOR 497

Character definition table in VGA

In the discussion of CGA, the character definition table was examined by
inspecting the contents of character generator BIOS ROM. The character box in
eGA is 8 x 8 and as a result, the text is not very sharp. In VGA, the character box
is 8 x 16 and the patterns for all the character are stored in ROM memory. The
address for that memory varies from computer to computer. To get the address of
the character definition table, use INT IOH with AH =llH, AL=30H, and BH =06.
On return from INT 10H, ES:BP has the address. The number of bytes used to form
patterns for each character is given in CX, and DL has the row number minus one.
This is shown in Example 16-13. Example 16-12 diagrams two characters for VGA.

Exam Ie 16-12

Draw the patterns for VGA characters of happy face (02H) and letter "A" (4IH) on a 9xl6 box. Con­
trast this with eGA in Example 16-11.

Solution:

The patterns for these characters are as follows. Figure 16-7 shows the diagram.
See Example 16-13 for how to get the patterns.

OO,OO,7E,81,AS,81,81,BD,99,81,81,7E,OO,OO,OO,OO
OO,OO,lO,38,6C,C6,C6,FE,C6,C6,C6,C6,OO,OO,OO,OO

happy face
A

00
7E
81
AS
81
81
BD
99
81
81
IE
OC
DC
cm
00

Hex

DC
00
10
38
6(
(6
C6

C6
C6
Co
C6
'JC
:]0
JO
:]0

Figure 16-7. Diagram for Example 16-12

498

Changing the cursor shape using INT 10H

Using BIOS INT IOH options one can examine or even change the cursor
shape. Option AH = 03 ofINT 10H will not only provide the current position of the
cursor but also the beginning and ending lines of the cursor as shown in Example
16-14. Notice the beginning and ending values are given in hex. Example 16-15
shows how to change the beginning and ending lines ofthe cursor using option AH=
01 ofINT lOR. Example 16-16 shows further examples of changing the shape of
the cursor.

CHAPTER 16: VIDEO AND VIDEO ADAPTERS

Example 16-13
Use DEBUG to find the address of the character definition table of a given VGA board.

Solution:

C>\OOS\OEBUG
-A
1709:0100 MOV AH,11
1709:0102 MOV AL,30
1709:0104 MOV BH,06
1709:0106 INT 10
1709:0108 INT 3
1709:109

-G

AX=XXXX BX=XXXX CX=0010 OX=0018 SP=XXXX BP=61E7 SI=XXXX OI=XXXX
OS=1709 ES=EOOO SS=XXXX
1709:0108 CC INT 3

ex =IOH gives 16 bytes used for each character. DL =18H =24, which indicates that there are a total
of 25 rows of characters per screen. Dumping the contents of memory location at ES:BP. which is
EOOO:6IE7, shows the following pattern:

-0 EOOO:61E7
EOOO:61E7 00-00 00 00 00
EOOO:61FO 00 00 00 00 00 00 00 00-00 7E 81 AS
EOOO:6200 81 81 7E 00 00 00 00 00-00 7E FF OB
EOOO:6210 FF FF FE 00 00 00 00 00-00 00 00 6C

and so on

Going through these memory locations reveals:

BYTE PATTERNS

00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00
OO,OO,7E,81,AS,81,81,BD,99,81,Bl,7E,OO,OO,OO,OO

OO,OO,38,6C,C6,C6,D6,D6,D6,C6,C6,6C,38,OO,OO,OO
00,00,18,38,78,18,18,18,18,18,18,7E,00,00,00,00
00,00,7C,C6,06,OC,18,30,60,CO,C6,FE,00,00,00,00

00,00,10,38,6C,C6,C6,FE,C6,C6,C6,C6,00,00,00,00
00,00,FC,66,66,66,7C,66,66,66,66,FC,00,00,00,00

and so on

00
81
FF
FE

00 00 00
81 BO 99
FE C3 E7
FE FE FE

ASCII HEX

null 00
happy face 01

. '" ...
0
1
2

A

B

30
31
32

41

42

SECTION 16.3: TEXT MODE PROGRAMMING USING INT IOH 499

Example 16-14
Using DEBUG, find the beginning and ending lines of the cursor on your Pc.

Solution:
MOV AH,03
INT 10H
INT 3

AX=0300 BX=OOOO CX=OOOE OX=1600 SP=CFDE BP=OOOO SI=OOOO OI=OOOO
OS=lSBO ES=lSBO SS=lSBO CS=lSBO IP=0104 NV UP OI PL NZ NA PO NC
lSBO:0104 CC INT 3

Registers CH provides the beginning line (00, or 13) and CL provides the ending line (OE, or 14), for
the cursor, while registers DH and DL provide the current row and column position of the cursor.

L' ·16-15
On a VGA monitor, (a) get the current cursor shape and save it, (b) change the cursor line to 2,12 (c)
wait for a character (using TNT2IH) to be typed, and (d) restore the original cursor shape.

Solution:
Option AH =0 I of TNT 10H allows one to set the top and bottom lines of the cursors. Registers
CH and CL must be programmed for the beginning and ending cursor lines, respectively.

(a) MOV AH,03 (c) MOVAH,OI
TNT 10H TNT21H
PUSHCX

(b) MOV AH,OI (d) POPCX
MOVCX,OC02 MOVAH,OI
TNT 10H TNT IOH

Example 16-16
Ifwe set the beginning and ending lines for the cursor more than the height of the character box, the
cursor will disappear. Repeat Example 16-15 to make the cursor disappear.

Solution:
(a) MOV AH,03 (cl MOVAH,OI

TNT IOH TNT21H
PUSHCX

(b) MOV AH,OI (d) POPCX
MOV CX,2000H MOVAH,OI
TNT 10H TNT 10H

Review Questions

I. True or false. Functions AH = 0 to AH = 6 of TNT 10H are native modes in CGA.
2. For MDA, AH = is the native mode.
3. When VGA emulates CGA, it uses what addresses for the video buffer?
4. When VGA emulates MDA, it uses what addresses for the video buffer?
5. What is the size of the character box in CGA?
6. True or false. The patterns for CGA characters are provided in BIOS ROM.
7. How many bytes of memory does it take to store the pattern for one CGA character?
8. True or false. The patterns for VGA characters are provided in BIOS ROM.

500 CHAPTER 16: VIDEO AND VIDEO ADAPTERS

SECTION 16.4: GRAPHICS AND GRAPHICS PROGRAMMING

In all the video programming examples given so far, characters have been
used as units to be addressed and a character was treated as a group of pixels. In this
section, programming individual pixels will be discussed. In graphics mode, pixel
accessing is also referred to as bit-mapped graphics. IBM refers to it as APA (all
points addressable) versus AN (alphanumerical) for text mode. First, the relationship
between pixel resolution, the number of colors supported, and the amount of video
memory in a given video board is clarified.

Graphics: pixel resolution, color, and video memory

There are two facts associated with every pixel on the screen:
I. The location of the pixel
2. Its attributes: color and intensity

These two facts must be stored in the video RAM. The higher the number
of pixels and colors options, the larger the amount of memory that is needed to store
them. In other words, the memory requirement goes up as the resolution and the
number of colors supported go up. The number of colors displayed at one time is
always 2n where n is the number of bits set aside for the color. For example when
4 bits are assigned for the color of the pixel, this allows 16 combinations of colors
to be displayed at one time because 24 = 16. The relation between the video memory,
resolution, and color for each video adapter is discussed separately.

Example 16-17

In certain video graphics, a maximum of256 colors can be displayed at one time. How many bits are
set aside for the color of the pixels?

Solution:
To display 256 colors at once, we must have 8 bits set for color since 28 = 256.

The case of eGA

The eGA board can have a maximum of 16K bytes of video memory since
the 6845 has only 14 address pins (214 =16K). We showed in Section 16.2 how this
16K bytes of memory can hold up to 4 pages of data, where each page represents
one full screen of 80 x 25 characters. In graphics mode, the number of colors
supported varies depending on the resolution, as shown next.

320 x 200 (Medium resolution)

In this mode there are a total of 64,000 pixels (320 columns x 200 rows =
64,000). Dividing the total video RAM memory of 128K bits (16K x 8 bits = 128K
bits) by the 64,000 pixels gives 2 bits for the color of each pixel. These 2 bits give
rise to 4 colors since 22 = 4. Therefore, the 320 x 200 resolution eGA can support
only up to 4 different colors at a time. See Figure 16-8. These 4 colors can be selected
from a palette of 16 possible colors. To select this mode, use set mode option AH=
o of INT 10H with AL = 04 for mode. After setting the video mode to AL = 04, we
must use option OBH of INT IOH to select the color of the pixel displayed on the
screen.

640 x 200 (High resolution)

In this mode there are a total of 128,000 pixels (200 x 640 = 128,000).
Dividing the 16K bytes of memory by this gives I bit (128,0001128,000 =1) for
color. The bit can be on (white) or off (black). Therefore, the 640 x 200 high-reso­
lution eGA can support only two colors: black and white. To select this mode, use
set mode option AH = 0 of [NT 10H with AL = 06 for mode.

SECTION 16.4: GRAPHICS AND GRAPHICS PROGRAMMING 501

640x200 2-color

76543210
[0111101-0- I

I ~~~~~b~r--

320x200 4-color
76543210

100-0 1,1611----1
'-U--LJ LJ D

J / ~/

Figure 16-8. eGA Pixel Mapping

502

Note that for a fixed amount of video RAM, as the resolution increases, the
number of supported colors decreases. This discussion bypasses l6-color 160 x 100
low resolution, which is used with color TV sets since no PC supports it.

The case of EGA

In the EGA board, the memory buffer was increased to a maximum of256K
bytes. This allowed both the number of colors and the number of pixels supported
in graphics mode to increase. Although EGA can have up to 64 colors, only 16 of
them can be displayed on the screen at a time. This is in contrast to CGA, which
displayed only 4 colors of a l6-color palette. EGA graphics memory starts at
AOOOOH and goes to a maximum of AFFFFH, using only 64K bytes of the PC's
memory space. How is this 256K bytes of memory accessed through a 64K-byte
address window? To solve this problem, IBM designers used 4 parallel planes, each
64K bytes, to access the entire 256K bytes of video RAM. In this scheme, each plane
holds one bit of the 4-bit color. The assignment of 4 bits for color allows a maximum
of 16 colors to be displayed at any given time. In the EGA card, IBM introduced
what are called palette registers. There are a total of 16 palette registers in the EGA,
each holding 8 bits. EGA uses only 6 bits out of the 8 bits of the palette register,
giving rise to a maximum of 64 hues.

Video memory size and color relation for EGA

In EGA, to support 640 x 350 pixels with 16 colors requires a minimum of
640 x 350 x 4 = 896,000 bits of memory, but because of the concept of the plane
and the 64K-byte address space of AOOOOH - AFFFFH, the memory must be 256K
bytes, although some portions of video memory are unused.

In EGA, one can use 64K bytes for the video RAM, making only 16K bytes
available for each color plane, but this results in reducing the number of colors
supported. EGA is downwardly compatible with CGA in graphics mode, the same
as in text mode. To program the palette registers of the EGA, use option AL =0 of
!NT 10H. !NT 10H has many options for pixel programming of EGA and VGA.

The case of VGA

In VGA, the number of pixels was increased to 640 x 480 with support for
256 colors displayed at one time. The color palette was increased to 218 = 262,144
hues. The number of palette registers was also increased to 256. Each palette register
holds 18 bits, 6 bits for each of the red, green, and blue colors. VGA was the first
analog monitor introduced by IBM. All previous monitors were digital. In analog
VGA, the analog colors of red, green, and blue replace the digital red, green, and
blue of the digital display, allowing substantial increases on the number of colors
supported. This gives rise to the use of what is called a video DAC (digital-to-analog
converter). Each color of red, green, and blue has a 6-bit D/A converter, allowing
64 combinations for each color, making a total of 18 bits used for the palette which
gives rise to total of 262, 144 (218) hues. If the video DAC size is expanded from 6
to 8, the number of combinations for the three signals will be 256 x 256 x 256 = 224
= 16,777,216 hues for the color palette, which is referred to as 16.7 million colors
in many advertisements.

CHAPTER 16: VIDEO AND VIDEO ADAPTERS

Map 3 0 1 1 0 0 1 1 0 Parallel memory planes

1 I 1 LLrLI
Map 2 1 0 0 0 1 0 1 1

-r~TTI 111
Map 1 i 0 1 0 0 1 1 1 0

c-I -I TTTITT--
Map 0 0 0 0 0 1 1 1 1

~·-T·-~~
0100 1010 1000 0000 0111 1011 1111 0101

Pixel values

Figure 16-9. 16-Color EGA and VGA Mode Pixel Mapping

Video memory size and color relation for VGA

In VGA, 640 x 480 resolution with support for 256 colors displayed at one
time will require a minimum of640 x 480 x 8 = 2,457,600 bits of memory, but due
to the architectural design ofVGA, there must be 256K bytes of memory available
on the video board. Using the concept of planes means that each plane has 64K
bytes. See Figure 16-9. VGA is downward compatible with both CGAand EGA in
graphics mode. To access one ofthe 256 palette registers ofVGA, set AH = 1 OH and
use option AL = IOH ofINT 10H. As mentioned earlier, for the AH= IOH mode there
are many options available for pixel programming of both EGA and VGA. These
options are selected through register AL.

The case of SVGA

In SVGA and IBM's XGA, all the resolutions of 800 x 600, 1024 x 768,
and 1024 x 1024 are supported. The memory requirement for these boards can reach
millions of bytes, depending on the number of colors supported. For example, SVGA
of800 x 600 pixels with 256 colors displayed at the same time requires a minimum
of800 x 600 x 8 =3,840,000 bits of memory, or a total of480,000 bytes. Due to the
use of bit planes, a total of512K bytes of DRAM is needed. See Table 16-9. Another
example is the total memory required by 800 x 600 resolution with 16 million colors.
In this case we need 800 x 600 x 24 = 11,520,000 bits or 1,440,000 bytes, or 1406K
bytes. Due to the use of bit planes, it uses 1.5M bytes of DRAM (see Table 16-9) .

. Table 16-9: Video Memory Requirements by Resolution

16 Colors ! 256 Colors ! 65,536 Colors 16,777,216 Colors I , ,

Resolution
,

(4 bits) l (8 bits) , J16 bits) 1- .Q4bitst. I - _.
~

640 x 480 256K I 512K , 1M I 1M I -~------- ---------+ - - j - - ------

800 x 600 1M i l.5M
,

1024 x 768 ~~~~=t-- 5~~K __ , .1.5M _____ 2.5M ----I

1 1280 x 1024 1M -- + .. 1.5M t_ 2.5M 4M
I ----------- . - ---_._-----,- -------+

j,[600x 1200 1M 1 2M 4M 6M
" .. - -- - -- - -

SECTION 16.4: GRAPHICS AND GRAPHICS PROGRAMMING 503

INT 10H and pixel programming

To address a single pixel on the screen, use INT IOH with AH = OCH. To
do that, X and Y coordinates of the pixel must be known. The values for X (column)
and Y (row) vary depending on the resolution of the monitor. CX holds the column
point (the X coordinate) and OX the row point (Y coordinate). If the display mode
supports more than one page, then BH=page number; otherwise, it is ignored. To
tum the pixel on or off, AL = 1 or AL = 0 for black and white. The value of AL can
be modified for various colors.

Drawing horizontal or vertical lines in graphics mode

To draw a horizontal line, choose values for the row and column points at
the beginning of the line and then continue to increment the column until it reaches
the end of line as shown in Example 16-18.

Example 16-18

Using INT 10H, write a program to:
(a) clear the screen
(b) set the mode to CGA of 640 x 200 resolution
(c) draw a horizontal line starting at column 50 and row 50 and ending at column 200, row 50

Solution:
;clear the screen

MOV AX,0600H
MOV BH,07
MOV CX,O
MOV OX,184F
INT 10H

;set the mode to 06 (CGA high resolution)
MOV AH,OO
MOV AL,06
INT 10H

;draw the horizontal line from (50,50) to (200,50)
MOV CX,50 ;col pixel=50
MOV OX,50 ;row pixel=50

BACK: MOV AH,OC ;OCH option to write a pixel
MOV AL,OI ;tum on the pixel
INT IOH
INC CX ;increment horizontal position
CMP CX,200 ;check for the last position
JNZ BACK ;if not, continue

Review Questions

1. What is the maximum amount of memory that can be installed on the CGA card?
2. The 320 x 200 resolution CGA can support colors.
3. True or false. In 640 x 200 resolution, the pixel color can be black or white.
4. As the number of pixels goes up, there is (more, less) video memory for

storage of color bits.
5. Ifa total of24 bits is set aside for color, how many colors are available?
6. Calculate the total video memory needed for 1024 x 768 resolution with 16 colors

displayed at the same time.

504 CHAPTER 16: VIDEO AND VIDEO ADAPTERS

SUMMARY

The first section ofthis chapter focused on the technology of video monitors
in terms of how images are displayed on the screen by the method called raster
scanning. The features by which monitors are judged were given, including resolu­
tion, dot pitch, dot rate, and horizontal and vertical frequency. The video adapter
board handles communication between the motherboard and the monitor. The
information to be displayed on the monitor is stored in video display RAM (VDR).
The CRT controller reads the data in VDR and converts it into signals to be sent to
the monitor. Video monitors work in either text or graphics mode. In text mode, the
screen is programmed in units called character boxes, whereas in graphics mode the
screen is programmed pixel by pixel.

Next, the available video adapters were discussed: MDA, CGA, EGA,
VGA, and MCGA. In text modes, each character requires 2 bytes ofVDR, one for
the byte of data to be displayed and one for the attribute byte, which gives
information such as foreground and background color, blinking, and intensity. BIOS
INT 10H can be used to set the video mode, cursor position and shape, clear the
screen, write characters to the screen and draw pixels on the screen.

PROBLEMS

SUMMARY

SECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO ADAPTERS

I. Calculate the number of scan lines and dots per lines for each of the following.
(a) 640 x 200 EGA, DF~14.318 MHz, HF~15.75 KHz, and VF~60 Hz
(b) 640 x 350 EGA, DF~16.257 MHz, HF~21.85 KHz,and VF~60 Hz
(c) 640 x 480 VGA, DF~25.175MHz, HF~31.5 KHz, and VF~60 Hz

2. In Problem I, find the number of scan lines and pixels used for overscan and re­
trace.

3. The following table is from PC Magazine, July 1993, showing the recommended
dot pitch for various resolutions and monitor size. Calculate the diagonal size
used by the image on screen for each case.
Monjtor sjze 640 x 480 800 x 600 I 024 x 768 I 280 x I 024
14" 0.35 0.28 0.22 0.18
15" 0.38 0.30 0.24 0.19
17" 0.43 0.34 0.27 0.22
20" 0.50 0.40 0.31 0.25

4. A person wants to use a 14-inch monitor of 0.5 mm dot pitch for 640 x 480 VGA
color resolution applications. Show by mathematics why he (she) cannot do that.

5. Dot pitch refers to the size of the (pixel, distance in between pixels).
6. True or false. In color monitors each pixel has its own unique color.
7. For 640 x 200 resolution used for the 80 x 25 characters per screen, find the size of

the character box.
8. A 320 x 200 resolution used for the 8 x 8 character box allows only char-

acters per screen.

SECTION 16.2: VIDEO ADAPTERS AND TEXT MODE PROGRAMMING

9. Give the total memory space and address range set aside for the video memory in
the Pc.

10. Give the video RAM starting address for each: MDA, CGA, EGA, and VGA.
II. The (even, odd) location is used for the character while ___ _

(even, odd) location is used for the attribute.
12. Find the attribute byte for each of the following.

(a) red on black (b) red on blue
(c) yellow on blue

505

506

13. Give the resolution and the character box size for MDA.
14. For MDA, what attributes are associated with FOH?
15. Which video modes are supported by all three: CGA, EGA, and VGA?
16. How would you prove that CGA can hold a maximum of8 pages of 40 x 25 char­

acters?

SECTION 16.3: TEXT MODE PROGRAMMING USING INT 10H

17. True or false. VGA supports all previous video standards.
18. Give the starting memory address used by VGA emulating CGA text mode.
19. Give the starting memory address used by VGA emulating MDA.
20. The native mode for CGA text of 80 x 25 characters per page is selected by option

AH=
21. The following is the video memory dump using DEBUG.

B800:0000 45 12 45 1245 1245 12
(a) Which mode is this CGA or MDA?
(b) Give the character and its attribute being displayed.

22. Repeat Problem 21 for the following dump.
BOOOO:OOOO 64 FO 64 FO 64 FO 64 FO

23. Write a program that produces the memory dump in Problem 21. Use DEBUG.
24 Write a program that produces the memory dump in Problem 22. Use DEBUG.
25. Draw the character boxes for the letter B and digits 2 and 9, both in CGA and

VGA.

SECTION 16.4: GRAPHICS AND GRAPHICS PROGRAMMING

26. True or false. The more color a given video board supports, the more DRAM it
needs.

27. True or false. The more pixels a given video board supports, the more DRAM it
needs.

28. The 16-bit color depth can support how many color hues?
29. Why can 620 x 200 CGA support only black and white?
30. In a given VGA board with 256K bytes of memory, how can it fit into space

AOOOO - AFFFFH?
31. To support 16,777,216 colors, the number of bits set aside for color depth must be

32. Verify the memory requirements of the video board resolution and color depth of
Table 16-9 for the following cases.
(a) 640 x 480 of 16,256, 65,536 and 16 million colors
(b) 1024 x 768 of 16,256, 65,536 and 16 million colors
(c) 1600 x 1200 of256 and 65,536 colors

33. Write a program to change the video mode to 620 x 200 CGA high-resolution
graphics and then draw two vertical lines splitting the screen into three equal sec­
tions.

34. True or false. Both EGA and VGA use the same starting address for graphics.
35. Write a program using INT 10H to change the cursor shape to beginning and end­

ing lines of 5,9.

CHAPTER 16: VIDEO AND VIDEO ADAPTERS

ANSWERS TO REVIEW QUESTIONS

SECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO ADAPTERS

1. raster scan 2. horizontal
3. true
4. (a) D-F (b) V-F
5. false 6. true
7 true 8. true

SECTION 16.2: VIDEO ADAPTERS AND TEXT MODE PROGRAMMING

1. true
2. (a) OOH =0000 OOOOB is black on black. (b) 14H =0001 0100 is red on blue.
3. foreground
4. false.; to foreground only 5. false; only text mode
6. BOOOOH
7. true 8. true
9. true 10. false

SECTION 16.3: TEXT MODE PROGRAMMING USING INT 10H

1. true
3. B8000H
5. 8 x 8
7. 8 bytes

2. 97
4. BOOOOH
6. true
8. false

SECTION 16.4: GRAPHICS AND GRAPHICS PROGRAMMING

1. 16K bytes 2. 4
3. true 4. less
5. 16.7 million
6. 1024 x 768 x 4=3.145.728 bits = 384K bytes. but it uses 512KB due to bit planes.

ANSWERS TO REVIEW QUESTIONS 507

CHAPTER 17

SERIAL DATA COMMUNICATION
AND THE 16450/8250/51 CHIPS

508 CHAPTER 17: SERlALCOMMUNICATION AND 16450/8250/51

Computers transfer data in two ways: parallel and serial. In parallel data
transfers, often 8 or more lines (wire conductors) are used to transfer data to a device
that is only a few feet away. Examples of parallel transfers are printers and hard
disks using cables with many wire strips. Although in such cases a lot of data can
be transferred in a short amount oftime by using many wires in parallel, the distance
cannot be great. To transfer to a device located many meters away, the serial method
is used. In serial communication, the data is sent one bit at a time, in contrast to
parallel communication, in which the data is sent a byte or more at a time. Serial
communication and the study of associated chips are the topics of this chapter. In
Section 17.1 we study the basics of serial data communications. In the second
section we look at serial communication in the IBM PC and BIOS !NT 14H. In
Section 17.3 we study National Semiconductor's 8250 UART chip (and its vari­
ations) since it is the most widely used chip for the PC and compatibles' COM port.
In Section 17.4 we examine Intel's 8251 USART chip.

SECTION 17.1: BASICS OF SERIAL COMMUNICATION

When a microprocessor communicates with the outside world it provides
the data in byte-sized chunks. In some cases, such as printers, the information is
simply grabbed from the 8-bit data bus and presented to the 8-bit data bus of the
printer. This can work if the cable is not too long since long cables diminish and
even distort signals. In addition, an 8-bit data path is expensive. For these reasons,
serial communication is used for transferring data between two systems located at
distances of hundreds offeet to millions of miles apart. Figure 17-1 diagrams serial
versus parallel data transfers.

Serial Transfer Parallel Transfer

DO

Sender I---~II Receiver
'------'

Sender Receiver

D7

Figure 17-1. Serial VS. Parallel Data Transfer

The fact that in serial communication a single data line is used instead of
the 8-bit data line of parallel communication makes it not only much cheaper but
also makes it possible for two computers located in two different cities to commu­
nicate over the telephone.

For serial data communication to work, the byte of data must be grabbed
from the 8-bit data bus of the microprocessor and converted to serial bits using a
parallel-in-serial-out shift register; then it can be transmitted over a single data line.
This also means that at the receiving end there must be a serial-in-parallel-out shift
register to receive the serial data and pack them into a byte and present it to the
system at the receiving end. Of course, if data is to be transferred on the telephone
line, it must be converted from Os and I s to audio tones, which are sinosoidal-shaped
signals. This conversion is performed by a peripheral device called a modem, which
stands for "modulator/demodulator."

SECTION 17.1: BASICS OF SERIAL COMMUNICATION 509

Simplex

Half Duplex

Full Duplex

When the distance is short, the digital signal can be transferred as it is on a
simple wire and requires no modulation. This is how IBM PC keyboards transfer
data between the keyboard and the motherboard. However, for long-distance data
transfers using communication lines such as a telephone, serial data communication
requires a modem to modulate (convert from Os and I s to audio tones) and
demodulate (converting from audio tones to Os and Is).

Serial data communication uses two methods, asynchronous and synchro­
nous. The synchronous method transfers a block of data (characters) at a time while
the asynchronous transfers a single byte at a time.

It is possible to write software to use either of these methods, but the
programs can be tedious and long. For this reason, there are special IC chips made
by many manufacturers for serial data communications. These chips are commonly
referred to as UART (universal asynchronous receiver-transmitter) and USART
(universal synchronous-asynchronous receiver-transmitter). The COM port in the
IBM PC uses the 8250 UART, which is discussed in Section 17.3. The synchronous
method and the Intel USART 8251 are discussed in Section 17.4.

Half- and full-duplex transmission

In data transmission if the data can be transmitted and received, it is a duplex
transmission. This is in contrast to simplex transmissions such as printers, in which
the computer only sends data. Duplex transmissions can be half or full duplex,
depending on whether or not the data transfer can be simultaneous. If data is
transmitted one way at a time, it is referred to as half duplex. If the data can go both
ways at the same time, it is full duplex. Of course, full duplex requires two wire
conductors for the data lines (in addition to ground), one for transmission and one
for reception, in order to transfer and receive data simultaneously. See Figure 17-2.

Transmitter ·1 Receiver
I

I
Transmitter ~t ,,..i Receiver

I -- " I
Receiver ~ Transmitter

I
Transmitter

I ·1
Receiver

I

I Receiver I· I Transmitter I

Figure 17-2. Simplex, Half- and Full-Duplex Transfers

510 CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

Asynchronous serial communication and data framing

The data coming in at the receiving end of the data line in a serial data
transfer is all Os and 1 s; it is difficult to make sense of the data unless the sender and
receiver agree on a set of rules, a protocol, on how the data is packed, how many
bits constitute a character, and when the data begins and ends.

Start and stop bits

Asynchronous serial data communication is widely used for character-ori­
ented transmissions, and block-oriented data transfers use the sychnochrounous
method. In the asynchronous method, each character is put in between start and stop
bits. This is calledJraming. In data framing for asynchronous communications, the
data, such as ASCII characters, are packed in between a start bit and a stop bit. The
start bit is always one bit but the stop bit can be one or two bits. The start bit is
always a 0 (low) and the stop bit(s) is 1 (high). For example, look at Figure 17-3
where the ASCII character "A", binary 0100 0001, is framed in between the start bit
and 2 stop bits. Notice that the LSB is sent out first.

One Frame

goes out last 1 d7 dO t 90~S out first

Figure 17-3. Framing ASCII "A" (41H)

Example 17-1

In Figure 17-3, when there is no transfer the signal is 1 (high), which is
referred to as mark. The 0 (low) is referred to as space. Notice that the transmission
begins with a start bit followed by DO, the LSB, then the rest of the bits until the
MSB (D7), and finally, the 2 stop bits indicating the end of the character "A".

In asynchronous serial communications, peripheral chips and modems can
be programmed for data that is 5, 6, 7, or 8 bits wide. This in addition to the number
of stop bits, 1 or 2. While in older systems ASCII characters were 7-bit, due to
extended ASCII characters, 8 bits are required for each character. Small non-ASCII
keyboards use 5- and 6-bit characters. In some older systems, due to the slowness
of the receiving mechanical device, 2 stop bits were used to give the device sufficient
time to organize itself before transmission of the next byte. However, in modern
PCs the use of 1 stop bit is common. Assuming that we are transferring a text file
of ASCII characters using 2 stop bits, we have a total of 11 bits for each character
since 8 bits are for the ASCII code, and 1 and 2 bits are for start and stop bits,
respectively. Therefore, for each 8-bit character there are an extra 3 bits, or more
than 30% overhead.

Calculate the total number of bits used in transferring 5 pages, each with 80x25 characters. Assume
8 bits per character and 1 stop bit.

Solution:

For each character, a total of 10 bits is used, 8 bits for each character, 1 stop bit, and 1 start bit. There­
fore, the total number of bits is 80 x 25 x 10 = 20,000 bits per page. For 5 pages, 100,000 bits will be
transferred.

SECTION 17.1: BASICS OF SERIAL COMMUNICATION 511

Example 17-2

In some systems in order to maintain data integrity, the parity bit of the
character byte is included in the data frame. This means that for each character (7-
or 8-bit, depending on the system) we have a single parity bit in addition to start and
stop bits. The parity bit is odd or even. In the case of an odd-parity bit the number
of data bits, including the parity bit, has an odd number of I s. Similarly, in an
even-parity bit the total number of bits, including the parity bit, is even. For example,
the ASCII character "A", binary 0100 0001, has 0 for the even-parity bit. UART
chips allow programming of the parity bit for odd-, even-, and no-parity options, as
we will see in the next section. If a system requires the parity, the parity bit is
transmitted after the MSB, and is followed by the stop bit.

Data transfer rate

The rate of data transfer in serial data communication is stated in bps (bits
per second). Another widely used terminology for bps is baud rate. However, the
baud and bps rates are not necessarily equal. This is due to the fact that baud rate is
the modem terminology and is defined as number of signal changes per second. In
modems, there are occasions when a single change of signal transfers several bits
of data. As far as the conductor wire is concerned, the baud rate and bps are the
same, and for this reason in this book we use the terms bps and baud interchangeably.

The data transfer rate of a given computer system depends on communica­
tion ports incorporated into that system. For example, the early IBM PCIXT could
transfer data at the rate of 100 to 9600 bps. However in recent years, PCs, PS, and
80x86 compatibles transfer data at rates as high as 19,200 bps. It must be noted that
in asynchronous serial data communication, the baud rate is generally limited to
100,000 bps.

Calculate the time it takes to transfer the entire 5 pages of data in Example 17-1 using:
(a) 2400 bps (b) 9600 bps

Solution:

(a) 100,000/2400 =41.67 seconds
(b) 100,000/9600 =10.4 seconds

1488

-'-
UART ~
Chip -{ 1489 CPU

(TTL output ..:...:..:..;:.

ground

RS232 RS232

2 ~ 2

3 ~ 3

7 ~ 7

r
RS232 cable

Figure 17-4. UART-to-RS232 Connections using MC1488 and MC1489 Chips

1489

'-l/
j 1488 MODEM

'--
ground

512 CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

RS232 and other serial va standards

To allow compatibility
among data communication equip­
ment made by various manufacturers,
an interfacing standard called RS232
was set by the Electronics Industries
Association (EIA) in 1960. In 1963 it
was modified and called RS232A.
RS232B and RS232C were issued in
1965 and 1969, respectively. In this
book we refer to it simply as
RS232. Today, RS232 is the most
widely used serial I/O interfacing
standard. However, since the standard
was set long before the advent of the
TTL logic family, the input and output
voltage levels are not TTL compat­
ible. In the RS232 a 1 is represented
by -3 to -25 V, while the 0 bit is +3 to
+25 V, making-3 to +3 undefined. For
this reason, to connect any RS232 to a
microprocessor-based system we
must use voltage converters such as
MC 1488 and MC 1489 to convert the
TTL logic levels to the RS232 voltage
level, and vice versa. MCI488 is used
to translate from the TTL to RS232
voltage level and MC1489 to convert
from the RS232 to the TTL level.
MCI488 and MCI489 IC chips are
commonly referred to as line drivers
and line receivers. This is shown in
Figure 17-4.

RS232 pins

Table 17-1 provides the pins
and their labels for the RS232 cable,
commonly referred to as the DB-25
connector. In labeling, DB-25P refers
to the plug connector (male) and DB-
25S is for the socket connector (fe­
male). See Figure 17-5.

Table 17-1: RS232 Pins

:1
1 Pin 1 Description 'll
I 2 Transmitted data (TxD) ,

I Protective ground =l
3 'Received data (RxD) ,.' JI

c-±. ! Request to send (RTS) . j
I 5.: Clear to send (CTS) n',

,16, 6'~ ,,' Data set ready (DSR) .n'~'I'
r:?TSi;;1 ground (GND)~
~n ' Data carrier detect DCD I II

:~ Reserved for data set testin --1
11 ' Unassilmed

J,I
12 I Secondary data carrier detect

13 i Secondary clear to send

14 Secondary transmitted data ..

15 Transmit signal element timin -

I Secondary received data ~
17 i Receive si nal element tim~' 16

" 18 Unassi ed

1

1,
, 19 Secondary request to send I,

',r-2201'--tI=D=a=ta=t"'errn=-~i~n=al"'-r=eC"ad"-Y"'"(~D=T=R=-)- --j

I"" 'Si nal uali detector

24 I Transmit signal element timin

[25 IUnassigned

Due to the
fact that not all the
pins are used in mod­
em microcomputers,
IBM introduced the
DB-9 version of the
serial I/O standard,
which uses only 9
pins, as shown in Ta­
ble 17-2. The IBM
PC 9-pin serial port
is shown in Figure
17-6.

(\

Ol~' 1 2 3 4 5 6 7 8 9 10111221 o 0 0 0 0 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0 000
141516171819202122232425

Figure 17-5. RS232 DB-25P (Male) Connector

SECTION 17.1: BASICS OF SERIAL COMMUNICATION 513

Other serial 110 interface standards

In the RS232 cable, as the length
of the cable is increased, the signals en­
counter more capacitance, making high­
speed data transfer unreliable. We can use
RS232 to transfer data at the rate of
100,000 bps and higher if we are willing
to cut the cable length to 5 feet or less. To
increase the rate of the data transfer and
cable length, the electrical specifications
ofthe RS232 had to be redefined. This led
to new cable standards called RS422Aand
RS423. Table 17-3 shows the comparison
ofthese two standards with the RS232.

Data communication classification

Current terminology classifies
data communication equipment as DTE
(data terminal equipment) or DCE (data
communication equipment). DTE refers
to terminals and computers that send and
receive data, while DeE refers to commu­
nication equipment, such as modems, that
are responsible for transferring the data.
Notice that all the RS232 pin function
definitions of Tab les 17-1 and I 7-2 are
from the DTE point of view.

The simplest connection between

o 1 2 3
000

o 0
6 7

4 5
o 0

o 0
8 9

o

Figure 17-6. IBM PC 9-Pin Male
Connector

Table 17-2: IBM PC 9-Pin Signals

Pin Descrivtion

I Data carrier detect (DCD)
,

; 2 Received data (RxD)

3 Transmitted data (TxQ)

4 Data terminal ready (DTR)

5 Sigp.al ground(GNDl

6 Data set readv (DSR)

7 Request to send (RTS)

8 Clear to send (CTS)

9 Ring indicator (Rr)

DTE and DCE requires a minimum of three pins, TxD, RxD, and ground, as shown
in Figure 17-7. However, the minimum connection between two DTE devices, such
as two PCs, requires pins 2 and 3 to be interchanged as shown in Figure 17-7. In
looking at Figure 17-7, keep in mind that the RS232 signal definitions are from the
point of view of DTE.

!I

,.

:1

"

Table 17-3: RS232 Comparison with RS422 and RS423

IC= I RS232 RS422 iRS423 I

Max. cable length (ft) .150 1~40~0=0 __
1

4000 ---jl\·
Maximum speed (baud) 120K IIOMl40 ft

I IIMl400 ft

I 100K/30 ft I

--,-,11'."0=K/~3=0.0~~ft~_ ~
__ --.-----+1----- ---l-'ci 1",00""K/",4""0-,,,00,,--,f,,-t _ ._--+,11~K/4000 ft .. __

Logic I voltagelevel 1-3to-25 IA>B 1-4to-___ 6 __ .. ---J
Lo

514

1+3 to +25 IB > A 1+4 to +6 ~i

Examining the RS232 handshaking signals

To ensure fast and reliable data transmission between two devices, the data
transfer must be coordinated. In Chapter 12 we showed an example of handshaking
signals in the 8255 chip and its connection to a printer. In the same way, there are
handshaking signals in serial data communication. Just as in the case of the printer,
due to the fact that in serial data communication the receiving device may have no
room for the data there must be a way to inform the sender to stop sending data.

CHAPTER 17: SERlALCOMMUNICATION AND 16450/8250/51

DTE - DCE Connection DTE - DTE Connection

DTE DCE DTE DTE

2
TxO

2 2

CX~ 2

3
RxO

3 3
RxO RxO 3

7 7
ground 7 ground

7

Figure 17-7. OTE-OCE and OTE-OTE Connections

Some of the pins ofthe RS-232 are used for handshaking signals. They are
described below. They are so widely used that understanding them is essential in
the study of any UART chip.

1. DTR (data terminal ready). When the terminal (or a PC COM port) is turned on,
after going through a self-test, it sends out signal DTR to indicate that it is ready for
communication. If there is something wrong with the COM port, this signal will not
be activated. This is an active-low signal and can be used to inform the modem that
the computer is alive and kicking. This is an output pin from DTE (PC COM port)
and an input to the modem.

2. DSR (data set ready). When a DCE (modem) is turned on and has gone through the
self-test, it asserts DSR to indicate that it is ready to communicate. Therefore, it is
an output from the modem (DCE) and input to the PC (DTE). This is an active-low
signal. If for any reason the modem cannot make a connection to the telephone, this
signal remains inactive, indicating to the PC (or terminal) that it cannot accept or
send data.

3. RTS (request to send). When the DTE device (such as a PC) has a byte to transmit,
it asserts RTS to signal the modem that it has a byte of data to transmit. RTS is an
active-low output from the DTE and an input to the modem.

4. CTS (clear to send). In response to RTS, when the modem has room for storing the
data it is to receive, it sends out signal CTS to the DTE (PC) to indicate that it can
receive the data now. This input signal to DTE is used by DTE to start transmission.

5. CD (carrier detect, or DCD, data carrier detect). The modem asserts signal CDC to
inform the DTE (PC) that a valid carrier has been detected and that contact between
it and the other modem is established. Therefore, CDC is an output from the modem
and an input to the PC (DTE).

6. RI (ring indicator). An output from the modem (DCE) and an input to a PC (DTE)
indicates that the telephone is ringing. It goes on and off in synchronization with
the ringing sound. Of the 6 handshake signals, this is the least often used, due to the
fact that modems take care of answering the phone. However, if in a given system
the PC is in charge of answering the phone, this signal can be used.

From the above description, PC and modem communication can be sum­
marized as follows: While signals DTR and DSR are used by the PC and modem,
respectively, to indicate that they are alive and well, it is RTS and CTS that actually
control the flow of data. When the PC wants to send data it asserts RTS, and in
response, if the modem is ready (has room) to accept the data, it sends back CTS.
If, for lack of room, the modem does not activate CTS, the PC will deassert DTR
and try again. RTS and CTS are also referred to as hardware control flow signals.

SECTION 17.1: BASICS OF SERIAL COMMUNICATION 515

DTE PC DCE MODEM

TxD 2 2

RxD 3 3

RTS 4 4
CTS 5 5

DSR 6 6

GND 7 7

CDC 8 8

DTR 20 20

RI 22 22

Figure 17-8. DTE and DCE Connections with Handshaking

This concludes the description of the 9 most important pins of the RS232
handshake signals plus TxD, RxD, and ground. Ground is also referred to as SG
(signal ground). In the next section we will see DOS and BIOS serial communication
programming in the IBM Pc.

Review Questions

I. The transfer of data using parallel lines is (faster, slower) but
co-___ o-.,,--_.(more expensive, less expensive).

2. In communications between two PCs in New York and Dallas, we use
(serial, parallel) data communication.

3. ~In~s~e~ri~al'-d'--a-ta-communication, which method fits block-oriented data?
4. True or false. Sending data to a printer is duplex.
5. True or false. In duplex we must have two data lines.
6. The start and stop bits are used in the (synch, asynch) method.
7. Assuming that we are transmitting letter "D", binary 100 0 I 00, with odd-parity bit

and 2 stop bits, show the sequence of bits transferred.
8. In Question 7, find the overhead due to framing.
9. Calculate the time it takes to transfer 400 characters as in Question 7 if we use

1200 bps. What percentage of time is wasted due to overhead?
10. True or false. RS232 is not TTL-compatible.
II. What voltage levels are used for binary 0 in RS232?
12. If in a given PC the COM port is defective, which handshake signal indicates this

to the modem?

SECTION 17.2: ACCESSING IBM PC COM PORTS USING DOS AND BIOS

516

To relieve users and programmers from the tedious details of the 8250
UART chip, both DOS and BIOS provide means of accessing the IBM PC serial
COM ports. IBM BIOS !NT 14H can be used for serial data communication. In
DOS, we can use the MODE command to initialize the COM ports for data size,
baud rate, and so on. First some introductory comments on the number of ports in
the PC will be given.

IBM PC COM ports

In the IBM PC and 80x86 compatibles, as many as 4 COM ports can be
installed. They are numbered 1,2, 3, and 4 (BIOS numbers them as 0, 1,2, and 3).
When the PC is turned on, it is the job of the POST (power-on self-test) to test the
UART chip for each ofthe 4 COM ports. Ifthey are installed, their I/O port addresses

CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

Example 17-3

are written to memory locations 0040:0000 - 0040:0007. Since the I/O address
assigned to each UART is a 16-bit address, it takes 2 bytes for each installed UART.
The BIOS data area memory locations 0040:0000 and 0040:00001 will have the I/O
port address for COM 0, and 0040:0002, 0040:0003 locations have the I/O port
address for COM 1, and so on. Ifno COM hardware is connected for any of COM
0- COM 3, these address have Os in them. See Example 17-3.

A nationally known computer columnist is asked by a reader how he/she can find the number of COM
ports installed in a PC and which one is installed. What do you think the answer should be?

Solutiou:

Dumping memory locations 0040:0000 - 0040:0007 in DEBUG on the computer, as shown below,
showed that there is only one COM port with starting address 03F8H.

C>DEBUG
-d 0040:0000 LOB
0040:0000 FB 03 00 00 00 00 00 00

Using the DOS MODE command

In MS-DOS (or IBM PC-DOS), the MODE command is used to set the
serial communication parameters, such as data size, baud rate, parity bit, and number
of stop bits. The baud rates supported by the PCIXT, PC/AT BIOS are 110, 150, 300,
600,2400,4800, and 9600. In the IBM PS models and compatibles, 19,200 baud
is also supported by BIOS. For example, look at the following command:

MODE COM1 :24,0,8,1

This command sets parameters for COM1, 2400 baud rate, odd parity, 8 data bits,
and I stop bit. It must be noted that COM ports are assigned numbers 0 - 3 by BIOS,
but DOS uses I - 4. The general format of the MODE command is

MODE COMm:b,p,d,s

where m signifies the COM port number with options of 1 - 4, and b is the baud rate.
Only the initial two numbers are used, with the following options:

11 110
15 150
30 300
60 600
12 1200
24 2400
48 4800
96 9600
19 19,200 (for IBM PS and compatibles)

where p is for parity [options include N (none), 0 (odd), E (even)], d is for the size
of the character (5, 6, 7, or 8 bits; the default value is 7), s is for the number of stop
bits (options are 1, 1.5, or 2). If the baud rate is 110,2 stop bits must be used;
otherwise, it is 1. Note that we can go beyond 19,200 baud if we bypass BIOS and
program the 8250 UART directly. The next topic will show how to use BIOS TNT
14H to perform serial communication.

SECTION 17.2: ACCESSING IBM PC COM PORTS USING DOS AND BIOS 517

AH INT 14H Function

00 Initialize COM Port

Additional Call Registers
AL = parameter (see below)
DX = port number (0 if COM 1 ,

1 if COM2, etc.)

Result Registers
AH = port status (see below)
AL = modem status (see below)

Note 1: The parameter byte in AL is defined as follows

76543210
xxx

xx
x

xx

Indicates
Baud rate (000=110, 001=150,
010=300,011=600, 100=1200,
101 =2400, 110=4800, 111 =9600)
Parity (01=odd, 11=even, xO=none)
Stop bits (0 = 1, 1 = 2)
Word length (10=7 bits, 11=8 bits)

Note 2: The port status returned in AH is defined as follows

76543210
1

1
1

1
1

1
1

1

Indicates
Timed-out
Transmit shift register empty
Transmit holding register empty
Break detected
Framing error detected
Parity error detected
Overrun error detected
Received data ready

Note 3: The modem status retumed in AL is defined as follows

76543210
1

1
1

1
1

1
1

1

Indicates
Received line signal detect
Ring indicator
DSR (data set ready)
CTS (clear to send)
Change in receive line signal detect
Trailing edge ring indicator
Change in DSR status
Change in CTS status

Figure 17-9. BIOS INT 14H Functions (continued onjollowingpage)

518 CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

AH INT 14H Function

01 Write Character to COM Port

Additional Call Registers
AL - character
OX = port number (0 if COM1,

1 if COM2, etc.)

Result Registers
AH bit 7 =0 if successful, 1 if not
AH bits 0 - 6 = status if successful
AL = character

Note: The status byte in AH, bits 0 - 6, after the call is as follows:

6543210
1

1
1
1

1
1

1

02 Read Character from COM Port

Additional Call Registers
OX = port number (0 if COM1,

1 if COM2, etc.)

Indicates
Transmit shift register empty
Transmit holding register empty
Break detected
Framing error detected
Parity error detected
Overrun error detected
Receive data ready

Result Registers
AH bit 7 =0 if successful, 1 if not
AH bits 0 - 6 = status if successful
AL = character read

Note: The status byte in AH, bits 1 - 4, after the call is as follows:

4321
1

1
1
1

03 Read COM Port Status

Additional Call Registers
OX - port number (0 if COM1,

1 if COM2, etc.)

Indicates
Break detected
Framing error detected
Parity error detected
Overrun error detected

Result Registers
AH -port status
AL =modem status

Note: The port status and modem status returned in AH and AL are the same
format as in INT 14H function OOH, described above.

Figure 17-9. BIOS INT 14H Functions (continuedjromprecedingpage)

SECTION 17.2: ACCESSING IBM PC COM PORTS USING DOS AND BIOS 519

Data COM programming using BIOS INT 14H

The serial communication ports of the PC can be accessed using the
BIOS-based !NT 14H. Various options oflNT 14H are chosen with the AH registers
as shown in Figure 17-9. Starting with the PS/2 and all subsequent PS computers,
function AH ~ 04 allows the programmer to set the baud rate to 19,200. In addition,
the data bit size can be set to 5, 6, 7, and 8, not just 7, 8 as was the case with AH ~
O. The options supported for AH ~ 4 and AH ~ 5 are shown in Appendix E.

Using BIOS INT 14H we can send and receive characters with another PC
via a COM port. The process is as follows.

1. To send a character we use !NT 14H, AH~I, AL~character.
2. To receive a character we use INT 14H, AH~3 to get the COM port's status in

register AH. Notice that this is the status of the COM port .1'1d not the status of the
MODEM, which is given in AL. Then check DO of the stalus port, which is called
received data ready. If it is high, a character has been received via the COM port
and is sitting inside the 8250 UART. To read the received character we use !NT 14H,
AH~2 where AL holds the character upon return.

Example 17-4

This example involves serial data communication between two PCs via COM port 2 (COM I is
already used by the mouse).
(a) Show the minimum signal (wire) connection between the two PCs,
(b) Write an assembly language program where any key press from one PC is transfered to the other.

Pressing ESC should exit the program. In the program, initialize the COM port for 4800 baud,
8-bit data, no parity, I stop bit.

Solution: TxD tx TxD

(a) This drawing shows the minimum connection needed. RxD RxD
One can use what is called a break-out box to connect
two COM ports or use a null modem cable. RTS I- r- RTS

(b) The following steps need to be coded in the program: CTS I- '- CTS
(1) Check for key press and if a key has been pressed,
get it and write it to the COM port to be transfered. DS~ - r- DSR
Also check for ESC to exit.
(2) If there is no key pressed, go check the status of the DTR - '- DTR
COM port. If a character has been received, read it
and display it on the screen. GND GND

(3) Go to step (I).

PC#1 PC #2
To test this example connect two PCs and run the program PC to PC Connection
on the following page on both ofthem.

Review Questions

I. The maximum number of COM ports allowed in the PC is
2. Give the maximum and minimum baud rates supported by t"'h""Cerp"C",'XMT","""'X'"'T, and

compatibles if we use BIOS.
3. Give the maximum and minimum baud rates supported by the IBM PS and compat­

ibles if we use BIOS.
4. Using the MODE command, show how to set a data format of 8 bits per character,

no parity, I stop bit, and 1200 bps for COM port 2.
5. Repeat Question 4 using !NT 14H.

520 CHAPTER 17: SERlALCOMMUNICATION AND 16450/8250/51

Proeram for Example 17-4

TITLE SERIAL DATA COMMUNICATION BETWEEN TWO PCS
.MODEL SMALL
.STACK
.DATA

MESSAGE DB 'Serial communication via COM2, 4800 ,No P, I Stop,8-BIT DATA.' ,OAH,ODH
DB ' ANY KEY PRESS IS SENT TO OTHER PC.' ,OAH,ODH
DB' PRESS ESC TO EXIT','$'
.CODE

MAIN PROC
MOV AX,@DATA
MOVDS,AX
MOVAH,09
MOV DX,OFFSET MESSAGE
INT21H
;initializing COM 2
MOVAH,O
MOVDX,I
MOVAL,OC3H
INT 14H

;initialize COM port
;COM2
;4800 ,NO P,I STOP,8-BIT DATA

;checking key press and sending key to COM2 to be transfered
AGAIN: MOV AH,OI ;check for key press using INT 16H ,AH=OI

INT 16H ;if ZF= I, there is no key press
JZ NEXT ;If no key go check COM port
MOV AH,O ;yes, there is a key press, get it
INT 16H ;notice we must use INT 16H twice,2nd time
;with AH=O to get the char itself. AL=ASCII char pressed
CMP AL,IBH ;is it esc key?
JE EXIT ;yes EXIT
MOV AH, I ;no. send the char to COM 2 port
MOVDX,OI
INT 14H
;check COM2 port to see there is char. if so get it and display it

NEXT: MOV AH,03 ;get COM 2 status
MOVDX,OI
INT 14H
AND AH,OI ;AH has COM port status, mask all bits except DO
CMP AH,O I ;check DO to see if there is a char
JNE AGAIN ;no data, go to monitor keyboard
MOV AH,02 ;yes, COM2 has data: get it
MOVDX,OI
INT 14H ;get it
MOV DL,AL ;and display it using INT 21H
MOV AH,02 ;DL has char to be displayed
INT 21H
JMP AGAIN ;keep monitoring keyboard

EXIT: MOV AH,4CH ;exit to DOS
INT21H

MAIN ENDP
END

SECTION 17.2: ACCESSING IBM PC COM PORTS USING DOS AND BIOS 521

SECTION 17.3: INTERFACING THE NS8250/16450 UART IN THE IBM PC

The National Semiconductor 8250 and its variations are the most widely
used UART in the Pc. Due to the fact that the 8250 had a minor bug, the 8250A
replaced it. Later, National Semiconductor made an improved version of the 8250A
and called it 16450. All the programs written for the 8250/8250A will run on the
16450. There is also a CMOS version of the 16450 available called 16C450. In
this section we provide an overview of the 8250/16450 chip and its interfacing in
the IBM PC, emphasizing some internal registers used in the communications
software. The 8250A and 16450 chips are pin compatible.

Table 17-4. 8250A Register Addresses

DLAB' A2 Al ! AO j Description
~I

,

0 0 0 0 Receive buffer register for read transmitter holding register for write

0 0 0 I Interrupt enable register

0 Interrupt identification register (read only)
'.

r- x 0 I -~I
i

,

I - x I
0

I
I j I I Line control register (data format register)

i
,

I 0 I 0 MODEM control register x ..

x

I i Line status re ister ~
--~

o \ MODEM status register j
-,-+--,--+-~-+,,' S",c"ra",t",c",hc'r"e&l",' s"'te"r _________________ -=--___=__ i

o Divisor latch re ________ ·.1

o i 0 I I Divisor latch re

I o x

L I
(Reprinted by pennission of National Semiconductor, Copyright National Semiconductor 1990)

522

8250 pin descriptions

The 8250 is a 40-pin IC with an 8-bit data bus. It receives a single character
from the CPU, frames it, then transmits it serially. In the same way, it can receive
serial data, strip away the start and stop bits, make a character out of it, and present
it to the CPU. It also generates all the necessary modem handshake signals. The
following describes the pins and how the chip is used in the IBM Pc.

AD, A1, A2

These pins are used to access the internal registers of the 8250 according to
Table 17-4. In Table 17-4, notice that in order to transmit a character, it is written
into the transmitter hold register when AO = 0, Al = 0, A2 = 0 and the DLAB bit,
which is D7 of the line control (data format) register, is low. In the same way, the
character is received by reading the same register when DLAB = O. To program the
8250 for the baud rate, the DLAB bit of the line control (data format) register is set
to high and then the divisor bytes are sent to the registers with addresses A2 = 0, Al
= 0, AO = 0, and AO = 1. An example of this will be shown shortly. In the IBM PC,
AO, AI, and A2 of the 8250 are connected to the signals with the same name on the
system bus.

eso, eS1, CS2 (chip selects)

These are used to activate the chip. Notice that CSO and CS 1 are active high
and CS2 is active low. In the IBM PC an active-low logic decoder activates CS2,
and CSO and CS 1 are connected to high permanently.

CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

00 - 07

This is the bidirectional data bus connected to the data bus of the CPU.
Notice in Figure 17-10 that for the IBM PC COM port the 74LS245 data bus
transceiver is activated only for the 1/0 address range of 3F8H - 3FFH.

Sin and Sou!

These are the serial data pins, which become RxD and TxD of the RS232
after conversion from TTL to RS232 voltage levels.

RTS, CTS, OTR, OSR, OCO, and RI

These are the modem signals discussed in the preceding section.

Xin and Xou!

Xin (external crystal input) and XOli! are used for connection to the crystal
oscillator. When the frequency is generated off-chip, it is connected to Xin, and XOli!

is ignored. In the IBM PC, Xin is connected to a frequency of 1.8432 MHz.

These signals
from

system bus 74LS245 8250

DO- DO INTRP IRQ4or IRQ3

SOUT
~232

-2

07- OIR G 07 RTS EIA
- 4

OTR ---; - 20

1 SIN ~ driver - 3

lOR lOR CTS ~ receiver - 5

lOW
OSR ~ - 6

lOW RLSO ~ - 8
RI ~ - 22

AD AO L-

A1 A1
A2 A2

A3 BAUOOU

J A4- CS2
A5-

P
Vee r-c cso RCU

A6-
A7-

V CS1
A8- ~ OUT~ for non-RS232
A9 ~===c Reset MR ~ OUT2 (not used in PC AEN Xin Xout

I
N.C.

18.432 MHz divide
Oscillator--- by 10 1.8432 MHz

Figure 17-10. 8250 Connection to the IBM PC Buses

Example 17-5

(a) Find the I/O port address range set aside for COMO of the IBM PC in Figure 17-10.
(b) Give the port address for each of the 8250 registers.

Solution:
(a) CS2 is activated by A9 - A3. Therefore, we have

A9A8 A7A6A5A4A3A2AIAO Hex
I 1 1 1 1 1 1 0 0 0 3F8
1 1 1 1 1 1 1 1 1 3FF

(b) The I/O addresses ofthe registers are as shown in Table 17-5.

SECTION 17.3: INTERFACING THE NS8250/16450 UART IN THE IBM PC 523

MR

Master reset is an active-high input used to clear all the registers except the
receiver buffer, transmitter hold, and divisor latches.

RCLK

The receiver clock is an input frequency clock equal to 16 times the baud
rate clock of the receiver part.

BAUDOUT

This is is an output pin with clock frequency of sixteen times the baud rate
of the transmitter part of the chip. Normally this is connected to the RCLK input
pin making the transmitter and receiver of the chip work on the same baud rate. In
such cases, the transmit and receive baud rate is always equal to the divisor word
register value times sixteen.

The 8250 registers

There are total of 8 user-accessible registers inside the 8250. We describe
the function of each with some examples of usage.

Table 17-5. IBM PC COMO Registers

rliexAlldress I Description
" il 3F8 H. olds received character and the character to be trallsmitted. When DLAB = o.
'I' 3F9 Illterrupt enable register. When OLAB = O.

3F8 I Divisor latch register (LSB). When DLAB = I.
I

II 3F9 I Divisor latch register (MSB). When Q.LA-",B=--= ___ I,"-, _____ _
,

I __ ",3'cFA____ _ Interrupt identification register (read only)
,f- ----- I

_---"3 __ FB=-__ "Line control (data form~a~tOL)~re",g",i~st~e~r ____ _ ----I

~,
3FC~_~iM~O~D~E~M~c~0~n~tr~0 __ I~re~g~is~te~r~ ____ _

'_, ___ 3_FO I Line status register

3FE l~ODEM status reglst,..e'"cr ________ _

524

3FF i Scratch register
-------- 11

Transmitter holding register (A2 A 1 AD =000, and DLAB =0)

To transfer a byte serially, the CPU must write it to this register. In this case,
the OLAB bit of the line control (data format) register must be O. After a byte is
written into this register, the 8250 frames it with proper start and stop bits and
transfers it serially through the SOUl pin.

Receiver buffer register (A2 A 1 AD =000, and DLAB =0)

When the 8250 receives the data through the Sin pin, it strips away the
framing bits, makes it a byte, and holds it in this register for the CPU to read it. For
the CPU to read this register the OLAB bit of the line control (data format) register
must be equal to O.

Interrupt enable register (A2 A1 AD =001, and DLAB =0)

Bits 07 - 04 of this register are always 0, and the rest are used for the
hardware-based interrupt to notify the CPU of certain conditions. While there is
only one INTR pin on the 8250, there are four sources that can activate it. The
interrupt enable register is used to mask or unmask any of these sources, as shown
in Figure 17-ll.

CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

D7 D6 D5 D4 D3 D2 D1 DO

r 0 T 0
1

0 T 0
1

IN 1 Error I TBE 1 RxRD~

I received data available ~ ~--

transmitter buffer empty
i -

I receiver line status

MODEM status

Figure 17-11_ Interrupt Enable Register
(Reprinted by pennission of National Semiconductor, Copyright National Semiconductor 1990)

D7 D6

0 0

DO (received data available) If DO ;1, when a byte of data is received
through the Sin pin, the INTR pin is activated to notify the CPU that a byte has been
received.

D I (transmit holding register empty) The 8250 moves the byte from the
transmitter holding register into an internal parallel-in-serial-out register in order to
transmit it; then it has room for a new byte. As soon as this happens, ifDI ;1, INTR
is activated to notify the CPU that it has room for another byte.

D2 (receiver line status) Whenever an error is detected in the course of
receiving data, the INTR pin is activated if D2 ; 1. The error could be due to a
framing error or parity error or overrun error or break condition. To see which one
is the source of error, the line status register is tested, assuming that D2 ; 1.

D3 (MODEM status) When D3 ;1, INTR is activated if any of the RS232
status lines changes during the reception or the transmission.

D5 D4 D3 D2 D1 DO

0 0 0 I
J [I Priority Interrupt

0 0 1 x None
1 1 0 0 Serialization error or Break
1 0 0 1 Received data
0 1 0 2 Transmitter buffer empty
0 0 0 3 MODEM status

Figure 17-12. Interrupt Identification Register
(Reprinted by permission of National Semiconductor, Copyright National Semiconductor 1990)

Table 17-6' Interrupt Identification Register Priority

I~ D1 I DO iTvne ofINTR

- -

IPrioritv I Soun:e of INTR
I I i I I 0 I Receiver line status Error (overrun, parity, framing) I Highest ' I I
• i

i ,
i or break interrupt ,

II-- -- e-- --
I i a I a Receiver data available

I

i

I Receiver data available I Second _ .. -

o I I I 0 Transmit holding register empty I Transmit holding register emptv.' Third

a 19 i-.fl._ I MODEM status
"

L)(_ .. l X i I ,None

I CTS, DSR, RI--'--Qf'...'D,...C.,.,D"-__ -Li'c.F o",urt...,..h~----jll
:None _--.Ji . - - -

(Reprinted by permission of National Semiconductor, Copyright National Semiconductor 1990)

SECTION 17.3: INTERFACING THE NS8250/16450 UART IN THE IBM PC 525

Interrupt identification register (A2 A 1 AO =010)

From the above discussion, one might wonder how the CPU can know
which is the source of INTR activation if all these conditions can activate the single
INTR pin. This is exactly the function of the interrupt identification register. See
Figure 17-12. This is a read-only register used to poll to determine the source of
activation of the INTR pin. While DO indicates if an interrupt is pending, D I and
D2 provide the source of the interrupt with the highest priority. They are prioritized
as shown in Table 17-6. Another major use ofthis register is its ability to implement
the polling method in monitoring INTR. The polling method first checks DO to see
ifthere is an interrupt pending and if there is one, DI and D2 are tested to see which
one. D3 to D7 of this register is always O.

Line control (data format) register (A2 A1 AO =011)

Framing information is sent to this register as shown in Figure 17-13.
Example 17-6 shows how this register is programmed.

Example 17-6

Use the I/O port addresses in Example 17-5 to program the data format register for the following data
format: 7 bits character, 1 stop bit, odd parity, and break control set to off.

Solution:

From Figure 17-13, we have 0000 1010 =OAH for the data format register, and the program is as fol­
lows:

MOV
MOV
OUT

DX,3FBH
AL,OAH
DX,AL

;the data format reg port address
;DLAB =0, no brk conti, odd, I stop, 7 bits
;issue it

Notice in the above example that DLAB can be 0 or 1 for the data format register, but to access the
bufferlhold register it must be 0, and for the divisor latch it must be I, as we will see shortly.

D7 D6 D5 D4 D3 D2 D1 DO

I DLAB I Break I Parity I Parity I Parity I Stop I Data I Data I
I I

- -- - ---------

I··~-
,00

1 1
, 1 0
, 1 1

i 0 = 1
, 1 =2
L

000
001
o 1 1
1 0 1
1 1 1

--------~

= 5 data bits
= 6 data bits
= 7 data bits
= 8 data bits

=NONE
=ODD
=EVEN
=MARK
=SPACE

Break Control Bit. When it is set to 1, the serial output (Sout) is forced
to the spacing (logiC 0) state. The break control bit acts only on Sout.

Figure 17-13. Line Control (Data Format) Register
(Reprinted by permission of National Semiconductor, Copyright National Semiconductor 1990)

526 CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

07 06 05 04 03 02 01 DO

I 0 I 0 I 0 I Test I OUT21 OUT1 I RTS I DTR I
I if = 1 asserts OTR

if = 1 asserts RTS

Auxiliary us er·designated output 1
-

_ ... -

Auxiliary us er-designated output 2
~--------

Localloopback test
"--------

Figure 17-14 .. MODEM Control Register
(Reprinted by permission of National Semiconductor, Copyright National Semiconductor 1990)

07 06 05 04 03 02 01 DO

I DCD I RI I DSR I CTS Delta Delta Delta Delta
DCD RI DSR CTS

Figure 17-15. MODEM Status Register (MSR)
(Reprinted by permission of National Semiconductor, Copyright National Semiconductor 1990)

Modem control register (A2 A 1 AD =100)

This register, also referred to as the output control register, is used to assert
the DTR and RTS pins of the 8250. See Figure 17-14. When DO =1, it activates
(active low) DTR, and when Dl =1, RTS is activated (set to 0). These can be used
to test the RS232 pins. D2 and D3 are used for the OUT pins of the 8250 and are
used in systems which are not RS232 compatible.

D4 allows testing of the 8250 using a method called localloopback. When
D4 =\ we have Sou! =1 (marking), Sin is disconnected, the PI SO (parallel-in-serial­
out) register is connected to SIPO (serial-in-parallel-out) register, and the modem
control inputs (DSR, CTS, RI, and DCD) are all disconnected externally and
connected internally to the modem control output signals.

D5, D6, and D7 are always O.

Modem status register (A2 A1 AD =110)

Referred to also as the RS232 input status register. Provides the current
status of the modem control line as shown in Figure 17-15. The lower four bits
indicate a change in status of the input to the chip since the last time it was read by
the CPU. The term delta means change. Bits 0, 1,2, and 3 are set to 1 when there
is a change in signals CTS, DSR, RI, and DCD, respectively. Bit 2 is set to 1 when
the RI signal has changed from low to high. Note that ifbit 4 (loop test) of the modem
control register is set to 1, bits 4, 5, 6, and 7 of the modem status register are
equivalent to RTS, DTR, OUT!, and OUT2, respectively, of the modem control
register. Notice that this register is the same as the modem status by1e upon return
from BIOS !NT \4H.

Line status register (A2 A 1 AD =101)

When D2 of the interrupt enable register is set to high, one can monitor the
line status register to see which of the errors (parity error, framing error, and so on)
has occurred. The line status register bits are shown in Figure 17-16, and the bit
definitions are as follows:

SECTION 17.3: INTERFACING THE NS8250/16450 UART IN THE IBM PC 527

07

I 0

06

~O. When the 8250 receives the serial data and strips away the framing bits,
it creates a byte to be given to the CPU. DO indicates that a byte has been send to
the receiver buffer to be picked up by the CPU.

01. If the 8250 cannot keep up with the stream of incoming serial bits, the
old byte is overwritten by the new data. This can happen if the CPU is slow and
does not pick up the data previously received. 0 I = I indicates that the previous byte
has been overrun by the new data.

02 is set to I if the the parity bit of the data received does not match the
data format register setup.

03 indicates (when it equals I) if the stop bit of the incoming data does not
match the data format register.

04. This is set to I if the Sin pin is low (space) for a period of one byte
transfer (start bit + data bits + parity + stop bit). This is referred to as break.

05. Transmitter holding register. If 05 =1, it indicates that the 8250 has
room for a new byte to be transmitted. In other words when the byte is transferred
from the transmit hold register into the serial shift register, 05 is set to I. When the
CPU writes a byte to transmit hold register, it becomes O.

06 = 1 when both the transmit hold register and serial shift register are both
empty.

07 always equals O.
Notice that this register is the same as the port status upon return from !NT

14H, except that 07 is set to 1 for time-out by BIOS.

05 04 03 02 01 00

I TEMT I THRE I 61 I FE I PE I OE I DR I U if = 1 data-;';dy to b';-picked -~p ----,
, (is reset by reading the data in
I the receiver buffer register) ,

~ t = 1 an overrun error occurred:
(is reset when CPU reads receiver buffer register)

I if = 1 a parity error occurred;
I (is reset when CPU reads line status register)

i if = 1 a framing error occurred;
! (is reset when CPU reads line status register)

I jf = 1 a break interrupt occurred;
(is reset when CPU reads line status register)

if = 1 transmitter holding register empty ,

.. ~

i if = 1 transmitter holding register (THR)
I and transmitter shift register (TSR) empty

(is reset when either TSR or THR contains data)

Figure 17-16. Line Status Register
(Reprinted by permission of National Semiconductor, Copyright National Semiconductor 1990)

Example 17-7

Find the divisor latch value for a baud rate of (a) 110, (b) 300, and (c) 2400. Assume that Xin =
1.8432 MHz.

Solution:
Dividing 1.8432 MHz by 16, we get 115,200 (1.8432 MHzJI6 =115,200). To get the value for the
divisorlatch of 110 baud rate, we must divide 115,200 by 110 to get 1047. Similarly, 115,200/300
=384 and 115,200/2400 =48.

!

!

!

I

,

!

I
,

!

528 CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

Table 17-7: Baud Rates and Divisors for 1.8432 MHz
r~·

_.- -

Il Baud Rate Divisor (Deciman Divisor (Hex) -

I
110 , 1047 0417

~-- .. 300
I

384 0180
,

600 I 192 I OOCO
!

-- ._-_.
,

96 0060

~~+-~~~--"48,,--~~~+-~~~-,,,00".-'3-,,-0 - ----l.
24 0018 II

12 OOOC
(Reprinted by permission of National Semiconductor, Copyright National Semiconductor 1990)

Example 17-8

Program the divisor latch for 300 baud, assuming that Xin =1.8432 MHz. Use the 110 port addresses
of Example 17-5.

Solution:
As was shown in Example 17-7, the divisor value is 384. Therefore, we have
;set D7 of the line control register to 1 for accessing the DLAB

MOY AL,80H ; 10000000 (binary) to access D LAB
MOY DX,3FBH ;the address ofline control reg
OUT DX,AL ;make D7 =1 for DLAB

;now send the divisor value
MOY AX,384 ;300 baud rate
MOY DX,3F8H ;divisor latch address (LSB)
OUT DX,AL ;issue the low byte
MOY AL,AH ,
INC DX ;the divisor latch address (MSB)
OUT DX,AL ;issue the high byte

Example 17-9

Program the divisor latch for 2400 baud, assuming that Xin =1.8432 MHz. Use the 110 port addresses
of Example 17-5.

Solution:
As was shown in Example 17-7, the divisor value is 48. Therefore, we have
;set D7 of the line control register to 1 for accessing the DLAB

MOY AL,80H ; 10000000 (bin) to access D LAB
MOY DX,3FBH ;the address ofline control reg
OUT DX,AL ;make D7= 1 for the DLAB

;now send the divisor value
MOY AX,48 ;2400 baud rate
MOV DX,3F8H ;divisor latch address (LSB)
OUT DX,AL ;issue the low byte
MOV AL,AH ,
INC DX ;the divisor latch address (MSB)
OUT DX,AL ;issue the high byte

SECTION 17.3: INTERFACING THE NS8250/16450 UART IN THE IBM PC 529

Scratch pad register (A2 A1 AO =111)

This is not used by the 8250 and is available to the CPU as an extra register
for the purpose of a scratch pad.

Divisor latch LSB (A2 A 1 AO =000 and DLAB =1) and divisor latch MSB
(A2 A1 AO =001 and DLAB =1)

The baud rate of the 8250 is programmed through these two registers. The
input frequency OfXin is the master clock. This clock is divided by the 16-bit integer
contents of the divisor latches and again by the number 16 to get the desired baud
rate, as shown in equation (17 -I).

. . i X_ -"in"c=-:iccoc=-:k"fic:.n=.:eq",u::::e:.::n:::cy,,­DZVlsor va ue = -
baud rate x 16

(17-1)

Table 17-7 shows some of the divisor latch values in both decimal and hex
for the 1.8432-MHz crystal frequency.

To program the divisor latches we set the DLAB bit ofthe line control (data
fonnat) register to I before issuing the divisor values, as shown in Examples 17-8
and 17-9. There are cases where the divisor is byte size instead of word size, but
both upper and lower bytes must still be issued.

Limitation of the 8250/16450 UART and the 16550 replacement

A major limitation of the 8250116450 is that it keeps interrupting the CPU
for every single byte of data that it receives or is to be transmitted. In early PCs that
was not a problem since everything in the PC was slow, but in today's world of
high-perfonnance PCs and workstations, such a limitation can be a source of severe
bottleneck, especially in multitasked systems. Therefore, National Semiconductor
introduced the 16550AF, which has an internal buffer of 16 bytes (instead of only
I byte in 16450) to store data for transmission and reception. The 16550AF is fully
8250/16450 compatible. In many IBM PS models, this chip or an ASIC version of
it is used to relieve the CPU from constant interruption. In the 16550AF the CPU
can write a 16-byte block of data into its transmission buffer and let it transfer. When
the buffer becomes empty it notifies the CPU for another block of data. In the same
way, the 16-byte receive hold buffer keeps all the data received, and when the buffer
becomes fuJI, it interrupts the CPU to pick them up. This is much more efficient
than interrupting the CPU for every byte of data. Although in such cases the CPU
provides a block of data to the 16550 chip, the data is transmitted or received serially
one byte at a time with proper framing.

Review Questions

1. State the number of user-accessible registers inside the 8250/16450.
2. True or false. The 8250/16450 can handle both asynchronous and synchronous se­

rial data communication.
3. Which of the following addresses cannot be the 8250116450 base address?

(a) 2590H (b) 2582H (c) 2580H
4. True or false. To get the byte received by the 8250116450, we must have A2 Al AO

~OOO and DLAB ~1.
5. To which register does the DLAB bit belong, and what is its PC 110 port address?
6. Verify the calculation of divisor latch value for 4800 baud rate.
7. Using the IBM PC 110 port addresses, show the programming of Question 6.
8. True or false. The 16550 is compatible with the 8250116450 chip.

530 CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

SECTION 17.4: INTEL 8251 USART AND SYNCHRONOUS
COMMUNICATION

This section provides programming examples of Intel's 8251A USART
chip, and a brief discussion of the synchronous serial data communication.

Intel's 8251 USART chip

This is a 28-pin chip
capable of doing both
asynchronous and synchro­
nous serial data communica­
tion. It supports all the
control handshaking of the
modem. It has several inter­
nal registers accessible, as
shown in Table 17-8.

Table 17-8: 8251 Register Selection

!-CC"",S~! ""C""ID~D~e""s",c_~ri~l!~tI,,' o~n,----~~~'~~~-~~- il

o 0 Data register I

o 1 Mode, command, and status registers .

1 x: The 8251 is not selected

Example 17-10

Find the 110 port addresses assigned to the 8251 ifeS is activated by A7 - Al = "1001100" and
AO is connected to C/O.

Solution:
100 I 1000=98H for the data register; 100 I 100 I =99H for the status register

To allow the receiver and transmitter to work on the same baud rate, TxC
(transmission) and RxC (receiver clock) are connected to the same frequency. The
baud rate selections are xl, x16, and x64. This means that the baud rate selection
times I, 16, or 64 must be equal to the RxC and TxC clock frequency.

Example 17-11

Using the data in Figure 17-18, find the baud rate if each of the following options is selected. Assume
RxC = TxC = 19,200 Hz. (a) xl6 (b) x64

Solution:
(a) 19,200116 =1200 (b) 19,200/64 =300

The 8251 has the mode register and command register both with the same
110 address port as shown in Table 17-8 (CS = 0 and C/O = I). To distinguish between
them one must always program the mode register first to select the data format and
baud rate; then writing to the same port is considered accessing the command
register. To access the mode register again one must either reset the system by the
RESET hardware pin or 06 of the command register as shown in Figure 17-19. The
status register is a read-only register. Figure 17-17 shows the bits.

As an example of how to program the status register, look at Example 17-13.
One can use polling to monitor the TxRDY bit of the status register (Figure 17-17)
to transfer a byte of the data to 8251 to be transmitted serially. See Example 17-13.

Synchronous serial data communication

One of the problems with the asynchronous method discussed so far is the
overhead. In some instances the overhead can be as high as 50%. The overhead can
be even higher if characters are 5 or 6 bits wide. To solve this problem, the
synchronous method was developed. In synchronous serial data communication,
start and stop bits are replaced with special bytes of code, but instead of transferring
only one byte, hundreds of bytes are transferred. In this method a block of bytes is

SECTION 17.4: INTEL 8251 USART AND SYNCHRONOUS COMMUNICATION 531

I

framed in between the control codes and then transferred. The control codes are
different for various protocols. There are two widely synchronous standard proto­
cols: BISYNC and SDLC. In BISYNC protocol, there are no start and stop bits;
instead, for each block of data there are one or more bytes called synch characters.
After the synch character there is the character called STX (start of text), followed
by the block of data bytes. The size of the data block can be 100 or more bytes of
information. The data block is followed by the control byte called ETX (end oftext).
The last byte of the frame is the BCC (block check character) byte, which is used
for error detection. In Chapter II we saw the checksum method used to maintain
data integrity in block of data. There are other methods of error checking, such as

Example 17-12
Program the 8251 of Example 17-10 for asynchronous mode with a data format of 8 bits, 1 stop bit,
even parity, and 1200 baud rate.

Solution:

From Figure 17-18 we have 01111110 for the mode register therefore:

MOV AL,O 1000000B ;reset the 8251 by d6 of command reg
OUT 99H,AL ;to ensure mode reg is being accessed next
MOV AL,OllllllOB ; 1 stop, even, 8 bits, 16x
OUT 99H,AL ;write into mode register

07 06 05 04 03 02 01 00
DSR I SYNC/E~ FE

I

DE

I

PE ITXEMP1 RxRDY I TxRDY I BRKDE -

I
I Transmitter ready

Indicates USART is ready to
i accept data or command
----- --~ - --- ----~

------- - - --------- ---

Receiver ready
----, "Indicates USART has received a character

: on its serial input and is ready to transfer it
~------- ~ .. ~--,---- - --- ----------- - ------

---- - ---- -----,

I Transmitter empty
! Indicates that parallel to serial converter
! in transmitter is empty.

I Parity error
L-....., PE flag is set when parity error detected, it is reset by ER bit of

I command instruction. PE does not inhibit operation of 8251. ,

L __ -'
-----~ ,

I Overrun error
i The DE flag is set when the CPU does not read a character before the next

I ~ ~ne becomes available. It is reset by bit ER of the Command instruction. OE
I does not inhibit operation of the 8251; however, the previously overrun I
i character is lost.
_~ ___ oo.," ___

I Framing error (ASYNC only)
I FE flag is set when a valid stop bit is not detected at end of every character. It is
l reset by ER bit of Command instruction. FE does not inhibit operation of 8251 .

. _ 0·-

I SYNC detect
,

I

I ~hen set for internal sync detect indicates that character sync has been I
I achieved and 8251 is ready for data.

I I • o ••• _ ••• _

I ~ata set ready
Indicates that the DSR is at a zero level. .---~~~=-~

Figure 17-17.8251 Status Register
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1983)

532 CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

D7 D6 D5 D4 D3 D2 D1 DO

I scs I ESD I EP I PEN I L2 I L1 I B2 I B1 I
I I

I Baud rate factor

a a = SYNC mode !
a 1 =(lX) I

1 a = (16X)
1 1 = (64X) ~

I Character length

i g a = 5 bits
1 = 6 bits

1 a =7bits
i 1 1 = 8 bits

Parity enable

1 = enable i I a = disable

Even parity generation/check.
i 1 = even i

a=odd !

External SYNC detect

I 1 = SYNDET is an input
I a = SYNDET is an output I

Single character SYNC

,
1 = Single SYNC character

= a Double SYNC character

Figure 17-18. 8251 Mode Register
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1983)

D7 D6 D5 D4 D3 D2 D1 DO

I EH I IR I RTS I ER I SBRKI RxE I DTR I TxEN I
i Transmit enable I

'-------1 1 = enable
I a = disable

: Data tanninal ready
'---------'1 High forces DTR to a

Receive enable '--------------1 1 = enable RxRDY
a = disable RxRDY

" Send break character III
'-------------------4 1 = forces TxD low

I 0 = normal operation I

'--____________ -;1 Error reset ,I

I 1 = reset all error flags (PE, OE, FE)

'--_____________________ -1 Request to send I

i High forces RTS ~

. Internal reset
'-------------------', High retums 8251 to mode instruction format

~I ~~.--~--~------------

L
___________________ ----' Enter hunt mode i

1 = enable search for SYN characters
_ •• ___________________ J

Figure 17-19. 8251 Command Register
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1983)

SECTION 17.4: INTEL 8251 USART AND SYNCHRONOUS COMMUNICATION 533

CRCs (cyclic redundancy
checks) and Hamming code.
Shortly we will describe the CRe
method and leave the Hamming
code to be pursued by interested
readers on their own. It must be
noted that the checksum and
CRC methods detect the error,
but do not correct it. Hamming
code not only detects the error,
but also corrects it.

Table 17-9: Some Codes Used in BISYNC
Protocol

I

'Char Meaninl!: ASCII
."

SOH Start of header OlH

lSI2ClStart of text 02H

ETX_~n<i Qf text 03H

EOT I End of transmission 04H

IENQ I Inquiry '05H

!ETS
-.--'~

I End-of-transmissiol1.~IQck OFH
I
,

I Data linkt<.s,cape IOH IDLE

iSYNC SynC l6H .

Table 17-9 shows some
of the ASCII codes used for the
BISYNC protocol. In some cases
an SOH (start of header) header
is inserted between the SYN and
STX bytes. The header contains
information such as destination
and type of data block. This is
shown in Figure 17-20.

lETS End-of-transmission block 17H .. ,

IPAD, End-of-frame block iFFH

one frame

I SYN I SYN I STX I DATA FIELD I ETX I BCC I PAD I
Figure 17-20. Data Framing in BISYNC

Example 17-13

Write a program that transfers the message "The planet Earth","$" into the 8251. The "$" indicates the
end of the message: Use the data format and the baud rate of Example 17-12.

Solution:

DATA DB "The planet Earth","$"
;from the code segment:

MOV AL,OO ;issuing dummy byte 00 to mode reg
OUT 99H,AL ;is recommended. do it three times
OUT 99H,AL
OUT 99H,AL
MOV AL,O 1000000B ;reset the 8251 by D6 of command reg
OUT 99H,AL ;to ensure mode reg is being accessed next
MOV AL,O 1111 I lOB ; I stop, even, 8 bits, 16x
OUT 99H,AL ;write into mode register
MOV SI,OFFSET DATA ;SI~offset address of data

B1: IN AL,99H ;monitor the status reg
AND AL,OOOOOOOIB ;test the dO for txrdy and
JZ BI ;keep checking
MOV AL,[SI] ;get the byte
CMP AL,II$" ;is it the end?
JE B2 ;ifyes then stop
OUT 98H,AL ;ifnot send it to data reg
JMP BI ;keep sending

B2: RET

534 CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

,

I

SOLC (Serial data link control)

SOLC is the synchronous serial communication standard developed by
IBM and is widely used in computer networking, such as in the IBM token ring. It
uses 8-bit patterns of 01111110 in place ofa SYNC byte. This byte is referred to in
IBM literature as the flag byte. After the flag byte comes the byte for the address
where the data is to be sent on the network of computers. Next is the control byte,
containing information about the sequence of data, among other things. Then comes
the data. The data in SOLC is in bits, thousands of bits. This is in contrast to
BISYNC, which handles thousands of bytes. The data fields can go as high as
200,000 bits per frame. Following the data fields is a 16-bit field for error checking,
and finally, the flag byte, indicating the end of the frame. See Figure 17-21.

one frame

1
01111110 IS-bit address la-bit control 1 Information Field
(beg. flag) .Ifield field 1

16-bil 101111110 1
frame check (end flag)

. Figure 17-21. Data Framing in SOLe

Cyclic redundancy checks

One of the most widely used methods of error checking in synchronous
serial data communications is that of cyclic redundancy checks, or CRCs. This
method is also widely used in error checking of disk storage. CRC is used for error
checking a stream of bits, in contrast to checksum, which is byte-oriented, but both
are used for error checking blocks of data. In the CRC method, two bytes called the
CRC bytes are appended to the stream of data and transmitted with the data. At the
destination, by hardware or software, the data and the CRC bytes are tested for data
integrity. The CRC bytes arc calculated using the formula

M(X) x X"

G(X)

The polynomial M(X) represents the bit stream. This is multiplied by xn
where n is the number of bits in the stream. The product ofthese two terms is divided
by a polynomial called the generator polynomial. This division will result in a
quotient, Q(X), and a remainder, R(X). It is the remainder that forms the CRC bytes.

Example 17-14 shows the CRC method used for a 16-bit data stream,
4092H. In binary this is 0100 1101 1001 0010. To get M(X), first the bits are
reversed: 0100 100 I 10 11 0010. This series of bits is interpreted as a series of
coefficients of a polynomial, as shown below.

M(0100 1001 1011 0010)=

OX15 + 1x14 + OX13 +OX12 + 1X11 + OX10 + Ox9 + 1x8 +

1X7 + Ox6 + 1x5 + 1X4 + OX3 + OX2 + 1X1 + Oxo

Removing the terms with 0 coefficients yields

M(X) = X 14 + X 11 + X8 + X7 + X5 + X4 + X 1

Now M(X) is multiplied by x16 since the data is a 16-bit stream.

SECTION 17.4: INTEL 8251 USART AND SYNCHRONOUS COMMUNICATION 535

SUMMARY

536

The dividend of our equation will be x30 + x27 + x24 + x23 + x21 + x20 +
x 17 This will be divided by the generator polynomial, G(X). We will use G(X) ~
x 16 + x 15 + x2 + 1. This is called the bisync protocol generator. The SDLC protocol
uses generator polynomial G(X) ~ x 16 + x 11 + x5 + 1. Notice that both begin with
x 16 This ensures that the remainder will be less than x 16 and can therefore be
represented by 16 bits, or 2 bytes. The polynomial division shown in Example 17-14
results in remainder R(X) ~ xl5 -x 13 + xl1+ xIO +x8+x7 +x5 +x3+ x. Representing
this as a series of coefficients gives the following.

R(X) = x 15 + X 13 + X 12+ X 10 + xB + x7 + x5 + x3 + X =
1X15 + OX14 + 1X13 +1X12 + OX11 + 1X10 + Ox9 + 1XB +
1X7 + Ox6 + 1x5 + Ox4 + 1x3 + Ox2 + 1X1 + Oxo

or simply,

1011 0101 1010 1010.

Reversing the bits gives 0101 0101 1010 1l01, which is 55ADH, the
CRC bytes. This example used a small stream of bits, 16, for the sake of simplicity.
The CRC bytes take as much room as the bit stream itself. Normally, this method
is applied to a large block of data consisting of hundreds of bytes and generating the
2-byte CRC code. This 2-byte code is appended to the end of the data stream. When
the receiver reads in the bit stream plus the CRC bytes and performs division by
G(X), the remainder will be 0 if there were no errors in transmission.

Review Questions

I. True or false. The 8251 can perform both asynchronous and synchronous communi­
cation.

2. If CS of the 8251 is activated by A 7 - A I ~ IIII 0 I 0, find the 110 port addresses as­
signed to the 8251. Assume that AO is connected to C/O.

3. If x 16 is selected and we need a baud rate of 4800, what frequency must be con­
nected to RcX and TxC?

4. Show a program to set the data format of 7 bits, odd, 2 stops, and x64. Use Ques-
tion 2 for port addresses.

5. Find the data format information if the mode byte is CAH.
6. State the ways that the 8251 can be reset.
7. True or false. The BISYNC frame consists of thousands of bytes while the SDLC

consists of thousands of bits.
8. True or false. The first byte in the synchronous frame is always a special byte or

code.

This chapter began with an introduction to the fundamentals of serial
communication. Serial communication, in which data is sent one bit a time, is used
in situations where data is sent over significant distances since in parallel commu­
nication, where data is sent a byte or more a time, great distances can cause distortion
of the data. Serial communication has the additional advantage of allowing trans­
mission over phone lines. Serial communication uses two methods: synchronous
and asynchronous. In synchronous communication, data is sent in blocks of bytes,
in asynchronous, data is sent in bytes. Data communication can be simplex (can
send but cannot receive), half-duplex (can send and receive, but not at the same
time), or full-duplex (can send and receive at the same time). RS232 is a standard
for serial communication connectors. Two terms commonly used to classify com­
munications equipment are DTE (data terminal equipment), which refers to devices
such as computers which send or receive data, and DCE (data communications

CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

equipment), which refers to devices such as modems which handle the data com­
munications. Handshaking protocol in RS232 communications is done with the aid
of signals such as DTR, DSR, RTS, CTS, and others.

This chapter also showed how to use the DOS MODE command to initialize
the 4 COM ports of the IBM PC and how to code Assembly language instructions
to perform serial communication using BIOS INT 14H.

The National Semiconductor 8250/16450 UART chips were covered. They
are used in the IBM PC for serial communications. They can receive a character
from the CPU, frame it, then transmit it serially, or they can receive serial data, strip
away the framing bits, make a character out of it, and send it to the CPU.

The final topic covered was two protocols used in synchronous communi­
cations: BISYNC and SDLC. In BISYNC, no start and stop bits are used; instead,
control codes called sync characters begin a block and the block is ended with ETX
(end of text) and BLC (block check character). SDLC is the standard developed by
IBM and used in their token ring networks. In this protocol, blocks are prefaced by
a flag byte, and the address where they are going, then a control byte, followed by
the block, and the error field and flag bytes.

Example 17-14

Find the CRC byte for the data stream 4D92H using divisor x l6 + xiS + x2 + I.

Solution:

Data stream 4D92H = 0100 1101 1001 0010. Reversing the bits gives 0100 1001 1011 0010.
M(X) is calculated by using these bits as coefficients of the polynomial. M(X) for this bit stream is
xl4 + xll + x8 + x7 + xS + x4 + xl This is multiplied by xli) because there are 16 bits in the data
stream (Recall that in multiplying powers ofx we add the exponents). Multiplying M(X) by x l6 gives
x30 + x27 + x24 + x23 + x2 + x20 + x17, the dividend. The polynomial division is shown below.

x30 + x27 + x24 + x23 + x21 + x20 + x17

x30 + x29 + x16 + x14

X29 + x27 + x24 + x23 + x21 + x20 + x17+ x16 + x14

x29 + x28 + x 15 + x 13

X28 + ~7 + x24 + x23 + x21 + x20 + x 17 + x 16 + x 15 + x 14 + x 13

x28 + x27 + x14 + x12

X24 + x23 + x21 + x20 + x17+ x16 + x15 + x13 + x 12

x24 + x23 + x 10 + x8

X21 +x20+x17+x16+ x15+ x13+ x12+x10+x8

x21 + x20 + x7 + x5

X17+X16+ X15+ X13+ x12+x10+x8+ x7 +x5

x 17 + x 16 + x3 + x

The remainder is xiS + xl3 + x12+ x 10 + x8 + x 7 + xS + x3 + x. Representing this as a
series of coefficients gives 10110101 1010 1010. Reversing the bits gives 0101 0101 1010 1101,
which is 55ADH, our CRC bytes.

SUMMARY 537

PROBLEMS

538

SECTION 17.1: BASICS OF SERIAL COMMUNICATION

I. Which is more expensive, parallel or serial data transfer?
2. True or false. 0- and 5-V digital pulses can be transferred on the telephone without

being converted (modulated).
3. Show the framing of the letter ASCII "Z" (0101 1010), even parity, I stop bit.
4. If there is no data transfer and the line is high, it is called (mark,

space).
5. What is space?
6. Calculate the overhead percentage if the data size is 6, 2 stop bits, even parity.
7. True or false. RS232 voltage specification is TTL compatible.
8. What is the function of the MCI488 and MCI489 chips?
9. True or false. RS232P refers to a male connector.
10. How many pins of the RS232 are used by the IBM serial cable, and why?
II. True or false. The longer the cable, the higher the data transfer baud rate.
12. The function definition of the RS232 pins is stated from the point of view of

=C-~;;=-- (DTE, DCE).
13. If two PCs are connected through the RS232 without the modem, they are both

configured as a (DTE, DCE) -to- (DTE, DCE) connection.
14. State the 9 most important signals of the RS232.
15. Calculate the total number of bits transferred if 200 pages of ASCII data are sent

using asynchronous serial data transfer. Assume a data size of 8 bits, I stop bit,
no parity.

SECTION 17.2: ACCESSING IBM PC COM PORTS USING DOS AND BIOS

16. In the IBM PC, what is the maximum number of COM ports that can be installed?
Use DEBUG to find which COM port is installed on your PC.

17. What are the lowest and highest baud rates supported by the IBM PC or PS COM
ports using BIOS programming?

18. Show the COM2 port setting of 9600 baud rate, 8 data bits, I stop bit, no parity
bit, using each of the following.
(a) DOS command (b) BIOS INT 14H

19. Modify the program for Example 17-4 to display the key pressed not only on the
receiving PC's monitor but also on the monitor of the PC that sent it.

20. Compare the options available with INT 14H when AH ~ 0 and the more recent
one, AH ~ 04. See Appendix E.

SECTION 17.3: INTERFACING THE NS8250116450 UART IN THE IBM PC

21. True or false. The 8250 is a USART chip.
22. True or false. There are a total of 8 user-accessible registers inside the 8250.
23. Which register has the DLAB bit, and what is its function?
24. What I/O port addresses are assigned to the first COM port in the PC?
25. When an IBM PC receives a byte of data through the serial data line, the 80x86

can read it from which I/O port address? Use the I/O addresses in Problem 24.
26. Why are DO - 07 of the 8250 bidirectional?
27. The INTR pin is an (input, output) for the 8250 chip.
28. Ifthere is only one INTR pin and many sources can activate it, how does the CPU

know which one is the source of activation?

CHAPTER 17: SERIAL COMMUNICATION AND 16450/8250/51

The next three problems are not IBM PClPS compatible. They are given
only for exercise.

29. Assuming that Xin of 8250 is connected to 3.072 MHz-frequency, fill in the fol­
lowing table for all the desired baud rates.

Desired Baud Rate
110

Diyisor to Generate x 16 Clock (decimal)

300
600

1200
2400
3600
4800
9600

30. Assuming that CS of the 8250 is activated by address A7 - A3 ~1001O, determine
the following.
(a) The 1/0 address range assigned to this 8250.
(b) The 110 address assigned to each register.

31. Program the divisor latch of the 8250 in Problems 29 and 30 for 1200 baud rate.
32. What is data overrun?
33. Why are RCLK and BAUDOUT connected to the same frequency?
34. True or false. Before the divisor latches are accessed, the DLAB bit must be set to

high.

SECTION 17.4: INTEL 8251 USART AND SYNCHRONOUS COMMUNICATION

35. True or false. The 8251 is a UART chip.
36. Find the 110 port addresses assigned to the 8251 if A7 - Al~OllOOOI activates the

CS pin. Assume that AO is connected to C/D.
37. Assuming that RxC ~TxC ~153,600 Hz, program the 8251 to transfer "One small

step for man, one giant step for mankind" for 7 -bit data size, odd parity, 1 stop
bit, and X64. Use the 1/0 port addresses of Problem 36.

38. Explain the difference between the asynchronous and synchronous methods.
Which has the lower overhead?

39. How many bytes are set aside for the CRC byte?
40. The data format (BISYNC, SDLC) is byte-oriented.

ANSWERS TO REVIEW QUESTIONS

SECTION 17.1: BASICS OF SERIAL COMMUNICATION

1. faster, more expensive
2. serial
3. synchronous
4. False; it is simplex.
5. true
6. asynch
7. With 1000100 binary we have 1 as the odd-parity bit. The bits as transmitted in the sequence:

(a) 0 (start bit) (b) 0 (c) 0 (d) 1 (e) 0 (I) 0 (g) 0 (h) 1 (i) 1 (parity)
G) 1 (first stop bit) (k) 1 (second stop bit)

8. 4 bits
9. 400 x 11 = 4400 bits total bits transmitted. 4400/1200 = 3.667 seconds, 417 = 58%.
10. true
11. +3to+25V
12. DTR

ANSWERS TO REVIEW QUESTIONS 539

SECTION 17.2: ACCESSING IBM PC COM PORTS USING DOS AND BIOS

1. 4
2. 110 to 9600 (can be higher if we bypass BIOS)
3. 110 to 19,200 (can be higher if we bypass BIOS)
4. C>mode com2:12,n,8, 1
5. MOVAH,O

MOVAL,83H
MOVDX,1
INT 14H

SECTION 17.3: INTERFACING THE NS8250/16450 UART IN THE IBM PC

1. 8
2. false; asynchronous only
3. (b)
4. False; DLAB must be O.
5. It is the 07 bit of the line control (data format) register with 1/0 port address of 3FBH.
6. 1.8432 MHzl16 = 115,200. 115,200/4800 =24 =18 hex.
7. ;SET 07 OF THE LINE CONTROL REGISTER TO 1 FOR ACCESSING THE DLAB

MOV AL,80H ; 1 0000000 (BIN) TO ACCESS DLAB
MOV DX,3FBH ;THE ADDRESS OF LINE CONTROL REG
OUT DX,AL ;MAKE D7=1 FOR THE DLAB

;NOW SEND THE DIVISOR VALUE
MOV AX,24
MOV DX,3F8H
OUT DX,AL
MOV AL,AH
INC OX
OUT DX,AL

8. True

;4800 BAUD RATE
;DIVISOR LATCH ADDRESS (LSB)
;ISSUE THE LOW BYTE

;THE DIVISOR LATCH ADDRESS (MSB)
;ISSUE THE HIGH BYTE

SECTION 17.4: INTEL 8251 USART AND SYNCHRONOUS COMMUNICATION

1. true
2. F4H and F5H
3. 4800 x 16 =76,800 Hz
4. MOV AL,01000000B

OUT OF5H,AL
MOV AL,11011011B
OUT OF5,AL

5. 2 stop bits, no parity, 7bits, X16

;RESET THE 8251 BY D6 OF COMMAND REG
;TO ENSURE MODE REG IS BEING ACCESSED NEXT
;2 STOP BITS, ODD, 7 BITS, X64
;WRITE INTO MODE REGISTER

6. One way is by RESET hardware pin and another one is by outputting the 40H to command register.
7. true
8. true

540 CHAPTER 17: SERlALCOMMUNICATION AND 16450/8250/51

CHAPTER 18

KEYBOARD AND PRINTER
INTERFACING

541

Along with video monitors, keyboards and printers are the most widely used
input/output devices of the PC, and a basic understanding of them is essential. In
this chapter, we first discuss keyboard fundamentals, along with key press and key
detection mechanisms. In Section 18.2 we study hardware interfacing and BIOS
programming of the keyboard in the IBM Pc. The interfacing and programming of
parallel port printers in the IBM PC are discussed in Section 18.3. Section 18.4 gives
an overview of the bidirectional data bus in parallel ports. Specifically, parallel port
types of SPP, PS/2, EPP and ECP are described, and techniques for interfacing the
LPT port to devices such as LCDs and stepper motors are detailed.

SECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU

At the lowest level, keyboards are organized in a matrix of rows and
columns. The CPU accesses both rows and columns through ports; therefore, with
two 8-bit ports, an 8 x 8 matrix of keys can be connected to a microprocessor. When
a key is pressed, a row and a column make a contact; otherwise, there is no
connection between rows and columns. In IBM PC keyboards, a single microcon­
troIler (consisting of a microprocessor, RAM and EPROM, and several ports all on
a single chip) takes care of hardware and software interfacing of the keyboard. In
such systems, it is the function of programs stored in the EPROM of the microcon­
troIler to scan the keys continuously, identify which one has been activated, and
present it to the main CPU on the motherboard. More details of the IBM PC
keyboard design are presented in Section 18.2. In this section we look at the
mechanism by which the microprocessor scans and identifies the key. For clarity
we use 8086/88 Assembly language instructions in examples.

~ .
~ ~

< ?
3

'5" 2 '5" 1 >j" o >;"
DO

7 '5" 6 >;d" 5 >j" 4 >;"
D1 v

D2
By A '5<1" 9 >jd" 8 >;d"

A

F >jd" E >jd" D >.:''' C >j"
D3 vv

V cc

PortA
I;

(Out) D3 D2 D1 DO Port B
(In)

Figure 18-1. Matrix Keyboard Connection to Ports

542

Scanning and identifying the key

Figure 18-1 shows a 4 x 4 matrix connected to two ports. The rows are
connected to an output port and the columns are connected to an input port. If no
key has been pressed, reading the input port wiIl yield Is for all columns since they
are all connected to high (Vee). IfaIl the rows are grounded and a key is pressed,
one of the columns wiIl have 0 since the key pressed provides the path to ground.
It is the function of the microprocessor to scan the keyboard continuously to detect
and identify the key pressed. How it is done is explained next.

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

Grounding rows and reading the columns

To detect the key pressed, the microprocessor grounds all rows by providing
o to the output latch, then it reads the columns. If the data read from the columns is
03 - DO =1111, no key has been pressed and the process continues until a key press
is detected. However, if one of the column bits has a zero, this means that a key
press has occurred. For example, if 03 - DO =1101, this means that a key in the 01
column has been pressed. After a key press is detected, the microprocessor will go
through the process of identifying the key. Starting with the top row, the microproc­
essor grounds it by providing a low to row DO only; then it reads the columns. If the
data read is all I s, no key in that row is activated and the process is moved to the
next row. It grounds the next row, reads the columns, and checks for any zero. This
process continues until the row is identified. After identification ofthe row in which
the key has been pressed, the next task is to find out which column the pressed key
belongs to. This should be easy since the CPU knows at any time which row and
column are being accessed. Look at Example 18-1.

Example 18-1

From Figure 18-1, identify the row and column of the pressed key for each of the following.
(a) 03 - DO = 1110 for the row, 03 - DO = lOll for the column
(b) 03 - DO = 1101 for the row, 03 - DO = 0111 for the column

Solution:

From Figure 18-1 the row and column can be used to identify the key.
(a) The row belongs to DO and the column belongs to 02; therefore, the key number 2 was pressed.
(b) The row belongs to 01 and the column belongs to 03; therefore, the key number 7 was pressed.

Program 18-1 is the Assembly language program for the detection and
identification ofthe key activation. In this program, it is assumed that PORT _A and
PORT _Bare initialized as output and input, respectively. Program 18-1 goes through
the following four major stages:

I. To make sure that the preceding key has been released, Os are output to all rows at
once, and the columns are read and checked repeatedly until all the columns are
high. When all columns are found to be high, the program waits for a short amount
of time before it goes to the next stage of waiting for a key to be pressed.

2. To see if any key is pressed, the columns are scanned over and over in an infinite
loop until one of them has a 0 on it. Remember that the output latches connected to
rows still have their initial zeros (provided in stage I), making them grounded. After
the key press detection, it waits 20 ms for the bounce and then scans the columns
again. This serves two functions: (a) it ensures that the first key press detection was
not an erroneous one due to a spike noise, and (b) the 20-ms delay prevents the same
key press from being interpreted as a multiple key press. If after the 20-ms delay
the key is still pressed, it goes to the next stage to detect which row it belongs to;
otherwise, it goes back into the loop to detect a real key press.

3. To detect which row the key press belongs to, it grounds one row at a time, reading
the columns each time. If it finds that all columns are high, this means that the key
press cannot belong to that row; therefore, it grounds the next row and continues
until it finds the row the key press belongs to. Upon finding the row that the key
press belongs to, it sets up the starting address for the look-up table holding the scan
codes for that row and goes to the next stage to identify the key.

4. To identify the key press, it rotates the column bits, one bit at a time, into the carry
flag and checks to see if it is low. Upon finding the zero, it pulls out the scan code
for that key from the look-up table; otherwise, it increments the pointer to point to
the next element of the look-up table.

SECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU 543

no

While the key press detection is standard for all keyboards, the process for
determining which key is pressed varies. The look-up table method shown in
Program 18-1 can be modified to work with any matrix up to 8 x 8. Figure 18-2
provides the flowchart for Program 18-1 for scanning and identifying the pressed
key.

There are IC chips such as National Semiconductor's MM74C923 that
incorporate keyboard scanning and decoding all in one chip. Such chips use
combinations of counters and logic gates (no microprocessor) to implement the
under! ying concepts presented in Program 18-1.

no

yes

Wait for debounce

Ground next row

Read all columns

yes

Find which key
is pressed

Get scan code
from table

(Return)

Figure 18-2. Flowchart for Program 1

544 CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

;the fotlowing look-up scan codes are in the data segment
KCOD_O DB 0,1,2,3 ;key codes for row zero
KCOD 1 DB 4,5,6,7 ;key codes forrow one
KCOD::2 DB 8,9,OAH,OBH ;key codes farrow two
KCOD_3 DB OCH,ODH,OEH,OFH ;key codes for row three

;the fotlowing is from the code segment
PUSH BX ;save BX
SUB AL,AL
OUT PORT A,AL
IN AL,PORT B
AND AL,Oooof111 B

Kl:

CMP AL,00001111B
JNE Kl
CALL DELAY
IN AL,PORT B
AND AL,00001111B

K2:

CMP AL,00001111B
JE K2
CALL DELAY

;AL =0 to ground atl rows rows at once
;to ensure atl keys are open (no contact)
;read the cotumns
;mask the unused bits (D7-D4)
;are atl keys reteased
;keep checking for atl keys reteased
;wait for 20 ms
;read columns
;mask D7-D4
;see if any key pressed?
;if none keep checking
;wait 20 ms for debounce

;after the debounce see if stitl pressed
IN AL,PORT B ;read columns
AND AL,00001111B ;mask D7-D4
CMP AL,00001111B ;see if any key closed?
JE K2 ;if none keep potling

;now ground one row at a time and read columns to find the key
MOV AL,11111110B ;ground row 0 (DO=O)
OUT PORT A,AL
IN AL,PORT B
AND AL,00001111B
CMP AL,OOOOIIIIB
JE RO 1
MOV BX,OFFSET KCOD 0
JMP FIND IT -
MOV AL,11111101B
OUT PORT A,AL
IN AL,PORT B
AND AL,00001111 B
CMP AL,OOOOIIIIB
JE RO 2
MOV BX,OFFSET KCOD
JMP AND IT -
MOV AL,11111011B
OUT PORT A,AL
IN AL,PORT B
AND AL,00001111B
CMP AL,00001111B
JE RO 3
MOV BX,OFFSET KCOD 2
JMP FIND IT -
MOV AL,11110111B
OUT PORT A,AL

;read atl columns
;mask unused bits (D7-D4)
;see which column
;if none go to grounding row 1
;set BX=start of table for column 0 keys
;identify the key
;ground row 1 (Dl =0)

;read atl columns
;mask unused bits (D7-D4)
;see which column
;if none go to grounding row 2
;set BX=Start of table for column 1 keys

;identify the key
;ground row 2 (D2=0)

;read atl columns
;mask unused bits (D7-D4)
;see which column
;if none go to grounding row 3
;set BX=start of table for column 2 keys
;identify the key
;ground row 3 (D3=O)

IN AL,PORT B ;read atl columns
AND AL,OOOOI111 B ;mask unused bils (D7-D4)
CMP AL,00001111B ;see which column
JE K2 ;if none then false input repeat the process
MOV BX,OFFSET KCOD_3 ;set BX=start of table for column 3 keys

;A key press has been detected and the row identified. Now find which key.
FIND -'T: RCR AL,I ;rotate the column input to search for 0

JNC MATCH ;if zero, go get the code
INC BX ;if not point at the next code
JMP FIND_IT ;and keep searching

;GET THE CODE FOR THE KEY PRESSED AND RETURN
MATCH: MOV AL,[BX] ;get the code painted by BX

POP BX ;return with AL=code for pressed key
RET

;FOR THE DELAY GENERATION SEE CHAPTER 13

Program 18-1. Key Press Detection and Identification

SECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU 545

Review Questions

I. True or false. To see if any key is pressed, all rows are grounded.
2. If D3 - DO ~ 0 III is the data read from the columns, which column does the key

pressed belong to?
3. True or false. Key press detection and key identification require two different proc­

esses.
4. In Figure 18-1, if the row has D3 - DO ~1l10 and the columns are D3 - DO ~1l1O,

which key is pressed?
5. True or false. To identify the key pressed, one row at a time is grounded.

SECTION 18.2: PC KEYBOARD INTERFACING AND PROGRAMMING

546

In the IBM PC and compatibles, a microcontroller is used for both detection
and identification of keys. This microcontroller has a microprocessor in addition to
a few hundred bytes of RAM, a few Kbytes of EPROM, and a few 110 ports, all on
one chip. The microcontroller used widely in the IBM PC and compatibles is Intel's
8042 (or some variation). The 8042 is programmed to detect and identify the key
press. A scan code is assigned to each key and the microcontroller provides the scan
code for the pressed key to the motherboard. To allow the keyboard to be detachable
from the system board, the keyboard is connected to the system board through a
cable. Such an arrangement necessitates the use of serial data communication to
transfer the scan code to the main CPU (serial data transfer was covered in Chapter
17). IBM PC AT keyboards use the following data frame when sending the scan
code serially to the motherboard. For each scan code, a total ofll bits are transferred
from the keyboard to the motherboard.

one start bit (always 0)
8 bits for scan code
odd-parity bit
one stop bit (always 1)

In the PCIXT motherboard, a serial-in-parallel-out shift register, 74LS322,
is used to receive the serial data coming in through the keyboard cable. The 74LS322
strips away the framing portion, makes an 8-bit scan code, and presents it to port A
of the 8255 with 110 port address of 60H. On the IBM PC, AT, PS and compatibles,
the 74LS322 and supporting logic were replaced by another 8042. This allows the
option of programming the keyboard itself. Therefore, two 8042 microcontrollers,
one on the keyboard and one on the motherboard, are responsible for keyboard
bidirectional communication in the IBM PC, AT, PS, and compatible systems.

Make and break

In the IBM PC, the key press and release are represented by two different
scan codes. The key press is referred to as a make, and the release of the same key
is called a break. When a key is pressed (a make), the keyboard sends one scan code,
and when it is released (a break), it sends another scan code. The scan code for the
break is always 127 decimal (80H) larger than the make scan code. For example, if
a given key produces a scan code of 06 on make, the scan code for the break is 86H
(06 +80H ~86H).

IBM PC scan codes

The IBM PC/XT keyboard has 83 keys, arranged in three major groupings:

I. The standard typewriter keys
2. Ten function keys, Fl to FlO
3. IS-key keypad

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

These 83 keys are shown in Table 18-1. With the introduction of the PC AT,
IBM added one more key, "Sys Rq", to make a total of 84 keys. The locking shift
keys were made more noticeable by providing LED indicators for them. Later, IBM
introduced what is called the advanced keyboard, known more commonly as the
enhanced keyboard. The number of keys was increased to 101 for the U.S. market.
Tables 18-1, IS-2, and 18-3 provide the scan codes for both the PC/XT and enhanced
keyboards.

In Table 18-1, notice that the same scan code is used for a given lowercase
letter and its capital. The same is true for all the keys with dual labels. If the scan
code is the same for both of them, how does the system distinguish between
them? This is taken care of by the keyboard shift status byte. The BIOS data area
location 0040:00 17H holds the shift status byte. The meaning of each bit is given
in Figure IS-3.

The BIOS data area location 0040:001SH holds the second keyboard status
byte. The meaning of each bit is given in Figure 18-4. Notice that some of the bits
are used for the 101 enhanced keyboards.

Table 18-1: PC Scan Codes for 83 PCIXT Keys
~- -------~---, .---- --=-

'Hex
I

" 01 f-- -----;-

K~.","ey~~~H~ex .' Key I, Hex I Key Ii Hex I

. Esc -+_1...-5__ Y and y :1 29-:- and '--LlP -,-__ ----'"F'-"'3

Key

JlLl ! and 1 -+---,1,,-6. -.------lLand~2~LeftShift~ -i-- .. __ FA __
,~ .. I (al and 2 Ii 17 i land i 'I .. 2B : .. I and~F ___ F5

I~~ # and 3 ~ 8 I 0 and 0 II 2~_Z and z---l-30 I __ F.-'6"---_

,LJl:'.5-+----,,$ and 4 II 19 P and p. i'l 2D;_Xand x +:1_4 ___ 1'---',--___ ---'"'-F ___ 7 __ _

!~(j % and 5 I IA { and ['I 2E _ C and c 1'1 42 F8

j'_0_7 _: " and 6 'I I B } and 1 II 2f----"-V and v --t-13. I F9~ __

,~8 & and 7 Il_ IC I enter II 30 B and~ 4LL FlO

1',Q9- * and 8 I' 1D ctrl i 31 . Nand n I' 45 I NumLock

II OA (and,~9,--+--,I.,=E-+---"A and a iii. 32 M and m i,l 46 I ScrollLock .

OB) and 0 -+--,I",-F ~--""S-"and s II 3_3 __ < and , .~-I-- 7 and_Home

OC and - 20 I D and d 'I 34.~and. !....±!L~. 8 and UpArr,,-ow,,--_.

IloD !+ and = 21 -i F and f II 35 i ? and / _J.L- 9 and PgU-..-p __

I

', .. OE I backspace 22 L G an(i~6 i RightShift il 4A I _ - (gray)

~ tab 23 H an~_.J7 I PrtSc and * II 4B! 4 and LeftArrow

I' 10 'Qandg 24 Jandt 38_LA~~1 5 (keypad)

I~' I Wand w il 25 , K and k 39 I spac~.~ _ 6 and RightArrow

,112 , Eande.~ Lam!! 3A I CapsLock~-t __ + (gray) ..

i,_13 ' R_and r l 27 : .. : and; 3B Fl· .11 4F ') and En d __

I~. ~ T and t~ i " and' 3C......12. ---L.1()-+-~ and DownArro\\,

II
I

~II" il"Wl. 51 :3 and PgDn
, 52 I 0 and Ins
~+-- . and Del

_. .-
(Reprinted by permission from "IBM BIOS Technical Re erence" c. 1987 by International Business Machines Corporation)

I

I

SECTION 18.2: PC KEYBOARD INTERFACING AND PROGRAMMING 547

Table18-2: Combination Key Scan Codes
.~ ~;-= =-~~ ~

I~_ex Keys I Hex I Keys Hex _ I Keys 'Hex ~ Keys "

11~4 I Shift F I ~~~trl F3 ---L 6C L- Alt F~ -+- IL L Alt I _jl
I~ ~.~hift F2 __ ' . .2. 'L ._1 _Ctrl F4--L 6D L_ .. Alt F~ -+- 79 .~_ Alt 2._ i

~_5_6_: ~ift F3--l- ~,~trl F5 .. _ 6~ ._ Aft F7 __ +---7 A i_Alt 3~

::,_~7 ----+- Shift F4~L Ctrl~ -+--.2L+ _Aft F8 _. _" _7~_+_Alt 4'

1~~-LShift FU.......M-+-- Ctrl FL--:---.lQ-+----.Aft F9 _L~C_!---.AltL]
11--..29_+ShiftF6 _p~ CtrlF8 lZLJ_AltF~--t-7DL Alt6----j1

1'f-5~:~ift F7._' _ ~ __ ! _Ctrl F9 ---+-. 72-1- Ctrl PrtSe ---1 .. 7Et- Alt 7 __ '!

~IL-+ Shift F8 I 67 1 Ctrl FIO_' ~: Ctrl LeftArrow-+-_~I_Alt 8 II
I~~+-Shift F9 I 68 ! Alt F_l_L1L~!rl RightArrow ! ~+- Alt 9_1

c 5D 1-shift FiLl 69--l- Alt F~ ~~ Ctrl End ---i -.n ._1 _ Alt 10_il
_ 5E __ Ctrl F~ 6A-i- AltF3 __ ', ~ ~!- CtrIPgDn -' 'I

IL 5F Ctrl F2 6B i Alt F4 ~----"- Ctrl Home -.JI
(Reprinted by pennission from "IBM BIOS Technical Reference" c. 1987 by International Business Machines Corporation)

Table 18-3: Extended Keyboard Scan Codes
-;= _=;=== ____ = __ =-..0=.=_='_= _ ,-.= __ = _~~I~= ___ ~=

!~He~ Keys IHex i Keys Hex' Keys . j Hex! Keys_~,

i~+- FII __ ',i 8E-i--- CtrL---12L+---.AltHome_1 ADI AltDownArro~1
I' , ! I I' I
! .~ __ FI2 ._' •. ~_ CtrI5_.-+-9LAltUpArroLAI ~ _AltPgDn .. -'1
I, 87 ~hift FIL--.2Q~ __ Ctri + ___ .. 2Ll __ Altj'gU1L-~ -i--- Aft Insert_!

~ 88 -,---5hift FlL i.2J. I Ctrl DownArrow I 9A i __ . _. I A3 +- Alt Delete_ Ii

I~ L Ctrl FJL +~ -L Ctrl Ins. ert I 9B ~t Left.Arrow ---Lt.AD- ._ A. It! _!I
iL 8A-+- Ctrl Fl2 _' 9ll _~trl Delete . ~C:--i- _ _ ---l &l _Alt Tab - J
',: ,: : I I

1-8B_' . Aft FI 1 ._'_9L~trl Tab_ -L2P~lt RightArrO\"'_'_A~ ---..bJt Enter_ ,
I 8C, AftFI2 95 Ctrll 9E . !
~ '-' . __ ._- ---+---'--'-'-- - .~- -_. _ .. -

Il8D I CtrlUpArrow I 96 I Ctrl * _19F I A1t End __ ~~~~,
(Reprinted by permission from "IBM BIOS Technical Reference" c. 1987 by International Business Machines Corporation)

. ___ '._' I d7 I d6 I d5 I d4 I d3 I d2 I d1 I dO I _ .. __
: Insert toggled _ .~~ I l L~_~Ri~9htSh_ift pres_sed

~CapsLock -statee IttoO!9g,glllee,ad -~'I_ -----' L ___ --:LeftSh-;ft-p-ress-;;;;- -

iNumLock state toggled, ... -------'

isc~~.Lock·~are~ggledl----------'

Fiaure 18-3. First Keyboard Status Byte

'---------ICtrl pressed

'----------jAlt pressed
~---.

1 __ - ~ I d7 I d6 I d5 I d4 I d3 I d2 I d1 I dO I ... - __ . _
I Insert pressed I I L J Left Ctrl pressed ,

~sLOck presse~] ___ --' '-----I Left Alt pressed
~_.=.,='-- I

~umL~ck pres~ed --: '-------.,Sys Req pressed I
1_...0= .. = .=~

--'-"-"~

i Scroll Lock pressed 1.---------'

Figure 18-4. Second Keyboard Status Byte

'-----------ICtrI/NumLock
~ause) pressed ~

548 CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

When a key is pressed, the interrupt service routine of !NT 9 receives the
scan code and stores it in memory locations called a keyboard buffer, located in the
BIOS data area. However, to relieve programmers from the details of keyboard
interaction with the motherboard, IBM has provided !NT 16H. We first look at the
services provided by the BIOS !NT 16H and then we study the details of how the
keyboard interacts with the motherboard through hardware !NT 09.

BIOS INT 16H keyboard programming

INT 16H, AH =0 (read a character)

This option checks the keyboard buffer for a character. If a character is
available, it returns its scan code in AH and its ASCII code in AL. If no character is
available in the buffer, it waits for a key press and returns it. For characters such as
F 1 - FlO for which there is no ASCII code, it simply provides the scan code in AH
and AL = O. Therefore, if AL = 0, a special function key was pressed. This option
simply provides the code for the character and does not display it.

INT 16H, AH =01 (find if a character is available)

This option, which is similar to the AH = 0 option, checks the keyboard
buffer for a character. If a character is available, it returns its scan code in AH and
its ASCII code in AL and sets ZF = O. If no character is available in the buffer, it
does not wait for a key press and simply makes ZF = 1 to indicate that.

INT 16H, AH =02 (return the current keyboard status byte)

This option provides the keyboard status byte in the AL register. The
keyboard status byte (also referred to as the keyboard flag byte) is located in the
BIOS data area memory location 0040:0017H. For the meaning of each bit of the
shift status byte, see Figure 18-3.

Example 18-2

Run the following program in DEBUG. Interpret the result after typing each of the following. Run the
program for each separately. (a) Z (b) FI (c)ALT

MOV AH,O
!NT 16H
!NT 3

Solution:
(a) AX = 2C7A AH = 2C,the scan code, and AL=7A,ASCIIfor'Z'
(b) AX = 3BOO AH = 3B, the scan code for FI, and AL = 00, because FI is not an ASCII key
(c) Nothing happens because there is no scan code for the Alt key. The status of keys such as Alt is

found in the keyboard status byte stored in BIOS at 40: 17 and 40: 18.

Example 18-3

Run the following program in DEBUG while the right shift key is held down and the CapsLock key
light is on. Verify it also by dumping the 0040:0017 location using DEBUG.

MOV AH,02
!NT 16H
!NT 3

Solution:
Running the program while the RightShift and CapsLock keys are activated gives
AH =41H =0100 0001 in binary, which can be checked against Figure 18-3. In DEBUG,
-dO:417418
will provide the keyboard status byte 41-00.

SECTION 18.2: PC KEYBOARD INTERFACING AND PROGRAMMING 549

Due to additional keys on the IBM extended keyboard, BIOS added the
following additional services to !NT 16H.

INT 16H, AH=10H (read a character)

This is the same as AH = 0 except that it also accepts the additional keys
on the IBM extended (enhanced) keyboard.

INT 16H, AH =11H (find if a character is available)

This is the same as AH = 1 except that it also accepts the additional keys
on the IBM extended (enhanced) keyboard.

INT 16H, AH =12H (return the current status byte)

This is the same as AH = 2 except that it also provides the shift status byte
of the IBM extended (enhanced) keyboard to AH. See Figure 18-5.

Example 18-4
Run the following program in DEBUG. Interpret the result after typing each of the following. Run the
program for each separately. (a) Fll (b) ALTFll (c)ALTTAB

MOV AH,IOH
!NT 16H
!NT 3

Solution:
After running the program above in DEBUG for each case, we have the following.
(a) AX = 8500, where 85H is the scan code for Fll
(b) AX = 8BOO, where 8BH is the scan code for Alt-FII
(c) AX = A500, where A5H is the scan code for Alt-Tab
All of the cases above have AL = 00 since there is no ASCII code for these keys .

. __ . __ I d7 I d6 I d5 I d4 I d3 I d2 I d1 I dO I. _
I SysReq pressed . J--:=r J I l {eft Ctrl pressed J
@apsLock pressed ' Left Alt pressed I

I Nu",~ock pressed =::::J ;-Right Ctrl pressed I
I

~~.

, Scroll Lock pressed ~Alt pressed .--.l

Figure 18-5. Enhanced Keyboard Shift Status Byte

Example 18-5

Write and test a program in DEBUG that increments counter CX whenever Shift-F7 is activated;
otherwise, it should exit.

Solution:
The unassembled program in DEBUG follows.
-u 100 113
16B7:0100 B402
16B7:0102 C016
16B7:0104 F6C403
16B7:0107 740A
16B7:0109 B400
16B7:010B C016
16B7:0100 80FC5A
16B7:0110 7501
16B7:0112 41
16B7:0113 CC

550

MOV
INT
TEST
JZ
MOV
INT
CMP
JNZ
INC
INT

AH,02
16
AH,03
0113
AH,OO
16
AH,5A
0113
CX
3

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

Hardware INT 09 role in the IBM PC keyboard

To understand fully
the principles underlying the
IBM PC keyboard, it is nec­
essary to know how INT 09
works. The IBM PC key­
board communicates with the
motherboard through hard­
ware interrupt IRQ I of the
8259. As mentioned in Chap-
ter 14, IRQ! (INT 09) of the
8259 is used by the keyboard.
The way the INT 09 interrupt
service works is as follows.

I. The keyboard microcontro 1-
ler scans the keyboard matrix

3 - unused 03V~ 1 - keyboard clock

5 - +5.0 volts 0 5
2 4 - ground

o

2 - keyboard data

Figure 18-6. Keyboard Cable Jack for the PC
(Reprinted by pennission from "IBM Technical Reference" c.
1984 by International Business Machines Corporation)

continuously. When a key is pressed (a make), it is identified and its scan code is
sent serially to the motherboard through the keyboard cable (see Figure 18-6). The
circuitry on the motherboard receives the serial bi Is, gets rid ofthe frame bits, and
makes one byte (scan code) with the help of its serial-in-parallel-out shift register,
then presents this 8-bit scan code to port A of the 8255 at I/O address of 60H, and
finally activates IRQ 1.

2. Since IRQI is set to INT 09, its interrupt service routine (ISR) residing in BIOS
ROM is invoked.

3. The ISR of INT 09 reads the scan code from port 60H.
4. The ISR of INT 09 tests the scan code to see if it belongs to one of the shift keys

(RightShift and LeftShift), Alt, Clrl keys, and so on. If it is, the appropriate bit of
the keyboard status bytes in BIOS memory locations 0040:0017H and 0018H are
set. However, it will not write the scan code to the keyboard buffer. If the scan code
belongs to any key other than a special key (Shift, Alt, Ctrl, and so on), INT 09
checks to see ifthere is an ASCII code for the key. If there is one, it will write both
the ASCII and scan codes into the keyboard buffer. If there is no ASCII code for the
key, it puts 00 in place of ASCII code and the scan code in the keyboard buffer.

5. Before returning from !NT 09, the ISR will issue EO! to unmask IRQI, followed
by the IRET instruction. This allows IRQ 1 activation to be responded to again.

6. When the key is released (a break), the keyboard generates the second scan code by
adding 80H to it and sends it to the motherboard.

7. The ISR of !NT 09 checks the scan code to see if there is 80H difference between
the last code and this one. This is easy since all it has to do is to test 07 (80H
=10000000 binary). If 07 is high, this is interpreted as meaning that the key has
been released and the system ignores the second scan code. However, if the key is
held down more than 0.5 seconds, it is interpreted as a new key and !NT 09 will
write it into the keyhoard buffer next to the preceding one. Holding down the
keyboard for more than 0.5 seconds is commonly referred to as typematic in IBM
literature, which means repeating the same key.

From the above steps the following points must be emphasized:
1. The keyboard sends two separate scan codes for make and break to the motherboard.
2. It is the function of the ISR of !NT 09 to read the scan code sent by the keyboard

and convert it to ASCII (if any), then save both the scan code and ASCII code in the
keyboard buffer of the motherboard.

3. If any of the special keys, such as Shift, Alt, or Ctrl, is pressed, INT 09 sets the
appropriate bits to 1 in the BIOS data area of0040:0017H and 0018H, but it will
not deliver the scan code to the keyboard buffer.

4. If any undefined combination of keys are pressed, !NT 09 is activated but it will
ignore them since there is no associated scan code. If such key combinations are
used by a given program, it is the job of the programmer to intercept them by hooking
into !NT 09.

SECTION 18.2: PC KEYBOARD INTERFACING AND PROGRAMMING 551

552

Keyboard overrun

On the keyboard side, the 8042 circuitry must serialize the scan code and
send it through the cable to the motherboard. On the motherboard side, there is
circuitry responsible for getting the serial data and making a single byte of scan code
out of the streams of bits, and holding it for the CPU to read. What happens if the
CPU falls behind and cannot keep up with the number of keystrokes? Such a
situation is called keyboard overnm. The motherboard beeps the speaker when an
overrun occurs. The beeping process works as follows. The circuitry on the keyboard
has a buffer of its own to store a maximum of 20 key strokes. When this buffer
becomes full, it stops receiving keystrokes and sends a special byte called an overrun
byte (which is FFH in the PC/XT) to the motherboard. After getting the scan code,
!NT 09 first checks to see if the scan code received is the overrun byte, FFH. If it
is, it will sound the speaker; otherwise, it tests for the shift keys and so on, as
explained earlier. In other words, the BIOS ROM on the motherboard is responsible
for beeping the speaker in the event of keyboard overrun. The following program
shows this process. It provides the beginning and ending codes for the !NT 09
interrupt service routine, taken from the IBM PC/XT BIOS with some modification
for the sake of clarity.

;KEYBOARD INT 09 INTERRUPT ROUTINE for PCIXT
KB_INT PROC FAR

STI ;ALLOW FURTHER INTERRUPT
PUSH AX ;SAVE ALL THESE
PUSH BX ;REGISTERS
PUSH CX
PUSH DX
PUSH SI
PUSH DI
PUSH DS
PUSH ES

IN AL,60H ;READ IN THE CHARACTER FROM PORT# 60H

CMP AL,OFFH ;OVERRUN CHARACTER? (PC/AT USES 00)
JNZ K16 ;NO. TEST FOR SHIFT KEY
JMP K62 ;SOUND THE BEEPER FOR BUFFER FULL

CLI ;TURN OFF INTERRUPTS
MOV AL,20H ;ISSUE EOI (END-OF-INTERRUPT) TO 8259
OUT 20HAL ;AT PORT ADDRESS 20H
POP ES
POP DS
POP DI
POP SI
POP DX
POP CX ;RESTORE ALL THE
POP BX ;REGISTERS
POP AX
IRET ;RETURN FROM INTERRUPT

KBJNT ENDP

Keyboard buffer in BIOS data area

As mentioned above, the !NT 09 interrupt routine gets the scan code from
the keyboard and stores it in some memory locations in the BIOS data area. These
memory locations are referred to as the keyboard buffer. This keyboard buffer in the
BIOS data area should not be confused with the buffer inside the keyboard itself,
whose overrun causes the speaker to beep.

If there is an ASCII code, !NT 09 also stores the ASCII code for the key in
the keyboard buffer; otherwise, it puts 0 there instead. Where this keyboard buffer
is located and how it is used by !NT 09 are discussed next.

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

BIOS keyboard buffer

A total of32 bytes (16 words) of memory in tbe BIOS data area is set aside
for the keyboard buffer. It starts at memory address 40:001 EH and goes to
40:003DH, which corresponds to physical addresses 004IEH and 0043DH. Each
two consecutive locations are used for a single character, one for tbe scan code and
the otber one for tbe ASCII code (if any) of the character. How does INT 9 know in
which word of this 16-word buffer it should put the next character, and how does
INT 16H know which oftbe characters in the keyboard buffer to extract? To answer
these questions, we must explain tbe role of keyboard buffer pointers. There are two
keyboard buffer pointers: tbe head pointer and tbe tail pointer. See Table 18-4.

Table 18-4: BIOS Data Area Used by Keyboard Buffer
F'"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i

Address of Head Pointer Address of Tail Pointer

41Aand41B 41C and41D 41E to 43D

Tail pointer

Memory locations 0040:001CH and 0040:001DH (physical addresses
0041CH and 0041DH) hold tbe address for tbe tail. This means that at any given
time, memory locations 0041CH and 0041D hold the address where INT 09 should
store tbe next character. It is the job of INT 09 to put the character in the keyboard
buffer and advance the tail by incrementing tbe word contents of memory location
0041 C, where tbe tail pointer is held.

Head pointer

INT 16H gets tbe address of where to extract the next character from
memory locations 41AH and 4IBH, the head pointer. As INT 16H reads each
character from tbe keyboard buffer, it advances tbe head pointer held by memory
locations 41AH and 4IBH.

The above discussion can be summarized as follows. As INT 09 inserts the
character into the keyboard buffer it advances the tail, and as INT 16H reads tbe
character from the keyboard buffer it advances the head. When tbey come to the end
of tbe keyboard buffer they botb wrap around, creating a ring of 16 words where
the head is continuously chasing the tail. This is shown in Figure 18-7.

Notice in Figure 18-7 that if the keyboard buffer is empty, the head address
is equal to the tail address. As INT 09 inserts characters into the buffer, the tail is
moved. Iftbe buffer is not read by INT 16H, it becomes full, which causes tbe tail
to be right behind the head. Look at Example 18-6.

Tail

Figure 18-7. Keyboard Buffer Head and Tail

PC keyboard technology

The kind of keyboard shown in Figure 18-1 is referred to as a hard contact
keyboard. When a key is pressed, a physical contact between the row and column
causes the column to be pulled to ground. Although these kinds of keyboards are
cheaper to make, they have the disadvantage of deteriorating at the contact points
of rows and columns, eventually becoming too stiff to use, due to metal oxidation

SECTION 18.2: PC KEYBOARD INTERFACING AND PROGRAMMING 553

of the contact points. The alternative to hard contact keyboards are capacitive
keyboards. In such keyboards there is no physical contact between the rows and
columns; instead, there is a capacitor for each point of the matrix. In capacitive
keyboards when a key is pressed, the change in capacitance is detected by a sense
amplifier and produces the logic level, indicating that a key has been pressed.
Capacitive keyboards last much longer than do hard contact keyboards. All IBM PC
and PS machines use capacitive keyboards except the now abandoned PC Jr. models,
which used hard contact keyboards.

Example 18-6

Using DEBUG, dump the location where the head and tail pointer are held. Compare them. Is the
buffer full or empty?

Solution:
C>DEBUG
-D 0:410 41F
0000:0410 63 44 FO 80 02 00 01 40-00 00 3C 00 3C 00 20 39 cD @ .. <.<. 9

In this case, the head and tail pointers point to the same location; therefore, the buffer is empty.

Review Questions

1. Show the bits transferred from the keyboard to the motherboard when "J" is
pressed.

2. How does the PC recognize the difference between the key press and key release?
3. Find the make and break scan codes for the letter "X" in both hex and binary.
4. True or false. The CPU is notified t!trough !NT 09 only for key press, not for key

release.
5. Does the Alt key have a scan code? If yes, what is it?
6. True or tillse. The CPU stores the scan code for the right SHIFT in the buffer.
7. Find the contents of the keyboard status byte ifCapsLock and Alt are pressed.
8. True or false. !NT 09 is responsible for finding the ASCII code for a given key if

there is one.
9. True or false. The keyboard buffer holds both the scan code and the ASCII code for

a given key.
10. True or false. The beep sound indicates that the BIOS keyboard buffer is full.
II. What does it mean when the head and tail pointer have the same values?
12. As !NT 09 puts the scan code into keyboard buffer it advances the ___ _

(tail, head) pointer.

SECTION 18.3: PRINTER AND PRINTER INTERFACING IN THE IBM PC

554

In this section we describe the standard printer interface, called the Cen­
tronics printer interface. Then we study the IBM PC printer interfacing and provide
some examples of printer programming using BIOS !NT 17H.

Centronics printer interface pins

The Centronics-type parallel printer interface is the printer interface stand­
ard in the 80x86 PC. It is also referred to as Epson FX-IOO standard. It is a 36-pin
interface connector where the pins are labeled as I to 36. Many of the 36 pins are
used for ground, allowing many signals to have their own ground return lines,
which reduces electrical noise. The 36 pins can be grouped as follows.

I. The data lines, which carry the data sent by the PC to the printer.
2. Printer status signals, which indicate the status of the printer at any given time.
3. Printer control signals, which are used to tell the printer what to do.
4. Ground signals, which provide an individual ground return line for each data line

and for certain control and status lines.

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

LSeJ"lli!t(lRe~urn #~~lml!l~_~ire~tion, , ____ ' __ _ Description
,STROBE pulse to read data in. Pulse width must be more

I 19 STROBE IN ,than 0,511 S at receivin~ terminal. The signal level is
normally "high"; read-m of data is performed at the "low!!

level of this SIgnal. ______ _

2

3

4

20 ___ PATAL __ 1N These signals represent information of the I st to 8th bits of:
-j parallel data, respectively. Each si&"al is at "high" level

21 DATA 2 IN
I when data is logical" 1 ", and "low when logical "0('.

22 : DATA 3 -____ 1-- ,~_--' IN

5~_...n

__ 6 ____ 24

: 7~~

r lL~_26

DATA 4

-L---,D~ATA 5

DATA 6

DATA 7
-"---

IN

IN

IN

IN

I 9

I
,' 10

IN 27~~=D=AT=A~8~:--=~

~-
28 ACKNLG OUT

'I II 29 BUSY OUT

, ~
I Approximately 0.5 ~s pulse; "low" indicates data has been Ii
t received and_printer is readyJor d_~~~.________ :,1

A "high" signal indicates that the printer cannot receive
data. The sIgnal becomes "high" in the following cases: (I)

I quring data entry, (~) du~ng printing operation, (3) in "off-

----+1 1-- I hne" status, (4) durmg pnnte!:. error_ status. ___ _
OUT 1 A "high" signal indicates that printer is out of paper. " 12 I-D-

I --'--

30

14

l
1 15 •
f-----'--'--!- -

i

! 16

I

, 17 '
f----- :

II '18 I

I '

I 19 - 30 '

, 31

II __ ----

I 32

I 33 1,-------
I 34
I!------

35

36

PE

SLCT
~-=~~ i ------

f>.UTOFEEDXT

--------+

NC

OV

OUT ; IndIcates that the printer is in the state selected.

IN
With this signal being at "low" level, the paper is fed

'I' automatically one line after printing. (The signal level can
be fixed to "low" with DIP SW pin 2-3 proVIded on the

I control circuit board.) ________ _
'Not used.

Logic GND level.
I
, : Printer chassis GND. In the printer, chassis GND and the :
! CHASISGND +1 ___jl ... lo"",gic GND are isolated from each other. .. , _____ J

NC +--

GND

INIT IN

INot used. '

! "Twisted-pair return" signal'; GND level. ,

---------1

When this signal becomes "low" the printer controller is
reset to its imtial state and the print buffer is cleared.

,Normally at "high" level; its pulse width must be more
tt~an 50)ls at receiving tenninal. _

ERROR OUT i The level of this signal becomes "low" when printer is in
: "paper end", ::9Jf-Ime" and "error'~ state. ______ _ ----

GND Same as with pin numbers 19 to 30.

- -------t-------- ----------- - ---------
Not used, NC -----------1

,Pulled up to +5 V dc through 4.7 K ohms resistance.

f-- _...c.::==--+-----, Data ~n-t-ry-t-o-th-e-l'rinter is possible only when the level of --'I'
SLCT IN __ 1'_ IN this signal is "low", (Internal fixing can be carried out with

,DIP SW I - 8. The condition at the time of shipment is set 1
b_ I "low" !or this signall I
(Reprinted by pennission from "IBM Technical Reference Options and Adapters" c. 1981 by International Business Machines)
Corporation)

SECTION 18.3: PRINTER AND PRINTER INTERFACING IN THE IBM PC 555

556

Data lines and grounds

Input pins (\

OI~1 2 3 4 5 6 7 8 910111212 o 0 0 0 0 0 0 0 0 0 0 0 0
DATA I to DATA 8 pro­
vide a parallel pathway
for 8-bit data sent by the
PC to the printer. Notice
in Table 18-5 that pins 20
to 28 are used for indi­
vidual ground return
lines, one for each data
pin. Table 18-6 describes
the DB-25 printer pins.

o 0 0 0 0 0 0 0 0 000
141516171819202122232425

Figure 18-8. DB-25P (Male) Printer Connector
(Reprinted by permission from "IBM Technical Reference" c. 1988
by International Business Machines Corporation)

Figure 18-8 shows the connector.

Printer status signals

These are all output pins from the printer to
the PC used by the printer to indicate its own status.
They are as follows.

PE (pin 12) is used by the printer to indicate
that it is out of paper.

BUSY (pin II) is high if the printer is not
ready to accept a new character. This pin is high when
the printer is off-line or when it is printing and cannot
accept any data. The PC monitors this pin continu­
ously and as long as this pin is high, it will not transfer
data to the printer.

ERROR (pin 32) is normaJly a high output and
is activated (goes low) when there are conditions such
as out-of-paper, off-line state, or jammed printhead in
which the printer cannot print.

SLCT (pin 13) is active high and goes from
the printer to the PC when the printer is turned on and
online, indicating that the printer is being selected.

Table 18-6: DB-2S
Printer Pins r- .
IJin I Descril!tion

I jStrobe

2 iDatabitQ ___ m_

iI-I ~3---j'ID=a=ta bitl __ '. W JData bit 2j

I~ IDatabit3 -,
i 6

l- 7

~...R.

• Data bit 4 _

I Data bit 5 . m~'

[Data bit 6 j

IW ,Data bit 7 1': IZ:~'Wkdg,
ACKNLG (pin 10) is used by the printer to

acknowledge receipt of data and that it can accept a
new character.

I 12 'Out of paper

1:-1~3~=S=el=e=ct=:== __ ~
Auto feed-JI

I il Printer control signals

STROBE (pin I) and ACKNLG are the most
widely used signals among control and status pins.
When the PC presents a character to the data pins of
the printer, it activates the STROBE pin of the printer,
telling it that there is a byte sitting at the data pins.
When the printer picks up the data and is ready for
another byte, it sends back the ACKNLG sig­
nal. While the STROBE is used by the CPU to teJl the
printer that there is a byte of data, it is the printer that
must acknowledge the data receipt and its readiness for
accepting another byte through the ACKNLG line.
The ACKNLG signal can be used by the CPU to go
and get another byte of data to be presented to the
printer. See Chapter 12 for more about handshaking.

!NIT (pin 31) is an input into the printer and
is normally high. When it is activated (active low) it
resets the printer. Upon receiving this signal, the
printer goes through a sequence of internal initiali­
zation, including clearing its own internal buffer.

I Error '

===-J
I

• 18 c--= .. Ground ---j
I' 19 Ground

Ii 20 Ground ,~" --

I 21 Ground

22 Ground I ~. -
,

23 Ground -

24 Ground

25 ,Ground
(Reprinted by permission from
"IBM Techmcal Reference" c. 1988
by International Business Machines
Corporation)

,
,

!

I

i

I

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

There are two other control signals in the printer: AUTO FEED XT and
SLCT IN. See Table IS-5 for their descriptions. The following are the steps in
computer and printer communication.

I. The computer checks to see if a BUSY signal from the printer indicates that the
printer is ready (not busy).

2. The computer puts S-bit data on the data line connected to the printer data pins.
3. The computer activates the STROBE pin by making it low. Prior to asserting the

printer input STROBE pin, the data must be at the printer's data pins at least for 0.5
~s . This is data setup time.

4. The STROBE must stay low for at least 0.5 ~s before the computer brings it back
to high. The data must stay at the printer's data pins at least 0.5 ~s after the STROBE
pin is deasserted (brought back to high).

5. The activation of STROBE causes the printer to assert its BUSY output pin high,
indicating to the computer to wait until it finishes taking care of the last byte.

6. When the printer is ready to accept another byte, it sends the ACKNLG signal back
to the computer by making it low. The printer keeps the ACKNLG signal low only
for 5 ~s. At the rising edge of ACKNLG, the printer makes the BUSY (not BUSY
=ready) pin low to indicate that it is ready to accept the next byte.

The CPU can use either the ACKNLDG or BUSY signals from the printer
to initiate the process of sending another byte to printer. Some systems use BUSY
and some use ACKNLG.

IBM PC printer interfacing

In the IBM PC, the POST (power-on
self-test) portion of BIOS is programmed to
check for printers connected to parallel ports.
As they are identified, the base 110 port ad­
dress of each is written into the BIOS data
area 0040:000S to 0040:000FH just like the
COM port discussed in Chapter 9. A total of
S bytes of memory in the BIOS data area can
store the base 110 address of 4 printers, each
taking 2 bytes.

Table 18-7: BIOS 110 Base
Addresses for LPT
~

110 Base Address LPT il

0040:0008 - 0040:0009 LPTl

0040:000A - 0040:000B LPT2

0040:000C - 0040:000D LPT3
• I

0040:000E - 0040:000F ILPT-1J

Memory locations 0040S to 0040FH can be checked to see which LPT (line
printer) port is available. Memory locations 0040:000SH and 0040:0009H (physical
locations 0040SH and 00409H) hold the base 110 address of LPTl, and so on, as
shown in Table IS-7. If no printer port is available, Os are found.

It must be emphasized that the base I/O port addresses assigned to LPTs can
vary from system to system. This is due to the fact thatthe POST (power-on self-test)
portion of BIOS will check for the existence of a printer port first at 110 address
03BCH, then at 037SH, and finally, at 027SH. Whichever is found first will be
written into BIOS data area 40SH, where the base I/O address for LPTl is expected;
the second one found is written to 40AH address for LPT2; and so on.

Printer interfacing circuitry uses only 3 I/O ports starting at the base address:
one 110 port for the LPT's data lines, one for the LPT's status lines, and one for the
LPT's control lines. For example, if the base 110 port address for LPTl is 378H, the
110 port address 378H is used for the data, 379H for the status, and 37 AH for the
control signals. See Table IS-S for the assignments.

Table 18-8: IBM PC Printer Ports and Their Functions

Line Printer I Data Port (R/W) Status Port (Read Onlv) Control Port (RfW)

I
LPT I I 03BCH 03BDH 03BEH

LPT2 L 0378H --1----- 0379H
I

037AH

'-11 l LPT3 0278H J 0279H I 027AH .. •. ..

SECTION 18.3: PRINTER AND PRINTER INTERFACING IN THE IBM PC 557

Example 18-7
Using DEBUG, detennine which printer port(s) are available.

Solution:

C>DEBUG
-D 40:08 L8
0040:0008 7803000000000000 x

This shows that the base 1/0 address ofLPTl is 0378H. No other printers are connected to the
parallel ports.

Example 18-8

Two extremely reliable technical reference documents state that the base LPTl VO address is:
in document A, the base 110 address is 3BCH, and in document B, it is 378H. The two documents be-
long to different manufacturers. Which document is correct?

Solution:

They are both right: manufacturer A used port address 3BCH for address decoding and
manufacturer Bused 378H. To verifY that both are right using DEBUG, simply dump the BIOS area
0040:0008 on both PCs and examine the contents of memory locations 0040:0008 and 0040:0009.
They should match the documentation.

Figure 18-9 shows the printer's data, status, and control ports.

Data Port Status Port Control Port

,---- DO DO Reserved DO STROBE

01 Reserved 01 AUTO FDXT

02 IRQ 02 INIT

03 ERROR 03 SLCT (In)

04 SLCT 04 IRQ Enable

05 PE 05 Direction

06 ACK 06 Reserved

-07 07 BUSY 07 Reserved

05 of the control port is used in extended mode only. Extended mode allows
use of DO - 07 as a bidirectional data bus. Not all PCs support extended mode.

Figure 18-9. Printer's Data, Status, and Control Ports

558 CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

Programming the IBM PC printer with BIOS INT 17H

BIOS INT 17H provides three services: printing a character, initializing the
printer port, and getting the printer status port. These options are selected according
to the value set in the AH register. This is described as follows.

INT 17H, AH=O (print a character)

I f this option is selected, !NT 17H expects to have the LPT number in
register OX (0 for LPTl, I for LPT2, and 2 for LPT3) and the ASCII character to
be printed in the ALregister. Upon return, INT 17H provides the status of the selected
printer port as follows.

Bit No.
7
6
5
4
3

2,1
o

Function
1 = Not BUSY(ready), O-BUSY
1 = Acknowledge
1 = Out of paper
1 = Printer selected
1 = I/O error
unused
1 = Printer time-out

INT 17H, AH =01 (initialize the printer port)

This option initializes the printer by setting the printer to the top-of-page
position in spite of the fact that most printers do that automatically when they are
turned on. Before this function is called, AH is set to I and OX contains the printer
number (O=LPTl, I =LPT2, and 2=LPT3). After calling AH = status, the situation
is as shown under option o.

Example 18-9
Using the !NT 17H, show how to print the character "A" on the LPTI.

Solution:

MOV AH,O
MOV OX,O
MOV AL,41H
!NT 17H

;print character option
;select LPTl
;ASCII code for letter "A"
;call BIOS

If for any reason it cannot print the character, it sets AH = 0 I which is 0000 0000 I, meaning
that it tried for certain period oftime and could not print. To examine the inner working of BIOS !NT
17H that is responsible for printing characters, see the end of this section.

INT 17H, AH =02 (get the printer port status)

This option allows a programmer to check the status of the printer. Before
calling the function, AH is set to 2 and OX holds the printer number (O=LPTl,
I =LPT2, and 2=LPT3). After calling, AH = status, the situation is the same as shown
under option O.

SECTION 18.3: PRINTER AND PRINTER INTERFACING IN THE IBM PC 559

Example 18-10

Run the following program in DEBUG to check the LPTI printer states. Run it once with the printer
off-line, then run it again with the printer on-line. Interpret the AH register upon return.

Solution:
C:>OEBUG
-A

MOV AH,2
MOV DX,O
!NT l7H

16B7:0100 MOV AH,2
16B7:0102 MeV OX,O
16B7:0105 INT 17
16B7:0107 INT 3
16B7:0108
-G

AX=0800 BX=OOOO
05=16B7 E5=16B7
16B7:0107 CC
-G=100

CX=OOOO OX=OOOO 5P=CFDE BP=OOOO 5I=0000 OI=OOOO
55=16B7 C5=16B7 IP=0107 NV UP OI PL NZ NA PO NC

INT 3

AX=9000 BX=OOOO
05=16B7 E5=16B7
16B7:0107 CC

CX=OOOO OX=OOOO 5P=CFDE BP=OOOO 5I=0000 OI=OOOO
55=16B7 C5=16B7 IP=0107 NV UP OI PL NZ NA PO NC

INT 3
-Q

The first execution of the program occurred when the printer was off-line. It returned AH = 08. This
indicates I/O error. The program was run again with the printer on-line. This time it returned AH = 90,
which indicates "not busy. "

What is printer time-out?

Occasionally, the printer time-out message will appear on the screen. This
means that the printer port is installed but the printer is not ready to print. This could
be due to the fact that the printer is turned off, the printer is not on-line, or some
other condition in which the printer is connected to the PC but not ready to print.
Upon detecting that the printer port is installed, BIOS tries repeatedly for a period
of20 seconds to see ifit is ready to accept data. If the printer is not ready, the PC
gives up (time-out) and displays a message to indicate that. Can the PC be forced
not to give up so soon and try a little bit longer? The answer is yes. The amount of
time that BIOS tries to get a response from the printer is stored in BIOS data area
0040:0078 to 0040:007B.
Location 0040: 0078 Table 18-9: ASCII Printer Control Characters
holds the time-out time
for LPn, 0040:0079 the
time for LPT2, and so
on. At boot time, these lo­
cations are initialized to
20 seconds.

ASCII I Hex
I I
!

560

ASCII control characters

Certain charac­
ters in ASCII are used to
control the printer. Table
18-9 shows the most com­
monly used printer con­
trol characters in ASCII.

Svmbol

BS

HT
I

LF

VT

FF

CR

Code Function I
08 Backsoace

Ii
09 Horizontal tab

OA Line feed (advances one line)

OB Vertical tab

OC Form feed (advances to next
Ipal!e)

OD Carriage return (return to left
marl!in)

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

BUSY

ACK

DATA

STROBE

Inner working of BIOS INT 17H for printing a character

Below is a listing of a portion of BIOS !NT 17H with some modification
for the sake of clarity. It shows how a character is printed by monitoring the BUSY
signal from the printer and issuing a STROBE. Figure 18-10 diagrams printer
timing.

;This skeleton of BIOS INT 17H showing how a character is issued to printer is taken from
;the IBM PCIXT Technical Reference. The instructions not shown here include:
;(a) Loading DX with base 1/0 address of printer port from BIOS data area 0040:0008-000F
;Reminder: The base 1/0 address is the address of the printer data bus.
;(b) Loading of time-out value into BL reg from BIOS data area 0040:0078H-007B
;Therefore we have the following upon going into this portion of BIOS.
;BL=time-out value
;DX=has the base 1/0 address. which is LPT"s data port
;AL=character to be printed

B4:

OUT
INC
SUB
IN
MOV
TEST
JNZ
LOOP
DEC
JNZ
OR
AND

IRET

MOV
INC
OUT
MOV
OUT

DX.AL
DX
CX,CX
AL,DX
AH,AL
AL,80H
B4
B3 1
BL-
B3
AH,01
AH,OF9H

AL,ODH
DX
DX,AL
AL,OCH
DX,AL

;OUTPUT CHARACTER TO BE PRINTED
;POINT TO STATUS PORT
;TIMER VALUE FOR BUSY
;GETSTATUS
;SAVE IT IN AH
;IS BUSY LINE HIGH? (SEE FIG. 10-9, D7 = BUSY)
;IF READY THEN OUTPUT THE STROBE
;TRYAGAIN
;DROP LOOP COUNT
;GO UNTIL TIME OUT ENDS
;SET ERROR FLAG
;TURN OFF OTHER BITS

;RETURN WITH ERROR FLAG BIT SET

;SET STROBE HIGH
;DX=I/O PRINTER CNTL REG
;STROBE IS BIT 0 OF CNTR REG
;SET STROBE LOW
;AND SEND IT TO PRINTER CONTROL PORT

Notice the steps taken to print a character in the above listing.
1. Send the character to the D7 - DO latch connected to data pins of the prin."te;;r.:n-,,,,,,,,,,
2. Test to see if BUSY is low (NOT BUSY). Ifready (NOT BUSY), issue the STROBE

to ask the printer to get the data by making STROBE -high and then STROBE -low.
3. If the printer is BUSY, try again until the time-out is finished. The time-out forces

the CPU to check the printer for a period of time before it gives up.
4. After trying repeatedly, iffor whatever reason the printer does not respond, go back

and set the time-out bit to indicate that.

"-

I-~ () () I
b.5u/

0.5 us 0.5 us 0.5 us
Min

Min Min Min

"-

us = microsecond

Figure 18-10. Printer Timing
(Reprinted by pennission from "IBM Technical Reference" c. 1988 by International Business Machines Corporation)

SECTION 18.3: PRINTER AND PRINTER INTERFACING IN THE IBM PC 561

Review Questions

1. The Centronics printer standard uses (serial, parallel) data transfer.
2. Give one reason why there are 8 bits for the data lines in the Centronics standard.
3. The status signals of the printer are __ (in, out) for the printer and ___ _

(in, out) for the computer.
4. The control signals of the printer are __ (in, out) for the printer and ___ _

(in, out) for the computer.
5. STROBE is an __ (in, out) signal for the printer and __ (in, out) for the com­

puter.
6. ACKNLG is an __ (in, out) signal for the printer and __ (in, out) for the com­

puter.
7. DI - D8 are __ (in, out) signals for the printer and __ (in, out) for the com­

puter.
8. BUSY is an __ (in, out) signal for the printer and __ (in, out) for the com­

puter.
9. Out-of-paper is an __ (in, out) signal for the printer and __ (in, out) for the

computer.
10. How does the computer know if the printer got the last byte sent and is ready for

the next one?
II. State the role and level of activation for the STROBE signal.
12. If the base I/O address of a given LPT is 3BCH, give the 1/0 address for each of

the following lines of the printer.
(a) control (b) status (c) data

13. Assuming that the I/O base address of LPTI is 378H, show a simple Assembly
language program that monitors the BUSY line of the printer.

14. What is time-out in IBM PC terminology?
15. Give the ASCII codes for the carriage return and line feed in hex.

SECTiON 18.4: BIDIRECTIONAL DATA BUS IN PARALLEL PORTS

562

Since the introduction of the first IBM PC in 1981, the PC's parallel port
has gone through various changes. In this section we give an overview ofSPP, PS/2,
EPP and ECP parallel port types and provide some parallel port interfacing tips.
First, we discuss the characteristics of each parallel port type.

SPP

SPP stands for standard parallel port. This refers to the parallel port of the
first IBM PC introduced in 1981. The data bus in SPP is unidirectional and is
designed to send data from the PC to the printer. At that time, designers never thought
that someone might want to use the LPT's data bus for input. In SPP, the internal
logic circuitry is set for data output only and any attempt to use the data bus for input
can damage the LPT port. For this reason you should never try to modity the LPT
port unless you know what you are doing. Some designers use the status and control
port of the SPP to send data m. In such cases, the pull-up resistors are used to prevent
damage to the LPT's parallel port. For further information, refer to web page
http://www.lvr.com.

PS/2

The first change in the data bus portion of the LPT port occurred in 1987
with the introduction ofPS/2 models. By then, designers had seen the potential use
of parallel ports for fast data acquisition. Therefore. internal circuitry of the data
section ofthe LPT port in the PS/2 was changed to make it bidirectional. However,
upon boot-up, BIOS configured the LPT port as SPP, meaning that it was to be used
only for data output. At the same time, the C5 bit of the control port (base +2) was
modified to allow the user to change the data port direction. At boot-up, C5 is low

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

(C5~O) meaning that the data port is for output. By making C5~1, we can make the
data port an input port. Recall from the last section that control port CO - C4 was
already used by the SPP. Therefore, in the PS/2 LPT port, C5 of the control port is
used for data port direction, while C6 and C7 are reserved.

Example 18-11

Assume that the 110 base address ~ 278H for LPT2 in a PS/2-compatible Pc. Show how to change
the control bit C5 to make the data port an input port.

Solution:

The 110 base address ~ 278H is for the data port. This means that we have 279H for the status port
and 27 AH for the control port.

MOV
IN
OR
OUT

DX,27AH
AL,DX
AL,OOIOOOOO
DX,AL

;DX~control port address
;get the current information
;make C5~ I without changing anything else
;now data port is an input port

Examine the 110 addresses 278H, 279H, 27 AH in Appendix G. It says that the data port is RW
(read/write), the status port is RO (read only), and the control port is RW.

How to detect a PS/2-type bidirectional data bus

The following are steps in detecting if your LPT data port is bidirectional.
I. Put the data port in bidirectional mode by writing I to C5 of the control port (C5~ I).
2. Write a known value (such as 55H, AAH, or 99H) to the data port.
3. Read back the value from the data port.
4. If the read value matches the value written to the data port, the data port is not

bidirectional.
By making the data port bidirectional in the PS/2, IBM set a new standard,

allowing many devices such as tape backup, scanners, and data acquisition instru­
ments to use the LPT port instead of a PC expansion slot. However, there is one
problem with PS/2-type LPT ports: They are too slow. This slowness led Intel and
Xircom, along with other companies, to set a new LPT standard called EPP.

EPP

EPP stands for enhanced parallel port. It is the same as the PS/2, but much
faster. Recall from Section 18.3 that handshaking signals such as the strobe signal
are generated by software. In EPP, a higher speed was achieved by delegating the
handshaking signals to the hardware circuitry on the LPT port itself. The EPP
standard also added new registers to the 110 port address space beyond base address
+2. In EPP, the I/O space goes from base to base+7. For example, ifthe base address
is 278H, 279H and 27 AH are the same as SPP. However, 110 addresses 27BH
through 27FH are also used or reserved.

ECP

ECP stands for extended capability port. The need for an even faster LPT
port led to ECP. The ECP has all the features of EPP plus DMA (direct memory
address) capability, allowing it to transfer data via the DMA channel. It also has data
compression capability. The DMA and data compression capabilities make ECP an
ideal port for high-speed peripherals such as laser printers and scanners. This is the
reason that Hewlett-Packard joined with Microsoft in developing the ECP standard.
While the ECP-type LPT port is supposed to support SPP, PS/2 and EPP, not all of
them can emulate EPP.

SECTION 18.4: BIDIRECTIONAL DATA BUS IN PARALLEL PORTS 563

To see if a given ECP supports EPP, examine the PC technical documen­
tation or check the CMOS setup on your PC.

In order to unify these various types ofLPT ports, a committee of the IEEE
has put together specification IEEE 1284. Refer to web page http://www.ieee.org.

Using an LPT port for output

Due to the fact that not all PCs have a single LPT standard, any detailed
discussion of data input via the data port is avoided. Many people have damaged
their LPT ports by not knowing what type of port they had. Regardless of the type
ofLPT on your PC, we know that it works for sending data out of the Pc. Therefore,
we can use the LPT port to send data to devices such as LCDs and stepper motors.
In connecting the LPT ports to any device, first make sure that they are buffered
using the 74LS244 chip. This is shown in Figure 18-11.

PC Parallel Port
25-Pin

O-Connector

DO
01
02
OJ
D4
OS
D6
07

CO
Cl
C2
CJ

GNO

?

3
4
5
6

1
14
~-

17

~18 - 25

? 74lS244

4
6
8

11
lJ
15
17

TG' '2li
~19

2
741S244

4

6
8

'2li TG'
+tJ19 g

18
16
14
12
9
7
5
J

18
16
14
12

\

to
LEDs
of digital trainer

"-
)

to

t:»-- ~i9itol trainer

Notice tho t CO, Cl and C3
rted are inve

Figure 18-11. Buffering Data and Control Ports

564

LCD connection to the parallel port

In Chapter 12 we showed the LCD interfacing. Figure 18-12 shows the LCD
connection to the parallel port. Notice in writing programs for the LCD, that in
Figure 18-12 you cannot check the LCD's busy flag. The LCD command code and
data must be sent to the data port one at a time with a time delay in between each.
Refer to Chapter 12 for more discussion of this topic.

Stepper motor connection to the parallel port

In Chapter 12 we showed the interfacing of a stepper motor to a PC via the
expansion slot. Figure 18-13 shows parallel port connection to a stepper motor.
Make sure you understand the material in Chapter 12 before embarking on setting
up and writing programs for such a circuit.

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

PC Parallel Port
25-Pin

o-Cannector

00
01
D2
OJ
D4
D5
D6
07

CO
Cl
C2
C3

eND

2
3
4
5
6
7
8
9

i
14
16
17

~18 - 25

-

741 ~?.u
2
4
6
8

11
13
15
11
~~

~19

2
741 ~?.u

4_
6
8

~ ~

+tJ19 l!
Figure 18-12. LCD Connection to Parallel Port

PC Parallel Port
25-Pin

O-Connector

74LS244
00 2 2 18
01 3 4

02 4 6 16
03 5 8

14

12

fG 2G
1 1 I 19
..b-

GNO ~ 18 - 25-

18 00
16 01 14 02 12 03
9 D4 7 D5
5 D6 3 07 RS

18
16 ~ r....
14

ULN2003

1
~
----t;

l
~ r
~

LCD

RW

Vee

Vee

Vss

E

~
I>~
r-~

c::=

10K
POT

Steooer Motor

s:J 0 ~
g

100 1 ?OO

COM

COM

+5V
(use a separate power supply for motor)

ULN2003 Connection for Stepper Motor
Pin 8 = GNO
Pin 9 = +5V

Figure 18-13. Stepper Motor Connection to Parallel Port

SECTION 18.4: BIDIRECTIONAL DATA BUS IN PARALLEL PORTS 565

Data input buffering

Assuming that the data port ofLPT supports a PS/2-type bidirectional bus,
one can use the circuit in Figure 18-14 to buffer it. Notice the use of 10K-ohms
pull-up resistors. This is needed to prevent damage to the data port.

PC Parallel Port
25-Pin

O-Cannectar

DO
01
02
03
04
05
06
07

CO

GNO

2
3

4
5
6
7
8
9

1

Vcc
Resistors
10K Ohms

18
74LS244 2

16 4
14 6
12 -y 8

11
7 13
5 15
3 17

TIi '2li
1 L,--l 19

Notice that CO is inverted internally.

18 - 25

Input
(switches)

Figure 18-14. Buffering LPT's Data Port for Input in Bidirectional Ports

566

BIOS data area and LPT 1/0 address

When accessing the PC's parallel port for data acquisition, your program
should get the base 110 address from the BIOS data area. This makes the program
dynamic and able to run on any PC. In Assembly language, use the following code:

mainO
{

}

PUSH OS ;save OS
PUSH AX ;save AX
SUB AX,AX ;AX=O
MOV OS,AX ;OS=O for BIOS data area
MOV OX,[408] ;get the LPT1 I/O base address
POP AX ; restore AX
POP OS ;restore OS
;now OX has the I/O base address of LPT1

In C we can use the following code:

unsigned int far <xptr;
xptr = (unsigned int far <) Ox00000408;
outp«xptr,mybyte); ,< send mybyte to LPT's data port <,

Example 18-12 demonstrates how to detect the presence of LPTl and
determine its port 110 address.

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

Example 18-12

Write a C program to detect the installation of LPTl and report the 110 port address assigned to it.

Solution:

BIOS detects all the LPTs installed on the PC and reports the 110 port addresses to BIOS memory
locations 0040SH - 40FH, where 40SH and 409H hold the 110 port address for LPT 1, 40AH and
40BH for LPT2, and so on. If no LPT is installed, zeros are found in these memory locations.

SUMMARY

SUMMARY

/* this program detects the installation of LPT1 and reports the I/O port address
assigned to it. * /

#include <stdio.h>
#include <dos.h>
mainO
{
unsigned int far *xptr; /* a far pointer */
xptr=(unsigned int far *) Ox00000408; /* assign address */
if(*xptr >0)
printf("I/O base address assigned to LPT1 is %X In",*xptr);
else printf("LPT1 = None found");
}

This chapter looks at two of the most commonly used PC peripherals: the
keyboard and the printer. Section IS.1 looks at the interfacing of the keyboard to
the PC. Internally, keyboards are composed of a matrix of rows and columns of keys.
The rows and columns are accessed through input/output ports. A microcontroller
scans the keys continuously to determine if a key was pressed, and then identifies
the key pressed and presents it to the main CPU.

The second section focuses on keyboard interfacing and programming in
the IBM Pc. IBM PCs use S042 chips for keyboard detection and identification.
!NT 16H can be used by programmers to check the keyboard input buffer, read the
buffer, check the status byte, and other functions. However, the system uses INT 9
to interface the keyboard to the motherboard. The keyboard microcontroller scans
the keyboard continuously for a key press (a make), then !NT 09 converts the scan
code to ASCII, sends it to the buffer, and updates the status bytes. Separate codes
are sent to the motherboard for a key release (a break) and a key press (a make).
Hard contact keyboards have a hardware connection at the row and column inter­
sections. The more expensive but longer-lasting capacitive keyboards use a capaci­
tor at the intersection of row and column.

The third section described the standard printer interface called the Cen­
tronics printer interface. It describes the standard assignment of the 36 pins of the
connector between the printer and the motherboard. The BIOS ofthe IBM PC allows
for up to four parallel printers: LPTl - LPT4. BIOS !NT 17H allows the programmer
to initialize printer ports, write characters to the printer, check the printer status, and
perform other functions.

The fourth section gave an overview of SPP, PS/2, EPP and ECP parallel
port types and provided some parallel port interfacing tips. In addition, this section
gave an overview of using the LPT port to send data to devices such as LCOs and
stepper motors.

567

PROBLEMS

568

SECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU

I. In reading the columns of a keyboard matrix, if no key is pressed we should get all
~~(ls,Os).

2. In Figure 18-1, to detect the key press, which of the following is grounded?
(a) all rows (b) one row at time (c) both (a) and (b)

3. In Figure 18-1, to identify the key pressed, which of the following is grounded?
(a) all rows (b) one row at time (c) both (a) and (b)

4. For Figure 18-1, indicate the column and row for each of the following.
(a)03-DO=Oll1 (b)03-DO=l1lO

5. Indicate the steps to detect the key press.
6. Indicate the steps to identify the key pressed.
7. Modify Program 18-1 and Figure 18-1 for a 4 x 5 keyboard (4 rows, 5 columns).
8. Modify Program 18-1 and Figure 18-1 for a 6 x 6 keyboard.
9. Indicate an advantage and a disadvantage of using an IC chip for keyboard scan­

ning and decoding instead of using a microprocessor.
10. What is the best compromise for the answer to Problem 9?

SECTION 18.2: PC KEYBOARD INTERFACING AND PROGRAMMING

II. In the IBM PC for each key press (make), __ bits are transferred to the main
CPU. What are these bits?

12. Find the break code for the following make codes.
(a) 34H (b) IAH (c) 5FH

13. Identify make and break among the following codes.
(a) 9BH (b) 89H (c) 17H (d) C2H (e)79H

14. Since keys "5" and "%" have the same scan code, how are they distinguished?
15. Find the scan code for the following.

(a) ALT F2 (b) SHIFT F4 (c) &
(d) V (e) Pg Up (f) F6

16. Which option of INT 16H is used to get the status bytes of enhanced keyboards?
17. Write a program to display a prompt such as "I will play for you the 'Happy Birth­

day' music if you guess the key I am thinking of. The key is one of the ALT Fs."
Using INT 16H to monitor the scan codes continuously, if Alt F9 is activated the
PC should play "Happy Birthday" and exit to DOS (for "Happy Birthday" music,
see Chapter 13). If any other key is pressed it should display a message such as
"Try again" and continue. The Esc key should exit to DOS.

18. INT 09 is assigned to which IRQ of the 8259?
19. True or false. INT 09 is activated for both the make and break scan codes.
20. True or false. If CapsLock is pressed, INT 09 saves it in the keyboard buffer.
21. What value does the BIOS keyboard subroutine save in the keyboard buffer if

there is no ASCII code for a given key?
22. When there is keyboard overrun, which generates the sound beep, the circuitry in­

side the keyboard or the motherboard?
23. The keyboard shift status byte indicates the status of which keys?
24. Which of the following keys are non-ASCII keys?

(a) HOME (b)! (c) Arrow (d)"
25. Give the content (in hex and binary) of the keyboard shift status byte if only the

NumLock and CapsLock are on.
26. If the content of the first keyboard shift byte is 10000001, what does it mean?
27. Give the physical address of memory locations in the BIOS data area set aside for

each of the following keyboard components.
(a) shift status byte (the first one) (b) buffer
(c) buffer's tail address (d) buffer's head address

28. When the address of the head and tail are the same, what does it mean?

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING

29. The key buffer is (empty, full) if the address of the tail is one number
higher than the address ofthe head.

30. What keyboard technology is used in the IBM enhanced keyboards?

SECTION IS.3: PRINTER AND PRINTER INTERFACING IN THE IBM PC

31. State the four categories of Centronics printer pins.
32. Of the following pins, which belongs to the printer's status signal and which be­

longs to the printer's control signal categories? Indicate which is input and which
is output from the point of view of th'c;e:.;P",C"."",'V'
(a) BUSY (b) STROBE (c) ACKNLDG
(d) SLCT (e) INIT (t) PE

33. Which pin is used by the printer to indicate that it is out of paper?
34. True or false. Each data line has its own ground return line.
35. What is the function of the BUSY signal?
36. In response to STROBE, the printer makes ACKNLDG (low, high).
37. When does the BUSY signal go low?
3S. True or false. The base I/O address for the printer port can be 37SH or 3BCH.
39. True or false. Sending a form feed sets the printer to the top-of-page position.
40. Upon return from the INT 17H option AH~O I, which register holds the error code

and what does error code 90H mean?
41. In Problem 40, what is the error code for "out of paper"?
42. The PC is on but the printer is off. What message do you get on the PC screen?
43. Explain the "time out" message on the PC screen.
44. What are the ASCII codes for the line feed and carriage return?
45. Using DEBUG, check to see the time-out value for the LPTl on your computer.

Is this in seconds or milliseconds?

ANSWERS TO REVIEW QUESTIONS

SECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU
1. true 2. column 3 3. true 4. 0

SECTION 1S.2: PC KEYBOARD INTERFACING AND PROGRAMMING

5. true

1. The scan code is 24H. This has the odd-parity bit of 1; therefore, the following bits are transferred from the
keyboard to the motherboard: 1 1 00100100 O.

2. The scan code for break is always SOH larger than the scan code for make.
3. 2DH=00101101 and ADH=10101101
4. false, for both 5. Yes, it is 3Sh. 6. false.
7. 4SH 8. true 9. true
10. False, the buffer inside keyboard is full.
11. The keyboard buffer on the motherboard is empty. 12. tail

SECTION 18.3: PRINTER AND PRINTER INTERFACING
1. parallel 2. since the characters are S-bit ASCII code
3. out, in 4. in, out 5. in, out
6. out. in 7. in, out 8. out, in
9. out, in 10. Through the ACKNLG or BUSY signals; either one can be used.
11. It must be high normally. When the computer has a byte of data for printer it makes it go low to

inform the printer.
12. (a) 3BEH for control (b) 3BDH for status (c) 3BCH for data
13. MOV DX,379H ;LPT1 STATUS PORT ADDRESS

A1: IN AL,DX ;GETTHE LPT1 STATUS
TEST AL,80H ;IS D7=1 (BUSY SIGNAL)
JNZ ;NOT BUSY
JMP A 1 ;TRY AGAIN

14. When the PC tests the printer status port and cannot get any response from the printer, it tries again for a
certain time period, then if it does not get any response, sets the time-out bit.

15. ODH and OAH

ANSWERS TO REVIEW QUESTiONS 569

CHAPTER 19

FLOPPY DISKS, HARD DISKS, AND
FILES

570

\'." ""-'--':-;''-':':'"::'.''' ".
·''-';'i''.;·' ':,':,:":.:.'

» Co"t~t~~_~~\~~~~~p~~~~~~\~~;~~aP)i~~i,\ .. ·.\"", .. ·,·,·
» AnalY~Ul~~fCi",~pftiW~·' .. ,f.~"berllf~~~

t9"'~~.~~~~~~~J~lt~:"~.~.... . .. ;.~~ .. "'.;'.'\'\.,•.... '''' .. "
» m"u.~.~y~o .. ~lt!i • .,.·iD.J~ 9~~~,"_.~!.',(J'iJUnl~ ·· • ~~w';-' '\::;""",'.";".:-,:,(

.-~."..... . ••............

» u·~.~···~~ .. Iltio·tlVeDin.~~·~~,,#:\Il·.~;,·
» LlSt.tif!"O atiO·lliVe~i~diteetj)f)'.~.tl'i_i)t·.~,.~
» D.l'ilit~eoil~U oCtile. FA,TIIilIl b'O,vUl."pel'att.Il.,.l;em·" ... ltm JII,.•

eat~ UJ4au.anll delet, mes .. ' ...•........•.....•
»Ana~Ule~~a~wot;b.~dIS~~~~.r""~t~'~t~~~ill~.'?'~

den. IIildplatUrs•...
» De~n~b~ .. d~ilIkUl'!\liilOI~:J:i~rti~,.~~.lJlftr.~it8g, lO\V.J.et~j"'4b~;.

le"elf,'""a~,parldngthfb~~,llltdl~'t:.F' < , ... , ...
» Define tite.coDlponent$ ofbarll disk a~.tt~:$uk.tbne,se~tillU!, and la-

tency u.....' ... \
» Dia~" ... ~di .. g.t~~~u~~.!~·~~t~~ .• ~"" .•. ····· .•
» E~lat~~~·~It'~~~:~~dSli .. ·~~·!~~;~~Ji:Sij~ .. Jil;ilild SCSI
» Code A.ssembly languagepmgrl\m~ to~c.:e"l'iles'On: dtSks·

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

This chapter will examine the characteristics of secondary storage devices
such as floppy and hard disks, their file organization, and how they are used in the
IBM PC and compatibles. The chapter includes a discussion of data encoding
techniques, interfacing standards, and definitions of hard disk terminology. In
Section 19.1 we look at floppy disk organization. Hard disk organization, charac­
tenstics, and terminology are covered in Section 19.2. Disk files and file program­
ming are covered in Section 19.3.

SECTION 19.1: FLOPPY DISK ORGANIZATION

In the early days of the personal computer, cassette tape was used to store
information. Due to its long access time, it was abandoned as a secondary storage
medium. The term secondary storage refers to memory other than RAM. RAM is
called primary storage since the CPU asks for the information that it needs from
RAM first. The floppy disks initially used in the PC were one-sided, meaning that
only one side of the disk could be accessed by the disk drive. To access the other
side, the disk had to be flipped over. Today, all floppy disks are double-sided and
the disk drive is equipped with two heads, one for each side, allowing the disk to be
read on both sides without flipping it over. This section concentrates on double-sided
disks only since they are the universal standard.

sector 9 sector 1

sector 8
sector 2

~jk~~rt~track38

sector 7 track 39

sector 6 sector 4

Figure 19-1. Sectors and Tracks of a 5 1/4" Diskette

SECTION 19.1: FLOPPY DISK ORGANIZATION

track 0
J---f-track 1

track 2

571

Capacity of the floppy disk

In order to store data on the disk, both sides are coated with magnetic
materials. The principles behind the process of reading and writing (storing) digital
data 0 and 1 on disks is the same as is used in any magnetic-based medium. Each
side ofthe disk is organized into tracks and sectors as shown in Figure 19-1. Tracks
are organized as concentric circles and their number per disk varies from disk to
disk, depending on the size and technology. Each track is divided into a number of
sectors, and again the number of sectors per track varies, depending on the density
of the disk and the version of the DOS operating system. Each sector stores 256 or
512 bytes of information, depending on the sector density. In what is commonly
referred to as a double-density disk, the storage capacity of a single sector is 512
bytes. This format is supported by DOS 2.0 and higher. In addition to the number
of tracks and sectors in the floppy disk, the physical size of the disk varies. Among
the available sizes are 5 114 and 3 1/2 inches. The number oftracks and sectors, and
the total capacity of double-sided floppy disks commonly used for the IBM PC and
compatibles, are shown in Table 19-1 along with the supporting DOS version. The
total density of the various disk types can be verified by using 512 bytes for the
sector density. For example, the 5 114" with 40 tracks and 9 sectors per track will
be as follows:

40 tracks x 9 sectors per track = 360 sectors per disk side
360 sectors x 512 bytes per sector = 184,320 bytes per side
184,320 x 2 sides = 368,640 bytes per disk, or 360K bytes per disk

The sectors of a disk are grouped into clusters. Cluster size varies among
formats, but a common size for floppy disks is 2 sectors per cluster. The file
allocation table, or FAT, which will be discussed later, keeps track of what clusters
are used to store which files.

Table 19-1: Sectors and Tracks for Double-Sided Disks

er Track

40 8

9 I .. -+ 40

80 15

3112" 80 9

360K

1.2M

nOK

-- -.---" .,,<.,,"_=-==---==_'",",-,=-- _7~_-~·'''',

'MS DOS Version. i

I and above

12 and above

13 and above

i 3.2 and above

[3 112" high density , 80 18 1.44M 3.3 and above

572

Fonnatting disks

Once a floppy disk is formatted, the computer can read from or write to that
disk. Formatting organizes the sectors and tracks in a way that makes it possible
for the disk controller to access the information on the disk. When a disk is formatted,
a number of sectors are set aside for various functions and the remaining sectors are
used to store the user's files. The formatting process sets aside a specific number of
sectors for the boot record, directory, and FAT (file allocation table), each of which
is explained in detail below. It also copies some system files onto the disk if it was
formatted with the "/s" option, which makes it a bootable disk. The difference
between bootable and nonbootable disks will be explained later.

Floppy disk organization

Regardless of the type of disk that is used, the first sector of the disk (side
0, track 0, sector 0) is always assigned to hold the boot record; then some sectors
are used for storage of the FAT (file allocation table) copies 1 and 2. The number of

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

Sector 0

Track 0

Track 1

BootlFAT

Clust 5

sectors set aside for FAT depends upon the disk density. After the FAT, the directory
is stored in consecutive sectors. Again, the number of sectors used by the directory
depends on disk density. In assigning sectors for the FAT and the directory, DOS
uses all the sectors of track 0 side 0, then goes to side 1 and uses all the sectors of
track 0 ofside I, then comes back to side 0 and uses track 1, then goes to side I
track I, and so on. Floppy disk organization is shown in Figure 19-2, which shows
the layout of9-sector, 40-track, double-sided 5 114" floppy disks.

Since floppy disks with sectors of 9 and higher are the industry standard,
the remainder of this discussion will focus on them. Before moving to the next topic
it should be noted that the number of sectors assigned for the boot record, FAT, and
directory are fixed for a given kind of disk and operating system version and it is
only after assigning these sectors to those essential functions that DOS uses the
remaining sectors to store files. The number of sectors set aside for each ofthe above
can be calculated from the information in the boot record. The boot record, FAT, and
directory are explained in detail next.

Side 0 Side 1

2 3 4 5 6 7 8 o 2 3 4 S 6 7 8

FAT I FAT copy IDIR DIR IDIR DIR DIR DIR IDIR Clust2 Clust 3 Clust 4

Clust 6 I Clust 7 Clust 8 Clust .. 9 Clust 10 Clust 11 Clust 12 Clust 13

Track 39 1-1 _--'-_---' __ -'--_-'---'1 1-1 ----'-_--'-__ -'--_...LIC_'u_st_
3SS-l1

. Figure 19-2. Floppy Disk Layout for 5 1/2" Diskette (9 sectors per track, 40 tracks per side)

Looking into the boot record

When a disk is formatted, the first sector is used for the boot record. It is
from the boot record that the computer will know the disk type, sector density, total
number of sectors in the disk, and other essential information needed by BIOS and
the operating system. Table 19-2 describes each byte ofthe boot record.

In order to understand the boot record's function, the boot record of several
different disks will be analyzed. To access the boot record, the DEBUG program
can be used to dump the information into memory and analyze it, byte by byte. First,
a few reminders about DEBUG. The -L command can be used to load the specific
sectors of a given disk into a specific area of RAM memory. Figure 19-1 showed
sectors numbered from 1 to 9 for a given track; however, sectors are actually
numbered in hex starting at O. For example, a 5 1/4" 360K diskette has sectors
numbered logically from 0 to 2DOH. The -L command is followed by the address
that data from the disk should be loaded into, followed by the drive number, then
the starting sector number, and finally, the number of sectors to be loaded. The drive
number has the following options: 0 for drive A, I for drive B, 2 for drive C, and so
on. All numbers in DEBUG commands are given in hex. Example 19-1 first loads
into memory beginning at cs: 1 00 from drive B, starting at sector 0, and loads one
sector only. After the load, the -d command is used to dump memory onto the screen.
One more reminder: In the IBM PC and compatibles, the least significant byte of
data is always stored in the lower memory location. For example, to store 35F6H
in memory locations 1300 and 1301, location 1300 will contain F6 and 1301 will
contain 35.

SECTION 19.1: FLOPPY DISK ORGANIZATION 573

Table 19-2: Boot Record Layout
, , ,

,

Offset 'Bvtes Contents Notes

00 - 02 3 E9XXXXor EB The first byte is always the wcode for the JMP command, either E9, the
XX 90 ']l;fpode for intrasegment JM ,or EB, the o]Jcode for short JMP. If the

I
is intrasegment, the displacement is 2 bytes. If the JMP is short, the

di~lacement IS I byte. In tlie latter case, the opcode for the second byte
is 0 NOP. .._

03 -OA ,8 I Manufacturer name This is the manufacturer's name and the version of DOS under which the
and version disk has been formatted . .

i Bytes per sector OB -OC 2 This gives the density of the sectors: that is, the total number of bytes that

f-
, can be stored on one sector.

OD I Sectors per This byte gives the number of sectors that are grouped into a cluster. A
allocation unit cluster is two or more sectors grouped together as a unit of storage. Every

file uses a minimum of one cluster and there is no limit for the maximum
+- as long as there are free clusters available.

i I Reserved sectors This represents the number of sectors reserved, starting at sector O. OE-OF '2

10 I INumber of FATs Normally, there are 2 copies of the FAT.

11 - 12 2 INumber of root-
, directory entries

113 - 14 ,2 Total sectors in a This gives the total number of sectors in the entire disk. For the hard disk II , . disk of more than 32M capacity, use bytes 20 - 23. '

15 'I Medium type This code L~~es the type of disk. Refer to Table 19-3 for a list of codes
,

~2
and media es.

II
Number of sectors 'This indicates how many sectors are used for each FAT.
IperFAT

1)8 - 1912
Sectors per track This gives the total number of sectors for each track.

" !Number of heads 'I

'i I~- 1B 12 While this is alwa~ 2 for double-sided flogPl:: disks, it is much more for i
hard disks as will seen later in the hard IS section of this cha[>ter.

'IC-IFI4 Number of hidden

'Th"" "'"' 00', "'""" fub "'w'=, , .. ,_ ... "MB~ sectors

20 - 23 '4 Total sectors In
[----. logical volume

24 I 'Physical drive
'number .

~. I Reserved i
Extended boot 26 I signature record f--- . .

,32-bit binary
li27 - 2~..,1_4 __ i,-"v,",01".um=e"ID,,---___ ..L. __

,[2B _ 35 110 I Volume label

,36_3D~I~8 __ ,~IR_e_se_rv_e_d ____ -+ _____ _
,I 3E_?~.?~I __ 4t~B~00~t_stra_p ___ ~ ______________________ -0

574 CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

Example 19-1
Load the contents of drive B, sector 0 into memory starting at CS: I 00. Dump it to the screen and
analyze it.

Solution:

The following DEBUG command loads drive I (B), starting at sector 0, for only one sector.

C>OEBUG
-L CS:100 1 0 1
-0 CS:100 17F
142B:0100 EB 34 90 49 42 40 20 20-33 2E 33 00 02 02 01 00
142B: 0110 02 70 00 AO 05 F9 03 00-09 00 02 00 00 00 00 00
142B:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 12
142B:0130 00 00 00 00 01 00 FA 33-CO 8E 00 BC 00 7C 16 07
142B:0140 BB 78 00 36 C5 37 1E 56-16 53 BF 2B 7C B9 OB 00
142B:0150 FC AC 26 80 30 00 74 03-26 8A 05 AA 8A C4 E3 F1
142B:0160 06 15 89 47 02 C7 07 2B-7C FB CD 13 72 67 AO 10
142B:0170 7C 98 F7 26 16 7C 03 06-1C 7C 03 06 OE 7C A3 3F

Using Table 19-2, look at the first 3 bytes. The first byte in this example is EB, the jump opcode,
followed by 34, the displacement memory location where the the first byte of the opcode for the boot­
strap subroutine in sector 0 is located. The third byte is 90, NOP. The next 8 bytes give the manufac­
turer: 4942 4D 20 20 represents "IBM "in ASCII, and 33 2E 33 represents 3.3 for the DOS version.
The next 2 bytes give the number of bytes per sector, 00 02; remembering to reverse the order of the
bytes gives 0200H, which is 512 bytes per sector. The next byte gives the number of sectors per clus­
ter; in this case, 2 sectors are grouped together into a cluster. The next two bytes, 000 I, represent the
number of reserved sectors. The next byte gives the number of FAT tables, in this case there are 2 ta­
bles, or 2 copies of the FAT, the main one and a backup. The number of directory entries is given in
the next two bytes: 0070H. The number of sectors contained on this disk is given next: 05AOH,
which is 1440 in decimal. F9, the next byte, gives the type of disk. Table 19-3 shows that this is a 3
112" double-sided diskette with 9 sectors per track. The next two bytes give the number of sectors per
FAT. In the above example, 0003 indicates there are 3 sectors used for each FAT. The next 2 bytes
give the number of sectors per track, 0009, or 9 sectors/track. The next two bytes give the number of
heads, 0002. The next two bytes represent the number of hidden sectors, which is zero in this case.
The remaining bytes contain the bootstrap, since this disk was formatted in DOS 3.3. If a higher ver­
sion of DOS had been used, other information would be given before the bootstrap.
From the above information, one can easily calculate the total capacity of the disk. There are 1440
sectors on the disk, and each sector contains 512 bytes. Using this information yields

1440 x 512 = 737,280 /1024 = nOK bytes for this disk

One can also determine the number of tracks by dividing the total sectors by number of sectors per
track:
1440 / 9 = 160 tracks for both sides of the disk, which giv~s 80 tracks per side.
This result is confirmed by Tables 19-1 and 19-3, which show this to be a 3 1/2" disk with 80 sectors
and 9 tracks per side. The number of sectors set aside for the storage of FATs and the directory can
also be seen from the boot record. How this is done will be discussed later.

SECTION 19.1: FLOPPY DISK ORGANIZATION 575

Example 19-2

Load into memory, starting at cs: I 00 from disk A, sectors 0 to I (2 is the number of sectors to be
loaded) and then dump them in order to examine them.

Solution:

C>DEBUG
-L CS:100 o 0 2
-D CS:100 14F
142B:0100 EB 34 90 4D 53 44 4F 53-33 2E 33 00 02 01
142B: 0110 02 EO 00 60 09 F9 07 ~O-OF 00 02 00 00 00
142B:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00
142B:0130 00 00 00 00 01 00 FA 33-CO 8E DO BC 00 7C
142B:0140 BB 78 00 36 C5 37 1E 56-16 53 BF 2B 7C B9
etc.

The fOllowing is a brief analysis ofthe above boot record:

Bytes 0 - 2
Bytes 3 - A
Bytes B - C
Byte D
Bytes E - F
Byte 10
Bytes 11-12
Bytes 13-14
Byte 15
Bytes 16-17
Bytes 18-19
Bytes IA-1B
Bytes IC-JD

contain JMP to the boot code and NOP
indicate MS DOS 3.3 is the operating environment
give the number of bytes per sector: 0200H or 512
gives the number of sectors per cluster: 01
give the number of reserved sectors: 000 I
gives the number of FAT tables: 02
give the number of directory entries: OOEOH or 224
give the number of sectors: 0960H or 2400
is the media descriptor byte: F9 (see Table 19-3)
give the number of FAT sectors: 0007
give the number of sectors per track: OOOF (15)
give the number of heads: 0002
give the number of hidden sectors: 0000

The remaining bytes contain the boot code.

Table 19-3: First Byte of FAT and Storage Media

01 00
00 00
00 12
16 07
DB 00

'I - -- "'-
I~ FAT First Byte I Storage Media. :1
If-- FO IDouble-sided 3 112" diskette; 18 sectors/track ~

L F8 IHard disk __ _______ _ Ii
II' I 1'_ F9 __ JDouble-sided 5 114" diskette; 15 sectors/track ' 'l-- -_... IDouble-sided 3 112" diskette; 9 sectors/tra,ck -----l

Fe Sin Ie-sided 5 1/4" diskette; 9 sectors/track _I;
"!It' '. -.... -_ .. -" F:D: Double-sided 5 114" diskette; 9 sectors/track '--. ---'-'~d!' I Singl~-sided 5 1/4" diskette; 8 sectors/track

I Double-sided 5 114" diskette; 8 sectors/track

576 CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

Directory

After DOS allocates one sector for the boot record and several sectors for
the FAT, it allocates some sectors for the directory. Which and how many sectors
are allocated for the directory vary among the different disk types. This section
examines the structure of the directory of the floppy disk before delving into the
concept of FAT since understanding the directory is prerequisite to the study of FAT.
According to Figure 19-2, the directoty for a 9-sector 40-track 5 114" diskette is
located at side 0, track 0, sector 5. The following example used DEBUG to load
sector 5 of floppy disk A into memory, and dump a portion of it to the screen.

Example 19-3

Load, dump, and analyze the sector containing the directory of a 360K floppy in drive A.

Solution:

C>OEBUG
-L CS:100
-0 CS:100
1131:0100
1131: 0110
1131:0120
1131: 0130

Byte (H)

0-7
8 -A
B
C - 15
16-17

18-19

IA-1B
IC-IF

0 5 1
L400
45 44 20 20 20 20
00 00 00 00 00 00
45 44 20 20 20 20
00 00 00 00 00 00

Display Value
4544202020202020
455845
20

20 20-45
EO 96-98
20 20-48
1C 91-81

00 00 00 00 00 00 00 00 00 00
EO 96 (use 96 EO)

98 DC (use DC 98)

0200
9B 57 0100

58
DC
4C
DC

45 20 00 00 00 00 ED EXE ...
02 00 9B 57 01 00 w.
50 20 00 00 00 00 ED HLP ...
58 00 44 B1 00 00 X.D ..

Interpretation
"ED "
"EXE"
Low-order byte = 0, no
Reserved

attribute indicated

IDOl OlIO lllO 0000
00000 = 0 2-second incr.
110 III = 55 minutes
10010 = hour 18 (6 p.m.)
0000 1100 100 I 1000
11000 = day 24 0100 = month 4

1980 + 6 = 1986 0000110 = year 6
Starting cluster 0002
File size in bytes 0001 57 9B = 87963

Analyzing with help from Figure 19-3, the first 8 bytes represent the name of the file "ED". The file
name can be up to 8 bytes long and if it is shorter, is padded with blanks (ASCII code 20). Bytes 8 to
A are the extension: "EXE". Byte B is the attribute byte; in this case the file is an archive file. From
byte C to byte 15, a total of 8 bytes, is reserved for future use by Microsoft, and is filled with zeros.
Bytes 16 and 17 hold the time of day that the file was created, 96EO, or 1001 OlIO 1110 0000. The
first 5 bits, 00000, represent seconds in 2-second intervals. The next 6 bits, 110111, represent the min­
utes. Converting 110 III from binary into decimal gives 55 minutes. The last 5 bits, 100 I 0, represent
the hour, which in decimal is 18, or 6:00 p.m. Bytes 18 and 19, OC98, represent the date the file was
created or last modified. These bytes in binary are: 0000 lIDO 1001 1000. The day is given in the
first 5 bits: 1l000, which is 24 in decimal. The month is given in the next 4 bits: DIDO, which is 4. The
year is given in the last 7 bits: 0000 II 0, which is year 6 in decimal. The year is stored as the number
of years since 1980. Adding 6 to 1980 gives 1986, the year this file was last modified. Bytes IA and
IB give the starting cluster number: 0200. Finally, bytes IC to IF give the file size in bytes,
0001579BH, or decimal 87963, the number of bytes in this file.

SECTION 19,1: FLOPPY DISK ORGANIZATION 577

Example 19-4

Load, dump, and analyze the directory of a 360K diskette in drive A.

Solution:

C>OEBUG
-L CS:100
-0 CS:100
1131:0100
1131: 0110
1131:0120
1131:0130

Byte (H)

0-7
8-A
B

C - 15
16-17

18-19

IA-1B
IC-IF

0 5 1
3FF
49 42 40 42 49 4F 20
00 00 00 00 00 00 00
49 42 40 44 4F 53 20
00 00 00 00 00 00 00

Display Value
4942 4D 42 49 4F 20 20
434F4D
27

20-43
60-9E
20-43
60-9E

00000000000000000000
0060 (use 60 00)

9E OB (use OB 9E)

0200
FI3FOOOO

Second directory entry:

0-7
8 -A
B
C - 15
16-17

18-19

IA-1B
IC-IF

4942 4D 44 4F 53 2020
434F4D
27
00000000000000000000
0060

9E OB (use OB 9E)

1200
3D 6F 00 00

4F 40 27 00
OB 02 00 F1
4F 40 27 00
OB 12 00 30

Interpretation
"IBMBIO "
"COM"

00 00
3F 00
00 00
6F 00

Attribute: 00100111

00 IBMBIO
00
00 IBMDOS
00

Read-only, hidden, system, archive
Reserved
0110 0000 0000 0000

00000 = 0 2-second incr.
000000 = 0 minutes
01100 = hour 12

0000 lOll 1001 lllO
11110 = day 30
1100 = month 12

COM'
,
..... ? .

COM'
,
.... =0 ..

0000101 = year 51980 + 5 = 1985
Starting cluster 0002
File size in bytes 0000 3F FI = 16,369

"IBMDOS"
"COM"
Same as above
Reserved
0110 0000 0000 0000

00000 = 0 2-second incr.
000000 = 0 minutes
OllOO=hour 12

0000 lOll 1001 IllO
11110 = day 30
llOO = month 12
0000101 = year 51980 + 5 = 1985

Starting cluster: 0012
File size in bytes 00 00 6F 3D = 28,477

578 CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

filename

filename
extension
file attribute

time

date

extension reserved time date file size

file attribute starting cluster

8 character filename; padded with blanks
3 character filename extension; padded with blanks
bits 0 - 5 are used to indicate file attributes
if a bit = 1 then the file has that attribute
bit 0 read only file
bit 1 hidden file
bit 2 system file
bit 3 volume label
bit 4 subdirectory
bit 5 archive
bits 15 - 11 represent the hour
bits 10 - 5 represent the minute
bits 4 - 0 represent the seconds
bits 15 - 9 represent the year
bits 8 - 5 represent the month
bits 4 - 0 represent the day

starting cluster
file size

the first cluster for this file
file size in bytes

Figure 19-3. Directory Entry Layout

Bootable and nonbootable disks

Examples 19-3 and 19-4 showed the first directory entries of two different
disks. Example 19-4 shows a bootable disk; Example 19-3 shows one that is not
bootable. If the disk is formatted as a system disk (bootable), the first two files are
IBMBIO.COM and IBMDOS.COM, which are followed by COMMAND. COM.
The first two are hidden files; therefore, they will not be listed when DIR is used.
However, if the disk is formatted as a nonbootable disk, it will not have those three
files on it after it is formatted. The job of IBMBIO.COM is to provide low-level
(hardware) communication (interface) between BIOS and DOS. The high-level
(software) interface is provided by the IBMDOS.COM file. This is the section of
DOS that contains INT 21 H, among other things. Among the functions of COM­
MAND.COM is to provide the DOS prompt ">", read, interpret, and execute
commands typed in by the user. The first two files have been given different names
by MS DOS from Microsoft: IO.SYS and MSDOS.SYS instead ofIBMBIO.COM
and IBMDOS.COM. Beginning with DOS 4.0, these three files no longer have to
be the first directory entries and they can be located anywhere in the directory. The
SYS command can be used to copy these files to a nonbootable disk to make it
bootable.

SECTION 19.1: FLOPPY DISK ORGANIZATION 579

FAT (file allocation table)

If the boot record tells BIOS and the operating system the kind of disk, and
the directory provides the lists of all the files contained on the disk, how does DOS
locate a given file? Does it check every one of the hundreds of sectors to see if the
file is there? This would obviously take an inordinate amount of time. It is the
function of the FAT to provide a road map for the operating system to find where
each file is located. In fact, the FAT is so critical to the operating system's ability to
locate files that two copies of the FAT are kept on the disk, one for use and another
one for backup in case something happens to the first one. If both are damaged, the
operating system cannot find any file on that disk. The FAT is always located in the
sectors following the boot record sector. The number of sectors used by the FAT
varies depending on the size and density of the disk. Next we will describe the
contents of the FAT and how the operating system uses it to locate, update, and delete
files.

The first two entries in a FAT contain the media descriptor byte, followed
by F's to pad the remaining space. For the remaining entries in a FAT, there is a
one-to-one correspondence between each FAT entry and each cluster on the disk.
In other words, if there are 355 clusters in the diskette available for data storage,
there will be 355 FAT entries. This is the case for the diskette shown in Figure 19-2.
This figure shows that the clusters are numbered starting with number 2. The reason
is to make sure that there is one-to-one correspondence between the cluster number
and the FAT entry since the entry 1 and 0 is F9FFFF. Each FAT entry indicates the
status of that cluster: if it is free, unused, reserved, bad, or part of a file. The starting
cluster of a file is stored in the directory entry for that file. When DOS reads a file,
it first reads this cluster, then checks the FAT entry for that cluster to see ifthere is
a pointer to another cluster or ifthere is a code indicating that this was the last cluster
in that file. If there is a number of another cluster, it will read that cluster, then check
that cluster's FAT entry, and repeat the process until an end-of-file code is found.
In other words, DOS finds all the clusters of a file by following the links in the FAT
entries.

The FAT entries examined in this section will be 12-bit entries, but MS DOS
also supports FAT entries of 16 bits for drives of more than 6M capacity. Table 19-4
lists the special codes that a FAT entry may contain and their meaning.

;!able19-4: FAT Entry Codes and Their Meanings (12-b!t FAT) '.~ ~

II Code, Meaning

I

II. OOOH, I Unused cluster: cluster has never been used _ .. _. __ • '_'_,_'_' __ ' _~I
.00 I H I Pree cluster: cluster was used previously but is now free -- --__ . __ ,1

1~2-PEPH I Cluster is used by a file __ " __ ._ ,_',_'_' __ ,,_1
I'f" P.'cP"-0-,.'cP.'cP"'6H"'--___ ""1 R",e""served -- ---- -- --11
PP7H IBad cluster, cannot be used ----, - - _- -JI

I PP8-PPPH I Last cluster of a file _

580

Any value other than those shown in Table 19-4 will be a pointer to the next
cluster of a file. The following diagram and explanation should help clarifY the above
points.

o 23456789

I F9FI FFFI 003 1 006 1 0001 0011 FFFI FF71 0001 0001

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

The diagram above is a conceptual picture of the first 10 entries of a 12-bit
FAT table. The first two entries contain the media descriptor byte F9 (see Table
19-3), followed by FFFF. The remaining entries indicate the status of the corre­
sponding clusters in memory. The first file stored on a formatted disk will normally
begin in cluster 2, the first cluster available for storage. Suppose that DOS wants to
read in this file. First it checks its directory entry and notes that the first cluster for
this file is cluster 2. It reads in cluster 2, then checks FAT entry 2. FAT entry 2
indicates that there is more information for this file and that it can be located in
cluster 3. DOS then reads cluster 3 and checks FAT entry 3. FAT entry 3 indicates
that there is more information for this file in cluster 6. DOS then reads cluster 6 and
checks FAT entry 6. FAT entry 6 indicates that this was the end of the file. The
pointers in FAT entries 2, 3, and 6 above are each one link in the chain of that file.
The above was the conceptual picture ofa FAT. The following is how those 10 FAT
entries would look in memory:

Byte: 0123456789ABCDE

Data: F9 FF FF 03 60 00 00 10 00 FF 7F FF 00 00 00

For a 12-bit FAT table, as shown above, each FAT entry requires 1.5 bytes.
In order to access the FAT entry for a given cluster, DOS multiplies the cluster
number by 1.5 and uses the integer portion of the result as an offset into the FAT. If
the FAT entry was an even number, DOS discards the high-order hex digit. Ifit was
an odd entry, DOS discards the low-order hex digit. For example, to get the FAT
entry for cluster 2, DOS multiplies 2 times 1.5, giving 3. Using 3 as an offset into
the FAT will retrieve 0360; reversing the bytes: 6003. Since 2 (for cluster 2) is an
even number, the high-order hex digit is discarded, leaving 003. When DOS has
finished reading cluster 3, it will check FAT entry 3. To access this, DOS multiplies
3 times 1.5, which is 4.5, the integer portion of which is 4. Using 4 as an offset into
the FAT gives 60 00; reversing gives 0060. Since 3 (FAT entry) is an odd number,
the low-order hex digit is discarding, leaving 006. This process continues until FFF
is found, indicating that the cluster was the last cluster for that file.

Additional copies of the FAT are updated whenever a change is made to a
file. DOS primarily uses the first copy and compares both copies when a disk is first
used to make Sure that they are the same. Many of the errors that can occur in a FAT
can be corrected with the DOS CHKDSK utility.

Table 19-5: Surnrn~ry of Various Disk Data

I: Disk Type i360K.720K1.2M1.44M_ 110M HD 120M HD_~:
i' B tes er sector i 200 _ ! 200 1200 1200 1200 12200 I,

FAT.tables 2 /2 '2 __ L2
ilDirectory entries Q.Q_. 70 EO --1-'1 E",O,--_ _ 1200 i 200

ilI()tal sectors 2DO 15AO 1960H B40 150F3 /A307.--.J

,~,A,.T sectors _ 2 JJu ___ JLu. 19 18 :29 J:
Isectors ertrack_12 - ---l'L-.__.£ _____ JIL __ --,1 1 .11- '-d
: Total bytes :368,640 Hu1737,280 11,228,800 1 1,474,560 i 1O,610,J76 i21.~
Note: All data are in hex except the total bytes.

SECTION 19.1: FLOPPY DISK ORGANIZATION 581

How to calculate sector locations of the FAT and the directory

Table 19-5 shows the summary of various data for different disks (including
10M and 20M hard disks) extracted from their boot records. This data can be used
to calculate the sector location of FAT and the directory. Example 19-5 demonstrates
this. Table 19-6 provides the sector map for different disks.

Table 19-6: Sector Map for Various Hard and Floppy Disks

DiskTvne 360K 720K 1.2M 11.44M il0MHD i20MHD --'1
k- iO . Boot record 0 0 :0 0

FAT I 1-2 11-3 1-7 11-9
~- ~-----.'

FAT 2 3-4 14-6 8-E IA-12 ._I~~~Q=~~~s2-l!
,Oirectory S-B 7-0 F-IC : 13-20 ' 11-30 53-72 11

'1lOata C-200 E-SAO llD-960]21-B40 131-S0F3 . i73-A30;-:
Note: All data IS m hex.

Example 19-5

Use the data in Table 19-5 to fmd the sector map of a 1.2M capacity diskette.

Solution:

According to Table 19-5, there are two FATs, each taking 7 sectors, and there is a total ofEOH
entries for the directory. Sector 0 is used for the boot record, so FAT copy I will occupy sectors I
through 7 and FAT copy 2 will occupy sectors 8 - E. The directory starts at sector F. How many sec­
tors will it need? This is calculated by mUltiplying the number of entries, EO, by the size of each en­
try, 32 bytes.

EOH = 224 decimal
224 entries x 32 bytes = 7168 bytes
7168 bytes divided by 512 bytes per sector = 14 sectors used for the directory

Therefore, the directory will occupy sectors F to I C. The first file on this I.2M disk can start at
sector lD. See Table 19-6. This can be verified by looking at the disk through DEBUG. Remember
that the first byte of the FAT is the media descriptor byte.

582

Review Questions

I. True or false. All sectors have the same capacity (total number of bytes that can be
stored).

2. True or false. The 3 112" disks can be 1.2M or 1.44M capacity.
3. The very first sector always belongs to the (FAT, boot record).
4. The sectors belonging to the (FAT, directory) are located next to the

boot sector.
5. Why are there two copies for each FAT?
6. True or false. The number of sectors set aside for the FAT varies among the various­

sized disks.
7. The boot record provides the total (byte capacity, number

of sectors) per disk.
8. How does the operating system know how many sectors each track is divided into?
9. Sectors set aside for directories are always (before, after) the FAT sector.
10. If 3 112" disks can have two different capacities, how does the operating system

make a distinction between them?

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

SECTION 19.2: HARD DISKS

This section will look at the characteristics of hard disks and their organi­
zation with emphasis on performance factors such as access time and finally,
interfacing standards. The hard disk, referred to sometimes as fixed disk, or
winchester disk in IBM literature, is judged according to three major criteria:
capacity, access time (speed of accessing data), and interfacing standard. Before
delving into each category, an explanation should be given for the use of different
names such as fixed disk, winchester disk, and hard disk to refer to the same device.
The term hard disk comes from the fact that it uses hard solid metal platters to store
information instead of plastic as is the case in floppy disks. It is also called fixed
disk because it is mounted (fixed) at a place on the computer and is not portable like
the floppy disk (although some manufacturers make removable hard disks). Why
is it also called the winchester disk? When IBM made the first hard disk for
mainframes it was capable of storing 30 megabytes on each side and therefore was
called a 30/30 disk. The 30/30 began to be called the winchester 30/30, after the
rifle, and soon it came to be known simply as the winchester disk.

Hard disk capacity and organization

One of the most important factors in judging a hard disk is its capacity, the
number of bytes it can store. Capacity of hard disks ranges from 5 megabytes to
many gigabytes (a gigabyte is 1024 megabytes). The 5 megabyte disk was used in
the early days of the PC and is no longer made. At this time when the capacity of
hard disks is increasing to the gigabyte level, 100 to 500 megabyte capacity disks
are in common use for the 286,386,486, and Pentium computers. Regardless of the
capacity of the hard disk, they all use hard metal platters to store data. In general,
the higher the number of platters, the higher the capacity of the disk. Just as in the
floppy disk, both sides of each platter in the disk are coated with magnetic material.
Likewise, it uses a storage scheme that divides the area into sectors and tracks just
as the floppy disk does. There is one read/write head for each side of every platter,
and these heads all move together. For example, a hard disk with 4 plates might have
8 read/write heads, one for each side, and they all move from the outer tracks into
inner tracks by the same arm. Hard disks give rise to more complex organization
and hence a new term: the cylinder, which consists of all the tracks of the same
radius on each platter. Since all the read/write heads move together from track to
track it is logical to talk about cylinders in addition to tracks in the hard disk. Why
do all the heads move together? The answer is that it is too difficult and expensive
to design a hard disk controller that controls the movement of so many different
heads. In addition, it would prolong the access time since it must stop one head and
then activate a different head continuously until it reaches the end ofthe file. Using
the concept of the cylinder, all the tracks ofthe same radius are accessed at the same
time, and if the end of the file is not reached, all the heads move together to the next
track. The number of read/write heads varies from one hard disk to another. The
number is usually twice the number of platters but is sometimes 1 less than this
number, as seen in Table 19-8. In some disks, one side of one platter is set aside for
internal use and is not available for data storage by the user. Knowing the concepts
of read/write heads and cylinders makes it possible to calculate the total number of
tracks and the total capacity of the hard disk. The total capacity of a disk is calculated
in the same way as it is for floppy disks:

number of tracks = number of cylinders x number of heads
HD capacity = number of tracks x number of sectors x sector density

Depending on the hard disk, often there are 17 to 36 sectors per track and
5 \2 bytes for each sector.

SECTION 19.2: HARD DISKS 583

584

Example 19-6

Verity the capacity of the Seagate 225 hard disk using the data in Table 19-8.

Solution:

As shown in Table 19-8, the ST225 has 4 heads, 615 cylinders, 17 sectors per track, and 512 bytes per
sector:

Total sectors = 4 heads x 615 cylinders x 17 sectors per track = 41,820

The total capacity of the hard disk is calculated by multiplying the total sectors by the capacity of
each sector:

capacity = 41820 x 512 = 21,411,840 bytes = 21.4 M

Notice in the above calculation that meg is I million and not 220 as is the case of RAM and ROM.
Sometimes "meg" is used to mean 1,000,000 and sometimes it is used to mean 1,048,576 (220).

Example 19-7

Load sector 0 of the hard disk, which is disk 2. Dump it to the screen and analyze the boot record.

Solution:

C>OEBUG
-L CS:100 2 0 1
-0 CS:100 13F
142B:0100 EB 3C 90 40 53 44 4F 53-35 2E 30 00 02 10 01 00
142B: 0110 02 00 02 00 00 F8 CB 00-3F 00 10 00 3F 00 00 00
142B:0120 31 BO OC 00 80 00 29 EC-16 1B 26 40 41 5A 49 44

The following is a brief analysis of the above boot record, analyzed by using Table 19-2.

Bytes 0 - 2 EB, a JMP instruction to the boot code
Bytes 3 - A operating system: MS DOS 5.0
Bytes B - C number of bytes per sector: 0200H or 512
Byte D number of sectors per cluster: IOH=16 (always a power of2)
Bytes E - F number of reserved sectors: 000 I
Byte 10 number of FAT tables: 02
Bytes 11-12 number of directory entries: 0200H or 512
Bytes 13-14 number of sectors on disk (for hard disk see bytes 20 - 23)
Bytes 15 media descriptor byte: F8 (see Table 19-3)
Bytes 16-17 number of FAT sectors: 00CB=203
Bytes 18-19 number of sectors per track: 003FH or 63
Bytes IA-1B number of heads: 001OH=16 heads
Bytes 20-23 number of sectors on hard disk: OCB03IH=831,537
the remaining bytes contain the boot code

The disk capacity is calculated by multiplying the number of sectors by the capacity of each sector:
capacity = 831,537 x 512 = 425,746,944 bytes. Dividing it by 1,048,576 gives 406.023 megabytes.

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

Partitioning

Partitioning the disk is the process of dividing the hard disk into many
smaller disks. This is done more frequently on disks larger than 32 megabytes. For
example, a given hard disk of 80 megabytes capacity can be partitioned into three
smaller logical disks with the DOS program FDISK. They are called logical disks
since it is the same physical disk, but as far as DOS is concemed, they will be labeled
disks C, D, and E. In the above case of the 80 megabyte disk, disk C will have 32M,
disk D 32M, and the remaining 16M are for disk E ifthe default partitioning mode
is used. A hard disk can be divided into many logical disks of variable sizes with
the names C, D, E, F, G, ... , Z with no disk larger than 32 megabytes. It must be
stated that any disk of 32M and lower can be partitioned into many logical disks but
the disks of more than 32M must be partitioned for DOS versions up to 3.3. It is
only under DOS 4 that the 32M limit has been removed.

After the hard disk has been partitioned, high-level formatting should be
performed next. High-level formatting in the hard disk achieves exactly the same
function as formatting a floppy disk. The C drive must be formatted with the system
option (FORMAT C: IS) so that the system can boot from drive C. The remaining
disks D through Z are in nonbootable format. The reason is that DOS always checks
drive A first, then drive C for the system boot. In the absence of a bootable disk it
goes automatically to the next drive until it finds one, and if it does not find any, it
will display an appropriate message.

Hard disk layout

Although theoretically there is no difference in the layout of hard and floppy
disks in terms of the boot record, FAT, and directory, because the capacity of the
hard disk is much larger, more sectors are assigned to each of the above functions.
Below is a description of the hard disk layout.

Hard disk boot record

As mentioned before, the first sector of the disk is set aside for the boot
record regardless of the type of disk. Example 19-7 shows the analysis of the boot
record of a hard disk.

Hard disk FAT

As in the floppy disk, the sectors immediately after the boot sector (sector
0) in the hard disk are used by the FAT. In order to make sure that too many sectors
are not taken by the FAT, as the size of the disk increases, DOS increases the size
of a cluster, explained below.

Clusters

In the 80x86 IBM PC, the sector size is always 512 bytes but the size of the
cluster varies among disks of various sizes. The cluster size is always a power of2:
1, 2, 4, 8, and so on. Example 19-7 showed a disk with a cluster size of 16 sectors.
The fact that a file of I-byte size takes a minimum of 1 cluster is important and must
be emphasized. This means that a number of small files on a disk with a large number
of sectors per cluster will result in wasted space on the hard disk. Let's look at an
example. In a hard disk with a cluster size of 16 sectors (16 x 512 = 8192 bytes),
storing a file of26,000 bytes requires 4 clusters. The result is a waste of 6768 bytes
since 4 x 8192 = 32,768 bytes, and 32,768 - 26,000 bytes = 6768.

Hard disk directory

The number of entries in the root directory in hard disks is a maximum of
512. Therefore it is essential to organize a hard disk into subdirectories. Otherwise,
the hard disk may have available space, but no available directory entries and you
will not be able to store any more files.

SECTION 19.2: HARD DISKS 585

586

Speed of the hard disk

One of the most important and widely cited hard disk performance factors
is its speed, or how fast the requested data is available to the user. The hard disk
access time is in the range of 10 - 80 ms and is still dropping. This access time is
much longer than the speed of primary DRAM memory, which is in the range of 50
- 250 ns and lower, which is the reason that disk caching is used, as will be discussed
later in this chapter. The access time of the hard disk given by manufacturers is
broken down into several smaller times indicating the speed of different sections of
the hard disk. The components of access time are seek time, settling time, and latency
time. Seek time is the amount of time thatthe read/write head takes to find the desired
cylinder or track. The outer tracks (the outer cylinder) obviously take less time to
find since the head is parked on the outermost track and moves into inner tracks.
Manufacturers always give the average seek time in the data sheet. To reduce seek
time, mainframe computers use hard disks with several heads parked at different
cylinders (tracks), which reduces seek time drastically but also increases the cost
substantially since the read/write heads and associated circuitry are one of the most
expensive components in manufacturing the hard disk. For microprocessor-based
personal computers in recent years, higher speeds for seek time have been achieved
by replacing the stepper motor with a voice coil as a means to step the head from
one cylinder (track) to the next.

Settling time, the second factor in access time, is the time it takes the head
to stop vibrating before it can begin reading the data. Some manufacturers include
settling time when they give the average seek time.

Rotational latency is the time it takes for the head to locate on the specific
sector. In other words, after the head is settled, the platter is rotating at a certain
RPM (revolutions per minute) rate. Rotational latency time depends on the distance
between the head and the desired sector, but in no case is it more than the time for
one revolution. This means that rotational latency is directly proportional to the
RPM of the hard disk. The RPM for various disks varies between 2400 and 3600
(and as high as 7200 in some recent ones). Again, the average rotational latency
must be taken into consideration. For example, if a given disk has 3600 RPM, which
is 60 rotations per second, this is 16.6 ms for each full revolution. Since the desired
sector could be directly beneath the head or at the end of the track, the average
latency due to rotation is 8.3 ms [(16.6 + 0) / 2 = 8.3].

Data encoding techniques in the hard disk

Binary data is recorded on the magnetically coated platter by various
encoding techniques that have different data transfer rates. Current techniques
include FM, MFM, and RLL. This section wiIl describe each one and discuss its
advantages and disadvantages.

FM (frequency modulation)

FM takes its name from the fact that encoding I or 0 results in different
frequencies, as can be seen in Figure 19-4. In FM encoding, there is a minimum of
one pulse for each digit, regardless of whether it is 0 or I. In this method, at the
beginning of the clock there is always a pulse. If the data to be encoded happens to
be 0, there will not be any more pulses, but if the digit is I, there is a pulse for that
as well. As can be seen in Figure 19-4, there is a minimum of8 pulses ifall the data
is Os and 16 pulses if the data is all Is. Figure 19-4 shows the pulses for encoding
"11000 I 0 I" with flux transitions using the FM technique.

MFM (modified frequency modulation)

MFM is a much more efficient encoding method, achieved with the modi­
fication of the FM technique by eliminating the automatic pulse for each digit. In
MFM, the pulse for I is still there. For encoding 0, there is a pulse at the beginning

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

clock

data

FM

data

FM

data

FM

flux
trans

data

MFM

flux
trans

data
MFM

of the period unless it was preceded by a I, in which case there is no pulse. Figure
19-4 shows the encoding of the same data" 1100010 I" and the flux transitions. The
head uses the flux transition (change of north and south) to read (decode) or write
(encode) the binary data 0 or 1. A comparison ofthe flux transition ofFM and MFM
techniques in Figure 19-4 shows that MFM will encode data 11000101 with 6
transitions, while FM requires a total of 12 flux transitions for the same data. Trying
any combination of binary numbers leads to the conclusion that MFM encoding is
always twice as efficient as FM. This is the reason that FM encoding, also known
as single density, was replaced by MFM, which is also known as double density.

_L lL-L L lL-L IL IL IL-~ L IL ~ L IL n
0 0 0 0 0 0 0 0

_l h h h l l h l

1 1 1 1 1 1 1 1

}L /L lL-L /L L /L /L L lL-L /L lL-L L n-
1 1 0 0 0 1 0 1

_L IL lL-L h l l L IL h L IL
- r--- - -

- - - - f-

I
1 1 0 0 0 1 0 1

+--' l l IL-

l--

~
1 0 L L ~ 0 A r

flux
trans .-~ l

- I L

Figure 19-4. Time Diagrams for Encoding Techniques (x indicates no flux transition)

RLL (run length limit)

In the search for even more efficient encoding techniques, an elaborate
scheme was developed called RLL (run length limit). In RLL encoding, the mini­
mum and maximum number run lengths are even higher than in the MFM
method. What is run length? The run length is the number of no-flux transitions

SECTION 19.2: HARD DISKS 587

588

between two consecutive transitions. Since it is easier to understand pulses and no
pulses instead of flux transitions and no flux transitions, the former will be used to
explain RLL encoding. First, a look at the minimum and maximum run length limits
for FM and MFM is called for. To calculate the minimum and maximum run length
limit for FM encoding involves simply counting the number of no pulses (Os)
between two consecutive pulses (I s), as illustrated in Figure 19-4. These are marked
by x. As can be seen, there is a minimum of zero no-pulses and a maximum of I
no-pUlses between two consecutive pulses. Similarly, it can be shown that the
minimum and maximum number of no-pulses between consecutive pulses for MFM
is I and 3. Trying any byte of data will show that the RLL factor for MFM is 1,3. As
shown in Figure 19-4, the no-pulse is the same as
for no-flux transition. The fewer the number offlux
transitions, the better for the read/write head. In
other words, ifthere were a scheme to increase the
number of no-pulses (no flux transition) between
the pulses, much better results would be achieved
in the encoding. This is exactly what the RLL 2,7
has done. In RLL 2,7 encoding, there can be a
minimum of 2 and a maximum of 7 no-pulses in
between the consecutive pulses, no matter what
byte of data is encoded. The method that is used is
that every 2 to 4 bits of data is replaced by a 4- to
8-bit code according to Table 19-7. For example,
using the above code results in the following coding
for data 00111010:

Table 19-7: RLL Encoding

l[ilata_ IRL~2,7 co~;ti
!jlOO__ 1000 1 OO__--,~

LIo '0100 ~
1~10----1100J()0 __ I

jlO~ j 001 001 OiL_ .

IlII-- i 1 000_
I~ . 1001000 -- -j'1

jQO 11 '00001000 --:

data to be encoded
RLL 2,7 code

0011 10 10
00001000 0100 0100

Counting the Os, there is a minimum of 3 and a maximum of 4 Os in between
two consecutive Is in the RLL 2,7 code for data "00111010". No matter what byte
of data one encodes according to RLL 2,7, the result will never have less than 2 and
more than 7 Os between two consecutive I s. For example, the run length limit of
the data "11001111 ", shown below, is 3,7.

data to be encoded
RLL 2,7 code

11 0011 11
1000 00001000 1000

In recent years there has been another RLL encoding scheme, called RLL
3,9, which is commonly referred to as ERLL (enhanced RLL) or ARLL (advanced
RLL), which achieves even higher density data encoding than RLL 2,7.

Interfacing standards in the hard disk

To ensure that hard disks made by different manufacturers are compatible,
common standards for interfacing the hard disk and personal computers have been
devised. These standards are STS06, ESDI, and SCSI, which are explained below.

STS06 and STS06-412

ST506 is one of the oldest and most widely used interfacing standards for
the IBM Pc. It was developed by disk manufacturer Seagate Technology. The
ST506 standard uses the disk controller to read data serially from the disk, pack it
into an 8-bit data item, and deliver it to the buses of the Pc. In other words, although
it provides the data in parallel form through the 20-pin cable to the computer
expansion slot, it still transfers data from the hard disk surface to the buffer of the
controller serially. This is called internal transfer rate. For this reason there are
various ratings for the data transfer, depending on the encoding used. The maximum
data transfer rate for the STS06 is 5 megabits per second with MFM encoding. FM
encoding is rarely used today. If the STS06 uses RLL, the rate of data transfer

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

increases to 7.S Mbit per second. An upgrade ofthe STS06, referred to as STS06-4l2
or simply ST4l2, provides an enhancement in the way that the controller makes the
head move from track to track. In STS06, the head steps through the tracks one track
at a time in order to reach the desired track, but in the STS06-4l2 with a feature
called seek buffering, the controller moves the head between the nonadjacent tracks
with a single and continuous move rather than one move at a time. This results in a
shorter access time. From now on instead ofSTS06-4l2, this book will use ST4l2.
The external transfer rate assumes packing of the serial bits into 8-bit data packages
and is calculated by dividing the internal rate by 8. See Table 19-8.

Table 19-8: Hard Disk Specifications
I ' i

I

!Model

! ii, I ST3600N

, ST225 I ST1111E I ST3600A I ST3491A I IND

1 ST3610 II

"

Drive capacity

Unformatted megabytes

Formatted megabytes
ill~ bvtes/sector)

Interface

Performance

25.6 i

21.4 I
I '
I - I
i ST4l2 I

,

I

Internal transfer rate I 5.0 i

0.625

20

Ii Avt,:rage seek (ms) I 65 _.-+ I

Maximum seek (ms) 150 I

Spindle speed (RPM) I 3,600 i
&I;!rage latency (ms) 8.3 !

i I

111.9

98.9

600 na

428

600

525

NINDINC II

il

63511

535 ! 528 II

-;-------'.-------t-----+-------
ESDI IDE i Fast IDE Fast SCSI-2 Fast SCSI-2

10 ! 19 - 36 i 32 I 19-35 I 25-41

1.25 8 I up to 13.3 10 Sync 10 Sync
I

4 1.512 5 1.5/2 1.512

15 10.5/12 , 14 I 10.5/12 10.5112

35 I 26 I 34 i 26 26

3,600 ! 4,500 I 3,811 I 4,500

I
5.400

I I
I I

i 8.33 ! 6.67 7.87 6.67 5.56 -- i

, Drive confil!:uration/data orl!:anization --
,

Discs

I

2 1 3 4 i na 4 4

Read/write heads 4
I

5
I

7 I 16 I 7 7

1, Sectors per track 17 I 36
,

51 I
I

i
na !

! na I na i
I,_Sectors l'er drive 41,820' 192,960 I I 835,584 ! na na I

, na
" 'I Bytes l'er sector 512 i 512 512 512 512 512
I,

I Cj'linders I 615
,

1,072
,

1874 1024 1872 187W __ I
!

J
I MFM ! RLL (2,7)lRLL (1,7) I RLL (1,7) RLL (1,7) RLL (I,7)j l~eCOrdmg method

!~~liability
IMTBF POH
I

! Auto-l'ark

" ii

100 0001 150 000 200 000 r 30~0 ~00~0~~2~0~0 ~00~0~1 ~20~0~0~00~~1
"-'- , , - , , , I

+ No

I

Yes ---l Yes Yes Yes Yes ,

jCache (Kbytes) ! None None ! 256 120 256 256 J -_.
(Repnnted by permission of Seagate Corporatton, Copynght Seagate Corp. 1991, \994)

SECTION 19.2: HARD DISKS 589

ESDI (enhanced small device interface)

The ESDI standard was developed by a group of disk drive manufacturers
in 1983. There are some differences between ESDI and ST412:

I. ESDI can achieve a data transfer rate of up to 20 Mbits per second in contrast to the
7.5 Mbitslsecond of the ST412.

2. With the same RPM as ST412, it can have more sectors per track. The number of
sectors for ESDI can vary between the 20s and the 50s.

3. While in ST412 the defect information must be provided manually during low-level
formatting, for ESDI the defect map is already stored on the drive.

4. In the ST412 standard, the number of cylinders, heads, and sectors is stored either
in CMOS RAM of the system orin the ROM of the hard disk controller, in contrast
to ESDI, where the configuration information is already provided and there is no
need to store it externally.

IDE (integrated device electronics)

IDE is the standard for current PCs. In IDE, the controller is part of the hard
disk. In other words, there is no longer a need to buy a hard disk and a separate
controller as is often the case for ST412. One of the reasons that the IDE drives have
a better data transfer rate is the integration of many of the controller's functions into
the drive itself with the use ofVLSI chips. For example, in the ST412 standard the
hard disk read/write heads would read the data and transfer it to the controller
through the cable, and then the data is separated from the clock pulses by what is
called data separator circuitry. By eliminating cable degradation, IDE and SCSI
(discussed next) reach a much higher external data transfer rate.

The major limitation of IDE is its capacity. It is limited to 504 MB, due to
a PC BIOS limitation. Since IDE uses PC BIOS, which supports only 1024
cyclinders, 16 heads, and 63 sectors per track, the hard disk capacity is limited to
504 MB (1024 x 16 x 63 x 512 bytes/sector = 504 MB). This is not the case with
SCSI drives since they bypass PC BIOS and their capacity can go as high as 80.

SCSI (small computer system interface)

SCSI (pronounced "scuzzy") is one of the most widely used interface
standards not only for high-performance IBMs and compatibles but also for non-
80x86 computers by other manufacturers, such as Apple and Sun Micro. The main
reason is that unlike IDE, SCSI is the standard for all kinds of peripheral devices,
not just hard disks. One can daisy chain up to 7 devices, such as CD-ROM, optical
disk, tape drive, floppy disk drive, networks, and other I/O devices, using the SCSI
standard. See Figure 19-5.

Peripheral 1 Peripheral 2 Peripheral 3 Peripheral 4 PeripheralS Peripheral 6 Peripheral 7

I I I I I I

SCSI Host Adapter

Main Computer Buses

Figure 19-5. Peripheral Devices in SCSI "Daisy Chain"

590 CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

All the characteristics discussed for ESDI and IDE apply equally to SCSI.
In addition, SCSI can have an internal data transfer rate of up to 80 Mbits/second.
It must be noted that SCSI hard drives always have the controllers embedded into
them and there is no need for a separate controller. The only thing needed is an
adapter to convert the SCSI signals to signals compatible with the bus expansion
slot of the host computers.

Interleaving

As the read/write head moves along the track, it must read each sector and
pass it to the controller. The controller in turn will deliver this data to the host
computer through the buses. If the head and the controller cannot keep up with the
stream of data passing under the head, there are two choices: either the rotation
should be slower or interleaving should be used. Using a slower rotation, for
example 600 RPM instead 0[3600, will give an unacceptably long access time. That
brings us to interleaving. While common sense tell us that the sectors should be
numbered on each track sequentially, since the head and controller cannot process
the data in sector I in time to be ready for sector 2 by the time it is under the head,
it would have to wait for the next rotation to read sector 2. Likewise, while sector
2 is being processed, sector 3 has already passed under the head and to read that it
must wait for the next revolution. This means to read all 17 sectors of each track it
will take 17 revolutions. This is 1: 1 interleaving and is as bad as slowing down the
RPM. In 2: 1 interleaving the sectors are numbered and accessed alternately. If the
controller is not fast enough, 3: I can be used. In 3: I interleaving, every third sector
is numbered and accessed. It will take 2 complete revolutions to access all the sectors
in 2:1, and 3 revolutions for 3:1 interleaving. This is much betler than all other
choices discussed above. In 3:1 interleaving, used widely in PC/XTcomputers, the
computer accesses sector I, and by the time it finishes processing it, sector 2 is under
the head. The two sectors in between sector numbers I and 2 give the controller time
to get ready for accessing the next sector. Note that in today's high-performance
computers using IDE and SCSI controllers, I: I interleaving can read the entire track
with one revolution, due to their fast controllers and wide data buses. Figure 19-6
shows the concept of interleaving.

8 \ __ -+--_,2

~OO=~:3:1 2:1
1 :1

5 1

Figure 19-6. Hard Disk Interleaving

SECTION 19.2: HARD DISKS 591

Low- and high-level formatting

During low-level formatting, every sector of the disk is examined and bad
sectors are marked. Every sector will be given what is called an ID header. Among
the information included in the ID header are sector number, cylinder number, and
head. This information is never changed unless low-level formatting is done
again. Low-level formatting is performed by the hard disk manufacturer. High-level
formatting sets aside sectors for the FAT and the root directory. High-level format­
ting is done by the FORMAT command of DOS.

Parking the head

When the computer is moved, there is the possibility that the magnetic
materials beneath the read/write head can be damaged. For this reason the head
should be moved (parked) to that disk's landing zone before the system is moved.
Even turning the computer on and off can cause incremental damage by electric
shocks, which can accumulate and eventually make a disk dysfunctional. Parking
the head is strongly recommended before the computer is turned off. Many control­
lers park the head automatically (see Table 19-8), but users of the others may use
a utility program provided by the disk manufacturer to park the head.

Disk caching

Due to the long access time of the hard disk, disk caching is used to speed
up the disk access time. There are two types of disk caching. In one type, the disk
manufacturer puts some (64K - 1M) fast memory on the disk. This is called hardware
disk cache (see Table 19-8). In the other type, a section of memory on the PC
motherboard is set aside for disk caching. Obviously, the larger the size of this
memory, the more files can be stored there and accessed by the CPU, assuming that
there is extra memory to spare. Using a section of motherboard DRAM for disk
caching is done by SMARTDRV.SYS, which comes with MS DOS. This kind of
disk caching is called software disk cache.

Disk reliability

MTBF (mean time between failures) is a measure of reliability and dura­
bility of the disk when the power is on. This factor is given in hours. For example,
the ST225 has a MTBF of 100,000 hours. Dividing it by 24 hours gives an MTBF
value of 4166.6 days or 11.4 years (4116.6/365). Of course, manufacturers will not
power on the disk for that long and then test it since they would be out of business
by then. They use extremely reliable statistical analysis to figure out the MTBF. See
the MTBF of various disks in Table 19-8.

Review Questions

1. Why in hard disks is the number of heads more than two?
2. True or false. Early DOS versions did not allow the hard disk to be partitioned to

sizes bigger than 32 megabytes.
3. In hard disks, which sector is set aside for the boot record?
4. True or false. FM recording density is twice that of MFM.
5. True or false. SCSI interfacing standard is also used for devices other than hard

disks, such as CD ROM.
6. How many rotations does it take to read all the sectors of a given track in a 3: I in­

terleaved hard disk?
7. True or false. Each file begins on a new cluster even if the previous cluster has

some empty space.
8. How many bytes are used for each directory entry?
9. How many sectors are in a cluster?
10. What does "MTBF" stand for, and what does it measure?

592 CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

SECTION 19.3: DISK FILE PROGRAMMING

In this section we first explain the concept of the file handle and then show
how to perform file processing using TNT 21H.

File handle and error code

For DOS version 1.0, in order to access a file programmers had to use what
is called the FCB (file control block). However, starting with DOS version 2, the
file handle was introduced. Since the use of file handle is the standard and recom­
mended way of accessing files in recent applications, we will consider this method
only.

When a file is created, DOS assigns it a 16-bit number called afile handle.
From then on, any time that file is accessed it is with the help of the file handle.

The following two steps must be taken in order to create and access a file.

I. Use an ASCIIZ string for drive, path, and the file name. This string must end with
00, which is called ASCII zero.

2. Use TNT 21H option 3CH to create the file. If the file creation is successful, DOS
provides the file handle for that file and sets the carry flag to O. This file handle must
be saved and used in all subsequent accesses of this file. If the file creation is not
successful, DOS provides an error code and sets the carry flag to I. The following
describes DOS 21 H functions to create a file, write to and read from a file, and close
a file. The remaining services provided by TNT 2lH are shown in Appendix D. Table
0-1 provides a list of error codes.

Table 19-9: File Attribute Byte

Attribute Meaninl!

OOH Normal file ..

OlH Read-only file

I
,

i

INT 21 H, AH =3CH (creating a file)

Prior to this function, AH = 3CH,
OX points to the ASCIIZ string containing
the filename, and CX contains the attribute
byte. See Table 19-9. Note that if you use
the option with an existing filename, it will
write over the old information in the file,
essentially deleting it. If the function was
able to successfully create a file, the carry
flag is set to zero, the file handle is placed

02H Hidden file .1

04H : DOS system file
in AX, and a directory entry is created for
the file. All subsequent references to the
file are done through the file handle. If any
errors occurred, CF will be set to 1 and the
error code will be in AX. See Table 0-1 for

I
08H

----I

.1 Volume label (II bytes)

hOH i Subdirectory
.. ~

I

120H I Archive file
a list of error codes.

MOV AH,3CH ;create file option
MOV CX,O ;normal file
MOV DX,OFFSET FNAME_A ;DX points to ASCIIZ string
INT 21 H ;invoke interrupt
JC ERROR ;go display error message
MOV HANDLE.,A,AX ;save file handle

INT 21 H, AH =40H (writing to a file)

Prior to invoking this function, AH = 40H, CX = the number of bytes to
write, BX contains the file handle, OX points to the beginning of the offset address
of the data to be written. Ifthe operation was successful, CF = 0 and AX = the number
of bytes written, and if not successful CF = 1 and AX = the error code.

SECTION 19.3: DISK FILE PROGRAMMING 593

594

OUTBUF DB

MOV
MOV
MOV
MOV
INT

'Hello'

AH,40H
eX,5
BX,HANDLE_A
DX,OFFSET OUTBUF
21H

;write to file option
;write 5 bytes
;BX contains handle
;DX points to data to write
;invoke interrupt

INT 21H, AH =3EH (closing a file)

Before your program terminates, your should close all files. This will ensure
that any records you have written to the file that may still be in the memory buffer
will be added to the file. Closing the file will also update the directory entry and
FAT entries for that file. Before the call, BX contains the file handle and AH = 3EH.

MOV
MOV
INT

AH,3EH
BX,HANDLE_A
21H

;close file option
;set up handle
;invoke interrupt

INT 21 H, AH =3FH (reading a file)

Prior to this function call, AH = 3FH, BX contains the file handle, CX = the
number of bytes to read, and DX points to the input buffer (offset address). If the
operation was successful, CF = 0 and AX = the number of bytes read. If an error
occurred, CF = 1 and AX holds the error code.

MOV
MOV
MOV
MOV
INT

AH,3FH
eX,80
BX,HANDLE_A
DX,OFFSET INBUF
21H

;read file option
; read 80 bytes
;BX holds the handle
;DX points to input buffer
;invoke interrupt

INT 21 H, AH =3DH (open a file)

Prior to this function call, AL =mode (see list below) and DX points to the
ASCIIZ string. If the operation was successful, CF = 0 and AX = the file handle. If
an error occurred, CF = 1 and AX holds the error code.

AL mode: 76543210 (bits)
000

o
1

o
000
001
010
011
100

001
010

Result
open for read
open for write
open for read/write
reserved
give others compatible access
read/write access denied to others
write access denied to others
read access denied to others
give full access to others
file inherited by child process
file private to current process

MOV AH,3DH ;open file option
MOV AL,O ;open for read
MOV DX,OFFSET FNAME_A ;DX points to ASeliZ string
INT 21 H ;invoke interrupt

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

TITLE
PAGE

FILE 1/0
60,132
.MODEL SMALL
.CODE

;---------------- MAIN procedure -------------------------------
;this program clears screen, reads keyboard input into buffer, writes buffer to file, closes file
;then opens file, reads file to buffer, writes buffer to monitor, closes file, exits when user is ready
MAIN PROC FAR

MOV AX,@DATA
MOV DS,AX
CALL CLR SCR
MOV AH,02
MOV BH,OO
MOV DUO
MOV DH,10
INT 10H
CALL CREATE F
MOV AH,OAH-
MOV DX,OFFSET BUFFER_l
INT 21H
CALL WRITE F
CALL CLOSEF
MOV AH,02-
MOV BH,OO
MOV DL,10
MOV DH,20
INT 10H
CALL OPEN F
CALL READ-F
MOV AH,09-
MOV DX,OFFSET BUFFER 2
INT 21H -
CALL CLOSE F
MOV AH,02-
MOV BH,OO
MOV DUO
MOV DH,24
INT 10H

:clear the screen
;5et cursor position

;column position
;row position

;create an output file
;read keyboard input

;write buffer to file
;close file
;set cursor position

;column position
;row position

;open file for read
;read file to buffer
;copy buffer to screen

;close file
;set cursor position

;column position
;row position

MOV DX,OFFSET EXIT MSG ;print "ANY KEY TO EXIT" message
CALL ERR MSG -
MOV AH,07
INT 21H
MOV AH,4CH
INT 21H

MAIN ENDP

;exit when user hits any key

;set up to return
;return to DOS

;-------------- this procedure creates an output file -----------------------­
CREATE F PROC NEAR

- MOV AH,3CH
MOV CX,O
MOV DX,OFFSET FILE 1
INT 21H -
JC C ERR
MOV HANDLE Fl,AX
JMP C EXIT -

;create file function
;normal file
;DX pOints to ASCIIZ
;invoke interrupt

;save handle if OK

MOV DX,OFFSET ERR_CREATE ;display error message
CALL ERR MSG

C_EXIT: RET -
CREATE F ENDP
;-----------=-- this procedure reads file to buffer ------------------------
READ F PROC NEAR

- MOV AH,3FH
MOV BX,HANDLE Fl
MOV CX,25 -
MOV DX,OFFSET BUFFER 2
INT 21H -
JNC R EXIT

;read from file
;use handle
;number of bytes to read
;DX pOints to buffer
;invoke interrupt

MOV DX,OFFSET ERR READ ;display error message
CALL ERR MSG -
RET -
ENDP

Program 19-1. Using INT 21H File Handling (continued on next page)

SECTION 19.3: DISK FILE PROGRAMMING 595

;--------------- this procedure writes buffer to file -----------------------
WRITE F PROC NEAR

- MOV AH,40H
MOV BX,HANDLE F1
MOV CX,25 -
MOV DX,OFFSET BUFFER 1+2
INT 21H -
JNC W EXIT
MOV DX,OFFSET ERR WRITE
CALL ERR MSG -

W_EXIT: RET -
WRITE F ENDP

;write to file

;number of bytes to write
;DX points to buffer
;invoke interrupt

;display error message

;---------::------ this procedure closes a file ------------------------
CLOSE F PROC NEAR

- MOV AH,3EH
MOV BX,HANDLE F1
INT 21H -
JNC CL EXIT
MOV DX-;-OFFSET ERR CLOSE
CALL ERR MSG -

CL_EXIT: RET -
CLOSE F ENDP
;---------=---- this procedure opens a file ------------------------
OPEN F PROC NEAR

- MOV AH,3DH
MOV AL,O
MOV DX,OFFSET FILE 1
INT 21H -
JC 0 ERR
MOV HANDLE F1,AX
JMP 0 EXIT -
MOV DX,OFFSET ERR OPEN
CALL ERR MSG -

O_EXIT: RET -
OPEN F ENDP

;close file function
;use handle
;invoke interrupt

;display error message

;open file function
;read only
;DX points to ASCIIZ
;invoke interrupt

;save handle if OK

;display error message

;-------=----- this procedure displays a message ---------------
ERR_MSG PROC NEAR ;DX points to msg before call

MOV AH,09H ;output to monitor
INT 21 H ;invoke interrupt
RET

ERR MSG ENDP
;-----=------ this procedure clears the screen --------------------
CLR SCR PROC NEAR

- MOV AX,0600H ;scroll screen
MOV BH,O?
MOV CX,OOOO ;scroll the
MOV DX,184FH ; entire screen
INT 10H
RET

CLR SCR ENDP
; -----=-------- d ala area ---

HANDLE F1
FILE 1 -
BUFFER 1
BUFFER-2
ERR CREATE
ERR-OPEN
ERR-READ
ERR-WRITE
ERR-CLOSE
EXIT:::MSG

.DATA
DWO
DB 'C:IFILE1.ASC',O
DB 25,7,25 DUP (' ')
DB 25 DUP (' '),'$'

;file 1 handle
;file1 ASCIIZ string

DB ODH,OAH,''' Error creating file "$'
DB ODH,OAH,''' Error opening file "$'
DB ODH ,OAH ,' •• Error reading file "$'
DB ODH,OAH,''' Error writing to file "$'
DB ODH,OAH,''' Error closing file "$'
DB ODH,OAH,'PRESS ANY KEY TO EXIT$'

.STACK 32
END MAIN

Program 19-1 (continued from preceding page)

596 CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

SUMMARY

Review Questions

1. True or false. FCB and file handles can be used interchangeably with the same DOS
21H function calls.

2. What happens if you use function 3CH to create a file, but the file already exists?
3. What might happen if your program terminates before closing output files?
4. What is wrong with the following ASCIIZ string?

PATH NAME DB 'C:IPROGRAMS\TEST.DAT'
5. What Is wrong with the following file handle?

FILE HNDL DB ?

This chapter began with a look at floppy disk organization, a secondary
storage medium. Primary storage refers to RAM and secondary storage refers to
storage media other than RAM. Information is stored on floppy disks in tracks. There
are many tracks on each side of a diskette. Each track consists of many clusters,
which consists of one or more sectors, which consists of many bytes of information.
Important information about the disk format is kept in the boot record of the disk.
The directory lists the files on a disk and keeps track of important information about
the files. The FAT (file allocation table) is like a road map telling the computer which
files are stored in which sectors.

The second section looked at hard disks. Hard or fixed disks are judged
according to three major criteria: capacity, access time (speed of accessing data),
and interfacing standard. The capacity of a hard disk is found by multiplying the
number of tracks times the number of sectors times the number of bytes per sector.
In hard disk organization, the term cylinder refers to all the tracks of the same radius
on each platter. Hard disks can be partitioned into many smaller logical disks. The
access time of the disk has several components: seek time, the amount of time it
takes the head to find the cylinder; settling time, the amount oftime it takes the head
to stop vibrating so it can read the data; and rotational latency, the time it takes for
the head to locate the specific sector. Encoding techniques are the means by which
logical 0 and I are translated into pulses and stored on disk. Common encoding
techniques are FM, MFM, and RLL. The two major interfacing standards for
interfacing hard disks and the PC are IDE and SCSI. Interleaving is used to access
consecutive sectors faster. Low-level formatting, usually performed by the manu­
facturer, checks each sector and marks bad sectors. High-level formatting, done by
the user using the DOS FORMAT command, sets aside sectors for the FAT and boot
record.

The third section of this chapter showed how to access files on disk with
Assembly language instructions. !NT 21H function calls are used to open and close,
read and write, create and delete files, among other functions.

PROBLEMS

SECTION 19.1: FLOPPY DISK ORGANIZATION

I. Why is the disk called secondary storage?
2. Verify the disk capacity of each of the following.

(a) 3 112" (b) 3 1/2" high density
3. The first sector of every floppy disk is set aside for
4. True or false. In accessing sectors, the disk controllec-r:-g:-o:-:e"Cs-'to-s~id'e--;O',-;-Ctrack 0, sec­

tors 0 to n, then side 2, track 0, sector 0 to sector n, and so on.
5. In the floppy disk of the PC, the cluster size is sectors.

SUMMARY 597

6. After the boot sector, sectors are assigned to the (FAT, directory).
7. Select a floppy disk of your choice, then using DEBUG, dump the boot sector and

analyze the contents. Specifically, show the sector density, number of sectors per
track, total number of sectors in the disk, disk capacity, and maximum number of
directories per disk.

8. How many bytes are set aside for each directory entry?
9. Ifthe sector size is 512 bytes, how many directories can each sector hold?
10. Using DEBUG, dump a sector containing directory entries of a 3 112" floppy disk

and analyze the entries for 2 of the files.
II. In the date section of a directory entry, the year is stored as the number of years

since~~~
12. For a disk to be bootable, which file must it contain? Show for both MS DOS and

PC DOS (IBM version).
13. Why doesn't the orR command list MSDOS.SYS and IO.SYS on the screen?
14. In PC DOS and MS DOS, how many bits are set aside for each FAT entry?
15. Indicate the meaning of the following FAT entries.

(a) 001 (b) 000 (c) FF8
16. Use Table 19-5 to verifY the sector map of a 1.2M disk. Check your result against

Table 19-6.
17. Repeat Problem 16 for a 1.44M disk.
18. What is maximum number of files that a 720K disk can have?
19. Repeat Problem 18 for a 1.44M disk.
20. A given floppy disk has thousands of bytes of free space, but the user cannot open

a new file. What do you think is the problem?

SECTION 19.2: HARD DISKS

21. True or false. The terms hard disk and .fIXed disk refer to the same thing.
22. What is a cylinder, and how is used in the hard disk?
23. The total number of tracks in a given hard disk is equal to _~_~~_
24. Calculate the total number of sectors and the capacity of the following hard

disks. Assume 512 bytes per sector for both cases.
(a) 6 heads, 820 cylinders, and 26 sectors per track
(b) 5 heads, 1072 cylinders, and 36 sectors per track

25. Using DEBUG, dump the boot sector of your hard disk and analyze it, part by
part. Specifically, show the sector density, number of sectors per track, total num­
ber of sectors in the disk, disk capacity, maximum number of directories per disk,
and the number of sectors per cluster.

26. True or false. The number of sectors per cluster is always a power of2.
27. For Problem 25, show the hard disk layout. IdentifY the sectors, by hex number,

that are used for the FAT, directory, and data storage.
28. With DOS 4 and higher, a logical disk can have bytes of storage.
29. Discuss seek time, settling time, latency time, and how they relate to disk access

time.
30. Which of the following has the shortest access time? Which has the longest access

time?
(a) 2400 RPM (b) 3600 RPM (c) 4800 RPM

31. True or false. The SCSI interfacing standard is used only for hard disks.
32. State the number of peripheral devices that can be daisy chained if SCSI is used.
33. To read all the sectors of a given track, how many times must the track rotate un­

der the head for each of the following interleaving factors?
(a) 1:1 (b) 1:3 (c) 1:5

34. What does MTBF stand for, and what is its use?

SECTION 19.3: DISK FILE PROGRAMMING

35. What is ASCIlZ?
36. If there are tens of files open at a given time, how does DOS distinguish among

them?

598 CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES

37. Indicate the type of file associated with each of the following attributes.
(a) 00 (b) 02 (c) 04

38. When INT 21H DOS function call AH ~3CH is used to create a file, how does
DOS indicate that a file has been created successfully?

39. True or false. In using DOS function call INT 21H to access an already created
file, one must have the file handle.

40. True or false. When using INT 21H DOS function call to write into a file, one
must define a memory data area in the data segment.

41. At what point are we certain that the data is written into file and the directory is
updated?
(a) when the file is created (b) when the file is written to
(c) when the file is closed

42. Using Assembly language and INT 21H, create a file, name it "MYFILE", and
write to it the following: "In the world of microprocessors and personal comput­
ers, the mother of all battles looms ahead when the 80x86 clone makers and
IBMlMotorola Power PC RISC battle Intel." After the file is closed, use the
TYPE command to dump it on screen. Verify the size of the file by using the DIR
command.

ANSWERS TO REVIEW QUESTIONS

SECTION 19.1: FLOPPY DISK ORGANIZATION

1. true
2. true
3. boot record
4. FAT
5. To make it possible to use the second for backup in case something happened to the first one, since the FAT is

the road map for finding where data is located on the disk.
6. true
7. number of sectors
8. This information is provide in the boot sector.
9. after
10. by the media byte in the boot sector

SECTION 19.2: HARD DISKS

1. because there is more than one platter in hard disks and each platter has two heads
2. true
3. sector 0
4. false
5. true
6. 3 rotations
7. true
8. 32 bytes
9. 1,2,4, or 8; it is always a power of 2.
10. Mean time between failures; it is a measure of disk reliability.

SECTION 19.3: DISK FILE PROGRAMMING

1. false
2. The old information in the file is effectively deleted.
3. Closing a file writes any information from the buffer to the file, so if you terminate before closing, the

information remaining in the buffer may be lost.
4. It is not an ASCIIZ string because it does not end in ASCII zero (null).
5. A file handle should be 16 bits (use DW directive).

ANSWERS TO REVIEW QUESTIONS 599

CHAPTER 20

THE 80x87 MATH COPROCESSOR

600 CHAPTER 20: THE 80x87 MATH COPROCESSOR

This chapter will examine the 80x87 math coprocessor. The math coproc­
essors found in 486 and Pentium processors have their origin in the 8087 co­
processor. As far as data types and instructions are concerned, there have been few
changes since the introduction of the 8087, aside from the fact that 387, 487, and
Pentium processors run 8087 instructions much faster. In the first section of this
chapter, we study the IEEE standard for floating-point numbers and the Intel 8087
math coprocessor's data format. In Section 20.2, the 8087 instructions are discussed
along with some sample programs run on a PC with a math processor. Section 20.3
covers interfacing of the 8087 to 8088/86-based PCs, and in Section 20.4 we provide
an overview of 80x87 instructions and their clock counts.

SECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING-POINT

Using a general-purpose microprocessor such as the 8088/86 to perform
mathematical functions such as log, sine, and others is very time consuming, not
only for the CPU but also for programmers writing such programs. In the absence
of a math coprocessor, programmers must write subroutines using 8088/86 instruc­
tions for mathematical functions. Although some of these subroutines are already
written and can be purchased at a small cost, no matter how good the subroutine, its
CPU run time (8088/86, 286, 386) will still be quite long. Table 20-1 provides a
comparison of the number of clocks used by the 8087 and 8086 to perform some
mathematical functions. One can appreciate the advantage of having a coprocessor
by comparing the run time of some programs, such as SPICE (a package for circuit
analysis which uses floating-point operations extensively) on a computer with a
coprocessor and one without a coprocessor. In some cases the difference is hours.

Table 20-1: Comparison of 8087 and 8086 Clock Times
~- ~--

i I Approximate E!ecution Time (gs) (5-MHz clock) _.

i! In_struction 1_._ 8087 8086 Emulation

Nultiply (single precision) I J 9 1,600

~Multiply (double precision) ---------+1--- 27 2,100

I Add 17

! Divide (single precision) 39

i Compare ___ _ 9

-------1 9 , Load (sin~le precision)

" Store (single precisi()fi)

i Square root

18

36
-t-!---~.

!ITangent 90

100 ,I Exponentiation
~- - --

(Reprinted by pennission of Iotel Corporation, Copyright Intel Corp. 1989)

IEEE floating-point standard

"---- 1,600

3.J00

1,300

1~7~

L200

19,600

13,000

._-- , p,IOO

Up to the late 1970s, real numbers (numbers with decimal points) were
represented differently in binary form by different computer manufacturers. This
made many programs incompatible for different machines. In 1980, an IEEE
committee standardized the floating-point data representation of real numbers. This
standard, much of which was contributed by Intel, based on the 8087 math coproc­
essor, recognized the need for different degrees of precision by different applica-

I
J

SECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING-POINT 601

tions; therefore, it established single precision and double precision. Since almost
all software and hardware companies, including IBM, Intel, and Microsoft, now
abide by these standards, each one is explained thoroughly. RISC processors also
use IEEE floating-point standards.

IEEE single-precision floating-point numbers

IEEE single-precision floating-~int numbers use only 32 bits of data to
represent any real number in the range 2 28 to 2-126, for both positive and negative
numbers. This translates approximately to a range of 1.2 x 10-38 to 3.4 x 10+38 in
decimal numbers, again for both positive and negative values. In Intel coprocessor
terminology, these single-precision 32-bit floating-point numbers are referred to as
short real. Assignment of the 32 bits in the single-precision format is

Bit
31
23 - 30
22 - 0

Assignment
Sign bit: 0 for positive (+) and 1 for negative (-)
Biased exponent
The fraction, also called significand

To make the hardware design of the math processors much easier and less
transistor consuming, the exponent part is added to a constant of7FH (127 decimal).
This is referred to as a biased exponent. Conversion from real to floating point
involves the following steps.

1. The real number is converted to its binary form.
2. The binary number is represented in scientific form: l.xxxx E yyyy
3. Bit 31 is either 0 for positive or 1 for negative.
4. The exponent portion, yyyy, is added to 7F to get the biased exponent, which is

placed in bits 23 to 30.
5. The significand, xxxx, is placed in bits 22 to O.

Examples 20-1, 20-2, and 20-3 demonstrate this process. In Section 20.2
we will verify all the above examples using an assembler.

IEEE double-precision floating-point numbers

Double-precision FP (called long real by Intel) can represent numbers in
the range 2.3 x 10-308 to 1.7 x 10308, both positive and negative. A total of 53 bits
(bits 0 to 52) are for the significand, II bits (bit 53 to 62) are for the exponent, and
finally, bit 63 is for the sign. The conversion process is the same as for single
precision in that the real number must first be represented as I.xxxxxxx E YYYY,
then YYYY is added to 3FF to get the biased exponent.

Example 20-1

Convert 9.7510 to single-precision (short real) floating point.

Solution:
decimal 9.75 = binary 1O01.l! = scientific binary 1.00111 E 3
sign bit 31 is 0 for positive
exponent bits 30 to 23 are 1000 00 I 0 (3 + 7F = 82H) after biasing
significand bits 22 to 0 are DOl! 10000000000000000 ... 00
Putting it all together gives the following binary form, under which is written the hex form:

0100 0001 0001 1100 0000 0000 0000 0000
411 COO 0 0

This can be verified by using an assembler, such as MASM, as will be seen later in this chapter.

602 CHAPTER 20: THE 80x87 MATH COPROCESSOR

Example 20-2
Convert 0.078125 10 to short real FP (single precision).

Solution:

decimal 0.078125 = binary 0.000101 = scientific binary 1.01 E-4
sign bit 31 is 0 for positive
exponent bits 30 - 23 are 0111 10 11 (-4 + 7F = 7B) after biasing
significand bits 22 - 0 are 0 I 000000 000
This number will be represented in binary and hex as

0011 1101 1010 0000 0000 0000 0000 0000
3 DAD 0 0 0 0

Example 20-3

Convert -96.27!O to single-precision FP format.

Solution:

decimal 96.27 = binary 1100000.01000101000111101 =

scientific binary 1.1 000000 1000 10 1000 11110 I E 6
sign bit 31 is I for negative
exponent bits 30 - 23 are 10000101 (6 + 7F = 85H) after biasing
fraction bits 22 - 0 are 10000001000101000111101
The final form in binary and hex is

1100 0010 1100 0000 1000 1010 0011 1101
C 2 C 0 8 A 3 D

It must be noted that conversion of the decimal portion 0.27 to binary can be continued beyond the
point shown above, but because the fraction part of the single precision is limited only to 23 bits, this
was all that was shown. For that reason, double-precision FP numbers are used in some
applications to achieve a higher degree of accuracy.

Example 20-4

Convert 152.1875\0 to double-precision FP.

Solution:

decimal 152.1875 = binary 10011000.0011 =
scientific binary 1.00 II 00000 II E 7
bit 63 is 0 for positive
exponent bits 62 - 53 are 10000000110 (7 + 3FF = 406) after biasing
fraction bits 52 - 0 are 00110000011000 000

0100 0000 0110 0011 0000 0110 0000 0000 0000
4 0 630 600 0

This example will be verified by an assembler in the next section.

SECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING-POINT

0000
o

603

Other data formats of the 8087

In addition to short real (single precision) and long real (double precision)
representations forreal numbers, the 8087 also supports 16-,32-, and 64-bit integers.
They are referred to as word integers, short integers, and long integers, respectively,
and are shown in Figure 20-1. These forms are sometimes referred to as signed
integer numbers. No decimal points are allowed in integers, in contrast to real
numbers, in which decimal points are allowed. There are also two 80-bit data formats
in the 8087 coprocessor, packed decimal and temporary real. The packed decimal
format has 18 packed BCD numbers, which require a total of 72 bits (18 x 4 = 72).
Bits 71 to 0 are used for the numbers, bits 73 to 78 are always 0, and bit 79 is for
the sign. The temporary real format is used internally by the 8087 and is shown in
Figure 20-1. In the temporary real format, the conversion goes through the same
process as shown above, except that the biased exponent is calculated by adding the
constant 3FFFH.

Word Integer approx. range: -32768 <= x <= +32767
15 0

I S I magnitude I

Short Integer approx. range: -2 x 10' <= X <= +2 x 10'
31

I S I magnitude

Long Integer approx. range: _9xlO18<=X <=+9x1018
63

I S I magnitude

Packed Decimal approx. range: -99 .. 99 <= x <= +99 .. 99
79 72

I S I X magnitude: d17 to dO

Short Real approx.range:O,1.2x 10- 38 <=lxl<=+3.4x 1038

31 23 22 0

I S I b. exp I significand

Long Real approx. range: O,2.3x10·308 <=Ixl <=+1.7x10308

63 52 51

I S I b. exp I significand

Temporary Real approx. range: 0, 3.4 x 10-4932 <= Ixl <= +1.1 x 104932

79 64 63 62

I S I b. exp II I significand

Figure 20-1. SOxS? Data Formats
(Reprinted by pennission afIntel Corporation, Copyright Intel Corp. 1992)

604 CHAPTER 20: THE 80x87 MATH COPROCESSOR

Review Questions

1. True or false. In the absence of a math processor, the general-purpose processor
must perform all math calculations.

2. True or false. The 80x87 follows the IEEE floating-point standard.
3. Single-precision IEEE FP standard uses bits to represent data.
4. Double-precision IEEE FP standard uses bits to represent data.
5. To get the biased exponent portion ofIEEE single-precision floating-point data we

add -7"""C""-
6. To get the biased exponent portion of IEEE double-precision floating-point data we

add __ _

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING

This section shows the 80x87 registers, plus some 8087 instructions and
their use in sample programs. A full and comprehensive discussion of each instruc­
tion and its programming use is beyond the scope of this book. However, the
examples in this section provide an introduction to 8087 programming.

Assembling and running 80x87 programs on the IBM PC

To run any program with 8087 instructions, first the programmer must make
sure that the PC has one of the following coprocessors on the motherboard: 8087,
80287,80387, or a compatible coprocessor. In the case of the 80486 and Pentium,
the coprocessor is not a separate chip but is integrated with the main processor on
a single chip. The 80486SX requires a math coprocessor, the 487SX. This section
shows how to assemble several 8087 programs using the Microsoft Assembler,
MASM, run them on a PC, and analyze the result. These programs can also be run
on Turbo Assembler, TASM, from Borland. First, the assembler directives for data
types of the 8087 are explained. In MASM and compatible assemblers, there are
different directives to define the different data types of the coprocessor. They are as
follows:

DO (Define double word) for short real (single precision)
DO (Define quad word) for long real (double precision)
DO (Define double word) for short integer
DO (Define quad word) for long integer
DT (Define ten bytes) for packed decimal
DT (Define ten bytes) for temporary real

Recall that the word size in the 80x86 family is 16 bits. Therefore, when
using DD to define a double word, the result is 32 bits. This is different from some
other processors, notably RISC processors, in which a word is defined as 32 bits. It
is worth repeating a point made in Chapter 0: that although a byte is defined as 8
bits universally, a word is defined differently by different companies. For example,
the Cray computer defines a word as 64 bits.

Verifying the Solution for Examples 20-1 to 20-4

Program 20-1 is a portion of the .LST file produced when a program is
assembled. It verifies the conversion from decimal to the internal machine repre­
sentation given in Examples 20-1 through 20-4.

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING 605

0000
0000

0040

0000
0000

1??1
1

20 [

.8087
PAGE 60,132
.MODEL SMALL
.STACK 32

0000 00 00 lC 41 EXI
0010
0010 00 00 AO 3D EX2
0020
0020 3D SA CO C2 EX3
0030
0030 00 00 00 00 00 06 EX4

6340

.DATA
ORGOOH

DD 9.75
ORG 10H
DD 0.078125
ORG20H
DD -96.27
ORG30H
DQ 152.1875

;example 1

;example 2

;example 3

;example 4

Example 20-1 data:
hex:
binary:
sign:

biased exp:
significand:

41 1e 00 00
0100 0001 0001 1100 0000 0000 0000 0000
o for positive
1000 0010 normalize:
0011100 .. 00

82 - 7F = 3

scientific binary: 1.00111000 .. 00 E3 1001.11000 ... 00
decimal: 9.75

Example 20-2 data:
hex:
binary:
sign:

biased exp:

3D AD 00 00
0011 1101 1010 0000 0000 0000 0000 0000

o for positive
0111 1011 normalize: 7B - 7F = -4

significand: 01000.00
scientific binary: 1.01 E-4 = .000101
decimal: 0.078125

Example 20-3 data:
hex: e2 eo 8A 3D
binary: 1100 0010 1100 0000 1000 1010 0011 1101
sign: 1 for negative
biased exp: 1000 0101 normalize: 85 - 7F = 6
significand: 10000001000101000111101

scientific binary: 1.10000001000101000111101 E6
decimal: -96.2700078

1100000,001000101000111101

Example 20-4 data:
hex: 40 63 06 00 00 00 00 00
binary: 0100 0000 0110 0011 0000 0110 000 .. 00
sign: 0 for positive
biased exp: 10000000110 normalize: 406 - 3FF = 7
significand: 00110000011
scientific binary: 1.00110000011 E7 = 10011000.0011

decimal: 152.1875

Program 20-1

606 CHAPTER 20: THE 80x87 MATH COPROCESSOR

80x87 registers

There are only 8 general-purpose registers in the 80x87. Rather than having
different-size registers for different-size operands, all the registers ofthe 8087 are
80 bits wide. Every time the 8087 loads an operand, it automatically converts it to
this 80-bit format. This gives uniformity to the registers and makes programming,
as well as 8087 hardware design, much easier. Although these 8 registers have been
numbered from 0 to 7, they are accessed like a stack, meaning that a last-in-first-out
policy is used. At any given time, the top of the stack is referred to as ST(O), or
simply ST, and all other registers, regardless of their number, are referred to
according to their positions compared to the top of the stack, ST. The programming
examples below will demonstrate the use ofregisters in the 8087. Example 20-5
will show a complete Assembly language program using the 8087 coprocessor. First,
a few points should be noted:

I. All 80x87 mnemonics start with the letter "f' to distinguish them from 8Ox86
instructions.

2. The 80x87 must be initialized to make sure that the top of the stack will be register
number 7.

3. Whenever a register is not identified specifically, ST [which is ST(O)] is assumed
automatically.

4. ST(O) is the top of the stack, ST(I) is one register below that, and ST(2) is two
registers below ST(O), and so on. In other words, for register STem), the number in
parentheses, m, has nothing to do with the register number. There is a way to find
out which register number, 0 - 7, is ST(O), the top of the stack.

5. In the following programming examples, all values of X, Y, and Z have been defined
in the data segment and allocated memory locations. The same is true for variables
such as SUM, for storing the result.

Example 20-5

Write an 8087 program that loads three values for X, Y, and Z, adds them, and stores the result.

Solution:

finit
fld
fld
fld
fadd
fadd
fst

X
Y
Z
ST(I)
ST(2)
sum

;initialize the 8087 to start at the top of stack
;load X into ST(O). now ST(O)=X
;load Y into ST(O). now ST(O)=Y and ST(I)=X
;load Z into ST(O). now ST(0)=Z,ST(I)=Y,ST(2)=X
;add Y to Z and save the result in ST(O)
;add X to (Y+Z) and save it in ST(O)
;store ST(O) in memory location called sum.

Now the same program can be written as follows:

finit
fld X
fld Y
fld Z
fadd
fadd ST(2)
fst sum

;load x, now ST(O) = x
;Ioad y, now ST(O)= y, ST(I) = x
;load z, now ST(O)=z, ST(I)=y, ST(2)=x
;adds y to z
;adds x to (y + z)

Program 20-2 shows the actual MASM code and execution. Figure 20-2 shows the registers.

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING 607

;Program for Example 20-5 to load 3 numbers and compute their sum
.8087
PAGE 60,132
.MODEL SMALL
STACK 32

.DATA
ORG DOH

X DD 9.75
ORG 10H

Y DD 13.09375
ORG 20H

Z DD 29.0390625
ORG 30H

SUM DD ?

.CODE
START PROC FAR

MOV AX,@DATA
MOV DS,AX
CALL CSUM
MOV AH,4CH
INT 21H

START ENDP

CSUM PROC NEAR
FINIT
FLD X
FLD Y
FLD Z
FADD ST(O),ST(1)
FADD ST(0),ST(2)
FST SUM
RET

CSUM ENDP
END START

C>DEBUG EX5,EXE
-U CS:O C
16EF:0000 B8B617
16EF:0003 8ED8
16EF:0005 E80400
16EF:0008 B44C
16EF:000A CD21
16EF:000C 9B
-G

MOV
MOV
CALL
MOV
INT
WAIT

Program terminated
-D 17B6:0 3F
17B6:0000 00 ODIC
17B6 0010 00 80 51
17B6 0020 00 50 E8
17B6 0030 00 88 4F
-Q

normally

41 00 00
41 00 00
41 00 00
42 00 00

C>

Program 20-2

608

00
00
00
00

;initialize 8087 stack
; load X into ST(O)
; load Y into ST(O)
;Ioad Z into ST(O)
;ST(O)= Y + Z
;ST(O) = X + (Y + Z)
;store ST(O) in sum

AX,17B6
DS,AX
OOOC
AH,4C
21

00-00 00
00-00 00
00-00 00
00-00 00

00 00
00 00
00 00
00 00

00
00
00
00

00 00 00 ",A"""" ... ,
00 00 00 . ,QA .. ' .. ' , ... '.
00 00 00 .PhA ... , ... , ... ,
00 00 00 , .@ ' ••••••

CHAPTER 20: THE 80x87 MATH COPROCESSOR

000

001

010

011

100

101 Z ST(O)

110 Y ST(O) Y ST(1)

111 x ST(O) x ST(1) x ST(2)

(a) FINIT (b) FLD X (c) FLDY (d) FLD Z

000

001

010

011

100

101 Y+Z ST(O) X+Y+Z ST(O) X+Y+Z ST(O)

110 Y ST(1) Y ST(1) Y ST(1) Y ST(O)

111 X ST(2) X ST(2) X ST(2) X ST(1)

(e) FADD ST(O),ST(1) (~ FADD ST(O),ST(2) (9) FST SUM !l[(g) FSTP SUM

Figure 20-2. Stack Diagram for Example 20-5

Example 20-5 Data Analysis

X: hex:
sign:
significand:

sci. binary:
decimal:

411C 00 00 binary: 0100 000100011100 0000 0000 0000 0000
a for positive biased exp: 1000 0010 normalize: 82 - 7F = 3
0011 1000 00 .. 00
1.00111000 .. 00 E3 = 1001.11000.00
9.75

Y: hex: 41 51 80 00 binary: 0100 0001 0101 00011000 0000 0000 0000
sign: a for positive biased exp: 1000 0010 normalize: 82 - 7F = 3
significand: 1010001100 .. 00
sci. binary: 1.1010001100 .. 00 E3 = 1101.00011
decimal: 13.09375

Z: hex: 41 E8 50 00 binary: 0100 00011110 1000 0101 0000 0000 0000
sign: a for positive biased exp: 1000 0011 normalize: 83 - 7F = 4
significand: 1101000010100 .. 00
sci. binary: 1.1101000010100.00 E4 = 11101.0000101
decimal: 20.0390625

SUM:hex: 42 4F 88 00 binary: 0100 0010 0100 1111 1000 1000 0000 0000
sign: a for positive biased exp: 1000 0100 normalize: 84 - 7F = 5
significand: 10011111000100 .. 00
sci. binary: 1.100111110001 E5 = 110011.1110001
decimal: 51.8828125

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING 609

Often, an application requires the use of both real and integernumbers. Real
numbers can be rounded into integers by using the 80x87 instruction FRNDINT, as
shown in Program 20-3, which includes a procedure to round real numbers. The
sample data used is the real number 5.5. In addition, the data is analyzed to see how
the number was rounded. FRNDINT rounds real numbers to integers by rounding
up, rounding down, truncating, or rounding to the nearest integer. How real numbers
are rounded is detennined by the RC (round control) bits in the control word (see
Figure 20-5) .

. 8087
PAGE 60,132

.MODEL SMALL
; PROGRAM TO ROUND A REAL NUMBER TO AN INTEGER

.STACK 32

.DATA
ORGOOH

REALNUM DO 5.5
ORG 10H

INTNUM DO ?

.CODE
START PROC FAR

MOV AX,@DATA
MOV DS,AX
CALL RND NUM
MOV AH,4CH
INT 21H

START ENDP

:PROCEDURE TO ROUND A REAL NUMBER TO AN INTEGER
RND NUM PROC NEAR

- FINIT
FLO REALNUM
FRNDINT
FIST INTNUM
RET

RND_NUM ENDP

END START

C>debug ex6.exe
-g
Program terminated normally

-d 1065:0 If
1065:0000 00 00 BO 40 00 00

1065:0010 06 00 00 00 00 00
-q

;in~ialize 80B7
;Ioad real
;round to integer
;store integer

00 00-00 00

00 00-00 00

00

00

00 00 00 00 00 •• O@ ••••••••••••

00 00 00 00 00

The verification of the above dump is left to the reader as an exercise. It must be noted that the control
word can be accessed in order to see which rounding method was used.

Program 20-3

610 CHAPTER 20: THE 80x87 MATH COPROCESSOR

Program 20-4 calculates the area of a circle. The 8087 has instructions that
load the top of the stack, ST(O), with a constant. For example, FLDPI loads PI into
S1:. 1:0 calculate Ihe square of a number, the register is multiplied by itself with
FMUL. FMUL can have two operands, such as "FMUL ST(2),ST(4)", where ST(4)
is multiplied by ST(2) and the result is placed in ST(2). If no operands are given,
the operation is assumed to be "FMUL ST(O),ST(1)", so that the first two stack
registers are multiplied together and the result is stored in ST(O) .

. 8087
PAGE 60,132

.MODELSMALL
;PROGRAM TO CALCULATE AREA OF A CIRCLE (radius 91.67)

.STACK 32

.DATA

R
OOH

91.67
10H

AREA

ORG
DD
ORG
DD ?

START

START

.CODE
PROC
MOV
MOV
CALL
MOV
INT
ENDP

FAR
AX,@DATA
DS,AX
CIRC AREA
AH,4CH
21H

;PROCEDURE TO CALCULATE THE AREA OF A CIRCLE
CIRC AREA PROC NEAR

- FINIT
FLD R
FMUL ST(O),ST(O)
FLDPI
FMUL ST(0),ST(1)
FSTP AREA
RET

CIRC_AREA ENDP

END START

;in~ialize 8087
;Ioad radius
;square R
;Ioad PI
;mu~iply PI by R squared
;store AREA

The data dumped in DEBUG looked as fOllows:

-d 1065:0 lf

1065:0000 OA 57 B7 42 00 00 00 00-00 00 00 00 00 00 00 00 .W7B

1065:0010 OC 40 CE 46 00 00 00 00-00 00 00 00 00 00 00 00 .@NF

r = 42 B7 57 OA Hex
binary = 010000101011 0111 0101 0111 00001010
sign: 0 for positive
biased exp: 1000 0101 normalize: 85 - 7F = 6
significand: 01101110101011100001010
sci. binary: 1.01101110101011100001010 E6 = 1011011.10101011100001010
decimal: 91.6702481689454

area = 46 CE 40 OC
binary =
sign:
biased exp:
significand:
sci. binary:
decimal:

Program 20-4

0100011011001110010000000000 1100
o for positive
10001101 normalize: 8D - 7F = 14
10011100100000000001100
1.10011100100000000001100 E 14 = 110011100100000.000001100
26400.0232375

SECTION 20_2: 80x87 INSTRUCTIONS AND PROGRAMMING 611

Trig functions

Example 20-6 uses trig functions. The instruction FPTAN (partial tangent)
calculates Y/X = TAN Z, where Z is the angle in radians and must be 0 < Z <PII4.
Z is stored in ST(O) prior to execution of FPTAN. After the execution ST(O) = X
and ST(l) = Y. Then X and Y are used to calculate the hypotenuse R. After that, it
is easy to calculate the sine, cosine, tangent, and cotangent. This process is shown
in Program 20-5.

Example 20-6

Write, run, and analyze an 8087 program to calculate sin, cosine, tan, cotan of a 30-degree angle.

Solution:
First the 30-degree angle must be converted to radians: (PIII80) x 30 = 0.523598776 radian.
The program is Program 20-5. The data dump in DEBUG, after Program 20-5 is run, is as follows.

-d 1065:0 BF
1065:0000 92 OA 06 3F 00 00 00 00-00 00 00 00
1065:0010 1B 06 SA 3F 00 00 00 00-00 00 00 00
1065:0020 45 CD 56 3F 00 00 00 00-00 00 00 00
1065:0030 45 CD D6 3F 00 00 00 00-00 00 00 00
1065:0040 00 00 00 3F 00 00 00 00-00 00 00 00
1065:0050 DB B3 5D 3F 00 00 00 00-00 00 00 00
1065:0060 3A CD 13 3F 00 00 00 00-00 00 00 00
1065:0070 DB B3 DD 3F 00 00 00 00-00 00 00 00
1065:00BO 1E 2B CO 50 BB 65 10 BE-DB EB 10 00

Data analysis:

sin = 3F 00 00 00
binary: 00111111 000000000000000000000000
sign: 0 for positive
biased expo 01111110 normalize: 7E - 7F =-1
significand: 000000 .. 00

sci. binary: 1.00 .. 00 E-1 = .1
decimal: .5

cos = 3F 5D 83 D8
00111111010111011011001111011000
o for positive
0111 1110 normalize: 7E - 7F =-1
10111011011001111011000

00 00 00 00 ... ?

00 00 00 00 .. :?

00 00 00 00 EMV'?

00 00 00 00 EMV?

00 00 00 00 ... ?

00 00 00 00 X3]?

00 00 00 00 :M. 1

00 00 00 00 X3]?
EB 23 00 EB .+@PBe .. Xh .. h*.h

binary:
sign:
biased exp:
significand:
sci. binary:
decimal:

1.10111011011001111011000 E-1 = .110111011011001111011000
.8660254476

tan = 3F13CD3A
binary: 0011 1111 0001 00111100 1101 0011 1010
sign: 0 for positive
biased exp: 01111110 normalize: 7E = 7F =-1
significand: 00100111100110100111010 E-1
sci. binary: 1.00100111100110100111010 E-1 = .100100111100110100111010
decimal: .577350259

cot = 3F DD 83 D8

612

binary: 00111111 1101 11011011 0011 1101 1000
sign: 0 for positive
biased exp: 0111 1111 normalize: 7F - 7F = 0
significand: 10111011011001111011000 EO
sci. binary: 1.10111011011001111011000
decimal: 1.732050896

CHAPTER 20: THE 80x87 MATH COPROCESSOR

.8087
PAGE 60,132

.MODEL SMALL
;program to calculate SIN, COS, TAN, and COT of a 30-degree angle

. STACK 32

ANGLE

x
Y

R

SIN

COS

TAN

COT

START

START

. DATA
ORG
DD
ORG
DD
ORG
DO
ORG
DD
ORG
DD
ORG
DO
ORG
DO
ORG
DD

.CODE
PROC
MOV
MOV
CALL
CALL
CALL
CALL
CALL
CALL
MOV
INT
ENDP

OOH
0.S23S98776

10H
o

20H
o

30H
o

40H
o

SOH
o

60H
o

70H
o

FAR
AX,@DATA
DS,AX
CALC X Y
CALC-R­
CALC-SIN
CALC-COS
CALC-TAN
CALC-COT
AH,4C-H
21H

;angle in radians for 30 degrees

:procedure to calculate X and Y given an angle
CALC X Y PROC NEAR

- - FINIT
FLD
FPTAN

ANGLE

FSTP X
FSTP Y
RET

CALC]_Y ENDP

;initialize 8087
;Ioad ANGLE onto stack
;calculate X and Y
;store X and POP
;store Y and POP

;procedure to calculate hypotenuse given X and Y
CALC R PROC NEAR

- FINIT
FLO
FMUL
FLO
FMUL
FADD
FSQRT
FST
RET
ENDP

X
ST(O),ST(O)
Y
ST(O),ST(O)
ST(O),ST(1)

R

;in~ialize 8087
; load X onto stack
;square X
; load Y onto stack
;square Y
;calculate X*'2 + Y*'2
;take square root
;store R

Program 20-5 (continued on following page)

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING 613

;procedure to calculate SIN, given R and X
CALC SIN PROC NEAR

- FIN IT
FLO
FLO
FOIV
FST
RET

R
Y
ST(O),ST(1)
SIN

;initialize 8087
;Ioad R onto stack
;Ioad Y onto stack
;SIN = Y/R
;store SIN

CALC_SIN ENOP

:procedure to calculate COS, given R and X
CALC COS PROC NEAR

- FINIT
FLO
FLO
FOIV
FST
RET

R
X
ST(O),ST(1)
COS

;initialize 8087
;Ioad R onto stack
;Ioad X onto stack
'COS =XIR
:store COS

CALC_COS ENOP

:procedure to calculate TAN, given X and Y
CALC TAN PROC NEAR

- FIN IT
FLO
FLD
FOIV
FST
RET

X
Y
ST(O),ST(1)
TAN

;initialize 8087
;Ioad X onto stack
; load Y onto stack
;TAN = YIX
;store TAN

CALC_TAN ENOP

:procedure to calculate COT, given X and Y
CALC COT PROC NEAR

- FIN IT
FLD
FLO
FOIV
FST
RET

Y
X
ST(O),ST(1)
COT

;initialize 8087
; load Y onto stack
;Ioad X onto stack
'COT=XIY
:store COT

CALC_COT ENOP

ENO START

Program 20-5 (continuedfrom preceding page)

614

Note in Example 20-6 that in order to calculate sine and cosine we had to
use the tangent; however, starting with the 80387 coprocessor there are specific
instructions such as FSIN (sine) and FCOS (cosine) for these purposes. To invoke
these instructions one must use the .387 directive for the assembler.

Integer numbers

Although performance of real numbers in the 8Ox87 is vel)' impressive,
integer operations should not be overlooked. One way to appreciate this perform­
ance is to compare the addition of two multibyte numbers, each 64 bits, on the
8088/86/286 and on the 8087. Since in the 8086/88/286, AX is only 16 bits wide, it
will take a loop of 4 iterations to add a 64-bit number plus the overhead of moving
the four 16-bit words in for each number and moving the result in and out of the
CPU. The same addition can be performed by the 80x87 with only 4 instructions. In
the 80x87, integer number instructions are distinguished from real number instruc­
tions by the letter "I". For example, the instruction FILD loads an integer number
into ST(O) while the FLD would do the same thing for real numbers. One important
point about differences between real and integer negative numbers is that integer
negative numbers are stored in 2's complement. In real negative numbers, the only
difference between a number and its negative is the sign bit. These numbers are not
stored in 2 's complement. Program 20-6 will show the assembler representation of
a negative integer.

CHAPTER 20: THE 80x87 MATH COPROCESSOR

;This program adds two positive integer numbers and stores the resu~ .
. 8087
PAGE 60,132

INTl

INT2

SUM

START

START

.MODEL SMALL

.STACK 32

.DATA
ORG
DD
ORG
DD
ORG
DD

.CODE
PROC
MOV
MOV
CALL
MOV
INT
ENDP

OOH
-50000

10H
25000000

20H
?

FAR
AX,@DATA
DS,AX
ADD INT
AH,4CH
21H

;procedure to add two integers
ADD INT PROC NEAR

- FINIT
FILD INTl
FIADD INT2
FIST SUM
RET

ADD_INT ENDP

END START

;initialize 8087
;Ioad integer 1 onto stack
;add the second integer
;store resu~ in SUM

The data dumped in DEBUG is as follows:

-d 1065:0 2f
1065:0000 BO 3C FF FF 00 00 00 00-00 00 00 00 00 00 00 00 0
1065:0010 40 78 7D 01 00 00 00 00-00 00 00 00 00 00 00 00 @x}
1065:0020 FO B4 7C 01 00 00 00 00-00 00 00 00 00 00 00 00 p41

Data Analysis

INTl = FF FF 3C BO
binary: 11111111111111110011110010110000
sign: 1 for negative
binary: 1111111111111110011110010110000
reverse b~s: 0000000000000001100001101001111
add 1: 0000000000000001100001101010000
decimal: -50000

INT2 = 01 7D 78 40
binary: 00000001 01111101 0111100001000000
sign: 0 for pos~ive
integer. 000 0001011111010111 100001000000
decimal: 25,000,000

SUM = 01 7C B4 FO
binary: 000000010111110010110100 1111 0000
sign: 0 for posttive
integer. 00000010111110010110100 1111 0000
decimal: 24,950,000

Program 20-6

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING 615

Review Questions

I. In Assembly language programming, which data directive is used for single-pre­
cison data?

2. In Assembly language programming, which data directive is used for double-pre-
cison data?

3. State the number of general-purpose registers in the 80x87.
4. 80x87 registers are accessed acording to (LIFO, FIFO).
5. True or false. While in the 8086, "AX" always refers to the same physical register,

in the 80x87 "ST(2)" could be assigned to different physical registers at different
times.

6. The top of stack is referred to as ST().
7. ST(l) is the register (above, below) ST(O).
8. What does "FADD ST(4)" do? What are the operands, and where is the result

kept?
9. What is the purpose of instruction "FINIT"?
10. Instructions using integer data have letter __ as part of their mnemonics.
II. What is the difference between the instructions ADD and FADD?
12. True or false. The 8087 has an instruction named "FSIN" to calculate sine.

SECTION 20.3: 8087 HARDWARE CONNECTIONS IN THE IBM PCIXT

616

Every 8088/86-based IBM PC and compatible comes with a general-pur­
pose processor such as an 8088 or 8086 on the motherboard and a socket for the
8087 coprocessor. This section describes the pin connections of the 8088 and 8087
found in the IBM PCIXT. In addition, it will also discuss the way these two
processors communicate with each other and with the system bus.

8087 and 8088 connection in the IBM PCIXT

Figure 20-3 shows
the pin layout of the 8087.
The 8087 connection to the
8088 in the IBM PC and com­
patibles is an excellent exam­
ple of what is called tightly
coupled multiproces­
sors. They both access the
same address, data, and con­
trol buses. In addition, they
communicate with each other
through a local bus. Figure
20-4 shows this connection.
The following is description
ofthe signal connection.

I. The 8088 and 8087 receive
the same signals, CLK,
READY, and RESET, from
the 8284. This ensures that
they are synchronized.

2. SO, S I, and S2 are going from
the 8088 or 8087 to the 8288,
which allows either of these
two processors to provide the
status signal to the 8288.

v •• Vee

A141D14 A15JD15

A13/D13 A161S3

A12/D12 A17/S4

A11/D11 A18/S5

A10/D10 A19/S6

A9/D9 BHE/S7

A8/D8 RQlGT1

A7/D7 INT

A6/D6 8087 RQlGTO

A5/D5 Ne

A4ID4 Ne

A3/D3 S2

A21D2 S1

A1/D1 so
AO/DO QSO

Ne QS1

Ne BUSY

READY

V.s RESET

Figure 20-3. 8087 Pin Diagrams
(Reprinted by permission oflntel Corporation, Copyright Intel Corp.
1992)

CHAPTER 20: THE 80x87 MATH COPROCESSOR

4.7 K Ohms 8087

5V , '
RQlGTOINT to NMI circuitry
Q51 50 ,
Q50 51

t4.7~
BUSY 52

Reset
5V '

Ready -----3
ADO

ri Clk to
A19 I'-

-
Test AEN
Q50

Q51
elk 8088

CONTROL BUS

RQlGT1 '" \V " MEMR 50 r-- -" 50 INTA CEN ClK

51 I
51 (MEMW

52 g~N 8288 (lOR
ClK DT/R (lOW

8284A -ALE AEN ,
Ready

~
Reset

~DJINTR f MN/MX
ADDRESS BUS

'-H G ~AO ADO-AD7
V-;o bit addr/dala

20 bit A19 A8-A19 74LS373
8088 1

8259 AENBRD OE

00
ADO-AD7

~ INTA
07

DIR DATA BUS ,
--" :;::1):H DO

5P/EN G 8 bit , ~ '/ 07

ADO-AD7

74LS245

Figure 20-4. 8088-10-8087 Connections (PC/XT)
(Reprinted by pennission from "IBM Technical Reference" c. 1984 by International Business Machines Corporation)

3. The Queue Starns, QS I and QS2, from the 8088 go to the 8087, allowing it to know
the starns of the queue of the 8088 at any given time.

4. The TEST signal to the 8088 comes from BUSY ofthe 8087. By activating (going
low) the BUSY signal, the 8087 infonns the 8088 that it finished execution of the
instruction which it has been WAITing for.

S. RQ/GTl (request/grant) ofthe 8088 is connected to RQ/GTO of the 8087, allowing
them to arbitrate mastery over the buses. There are two sets of RQ/GT: RQ/GTl
and RQ/GTO. RQ/GTl of the 8087 is not used and is connected to Vee pennanently.
This extra RQ/GT is provided in case there is a third microprocessor connected to
the local bus.

6. Both the 8088 and 8087 share buses ADO - AD7 and A8 - A 19, allowing either one
to access memory. Since the 8087 is designed for both the 8088 and 8086, signal
BHE is provided for the 8086 processor. It is connected to Vee if the 8087 is used
with the 8088. If the microprocessor used was an 8086, BHE from the 8086 is
connected to BHE of the 8087.

7. INT ofthe 8087 is an output signal indicating error conditions, also called exceptions,
such as divide by zero. Error conditions are given in the status word. Assuming the
bit for that error is not masked and an interrupt is enabled, whenever any of these

SECTION 20_3: 8087 HARDWARE CONNECTIONS IN THE IBM PC/XT 617

618

errors occurs, the 8087 automatically activates the !NT pin by putting high on it. In
the IBM PC and compatibles, this signal is connected to the NMI circuitry as
discussed in Chapter 14. Since there is only one !NT for all error conditions
(exceptions) of the 8087, it is up to the programmer to write a program to check the
status word to see which has caused the error.

8. The 8088, often called the host processor, must be connected in maximum mode to
be able to accommodate a coprocessor such as the 8087.

How the 8088 and 8087 work together in the IBM PCIXT

These two processors work together doing what each can do best. For this
to happen, they must work in such a fashion that they don't get in each other's way.
This is achieved by each getting a copy of the instructions as they are fetched from
memory. Since all the instructions of the 8087 have 9BH in the most significant byte
of the opcode, the 8088/86 ignores these instructions. In reality, 9BH is the opcode
for the 8088/86 ESCAPE instruction. Likewise, the 8087 ignores any opcode that
lacks 9BH. It must be made clear that although both receive a copy of each fetched
opcode, only the 8088/86 can fetch opcodes since it is the only device that has the
instruction pointer. Now one might ask how the 8088/86 makes sure it is not flooding
the 8087 by fetching instructions for the coprocessor faster than the 8087 can process
them. The first rule of working together is that the 8088/86 cannot fetch another
8087 instruction until the 8087 has finished execution of the present instruction. This
is especially critical since the 8088 can fetch memory in 4 clocks, while some 8087
instructions take over 100 clocks to execute. It is the job of the assembler to put a
WAIT instruction between two consecutive 8087 instructions. VerifY this by looking
at the EXE file of any previous example. In addition, when the 8087 is executing
an instruction, it activates the BUSY pin automatically by putting high on it. This
pin is connected to the TEST pin of the 8088/86 as mentioned earlier. Next, the
8088/86 fetches the next instruction, which is a WAIT instruction that has been
inserted by the assembler, and executes it, thereby going into an internal loop while
continuously monitoring the TEST input pin to see when this pin goes low. When
the 8087 finishes execution of the present instruction, it pulls down (low) the
READY pin, indicating through the TEST pin to the 8088/86 that it can now send
the next instruction to the 8087. Although the 8088/86 fetches opcodes for the 8087,
it cannot fetch operands for the 8087 because the 8088/86 has no koowledge of the
nature of 8087 operands since it does not execute 8087 instructions. So the question
is: How are 8087 operands accessed from memory? For the sake of clarity, read
and write cases will be looked at separately. Assume that the 8087 needs to read an
operand. When the 8088/86 initiates the operand read cycle, the 8087 grabs the
20-bit address and saves it internally. If the operand is a single word (like a word
integer), the read cycle has been initiated and the word will come into both
processors. Only the 8087 will use the data; the 8088/86 will ignore it. However, if
the operand is 32 bits or longer, the 8087 will take over the buses by sending a low
pulse on its RQ/GTO to the RQ/GTI of the 8088/86 (see Figure 20-4). The 8088/86
in tum will send back a low pulse through the same pin, thereby allowing the 8087
to take over the buses. Remember, RQ/GT is a bidirectional bus. When the 8087
takes over the buses, it wiIl use them until it brings in the last byte of the operand.
It is only then that by activating RQ/GT (making it low), control of the buses is
given back to the 8088/86.

For example, in the case of a DT operand, the 8087 has control over the
buses for the time needed to fetch all 10 bytes and then it gives back the buses. In
the case of writing an operand by the coprocessor (e.g., FST data), the 8088/86
initiates the write cycle, but the 8087 ignores it since the 8086 does not have the
operand. This is called a dummy cycle. All the 8087 does during the dummy cycle
is grab the address of the first memory location where the operand is to be stored
and keep it until the data is ready, and then it requests the use of the buses by
activating the RQ/GT pin. From then on, the process is the same as the read cycle,
meaning that it will use the buses until it writes the last byte of the operand.

All the cases discussed so far have been taken care of by either the assembler
or the hardware and there was no need for the programmer to be worried. However,

CHAPTER 20: THE 80x87 MATH COPROCESSOR

15

I

15

12 7

Exception masks
1 = exception masked

'-------- invalid operation
'-________ denormalized operand

L __________ zero divide L____________ ove~ow
'-------------- underflow

'---------------- precision
'-_________________ rese~ed

'-___________________ interrupt-enable mask

'----------------------- precision control
L _________________________ rounding control

'-___________________________ infinity control L-_______________________________ rese~ed
Interrupt-enable mask
o = interrupts enabled
1 = interrupts disabled (masked)

Precision control
00 = 24 bits
01 = reserved
10 = 53 bits
11 = 64 bits

7

Rounding control
00 = round to nearest or even
01 = round down
10 = round up
11 = chop (truncate)

Infinity control
o = projective
1 == affine

I B IC3 I ST IC2 IC1 ICO PR I IPE IUE IOE IlE IDE PE I
I I

STvalues
000 = register 0 is stack top
001 = register 1 is stack top

111 = register 7 is stack top

Figure 20-5. 8087 Control and Status Words
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1992)

Exception flags
1 = exception occurred

invalid operation

denormalized operand

zero divide

overflow

underflow

precision

reserved

interrupt request

condition code

stack top pointer

busy

SECTION 20.3: 8087 HARDWARE-CONNECTIONS IN THE IBM PC/XT 619

one case where the programmer must get involved is when the result of an operation
performed by the 8087 needs to be used by the 8088/86. The programmer must
ensure that this result is available before the 8088/86 uses it. This is done by putting
an FWAIT instruction in between the 8087 instruction and the subsequent 8088/86
instruction, which needs to use the result. Look at the following case. Two operands
have been added and the result stored using the 8087. Then the 8088/86 uses that
result. X and Yare single-precision operands. The result of their addition will be a
32-bit real number used by the AX and OX registers, which are l6-bit registers.

FLO X
FLO Y
FAOO ST(O),ST(1)
FST SUM
FWAIT
MOV AX,SUM
MOV OX,SUM+2

Notice that the FWAIT instruction has been put between "FST SUM" and
"MOV AX,SUM" by the programmer and not the assembler. In the absence of that
FWAIT, the 8088/86 will move erroneous data to AX. Of all the cases of 8087 and
8088/86 cooperation that have been discussed, the last one is the most important as
far as programmers are concerned.

In the next section a brief summary of 80x87 instructions and their clock
counts are provided. Figure 20-5 shows the 8087 control and status words.

Review Questions

1. True or false. The 8087 coprocessor has its own address and data buses.
2. The 8087 coprocessor produces which of the following signals on its own?

(a) MEMR (b) MEMW (c) INTR
3. Indicate the direction of the following signals as far as the 8087 is concerned.

(a) SO, SI, S2 (b) QSO, QSI (c) RESET
(d) READY (e) BUSY (I) RQ/GTO

4. Why is CLK for both the 8088 and the 8087 connected to the same frequency?
5. True or false. The 8087 fetches the opcode in addition to operands.
6. Explain your answer to Question 5.

SECTION 20.4: 80x87 INSTRUCTIONS AND TIMING

620

There are few changes as far as instructions and registers are concerned
from the 8087 to the math processor inside the Pentium, except for a few new
instructions and much lower clock counts for instruction execution. The new
instructions introduced in the 80387 are FSIN (sine), FCOS (cosine), FSINCOS
(sine and cosine), FPREMI (partial remainder), and FUCOM and its variations.
This section provides an overview of the 80x87 instructions and their clock counts.

Real transfers

FLO src

FST dest

;pushes source operand onto ST(O)
;source may be ST(i) or memory
;Tip: FLO ST(O) duplicates stack top

;copies ST(O) to destination
;dest may be ST(i) or short or long real variable

CHAPTER 20: THE 80x87 MATH COPROCESSOR

FSTP dest ;copies ST(O) to dest then pops ST(O)
;dest may be ST(i) or short or long or temporary real memory
;Tip: "FSTP ST(O)" is equivalent to popping the stack with no data transfer

FXCH dest ;swaps contents of ST(O) and destination
;FXCH with no operands swaps ST(O) and ST(l)
;Tip: frequently used to move a register to the top before
;using an instruction which assumes ST(O)

Integer transfers

FILD src

FIST dest

FISTP dest

;converts source to temporary real and pushes onto ST(O)

;rounds ST(O) to integer and copies to destination
;dest may be a word or short integer

;functions the same as FIST but then pops ST(O)
;dest may be any binary integer data type

Packed decimal transfers

FBLD src ;converts source contents to temporary real then pushes onto ST(O)

FBSTP dest ;converts ST(O) to BCD and stores at destination, then pops stack

Addition

FADD dest,src ;adds src to dest, storing result in dest
;If no operands are given, ST(O) becomes ST(O) + ST(l)
;If one operand is given, destination is ST(O), source is operand
;source may be ST(i) or real data variable
;dest may be ST(i)

FADDP dest,src real ; adds src to dest then pops ST(O)
;dest may be ST(i), src is ST(O)

FIADD src ;adds src to ST(O)

Subtraction

FSUB dest,src ;subtracts src from dest, stores result in dest
;If no operands are given, ST(l) becomes ST(l) - ST(O)
;If one operand is given, it will be src with ST(O) as the destination

FSUBP dest,src ;subtract src from dest and store in dest
;src is ST(O) dest is ST(i)

FISUB src ;subtract source from ST(O) and store in ST(O)

SECTION 20.4: 80x87 INSTRUCTIONS AND TIMING 621

622

Reversed subtraction

FSUBR dest,src ;functions the same as FSUB but subtracts dest from src
;and stores the result in dest (R is for reverse)

FSUBRP dst,src ;functions the same as FSUBP but subtracts dest from src
;instead of src from destination

FISUBR src

Multiplication

;operates the same as FISUB but subtracts ST(O) from source
;and stores in ST(O)

FMUL dest,src ; multiplies dest by src and stores result in dest
;If no operands are given, ST(O) becomes ST(O) x ST(l)
;If one operand is given, destination is ST(O), source is operand
;source may be ST(i) or real data variable
;dest may be ST(i)

FMULP dest,src ;multiplies dest by src, stores result in dest and pops src
;src is ST(O), dest is ST(i)

FIMUL src ;multiplies ST(O) by src and stores result in ST(O)

Division

FDIV dest,src ;divides dest by src and stores result in dest
;If no operands are given, ST(O) becomes ST(O) I ST(l)
;If one operand is given, ST(O) is divided by the src operand
;source may be ST(i) or real data variable
;dest is ST(i)

FDIVP dest,src ;divides dest by src and stores result in dest, then pops src
;src is ST(O),dest is ST(i)

FIDIV src ;divides ST(O) by src and stores result in ST(O)

Reversed division

FDIVR dest,src ;functions identical to FDIV except src is divided by dest

FDIVRP dst,src ;functions the same as FDIVP except src is divided by dest

FIDIVR src ;functions the same as FIDIV except src is divided by dest

Other arithmetic instructions

FSQRT

FSCALE

FPREM

FRNDINT

;replaces ST(O) with its square root

;replaces ST(O) with ST(O) x 2n, where n is the integer in ST(l)
;this provides fast method of multiplying by integral powers of 2

;ST(l) is repeatedly subtracted from ST(O) until ST(O) < ST(l)
;same as ST(O) mod ST(l)

;rounds ST(O) to an integer
;rounds according to RC (round control) bits in the control word

CHAPTER 20: THE 80x87 MATH COPROCESSOR

FXTRACT ;extracts the exponent from ST(O) and places in ST(1)
;extracts the significand from ST(O) and places in ST(O)

FABS ;replaces ST(O) with its absolute value

FCHS ;reverses sign bit in ST(O)

Compare instructions

The following instructions compare ST(O) with the source operand and set condi­
tion code bits C3, C2, and CO of the status word as follows:

C3
o
o
1
1

C2 CO
o 0
o 1
o 0
1 1

ST(O) >source
ST(O) <source
ST(O) = source
numbers cannot be compared

The source operand may be ST(i) or a real number. If no source operand is
given, ST(O) is assumed.

FCOM src ;compares ST(O) with source operand

FCOMP src ;compares ST(O) with source and pops ST(O)

FCOMPP ;compares ST(O) and ST(1) and pops both

FICOM src ;compares ST(O) to source, which may be a long or short integer

FICOMP src ;same as FICOM but pops ST(O)

FTST ;compares ST(O) with zero

FXAM ;tests ST(O) to see if it is zero, infinity, unnormalized, or empty
and sets condition codes as follows:

C3 C2 C1 CO Meaning
D D D D +unnormal
0 0 0 1 +NAN (not a number)
0 0 1 0 -unnormal
0 0 1 1 -NAN
0 1 0 0 +normal
0 1 0 1 +infinite
0 1 1 0 -normal
0 1 1 1 -infinite
1 0 0 0 +0
1 0 0 1 empty
1 0 1 0 -0
1 0 1 1 empty
1 1 0 0 +denormal
1 1 0 1 empty
1 1 1 0 -denormal
1 1 1 1 empty

Transcendental instructions

FPTAN ;computes tangent of theta = y/x
;theta is in ST(O) and must be between 0 and pi/4
;after the ratio is computed, y replaces theta in ST(O)
;and x is pushed onto the stack, becoming the new top of stack

SECTION 20.4: 80x87 INSTRUCTIONS AND TIMING 623

624

FPATAN

F2XM1

FYL2X

FYL2XP1

;computes theta = arctan (y/x)
;x is in ST(O) and y in ST(1)
;ST(O) is popped, theta is written over y in ST(1), the new stack top

;computes y = 2x_1
;x is taken from ST(O) and must be in the range: -1 to +1
;y replaces x in ST(O)

;computes z = y times 1092 x.
;x is taken from ST(O) and y from ST(1)
;x must be greater than 0
;z replaces y, which becomes the new stack top as x is popped off

;computes z = y times 1092 (x+1)
;x is from ST(O) and is in the range: 0 < Ixl < (1 - x 1/2/2)
;y is from ST(1)
;z replaces y, which becomes the new stack top as x is popped off

The following instructions are available only in 387 and later coprocessors.

FSIN

FCOS

FSINCOS

;computes sin of ST(O) but provides x = ST(O) and y = ST(1)
;to get the sin of ST(O), perform y/x using FOIV or
;to get the cos of ST(O), perform x/y using FOIVR

;same as FSIN, takes cos of ST(O) and places x = ST(O) and y = ST(1)
;to get cos of ST(O), perform y/x using FOIV or
;to get sin of ST(O), perform x/y using FOIVR

;computes both sin and cos of ST(O)
;places sin in ST(O) and cos in ST(1)

Constant instructions

FLOZ
FL01
FLOP I
FL02T
FLDL2E
FLOLG2
FLOLN2

;pushes +0.0 onto the stack
;pushes +1.0 onto the stack
;pushes pi onto the stack
;pushes log2 10 onto the stack
;pushes log2 e onto the stack
;pushes log10 2 onto the stack
;pushes log. 2 onto the stack

Many mathematical equations can be implemented using constant and
transcendental functions. For example, xY = 2ylogx . If z = y log2 x, FYL2X can be
used to calculate z. Then F2XMl can be used to calculate 2z - 1. Then 1 can be
added to this to get 2z, which is equal to xY.

The instruction sequence would be

FLO Y
FLO X
FYL2X
F2XM1
FL01
FAOO
FST SUM

Other frequently used functions can likewise be calculated, for example eY
and 1 ()Y, substituting e or 10 for x in the above equations. In addition, a little

CHAPTER 20: THE 80x87 MATH COPROCESSOR

creativity will allow a programmer to use the constant and transcendental functions
frequently. For example, if the calculation log2 x is needed, the FYL2X (y log2 x)
function can be used by makingy = I. Likewise, if2x is needed, the F2XMl function
can be used, after which 1 can be added to the result.

Processor control instructions

Many of the following instructions have two mnemonics; the second one
has an extra N. This N instructs the CPU not to prefix the instruction with a wait
state. The no-wait forms should be used when CPU interrupts are disabled and the
8087 might generate an interrupt, which would create an endless wait. Wait forms
are used when the CPU interrupts are enabled.

FINITor
FNINIT

FDISlor
FNDISI

FENlor
FNENI

FLDCW src

;resets the processor

;sets the interrupt enable mask in the control word
;thereby disabling interrupts in the 8087

;clears the interrupt enable mask in the control word
;thereby enabling interrupts in the 8087

;replaces the control word with the contents of src

FSTCW dest or ;writes the control word to dest
FNSTCW

FSTSW dest or ;writes status word to dest
FNSTSW

FCLEX or
FNCLEX

;clears exception flags, busy flag
;and interrupt request flag in the status word

FSAVE dest or ;writes to dest the 94-byte save area, which
FNSAVE ;includes the environment and the stack

FRSTOR src ;restores the 94-byte save area from src

FSTENV dest or;stores environment (control, status
FNSTENV ;and tag words and exception pointers) to dest

FLDENV src ;restores environment previously saved with FSTENV instruction

FINCSTP ;increments status word's stack pointer

FDECSTP ;decrements status word's stack pointer

FFREE dest ;marks dest as an empty register

FNOP ;stores ST(O) to ST(O), therefore performs no operation

FWAIT ;same as CPU's wait instruction
;used to synchronize CPU and 8087

SECTION 20.4: 80x87 INSTRUCTIONS AND TIMING 625

CLOCK CYCLES FOR VARIOUS COPROCESSORS BY INSTRUCTION

CODE DESCRIPTION 8087 80287 80387 80487

F2XM1 Calculates y = 2x - 1 310-630 310-630 211-476 140-279
FABS Converts ST to abs val 10-17 10-17 22 3
FADD Add reg,reg 70-100 70-100 t=23-31, 8-20

1=26-34
FADD Add memreal (s=90-120, s=90-120, s=24-32, s=8-20,

s=95-125)+EA 1=95-125 1=29-37 1=8-20,
FADDP Add and pop 75-105 75-105 23-31 8-20
FIADD Integer add (w=102-137, w=102-137, w=71-85, w=20-35,

d=108-143)+EA d=57-72 d=57-72 d=19-32
FBLD See FlO
FBSTP See FST
FCHS Reserves sign ST 10-17 10-17 24-25 6
FCLEXI Clear exceptions
FNCLEX No wait 2-8 2-8 11 7
FCOM Compare 40-50 40-50 24 4

memreal (s=60-70, s=60-70, s=26 s=4,
1=65-75)+EA 1=65-75 1=31 1=4

FCOMP Compare, pop 42-52 42-52 26 4
memreal (s=63-73, s=63-73, s=26 s=4,

1=67-77)+EA 1=67-77 1=31 1=4
FCOMPP Compare, pop, pop 45-55 45-55 26 5
FICOM Compare int (w=72-86, w=72-86, w=71-75, w=16-20,

d=78-91)+EA d=78-91 d=56-63 d=15-17
FICOMP Compare int, pop (w=74-88, w=74-88 w=71-75 w=16-20,

d=80-93)+EA d=80-93 d=56-63 d=15-17
FCOS Cosine 123-772 257-354
FDECSTP Dec stack painter 6-12 6-12 22 3
FDISI/ Disable interrupt
FNDISI No wait 2-8 2 2
FDIV Divide 193-203 193-203 t=88,1=91 73

memreal (s=215-225, s=215-225, s=89 s=73,
1=220-230)+EA 1=220-230 1=94 1=73

FDIVP Divide, pop 197-207 197-207 91 73
FIDIV Int divide (w=224-238, w=224-238, w=136-140, w=85-89,

d=230-243)+EA d=230-243 d=120-127 d=84-86
FDIVR Divide reversed 194-204 194-204 t=88,1=91 73
FDIVR memreal (s=216-226, s=216-226, s=89 s=73

1=221-231)+EA 1=221-231 1=94 1=73
FDIVRP Div rev, pop 198-208 198-208 91 73
FIDIVR Int div reversed (w=225-239, w=225-239, w=135-141, w=85-89,

d=231-245)+EA d=231-245 d=121-128 d=84-86
FENI/ Enable interrupt
FNENI No wait 2-8 2 2
FFREE Free register 9-16 9-16 18 3
FIADD See FADD
FISUB See FSUB
FISUBR See FSUBR
FIMUL See FMUL
FIDIV See FDIV
FIDIVR See FDIVR
FICOM/
FICOMP See FCOM
FILD See FLD
FINCSTP Incr stack ptr 6-12 6-12 21 3
FIN IT/ Init coprocessor
FNINIT No wait 2-8 2-8 33 17
FIST/
FISTP See FST
FLD Load 17-22 17-22 14 4

memreal (s=38-56, s=38-56, s=20, s=3
1=40-60, 1=40-60, 1=25, 1=3
1=53-65)+EA 1=53-65 1=44 1=6

FILD Inl load (w=46-54, w=46-54, w=61-65, w=13-16
d=52-60, d=52-60, d=45-52, d=9-12
q=60-68)+EA q=60-68 q=56-67 q=10-18

626 CHAPTER 20: THE 80x87 MATH COPROCESSOR

CLOCK CYCLES FOR VARIOUS COPROCESSORS BY INSTRUCTION -- cont'd

CODE DESCRIPTION 8087 80287 80387 80487

FBLD BCD (290-310)+EA 290-310 266-275 70-103
FLD1 Load 1 15-21 15-21 24 4
FLDZ Load zero 11-17 11-17 20 4
FLDPI Load pi 16-22 16-22 40 8
FLDL2E Load log2(e) 15-21 15-21 40 8
FLDL2T Load log2(10) 16-22 16-22 40 8
FLDLG2 Load log10(2) 18-24 18-24 41 8
FLDLN2 Load loge(2) 17-23 17-23 41 8
FLDCW Load control word (7-14)+EA 7-14 19 4
FLDENV Load env state (35-45)+EA 35-45 71

real/virt 16-bit 44
real/virt 32-bit 44
pm 16-bit 34
pm 32-bit 34

FMUL Multiply 130-145 130-145 t=46-54 (49) 16
(90-105) (90-105) 1=29-57 (52)

FMUL memreal (s=110-125, s=110-125, s=27-35, s=11,
1=154-168)+EA 1=154-168 1=32-57 1=14

FMULP Multiply, pop 134-148 134-148 29-57 16
(94-108) (94-108) (52)

FIMUL Int multiply (w=124-138, w=124-138, w=76-87, w=23-27,
d=130-144)+EA d=130-144 d=61-82 d=22-24

FNOP No op 10-16 10-16 12 3
FPATAN Partial arctangent 250-800 250-800 314-487 218-303
FPREM Partial remainder 15-190 15-190 74-155 70-138
FPREM1 Parital rem (IEEE) 95-185 72-167
FPTAN Partial tangent 30-540 30-540 181-497 200-273
FRNDINT Round to int 16-50 16-50 66-80 21-30
FRSTOR Restore saved state (197-207)+EA 308

real/virt 16-bit 131
real/virt 32-bit 131
pm 16-bit 120
pm 32-bit 120

FSAVE/ Save coprocessor state
FNSAVE No wait (197-207)+EA 375-376

real/virt 16-bit 154
real/virt 32-bit 154
pm 16-bit 143
pm 32-bit 143

FSCALE Scale 32-38 32-38 67-86 30-32
FSETPM Set protected mode 2-8 12
FSIN Sine 122-771 257-354
FSINCOS Sine and cosine 194-809 292-365
FSQRT Square root 180-186 180-186 122-129 83-87
FST Store 15-22 15-22 11 3

memreal (s=84-90, s=84-90, s=44, s=7,
1=96-104)+EA 1=96-104 1=45 1=8,

FSTP Store, pop 17-24 17-24 12 3

memreal (s=86-92, s=86-92, s=44, s=7,
1=98-106, 1=98-106, 1=45, 1=8,
t=52-58)+EA t=52-58 t=53 t=6

FIST Int store (w=80-90, w=80-90, w=82-95, w=29-34,
d=82-92)+EA d=82-92 d=79-93 d=28-34

FISTP Int store, pop (w=82-92, w=82-92, w=82-95, w=29-34,
d=84-94, d=84-94, d=79-93, d=29-34,
q=94-105)+EA q=94-105 q=80-97 q=29-34

FBSTP Store BCD, pop (520-540)+EA 520-540 512-534 172-176
FSTCW/ Store control word
FNSTCW No wait 12-18 12-18 15
FSTENV/ Store env state
FNSTENV No wait (40-50)+EA 40-50 103-104

real/virt 16-bit 67
real/virt 32-bit 67
pm 16-bit 56
pm 32-bit 56

FSTSW/ Store status word

SECTION 20.4: 80x87 INSTRUCTIONS AND TIMING 627

CLOCK CYCLES FOR VARIOUS COPROCESSORS BY INSTRUCTION -- cont'd

CODE DESCRIPTION 8087 80287 80387 80487

FNSTSW No wait 12-18 12-18 15 3
Store in AX 10-16 13 3

FSUB Subtract 70-100 70-100 t=29-37, 8-20
1=26-34

memreal (s=90-120, s=90-120, s=24-32, s=8-20,
1=95-125)+EA 1=95-125 1=28-36 1=8-20

FSUBP Subtract, pop 75-105 75-105 26-34 8-20
FISUB Int subtract (w=102-137, w=102-137, w=71-83, w=20-35,

d=108-143)+EA d=108-143 d=57-82 d=19-32
FSUBR Subtract reversed 70-100 70-100 t=29-37, 8-20

1=26-34
memreal (s=90-120, s=90-120, s=25-33, s=8-20,

1=95-125)+EA 1=95-125 1=29-37 1=8-20
FSUBRP Subtract rev, pop 75-105 75-105 26-34 8-20
FISUBR Int subtract rev (w=103-139, w=103-139, w=72-84, w=20-35,

d=109-144)+EA d=109-144 d=58-83 d=19-32
FTST Test lor zero 38-48 38-48 28
FUCOM Unordered compare 24 4
FUCOMP Unordered camp, pop 26 4
FUCOMPP Unord comp, pop, pop 26 5
FWAIT Wait 4 3 6
FXAM Examine 12-23 12-23 30-38 8
FXCH Exchange registers 10-15 10-15 18
FXTRACT Extract exp & sig 27-55 27-55 70-76 16-20
FYL2X Y log2(x) 900-1100 900-1100 120-538 196-329
FYL2XP1 Y log2(x+1) 700-1000 700-1000 257-547 171-326

SUMMARY

PROBLEMS

The first section of this chapter examined data types used in 80x87 pro­
gramming. First, the IEEE floating-point standards were examined for 32-bit single
precision (short real in Intel terminology) and 64-bit double precision (long real in
Intel terminology). The conversion from real numbers to IEEE floating point was
demonstrated. The 80x87 supports data types: word integer, short integer, long
integer, packed decimal, short real, long real, and temporary real, ranging in size
from 16 bits to 80 bits. The second section of this chapter showed how to code
several Assembly language programs using 80x87 instructions. The third section
explained how the 80x87 and the 8088/86 CPU are interfaced in the IBM PCIXT.
The fourth section listed 80x87 instructions and their clock counts.

SECTION 20.1: MATH COPROCESSOR, IEEE FLOATING-POINT STANDARDS

1. What is the disadvantage of using a general-purpose processor to perform math op-
erations?

2. The IEEE single-precision standard uses __ bytes to represent a real number.
3. The IEEE double-precision standard uses bytes to represent a real number.
4. Show the bit assignment of the IEEE single-precision standard.
5. Convert (by hand calculation) each of the following real numbers to IEEE single­

precision standard.
(a) 15.575 (b) 89.125 (c) -1022.543 (d) -0.00075

6. Use the last 4 digits of your ID number and put the decimal point in the middle.
Convert it to single-precision IEEE standard (e.g., 9823 is 98.23).

7. What data types are called short real and long real in Intel's literature?

628 CHAPTER 20: THE 80x87 MATH COPROCESSOR

8. Show the bit assignment ofthe IEEE double-precision standard.
9. In single precision FP (floating point), the biased exponent is calculated by adding

~~~_to the portion of a scientific binary number. 
10. In double-precision FP, the biased exponent is calculated by adding to 

the portion of a scientific binary number. 
II. Convert the following to double-precision FP. 

(a) 12.9823 (b) 98.76123 
12. How many bits are set aside for the magnitude portion ofIntel's long integer? 
13. Which bits of packed decimal are used for the sign? 
14. Packed decimal uses only __ bits of an 80-bit operand. 
15. In Intel's temporary real, the data type is __ bytes wide. 

SECTION 20:2: 80x87 INSTRUCTIONS AND PROGRAMMING 

16. Indicate the data directive used for the following data types. 
(a) single-precision FP (b) double-precision FP 
(c) packed decimal 

17. Using the assembler of your choice, verify your calculation of Problems 5 and II. 
18. Write and run an 80x87 program to calculate z =(x2 + y3)1!2, where x =3.12 andy 

=5.43. 
19. Write and run an 80x87 program to calculate y =2x2 + 5x + 12.34, where x = 1.25. 
20. Write and run an 80x87 program to calculate the area of a circle if r = 25.5. 
21. Write and run an 80x87 program to calculate 3("r3)14 if r = 25.5. 
22. Write and run an 8087 program to calculate sine of a 45-degree angle. 

SECTION 20.3: 8087 HARDWARE CONNECTIONS IN THE IBM PCIXT 

23. Why is an 80x87 interfaced with an 80x86 called tightly coupled multiprocessors? 
24. True or false. The 8087 generates the lOR and lOW signals. 
25. True or false. The 8087 generates the MEMR and MEMW signals. 
26. Which is the host processor, the 80,,86 or the 80x87? 
27. Indicate the direction of READY, BUSY, and RESET as far as the 8087 is con­

cerned. 
28. What puts the FWAIT instruction between the 8087 and an 8086 instruction? 
29. True or false. One cannot move an operand directly between the 8087 and 8086, 

or vice versa. Data must be exchanged via a temporaray memory location. 
30. Explain your answer to Problem 29. 

SECTION 20.4: 80x87 INSTRUCTIONS AND TIMING 

31. Compare the clock counts for the FADD instruction for all80x87 processors. As­
sume that the data is single-precision FP. 

32. Compare the clock counts for the FDIV instruction for all 80x87 processors. As­
sume that the data is single-precision FP. 

33. Compare the clock counts for the FSQRT instruction for all80x87 processors. As­
sume that the data is single-precision FP. 

34. Give the list of new instructions introduced in the 80387. 
35. Which of the following processors have an on-chip coprocessor? 

(a) 80386 (b) 80486SX (c) 80486 
(d) Pentium (e) 80486DX2 (f) 80386SX 

36. What kind of processor is the 80487SX, and where is it used? 
37. For the 80,,87 to calculate a trig function, the angle must be in _____ _ 

(degrees, radians). 
38. Write the 80387 program to calculate SIN and COS of a 30-degree angle. Use a 

PC with 387 or higher to verify and analyze your program. 

PROBLEMS 629 



ANSWERS TO REVIEW QUESTIONS 

SECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING-POINT STANDARDS 

1. true 
2. true 
3. 32 
4. 64 
5. 7FH 
6. 3FFH 

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING 

1. DD (define double word) 
2. DQ (define quad word) 
3. 8 
4. LIFO 
5. true 
6. ST(O) 
7. below 
8. It means ST(4)+ST(0) and the result is placed in ST(O). 
9. to initialize the registers to top of the stack 

10. I 
11. The assembler generates the opcode to be used by the 80x86 for the ADD instruction while it produces 

the opcode for the FADD instruction to be used by the 80x87. 
12. False. 387 and latter coprocessors have the FSIN instruction. 

SECTION 20.3: 8087 HARDWARE CONNECTIONS IN THE IBM PCIXT 

1. true 
2. only INTR, which it calls INT 
3. (a) and (e) are out; (b), (c), and (d) are in; (f) is bidirectional 
4. This ensures the synchronization of fetching the opcodes and operands. 
5. false 
6. Only the 8088/86 fetches opcodes since it has an instruction pointer (IP) register. While the 8088/86 fetches all 

opcodes, both the 8088/86 and 8087 receive a copy of opcodes, but the 8088/86 ignores any opcode that has 
9BH in front of it. 

630 CHAPTER 20: THE 80x87 MATH COPROCESSOR 



CHAPTER 21 

386 MICROPROCESSOR: REAL vs. 
PROTECTED MODE 

631 



This chapter emphasizes unique features of the 80386 microprocessor, from 
both hardware and software perspectives. In Section 21.1 we look at the 386 in real 
mode. The hardware of the 386 is examined in Section 21.2. Section 21.3 provides 
an introduction to protected mode of the 386. 

SECTION 21.1: 80386 IN REAL MODE 

632 

In this section first we look at Intel's 80186 microprocessor and then unique 
features of the 286 and 386 from the perspective of real mode programming. 

What happened to the 80186/1887 

Intel has a very successful product called the 80186 (and 80188). This chip 
is alive and doing very well in the embedded controller market, where it is used to 
replace multiple devices with a single component. The 80186/88 was never used by 
IBM in their family of PC products. Some clone makers, notably Tandy Corp., used 
it in their PCs. Prior to the introduction of the 80186/88, Intel did a survey and found 
that many are using the 8086188 along with other peripheral chips, such as the 8237 
DMAcontroller, the 8254 timer, and the 8259 interrupt controller. This led to putting 
a portion of these chips along with the 8086/88 microprocessor on a single chip and 
calling it the 80186/88. Internally, the 80186 and 80188 are identical, but externally 
the 80186 has a 16-bit data bus and the 80188 has an 8-bit external data bus. In this 
regard they are similar to the 8086 and 8088. The address bus is sti1l20-bit, making 
a I megabyte memory system. The data bus is multiplexed with the address bus. 
The 80186/88 is a 68-pin chip that includes the following on-chip functions: (I) 
clock generator, (2) two 20-bit DMA channels, (3) three 16-bit programmable 
counters, (4) interrupt controller, (5) programmable wait-state generator, and (6) 
programmable chip select decoder unit. Although very few 80186/88 microproces­
sors are used in PCs, millions of them are found in embedded systems such as 
pocket translators, digital cellular phones, and so on. 

80186188 New instructions 

The 80186/88 microprocessor supports all 8086/88 instructions in addition 
to some new ones. The new instructions of the 80186/88 are as follows: 

BOUND 
ENTER 
LEAVE 
IMUL 
INS 
OUTS 
SAR 
SHR 
SAL 
RCR 
ROR 
RCL 
ROL 
PUSH 
PUSHA 
POPA 

dest,source 
disp,level 

result,source,immediate data 
dest,port 
port,dest 
dest,immediate count 

immediate data 

Some of the above instructions, such as ENTER and LEAVE, are intended 
for implementation in high-level languages but many others can be used in everyday 
Assembly language programs. For example, look at the shift and rotate instructions. 
In the 8086/88 to shift or rotate an operand more than once required putting the 
count in CL; immediate operands could not be used. Starting with the 80186/88, 
immediate counts are allowed. Look at Example 21-1. 

CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE 



Example 21-1 

Show Assembly language code to shift right operand 26H by 5 bits in each of the following systems. 
(a) 8086/88 (b) 80186/88 

Solution: 

(a) 8086/88 

MOV 
MOV 
SHR 

AL,26H 
CL,5 
AL,CL 

(b) 80186/88 

MOV AL,26H 
SHR AL,5 

Other useful new instructions of the 80186/88 are PUSHA (push all) and 
paPA (pop all). Very often in writing a procedure (subroutine) all the registers need 
to be saved on the stack. In the 8086/88 one must code PUSH and POP for each 
16-bit register separately; however, in the 80186/88 the use of PUSH A and paPA 
can save a lot of coding. See Example 21-2. 

Example 21-2 

Show a sequence of 8086/88 instructions equivalent to 80186/88 PUSHAand paPA. 

Solution: 

8086/88 

PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 

POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
RET 

AX 
CX 
DX 
BX 
SP 
BP 
SI 
DI 

DI 
SI 
BP 
SP 
BX 
DX 
CX 
AX 

80186/88 

PUSHA 

paPA 
RET 

Note that paPA restores all registers except SP, which is ignored. In other words, it does not 
disturb the present stack frame. 

One can test these new instructions on 286 PCs and later machines. 
However, using these instructions means that the program will not run on 8088/86 
XT machines. There are two dominant trends in software for 80x86-based systems. 

1. Software that runs on any 80x86 machine, including 8086/88-based systems. 
2. Software that is 32-bit 386 based and must be run on 386 and higher machines. 

Also note that the DEBUG utility does not support the new 80186/88 instructions 
since it is intended to run on any 80x86 PC, including the 8088/86. 

SECTION 21.1: 80386 IN REAL MODE 633 



634 

80286 Microprocessor 

The demand for a more powerful CPU led Intel Corporation to use more 
than 100,000 transistors to design a new microprocessor called the 80286. This 
processor is downwardly compatible with the 80186/88 processor. The 80286 
microprocessor was a major improvement over the core 8086 in the following ways. 

I. There are separate pins for the address and data buses and thus no need for 
demultiplexing the buses as was the case in the 8088/86 microprocessor. This 
increased number of pins required abandoning DIP (dual in-line packaging). Instead, 
PGA (pin grid array) packaging was chosen. 

2. The memory cycle time was reduced to 2 clocks from 4 clocks in the 8088/86. This 
made memory interfacing quite a challenge, especially for frequencies of 20 MHz 
and beyond. Memory design of high-performance computers is discussed in Chapter 
22. 

3. Introduction of virtual memory in the 80286 was the most drastic change over the 
8088/86. The 80286 works in two different modes: real mode and protected mode. 
In real mode, the 80286 is simply a faster 8086, capable of handling only 1 M byte 
of memory. It executes all the instructions of the 8086 with fewer clock cycles, as 
shown in Appendix E. In order to use the entire 16 megabytes of memory space, the 
80286 must work in protected mode. When the 80286 microprocessor is turned on, 
it automatically starts from real mode and can be switched to protected mode. When 
in protected mode, all the address buses AO - A23 can be used, thereby giving a total 
of 16M bytes of addressable physical memory (RAM and ROM). It is in this mode 
that most of the changes over the 8086 have been introduced into the 80286. Due 
to the declining price ofthe 80386, very few systems use the 286 in protected mode; 
therefore, we bypass any discussion of the 80286 in protected mode. However since 
protected mode of the 80286 is a subset of the 80386, many of the concepts of386 
protected mode apply to the 286. 

Major changes in the 80386 

The 80386 microprocessor started a new trend in the 80x86 family. Al­
though it is downwardly compatible with the 8088/86 and 80286, there are some 
major changes in its architecture. The following are some of the major changes that 
have been introduced in the 80386. 

1. The data bus was increased from 16 bits to 32 bits, both internally and extemally. 
2. All the registers were extended to 32 bits, thereby making the 80386 a 32-bit 

microprocessor. 
3. The address bus was increased to 32 bits, thus providing 4 gigabytes (232) of physical 

memory addressing capability. 
4. The paging virtual memory mechanism was introduced, making the 80386 capable 

of using both segmentation and paging. More about paging and segmentation is 
provided in Section 21.3. 

5. A new addressing mode called scaled index was added. 
6. Many new bit-manipulation instructions were added. These instructions work in 

both real mode and protected mode. 
7. The 386 can be switched from protected to real mode by software. This is a major 

improvement over the 286, which had to be reset to switch back to real mode. 
To reduce the cost of board design, Intel made the 80386SX microprocessor 

available with a 16-bit external data bus, but internally it remained a 32-bit 
processor, 100% compatible with the 80386. In terms of memory bandwidth, it is 
slower than the 80386 since it takes two memory cycles (each 2 clock cycles) to 
address a 32-bit word instead of only I memory cycle, as is the case in the 80386. 
Intel also made the 80386SX with only 24-bit address buses, the same as the 80286. 
In other words, the 80386SX is the same as the 80286 externally, but internally it is 
a 32-bit processor fully compatible with all 386 computers. 

In real mode, the 80386 can access a maximum of 1 megabytes using 
address pins A19 - AO. However, in protected mode the 80386 can accesses 4 
gigabytes of memory through using the 32-bit address bus. 

CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE 



General Data and Address Registers Segment Selector Registers 

31 16 15 o 15 0 

AX CS code 

BX SS stack 

CX ECX DS data 

DX EDX ES data 

SI ESI FS data 

DI EDI GS data 

BP EBP 
Instruction Pointer and Flags Register 

SP ESP 31 16 15 o 

IP EIP 

FLAGS EFLAGS 

Figure 21-1. Selected Intel 386 Registers 

80386 Real mode programming 

In the design of the 80386, Intel made such massive design changes that it 
is radically different from the 80286, yet it is still capable of running all the code 
written for the 286 and 8086/88. Next we describe some of these new features that 
are available in both real and protected modes. 

32-Bit registers 

In the 80386, register sizes were extended from 16 bits to 32 bits and register 
names were changed to reflect this. For example, EAX is the extended AX, EBX 
is the extended BX, and so on. See Figure 21-1. In order to access 32-bit registers, 
the letter E must be included in the coding. The four general-purpose registers AX, 
BX, CX, and DX are still accessible in their 8086 formats in addition to the extended 
format. For example, register EAX is accessible as AL, AH, AX, and EAX. Notice 
that the upper 16-bit part is not accessible as a separate register. One way to access 
it is to shift EAX right. See Example 21-3. 

Example 21-3 

Load EAX with 7698E35FH and move it among the 8-, 16-, and 32-bit registers of the 386. 

Solution: 
MOV 
MOV 
MOV 
MOV 
MOV 
ROR 
MOV 
MOV 

EAX,7698E35FH 
EDX,EAX 
CH,AL 
DI,AX 
ESI,EDX 
EAX,16 
BX,AX 
CL,AL 

SECTION 21.1: 80386 IN REAL MODE 

;EAX=7698E35F (AX=E35F,AH=E3,AL=5F) 
;EDX=EAX=7698E35F 
;CH=AL=5F 
;DI=AX=E35F 
;ESI=EDX=7698E35F 
;rotate right EAX 16 times (EAX=E35F7698H) 
;BX=AX=7698H 
;CL=AL=98H 

635 



Which end goes first? 

In storing data, the 386 followed the tradition of the 8086/286 in placing 
the least significant byte (little end of the data) in the low address. As discussed 
previously, this is referred to as little endian. See Example 21-4. 

Example 21-4 

Show how data is placed after execution of the following code. 
MOY EAX,7698E39FH ;EAX=7698E39F 
MOY [4524],AX 
MOY [8000],EAX 

Solution: 

For "MOY [4524],AX" we have 
OS:4524 =(9F) 
OS:4525 =(E3) 

and for "MOY [8000],EAX" we have 
OS:8000 = (9F) 

636 

OS:8001 = (E3) 
OS:8002 = (98) 
OS:8003 = (76) 

In Example 21-4, notice how the least significant byte (the little end of the 
data) 9FH goes to the low address 8000, and the most significant byte of the data 
76H goes to the high address 8003. This means that the little end of the data goes 
in first, hence the name little endian. In the Motorola 68000 family, data is stored 
the opposite way: the big end (most significant byte) goes into the low address first, 
and for this reason it is called big endian. Some recent RISC processors, such as 
Power PC (developed jointly by IBM and Motorola), allow selection of mode, big 
endian or little endian. The software overhead of converting from one camp to the 
other led Intel to introduce a new instruction called SWAP in the 80486, specifically 
to take care of this problem (see Chapter 23). 

General registers as pointers 

Another major change introduced in the 80386 is the use of general registers 
such as EAX, ECX, and EOX as pointers. As you might recall from Chapter I, the 
8088/86/286 can use only BX, sr, and DI as pointers into the data segments. But 
starting with the 386, all 32-bit general-purpose registers can be used for pointers 
into data segments. Look at the following cases for valid and invalid instructions. 

MOV BX,WORD PTR [EAX] ;move into BX word pointed to by EAX 
MOV BX,WORD PTR [AX] ;invalid AX can't be used as pointer 
MOV EAX,DWORD PTR [ECX] ;move into EAX DWORD pointed to by ECX 
MOV AL,BYTE PTR [EDX] ;move into AL BYTE pointed to by EDX 
MOV EBX,WORD PTR [CX] ;invalid CX can't be used as pointer 
MOV EAX,DWORD PTR [ED I] ;move into EAX DWORD pointed to by EDI 

The 386 also allows the use of displacement for 32-bit register pointers. 
Therefore, instructions such as "MOY AL,[ECX + 100]" are perfectly valid. Of 
course, the 386 supports all the addressing modes of the 8086/286 discussed in 
Chapter l. Table 21-1 shows some of the addressing modes supported by the 386. 

CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE 



Table 21-1: Addressing Modes for the 80386 

~~~ressin Mode . 0 era~ 
Re ister 1 Register

d

Imm.ediate I Data

Direct ___ ,LOHSE
-----~ ----

T]
Register indirect ! [BX]

Based relative

i lSI]

[DI]

[EAX]

[EBX]

[ECX]

[EDX]

[ESI]

[EDI]

[BX]+disp

[BP]+disp

[EAX]+disp

[EBX]+disp

I [ECX]+disp
I _

i [EDX]+dlSP

: [EBP]+di§1l

I [DI]+disp
,

t;;cte~ed relative

I 1 [SI]+disp

I [EDI]+disp

1 [ESI]+disp __

I [RI][R2]+disp

--

-- .- -----
I

Default

None

INone
DS

" -.---~

DS

DS

DS

DS

DS

DS

DS

DS
!

iDS

IDS

SS

!DS

IDS
I

IDS

IDS

Iss
iDS

DS

'DS

DS
I

Sel!ment

--

-

I If BP is used, segment is SS;

I

•
i

IRI and R2 are any of the above i otherwise, DS is the segment
Note: In based indexed relative addressing, disp is optional.

Scaled index addressing mode

One of the most powerful address­
ing modes introduced in the 386 is scaled
index addressing mode. It allows access of
multidimensional arrays with ease. In scaled
index addressing mode, any of the 32-bit
registers, except ESP, can be used as a
pointer that is multiplied by a scaled factor
of 1, 2, 4, or 8. The scaling (multiplication)
factors 1, 2, 4, and 8 correspond to byte,
word, doubleword, and quadword operands,
respectively. Look at Example 21-5 to see
how the effective address is calculated in
cases where the scaled index addressing
mode is used. Only the 32-bit register point­
ers can be used for this mode. They are
shown in Table 21-2.

SECTION 21.1: 80386 IN REAL MODE

Table 21-2: 386 Scaled Index
Addressing Mode

rS~~led Index I Default Segment ,I

j[EAX] IDS ul
I [EBX] iDS ,I

ECXJ DS!I

~~_---+""D,S ______ ~I
1~"__ _ ___1I=DS"- ~,

_-t=ID~S _I

• ESPL --~j~~_~~~~1
637

Example 21-5

Example 21-6 shows how the scaled index addressing mode is used. It must
be noted that we cannot use a 16-bit register as a scaled index. In other words, the
instruction "MOV AL,[ESI+BX*4]" is invalid.

Find the effective address in each of the following cases. Assume that ESI ~ 200H, ECX ~ 100H,
EBX ~ 50H, and ED! ~ 100H.
(a) MOV AX,[2000+ESI*4]
(c) MOV ECX,[2400+EBX*4]

(b) MOV AX,[5000+ECX*2]
(d) MOV DX,[100+ED!*8]

Solution:
(a) EA (effective address) is 2000H + 200H x 4 ~ 2000 + 800H ~ 2800H. Therefore, the

logical address ofthe operand moved into AX is DS:2800H.
(b) By the same token we have EA ~ 5000H + 100H x 2 ~ 5000H + 200 ~ 5200H.

(c) EA ~ 2400H + 4 x 50H ~ 2400H + 140H ~ 2540H.

(d) 100H + 8 x 100H ~ 100H + 800H ~ 900H.

Example 21-6

Using the scaled index addressing mode, write an Assembly language program to add 5 operands of
32-bit size and save the result.

Solution:

MYDATA
RESULT

BACK:

.MODEL SMALL

.386

.STACK300H

.DATA
DD 234556H,OF983F5H,6754AE2H,OC523 I 239H,OAF34ACB4H
DQ ?
.CODE
MOV AX,@DATA
MOV DS,AX
SUB EBX,EBX
MOV EDX,EBX
MOV EAX,EBX
MOV CX,5
ADD EAX,[MYDATA+EBX*4]
ADC EDX,O
INC EBX
DEC CX
JNZ BACK
MOV DWORD PTR RESULT,EAX
MOV DWORD PTR RESULT +4,EDX
;place code here to return to DOS

;EBX~O

;clearEDX
;clearEAX
;set the counter to 5
;add the 32-bit operand
;save the carry
;point to next 32-bit data
;decrement the counter
;repeat until counter is zero
;save the lower 32 bits
;save the upper 32 bits

In this program, we first define the 32-bit data using the DD directive, and the RESULT is defmed as
64-bit using the DQ directive. Notice that EBX is initially zero; therefore, the instruction "ADD
EAX,[MYDATA +EBX*4]" adds the first 32-bit operand to EAX since the effective address is MY­
DATA. "INC EBX" makes EBX ~ 1; therefore, in the next iteration the effective address is [MY­
DATA+ I * 4], and likewise in the next iteration the effective address is [MYDATA+2 * 4], which is
MYDATA+8, and so on. For example, if the offset address for MYDATA is 2000H, the effective ad­
dress is 2000H for the first iteration, 2004H for the second iteration, 2008H for third iteration, 200CH
for the fourth iteration and so on.

638 CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE

Example 21-7

It must be noted that for an Assembly language program to be IUn under
DOS, the effective address should not exceed FFFFH. In other words, if EBX is
used as a pointer, you must make sure that the upper 16 bits of the EBX register are
all zero, since DOS works in real mode.

Some new 386 instructions

There are many new instructions in the 386 which work in both real and
protected modes. Adetailed look at each new instlUction and how it is used is beyond
the scope of this volume. Here are some of the new instructions with examples.

MOVSX and MOVZX instructions

As we discussed in Chapter 6, the 8086 has sign-extend instmctions such
as CBW (D7 of AL is copied into all the AH bits) and CWD (D 15 of the AX is copied
into all bits of the DX). In the 386, there is a new instmction CDQ (convert
doubleword to quadword) in which the sign bit of EAX, D31, is copied to all the
bits of EDX. Notice that in all sign-extend instmctions, the accumulator sign is
extended. To overcome this limitation, Intel introduced the MOVSX and MOVZX
instmctions. In the MOVSX, the sign bit of any register (or even a memory location)
can be extended (copied) into any register. Similarly, MOVZX zero-extends the
contents of a register or memory location. The MOVSX instmction is used to
sign-extend the operand in signed number arithmetic to prevent overflow problems.
The MOVZX instmction is used in unsigned arithmetic. Look at Example 21-7.

Find the contents of destination registers after execution of the following code.

(a) MOV BL,-5 (b) MOV OL,+9
MOVSX CX,BL MOVSX EBX,DL

(c) MOV AL,95H (d) MOV BH,83H
MOVZX ECX,AL MOVZX AX,BH

Solution:

MOVSX copies the source register into the lower bits of the destination register and copies the sign
bit into all upper bits of the destination register. Therefore, we have the following.

(a) MOV BL,-5
MOVSXCX,BL

;BL=IIII IOIIB =FBH (2's complement)
;CL=FBH,CH=FF since BL is copied into
;CL and the sign bit (07) is copied into
;all CH bits. BL is unchanged

(b) DL =0000 100lB =09H. Then BL=09 and D8 - 031 of EBX are all zero, the sign bit ofDL.
Therefore, EBX =00000009.

(c) MOV AL,95H
MOVZX ECX,AL

;AL=IOOI OlOlB =95H
;AL =CL =95H and D8 - D31 of ECX are all zeros
;therefore, ECX =00000095H

(d) BH=IOOO OOIIB = 83H. Then AL =BH =83H and D8 - Dl5 of AX are all zeros.
Therefore, AX = 0083H.

SECTION 21.1: 80386 IN REAL MODE 639

Bit scan instructions

The 386 has new instructions allowing a program to scan an operand from
LSB to MSB or from MSB to LSB, to find the first high bit (= I). Ifthe scanning is
done from the least significant bit (00) toward higher bits, the BSF (bit scan
forward) instruction is used. If the scanning is done from the most significant bit
(031) toward the lower bits, the BSR (bit scan reverse) instruction is used. In these
instructions whenever the first high is found, the scanning is stopped and the position
of the bit is written into the destination register. The bit position is numbered from
00 (LSB) to 031 (MSB), regardless of the direction of scanning. See Example 21-8.

Example 21-8
Find the register contents after the execution of the following code.
(a) MOV BX,4578H

BSF OX,BX ;scan BX and put the position of the first high into OX
(b) MOV ECX,3A9H

BSR EAX,ECX ;scan ECX from 031 down and put position of first high into EAX

Solution:

(a) OX=03 since in scanning 4578H =0100 0101 0111 1000B from right to left yields I in 03
(b) EAX=9 since in scanning 000003A9H = 0000 0000 0000 0000 0000 0011 1010 1001

640

from 031 toward 00 yields the first high in 09; therefore, EAX =9.

Review Questions

1. Thc 80188/86 is a(n) __ (8-, 16-bit) processor.
2. What is the size of the external data bus on the 80186?
3. In which 80x86 was the concept of virtual memory introduced?
4. In which 80x86 was the protected mode concept introduced?
5. The 80286 works in which of the following?

(a) real mode (b) protected mode
(c) both (a) and (b) (d) 8086 virtual mode

6. True or false. The 32-bit registers of the 386 can be accessed only in protected
mode.

7. Find the contents ofBL, BH, BX, and EBX after execution of instruction "MOV
EBX,99FF77 AAH".

8. The 80386 uses the (little endian, big endian) convention.
9. List all the 32-bit registers that can be used as pointers into the data segment.
10. In the instruction "MOV EBX,[EAX+ESI*8]", find the effective address ifEAX

=2000 and ESI = 100 (both in hex).
II. Scaled index addressing mode can be used with which of the following registers?

(a) SI (b) ED! (c) EAX
(d) OX (e) ECX (I) CX

12. Find the contents of EO X after execution of the following code.
MOV OL,-9
MOVSX EOX,OL

13. Find the contents ofECX after execution of the following code.
MOV OL,-5
MOVZX ECX,OL

14. Find the contents of OX and AX after execution of the following code.
MOV BX,1998H
BSF OX,BX
BSR AX,BX

CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE

SECTION 21.2: 80386: A HARDWARE VIEW

We present a hardware view of the 386 in this section. To avoid confusion,
Intel calls the 80386 with a 32-bit external data bus the 80386DX, and 80386SX
refers to the 386 with a 16-bit external data bus. In this book we use the 80386 to
refer to the 80386DX. Figures 21-2 and 21-3 provide a block diagram and pin layout
of the 80386, respectively. Signal functions are provided in Table 21-3.

2XCLOCK (CLK2

32-BIT
(00-031

.. Data Bus ~

DATA ~ ~

Intel 386 TMDX
Microprocessor

[
ADS#

BUS NA#

CONTROL BS16#
READY#

(
HOLD BUS

ARBITRATION HLDA

INTR

INTERRUPTS [NMI
RESET

. Figure 21-2.80386 Block Diagram (# indicates active low)
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1992)

0 0 0 0 0 0 0 0 0
" " 0 'co '" '" "5 AI! "' 0 0 0 0 0 0 0 0
CI " " "0 '" n ~, q '" 0 0 0 0 0 0 0 0 0
" " " " ~,) ,,\ V';t

'"
'';

0 0 0
< " " 0 0 0

'yt(co ~c

0 0 0 ~[T" l ~
',S, " " 0 0 0
'.fe IN!, NC

0 0 0
fRR:;llj N~I '[,Ee,

0 o 0
'tS\ Busyl ,['iU

0 0 0
',er ~/Rl '0 0 0
till 'I\S cll

'2 0 0 0 0 0 0 0 0 0
~iO' "' '1[('iCC 8EOI eLK) ,,(DO " 0 0 0 0 0 0 0 0 0
a[)! r.fl! B[11 ",' N("C R[:.[)Y/ c' '.'SS

0 0 0 0 0 0 0 0 0
',((C\ 8\10' ~:r.O ~G\I cl, 'ytl 01 os

Figure 21-3. 80386 PGA Pins
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1992)

SECTION 21.2: 80386: A HARDWARE VIEW

Address Bus ~
A2 - A31

,

BE3# 32-BIT
BE2#

JBm

ADDRESS

BE1# EN-
BEO# ...
W/R#

J

D/C#
M/IO# BUS CYCLE DEFINITION

LOCK#

PEREQ

J BUSY# COPROCESSOR SIGNALING
ERROR#

Vi<!<) POWER CONNECTIONS
GND

0 0 0 0 0
'1' m '15 m co
0 0 0 0 0
m "' "' c, <,
0 0 0 0 0
A1'; "' <c 'tS\ 0'"

0 0 0
co 'ICc 029

0 0 0
DJI [lli 0';

0 0 0
018)1) ',s"
0 0 0
" " 01<

0 0 0
os m 'if[

0 0 0
wo 01' ~21

0 0 0 co

'"s DI) DC9

0 0 0
'l15 "'0 ;I~

0 0 0 0 0 '1
DC <, oco '" 0"
0 0 0 0 0 " DO DO '" Dil 0'1

0 0 0 0 0 "
D' " ""' " '6;

641

Tohl .. 21-37 Tnt.·11Rll nx Pr.A •
, , i

,
Sil!,nallPin S~naVPin SienallPin SilmallPin SilmallPin SilmallPin

,

IA2 C4 A24 L2 06 L14 'D2S M6 Vee CI2 Vss F2 ,
A3 A3 'A25 K3 07 KI2 029 P4 Vee 012 Vss F3

A4 B3 A26 MI OS L13 030 P3 Vee 02 Vss FI4
I

A5 B2 A27 NI 09 NI4 031 M5 Vee G3 Vss J2

A6 C3 A2S L3 010 MI2 O/C# All Vee Gl2 Vss J3 I

!A7 C2 iA29 M2 011 N13 ERROR# AS Vee Gl4 Vss Jl2 II P'-
MI4 !Vee Jl3 Ii AS CI A30 PI Dl2 NI2 HLOA L12 Vss

A9 03 A31 N2 013 P13 IHOLD 014 Vee M3 Vss M4

AIO D2 IAOS# EI4 \014 PI2 IINTR B71 v ce M7 Vss ML ,
MIl ILOCK# CIO IVee M13 IVss MIO 1\ ~Il 01 'BEO# EI2 015

AI2 E3 BEI# C13 016 Nil MIlO# AI2 Vee N4 IVss N3 \,

!A13 E2 BE2# B13 Dl7 NIO NA# 013 Vee N7 V s P6

ilAI4
E2 IBE3# A13 lOIS Pll NMI BS 'V P2 Vss PI4

AI5 FI BSI6# CI4 Dl9 PIO 'PERE CS Vee PS WIR# BIO

AI6 01 BUSY# B9 020 M9 REAOY#013 Vss A2 N.C. A4 ,
AI7 HI CLK2 FI2 D2I N9 RESET C9 Vss A6 N.C. B4

,AIS H2 00 HI2 022 P9 Vee Al iVss A9 N.C. B6
,

BI iN.C. AI9 H3 01 H13 D23 NS Vee A5 VSS BI2
I A20 J1 D2 HI4 024 P7 Vee A7 VSS B5IN.C. C6

"

'vss " A21 KI D3 J14 D25 N6 Vee AIO BII N.C. C7 i

IA22 Ivss -K2 '04 KI:l '026 P5 IVee AI4 BI4IN.C. E13 !i
I ,

105 K13 1027 IVee
,

ClliN.C. nul ,'A23 L1 N5 C5 IVSS
(Reprinted by permission of Intel Corporation. Copyright Intel Corp. 1992)

642

Overview of pin functions of the 80386

031 - DO (data bus)

These provide the 32-bit data path to the system board. They are grouped
into 8-bit data chunks, DO - D7, D8 - DIS, Dl6 - D23, and D24 - D31. Each 8-bit
data bus is accessed by a separate byte enable pin (BE).

A31 - A2 and BEO, BE1, BE2, BE3

These provide the 32-bit address path to the
system board. Notice the absence of AO, AI, or BHE
seen in earlier generations of the 80x86. Since the
80386 supports data types of byte (8 bits), word (16
bits), and double word (32 bits), the external buses
must be able to access any of the 4 banks of memory
connected to the 32-bit data bus. BEO - BE3 are used
to access each bank independently. BE, which stands
for byte enable, is active low and used for bank selec­
tion. According to Table 21-4, to select D7 - DO, BEO
is used, BEl is for DI5 - D8, etc. See Figure 21-4.

Table 21-4: Data Bus
Selection and BE
I

'Data Bus.

I 07 - 00 BJ<:L~I!
,015 - 1>_S __ IlEL_ I
, ,

'D23 - 016. BE2 i
-------j

i 031 - D24 BE3 .~

CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE

BE3
3

1
___ --1

7
1-----1

BE2

2 1-----1
61--__ --1

BE1

1

5 1------1

o
4

BEO

FFFFFFFF FFFFFFFE FFFFFFFD'--__ --' FFFFFFFCL--__ ..J

D31 D24 D23 D16 D15 DB D7 DO

Figure 21-4. 80386 Banks

Example 21-9

Indicate which part of the data bus is selected for the following BEs.
(a) BE3 BE2 BEl BEO ~ 0000 (b) BE3 BE2 BEl BEO ~ 0011
(c) BE3 BE2 BEl BEO ~ 1100 (d) BE3 BE2 BEl BEO ~ llOI

Solution:

(a) D31 - DO, the entire 32-bit data bus
(b) D3l - Dl6, the upper 16-bit data bus
(c) DIS - DO, the lower l6-bit data bus
(d) the 8 bits ofDl5 - D8

Figure 21-5 shows the above data selection graphically. Note that BE is active low.

031 024 016 015 07

(a) 11?I,j ~ ..

(b)

(e)

(d)

Figure 21-5. Graphical Representation of Example 21-9 (Selected Byte Is Shaded)

SECTION 21.2: 80386: A HARDWARE VIEW

DO

643

WIR, Ole, and MIlO

These signals pro­
vide the bus cycle definitions
and the type of the bus cycle
according to Table 21-5.

CLK2

This provides the
timing for the 386. The fre­
quency connected to CLK2 is
always twice the system fre­
quency. For example, a 16-
MHz 386 system requires
CLK2 to be 32 MHz.

!able 21-5: 80386 B~s ~tcleDetinltion

MIlO DIC W/R BusCycl~TyI!L_n

f- 0 0 0 i InterruJl!Jlc~nowledge

,L_ 0 O~_ iDoes notoccur

j:- . 0 L __ OJlli1a readillO)

. _0_.. _1 __ .. l--.l>ate\Vrite_CIIOL

c- ... __ 0 . __ 0 _Memory c.Qde read

il. 0 1 __ J!~lt{shutdown)_

~ __ o. I MemQILdata read._

,----I _ _ I : Memory Q<tta write_
(Reprinted by permission ofIotel Corporation, Copyright Intel Corp. 1992)

Example 21-10

A 80386 system is advertised as 33 MHz. What frequency is connected to CLK2?

Solution:

CLK2 = 66 MHz because the frequency connected to CLK2 is always twice the system frequency

644

ADS, SS16, 1'lA, and READY

ADS (address status), BSI6 (bus size), NA (next address request), and
"RE=-'A"'D~Y"; are hus control signals. These signals allow the implementation of an
efficient bus control circuitry. For example, using BSI6 allows the 80386 to be
connected to the 16-bit data bus instead of 32-bit. The use ofNA (next address)
provides the option of address pipe lining, where the address of the next memory
cycle is provided in the last clock cycle of the present memory cycle.

RESET

This is a level-sensitive input signal into the
80386. When a low-to-high signal is applied to RE­
SET, the 80386 will suspend all operations and the
registers are initialized to fixed values. The RESET
state ofEIP and CS must be noted, along with the state
of A31 - A2 and BEO - BE3, because this has some
major implications as far as where the boot ROM
should be located (see Table 21-6). This means that
the microprocessor will fetch the first opcode from

Table 21-6: RESET State

:~~ . bntentsil'

,es IFOOO~'"
i EIP. OOOOFFFO

iA31-A2 All hi h

I BE3- BEO All low I

memory location FFFFFFFO. This is 16 bytes from (Reprinted by penmSSlOn ofIntel Cor·
the 4 gigabyte maximum address range of poration. Copyright Intel Corp. 1992)

FFFFFFFFH. At this location, there is either a JMP
FAR or CALL FAR instruction. Upon executing the JMP or CALL instruction, the
386 makes A31 - A20 all zero, thereby forcing it to stay within the I megabyte
address range of real mode. This is the case for all 386, 486, and Intel Pentium
chips. All these processors wake up in real mode but the address where the first
opcode must be found is located in the extended memory space and not in the first
megabyte address space of real mode. This means that for 386 and higher PC
systems, there are duplicate ROMs in both the 4 gigabyte and I megabyte address
spaces, as shown in Figure 21-6.

The remaining signals of the 386 are similar to the 80286, and readers can
refer to Chapter 10 for their meanings.

CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE

00000000

OOOFOOOO I}} }.,
OOOFFFFF i""--~~~~9

BIOS ROM Duplicate

FFFFOOOO

F FF F F FF F ~iiJib.r..±!lr..±!lr..±!ll:lll

Figure 21-6. BIOS ROM Duplicate for 386/486/Pentium PC

Bus bandwidth in the 386

With zero wait states, it takes the 386 two clocks to perfonn the read or
write cycle. A 2-clock bus cycle is standard in all high-perfonnance microproces­
sors, including RISC processors. This leads to a very high bus bandwidth. The two
clocks of the 386 memory (or 1/0) bus cycle time for zero wait states are shown in
Figure 21-7. In the case of pipelined read/write cycle time, the next address is
provided in the last T clock of the present cycle, thus providing some extra time for
the decoder logic circuitry, path delay, and memory access time. Although in
pipelined mode, the next address is provided in the last stage of the present cycle,
the read and write cycle time still consists of2 clocks for the zero-wait-state system.

A31 - A2
BE3 - BEO

DO
D31

READY

T1

I

K

~

T2

I

Adc ress

T1 T2

r---t- L

Ad ress

~

"- / '--

I I L

Figure 21-7. 386 Bus Cycle Time (Nonpipelined)
(Reprinted by permission ofIntel Corporation, Copyright Intel Corp. 1992)

ExamI>le 21-11

Calculate the 386 bus bandwidth of a 33-MHz system with each of the following.
(a)OWS (b)lWS

Solution:

With the T state ono ns (1/33 MHz=30 ns), we have memory cycle time of 60 ns and 90 ns for (a)
and (b), respectively.
(a) The bus bandwidth is (1160 ns) x 4 = 66.66 megabytes/second.

(b) The bus bandwidth is (1190 ns) x 4 = 44.44 megabytes/second.

SECTION 21.2: 80386: A HARDWARE VIEW 645

Data misalignment in the 386

The case of misaligned data has a major effect on the 386 bus performance.
If the data is aligned, for every memory read cycle the 80386 brings in 4 bytes of
data using the 031 - 00 data bus. Such data alignment is referred to as doubleword
alignment. To make data doubleword aligned, the least significant digits of the hex
addresses must be 0, 4, 8, or C (hex). Look at Example 21-12.

Example 21-12
Show the data transfer of the following cases and indicate the memory cycle time if the system
frequency is 25 MHz. Assume that EAX = 4598F31 EH and the system is in real mode.

(a) MOV [2950],EAX
(b) MOV [299A],EAX

Solution:

The system frequency of25 MHz makes the cycle time 80 ns (1/25 MHz =40 ns and each memory
cycle is 2 clocks, giving 80 ns).

(a) In this instruction, the 4-byte content of EAX is moved to memory location with starting offset
address of 2950H on the 32-bit data bus of 031 - 00. This address is doubleword aligned since
the least significant digit is O. Therefore, it takes only one memory cycle or 80 ns to transfer
the data.

(b) In the first memory cycle, locations with addresses of2998H, 2999H, 299AH, and 299BH are
accessed, but only 299AH and 299BH are used for storing AL and AH. In the second
memory cycle, the address offsets of 299CH, 2990H, 299EH, and 299FH are accessed where
only 299CH and 2990 are used to store the upper 16 bits of EAX. This means that we have a
total of 160 ns. Ifpossible, this must be avoided since nonaligned data slows the data access.

110 address space in the 386

The 80386 can access a maximum of 65,536 input ports and 65,536 output
ports using the IN and OUT instructions. In this regard, the 386 is exactly like
8086/88/286 microprocessors.

Review Questions

I. BHE and AO are associated with processor (80386SX, 803860X).
2. The 80386SX is (16,32) bits externally.
3. Exactly how many pins are set aside for the address in the 386?
4. The BE2 pin is associated with which part of the data bus?
5. An 80386 of 20 MHz requires a crystal frequency of=o...,-...,-~
6. Give the first physical address location where the 80386 looks for an opcode upon

RESET.
7. With the same frequency, the 80386SX has bus bandwidth (twice,

half) that of the 80386.
8. Find the memory cycle time for an 80386 of20 MHz.

646 CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE

SECTION 21.3: 80386 PROTECTED MODE

The 80386 protected mode discussion applies equally to 486 and Pentium
chips. Due to the complexity associated with 80386 protected mode, many long
chapters are needed for this subject, and for this reason, here we simply provide an
overview of the 386 in protected mode.

Protection mechanism in the 386

As discussed in Chapter 1, physical addresses in the 8086 are calculated by
shifting left the segment register and adding it to the offset. This is also the case for
the 80286 and subsequent 80x86 processors in real mode. However, in protected
mode, the physical address of blocks of data or code is held by a look-up table and
the segment register is no longer shifted left to calculate the physical address.
Instead, it is used as an index into a look-up table in which the physical address of
the operand or code is held.

Another important change introduced in the 80386 is the protection mecha­
nism. The lack of protection of the operating system or users' programs is one of
the weaknesses of 8088/86-based MS DOS. This weakness is due to the inability of
the 8088/86 to block general instructions from accessing the core (kernel) of the
operating system. In the 8088/86, since any program can go from any code segment
to any code segment, it is easy to crash the system. In contrast, the 80386 provides
resources to the operating system that prevent the user from either accidentally or
maliciously taking over the core (kernel) of the operating system and forcing the
system to crash. Of course, this idea of protection is nothing new; it is commonly
used in mainframes and minicomputers, where it is often referred to as user and
supervisor mode. The 386 provides protection by allowing any data or code to be
assigned a privilege level. The four privilege levels are 0, 1, 2, and 3, where the
privilege level of 0 is the highest and level 3 is the lowest. While operating systems
are always assigned the highest privilege level (level 0), the user and applications
such as word processors are assigned the lowest privilege level (level 3). Since the
user is assigned the lowest privilege level, any attempt by the user to take over the
operating system is blocked. Higher privilege levels can access lower levels but not
the other way around. Again, it must be emphasized that the protection mechanism
can be used only when the 80386 is switched to protected mode.

Virtual memory

Another major feature of the 80386 is the ability to access virtual memory.
A CPU with virtual memory is fooled into thinking that it has access to an unlimited
amount of physical (DRAM) memory. DRAM primary memory is also called main
memory. In this scheme, every time the CPU looks for certain information, the
operating system will first search for it in main DRAM memory and if it is not there,
it will bring it into RAM from secondary memory (hard disk). What happens ifthere
is no room in RAM? It is the job of the operating system to swap data out of RAM
and make room for new data. Which data will be swapped out depends on how the
operating system is designed. Some operating systems use the LRU (least recently
used) algorithm to swap data in and out of primary memory (DRAM). In the LRU
method, the operating system keeps account of which data has been used the least
number of times in a certain period, and when there is need for room it will swap
out the least recently used data to hard disk to make room for the new data. The total
amount of RAM on the computer could be only 16M with a hard disk capacity of
500M bytes, but the CPU is fooled into thinking that it has access to all 500M of
memory. Among the operating systems, IBM OS/2, Microsoft Windows NT, and all
the variations of Unix, such as Nextstep and Sun Micro's Solaris, use the capability
of the 80386's virtual memory. Since MS DOS was written for the 8088/86
microprocessors, it does not have virtual memory.

SECTION 21.3: 80386 PROTECTED MODE 647

648

To implement virtual memory, two methods are used: segmentation and
paging. In segmentation, the size of the data swapped in and out can vary from I
byte to few megabytes (in 80386, 80486, and Pentium, the upper limit can be as
high as 4 gigabytes). In paging, the size is a multiple of one page of 4096 (4K) bytes.
Paging is used widely since it prevents memory fragmentation, where available
memory becomes fragmented into small sections of varied sizes. When this happens,
the operating system must continuously move files around to make room for the
new files, which could be any size. Paging makes the job of the operating system
much easier since all the files will be a multiple of 4K bytes. If the size of a file is
not a multiple of 4K bytes (which is the case most of the time), the operating system
will leave the unused portion empty and the next file will be placed on a 4K
boundary. This is similar to the cluster in floppy and hard disks. As shown in
Chapter 19, the disk allocates memory to each file in clusters. For example, if 4
sectors are used for each cluster, each cluster can store 2048 (4 x 512) bytes per
sector. If a given file is 12,249 bytes, the operating system will assign a total of7
clusters or 14,168 (7 x 2024 =14,168) bytes. All bytes between 14,168 and 12,249
are unused. This results in wasting some memory space on the disk but at the same
time makes the design ofthe disk controller and operating system much easier. This
concept applies as well to the paging method of virtual memory as far as the
allocation of main memory (DRAM) to data and code is concerned. One can briefly
define the segmentation and paging virtual memory mechanisms in the following
statement. While in segmentation virtual memory, the file can be any byte size,
located anywhere it can fit into main memory. In paging virtual memory, the file is
always a mUltiple of 4096 bytes and located on a 4K -byte boundary in main memory.

All high-performance RISe microprocessors use paging virtual memory
only and none use the segmentation method. The reason that 386, 486, and Pentium
processors support segmentation (in addition to paging) is due to the fact that they
had to stay compatible with the 8086's 64K-byte segment size.

Segmentation and descriptor table

In segmentation virtual memory, the segment registers are used as selectors
into the descriptor table, where all the information about a given piece of data and
code is kept. The descriptor table uses 8 bytes of space to provide the following
information about a given piece of code or data.

1.4 bytes for the AO -A31 address, where the code (or data) is located in main memory.
This allows the 386 to access any memory location within its 4 gigabyte address
space. Notice in Figure 21-8 thatA23 - AO is provided by bytes 2, 3, and 4, butA31
- A24 is provided by byte 7.

2. LO - Ll9: This 20-bit limit is used for checking the segment size and is limited to I
megabyte. Notice that bytes 0 and I provide LO - LIS, and DO - D3 of byte 6 is set
aside for L 16 - L 19. This provides the scheme whereby the I megabyte limit imposed
on data or code is checked. Since the limit for the segment-oriented 8086/286 is 64K
bytes (2 16 = 64K), the upper 4 bits must all be zeros. However, in the 386, the
segment limit can be raised to 4 gigabytes. To do that the G (granularity) bit is set
to high. If G = 0, LO - Ll9 is used as a number of bytes for the limit, but if G = I,
LO - L 19 is used as a multiple of 4K for the segment limit. This gives 220 x 212 =
232 = 4 gigabytes address range, making it possible for the 386 to have segments as
large as 4 gigabytes. This is quite a relief for software writers of database and other
application packages since the size of data (e.g., a big array) can go as high as 4
gigabytes and is no longer limited to 64K. In the case of the 286 when the size of
the data section of the program was larger than 64K, they had to do lots of software
manipulation to overcome this limitation. This also explains the origins of the
memory models of SMALL, MEDIUM, LARGE, and so on, widely used in
Assembly and e programs.

3. The access byte allows protection of a given piece of data or code by assigning the
privilege levels of 0, I, 2, and 3 to it, where 0 indicates the highest privilege level
and 3 is the lowest privilege level. DO - D7 ofthe access byte are described next.

CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE

BYTE
31 0 ADDR.

SEGMENT BASE 15 0 SEGMENT LIMIT 15 0 0

BASE 31..241GID10I AVLlLlMIT 19 .. 16 P IDfL I S IljPIE I A I BASE 23 .. 16 +4

BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1 ;;: Present 0;;: Not Present
DPL Descriptor Privilege Level 0 - 3
S Segment Descriptor 0;;: System Descriptor 1 ;;: Code or Data Segment Descriptor
TYPE Type of Segment (3 bits: X. E. R/W)
A Accessed Bit
G Granularity Bit 1;;: Segment length is page granular o ;;: Segment length is byte granular
D Default Operation Size (code segment descriptors only) 1;;: 32-bit segment 0;;: 16-bit segment
0 Bit must be zero for compatibility with future processors
AVL Available field for user or OS

Note: In a maximum-size segment (i.e., a segment with G=1 and segment limit 19 ... 0;;: FFFFFH). the lowest
12 bils of the segment base should be zero (i.e .• segment base 11...000 = OOOH).

Figure 21-8. Descriptor Table Entry
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1992)

A (accessed) bit

If the data or code is accessed (used), A =1; otherwise, A =0. This allows
the operating system to monitor the A bit periodically to see if the CPU is using this
piece of code or data. If a piece of code or data has not been used recently, the next
time the operating system needs to make a room in main memory for new pieces of
code (or data), it can move this code (or data) back to the hard disk. The A bit also
allows the operating system to decide if a given piece of information (code or data)
needs to be saved. For example, if a piece of data has not been accessed, the operating
system can trash it and does not need to waste time saving it on the hard disk. On
the other hand, ifthe data was accessed and it was written into, the operating system
must save a copy of it on the hard disk before it abandons it to create room in main
memory for some other data or code.

RIW (read/write) bit

This bit allows code or data to be read protected or write protected. For
example, the core of the operating system can be write protected, which prevents
the user from writing into it and crashing the system. In the case of DOS, any
program can use the DEBUG utility and alter the core of the operating system
residing in main memory (DRAM), and crash the PC.

X bit

This has a different meaning for the data segment and code segment. In the
case of data, it indicates if the segment should expand downward as the stack
segment grows, or upward as the data segment grows. In the case of the code
segment, it is used to enforce certain rules of privilege level access.

E bit

This indicates if the information is executable (E = I), such as code, or
nonexecutable (E = 0), such as data and stack. This bit also affects the way the X
and R/W bits are interpreted.

5 bit

This indicates if the descriptor belongs to the code and data segment (S =1)
or if it is a system segment descriptor (S =0).

SECTION 21.3: 80386 PROTECTED MODE 649

DPL (descriptor privilege level) bits

This allows one of the combinations, 00, 01, 10, or II, to be assigned to the
code or data, indicating the privilege level.

P (present) bit

This indicates if the piece of code or data is present in main memory
(DRAM). Ifit is present (P =1), the CPU will process it. Ifit is not present (P =0),
the CPU causes an exception and the exception handler ofthe operating system will
bring the desired piece of code or data into main memory from the hard disk. When
the operating system does so, it sets P = I to indicate that the information is now
present in main memory.

J):xampIe 21-13
From Figure 21-8 we have the following access byte for code and data.

P DPL I I A (access byte for code segment) ,
P DPL I o A (access byte for data segment)

Discuss the following access bytes.
(a) 10011011 (b) 10010111 (c) 11110001

Solution:

(a) This is an access byte for code segment, present, accessed, and privilege level of 00 (highest).
(b) This is an access byte for data segment, present, accessed, privilege level of 00 (highest), and

both read and write accessible.
(c) This is an access byte for data segment, present, accessed, privilege level of II (lowest), and

write protected.

650

The descriptor table is built by the operating system for every piece of code
and data. The descriptor table register (DTR) inside the 386 holds the physical
address of where the table is located in the 4 gigabyte address space, which means
that the descriptor table register (DTR) is a 32-bit register. When the CPU changes
the contents of a segment register (CS, DS, and so on), it uses the segment value as
an index into the descriptor table and pulls into the CPU from the descriptor table
all 8 bytes belonging to this segment. These 8 bytes are saved in the invisible part
of the segment register inside the 386, which means that every segment register
inside the 386 has an 8-byte extension which is not visible to the programmer. The
pulling of an 8-byte table into the CPU for every change of segment register is time
consuming but afterward, the CPU has all the information it needs to access a piece
of code or data. The addition of two new segment registers, FS and as, in the 386,
plus the presence ofCS, DS, SS, and ES, helps the CPU always to have a total of6
descriptor table entries available inside the CPU. If code or data is not held by one
of these 6 descriptor table entries, the CPU must go through the long process (it
takes 22 clock cycles) of pulling them into the CPU. As we will show later in this
section, this problem is solved in the paging method.

Looking at the 8 bytes of the descriptor table, one might ask why Intel did
not assign 32-bit physical addresses of desired code or data in consecutive bytes,
instead of using bytes 2, 3, 4, and then byte 7. The reason is the 80286 CPU. In the
286 protected mode, bytes 2, 3, and 4 are used for the 24-bit address (AO - A23),
and bytes 6 and 7 had to be zero. This led Intel to use byte 7 for the A31 - A24 part
of the physical address of the 386. Byte 6 is used for raising the limit and the a bit,
among other things. See Figure 21-8.

CHAPTER 21: 386 MICROPROCESSOR: REALvs PROTECTED MODE

Local and global descriptor tables

There are two types of descriptor tables for the 386: the local descriptor
table (LOT) and the global descriptor table (GOT). The GOT is used for the system,
and individual tasks can have their own LOT. How do the segment registers know
which one they are accessing? The third bit (TI) of the segment register (referred
to as the selector) always indicates which tahle should be used. See Figure 21-9.

SELECTOR

4 3 2 1 0

RPL
o 0 0 0 1 1

INDEX

DESCRIPTOR
6

5

NUMBER 6

4

~---- 3 b£:SCR\litOlt

2

o

LOCAL DESCRIPTOR TABLE

Figure 21-9. LDT and GDT Selection
(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1992)

64 Terabytes of virtual memory

5

4

3

2

o NULL

GLOBAL DESCRIPTOR TABLE

As seen in Figure 21-9, the 14 bits of the selector (segment) register can
have 16,384 (214) possible combinations. Each possible value can access a descrip­
tor that can hold addresses of memory chunks as large as 4 gigabytes. Therefore,
we have 214 x 232 ~ 64 terabytes of virtual memory for the 386 (recall that tera is
defined as 240). To put it another way: The 386 can access 64 terabytes of hard disk
(virtual memory) as long as the virtual memory is broken down into 4 gigabyte
pieces, since it has only 32 address pins. While the segment limit in the 8086/286
is 64K bytes, the segment limit in the 386 was raised to 4G. One of the drawbacks
of 386 segmentation is its variable segment size, which leads to memory fragmen­
tation. Another is the absence of what is called a dirty bit in the access byte of the
descriptor table. Assume that there is some memory that can be written into. The
accessed (A) bit indicates ifthe data has been accessed but does not indicate if any
new data was written into it. Why should the operating system care if the memory
is altered (written into)? If the data is altered, it is the job of the operating system
to save it on the disk to make sure that the hard disk always has the latest data. If
the dirty bit is zero (O~O), it means that the data has not been altered and the
operating system can abandon it when it needs room for new data (or code) since
the original copy is on the hard disk. This will save time for the operating system.
If the dirty bit is one (O~ I), the operating system must save the data before it is lost
or abandoned. Both problems of variable segment size and lack of a dirty bit in
segmentation are fixed in the paging method of virtual memory.

SECTION 21.3: 80386 PROTECTED MODE 651

TWO LEVEL PAGING SCHEME

31 22 12 0

LINEAR I
DIRECTORY I TABLE I OFFSET

ADDRESS I 12 ...
10 10, V

USER

Intel 386 ™ DX CPU
MEMORY

31 0 £)-+ ADDRESS

31 0

~ 31 0

CRa J
CR1 +

PAGE TABLE

CR2

CR3 ROOT
DIRECTORY

CONTROL REGISTERS

Figure 21-10. Paging Mechanism
(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1992)

652

Paging

Paging of virtual memory was a new addition to the 386, but the segmen­
tation method was left over from the 80286. All RISC and Motorola 680xO proces­
sors support paging virtual memory. In paging virtual memory, main memory is
divided into fixed 4K-byte chunks instead of variable sizes of 1 byte to 4 gigabytes,
as in segmentation. If a given piece of code or data is not present in main memory,
the operating system brings it into main memory from the hard disk, 4K at a
time. This is a much more manageable size of memory to transfer than, for example,
a 64K-byte segment. Since the size of memory is reduced to 4K bytes, the 386 keeps
a table for the 32 most recently used pages present in main memory to prevent the
CPU from swapping data in and out of main memory unnecessarily. This table is
called the translation lookaside buffer (TLB) and is kept inside the 386. To
understand the importance of the TLB, let's look at the the way paging works. First,
the term linear address in the 386 must be clarified. The 32-bit address of the
operand is called the linear address. This linear address can be a direct value such
as in the instruction "MOY EAX,[50000000)" or may be pointed to by any of
registers ED!, ESI, EBX, EDX, and so on, as in the instruction, "MOY EAX,[EBX)".
This linear address must be translated into a physical address to be put on the A31
- AO address pins and sent out for the address decoder to find the location in RAM
or ROM. In other words, the address 50000000H in instruction "MOY
EAX,[50000000)" does not refer to an actual RAM and ROM address 50000000H.
See Figure 21-10.

CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE

31

Going from a linear address to a physical address

In paging, the linear address is divided into three parts. The upper 10 bits
(A31 - A22) are used for an entry into what is called a page directory. There is a
32-bit register, CR3, inside the 386 that holds the physical base address of the page
directory. Since the upper 10 bits of the linear address points to the entry in the page
table directory, there can be 1024 page directories (210 =1024). Each entry in the
page directory is 4 bytes of page table descriptor. Of the 4 bytes of each page table
descriptor, the upper 20 bits are used to point to another table, where the physical
address of the 4K page frame is held. How is the correct entry in the table
located? A2I - A 11 (10 bits total) of the linear address are used to point to one of
the page table entries. Again, each entry in this second table has 4 bytes. The upper
20 bits are for A31 - A 12 of the physical address of where data is located. The lower
12 bits of the physical address are the lower 12 bits of the linear address. See Figures
21-11 and 21-12. In other words, only the lower 12 bits of the linear address match
the lower 12 bits of the physical location in RAM or ROM where data is located,
and the upper 20 bits of the linear address must go through two levels of translation
tables to get the actual physical address of the beginning page where the data is held.
This seems like a very long and inefficient process, and it is. This is the reason for
the TLB (translation lookaside buffer). The TLB inside the 386 holds the list of the
most recently (commonly) used physical addresses of the page frames. When the
CPU wants to access a piece ofinforrnation (data or code) by providing the linear
address, it first compares the 20-bit upper address with the TLB to see if the table
entry for the desired page is already inside the CPU. This results in two possibilities:
(I) If it matches, it picks the 20-bit physical address of the page and combines it
with the lower 12 bits of the linear address to make a 32-bit physical address to put
on the 32 address pins to fetch the data (or code); (2) ifit does not match, the CPU
must fetch into TLB the page table entry from memory.

Each entry in the page table has 4 bytes. Of these 4 bytes, 20 bits are used
to hold the A31 - All physical address of the page frame. The rest are used for the
P (present) bit, 0 (dirty) bit, RIW (read/write) bit, A (accessed) bit, and finally, U/S
(user/supervisor) bit, which indicates the privilege level of given data or code. In
the segmentation method there were 2 bits for privilege level, giving rise to 4 levels
of protection of 0, 1,2, and 3, where level 3 was assigned to the lowest level and
level 0 to the highest level. However, in the paging method, there is only 1 bit for
privilege level, which is called U/S (user/supervisor). IfU/S =0, it is user privilege
level and is equivalent to level 3 in segmentation. IfU/S=I, it is supervisor level,
belonging to the operating system and system kernel (BIOS). The supervisor
pnvilege level is equivalent to level 0, I, 2 in the segmentation method.

12 11 10 9 8 76543210

OS U R
PAGE TABLE ADDRESS 31 .. 12 RESERVED 0 0 D A 0 0 -- -- P

Figure 21-11. Page Directory Entry (Points to Page Table)
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1992)

31 12 11 10 9

as
PAGE FRAME ADDRESS 31 .. 12 RESERVED

Figure 21-12. Page Table Entry (Points to Page)
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1992)

SECTION 21.3: 80386 PROTECTED MODE

0

S W

8 7 6 5 4 3 210

u R
0 D A 0 0 -- -- P

S W

653

The bigger the TLB, the better

Since the TLB in the 386 keeps the list of addresses for the 32 most recently
used pages, it allows the CPU to have access to l28K bytes (32 x 4 =128) of code
and data at any time without going through the time-consuming process of convert­
ing the linear address to a physical address (two-stage table translation). See Figure
21-13. Therefore, one way to enhance the processor is to increase the number of
pages held by the TLB. This is what the Pentium has done, as we will see in Chapter
23. Table 21-7 compares paging and segmentation.

Table 21-7' Paging and Segmentation Comparison .
Feature Pa!!inl!:

i
Size I 4K bytes

i

Levels of privilege I 2

Base address 4K-bvte alil!lled

Dirty bit Yes

Access bit , Yes

Present bit Yes

Read/write protection Yes

32 ENTRIES

TRANSLATION
EAR LIN

AD DRESS

4

31 0

PAGE
DIRECTORY

LOOKASIDE
BUFFER

MISS

+

Figure 21-13. Translation Lookaside Buffer

HIT

PAGE
TABLE

(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1992)

Virtual 8086 mode

I
i
,

I
I

i

i

I

-

Segmentation

Any size

4

Anvaddress

No

Yes

Yes

Yes

PHYSICAL
MEMORY

• 98% HIT RATE

A major dilemma for designers ofthe Intel 386 was how to enhance the 386
and still run 8088/86 software based on MS DOS in protected mode. They solved
this dilemma by adding the virtual 8086 mode to the 386. In virtual 8086 mode, the
386 partitions memory into 1 megabyte sections, each assigned to one task. It also
runs each task as if it is an 8086 program, not concerned with privilege levels. In

i

654 CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE

other words, the 8086 virtual mode ofthe 386 microprocessor allows any program
written for DOS to be run unchanged under one task, where each task can have its
own I megabyte of memory. This means that in virtual 8086 mode, the 386 uses the
SEG:OFFSET concept used in the 8088/86 microprocessor. Both Microsoft Win­
dows 3.x and the IBM OS/2 2.0 use the virtual 8086 mode of the 80386 microproc­
essor. These operating systems use the 386's virtual 8086 mode to run multiples of
programs written for the 8088/86. The difference is that in MS Windows, only one
task can be active at a time and all other tasks are sitting idle (dormant) while one
task is being run, but in OS/2 2.0 each task is given a slice of the CPU's time, and
many tasks can be active concurrently. For example, a word processor can be used
while the modem/FAX is receiving and sending data and a spreadsheet program
such as Lotus 123 is doing some calculations and a disk is being formatted. Of
course, since there is only one microprocessor taking care of all these tasks, it is the
job of the OS/2 2.0 operating system to slice the CPU time and assign each task time
on a circular rotational basis. If there are too many tasks and all are active, they all
seem to be slow since each task gets less time (attention) from the CPU. Of course,
one way to solve this slowness is to use high-performance CPUs with 60 - 100 MHz
speed, such as the Pentium. Note that while OS/2 2.0 uses preemptive multitasking,
Windows 3.x uses cooperative multitasking. In cooperative multitasking, two or
more applications cooperate with each other in taking turns to use the CPU
alternately. If one application misbehaves, it can cause the whole system to be
unstable and crash. In preemptive multitasking, a task can be interrupted preemp­
tively at any point by another program. If a task is interrupted by another task, its
present state will be saved by the operating system and it will be serviced after the
new task is given a chance to use the CPU.

Review Questions

1. True or false. In protected mode, the 386 physical address is calculated by shifting
the segment register value and adding the offset.

2. Virtual memory refers to (main DRAM, hard disk) memory.
3. How does the operating system decide which code (or data) should be abandoned

to make room for new code?
4. In protected mode (segmentation), where is the physical address of the desired

code or data located?
5. Of the 8 bytes of the descriptor table entry, which one(s) are used for the physical

address? Assume that they are numbered from 0 to 7.
6. When a piece of code is run, which bit of the access byte is modified?
7. In 386 segmentation, level 3 is assigned the (lowest, highest) privilege.
8. In 386 segmentation, level 0 is assigned the (lowest, highest) privilege.
9. How many privilege levels are there in 386 paging?
10. True or false. In 386 paging, the linear and physical addresses are the same.
II. To get the physical address in 386 paging the linear address must go through _

(1,2) stage(s) of translation.
12. The virtual 8086 mode was introduced in the (80286,80386).
13. True or false. In MS Windows 3.0 and 3.1, only one task can be active at a time.
14. Why is OS/2 2.0 but not Windows 3.x a true multitasking operating system?

SUMMARY

SUMMARY

This chapter began with an overview of the additional features and new
instructions included in some of the microprocessors introduced after the 8086,
namely, the 80186, 80286, and 80386. The 386 runs previous-generation software
in real mode, and has a new mode called protected mode, which allows more
sophisticated software engineering.

The second section looked at the hardware of the 80386DX and 80386SX.
Each pin of the microprocessor was explained, as well as issues of bus bandwidth
and data misalignment.

655

The third section of this chapter gave an introduction to protected mode,
introduced to provide a protection system based on user's priority. Another new
feature of protected mode is virtual memory, which is implemented by one of two
methods: segmentation and paging. While in segmentation virtual memory, the file
could be any byte size, located anywhere it can fit into main memory; in paging
virtual memory, the file is always a multiple of4096 bytes and located on a4K-byte
boundary in main memory. In segmentation virtual memory, the segment registers
are used as selectors into the descriptor table, where all the information about a given
piece of data and code is kept, whereas in paging virtual memory, the physical
address is retrieved from two layers of look-up tables. Conversion from linear to
physical addresses is another variation in protected mode. Physical addresses in
protected mode are retrieved from a look-up table rather than calculated by shifting
left the segment register and adding the offset as is done in real mode.

PROBLEMS

656

SECTION 2l.1: 80386 IN REAL MODE

I. Which microprocessors support the instructions PUSHA and POPA?
2. Explain the function of PUSHA. It is equivalent to what set of instructions?
3. Explain the function of POPA. It is equivalent to what set of instructions?
4. Which microprocessors support "SHL dest,immediate"?
5. Find the contents of the destination register for each of the following.

(a) MOV AX,43H
SHL AX,4

(b) MOV BX,8000H
SHR BX,16

(c) MOV CX,OAAAH
ROL CX,8

(d) MOV CX,OAAAH
ROL CX,12

6. True or false. The 80286 was the first 80x86 to abandon mUltiplexing of the ad-
dress and data buses.

7. In which 80x86 microprocessor was the concept of virtual memory introduced?
8. In which of the 80x86 microprocessors was the 2-clock memory cycle introduced?
9. Which of the following instructions will cause an error in the 386?

(a) MOV EBX,AX (b) MOV ECX,BX
(c) ADD ECX,EDX (d) ADD EDX,AL
(e) MOV EBX,SI (f) ADD SI,DJ

10. Show how data is stored in "MOV [3500],EBX". Assume that EBX ~9834F543H.
II. Show how data is stored in "MOV ES:[lOOO],ECX" (ECX ~07B324H).
12. Which registers can be used for the scaled index addressing mode?
13. Write a 386 program to add a factor of 100 to an array of 10 DWORD data. Use

the scaled index addressing mode.
14. Write a 386 program to add two multibyte data items of8-byte size and store the

result. Use the scaled index addressing mode.
IS. Indicate all the registers that can be used for pointers in the 386. Also give their

default segments.
16. Find the destination register contents after execution of each of the following.

(a) MOV BX,-12
MOVSX EBX,BX

(b) MOV CL,-8
MOVSX EDX,CL

(c) MOV AH,7
MOVZX ECX,AH

(d) MOV AX,99H
MOVZX EBX,AX

CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE

17. Find the contents ofEAX and EBX after execution of the following.
MOV ECX,307F455H
BSF EAX,ECX
BSR EBX,ECX

18. Find the contents of AX and DX after execution of the following.
MOV BX,98H
BSFAX,BX
BSR DX,BX

19. What is the purpose of instructions MOVSX and MOVZX?
20. True or false. In the instruction "MOVSX REG,REG", the source and destination

registers must match in size.

SECTION 21.2: 80386: A HARDWARE VIEW

21. BEO - BE3 are active (low, high).
22. True or false. The address and data bus in the 386 are multiplexed.
23. Which part of the data bus is activated ifBEO ~ 0 and BEl ~ 0 (at the same time)?
24. Which part ofthe data bus is activated ifBE2 ~ 0 and BE3 ~ 0 (at the same time)?
25. Which part of the data bus is activated ifBEO ~ 0 and BE3 ~ 0 (at the same time)?
26. Which part of the data bus is activated if BEl ~ 1 and BE2 ~ 0 (at the same time)?
27. A 25-MHz 386 is connected to CLK2 of MHz.
28. Show the status ofCS, IP, A31 - A2, and BE3 - BEO in the 386 upon RESET.
29. What are the implications of your answer to Problem 28?
30. For what addresses in the 386 PC is BIOS ROM duplicated, and why?
31. Draw the bus cycle for the nonpipelined 386. Show the address, data, and

READY signals.
32. Find the total bus cycle necessary to transfer the operand in the instruction "MOV

[2002],ECX".
33. For aligned data, the addresses for DWORD type data in the 386 must have

as the lower hex digit.
34. "FC-in~d"t:;-h-e-memory cycle time for a 33-MHz 386.

SECTION 21.3: 80386 PROTECTED MODE

35. What is virtual memory?
36. True or false. The CPU requests data from virtual memory before it requests data

from main memory.
37. While main memory is made of (DRAM, hard disk), virtual memory

is (DRAM, hard disk).
38. What is the difference between the real and protected modes of the 386 in terms

of memory space?
39. To access the entire 4 gigabytes of the 386, the CPU must be in mode.
40. True or false. The 286 supports both segmentation and paging virtual memory.
41. True or false. The 386 supports both segmentation and paging virtual memory.
42. True or false. In the 286, the segment size can be I byte to 16 megabytes.
43. True or false. In the 386, the segment size can be I byte to 4 gigabytes.
44. For the 386, what is the page size in paging virtual memory?
45. How many bytes does each entry in the descriptor table use?
46. State the difference between real mode and protected mode as far as the physical

address of the operand is concerned.
47. How many bits are set aside for the addresses in the descriptor table, and where

are they located in the descriptor table?
48. To make the descriptor table of a 386 286-compatible, we must make bytes 7 and

8 all __ (Os, Is).
49. How many bits are set aside for the segment limits in the descriptor table, and

where are they located in the descriptor table?
50. True or false. Every piece of data or code accessed by the 386 in protected mode

must have an access byte.

PROBLEMS 657

51. 00 is the (lowest, highest) privilege level and 11 is the ___ _
(lowest, highest) one.

52. What is the function of bit A in the access byte of a 386 descriptor table entry?
53. What is the function of bit P in the access byte ofa 386 descriptor table entry?
54. State the characteristic of each of the following access bytes. State for each if it is

for code or data.
(a) 10010001 (b) llllOOOI (c) 11110011
(d) 11111011 (e) 10011011 (f) 11111011

55. What does TLB stand for, and what is it used for?
56. In the 386, state the difference between the linear and the physical address.
57. In paging to get the address of code or data, the 386 converts from

,--------,----0--.- (linear address, physical address) to (linear ad-
dress, physical address).

58. In the 386, before the address of the data or code is fetched it is checked against
the values held by the

59. What is the number of'e-n--;-tr~ie-s~i~n--;-th'e-3'86 TLB?
60. True or false. In virtual 8086, the addresses are calculated by shifting the segment

register left and adding it to the offset.
61. State the differences between paging and segmentation virtual memory.
62. How many privilege levels are there in paging?

ANSWERS TO REVIEW QUESTIONS

SECTION 21.1: 80386 IN REAL MODE
1 16
2. 16
3. 80286
4. 80286
5. c
6. false
7. BL=AA, BH=77, BX=77AA, EBX=99FF77AA
8. little end ian
9. EAX, EBX, ECX, EDX, ESI, and EDI
10. EA=2000+8 x1 00=2800H
11. b, c, e only
12. EDX=FFFFFFF7H
13. ECX=OOOOOOFBH
14. DX=3, AX=OOOC

SECTION 21.2: 80386: A HARDWARE VIEW
1 . 80386SX 2. 16
3. 34 pins since A31 - A2 is 30 and 4 pins for the BEO, BE1, BE2, and BE3
4. D23-D16 5.40 MHz
6. FFFFFFFOH 7. half
8. 1120 MHz=50 ns; therefore, it is 100 ns.

SECTION 21.3: 80386 PROTECTED MODE
1. false
2. hard disk
3. according to rule of least recently used
4. the descriptor table
5. bytes 2, 3, 4, and 7
6. A (access) bit
7. lowest
8. highest
9. two: user and supervisor
10. false 11. 2 stages
12. 80386 13. true
14. because in OS/2 2.0 more than one task can be active, but in Windows 3.x only one task is active for a given

period

658 CHAPTER 21: 386 MICROPROCESSOR: REAL vs PROTECTED MODE

CHAPTER 22

HIGH-SPEED MEMORY
INTERFACING AND CACHE

OBJECTIVES

. ·W·.I!f~~~)h~jfJI~lt!~U~i"notjV~t sti#~~siril~l~~te,~i~ t~!il~MPC to
~~~~jlte'~~~.~~~.I'Y~~'~ti~~·(/t~S~·(:~VSjl~di~~~Ory 

,,» ~~~.~~.~.nmellt"1'Y4~u.n.Slleh lI$l1!iflnflY C)!¢~!'iIi1JW.and·1nwnQIY 
~l1S.~titlte' ...... ', ........i ... ... ...<. 

» . J)~~~:t>e.t~y~~.$~esofDRAM: standardm~e,~mode,sta~licol. 
\ .• ~~~~~~ilJl)"'''~~ 

,#. ,J)~Ji,"".IIJlite~~rt~#~~~~I .. p~.~~t#l,tiJ~*v,ilth!iPr9blemOr 
.. . ............ ~~~~~~~ .•.. , ......... ,~1l~$Si~~~.~llreqll*~~~~~1illt~' •. , 
"»' .. ~~'l!4f~all~g~ofll~.g.D~Jorllt~"~~Ory~lIi~MMJorcaehe 
» ...... ~I\Il .. the th~tyP~ Of caeheorganlzation:fullyauodatiVe, direct 

· .. ~~.p~.a~~s,etassotiative » I!flPlilln.h~ 'Wnt~"'aeklllid 'lVrl~throughlltethodsohpdatingmammemory 
"eaeh~.d.talS libered 

·\~;~erlbe theCllChereplaeeme~tPolitiesLRU and FIFO 
»~~ ..... tand:eompareEDOandFPMDRAM 
»~erlbetbe ~Ilel'lltioll andpurposeofSDRAM 
»~xlllilln the eomJll)llents alid funetion"f Rambus technology 

659 



The potential power of high-performance microprocessors can be exploited 
only if memory is fast enough to respond to the microprocessor's need to fetch code 
and data. There is no use in choosing a fast processor and then interfacing it with 
slow memory. In this chapter we deal with issues of high-speed memory design. In 
Section 22. I we look at read and write cycle times of the 80x86 family. In Section 
22.2 we discuss various types of DRAMs, such as page mode, ,tatic column mode, 
and nibble mode, and the method of interleaved memory design. In Section 22.3, 
the cache memory option is discussed, and the way 386, 486, and Pentium processors 
use cache memory to increase system throughput is examined. Section 22.4 exam­
ines the newer and faster DRAMS of EDO, SDRAM, and Rambus technologies. 

SECTION 22.1: MEMORY CYCLE TIME OF THE 80X86 

660 

When interfacing a microprocessor to memory, the first issue is how much 
time is provided by the CPU for one complete read or write cycle. In other words, 
what is the memory cycle time of the CPU? In the 8088/86 microprocessor, the 
memory cycle time consists of 4 clocks, which leaves plenty of time to access 
memory. The slowest 8088/86, with a working frequency of 5 MHz, has an 800-ns 
memory cycle (4 x 200 ns = 800, T =1/5 MHz = 200 ns) and the fastest 8088/86, 
with 10-MHz speed, will have a 400-ns memory cycle. A memory cycle of 400 ns 
means that the CPU can access memory every 400 ns, and not faster. This is enough 
time to access even the slow and inexpensive DRAMs. However, for the 286, 386, 
486, and Pentium, memory cycle time consists of only two T clocks. This makes 
memory design a challenging task, especially when the speed of the CPU goes 
beyond 20 MHz. Table 22-1 shows the memory cycle times for various speeds of 
80x86 microprocessors. From Table 22-1 it can be seen that as the frequency of the 
CPU is increased, the maximum amount of time allowed to access memory is 
decreased, forcing the designer either to use fast and expensive memory or to 
introduce wait states into the memory cycle. 

Introducing wait states into the memory cycle 

When the memory timing requirement of the CPU cannot be met, one option 
that designers have is to introduce wait states. All 80x86 microprocessors have the 
READY pin. When the microprocessor initiates the memory cycle, meaning that it 
puts the addresses on the address bus, the time at which it must have the data at the 
pins of the data bus is fixed and is shown in Table 22-1. This fixed amount of time 
can be extended by activating the READY pin. Every time that the READY pin is 
activated, the CPU adds one extra clock to the memory cycle. For example, the 
25-MHz 80386 has a memory cycle of 80 ns (2 x 40 =80) with zero wait states. If 
READY is activated only once during the memory cycle, it adds one clock of 40 ns 
to the memory cycle, thereby giving the memory and decoding circuitry a total of 
120 ns to get the information to the data pins of the CPU. This 120 ns is spent on 
the following parameters: (I) memory decoding logic circuitry and address bus 
buffers (boosters) such as 74xx244, (2) access time of memory, and (3) the time it 
takes for signals to travel from memory data pins to the data pins of the CPU, going 
through any logic gates on the pathway, such as 74xx245 transceivers. Of these three 
parameters, memory access time is normally the longest, assuming the use of fast 
logic gates such as 74FXXX or 74ALSXXX. For more about logic families, see 
Chapter 26. If the allocated memory cycle time is not enough, more wait states are 
needed, making the memory cycle time longer. 

In a 25-MHz 386 with I wait state, there is a 120-ns memory cycle time, 
meaning that the CPU can perform read and write operations no faster than every 
120 ns. What happens if 140 ns is needed? Since the wait state is an integer multiple 
of the clock cycle (I, 2, 3, and so on), there is no other choice but to have 2 wait 
states. In other words, there is no such thing as 1.5 wait states. Wait states degrade 
computer performance, as shown in Example 22-1. It does not make sense to buy a 
high-frequency CPU, then interface it with slow memory. The next section wiIllook 
at possible solutions to this problem. 

CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE 



Table 22-1: Memory Cycle Times for 80x86 

CPU~Cloc-kR.~t~-~ II 
~~~=+------'=-"~~=~~=~~~~~~~=~==I 

4 clocks 8088/86 5 200 800 "

2 clocks

1-----
2 clocks

2 clocks

8088/86 8- 1 ---l=~"-~~ __ ~_ -l-+-' --=--=--=-~_--",,=50=0-1

-=:0~~=~~_1~-_--_--_-=-_=~1~~4-------=~:~~:~-.~6-=-:1 _____ --_--~~3;~~~.3_-
80286 _ f-- ____ ----'"8 __ -;--______ 125 I _____________ .15(L_1

80286 10 100 200 I

I
I-
I

80286 16 62.5 125

8028"'6 __ +-________ -'=2"-0 ____ 50 100
_8Q3_86QX __ _______ 16"----____________ §U 125

~­
,

80386DX 20 50 100

! 80386DX 25 __ ----"4"-0 __ +-_________ 80"0 i
, 80386=D~X~ ________ ~3~3~_l_ 30 60~i

80386SX 16 62.5 125 Ii
I ----------"'=-+------ ----------,'

l- -"8~03~8=6=SX~t-I----=20~-t- 50 100 II
____ ----t1-----'8=0386SX _! 25 40 80 j'l

2 c1ocks* 80486DX 25 40 80 ~i

80486DX 33 30 60

80486DX ' 40 25 50

1--______ -+ ___ 80486DX _5"'0"----_________ 201 40

2 clocks* 80486SX 16 62.5 125

80486SX 33 30 60 ~

_-'P-"e"nt ... iu"'m"---+------------'6"'0 _ _ I ___ ______ -'1,,6."'6'---+_____ 3 31

---.I>(;)ntiuITl • ________ -"6,,6 __ ----'____ 15 __ ----' ________ ---'"-3,,0_'

Pentium 150 MHz (66 MHz I 15 30 !

, b_us frequency) r 2 clOcks*~pe:tium Pro ' 20~u~:e~~~~~~~z~ __________ ~1~5~
--------~

30

* From external DRAM or the secondary cache.

Note: All memory cycle times are with zero wait states.
Note: In Pentium and Pentium Pro of over 100 MHz. the bus frequency is less than 100 MHz (often 66 - 80 MHz).

Example 22-1

Find the effective memory performance of a 25-MHz 386 CPU with one wait state.

Solution:
Since the 0 WS memory cycle is 80 ns (1/25 MHz =40 and 2 x 40 =80 ns), for I WS we have a mem­
ory cycle time of 120 ns. That means that the memory performance is the same as that of a 16.6-MHz
80386 (120 ns/2 =60 ns, then 1/60 ns =16.66 MHz) as far as memory accessing is
concerned. This is 67% performance of the 80386 with zero wait states.

SECTION 22.1: MEMORY CYCLE TIME OF THE 80X86 661

Review Questions

I. Find the read/write cycle time of the following systems
(a) 40-MHz 386 with 0 WS (b) 50-MHz 486 with 1 WS
(c) 66-MHz Pentium with 1 WS

2. A given CPU has a read/write cycle time of 50 ns. What does this mean?
3. Find the effective working frequency for memory access in each of the following.

(a) 40-MHz 386 with 1 WS (b) 50-MHz 486 with 1 WS
4. If a given CPU has a read cycle time of 60 ns and IOns is used for the decoder and

address/data path delay, how much is for memory access time?
5. If a given system is designed with 1 WS and has a 90-ns memory cycle time, find

the CPU's frequency if the read/write cycle time of this CPU is 2 clocks.

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE DRAMS

662

To understand interfacing memory to high-performance computers, the
different types of available RAM must first be understood. Although SRAMs are
fast, they are expensive and consume a lot of power due to the use of flip-flops in
the design of the memory cell, as we discussed in Chapter 11. At the opposite end
of the spectrum is DRAM, which is cheaper but is slow (compared to CPU speed)
and needs to be refreshed periodically. The refreshing overhead together with the
long access time of DRAM is a major problem in the design of high-performance
computers. The problem of the time taken for refreshing DRAM is minimal since
it uses only a small percentage of bus time, but the solution to the slowness of DRAM
is very involved. One common solution is using a combination of a small amount
ofSRAM, called cache (pronounced cash), along with a large amount of DRAM,
thereby achieving the goal of near zero wait states. Before we discuss such solutions,
we must understand what resources are available to high-performance system
designers. To this end, the different types of available DRAM will be discussed, and
cache memory is discussed in Section 22.3. First we clarifY some widely used
terminology such as memory cycle time and memory access time.

Memory access time vs. memory cycle time

Memory access time is defined as the time interval in between the moment
the addresses are applied to the memory chip address pins and the time the data is
available at the memory's data pins. The memory data sheets refer to it as tAA
(address access time). Another commonly used time interval is teA (access time
from CS), which is measured from the time the chip select pin of memory is activated
to the time the data is available. In some cases, notably EEPROM, tOE is the time
interval between the moment OE (READ) is activated to the time the data is
available. However, memory access time tAA is the one most often advertised.

Memory cycle time is the time interval between two consecutive accesses
to the memory chip. For example, a memory chip of 100 ns cycle time can be
accessed no faster than 100 ns, which means that two back-to-back reads can be
performed no faster than 200 ns, and 3 back-to-back reads will take 300 ns, and so
on. It must be noted that while in SRAM the memory cycle time is equal to memory
access time, this is not so in DRAM memory, as discussed next.

Types of DRAM

There are different types of DRAM, which are categorized according to
their mode of data access. These modes include standard mode, page mode, static
column mode, and nibble mode. Although each mode is discussed separately below,
often two of the above modes exist on the same DRAM chip. For example, page
mode DRAM has standard mode as well.

CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

DRAM (standard mode)

Standard mode (also called random access) DRAM, which has the longest
memory cycle time, requires the row address to be provided first and then the column
address for each cell. Each group is latched in by the activation ofRAS (row address
select) and CAS (column address select) inputs, respectively. The access time is
from the time that the row address is provided to the time that the data is available
at the output data pin of the DRAM chip. This is the access time that is commonly
advertised and is called tRAC (RAS access time, the access time from the moment
RAS is provided). This is acceptable if we are accessing a random cell within
DRAM. However, since most of the time data and code processed by the CPU are
in consecutive memory locations and the CPU does not jump around to random
locations (unless there is a lMP or CALL instruction), the DRAM will be accessed
with back-to-back read operations. Unfortunately, DRAM cannot provide the code
(or data) in the amount of time called lRAc if there is a back-to-back read from the
same DRAM chip because DRAM needs a precharge time (lRP) after each RAS has
been deactivated to get ready for the next access. This leads us back to the concept
of memory cycle time for DRAM memory chips. The memory cycle time for
memory chips is the minimum time interval between two back-to-back read/write
operations. In SRAM and ROM, the access time and memory cycle time are always
equal, but that is not the case for DRAMs. In DRAM, due to the fact that after RAS
makes the transition to the inactive state (going from low to high) it must stay high
for a minimum oflRP (RAS precharge) to precharge the internal device circuitry for
the next active cycle. Therefore, in DRAM we have the following approximate
relationship between the memory access time and memory cycle time.

tRC = tRAC + tRP (This is for standard mode)
read cycle time = RAS access time + RAS precharge time

For example, if DRAM has an access time of 100 ns, the memory cycle
time is really about 190 ns (100 ns access time plus 90 ns precharge time). To access
a single location in such a DRAM, 100 ns is enough, but to access more than one
successively, 190 ns is required for each access due to the precharge time that is
needed internally by DRAM to get ready to access the next capacitor cell.

The read cycle time not being equal to the access time is one of the major
differences between SRAM and DRAM. Although in SRAM the read cycle time is
equal to the access time, in DRAM of standard mode the read cycle time is about
twice the access time normally advertised (tACC). This could make a difference in
the total time spent by the CPU to access memory. Look at Example 22-2. From
the above discussion and Example 22-2 we can conclude that for successive accesses
of random locations inside the DRAM the CPU must spent a minimum oftRC time
on each access. Tables 22-2 and 22-3 show DRAM and SRAM memory cycle times,
respectively. See Figure 22-1 for DRAM and SRAM timing.

DRAM interfacing using the interleaving method

One of the methods used to overcome the problem of precharge time in
DRAMs is the interleaving method of DRAM interfacing. In this method, two sets
of banks are placed next to each other and the CPU accesses each set of banks
alternately. In this way the precharge time of one set of banks is hidden behind the
access time of the other one. This means that while the CPU is accessing one set of
banks, the other set is being precharged. Look at Figure 22-2. Assume that the
80386SX is working on 20 MHz frequency; therefore, the CPU has a memory cycle
time of 100 ns. Using DRAM with access time of70 ns and the precharge of65 ns
gives a DRAM cycle time of 135 ns (70 + 65 =135). This is much longer than the
100 ns provided by the CPU. Using interleaved memory design can solve this
problem. In this case when the 386SX accesses bank set A, it goes on to access bank
set B while set A takes care of its precharge time. Similarly, when the CPU accesses
set A, the B set banks will have time to precharge.

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE DRAMS 663

Static RAM Timing

IRC

addres s~ address valid -

In Sialic RAM (SRAM)

IRC = lAC

data
lAC ----1

I RC = Read C cia t Y AC = Acce 55 Time

Standard Mode DRAM Timing

E IRC

address 17fl}(row)(jjJjJjjj)< column XIIIIIIIIIIIIIIII

~ (~ IRP

b. ICA ~
data data

E ~C

t RAe = access time from RAS

tCAC = access time from CAS

-In DRAMtRC approx. - 2tRAC

t RC = read cycle time
tRP = RAS precharge time

Figure 22-1. DRAM vs. SRAM Timing

Example 22-2

Compare the minimum CPU time needed to read ISO random memory locations of a given bank in
each ofthe following.
(a) DRAM with TACC ~100 ns and TRC ~190
(b) SRAM ofTACC ~100

Solution:
(a) DRAM requires 190 ns to access each location. Therefore, a total of 150 x 190 ~28,500 ns

would be spent by the CPU to access all those ISO memory locations.
(b) In the case ofSRAM, the CPU spends only 150 x 100 ns ~15,000. This would have been needed

since T access ~ T read cycle (tACC ~tRC)'

Table 22-2: D_~~l\,:ces~Time vs. Cycle Time (4M x l).~~~~~~~~ ~~~~~,

: DRAM IRAS Access (tRAC) (ns). iReadCycie (tRC) (ns) i RAS Precharge (tRP) (ns} I

iMCIyI44UJO-6~~ 60 ! U~____ 45 I

I,MCM4410Q-7_0 ~ ________ 70 ______ + _______ 130 50 I

'iMCM44l00-80 : 80 i ISO 60 1,_- ____________ ~_~=~=_____ I ___ ~ ___ ~~ .. _. __ .

(Reprinted by permission of Motorola Corporation, Copyright Motorola Corp. 1993)

664 CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

Table 22-3: SRAM Access Time vs Cycle Time

~RAM (IDT Product)
I

Address Access (tAA) (ns) Read Cvcle (tRe) (ns)
I

IDT71258S25 25 25

i1IDT71258S35 i 35 35

I!IDT71258S45 45
I I

45 I
I

IIDT71258S25 i 70 70
(Repooted by pennlsslon of Integrated DeV1ce Technology, Copynght lOT, 1993)

Example 22-3
Calculate the time to access 1024 random bits ofa IMxl chip iftRC=85 ns and tRAc=165 ns.

Solution:
For standard mode (also called random) we have the following for reading 1024 bits:

time to read 1024 random bits = I 024 x tRC = I 024 x 165 ns = 168,960 ns

Example 22-4
Show the time needed to access all 1024 memory locations of Example 22-3 if the interleaved method
of memory interfacing is used.

Solution:
In the interleaved method, since the precharge time of one bank is hidden behind the access time of
the other bank, each memory location is accessed in tRAC as far as the CPU is concerned; therefore,
1024 x 85 =87,040 ns is the total amount of time spent by the CPU to access 1024 locations.

Set 8 SetA

Ir- c- I Ir- r- I
000003 000002 000001 000000
000007 000006 000005 000004
000008 OOOOOA 000009 000008

L- '- '- L-

OP

ot oj
OP

ol 01

OP I I OP I I
015 08 07 DO

Figure 22-2. Interleaved DRAM Organization

Interleaved drawback

The major drawback of interleaved memory is memory expansion. In
expanding the memory based on the interleaved method, a minimum of two sets of
banks must be added every time additional memory is required. Look at Example
22-5. Many inexpensive personal computers based on 386SX, 386DX, and 486SX
of 16 - 25 MHz frequency use the interleaved memory design method to avoid using
expensive cache memory without sacrificing performance.

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE DRAMS 665

Exam le22-S

Assume that we are using IMxl DRAM organization in Figure 22-2. If each set is 4 megabytes, find
the following.
(a) the chip count (b) the minimum memory addition and the chip count

Solution:

(a) Assuming I Mx9 for each bank where each bank takes care of 8 bits of data, there are 9 chips
for every byte. That means a total of 36 DRAM chips for each set, or a total of 72 IMxl chips
for the first 8 megabytes of interleaved memory.

(b) From then on, any memory addition must be in multiples of 4 megabytes since each set needs
2M; therefore, we need another 36 of IMxl DRAM chips to raise the total memory of the
system to 12M.

Exam Ie 22-6

A 386SX PC has 1M of DRAM installed using the interleaved design method. Show the memory
organization and DRAM chip count assuming that only 256Kx1 and 256Kx4 DRAM chips are used.

Solution:

Since the 386SX has a 16-bit data bus, it uses 512K bytes for each set of A and B, or four banks of
256Kx9, where each set consists of two banks of256Kx9. Therefore, the total chip count is 12 since
each bank uses 3 chips (two of 256Kx4 and one of 265Kx I for parity bit). This is shown as follows.

DP
256Kx1

D15 D8

Example 22-7

SetA SetB

DP
256Kx1

D7 DO

DP
256Kx1

D15 D8

DP
256Kx1

D7 DO

Show the minimum memory addition and the chip count for Example 22-6. Assume that the available
DRAM chips are 256Kxl and 256Kx4.

Solution:

The minimum memory addition is I M. Since we have two banks for each set of interleaved memory,
we have 2 of 256Kx4 and I of 256Kx I for parity, which means 3 chips for each bank. Therefore, the
minimum memory addition requires 12 chips, 8 of which are 256Kx4 and 4 are 256Kxl for parity
bits, resulting in I megabyte.

666 CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

Example 22-8

Page mode DRAM

The storage cells inside DRAM are organized in a matrix ofN rows and N
columns. In reading a given cell, the address for the row (AI - An) is provided first
and RAS is activated; then the address for the column (A 1 - An) is provided and
CAS is activated. In DRAM literature the term page refers to a number of column
cells in a given row. See Examples 22-8 and 22-9.

The idea behind page mode is that since in most situations memory
locations are accessed consecutively, there is no need to provide both the row and
column address for each location, as was the case in DRAM with standard timing.
Instead, in page mode, first the row address is provided, RAS latches in the row
address, and then the column addresses are provided and CAS toggles back and
forth, latching in the column addresses until the last column of a given page is
accessed. Then the address of the next row (page) is provided and the process is
repeated. While the access time of the first cell is the standard access time using
both row and column (lRAc), in accessing the second cell on to the last cell of the
same page (row), the access time is much shorter. This access time is often referred
to as tCAC (T of column access). In page mode DRAM when we are in a given page,
each successive cell can be accessed no faster than tpc (page cycle time). See Figure
22-3. Table 22-4 gives page mode timing parameters. In DRAM of page mode both
the standard mode and page mode are supported.

Show how memory storage cells are organized in each of the following DRAM chips.
(a) 256Kxl (b) lMxl (c) 4Mxl

Solution:

(a) As discussed in Chapter II, the 256Kxl has 9 address pins (AO - A8); therefore, cells are
organized in a matrix of29 x 29 ~512 x 512, giving 512 rows, each consisting of512 columns
of cells.

(b) 1024x 1024 (c) 2048 x 2048

Example 22-9

Assuming that the DRAMs in Example 22-8 are of page mode, show how each chip is organized into
pages. Find the number of columns per page for (a), (b), and (c).

Solution:

(a) For IMxl we have 512 pages, where each page has 512 columns of cells.
(b) 1024 pages, where each page has 1024 bits (columns).
(c) 2048 pages each of 2048 bits

Example 22-10

Calculate the total time spent by the CPU to access an entire page of memory if the memory banks are
page mode DRAM of IMxl with tRC ~165 ns, tRAC ~85 ns, and tpc ~50 ns.

Solution:

For page mode we have the following for reading 1024 bits:
Time to read 1024 bits of the same page ~ tRAC + 1023 x tpc

~85 ns + 1023 x 50 ns ~ 51,235 ns

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE DRAMS 667

address----< row 'Xl!!!;>< column n ~Olumn n+9@<COlumnn+2

IpC

N ~

data
ICAe "lcAc1

data n+ data n data n+

lRAC

Page Mode

address row IIII column n 'XJ7!1'; i{o .. mn n+1 IIII ~olumn n+2)
~ ~

1/
RAS -------... I' ISC

CS lAA lAA

~

~ data n ata n+ data

lRAC

Static Column Mode

olum I I I I I I I I I II

RAS----J

CAS ---+---,

Nibble Mode

Figure 22-3. DRAM Page, Static Column, and Nibble Modes

Table 22-4: Page Mode DRAM Timiog Parameters (4Mxl)
Ii

I Access Time from Page Cycle I! i Page Mode Read Cycle i Access Time from i
,DRAM i RAS tRAC (os) Time tRC (os) I CAS tCAC (os) , Time tpc (os) Ii

I MCM44100-60 I 60 110
!

15 40 :1

MCM44 I 00-70 70 I 130 20 45 -
MCM44100-80 80 150 20 50 I

(Repnnted by penmsslon of Motorola Corporatton, Copynght Motorola Corp. 1993)

668 CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

Static column mode

Static column mode makes accessing all the columns of a given row much
simpler by eliminating the need for CAS. In this mode, the fIrst location is accessed
with a standard read cycle where the row address is latched by RAS followed by
the column address and what is called CS (chip select) clock. From then on, CS is
incremented internally. As long as RAS and CS remain low, the contents ofsucces­
sive cells appear at the data output pin of DRAM until the last column of a given
row is accessed and then the process is moved to the next row. This means that the
initial access time of the fIrst cell is the standard access time (tRAC), but each
subsequent column in that row is accessed in a time called tAA (access time from
column address). Due to the fact that there is no setup and hold time for column
address select (CAS), the use of static-column-mode DRAM lends itself to memory
design of high -frequency systems. A large percentage of80386 and higher processor
computers use static column DRAM for main memory.

In static column mode where the initial standard access time is tRAC, when
we are in given a page, any cell can be accessed with the access time of tAA, but all
the successive bits can be accessed no faster than tsc (static column cycle time).
See Figure 22-3. Table 22-5 gives static-column-mode timing parameters.

Table 22-5: Static Column DRAM Timing Parameters (4Mxl)

il Static Column I T RAS Access," TRead C;cle, i T Column Access,
'i DRi\.M!RAC (ns) tRC (ns) . . tAA (lis)

Cycle Time, 1
tSc:(ns) .1

l.

rCM54102A-60 60 110 30

MCM54102A-79 70 130 35 ---t---.;H
1'35MCM54102A-80 . 80 ISO 40
(Reprinted by permission of Motorola Corporation. Copyright Motorola Corp., 1993)

Example 22-11

Calculate the total time spent by the CPU to access the entire page of memory if the memory banks
are static-column-mode DRAMs of IMxl with tRC =165 ns, tRAC =85 ns, and tsc =50 ns.

Solution:
For static column mode we have the following for reading 1024 bits:
time to read 1024 bits of the same page = tRAC + I 023 x 'sc

=85 ns +1023 x 50 ns =51,235 ns

Comparing Examples 22-10 and 22-11, if for both the page mode and static
column mode the time spent by the CPU is the same, what is the advantage of static
column mode? The answer is that static-column-mode DRAM design is simpler
since there is no circuit or timing requirement for the CAS pin. Notice in Figure
22-3 that we need to keep both RAS and CS (chip select) low in order to access
successive cells. Here is what Motorola Application Note AN986 says about the
superiority of the static-column-mode DRAM: "This mode is useful in applications
that require less noise than page mode. Output buffers are always on when the device
is in this mode and the CS clock is not cycled, resulting in fewer transients and
simpler operation Static column consists of changing column addresses while
holding the RAS and CS clocks active."

Nibble mode

In nibble mode, 4 bits (a nibble) can be accessed by providing RAS first
and CAS second, then holding RAS active while the CAS is being toggled. In this
regard, nibble mode is just like page mode except that only 4 bits are accessed instead
of all the columns of a given row. After the initial standard read, row and column
address counters are incremented internally, accessing the three subsequent bits

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE DRAMS 669

without the need for the column address. Notice from Figure 22-3 in nibble mode
that unlike the page and static column modes, there is no need to provide the external
column address.

In nibble mode, the first bit is accessed in the standard manner with the
standard access time (tRAC) but all read operations following the initial access are
performed at the rate of lNCAC, where lNCAC refers to nibble mode access time.

The major differences between this and page mode are that (a) there is no
need to provide the column address after the initial access, and (b) only 4 bits are
accessed rather than all the columns of a given row as in page mode. This can be
used to implement the burst mode of many 486, Pentium, and RISC processors, as
we will see in Chapter 23. In nibble mode, after the initial access each bit can be
accessed no faster than tNC (nibble mode cycle time). See Table 22-6.

To avoid the interchip delay associated with using many logic gates (often
called glue logic since they are soldered together), there are many DRAM controllers
which support the various DRAM operation modes. The operation modes are
compared in Example 22-13.

Table 22-6: Nibble Mode DRAM Timing Parameters (4Mxl)

Nibble Mode DRAM T RAS Access, i T Read Cycle, I T Nibble Mode !
hac (ns) I iRe (ns) Access tNCAC (ns) I

MCM54101A-60 60
I

110
I

20
I

MCM5410 IA-70 i 70 I 130 I 20

MCM54101A-80 80 I 150 I 20
(Repnnted by penruSSIOU of Motorola CorporatlOn, Copynght Motorola Corp. 1993)

Example 22-12

Calculate the total time spent by the CPU to access each of the following.
(a) 4 bits of nibble mode DRAM
(b) all 1024 bits of nibble mode DRAM iftRAC =85 ns, tNC =40 ns, and tRP =70 ns

Solution:

(a) To access the 4 bits of nibble mode we have:
time to read all 4 bits of nibble mode = tRAC + 3tNC

= 85 +3 x 40 =205 ns

(b) To access all 1024 bits using 256 access of 4-bit nibble mode we have:
time to read all 1024 bits of nibble mode = 256 (tRAC + 3tNC + tRP)

,

i

I

= 256 (85 + 3 x 40 + 70) = 70,400 ns

Example 22-13

Nibble Cycle,
iNc (ns)

40

40

40

Calculate the time spent to access 4 bits for each of the following. Use the data in Table 22-7.
(a) standard mode (b) page mode
(c) static column mode (d) Compare these with nibble mode DRAM.

Solution:

(a) Time to read 4 bits = 4tRC = 4 x 165 = 660 ns,

(b) Time to read 4 bits = tRAC + 3tpc =85 + 3 x 50 =235 ns.

(c) Time to read 4 bits = tRAC + 3tsc =85 + 3 x 50 =235 ns.
(d) In Example 22-12 we have =205 ns.

670 CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

Timing comparison of DRAM modes

A summary of DRAM timing is given in Tables 22-7 and 22-8. Much of
this material is taken from Motorola Application Note AN986.

Ta~~e22-7: Ti.'lling f~~!M!~8Sns D~JV1 Chip_ ~~ .~ ~~~

~Jmdard Page Static Column ' Nibble I, i Access Time (ns)

iAccesstim~from row, tRAe .. ___ ._85 __ .; .. __ 85_ .. _+-- 85
,ii'

-+_-=85~_!i
,

,Access tim"Jromcolunm,Jf:AC---':" 25 .. --. --- .. ~-~. ---11:
'(AceesstimeJrom..£Qlumn,tAA .. --- I u ___ I ___ 45 ji

I

Access time from column,tNCAC. i----J-I _-,2,.,,0,-- ~I
I Cycle tIme -~ .. ~. ~-----F----~-_____ bl __ -~il
,Read cj'cle tirne~ tRC _____ . +--~165 ... --.. -+--.. ----I ----,

.. __ ... ~50,,--__ ----J,
I:-~t<l.tic cohlmn time, tsc . ___ .. _~ __
iil:J"ibble mo.de cycle time, INC I.
(Reprinted by pennission of Motorola Corporation, Copyright Motorola Corp. 1993)

I, 50 ..
~-.. ~~~--+­

,

i 40

Table]2-8: Timing Compariso.I1 for Variou~s~D~RA=~M.;~M=o~d~e;;"s ~ _____ ~ __ ~~~

NS i Standard (Random) I

'~

Page Static
Column

Nibble

iTime toread 4 bits

'IJil1le to read 1024 bits

660 235 ,~_-"23,,,5,---+- 2"-05"--- i
I! 168,960 I 51,235 51,235 70,400

This concludes the discussion of DRAM operation modes. It must be noted
that in many systems one of the above modes is implemented in order to eliminate
the need for the wait state to access every bit of DRAM. As seen from the above
discussion, even the best of any of the above modes still cannot eliminate the need
for the wait state entirely unless SRAM is used for the entire memory, which is
prohibitively expensive. The best solution is to use a combination of SRAM and
DRAM, which is discussed next.

Review Questions

I. In which memory is the read cycle time equal to the memory access time?
2. A given DRAM is advertised to have an access time of 50 ns. What is the approxi­

mate memory cycle time for this DRAM?
3. A given DRAM has a 120-ns memory read cycle time. What is its access time

(tRAC)?
4. In DRAM, a read cycle consists of and '--"7""C~==-:-:
5. Assume an 80386 of interleaved memory with 2M bytes initial DRAM for each of

the following.
(a) Show how the banks are organized.
(b) What is the minimum memory addition?

6. True or false. In page mode, the initial read takes tRAC.
7. For page mode DRAM, while we are in a given page, we can access successive

memory locations no faster than _~ __ _
8. Calculate the time the CPU must spend to access 100 locations all within the same

page iftRAC =60 ns and !Pc =30 ns.
9. Calculate the access time for 4 bits in nibble mode if tRAC =50 ns, INc =20 ns.
10. The higher the system frequency, the less noise can be tolerated in the system.

Which is preferable in a 20-MHz system, static column or page mode DRAM?

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE DRAMS 671

SECTION 22.3: CACHE MEMORY

I

CPU

The most widely used memory design for high-performance CPUs imple­
ments DRAMs for main memory along with a small amount (compared to the size
of main memory) of SRAM for cache memory. This takes advantage of the speed
of SRAM and the high density and cheapness of DRAM. As mentioned earlier, to
implement the entire memory of the computer with SRAM is too expensive and to
use all DRAM degrades performance. Cache memory is placed between the CPU
and main memory. See Figure 22-4.

Address Bus

Secondary
Main

memory Hard disk (plus on-chip cache (DRAM)
cache for (SRAM)

486, Pentium)

I
Data Bus

Figure 22-4. CPU and Its Relation to Various Memories

672

When the CPU initiates a memory access, it first asks cache for the
information (data or code). If the requested data is there, it is provided to the CPU
with zero wait states, but if the data is not in cache, the memory controller circuitry
will transfer the data from main memory to the CPU while giving a copy of it to
cache memory. In other words, at any given time the cache controller has knowledge
of which information (code or data) is kept in cache; therefore, upon request for a
given piece of code or data by the CPU the address issued by the CPU is compared
with the addresses of data kept by the cache controller. If they match (hit) they are
presented to the CPU with zero WS, but if the needed information is not in cache
(miss) the cache controller along with the memory controller will fetch the data and
present it to the CPU in addition to keeping a copy of it in cache for future reference.
The reason a copy of data (or code) fetched from main memory is kept in the cache
is to allow any subsequent request for the same information to result in a hit and
provide it to the CPU with zero wait states. If the requested data is available in cache
memory, it is called a hit; otherwise, if the data must be brought in from main
memory, it is a miss.

In most computers with cache, the hit rate is 85% and higher. By combining
SRAM and DRAM, cache memory's access time matches the memory cycle of the
CPU. In the 80386/486 microprocessor with a frequency of33 MHz and above, the
use of cache is absolutely essential. For example, in the 33-MHz 80386-based
computer with only a 60-ns read cycle time, only static RAM with an access time
(cycle time) of 45 ns can provide the needed information to the CPU without
inserting wait states. We have assumed that 15 ns (60 - 45 = 15) is used for the delay
associated with the address and data path. To implement the entire 16M of main
memory of a 33-MHz 386/486 system with 45 ns SRAM is not only too expensive

CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

but the power dissipation associated with such a large amount of SRAM would
require a complex cooling system used only for expensive mini- and mainframe
computers. The problem gets worse if we use a 486 of 50 MHz or a Pentium of 60
MHz.

It must be noted that when the CPU accesses memory, it is most likely to
access the information in the vicinity of the same addresses, at least for a time. This
is called the principle of locality of reference. In other words, even for a short
program of 50 bytes, the CPU is accessing those 50 memory locations from cache
with zero wait states. If it were not for this principle of locality and that the CPU
accesses memory randomly, the idea of cache would not work. This implies that
JMP and CALL instructions are bad for the performance of cache-based systems.
The hit rate, the number of hits divided by the total number of tries, depends on the
size of the cache, how it is organized (cache organization), and the nature of the
program.

Cache organization

There are three types of cache organization:
I. fully associative
2. direct mapped
3. set associative

The following is a discussion of each organization with their advantages
and disadvantages. For the sake of clarity and simplicity, an 8-bit data bus and 16-bit
address bus are assumed.

Fully associative cache

In fully associative cache, only a limited number of bytes from main
memory are held by cache along with their addresses. The SRAMs holding data are
called data cache and the SRAMs holding addresses ofthe data are called tag cache.
This discussion assumes that the microprocessor is sending a 16-bit address to
access a memory location that has 8 bits of data and that the cache is holding 128
of the possible 65,536 (216) locations. This means that the width of the tag is 16 bits
since it must hold the address, and that the depth is 128. When the CPU sends out
the 16-bit address, it is compared with all 128 addresses kept by the tag. If the
address of the requested data matches one of the addresses held by the tags, the data
is read and is provided to the CPU (a hit). If it is not in the cache (a miss), the
requested data must be brought in from main memory to the CPU while a copy of
it is given to cache. When the information is brought into cache, the contents of the
memory locations and their associated addresses are saved in the cache (tag cache
holds the address and data cache holds the data).

In fully associative cache, the more data that is kept, the higher the hit rate.
An analogy is that the more books you have on a table, the better the chance of
finding the book you want on the table before you look for it on the book shelf. The
problem with fully associative is that if the depth is increased to raise the hit rate,
the number of comparisons is too time consuming and inefficient. For example,
1024 depth fully associative requires \024 comparisons, and that is too time
consuming even for fast comparators. On the other hand, with a depth of 16 the CPU
ends up waiting for data too often because the operating system is swapping
information in and out of cache since its size is too small and it must save the present
data in the cache before it can bring in new data. This replacement policy is discussed
later. In the above example of 128 depth, the amount of SRAM for tag is 128 x 16
bits and 128 x 8 for data, that is, 256 bytes for tag and 128 bytes for data cache for
a total of384 bytes. Although the above example used a total of384 bytes ofSRAM,
it is said that the system has 128 bytes of cache. In other words, the data cache size
is what is advertised. The SRAM inside the cache controller provides the space for
storing the tag bits. Tag bits are not included in cache size. In Figure 22-5, DRAM
location F992 contains data 85H. The left portion of the figure shows when the data
is moved from DRAM to cache.

SECTION 22.3: CACHE MEMORY 673

Fully Associative ! A15

Tag Cache Data Cache DRAM Main Memory

0
1

AO -
SRAM SRAM

F992 85 F992 85

A15 -
127'-____ --'

A15 AO D7 D7

Tag cache = 128x16 Data cache = 128x8

Figure 22-5. Fully Associative Cache

AO

A10

-

-

Direct-mapped cache

Direct-mapped cache is the opposite extreme offully associative. It requires
only one comparison. In this cache organization, the address is divided into two
parts: the index and the tag. The index is the lower bits of the address, which is
directly mapped into SRAM, while the upper part of the address is held by the tag
SRAM. From the above example, AO to AIO are the index and All to AI5 are the
tag. Assuming that CPU addresses location F7 A9H, the 7 A9 goes to the index but
the data is not read until the contents of tag location 7 A9 of tag is compared with
IIIIOB. If it matches (its content is 11110), the data is read to the CPU; otherwise,
the microprocessor must wait until the contents of location F7 A 9 are brought from
main memory DRAM into the CPU while a copy of it is issued to cache for future
reference. There is only one unique location with index address of 7 A9, but 32
possible tags (25 =32). Any of these possibilities, such as C7 A9, 27 A9, or 57 A9,
could be in tag cache. In such a case, when the tag of a requested address does not
match the tag cache, a cache miss occurs. Although the number of comparisons has
been reduced to one, the problem of accessing information from locations with the
same index but different tag, such as F7 A9 and 27 A9, is a drawback. The SRAM
requirement for this cache is shown below. While the data cache is 2K bytes, the tag
requirement is 2K x 5 = I OK bits or about 1.25K bytes. See Figure 22-6.

Direct Mapped ! A15 A11! A10 Aol

TAG INDEX

Tag Cache Data Cache DRAM Main Memory

AO - AO-

SRAM SRAM

A10 - A15-

A15 D7 D7

Tag cache = 2Kx5 Data cache = 2Kx8 (2K bytes for data cache)

Figure 22-6. Direct-Mapped Cache

674 CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

2-way Set Associative I A15 A101 A9

TAG INDEX

Set 2 Set 1
DRAM Main Memory

AD - - AD -

Tag Data Tag Data

A9 I-

A15--

I I I I I I
A15 A10 07 DO A15 A10 D7 DO D7 DO

[Tag = 1K x 6 Data = 1 K x 8] for each set (2K bytes for data cache)

Figure 22-7. Two-way Set Associative

4-way Set Associative I A15

TAG INDEX

~4 S~3 S~2 ~1
.-----"-'''---.11'''"1 ---=::::':"'~--'I rl --"""':::":"":=---'11'----=:"":""--'

DRAM
Main Memory

AD - - I- I- - - j- - AO-

Tag Data Tag Data Tag Data Tag Data

- I- I- 1- - - 1- -AS

A15-

I I I I I I I I I
A15 A9 D7 DO A15 A9 D7 DO A15 A9 D7 DO A15 A9 D7 DO D7 DO

[Tag = 512 x 7 Data = 512 x 8] for each set (2K bytes for data cache)

Figure 22-8. Four-way Set Associative

SECTION 22.3: CACHE MEMORY 675

Set associative

This cache organization is in between the extremes of fully associative and
direct mapped. While in direct mapped, there is only one tag for each index; in set
associative, the number oftags for each index is increased, thereby increasing the
hit rate. In 2-way set associative, there are two tags for each index, and in 4-way
there are 4 tags for each index. See Figures 22-7 and22-8. Comparing direct-mapped
and 2-way set associative, one can see that with only a small amount of extra SRAM,
a better hit rate can be achieved. In this organization, if the microprocessor is
requesting the contents of memory location 41 E6H, there are 2 possible tags that
could hold it, since cache circuitry will access index I E6H and compare the contents
of both tags with" 0100 00". Ifany of them matches it, the data of index location
IE6 is read to the CPU, and if none of the tags matches "0100 00", the miss will
force the cache controller to bring the data from DRAM to cache, while a copy of
it is provided to the CPU at the same time. In 4-way set associative, the search for
the block of data starting at 41 E6 is initiated by comparing the 4 tags with "0 I 00
000", which will increase the chance of having the data in the cache by 50%,
compared with 2-way set associative. As seen in the above example, the number of
comparisons in set associative depends on the degree of associativity. It is 2 for
2-way set associative, 4 for 4-way set associative, 8 for 8-way, n for n-way set
associative, and in the thousands for fully set associative. The higher the set, the
better the performance, but the amount of SRAM required for tag cache is also
increased, making the 8-way and 16-way associate increased costs unjustifiable
compared to the small increase in hit rate. The increase in the set also increases the
number of tag comparisons. Most cache systems that use this organization are
implemented in 4-way set associative (e.g., 80486 on-chip cache).

From a comparison of these two cache organizations, the difference
between them in organization and SRAM requirements can be seen. In 2-way, the
tag of 1 Kx6 and data of 1 Kx8 for each set gives a total of 14K bits [2 x (1 K x 6 + IK
x 8) ~ 28K bits]. In 4-way, there is 512 x 7 for the tag and 512 x 8 for data, giving
a total of32K bits [(512 x 7 +512 x 8) x 4 ~ 32K bits] ofSRAM requirement.
Only with an extra 4K bits will the hit rate improve substantially. As the degree of
associativity is increased, the size of the index is reduced and added to the tag and
this increases the tag cache SRAM requirement, but the size of data cache remains
the same for all cases of direct map, 2-way, and 4-way associative. These concepts
are clarified further in Examoles 22-14 22-15 and 22-16.

Example 22-14

This example shows direct-mapped cache for 16M main memory.

676

Direct Mapped

Tag Cache

AO- AO-

SRAM

A17- A17-

A23

Tag cache = (218 x 6)/8 = 192K bytes

I A23

TAG

Data Cache

SRAM

A181 A17

INDEX

DRAM Main Memory

AO-

A23-

D7 D7

Data cache = (2 18 x 8)/8 = 2S6K bytes

CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

Example 22-15

This example shows 2-way set associative cache for 16 MB main memory.

2-Way Set Associative I A23 A171 A16 Aol

TAG INDEX

Set 2 Set 1
I I I I DRAM Main Memory

AO- - - - AD -

Tag Data Tag Data

A16 - - - -
A23--

I I I I I I I I
A23 A17 D7 DO A23 A17 D7 DO

Tag = 2[(217 x 7)/8] = 224K bytes Data = 2[(217 x 8)/8] = 256K bytes

Example 22-16

This example shows 4-way set associative cache for 16 MB main memory.

4-Way Set Associative I A23 A161 A15 Aol

TAG INDEX

Set4 Set 3 Set 2 Set 1
DRAM

I II II Ii I Main Memory

AO- I- I- 1- - - - - AO-

Tag Data Tag Data Tag Data Tag Data

A15 - I- I- 1- - - 1- -
A23-

I I I I I I I
A23A16 D7 DO A23A16 D7 DO A23 A16 D7 DO A23 A16 D7 DO

Tag = 4[(216 x 8)/8] = 256K bytes Data = 4[(216 x 8)/8] = 256K bytes

SECTION 22.3: CACHE MEMORY 677

Write-through

Updating main memory

In systems with cache memory, there must be a way to make sure that no
data is lost and that no stale data is used by the CPU, since there could be copies of
data in two places associated with the same address, one in main memory and one
in cache. A sound policy on how to update main memory will ensure that a copy of
any new data written into cache will also be written to main memory before it is lost
since the cache memory is nothing but a temporary buffer located between the CPU
and main memory. To prevent data inconsistency between cache and main memory,
there are two major methods of updating the main memory: (I) write-through and
(2) write-back. The difference has to do with main memory traffic.

Write-through

In write-through, the data will be written to cache and to main memory at
the same time. Therefore, at any given time, main memory has a copy of valid data
contained in cache. At the cost of increasing bus traffic to main memory, this policy
will make sure that main memory always has valid data, and if the cache is
overwritten, the copy of the latest valid data can be accessed from main memory.
See Figure 22-9.

Write-back (copy-back)

In the write-back (sometimes called copy-back) policy, a copy of the data
is written to cache by the processor and not to main memory. The data will be written
to main memory by the cache controller only if cache's copy is about to be altered.
The cache has an extra bit called the dirty bit (also called the altered bit). If data is
written to cache, the dirty bit is set to I to indicate that the cache data is new data
which exists only in cache and not in main memory. At a later time, the cache data
is written to main memory and the dirty bit is cleared. In other words, when the dirty
bit is high it means that the data in cache has changed and is different from the
corresponding data in main memory; therefore, the cache controller will make sure
that before erasing the new data in cache, a copy of it is given to main memory.
Getting rid of information in cache is often referred to as cache flushing. This
updating of the main memory at a convenient time can reduce the traffic to main
memory so that main memory buses are used only if cache has been altered. If the
cache data has not been altered and is the same as main memory, there is no need
to write it again and thereby increase the bus traffic as is the case in the write-through
policy. See Figure 22-9.

I ~ ,
CPU Cache Main

Writes to both at the memory
same time.

I !
Write-back

CPU Cache Main
Cache controller will memory
write to main memory

t at a convenient time. I
Figure 22-9. Methods of Updating Main Memory

678

Before concluding this section, two more cache terminologies will be
described which are commonly used in the technical literature: cache coherency and
cache replacement policy. Table 22-9 gives an overview of cache performance.

CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

Table 22-9: Cache System Performance

~ Cache Confi2uration Cache P~rformance II

Size I Associativitv I Line Size (bvtes) Hit Rate (%) II

Ie
1K I Direct I 4 41 I

I' 8K Direct 4 73 I

16K Direct 4 81
~ I

-----1----- --j

I
32K Direct 4 86 --~I
32K 2-Way 4 87 +-- ~,
32K Direct 8 91 II

'~ -----------;1

I'
64K Direct 4 8!! i

jl
il

64K 2-Way 4 89
'I

If
64K 4-Way 4 89

i

'~I

I
64K Direct 8 92 I!

64K 2-Way 8 93 -J,

Ii

128K Direct 4 89 II
128K 2-Way 4 89 I

','
i'

128K Direct 8 93
I

'I ,

(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1986)

Cache coherency

In systems in which main memory is accessed by more than one processor
(DMA or multiprocessors), it must be ensured that cache always has the most recent
data and is not in possession of old (or stale) data. In other words, if the data in main
memory has been changed by one processor, the cache of that processor will have
the copy of the latest data and the stale data in the cache memory is marked as dirty
(stale) before the processor uses it. In this way, when the processor tries to use the
stale data, it is informed of the situation. In cases where there is more than one
processor and all share a common set of data in main memory, there must be a way
to enSure that no processor uses stale data. This is called cache coherency.

Cache replacement policy

What happens if there is no room for the new data in cache memory and the
cache controller needs to make room before it brings data in from main memory?
This depends on the cache replacement policy adopted. In the LRU (least recently
used) algorithm, the cache controller keeps account of which block of cache has
been accessed (used) the least number of times, and when it needs room for the new
data, this block will be swapped out to main memory or flushed if a copy of it already
exists in main memory. This is similar to the relation between virtual memory and
main memory. The other replacement policies are to overwrite the blocks of data in
cache sequentially or randomly, oruse the FIFO (first in, first out) policy. Depending
on the computer's design objective and its intended use, any of these replacement
policies can be adopted.

Cache fill block size

If the information asked for by the CPU is not in cache and the cache
controller must bring it in from main memory, how many bytes of data are brought
in whenever there is a miss? If the block size is too large (let's say 500 bytes), it
will be too slow since the main memory is accessed normally with I or 2 WS. At

SECTION 22.3: CACHE MEMORY 679

the other extreme, if the block is too small, there will be too many cache misses.
There must be a middle-of-the-road approach. The block size transfer from the main
memory to CPU (and simultaneous copy to cache) varies in different computers,
anywhere between 4 and 32 bytes. In cache controllers used with 386/486 machines,
the block size is 32 bytes. This is called the 8-line cache refill policy, where each
line is 4 bytes ofthe 32-bit data bus. Advances in IC fabrication have allowed putting
some cache on the CPU chip. This on-chip cache is called L I (level I) cache whereas
cache outside the CPU is called L2 (level 2)

Review Questions

l. Cache is made of (DRAM, SRAM).
2. From which does the CPU asks for data first, cache or main memory?
3. Rank the following from fastest to slowest as far as the CPU is concerned.

(a) main memory (b) register (c) cache memory
4. In fully associative cache of 512 depth, there will be __ comparisons for each

data request.
5. Which cache organization requires the least number of comparisons?
6. A 4-way set associative organization requires __ comparisons.
7. What does write-through refer to?
8. Which one increases the bus traffic, write-through or write-back?
9. What does LRU stand for, and how is it used?
10. A cache refill policy of 4 lines refers to ____ _

SECTION 22.4: EDO, SDRAM, AND RAMBUS MEMORIES

680

In recent years the need for faster memory has led to the introduction of
some very high-speed DRAMs. In this section we look at three of them: EDO
(extended data-out), SDRAM (synchronous DRAM), and RDRAM (Rambus
DRAM). In the mid-1990s, the speed of x86 processors went over 100 MHz and
subsequently Intel and Digital Equipment began
talking about 300 - 400 MHz CPUs. However, a Table 22-10: 70 ns 4M
major problem for these high-speed CPUs is the
speed of DRAM. After all, cache has to be filled with
information residing in main memory DRAM. Be­
fore we discuss some high-speed DRAMs, it needs
to be noted that "300 MHz" cpe does not mean that
its bus speed is also 300 MHz. For microprocessors
over 100 MHz, the bus speed is often a fraction of
the CPU speed. This is due to the expense and diffi­
culty (e.g., crosstalk, electromagnetic interference)
associated with the design of high-speed mother­
boards and the slowness of memory and logic gates.
For example in many 150-MHz Pentium sys­

DRAM Timing
~. ",,--~-~~,,~ IL ., i FPM I EI)O II

Ii Speed (ns)L~ . ~,
I tRAe (ns) ! ,70 I 70J

1'1, tRc(ns)! 13L ,'! ~()J"
. tpe(ns) ! 40 L 30 •
Note. 256Kx16 DRAM
From Micron Technology

tems, the bus speed is only 66 MHz.

EDO DRAM: origin and operation

Table 22-11: 60,50 ns 4M
DRAM Timing

Earlier in this chapter we discussed
page mode DRAM. It needs to be noted that
page mode DRAM has been modified and now
is referred to asfast page mode DRAM. Note
that DRAM data books of the mid-1990s refer
only to fast page DRAM (FPM DRAM) and
not page mode. The following describes the
operation and limitations of fast page DRAM
and how it led to EDO DRAM.

E
r-

FPM ED.o

Speed (ns) 60 60

lRAc (ns) . 60 60

t tpc (ns) 1}5 I 25
Note: 256Kx16 DRAM
From Micron Technology

IRc (ns) 110 ! 110
~

I

I

CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

CAS

I. The row address is provided and latched in when RAS falls. This opens the page.
2. The column address is latched in when CAS falls and data shows up after teAC has

elapsed. However, the next column ofthe same row (page) cannot be accessed faster
than !Pc (page cycle time). This means that accessing consecutive columns of
opened pages is limited by the tpc. The !Pc timing itself is influenced by how long
CAS has to stay low before it goes up. Why don't DRAM designers pull up the CAS
faster in order to shorten the tpc? This seems like a very logical suggestion.
However, there is a problem with this approach in fast page mode: When the CAS
goes high, the data output is turned off. So if CAS is pulled high too fast (to shorten
the !pc), the CPU is deprived of the data. One solution is to change the internal
circuitry of fast page DRAM to allow the data to be available longer (even if CAS
goes high). This is exactly what happened. As a result of this change, the name EDO
(extended data-out) was given to avoid confusion with fast page mode DRAM. This
is the reason that EDO is sometimes called hyper-page since it is the hyper version
of fast page DRAM. Tables 22-10 and 22-11 show a comparison ofFPM and EDO
DRAM timing. Notice in both cases that all the parameters are the same except !Pc.
For the EDO version of page mode, the !Pc is 10 ns less than fast page mode.

/
tpc

) t PC = page cycle time
"-

\ {
t CP = CAS precharge

tcp tCAS = CAS pulse width J
~)

tCAS tpc = tcp + tCAS

tcp is the same in FPM and EDO; however, tCAS is shorter in EDO

Figure 22-10. Tpc Timing in Page Mode DRAM

address

RAS

CAS

In examining tpc timing in Figure 22-10, notice that !Pc (page cycle time)
consists of two portions: tcp (CAS precharge time) and teAS (CAS pulse width).
The tep is similar across 70 ns, 60 ns, and 50 ns DRAMs ofFPM and EDO (about
10 ns). It is tCAS that varies among these DRAMs. In EDO this portion is made as
small as possible. Figure 22-11 compares FPM and EDO timing.

---« row '4J!l)(column n ';IJJ!l;4..olumn n+1~olumn n+2

FPM data --------------«doto n)>----<~ata n+1)>----<~ato n+2>-

EDO data --------------« data n >< data n+1 >< data n+2

Figure 22-11. Comparison of FPM and EDO Timing

SECTION 22.4: EDO, SDRAM, AND RAMBUS MEMORIES 681

SDRAM (synchronous DRAM)

When the CPU bus speed goes beyond 75 MHz, even EDO is not fast
enough. SDRAM is a memory for such systems. First, let us see why it is called
synchronous DRAM. In all the traditional DRAMs (page mode, fast page and EDO),
CPU timing is not synchronized with DRAM timing, meaning that there is no
common clock between the CPU and DRAM for reference. In those systems it is
said that the DRAM is asynchronous with the microprocessor since the CPU
presents the address to DRAM and memory provides the data in the master/slave
fashion. If data cannot be provided on time, the CPU is notified with the NOT
READY signal. In response to NOT READY, the CPU inserts a wait state into its
bus timing and waits until the DRAM is ready. In other words, the CPU bus timing
is dependent upon the DRAM speed. This is not the case in synchronous DRAM.
In systems with SDRAM, there is a common clock (called the system clock) that
runs between the microprocessor and SDRAM. All bus activities (address, data,
control) between the CPU and DRAM are synchronized with this common clock.
That is, the common clock is the point of reference for both the CPU and SDRAM
and there is no deviation from it and hence no waiting by the CPU. See Figure 22-12
for SDRAM timing. As shown in Figure 22-12, the system clock is the common
clock that the address, data, and control signals are synchronized with. As you
examine the timing figures in EDO and page mode, you will not find such a clock.

Synchronous DRAM and burst mode

The presence of the common system clock between the CPU and SDRAM
lends itself to what is called burst J/O. Although burst 110 will do both read and
write, we will discuss the read operation for the sake of simplicity. In burst read, the
address of the first location is provided as normal. RAS is first, followed by CAS.
However, since in the cache fill we read several consecutive locations (depending
on whether the cache has 4,8, 16, or 32 lines), there is no need to provide the full
address of each line and pay the timing penalty for address setup and hold time. Why
not simply program the burst SDRAM to let it know how many consecutive
locations are needed according to the cache design? That is exactly the idea behind
many SDRAMs. They are capable of being programmed to output up to 256
consecutive locations inside DRAM. In other words, the number of burst reads can
be 1,2,4, 8, 16, or 256, and burst SDRAM can be programmed in advance for any
number of these reads. The number of burst reads is referred to as burst length. In
many recent SDRAMs, the burst length can be as high as a whole page. Burst read
shortens memory access time substantially. For example if burst length is pro­
grammed for 8, for the first location we need the full address ofRAS followed by

system clock

00 ----------~

address ~--;/ ;-:-:; ;CC/;-;'; /;-:-; ;-;-;; /-:-:; ;7;;-;'; ;;-:-; ;-:-:; ;-';c;;-;'; ;;-:-; ;-:-:; /cc; ;;-;';;-:-; ;-;-;; /-;"";; ;c;-/;-;'; /-;-;; ;':C; /7/;-;'; ;-;-;; /-:-:; /"'/;-;'; ;;-:-; /-;-;; /-;-;; /7;:-:-; ;=; /

data data n data n+J

Figure 22-12. SDRAM Timing

682 CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

CAS. However, for the second, third, ... , eighth, we can get the data out of the
SDRAM with a minimum delay, limited only by the internal circuitry of DRAM.
Starting with the x486, processors use the concept of burst read in their bus timing.

SDRAM and interleaving

In order to increase performance, SDRAMs use the concept of interleaving
discussed in Section 22.2. In traditional interleaved design, the board designer must
arrange the DRAM in an interleaved fashion in order to hide the precharge time of
one bank behind the access time of the other one. In SDRAM, this interleaving is
done internally. In other words inside the SDRAM itself, DRAM cells are organized
in such a way that while one bank is being refreshed the other one is being accessed.
By incorporating both the burst mode and interleaving concepts into SDRAM, it is
predicted that SDRAM memory can be used for a bus frequency as high as 125 MHz
but not beyond that.

Figure 22-12 shows SDRAM timing. How many clocks after CAS will the
data appear at the data pins? This can be programmed. It is called read latency and
can be 1,2, or 3 clocks. In Figure 22-12, the read latency is 3 since the data appears
at the data buses 3 clocks after CAS.

It should be noted that SDRAM and EDO standards are both set by industry
and every DRAM maker supports them. SDRAM and EDO are not proprietary
technologies.

Example 22-17

Assume a bus frequency of 100MHz. Discuss bus timing for (a) EDO of 50 ns speed where tcp=20,
(b) SDRAM of lcK=10ns.

Solution:

1/100MHz = IOns is Ihe syslem clock.

(a) In EDO when the page is opened, the fastest il can provide data is tpc> which is 2Ons. Therefore,
we need at least one wait state.

(b) In SDRAM oflcK=10 ns, the first address is strobed into the DRAM and subsequent data bursts
are provided at 10 ns intervals. Therefore, no wait state is needed. Of course, for both of the
above cases any bus overhead was ignored.

Rambus DRAM

In contrast to EDO and SDRAM, Rambus is proprietary DRAM architec­
ture. DRAM manufacturers license this technology from Rambus Inc. in exchange
for royalty payments. DRAMs with Rambus technology are referred to as RDRAM
in technical literature.

Overview of Rambus technology

The heart of Rambus technology is a proprietary interface for chip-to-chip
bus connection. This high-speed bus technology is composed ofthree sections: (I)
a Rambus interface, (2) a Rambus channel, and (3) Rambus DRAM. The Rambus
interface standard must be incorporated into both DRAM and the CPU. While many
DRAM makers are introducing DRAM with a Rambus interface (called RDRAM),
not every microprocessor is equipped with a Rambus interface. However, Intel has
indicated that it will equip future generations of the x86 with a Rambus interface.
However, if a given microprocessor is not equipped with a Rambus interfuce, one
can design a memory controller with the Rambus interface and place it between the
CPU and RDRAM. Such a controller is referred to as a Rambus channel master
and the RDRAM is called a Rambus channel slave. See Figures 22-13 and 22-14.

SECTION 22.4: EDO, SDRAM, AND RAMBUS MEMORIES 683

Controller Rambus
channel or DRAM

master processor core

Rambus Interface

Rambus Interface

9-bit I data bus

Rambus Channel = 9 bits every 2 ns

RDRAMs
(Rambus
channel
slaves)

Control, V,
GND
buses

Figure 22-13. A Rambus-8ased System

(Courtesy of Rambus, Inc.)

CPU

In Rambus technology, only the master can generate a request since it
contains intelligence. Slave devices such as RDRAM respond to requests by the
master. This eliminates any need for addition of intelligence circuitry to the
RDRAM, thereby increasing its die size. This also means that data transfers can
happen only between master and slave and there is never any direct data transfer
between slaves. However, master capability can be added to devices other than the
CPU such as peripheral devices, graphic processors, and memory controllers. The
following describes additional features of Rambus channel technology.

1. The Rambus channel has only a 9-bit data bus.
2. There are only two DRAM organizations available for RDRAMs: x8 or x9. For

example, a 16M-bit RDRAM is organized as 2Mx8. This is in contrast to DIMM
memory modules where there are 72 pins for data alone. Such a large number of
pins without a sufficient number of ground pins limits bus speed for these memory
designs to less than 100 MHz. To reduce crosstalk and EMI (electromagnetic
interference), we can add ground pins but that in tum makes the DRAM memory
module too large (see Chapter 26 for the role of ground in reducing crosstalk).

3. Since the data bus is limited to 9 pins in a Rambus channel, by adding a sufficient
number of ground pins one can push the speed of the bus to 500 MHz. To counter
the impact of a limited bus size on bus bandwidth, the Rambus employs the method
of block transfer. This is explained next.

traditional bus

Rambus
channel

CPU

Rambus
channel

traditional bus

Figure 22-14. CPUs With and Without Rambus Channel (Courtesy of Ram bus, Inc.)

684

Rambus protocol for block transfer

In Rambus the data is transferred in blocks. Such a block-oriented data
transfer requires a set of protocols in which the packet types are defined very strictly.
There are three types of packets in the Rambus protocol: (a) request, (b) acknow­
ledge, and (c) data. The following steps show how the read operation works
according to Rambus protocol. See Figure 22-15.

CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

1. The master issues a request packet specifYing the initial starting address of the needed
data, plus the number of bytes needed to be transferred (the maximum for byte count
is 256 bytes). This is considered one transaction.

2. RDRAM receives the request packet and decodes the addresses and byte count. If
it has the requested data, an acknowledge packet is sent back to the master.

3. The acknowledge packet has three possibilities:
(a) the addressed data does not exist,
(b) the addressed data does exist but it is too busy to transfer the data. Try again
later. This is called nack.
(c) the addressed data does exist and it is ready to transfer them. This is called okay.

4. Ifthe acknowledge packet has an okay in it, the RDRAM starts to transfer the data
packet immediately.

An interesting aspect of this protocol is that the delay associated with
receiving the acknowledge and sending the data packets can be programmed into
configuration registers of both master and slave during BIOS system initialization.

At the time of this writing, the popular Nintendo 64 video game is among
the many users of Rambus technology.

486 Data RDRAM
controller

Rambus

Pentium or channel
Address

Pentium Pro
Control

RDRAMs

ITill
Figure 22-15. x86 System Using Rambus DRAM

(Courtesy ofR.mbus, Inc.)

SUMMARY

SUMMARY

Review Questions

1. A 200-MHz Pentium has a bus frequency of
2. A 100-MHz Pentium has a bus frequency 2/3-0"fCCth'e---;C;C""'pU. What is the read cycle

time for this processor?
3. When a page is opened, what limits us in accessing consecutive columns?
4. True or false. In EDO, when CAS goes up the data output is turned off.
5. Which of the following DRAMs has a common synchronous clock with the CPU?

(al FPM (b) EDO (c) SDRAM (d) all of the above
6. True or false. SDRAM incorporates interleaved memory internally.
7. Can anyone incorporate the Rambus interface in their device?
8. Who issues the request in a Rambus system?
9. Who issues the acknowledge in a Rambus system?
10. Can normal EDO or FPM DRAMs be used for the Rambus channel?

This chapter examined high-speed memory and its use in high-performance
systems. The first section looked at memory cycle times of various 80x86 micro­
processors and the introduction of wait states. One or more wait states must be
introduced whenever the CPU clock cycle is faster than the memory clock cycle.

685

PROBLEMS

The second section defined some terminology commonly used in memory
design. Memory access time is the time interval in between the moment the addresses
are applied to the memory chip address pins and the time the data is available at the
memory's data pins. Memory cycle time is the time interval in between two
consecutive accesses to the memory chip. In addition, Section 22.2 explored various
types of DRAM. These types are categorized by the mode of data access. Standard
mode (or random access) DRAM has the longest access time. It requires the row
address to be provided first and then the column address for each cell. In page mode
DRAM, cells are organized in an N x N matrix, such that it is easy to access the cells
of a given row consecutively, or in other words, to access all the columns of a page.
Static column mode makes accessing all the columns of a given row much simpler
by eliminating the need for CAS. A large percentage of80386 and higher computers
use static column DRAM for main memory. Nibble mode is similar to page mode
except that it allows rapid access to 4 contiguous bits (a nibble), rather than all the
bits of a page. Section 22.2 also discussed a problem that arises in back-to-back
accesses to DRAM. After one access, the memory needs a precharge time to get
ready for the next access. The interleaving method solves this problem by using two
sets of banks, which are accessed alternately.

Section 22.3 covered cache memory. The most widely used memory design
for high-performance CPUs implements DRAMs for main memory and a small
amount ofSRAM for cache memory. When the CPU needs data, it first checks cache.
Ifit is there (a hit), it can be brought into the CPU much more quickly than from
main memory. If the data is not found in cache (a miss), the data must be brought
into cache and the CPU. Three types of cache organization were discussed: (1) fully
associative, (2) direct mapped, and (3) set associative. Two methods, write-through
and write-back, have been developed to ensure that the data in main memory and
cache are consistent. As cache becomes full, data is swapped to main memory to
make room for new data. How to select which data to swap out is called a cache
replacement policy. Commonly used schemes are LRU and FIFO.

Section 22.4 covered newer and faster memory technologies, including
EDO, SRAM, and Rarnbus. EDO (extended data-out) DRAM evolved from fast­
page DRAM, and differs from it in that the data is made available longer to the CPU.
In synchronous DRAM (SDRAM), SDRAM and the CPU are both synchronized to
the system clock so that the CPU does not have to wait for the data. SDRAM is
improved further by interleaving the DRAM cells so that one bank can be refreshed
while another is being accessed. Rarnbus is a proprietary technology that uses a
specialized interface, channel, and DRAM to create a high-speed DRAM. In
Rambus DRAM, or RDRAM, data is transferred in blocks.

SECTION 22.1: MEMORY CYCLE TIME OF THE 80X86

I. Calculate the memory cycle time for each of the following systems.
(a) 386 of33 MHz, 1 WS (b) 486 of 50 MHz, 1 WS
(c) 386 of25 MHz, 2 WS (d) Pentium of60 MHz, 1 WS

2. If the memory cycle time is 90 ns, a 386 system of 33 MHz needs _ WS.
3. If the memory cycle time is 80 ns, a 486 system of 50 MHz needs _ WS.
4. If the memory cycle time is 45 ns, a Pentium system of66 MHz needs _ WS.
5. If the memory cycle time is 200 ns, a 386SX system of 20 MHz needs _ WS.
6. Find the effective memory performance of a 486 system of 50 MHz with 2 WS.

Compare the performance degradation with a 0-WS system.
7. Find the effective memory performance of a 386 system of 33 MHz with I WS.

Compare the performance degradation with a 0-WS system.
8. Find the effective memory performance of a Pentium system of 60 MHz with I

WS. Compare the performance degradation with a 0-WS system.

686 CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

9. Ifa given system with a 2-clock memory cycle time has a memory cycle time of60
ns and is designed with I WS, find the CPU frequency.

10. In a 33-MHz 486 0 WS system, a minimum of20 ns is used for data and address
path delay and address decoding. What is the maximum memory cycle time"

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE DRAMS

II. In which memory are the cycle time and access time equal?
12. What is the difference between the tAA and teA SRAM data sheet?
13. Define the memory cycle time for a memory chip.
14. Define the memory cycle time for the CPU.
IS. What is tRe and tRAe in DRAM? State the difference between them.
16. Show the relation (approximate) between tRC, tRAC, and tRP.
17. A given DRAM has tRAe =60 ns. What is the tRe (approximate)?
18. A given DRAM has tRAe =8S ns. What is the tRe (approximate)?
19. A given DRAM has tRe = 110 ns. What is the tRAe (approximate)?

20. A given DRAM has tRe =90 ns. What is the tRAe (approximate)?
21. Calculate the time needed to access 2048 bits of60-ns 4Mxl. Use Table 22-2.
22. Calculate the time needed to access 2048 bits of 4Mxl of 70 ns. Use Table 22-2.
23. Draw a timing diagram for standard mode SRAM and DRAM memory cycle.
24. What is the minimum memory addition to a 386 system with interleaved memory

design if each bank of 8 bits is set for IMx8? The parity bit is not included.
2S. Calculate the chip count for Problem 24 if IMx4 chips are used.
26. What is the minimum memory addition to a 486 system with interleaved memory

design if each bank of 8 bits is set for 4Mx8? The parity bit is not included.
27. Calculate the chip count for Problem 26 if 4Mx4 chips are used.
28. Show the hex address for 386/486 interleaved memory banks.

PROBLEMS

29. Calculate the time needed to access 2048 bits of one page for page mode DRAM
of 4Mxl of70 ns. Use Table 22-4.

30. Calculate the time needed to access 2048 bits of one page for page mode DRAM
of4Mxl of60 ns. Use Table 22-4.

31. Calculate the time needed to access 2048 bits of one page for static column mode
DRAM of the 4Mxl of70 ns. Use Table 22-S.

32. Calculate the time needed to access 2048 bits of one page for static column mode
DRAM of4Mxl of60 ns. Use Table 22-S.

33. Calculate the time needed to access each of the following. Use Table 22-6.
(a) 4 bits (b) 2048 bits of nibble mode DRAM of60 ns

34. Calculate the time needed to access each of the following. Use Table 22-6 and as­
sume that \Rp equals one-half of tRe.
(a) 4 bits (b) 2048 bits of nibble mode DRAM of70 ns

SECTION 22.3: CACHE MEMORY

3S. List the three different cache organizations.
36. What is the principle of locality of reference?
37. What does LRU stand for, and to what does it refer in cache memory?
38. What do write-through and write-back refer to? Define each one and state an ad­

vantage and a disadvantage for each.
39. What does a line size of 16 bytes mean?
40. Calculate the tag and data cache sizes needed for each of the following cases if the

memory requesting address to main memory is 20 bits (A 19 - AO). Assume a data
bus of 8 bits. Draw a block diagram for each case.
(a) fully associative of 1024 depth
(b) direct mapped where A IS - AO is for the index
(c) 2-way set associative where AI4 - AO is for the index
(d) 4-way set associative (e) 8-way set associative

41. In Problem 40, compare the size of data cache and tag cache parts (b), (c), (d), and
(e). What is your conclusion?

687

688

42. Calculate the tag and data cache sizes needed for each of the following cases if
the memory requesting address to main memory is 24 bits (A23 - AO). Assume a
data bus of 8 bits. Draw a block diagram for each case.
(a) fully associative of 1024 depth
(b) direct mapped where A 19 - AO is for the index
(c) 2-way set associative where A 18 - AO is for the index
(d) 4-way set associative (e) 8-way set associative

43. In Problem 42, compare the size of data cache and tag cache for (b), (c), (d), and
(e).What is your conclusion based on this comparison?

44. Give 3 factors affecting the cache hit.
45. What does the law of diminishing returns mean when applied to cache?
46. The 486 cache is organized as ______ _
47. Pentium cache is organized as ______ _

SECTION 22.4: EDO, SDRAM, RAMBUS MEMORIES

48.

49.

50.

51.

52.
53.
54.

55.
56.

57.

58.
59.
60.

61.

62.

63.
64.

65.

66.

67.
68.
69.
70.
71.

72.

73.

The CPU speed (in Pentium and higher processors) is often a (multiple,
fraction) of the bus speed.
Calculate the memory read cycle time of a CPU with a bus speed of 300 MHz.
Assume a 2-clock read cycle time.
In the above question, discuss the difficulties associated with the design of such a
high-speed bus.
In Pentium processors with speeds of 100 MHz and higher, the bus speed is

the CPU speed.
7(a')-:-th'e-same as (b) a fraction of (c) a multiple of
In DRAM technology, EDO stands for and FPM stands for ___ _
True or false. Both EDO and FPM are page mode DRAMs.
What does "opening a page" mean in page mode DRAMs? What is the role of sig­
nals RAS and CAS in opening a page?
In (EDO, FPM) DRAM, the data is turned off when CAS goes high.
In FPM DRAM, what happens if CAS goes high too soon and what is the conse­
quence?
When a page is opened, reading consecutive columns is limited by the speed of

In the design of DRAM, why is it desired to pull CAS high as soon as possible?
What is the tpc for a 50-ns DRAM?
In comparison ofEDO and FPM DRAM of60-ns and 70-ns speed, indicate which
timing parameters are the same and which are different.
For EDO DRAM, !Pc is normally IOns __ (less than, greater than) the !Pc of
FPMDRAM.
The tpc timing is made of two parts. They are and . One of them
is constant across all DRAMs of 70-ns, 60-ns, 50-ns speeds. Which one is that?
What does SDRAM stand for?
What is the most important difference between SDRAM and traditional DRAMs
ofFPM and EDO?
The SDRAM of 75 MHz can provide data every __ ns after a page has been
opened.
The SDRAM of 120 MHz can provide data every __ ns after a page has been
opened.
It is predicted that SDRAM can be used for bus speeds of as high as __ MHz.
What is burst mode memory? Define burst length.
In SDRAM, what is the size of burst length?
True or false. The x86 processors starting with the 486 support burst mode read.
What is the difference between interleaved memory design on board and inter­
leaved in SDRAM?
True or false. EDO and SDRAM memories are proprietary technology requiring li­
censes.
What does "RDRAM" stand for, and what is the difference between that and
SDRAM and EDO DRAMs?

CHAPTER 22: HIGH SPEED MEMORY INTERFACING AND CACHE

74. Rambus technology consists ofthree parts. Name them.
75. True or false. Both master and slave sections of Rambus technology must have a

Rambus Interface.
76. A Rambus channel has a(n) __ -bit data bus.
77. RDRAM is a (master, slave) in Rambus technology.
78. True or false. In Rambus technology, the data transfer happens between master

and slave only.
79. True or false. In Rambus technology the data transfer never happens between

slaves.
80. Name and describe the three types of packets for communication protocol in Ram-

bus technology.
81. In the above question, "okay" and "nack" are part of which packet?
82. Explain the role of nack and okay for data transfer in Rambus technology.
83. The bus speed in Rambus can go as high as MHz.
84. What happens if a CPU does not have a Rambus interface?
85. True or false. EDO and SDRAM can be used in place ofRDRAM in a Rambus

channel.

ANSWERS TO REVIEW QUESTIONS

SECTION 22.1: MEMORY CYCLE TIME OF THE BOXB6
1. (a) 1/40 MHz ~25 ns; therefore, 2 x 25 ~ 50 ns; (b) 2 x 20 (for 0 WS) + 20 (1 WS)~60 ns;

(c) 2 x 15 ns + 15 ~ 45 ns
2. It means that the CPU cannot access memory faster than every 50 ns.
3. (a) The read cycle time is 75 ns; therefore, the effective working frequency is the same as 26.6 MHz of 0 WS

(1/37.5 ns ~26.6 MHz).
(b) The read cycle time is 60 ns; therefore, the effective working frequency is the same as 33 MHz
(1/30 ns ~33 MHz).

4. A total of 50 ns is left for the memory access time.
5. Since 2+1 WS ~3 ClOCkS for each read cycle time, 30 ns (90/3~30) for the CPU clock duration;

therefore, the CPU frequency is 33 MHz (1/30 ns ~ 33 MHz).

SECTION 22.2: PAGE, STATIC COLUMN AND NIBBLE MODE DRAMS
1. SRAM and ROM 2. 100 ns 3. 60 ns
4. tRAC (RAS access time), tRP (RAS precharge time)
5. (a) There are two sets of 1 Mbytes; therefore, each set consists of 4 banks of 256Kx9 memory where each bank

belongs to 1 byte of the D31 - DO data bus. (b) 2M
6. true
7. tec
B. total time ~ tRAc+99 x tpc ~ 60+99 x 30 ~3030 ns
9. total time ~tRAc+3 x tNC ~50 ns +3 x 20 ns ~110 ns
10. static column

SECTION 22.3: CACHE MEMORY
1. SRAM 2. cache 3. register, cache, and main memory
4. 512 5. direct map 6. 4
7. The CPU writes to cache and main memory at the same time when updating main memory.
B. write-through
9. LRU (least recertly used) is a cache replacement policy. When there is a need for room in the cache

memory the cache controller flushes the LRU data to make room for new data.
10. When the cache is filled with new data, it is done a minimum of 4 lines (4 x 4~16 bytes) at a time.

SECTION 22.4: EDO, SDRAM, AND RAMBUS MEMORIES

1. often less than 100M Hz; many times it is only 66 MHz.
2. 2/3 x 100 MHz ~ 66 MHz. Now 1/66 MHz ~ 15 ns. 2 x 15 ns ~ 30 ns read cycle time.
3. the tpc (page cycle time)
4. false
5. SDRAM
6. true
7. Yes, as long as you get a license from Rambus Inc.
B. Master (Rambus controller)
9. RDRAM slave
10. No. It must be RDRAM.

ANSWERS TO REVIEW QUESTIONS 689

690

CHAPTER 23

486, PENTIUM, PENTIUM PRO
ANDMMX

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

The 8086/88 microprocessor is the product of technology of the 1970s.
Advances made in integrated circuit technology in the 1980s made ICs with I
million transistors possible. This led to the design of some very powerful micro­
processors. This chapter will look at Intel's 486 and Pentium microprocessors and
will examine the merit ofRISC processors and their potential power. In Section 23.1
the 80486 microprocessor is studied. Intel's Pentium is discussed in Section 23.2.
Section 23.3 explores RISC processors and their performance is compared with that
of 80x86 CISC processors.

SECTION 23.1: THE 80486 MICROPROCESSOR

The 80486 is the first I-million transistor microprocessor (actually, 1.2
million) packaged in 168-pin PGA packaging. It is not only compatible with all
previous Intel 80x86 microprocessors, but is also much faster than the 80386. When
Intel went from the 286 to the 386, register widths were increased from 16 bits to
32 bits. In addition, the external data bus size was increased from 16 bits to 32 bits,
and the address bus became 32 bits instead of24 bits as in the 80286. However, the
32-bit core of the 386 microprocessor is preserved in the 486 microprocessor. This
is due to the fact that many studies have shown that 32-bit registers can take care of
more than 95% ofthe operands in high-level languages. Like the 386, the 486 has
a 32-bit address bus and a 32-bit data bus. The data bus is DO - D31 and the address
bus is A2 - A31 in addition to BEO - BE3, just as in the 386. In the design of the
486, Intel uses four times as many transistors as used in the 386 to enhance its
processing power while keeping a 32-bit microprocessor.

Enhancements of the 486

The following are the ways the 486 is enhanced in comparison to the 386.

Enhancement 1

By heavily pipelining the fetching and execution of instructions, many 486
instructions are executed in only I clock cycle instead of in 3 clocks as in the 386. By
using a large number of transistors, the fetching and execution of each instruction
is split into many stages, all working in parallel. This allows the processing of up
to five instructions to be overlapped. Pipe lining in the 486 will be discussed further
at the end ofthis section.

Enhancement 2

By putting 8K bytes of cache with the core of the CPU all on a single chip,
the 486 eliminates the interchip delay of external cache. In other words, while in the
386 the cache is external, the 486 has 8K bytes of on-chip cache to store both code
and data. Although the 486 has 8K bytes of on-chip cache, 128K to 256K bytes of
off-chip cache are also present in many systems. Off-chip cache (level two) is
commonly referred to as secondary cache, while on-chip cache is calledfirst-level
cache. The 8K on-chip cache of the 486 has 2-way set associative organization and
is Il:sed for storing both data and code. It uses the write-through policy for updating
mammemory.

Enhancement 3

Intel used some of 1.2 million transistors to incorporate a math coprocessor
on the same chip as the CPU. While in all previous 80x86 microprocessors the math
coprocessor was a separate chip, in the 80486 the math coprocessor is part of a single
IC along with the CPU. This reduces the interchip delay associated with a multichip
system such as the 386 and 387 but at the same time made the cost of a 80486 high
compared to a 386 since the 80486 is in reality two chips in one: the main CPU and
math coprocessor. For many people who did not need a math coprocessor this extra
price was not justified. Therefore, Intel introduced the 80486SX, which is the main
CPU, and a separate math coprocessor named 80487SX.

SECTION 23.1: THE 80486 MICROPROCESSOR 691

Enhancement 4

Another major addition to the 486 is the use of 4 pins for data parity (OP),
which allows implementation of parity error checking on the system board. The four
pins OPO, OP1, OP2, and OP3 are bidirectional, and each is used for I byte of the
031 - DO data bus. When the 486 writes data it also provides the even-parity bit for
each byte through the OPO - OP3 pins. When it reads the data it expects to receive
the even parity bit for each byte on the OPO - OP3 pins. After comparing them
internally, if there is a difference between the data written and the data read, it
activates the pin PCHK (parity check) to indicate the error. This means that PCHK
is an output pin while OPO - OP3 are bidirectional 110. It must be noted that
inconsistency between data written and data read has no effect on the execution of
code by the CPU. It is the responslbility of the system designer to incorporate error
detection by using the PCHK pin in their design. In the above discussion of parity,
the word data is meant to refer to both code and data. Figure 23-1 shows the memory
organization of the 486.

r

1Gx8 1G x 8 1G x 8 1G x 8

O'pO '-.,,0"'7--0:-0---' ~

OP3 031 OP2 023 016 024

Figure 23-1 . 486 Memory Organization with DPO - DP3

Enhancement 5

692

Another enhancement of the 486 involves the burst cycle. The memory
cycle time of the 486 with the normal zero wait states is 2 clocks. In other words, it
takes a minimum of 2 clocks to read from or write to external memory or 110. In
this regard, the 486 is like the 386. To increase the bus performance ofthe 486, Intel
provides an additional option of implementing what is called a burst cycle. The 486
has two types of memory cycles, nonburst (which is the same as the 386) and burst
mode. In the burst cycle, the 486 can perform 4 memory cycles in just 5 clocks. The
way the 80486 performs the burst cycle read is as follows. The initial read is
performed in a normal 2-clock memory cycle time, but the next three reads are
performed each with only one clock. Therefore, four reads are performed in only 5
clocks. This is commonly referred to as 2-1-1-1 read, which means 2 clocks for the
first read and 1 clock for each of the following three reads. This is in contrast to 386,
which is 2-2-2-2 for reading 4 doublewords of aligned data. Of course, burst cycle
reading is most efficient if the data and codes are in 4 doubleword (32-bit)
consecutive locations. In other words, the burst cycle can be used to fetch a
maximum of 16 bytes of information into the CPU in only 5 clocks, provided that
they are aligned on doubleword boundaries. There are two pins, BRDY (burst ready)
and BLAST (burst last), used specifically to implement the burst cycle. BRDY is
an input into the 486 and BLAST is an output from the 486. See Figure 23-2.

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

T1 T2 T2 T2 T2

elK

Address ~_--,-----__ X __ ~X_---,---_X-'---_

BRDY

Data ~~----<

Figure 23-2. Burst Cycle Read in the 486

Example 23-1

Calculate and compare the bus bandwidth of the following systems. Assume that both are working
with 33 MHz and that the 386 is 0 WS. Also assume that the data is aligned and is in 4 consecutive
doubleword memory locations.
(a) 386 (b) burst mode of the 486

Solution:

(a) In the 386, since each memory cycle time takes 2 clocks we have
memory cycle time ~ 2 (lI33 MHz) ~2 x 30 ns ~60 ns

bus bandwidth ~ (1/60 ns) x 4 bytes =66 megabytes/second

(b) In burst mode, the 486 performs 4 memory cycles in only 5 clocks; therefore, the average
memory cycle time in burst mode is 1.25(5/4 ~1.25) clocks for each 32-bit (doubleword)
of data fetched as long as they are aligned and located in consecutive memory locations. This
results in bus bandwidth =[1/(1.25 x 30 ns)) 4 bytes ~106.66 megabytes/second

Enhancement 6

Table 23-1: New 486 Instructions The 486 supports
all 386 instructions in addi­
tion to 6 new ones. They are
shown in Table 23-1. Three
of the new instructions,
INVD, INVLPG, and
WBINVD, are added spe­
cifically for dealing with the
on-chip cache and the TLB
entries. The XADD instruc­
tion first loads the destina­
tion operand into the source
and then loads the total sum
of both the destination and
the original source into the

I Instructi(jD , Meanilll: --~-~~~
liBSWAP iByte swap __ ~1
'~CMPXCHG I Compare and exchan~ - ----ll
!'lNYP i Invalidatec_a<;he .. ___ ~
I ,

i INVLPG ___ -l-Invalidate TLB entry .i

I WBINVD --LWrite backand invalidate cache)1
'l2CADD I Exchange and add

SECTION 23.1: THE 80486 MICROPROCESSOR 693

destination. The CMPXCHG instruction compares the accumulator, AL, AX, or
EAX, with the destination operand, which could be a register or memory. If they
are equal, the ZF ~ 1 and the source is copied into the destination. If they are not
equal, ZF ~ 0 and the destination is copied into the accumulator. For example, the
instruction "CMPXCHG BX,CX" copies CX into BX only ifCX ~AX; otherwise,
it copies BX into accumulator AX.

As mentioned previously, some systems use little endian while others use
the big endian convention of storing data. To allow the implementation of either,
BSWAP is provided. The BSWAP instruction converts the contents of a 32-bit
register from the little endian to big endian, or vice versa.

Example 23-2

Find the contents of memory location ES:4000 after running the following program.

MOV EAX,[2000] ;load EAX from memory DS:2000
BSWAP EAX ;change little endian to big endian
MOV ES:[4000],EAX ;save the result at ES:4000

Assume that memory locations DS:2000 - DS:2003 have the following contents.
DS:200~(87)

DS:2001~(54)

DS:2002~(F2)

DS:2003~(99)

Solution:

The first instruction brings in the data in the little endian format where the least significant byte is
fetched into the least significant byte ofEAX, which is the AL register. BSWAP makes the 87H
the most significant byte and puts 99H into the AL register. Therefore, after the execution of the last
instruction we have the following:

ES:4000~(99)

ES:4001~(F2)

ES:4002~(54)

ES:4003~(87)

The addition of the BSWAP instruction makes the job of operating system software writers much
easier in converting their software from little endian to big endian, or vice versa.

Example 23-3

elK in the 80486

Another difference is the clock frequency provided to the 486. As mentioned
in Chapter 22, the CLK input frequency, which provides the fundamental timing for
the internal working of the CPU, is twice the system frequency for 386 microproc­
essors. In the case ofthe 486, the CLK is the same as the system frequency.

A 50-MHz clock is connected to CLK in each of the following systems. Find the system frequency.
(a) 386 (b) 486

Solution:

For the 80386, the system frequency is 25 MHz and for the 486 the system frequency is 50 MHz. In
other words, these systems are advertised as 386 of 25 MHz and 486 of 50 MHz.

694 CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

Example 23-4

High memory area (HMA) and the 80486

Pin A20M (A20 mask) is an active-low input and was added to mask the
A20 address bus. The problem of address wraparound for the 8086 was discussed
in Chapter 9 and the 286/386 treatment of A20 was discussed in Chapter 10. Starting
with the 486, Intel provided an input pin called A20M to allow masking of the A20
address. By asserting A20M, which makes A20M = 0, the 486 wraps around the
address if it goes beyond the I megabyte address range. In this way the 486 acts like
the 8086. However, if A20M = I, the A20 address is provided to the external address
bus just like the 286 and 386. It must be noted that the A20M pin is used only when
the 486 is in real mode. In protected mode, the A20M pin's has no effect on the A20
address bit.

Assuming that the 486 is working in real mode, find the status ofthe A20 address bit for (a) and (b).
(a) A20M =0
(b) A20M = 1 if CS =FFFFFH and IP =FFFFH
(c) To use the high memory area, what must the A20M pin be set to?

Solution:

The physical address is
FFFFO

+ FFFF
IOFFEF

segment shifted left
add the offset

(a) If input pin A20M =0, the I is dropped and address bit A20 =0, just like the 8086/88.
(b) If input pin A20M = I, the I is passed to the address bit A20 and is provided to the system, which

means that A20 =I,just like the 286 and 386.
(c) As shown in Chapter 10, A20 provides an extra 65,520 bytes of memory just above the 1M range

while the CPU is still in real mode. This extra memory is called HMA (high memory area).
Therefore, to access the HMA in the 486-based PC, the A20M input pin to 486 must be set to
high (A20M=I), which tells the 486 not to mask address bit A20.

386, 486 Perfonnance comparison

As stated earlier, most of the instructions in the 486 are executed with only
one clock. This leads to a much lower clock count for a given program run on the
486 as opposed to the 386. We examine this concept in Example 23-5.

More about pipelining

In the 8085 there was no pipelining. At any given moment, it either fetched
or it executed. It could not do both at the same time. In the 8085, while the buses
were fetching the instructions (opcodes) and data, the CPU was sitting idle, and in
the same way, when the CPU was executing instructions, buses were sitting idle.
However, in the 8086/88 the fetch and execute were performed in parallel by two
sections inside the CPU called the BIU (bus interface unit) and EU (execution unit).
The 8086 has an internal queue where it keeps the opcodes that are prefetched and
waiting for the execution unit to process them. In the sequence of instructions, if
there is ajump (JMP, JNZ, JNC, and so on) or CALL, theprefetched buffer (queue)
is flushed and the bus interface unit ofthe CPU brings in instructions from the target
location while the the execution unit waits for the new instruction. Since the
introduction of the 8086 in 1978, microprocessor designers have come to rely more

SECTION 23.1: THE 80486 MICROPROCESSOR 695

and more on the concept of pipe lining to increase the processing power of the CPU.
The next development was to expand the concept of a pipeline to the three stages
of fetch, decode, and execute. In the 486, the pipeline stage is broken down even
further, to 5 stages as follows:

I. fetch (prefetch)
2. decode I
3. decode 2
4. execute
5. register write-back

Due to such a large number of addressing modes in the 80x86, a two-stage
decoder is used for the calculation and protection check of operand addresses. The
register write-back is the stage where the operand is finally delivered to the register.
For example, in the instruction "ADD EAX,[EBX +ECX*8+ 200]", after it is fetched,
the two decoding stages are responsible for calculating the physical address of the
source operand, checking for a valid address, and getting it into the CPU. There it
is added together with EAX during the execution stage, and finally, the addition
result is written into EAX, the destination register. Figure 23-3 shows the 486
pipeline.

This concludes the discussion of the 80486 microprocessor. For the per­
formance comparison of the 8086,286,386, and 486, see Chapter 8. The perform­
ance comparison of the 386 and 486 and Pentium is shown in the next section.

Example 23-5

Compare the clock count for the loop part of the following program run on the 386 and 486. This
program transfers a block of OW ORO data. Assume that the block size is 10.

MOV CX,lO :count=1O
MOV SI,OFFSET ARRAY I ;Ioad address of source
MOV DI,OFFSET RESULT ;Ioad address of destination

AGAIN: MOV EAX,DWORD PTR [SI] ;get the element
MOV [DI],EAX ;store it
ADD SI,4 ;point to next element
ADD DI,4 ;point to next element of result
DEC CX ;decrement the counter
JNZ AGAIN ;and go back if not zero

Solution:
386 486

AGAIN: MOV EAX,DWORD PTR lSI] 4 I
MOV [DI],EAX 2 2
ADD SI,4 2 1
ADD DI,4 2
DEC CX 2 I
JNZ AGAIN 7/3 3/1

Total for one iteration 19 9

Notice the branch penalty for the JNZ instructions. If it goes back, it takes 7 clocks for the 386 and 3
for the 486. If it falls through, it takes only 3 and 1 for the 386 and 486, respectively. Also notice that
"MOV [DI],EAX" takes 2 clocks since EAX must be provided first by the previous instruction. This
is called a data dependency. In the next section we compare 386 and 486 performance with that of the
Pentium processor.

696 CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

i1 I PF 01 02 EX WB

i2 PF 01 02 EX

i3 PF 01 02

i4 PF 01

i5 PF

WB

EX WB

02 EX

01 02

WB

EX WBI

PF = prefetch
01 = decode 1
02 = decode 2
EX = execute
WB = write back

Each stage takes 1 clock,
but when the pipeline is full
each instruction will execute
in a single clock.

Figure 23-3. 486 Pipeline Stages

Review Questions

I. How many pins does the 80486 have, and what kind of packaging is used for it?
2. True or false. The 486 is a 32-bit microprocessor.
3. The 80486 has a(n) __ -bit external and a(n) -bit internal data bus.
4. State the difference between the 80486 and the 80486SX.
5. On-chip cache is referred to as , while off-chip cache is called

6. State the size ofthe on-chip cache for the 486 and the cache organization.
7. Calculate the bus bandwidth of a 486 burst read for a 50-MHz system.
8. If the 486 is advertised as 33 MHz, the clock frequency connected to the CLK pin

lS--c==~
9. Pin A20M is an (input, output) signal.
10. A20 (the twentieth address bit) is an (input, output) signal for the

486.

SECTION 23.2: INTEL'S PENTIUM

Intel put 3.1 million transistors on a single piece of silicon using a 273-pin
PGA package to design the next generation of 80x86. It is called Pentium instead
of 80586. The name Pentium was chosen to distinguish it from clones because it is
hard to copyright a number such as 80586. There are 3 ways available to microproc­
essor designers to increase the processing power of the CPU.

I. Increase the clock frequency of the chip. One drawback of this method is that the
higher the frequency, the more the power dissipation and the more difficult and
expensive the design of the microprocessor and motherboard.

2. Increase the number of data buses to bring more information (code and data) into
the CPU to be processed. While in the case of DIP packaging this option was very
expensive and umealistic, in today's PGA packaging this is no longer a problem.

3. Change the internal architecture of the CPU to overlap the execution of more
instructions. This requires a lot of transistors. There are two trends for this option,
superpipeline and superscalar. In superpipelining, the process of fetching and
executing instructions is split into many small steps and all are done in parallel. In
this way the execution of many instructions is overlapped. The number of instruc­
tions being processed at a given time depends on the number of pipeline stages,
commonly termed the pipeline depth. Some designers use as many as 8 stages of
pipelining. One limitation of superpipelining is that the speed of the execution is
limited to the the slowest stage of the pipeline. Compare this to making pizza. You

SECTION 23.2: INTEL'S PENTIUM' 697

Code Cache Branch
Prediction

I
I

Prefetch
Buffers

Pipelined

U-pipe V-pipe
Floating-Point

Unit
54-bit Integer Integer - Bus ALU ALU
Interface

r-

Register Multiply

Set
Add

Data Cache Divide

Figure 234. Inside the Pentium
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1993)

698

can split the process of making pizza into many stages, such as flattening the dough,
putting on the toppings, and baking, but the process is limited to the slowest stage,
baking, no matter how fast the rest of the stages are performed. What happens if
we use two or three ovens for baking pizzas to speed up the process? This may work
for making pizza but not for executing programs, since in the execution of instruc­
tions we must make sure that the sequence of instructions is kept intact and that
there is no out-of-step execution. The difficulties associated with a stalled pipeline
(a slowdown in one stage of the pipeline, which prevents the remaining stages from
advancing) has made CPU designers abandon superpipelining in favor of superscal­
ing. In superscaling, the entire execution unit has been doubled and each unit has 5
pipeline stages. Therefore, in superscalar, there is more than one execution unit and
each has many stages, rather than one execution unit with 8 stages as in the case of
a superpipelined processor. In some superscalar processors, there are two execution
units each with 4 pipeline stages instead of having a single execution unit with 8
pipeline stages as superpipelining proponents would have it. In other words, in
superscaling we have two (or even three) execution units and as the instructions are
fetched they are issued to the various execution units. Using the analogy of pizza,
superscalar is like doubling or tripling the entire crew flattening the dough, putting
toppings on, and baking. Of course, you will need a lot more people involved in the
process and you have to have more ovens, but at the same time you are doubling or
tripling the pizza output. In cases of recent microprocessor architecture, a vast
majority of designers have chosen superscaling over superpipelining. This requires
numerous transistors to duplicate several execution units, just like needing more
people in Our pizza-making analogy. Fortunately, advances in IC design have
allowed designers access to a couple of million transistors to throw around for the

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

FFFFFFFFH

00000007H

implementation of powerful superscaling. There are some problems with superscal­
ing, such as data dependency issues, which can be solved by the compiler, as we
will discuss below.

I ntel used all three methods to increase the processing power of the Pentium.
Currently, Intel is shipping the 60- and 66-MHz Pentium and planning a I ~O-MHz
model, as well. The Pentium has a 64-bit external data bus and is a superscalar
processor with two execution units to process integer data. This is in addition to a
separate execution unit for floating-point data.

Features of the Pentium

The following are some of the major features of the Pentium processor.

Feature 1

In the Pentium, the external data buses are 64-bit, which will bring twice
as much code and data into the CPU as the 486. However, just like the 386 and 486,
Pentium registers are 32-bit. Bringing in twice as much as information can work
only if there are two
execution units inside
the processor, and this
is exactly what Intel
has done. The Pentium
uses 64 pins, DO - 063,
to access external
memory banks, which
are 64 bits wide. DO -
07 is the least signifi­
cant byte, and 056 -
063 is the most signifi­
cant byte. Accessing 8
bytes of external data
bus requires 8 BE (byte
enable) pins, BED -
BE7, where BED is for
DO - 07, BEl for 08-
o IS, and so on. This is
shown in Figure 23-5
and Table 23-2.

FFFFFFFBH

Table 23-2: Pentium Byte Enable Signals
,

!Byte En-
Ie-I a."b",le~SI",· g",n",a~1 ~A",s",so",c,""j~at",e",d",D".a",t",a,-,B"u",s~_._",S",ig",n",a",ls,---_~ . ..oJ

I 8EO# ---I'i D",0,,--D7 (by!e 0, the least siKnificant)

i 8EI #

118E2#

IIBE3# -
BE4#

I
BE5#

I
~···

~

iDS-DIS (b.]."yt=e-'.lL) __ _

D16-D23 (byte 2) ----------i

jD24-D31 (byte 3)

jD32-D39 (byte 4) .!
ID40-D47 (bY1~ 5) II'

.. !D4S-D55 (bY1e 6) _______ ~,
ID56:D63 (by teL the most significant)

(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1993)

PHYSICAL
MEMORY
4G BYTES FFFFFFFFl I I I I I I I I FFFFFFFBH

00000007H ,::=::-,-. =::::"_-;:-;='_'-:=::-_ -;:-;:::7.-.--;::::-::-'-:=~-==_ OOOOOOOOH
BE7# BE6# BE5# BE4# BE3# BE2# BE1# BEO#

54-BIT-WIOE MEMORY ORGANIZATION

OOOOOOOOH

PHYSICAL MEMORY SPACE

Figure 23-5. Pentium Memory Organization
(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1993)

SECTION 23.2: INTEL'S PENTIUM 699

While in the 486 there were four OP (data parity) pins, one for each of the
4 bytes of the data bus, in the Pentium there are 8 OP pins to handle the 8 bytes of
data pins DO - 063. The Pentium has A3l to A3 for the address buses. This is shown
in Figure 23-6. Just like the 486, the Pentium also has the A20M (A20 Mask) input
pin for the implementation of HMA (high memory area).

D63 - DO
~ .

PENTIUM ™ PROCESSOR 64-BIT MEMORY

A31-A3,BE7#-BEO#

Figure 23-6. Pentium Address Buses
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1993)

700

Feature 2

The Pentium has a total of 16K bytes of on-chip cache: 8K is for code and
the other 8K is for data. In the 486 there is only 8K of on-chip cache for both code
and data. The data cache can be configured as write-back or write-through, but to
prevent any accidental writing into code cache, the 8K of code cache is write
protected. In other words, while the CPU can read or write into the data cache, the
code cache is write protected to prevent any inadvertent corruption. Of course, when
there is a cache miss for code cache, the CPU brings code from external memory
and stores (writes) it in the cache code, but no instruction executing in the CPU can
write anything into the code cache. The replacement policy for both data and code
caches is LRU (least recently used).

Both the on-chip data and code caches are accessed internally by the CPU
core simultaneously. However, since there is only one set of address buses, the
external cache containing both data and code must be accessed one at a time and
not simultaneously. Some CPUs, notably RISC processors, use a separate set of
address and data pins (buses) for the data and another set of address and data buses
for the code section of the program. This is called Harvard architecture and will be
discussed in the next section. The Pentium accesses the on-chip code and data
caches simultaneously using Harvard architecture, but not the secondary (external)
off-chip cache and data. The Pentium's cache organization for both the data and
code caches is 2-way set associative. Each 8K is organized into 128 sets of 64 bytes,
which means 27 x 26 = 213 = 8192 = 8K bytes. Each set consists of2lines of cache,
and each line is 32 bytes wide.

Feature 3

The on-chip math coprocessor of the Pentium is many times faster than the
one on the 486. It has been redesigned to perform many of the instructions, such as
add and multiply, ten times faster than the 486 math coprocessor. In microprocessor
terminology, the on-chip math coprocessor is commonly referred to as ajloating
point unit (FPU) while the section responsible for the execution of integer-type data
is called the integer unit (IU). The FPU section of the Pentium uses an 8-stage
pipeline to process instructions, in contrast to the 5-stage pipeline in the integer unit.
See Figure 23-7.

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

i1 PF 01 02 EX WB

i2 PF 01 02 EX WB

i3 PF 01 02 EX WB

i4 PF 01 02 EX WB

i5 PF 01 02 EX WB

i6 PF 01 02 EX WB

i7 PF 01 02 EX WB

i8 PF 01 02 EX WB

i9 PF 01 02 EX WB

i10 PF 01 02 EX WB

Figure 23-7. Pentium Pipeline

Feature 4

Another unique feature ofth~ Pentium is its superscalar architecture. A large
number of transistors were used to put two execution units inside the Pentium. As
the instructions are fetched, they are issued to these two execution units. However,
issuing two instructions at the same time to different execution units can work only
if the execution of one does not depend on the other one, in other words, if there is
no data dependency. As an example, look at the following instructions.

ADD
NOT
INC
MOV

EAX,EBX
EAX
01
[DIJ,EBX

;add EBX to EAX
;take 1 's complement EAX
;increment the pointer
;move out EBX

In the above code, the ADD and NOT instructions cannot be issued to two
execution units since EAX, the destination of the first instruction, is used immedi­
ately by the second instruction. This is called read-after-write dependency since the
NOT instruction wants to read the EAX contents, but it must wait until after the
ADD is finished writing it into EAX. The problem is that ADD will not write into
EAX until the last stage of the pipeline, and by then it is too late for the pipeline of
the NOT instruction. This prevents the NOT instruction from advancing in the
pipeline, therefore causing pipeline to be stalled until the ADD finishes writing and
then the NOT instruction can advance through the pipeline. This kind of register
dependency raises the clock count from one to two for the NOT instruction. What
if the instructions are rescheduled, as follows?

ADD
INC
NOT
MOV

SECTION 23.2: INTEL'S PENTIUM

EAX,EBX
01
EAX
[Dlj,EBX

;add EBX to EAX
;increment the pointer
;take 1 's complement of EAX
;move out EBX

701

702

If they are rescheduled as shown above, each can be issued to separate
execution units, allowing parallel execution of both instructions by two different
units ofthe CPU. Since the clock count for each instruction is one, just like the 486,
having two execution units leads to executing two instructions by pairing them
together, thereby using only one clock count for two instructions. In the case of the
above program, if it is run on the Pentium it will take only 2 clocks instead of 4 as
is the case of 486 microprocessor, assuming that two instructions are paired together.
This reordering of instructions to take advantage of the two internal execution units
of the Pentium is the job of the compiler and is called instruction scheduling.
Currently, compilers are being equipped to do instruction scheduling to remove
dependencies. The role of the compiler to reschedule instructions in order to take
advantage of the superscalar capability of the Pentium must be emphasized. The
process of issuing two instructions to the two execution units is commonly referred
to as instruction pairing. The two integer execution units of the Pentium are called
"U" and "V" pipes. Each has 5 pipeline stages. While the U pipe can execute any of
the instructions in the 80x86 family, the V pipe executes only simple instructions
such as INC, DEC, ADD, SUB, MUL, DIV, NOT, AND, OR, EXOR, and NEG.
These simple instructions are executed in one clock as long as the operands are
"REG,REG" or "REG,IMM" and have no register dependency. For example, in­
structions such as "ADD EAX,EBX", "SUB ECX,2000", and "MOV EDX,1500"
are simple instructions requiring one clock, but not "ADD DWORD PTR
[EBX+EDI+500],EAX", which needs 3 clocks.

Feature 5

Branch prediction is another new feature of the Pentium. In Chapter 8, we
discussed the branch penalty associated with jump and CALL instructions. The
penalty for jumping is very high for a high-performance pipelined microprocessor
such as the Pentium. For example, in the case ofthe JNZ instruction, if it jumps, the
pipeline must be flushed and refilled with instructions from the target location. This
takes time. In contrast, the instruction immediately below the JNZ is already in the
pipeline and is advancing without delay. The Pentium processor has the capability
to predict and prefetch code from both possible locations and have them advanced
through the pipeline without waiting (installing) for the outcome of the zero flag.
The ability to predict branches and avoid the branch penalty combined with the
instruction pairing can result in a substantial reduction in the clock count for a given
program. See Example 23-6.

Feature 6

As discussed in Chapter 21, the 386/486 has a page size of 4K for page
virtual memory. The Pentium provides the option of 4K or 4M for the page size.
The 4K page option makes it 386 and 486 compatible, while the 4M page size option
allows mapping of a large program without any fragmentation. The 4M page size
in the Pentium reduces the frequency of a page miss in virtual memory.

Feature 7

As discussed in Chapter 21, the 386 (and 486) has only 32 entries for the
TLB (translation lookaside buffer), which means that the CPU has instant knowl­
edge of the whereabouts of only 128K of code and data. If the desired code or data
is not referenced in the TLB, the CPU must go through the long process of converting
the linear address to a physical address. The Pentium has two sets of TLB, one for
code and one for data. For data, the TLB has 64 entries for 4K pages. This means
that the CPU has quick access to 256K (64 x 4K =256K) of data. The TLB for the
code is 32 entries of 4K page size. Therefore, the CPU has quick access to 128K of
code at any give time. Combining the TLBs for the code and data, the Pentium has
quick access to 384K (128 +256) of code and data before it resorts to updating the
TLB for the page miss. Contrast this to 128K for the 486. If the page size of 4M is
chosen, the TLB for the data has 8 entries while the TLB for the code has 32 entries.

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

Example 23-6

Compare the clock count for the program in Example 23-5, run on a 486 and a Pentium. Assume that
the compiler has done the code scheduling to allow instruction pairing for the Pentium.

Solution:

First compare the following rearranged code with the code in Example 23-5. Here we have
rescheduled instructions "ADD SI,4" and "ADD BX,4" to avoid register dependency. This
allows pairing of two instruction and issuing them to execution units of the Pentium. For example,
the instructions "MOV EAX,DWORD PTR [SI]" and "ADD SI,4" are issued simultaneously, one
to each execution unit. This results in the execution of both instructions in only one clock.

AGAIN: MOV EAX,DWORD PTR lSI] > ADD SI,4
1 clock

MOV [DI],EAX > 1 clock
ADD DI,4
DEC CX > 1 clock
JNZ AGAIN

Total clock count for one iteration: 3

In the 486, the execution of "JNZ AGAIN" takes 3 clocks every time it jumps to AGAIN, but for the
Pentium it takes only I clock since the CPU has predicted the branch, fetched it, and the
instructions at label AGAIN are in the pipeline advancing. This way, regardless of the outcome of the
JNZ, both the instruction below JNZ and the first instruction at label AGAIN are in two separate pipe­
lines, advancing. If ZF ~O, the other pipeline is trashed, and if ZF~l(the end of loop), the
instruction below the JNZ is executed and the branch prediction pipeline is abandoned. In the above
program each iteration takes only 3 clocks on the Pentium compared with 9 clocks in the 486. While
branch prediction is performed by the internal hardware of the Pentium, instruction scheduling must
be done by the compiler.

Feature 8

The Pentium has both burst read and burst write cycles. This is in contrast
to the 486, which has only the burst read. This means that in the 486 any write to
consecutive doubleword locations must be performed with the normal 2 clock
cycles. This is not the case in the Pentium.

The Pentium has features that lend themselves to implementation of multi­
pie microprocessors (multiprocessors) working together. It also has features called
error detection and functional redundancy to preserve and ensure data and code
integrity.

Intel's overdrive technology

To increase both the internal and external clock frequency of the CPU
requires faster DRAM, high-speed motherboard design, high-speed peripherals, and
efficient power management due to a high level of power dissipation. As a result,
the system is much more expensive. To solve this problem, Intel came up with what
is called overdrive technology, also referred to as clock doubler and tripler. The idea
of a clock doubler or tripler is to increase the internal frequency of the CPU while
the external frequency remains the same. In this way, the CPU processes code and
data internally faster while the motherboard costs remain the same. For example,
the 486DX2-50 uses the internal frequency of 50 MHz but the external frequency
by which the CPU communicates with memory and peripherals is only 25 MHz.
This allows the instructions stored in the queue of 486 to be executed at twice the
speed offetching them from the system buses. With the advent of the 32- and 64-bit

SECTION 23.2: INTEL'S PENTIUM 703

external buses, on-chip cache, and the burst cycle reading (reading 16 bytes in only
5 clocks), the amount of code and data fetched into the queue of the CPU is sufficient
to keep the execution unit of CPU busy even if it is working with twice or three
times the speed of external buses. This is the reason that Intel is designing processors
with clock triplers. In that case, if the CPU's external buses are working at the speed
of33 MHz, the CPU works at 99 MHz speed. The design of a system board of 33
MHz costs much less than that of a 100-MHz system board. With slower memory
and peripherals one can get instruction throughput ofthree times the bus throughput.
As designers move to wider data buses, such as I 28-bit-wide buses, the use of clock
doublers and triplers is one way of keeping the system board cost down without
sacrificing system throughput. The Intel 486DX4 is an example of a clock-tripler
CPU. Note that "X4" does not mean that the external frequency is 4 times the internal
frequency.

Review Questions

1. The Pentium chip has pms.
2. The Pentium has data pins.
3. True or false. The Pentium is a 32-bit processor.
4. What is the total cache on the Pentium? How much is for data, and how much is for

code?
5. Which is write protected, data or code cache?
6. True or false. The on-chip data and code cache are accessed simultaneously.
7. True or false. The branch prediction task is performed by circuitry inside the Pen-

tium.
8. Why is the Pentium called a superscalar processor?
9. True or false. Instruction scheduling is done by circuitry inside the Pentium.
10. True or false. The general-purpose registers of the Pentium are the same as those

in the 386 and 486.

SECTION 23.3: RISC ARCHITECTURE

704

In the early 1980s a controversy broke out in the computer design commu­
nity, but unlike most controversies, it did not go away. Since the 1960s, in all
mainframe and minicomputers, designers put as many instructions as they could
think of into the microinstructions of the CPU. Some of these instructions performed
complex tasks. An example is adjusting the result of decimal addition to get BCD
nibble-type data. Naturally, microprocessor designers followed the lead of mini­
computer and mainframe designers. Since these microprocessors used such a large
number of instructions and many of them performed highly complex activities, they
came to be known as CISC (complex instruction set computer). According to several
studies in the 1970s, many ofthese complex instructions etched into the brain ofthe
CPU were never used by programmers and compilers. The huge cost of implement­
ing a large number of instructions (some of them complex) into the microprocessor,
plus the fact that more than 60% of the transistors on the chip are used by the
instruction decoder, made some designers think of simplifying and reducing the
number of instructions. As this was developed, it came to be known as RISC
(reduced instruction set computer).

Features of RiSe

The following are some of the features of RISe. It must be noted that
recently CISC processors such as the Pentium have used some of the following
features in their design.

Feature 1

RISC processors have a fixed instruction size. In a CISC microprocessor
such as the 80x86, instructions can be I, 2, or even 6 bytes. For example, look at
the following instructions.

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

31

CLC
SUB
ADD
JMP

OX,OX
EAX,[SI+8]
FAR

;a 1-byte instruction
;a 2-byte instruction
;a 5-byte instruction
;a 5-byte instruction

This variable instruction size makes tbe task of the instruction decoder very
difficult since the size of the incoming instruction is never known. In a RISC
microprocessor, the size of all instructions is fixed at 4 bytes (32 bits). In cases where
instructions do not require all 32 bits, they are filled witb zeros. Therefore, tbe CPU
can decode tbe instructions quickly. This is like a bricklayer working with bricks of
the same size as opposed to using bricks of variable sizes. Of course, it is much more
efficient using the same-size bricks.

Feature 2

RISC uses load/store architecture. In CISC microprocessors, data can be
manipulated while it is still in memory. For example, in 80x86 instructions such as
"ADD [BX],AL", tbe microprocessor must bring the contents of the memory
location pointed at by BX into the CPU, add it to AL, then move the result back to
the memory location pointed at by BX. In RISC, designers did away with this kind
of instruction. In RISC, instructions can only load from memory into registers or
store registers into memory locations. There is no direct way of doing arithmetic
and logic instructions between registers and contents of memory locations. All these
instructions must be performed by first bringing both operands into the registers
inside the CPU, then performing the arithmetic or logic operation, and then sending
the result back to memory. This idea was first implemented by tbe CRA Y I
supercomputer in 1976 and is commonly referred to as load/store architecture.

Integer Registers Floating-Point Registers

o 63 o
rO

i------------i r1
fO

r------------r----------~~

L-__________ ----' r31 ~ __________ ~ ____________ ~~O

Figure 23-8. RISC Integer and Floating-Point Registers for Intel 1860

Feature 3

One of the major characteristics of RISC architecture is a large number of
registers. All RISC microprocessors have 32 registers, rO - r31, each 32 bits wide.
See Figure 23-8. Ofthese 32 registers, only a few of them are assigned to a dedicated
function. For example, rO is automatically assigned the value zero and no other value
can be written to it. One advantage of a large number of registers is that it avoids

SECTION 23.3: RISC ARCHITECTURE 705

706

the use ofthe stack to store parameters. Although a stack can be implemented on a
RISC processor, it is not as essential as in CISC since there are so many registers
available. It must be noted that RISC processors, in addition to 32 general-purpose
registers, also have another 32 registers for floating-point operations. The floating­
point register can be configured as 64-bit in order to handle double-precision
operands.

Feature 4

RISC processors have a small instruction set. RISC processors have only
the basic instructions such as ADD, SUB, MUL, DIY, LOAD, STORE, AND, OR,
EXOR, SHR, SHL, CALL, and]MP. For example, there are no such instructions
as INC, DEC, NOT, NEG, DAA, DAS, and so on. Since RISC has very few
instructions, it is the job of the programmer (compiler) to implement those instruc­
tions by using available RISC instructions. One example is an immediate load
instruction such as "MOV AX,25 " which does not exist in Intel's 860 RISe.
Instead, some other instructions, such as the OR instruction, can be used to
implement an immediate move as shown in the following example for the Intel 860
RISC processor.

or 25,rO,rB ;OR 25 with rO and put result in rB

In Intel 860 RISC syntax, the destination register is the last register, r8 in
the above example. Since rO is always zero, ORing any number with it will result
in that number. The above example will place 25 in r8. Another example is that there
is no INC (increment) command. The ADD instruction is used instead, as in the
following example:

add 1,r15,r15 ;add 1 to r15 and place result in r15

The limited number of instructions is one of the criticisms leveled at the
RISC processor since it makes the job of Assembly language programmers much
more tedious and difficult compared to CISC Assembly language programming.
This is one reason that RISC is used more commonly in high-level language
environments such as C rather than Assembly language environments. It is interest-

. ing to note that some defenders of CISC have called it "complete instruction set
computer" instead of "complex instruction set computer" since it has a complete set
of every kind of instruction. How many of them are used is another matter. The
limited number of instructions in RISC leads to programs that are large, as Example
23-7 shows. Although this can lead to using more memory, since DRAM memory
is so cheap this is not a problem. However, before the advent of semiconductor
memory in the 1960s, CISC designers had to pack as much action as possible into
a single instruction.

Feature 5

At this point, one might ask, with all the difficulties associated with RISC
programming, what is the gain? The most important characteristic of the RISC
processor is the fact that more than 95% of instructions are executed with only one
clock, in contrast to CISC instructions. Although in the 80486 microprocessor some
instructions are executed with one clock, with the the use of RISC concepts in
designing it, it is still a CISC processor for the reasons discussed above. Even the
other 5% of the RISC instructions that are executed with 2 clocks can be executed
with one clock cycle by juggling instructions around (code scheduling). Code
scheduling is the job of the compiler. What did designers do with all those transistors
saved using the RISC implementation? In the case of Intel 860 RISC processors,
these extra transistors are used to implement the math coprocessor, powerful cache
and cache controller, and a very powerful graphics processor all on a single chip.
In many computers, such as 386-based systems, all these functions are perfonned
by separate chips.

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

Example 23-7

In the 80x86, the NOT instruction perfonns the I 's complement operation, but RISC does not have
such an Instruction. How is the I 's complement operation perfonned in RISC? Show code to take the
I's complement of 25H on both 1860 RISC and 80x86.

Solution:

RISC has an EXOR instruction. If we EXOR the operand with all Is, the operand is inverted.
In 1860 RISC we have

or
or
xor

25H,rO,r8
FFH,rO,r5
r8,r5,r9

;OR 25H with rO and put result in r8(r8=25H)
;OR FFH with rO and put result in r5(r5=FFH)
;XOR r8 with r5 and put result in r9 (r9=DAH)

Since each instruction is 4 bytes (32-bit), the three instructions take a total of 12 bytes of memory.
In the 80x86, a CISC-type processor, we have the following, which takes only 4 bytes of memory (to
see, use DEBUG to assemble):

MOV AL,25H
NOT AL

Feature 6

RISC processors have separate buses for data and code. In all 80x86
processors, like all other CISC computers, there is one set of buses for the address
(e.g., AO - A24 in the 80286) and another set of buses for data (e.g., DO - 015 in the
80286) carrying opcodes and operands in and out ofthe CPU. To access any section
of memory, regardless of whether it contains opcode or data operands, the same
address bus and data bus are used. In RISC processors, there are 4 sets of buses: (I)
a set of data buses for carrying data (operands) in and out of the CPU, (2) a set of
address buses for accessing data operands, (3) a set of buses to carry the opcodes,
and (4) a set of address buses to access the opcodes. The use of separate buses for
code and data operands is commonly referred to as Harvard architecture.

Feature 7

Since CISC has such a large number of instructions, each with so many
different addressing modes, microinstructions (microcode) are used to implement
them. The implementation of microinstructions inside the CPU takes more than 60%
of transistors in many CISC processors. However, in case ofRISC, due to their small
set of instructions, they are implemented using the hardwire method. Hardwiring
of RISC instructions takes no more than 10% of the transistors. It is interesting to
note that in the Pentium, a CISC processor, the V-pipe executes only simple
instructions and it is hardwired while the U-pipe executes any of80x86 instructions
and uses microinstructions.

Comparison of sample program for RISC and CISC

Since RISC has established itself as the architecture of the 1990s and
beyond, an example will be given of a program written for Intel's 80x86 CISC and
Intel's 1860 RISe. Then they will be compared. The next program example will
compare total clocks for a program that transfers a block of32-bit-size words from
some memory location to another memory location. First, several points about the
1860 RISC must be discussed.

SECTION 23.3: RISC ARCHITECTURE 707

708

1. In instructions such as "add r3,r5,r2", r3 is added to r5 and placed in r2. This is in
contrast to the 80x86, in which the destination register is the first register.

2. rO is always equal to zero, regardless of the operation perfonned on it.
3. The load instruction cannot be followed by the store instruction, which tries to use

the value that is just being loaded: in other words, no read after write (RAW).
4. Some instructions, such as branch instructions, are delayed, which means that the

next instruction after the branch will be executed since the pipeline already has
fetched it before the branch is taken; therefore, if we cannot put a useful instruction
after the branch, a NOP should be used.

5. There are several ways of encoding the NOP instruction. One is "add rO,rO,rO", which
adds rO to rO and places the result in rO; since rO is always zero, the instruction does
nothing but waste time. Another would be to use shift left, such as "shl rO,rO,rO".

6. Some other instruction must be used to accomplish a MOY.
7. The logic instruction is used to perform the compare job.

Now look at the following Intel 860 RISe program, first written with total
disregard to code scheduling and then written with code scheduling. The number
of clocks for one round of loop is calculated in each case.

;this is a program for Intel 860 RISC processor to transfer a
;block of 20 dwords (each 32-bit) from memory locations starting at
;the address pointed at by r3 to memory locations pointed at by r4.
;r2 is the counter; There is no code scheduling in the following example.

bake
or 20,rO,r2
Id.l 0(r3),r5
add rO,rO,rO
st.l r5,0(r4)
add4,r3,r3
add4,r4,r4
add -1.r2,r2
or rO,r2,r2
bnc.t bak
add rO,rO ,rO

;Ioad the r2 with 20(count=20)
;Ioad r5 from content of mem loc 0+r3
;NOP since r5 cannot be used by store
;store r5 into mem lac of 0+r4
;point at the next dword source data
;point at the next dword destin data
;decrement counter: r2=r2-1
;set condition code to high if r2=0
;go to bak if CC=O. execute next instru too
;NOP for delayed branch

total clocks for one loop iteration

clocks

1
1
1
1
1
1
1
1
1

9

In the above program, Id.l and st.! are for 32-bit operands. For byte and
16-bit bit operands, they would be Id.b and st.b, Id.s and st.s, respectively. Next the
same program is juggled around and the NOPs are removed for better perfonnance.
As mentioned in the last section, this juggling is called code scheduling.

bake

or 20,,0,,2
;Ioop starts next
Id.1 0(r3),r5
add4,r3,r3
st.l r5,O(r4)
add -1,r2,r2
or rO,r2,r2
bnc.t bak
add4,r4,r4

number of clocks

1
1
1
1
1
1
1

total clock count for one iteration 7

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

•

It is assumed that the above program is run on a RISC processor with no
superscalar capability. Using a superscalar RISC will cut the clock count to half, or
4 clocks for the same program. This is much better than the 3S6 and 4S6 microproc­
essors shown in Example 23-5. It is comparable with the Pentium as shown in
Example 23-6. While the Pentium uses 3.1 million transistors to achieve such an
impressive performance, a RISC processor with the same performance level can be
designed using less than 1 million transistors. There is only one problem. It will not
run the massive number software packages written for the SOxS6 MS DOS Pc.

IBM/Motorola RiSe

IBM and Motorola together have a new RISC processor called the Power
PC 601. It uses only 2.S million transistors, with a power consumption of S.5 watts
versus 16 watts in the Pentium. Apple has chosen the Power PC RISC for the next
generation of Macintosh computers. Many other PC makers are also planning to
use the Power PC RISC processors, but for these computers to run MS DOS and
Windows-based software, they must emulate them instead of running native. In
other words, while MS DOS runs native on the SOxS6, for the RISC processor or
any non-SOxS6, there is no choice but to emulate. Assuming that a software emulator
capable of running 100% ofSOxS6-based MS DOS application software on the RISC
machine could be developed, the performance gain could be much higher than that
of the Pentium in spite of the emulation overhead. In addition to the Power PC 60 I
RISC processor, there are some other notable RISC processors vying for a share of
the desktop PC market. Among them are Digital Equipment Alpha, MIPS 4000,
Hewlett-Packard PA-RISC, and SunMicro SPARC. The Power PC is a major force
challenging SOxS6 dominance since both Apple and IBM are using it in their
products. Alpha, R4000, PA-RISC, and SPARC will probably compete for third
place. It is unlikely that any RISC processor will take the lead over the SOxS6 in
the immediate future.

Among RISC processors, the IBM/Motorola Power PC 601 is the one most
likely to challenge the dominance of the Intel SOxS6. A comparison of the major
characteristics of the Pentium and the Power PC 601 is provided in Table 23-3. To
take full advantage of the power ofRISC, software developers must write applica­
tions specifically for RISC, rather than using emulation.

Before concluding this discussion of RISC processors, it is interesting to
note that RISC technology was explored by the scientists in IBM in the mid-I 970s,
but it was David Patterson of the University of California at Berkeley who in 19S0
brought the merits of RISC concepts to the attention of computer scientists.

Table 23-3: Pentium vs. Power PC 601
r=~-- ~~~~

'I Feature Pentium ... i Power PC ~~l--I
:'l'Illmber of transistors (million)

II Power dissiPlition at 66 MHz (watts) u

,I Die size (mm2L_ ._
I~TeChnOIOgy: _______ _

'I Nllmberof ge.neral-purposer~sters .. ~_
,'Number of floating-point register,-..

i Cache (KBytesL _____ _

i Register size
r --
,

• RUl1l1in.gMS DOS software

I.N.umber of instructions iss.ll~d..Mr£l()ckQYcLe

ilb-rchit~c.ture _______ _

~~C.\'l()N 23.3: RISC ARCHITECTURE

3.1 2.8 i
,

16 ______ -l-- 8.5 ,I

BICM~~20.8 gm .. 1 CMO~2~.6 flm]

.... _8__ 32 ii
I 8 (stack base)

_ul.§J.code 8K, data 8K)

32-bit

Native
~~------- --

2

S uperscalar

____ ...lL __ _

32K~2~~ii~ed)j,
Emulation il

'- . 3 (oneis FP) _I

Superscalar _..JI

709

Review Questions

1. What do RiSe and elSe stand for?
2. True or false. The 386 executes the vast majority of its instructions in 3 clock cy-

cles, while RISC executes them in one clock.
3. RISC processors normally have _ general-purpose registers, each _-bits.
4. True or false. Instructions such as "ADD AX,[OI]" do not exist in RISe.
5. What is the size of instructions in RISC?
6. True or false. While CISC instructions are variable sizes, RISC instructions are all

the same size.
7. Which offhe following operations do not exist for the ADD instruction in RISC?

(a) register to register (b) immediate to register
(c) memory to register

8. How many floating-point registers do we have in RISC and the 80x87?
9. Why can floating-point registers in RISC be configured as 64-bit?
10. True or false. Harvard architecture uses the same address and data buses to fetch

both opcode and data.

SECTION 23.4: PENTIUM PRO PROCESSOR

710

In this section we discuss the main features ofIntel 's Pentium Pro processor.
Intel's Pentium Pro is the sixth generation of fhe x86 family of microprocessors. For
this reason, early literature about fhis chip referred to it as P6. Intel officially calls
this chip Pentium Pro to emphasize its superiority over the Pentium generation. Intel
used 5.5 million transistors to make the Pentium Pro. The first Pentium Pro
introduced in 1995 had a speed of 150 Mhz and consumed 23 watts of power at that
speed. Since then, Intel has introduced Pentium Pro chips with higher speeds and
various power consumption ratings.

There are no major surprises in the Pentium Pro in the sense that it runs all
the software written for the 8086/88, 286, 386, 486, and Pentium microprocessors
and its 32-bit registers are exactly the same as the 386. In other words, fhe register
size was not increased to 64 bits as has been done by some RISC processors such
as Digital Equipment's Alpha chip.

For fhe first time, Intel also attached level 2 (L2) cache to the Pentium Pro
all on a single package but with two separate dies. This packaging is called dual
cavity by Intel. The integration of a 256K-bytes L2 cache with the processor into a
single package reduces interchip delay between the L2 cache and the CPU. While
such an integration cuts memory access delay, it also made many SRAM makers
mad since they lost another chunk of PC business to Intel. Notice that the Pentium
Pro CPU has only 16K bytes of LI cache on the same die just like fhe Pentium
processor while 256KB (or 512KB) L2 cache is on the separate die. In addition to
the 5.5 million transistors used for the Pentium Pro CPU and its 16KB Ll cache,
the L2 cache uses over 10 millions transistors depending on the size of L2 cache.
There is a possibility that Intel will introduce a Pentium Pro without L2 cache. See
Table 23-4 for further comparison of Pentium and Pentium Pro processors.

Pentium Pro: internal architecture

Intel finally yielded to the rise ofRISC concepts in the design of the Pentium
Pro. In the Pentium Pro, all x86 instructions brought into the CPU are broken down
into one or more small and easy to execute instructions. These easily executable
instructions are called micro-operations (uops) by Intel. This is similar to the
concept in RISC except that in RISC architecture the instruction set is very simple
and easy to execute, and the instructions stored in memory are exactly the same as
the ones inside the CPU. In contrast, Intel had to maintain code compatibility for
the Pentium Pro with all previous x86 processors, all the way back to 8086.
Therefore, Intel had no choice but to convert the x86 instructions produced by the
compiler/assembler into micro-operations internally inside the CPU. An interesting
aspect of converting x86 instructions into micro-ops internally is that it uses what

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

Table 23-4: Comparison of Pentium and Pentium Pro

I~re ~ .. ;entium Pentium Pro

: Year introduced .. ~ 1993 __ 1995~'

I~::::::::: . __ : 3.3 ;;~li=- ~ 5.5 ::~IiOnj
Ii External data b~.. __ : .. ___ . 64 bits. __ . __ -+ . __ 64 bits ~
IIAddre~ bus __ .. ___ ___ 32 bits __ L __ .. 36 bits . __ ._~I
I,PhysicalmemOry (maximum) 4 GB .. ___ .. -I- 64 GB __ '

bTirtual me111QlY.. ___ _ __ .. __ Ji4 TB 64 TI!..-._-.JI
I Data t~egister sizesL- .. 1 ___ ~~2 bits p----l- 8, 16, 32 b~,
l~cache.(I--.dL __ . __ 116K bytes (data 8K, code 8K) i 16K bytes (data 8J(,code 81(~:
'I Cach~ (L1L_ ___----j_. External .. -l- 256KB/5l2KB -!I
Ii Superscalar.. . .. _-...! 2-Way ~... 3-Way- I

'I NU.IIlber of execution \lnits 1. _____ .. 3 _5__ ill

Branch prediction _ 1, .. --- yes ___ __ . ..~_ _ ___ _

, Out-of-order execution. no . yes j
is called triadic instruction formats. In triadic instruction format, there are two
source registers and one destination register. An example of triadic format is "ADD
Rl,R5,RS" in which registers Rl and R5 are added together and placed in RS. The
contents of source registers Rl and R5 are not altered. Contrast this with "ADD
AX,BX" in which there is only one source register (BX). For more examples of the
triadic instruction format, see Section 23.3 on the RISC processors.

The use of a triadic instruction set in the Pentium Pro architecture means
that there are a large number of registers inside the Pentium Pro that are not
accessible or visible to the programmer. In other words, as far as the programmer
(or compiler) is concerned, only the traditional register set EAX, EBX, ECX, etc.
is available and visible to the prograrmners of the Pentium Pro. This ensures that
compatibility with previous generations of the xS6 is maintained.

Pentium Pro is both superpipelined and superscalar

As mentioned above, in the Pentium Pro all xS6 instructions are converted
into micro-ops with triadic formats before they are processed. This conversion
allows an increase in the pipeline stages with little difficulty. Intel uses a l2-stage
pipeline for the Pentium Pro. In contrast to the 5-pipestage of the Pentium, although
each pipestage of the 12-pipestage Pentium Pro performs less work, there are more
stages. This means that in the Pentium Pro, more instructions can be worked on and
finished at a time. The Pentium Pro with its 12-stage pipeline is referred to as
superpipelined. Since it also has multiple execution units capable of working in
parallel, it is also superscalar. Another advantage of the 12-pipestage is that it can
achieve a higher clock rate (frequency) with the given transistor technology. This is
one reason that the earliest Pentium chips had a frequency of only 60 MHz while
the earliest Pentium Pro has a frequency of 150 MHz. Intel also used what is called
out-o.forder execution to increase the performance of the Pentium Pro. This is
explained next.

What is out-of-order execution?

In Pentium architecture, when one of the pipeline stages is stalled, the prior
stages of fetch and decode are also stalled. In other words, the fetch stage stops
fetching instructions if the execution stage is stalled, due for example to a delay in

SECTION 23.4: PENTIUM PRO PROCESSOR 711

Instruction
cache

Fetch/
I---.~I decode

unit

Dispatch/
execute
unit

Instruction
Pool

Retire unit

Figure 23-9. Pentium Pro Instruction Execution

Example 23-8

memory access. This dependency offetch and execution has to be resolved in order
to increase CPU performance. That is exactly what Intel has done with the Pentium
Pro and is called decoupling the fetch and execution phases of the instructions. In
the Pentium Pro, as x86 instructions are fetched from memory they are decoded
(converted) into a series of micro-ops, or RISC-type instructions, and placed into a
pool called the instruction pool. See Figure 23-9. This fetch/decode of the instruc­
tions is done in the same order as the program was coded by the programmer (or
compiler). However, when the micro-ops are placed in the instruction pool they can
be executed in any order as long as the data needed is available. In other words, if
there is no dependency, the instructions are executed out of order, not in the same
order as the programmer coded them. In the case of the Pentium Pro, the dis­
patch/execute unit schedules the execution of micro-ops from the instruction pool
subject to the availability of needed resources and stores the results temporarily.
Such a speculative execution can go 20 - 30 instructions deep into the program. It
is the job of the retire unit to provide the results to the programmer's (visible)
registers (e.g., EAX, EBX) according to the order the instructions were coded.
Again, it is important to note that the instructions are fetched in the same order that
they were coded, but executed out of order if there is no dependency, but ultimately
retired in the same order as they were coded. This out-of-order execution can boost
performance in many cases. Look at Example 23-8.

For the following code, indicate the instructions that can be executed out of order in the Pentium Pro.

ill LOAD (R2), R4
i2) ADD R3,R4,R7
i3) ADD R6,R8,RIO
i4) SUB RS,RI,R9
is) ADD R6,I,R12

Solution:

;LOAD R4 FROM MEMORY POINTED AT BY R2
;R3+R4--->R7
;R6+R8--->RIO
;RS-RI--->R9
;R6+1---->R12

Instruction i2 cannot be executed until the data is brought in from memory (either cache or main
memory DRAM). Therefore, i2 is dependent on il and must wait until the R4 register has the data.
However, instructions i3, i4 and is can be executed out of order and in parallel with each other since
there is no dependency among them. After the execution of i2, all the instructions i2, i3, i4, and is
can be retired instantly since they all have been executed already. This would not be the case if these
instructions were executed in the Pentium since its pipeline would be stalled due to the memory
access for R4. In that case, instructions i3, i4, and is could not even be fetched let alone decoded and
executed.

712 CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

Example 23-9

The following x86 code (a) sets the pointer for three different arrays, and the counter value,
(b) gets each element of ARRAY_I, adds a fixed value of 100 to it, and stores the result in AR­
RAY _2, (c) complements the element and stores it in ARRAY _3. Analyze the execution ofthe code
in light of the out-of-order execution and branch prediction capabilities of the Pentium Pro.

i 1)
i2)
i3)
i4)
i5) AGAIN:
i6)
i7)
i8)
i9)
ilO)
ill)
i 12)
i13)
il4)
i 15)

Solution:

MOV EBX,ARRAY_l ;LOAD POINTER
MOV ESI,ARRAY_2 ;LOADPOINTER
MOV EDl,ARRAY_3 ;LOAD POINTER
MOV ECX,COUNT ;LOAD COUNTER
MOV EAX,[EBX] ;LOAD THE ELEMENT
ADD EAX,IOO ;ADD THE FIX VALUE
ADD EBX,4 ;UPDATE THE POINTER
MOV [ESI],EAX ;STORE THE RESULT
ADD ESI,4 ;UPDATE THE POINTER
NOT EAX ;COMPLEMENT THE RESULT
MOV [EDl],EAX ;AND STORE IT
ADD EDl,4 ;UPDATE THE POINTER
LOOP AGAIN ;STAY IN THE LOOP
MOV AX,4COOH ;EXIT
INT21H

The fetch/decode unit fetches and converts instructions into micro-ops. Since there is no dependency
for instructions il through i5, they are dispatched, executed and retired except for i5. Notice that the
pointer values are immediate values; therefore, they are embedded into the instruction when the
fetch/decode unit gets them. Now i5 is a memory fetch which can take many clocks, depending on
whether the needed data is located in cache or main memory. Meanwhile i6, i8, i 1 0, and ill must
wait until the data is available. However i7, i9, il2 can be executed out of order knowing that the up­
dated values of pointers EBX, EDI, ESI are kept internally until the time comes when they will be
committed to the visible registers by the retire unit. More importantly, the LOOP instruction is pre­
dicted to go to the target address of AGAIN and i5, i6, '" are dispatched once more for the next itera­
tion. This time the memory fetch will take very few clocks since in the previous data fetch, the CPU
read at least 32 bytes of data using the Pentium Pro 64-bit (8 bytes) data bus and the burst read mode,
transferring into the CPU 4 sets of 8-byte data. This process will go on until the last round of the
LOOP instruction where ECX becomes zero and falls through. At this time due to misprediction, all
the micro-instructions belonging to instructions i5, i6, i7, ... (start of the loop) are removed and the
whole pipeline restarts with instructions belonging to i14, i15, and so on.

Due to the fact that memory fetches (due to cache misses) can take many
clock cycles and result in underutilization of the CPU, out-of-order execution is a
way of finding something to do for the CPU. Simply put, the idea of out-of-order
execution is to look deep into the stream of instructions and find the ones that can
be executed ahead of others, providing that resources are available. Again, it is
important to note that the Pentium Pro will not immediately provide the results of
out-of-order executions to programmer-visible registers such as EAX, EBX, etc.,
since it must maintain the original order of the code. Instead, the results of out-of­
order executions are stored in the pool and wait to be retired in the same order as
they were coded. Therefore, programmer-visible registers are updated in the same
sequence as expected by the programmer.

SECTION 23.4: PENTIUM PRO PROCESSOR 713

Branch prediction

The Pentium Pro, like the Pentium before it, has branch prediction, but with
greater capability. When the Pentium Pro encounters branch instructions (such as
JNZ), it creates a list of them in what is called the branch target buffer (BTBl. The
BTB predicts the target of the branch and starts executing from there. When the
branch is executed, the result is compared with what the prediction section of the
CPU said it would do. If they match, the branch is retired. If not, all instructions
behind the branch are removed from the pool and the correct branch target address
is provided to the BTB. From there the BTB refills the pipeline with instructions
from the new target address. See Example 23-9.

Note the following points concerning the reordering of store instructions
from Intel documentation, "Stores are never performed speculatively since there is
no transparent way to undo them. Stores are also never re-ordered among them­
selves. A store is dispatched only when both the address and the data are available
and there are no older stores awaiting dispatch."

Bus frequency vs. internal frequency in Pentium Pro

Frequently you may see an advertisement for a 150-MHz or 200-MHz
Pentium or Pentium Pro Pc. It is important to note that the stated frequency is the
internal frequency of the CPU and not the bus frequency. This is due to the fact that
designing a 150-MHz motherboard is very difficult and expensive. Such a design
requires a very fast logic family and memory in addition to a massive simulation to
avoid crosstalk and signal radiation. The bus frequency for such systems is currently
less than 100 MHz. Example 23-10 examines the speed of the logic family and
memory.

Example 23-10

Find the memory read cycle time of a 100-MHz bus with zero wait states (0 WS).

Solution:

The bus clock is 11100 MHz = 10 ns. Each memory cycle takes 2 bus clocks. Therefore, the total
time budgeted for the address/data pathway delay and memory access time is only 20 ns.

Programming the Pentium Pro is examined in Section 23.6. Next, we
discuss MMX technology.

Review Questions

I. Pentium Pro is the official name designated by Intel. What was it called before
such a designation?

2. True or false. Both the Pentium and Pentium Pro have 16KB Ll cache.
3. True or false. Both the Pentium and Pentium Pro have L2 cache on the same pack-

age.
4. True or false. The x86 instruction set is in triadic form.
5. Which of the x86 processors has out-of-order execution?
6. Which unit inside the Pentium Pro commits the final results of operations to regis­

ters EAX, EBX, etc.?
7. True or false. The Pentium Pro is a superpipelined processor.

714 CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

SECTION 23.5: MMX TECHNOLOGY

In this section, we discuss the MMX (MultiMedia extension) technology
used in some of the Intel processors.

DSP and multimedia

To run high-quality multimedia applications with sound and graphics
requires very fast and sophisticated mathematical operations. Such complex opera­
tions are normally performed by a highly specialized chip called OSP (digital signal
processing). OSP chips are the main engines performing tasks such as 2- and 3-D
graphics, video and audio compression, fax/modem, PC-based telephoning with live
pictures, and image processing.

There are three approaches to equip the PC with OSP capability.
1. Use a full- fledged OSP chip on the board along with the main CPU. This is the best

and ideal approach since there are some very powerful OSP chips out there.
However, the problem is that there is no industry-wide standard to be followed by
the PC designers and the lack of such a standard can lead to incompatibility both in
hardware and software.

2. Use the x86 and x87 FP (floating-point) instructions to emulate the function ofOSP.
This is slow and performance is unacceptable.

3. The third approach is to incorporate some OSP functions into the x86 microproc­
essor. This approach leaves everyone at the mercy ofIntel, yet it brings compatibility
and a unified approach to the issue. Although the performance is not as good as the
first approach, it is much better than the second approach.

The third approach is exactly what happened. In early 1997 Intel introduced
a series of Pentium and Pentium Pro chips with somewhat limited OSP capability
called MMX technology. In the case ofInte!'s MMX technology, software compati­
bility, both on the BIOS and operating system levels, was the most important goal.
It needs to be noted that although MMX does not have a rich set of instructions
normally associated with OSP chips such as Texas Instruments' 320xxx, it still
performs many of the OSP functions reasonably well.

Register aliaSing by MMX

As stated earlier, one of the main
goals of MMX technology was to maintain
compatibility with other x86 processors with
no MMX capability. To assure that, Intel uses
the FP (floating-point) register set of the x87
math coprocessor as the working register for
MMX instructions instead of introducing a
whole new set of registers. This is called reg­
isteraliasing, meaning that the same physical
register has different names. While the x87
FP registers are 80 bits wide, the MMX uses
only 64 bits of it. The x87 floating-point
registers are called ST(O), ST(l), ... , ST(7)
when they are used by the x87 instruction set
but the same registers are called MMO, MM 1,
... , MM7 when used by the MMX portion of
the CPU. See Figure 23-10. Register aliasing
by MMX has some major implications:

63 o
MM7

MM6

MM5

MM4

MM3

MM2

MM1

MMO

Figure 23-10. MMX Register Set

1. We must not use the registers to store MMX data and FP (floating point) data at the
same time since it is the same physical register.

2. We must not mix MMX instructions with FP instructions. Mixing MMX and FP
instructions slows down the application since it takes many clock cycles to switch
between MMX and x87 instructions. The best method is to have separate program
modules for x87 instructions and MMX instructions with no intermixing.

SECTION 23.5: MMX TECHNOLOGY 715

3. When leaving an MMX program module, make sure that all the MMX registers are
cleared before issuing any x87 instructions. The same is true if switching from x87
to MMX. All FP registers must be popped to leave them empty.

4. As shown in Chapter 20, FP registers are accessed by the x87 instructions in the
stack format. However, when these same registers are accessed by the MMX
instruction set, each one is accessed directly by its name, MMO - MM7. These MMX
registers cannot be used to address memory and must be used only to perform
calculations on data.

Data types in MMX

As mentioned earlier, the MMX uses only 64 bits of the 80-bit wide FP
registers. Therefore, the largest MMX data size is 64-bit. However, the 64-bit
register can be used for four different data types. See Figure 23-11. They are as
follows.

I. Quadword (one 64-bit)
2. Packed doubleword (two 32-bit)
3. Packed word (four l6-bit)
4. Packed byte (eight 8-bit)

Packed bytes (8x8 bits)

163 56155 48 147 40 139 32131 24123 16115

Packed words (4x16 bits)

163 48 147 32 1 31 16
1

15 o

Packed doublewords (2x32 bits)

31

Quadwords (64 bits)

Figure 23-11. MMX Data Types

716

All four data types of the MMX are integers and are referred to as packed
data. It must be noted that the contents of the MMX registers can be treated as any
of the four different types of eight bytes, four words, two doublewords, or one
quadword. It is the job ofthe MMX instruction to specify the data type. For example,
the instruction Packed Add has three different formats depending on the data type.
They are as follows:

PADDB (Add Packed Byte) adds two groups of 8 packed bytes
PADDW (Add Packed Word) adds two grou ps of 4 packed words
PADDD (Add Packed double) adds two groups of 2 packed doublewords

It is interesting to note that Intel has introduced to the x86 instruction set a
total of 57 new instructions just for the MMX. Since currently there is no assembler
or compiler equipped with the MMX instruction set, we will not give any MMX
programming example. To find out if a given Pentium is an MMX chip, we must
use a Pentium instruction called cpum. This is discussed in the next section.

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

Review Questions

1. Why do we not use the FP x87 instructions for DSP multimedia?
2. MMX is available for which of the x86 processors?

(a) 486 (b) Pentium (c) Pentium Pro
3. True or false. MMX aliases the x86 registers.
4. What are the names of the MMX registers?
5. True or false. MMX instructions access registers in stack format.

SECTION 23.6: PROCESSOR IDENTIFICATION IN INTEL X86

In this section we discuss how to identity the x86 CPU on the PC using
Assembly language programs. We will also discuss how to use the CPUID instruc­
tion of the Pentium to identity x86 processors with MMX technology.

Before embarking on the task of writing a CPU identification program, it
must be noted that MS DOS 5 (or higher) comes with a utility called MSD (Microsoft
Diagnostics). MSD provides useful information about hardware features of the PC
including the type of80x86 CPU installed on the motherboard. If you go to the DOS
directory and enter "MSD <return>", the MSD utility will interrogate the PC and
then inform you about hardware features of your PC such as the kind of microproc­
essor installed, RAM size, BIOS date, and so on. The utility is self-explanatory;
just type in the highlighted letter to see the desired features.

Program to identify the CPU

Many software packages require a certain processor in order to run. For
example, IBM OS/2 2.x and Microsoft Windows 95 must be run on machines with
386 or higher processors (486, Pentium, and so on). CPU identification is so
important to the new generation of operating systems and software packages that
starting with the Pentium, Intel has introduced a new instruction to do just that. The
problem is how to identify microprocessors prior to the Pentium. According to Intel,
for identifying the microprocessor by way of software one must examine the bits of
the flag register. Notice that in the 8088/86/286 the flag register is a 16-bit register
but in the 386/486/Pentium it is a 32-bit register. Table 23-5 shows the status of the
flag bits used in identifying the processor type. These bits can be examined at any
time and not just at boot-up.

Table 23-5: Flag Bits for CPU Identification
I! ----

" CPU 'Flag Bits.
I

;:8088186 Bits 12 through 15 are always I
1"----- ------~- -----.

:180286 i Bits 12 through 15 are always 0 (in real mode)

,180386 --I Bit!8is;I;aysO (in real and p;otected m~d~) .--- ------ · ___ ~i

1's:0846---Sit 21 cannot be changed, therefore it is 486; ifbit 21 can be changed to 1 and 0, then it 'I
L-- must be a Pentium. '
'I' Pentium~arting-;ith the Penti~;", one ca~-~~ a newi~structi~~, CPUID,to g-et informatio~-such-I

I as famIly and model of the processor. However, it is the ability to set or reset bit 21 of I

and . : the flag which indicates whether the CPUID instruction is supported or not. The CPUID :
PentIUm Pro . InstructIOn can be executed any hme III protected mode or real mode. ;

iFor Intel's Pentium and higher microprocessors, prior to execution of the CPUID
,instruction we must set EAX ~ 1. After the execution ofCPUID, bits D8 - DII ofEAX
,have the family number. The family number is 5 for the Pentium and is 6 for the

b_-___ .PentiumPro.~_ .. ______~~~

SECTION 23.6: PROCESSOR IDENTIFICATION IN INTEL X86 717

It must also be noted that in the 80x86 family there is no instruction that
can exchange the contents ofthe flag register and a general-purpose register directly.
Therefore, to examine the contents of the flag register in an 80x86, we must use the
stack as outlined in the following steps:

l. Push the flag register onto the stack.
2. Get (Pop) it into a register such as AX, BX.
3. Manipulate bits d 15 - d 12 (or any other bits).
4. Push it back onto the stack.
5. Pop it back into the flag register from the stack.
6. Push the flag back onto the stack again.
7. Get (Pop) the new flag bits back into a register.
8. Examine bits dl2 - dl5 to see if the changes in step 3 took effect.

The following code shows the above steps.

Step 1)
Step 2)
Step 3)
Step 4)
Step 5)
Step 6)
Step 7)
Step 8a)
Step 8b)

PUSHF
POP
AND
PUSH
POPF
PUSHF
POP
AND
CMP

BX
BX,OFFFH
BX

BX
BX,OFOOOH
BX,

;push the flag into stack
;and get it into BX
;mask bits d15-d12
;send it back into stack
;bring it back into flag reg
;store the flag on stack
;get it into BX again to examine
;mask all bits except d12-d15

Notice in the above code that instructions "PUSHF" and "POPF" are used
for pushing and popping the 16-bit flag register. However, to access the 32 bits of
the flag register in the 386/4861Pentium, instructions PUSHFO and POPFO must
be used. These steps are coded in Program 23-1. That code does not make a
distinction between the 8088 and 8086. The fact that the queue size for the 8086 is
6 bytes and for the 8088 is 4 bytes can be used to distinguish them.

CPUID instruction and MMX technology

Not all Pentium and Pentium Pro microprocessors come with MMX tech­
nology. To find out if a microprocessor is equipped with MMX technology, we can
use Pentium instruction cpum. According to Intel, upon return from instruction
cpum, if 023 of EOX is high, it has MMX technology. MMX identification is
performed as follows.

;after making sure CPUID instruction is supported
MOV EAX,1 ;REQUEST FOR FEATURE FLAG
CPUID ;CPUID INSTRUCTION
TEST EDX,00800000H ;BIT 23 OF EDX INDICATES MMX
JNZ MMX_YES

;NOMMX

Review Questions

l. How can a program determine if the processor is 386?
2. To identifY the 486 processor, toggle
3. cpum instruction was first introduce"""'d-w~iC-;th-tC;-h-e-- processor
4. To identifY the Pentium, use cpum with EAX-__ .
5. Can the cpum instruction help determine if the chip supports MMX technology?

Ifso, how?

718 CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

Note: To assemble the code below you need MASM 6.11 (or TASM 4.0) which support the Pentium instructions
such as CPUID (the directive .586 is for that purpose). If you are using MASM 5.x then remove both the .586 di­
rective and CPUID instruction and replace them with opcode for CPUID which is (OFA2H) in the following manner

DW OFA2H ;opcode for CPUID instruction

;this routine identifies the PC'S 80X86 microprocessor
;upon return from this subroutine, AX contains microprocessor code
;where 0=8088/86,1=286,3=386,4=486, 5=Pentium. 6=Pentium Pro

GET_CPUID PROC

;see if it is 8086/88 by checking bits d12-d15 of flag reg
PUSHF ;push the flag into stack
POP BX ;and get it into BX
AND BX,OFFFH ;mask bits d15-d12
PUSH BX ;send it back into stack
POPF ;bring it back into flag reg
PUSHF ;store the flag back on stack again
POP BX ;and get it back into BX
AND BX,OFOOOH ;mask all bits except d12-d15
CMP BX,OFOOOH ;are the d12-d15 all zeros?
MOV AX,O ;make AX=O code for 8088/86
JE OVER ;if yes then AX=O code for 8086/88

;see if it is 80286 by checking bits of d12-d15 of flag reg
OR BX,OFOOOH ;if not try setting d12-d15 to high
PUSH BX ;push it into stack
POPF ;make d12-d15 of flag reg all1s
PUSHF ;get the flag back into stack
POP BX ;get it back to examine the bits
AND BX,OFOOOH ;mask all bits except d12-d15
CMP BX,OFOOOH ;are d12-d15 all1s
MOV AX,1 ;make AX=1 code for 286
JE OVER ;if yes set AX=1 code for 286

;see ifit is 386 by checking bit 18 of flag bit
386
PUSHFD ;if not it is 386 or higher. push flag
POP EBX ;and get it into EBX
MOV EDX,EBX ;save it
XOR EBX,40000H ;flip bit 18
PUSH EBX ;sent it into stack
POPFD ;get it into flag
PUSHFD ;get it back into stack
POP EBX ;get the new flag back into EBX
MOV AX,3 ;make AX=3 code for 386
XOR EBX,EDX ;see if bit 18 is toggled
JE OVER ;if yes then AX=3 CODE for the 386

;see if it is 486 or higher. try changing bit 21 of flag reg
MOV AX,4 ;if not it is 486 or higher (AX=4 for 486)
PUSHFD ;see if bit 21 (ID bit) can be altered
POP EBX ;in order to use the CPUID instruction
MOV EDX,EBX ;save original flag bit in EDX
XOR EBX,200000H ;flip bit 21
PUSH EBX ;save it on the stack
POPFD ;get it into flag reg
PUSHFD ;get flag back into stack
POP EBX ;get it into EBX to examine bit 21
XOR EBX,EDX ;see if bit 21 changes
JE OVER ;if yes AX=04 code for 486

;see which pentium (586,or 686) by using CPUID instruction
MOV EAX,1 ;set EAX=1 before executing CPUID
.586 ;use Pentium instruction
CPUID ;afler execution of CPUID, bits D8-D11 of EAX have family number
.386 ;back to 386 instructions
AND EAX,OFOO ;mask all bits except the family bit
SHR EAX,8 ;move d8-d11 to lower nibble then AX=5 for Pentium, 6 for Pentium Pro
.8086

OVER: RET ;return with AX=processor number
GET_CPUID ENDP

Program 23-1

SECTION 23.6: PROCESSOR IDENTIFICATION IN INTEL X86 719

SUMMARY

This chapter began with a look at Intel's 80486 microprocessor. The 486 is
completely compatible with all previous 80x86 microprocessors and was designed
to include several new enhancements, including (I) pipe lining with 5 stages in the
fetch/execute cycle which allows many instructions to execute in I clock cycle, (2)
8K of on-chip cache, (3) math coprocessor on the same chip as the CPU, (4) parity
checking on the CPU, (5) reau burst cycles, and (6) several new instructions. The
second section explored Intel's latest and most powerful microprocessor, the Pen­
tium. Unique features of the Pentium include (I) a 64-bit data bus combined with 2
execution units to increase execution speed; (2) 16K on-chip cache designed with
Harvard architecture, which means that there are separate address and data buses to
access code and data cache at the same time; (3) enhanced on-chip math processor;
(4) superscalar architecture, two execution units within one CPU; (5) branch
prediction, (6) increased virtual memory page size, which decreases the chances of
a miss; (7) expanded TLB (translation lookaside buffer), which increases the amount
of data and code that the CPU can access quickly; and (8) burst cycles for both read
and write operations.

The third section gave an overview of the RISC versus CISC controversy
that is affecting microprocessor design. RISC architecture contains several unique
features, including (I) fixed instruction size; (2) load/store architecture, meaning
that operations are performed on registers only (memory is loaded into registers
prior to the operation); (3) a large number of registers; (4) a small instruction set;
(5) most instructions execute in I clock cycle; and (6) Harvard architecture, separate
buses for code and data. Furthermore, the execution speeds of programs written in
RISC versus CISC systems were compared to show the advantage of RISC,
increased processing speed, and the drawback, the increased program size and
tedium of Assembly programming.

The fourth section discussed the main features of the Pentium Pro micro­
processor, the sixth generation of the x86 family. The Pentium Pro features both
superscalar and superpipelined architecture. It achieves improvements in speed by
use of out-of-order execution and branch prediction. Section 5 gave an overview of
MMX technology, used for multimedia processing. Finally, in Section 6 a method
for processor identification in x86 machines was described.

PROBLEMS

SECTION 23.1: THE 80486 MICROPROCESSOR

1. The 486 chip uses pms.
2. The 486 is a(n) -bit microprocessor.
3. What is the size of on-chip cache in the 486?
4. Off-chip cache is referred to as cache.
5. True or false. On-chip cache in the 486 is used to hold both data and code.
6. State the differences between the 486 and 486SX microprocessors.
7. The 486 has a(n) -bit extemal data bus.
8. How many data parity pins does the 486 have?
9. The 486 can access bytes of memory using the address pins.
10. How many BE pins does the 486 have?
II. Nonburst read and write cycles take clocks.
12. What does "2-2-2-2" cycle mean?
13. What does "2-1-1-1" cycle mean?
14. The 486 fetches bytes of code and data into CPU using a burst cycle.

How many clocks does the burst cycle take?
15. Calculate the bus bandwidth of a 486 with 25 MHz in each of the following.

(a) nonburst cycle (b) burst cycle

720 CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

16. Calculate the bus bandwidth ofa 486 with 33 MHz in each of the following.
(a) nonburst cycle (b) burst cycle

17. Which 486 instruction converts from the little endian to big endian, or vice versa?
18. Show how the data is placed in memory for the following program before and and

after the execution of BSWAP.
MOY EAX,23F46512H
MOY [4000],EAX
BSWAPEAX
MOY [6000],EAX

19. Ifa 486 is advertised as 25 MHz, what clock frequency is connected to CLK?
20. What is the purpose of the A20M pin in the 486?
21. Assume that CS =FFFFH and IP =76AOH. Calculate the physical address of the

instruction in each of the following states.
(a) A20M =0 (b)A20M=1

22. What is HMA, and how does it relate to the A20M pin in the 486?
23. The 486 uses a pipeline of stages.
24. Give the names of the pipeline stages in the 486.

SECTION 23.2: INTEL'S PENTIUM

25. The number of pipeline stages in a superpipeline system is (less, more)
than in a superscalar system.

26. Which has one or more execution units, superpipeline or superscalar?
27. The Pentium uses transistors and has pins.
28. The Pentium has a(n) __ -bit external data bus whose pins are named __ _
29. The Pentium is a(n) -bit microprocessor.
30. State how many BE pins the Pentium has and their purpose.
31. BE pins are active (low, high).
32. IfBE7 - BEO =11110000, which part of the data buses is activated?
33. If BE7 - BEO =00000000, which part of the data buses is activated?
34. How many DP (data parity) bits does the Pentium have?
35. Find and compare the Pentium bus bandwidth for the following 60-MHz systems.

(a) nonburst mode (b) burst cycle mode
36. What is the size of on-chip cache in the Pentium?
37. In Problem 36, how much cache is for data and how much for code?
38. Which part of on-chip cache in the Pentium is write protected, data or code?
39. True or false. The Pentium has an on-chip math coprocessor.
40 What does instruction pairing mean in the Pentium?
41. The Pentium uses (superscalar, superpipeline) architecture.
42. What is instruction pairing, and when can it happen?
43. What is data dependency, and how is it avoided?
44. Write a program for the 386/486/Pentium to calculate the total sum of 10 double­

word operands. Use looping.
45. Compare the clock count of the loop in Problem 44 for each of the following. Use

branch prediction for (c) and (d). Note that if two instructions are paired and one
takes 2 clocks and the other takes only I clock, the clock count is 2.
(a) 386 (b) 486 (c) a Pentium with instruction pairing but no code scheduling
(d) Pentium with the instruction pairing and code scheduling

46. Calculate the bus bandwidth for a 486DX2-50 and 486DX4-100. Note that the
486DX2-50 is 25 MHz and the 486DX4-100 is 33 MHz.

47. Draw the pipeline stages for the pairing of instructions in the Pentium.
48. True or false. The Pentium has the A20M pin.

SECTION 23.3: RISC ARCHITECTURE

49. Why is RISC called load/store architecture?
50. In RISC, all instructions are -byte.
51. Which of the following instructions do not exist in RISC?

(a) ADD reg,reg (b) MOY r,immediate (c) OR reg,mem

PROBLEMS 721

52. State the steps in a RISC program to add a register to a memory location.
53. What is the advantage of having all the instructions the same size?
54. Why are RISC programs larger than CISC programs?
55. The vast majority ofRISC instructions are executed in (1,2,3) clocks.
56. What is Harvard architecture? Is it unique to RISC? Can a CISC system use Har­

vard architecture?
57. Code a RISC program to add 10 operands of 4-byte (doubleword) size and save

the result. Do not be concerned with carries.
58. Show the code scheduling and clock count for Problem 57.
59. What is a delayed branch?
60. MS DOS runs native on which of the following processors?

(a) IBM/Motorola Power PC RISC (b) Intel80x86
(c) Digital Equipment Alpha RISC

61. Generally, RISC processors have __ registers, each 32 bits wide.
62. Which register in RISC always has value zero in it, no matter what operation is

performed on it?
63. Discuss the terms porting, emulating, and running native.

SECTION 23.4: PENTIUM PRO PROCESSOR

64. The Pentium Pro is __ -bit internally and __ -bit externally.
65. The Pentium Pro has address bits.
66. The Pentium Pro capable of addressing bytes of memory.
67. The Pentium Pro has pins for data bus.
68. A Pentium Pro is advertised as 200 MHz. Is this an internal CPU frequency or a

bus frequency?
69. What is the difference between the L2 cache of Pentium and Pentium Pro systems?
70. Do the 5.5 million transistors used for the Pentium Pro include the L2 cache tran-

sistor count?
71. Which of the x86 processors has out-of-order execution?
72. Are the triadic registers of the Pentium Pro visible to the programmer?
73. True or false. Instructions are fetched according to the order in which they were

written.
74. True or false. Instructions are executed according to the order in which they were

written.
75. True or false. Instructions are retired according to the order in which they were

written.
76. The visible registers EAX, EBX, etc., are updated by which unit of the CPU?
77. True or false. Among the instructions, STORES are never executed out of order.
78. Which of the x86 processors have branch prediction capability?

SECTION 23.5: MMX TECHNOLOGY

79. True or false. The MMX uses x86 and x87 instructions to emulate DSP functions.
80. A given system has both a general-purpose CPU (such as the x86) and a DSP

chip. Discuss the role of each chip.
81. Does the 486 system have MMX technology?
82. Explain the concept of register aliasing.
83. Which registers are aliased in MMX technology?
84. Explain the difference between the way x87 registers are accessed and the way

MMX accesses the same registers.
85. Indicate which group of instructions can be intermixed.

(a) x86, x87 (b) x86, MMX (c) x87, MMX
86. When leaving MMX, what is the last thing that a programmer should do?
87. When leaving x87, what is the last thing that a programmer should do?
88. How many bits of the x87 register are used by MMX?
89. A quadword has bits.
90. Give other data formats than quadword which can be viewed by MMX instruc­

tions.

722 CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX

SECTION 23.6: PROCESSOR IDENTIFICATION IN INTEL X86

91. True or false. Every x86 supports the cpum instruction.
92. Explain how to identify the 386 microprocessor.
93. Explain how to identify the 486 microprocessor.
94. Explain how to identify the Pentium microprocessor.
95. Explain how to identify the Pentium Pro microprocessor.
96. Explain how to identify the Pentium Pro with MMX technology.
97. How can the CPUID instruction be coded into a program ifthe assembler does not

support it?

ANSWERS TO REVIEW QUESTIONS

SECTION 23.1: THE 80486 MICROPROCESSOR
1. 168 pins in PGA
2. true
3. 32,32
4. The 80486 has the math coprocessor on-chip; the 80486SX has the math coprocessor 80487SX (a separate

chip).
5. primary cache, secondary cache or L 1 and L2 cache
6. 8K bytes, 2-way set associative
7. 1/50 MHz =20 ns is clock cycle. In burst cycle 5 clocks of 20 ns can access 16 by1es of

memory (4 memory cycle x 4 by1es of 32-bit data bus); therefore, (1/100 ns) x16 bytes =
160 megaby1es/second
Another way would be average clock per 32-bit access is (5 x 20)/4=25 ns and (1125 ns) x 4 bytes
= 160 megaby1es/second

8. 33 MHz 9. input
10. output, like all other address bits in 80x86 processors

SECTION 23.2: INTEL'S PENTIUM
1. 273 2. 64
3. true 4. 16K by1es: 8K for code and 8K for data
5. code cache 6. true
7. true
8. since it has two execution units (pipelines) capable of executing two instructions with one clock
9. false; by the compiler 10. true

SECTION 23.3: RISC ARCHITECTURE
1. reduced instruction set computer, complex instruction set computer
2. true
3. 32, 32 4. true
5. They are all 4 by1es. 6. true
7. c 8. 32, 8 stack based
9. to take care of double-precision floating-point operands and single-precision operands
10. False, it uses separate buses for data and code.

SECTION 23.4: PENTIUM PRO PROCESSOR
1. P6 2. true
3. false 4. false
5. so far, the Pentium Pro 6. retire unit
7. true

SECTION 23.5: MMX TECHNOLOGY
1. The x87 instruction set is mainly for math functions such as sine, cosine, log, and so on and does not lend

itself to DSP-type operations.
2. (b) & (c)
3. false
4. MAO- MA7
5. false

SECTION 23.6: PROCESSOR IDENTIFICATION IN INTEL X86
1. bit 18 of flag register is always high.
2. bit 21
3. Pentium
4. EAX=1
5. Yes. After return from CPUID we test the bit 23 of the EDX register. If it is high, the chip has MMX technology.

ANSWERS TO REVIEW QUESTIONS 723

CHAPTER 24

MS DOS STRUCTURE, TSR, AND
DEVICE DRIVERS

724 CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS

Chapters 9 through 15 covered hardware design of the IBM PC, PC AT, PS,
and 80x86 compatibles. In this chapter we examine the DOS operating system and
how application software interacts with DOS. In Section 24.1 we look at the
structure of DOS and the process of loading the operating system. Section 24.2 is
dedicated to a discussion of TSR (terminate and stay resident) programs and how
to write them. In Section 24.2 we also look at the characteristics of device drivers.

SECTION 24.1: MS DOS STRUCTURE

MS DOS (and its IBM version PC DOS) is the most widely used operating
system for desktop and laptop computers. Prior to the advent of MS DOS, CP/M
was widely used for personal computers, while mainframes and minicomputers used
either Unix or proprietary operating systems such as VMS and IBM's OS. Due to
the massive base of MS DOS application software, even some recent variations of
Unix have a DOS box. In such systems, the screen is split into many simultaneously
visible windows, one or more of which is assigned to DOS applications. This allows
DOS to be run under the Unix operating system.

DOS genealogy

Although DOS has come a long way, it is still a baby compared to Unix or
OS/2. MS DOS has gone through many changes since its introduction in 1981. Table
24-1 lists the major changes introduced in various DOS versions throughout the
years. Each new version also included new commands.

Table 24-1: MS DOS Genealogy

~~M~S~D~O~S~¥~e~~~J~~~~~.~···r.·~~e~a~r~I~n~~~~~~~u~c~ed~~A~dd~I~·t~io~n~a~I~F~ea~t~.~~r~es~~~~~~~~
:' 1.0 ____ : 1981 The original DOS ________ 1

! 1.22_ _ 1982 ,Double-siged 320K diskettes ,I
!~2.&.. _________ .. 11983 . ___ ' Hierarchical file structure I

12 II i 1983 [fixed bugs in 2.0 '

,13:0 __ . ----- . I 984_-_-____ ...J.i-"I. ... 2=Mdiskettes and large hard drives

;13,1 . ___ 1_985 . ____ lNetwork features

j3.2 1985 __ ~'_"_3=.5'_" nOK diskettes ---, ,

'3.3 ~--

j4.0

I~
I

!~

_..;1287 3.5" 1.44M diskettes I

J19"'8"'8"----_____ --"H ... a"'rd.....,.dr ... ivepartitiQl1s greate~-tIJan 32M, ~l~~-~~s-li
.1988 Fixed bugs iIl4.0... . I

Ji
.

: 1991 Takes up less RAM_ i
---- -j

I:
. ____ ~~1~9~93~ _____ .J.I~D:!"is;!!k~co;!!m=p!..:re'_'s~.~I~· o~n~, ~a!!nt!!iv~I~· ru=s .!:fe~a!!;tu:::;r~e~s ___ . ______ J:

From cold boot to DOS prompt

A cold boot occurs when the power switch of the PC is turned on. A warm
boot is when the computer is reset using the CTRL-ALT-DEL keys. What happens
from the moment the PC is turned on (cold boot) to the time the DOS prompt ">"
appears on the screen? The following is the sequence of steps performed between
boot-up and the appearance of the DOS prompt. Figure 24-1 shows the major steps.

I. Upon cold boot, the RESET pin of the CPU is activated, resulting in CS ~ FOOO and
IP ~ FFFO for 286 and higher (on the 8086/88, CS ~ FFFF and IP ~ 0000).

2. The CPU fetches the first opcode from BIOS ROM, at physical address FFFFO.

SECTION 24.1: MS DOS STRUCTURE 725

726

3. The assembly programs contained in BIOS ROM test the CPU, test and initialize
peripheral chips, test RAM memory, perform checksum on BIOS ROM, initialize
peripheral devices LPT, COM, and floppy and hard disks, and call the bootstrap
interrupt service routine. This process is often referred to as the power-on self-test
(POST). If, for example, the keyboard is unplugged and the PC is powered on, it is
the POST that will sound a beep and write an error code to the monitor.

4. The bootstrap subroutine in BIOS ROM is executed. It reads the boot sector (sector
o of the disk) into the memory of the PC, then transfers control to that program.

5. The boot sector contains an Assembly language program called the disk bootstrap
subroutine. The disk bootstrap checks the first sector of the root directory to see if
files IO.SYS and MSDOS.SYS are present on the disk. Ifthey are present, they are
read into memory and control is transferred to IO.SYS. If they are not present, the
user is notified and asked to insert a system disk (one formatted with option "/s")
and press any key when ready. The memory locations where disk bootstrap,
IO.SYS, and MSDOS.SYS files are stored at this point is some arbitrary location.

6. The SYSINIT subroutine, one of the subroutines ofIO.SYS, tests and keeps track
of up to 640K of contiguous conventional memory. After the amount and location
of contiguous memory are known, SYSINITcopies both IO.SYS and MSDOS.syS
from the arbitrary memory locations to fixed and final memory locations.

7. SYSINIT calls MSDOS.SYS to perform some internal housekeeping chores. Af­
terward, SYSINIT takes over again.

8. Next, SYSINIT asks DOS to check for the existence of a file called CONFIG.SYS
in the root directory. If the optional CONFIG.SYS file is found, it is loaded into
memory and executed. CONFIG.SYS allows the user to customize MS DOS, as
well as to add nonstandard hardware devices such as a mouse or CD ROM to the
Pc. Programs responsible for communication between these new hardware devices,
the PC hardware, and the operating system are called device drivers. More about
device drivers will be given Section 24.2. As CONFIG.SYS is executed, each device
driver is loaded into conventional memory and assigned a fixed memory location.
The more device drivers in CONFIG.SYS, the more of the 640K of conventional
memory is used and the less is left for application software such as word processors
and spreadsheets. Although device drivers take up conventional memory, they also
allow user-installed input and output devices to override the devices supported by
BIOS.

9. The last thing SYSINIT does is to ask DOS to load the command interpreter from
drive A. The default command interpreter is called COMMAND. COM, but it can
be replaced with a shell command interpreter through use of the DOS SHELL
command in CONFIG.SYS. If drive A is not available or does not have COM­
MAND.COM, drive C is searched for the COMMAND.COM file. COM­
MAND.COM is responsible for interpretation of DOS commands such as DIR,
COPY, and so on. If the COMMAND.COM is on drive A, it is loaded into memory.
Then DOS looks for another file on drive A called AUTOEXEC.BAT, loads and
executes it if it is present, and finally, DOS asks for the system DATE and TIME,
then displays the prompt, ">". If drive A does not contain a system disk, COM­
MAND.COM and AUTOEXEC.BAT are loaded from the C drive. In AT and higher
machines, DOS requests for the time and date from the user are bypassed, and
instead this information is received internally from a battery-operated clock-calen­
dar, which is kept by an RTC (real-time clock) CMOS RAM chip.

10. At this point, the command interpreter COMMAND.COM has taken over the
system. It displays the prompt and waits for the user's response. SYSINIT is
terminated and the memory space used by it is freed.

The kernel, the nucleus of an operating system, contains the most frequently
used programs, which primarily control processes. The kernel of DOS, including
COMMAND. COM, will stay in conventional memory until the PC is tumed off.
The size of memory taken up by COMMAND.COM and the DOS kernel varies
from DOS version to DOS version. In Chapter 25 we will show how DOS can be
moved (loaded) into the high memory area to free conventional memory for
application software. We will also show how device drivers and TSRs can be moved
to make more of conventional memory available for application software.

CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS

Figure 24-1. Boot Process

Execute ROM
BIOS diagnostics
to test system

Load DOS hidden
system files
(IO.SYS,xx.SYS)

Load internal
commands
(COMMAND.COM)

Yes

Yes

Display
error

messages

Reconfigure
DOS in RAM

Yes Execute
":>-----01 AUTOEXEC.BAT

Get system
date and time

Display default
system prompt

commands

SECTION 24.1: MS DOS STRUCTURE 727

DOS standard device names

DOS has reserved some names to be used for standard devices connected
to the PC. Since they have special meaning for DOS, they should not be used for
user-defined filenames or device names. They are listed in Table 24-2.

Table 24-2: DOS Names for Standard Devices

Devll:eNaIll~

.AlJX
cCLQc.:K$

Meani'llL __ ~_~_

.. All)(iliaryd.fy'ice Mten anothes.njlll1e .referring to .COM 1)

System clock (date and timeL

LCOM!

li COM2 ..

._~_S.erial(;()mml!.nication port ill.
Serial communication port #2

1~~0lv1~3 __ _ ; Serial communication port #3
r -- --- -- ------

iCOM4

ICON
~ -----

,J-PTI
fL.PI2
:iLPT3
11------

: LPT4

i Serial communic;ation jJgrt #4 ____ . _

Consolefor sysJt!m il1put (keyboard1andolltput (videQ).

.Line printeUtL.

____ Lineprinter #2

,Line printer #3 .

_ ... Nc=-ULL (an input and output thatdoes not exist) ..
- -- --I ,jNUL .. __ ...

IPRN . Printer attached to LPT I . ___ .J

728

More about CONFIG.SYS and how it is used

Assume that you want to design and attach some kind of device such as a
card reader to your Pc. How is the PC notified of the presence of a card reader?
CONFIG.SYS allows the user to incorporate new technology into the Pc. CON­
FIG.SYS is an optional file which the PC reads and executes only during system
boot. This is done right before the system loads COMMAND.COM. This optional
file not only allows users to add a new nonstandard device such as a mouse and
CD-ROM but also allows customizing DOS for a given system. Depending on the
intended use ofthe PC, CONFIG.SYS can be modified to improve system perform­
ance dramatically. This is especially true for the way DOS allocates and uses the
640K of conventional memory. The setting of the parameters in the CONFIG.SYS
file can have a dramatic impact on how much memory DOS leaves for application
software, as we will see in Chapter 25. First, we describe some of the commands
that can be used in the CONFIG.SYS file. Additional commands are covered when
we discuss DOS memory management in Chapter 25. Note that the CONFIG.SYS
file must be located in the root directory of the system disk.

BREAK

In DOS, Ctrl-break (or Ctrl-c) can be used to stop execution of a program
and return to the DOS prompt. DOS checks for Ctrl-break whenever it is inputting
data from the keyboard or outputting to the monitor or printer. It does not check
during other operations, such as disk read/write operations. This means that if DOS
is reading disk memory, it will essentially ignore Ctrl-break until the operation has
completed. The BREAK command can be used to make DOS check for Ctrl-break
during any call to the operating system's service functions. The disadvantage ofthis,
however, is that it can slow overall system performance somewhat since DOS has
to check continually if the user has entered Ctrl-break. Placing command "break on"

CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS

in CONFIG.SYS will set up DOS for extended control-break checking. Command
"break off" will tell DOS to check for Ctrl-break only during keyboard, monitor,
and printer I/O; "break oft" is the default setting.

BUFFERS

The simplest form of the BUFFERS command is "buffers=n", where n is a
number from 1 to 99. This tells DOS to set aside n disk buffers in RAM. When DOS
reads to or writes from disk, the data is stored temporarily in buffers that hold 512
bytes each. Word processors often require the system to have 20 or more buffers.
The advantage of having more buffers is that it will speed up program execution
since the system will require fewer disk accesses. The disadvantage to adding more
buffers is that they take up conventional memory, leaving less for applications. The
default setting for buffers varies from 2 to 15, depending on the amount of RAM on
the system and the type of disk drive. If the operating system is loaded into the high
memory area (by placing "DOS=HIGH" in CONFIG.SYS), the buffers will be there
as well. This saves conventional memory.

An additional parameter can be added to the command, "buffers=n,m"
where m is a number from 1 to 8 that specifies the number of sectors in the
read-ahead buffer. Each sector is 512 bytes. The read-ahead buffer is recommended
for systems performing many sequential disk reads. This allows the system to read
additional sectors into the buffer (read-ahead) each time the disk is accessed. The
default for look-ahead sectors is 0, meaning that no read-ahead buffer is set up. This
parameter is available for DOS version 5 and higher.

FILES

This command determines how many file handles can be active at a time.
For example, "files=20" means that there can be a maximum of 20 files open at a
time. The number of files can be from 8 to 255, with 8 being the default value.

DEVICE

The device command allows the user to add additional device drivers to the
system, such as for a mouse or a scanner. For example, "device=c:lacme\mouse.sys"
could be used to load the indicated device driver. There are several standard device
drivers provided by DOS: ANSI.SYS, DISPLAYSYS, DRIVER.SYS, EGA.SYS,
PRINTER.SYS, RAMDRIVE.SYS, EMM386.EXE, HIMEM.SYS, and
SMARTDRVSYS. Device drivers are covered in Section 24.2.

SHELL

The shell command can be included in the CONFIG.SYS file if you want
to use a command interpreter other than COMMAND. COM or if you want to use a
version of COMMAND. COM not found in your root directory. For example,
command "shell=b:lolddoslcommand.com" will cause the system to use the file
specified by that path for the command interpreter.

What is AUTOEXEC.BAT and how is it used?

AUTOEXEC.BAT is an optional file that contains a group (a batch) of DOS
commands that are executed automatically when the PC is turned on. This saves the
user from having to type in the commands each time the system is booted. The DOS
commands contained in the batch file are executed in sequence without any external
intervention from the user. After the PC is booted, CONFIG.SYS is loaded and
executed, COMMAND. COM is loaded, and finally DOS searches for the AUTO­
EXEC.BAT file in the root directory of the system disk. Ifthe file is present, it is
loaded into memory and each command in the file is executed, one after the other.
An example of a batch command is "prompt pg", which sets up the DOS prompt
to display the current directory, as well as the ">". Another example is the command
"win", which is placed in the AUTOEXEC.BAT file when the user wants the system
to run Windows upon boot.

SECTION 24.1: MS DOS STRUCTURE 729

730

Types of DOS commands

All DOS commands can be categorized according to when and where they
can be invoked. The categories are internal, external, CONFIG.SYS, batch, and
internal/external (internal or external). Each category is described next.

Internal DOS commands

After COMMAND.COM is loaded into the 640K conventional memory, it
stays there, taking up precious memory. To keep the size of COMMAND.COM
small, Microsoft includes only the most important DOS commands in COM­
MAND.COM. DOS commands included in COMMAND.COM are referred to as
internal DOS commands. Commands such as COPY, DEL, TYPE, MD, and CD are
internal commands. Remember that DOS is not case sensitive.

COPY PROG1.ASM PROG2.ASM
DEL B:PROG1.ASM
TYPE PROG1.ASM
MD PROGRAMS
CD ITOMIPROGRAMS

External DOS commands

copies first file to second
deletes progl.asm on drive b
lists file to screen
creates directory named programs
changes current directory to Itomlprograms

There are many DOS commands that are not part of COMMAND.COM
and are provided as separate files on the DOS disk. These are called external DOS
commands (external from the point of view of COMMAND. COM or one might say
not residing in conventional memory). When an external DOS command is exe­
cuted, it is loaded from disk into memory and executed. After that, it is released
from memory. To use it again, it must be loaded from the disk again. When external
DOS commands are used, the path must be specified; otherwise, it is assumed to be
in the current directory. Commands such as FORMAT, DISKCOPY, BACKUP,
EDLIN, and UNDELETE are examples of external commands.

FORMATB:
DISKCOPY A: B:
BACKUP C:ISUEIPROGRAMSI'" A:
EDLIN PROG1.ASM
UNDELETE PROG1.ASM

format diskette in drive b
copy diskette in drive a to disk in drive b
back up all files in that directory to disk a
edit file with DOS line editor program
recover deleted file progl.asm

External/internal DOS commands

There are DOS commands that are external the first time they are used, but
from then on they become internal in that they become resident in the 640K memory.
When the computer is turned off, they are lost and become external until they are
invoked again. DOSKEY is an example of this kind.

DOSKEY start program to recall and edit DOS commands and macros

CONFIG.SYS DOS commands

CONFIG.SYS commands are used only in the CONFIG.SYS file. There
are some that can be used in both CONFIG.SYS and as internal commands.
DEVICE, FILES, and SHELL are examples ofCONFIG.SYS commands. DEVICE
is described in Section 24.2. FILES and SHELL are described above.

Batch file DOS commands

These commands are used primarily in batch files. They are also used in
Shell programs. ECHO and REM are examples of BATCH commands.

ECHO OFF
REM

DOS will not echo commands or prompts to the monitor
used to enter comments in batch files

CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS

Review Questions

I. What is the difference between a cold boot and a warm boot?
2. The POST is performed upon (cold boot, warm boot).
3. The program performing the POST is held by (DOS, BIOS).
4. A message is displayed by (POST, DOS) if the keyboard is not con-

nected.
5. What is the function of the bootstrap on BIOS ROM?
6. True or false. File IODOS.SYS is loaded before CONFIG.SYS is loaded.
7. True or false. The AUTOEXEC.BAT file is loaded before the CONFIG.SYS file.
8. What is the difference between internal and external DOS commands?
9. What does it mean if a command is externallinternal?
10. Indicate the category of each of the following DOS commands.

(aJ DEL (b) TYPE (c) DEVICE (d) FORMAT

SECTION 24.2: TSR AND DEVICE DRIVERS

This section first examines the concept ofTSR (terminate and stay resident)
programs and how they are written. Device drivers are also covered in this section.
To see the reason that TSR programs were developed, we must first understand how
DOS runs programs. DOS uses what is called a memory control block (MCB) to
keep track of the 640K conventional memory of the PC. One of the functions of
DOS is to allocate memory for program execution. DOS uses a portion of the 640K
bytes of conventional memory for itself and the rest is available to application
programs. The amount of 640K used by DOS varies from version to version. When
an application program contained in the disk is executed, DOS allocates a section
of the 640K to it. and loads it /Tom the disk into that section. After the program is
executed, it is abandoned and its allocated memory space is returned to the pool of
available memory. In other words, after the program is terminated, the memory
space allocated to it is reallocated and a new program can be loaded into that space.
If DOS did not abandon a terminated program and free its memory, after a while all
the 640K memory would be filled and nothing would be left for other programs.

Executing but not abandoning the program

The idea behind a TSR program is to execute the program but not abandon
it after it has executed. In other words, DOS keeps it resident in the 640K after it
has finished executing. The advantage of a TSR program is that it is always resident
in main memory and does not need to be brought in from the slow disk in order to
execute. The disadvantage is that each TSR program takes some memory away from
the 640K, and consequently, leaves less for other application programs. When DOS
is loaded, only the core (kernel) of the DOS stays in the 640K memory and the rest
of the 640K is available to application and utility software. As we make more and
more of application and utility software TSR, it leaves less and less of the 640K for
application programs.

As we saw in the preceding section, many DOS commands, such as COPY,
DIR, and DEL, are internal and are part of COMMAND. COM, which stays resident
in the 640K memory. There are also external commands that are on the disk and
must be brought in from disk to be executed. TSR allows a programmer to make
software internal in the sense that it is always in the 640K memory and there is no
need to bring it in from disk.

How to make a program resident

To make a program resident, !NT 21 H option AH =3 I H is used to exit to
DOS instead of using AH =4CH. Prior to function call 31 H, the DX register must
hold the size of the resident program in multiples of paragraphs (16 bytes). DOS
will keep resident the number of paragraphs of code indicated by the value in DX

SECTION 24.2: TSR AND DEVICE DRIVERS 731

732

and will abandon the rest. The following instructions will make 12 paragraphs (12
x 16 = 192 bytes) of code resident. This code is placed at the end of the program
where function call AH = 4CH is normally placed.

MOV
MOV
INT

Invoking the TSR

AH,31H
DX,12
21H

;option 31 H OF INT 21 H
;make resident 12 paragraphs (192 bytes)
;invoke DOS function call

Since TSR programs are resident, there is no need to get them from disk,
but how are they invoked? Most often, TSR programs are activated by means of a
hardware interrupt such as INT 09 (keyboard interrupt) or INT 08 (timer clock
interrupt), but TSR can also be activated by exception interrupts such as zero divide
error interrupt 00. TSR programs can be awakened by software or hardware
interrupts. To awaken the TSR, it must be hooked into the interrupt. Next we show
how to hook into an interrupt to activate a TSR.

Hooking into hardware interrupts

In Chapter 14 we discussed hardware interrupts INT 08 and 09. As discussed
in Chapter 18, every time a key is pressed, INT 09 is activated and executes the
interrupt service routine (ISR) associated with it. In Chapter 18 we also discussed
the notion of a hot key. Many commonly used TSR programs are awakened by hot
keys. When a TSR is awakened by a hot key, we must monitor the keyboard input
to the motherboard and check for the desired hot key. Ifthe hot key is detected, the
TSR is activated; otherwise, we should let it go on to perform its service and not
interfere with normal operation of the keyboard. Failure to let INT 09 perform its
normal function results in keyboard lock-up, where no key press is detected by the
main motherboard. To detect a specific hot key, we must replace CS:IP of INT 09
(the keyboard interrupt) in the interrupt vector table with CS:IP of our own keyboard
interrupt handler. In doing so, we must save CS:IP of INT 09 and pass control to it
before or after we check for the desired hot key. In this way, the keyboard can go
about doing its business while we also get a chance to see what key was activated.
This is called hooking into the interrupt. It is also referred to as interrupt chaining.

Replacing the CS:IP values in the interrupt vector table

INT 21H DOS function calls provide two services for manipulating CS:IP
in the interrupt vector table. Option AH =35H gets the CS and IP values for the
current interrupt, and option AH =25H allows placing new values for CS:IP in the
interrupt vector table. Each is discussed next.

INT 21H option AH =35H gets the current values ofCS:IP in the interrupt
vector table for a given interrupt number so that we can examine it or save it. Before
calling function AH=35, we must set AL =interrupt number. Upon return from !NT
21H, the ES register has the code segment (CS) value and BX has the offset address
(IP) value of the ISR belonging to the interrupt number. This is shown in Example
24-1.

INT 21H option AH=25H allows one to replace the current CS:IP in the
vector table with a new value of CS:IP. Prior to calling INT 21 H with option AH
=25H, AL=interruptnumber, DS =segment, and DX =offset address of the interrupt
service routine (interrupt handler). This is shown in Example 24-3. Note in this
example that SEG is referring to the segment address of procedure MY _ INT and
is loaded indirectly into the DS register.

Writing a simple TSR

To demonstrate how to create TSR programs, we will write two simple TSR
programs, one that is activated by the INT 09 keyboard interrupt and the other by
the INT 08 clock. Both will make the beep sound.

CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS

Example 24-1

(a) Execute INT 2 JH option AH=35 for the INT 0 (divide error).
(b) Verify the result with the DEBUG dump command.

Solution:
(a)
C>DEBUG
-A 100
16B7:0100 MOV AH,35
16B7:0102 MOV AL,O
16B7:0104 INT 21
16B7:0106 INT 3
16B7:0107
-G

;OPTION 35 OF INT 21H
;GET CS:IP OF INT 00

AX=3500 BX=108A CX=OOOO DX=OOOO
DS=16B7 ES=0116 SS=16B7 CS=16B7

SP=CFDE BP=OOOO SI=OOOO DI=OOOO
IP=0106 NV UP DI PL NZ NA PO NC

16B7: 0106 CC INT 3

(b) Now using the Dump command, we can verify this as follows:

-D 0:0 LF
0000:0000 8A 10 16 01 ED 08 C6 13-16 00 F7 07 E6 08 C6
-Q

... m.F ... w.f.F

Notice that the value returned in BX matches the first 2 bytes dumped, the interrupt vector location
for interrupt 0, and that the value in ES matches the second 2 bytes.

Example 24-2

Using INT 21H, show how CS:IP ofINT F8H is retrieved from the interrupt vector table and saved.

Solution:
OLD_IP_INTJ8 DW ?
OLD CS INT F8 DW ? - - -

MOV AH,35H
MOV AL,OF8H ;get CS:IP ofINT F8H
INT 2JH
MOV OLD_IP_INTJ8,BX ;save IP
MOV OLD_CS_INT F8,ES ;save CS

Example 24-3

Assume that we have an interrupt handler (interrupt service routine) procedure named MY _INT for
INT F8H. Show how to set the interrupt vector table for it.

Solution:
MOV AH,25H ;option 25 to set interrupt vector
MOV AL,OF8H ;set it for INT F8H
MOV DX,OFFSET MY _ INT ;load the offset part
MOV BX,SEG MY _INT ;load the segment part
MOV DS,BX ;seg address of interrupt handler
INT 2lH

SECTION 24.2: TSR AND DEVICE-DRIVERS 733

First, a few words about the beep sound created by !NT lOH. !NT lOH
option OEH outputs one character at a time to the video. There are some characters
that are nondisplayable, such as ASCII OAH (line feed), ODH (carriage return), and
07 (beep). In such cases, !NT 10H simply performs the action. For example, by
sending 07, the ASCII code for beep, to the monitor using !NT 10H service OEH,
the speaker will beep. Execute the following code in DEBUG to see (hear) what
happens.

MOV AH,OE
MOV AL,07
INT 10 ;DEBUG assumes that all numbers are in hex
INT 3

TSR with hot keys

To hook into !NT 09 of the keyboard, we first must make sure that CS:IP
ofthe !NT 09 belonging to the keyboard interrupt service routine of BIOS is saved.
Then we replace it with CS:IP of our interrupt. In the following TSR program, every
time hot keys ALT FlO are pressed, the speaker will beep. Notice how in the LOAD
procedure, CS:IP of !NT 09 is saved and then set to the new INT 09 procedure

;upon activation of ALT F10 the system will beep
;this program needs to be converted to a COM file using the EXE2BIN before it is run
;See Vol. 1 for the process of COM file creation.

CODESG

MAIN:
OLDINT9
-------------,

NEWINT9

OVER:

NEWINT9

LOAD

LOAD
CODESG

SEGMENT
ASSUME CS:CODESG
ORG 100H
JMP SHORT LOAD
DO?
this portion remains resident
PROC
PUSH
MOV
INT
TEST
JZ
IN
CMP
JNE
MOV
MOV
INT
POP
JMP
ENDP

AX
AH,2
16H
AL,00001000B
OVER
AL,60H
AL,44H
OVER
AH,OEH
AL,O?
10H
AX
CS:OLDINT9

;32-bit area to save the CS:IP of INT 09

;get the keyboard status byte
;using BIOS INT 16
;check for ALT
;if no AL T key then exit
;get the scan code
;see if it is F10 key
;if no then exit
;if yes beep the speaker
;using BIOS
;INT 10H
;restore the reg
;and perform INT 09

this portion is run once only during the initialization
ASSUME CS:CODESG,DS:CODESG
PROC NEAR
MOV AH,3SH
MOV AL,09H
INT 21H
MOV WORD PTR OLDINT9,BX

;get the vector values
;for INT 09

MOV WORD PTR OLDINT9+2,ES
;save
;them

MOV AH,2SH
MOV AL,09H
MOV DX,OFFSET NEWINT9
INT 21H

;set the vector for
;the new INT 09
;DX=IP, DS=CS set by COM

MOV DX,(OFFSET LOAD - OFFSET CODESG) ;find how how many bytes resident
;make it ADD DX,1S

MOV CL,4
SHR DX,CL
MOV AH,31H
INT 21H
ENDP
ENDS
END MAIN

;multiple of 16 bytes

;and make it
;resident

Program 24-1. TSR Hooked into INT 09

734 CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS

address. In the body of the new ISR (interrupt service routine), we first check for
the ALT key using TNT 16H option 2. If ALT is pressed, we check the contents of
port 60H to examine the scan code. Only if the scan code belongs to FlO will the
speaker beep. Notice that regardless of which route NEWINT9 takes, it must end
up taking care ofthe original INT 09 residing in BIOS. Again it must be emphasized
that failure to do so will result in locking up the keyboard. To get out of a locked
keyboard, we must reboot the system.

Notice in Program 24- I that after checking for the ALT key, we checked for
the FlO scan code directly from port 60H. This is due to the fact that there is no scan
code for every key combination. If a given key combination has a scan code, we
can monitor it using option AH =0 of TNT 16H, as was shown in Example 18-5. Also
it must be noted that port 60H holds the scan code of the previous key indefinitely
until it is replaced by the next keystroke.

TSR programs must be converted to COM files before they are run. DOS
program EXE2BTN converts an EXE file to a COM file, as shown in Chapter 2.

CODESG SEGMENT
ASSUME CS:CODESG
ORG 100H

MAIN: JMP SHORT LOAD
OLDINT8 DO?
COUNT OW 275 ;275 x 54.94 ms =15 seconds
;---------------- this portion remains resident
NEWINT8 PROC

DEC
JNZ
MOV
MOV
MOV
INT
MOV
MOV
INT

CS:COUNT
EXIT
CS:COUNT,275
AH,OEH
AL,7
10H
AH,OEH
AL,7

;is the time up?

;if yes initialize the count
;and
;beep the speaker

;do it again

EXIT: JMP
10H
CS:OLDINT8 ;take care of INT 08

NEWINT8 ENDP
;----------------- this portion is run once only

LOAD
ASSUME CS:CODESG,DS:CODESG
PROC NEAR
MOV AH,35H
MOV AL,08H
INT 21H

;get the current CS:IP
;for INT 08

MOV WORD PTR OLDINT8,BX ;save them
MOV WORD PTR OLDINT8+2,ES
MOV AH,25H ;set CS:IP
MOV AL,08H ;for the new INT 08
MOV DX,OFFSET NEWINT8 ;DX=offset IP, DS=CS set by COM
INT 21H
MOV DX,(OFFSET LOAD-OFFSET CODESG) ;find how many bytes resident
ADD DX,15 ;round it
MOV. CL,4 ;to paragraph
SHR DX,CL ;size and
MOV AH,31 H ;make it
INT 21 H ;resident

LOAD ENDP
CODESG ENDS

END MAIN

Program 24-2. TSR Hooked into INT 08

Hooking into timer clock INT 08

Another way to awaken a TSR is to use TNT 08. As discussed in Chapters
13 and 14, hardware TNT 08 is activated every 54.94 ms. In Program 24-2, the TSR
is hooked into TNT 08 and the speaker beeps every 15 seconds.

In many TSR programs, the original interrupt is serviced by simulating the
interrupt instruction instead of"JMP CS;OLDTNTERRUPT". The following shows
how this is done.

SECTION 24.2: TSR AND DEVICE DRIVERS 735

736

NEWINT PROC FAR ;notice this is a far procedure

PUSHF ;simulate
CALL CS:OLDINTERRUPT
IRET

;the hardware interrupt
;return from interrupt

NEWINT ENDP

DOS is not reentrant

In the resident section of both of the above TSR programs, we used BIOS
to do the work of the TSR and there is no DOS function call. The reason is that DOS
is not reentrant. If we interrupt DOS while it is executing some DOS function calls,
DOS will crash since in resuming where it left off all the parameters needed to finish
the function call have been changed. This happens even if we save all registers of
the CPU before we interrupt DOS. The fact that we cannot interrupt DOS is what
we mean when we say that DOS is nonreentrant. For example, while DOS is reading
the disk and a serial communication TSR program interrupts the process, the disk
data read will be lost since DOS is not reentrant.

One way to solve this problem is to check the DOS busy flag to ensure that
DOS is not doing anything before we interrupt it. The DOS busy flag is provided
by AH ~34H ofINT 21H. Therefore, to use DOS function calls inside the resident
portion of a TSR program, we must check the DOS busy flag and wait until DOS
is not busy before we make a DOS function call. This is a good rule in writing any
kind of TSR or resident device driver, regardless of whether we are using DOS
function calls or BIOS services in the resident portions of the program. To check
the DOS busy flag, we use the AH ~34H option ofINT 21H. Upon return, ES:BX
is pointing to the DOS busy flag. Ifthe flag is zero, it is is safe to use DOS function
calls; otherwise, we must wait until it becomes zero. This is shown next.

PUSH
MOV
INT
MOV
POP
CMP
JNZ

ES
AH,34H
21H
AL,ES:[BX]
ES
AL,O
NOT_SAFE

;save ES
;get DOS busy flag

;move the DOS busy flag into CPU
;restore ES
;is it safe?
;no. bypass the following
;yes it is safe go ahead

Before we conclude the discussion about TSR programs, recall that one can
use option AH ~13H ofINT IOH to display a string. See Example 14-10.

Device drivers

When the IBM PC was introduced in 1981, the keyboard was the only input
device. For a computer and operating system to adapt to the changes and chances
ofthe world, they must be able to integrate new devices, such as a mouse, CD-ROM,
and scanners into the system. A program that allows such devices to interact with
the PC system is called a device driver. The DOS operating system comes with a
set of device drivers for standard devices such as the keyboard and line printers,
referred to as default device drivers. We examined many of these device drivers in
previous chapters. Since it is impossible for DOS to include device drivers for every
possible device (now and future), it allows users to add their own device drivers,
called instal/able device drivers. For example, assume that we have a plotter to
interface with the Pc. To do that, we go through the following steps.

CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS

I. Write and test a program that interfaces the plotter with the Pc. This program will
be called a plotter device driver which is installable.

2. Install the plotter device driver through the use of the DEVICE command in the
CONFIG.SYS file. This will inform DOS about the existence of our plotter device
driver. Upon booting the PC, the IO.SYS section of DOS first loads its own device
drivers. Installable (user) device drivers, such as the one belonging to the plotter,
are installed later by CONFIG.SYS.

Our plotter device driver is installed at boot time only if it has followed
certain guidelines. Device drivers are used not only for hardware devices such as
plotters, mouse, and CD-ROM, but device drivers can also belong to a utility such
as memory management or disk management programs. Microsoft's RAM­
DRIVE.SYS and Quarterdeck's QEMM386.SYS are such device drivers.

Device driver categories

Device drivers fall into two categories, character-type and block-type
device drivers. Each is explained below.

Character-type device driver

In a character-type device driver the data is sent and received one byte at a
time. Examples of character-type devices are keyboard and serial communication
ports. Each character-type device connected to the PC is assigned a name referred
to as its device name by MS DOS. Certain names, such as LPn and PRN, are
reserved and must not be used. The reserved names of character-type devices were
given in Table 24-2. Ifa reserved name is used for an installable device driver, DOS
will let the user's device supersede the default device. For example, if we use PRN
as the name of the device for a special kind of printer, DOS will load our device
driver instead of the default DOS's PRN device driver. In DOS, the device name
can be between I and 8 characters long.

Binary vs. ASCII data

For character-type devices, the data can be cooked or raw. If the data is
packaged in a ASCII format, it is called cooked, but if the data is in binary format
without any regard to ASCII standard, it is called raw. The major difference is that
for ASCII characters, as each character is received (or sent) it is checked to see ifit
is Control-c. Upon detection of Control-c input, the operation is aborted by DOS,
and consequently, DOS will transfer control to !NT 23H. However, for non-ASCII
character-type data (also called binary format), there is no check for Control-c
between each character received or sent.

Block-type device driver

This refers to types of devices in which the data is sent and received a block
at a time. The size of the block is generally 512 bytes. In this case, the driver always
reads or writes the same number of bytes of data (the same-size block). Examples
of block-type devices are floppy disks, hard disks, magnetic tape, and other mass
storage devices. Unlike character-type devices, block-type devices are designated
and referred to by a single letter, such as A, B, C, and so on. There is another
difference between character-type and block-type data as far as the name is con­
cerned. The device name in the character-type device driver always refers to only
one physical peripheral device, but a single device driver of the block type can be
divided into sections, and each separate section can be referred to by a different
name. For example, there is only one keyboard (character-type device) in the system
that is referred to as CON, but there can be a single physical hard disk'that is
partitioned into logical disk drives, designated as C, D, E, and so on.

Every device driver in MS DOS consists of three parts: the device header,
device strategy routine (referred to as strat), and device interrupt routine (referred
to as intr). Readers are referred to the lab book for a look inside device driver
specifications and examples of how to write them.

SECTION 24.2: TSR AND DEVICE DRIVERS 737

SUMMARY

Review Questions

I. Why does DOS abandon a program after it is executed?
2. In what part of the PC's memory do TSR programs take residence?
3. What is the danger of too many TSRs?
4. Explain the role of DOS INT 21H function 25H.
5. In the case of INT 08 and INT 09, why must the CS :IP of an interrupt be saved be­

fore we set new values in the interrupt vector table?
6. List the categories of device drivers.
7. How do we inform DOS about the existence of our device driver when the system

is booted?
8. Can a device driver also be TSR?
9. Can a TSR program belong to a device driver?
10. State the absolute minimum function that we must include in a TSR program

hooked into INT 09 and INT 08.

This chapter examined the DOS operating system that provides the interface
between the system hardware and the user. When a PC is turned on (a cold boot),
MS DOS performs BIOS diagnostics on memory and peripherals, loads a bootstrap
program, loads optional files CONFIG.syS and AUTOEXEC.BAT, which allow
the user to customize his or her system, and finally, displays the DOS prompt for
user interaction. COMMAND. COM provides the interface between the user and the
system. DOS commands can be categorized as internal, external, CONFIG.SYS, or
batch.

The second section began with an examination ofTSR (terminate and stay
resident) programs. The advantage of these programs is that they stay resident after
execution and do not have to be retrieved from disk every time thcy are run. The
disadvantage is that they take up valuable conventional memory. TSR programs are
activated by software or hardware interrupts. Hooking the TSR into an interrupt
involves saving the old CS:IP of that interrupt and replacing it with the CS:IP of
your own interrupt service routine, which invokes the TSR, then returns control to
the original interrupt service routine. Device drivers are programs that allow a device
to interact with the PC system. Users inform the system of the addition of new
hardware by placing a DEVICE command in the CONFIG.SYS file. There are two
categories of devices: character and block. Character devices process data one
character at a time, whereas block devices process data in blocks, which are usually
512 bytes in size.

PROBLEMS

SECTION 24.1: MS DOS STRUCTURE

I. Turning on the PC is a (warm, cold) boot.
2. The memory and peripheral chips are checked during __ (warm, cold) boot.
3. The programs to test the memory and peripheral chips are kept by ___ _

(BIOS, DOS).
4. The beep sound indicating an error or defect in peripheral devices is generated by

~.---- (DOS, BIOS).
5. Which sector on disk holds the bootstrap subroutine?
6. For a disk to be a system disk, it must contain at least files and __ _
7. What are the IBM versions of files for Problem 6?
8. True or false. The CONFIG.SYS file is loaded before COMMAND. COM.
9. Which is loaded first, the AUTOEXEC.BAT file or CONFIG.SYS?
10. Does the CONFIG.SYS file take any memory from conventional memory?
II. Gives some examples of DOS standard device names.

738 CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS

12. How do we inform DOS about the existence of a mouse driver"
13. State the difference in function of files AUTOEXEC.BAT and CONFIG.SYS.
14. What is an internal DOS command"
15. What is an external/internal DOS command?
16. Give some examples of widely used internal DOS commands.
17. What kind of command is DEVICE?
18. Which file contains DOS commands such as COPY, D1R, and CLS?
19. Dump the contents of the DOS directory and identify the DOS external com­

mands.
20. In Problem 19, identify the DOS external/internal commands.
21. True or false. The REM command can be used in both the CONFIG.SYS and

AUTOEXEC.BAT files.
22. HELP is an (external, internal) DOS command.
23. To what category do the commands DEVICEHIGH and DOS belong?
24. True or false. The PC prompts for time and date only if we boot from drive A.

SECTION 24.2: TSR AND DEVICE DRIVERS

25. Why doesn't DOS keep resident every program it runs?
26. State an advantage and a disadvantage of TSR programs.
27. Use a DOS function call to find the CS:IP values ofINT 10H in the vector ta­

ble. Verify this with the D command of DEBUG by dumping the interrupt vector
table where the CS:IP ofINT 10H is held.

28. Write a TSR program that sends a character to the printer whenever the ALT F2
keys are activated.

29. Write a TSR program that plays the music of your choice when Alt-FlO is pressed.
30. What does it mean when it is said that DOS is not reentrant but OS/2 is reentrant?
31. Give the categories of device drivers.
32. To which category of device driver do cooked and raw data belong, and what do

these terms mean?
33. To which category of device driver do the keyboard and CD-ROM belong?

ANSWERS TO REVIEW QUESTIONS

SECTION 24.1: MS DOS STRUCTURE
1. The cold boot is performed when the power switch is turned on, whereas the warm boot is performed when the

CTRL, ALT, and DEL keys are activated at the same time.
2. cold boot
3. BIOS
4. POST
5. to read and load the boot sector of a system disk and transfer control to the disk bootstrap located in the boot

sector
6. true
7. false
8. Internal commands are held by COMMAND.COM and are always resident in the PC RAM, but external

commands are on the disk in the DOS directory.
9. the DOS commands that are external first and after they are executed for the first time become

internal (resident) until the PC is turned off
10. (a) and (b) are internal, (c) is CONFIG.SYS, (d) is external.

SECTION 24.2: TSR AND DEVICE DRIVERS
1. In this way it can make room for the next application program.
2. in conventional memory
3. It takes too much room in the conventional memory and leaves less and less for application programs.
4. It allows the user to set the CS:IP of the new interrupt in the interrupt vector table.
5. because both of them perform functions critical to the system, which means primarily that they belong to the

system
6. character type and block type
7. through the DEVICE command in the CONFIG.SYS file
8. Yes, this is often the case.
9. yes
10. to let the original ISR be executed

ANSWERS TO REVIEW QUESTIONS 739

CHAPTER 25

MS DOS MEMORY MANAGEMENT

740 CHAPTER 25: MS DOS MEMORY MANAGEMENT

In this chapter we discuss how MS DOS manages the memory of the IBM
PC and 80x86 compatibles. The concepts of conventional memory, upper memory
block (UMB), high memory area (HMA), and expanded and extended memories
are discussed in detail. We will also look at the DOS memory command (MEM) to
examine the memory of the Pc. In addition, techniques such as loading high are
examined. In Section 25.1 we discuss all terminology and concepts related to the
80x86 IBM PC, PS, and DOS memory management. Section 25.2 covers loading
high DOS, device drivers, and TSRs, in addition to the benefits of loading high.

SECTION 25.1: 80x86 PC MEMORY TERMINOLOGY AND CONCEPTS

In exploring the memory of the 80x86-based PC, there are a number of
terms and concepts that must be understood thoroughly. Among them are the terms
conventional memory, upper memory block, high memory area, expanded memory,
extended memory, and shadow RAM. We will examine the origin and definition of
each of these terms one by one, since understanding of these concepts is critical to
understanding the rest of this chapter.

Conventional memory

The 8088/86 with its 20-pin address bus is capable of accessing only 1
megabyte of memory since 220 =1,048,576 =1 megabyte, or 1024K bytes. This
results in a memory address space of 00000 - FFFFFH. The designers ofthe original
IBM PC set aside only the first 640K of the 1024K address space for RAM. The
first 640K bytes of memory are located at the contiguous address range of 00000 to
9FFFFH and is called conventional memory (see Figure 25-1). Some refer to this as
lower memory. Upon cold boot, BIOS will test this 640K address space for RAM
and store the amount of memory installed in BIOS data area 0040:0017. While in
early PCs only 64K to 256K of conventional memory was installed, in today's PCs
the entire 640K is installed. DOS gets the amount of installed conventional memory
from BIOS data area 40:0017 and allocates it as the need arises. Of the total
conventional memory, the first IK, from address 00000 to 003FFH, is set aside for
the interrupt vector table, as was shown in Chapter 14. The area from 00400 to
004FFH, a total of 256 bytes, is set aside for the BIOS data area. Memory from
00500 to 005FFH, 256 bytes, is set aside to be used for DOS parameters (the DOS
data area). Locations 00700H - 9FFFFH are available to DOS to allocate according
to its own needs and the system configuration, and the rest is available for applica­
tion software. Every IBM PC and compatible based on the 80x86 has conventional
memory. This includes 8088- and 8086-based PCs.

Upper memory area

The designers of the first IBM PC set aside 128K, from AOOOOH to
BFFFFH, for video RAM. The amount ofthis 128K space used depends on the video
card and video mode used by the Pc. From address COOOOH to FFFFFH, a total of
256K, was set aside for ROM. Any kind of ROM, such as a hard disk controller,
network card, video board, and BIOS ROM, must be located in the address range
of COOOO to FFFFFH. Generally in the PC, memory from FOOOO to FFFFF is used
by BIOS ROM, and some ofthis address space is used by adapter cards such as hard
disk controllers and network cards. In many IBM PS models, in addition to FOOOO
- FFFFF, addresses EOOOO - EFFFF are also used for BIOS. In some technical
literature, the 1M address space is divided into 16 segments of64K bytes each and
numbered in hex 0, 1,2, ... , A, B, C, 0, E, F. Such literature states that segments 0
- 9 are used for conventional memory, segments A and B are set aside for video
RAM, and segments C, 0, E, and F are set aside for ROM.

In PC literature, the term upper memory area refers to the address range
AOOOO to FFFFF, a total of 384K. Depending on the options and adapter cards
installed, not all of the 384K of the upper memory area is used. The ROM address
space for users' plug-in adapter cards is the address space COOOO to EFFFFH, since
FOOOO to FFFFF is used by BIOS. See Figure 25-1.

SECTION 25.1: 80x86 PC MEMORY TERMINOLOGY AND CONCEPTS 741

Upper
Memory
Area

FFFFF

COOOO

BFFFF
AOOOO

9FFFF

F

E

D

C

B

A

9

8

7

6

ROM (Maximum 256K bytes)

Video Memory (Maximum 128K bytes)

Conventional
Memory

5

4

PCD RAM (Maximum 640K bytes)

3

2

1

00000 a
Physical addresses 64K-byte segments

Figure 25-1. Memory Addressing of the 80x86 1 Megabyte

IBM standard using ROM space in the upper memory area

Assume that we are designing an adapter card for data acquisition to be
plugged into a Pc. If this adapter card has ROM memory on it, and the ROM memory
is being accessed by the 80x86 CPU, we must follow two guidelines.

I. We must know what portion of the PC's ROM address space of COOOO - EFFFFH
is unused and map ROM only into the unused space.

2. In deciding on the contents of ROM, we must follow IBM's recommended specifi­
cation. According to IBM, the first byte of ROM must be 55H, the second byte must
be AAH, and the third byte must indicate the total numberof5l2-byte blocks in the
ROM (length/512). Finally, the fourth byte must contain executable code (an
opcode).

Since DOS 5 and many memory management packages such as QEMM
(from Quarterdeck) put into use the unused address space of the upper memory area,
it is important to follow these specifications. Following this specification makes the
job of DOS and other memory management packages such as QEMM much easier
in locating the unused memory addresses of the upper memory area. The above
discussion is summarized as shown in Table 25-1. ROM must be located in the
unused address space of COOOO - FFFFFH.

Table 25-1: IBM Specifications for Adapter Card ROM

Bvte

BvteO

Byte 1

Byte 2

Bvte 3

742

Contents -

55H (this is the first byte of ROM),
------- ----

AAH (this is the second byte of ROM).

Length indicator represents the number (H) of 512-byt e blocks inROM(le~gth/51~i_j
M. I The first opcode of the procedure contained in the RO

CHAPTER 25: MS DOS MEMORY MANAGEMENT

Example 25-1
Using the dump command of DEBUG, dump the contents of the segment COOO to examine the VGA
adapter ROM contents. In many 386/486/Pentium systems, the address is COOO:OOOOH. If the area
you dump contains all FFs, this means that this portion of ROM address space is unused.

Solution:

C>OEBUG
-0 COOo:o
COOO:OOOO 55 AA 40 EB 7B 37 34 30-30 93 FF FF 83 00 98 24 U*@k{7400 $
COOO:0010 CE 01 00 00 00 00 00 00-00 00 00 00 00 00 49 42 N IB
COOO:0020 40 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 M

COOO:0030 20 37 36 31 32 39 35 35-32 30 00 00 00 00 00 00 761295520
COOO:0040 33 31 11 34 DC 20 BO 00-00 00 31 00 01 04 00 00 31.4. O ... 1.
COOO,0050 31 39 39 31 2F 31 32 2F-31 33 20 31 36 3A 35 36 1991/12/13 16:56
COOO:0060 00 00 00 00 E9 9A 70 00-E9 9A 70 00 E9 9A 70 00 '" .i.p.i.p.i.p.
COOO:0070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ... ,

Notice that the data corresponds to the specifications in Table 25-1. The first byte is 55, the second is
AA, and the third byte is 40H, the number of512-byte blocks in ROM. The fourth byte is an
opcode for jump instructions.

Every IBM PC and compatible based on the 80x86, including the 8088/86
PC, uses some portion of the upper memory area space. The amount depends on the
video board installed, the video mode the PC is working under, and the installed
adapter cards.

The EMM386.EXE driver included in DOS 5 and 6 searches, finds, and
keeps track of unused sections of the upper memory area. Since the unused address
space ofthe upper memory area is not contiguous, they are categorized as blocks
referred to as upper memory blocks (UMBs). Starting with DOS 5, UMBs are put
to use. For example, TSR and device drivers could be moved from conventional
memory to the upper memory using EMM386.EXE, thereby making more conven­
tional memory available to the user. Again, it must be noted that as EMM386.EXE
finds unused memory space in the memory address range of AOOOO - FFFFF, it calls
them upper memory blocks since they are not contiguous. See Figure 25-2. In
Section 25.2, we discuss in more detail the UMB concept and the way DOS 5 and
later versions put it to use.

Expanded memory

As discussed earlier, IBM designers set aside only 640K for RAM, and the
rest was set aside for video memory and ROM. In the early 1980s, many application
programs, such as spreadsheets, wanted much more RAM. This led to the develop­
ment of a memory concept called expanded memory. In 1985, Lotus Corporation,
the maker of the Lotus 1-2-3 spreadsheet, joined forces with Intel to solve the
problem of memory limitation due to the 640K barrier. They proposed a set of
specifications called EMS (expanded memory specifications) to standardize differ­
ent attempts being made by different companies to use more than 640K of RAM.
Later, Microsoft joined the group and the specifications came to be known as LIM
(Lotus/IntellMicrosoft) EMS. The support of Microsoft was essential since its
cooperation in implementing EMS specifications in future versions of DOS would
make the success of expanded memory a certainty. In expanded memory, a method
called bank switching is employed to allow the microprocessor to access information
beyond the 640K barrier.

SECTION 25.1: 80x86 PC MEMORY TERMINOLOGY AND CONCEPTS 743

r--
BIOS FOOOO - FFFFF

Upper
Memory ~] used by adapter card ROMs

Area

Text Mode Video RAM B8000 - BFFFF
MDA Video RAM BOOOO - B7FFF

== Graphics Video RAM AOOOO - AFFFF (VGA, EGA graphics)
9FFFF

Conventional
TSR
TSR

Memory
Device Driver
Device Driver

DOS Kernel

00000 -
Figure 25-2. 1 M Memory Map

744

The LIM expanded memory specification (EMS version 3.0) proposed
using 64K of contiguous memory in the upper memory area as a window to 8
megabytes of expanded memory. This 64K contiguous memory space was divided
into four sections called page frames, where each page frame accessed only 16K.
The 16K address for the first page must start at a 16K boundary such as 0000, 4000,
8000, COOO, and so on. However, since this must be 64K of contiguous memory,
many expanded memory boards used addresses DOOOO - DFFFF for the four page
frames of expanded memory. This 64K bytes plays the role of a window to a larger
memory. The size of this larger memory was first decided to be a maximum of 8
megabytes and was used for storing data only. No code was allowed to be stored in
the expanded memory under EMS version 3.0. The 8M could be installed with four
expansion boards, each handling 2M (each board consists of 128 pages, each page
was 16K bytes). Starting with EMS version 4.0, which included many suggestions
and improvements from AST Corporation and others, the maximum expanded
memory was increased from 8M to 32M. The 16K pages may be located anywhere
in the unused area above 640K, so there was no longer a need for 64K bytes of
contiguous unused space to implement expanded memory. This made the job of
adapter card designers much easier since the installation of these boards resulted in
the fragmentation of the memory space between AOOOO and EFFFFH. With EMS
version 4, any time there is 16K of free space anywhere between AOOOO and
FFFFFH, it will use it as a window to expanded memory to as high as 32 megabytes.
The following is a summary of the major features of EMS version 4.

I. EMS V 4 allowed expanded memory to contain both code and data. This is in contrast
to V3, in which expanded memory could store data only. In V3 code was kept in
conventional memory and data was stored in expanded memory. This limitation was
removed in EMS V4.

2. In EMS version 4, the limitation of 4 pages of 16K was removed; therefore, it can
handle as many pages as it can find space for in the upper memory area as long as
they fall on a 16K boundary.

3. In EMS version 4, expanded memory can be as high as 32 megabytes.

CHAPTER 25: MS DOS MEMORY MANAGEMENT

16K page
Physical Pages

16K page

Pag't-------1
3

16K pages 21-----~:

61------1
16K page

Upper Memory Area

16K page

Figure 25-3. Expanded Memory

Regarding the use of expanded memory, two points must be emphasized.
First, for an application program to use expanded memory, it must be equipped
specifically to do so. This kind of software is called EMS aware. EMS aware
application software requests to use expanded memory are handled by a piece of
software called an expanded memory manager (EMM). When you buy the expanded
memory board it comes with the EMM manager. In that case, you must install the
expanded memory manager (EMM) software that comes with that expanded mem­
ory board and not some other EMM manager by some other expanded memory board
maker. However, many of today's 386/486/Pentium-based PCs, which corne with
many megabytes of memory already installed on the motherboard, use
EMM386.EXE, which is provided with DOS to convert installed memory into
expanded memory. In such cases there is no need to buy expanded memory
boards. Note that if the application software is not equipped to use expanded
memory, expanded memory cannot do anything for that package even though you
have expanded memory in your PC and the EMM (expanded memory manager)
software is installed.

The second point to be emphasized about using expanded memory is that
the bank switching scheme is totally different from DMA (discussed in Chapter 15).
While in DMA the information is physically copied to RAM, bank switching is like
a window to the information stored in EMS memory boards and there is no physical
transfer of data from the expanded memory to the memory pages situated in the
upper memory area (AOOOO to FOOOO addresses). This scheme of bank switching
uses the memory locations accessible by the addresses of the microprocessor as a
window to memory locations beyond the reach of CPU's physical addresses. This
scheme was cornmon in many computers based on the 8085, Z80, and 6502, which
could only access 64K bytes due to their 16 address pins. In PC expanded memory
terminology, the page frame addresses on 16K boundaries located in the address
space of AOOOOH through FFFFFH are called physical pages and the 16K page
frames located on the expanded memory board are referred to as logical pages.
Every IBM PC and compatible based on the 80x86 is capable of having expanded
memory. This includes the 8088- and 8086-based PCs. See Figure 25-3.

SECTION 25.1: 80x86 PC MEMORY TERMINOLOGY AND CONCEPTS 745

Example 25-2

A given LIM V 4 expanded memory board has a total of 8M of memory. How many pages is that?

Solution:

In expanded memory, each page is 16K. Dividing the total 8M by 16K gives 512 pages.
8M/16K = 512

746

Extended memory

With the introduction of the 80286-based IBM PC AT, two more terms were
added to the PC memory vocabulary: high memory area and extended memory. The
80286 microprocessor has 24 address pins that allow access of up to 16M of memory,
from 000000 to FFFFFFH. The32 address pins of the 386/486IPentium allow access
of a maximum of 4 gigabytes of memory, from 00000000 to FFFFFFFFH. In all
these processors, the microprocessor can access a maximum of I M when the CPU
is in real mode. To access memory beyond I COOOOH, the microprocessor must be
switched to protected mode and that requires a highly complex operating system
such as OS/2, Windows NT, or Unix. In PC memory terminology, memory space
beyond I OOOOOH (beyond 1M) is called extended memory. To standardize accessing
memory beyond 1M, the extended memory specification (XMS) standard was
developed in 1988 by Lotus, Intel, Microsoft, and AST. Microsoft's H1MEM.SYS
included in DOS 5 (and later) is one example of memory manager software that
conforms to the XMS standard. It is common in today's 386/486/Pentium PC to
have 4M or more of RAM installed. In such cases, while the first 1M is used as
conventional memory and the UMB, the rest can be configured either as extended
memory or expanded memory or both, as we will see in the next section.

High memory area (HMA)

When 286, 386, 486, and Pentium processors are switched to protected
mode, the entire address space supported by the CPU can be accessed. The 286 in
protected mode can access 16M, from 000000 to FFFFFFH. For the 386/486/Pen­
tium it is 4 gigabytes, from 00000000 to FFFFFFFFH. However, in real mode, all
these processors provide only I M of memory space. The exception to this rule is
that there are 65,520 bytes of memory from 100000H to IOFFEFH which are
accessible without the use of an operating system with protected mode capability.
In other words, the CPU in real mode can access another 65,520 bytes of memory
beyond the 1M address space. This memory address space is called the high memory
area (HMA). As discussed in Chapter 10, the existence of the high memory area is
due to an anomaly in the A20 address pin of the 286 processor. For the 8086/88, the
physical address is generated by shifting left the CS register and adding IP. If there
is a carry, it is dropped since there is no A20 pin in the 8086/88. In the
286/386/4861Pentium, the carry is forwarded to the A20 pin. This is in spite ofthe
fact that the 286/386/486/Pentium is in real mode and the real mode uses only the
AO - A 19 address pins to access the I M from 00000 to FFFFFH. As we discussed
in Chapter 10, A20 to A23 ofthe 286 is used only when the processor is in protected
mode and the address spaces of I OOOOOH to FFFFFFH are accessible when the CPU
is working in protected mode. Accessing a portion of this address space while the
CPU is in real mode was a dilemma for designers of the IBM PC AT. They decided
to use a logic circuitry to capture the A20 bit. The logic circuitry is commonly
referred to as the A20 gate and the software to control it is called the A20 driver. To
maintain compatibility with the 286, all subsequent Intel processors, such as the
386, 486, and Pentium, continued to provide the A20 bit even when the processor
is in real mode. The high memory area belongs to 80286-, 386-, 486- and Pentium­
based PCs only, and no 8086/88 has HMA. See Figure 25-4.

CHAPTER 25: MS DOS MEMORY MANAGEMENT

Example 25-3
WhIch type of PC supports conventional memory, expanded memory, HMA, and extended memory?

Solution:

Any 80x86-based PC (8088/86, 286, 386, 486, Pentium) supports conventional and expanded mem-
ory; however, HMA and extended memory are supported by 286, 386, 486, and Pentium PCs only.

Example 25-4
What is the highest physical address accessible in real mode for the IBM PC and compatibles with the
following processors? (a) 8088/86 (b) 286, 386, 486, and Pentium

Solution:

To get the highest physical address, we must have CS =FFFF and IP =FFFFH. For (a) we have the
highest address ofFFFFF since it wraps around when FFFFO is added to FFFF and the carry is
dropped. For the processors in (b), the highest address in real mode is 10FFEFH:

FFFFO
+ FFFF

lOFFEF

since the carry is passed to the A20 address pin. Now assuming that the A20 gate is turned on, these
65,520 bytes beyond the 1M address ofFFFFFH are available in real mode.

FFFFFFFF (4G)
(386/486/Pentium)

Extended
Memory

FFFFFF (16M)
(286 processor)

High Memory Area 10FFEF
100000
FFFFF (1M)

Upper Memory
Area

AOOOO

9FFFF
Conventional
Memory

0

Figure 25-4. Extended Memory and High Memory Area

SECTION 25.1: 80x86 PC MEMORY TERMINOLOGY AND CONCEPTS 747

Shadow RAM

In high-speed 386, 486, and Pentium systems, for the CPU to access ROM
requires two or three wait states since ROM has very long access time. Due to the
fact that DRAM has a much shorter access time than ROM, the contents of ROMs
in the upper memory area are mapped into DRAM locations of the same addresses
as ROM using special mapping hardware and write-protected to prevent any data
corruption. This DRAM holding the write-protected copy ofthe ROM is then called
shadow RAM. From then on, any time the CPU asks for ROM BIOS service, or for
that fact any service provided by ROM, the information is provided by the shadow
RAM at much faster speed. In this way the CPU accesses the DRAM memory
instead of the slow ROM for the same service. Although shadow RAM can be
implemented in 8088/86/286-based PCs, the gain in performance is minimal.
However, in 386-, 486-, and Pentium-based PCs in which applications are domi­
nated by INT lOH graphics, the use of shadow RAM can boost performance
dramatically, sometimes up to 40 - 50%. In some chip sets, shadow RAM is
provided by the chip and the system's DRAM is not used.

DOS MEM command: mem [/program/debug/classify)

To examine the memory of the PC, DOS 5 provides the MEM command.
The letters Ipldlc can be used for the switches program, debug, and classify. Only
one switch can be used at a time. In other words, "mem Id/p" is not allowed. Switch
"/p" displays the status of currently loaded programs. To see the display, type "mem
Ip I more".

In DOS 6, command "mem Ip" displays the currently programs one page at
a time and there is no need for the "I more". Notice that the display includes the
physical address in hex where the programs are located in conventional memory,
their size (in hex), and the name and type of program. At the end of the display, it
also lists the total conventional memory installed, how much is available to appli­
cation programs, (the largest executable program size), the total extended memory
installed, and how much of it is allocated.

The status of currently loaded programs and device drivers is displayed by
"mem Id". The status of currently loaded programs in conventional memory and
upper memory area is displayed by "mem Ic". DOS 6 has two new switches: "mem
1m", which displays any memory space belonging to a given program, and "mem
If', which displays all free space in conventional and upper memory.

Example 25-5

Use the DOS MEM command to determine if your system has expanded and/or extended memory.

Solution: This shows that this computer has 1 M of expanded memory and 7M of extended memory.

C:>mem

748

655360 bytes total conventional memory
655360 bytes available to MS-DOS
574384 largest executable program size

1048576 bytes total EMS memory
1048576 bytes free EMS memory

7340032 bytes total contiguous extended memory
o bytes available contiguous extended memory

1048576 bytes available XMS memory
MS-DOS resident in High Memory Area

CHAPTER 25: MS DOS MEMORY MANAGEMENT

Review Questions

I. True or false. All 80x86 PCs, including the 8088/86, have conventional memory.
2. Why is conventional memory limited to 640K?
3. What address space belongs to conventional memory?
4. For a PC with 512K of DRAM memory installed, the conventional memory is

.,...--,o---.-(640K, 512K, 128K).
5. In Question 4, at what address range is memory located?
6. What address space belongs to video memory?
7. Any adapter card ROM must use the unused portion of the address space

=o--c---.--.- to ___ _
8. What address ranges are referred to as the upper memory area?
9. What address ranges are set aside for ROM and how many kilobytes is that?

10. True or false. All 80x86 PCs, inclnding the 8088/86, have upper memory area.
II. Which of these physical addresses are located on a 16K boundary?

(a) E3400H (b) DCOOOH (c) E9000H (d) DOOOOH
12. Can LIM version 4 of EMS use addresses AOOOOH - AFFFFH for the page frame?
13. True or false. Any 80x86 PC, including an 8088/86, can have expanded memory.
14. True or false. Any 80x86 PC, including an 8088/86, can have extended memory.
15. The high memory area is a portion of (extended, expanded) memory.
16. Shadow RAM speeds up the CPU's access of _____ _
17. What is the UMB, and why is it called that?
18. What is the last address of the HMA?

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING HIGH

For MS DOS-based software applications, every byte of conventional
memory is precious. The dilemma is that the 640K conventional memory must be
shared among DOS, TSRs, device drivers, and software applications. The fact that
DOS first allocates memory for itselfbefore it gives memory to other programs may
seem selfish, but given the fact that no application software can run without DOS,
this must be tolerated. However, starting with DOS 5, the operating system allows
a good portion ofitselfto be moved to the high memory area (HMA), which releases
more conventional memory for application software. It also allows the system to
move TSR programs and device drivers to the upper memory area, releasing even
more conventional memory. In this section, the process of loading high is discussed
and we will show how DOS makes more conventional memory available by moving
DOS, TSRs, and device drivers to the HMA or UMB.

Loading high into HMA

The resident portion of DOS normally takes 65K of conventional memory,
depending on the DOS version. The load high option, introduced first with DOS 5,
reduces the amount of conventional memory used by DOS to less than 20K by
moving a majority of the resident portion of DOS into the high memory area. To do
that, the HIMEM.syS driver that comes with DOS 5 (and 6) must first be installed.
Assuming that HIMEM.SYS is in the DOS directory, the following statement in the
CONFIG.SYS file will install the HIMEM.SYS driver:

DEVICE=C:IDOSIHIMEM.SYS

To move DOS to the high memory area and free the conventional memory
used by DOS, the following statement is placed in the CONFIG.syS file:

DOS=HIGH

The existence of the above two statements in CONFIG.SYS increases the
largest executable program size substantially, as shown in Example 25-6.

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING HIGH 749

Example 25-6
U sing the "MEM /D" command, show the difference in memory when DOS is loaded normally
versus when it is loaded high with the DOS=HIGH command in CONFIG.SYS.

Solution:

For our system, when DOS was not high, "MEM /D" produced the following:

655360 bytes total conventional memory
655360 bytes available to MS-DOS
582320 largest executable program size

7340032 bytes total contiguous extended memory
7340032 bytes available contiguous extended memory

When the "DOS=HIGH" statement was added to CONFIG.SYS, "MEM /D" produced

655360 bytes total conventional memory
655360 bytes available to MS-DOS
634000 largest executable program size

7340032 bytes total contiguous extended memory
o bytes available contiguous extended memory

7274496 bytes available XMS memory
MS-DOS resident in High Memory Area

Notice that moving DOS high makes the largest executable program size larger because portions of
the system have been moved out of the 640K conventional memory.

750

While DOS 5 and subsequent versions allow a good portion of DOS to be
moved into high memory, it still keeps almost a fourth of it in conventional memory.
In other words, a portion of DOS, however small, will stay in conventional memory,
no matter what we do. As a result of moving DOS into the HMA, the size of the
largest executable program will increase by about 40K.

Finding holes in the upper memory area

Since the size of the HMA is small and loading DOS high will use most of
it, DOS allows moving TSR programs and device drivers into the upper memory
area instead. To do that, it must be determined which part of the UMB is available.
To this end, the upper memory area is searched for unused memory space, and each
unused section of the upper memory area is marked as an upper memory block
(UMB). It is the job of the EMM386.EXE driver that comes with DOS 5 and later
versions to find and keep track ofUMBs. More important, EMM386.EXE allows a
user to convert extended memory into expanded memory, as we will show be­
low. The major feature ofEMM386.EXE is that it also allows a user to move TSRs
and device drivers into the upper memory area. The following two points about
EMM386.EXE must be emphasized.

I. EMM386.EXE works only on 386-, 486-, and Pentium-based PCs, not on 8088/86-,
or 286-based PCs. To find and utilize the UMB for the 8088/86/286 PC, third-party
memory managers such as QRAM from Quarterdeck Corp, and QEMM-386 can be
used.

2. HIMEM.SYS must be installed first in order for EMM386.EXE to be able to find
the UMBs. This is due to the fact that the HIMEM.SYS belongs to Microsoft's XMS
driver library and sets the standard for accessing memory beyond I M, but it is also
used in accessing memory beyond 640K.

CHAPTER 25: MS DOS MEMORY MANAGEMENT

Upper
Memory
Area

Conventional
Memory

From the above discussion we conclude that in order to use the UMB for
386/486lPentium-based PCs, both HIMEM.SYS and EMM386.EXE must be pre­
sent in the CONFIG.SYS, as shown next.

DEVICE=C:IDOSIHIMEM.SYS
DEVICE=C:IDOSIEMM386.EXE

The above commands in CONFIG.SYS will find and mark the UMB to be
used for moving TSRs and device drivers into them. Before we discuss how to load
TSRs and device drivers into the UMB, we must examine the options and switches
available to EMM386.EXE since these switches affect loading high device drivers
and TSRs. In addition, the size and the amount ofUMB available can vary depending
on how the switches for the EMM386.EXE are set. See Figure 25-5.

Extended
Memory

~ HMA

r-
FFFFF (1M)

TSRs and == Device Drivers
9FFFF are moved to

UMBs

DOS is
moved
to HMA

TSR 1-

TSR
Device Driver
Device Driver 1-

- DOS Kernel

'--
00000

Figure 25-5. Moving Software High

EMM386.EXE options and switches

The EMM386.EXE command has several options and switches for config­
uring memory. The following are some of the options and switches for
EMM386.EXE. A complete list is found in the MS DOS 5 (or 6) user's guide and
reference book that comes with DOS.

DEVICE=[DRIVE:][PATHjEMM386.EXE [MEMORY][Mx or FRAME=addressj
[Pn=address][X=mmmm-nnnn][l=mmmm-nnnnj [RAM or NOEM][L=minXMSj

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING IDGH 751

Exam~le 25-7

[MEMORY) option of EMM386.EXE

The memory parameter is used to specify the amount of expanded memory.
The number given for the amount of desired expanded memory is in kilobytes. The
following command tells EMM386.EXE to provide 3M (3072K = 3M) of expanded
memory.

DEVICE=C:IDOSIEMM386.EXE 3072

Of course, the system must have at least 3M of extended memory in order
for EMM386.EXE to simulate expanded memory out of extended memory. With
DOS, if no number is specified for the memory option, only 256K of expanded
memory is provided (for DOS 6, it is much more than that).

In a given 486 with 8M of memory on the motherboard, we are using a software package that
requires the availability of 4M of expanded memory. Show the EMM386.EXE statement in
CONFIG.SYS for such a configuration.

Solution:

DEVICE=C:IDOSIEMM386.EXE 4096

This is exactly like having a 4M expanded memory board installed on the system. In reality, it is emu­
lating expanded memory using extended memory.

752

[Mx or FRAME=address or Pmmmm) option of EMM386.EXE

Prior to EMS version 4, specific addresses, from 00000 to DFFFFH, had
to be used for the expanded memory page frame. EMS V 4 removed that limitation.
EMM386.EXE of DOS 5 incorporates this feature by allowing the address to be set
to other locations, using the Mx or FRAME parameter. The three options for
specitying the address of the page frame for expanded memory are explained next.

[Mx], where m is a number between I and 14. The segment address of the
page frame is specified according to the following table:

1=COOOH
2=C400H
3=C800H
4=CCOOH
5=DOOOH
6=D400H
7=D800H

8=DCOOH
9=EOOOH
10=8000H
11=8400H
12=8800H
13=8COOH
14=9000H

Option 10 to 14 uses addresses 80000H - 9FFFFH for expanded memory.
However, this area belongs to conventional memory. How can EMM386.EXE
convert it to expanded memory? Assume that you have only 512K of memory
installed on an older 386, and you buy an 8M expanded memory card. Using this
option, you can specity that addresses 80000H to 9FFFFH are to be used for
expanded memory. In such cases, DOS assumes that you wish to use conventional
memory. This can work only if your expanded memory board and EMS driver are
V4.

The "Frame=address" option allows the user to specify the base address of
the expanded memory page frame directly. Although by default, EMM386.EXE uses
00000 to DFFFFFH for the expanded memory frame, it can be forced to change it
to some other address. For example, if 00000 - DFFFFH is used by an adapter card
such as a data acquisition board and we know that EOOOO - EFFFFH is available,

CHAPTER 25: MS DOS MEMORY MANAGEMENT

Example 25-8

we can assigned it as the expanded memory page frame. This is shown in the
following command:

DEVICE=C:IDOSIEMM386.EXE 4096 FRAME=EOOO

Notice in the command above that when providing the frame address it must
be a segment address and not a physical address. In cases such as IBM PS models
where segment EOOO is used for BIOS, if this statement is placed in CONFIG.SYS,
EMM386.EXE will warn you of the conflict. The valid values for the address of the
FRAME switch are 8000H - 9000H and COOOH - EOOOH in increments of 400H.
Notice that 400H is a segment address, which by shifting left one hex digit becomes
4000H, a 16K boundary as required by the EMS standard. Note that of the two
options Mx or FRAME, only one ofthem can be used in a given CONFIG.SYS file.

[Pn=address] option of EMM386.EXE

Due to fragmentation of the upper memory area, sometimes it is difficult to
find 64K contiguous bytes, such as 00000 - DFFFF or EOOOO - EFFFF for the page
frame. The "Pn=address" switch allows a user to include as many segment addresses
as desired ifthey are located on a 16K boundary. In this switch, n is the page number,
which can take values from 0 to 256, and the segment addresses are values that can
range from 8000 to 9COO and CODa to ECOO. For example, the following two
statements have the same effect; one uses the FRAME switch and the other one uses
the Pn=address switch.

DEVICE=C:IDOSIEMM386.EXE 4096 FRAME=EOOO
DEVICE=C:IDOSIEMM386.EXE 4096 PO=EOOO P1=E400 P2=E800 P3=ECOO

These commands work with EMS V 3.2, since page frames for expanded memory
must be contiguous; however, in EMS V 4.0, they need not be contiguous.

[I=mmmm-nnnn] option of EMM386.EXE

Due to the fact that much of the memory space in the upper memory area
is not utilized, one can use the I switch to specify which address ranges should be
included when EMM386.EXE determines the UMB. This is especially true for video
adapter boards and applications. For example, in the case where the CGA or MDA
video boards are installed, address space AOOOO - AFFFFH is unused. Why not
inform EMM386.EXE to utilize AOOOO - AFFFFF as the upper memory block, since
by default EMM386.EXE avoids AOOOO - BFFFFH, assuming that it belongs to the
video boards? EMM386.EXE, by default, includes only segments CODa and 0000
in its search for UMBs and avoids the rest of the address space, assuming it is used.
For example, many IBM PS and compatible systems use the address range EOOOO
- EFFFFH for the extended BIOS. If a given system is not using the EOOO segment,
we can inform EMM386.EXE to include it in its pool ofUMBs. Valid addresses for
the I switch are AOOOH to FFFFH and are rounded down to the nearest 4K boundary.

An early model of a 386-based PC clone is connected to a CGA video board. Show the
EMM386.EXE setting to include segments EOOO, AOOO, and BOOO in the UMB. Notice that the lower
part of BOOO is not used by CGA either.

Solution:

DEVICE=C:IDOSIEMM386.EXE I=EOOO-EFFF I=AOOO-AFFF I=BOOO-B7FF

This command will sets aside blocks starting at EOOO, AOOO, and BOOO -B7FF for the UMB.

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING HIGH 753

754

[X=mmmm-nnnn] option of EMM386.EXE

This option is used to inform EMM386.EXE to exclude a section of the
upper memory area when searching for UMBs. The valid addresses for the X switch
are AOOOH - FFFFH and are rounded down to the nearest 4 K boundary. In cases
where the address ranges overlap for I and X, X takes precedence over I. Look at
the following command:

DEVICE=C:IDOSIEMM386.EXE I=EOOO-EFFF I=AOOO-BFFF X=B800-BFFF

Notice in the above command that although the 128K video RAM in the
address range AOOO - BFFF is included in UMB, X takes precedence by excluding
the B800 - BFFF section since that is the area used by CGA. Note
that EMM386.EXE rounds down to the nearest 4K boundary for both the I and X
switches. Look at the following command:

DEVICE=C:IDOSIEMM386.EXE X=E480-EFFF

In the above case, it is rounded down to E400, the nearest 4K boundary. To
get the segment address ofthe 4K boundary, simply drop the lower two digits. For
example, segment C938 becomes C900 and DA93 becomes DAOO. This implies
that the smallest block that we can include or exclude is 4K bytes.

[RAM] option of EMM386.EXE

This allows EMM386.EXE to provide both expanded memory and upper
memory.

[NOEM] option of EMM386.EXE

This allows EMM3 86 .EXE to provide upper memory onl y and no expanded
memory. If neither RAM nor NOEM is specified, EMM386.EXE provides the
expanded memory only and prevents any use ofthe upper memory block. In other
words, to have the upper memory area (where one can move the TSR and device
drivers) and also to have expanded memory, the RAM option must be used. In the
case where the NOEM option is selected, the upper memory area can be used for
moving high TSRs and device drivers, but no expanded memory can be used.

Loading high TSR and device driver into upper memory area

The fact that about 48K of the resident portion of DOS is moved to the high
memory area leaves only a small portion of the HMA unused. As we discussed
earlier, after loading DOS high, 48K of the 64K (almost 64K since it is 65,520 bytes)
of the HMA is used, leaving only about 19K left unused. This is not enough for
many TSRs and device drivers. In addition, depending on the way the BUFFER and
FILES parameters are set, the entire HMA could be used by DOS, leaving nothing
for any TSR or device driver. This fact led to the idea of moving TSRs and device
drivers to the upper memory area. To be able to load TSRs and device drivers into
the UMB, we must have the statement "DOS=UMB" in the CONFIG.SYS file. The
following are the steps in locating and using the UMB in 386/486/Pentium-based
PCs only.

I. Install HIMEM.syS using the DEVICE command in CONFIG.SYS.
DEVICE=C:IDOSIHIMEM.SYS

2. Install EMM386.EXE using the DEVICE command in CONFIG.SYS.
DEVICE=C:IDOSIEMM386.EXE NOEMS

3. Place DOS=UMB in CONFIG.SYS.
DOS=UMB

If you are also moving DOS to the HMA, step 3 would be as follows:
DOS=HIGH. UMB

CHAPTER 25: MS DOS MEMORY MANAGEMENT

After the above three steps the CONFIG.SYS looks as follows:
DEVlCE=C:IDOSIHIMEM.SYS
DEVlCE=C:IDOSIEMM386.EXE NOEM
DOS=HlGH, UMB

Now we are ready to move TSRs and device drivers to the VMB using the
LOADHIGH and DEVICEHIGH commands. This is done in steps 4 and 5.

4. Place the LOADHIGH command in the CONFIG.SYS file to move any TSR to the
VMB. For example, to move the DOSKEY TSR into the upper memory area, we
have the fOllowing:

LOADHlGH C:IDOSIDOSKEY.COM

Therefore, CONFIG.syS will look like this:

DEVlCE=C:IDOSIHIMEM.SYS
DEVlCE=C:IDOSIEMM386.EXE NOEM
DOS=HlGH, UMB
LOADHlGH C:IDOSIDOSKEY.COM

DOSKEY is a TSR provided with DOS 5 that, among other things, allows a user to
view, edit, and reuse the commands that were entered previously. Ifwe do not move
the TSR DOSKEY to the upper memory area, it takes about 4K of conventional
memory.

5. Vse the DEVICEHIGH command in the CONFIG.SYS file to move any device
driver to the VMB. Notice that this is DEVICEHIGH and not DEVICE. For
example, to move the device driver ANSI.SYS into the upper memory area, we have
the following statement in CONFIG.SYS:

DEVlCEHlGH=C:IDOSIANSI.SYS

Therefore, the above five steps of our CONFIG.SYS will look like this:

DEVlCE=C:IDOSIHIMEM.SYS
DEVlCE=C:IDOSIEMM386.EXE NOEM
DOS=HlGH, UMB
LOADHlGH C:IDOSIDOSKEY.COM
DEVlCEHlGH=C:IDOSIANSI.SYS

It must be noted that steps 4 or 5 must be placed after steps I - 3. "LH" is
short for the LOADHIGH command.

According to the MS DOS reference manual, the ANSI.SYS device driver
contains functions that control graphics, cursor movement, and key reassignment. In
many software packages, the presence of ANSI.SYS in CONFIG .SYS is required. If
we do not move ANSI.SYS into the upper memory area. it takes about 4K of
conventional memory.

In all the examples so far, we used the NOEM option, which provided the
VMB to move the device drivers and TSRs into but did not provide any expanded
memory. Next we see how to allocate expanded memory and also have the VMB.

Emulating expanded memory and using UMB in 386/486/Pentium PC

In many oftoday's 386/486/Pentium PCs, the motherboard already has 8M
or more of memory installed. This memory is set up for extended memory, which
is to be used by advanced operating systems such as OS/2 and Windows NT. This
extended memory is also used by much DOS-based application software that is
equipped to use the extended memory. However, some application software requires

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING HIGH 755

756

expanded memory. Does this mean that we must buy an EMS board and install it
even though we already have 8M of memory installed on the motherboard? The
answer is no. In the 386/486/Pentium, extended memory can be converted to
expanded memory. This is often referred to as emulating or simulating expanded
memory. In DOS 5 we can set the EMM386.EXE switches in such a way that we
can emulate (simulate) expanded memory and set up UMBs to move the device
drivers and TSRs into. The following CONFIG.SYS emulates (simulates) 4M of
expanded memory out of the extended memory while it also provides the UMB to
move the TSR and device driver into.

DEVICE=C:IDOSIHIMEM.SYS
DEVICE=C:IDOSIEMM386.EXE RAM 4096
DOS=HIGH, UMB
LOADHIGH C:IDOSIDOSKEYCOM
DEVICEHIGH=C:IDOSIANSI.SYS

Notice that this is similar to the previous CONFIG.SYS except that
"NOEM" in the "DEVICE=C:\DOSIEMM386.EXE " statement has been re­
placed with "RAM 4096" to provide both expanded memory and UMB.

How expanded memory is accesssed

Assume that we have an EMS aware software package and we are simulat­
ing 5M of expanded memory on a given Pc. If we have 8 physical frames in the
upper memory area, how is the 5M of expanded memory seen by the 8 page frames?
Although in this system, the 5M of expanded memory provides a total of 320
(5M116K = 320) logical page frames, only 8 of these are visible at a time. As the
EMS aware application software requests expanded memory, the EMS driver
allocates to it 1 page (16K) at a time. This process continues until all 8 pages are
allocated. The request for the ninth page is responded to by the EMS driver by
moving one of the previously assigned physical page frames to this ninth one. As
requests for more memory come in, a new logical page frame becomes visible to
one of the 8 page frames. In other words, software may use 30 pages (30 x 16K =
480K) of expanded memory, but only 8 of these are visible to the CPU at a time,
since only 8 physical pages in the upper memory area are used for the page frames.
This is one reason that EMS is slightly slower than conventional memory; that is,
it must move the page frame windows.

Review Questions

I. If a given PC has only 640K of conventional RAM, can we load high?
2. True or false. When we load DOS high, the entire DOS is moved into the HMA.
3. Which piece of software is responsible for moving DOS to the HMA?
4. True or false. To load high, CONFIG.SYS must contain DOS = HIGH.
5. Which piece of software is responsible to find and allocate the UMB?
6. In Question 5, to run the software it must be based on what microprocessor?
7. The statement "DEVICE=C:IDOSIEMM386.EXE 2048" allocates how much ex-

panded memory?
8. In Question 7, does the statement permit use of the UMB?
9. Show how C8000H - CFFFFH is excluded from the UMB.
10. By default, EMM386.EXE uses address range to for the

expanded memory page frame.
II. If an address range is marked by both the I and X switches of EMM386.EXE,

which one takes effect?
12. True or false. The NOEM switch in the EMM386.EXE command allows the use

ofUMB only.
13. True or false. The RAM switch in EMM386.EXE allows the use ofUMB only.
14. What command is used to move a device driver into the UMB?
15. What command is used to move a TSR into the UMB?

CHAPTER 25: MS DOS MEMORY MANAGEMENT

SUMMARY

This chapter outlined the memory allocation of the IBM PC. The 1M of
memory is composed of 640K (00000 to 9FFFF) of conventional DRAM memory
used for running DOS and application software, and 384K of upper memory area,
256K of which is used for ROM (COOOO to FFFFF) and 128K of which is used for
video memory (AOOOO to BFFFF). The upper memory area is organized into VMBs
(upper memory blocks). Expanded memory was developed to expand RAM beyond
the 640K barrier that exists in the PC. Expanded memory is implemented by using
64K page frames in upper memory as windows to expanded memory boards.
Modem PCs can contain up to 32M of expanded memory. Extended memory is
memory space beyond I M, and was made possible with the development ofthe 286.
Most extended memory can be accessed only when the microprocessor is in
protected mode. A small portion of extended memory, called the high memory area
(HMA), can be accessed in real mode. Loading DOS into the HMA frees conven­
tional memory. Shadow RAM is used to improve system performance by copying
frequently used portions of ROM into faster RAM of the same address.

The DOS HIMEM.SYS driver helps the user manage extended memory.
The "DOS=HIGH" command can be placed in CONFIG.SYS to load DOS into the
HMA in order to free conventional memory. The EMM386.EXE program can be
used to simulate expanded memory with extended memory and to access VMBs for
storing DOS, device drivers, and TSRs.

PROBLEMS

SECTION 25.1: 80x86 PC MEMORY TERMINOLOGY AND CONCEPTS

I. What address ranges are called conventional memory?
2. The PC's 1M memory space consists of __ segments of64K size. Number

them in hex.
3. In Problem 2, indicate the segments belonging to conventional memory.
4. Give the total number of bytes and physical addresses used for the interrupt vector

table, BIOS data area, and DOS data area.
5. Why is conventional memory limited to 640K?
6. True or false. Every 80x86 PC including the 8088/86 has conventional memory.
7. What address ranges are called the upper memory area?
8. How many 64K segments does the upper memory area contain? Give the segment

numbers in hex (see Problem 2).
9. In adding an adapter card, we use the address space of to __ for ROM.
10. Of the upper memory area, what addresses are assigned to video memory, and

what addresses are assigned to ROM?
II. What segment addresses are set aside for video RAM?
12. In the PC, what addresses are assigned to BIOS? In an IBM PS?
13. Give the IBM specifications for the first 3 bytes of an adapter ROM.
14. Why is it important to follow the IBM specifications for Problem 13?
15. Why are spaces in the upper memory area called upper memory blocks?
16. What is LIM EMS?
17. What is the maximum expanded memory in LIM version 3? LIM version 4?
18. What is the size of a page frame in LIM versions 3 and 4?
19. What addresses are used for the page frame in LIM versions 3 and 4?
20. For an address to be used for the page frame it must be on a 16K boundary. Which

of the following can be used for a page frame?
(a) D6000H (b) DCOOOH (cl DEOOOH (d) EOOOOH

21. What does it mean when it is said that application software is EMS aware?
22. PCs based on which microprocessors can have extended memory? Answer the

same question for the high memory area.
23. How many bytes is the HMA, and what are its addresses?

SUMMARY 757

24. True or false. For software to access HMA, it must use protected mode.
25. IfCS = FF56H and IP = 34C6, find the physical address in each ofIntel's CPUs

from the 8086 to the Pentium.
26. What is the A20 gate, and what is the A20 gate handler?
27. Run command "MEM /P" and analyze the result.
28. What is shadow RAM?

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING HIGH

29. True or false. To load high in DOS, we must have the HIMEM.SYS driver.
30. Show the statements in the CONFIG.syS file to move DOS high.
31. In moving DOS high, a portion of DOS is moved into the __ (HMA, UMB).
32. Which software is responsible for finding the UMBs, and which processor does

this software run on?
33. Show the statements in the CONFIG.SYS file to find the UMBs.
34. For a 386 PC with 6M on the motherboard, what is the maximum extended mem­

ory?
35. What does the term simulating expanded memory mean?
36. In Problem 34, show the EMM386.EXE switches that simulate 5M of expanded

memory and UMB.
37. In a given 486 PC that has 8M of memory on the motherboard, do we need to buy

EMS memory cards to have expanded memory? Why or why not?
38. Show the EMM386.EXE frame switch to set the page frame to EOOOH.
39. Show the EMM386.EXE Pn switch to set the page frame to C800H.
40. Show the I and X switches to include the BOOO segment, but exclude the portion

belonging to the MDA card.
41. In statement DEVICE=CIDOS\EMM386, where I = COOO - CFFF and X = C800-

CFFF, which section will be used for the UMB?
42. What is the difference between the RAM and NOEM switches for the UMB?
43. Show the EMM386 command to have both EMS and UMB.
44. What is the difference between loading high DOS and a device driver?
45. Show the CONFIG.SYS command to load high SMARTDRV.SYS with no ex­

panded memory.
46. Repeat Problem 45 with a switch to provide 2M of EMS, and in addition,

DOSKEY should be loaded into upper memory and DOS should be loaded high.

ANSWERS TO REVIEW QUESTIONS

SECTION 25.1: 80x86 PC MEMORY TERMINOLOGY AND CONCEPTS
1. true
2. because the original PC memory map set aside only 640K for RAM, with the rest of 1 M set aside for video

RAM and ROM
3. 00000 - 9FFFFH 4. 512K
6. AOOOO - BFFFFH 7. COOOOH - EFFFFH
9. COOOOH - FFFFFH, 256K 10. true
12. yes 13. true
15. extended 16. ROM

5. 00000 - 7FFFFH
8. AOOOOH - FFFFFH

11. band d
14. false; only 80286 and higher

17. Upper memory block; it is unused memory space in the address space of AOOOOH - FFFFFH. It is called
block since they are not contiguous.

18. 10FFEFH

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING HIGH
1. No, it must have some extended memory as well.
2. false; only about 213 of it 3. HIMEM.SYS
5. EMM386.EXE 6. 386 or higher processors
8. no, only the expanded memory 9. X=C800 - CFFF
11. X 12. true
13. False; it allows the expanded memory and UMB both.
14. DEVICEHIGH 15. LOADHIGH

4. true
7. 2M
10. DOOOO - DFFFFH

758 CHAPTER 25: MS DOS MEMORY MANAGEMENT

CHAPTER 26

IC TECHNOLOGY AND SYSTEM
DESIGN CONSIDERATIONS

759

The invention of the transistor and the subsequent advent of integrated
circuit (lC) technology is believed by many to be the start of the second industrial
revolution. In this chapter we provide an overview ofIC technology and interfacing.
In addition, we look at the computer system as a whole and examine some general
considerations in system design. In Section 26.1 we provide an overview of IC
technology. IC interfacing and system design considerations are examined in
Section 26.2. In Section 26.3 we discuss how high-performance systems maintain
data integrity with error detection and correction (EDC) circuitry.

SECTION 26.1: OVERVIEW OF IC TECHNOLOGY

c
B

E

N

P

N

In this section we examine IC technology and discuss recent developments
in advanced logic families. Since this is an overview, it is assumed that you already
have had an introduction to logic families on a level presented in many basic digital
books, such as Digital Systems by R. Tocci.

The transistor was invented in 1947 by three scientists at Bell Laboratory.
In the 1950s, transistors replaced vacuum tubes in many electronics systems,
including computers. It was not until in 1959 that the first integrated circuit was
successfully fabricated and tested by Jack Kilby of Texas Instruments. Prior to the
invention of the IC, the use oftransistors, along with other discrete components such
as capacitors and resistors, was common in computer design. Early transistors were
made of germanium, which was later abandoned in favor of silicon. This was due
to the fact that the slightest rise in temperature resulted in massive current flows in
germanium-based transistors. In semiconductor terms, it is because the band gap of
germanium is much smaller than silicon, resulting in a massive flow of electrons
from the valence band to the conduction band when the temperature rises even
slightly. By the late 1960s and early 1970s, the use of the silicon-based IC was
widespread in mainframe and minicomputers. Transistors and ICs were based on
P-type materials. Due to the fact that the speed of electrons is much higher (about
two and a halftimes) than the speed of the hole, N-type devices replaced P-type
devices. By the mid-1970s, NPN and NMOS transistors had replaced the slower
PNP and PMOS transistors in every sector of the electronics industry, including in
the design of microprocessors and computers. Since the early 1980s, CMOS
(complementary MaS) has become the dominant method ofIC design. Next we
provide an overview of differences between MaS and bipolar transistors.

OXid~
----,

c o N

B
G P

E S N

Bipolar NPN Transistor NMOS Transistor

Figure 26-1. Bipolar VS. MOS Transistors

760

MOS VS. bipolar transistors

There are two type oftransistors: bipolar and MaS (metal-oxide semicon·
ductor). Both have three leads. In bipolar transistors, the three leads are referred to
as the emitter, base, and collector, while in MaS transistors they are named source,
gate, and drain. In bipolar, the carrier flows from the emitter to the collector and the
base is used as a flow controller. In MaS, the carrier flows from the source to the
drain and the gate is used as a flow controller. In NPN-type bipolar transistors, the

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN

In

electron carrier leaving the emitter must overcome two voltage barriers before it
reaches the collector (see Figure 26-1), One is the N-P junction of the emitter-base
and the other is the P-N junction of the base-collector. The voltage barrier of the
base-collector is the most difficult one for the electron to overcome (since it is
reversed biased) and it causes the most power dissipation, This led to the design of
the unipolar type transistor called MOS, In N-channel MOS transistors, the electrons
leave the source reaching the drain without going through any voltage barrier, The
absence of any voltage barrier in the path of the carrier is one reason why MOS
dissipates much less power than bipolar transistors, The low power dissipation of
MOS allows putting millions of transistors on a single Ie chip, In today's million­
transistor microprocessors and DRAM memory chips, the use of MOS technology
is indispensable, Without the MOS transistor, the advent of desktop personal
computers would not have been possible, at least not so soon, The use of bipolar
transistors in both the mainframe and minicomputer ofthe 1960s and 1970s required
expensive cooling systems and large rooms due to their bulkiness, MOS transistors
do have one major drawback: They are slower than bipolar transistors, This is due
partly to the gate capacitance of the MOS transistor, For MOS to be turned on, the
input capacitor ofthe gate takes time to charge up to the tum-on (threshold) voltage,
leading to a longer propagation delay,

Overview of logic families

Logic families are judged according to (l) speed, (2) power dissipation, (3)
noise immunity, (4) input/output interface compatibility, and (5) cost Desirable
qualities are high speed, low power dissipation, and high noise immunity (since it
prevents the occurrence of false logic signals during switching transition), In
interfacing logic families, the more inputs that can be driven by a single output, the
better. This means that high-driving-capability outputs are desired, This plus the fact
that the input and output voltage levels of MOS and bipolar transistors are not
compatible mean that one must be concerned with the ability of one logic family in
driving the other one, In terms of the cost of a given logic family, it is high during
the early years of its introduction and prices decline as production and use rise,

The case of inverters

As an example oflogic gates, we look at a simple inverter, In a one-transistor
inverter, while the transistor plays the role of a switch, R is the pull-up resistor, See
Figure 26-2. However, for this inverter to work effectively in digital circuits, the R
value must be high when the transistor is "on" to limit the current flow from Vee
to ground in order to have low power dissipation (P = VI, where V = 5 V), In other
words, the lower the I, the lower the power dissipation, On the other hand, when the
transistor is "off', R must be a small value to limit the voltage drop across R, thereby
making sure that VOUT is close to Vec. This is a contradictory demand on R, This
is one reason that logic gate designers use active components (transistors) instead
of passive components (resistors) to implement the pull-up resistor R,

Vee

Re

Out

High

Vee

Re

Low

Rc must be very

high value

Low

Vee

Re

High

Off

Rc must be very

low value

Figure 26-2. One-Transistor Inverter with Pull-up Resistor

SECTION 26_1: OVERVIEW OF IC TECHNOLOGY 761

I"'"t

The case of a TTL inverter with totem pole output is shown in Figure
26-3. In Figure 26-3, Q3 plays role of a pull-up resistor.

Vee Vee

Lor ~ Un
~!tl

Vee

I"'"t
~g/l Low

IIut Uut

Figure 26-3. TTL Inverter with Totem-Pole Output

Input
5V

CMOS inverter

In the case of CMOS-based logic gates, PMOS and NMOS are used to
construct a CMOS (complementary MOS) inverter as shown in Figure 26-4. In
CMOS inverters, when the PMOS transistor is off, it provides a very high impedance
path, making leakage current almost zero (about 10 nA); when the PMOS is on, it
provides a low resistance on the path OfVDD to load. Since the speed of the hole is
slower than the electron, the PMOS transistor is wider to compensate for this
disparity; therefore, PMOS transistors take more space than NMOS.

Voo VOO

lIoff" J "on" J PMOS PMOS
- -

~o~" Input ~~ OV OV 5V
L--

l NMOS -

l NMOS
"on" "off"

VSS VSS

Figure 26-4. CMOS Inverter

762

Input, output characteristics of some logic families

In 1968 the first logic family made of bipolar transistors was marketed. It
was commonly referred to as the standard TTL (transistor-transistor logic) family.
The first MOS-based logic family, the CD4000174C series, was marketed in 1970.
The addition of the Schottky diode to the base-collector of bipolar transistors in the
early 1970s gave rise to the S family. The Schottky diode shortens the propagation
delay of the TTL family by preventing the collector from going into what is called
deep saturation. Table 26-1 lists major characteristics of some logic families. In
Table 26-1, note that as the CMOS circuit's operating frequency rises, the power
dissipation also increases. This is not the case for bipolar-based TTL.

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN

Table 26-1: Characteristics of Some Logic Families
r===== .- -- ,- "<' •

ifCharacteristi,c

'lYcc__ ___ _ __ _
iVIH

IlvIL
IIVOH=_ ---

Std TTL _ !

, 5V ,____ __--------l

2.0V

0.8V

2.4V

0.4 V

_LSTTL

5V

2.0V

0.8 V

2.7V

0.5 V
!

!VOL .- ------+---

_ALSTTL

_ 5V_

+-~2.0V

HCMOS

5V --+---- --

~_ 3.15 V

0.8V ~_I_.IV

2.7 V l----_.l7 V

-----'-_ 0.4 V 1 __ 0_.4 V IIIrL -----
-1.6mA -0.36mA

r
-0.2 mA-'-------'I_

IIII-H -

iLillL- --
IIIOH ___ _ -400 flA_---i-~400 flA

[ftopagation delay _ 1

40 1:1 A 20 1:1 A

16mA 8mA

20 fl A-----+-
~~4~m~A~~ 4mA

--=~OO =I:1A'-'------l- 4 rnA

-+ __ 4 n=s_~_ 9 ns

I
___ J

!I Static power dissipation (F=O) I

! Dynamic power dissipation at

10 ns

IOmW

10mW

9.5 ns
_____ 2mW

f----,I,--,m W'----_+_ 0.0025 n W

1'=100 KHz
2mW I mW 0.17 mW

History of logic families

Early logic families and microprocessors required both positive and nega­
tive power voltages. In the mid-1970s, 5V Vee became standard. For example,
Intel's 4004, 8008, and 8080 all used negative and positive voltages for the power
supply. In the late 1970s, advances in IC technology allowed combining the speed
and drive of the S family with the lower power of LS to form a new logic family
called FAST (Fairchild Advanced Schottky TTL). In 1985, AC/ACT (Advanced
CMOS' Technology), a much higher speed version of HCMOS, was introduced.
With the introduction of FCT (Fast CMOS Technology) in 1986, at last the speed
gap between CMOS and TTL was closed. Since FCT is the CMOS version of FAST,
it has the low power consumption of CMOS but the speed is comparable with TTL.
Table 26-2 provides an overview of logic families up to FCT.

Table 26-2: Logic Family Overv~ie~w~_~- ~--c ~_~_ ~ __ _

!prQduct - - - Int!e:~ced - i Speed (ns)

I'Std TTL 1968 40

Static Supply
Current(mA) _

30

High/Low Family
Drive(II\ALn -i

-2/32

1,ICD4K174C 1970 70-+--I' 1--__ -0.48/6.4

1,1 L_ ,SIS 1971 18 -- 54 -1-5/-24-r. +-- --- L --- -------I-- --- --'-----+
I HCIHCT _ 1977 i 25 1 __ ~08L_ -~/-6
!~AST -+ __ 1978 t-- §.2.J- ___ 90 I -15/64

I~ ----i --- 1980 ------;-' - 6.2 -11__ 90 -i- ---=.l5/64

I ALS 1980 -t--- 12...-1 2.7_J_ _ __ -15/64

0.3

I~CT __ = L , ___ ,_i-::-~:~ ~ ___ 1~.51____ __ i:~_8L_~ =~:;~:
Reprinted by pennission of Electronic Design Magazine, c. 1991.

SECTION 26.1: OVERVIEW OF IC TECHNOLOGY 763

Recent advances in logic families

As the speed of high-performance microprocessors such as the 386 and 486
reached 25 MHz, it shortened the CPU's cycle time, leaving less time for the path
delay. Designers normally allocate no more than 25% of a CPU's cycle time budget
to path delay. Following this rule means that there must be a corresponding decline
in the propagation delay of logic families used in the address and data path as the
system frequency is increased. In recent years, many semiconductor manufacturers
have responded to this need by providing logic families that have high speed, low
noise, and high drive. Table 26-3 provides the characteristics of high-performance
logic families introduced in recent years. ACQI ACTQ are the second-generation
advanced CMOS (ACMOS) with much lower noise. While ACQ has the CMOS
input level, ACQT is equipped with TTL-level input. The FCTx and FCTx-Tare
second-generation FCT with much higher speed. The x in the FCTx and FCTx-T
refers to various speed grades, such as A, B, and C, where A designation means low
speed and C means high speed. For designers who are well versed in using the FAST
logic family, the use of FASTr is an ideal choice since it is faster than FAST, has
higher driving capability (IOL, IOH), and produces much lower noise than FAST. At
the time of this writing, next to ECL and gallium arsenide logic gates, FASTr is the
fastest logic family in the market (with the 5V Vee), but the power consumption is
high relative to other logic families, as shown in Table 26-3. Recently, a 3.3V Vee
with higher speed and lower power consumption is starting to appear. The combin­
ing of high-speed bipolar TTL and low power consumption of CMOS has given
birth to what is called BICMOS. Although BICMOS seems to be the future trend in
IC design, at this time it is expensive due to extra steps required in BICMOS IC
fabrication, but in some cases there is no other choice. For example, Intel's Pentium
microprocessor, a BICMOS product, had to use high-speed bipolar transistors to
speed up some of the internal functions in order to keep up with RISC processor
performance. Table 26-3 provides advanced logic characteristics. Table 26-4 shows
logic families used in systems with different speeds. The x is for different speed
where A, B, and C are used for designation. A is the slower one while C is the fastest
one. The above data is for the '244 buffer.

Table 26-3: Advanced Logic General Characteristics
~--1

I

!. IOHlIoL ' --il

j~4/24mAl

-+--24/24 mA ~i
IFCTx , 1987 3 CMOS TTLICMOS -+-~:} 4.8 ~ ~ mA J.=15/64 mA 'I

j~TXT 2 CMos_I TTLlTTL---14.1-4.8ns_I_.I~Il1A_~-15/64mAJ

jl

FASTr I 1990 I Bipolar I TTLITTL-+ 3.9~UOmA~-:15/64mA~1
,I BCT I 1987 2 I BICMOS \ TTLITTL _ •. 5.5 ns~1O mAl-15I64 mAJ

, ,

I

-:---------=-=
i I Number i Tech i Static

Familv i Year 'I Suppliers I Base 110 Level S~eed
I

Current
,

I CMOS/CMOS
,

ACQ 1989 2 i CMOS 6.0ns '. 80~

I CMOS I
------~----'

ACQ 1989 2 TTLICMOS
I

7.5 ns L8Ql0 ,
, I I -

Reprinted by permission of Electronic Design Magazine, c. 1991.

Table 26-4: Importance of Speed

Clock Period 1 Predominant Lo ic for Path ,'I

If------"--'~---_--+-----"I 0'-".0~-5C"'00"-. ___ -,---_ HC, LSI
33-100 .. __ -l--ALS,AS, FAST, FACT 1
l5-~ ____ ' _ FASTrJ~CT, FCTA ' .. J

10-30

30-66
Reprinted by permission of Electronic Design Magazine, c. 1991.

764 CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN

Evolution of Ie technology in Intel's 80x86 microprocessors

Since 1971, when Intel introduced the first microprocessor, the 4004, until
the introduction of the Pentium microprocessor, IC technology has gone through
some massive changes. The early processors (4004 and 8008) used PMOS. The
8080, 8085, 8088, 8086, and 80286 all used NMOS when first introduced. In recent
years, CMOS versions of the 8088, 8086, and 286 have been introduced for
power-efficient systems. Currently, CMOS is the universal technology in the design
of microprocessors. Only CMOS could allow designers to put over 3 million
transistors on a single chip, make it work at 100 MHz, and consume around 10 watts
of power. There has been a steady decline in the transistor's dimension throughout
the 1970s, 1980s, and 1990s. The design rule, the thickness of the lines inside the
IC, has come down from a few microns to a fraction of a micron during this time. See
Table 26-5.

The early microprocessors used power supplies with negative (-) and
positive (+) voltages. For example, the 4004 used -10 and +5 V. The 8008 used
-9 and +5 V, and the 8080 used -5, +5, + 12 V. Since the introduction of the 8085,
the use of a +5 V power supply has become standard in all microprocessors. To
reduce power consumption, 3.3V Vee is being embraced by many designers. The
lowering of Vee to 3.3 V has two major advantages: (I) it lowers the power
consumption, resulting in prolonging the life of the battery in systems such as a
laptop PC or hand-held personal digital assistant, and (2) it allows a further reduction
of line size (design rule) to submicron dimensions. This reduction results in putting
more transistors in a given die size. The decline in the line size is expected to reach
0.1 !Jm by the year 2000 and transistor density per chip will reach 100 million
transistors.

Table 26-5: Intel Microprocessor Evoluti~n
I'

--I

I : Line Thickness Power Number of
1 Microprocessor' Year IC Tech Supply (V) Transistors

11
8086

1~0286
80386

i'80~86

I~ntium
• Pentium II

1978 NMOS 3.0 5 29,000

1982 NMOS 1.5 5 130,000 ~"
, 1985 CMOS 1.5 I 5 275,000 I __ L_ ~

19_89 I CMOS 1.0 -, 5 1.2 million _--:

---L-1992. I BICMOS I 0.8
,

5 3.1 million -J" .j

_L1993 'BICMOS i 0.6 3.3 3.1 million
- I

Review Questions

1. State the main advantages ofMOS and bipolar transistors.
2. True or false. In logic families, the higher the noise margin, the better.
3. True or false. Generally, high-speed logic consumes more power.
4. Power dissipation increases linearly with the increase in frequency in ________ _

(CMOS, TTL).
5. In a CMOS inverter, indicate which transistor is on when the input is high.
6. For system frequencies of 10 - 30 MHz, which logic families are used for the ad­

dress and data path?

SECTION 26.1: OVERVIEW OF IC TECHNOLOGY 765

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN
CONSIDERATIONS

"Off"

"On"

There are several issues to be considered in designing a microprocessor­
based system. They are IC fan-out, capacitance derating, ground bounce, Vee
bounce, crosstalk, and transmission lines. This section provides an overview of these
design issues in order to provide a sampling of what is involved in high-performance
system design.

Ie fan-out

In interfacing IC, fan-ouVfan-in is a major issue. How many inputs can an
output signal drive? This question must be addressed for both logic "0" and logic
"I" outputs. Fan-out for low and fan-out for high are as follows:

IOL
fan-out (oflow) ~ -I

JL
fan-out (of high) ~ lIOH

IH

Of the above two values the lower number is used to ensure the proper noise
margin. Figure 26-5 shows the sinking and sourcing of current when ICs are
connected.

"On

"Off'

IOL=l: IlL

VOL = RoN (transistor) xl OL

Figure 26-5. Current Sinking and Sourcing in TTL

766

In Figure 26-5, as the number of inputs connected to the output increases,
IOL rises, which causes VOL to rise. If this continues, the rise of VOL makes the
noise margin smaller and this results in the occurrence of false logic due to the
slightest noise.

In designing the system, very often an output is connected to various kinds
of inputs. See Example 26-2.

The total hL and hH requirement of all the loads on a given output must be
less than the driver's maximum IOL and IOH. This is shown ir, Example 26-3.

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN

Example 26-1
Find how many unit loads (UL) can be driven by the output of the LS logic family.

Solution:

The unit load is defined as IlL = 1.6 rnA and IIH = 40 !-IA. Table 26-1 shows IOH = 400 IlA and IOL = 8
mA for the LS family. Therefore, we have

IOL 8 rnA = 5 fan-out (low) = T =
IL 1.6 rnA

IOH 400 IlA
= 10 fan-out (high) = T =

IH 40 IlA

This means that the fan-out is 5. In other words, the LS output must not be connected to more than 5
inouts with unit load characteristics.

Example 26-2

An address pin needs to drive 5 standard TTL loads in addition to 10 CMOS inputs of DRAM chips.
Calculate the minimum current to drive these inputs for both logic "0" and" I ".

Solution:

The standard load for TTL is IIH =40 IlA and IlL = 1.6 rnA and for CMOS IlL = IIH = 10 IlA. mini-

mum current for "0" =total of all IlL =5 x 1.6 rnA + 10 x 10 IlA = 8.1 rnA

minimum current for" I " =total of all IIH =5 x 40 IlA + 10 x 10 IlA = 300 IlA

Address line

"0" t!
"1" "0" t ! ;~"1tA 1.6 mA 40~A 10 ItA

...

I I I I
5 TTL 10 CMOS

Example 26-3

Assume that the microprocessor address pin in Example 26-2 has specifications IoH = 400 IlA and IOL
= 2 rnA. Do the input and output current needs match?

Solution:

For a high output state, there is no problem since IOH > IIH' However, the number of inputs
exceeds the limit for IOL since an IlL of 8.1 rnA is much larger than the maximum IOL allowed
by the microprocessor.

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN CONSIDERATIONS 767

In cases such as Example 26-3 where the receiver current requirements
exceed the drivers' capability, we must use a buffer (booster), such as the 74xx245
and 74xx244. The 74xx245 is used for bidirectional and the 74xx244 for unidirec­
tional signals. See current 74LS244 and 74LS245 characteristics in Table 26-6.

Table 26-6: Electrical Specifications for Buffers fRo. 'Ion(mA): IOL(mA) ;~o;;;.) -I bL(mA)~1

h:~:;----+---!- --+-_- :~ : ~~_ J ~:; _ -;1
Note: VOL - 0.4 V and VOH - 2.4 V are assumed.

768

Capacitance derating

N ext we study what is called capacitance derating and its impact in system
design. Apin of an Ie has an input capacitance of5 to 7 pF. This means that a single
output that drives many inputs sees a large capacitance load since the inputs are in
parallel and therefore added together. Look at the following equations.

Q=CV (26-1)

Q CV
(26-2)

T T

F=l
T

(26-3)

I=CVF (26-4)

In Equation (26-4), I is the driving capability of the output pin, Cis elN as
seen by the output, and V is the voltage. The equation indicates that as the number
of elN loads goes up, there must be a corresponding increase in 10, the driving
capability of the output. In other words, outputs with high values OfIOL and IOH are
desirable. Although recently there have been some logic families with IOL = 64 rnA
and IOH = 15 rnA, their power consumption is high. Equation (26-4) indicates that
if I = constant, as C goes up, F must come down, resulting in lower speed. The most
widely accepted solution is the use of a large number of drivers to reduce the load
capacitance seen by a given output. Assume that we have 16 address bus lines AO -
AI5 driving 4 banks of 32-bit-wide memory. Each bank has 32 chips of 64Kxl
organization, which results in 128 memory chips. Depending on how many 244s
are used to drive the memory addresses, the delay due to the address path varies
substantially. To understand this we examine four cases.

Case 1: Two 244 drivers

This option uses two 244 drivers, one for AO - A7 and one for A8 -AI5. An
output of the 244 drives 4 banks of memory, each with 32 inputs. Assuming that
each memory input has 5 pF capacitance, this results in a total of 128 x 5 = 640 pF
capacitance load seen by the 244 output. However, the 244 output can handle no
more than 50 pF. As a result, the delay due to this extra capacitance must be added
to the address path delay. For each 50 to 100 pF capacitor, an extra 3 ns delay is
added to the address path delay. In our calculation, we use 3 ns for each 100 pF of
capacitance. Figure 26-6 shows driving memory inputs by two 244 chips. See
Example 26-4.

Case 2: Doubling the number of 244 buffers

Doubling the number of 244 buffers will reduce the address path delay. A
single 244 drives only two banks, or a total of 64 inputs, since there are 32 inputs
in each bank. As a result, a 244 output will see a capacitance load of 64 x 5 = 320
pF. In this case, we use only four 244 buffer chips, as shown in Figure 26-7 and
Example 26-5.

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN

AO

AO 244 AO· AO· AO· AO·

A7 15 15 15 15

64K 64K 64K 64K
xl xl xl xl

bank 1
00010203 030031

00010203 030031
bank 2

bank 3
00010203 030031

bank4
00010203 030031

Figure 26·6. Case 1: Two 244 Address Orivers (the second 244 for A8 • A 15 is not shown)

Example 26-4
Calculate the following for Figure 26-6, assuming a memory access time of 25 ns and a propagation
delay of 10 ns for the 244.
(a) delay due to capacitance derating on the address path
(b) the total address path delay for case I

Solution:
(a) Of the 640 pF capacitance seen by the 244, only 50 pF is taken care of; the rest, which is 590

(640 - 50 = 590), causes a delay. Since there are 3 ns for each extra 100 pF, we have the
following delay due to capacitance derating, (590/100) x 3 ns = 17.7 ns.

(b) Address path delay = 244 buffer propagation delay + capacitance derating delay + memory
access time = 10 ns + 17.7 ns + 25 ns = 52.7 ns.

-
244 AO cio ci1 ok ok 0~0 631

bank 1
AO -
A7 I I I. ~ , ,

bank 2
00010203 030031

-
244 AO

60 0'1 O~ O~ oio ci31
bank 3
bank 4

6061 6263 03'0631
Figure 26-7. Case 2: Four 244 Drivers (the two 244 drivers for A8 - A 15 are not shown)

Example 26-5

Calculate (a) delay due to capacitance derating on the address path, and (b) total address path delay
for case 2. Assume a memory access time of 25 ns and a propagation delay of IOns for the 244.

Solution:
(a) Of the 320pF capacitance seen by the 244, only 50 pF is taken care of; the rest, which is 270 pF,

causes a delay. Since there are 3 ns for each extra 100 pF, we have (270/1 00) x 3 ns = 8.1 ns
delay due to capacitance derating.

(b) The address path delay = 244 buffer propagation delay + capacitance derating delay +
memory access time = 10 ns + 8.1 ns +25 ns = 43.1 ns.

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN CONSIDERATIONS 769

A7 -AO

r--

r--

'--

Case 3: Doubling again

In this case, we double the number of 244 buffers again, so that an output
of the 244 drives one bank, each with 32 inputs. This results in a total capacitance
load of 32 x 5 = 160 pF. Only 50 pF of it is taken care of by the 244, leaving 110
pF, causing a delay. In this case, we use total of eight 244 buffer chips, as shown in
Figure 26-8 and Example 26-6

I I I I I I 244 bank 1
DO 010203 030031

244 I I I I I I bank 2
DO 01 0203 030031

244 I I I I I I bank 3
DO 010203 030031

244 I I I I I I bank 4
DO 01 0203 030031

Figure 26-8. Case 3: A Single 244 for Each Bank (A8 - A 15 not shown)

Example 26-6

Calculate (a) the delay due to capacitance derating on the address path, and (b) the total address path
delay for case 3. Assume memory access time of 25 ns and propagation delay of 10 ns for the 244.

Solution:
(a) Of the 160 pF capacitance seen by the 244, only 50 pF is taken care of; the rest, which is 110 pF,

causes a delay. Since there are 3 ns for each extra 100 pF, we have (110/100) x 3 ns = 3.1 ns
delay, due to capacitance derating.

(b) The address path delay = 244 buffer propagation delay + capacitance derating delay +
memory access time = 10 ns + 3.1 ns +25 ns = 38.1 ns.

770

Case 4: Doubling again

Doubling the number of 244 chips again allows each buffer to drive 16
inputs, or one half of the 32-bit bank. This eliminates (almost) the capacitance
derating all together. As a result, the address path delay consists of a 244 and memory
access time of 35 ns (10 ns + 25 ns = 35 ns) and no capacitance derating. In this
case we must use sixteen 244 buffers.

Examining cases I through 4 shows that for high-speed system design we
must accept a higher cost due to extra parts and higher power consumption.

Power dissipation considerations

Power dissipation of a system is a major concern of system designers,
especially for laptop and hand-held systems such as personal digital assistants
(PDA). Although power dissipation is a function of the total current consumption
of all components of a system, the impact of Vee is much more pronounced, as
shown next. Earlier we showed in Equation (26-4) that I = CFV Substituting this
in equation P = VI yields the following:

(26-5)

In Equation (26-5), the effects of frequency and Vee voltage should be
noted. While the power dissipation goes up linearly with frequency, the impact of
the power supply voltage is much more pronounced (squared).

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN

Example 26-7

Dynamic and static currents

There are two major types of currents flowing through an IC: dynamic and
static. A dynamic current is a function of the frequency under which the component
is working, as seen in Equation (26-4). This means that as the frequency goes up,
the dynamic current and power dissipation go up. The static current, also called dc,
is the current consumption of the component when it is inactive (not selected).

Power-down option and Intel's SL series

The popularity of notebook and laptop PCs led Intel to market a series of
386,486, and Pentium processors called the SL series. Intel originally designed SL
microprocessor technology for mobile computers that needed to conserve battery
power. This technology will appear in all enhanced Intel 486 and Pentium proces­
sors. These processors have what is called system management mode (SMM), which
reduces energy consumption by tuming off peripherals or the entire system when
not in use. According to Intel, SMM can put the entire system, including the monitor,
into sleep mode during periods of inactivity, thereby reducing "power from 250
watts to less than 30 watts." The effects on the 3.3 V power supply alone translates
into a power savings of up to 56% over systems with a 5 V power supply, as shown
in Example 26-7.

Prove that a system 3.3 V system consumes 56% less power than a system with a 5 V power supply.

Solution:
Since P = VI, by substituting I = VIR, we have P =V2/R. Assuming thatR =1, we have P (3.3)2 =
10.89 Wand P = (5)2 = 25 W. This results in using H. II Wiess (25 - 10.89 = 14.11), which means a
56% power saving (14.11 W/25 W x 100 = 56%).

In addition to Vee, the system design can also have a great impact on power
dissipation. As an example of the impact of system design on power consumption,
look at Examp Ie 26-8, where 64K bytes of memory are designed using two different
memory organizations.

Ground bounce

One of the major issues that designers of high-frequency systems must
grapple with is ground bounce. Before we define ground bounce, we will discuss
lead inductance ofIC pins. There is a certain amount of capacitance, resistance, and
inductance associated with each pin of the Ie. The size of these elements varies
depending on many factors such as length, area, and so on. Figure 26-9 shows the
lead inductance and capacitance of the 24 pins of a DIP IC.

The inductance ofthe pins is commonly referred to as self-inductance since
there is also what is called mutual inductance, as we will show below. Of the three
components of capacitor, resistor, and inductor, self-inductance is the one that causes
the most problems in high-frequency system design since it can result in ground
bounce. Ground bounce is caused when a massive amount of current flows through
the ground pin when a multiple of outputs change from high to low all at the same
time. The voltage relation to the inductance ofthe ground lead follows:

V = L dj (26-6)
dt

As we increase the system frequency, the rate of dynamic current, dildt, is
also increased, resulting in an increase in the inductance voltage L (dildt) of the
ground pin. Since the low state (ground) has a small noise margin, any extra voltage
due to the inductance voltage can cause a false signal. To reduce the effect of ground
bounce, the following steps must be taken where possible.

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN CONSIDERATIONS 771

Examj>le 26-8

Calculate and compare the power consumption of 64K bytes of memory if we use the following or­
ganizations. Assume that the active and standby current consumptions are the same for both memory
chips: 'active = 180 mA and 'standby = 30 mA
(a) 64Kxl (b) 8Kx8 memory chips

Solution:

(a) Using 64Kxl memory chips, we have one bank, where it is selected by a decoder output:
(AO - AI5 go to all 8 memory chips)

64Kxl 64Kx1 64Kx1 64Kx1

AO- 1 2 3 8

Decoder
A15-

CS CS CS

A16- I
An -

Therefore, the current dissipation is P = [N x Iaet + M x IsbJ Vee, where N =number of active
devices, M the number of standby devices, and Isb and Iaet are standby and active currents, respec­
tively. P=[8 x 180 mA +OJ x 5 V =7.2 W.

(b) When using the 8Kx8 devices we have 8 banks each with 8K bytes of memory but only one of
them active, with the other 7 in standby mode.

AD _ 8Kx8

A12 _

CS

8Kx8 8Kx8 8Kx8

I Decoder

8Kx8

Therefore, P=[I x 180 mA + 7 x 30 mAJ x 5 V= 1.95 W.

8Kx8 8Kx8 8Kx8

Comparing (a) and (b), we conclude that with an extra decoder (e.g.,74xxI38), a substantial amount
of power is saved. However, using the memory organizations x8, x16, and x32 wide can cause other
kinds of problems, such as ground bounce.

772 CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN

l. The Vee and ground pins of the chip must be
located in the middle rather than at the opposite
ends of the IC chip (the 14-pin TTL logic IC
uses pins 14 and 7 for ground and Vee). This is
exactly what we see in high-performance logic
gates such as Texas Instrument's advanced
logic ACllOOO and ACTlIOOO families. For
example, the ACTl1013 is a 14-pin DIP chip
where pin numbers 4 and II are used for the
ground and Vee instead of 7 and 14 as in the
TTL. We can also use the SOIC packages in­
stead of DIP. The self-inductance of the leads
is shown in Table 26-7.

2. Use logics with a minimum number of out­
puts. For example, a 4-output is preferable to an

Table 26-7: 20-Pin DIP and
SOIC Lead Inductance

r
I ',Pins ' (pH) , (nH)

1 lQ,ll 20
i
: 13.7 4.2

291219
i

11.1 3.8
,

.,.
,

Courtesy of Texas Instruments

8-output. This explains why many designers of high-performance systems avoid
using memory chips or the drivers and buffers of 16- or 32-bit wide outputs since
all the outputs switching at the same time will cause a massive flow of current in
the ground pin, and hence cause ground bounce (see Figure 26-10).

3. Use as many pins for the ground and Vee as possible to reduce the lead length, since
the self-inductance of a wire with length 1 and a cross section of B x Cis:

(

21 1 \
L=0.0021In -~+-j

B+C 2
(26-7)

As seen in Equation (26-7), the wire length, I, contributes more to self-in­
ductance than does the cross section. This explains why all high-performance
microprocessors and logic families use several pins for the Vee and ground. For
example, in the case of Intel's Pentium processor there are over 50 pins for the
ground and another 50 pins for the Vee.

The discussion of ground bounce is also applicable to Vee when a large
number of outputs changes from the low to high state and is referred to as Vee
bounce. However, the effect of V ee bounce is not as severe as ground bounce since
the high C' I ") state has wider noise margin than the low ("0") state.

em Self-inductance Canacitance
1.86 pF 1 15.10 nH

2 12.20 nH 1.70 pF
3 9.54 nH 1.29 pF
4 7.44 nH 0.95 pF
5 5.31 nH 0.61 pF
6 3.73 nH 0.43 pF
7 3.41 nH 0.43 pF
8 4.66 nH 0.61 pF
9 6.95 nH 0.95 pF
10 8.96 nH 1.29 pF
11 11.70 nH 1.70 pF
12 14.50nH 1.86 pF
13 14.50nH 1.86 pF
14 11.70nH 1.70 pF
15 8.96 nH 1.29 pF
16 6.95 nH 0.95 pF
17 4.66 nH 0.61 pF
18 3.41 nH 0.43 pF
19 3.73 nH 0.43 pF
20 5.31 nH 0.61 pF
21 7.44 nH 0.95 pF
22 9.54 nH 1.29 pF
23 12.20 nH 1.70 pF
24 15.10nH 1.86 pF

Figure 26-9. Inductance and Capacitance of 24-pin DIP
Reprinted by permission of Electronic Design Magazine, c. 1992.

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN CONSIDERATIONS 773

DO ~
01
~

02
~

03
~

GrOUnd~

Ground bounce when data switches

from all 1 s to all Os

Vout 1£
Time

ICCl

Current transient going from 0 to 1

Figure 26-10. Ground Bounce and Transient Current for Output Transitions

774

Filtering the transient currents using decoupling capacitors

In the TTL family, the change ofthe output from low to high can cause what
is called transient current. In totem-pole output when the output is low, Q4 is on
and saturated, whereas Q3 is off. By changing the output from the low to high state,
Q3 becomes on and Q4 becomes off. This means that there is a time that both
transistors are on and drawing currents from the Vee. The amount of current
depends on the RON values of the two transistors and that in tum depends on internal
parameters of the transistors. However, the net effect of this is a large amount of
current in the form of a spike for the output current, as shown in Figure 26-10. To
filter the transient current, a O.OIIlF or O.IIlF ceramic disk capacitor can be placed
between the Vee and ground for each TTL Ie. However, the lead for this capacitor
should be as small as possible since a long lead results in a large self-inductance
and that results in a spike on the Vee line [V=L (dildt)]. This is also called Vee
bounce. The ceramic capacitor for each IC is referred to as a decoupling capacitor.
There is also a bulk decoupling capacitor, as described next.

Bulk decoupling capacitor

As many IC chips change state at the same time, the combined currents
drawn from the board's Vee power supply can be massive and cause a fluctuation
of Vee on the board where all the ICs are mounted. To eliminate this, a relatively
large (relative to an IC decoupling capacitor) tantalum capacitor is placed between
the Vee and ground lines. The size and location of this tantalum capacitor varies
depending on the number of ICs on the board and the amount of current drawn by
each IC, but it is common to have a single 221lF to 471lF capacitor for each of the
16 devices, placed between the Vee and ground lines.

Crosstalk

Crosstalk is due to
mutual inductance. See Fig­
ure 26-11. Previously, we
discussed self-inductance,
which is inherent in a piece of
conductor. Mutual induc­
tance is caused by two elec­
tric lines running parallel to
each other. It is calculated as
follows: Figure 26-11. Crosstalk (EMlj

LO

LO

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN

(26-8)

where I is the length of two conductors running in parallel, and d is the distance
between them, and the medium material placed in between affects K. Equation
(26-8) indicates that the effect of crosstalk can be reduced by increasing the distance
between the parallel or adjacent lines (in printed circuit boards, it will be traces). In
many cases, such as printer and disk drive cables, there is a dedicated ground for
each signal. Placing ground lines (traces) between signal lines reduces the effect of
crosstalk.This method is used even in some ACT logic families where there is a Vee
and GND pin next to each other. Crosstalk is also called EMI (electromagnetic
interference). This is in contrast to ESI (electrostatic interference), which is caused
by capacitive coupling between two adjacent conductors.

Transmission line ringing

The square wave used in digital circuits is in reality made of a single
fundamental pulse and many harmonics of various amplitudes. When this signal
travels on the line, not all the harmonics respond the same way to capacitance,
inductance, and resistance of the line. This causes what is called ringing, which
depends on the thickness and the length of the line driver, among other factors. To
reduce the effect of ringing, the line drivers are terminated by putting a resistor at
the end of the line. See Figure 26-12. There are three major methods of line driver
termination: parallel, serial, and Thevenin. We saw the case of serial termination
for the DRAM connection of the IBM PCIXT in Chapter 11, where resistors of30
- 50 ohms are used to terminate the line. The parallel and Thevenin methods are
used in cases where there is a need to match the impedance of the line with the load
impedance. This requires a detailed analysis ofthe signal traces and load impedance,
which is beyond the scope of • . .
this volume. In high-fre- Table 26-8. Lme ~ength Bey?n~ Wh.lch
quency systems, wire traces Traces Behave Like Transmission Lmes
on the printed circuit board
(PCB) behave like transmis­
sion lines, causing ringing.
The severity of this ringing
depends on the speed and the
logic family used. Table 26-8
provides the length of the
traces, beyond which the
traces must be looked at as
transmission lines.

Ringing

I nalLine Len

25

II

--+-_ .. _. __ 8__ -~I
__ 6_~

~~~~~~~5~~.~~ 
(Reprinted by pennission ofIntegrated Device Technology, 
c. IDT 1991) 

----jB[;>--: ~~L--' ,----"~ 
Series Termination 

Parallel Termination 

Figure 26-12. Transmission Line Ringing and Ways to Reduce Its Effects 

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN CONSIDERATIONS 775 



Review Questions 

I. What is the fan-out of "0" state? 
2. If the fan-out of "low" and "high" are 10 and 15, respectively, what is the fan-out? 
3. IfioL = 12 rnA, IOH = 3 rnA for the driver, and hL = 1.6 rnA, IIH=40 JlA for the 

load, find the fan-out. 
4. Why do IlL and IOH have negative signs in many TTL books? 
5. What are the 74xx244 and 74xx245 used for? 
6. What is capacitive derating? 
7. Ground bounce happens when the output makes a transition from to 

8. Give one way to reduce ground bounce. 
9. Transient current is due to transition of output from to _-;-_ 
10. Why do high-speed logic gates using DIP packaging put the Vee and ground pins 

in the middle instead of the corners? 

SECTION 26.3: DATA INTEGRITY AND ERROR DETECTION IN DRAM 

Failure 
Rate 

As advanced operating systems, such as MS Windows NT, IBM OS/2, Sun 
Micro Solaris, and Nextstep from Next Corp., become the dominant operating 
systems in microprocessor-based computers, the need for large amounts of DRAM 
in such systems is inevitable. This is especially true for multiuser and multitasking 
systems. However, in designing a system with a large amount of DRAM, we must 
make sure that data integrity is maintained. As we discussed in Chapter II, the parity 
bit method is used for the data integrity of PC DRAM, but the parity method cannot 
correct the error. It simply indicates that an error has occurred. With system memory 
reaching 64 megabytes, the idea of incorporating an EDC (error detection and 
correction) circuitry on the system board is becoming popular among designers of 
microprocessor-based high-performance computers. To understand the need for 
EDC, we first discuss the probability of error caused by soft error and hard error. 

Infant 
Mortality 

Time 

Inherent Reliability 

Wear 
Out 

Figure 26-13. Bathtub Failure Rate (Courtesy of Texas Instruments) 

776 

Soft error and hard error 

In DRAM there are two kinds of errors that can cause a bit to change: soft 
error and hard error. If the cell bit gets stuck permanently in a "high" or "low" state, 
this is referred to as a hard error. Hard error is due to deterioration of the cell caused 
by wear-out (see Figure 26-13). There is no remedy for hard error except to replace 
the defective DRAM chip since the damage is permanent. The other kind of error, 
a soft error, alters the cell bit from I to 0 or from 0 to I, even though the cell is 

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN 



Example 26-9 

perfectly fine (no hard error). Soft error is caused by radiation of alpha particles and 
power surges. The sources of the alpha particles are the radiation in the air or the 
materials in the plastic package enclosing the DRAM die. The occurrence of a soft 
error as a result ofthe alpha particle ionizing the charges in a DRAM cell is a greater 
source of concern since it is 5 times more likely to happen than a hard error. As the 
density of DRAM chips increases and the size of the DRAM cell goes down, the 
probability of a soft error for a given cell goes up, but the relation is not linear. 
DRAM manufacturers provide a parameter called FIT (failure in time) to measure 
the soft error rate for a single DRAM chip. The FIT of a single DRAM chip is the 
number of expected errors in 109 hours of operation. Few DRAM manufacturers 
provide the FIT data in their DRAM data books. Even when they do provide FIT 
data, sometimes it is not very clear if it is for soft error or hard error or both, since 
the numbers vary wildly. In this section we use a FIT of 252 for Toshiba's I Mx I 
DRAM, used widely in many application notes. 

Mean time between failure (MTBF) and FIT for DRAM 

The mean time between failure for a single chip is calculated using the 
failure-in-time (FIT) as follows for a single DRAM chip 

MTBF ~ 1,000,000,000 hours 
FIT 

(26-9) 

To get the MTBF rate for the system we must divide the single chip MTBF 
by the number of DRAM chips in the system. 

_ MTBFofoneDRAMchip 
MTBF of system memory - numberof DRAM chips (26-10) 

The higher FIT number increases the probability of a system memory 
failure, as shown in Examples 26-9 and 26-10. 

Assuming that the FIT for IMxl DRAM is 252, calculate the MTBF for: 
(a) a single DRAM chip 
(b) a system with 64 megabytes of DRAM memory 

Solution: 

(a) The MTBF for a single IMxl is as follows 
MTBF for I Mx 1 ~ 1,000,000,000 hr / 252 ~ 3,968,254 hr ~ 453 years 

(b) To implement the 64M of system memory using the lMxl DRAM chips, we need (64M x 8) / 
I Mx 1 ~ 512 chips. The MTBF for the system is as follows. 
MTBF for 64M of system memory ~453 years / 512 chips = 0.884 year ~ 323 days 

Example 26-10 

Calculate the system MTBF for the system in Example 26-9 if FIT ~745. 

Solution: 

MTBF for a single DRAM chip ~ 109 /745 hrs. ~ 153 years. 
For the system it is 153 years / 512 ~ 109 days. 

SECTION 26.3: DATA INTEGRIT.Y AND ERROR DETECTION IN DRAM 777 



Error detection and correction 

The use of EDC (er­
ror detection and correction) 
in failproof systems with 
large amounts of DRAM is 
widespread. EDC not only 
detects the error but also cor­
rects it, in contrast to parity 
bit, which only detects the er­
ror. EDC stores an error cor­
rection code for each word, 
but the number of bits for the 
error code varies depending 
on the word size, as shown in 
Table 26-9. 

Table 26-9: Bits Required for Parity vs. EDC 

r Data Word Size ]hritv Bitsi EDC Bits~ 
~-~---l-", ,_1_1 _.2... -!I, IL- 16 I 2 -J-L--1 
I~- ..12. __ L--±. ---+- L. _,'I 
'~ 64 " __ ~~_I_ JL _"1 
L 128...,L 16 I 9~ 

As seen from Table 26-9, the overhead for EDC is much higher, especially 
in small words such as 16- and 32-bit data buses. Implementing EDC can reduce 
the probability of memory error drastically if we can justify the extra cost associated 
with it. Many semiconductor companies, including Integrated Device Technology 
(IDT) and Advanced Micro Device (AMD), market EDC chips. Some of the 
concepts in this section are based on application notes from these two companies. 
Although EDC detects and corrects a single-bit error occurring in a word, it is unable 
to do anything about any 2-bit errors occurring in the same word. The probability 
of a 2-bit error happening in the same word is very low, as shown in Equation 
(26-11). 

MTBF with EDC = MTBF without EDC x:y" x number of 2m emory words (26-11) 

Notice in Equation (26-11) that the MTBF with EDC depends on the word 
size and the number of words in the system. 

Example 26-11 

Calculate the MTBF for the Example 26-9 using EDC. Assume that the system board uses 32-bit 
words (80386, 80486 PC). 

Solution: 

64M of memory using 32-bit words has 16 banks each with 32 IMxl memory chip since 512/32 = 16 
banks. This means that we have 16M words of 32-bit size. Since each 32-bit word requires 
an extra 7 chips (see Table 26-9) for EDC, a total of(64Mx8/32Mxl) x 7 =16 x 7 = 112 DRAM chips 
are used by EDC. This results in a total chip count of624 (512 + 112) of IMxl chips. Since MTBF 
for a single chip is 453, we have: 

MTBF of 624 DRAM = 45!~~arS 0.726 year = 265 days 

. ...Jnx 16M 
MTBF With EDC = 265 days x 2 = 3726 years 

This means that by detecting and correcting single-bit errors, the probability that a soft error will 
alter 2 bits in the same word is once in 3726 years. 

778 CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN 



Comparing Examples 26-9 and 26-11 shows that with 112 extra DRAMs 
of IMxl, or a total of 14M of DRAM (112/8 = 14M) and EDC circuitry, MTBF 
becomes 3726 years insteadof323 days as we saw in Example 26-9. Example 26-12 
shows what happens when the word size is increased in systems such as Pentiums. 
Example 26-13 shows the impact of DRAM size on the MTBF. 

Example 26-12 
Calculate the MTBF for 64M of memory if the memory words are 64-bit and IMxl DRAM chips of 
FIT=252 are used (a) without EDC, and (b) with EDC. Notice that this is the same as Example 
26-11 except that the word size is 64-bit (Pentium PC). 

Solution: 

Since the words size is 64-bit, we have 8 megawords of 64-bit size where 64Mx8/64 x IMxl =8. This 
means 8 banks, each with 64 IMxl DRAM chips. Therefore, the chip count is 8 x 64 = 512, which is 
the same as Example 26-11. Since the MTBF for a single chip is 453 years, 

453 years 
MTBF = 512 chips 0.884 year (without EDC) 

Each 64-bit word requires 8 bits to store EDC error codes according to Table 26-9. Therefore, each 
bank has an extra 8 I Mx I DRAM chips for EDC, or a total of 64 DRAMs for EDC. The total chip 
count is 576 (8 x 64 +8 x 8 = 576), where 8 x 64 is for the memory and 8 x 8 is for EDC. The MTBF 
for 576 chips, where EDC chips are included, is 453/576 = 0.786 year. 

MTBF 0 786 '\)TI x 8,388,608 words 2852 
=. years 2 = years 

We conclude that the wider the word size, the higher the probability of 2-bit errors. Notice in this 
example that there are 8 banks of 64-bit wide data, or 8,388,608 words. 

Example 26-13 
Calculate the MTBF for 64M of memory on the Pentium-based system using 4Mx1 DRAM chips 
whereFIT=381 (a) without EDC, and (b) with EDC. 

Solution: 

(a) The total chip count is 64Mx8/4Mx1 =128 4Mxl DRAM chips. The MTBF for one DRAM 
is 1,000,000,000 hours/381=299.6 years and the MTBF for all 128 DRAM chips is 

MTBF = 2i~86 = 2.34 years (without EDC) 

(b) Since the Pentium word size is 64 bits wide and we are using 4Mx1 chips, the banks are 4Mx64. 
Each 64-bit words needs 8 extra bits of memory for the EDC, or an extra 8 memory 
chips for each bank. Organizing 64M of system memory for 64-bit words using 4Mx1 DRAM 
chips results in a total of2 banks, each taking 32M. Each bank uses 64 4Mx1 chips. Therefore, 
the chip count is 144 (2 x 64 + 2 x 8) with 128 (2 x 64) for memory and 16 (2 x 8) for EDC. 
MTBF for the 144 chips is 299.6 1144 =2.08 years and since each bank has 8M 
(8,388,608) memory words (2 banks each with 4M words), the MTBF is as follows: 

MTBF (with EDC) = 2.08 '\)3.14 x 8;388,608 = 7548.4 years (with EDC) 

SECTION 26.3: DATA INTEGRITY AND ERROR DETECTION IN DRAM 779 



Table 26-10, from an AMD application note, provides a comparison of 
memory size and MTBF. For the same memory systems, if we use FIT = 1000, we 
have the results shown in Table 26-11 from the AMD data book. 

For more discussion of the use ofEDC chips, see the "Error detection and 
correction with IDT 49C466" Application Note 94 by Anupama Hedge, published 
in IDT high-speed CMOS logic design from Integrated Device Technology Inc. 

Table 26-10: MTBF for 32-bit System withLMx!PRi\M (FI! = 252) 

_____ Without EDC WithJcD<;: 

jL Memory Siz~No. of DRAMs~_~ MTBF _~_ No. ofDMMs j\1T!l.F 

ji __ 4M __ ----' ___ 32_ __. __H IE 39 14,907yr 

r- __ 8M.... _____ 64 _ ~ __ 7.1...YI 78 10,541yr 

__ 12M _____ ....26 ___ , __ 4.7),L _ 117 __ 8,§07 vI 
1

1

_ ..l§M __ ~ ___ ..Jl8 _ ____ 3..2.Yr_ ~_ 

'--- _24M_ _ ~_ 192 __ ;~2.4 yr _~ __ 234 ~_~_ §,086.yr 

156 

(Reprinted by permission of Advanced Micro Devices, Copyright AMD Corp. 1990) 

Table 26-11: MTBF for 32-bit System with IMx1 DRAM (FIT = 1000) 
ir===--=~=-~=='=c~-~~~--==-~~--~~ ~= 

II r- __ ....FithotRlill~ ____ . _____ WithEDC. 

ILM~mory Size No. of DRAMs MTBF~o. ofDRAMs~_~MTBF __ ._~; 
IL- 4M __ ' _____ 3L ___ ...l-6TI. __ . _ _39__ 3,]57YJ 

Ii - ...JSM....._f-_6..L - L _1.8..YJ:. __ , __ 78_ 2,2561'r 

c-- ..l211L ____ 9<2..... __ , __ 1.2 YI... _, _ _117_ 2,1681'r 
,I 
I ____ 16M ___ ' ___ 128 ____ .l16 days ____ 15£ L87Ur_ 

!~_ 24M ___ 192~_' 217days_~234 ~_~_~1,534YL_~ 
(Reprinted by pennission of Advanced Micro Devices. Copyright AMD Corp. 1990) 

780 

Eel and gallium arsenide (GaAs) chips 

The use of secondary cache (l2: level 2 cache, as many call it) and EDC in 
systems with speeds of 66 MHz and higher is adding to the data and address path 
delay. This is forcing designers to resort to using ECl and GaAs chips. Due to the 
fact that ECl chips have a very high power dissipation, they are not used in 
PC/Workstation design. However, GaAs chips are showing up in high-speed Pen­
tium and RISC-based computers. This is especially the case for the GaAs EDC and 
cache controller chips. The mass of electrons in GaAs is lighter than silicon, due to 
its quantum mechanics structure. As a result, the electrons in GaAs have a much 
higher speed. This means that GaAs chips can achieve a much higher speed than 
silicon. The power dissipation of the GaAs transistor is comparable to the silicon­
based MaS transistor. Therefore, GaAs technology might appear to provide the ideal 
chip since it has the speed of ECl (it is even faster than ECl) and the power 
dissipation of CMOS. However, it has the following disadvantages. 

\. Unlike silicon, of which there is a plentiful supply in nature in the form of sand, 
GaAs is a rare commodity, and therefore more expensive. 

2. GaAs is a compound made of two materials, Ga and As, and therefore is unstable at 
high temperatures. 

3. It is very brittle, making it impossible to have large wafers. As a consequence, at 
this time no more than 100,000 transistors can be placed on a single chip. Contrast 
this to the millions of transistors for silicon-based chips. 

4. The GaAs yields are much lower than silicon, making the cost per chip much more 
expensive than silicon chips. 

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN 



SUMMARY 

SUMMARY 

These problems make the building of an entire computer based on GaAs a 
visionary product, if not an impossible one. This is now the case for the CRAY III 
supercomputer, which is based on GaAs and runs at speeds of 1 GHz but is also 
several years behind and millions of dollars over budget. We expect to see more 
GaAs chip usage for time-critical parts of the PClWorkstation such as the cache 
controller and EDC as microprocessor speed reaches 100 MHz and beyond. 

Review Questions 

1. True or false. Soft error is permanent. 
2. True or false. Hard error is permanent. 
3. Alpha particle radiation causes (soft, hard) errors. 
4. FIT is in (hours, months, years) of device operation. 
5. What is the MTBF for 4 megabytes of memory if DRAM chips used are IMxl 

with FIT ~ 252? 
6. What is the MTBF for 4 megabytes of memory if DRAM chips used are IMxl 

with FIT ~ 1000? 
7. Find the MTBF in Question 5 with EDC if the word size is 32-bit. 
8. Find the MTBF in Question 6 with EDC if the word size is 32-bit. 
9. Compare the number of extra bits required for a 32-bit word using the following. 

(a) parity (b) EDC 
10. EDC detects and corrects the occurrence of (I-bit, 2-bit) errors in the 

same word. 

The first section of this chapter provided an overview of IC technology. 
Transistors form the building blocks of modem electronics. The two types of 
transistors are bipolar and MOS. Bipolar transistors are faster, but MOS transistors 
are widely used because they have low power dissipation. Logic families are judged 
according to (I) speed, (2) power dissipation, (3) noise immunity, (4) input/output 
interface compatibility, and (5) cost. The IC technology used in Intel microproces­
sors has included PMOS in the 8008, NMOS in the 8086 and 80286, CMOS in the 
80386 and 80486, and BICMOS in the Pentium. 

The second section of this chapter examined several issues that must be 
considered in designing a microprocessor-based system: IC fan-out, capacitance 
derating, ground bounce, Vee bounce, crosstalk, and transmission line ringing. 
Fan-out is a measure of how many inputs an output signal can drive. Capacitance 
derating refers to the problem of increased capacitance as more inputs are connected 
to an output. Buffers (boosters) are implemented in designs to compensate for 
capacitance derating. Ground bounce is caused by a massive amount of current 
flowing through the ground pin when many outputs change from high to low at the 
same time, which can lead to false signals. The effects of ground bounce can be 
reduced by placing Vee and ground pins in the middle of the chip. Crosstalk is 
caused by mutual inductance of parallel lines. It can be reduced by placing ground 
lines between signal lines. Transmission line ringing is caused by the varied 
responses of harmonics to capacitance, inductance, and resistance of the line. Its 
effect can be reduced by placing resistors at the ends oflines. 

The third section of this chapter discussed data integrity in DRAM. Errors 
in DRAM can be classified as soft and hard errors. A hard error occurs when a cell 
(bit) gets permanently stuck to 0 or 1. A soft error is not permanent but is caused by 
radiation and power surges. FIT (failure in time) is a measure of the occurrence of 
soft errors in a chip. MTBF (mean time between failures) is a measure Gf system 
memory's reliability. EDC (error detection and correction) is a means to detect and 
correct errors. EDC chips use Hamming code or some variation. 

781 



PROBLEMS 

782 

SECTION 26.1: OVERVIEW OF IC TECHNOLOGY 

I. Why do bipolar transistors dissipate more power? 
2. Why is the MOS transistor slower tban the bipolar? 
3. Why has the use of NMOS replaced PMOS? 
4. For a TTL inverter indicate which transistors are "on" and "oft" for the following. 

(a) input = high (b) input = low 
5. Repeat Problem 4 for CMOS. 
6. Why in CMOS does the current dissipation rise as the frequency goes up? 
7. What is the purpose oftbe Schottky diode in the 74LSxx family? 
8. What is the noise margin for "0" and" I " in the LS family? 
9. What is tbe noise margin for "0" and "I" in the HCMOS family? 
10. Which one uses more static current, LS or HCMOS? 
II. Which one is faster, LS or ALS? 
12. Which one is more power efficient, LS or ALS? 
13. Which one is faster, AC/ACT or FCT? Which one is more power efficient? 
14. What is the FCT logic family? 
IS. What is the advantage ofFASTr over FAST logic? 
16. What is tbe BCT logic family? 
17. True or false. The LS family is used for system frequency of less tban 10 MHz. 
18. True or false. The BCT family is used for system frequency ofless than IS MHz. 
19. Pentium uses a line size of micron. 
20. Why is CMOS the technology of choice in microprocessor design? 

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN CONSIDERATIONS 

21. Calculate the fan-out if LS drives ALS. 
22. Calculate the fan-out for LS driving unit loads. 
23. Calculate the fan-out for ALS driving unit loads. 
24. Calculate the number ofLS that tbe 74LS244 can drive, 
25. Find IOL and IOH needed to drive 10 LS and 20 CMOS input loads. 
26. True or false. Capacitance derating is a function of frequency. 
27. To minimize capacitance derating, use __ (high, low) drive capability logics. 
28. Calculate the path delay if one 244 is driving 2 banks each with 32 inputs and Cin 

for each input is 7 pF. Assume that the 244 delay is 8 ns and memory access time 
= IS ns. 

29. Repeat Problem 28 where the number of 244s is doubled. 
30. Repeat Problem 29 where the number of244s is doubled again. 
31. Which current is a function of frequency, dynamic or static? 
32. Give tbe advantages of lower Vee. 
33. JfVee = 3.7, compare the power dissipation in comparison witb Vee = 5V 
34. Compare tbe power dissipation of memory system using the following memory or­

ganizations. Assume lact =230 rnA and Isb = 50 rnA. Vee=5 V 
(a) 256Kxl (b) 32Kx8 

35. Repeat Problem 34 using Vee = 3.3 V 
36. Contrast the following l4-pin ACT chip pin-out from TI with the pin-out of TTL. 

Discuss tbe effect of Vee and GND pin locations. 

1 14 
2 13 
3 12 

GND 4 11 Vee 
5 10 
6 9 
7 8 

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN 



37. Discuss the causes and cures for ground bounce. 
38. Why is the effect of Vee bounce less severe than ground bounce? 
39. Discuss the cause of transient current and ways to reduce its effects. 
40. Discuss why many 245 drivers are used for the system data bus as shown below. 

I CPU r 245 I 

41. Discuss the cause and methods to reduce crosstalk. 
42. What is the cause of ringing? 
43. PCB traces behave like transmission lines most in the logic family and 

least in the logic family. 
44. What is the purpose of 30 - 50 ohms resistance at the end of lines driving the 

DRAM arrays? 

SECTION 26.3: DATA INTEGRITY AND ERROR DETECTION IN DRAM 

45. Discuss the difference between soft error and hard error. 
46. Give the main causes of soft error and hard error. 
47. Calculate the MTBF for 16M of memory using IMxl and FIT = 252. 
48. Calculate the MTBF for Problem 47 with EDC if the word size is 32-bit. 
49. Calculate the MTBF for 32M of memory using I Mx I and FIT = 680. 
50. Calculate the MTBF for Problem 49 with EDC if the word size is 32-bit. 
51. Calculate the MTBF for 48M of memory using IMxl and FIT=252 for each of 

the following. 
(a) without EDC (b) with EDC 

52. In which word size is the overhead for parity and EDC the same? 
53. VerifY the MTBF for the 24M memory shown in Tables 26-10 and 26-11 for both 

cases, with and without EDC. 
54. Wider data word size (increases, decreases) the MTBF. 
55. Higher DRAM density (increases, decreases) the MTBF. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 26.1: OVERVIEW OF IC TECHNOLOGY 
1. MOS is more power efficient, while bipolar is faster. 
2. true 3. true 
4. CMOS 5. NMOS 
6. in the lower end, ALS, and in the higher end, FAST 

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN CONSIDERATIONS 
1. It is the number of loads that the driver can support and it is calculated by IOL/IIL. 
2. 10 
3. IOL/IIL =12 mAl1.6 mA=7 and IOH/IIH=3 mAl40 uA=75. Fan-out is 7, a lower number. 
4. The negative sign indicates that these currents are flowing out of the IC (conventional current flow). 
5. They are used for the line driver: the 74xx244 for unidirectional and 74xx245 for bidirectional lines. 
6. It is signal delay caused by excessive load capacitance. 
7. high, low 
8. Make the ground pin length as small and short as possible. 
9. low, high. 
10. to make the self-inductance of pins Vee and GND small in order to reduce the ground and Vee bounce 

SECTION 26.3: DATA INTEGRITY AND ERROR DETECTION IN DRAM 
1. false 2. true 
3. soft 4. hours 
5. 453/32=14.1 yr 6. 3.56 years (114.15 years for one DRAM divided by 32 chips) 
7. 39 (32+7) chips including EDC. MTBF for 39 chips is 11.6 yr and for the system with EDC is 14,883 yr. 
8. 39 (32+7) chips including EDC. MTBF for 39 chips is 2.92 yr and for the system with EDC is 3746 yr. 
9. (a) extra 4 bits for parity (b) extra 7 bits for EDC 
10. Hit 

ANSWERS TO REVIEW QUESTIONS 783 



CHAPTER 27 

ISA, PCI , AND USB BUSES 

784 CHAPTER 27: ISA, PCI, AND USB BUSES 



In a given system board, the microprocessor and peripherals are connected 
to each other through traces of wire called buses. The system board also provides a 
path to microprocessor and peripheral signals via the expansion slot, making them 
accessible to add-in cards. The term bus standard refers to the layout, availability 
of system signals and resources, and signal characteristics present in the expansion 
slot. In this chapter we discuss the bus standards, ISA, its enhanced form EISA, PC I, 
and the USB bus. In Section 27. I, we look at the evolution ofISA and EISA buses. 
In Section 27.2, we present the merits of local buses and examine VESA and PCI 
local buses. Finally, Section 27.3 covers USB buses. 

SECTION 27.1: ISA BUSES 

Before delving into a discussion ofISA buses, we define some widely used 
bus terminology. 

Master and slave 

Many devices connected together communicate with each other through 
address, data, and control buses. When one device wishes to communicate with 
another, it sends an address to distinguish it from others since each device is assigned 
a unique address. It also sends a read or write signal to indicate its intention. The 
master device is the one that initiates and controls the communication while the 
responding device is called the slave. In 80x86-based PCs, the CPU is an example 
of a master and memory is an example of a slave. 

Bus arbitration 

There is only one set of global address, data, and control buses available in 
a given system. This means that requests by more than one master to use the buses 
must be arbitrated in an orderly fashion, since no bus can serve two masters at the 
same time. For a master to access the buses, it must ask permission from the central 
bus arbitrator and wait for a response before it proceeds. Depending on the system 
design, the central arbitrator can assign access to each master according to a priority 
scheme or on a first-come-first-served basis. 

Bus protocol 

To coordinate activity among various parts ofthe system, buses must follow 
a strict set of timing and signal specifications. The term bus protocol refers to these 
specifications for a given bus. The two major bus protocols are synchronous and 
asynchronous. In synchronous protocol, bus activity is synchronized according to a 
central frequency, the system frequency. In the IBM PC, the CPU accesses memory 
using synchronous protocol since memory cannot deviate from the timing specifi­
cations of the central clock oscillator. Asynchronous protocol obeys its own timing 
in that it decides when it is ready and does not operate according to the central clock 
frequency. Printer interfacing in the IBM PC is an example of asynchronous bus 
protocol. As discussed in Chapter 18, if the CPU is to send data to the printer, it must 
continuously monitor the printer's busy signal; only when the printer is not busy 
(ready) can it issue data to the printer's data bus. The CPU must also signal the 
availability of the data to the printer by the strobe signal and wait for its acknow­
ledgment. In the asynchronous method of CPU-printer communication, the CPU is 
the master and the printer is the slave. The slave (printer) obeys its own timing for 
the acknowledge signal, independent of the system frequency. However, in CPU­
memory communication, memory timing specifications are according to the system 
frequency and the CPU does not poll memory to see if it is ready to accept data. 
Asynchronous protocol is used when there is a mismatch between the bus timing of 
the master and slave. Normally, the slave is slower than the master and has self-tim­
ing, whereas in synchronous protocol, the timing of the master and slave match. 
Synchronous protocol generally has a higher rate of data transfer than asynchronous 
protocol. 

SECTION 27.1: ISA BUSES 785 



786 

Bus bandwidth 

The rate at which a bus can transfer data from master to slave is called the 
bus bandwidth or bus throughput. It is measured in megabytes per second. The bus 
bandwidth depends on the bus speed, width, and protocol. Higher clock frequencies 
allow ahigher bus bandwidth. In microprocessors up to the 386, bus throughput was 
low due to the fact that the microprocessor transferred one word per memory cycle. 
In 486 and Pentium microprocessors, burst mode data transfers allow much higher 
bus bandwidth by transferring 4 words of32-bit data in only 5 clocks instead of the 
normal 8 clocks (see Chapter 23). Another way to increase bus bandwidth is to 
increase the width of the data bus. The Intel Pentium has done this by using a 64-bit 
external data bus. The single data line in serial data communication provides the 
lowest bus throughput, whereas a 64-bit data bus provides the highest. 

ISA buses 

The ISA (Industry Standard Architecture) bus is the IBM PC AT bus. 
Although some refer to it as an AT bus, the makers of 8Ox86-based IBM PC 
compatibles call it an ISA bus since AT is a trademark oflBM. The origin (and the 
limitations) of the ISA bus go back to the 8088-based IBM PC introduced in 
1981. As discussed in Chapters 9 and 10, the PCIXT bus has a 62-pin connector, 
providing add-in boards a path to CPU and peripheral signals. It includes the DO -
D7 databus,AO -A19 address bus, lOR, IOW,MEMR, and MEMW control signals, 
and some control signals belonging to the system board and peripherals such as 
DMA and the interrupt controller. 

With the introduction of the IBM PC ATin 1984, another 36 pins were added 
to the PCIXT bus to accommodate the 16-bit data bus and 24-bit address bus of the 
80286 microprocessor. The extra 36 pins of the PC AT are used for the D8 - DI5 
data signals, A21 - A23 address signals, new DMA channel control signals, and 
some other system control signals. The following is an overview of the ISA bus 
signals. A detailed description of many of these signals was provided in Chapters 
9,10,14, and 15. See Figure 27-1 for the layout of the ISA bus. 

AD -A19 

AO - A 19 (also referred to as SAO - SA 19, where SA is for system address) 
provides the 20-bit address for accessing memory or I/O. These addresses are 
provided by the microprocessor to the expansion slot by first going through a latch 
(such as the 373). The latch is activated by the positive edge of the ALE signal and 
the address is latched into the 373 on the negative edge of ALE, thereby providing 
a valid stable address throughout the bus cycle. For I/O, only AO - Al5 are used. 

AEN 

AEN (address enable) is used to indicate who has control over the buses, 
the microprocessor or the DMA. When AEN ; 1, the DMA has control over address, 
data, lOR, lOW, MEMR, and MEMW buses. When AEN ; 0, the microprocessor 
controls the buses. 

ALE 

ALE (address latch enable) is also referred to as BALE (buffered ALE). 
When ALE goes from low to high, it indicates the presence of a valid address on 
pins AO - A19. The falling edge of ALE can be used to latch addresses from the 
microprocessor. 

elK 

Clock is the system frequency with which all memory and I/O read and 
write operations are synchronized. In the PCIXT, CLK ;4.7 MHz, but in the PC/AT, 
CLK ; 6 MHz. In later PCs and compatibles, this frequency is higher. 

CHAPTER 27: ISA, PCI, AND USB BUSES 



DO - D7 

The 8-bit bidirectional data bus is the data path for the microprocessor, 
memory, and I/O, and is used by 8-bit I/O devices connected to an expansion slot. 

DRQ1, DRQ2, DRQ3, DACK1, DACK2, DACK3 

DMA request and DMA acknowledge are used to get DMA service. DRQ 
must be held high until the corresponding DACK goes active. BIOS is programmed 
for DACK to be active low. In the event that more than one ofDRQ1, DRQ2, and 
DRQ3 is activated, DRQ I has the highest priority and DRQ3 the lowest. 

IOCHCHK 

10 channel check is an active-low input signal that indicates to the mother­
board the occurrence of an error on an add-in card plugged into an expansion slot 
(I/O channel). The term I/O channel is used by IBM to designate any card connected 
to the motherboard via the expansion slot. If there is a memory card plugged into 
the expansion slot, this pin is used to indicate parity error detection. Internally, the 
10CHCHK pin is connected to NMI (nonmaskable interrupt) to indicate noncorrect­
able system errors, as was discussed in Chapter 14. 

IOCHRDY 

10 channel ready, an active-low input signal, is used by any I/O device or 
memory plugged into an expansion slot to insert wait states into the memory (or I/O) 
cycle. When it is pulled low (not ready), it inserts WS to prolong the memory or I/O 
cycle. How long this signal can be low varies among systems. For example, in the 
6-MHz IBM PC/AT, this signal should not be held low more than 2.5 f1s. 10CHRDY 
allows the interfacing of slow devices or memory to a Pc. 

lOR,lOW 

The 110 read and I/O write control signals are both active low. lOW instructs 
the I/O device to grab the data off the data bus. lOR instructs the I/O device to provide 
(drive) its data onto the data bus. 

IRQ3 - IRQ7 and IRQ9 

The interrupt request (IRQ) line is used by an I/O device to signal the CPU 
that it needs its attention. When the IRQ signal goes from low to high (edge 
triggered), an interrupt request is generated. Ifmore than one is activated, the priority 
is given to IRQ9, then IRQ3, IRQ4, and so on. IRQ7 has the lowest priority and 
IRQ9 the highest (see Chapter 14 for more discussion of these concepts). 

ase 
The oscillator is an output signal with a frequency of 14.31818 MHz. It has 

50% duty cycle. Some early video boards use this frequency. OSC is not synchro­
nized with the system clock (CLK) 

REFRESH 

REFRESH is an active-low signal. When it is an output, it indicates that a 
refresh cycle is in progress. It can be an input signal driven by the device on the 
expansion slot to indicate a refresh cycle. 

RESETDRV 

Reset drive is an output signal and is active high. Internally, it is used by the 
motherboard to reset or initialize peripheral devices at power-up time before they 
are programmed by BIOS. It can be used for the same purpose by devices mounted 
on add-in cards plugged into expansion slots. This is the system's main reset signal 
and is generated by the power supply. 

SECTION 27.1: ISA BUSES 787 



788 

SMEMR, SMEMW 

Both are active-low 
output signals. SMEMR 
(memory read) instructs 
memory to provide (drive) its 
data onto the data bus. 
SMEMW (memory write) in­
structs memory to grab the 
data off the data bus. 
SMEMR and SMEMW are 
activated only when the 
memory address is in the 
range 00000 to FFFFFH. 
These two signals are pro­
vided by the motherboard to 
distinguish between memory 
within I M and memory 
spaces beyond 1M. As a con­
sequence, any EEPROM 
mapped into the upper mem­
ory area (UMA) will use 
SMEMR for the memory 
read signal. Similarly, video 
RAM uses SMEMR and 
SMEMW for memory read 
and memory write signals. 

TC 

Terminal count, an 
active-high output signal, 
goes high when any DMA 
channel reaches its terminal 
count (see Chapter 15 for fur­
ther discussion). 

Zero wait state is an 
input signal and is active low. 
The wait-state generator cir­
cuitry on the motherboard 

SIGNAL REAR PANEL SIGNAL 
NAME NAME 

GNO -6' A~ 
r -uo CH CK 

RESET DR ;:: 507 
+sv DC 506 

tRQ9 :: 50S 
-SVDC - SO. 

ORQ2 ;:: 503 
-'2V DC - 502 

OWS l- SO, 
.12V DC 

=6'0 A'';: 
500 

GNO ·1/0 CH ROY 
-SMEMW ;:: - AEN 
·SMEMR SA19 

·IOW ~ - SA1S 
-lOR SA11 

·DACK3 ;:: - SA16 
ORQl SA1S 

·DACKl ~ - SA14 
ORQl 

A20-

SA13 
.REFRES ~620 SA12 

elK SAll 
IRQ7 ~ : SA1a 
IRQG SAO 
IRQS ~ : SA8 
IRQ4 SA7 
IRQJ ~ : SAG 

-DACK2 SAS 
TIC ~ : SA' 

BALE SA3 
+5V DC I- - SA2 

ose ~ 63' A3;: 
SA' 

GNO SAO 
<-

·MEMeSl 0' e,- e:: SBHE 
·1/0 CS 16 

= = 
lA23 

IRQ1 LA22 
IRQ1' LA2' 
tRQ12 

= 
lA20 

IRQ15 

= 
LA19 

IRQ14 - lAla 
-OACKO LA17 

DRaa e,G: -MEMR 
·DACK5 - D,O -MEMW 

ORQS - 5008 
·OACK6 5009 

DRQG 
= = 

SOlO 
-DACK1 5011 

ORQ7 - sou 
+5V DC S013 

-MASTE - 5014 
GNO - 0'8 C,e- S015 

- COMPONENT 
SIDE 

Figure 27-1. AT-type Expansion Slot Detail (ISA) 
(Reprinted by pennission from "IBM Technical Reference" c. 1985 by 
International Business Machines Corporation) 

automatically inserts I wait state to prolong memory and VO read and write cycles. 
However, by using this pin, an 1/0 device or memory on an add-in card can inform 
the wait-state generator circuitry that it can complete the present read or write cycle 
without a wait state. According to IBM PC AT Technical Reftrence, the OWS input 
"should be driven with an open collector or tri-state driver capable of sinking 20 
mA." Notice that this pin does not exist on the PCIXT bus. On ISA computers based 
on 286 and higher CPUs, the motherboard circuitry inserts I WS to make the 16-bit 
bus cycle a 3-clock affair. This lowers the speed to maintain compatibility with 
slower boards. 

The OWS pin is used to instruct the motherboard not to insert WS and let 
the cycle be completed in 2 clocks, the normal cycle time of286/386/486IPentium 
processors. See Figures 27-2 and 27-3. 

+5V, - 5V, +12V, -12V, GND, GND 

A total of 6 pins are set aside for the power supply voltages and ground. 
Notice that there are only 2 ground pins in the entire 62-pin ISA bus. As we will 
discuss soon, this is a major obstacle in raising the ISA bus speed beyond 8 MHz. 

CHAPTER 27: ISA, PCI, AND USB BUSES 



System Clock 

T1 

TS 
TW 

TCl 

12 

TC2 

BALE 

AO - Al3 

Read or Write 

MEMCS16 

or tOeS16 

ows 

-rC===~==~==~~ 
I 
I 

L-______ ~ ______ ~n 

Figure 27-2. Use of OWS in 286/386/486/Pentium ISA Bus for 3-Clock Bus Cycle 
(Reprinted by permission oflntel Corporation, Copyright Intel, 1992) 

System Clock 

BALE 

AO - A23 

Read or Write 

MEMCS16 

or IOCS16 

ows 

T1 

TS 
T2 

TC 

I 
I 

~--[===t===::::JH 
I 
I '-------__ ---'n 
I 
I 

Figure 27-3. Use of OWS in 286/386/486/Pentium ISA Bus for 2-Clock Bus Cycle 
(Reprinted by permission oflntel Corporation, Copyright Intel, 1992) 

36-pin part of the ISA bus 

The following describes the signals of the 36-pin part of the ISA bus. 

A17 - A23 (LA17 - LA23) 

A 17 - A23 is also called LA 17 - LA23 for latchable address. We expect to 
have A20 - A23, but IBM also provided a duplicate of AI7 - A19. Why are they 
duplicated? As we saw in Chapters 9 and 10, AO - AI9 in the PC/XT/ATare latched. 
This process of latching adds to the address path delay, leaving less time for the 
decoding circuitry of add-in cards. This is particularly a problem for the 
286/386/486IPentium processor since in these processors the memory cycle is only 
2 clocks, unlike the 8088 memory cycle, which is 4 clocks. For this reason, LAI7-
LA23 are not latched and come directly from the microprocessor. These signals are 

SECTION 27_1: ISA BUSES 789 



provided by the CPU the moment ALE goes from low to high and can be latched 
on the negative edge of ALE (going from high to low). Since these signals are not 
latched, they are not stable during the entire microprocessor read and write cycle. 
For this reason, they should be latched by the add-in card to provide stable addresses. 
According to IBM AT Technical Reftrence, signals LAI7 - LA23 are used "to 
generate memory decodes for 16-bit, 1 wait-state, memory cycle." Remember that 
for the VO address space, only addresses AO - AI5 are used, since we can have a 
maximum of65,536 VO ports in 80x86 microprocessors. 

08 - 01S 

The upper byte of the 16-bit data bus extends the 8-bitdata bus of the PCIXT, 
making the ISA a 16-bit bus. The 16-bit data path of DO - D 15 allows the CPU to 
communicate with memory or VO devices with a 16-bit data path. VO devices can 
be either 8-bit or 16-bit. If the VO device on the expansion slot is an 8-bit device, 
the DO - D7 data bus must be used. DO - D 15 should be used for 16-bit I/O devices. 
As discussed in Chapter 10, internal circuitry exists on the motherboard called the 
HiILo byte copier that copies data from the upper byte to DO - D7 when a 16-bit 
microprocessor operation transfers data to an 8-bit device. lhis means that any 
16-bit data transfer by the CPU to an 8-bit device is performed in two consecutive 
cycles where one byte is transferred in each cycle. 

ORQD, ORQS, ORQS, ORQ7, OACKD, OACKS, OACKS, OACK7 

The 4 additional DMA channels are accessed by these signals. DRQO is an 
8-bit DMA channel, whereas DRQ5 - DRQ7 are 16-bit channels. In the PCIXT, 
DRQO was used for DRAM refreshing, but the need for more 8-bit channels made 
IBM release this channel and perform DRAM refreshing by other means. 

loc$16 

The I/O 16-bit chip select signal is an active-low input signal. To maintain 
compatibility with the 8-bit PC/XT system, the PC AT bus assumes that all data 
transfers are 8-bit unless it is informed otherwise. The IOCSI6 input pin is used to 
tell the motherboard circuitry that the present VO cycle is a 16-bit data transfer. 
When the data transfer is a 16-bit transfer to an 8-bit peripheral, if the IOCSI6 pin 
is not pulled low the data transfer is performed in two consecutive I/O cycles, each 
transferring one byte at a time, which requires more time. Add-in cards with a 16-bit 
data path use the IOCSI6 pin to instruct the motherboard not to convert a word 
transfer into a byte transfer (see HiILo byte copier discussion in Chapter 10). This 
pin must be driven with an open collector or tri-state driver capable of sinking 20 
rnA. Bus data transfers are summarized as shown in Table 27-1. 

Table 27-1: ISA Bus Data Transfer Summary 

Data Transfer Type 
1From Source to Destination) Number of WS Number of Clocks per Cvcle 

From 16-bit to 16-bit I 3 

From 8-bit to 8-bit 4 6 

From 16-bit to 8-bit 10 12 
Remmder. In 286/386/486/Pentmm machines, the memory (or VOl cycle COnsISts of 2 clocks when It IS a zero-WaIt­
state cycle. 

790 

MEMcs16 

The memory 16-bit chip select signal is an active-low input signal. To 
maintain compatibility with the 8-bit PCIXT system, the PC AT bus assumes that 
ail data transfers are 8-bit unless it is informed otherwise. This is the function of 
MEMeS 16 input pin. It tells the motherboard circuitry that thKl1resent memory 
cycle is a 16-bit data transfer. In the absence of pulling low theEMCSI6 pin, a 

CHAPTER 27: ISA, PCI, AND USB BUSES 



16-bit data transfer is perfonncd in two consecutive memory cycles, each transfer­
ring one byte at a time. This pin must be driven with an open-collector or tri-state 
driver capable of sinking 20 rnA and must be driven by the LA 17 - LA23 decoder. 
Note that MEMeS 16 must be used along with the LA 17 - LA23 signals. 

IRQ10, IRQ11, IRQ12, IRQ14, IRQ15 

These are additional interrupt requests introduced in the PC AT system. 
These IRQs have a higher priority than IRQ3 - IRQ7 but lower priority than IRQ9. 
When the IRQ signal goes from low to high (edge triggered), an interrupt request is 
generated. For more discussion ofIRQ, see Chapter 14. 

MASTER 

This is an input signal and is active low. It allows an add-in card, plugged 
into the expansion slot, to become the master and gain control over the system 
buses. In doing so, the add-in card must release the system buses in order for DRAM 
to be refreshed. This means that the MASTER input must not be held low for more 
than IS fls. If the new master holds this pin low for more than IS fls, the contents 
of the system DRAM will be lost due to lack of refreshing and the system will crash. 
Note that this is a major addition to the PC AT system. In the PCIXT, there was no 
way for an add-in card to become the bus master. The problem with MASTER in 
the ISA-type PC is that it must work with the DMA channels. In other words, it 
cannot be an independent master accessing the system bus. This is especially a 
problem in multiprocessor systems where many microprocessors (independent of 
DMA) want to access the system bus. Micro Channel and EISA buses have solved 
this problem. In the ISA bus, prior to assertion of the MASTER input, DRQn of the 
DMA channel must be asserted and DACKn must be received. 

MEMR,MEMW 

The memory read and memory write control signals are both active low. 
"-M"'E"'MR7n instructs the memory to provide (drive) its data onto the data bus. MEMW 
instructs the memory to grab the data off the data bus. MEMR and MEMW are active 
on all memory operations regardless of the address locations, in contrast to the 
SMEMR and SMEMW signals on the 62-pin section that are activated only when 
the memory address is in the range 00000 - FFFFFH (1M). Note that these two pins 
are bidirectional, allowing a master DMA from the expansion slot also to activate 
it for accessing memory space of the Pc. 

BHE 
BHE, also called SBHE, is the system bus high enable. It is an active-high 

signal. It indicates the transfer of data on D8 - D IS, the upper byte of the 16-bit data 
bus DO - DIS. When 16-bit devices are used in an add-in card, BHE must also be 
used in addition to AD to activate the 245 data transceiver. For odd/even byte 
selection using AD and BHE on 16-bit data bus systems, see Chapter 10. 

+5V, GND 

These two are the only power and ground pins provided in the 36-pin section 
of the ISA bus. 

Umitations of the ISA bus 

In 1984 IBM extended the life of the PCIXTbus by adding an extra 36 pins. 
Although this made the AT bus a 16-bit bus, it did not solve some other problems 
associated with the AT bus. In 1985 with the introduction of the 386 chip, a 
microprocessor with a 32-bit data bus, it was obvious that something had to be done 
about the limitations of the AT bus. The limitation of the ISA (or AT bus) are as 
follows. 

SECTION 27.1: ISA BUSES 791 



792 

I. The data path is limited to 16 bits; therefore, it is unable to accommodate the 32-bit 
data bus of the 386/486IPentium microprocessors. 

2. The 24-bit address bus limits the maximum memory accessible through the expan­
sion slot to 16M. Therefore, it is unable to accommodate the 32-bit address bus (4 
gigabyte address space) of the 386,486, and Pentium. 

3. In the ISA motherboard, there could be up to 8 ISA expansion slots. The expansion 
slot is bulky and has a large surface contact, resulting in a massive amount of 
capacitance and inductance load on each signal. The accumulated capacitance and 
inductance associated with all the slots, pi us the problem of crosstalk, limits the 
working frequency ofthc expansion slot of the ISA bus to 8 MHz. That means that 
the CPU can be 20, or 33, or even 50 MHz, but when it is communicating with the 
expansion slot it must slow down to 8 MHz. The absence of extra ground pins to 
reduce the effects of crosstalk and radio-frequency emissions makes the ISA bus 
irredeemable for good. 

4. Since the interrupts (IRQs) are edge triggered, each can be assigned only to a single 
device and there cannot be any sharing of the interrupt between two or more devices. 
In high-frequency systems, the edge-triggered interrupt can also result in false 
activation of the interrupt due to a spike or noise on the IRQ input. 

5. The PCIXThad 3 8-bit channels (channels I - 3) for DMA as shown in Chapter 15. 
Channel 0 was used for DRAM refreshing. The IBM PC AT released channel 0 from 
the task of refreshing the DRAM and added three more DMA channels, all with 
16-bit data transfer capability. This made the AT bus capable of handling a total of 
7 DMA channels, 4 8-bit channels and 3 16-bit channels. However, the problem is 
that DOS cannot handle 16-bit DMA channels. This is due to the fact that a 16-bit 
DMA channel requires that data be aligned on even addresses, but DOS will transfer 
data from RAM locations with odd or even addresses. The inability of DOS to use 
the 16-bit DMA channels was amajor dilemma for designers of the PC AT hard disk 
controller. This, plus the fact that the data transfer rate ofS-bit DMA channels is too 
low for the hard disk, made the designers of the PC AT search for a novel solution. 
Thanks to string instructions of the 80x86 microprocessors, the data transfer of the 
hard disk in all PC AT machines is performed by the CPU and not DMA. The absence 
of enough 8-bit DMA channels and the inability of DOS to use 16-bit DMA channels 
puts the burden of any mass data transfer on the CPU. This explains why the use 
ofDMA to transfer a mass of data to devices such as a laser printer is rare. Although 
some devices use the 16-bit DMA, bypassing DOS, they are not industry standards. 
Another major problem ofDMA channels is the 16M address space limitation, due 
to the availability of the AO - A23 address bus. This means that 386/486IPentium 
machines, with their 4 gigabyte memory space, cannot be used for DMA bus activity 
to transfer data to memory space located beyond 16M. 

6. In the PCIXT motherboard, users had to use DIP switches to inform BIOS about the 
presence of various disk options, video boards, and the amount of DRAM memory 
installed. The PC AT motherboard replaced the PCIXT DIP switches with a real-time 
clock CMOS (RTCMOS) RAM chip, Motorola MC146818, and allowed the user 
to program options via the keyboard rather than opening the PC case and setting 
DIP switches. This was a major improvement, but not suffIcient. In PC AT and ISA 
computers, DIP switches and jumpers on the add-in card still must be used to assign 
a unique address and IRQ to each add-in card. This makes it more complicated for 
users who want to add a new card to a Pc. The wrong selection of DIP switches and 
jumpers can shut down the system. Setting them properly requires extreme attention, 
a set of manuals, and sometimes trial and error to get it right. 

The combined effects of the above limitations means that the performance 
of a system with a powerful and fast microprocessor such as the 386/486IPentium 
is limited by its expansion slot and system design. This fact led IBM and other PC 
makers to search for a solution. While IBM decided to design a whole new bus 
standard, radically different from the AT bus, called IBM Micro Channel, clone 
makers decided to go for a local bus or extending and improving the ISA bus, which 
they called the EISA bus. IBM 'vIiero Channel was not made an open architecture 
by IBM. The industry developed other, more powerful buses; consequently, Micro 
Channel is no longer used. 

CHAPTER 27: ISA, PCI, AND USB BUSES 



EISA bus 

The EISA bus is the 
PC-compatible makers' en­
hancement to the ISA bus. Al­
though many of the 
limitations of the ISA bus dis­
cussed earlier are removed 
from the EISA bus, there re­
mains one major one in that 
the EISA bus is limited to 8 
MHz, just like the ISA and 
PCIXT buses. This is duc to 
the fact that the PC industry 
wanted to keep the EISA bus 
AT -bus compatible, down to 
the smallest detail. The EISA 
bus is in reality an upgrade of 
ISA and consequently carries 
many of its limitations, but it 
has the A23 - A31 address 
linesandDl6-D31 data lines 
to accommodate the 
386/4861Pentium. Without 
making the expansion board 
longer, the additional signals 
were placed in between the 
ISA pins as shown in Figure 
27-4. Moving from the ISA to 
EISA, the following signals 
were added. 

EISA BUS 

GND 
+5V 
+5V 

MFG SPEC 

MFG SPEC 
(KEY) 

MFG SPEC 
MFG SPEC 

+12V 

M-IO 
LOCK-

RESERVED 
GND 

RESERVED 
BE3 

(KEY) 
BE2-
BEO-
GND 
+SV 
LA29 
GND 
LA26 
LA24 
(KEY) 
LA16 
LA14 
+SV 
+5V 
GND 
LA10 

ISA BUS ISA BUS 

GND 0 lOCH CHK-= 0 = 0 = g 
0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 

LA2-LA16 

Latchable A2 - A 16 
provide the address directly 
from the microprocessor. 
These are unlatched to reduce 
the path delay (see the expla­
nation for LA 17 - LA23 in the 
ISA section). Note that in ISA 
there are AD - A 19, but they 
are latched. LA2 - LA 16 are 
provided to the expansion 
slots on the positive edge of 
ALE and can be latched on the 
negative edge of ALE. Since 
LA 17 - LA23 are provided by 
ISA, EISA provides the latch­
able version of LA2 - LA 16 
only. 

EXTENSION FOR AT BUS 

EISA BUS AT BUS 

LA8 M EM CS16-
LA6 
LAS 

+SV 
LA2 

I/O CS16-

LA24 - LA31 

(KEY) 
D16 
D18 
GND 
D21 
D23 
D24 
GND 
D27 

(KEY) 
D29 
+5V 

Latchable A24 - +5V 
A31. These address buses al- MACKn-

low EISA to accommodate 

IR010 
IRon 
IR012 

IRQ15 
IR014 

DACKO-
DRQO 

DACK5-
DRQ5 

DACK6-
DR06 

DACK7-
DRQ7 
+5V 

MASTER-
GND 

= 0 = 
0 = 
0 = g 
g 
0 = 0 = 0 = 0 = 0 = g 
g 
g 
g 
0 = g 
g 
0 = 

the 386/486IPentium micro- Figure 27-4. EISA Bus Layout 
processors with 32-bit ad-
dress pins. 

SECTION 27.1: ISA BUSES 

AT BUS 

SBHE-

A" 
LA22 
LA21 
LA20 
LA19 
LA18 
LA17 
MEMR-
MEMW-
D8 
D9 
Dl0 
Dn 
D12 
D13 
D14 
D15 

EISA BUS 

CMD-
START-
EXRDY 
EX32-
GND 
(KEy) 
EX16-
SLBURST-
MSBURST 
W-R 
GND 
RESERVED 
RESERVED 
RESERVED 
GND 
(KEY) 
BE1-

LA31 
GND 
LA30 
LA28 
LA27 
LA25 
GND 
(KEy) 
LA15 

LA13 
LA12 
LAn 
GND 
LA9 

EISA BUS 

LA7 
GND 
LA4 

LA3 
GND 
(KEy) 
D17 
D19 
D20 
D22 
GND 
D25 
D26 
D28 
(KEy) 
GND 
D30 
D31 
MREQn-

793 



794 

016 - 031 

The data bus is extended to 32-bit for 386/486 32-bit microprocessors. 

BED - BE3 

Bus high enable are the pins with the same name and function as the 386/486 
microprocessor. It allows selection of any of the four bytes of DO - 07, 08 - 015, 
016 - 023, or 024 - 03!. Notice that there is no LAO and LA I on the EISA bus 
since we have BEO - BE3. 

CMO 

Command is an active-low signal used by the EISA motherboard to provide 
the timing reference for valid data read or write. 

EXE16 

This signal is used to indicate that the current bus cycle is a 16-bit data 
transfer. 

EXE32 

This signal is used to indicate that the current bus cycle is a 32-bit data 
transfer. By default EISA will act like an ISA bus and it assumes that data transfers 
are 8-bit unless EXEI6 or EXE32 is activated to indicate that the current bus cycle 
can support 16- or 32-bit data transfers. 

EXROY 

This is used by add-in cards to request wait-state insertion. 

MAKn 

Master acknowledge n is an output signal indicating that master number n 
has been acknowledged. This is in response to MREQn, explained nex1. 

MREQn 

Master request is an input to bus arbitration circuitry signaling request for 
use of the buses by master number n. 

MSBURSTandSLBURST 

These are two signals used by the master or slave to indicate that they 
support burst mode data transfer. These two signals are especially useful for the 486 
and higher microprocessors that support burst mode data transfer. 

M-IO 

This is used by the master to indicate if the EISA bus cycle is a memory 
cycle or an I/O cycle. When M-IO = 0 it is an 10 cycle, and ifM-IO = 1 the cycle 
is a memory cycle. 

START 

This is used by the master to indicate the start of the EISA bus cycle. 

To prevent mixup between the add-in cards and the system boards there are 
keys in the expansion slot which effectively block insertion of the wrong card. See 
Figures 27-5 and 27-6. ISA cards can be plugged into an EISA expansion slot, but 
an EISA card should not be plugged into an ISA expansion slot. 

CHAPTER 27: ISA, PCI, AND USB BUSES 



PCIXT 

PC AT 

(ISA) 

EISA 

I I 

I 

, , II· " 

Figure 27-5. PCIXT, PC AT (ISA), and EISA Add-In Cards 

EISA 
Motherboard 

Figure 27-6. Keys of the EISA Motherboard 

EISA slot numbering 

A major improvement of the EISA bus over the ISA bus is its automatic 
configuration. For an ISA-based PC to install an add-in card into an expansion slot 
requires setting switches and jumpers. EISA-based PCs do not have this limitation. 
An ID number is assigned to each slot and its BIOS is modified to work with the 
setup software in configuring the system and resolving any conflicts. Every EISA 
motherboard has NVRAM to store the system configuration setup, where it keeps 
all the information about the IRQ number, the 1/0 port address, the memory address, 
and DMA channels used by each add-in card. This information is provided to BIOS 
when the system is turned on. When you buy an EISA card to be plugged into an 
expansion slot of the EISA motherboard, you also get the configuration file for that 
card. After installing the card, you run the configuration file to inform the NVRAM 
of the new card. It is the job of the EISA motherboard and EISA card to work together 
in configuring the system to remove any user involvement in assigning resources or 
in removing any conflict. This means that in designing any EISA-based PC or an 
EISA add-in card, you must abide by the rules set by the EISA consortium. One of 
these rules is the wayan ID number is assigned to each slot. The slot numbering of 
the EISA is described as follows. 

SECTION 27_1: ISA BUSES 795 



I. The system board (motherboard) is assigned slot number O. 
2. The physical slots are numbered sequentially from I to a maximum of 15. 
3. The embedded devices, which would have otherwise used a slot, are numbered 

sequentially from one more than the highest physical slot to a maximum of 63. 

Example 27-1 

In a given EISA motherboard, the video board is embedded into the motherboard and there are 3 
physical expansion slots available on the motherboard, which can be used for plug-in cards. What ID 
number is assigned to the permanently installed video board? 

Solution: 
Since the motherboard has slot 0, the three expansion slots are numbered 1,2, and 3 and finally, the 
embedded video card is assigned ID number 4. 

Example 27-2 

Bus perfonnance comparison 

Since the EISA bus is an extension of the ISA bus and since ISA in turn is 
an extension of the PCIXT bus, EISA has many of the performance limitations of 
the early PCs. See Example 27-2. A comparison of/SA and EISA bus performance 
is shown in Table 27-2. 

Calculate and compare the fastest possible bus bandwidth for (a) ISA and (b) EISA bus expansion 
slots. In EISA, assume that the transfer is nonburst. 

Solution: 
The fastest bus bandwidth uses 2 clocks per cycle for memory or I/O cycles. Since the frequency is 
limited to 8 MHz, each clock is 125 ns (J/8 MHz ~ 125 ns). 

(a) 2 x 125 ~ 250 ns per cycle and each cycle transfers 2 bytes since the data path is 16-bit. 
Therefore, ISA bus bandwidth ~ (11250 ns) x 2 bytes ~ 8 megabytes per second 

(b) 2 x 125 ~ 250 ns per cycle and each cycle transfers 4 bytes since the data path is 32-bit. 
Therefore, EISA bus bandwidth ~ (11250 ns) x 4 bytes ~ 16 megabytes per second 

Table 27-2: ISA and EISA Bus Bandwidth 

ISA EISA 

Maximum data path 16-bit 32-bit 

Expansion slot bus speed (MHz) 8 8 

Max. band~dth(megabyte~second) 8 16 

796 

In the EISA documentation, often 8.3 MHz is mentioned instead of8 MHz, 
where the 33 MHz microprocessor frequency is divided by 4 to get 8.3-MHz EISA 
bus speed. 

It must be noted that EISA has burst mode data transfer, but since EISA 
specifications were cemented before introduction of the 486 microprocessor, EISA 
burst mode is not compatible with 486 burst data transfer of 2-1-1-1. See Chapter 
23 for a discussion of 2-1-1-1 burst mode in the 486lPentium. In the next section 
we discuss how the local bus overcomes the performance limitations of ISA and 
EISA. 

CHAPTER 27: ISA, PCI, AND USB BUSES 



Review Questions 

1. The device that initiates the communication is the (master, slave). 
2. True or false. In synchronous protocol, the bus activity is according to a central 

clock frequency. 
3. The CPU-printer communication is of (asynchronous, synchronous) 

protocol. 
4. How many ground pins exist in the 62-pin section of ISA? 
5. The ISA is a(n) __ (l6-bit, 8-bit) data bus. 
6. Can the MASTER pin in the ISA bus be used by a microprocessor without the in-

volvement of the DMA channel? 
7. Does EISA support automatic configuration? 
8. Does ISA support automatic configuration? 
9. Although the ISA and EISA buses have the same frequency, why is the bus band­

width of EISA twice that ofISA? 

SECTION 27.2: PCI LOCAL BUSES 

Just as a high-performance car needs high-performance roads (no bumps, 
no speed limit) to explore its full potential, high-performance CPUs also require 
high-performance buses. While microprocessor performance is rapidly rising, buses 
are not keeping up. Many high-performance systems such as CRA Y supercomputers 
and mainframes use their own proprietary buses, but their limited use makes them 
nonstandard and consequently expensive. When 286 microprocessors of 10 to 16 
MHz were used, many manufacturers resorted to proprietary buses to overcome the 
8-MHz limitation associated with the ISA bus. This was especially the case where 
memory was concerned. In 80286/386 systems with 16- or 20-MHz speed, memory 
boards plugged into expansion slots could be accessed no faster than 8 MHz. This 
fact led manufacturers such as Compaq to have their own memory expansion 
modules. In such systems, while ISA expansion slots are used for peripheral boards 
such as video, hard disk, or network cards, memory expansion was done by a 
specially designed slot on the motherboard used only for memory modules. These 
memory modules work at the same speed as the CPU, or close to it. These systems 
were often advertised as dual-bus systems. One bus was for the ISA cards and 
another one was for the memory modules. In the late 1980s with the widespread 
adaptation of SIP (single in-line pin) and SIMM (single in-line memory module), 
this problem was resolved. However, the lack of a bus standard for video and other 
adapter cards such as disk controllers forced PC board designers to come up with 
what is called a local bus. 

Definition and merits of local bus 

The idea of a local bus is to access the system buses at the same speed as 
the microprocessor, or close to it. In a 33-MHz microprocessor system with both 
ISA and local buses, the speed of the ISA bus signals is limited to 8 MHz, but the 
local bus signals are accessed at the same speed as the CPU, 33 MHz. In PCIXT 
systems of 4.7 MHz, the XT buses were accessed at the same speed as the 8088 
microprocessor. The gap between CPU speed and expansion slot speed started to 
develop when the 80286 speed exceeded 8 MHz. In those days, there were not many 
devices that needed speed beyond 8 MHz. This changed with the introduction of 
graphical user interface (GUI) software such as Microsoft Windows. In ISA bus 
systems, even the 16-bit video card plugged into the ISA expansion slot was not fast 
enough to keep up with the demand of the graphics software. This led some PC 
manufacturers to embed the video card into the motherboard and bypass the use of 
an ISA expansion slot for the video board. The problem with this option is that if 
the video section of the motherboard goes bad, one must either discard the mother­
board or connect a video card to the expansion slot, depending on how the system 
board is designed. To solve the problem of slow video speed in ISA systems, some 

SECTION 27.2: PCI LOCAL BUSES 797 



video board makers used a graphics processor to relieve the main CPU, the 386/486, 
from the burden of data manipulation of graphic data stored in video RAM. In the 
absence of a graphic processor on the video board, the main CPU is responsible for 
graphic data manipulation, which means that it must go through the slow ISA bus 
to access the data since the 80x86 CPU is connected to the video RAM through the 
ISA bus. The use of a specially designed processor called a graphic processor on 
the video board with the sole responsibility of taking care of the calculation-intensive 
work of graphics provided a major improvement in video systems of the Pc. How­
ever, it has one limitation. If the graphic data needs to be transferred from the disk 
to video RAM (or vice versa), it must still go through the slow ISA bus. Table 27-3 
shows the bus bandwidth requirements for graphics and real-time video. 

Table 27-3: Bus Bandwidth Requirements for Graphics and Real-Time Video 

GrapjIics 
-~. 

Resolution (pixels) Colors (bits/pixels) Redraw Rate Bandwidth (bytes/s) 
Jundate/s\ 

640x480 8 
-. 1- -._1Q...--t=~~ 1024x768 16 _t ____ 10_._._... 15M 

1280xJ024 24 ....L_.~_I_O __ ~. 37.5M 

Real-Time Video 

Frame Size (pixels) Colors (bits/s) Frame Rate (frames/s) Bandwidth (bvtes/s) 

160xl20 8 15 288K 

320x240 24 15 3.5M .- -

640x480 24 30 26.3M -- -

1024x768 24 30 67.5M 

Example 27-3 

Verif'y the bus bandwidth requirement for each of the following. 
(a) 1024x768 resolution, 16 colors, 10 redraw rate 
(b) 640x480 resolution, 24 colors, 30 frames per second 

Solution: 

(a) Bus bandwidth = 1024 x 768 x 16 x 10 = 125,829,120 bits/second =15 megabytes/second 
(b) Bus bandwidth = 640 x 480 x 24 x 30 = 221,184,000 bits/second =26.3 megabytes/second 

798 

Table 27-3 and Example 27-3 explain why the urge for a standard local bus 
was initiated by group called Video Electronics Standards Association (VESA). 
This widely used local bus standard in today's PC is called VESA local bus, or VL 
bus for short. Although the VL bus was created through the efforts of video board 
makers, most PC makers have adapted it out of necessity and use it even for many 
other peripherals, such as disk controllers. With the introduction of high-perform­
ance microprocessors such as the Pentium, Intel had to do something about bus 
performance lest their processor be buried under slow buses. For this reason Intel 
introduced anew local bus standard called PCI (peripheral component interconnect). 
Due to the superior performance and characteristics of the PCI local bus, we describe 
briefly some aspects of the VL bus and concentrate on the PCI for the remaining 
part of this section. 

CHAPTER 27: ISA, PCI, AND USB BUSES 



VL bus (VESA local bus) characteristics 

The following are the major characteristics of the VL bus. 
I. VL bus version 1.0 is a 32-bit bus. However, the 64-bit version is underdevelopment, 

referred to as version 2.0. 
2. The VL bus ean work up to a maximum of33 MHz clock frequency with a maximum 

of 3 expansion slots. It can go to 40 MHz if the number of slots is reduced to 2 and 
to 50 MHz if there is only one VL bus slot. 

3. It does not specify the automatic configuration standard. Unlike EISA, automatic 
configuration is not an integral part of the VL bus. 

PCI local bus 

High-performance microprocessors such as the 486 and Pentium require a 
high bus bandwidth to take advantage of their full potential. Therefore, it is not 
surprising that Intel became involved in defining a new bus standard. Although Intel 
came up with the specifications of the PCI local bus, it has become available free 
of charge to all PC and add-in board manufacturers. PCI was conceived as a 
specification standard for peripheral connections for Intel's high-performance mi­
croprocessors such as the 80486 and Pentium. Later, with encouragement and input 
from the PC industry, it became a local bus standard with the pin-out for expansion 
slot connections. It has incorporated the following major characteristics: (a) burst 
mode data transfer, (b) level-triggered interrupts, (c) bus mastering, (d) automatic 
configuration, and (e) high bus bandwidth. More important, it has a bridge, which 
allows any kind of add-in card based on ISA or EISA, to be plugged into the PCI 
local bus. PCI local bus characteristics are listed next. 

PCllocal bus characteristics 

I. It has a maximum speed of33 MHz. 
2. It has 32- and 64-bit data paths. 
3. It supports burst mode data transfer of 2-1-1-1 used by microprocessors such as the 

486 and Pentium. 
4. It supports bus mastering, allowing the implementation of multiprocessors where 

any number of microprocessors can become master and take control of the buses. 
5. It is compatible with ISA and EISA. With implementation of a bus bridge, it supports 

the slow ISA and EISA buses as shown in Figure 27-7. Buffers in the bridge allow 
the microprocessor to write into the buffer and go about its own business, leaving 
the task of handling the slow ISAIEISA to the bridge. 

6. The PCI local bus is processor independent. It can be used with any microprocessor, 
not just Inte18Ox86. Forthis reason, companies such as Digital Equipment and Apple 
have also announced support for the PCI to be used with their non-8Ox86 micro­
processors. This feature ensures that future changes in the 8Ox86 family will not 
make the PCI an obsolete bus. 

7. It supports both 5- and 3.3-V expansion cards, allowing smooth transition from 5-
to 3.3-V systems. The placing of small cutouts (keys) prevents users from plugging 
a card with one voltage into a motherboard with a different voltage. 

8. It provides autoconfiguration capability, where a user can install a new add-in card 
without setting DIP switches, jumpers, and selecting the interrupt. Configuration 
software automatically selects an unused address and interrupt to resolve conflicts. 

9. It has a ground or Vee pin between every two signals to reduce crosstalk and 
radio-frequency emissions. 

10.!t implements level-triggered interrupts, which support interrupt sharing. 
II.!t supports up to 10 peripherals. Some of the peripherals must be embedded into 

the motherboard. 
12.The maximum number of expansion slots working at 33 MHz varies, depending on 

the 5-Vorthe 3.3-Vimplementation. The increase in the number of expansion slots 
beyond 5 means a speed lower than 33 MHz. The use of a highly refined connector 
with a small area of contact makes the PCI bus a high-frequency bus. 

SECTION 27.2: PCI LOCAL BUSES 799 



80486, Memory 
Pentium, Controller 
RISCCPU 

Cache I Main Memory 

PCI Bus 
Controller 

Expansion Bus 
SCSI II 32-bit data path at33 MHz 

Controller 
Controller (ISA/EISA) 

I 16-bit data pat h 

I I at8 MHz 
'MULTIMEDIA' 

I FAX II MODEM I 
, " HI PERF , 

, FAST LAN , GRAPHICS 

Figure 27-7. PCI Local Bus Architecture 
(Reprinted by permission ofIntel Corporation, Copyright Intel, 1993) 

Required Pins Optional Pins 

[ Address 
and Data 

64-BH 
Extension 

[ 
PCI 

Interface COMPLIANT 
Control DEVICE Interface Control 

] Interrupts 

Error 
C Reporting ~ Cache 

Support 
Arbitration C <-only) 

] JTAG C System 

Figure 27-8. PCI Pin List 
(Reprinted by permission of PCI Special Interest Group, Copyright 1992, 1993) 

800 CHAPTER 27: ISA, PCI, AND USB BUSES 



5V EnVifonment 3.3V Environment 5V Environment 3.3V Environment 
Pin Side B Side A Side B Side A Pin Side B Side A Side B Side A 
1 -12V TRST# -12V TRST# 50 CONNECTOR KEY Ground Ground 
2 TCK +12V TCK +12V 51 CONNECTOR KEY Ground Ground 
3 Ground TMS Ground TMS 52 AD[08] C/BE[O]# AD[08] C/BE[O]# 
4 TDO TDI TDO TDI 53 AD[07] +3.3V AD[07] +3.3V 
5 +5V +5V +5V +5V 54 +3.3V AD[06] +3.3V AD[06] 
6 +5V INTA# +SV INTA# 55 AD[05] AD[04] AD[OS] AD[04] 
7 INTB# INTC# INTB# INTC# 56 AD[03] Ground AD[03] Ground 
8 INTD# +5V INTD# +5V 57 Ground AD[02] Ground AD[02] 
9 PRSNT1# ReselVed PRSNT1# ReselVed 58 AD[01J AD[OOJ AD[OlJ AD[OOJ 
10 ReselVed +5VQ/0) ReselVed +3.3VOIO) 59 +5VQI ) +5VQI ) +3.3V 10) +3.3V 10) 

11 PRSNT2# ReselVed PRSNT2# ReselVed 60 ACK64# REQ64# ACK64# REQ64# 
12 Ground Ground CONNECTOR KEY 61 +5V +5V +5V +SV 
13 Ground Ground CONNECTOR KEY 62 +5V +5V +5V +SV 
14 ReselVed ReselVed ReselVed ReselVed CONNECTOR KEY CONNECTOR KEY 
15 Ground RST# Ground RST# CONNECTOR KEY CONNECTOR KEY 
16 ClK +5VQ/0) ClK +3.3VQ/0) 63 ReselVed Ground ReselVed Ground 
17 Ground GNT# Ground GNT# 64 Ground C/BE[7]# Ground C/BE[7]# 
18 REQ# Ground REQ# Ground 65 C/BE[6]# C/BE)gr C/BE[6]# C/BE[5~ 
19 +5V (110) ReselVed +3.3VQI0) ReselVed 66 C/BE[4]# +5VQ C/BE[4]# +3.3V (10) 
20 AD[31] AD[30] AD[31] AD[30] 67 Ground PAR64 Ground PAR64 
21 AD[29] +3.3V AD[29] +3.3V 68 AD[63] AD[62] AD[63] AD[62] 
22 Ground AD[28] Ground AD[28] 69 AD[61 I, Ground AD[61 { Ground 
23 AD[27] AD[26] AD[27] AD[26] 70 +5V (II ) AD[60] +3.3V 110) AD[60] 
24 AD[25] Ground AD[25] Ground 71 AD[59] AD[58] AD[59] AD[58] 
25 +3.3V AD[24] +3.3V AD[24] 72 AD[57] Ground AD[57] Ground 
26 C/BE[3]# IDSEl C/BE[3]# IDSEl 73 Ground AD[56] Ground AD[56] 
27 AD[23] +3.3V AD[23] +3.3V 74 AD[55] AD[54;1, AD[55] AD[54{ 
28 Ground AD[22] Ground AD[22] 75 AD[53] +5V (I ) AD[53] +3.3V 110) 
29 AD[21] AD[20] AD[21] AO[20] 76 Ground AO[52] Ground AO[52] 
30 AO[19] Ground AO[19] Ground 77 AO[51] AO[50] AO[51] AO[50] 
31 +3.3V AO[18] +3.3V AD[18] 78 AD[491, Ground AO[491 Ground 
32 AO[17] AO[16] AO[17] AD[16] 79 +5V (II ) AD[48] +3.3V 10) AO[48] 
33 C/BE[2]# +3.3V C/BE[2]# +3.3V 80 AO[47] AO[46] AO[47] AO[46] 
34 Ground FRAME# Ground FRAME# 81 AO[45] Ground AO[45] Ground 
35 IROY# Ground IROY# Ground 82 Ground AO[44] Ground AD[44] 
36 +3.3V TROY# +3.3V TROY# 83 AD[43] AO[421, AO[43] AD[421 
37 OEVSEl# Ground DEVSEl# Ground 84 AD[41] +5V (II ) AO[41] +3.3V 10) 
38 Ground STOP# Ground STOP# 85 Ground AO[40] Ground AO[40] 
39 lOCK# +3.3V lOCK# +3.3V 86 AO[39] AD[38] AO[39] AO[38] 
40 PERR# SOONE PERR# SOONE 87 AD[371, Ground AO[371 Ground 
41 +3.3V SBO# +3.3V SBO# 88 +5V (II ) AO[36] +3.3V 10) AO[36] 
42 SERR# Ground SERR# Ground 89 AO[35] AO[34] AO[35] AO[34] 
43 +3.3V PAR +3.3V PAR 90 AO[33] Ground AO[33] Ground 
44 C/BE[l]# AO[15] C/BE[l]# AO[15] 91 Ground AO[32] Ground AO[32] 
45 AO[14] +3.3V AO[14] +3.3V 92 ReselVed ReselVed ReselVed ReselVed 
46 Ground AO[13] Ground AO[13] 93 ReselVed Ground ReselVed Ground 
47 AO[12] AO[11] AO[12] AO[11] 94 Ground ReselVed Ground ReselVed 
48 AO[10] Ground AO[10] Ground 
49 Ground AD[09] Ground AO[09] 

Figure 27-9. Pinout of the PCI Connector 
(Reprinted by permission of PCI Special Interest Group, Copyright 1992, 1993) 

5V Board 3.3V Board 
1/0 buffers powered on 5 V rail 1/0 buffers powered on 3.3 V rail 

Figure 27-10. PCI Board Connectors 
(Reprinted by permission of PCI Special Interest Group, Copyright 1992, 1993) 

SECTION 27.2: PCI LOCAL BUSES 801 



802 

Plug and play feature 

The PCI is equipped with the autoconfiguration feature but at the same time 
it has a slot for the ISA bus, in which the autoconfiguration is not supported. How 
can this work? This lack of autoconfiguration is a major headache for computer users 
and network managers. This led Microsoft and Intel to work together to equip the 
ISA bus with the autoconfiguration feature. This feature is often referred to as plug 
and play. The PCI autoconfiguration feature can work completely only afterthe ISA 
cards and BIOS are equipped with autoconfiguration (plug and play), since EISA is 
already equipped with this important feature. Plug and play falls into the following 
three categories. 

I. Neither the motherboard BIOS nor the add-in card is equipped with the plug-and­
play feature. This is sometimes called "plug and pray." You may get it to work by 
trial and error. 

2. The motherboard BIOS is equipped with plug and play, but the add-in card is not. 
In this case, setup software will help you to assign the VO addresses, IRQs, and 
DMA channels. 

3. Both the motherboard BIOS and the add-in card are equipped for plug and play. In 
this case, autoconfiguration will take care of everything. It will assign 1/0 addresses, 
IRQs, and DMA channels without any user involvement. 

PCI connector 

A few points must be noted about the PCI connector. First, notice in Figure 
27-8 that very few PCI signals match the signals of 80x86 microprocessors. The 
reason is that PCI is a mezzanine bus, meaning that the PCI controller sits between 
the CPU and the external bus connection. In this way, any CPU can be used with 
the PCI bus. Standardizing the bus connection frees the CPU buses from any 
restriction. This is in contrast to the VL bus (version 1.0), in which signals come 
directly from the 486 pins and havc the same name. When new signals were added 
to the Pentium, the VL bus had to be upgraded (version 2.0). PCI solves this problem 
by being microprocessor independent. 

Another point to be noted is the mUltiplexing of address and data on the PCI 
bus, since the same pins are used for address and data. In the first clock, the address 
is provided and in the second elock, the data is provided. Therefore, the PCI bus has 
a cycle time of2 clocks in nonburst mode, just like the 386/4861Pentium. For burst 
mode, in the first clock the address is provided and in each subsequent clock a word 
(32-bit) of data is provided. 

Another point to be noted is the 64-bit extension for the PCI bus. The PCI 
bus can be implemented for a 3 2-bit data bus or a 64-bit data bus. The 32-bit sections 
end at pin 62. The pinout is shown in Figure 27-9. Pins 63 through 94 are used for 
64-bit data/address extension only. 

Notice also in Figure 27-9 that every third pin is dedicated to ground or 
Vee. This eliminates the crosstalk problem and allows the bus to be used for 
frequencies up to 33 MHz. 

Figure 27-10 illustrates the PCI board connectors. 

PCI perfonnance 

The PCI local bus supports both single memory cycle and burst mode. In 
the single cycle, it takes 2 clocks to read or write a word of data. In the first clock, 
the address is provided and in each subsequent clock, the data is accessed. This 
makes it 2-1-\- I -1-1.... Example 27-4 calculates the bus bandwidth for the PCI. 

Table 27-4 provides the performance comparison of all the buses for 
non-burst mode data transfer. 

CHAPTER 27: ISA, PCI, AND USB BUSES 



Example 27-4 

Calculate the bus bandwidth of PCI for (a) single and (b) burst transfer, both on a 32-bit data path. 

Solution: 
PCI can work up to a maximum of 33 MHz. The clock period is 30 ns. 
(a) For the single transfer, each transfer takes 2 clocks or a total of 60 ns to transfer 4 bytes (32 bits) 

of data. Therefore, bus bandwidth = (1/60 ns) x 4 bytes = 66.6 megabytes/second 
(b) In burst mode, ignoring the overhead of the first clock for the address, it takes 1 clock or 30 ns 

to transfer 32-bit data. Therefore, bus bandwidth = (1/30 ns) x 4 bytes = 133 megabytes/second. 

T bl 27 4 ISA EISA VL a e - : , , , an oca us an WI t d PCI LIB B d °d h C ompanson 

ISA EISA VLBus PCI PCI 

Data oath (bits) 16 32 32 32 64 

Bus speed (MHz) 8 8.3 33 33 33 -

Bandwidth (megabytes/s) 8 16 66 66 133 -
Nole: In the bus bandwidth calculation, 2 clocks per memo!), cycle are assumed. 

Review Questions 

I. What is the local bus? 
2. The memory expansion connections to 16-MHz CPUs are through the __ _ 

(ISA bus, local bus). 
3. What is a dual bus system? 
4. Which needs a local bus, the modem or the hard disk controller? 
5. True or false. PCI is a 32- and a 64-bit bus. 
6. How has PCI reduced the effects of crosstalk (EMI) for high-frequency systems? 

SECTION 27.3: USB PORT 

USB stands for universal serial bus. Next to PCI, it is one of the most 
important additions to the PC system in recent years. In this section we provide an 
overview of the USB bus. To see the need for the USB bus, we first review the 
limitations and benefits of ISA and PCI buses, as well as serial and parallel ports. 

ISA and PCI buses provide a high rate of data transfer between the CPU 
and the outside world. This is because they have a wide data path, high frequency 
bus speed, and communicate directly with the CPU. As mentioned earlier, the ISA 
bus is a 16-bit bus and has a speed of 8 MHz. For the PCI bus, the data path is 64 
bits wide and it has a maximum speed of 64 MHz. 

The following are some of the major limitations of the ISA and PCI buses. 
I. Both ISA and PCI are inside the PC; therefore, to access them you need to open the 

PC's case and plug the card into an expansion slot. 
2. The PCI and ISA expansion slots take too much physical space on the motherboard. 

This limits the number of expansion slots that are available on a given motherboard. 
3. Both ISA and PCI buses require too much power. For every ISA expansion slot, an 

extra 25 watts must be incorporated into the PC's power supply; every PCI slot 
requires an extra 10 watts. As a result, a motherboard with 2 ISA and 3 PCI expansion 
slots has burdened the PC power supply with an additional 80 watts of power ( 2 x 
25 + 3 x 10 = 80). This can make a significant difference in handheld and laptop 
systems, and that is the reason that neither of these devices have any expansion slots 
on their boards. 

SECTION 27.3: USB PORT 803 



804 

The most important disadvantage of serial and parallel ports is the limit of 
4 of each in agiven motherboard. The PC BIOS limits the number of serial (COM) 
and parallel (LPn ports to 4. Of course this is a theoretical limitation imposed by 
the BIOS. Practically speaking, there are a limited number of IRQs to assign to all 
of these LPT and COM ports. This is the reason that there are no more than 2 COM 
ports and I LPT port on motherboards. There are other limitations associated with 
the COM and LPT ports that come to light only when compared with the major 
features of the USB port. 

Major features of USB 

Here are some of the most important features of the USB. They demonstrate 
why this is one of the most important additions to PC architecture in recent years. 

I. A single USB port on the back of the PC can accommodate up to 127 devices such 
as a mouse, scanner, printer, modem, etc. The devices are daisy chained together 
with the help of external hubs. The devices are recognized automatically by the Pc. 
Many devices such as a printer and monitor can be equipped with a hub, thereby 
saving the additional expense of buying a separate hub. More importantly, daisy 
chaining the devices via hubs requires no opening of the PC case when connecting 
additional devices to a PC. 

2. The data transfer rate is between 1.5 to 12 megabits per second (Mbs) at this time. 
Intel is discussing with the industry to raise the maximum limit to 200 Mbs. 

3. USB is hot-pluggable. This means that new devices can be connected to the USB 
port without first turning off the PC. Rememberthat was not the case with ISA,PCI, 
LPT, and COM ports. In all these devices, the PC had to be turned off prior to 
installing the device and configuring the system. The hot-pluggability of USB is one 
of its most important features. 

4. USB does not have to burden the system's power supply. Unlike ISA and PCI, 
connecting additional USB devices to a PC does not require an exorbitant amount 
of power from tile PC power supply. Each new device requires no more than a 
maximum of500 mW from the PC power supply. More importantly, the USB hubs 
sitting outside the PC can have their own power supply, thereby relieving the 
motherboard's power supply of the burden of providing power to every device. For 
example, a printer or monitor that is equipped with a USB hub can provide power 
to all external USB devices. The USB is also equipped with power managing 
capability. This allows a device that is not being used for a period of time to be 
powered down into sleep mode. 

Software compatibility 

It must be noted that Microsoft's Windows 95 does not come with USB 
drivers and other support software. However, you can download them from the 
Microsoft Web site. The same is true for Windows NT 4.00. Starting with Windows 
98, USB is part of the operating system; the same is true for Windows NT 5.00. 

Bus comparison 

Table 27-5 shows the comparison ofISA, PCI, COM, LPT, and USB. Notice 
in the calculation of data transfer rate (bus bandwidth) for ISA and PCI buses that 
a 2-clock read and write cycle is assumed. For the LPT port, the 2 microsecond 
timing for the parallel port is assumed. Also notice that in serial COM and USB 
ports, there is only a single wire for transfer (RxD) and another single wire for 
receive (TxD). 

Both Microsoft and Intel are working to eliminate ISA bus, LPT, and COM 
ports from PC motherboards. Early 2000 may bring PCs with PCI and USB ports 
only. 

CHAPTER 27: ISA, PCI, AND USB BUSES 



Table 27-5' Date Transfer Rate for Buses and Ports , 

Bus/Port Data Path bit Maximum Bus Bandwidth -

rSA (8 MHz) 16 8 M bytes/second 

pcrm MHz) 32 66 M bvtes/second 

pcr (33 MHz) 64 13 3 M bytes/second 

PCI(66MHz) 64 266 M bytes/second 

USB 1 12 M bits/second 

LPT 8 500 K bytes/second --

COMoort 1 56 K bits/second 
Note: In the bus bandwIdth calculatIon, 2 clocks per memory cycle are assumed. 

SUMMARY 

SUMMARY 

Review Questions 

I. True or false. Both pcr and USB are hot-pluggable. 
2. What advantage do USB devices have over other devices in terms of system power 

requirements? 
3. True or false. Each USB device must have its own USB connection to the system 

via an expansion slot. 

This chapter began with an overview of bus terminology. A master device 
initiates and controls communication over buses with a slave device. Bus arbitration 
is the method of deciding which device can control the buses at a given point in time. 
Bus protocol refers to timing specifications and signal directions. The two protocols 
are synchronous, where bus activity is synchronized according to a central clock, 
and asynchronous, where bus activity proceeds according to the timing of the 
devices involved. Bus bandwidth is a measure of the rate at which a bus can transfer 
data from master to slave or vice versa. The rSA (Industry Standard Architecture) 
bus is the IBM PC AT bus. It consists of two physical parts, a 62-pin portion, which 
is the PCIXT bus, and a 36-pin portion, which was added to accommodate the 16-bit 
data bus and 24-bit address bus of the 80286, and other advanced features. Manu­
facturers developed an enhanced ISA bus, called EISA, which featured 32-bit 
address and data paths, plus other features. ISA cards can be plugged into an EISA 
expansion slot, but EISA cards cannot be plugged into an ISA slot. 

The second section of this chapter described the local bus, which was 
developed so that the system buses could be accessed at speeds close to the speed 
of the microprocessor. The VL bus, or VESA bus, is a 32-bit bus that can work up 
to a maximum frequency of 33 MHz with 3 expansion slots. The PCI local bus has 
both 32- and 64-bit data paths and a maximum speed of 33 MHz. PCI supports 
many advanced features critical to 486 and higher CPUs, such as burst mode data 
transfer and bus mastering, and allows use ofISA and EISA cards. 

The third section of this chapter covered a recent addition to PC systems: 
USB ports. USB stands for universal serial bus. USB ports can accommodate 
numerous USB devices which are daisy-chained together. Devices that contain USB 
hubs can have other devices connected to them via the hub, and can provide power 
supply to those devices. USB is hot-pluggable, meaning that new devices can be 
connected via a hub without shutting down the system and opening the PC case. 

805 



PROBLEMS 

806 

SECTION 27.1: ISA BUSES 

I. Explain the difference between master and slave devices. 
2. Why is there a need for bus arbitration? 
3. What is the function of central bus arbitration? 
4. The CPU/memory relation is an example of (asynchronous, sychnro-

nous) protocol. 
5. The CPU/printer relation is an example of (asynchronous, sychnro-

nous) protocol. 
6. The CPU/modem relation is an example of (asynchronous, sychnro-

nous) protocol. 
7. True or false. The higher the bus frequency, the higher the bus bandwidth. 
8. True or false. The wider the data bus, the lower the bus bandwidth. 
9. Generally, which bus protocol has the highest bus bandwidth? 
10. True or false. The PC AT bus is an extension of the PCIXT bus. 
II. Why is the AT bus called ISA? 
12. What is the function of the AEN signal? 
13. Is AEN an output signal or an input signal? 
14. What is the purpose ofiOCHRDY? Is it an input or an output signal? 
15. What is the signal direction for signals DREQs, IRQs, and DACKs? 
16. Explain the direction and function of the RESET DRV signal. 
17. Explain the difference between signals SMEMRlSMEMW and MEMRlMEMW. 
18. Does the OWS signal exist on the PCIXT bus? 
19. What is the function of the OWS signal? 
20. How many pins on the 62-pin section of the ISA are allocated to GND and Vee? 
21. Which address lines are duplicated on the 62- and 36-pin parts of the ISA bus? 
22. Give the number of clocks it takes to transfer between the following devices. 

(a) 16-bit to 8-bit device (b) 16-bit to 16-bit device (c) 8-bit to 8-bit device 
23. Ifwe are connecting an 8255 to an ISA bus PC, which portion of the data bus 

must be connected to the data bus of the 8255? 
24. What is the function of MEMCS 16 and IOCS 16 pins? Are they input or output 

signals? 
25. Explain the limitation ofthe MASTER signal in the ISA bus. 
26. In the ISA bus, which of the following cases is (are) permitted? 

(a) an external microprocessor from the expansion slot as master 
(b) DMA from the expansion slot as master 

27. What is the bus frequency in ISA? 
28. What are the limitations of the 16-bit DMA channels in the ISA bus? 
29. Explain the difference between edge and level triggering of an interrupt. 
30. What is the disadvantage of edge-triggered interrupts? 
31. Do we have any access to NMI of the CPU through the expansion slot of ISA? 
32. What is the difference between the PCIXT and PC AT as far as system configura­

tions are concerned? 
33. EISA is which type of bus? 

(a) 32-bit (b) 16-bit (c) both (a) and (b) 
34. Why is the EISA bus speed limited to 8 MHz (or some say 8.3 MHz)? 
35. Where does the 8.3 MHz figure come from? 
36. What is autoconfiguration, and why it is highly desired? 
37. True or false. EISA has the autoconfiguration feature. 
38. A given EISA with 5 expansion slots has embedded the video card and hard disk 

controller card into the motherboard. Give the ID number assigned to each of the 
cards and slots. 

39. Give the following for ISA and EISA buses. 
(a) bus size (b) bus speed (c) maximum bus bandwidth 

CHAPTER 27: ISA. PCI. AND USB BUSES 



40. EISA can transfer data to which type of devices? 
(a) 8-bit (b) 16-bit (c) 32-bit (d) all of the above 

41. Why in the EISA do we have only LA2 - LA31 buses? What happens to LAO, 
LA 1 for byte selection? 

SECTION 27.2: PCI LOCAL BUSES 

42. What kind of bus is designated as a local bus? 
43. Why is a PC working with 12 MHz frequency and higher sometimes referred to as 

a dual-bus PC? 
44. If the memory of a given 486 ISA PC is designed with 0 WS, give the cycle time 

for memory and I/O accessed from the ISA bus. 
45. In Problem 44, calculate the bus bandwidth for both memory and 1/0. 
46. Give three major desired characteristics of a bus. 
47. The (PCI, VL bus) is processor independent. 
48. Calculate the required bus bandwidth for graphics of 1280xJ024 resolution, 24 

bits for color, and redraw rate of 10. 
49. Calculate the required bus bandwidth for real-time video of 640x480 resolution, 

24 bits for color, and frame rate of 30. 
50. The VL bus version 1.0 is a __ (32-bit, 64-bit) bus. 
51. What is the maximum speed of the VL bus for 3 expansion slots? 
52. The PCI has a maximum speed of __ MHz. 
53. True or false. The PCI bus can accommodate 64-bit data buses of the Pentium. 
54. True or false. The PCI bus supports autoconfiguration. 
55. True or false. Interrupt sharing is not allowed in PCI. 
56. Calculate and compare the maximum bus bandwidth for the following. Assume 

that all are non-burst mode. 
(a) 32-bit EISA (b) 32-bit PC! 

57. Calculate the maximum bus bandwidth for the following. Assume burst mode. 
(a) 32-bit PCI (b) 64-bit PCI 

SECTION 27.3: PC! LOCAL BUSES 

58. What does hot-pluggable mean? 
59. True or false. One disadvantage of USB is that USB devices create an exorbitant 

demand on the system's power supply. 
60. List the maximum bus bandwidth for the following. 

(a) USB (b) COM port 

ANSWERS TO REVIEW QUESTIONS 

SECTION 27.1: ISA BUSES 
1. master 2. true 3. asynchronous 4. two 
5. 16-M, but ~ can also be used for 8-bit peripherals 
6. No; the Master pin must be activated after the ORO has been acknowledged. 
7. yes 
8. Not at this time. Microsoft and Intel are working together to equip the ISA bus with autoconfiguration. This 

feature is often referred to as plug and play. 
9. It is because EISA has a 32-b~ data path. 

SECTION 27.2: PCI LOCAL BUSES 
1. It is the bus that is closely attached to the CPU and works with the same frequency as the CPU (or close to it). 
2. local bus 
3. in 28613861486IPentium systems, where there is an ISA (or EISA) bus for the peripheral 

connection and there are very refined buses for the SIMM memory connection using the surface mount 
technology. 

4. hard disk controller 5. true 
6. by placing a ground or Vee pin between every 2 signal lines 

SECTION 27.3: USB PORTS 
1. false 2. Devices connected together via a USB hub can share a power supply. 
3. false 

ANSWERS TO REVIEW QUESTIONS 807 



CHAPTER 28 

PROGRAMMING DOS, BIOS, 
HARDWARE WITH C/C++ 

808 CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH CtC++ 



Today, CIC++ is the language of choice among developers of application 
software. Although C is a high-level language, it has strong bit manipulation 
capability. For this reason, some programmers refer to C as a "high-level assembly" 
language. Both Microsoft and Borland provide a rich library of functions designed 
to be used for accessing hardware and software ofthe Pc. In this chapter we discuss 
programming of DOS, BIOS, and PC hardware with C. In Section 2S.1, BIOS 
interrupt and DOS function call programming with CIC++ is explored. In Section 
2S.2, the use ofCIC++ in accessing PC hardware and 110 ports is discussed. 

SECTION 28.1: BIOS AND DOS INTERRUPT PROGRAMMING WITH C 

For CIC++ programmers who do not have detailed knowledge of SOxS6 
Assembly language programming but want to write programs using DOS function 
calls !NT 21 H and BIOS interrupts, there is help from compilers in the form of int86 
and intdos functions. The intS6 function is used for calling any of the PC's interrupts, 
while the intdos function is used only for the !NT 21 H DOS function calls. We look 
first at intS6. 

Programming BIOS interrupts with C/C++ 

To use the intS6 function, we must set the registers to desired values and 
then call intS6. Upon return from intS6, we can access the SOxS6 registers. In this 
regard, intS6 is just like the "!NT #" instruction in SOxS6 Assembly language. To 
access the SOxS6 registers, we use the union of the REGS structure already defined 
by the C compiler. It has the following format, where regin and regout are variable 
names: 

union REGS regin,regout; 

The union of the REGS structure allows SOxS6 registers to be accessed in 
either their 16- or S-bit format. The 16-bit registers are referred to as x and S-bit 
registers are referred to as h (for "halfword"). This is shown in Table 2S-1. 

Table 28-1: REGS Union Elements and Assembly Equivalent 

Assembl 

'I u-16_bit :1 

( -- -----~ ,I 

I~ languagei Assembl Lan ua e i CLan ua e 

I~ __ regin.x.ax AX+--_r ... e=in",.",h.",a,-l ~~+-~ __ ",-A .. L"--

If-- ---" +-- regin.h.ah AH 

"f-- regin,x.bx BX regin.h.bl I BL 

"'F' . .. reglln.~ ClL_ -+-_ :::~:~~--t-I ---- ~~ ----' 
_____ ! ___ ro_e"'g"in..,."h"'.c"h __ +-__ --'C""'H"-"---- - -I,'l 

regin.x~ "DX DL =:=J 

8-bit 
I "---

___ -------1------ regin.h."'dh""---_ DH " ___ ~ 
regm.x.S1 "--:1 

"-- "--ji ii __ ~re"'g"'in.x.di 

II 

DI ----I-

I regin.x.cflag Cy 

SECTION 28.1: BIOS AND DOS INTERRUPT PROGRAMMING WITH C 809 



Example 28-1 

The following code compares loading the registers and invoking the inter­
rupt in C and Assembly language. 

1* Clanguage 
union REGS regin ,regout; 
regin.h.ah=Ox25; 
regin.x.dx=Ox4567; 
regin.x.si=OxI290; 
int86(interrupl#,&regin,&regout); 

Assembly language '/ 

1* mov ah ,25h ;AH=25H '/ 
1* mov dx,4567h ;DX=4567H '/ 
1* movsi,1290h ;SI=1290H '/ 
I*int# '/ 

In the code above, interrupt # is a value from 00 to 255 (or OxOO to OxFF in 
hex, using the C syntax for hexadecimal numbers), and &regin and &regout are the 
addresses of the REGS variables. Upon returning from the int86 function, we can 
access the contents of registers just as in 80x86 Assembly language programs. This 
is shown as follows: 

mydata=regout.h.ah; 
myvalu=regout.x.bx; 

1* mov mydata,ah ;assign AH to mydata '/ 
1* mov myvalu,bx ;assign BX to myvalu '/ 

Example 28-1 demonstrates how int86 is used in C programming. Example 
28-2 shows how to access registers upon returning from int86. 

Use the int86 function to clear the screen. Show the equivalent !NT 10 instruction. 

Solution: 

1* example 28-1A using 16-bit registers '/ 
#include <dos.h> 1* int86 is part of this library '/ 
mainO 
{ 
union REGS regin,regout; 
regin.x.ax=Ox0600; r MOV AX,0600H '/ 
regin.h.bh=Ox07; 1* MOV BH,07H '/ 
regin.x.cx=O; 1* MOV CX,O */ 
regin.x.dx=OxI84F; I' MOV DX, 184FH '/ 
int86(Oxl0,&regin,&regout); I' INT 10H '/ 
} 

We can mix 8- and 16-bit registers as shown next: 

810 

I' example 28-16 using 8-bit registers '/ 
#include <dos.h> I' int86 is part of this library '/ 
mainO 
{ 
union REGS regin,regout; 
regin.h.ah=6; 
regin.h.al=O; 
regin.h .bh=07 
regin.x.cx=O; 
regin.h.dl=Ox4F; 
regin.h.dh=OxI8; 
int86(Oxl0,&regin,&regout); 
} 

I'MOVAH,6 
I' MOV AL,O 
I' MOV BH,07 
I' MOV CX,O 
I' MOV DL=4FH 
I' MOV DH=18H 
I'INT10H 

'/ 
'/ 
'/ 
'/ 
'/ 
'/ 
'/ 

CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH C/C++ 



Example 28-2 
Use the int86 function to perfonn the following functions. 
(a) Save the current cursor position 
(b) Set the cursor to row 12, column 8 
(c) Olsplay the message "Hello" using the printf function. 

Solution: 

Example 28-3 

/' example 28-2 '/ 
#include <stdio.h> 
#include <dos.h> 
mainO 
( 
unsigned char oldrow; 
unsigned char oldcol; 
union REGS regin,regout; 
regin.h.ah=3; I' MOV AH,3 ;option 3 INT 10H '/ 
regin.h.bh=O; /* MOV SH,O ;page 0 */ 
int86(Ox10,&regin,&regout); /'INT 10H ;video INT '/ 
oldrow=regout.h.dh; I' MOV oldrow,DH ;save row '/ 
oldcol=regout.h.dl; I' MOV oldcol,DL ;save col '/ 
printf("Cursor was at row=%d,column=%d In",oldrow,oldcol); 
regin.h.ah=2; /* MOV AH,2 ;option 2 of int 10H '/ 
regin.h.bh=O; I' MOV BH,O ;Page zero '/ 
regin.h.dl=8; I' MOV DL,8 ;collocation '/ 
regin.h.dh=12; /' MOV DH,12 ;rollocation '/ 
int86(Ox10,&regin,&regout); /'INT 10H '/ 
printf("Helloln"); 
} 

Finding the conventional memory size with INT 12H 

As shown in Chapter 14, BIOS TNT 12H provides the size of conventional 
memory installed in the PC. Example 28-3 reports its size. 

Use function int86 with INT 12H to find the size of conventional memory installed on a given PC. 

Solution: 

TNT 12H provides the size of conventional memory in register AX, as was shown in Chapter 14. 

/' example 28-3 '/ 
#include <stdio.h> 
#include <dos.h> 
mainO 
( 
unsigned int convmem; 
union REGS regin,regout; 
int86(Ox12,&regin,&regout); 
convmem=regout.x.ax; 
printf("This PC has %dKB of Conventional memory\n" ,convmem); 
} 

SECTION 28.1: BIOS AND DOS INTERRUPT PROGRAMMING WITH C 811 



INT 16H and keyboard access 

In Chapter IS we discussed how to access the keyboard through TNT l6H. 
Example 2S-4 shows how to access TNT l6H with the intS6 function. 

Example 28-4 

Using function intS6 with TNT l6H option 0, write a program to indicate the key activated, its scan 
code, and its ASCII code. 

Solution: 

As discussed in Chapter IS, option AH=O of TNT 16H waits for a keyboard entry and returns the scan 
code and ASCII code in registers AH and AL, respectively. 

812 

#include <stdio.h> 
#include <dos.h> 
mainO 
( 
unsigned char scancode; 
unsigned char ascicode; 
union REGS regin,regout; 
regin.h.ah=O; 
int86(Ox 16, &regin, &regout); 
scancode=regout.h.ah; 
ascicode=regout.h .al; 
printf("The %c has scan code %X and ASCII code of %Xln" ,ascicode, 

scancode,ascicode); 
} 

Programming INT 21 H DOS function calls with C/C++ 

Although we can use the intS6 function for TNT 21 H DOS function calls, 
there is a specially designated function, intdos, that can be used for DOS function 
calls. The format of intdos is as follows. Example 2S-5 shows how to use intdos. 

intdos(&regin,&regout); r to be used for INT 21 H only *' 
AcceSSing segment registers 

Both intS6 and intdos allow access to registers AX, BX, CX, DX, SI, and 
DI, but not segment registers CS, DS, SS, and ES. In some of the interrupt services, 
we need access to the segment registers, as well. In such cases we must use intS6x 
instead of intS6, and intdosx instead of intdos. In using intS6x and intdosx, we must 
also pass the argument SREGS. Functions intS6x and intdosx have the following 
formats. See the SREGS structure at the end of this section. 

int86x(interrupt # ,&regin ,&regout ,&regseg); 
intdosx(&regin,&regout,&regseg); 
strue! SREGS regseg; 

Functions intS6x and intdosx provide access only to registers ES and DS 
and not the segment registers CS and SS. The contents of SS and CS cannot be 
altered since their alteration will cause the program to crash. Fortunately, BIOS and 
DOS function calls that use segment registers do not request the alteration of CS 
and SS. Example 2S-6 shows how to get the values of interrupt vector tables. 

CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH CtC++ 



Example 28-5 

Use INT 21H option 2AH to display the date in the form dd-mm-yy on the screen. 
(a) Use intdos functions. (b) Use the int86 function. 

Solution: 

Upon returning from the INT 21H function 2AH, DL contains the day, DH the month, CX the year. 

(a) This program uses intdos. 

#include <stdio.h> 
#inciude <dos.h> 
mainO 
{ 
unsigned int year; 
unsigned char month; 
unsigned char day; 
union REGS regin,regout; 
regin.h.ah=Ox2A; 
intdos( &regin ,&regout); 
day=regout.h.dl; 
month=regout.h.dh; 
year=regout.x.cx; 
printf("Today's date is %d-%d-%dln",month,day,year); 
} 

(b) In this program we can replace the intdos statement with 

int86(Ox21,&regin,&regout) 

Example 28-6 

Using INT 21 option 35H, get the CS:IP in the interrupt vector table for INT 10H. 

Solution: 

From Appendix D, we have INT 21H, AH=35, and AL=interrupt number. Upon return, ES 
contains the code segment (CS) value and BX register has the instruction pointer (IP) value from the 
vector table. 

#include <stdio.h> 
#inciude <dos.h> 
mainO 
{ 
unsigned int ipvalu; 
unsigned int csvalu; 
union REGS regin,regout; 
struct SREGS regseg; 
regin.h.ah=Ox35; /* MOV AH,35H *' 
regin.h.al=Ox10; /* MOV AL, 10H *' 
int86x(Ox21,&regin,&regout,&regseg); 
/* or we can use intdosx(&regin,&regout,&regseg) *' 
ipvalu=regout.x.bx; /* MOV ipvalu,BX *' 
csvalu=regseg.es; '* MOV csvalu,ES *' 
printf("The CS:IP of INT 10H is %X:%X In" ,csvalu,ipvalu); 
} 

SECTION 28.1: BIOS AND DOS INTERRUPT PROGRAMMING WITH C 813 



Accessing the carry flag in int8S and intdos functions 

Upon returning from many of the interrupt functions, we need to examine 
the carry flag. Functions int86, intdos, int86x, and intdosx allow us to examine the 
carry flag bit only, and no other flag bits are available through these functions. To 
access the carry flag bit we write 

if(regout.x.cfJag) 

The structures of word registers, byte registers, and segment registers are 
shown below. 

union REGS { 
struct WORDREGS { 

unsigned int ax; 
unsigned int bx; 
unsigned int cx; 
unsigned int dx; 
unsigned int si; 
unsigned int di; 
unsigned int cflag; 
} x; 

struct BYTEREGS { 
unsigned char al,ah; 
unsigned char bl,bh; 
unsigned char cI,ch; 
unsigned char dl,dh; 
} h; 

} 'inregs; 
union REGS 'outregs; 

struct SREGS { 
unsigned int es; 
unsigned int cs; 
unsigned int ss; 
unsigned int ds; 
} 'seregs; 

Review Questions 

I. True or false. Function int86 can be used for any interrupt number. 
2. True or false. Function intdos can be used for any interrupt number. 
3. The int86 has arguments, whereas intdos has 
4. True or false. Operand regin.h.al accesses the l6-bit reg-l~' sC"te-r.---
5. Is the following code correct? 

union REGS rin,rout; 
rin.x.ax=Ox1250; 

6. To access segment registers we use (int86x, int86, intdos). 
7. The int86x function has __ arguments and they are c.--=o:---c=;---
8. True or false. In the int86x and intdosx functions, only the ES and DS registers are 

accessible. 

814 CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH C/C++ 



SECTION 28.2: PROGRAMMING PC HARDWARE WITH C/C++ 

Example 28-7 

In addition to accessing the CPU's registers, we can also access memory 
and inputloutput ports with CIC++. 

Accessing 80x86 SEGMENT:OFFSET memory addresses in C 

The I M memory space of the SOxS6 microprocessor is accessed by ad­
dresses in the form of seg:ofIset. For example, the logical address BOOO:OOOO 
represents the physical address BOOOOH. If the address is within the same segment, 
it is a 16-bit address and uses a near pointer. If the address is outside the segment, 
it is in the 32-bit form of seg:ofIset and uses a far pointer. In C compilers for the 
SOxS6 PC, the physical address of BSOOOH is represented in its seg:offset form of 
BSOO:OOOOH and is declared as OxBSOOOOOO, where "Ox" indicates a hex number. 

unsigned int far *pter; I*declare a far pointer */ 
pter = (unsigned int far*) OxB8000000; 
I*assigned the hex B8000000 address to pter pointer */ 

The code "unsigned int far *" is written to typecast address OxBSOOOOOO 
since pter=OxBSOOOOOO will cause the compiler to generate a warning message. 
This typecasting informs the compiler that OxBOOOOOOO (a long integer) is a far 
pointer pointing to an unsigned integer. Next we show how the BIOS data area can 
be accessed to examine the PC hardware configurations and its devices. 

Accessing BIOS data area with C 

As we have seen throughout many ofthe chapters in this book, the physical 
memory locations 00400H to 004FFH, commonly referred to as the BIOS data area, 
hold some very important information about PC hardware configuration and the 
status of many of its devices, such as printer and COM ports. The address for the 
BIOS data area in seg:ofIset format is 0000:0400H - OOOO:04FFH. Example 2S-7 
uses C to detect the installation ofLPTI and display the port address assigned to it. 
Example 2S-S shows how the COM2 port is detected and reported. 

Write a C program to detect the installation ofLPTI and report the 1/0 port address assigned to it. 

Solution: 

BIOS detects all the LPTs installed on the PC and reports the I/O port addresses to BIOS memory 
locations 0040SH - 40FH, where 40SH and 409H hold the I/O port address for LPTl, 40AH and 
40BH for LPT2, and so on. If no LPT is installed, zeros are found in these memory locations. 

/* this program detects the installation of LPT1 and reports the I/O port address 
assigned to it. * / 

#include <stdio.h> 
#include <dos.h> 
mainO 
( 
unsigned int far *xptr; 1* a far pointer *1 
xptr=(unsigned int far *) Ox00000408; /* assign address */ 
if(*xptr >0) 
printf("I/O base address assigned to LPT1 is %X In",*xptr); 
else printf("LPT1 = None found"); 
} 

SECTION 28.2: PROGRAMMING-PC HARDWARE WITH CtC++ 815 



Example 28-8 

Write a C program to detect the presence of COM2 and report the VO port address assigned to it. 

Solution: 

As was discussed in Chapter 17, BIOS detects all the COM ports installed on the PC and reports the 
VO port addresses to BIOS data area memory locations 00400H - 407H, where 400H and 40lH 
hold the VO port add~ess for COMI, 402H and 403H for COM2, and so on. Ifno COM is installed, 
zeros are found in these memory locations. Thercfore, we have the following C program. 

1* this program detects the installation of COM2 and reports the 1/0 port address 
assigned to it. 'I 

#include <stdio.h> 
#include <dos.h> 
mainO 
{ 
unsigned int far 'xptr; I' a far pointer 'I 
xptr-(unsigned int far ') Ox00000402; 1* assign address 'I 
if('xptr >0) 
printf("I/O base address aSSigned to COM2 is %X In",*xptr); 
else printf("COM2 = None found"); 
} 

Programming input/output ports with CtC++ 

All major C compilers provide functions to access VO ports of the 80x86 
microprocessor. Table 28-2 shows accessing the 8-bit ports of the 80x86. 

Table 28-2: Accessing 8-bit 110 Ports with Assembly, C 

80x86 AssemblY Microsoft C Borland C· Borland C (native) 

OUT oort#AL outo( oort# bvte) outo( oort# bvte) outnortb( oort# bvte) 

OUTDXAL outo( oort# bvte) outo(oort# byte) outoortb( oort# bvte) 

IN AL,port# inp(port#) ino(oort#) innortbfnort#) 

IN AL~DX ino(port#) ino(oort#) inoortb( oort#) 
Note: For both Microsoft and Borland compilers, port# IS an unsigned wteger data type fOfjlOrt address (0000 to 
0xFFFF) and byte is an unsiglJed char data type (00 - OxFF) for data to be sent to the port. For inp, the data received 
is of unsigned char type (00 - OxFF). 

• Indicates Borland C code that is Microsoft-compatible. 

816 

Next we use the input/output port in C to play musical notes. 

Revisiting playing music 

In Chapter 13 we studied the 8253/54 timer of the 80x86 PC and discussed 
how counter 2 is programmed in Assembly language to play music. We repeat the 
same concept except that we use C language. Example 28-9 is a C version of 
Example 13-6. 

Accessing parallel printer's (LPT1) data bus with C 

As another example of accessing VO ports with C, in Example 28-10 we 
program the LPTI parallcl printer port to display binary counts through its DO - 07 
data bus. This illustrates the concept of data acquisition through the PC parallel port 
used so widely by today's peripheral devices, such as CD-ROM and data acquisition 
boards. 

CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH C/C++ 



Example 28-9 
Rewrite Example 13-6 in C to play notes D3, A3, A4 for 250, 500, and 500 ms, respectively. 

Solution: 
1* For time delay generation we are using the delay (unsigned milliseconds) func­
tion from Borland C'CH dos.h library. *' 

#include <dos.h> 
mainO 
( 
unsigned char orgbits; '* for orginal status of port B *' 
unsigned char bits; '* new status of port B *' 
outp(Ox43, OxB6); '* 8253'54 control byte *' 

1* For 03 note 1.1931 MHzl147Hz=8116 =1 FB4 Hex *' 
outp(Ox42,OxB4); 1* send the low byte to port Ox42 *' 
outp(Ox42,Oxl F); 1* send the high byte to port Ox42 *' 
orgbits=inp(Ox61); 1* get the original status of port B *' 
bits=orgbitsl3; '* make dO=1 ,dl=1 to turn the speaker on *' 
outp(Ox61 ,bits); '* speaker is on and note is playing *' 
delay(250); '* wait for 250 milliseconds *' 
outp(Ox61,orgbits); 1* turn the speaker off *' 
delay(100); 1* wait for 100 milliseconds *' '* Repeat for A3 note where 1.1931MHzl220Hz=5423 =152F Hex *' 
outp(Ox42,Ox2F); 1* low byte *' 
outp(Ox42,OxI5); 1* high byte *' 
orgbits=inp(Ox61 ); 
bits=orgbitsI3; 
outp(Ox61 ,bits); 
delay(500); 
outp(Ox61,orgbits); 
delay( 100); '* Repeat for A4 note where 1.1931MHzl440Hz=2711=OA97 Hex *' 
outp(Ox42,Ox97); 1* low byte *' 
outp(Ox42,OxOA); 1* high byte *' 
orgbits=inp(Ox61 ); 
bits=orgbitsI3; 
outp(Ox61 ,bits); 
delay(500); 
outp(Ox61,orgbits); 
) 

LPTI Connector Digital Trainer 

DO LEDI 

Dl LED2 

.. . . .. ... 
D6 LED? 

D7 LED8 

BUSY SWI 
ACK SW2 

GND GND 

Figure 28-1. Switches and LEO Connections to LPTI for Example 28-10 

SECTION 28.2: PROGRAMMING PC HARDWARE WITH C'C++ 817 



Example 28-10 

Some devices use the 00 - 07 data bus of a parallel port to access the IBM PC system board data bus 
instead of 00 - 07 of the expansion slot. Connect the LPTI 00 - 07 data bus to LEOs and write a C 
program to perform a binary count. 

Solution: 

After refreshing your memory on the role of the ACK and BUSY printer's status signals, discussed in 
Chapter 18, follow these steps. 
I. Connect the LPTl data port to LEOs of your digital 1/0 trainer. 
2. Connect SWI of your digital 110 trainer to the BUSY status signal of printer. BUSY is bit 7 of 

the status port. See Figure 28-1. 
3. Connect the printer's ACK status signal to SW2 of your digital 110 trainer. ACK is bit 6 of 

the status port. 
4. Write a C program to perform the following objectives. 

(a) If SWI =0, it counts. 

818 

(b) IfSWI=I, it quits. 
(c) IfSW2=0, the LEOs should flash. 
(d) If SW2= 1, the LEOs will show the binary count with some time off in between each count. 

If the time-off is too short, the LEOs will be on all the time instead of showing the count. 

'* SW1 =BUSY: When SW1 =0 run. When SW1 =1 quit *' 
'* SW2=ACK: When SW2=0 flash. When SW2=1 show the count *' 

#include <stdio.h> 
#include <dos.h> 
#define datalpt1 Ox3BC '* LPT1 's I/O port address for 00-07*' 
#define statlpt1 Ox3BO 1* status port address for LPT1 *1 

'* Notice: As shown in Chapter 18, in some PCs the port addresses of 
378H,379H,and 37 AH are assigned to LPT1. Modify the port addresses for your 
PC before you run it *1 

mainO 
{ 
int i; 
while(inp(statlpt1) & Ox80) 1* keep monitoring bit 7 for BUSY *' 

} 

{ 
if(inp(statlpt1 )&Ox40) r if ACK bit (bit 6) is high*' 

else 

} 

for(i=O; i <= OxFF;i++) 1* then count up*' 
{ 
outp(datalpt1 ,i); 1* and send it to LEOs*' 
delay(200); '*and wait in between *' 
} 

1* otherwise flash since ACK bit 6 is low *' 
{ 
outp(datalpt1,OxFF); 
delay(100); 
outp(datalpt1,OxOO); 
delay(100); 
} 

1* Tum on all LEOs *' 
1* Wait *' 
1* Now turn off all LEOs *' 
'* wait. The flash rate is 100 ms *' 

'* This example is adapted from a fine book, Technical C Programming by Vin­
cent Kassab, published by Prentice Hall *' 

CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH C/C++ 



Before ending the discussion about input and output ports, it is interesting 
to note that C compilers also provide a means by which one can access l6-bit devices 
where the data bus is l6-bit (word size). This is shown in Table 28-3. Since the 
peripheral chips used on the PC motherboard, such as the 8253/54, 8259, 8237, are 
all 8-bit, we do not use these functions to access them. However, these functions are 
useful for data acquisition board interfacing with a 16-bit data path. 

Table 28-3: Accessing 16-bit Devices 

Ii 80l:86 Assembly. - m I Microsoft ~~~_ . .-"BC'<..o"rl""!lD,,,d~~~~_~~~~u I: 
I OUT DX,AX !Outpw(port#,wordL loutport{port#,word) J 
, . . 

I INAX...JlX .. ...... ! inpw(port#).. ..... I inport(port#) 
Note: Variable port# is an integer, word is an integer. See Chapter 12 for more on this topic. 

Finding memory above 1MB: the extended memory size 

In the today's 286/386/486/Pentium PC, the DRAM memory installed is 
often more than 1M. As discussed in Chapter 25, memory above 1M is referred to 
as extended memory. To find out how much extended memory is available, we can 
use INT ISH option 88H. After executing the function 88H of BIOS !NT ISH, the 
total available extended memory is reported in the AX register. Notice that it is the 
total available extended memory and not the total installed extended memory. The 
difference between them will be discussed soon. Example 28-11 shows how to get 
the size of available extended memory. 

Running Example 28-11 on your PC might give you OK extended memory 
even though you are absolutely sure (by using the MEM command) that you have 
extended memory. This is due to the fact that the DOS memory manager (or any 
third-party memory manager) will take over all the memory management of the PC, 
including extended memory, and provides 0 value to !NT ISH option 88H. The zero 
amount of extended memory available does not mean that zero amount is installed. 
To find the amount of extended memory installed, we must get its size from the 
CMOS RAM of the 286/386/486/Pentium Pc. The CMOS RAM is described next. 

Example 28-11 

Use the int86 function to find the available memory above 1MB (extended memory) in your Pc. Use 
BIOS !NT ISH function 88H. 

Solution: 

r The BIOS INT 15 option 88H provides the total available extended 
memory in KBytes size in AX register. This program must be used only on 286 
and higher pes *' 

#include <stdio.h> 
#inciude <dos.h> 
mainO 
{ 
int extmem; 
union REGS regin,regout; 
regin.h.ah=Ox88; r option 88H *' 
int86(Ox15,&regin,&regout); r of BIOS INT 15H *' 
extmem=regout.x.ax; 
printf("The available extended memory is %d KB \n",extmem); 
} 

SECTION 28.2: PROGRAMMING PC HARDWARE WITH CtC++ 819 



Programming the CMOS RAM real-time clock (RTC) 

The PC/XT used DIP switches on the motherboard to set the hardware 
configuration of the Pc. Starting with the 80286 PC/AT, all 80x86 PCs use 
Motorola's real-time clock MCl468l8 chip (or a compatible one) to store the PC 
configuration. In these types of PCs, the configuration is performed by a setup 
program and eliminates any need to open the PC in order to set the DIP switches. 
The CMOS RAM is powered by a small nickel-cadmium or lithium battery when 
the PC is off. If the battery runs down, the contents of CMOS RAM are erased and 
you will not be able to access your hard disk since the CMOS RAM holds the table 
for hard disk drive type. Without access to the drive type number, BIOS will not be 
able to recognize the hard drive. For this reason you must keep a copy of the CMOS 
RAM contents somewhere safe in case you need it. The CMOS RAM has a capacity 
of 64 bytes and is assigned the port addresses of 70H and 7lH in the 
286/386/486/Pentium PC. Table 28-4 shows the assignment of the 64 bytes of 
CMOS RAM. 

Much of the information in CMOS RAM is accessible by means of BIOS 
!NT IAH or !NT 21H DOS function calls. We must never write into CMOS RAM 
unless we know what we are doing, and even in that case we must be extremely 
careful since CMOS RAM holds some very critical information. The contents of 
CMOS RAM are accessible only one byte at a time. Next we explain why. 

Accessing the CMOS RAM bytes 

To access any bytes of the CMOS RAM, the following procedures must be 
performed. 

1. Send the location ofthe desired byte to port address 70H. 
2. Read its contents by way of port address 71H. 

This way of accessing CMOS RAM avoids assigning any of the 80x86 
memory space to the MCl46818 RTC (real-time clock) chip. This method prevents 
memory fragmentation of RAM space in the PC. This means that although CMOS 
RAM is RAM memory, it is not taking any of the 80x86 memory space. Instead, it 
is mapped into the I/O space. 

Example 28-12 

Show how to read the contents of CMOS RAM locations 30H and 3lH in Assembly language. 

Solution: 

820 

MOV AL,30H ;Iocation 30H of CMOS RAM 
OUT 70H,AL ;to be accessed 
IN AL, 71 H ;read its contents 
MOV CL,AL ;save it in CL 
MOV AL,31H ;Iocation 31H of CMOS RAM 
OUT 70H,AL ;to be accessed 
IN AL,71H ;read its contents 
MOV CH,AL ;save it in CH 

;now CX has the size of memory above 1 MB (extended memory) 
;installed in this PC, the size is in K bytes 

Of the CMOS RAM contents, we are interested in the size of extended 
memory. BIOS of the 286/386/486IPentium PC determines the amount of installed 
memory above I M and reports its size (in kilobytes) to CMOS RAM locations 30H 
and 31H (see Table 28-4). Location 30H holds the low byte, while location 31H 
holds the high byte. This was shown in Example 28-11 for Assembly language. 

CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH C/C++ 



Table 28-4: CMOS RAM Information 

1~~~A~d""d~re""s~s~~~I~~~~~:c~:~~:~:~~o~n~~~~~~_~~.~~-~~~~.--~~~~-~~~~~~~~~---~.-~~'~~'-~ ,_ ,'-lil 
O'-'O'---__ ~!f---" ~ "'" _ ,~ ~ ~ ~ ~ 

01 '* Second alarm ____ jl 
____ 02 ! * Minutes -~- ___ ~I 

'I 03 I * Minutes alaTI11_____________ -----11 
04 ___ +-: *~H"""o"ur'_"s'___ ,I 

, 

1:-----

05 * Hour~a=larm=~ ______ _ 

06 * Day of week __________ _ 

07 !*Dayofmonth ___ ~-_-~- ,,', 
08 ___ +-*_M="o"'n ... th"----__ ~~ __ ~_____________ ~ 

__ -,,0~9 ____ +--* Year 

I 

, 

~ 

l-- ~ OA * Status register An ~ __ ~ __ j 
OB * Status register)3 __ ~nm ____ ~ 

'f- OC , * Status register C ~_ ~_ n 1 

~ __ ~OD ~+' * Status register D I" 

!! 

if OE I * Diagnostic status byte ~ -----1 
'I _O"'F ______ i-" *-'S"'h ... u,o,t""d~o\¥lI'_'S"'t".a,..tu,..s'_'b"'.yL"t,..e _________ _ 

, 10 ~1I:liskette drive type byte (drives A and B) 
,c-I---~-

II -+R~se=rv~e=d~ __________ _ 

I 

~ __ -'1 ... 2'---__ -+I'cF ... ix .... e"d disk type byte (types I - 14) 

,~I ___ -'1~3 ___ -+i~R~eserved 
14 [.Equipment byte I 

" 

i 15 
1---- i Low base memory_b)'te (conventional memory size is set durin~-"se,..tu='-----1 

! 16 ~ I High base memory byte i£QIl,,~enJiQnal memory size is set during setuJ?l_J 

L-_17 __ lcoL~o~w, eJ>m!nsion memory byte (extended memo~ze is set during setup) 
, 

I 18 
'~----------------

I High e~pansion memory byte (extended memory sizei§_ set during setup) 

IA 

~ ___ misl~ c= __ e ... x"'te=n=d=e=d-"bC.Ly=te'---_______ _ 

-lI2isJ<: D extended byte 

c-_-,I=B~--,2D ~ "Rese~rv~e=d,---_________ _ 

L-- 2E - 2F __ : 2-byte CMOS checJ<:su1l1_ m ___ n J, 
r- 3JL_ 1* Low expansionITI~moryl!ytf: (set during POST) I 

~--~ ~~ __ -__ !:~:~:~::~::~'Yby!"~,dmi"gPOS1}m1 
c--- n ______ *InfoTlllation flags (set during power on) _____ n_n_, 
~, "~ 34 - 3 F Reserved,_~J 
*-these bytes are not i;C:iuded in the checksum calculation anl are not paI-i"of the configuration record~~o~-­
(Reprinted by permission from "IBM Technical Reference" c. 1988 by International Business Machines Corporation) 

SECTION 28.2: PROGRAMMING PC HARDWARE WITH ctC++ 821 



Programming CMOS RAM with C/C++ 

Locations 30H and 31 H hold the size of installed extended memory. CMOS 
RAM locations can be accessed a byte at a time. In other words, they cannot be 
accessed as words or doublewords since they are not part of the 80x86 memory 
space. The values held by locations 30H and 31H are in hexadecimal. Therefore, 
when we get the second byte it must be shifted left 2 digits in hex to make it the 
most significant byte of word size data and then added to the first byte to get the 
size of installed extended memory. Examples 28-13 and 28-14 find the size of 
installed extended memory in C language, using two different methods. 

Example 28-13 

Write a C program to display the size of extended memory installed on a 286/386/486/Pentium PC. 

Solution: 
I"This C program displays the size of installed extended memory as 
reported by BIOS to CMOS RAM locations 30H and 31 H during power-up. *1 
#include <stdio.h> 
#include <dos.h> 
main() 
( 
unsigned char b1 ,b2; 
int extmem; 
int w; /* upper byte of word size extended memory *j 

outp(Ox70,Ox30); 1* get the low byte *j 

b1 =inp(Ox71); 
outp(Ox70,Ox31); /* get the high byte *j 

b2=inp(Ox71 ); 
w=Ox100*b2; /* shift left 2 hex digits to make it upper byte * j 
extmem=w+b1; 1* add it to lower byte and display the size *j 

printf("The extended memory installed is: %d KB In",extmem); 
) 

Example 28-14 

This example shows another version of the program in Example 28-13. Notice how the upper byte is 
generated. 

822 

#inc/ude <stdio.h> 
#include <dos.h> 
main() 
( 
unsigned char b1 ,b2; 
int extmem; 
int w; 1* upper byte of word size extended memory *j 

outp(Ox70,Ox30); 1* get the low byte *j 

b1 =inp(Ox71); 
outp(Ox70,Ox31); 1* get the high byte *j 

b2 = inp(Ox71); 
w = b2«8; 1* shift left 8 digits (in binary) to make it upper byte *j 

extmem=w+b1; /* add it to lower byte and display the size *j 

printf("The extended memory installed is: %d KB In" ,extmem); 
) 

CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH C/C++ 



SUMMARY 

Review Questions 

1. Show how the starting address of video RAM in an MDA card is represented in 
C/C++. 

2. Repeat Question I for the graphics mode address of a VGA card. 
3. Declare the pointer and assign the address for Question 1. 
4. Declare the pointer and assign the address for Question 2. 
5. To access memory space within the segment the __ (near, far) pointer is used. 
6. In function "outp (port#,data)", the port address can be __ or __ bits. 
7. What is the size of data in Question 6? 
8. The function "inp(port#)" returns a value of __ -bit size. 
9. Put "INT 3" at the end of Example 28-12 and run it in DEBUG. What is the ex­

tended memory in your PC? 
10. If CMOS RAM locations 30H and 3lH have the values 00 and 04, respectively, 

calculate the size of installed extended memory. Show your calculation. 

The first section of this chapter shows how to access registers, as well as 
DOS and BIOS function calls, with C/C++. The C structure REGS can be used to 
access both 8- and 16-bit 80x86 general-purpose registers, plus SI, DI, and the carry 
flag. The int86 function can be used to call any of the 80x86 PC's interrupts, 
including BIOS INT 10H function calls. The intdos function is used for INT 21H 
DOS function calls. Segment registers CS and SS cannot be accessed through C, 
but the intdosx and int86x functions can be used to access segment registers ES and 
OS. 

The second section demonstrated PC hardware programming with CIC++. 
The memory address space of the 80x86 can be accessed through CIC ++ by 
initializing a pointer to a logical address. The BIOS data area of the PC and CMOS 
RAM can be accessed by this means, as well. C can be used to program 1/0 ports 
such as COM and LPT ports. 

PROBLEMS 

SECTION 28.1: BIOS AND DOS INTERRUPT PROGRAMMING WITH C 

I. Show how to use the union REGS to set AX ~9878H, BH~90H, and CL~F4H. 
2. Write a C function to set the cursor using int86. Then use it to set the cursor to 

row~lO, col~20 and display the message "HELLO". 
3. Write a C function for changing the cursor shape. The prompt should ask for the 

start and end lines of the cursor. See the end of Chapter 16 for a discussion of 
video cursor shape. 

4. Write a C program with the following objectives. 
(a) Clear the screen. Use int86. 
(b) Set the cursor to somewhere around the middle of the screen. Use int86. 
(c) Display the date and time continuously in the following format. Use intdos. 

Time: hr:min:sec 
Date: mon/day/yr 

(d) A prompt should ask for "Q" to quit. Use C functions. 
(e) When the user types in Q, it should quit displaying time and date and go back to 

DOS. Use C functions. 
5. A programmer has declared the REGS union as follows. Would this work? 

union REGS inregs,outregs; 
6. In Problem 5, write a program to clear the screen using int86. Use 16-bit registers. 

SUMMARY 823 



SECTION 28.2: PROGRAMMING PC HARDWARE WITH CIC++ 

7. A memory location in the BIOS data area holds the size of the conventional mem­
ory. Write a program in C to get the value and display it. This problem isjust like 
Example 28-3 except that the memory size comes from the BIOS data area. 

8. Write a C program to display the VO port address assigned to all the LPTs. If a 
given LPT is not installed, it should display none. 

9. Repeat Problem 8 for the COM ports. 
10. Rewrite Example 28-9 for the first line of the song "Mary Had a Little 

Lamb." See Chapter 13 for the notes. 
I I. Write an Assembly program to access memory locations 17H and 18H of the 

CMOS RAM and put it in CX. Show the run in DEBUG. 
12. Write an Assembly program to access memory locations 15H and 16H of the 

CMOS RAM and put it in CX. Show the run in DEBUG. 
13. If, in a given PC, CMOS RAM locations 30H and 3lH have the values of 00 and 

ID, respectively, calculate the size of the extended memory for this Pc. Is this 
the size of available or installed extended memory? 

14. Write and run a C program to display the memory size in bytes for the following 
cases. 
(a) The size of conventional memory as indicated by locations 15H and 16 of the 

CMOS RAM. 
(b) The size of extended memory as indicated by locations 17H and 18H of the 

CMOS RAM. 
(c) The size of extended memory as indicated by locations 30H and 31 H of the 

CMOS RAM. 
15. Repeat Problem 14, parts (b) and (c), to display the memory in kilobytes and 

megabytes. Use the float data type to get the decimal points for megabytes. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 28.1: BIOS AND DOS INTERRUPT PROGRAMMING WITH C 
1. true 
2. false; only for the INT 21H 
3. 3,2 
4. false 
5. Yes; we can use any name. Other commonly used names are inregs,Dutregs, and r1,r2. 
6. int86x 
7. four: INT#, &regin, &regout, &regseg 
8. true 

SECTION 28.2: PROGRAMMING PC HARDWARE WITH C/C++ 
1. OxBOOOOOOO 
2. OxAOOOOOOO 
3. unsigned int far 'mdaptr; 

mdaptr = (unsigned int far') OxBOOOOOOO; 
4. unsigned int far 'vgaptr; 

vgaptr = (unsigned int fal'*) OxAOOOOOOO; 
5. near 
6. 8, 16 
7. 8 bits 
8. 8-bits 
9. CX=OCOO, size=3072KB 
10. The memory size (Kbytes) is 0400 in hex or 4 x 256 = 1024K in decimal. 

824 CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH C/C++ 



APPENDIX A: DEBUG 
PROGRAMMING 

DEBUG is a program included in the MS-DOS and PC-DOS operating 
systems that allows the programmer to monitor a program's execution closely for 
debugging purposes. Specifically, it can be used to examine and alter the contents 
of memory, to enter and run programs, and to stop programs at certain points in order 
to check or even change data. This appendix provides a tutorial introduction to the 
DEBUG program. You will learn how to enter and exit DEBUG, how to enter, run, 
and debug programs, how to examine and alter the contents of registers and memory, 
plus some additional features of DEBUG that prove useful in program development. 
Numerous examples of Assembly language programming in DEBUG are given 
throughout and the appendix closes with a quick reference summary ofthe DEBUG 
commands. 

First, a word should be said about the examples in this appendix. Within 
examples, what you should type in will be represented in italic caps: 

ITALICS CAPS REPRESENT WHAT THE USER TYPES IN 

and the response of the DEBUG program will be in bold caps: 

BOLD CAPS REPRESENT THE COMPUTER RESPONSE 

The examples in this appendix assume that the DEBUG program is in drive 
A and that your programs are on drive B. If your system is set up differently, you 
will need to keep this in mind when typing in drive specifications (such as "B:"). It 
is strongly suggested that you type in the examples in DEBUG and try them for 
yourself. The best way to learn is by doing! 

SECTION A.1: ENTERING AND EXITING DEBUG 

To enter the DEBUG program, simply type its name at the DOS level: 

A>DEBUG <return> 

"DEBUG" may be typed in either uppercase or lowercase. Again let us note 
that this example assumes that the DEBUG program is on the diskette in drive A. 
After "DEBUG" and the carriage return (or enter key) is typed in, the DEBUG 
prompt "-" will appear on the following line. DEBUG is now waiting for you to type 
in a command. 

Now that you know how to enter DEBUG, you are ready to learn the 
DEBUG commands. The first command to learn is the quit command, to exit 
DEBUG. 

The quit command, Q, may be typed in either uppercase or lowercase. 
This is true for all DEBUG commands. After the Q and carriage return have been 
entered, DEBUG will return you to the DOS level. This is shown in Example A-I, 
on the following page. 

SECTION A.I: ENTERING AND EXITING DEBUG 825 



Example A-I: Entering and ExitingHEBUG 

A>DEBUG <return> 
-0 <return> 
A> 

SECTION A.2: EXAMINING AND ALTERING THE CONTENTS OF 
REGISTERS 

The register command allows you to examine and/or alter the contents of 
the internal registers of the CPU. The R command has the following syntax: 

R <register name> 

The R command will display all registers unless the optional <register 
name> field is entered, in which case only the register named will be displayed. 

Example A-2: Using the R Command to Display All Registers 

A>DEBUG <return> 
-R <return> 

826 

AX=OOOO BX=OOOO CX=OOOO OX=OOOO 5P=FFEE BP=OOOO 51=0000 01=0000 
05=OC44 E5=OC44 55=OC44 C5=OC44 IP=0100 NV UP 01 PL NZ NA PO NC 
OC44:0100 0000 AOO [BX+511AL 05:0000=CO 

After the R and carriage return are typed in, DEBUG responds with three 
lines of information. The first line displays the general-purpose, pointer, and index 
registers' contents. The second line displays the segment registers' contents, the 
instruction pointer's current value, and the flag register bits. The codes at the end 
of line two, "NY UP DI ... NC", indicate the status of eight of the bits of the flag 
register. The flag register and its representation in DEBUG are discussed in Section 
A.6. The third line shows some information useful when you are programming in 
DEBUG. It shows the instruction pointed at by CS:TP. The third line on your system 
will vary from what is shown above. For the purpose at hand, concentrate on the 
first two lines. The explanation of the third line will be postponed until later in this 
appendix. 

When you enter DEBUG initially, the general-purpose registers are set to 
zero and the flag bits are all reset. The contents of the segment registers will vary 
depending on the system you are using, but all segment registers will have the same 
value, which is decided by the DOS operating system. For instance, notice in 
Example A-2 above that all segment registers contain OC44H. It is strongly recom­
mended not to change the contents of the segment registers since these values have 
been set by the operating system. Note: In a later section of this appendix we show 
how to load an Assembly language program into DEBUG. In that case the segment 
registers are set according to the program parameters and registers BX and CX will 
contain the size of the program in bytes. 

Tfthe optional register name field is specified in the R command, DEBUG 
will display the contents of that register and give you an opportunity to change its 
value. This is seen next in Example A-3. 

APPENDIX A: DEBUG PROGRAMMING 



I 

Example A-3: Using the R Command to Display/Modify Register 

(a) Modifying the contents of a register 

-RCX 
ex 0000 
:FFFF 
-RCX 
ex FFFF 

(b) DEBUG pads values on the left with zero 

-RAX 
AX 0000 
: 1 
-RAX 
AX 0001 
:21 
-RAX 
AX 0021 
:321 
-RAX 
AX 0321 
:4321 
-RAX 
AX 4321 
:54321 

1\ Error 

(c) Entering data into the upper byte 

-RDH 
BR Error 
-RDX 
ox 0000 
:4COO 

Part (a) of Example A-3 first showed the R command followed by register 
name CX. DEBUG then displayed the contents ofCX, which were 0000, and then 
displayed a colon ":". Atthis point anew value was typed in, and DEBUG prompted 
for another command with the "-" prompt. The next command verified that CX was 
indeed altered as requested. This time a carriage return was entered at the ":" prompt 
so that the value of CX was not changed. 

Part (b) of Example A-3 showed that iffewer than four digits are typed in, 
DEBUG will pad on the left with zeros. Part (c) showed that you cannot access the 
upper and lower bytes separately with the R command. If you type in any digit other 
than 0 through F (such as in "2FOG"), DEBUG will display an error message and 
the register value will remain unchanged. 

See Section A.6 for a discussion of how to use the R command to change 
the contents of the flag register. 

SECTION A_3: CODING AND RUNNING PROGRAMS IN DEBUG 

In the next few topics we explore how to enter simple Assembly language 
instructions, and assemble and run them. The purpose of this section is to familiarize 
the reader with using DEBUG, not to explain the Assembly language instructions 
found in the examples. 

SECTION A_3: CODING AND RUNNING PROGRAMS IN DEBUG 827 



A, the assemble command 

The assemble command is used to enter Assembly language instructions 
into memory. 

A <starting address> 

The starting address may be given as an offset number, in which case it is 
assurned to be an offset into the code segment, or the segment register can be 
specified explicitly. In other words. "A 100" and "A CS: I 00" will achieve the same 
results. When this command is entered at the command prompt "-", DEBUG will 
begin prompting you to enter Assembly language instructions. After an instruction 
is typed in and followed by <return>, DEBUG will prompt for the next instruction. 
This process is repeated until you type a <return> at the address prompt, at which 
time DEBUG will return you to the command prompt level. This is shown in part 
(al of Example A-4. 

Before you type in the commands of Example A -4, be aware that one 
important difference between DEBUG programming and Assembly language pro­
gramming is that DEBUG assumes that all numbers are in hex. whereas most 
assemblers assume that numbers are in decimal unless they are followed by "H". 
Therefore. the Assembly language instruction examples in this section do not have 
"H" after the numbers as they would if an assembler were to be used. For example, 
you might enter an instruction such as "MOY AL,3F". In an Assembly language 
program written for MASM. for example, this would have been typed as "MOY 
AL,3FH". 

Example A-4: Assemble, Unassemble, and Go Commands 

828 

(a) Assemble command 

-A 100 
1030:0100 MOV AX, 1 
1030:0103 Movax,2 
1030:0106 MOV eX,3 
1030:0109 ADD AX,ax 
1030:010B ADD AX,ex 
1030:0100 INT 3 
1030:010E 

(b) Unassemble command 

-u 100 10D 
1030:0100 B80100 
1030:0103 BB0200 
1030:0106 B90300 
1030:01090108 
1030:010B 01C8 
1030:0100 CC 

(c) Go command 

-R 

MOV 
MOV 
MOV 
ADD 
ADD 
INT 

AX,0001 
BX,0002 
CX,D003 
AX,BX 
AX,CX 
3 

AX=OOOO BX=OOOO CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0100 NV UP 01 PL NZ NA PO NC 
1030:0100 B80100 MOV AX,0001 
-G 
AX=0006 BX=0002 CX=0003 OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0100 NV UP 01 PL NZ NA PE NC 
1030:0100 CC INT 3 

APPENDIX A: DEBUG PROGRAMMING 



As you type the instructions, DEBUG converts them to machine code. If 
you type an instruction incorrectly such that DEBUG cannot assemble it, DEBUG 
will give you an error message and prompt you to try again. Again, keep in mind 
that the value for the code segment may be different on your machine when you run 
Example A-4. Notice that each time DEBUG prompts for the next instruction, the 
offset has been updated to the next available location. For example, after you typed 
the first instruction at offset 0100, DEBUG converted this to machine language, 
stored it in bytes 0 I 00 to 0102, and prompted you for the next instruction, which 
will be stored at offset 0103. Note: Do not assemble beginning at an offset lower 
than 100. The first 100H (256) bytes are reserved by DOS and should not be used 
by your programs. This is the reason that examples in this book use" A I 00" to start 
assembling instructions after the first 100H bytes. 

U, the unassemble command: looking at machine code 

The unassemble command displays the machine code in memory along with 
their equivalent Assembly language instructions. The command can be given in 
either format shown below. 

U <starting address> <ending address> 
U <starting address> < L number of bytes> 

Whereas the assemble instruction takes Assembly language instructions 
from the keyboard and converts them to machine code, which it stores in memory, 
the unassemble instruction does the opposite. Unassemble takes machine code 
stored in memory and converts it back to Assembly language instructions to be 
displayed on the monitor. Look at part (b) of Example A-4 on the preceding page. 
The unassemble command was used to unassemble the code that was entered in part 
(a) with the assemble command. Notice that both the machine code and Assembly 
instructions are displayed. The command can be entered either with starting and 
ending addresses, as was shown in Example A-4: "u 100 IOD", or it can be entered 
with a starting address and a number of bytes in hex. The same command in the 
second format would be"U 100 LD", which tells DEBUG to start unassembling at 
CS: I 00 for D bytes. If the U command is entered with no addresses after it: "u 
<return>", then DEBUG will display 32 bytes beginning at CS:IP. Successively 
entering "U <return>" commands will cause DEBUG to display consecutive bytes 
of the program, 32 bytes at a time. This is an easy way to look through a large 
program. 

G, the go command 

The go command instructs DEBUG to execute the instructions found 
between the two given addresses. Its format is 

G < = starting address> <stop addressees»~ 

If no addresses are given, DEBUG begins executing instructions at CS:IP 
until a breakpoint is reached. This was done in part (c) of Example A-4 on the 
preceding page. Before the instructions were executed, the R command was used to 
check the values of the registers. Since CS:IP pointed to the first instruction, the G 
command was entered, which caused execution of instructions up until "!NT 3", 
which terminated execution. After a breakpoint is reached, DEBUG displays the 
register contents and returns you to the command prompt" -". Up to I 0 stop addresses 
can be entered. DEBUG will stop execution at the first of these breakpoints that it 
reaches. This can be useful for programs that could take several different paths. 

SECTION A.3: CODING AND RUNNING PROGRAMS IN DEBUG 829 



Example A-5: Various Forms of the Go Command 

The program is first assembled: 

830 

-A 100 
1030:0100 MOV AX, 1 
1030:0103 MOVax,2 
1030:0106 MOV eX,3 
1030:0109 ADD AX,ax 
1030:010B ADD AX,ex 
1030:0100 INT 3 
1030:010E 

(a) Go command in form "G" 

-G 
AX=0006 BX=0002 CX=0003 OX=OOOO 5P=CFDE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0100 NV UP 01 PL NZ NA PE NC 
1030:0100 CC INT 3 

(b) Go command in form "G = start address" 

-G =100 
AX=0006 BX=0002 CX=0003 OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=010D NV UP 01 PL NZ NA PE NC 
1030:0100 CC INT 3 

(c) Go command form "G = start address ending address" 

-G =100109 
AX=OOOl BX=0002 CX=0003 OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0109 NV UP 01 PL NZ NA PE NC 
1030:01090108 AOO AX,BX 

(d) Go command format "G address" 

-RIP 
IP 0109 
:0100 

-G 109 
AX=OOOl BX=0002 CX=0003 OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0109 NV UP 01 PL NZ NA PE NC 
1030:01090108 AOO AX,BX 

At this point the third line of the register dump has become useful. The 
purpose of the third line is to show the location, machine code, and Assembly code 
of the next instruction to be executed. In Example A-5, look at the last line in the 
register dump given after the G command. Notice at the leftmost part of line three, 
the value CS:IP. The values for CS and IP match those given in lines one and two. 
After CS:IP is the machine code, and after the machine code is the Assembly 
language instruction. 

Part (a) of Example A-5 is the same as part (c) of Example A-4. The go 
command started at CS:IP and executed instructions until it reached instruction "TNT 
3". Part (b) gave a starting address but no ending address; therefore, DEBUG 
executed instructions from offset 100 until "TNT 3" was reached. This could also 
have been typed in as "G =CS: 100". Part ( c) gave both starting and ending addresses. 
We can see from the register results that it did execute from offset 1 00 to I 09. Part 
(d) gave only the ending address. When the start address is not given explicitly, 
DEBUG uses the value in register IP. Be sure to check that value with the register 
command before issuing the go command without a start address. 

APPENDIX A: DEBUG PROGRAMMING 



T, the trace command: a powerful debugging tool 

The trace command allows you to trace through the execution of your 
programs one or more instructions at a time to verify the effect ofthe programs on 
registers and/or data. 

T <= starting address> <number of instructions> 

This tells DEBUG to begin executing instructions at the starting address. 
DEBUG will execute however many instructions have been requested in the second 
field. The default value is I if no second field is given. The trace command functions 
similarly to the go command in that if no starting address is specified, it starts at 
CS:IP. The difference between this command and the go command is that trace will 
display the register contents after each instruction, whereas the go command does 
not display them until after termination of the program. Another difference is that 
the last field of the go command is the stop address, whereas the last field of the 
trace command is the number of instructions to execute. 

Example A-6 shows a trace of the instructions entered in part (a) of Example 
A-4. Notice the way that register IP is updated after each instruction to point to the 
next instruction. The third line of the register display shows the instruction pointed 
at by IP, that is, the next instruction to be executed. Tracing through a program allows 
you to examine what is happening in each instruction of the program. Notice the 
value of AX after each instruction in Example A-6. 

Example A-6: Trace Command 

-T=1005 
AX=0001 BX=OOOO CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0103 NV UP 01 PL NZ NA PO NC 
1030:0103 BB0200 MOV BX,0002 

AX=0001 BX=0002 CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0106 NV UP 01 PL NZ NA PO NC 
1030:0106 B90200 MOV CX,0003 

AX=0001 BX=0002 CX=0003 OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0109 NV UP 01 PL NZ NA PO NC 
1030:01090108 ADD AX,BX 

AX=0003 BX=0002 CX=0003 OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=010B NV UP 01 PL NZ NA PE NC 
1030:010B 01C8 ADD AX,CX 

AX=0006 BX=0002 CX=0003 OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0100 NV UP 01 PL NZ NA PE NC 
1030:0100 CC INT 3 

The same trace as shown in Example A-6 could have been achieved with 
the command "-T 5", assuming that IP = 0100. Experiment with the various forms 
of the trace command. "T" with no starting or count fields will execute one 
instruction starting at CS:IP. Ifno first field is given, CS:IP is assumed. Ifno second 
field is given, 1 is assumed. 

If you trace a large number of instructions, they may scroll upward off the 
screen faster than you can read them. <Ctrl-num lock> can be used to stop the 
scrolling temporarily. To resume the scrolling, enter any key. This works not only 
on the trace command, but for any command that displays information to the screen. 

SECTION A.3: CODING AND RUNNING PROGRAMS IN DEBUG 831 



Example A-7: Moving Data into 8- and 16-bit Registers 

A>OEBUG 
-R 
AX=OOOO BX=OOOO CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0100 NV UP 01 PL NZ NA PO NC 
1030:0100 B664 MOV OH,64 
-A 100 

1030:0100 MOV AL,3F 
1030:0102 MOV BH,04 
1030:0104 MOV CX,FFFF 
1030:0107 MOV CL,BH 
1030:0109 MOV CX,1 
1030:010C INT 3 
1030:0100 
-T=100 5 
AX=003F BX=OOOO CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0102 NV UP 01 PL NZ NA PO NC 
1030:0102 B704 MOV BH,04 

AX=003F BX=0400 CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0104 NV UP 01 PL NZ NA PO NC 
1030:0104 B9FFFF MOV CX,FFFF 

AX=003F BX=0400 CX=FFFF OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0107 NV UP 01 PL NZ NA PO NC 
1030:010788F9 MOV CL,BH 

AX=003F BX=0400 CX=FF04 OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0109 NV UP 01 PL NZ NA PO NC 
1030:0109 B90100 MOV CX,OOOl 

AX=003F BX=0400 CX=OOOl OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=010C NV UP 01 PL NZ NA PO NC 
103D:010C CC INT 3 

Example A-8 shows some common programming errors in moving data into 
registers. The DEBUG assemble command catches this type of error when an 
instruction is entered and it tries to assemble it. In instruction "MOV OS, 1200" the 
error is that immediate data cannot be moved into a segment register. The other 
errors involve move instructions, where the first and second operands do not match 
in size. 

Example A-8: Common Errors in Register Usage 

832 

A>OEBUG 
-A 100 
1030:0100 MOV AL,FF3 

A Error 
1030:0100 MOV AX, 12345 

A Error 
1030:0100 MOV OS, 1200 

A Error 
1030:0100 MOV S/,OH 

A Error 
1030:0100 MOV AX,BH 

A Error 
1030:0100 MOV AL,BX 

1\ Error 
1030:0100 
-Q 
A> 

APPENDIX A: DEBUG PROGRAMMING 



Example A-9: Assembling and Unassembling a Program 

A>OEBUG 
-R 
AX=OOOO BX=OOOO CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1132 E5=1132 55=1132 C5=1132 IP=0100 NV UP 01 PL NZ NA PO NC 
1132:0100 BE0548 MOV 51,4805 
-A 100 
1132:0100 MOV AL,57 
1132:0102 MOV OH,86 
1132:0104 MOV OL,72 
1132:0106 MOV ex,ox 
1132:0108 MOV BH,AL 
1132:010A MOV BL,9F 
1132:010C MOV AH,20 
1132:010E ADD AX,OX 
1132:0110 ADD eX,BX 
1132:0112 ADD AX, 1F35 
1132:0115 
-U 100 112 
1132:0100 B057 MOV 
1132:0102 B686 MOV 
1132:0104 B272 MOV 
1132:01068901 MOV 
1132:010888C7 MOV 
1132:010A B39F MOV 
1132:010C B420 MOV 
1132:010E 0100 AOO 
1132:01100109 AOO 
1132:011205351F AOO 

AL,57 
OH,86 
OL,72 
CX,OX 
BH,AL 
BL,9F 
AH,20 
AX,OX 
CX,BX 
AX,lF35 

The program above is stored starting at CS:IP of 1132:0100. This logical 
address corresponds to physical address 11420 (11320 + 0100). 

SECTION A.4: DATA MANIPULATION IN DEBUG 

Next are described three DEBUG commands that are used to examine or 
alter the contents of memory. 

F the fill command fills a block of memory with data 
o the dump command displays contents of memory to the screen 
E the enter command examines/alters the contents of memory 

F, the fill command: filling memory with data 

The fill command is used to fill an area of memory with a data item. The 
syntax of the F command is as follows: 

F <starting address> <ending address> <data> 
F <starting address> < L number of bytes> <data> 

This command is useful for filling a block of memory with data, for example 
to initialize an area of memory with zeros. Normally, you will want to use this 
command to fill areas of the data segment, in which case the starting and ending 
addresses would be offset addresses into the data segment. To fill another segment, 
the register should precede the offset. For example, the first command below would 
fill 16 bytes, from DS:IOO to DS:IOF with FF. The second command would fill a 
256-byte block of the code segment, from CS: I 00 to CS: IFF with ASCII 20 (space). 

F 100 10F FF 
F CS:l00 lFF 20 

SECTION A.4: DATA MANIPULATION IN DEBUG 833 



Example A-IO demonstrates the use of the F command. The data can be a 
series of items, in which case DEBUG will fill the area of memory with that pattern 
of data, repeating the pattern over and over. For example: 

F 100 L20 00 FF 

The command above would cause 20 hex bytes (32 decimal) starting at 
DS: 100 to be filled alternately with 00 and FF. 

D, the dump command: examining the contents of memory 

The dump command is used to examine the contents of memory. The syntax 
of the D command is as follows: 

D <start address> <end address> 
D <start address> < L number of bytes> 

The D command can be entered with a starting and ending address, in which 
case it will display all the bytes between those locations. It can also be entered with 
a starting address and a number of bytes (in hex), in which case it will display from 
the starting address for that number of bytes. If the address is an offset, DS is 
assumed. The D command can also be entered by itself, in which case DEBUG will 
display 128 consecutive bytes beginning at DS:lOO. The next time "D" is entered 
by itself, DEBUG will display 128 bytes beginning at wherever the last display 
command left off. In this way, one can easily look through a large area of memory, 
128 bytes at a time. 

Example A-lO: Filling and Dumping a Block of Memory 

834 

(a) Fill and dump commands 

A>OEBUG 
-F 100 14F 20 
-F 150 19F 00 
-0 100 19F 
1030:0100 2020202020202020-2020202020202020 
1030:0110 2020202020202020-2020202020202020 
1030:0120 2020202020202020-2020202020202020 
1030:0130 20 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20 
1030:0140 2020202020202020-2020202020202020 
1030:0150 0000000000000000-0000000000000000 .............. .. 
1030:0160 0000000000000000-0000000000000000 .............. .. 
1030:0170 0000000000000000-0000000000000000 .............. .. 
1030:0180 0000000000000000-0000000000000000 .............. .. 
1030:0190 0000000000000000-0000000000000000 .............. .. 

(b) Filling and dumping selected memory locations 

-F 104 10A FF 
-010410A 
1030:0104 FF FF FF FF-FF FF FF 
-010010F 
1030:0100 20 20 20 20 FF FF FF FF-FF FF FF 20 20 20 20 20 

(c) Filling and dumping code segment memory 

-F CS:100 12F 20 
-0 CS:100 12F 
1030:0100 2020202020202020-2020202020202020 
1030:0110 2020202020202020-2020202020202020 
1030:0120 2020202020202020-2020202020202020 

APPENDIX A: DEBUG PROGRAMMING 



Example A-I 0, on the preceding page, demonstrates use ofthe fill and dump 
commands. Part (a) shows two fill commands to fill areas of the data segment, which 
are then dumped. Part (b) was included to show that small areas of memory can be 
filled and dumped. Part (c) shows how to fill and dump to memory from other 
segments. Keep in mind that the values for OS and CS may be different on your 
machine. 

It is important to become thoroughly familiar with the format in which 
DEBUG dumps memory. Example A-II provides further practice in dumping areas 
of memory. 

Example A-ll: Usinl!: the Dump Command to Examine Machine Code 

-U100112 
1132:0100 B057 
1132:0102 B686 
1132:0104 B272 
1132:01068901 
1132:010888C7 
1132:010A B39F 
1132:010C B420 
1132:010E 0100 
1132:01100109 
1132:011205351F 
-0 C5:100 IIF 

MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
ADD 
ADD 

AL,57 
OH,86 
0L,72 
BX,OX 
BH,AL 
BL,9F 

AH,20 
AX,OX 
CX,BX 
ADD AX,1F35 

1132:0100 BO 57 B6 86 B2 72 89 01-88 C7 B3 9F B4 20 01 DO OW6.2r,Q.G3,4.P 
1132:0110 01 090535 1F 19 83 3E-E3 45 00 7412 53 56 BB .Y.5I"cE.t.SV; 

Example A-II shows a program being unassembled that had been loaded 
previously into DEBUG. Below that, the portion of the code segment containing 
the program is dumped. Notice that the machine codes are stored one after another 
continuously. It is important to become thoroughly familiar with the way DEBUG 
dumps memory. The following is one line from Example A-II: 

1132:0100 BO 57 B6 86 B2 72 89 01-88 C7 B3 9F B4 20 01 DO OW6.2r.Q.G3.4.P 

The line begins with the address of the first byte displayed on that line, in 
this case 1132:0100, with 1132 representing the contents ofCS and 0100 being the 
offset into the code segment. After the address, 16 bytes of data are displayed 
followed by a display of those items. Bytes that contain ASCII characters will 
display the characters. If the contents of a byte are not an ASCII code, it is not 
displayable and will be represented by ...... The first byte displayed above is offset 
0100, the second offset 0 I 0 I, the third offset 0 I 02, and so on, until the last byte on 
that line, which is offset 0 I OF. 

OFFSET: 100101102103104105106107-108109 10A 10B 10C 100 10E 10F 

1132:0100 BO 57 B6 86 B2 72 89 01- 88 C7 B3 9F B4 20 01 DO 

The addresses displayed are logical addresses. The logical address of 
1132:0100 above would correspond to physical address 11420 (11320 + 0100 = 
11420). 

E, the enter command: entering data into memory 

The fill command was used to fill a block with the same data item. The enter 
command can be used to enter a list of data into a certain portion of memory. The 
syntax of the E command is as follows: 

E <address> <data list> 
E <address> 

SECTION A.4: DATA MANIPULATION IN DEBUG 835 



Exam~le A-12: Usi"llthe E Command to Enter Data into Memory 

836 

(a) Entering data with the E command 

-E 100 'John Snith' 
-010010F 
1030:0100 4A 6F 68 6E 20 53 6E 69·74 68 20 20 20 20 20 20 John Snith 

(b) Altering data with the E command 

-E 106 
1030:0106 6E.60 
-010010F 
1030:0100 4A 6F 68 6E 20 53 60 69·7468202020202020 John Smith 

(c) Another way to alter data with the E command, 
hitting the space bar to go through the data a byte at a time 

-E 100 
1030:0100 4A. 6F. 68. 6E. 20. 53. 6E.60 
-010010F 
1030:0100 4A 6F 68 6E 20 53 60 69·74 68 20 20 20 20 20 20 John Smith 

(d) Another way to alter data with the E command 

-E 107 
1030:0107 69.-
1030:01066E.60 

Part (a) of Example A-12 showed the simplest use of the E command, 
entering the starting address, followed by the data. That example showed how to 
enter ASCII data, which can be enclosed in either single or double quotes. The E 
command has another powerful feature: the ability to examine and alter memory 
byte by byte. If the E command is entered with a specific address and no data list, 
DEBUG assumes that you wish to examine that byte of memory and possibly alter 
it. After that byte is displayed, you have four options: 

I. You can enter a new data item for that byte. DEBUG will replace the old contents 
with the new value you typed in. 

2. You can press <return>, which indicates that you do not wish to change the value. 
3. You can press the space bar, which will leave the displayed byte unchanged but will 

display the next byte and give you a chance to change that if you wish. 
4. You can enter a minus sign, "_", which will leave the displayed byte unchanged but 

will display the previous byte and give you a chance to change it. 

Look at part (b) in Example A-I2. The user wants to change "Snith" to 
"Smith". After the user typed in "E 106", DEBUG responded with the contents of 
that byte, 6E, which is ASCII for n, and prompted with a ".". Then the user typed in 
the ASCII code for "m", 6D, entered a carriage return, and then dumped the data to 
see if the correction was made. Part (c) of Example A-12 showed another way to 
make the same correction. The user started at memory offset 100 and pressed the 
space bar continuously until the desired location was reached. Then he made the 
correction and pressed carriage return. 

Finally, part (d) showed a third way the same correction could have been 
made. In this example, the user accidentally entered the wrong address. The address 
was one byte past the one that needed correction. The user entered a minus sign, 
which caused DEBUG to display the previous byte on the next line. Then the 
correction was made to that byte. Try these examples yourself since the E command 
will prove very useful in debugging your future programs. 

APPENDIX A: DEBUG PROGRAMMING 



The E command can be used to enter numerical data as well: 

E 100238402 4F 

Example A-13 gives an example of entering code with the assemble 
command, entering data with the enter command, and running the program. This 
use of the E command is common in program testing and debugging. Example A-14 
shows the little endian storage convention of 80x86 microprocessors. 

Example A-13: EnteriIljt Data and Code and Running a Program 

A>OEBUG 
-A 100 
1030:0100 MOV AL,OO 
1030:0102 ADD AL,{0200] 
1030:0106 ADD AL,{0201] 
1030:010A ADD AL,{0202] 
1030:010E ADD AL,{0203] 
1030:0112 ADD AL,[0204] 
1030:01161NT 3 
1030:0117 
-E OS:0200 251215 IF 2B 
-0 OS:0200 020F 
1030:0200 2512 151F 2B 02 00 E8-51 FF C3 E81E F6 74 03 % ... + .. hQ.Ch.vt. 
-G =100116 
AX=0096 BX=OOOO CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
C5=1030 E5=1030 55=1030 C5=1030 IP=0116 OV UP 01 NG NZ AC PE NC 
1030:0116 CC INT 3 

Example A-14: How the 80x86 Stores Words: Little Endian 

(8) Moving 8 word from memory into 8 register 

A>OEBUG 
-06820 LF 
1030:6820 2600 EA 27 CF 5B 48 22-00 00 B8 154500 EA 20 &.j'O[H .... 8.E.j 
-A 100 
1030:0100 MOV BX,{6826] 
1030:0104/NT 3 
1030:0105 
-T 
AX=OOOO BX=2248 CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0104 NV UP 01 PL NZ NA PO NC 
1030:0104 CC INT 3 

(b) Moving 8 word from 8 register into memory 

-0 200 20F 
1030:0200 F2 FF OE OB 37 B8 FF FF-50 E8 B3 08 83 C4 02 20 R. .. 78 .. Ph3 .. 0. 
-A 100 
1030:0100 MOV BX, 1234 
1030:0103 MOV {200],BX 
1030:0107 INT 3 
1030:0108 
-G =100 
AX=OOOO BX=1234 CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0107 NV UP 01 PL NZ NA PO NC 
1030:0107 CC INT 3 
-0200LF 
1030:0200 3412 OE OB 37 B8 FF FF-50 E8 B3 08 83 C4 02 20 4 ... 78 .. Ph3 .. 0. 

SECTION A.4: DATA MANIPULATION IN DEBUG 837 



In Example A-14, part (a), the direct addressing mode was used to move 
the two bytes beginning at offset 6826 to register BX. Looking at the dump shows 
that location 6826 contains 48 and the following byte at offset 6827 contains 22. 
These bytes were moved into register BX in low byte to low byte, high byte to high 
byte order. The contents of lower memory location 6826, which were 48, were 
moved to the low byte, BL. The contents of higher memory location 6827, which 
were 22, were moved to the high byte, BH. In part (b), value 1234H was moved 
into register BX and then stored at offset 200. Notice that offset address 200 contains 
the lower byte 34 and the higher offset address 20 I contains the upper byte 12. 

SECTION A.5: EXAMINING THE STACK IN DEBUG 

In this sections we explore the implementation of the stack in 80x86 
Assembly language programming and how the stack can be examined through 
DEBUG. 

Pushing onto the stack 

Example A-15 demonstrates how the stack is affected by PUSH instruc­
tions. First the assemble command is used to enter instructions that load three 
registers with 16-bit data, initialize the stack pointer to 1236H, and push the three 
registers onto the stack. Then the instructions are executed with the go command 
and the contents of the stack examined with the dump command. The following 
shows the contents of the stack area after each push instruction, assuming that SP = 
1236 before the first push. Notice that the stack grows "upward" from higher 
memory locations toward lower memory locations. After each push, the stack 
pointer is decremented by 2. 

SP = 1236 
After "PUSH AX" 

1030:1230 00000000 B6 24 0000-0000000000000000 
SP= 1234 --
After "PUSH 01" 

1030: 1230 00 00 C2 85 B6 24 00 00-00 00 00 00 00 00 00 00 
SP=1232 --
After ·PUSH OX· 

1030:1230 93 5F C2 85 B6 24 00 00-00 00 00 00 00 00 00 00 
SP=1230 --

Example A-IS: Pushing Onto the Stack 

A>OEBUG 
-A 100 
1030:0100 MOV AX,24B6 
1030:0103 MOV 01,85C2 
1030:0106 MOV OX,5F93 
1030:0109 MOV Sp,1236 
1030:010C PUSH AX 
1030:0100 PUSH 01 
1030:010E PUSH OX 
1030:010F INT 3 
1030:0110 
-F 1230 123F 00 
-01230LF 
1030:1230 0000000000000000-0000000000000000 ............... . 

838 

-G =100 
AX=24B6 BX=OOOO CX=OOOO OX=5F93 SP=1230 BP=OOOO SI=OOOO 01=85C2 
OS=1030 ES=1030 SS=1030 CS=1030 IP=010F NV UP 01 PL NZ NA PO NC 
1030:010F CC INT 3 
-0 1230123F 
1030:1230 93 5F C2 85 B6 24 00 00-00 00 00 00 00 00 00 00 ._B.6$ .......... 

APPENDIX A: DEBUG PROGRAMMING 



Popping the stack 

Example A-16 demonstrates the effect of pop instructions on the stack. The 
trace shows that after each pop is executed, the stack pointer SP is incremented by 
2. As the stack is popped, it shrinks "downward" toward the higher memory 
addresses. 

Examj>le A-16: Popping the Stack Contents into Registers 
-A 100 
1030:0100 MOV SF', 18FA 
1030:0103 POP CX 
1030:0104 POP OX 
1030:0105 POP 8X 
1030:0106 INT 3 
1030:0107 
-E SS:18FA 231468 2C 91 F6 
-0 18FA 18FF 
10.30:18FA 2314 6B 2C 91 F6 #.k,.v 
-RIP 
IP 010F 
:0100 
-T 
AX=24B6 BX=OOOO CX=OOOO OX=5F93 5P=18FA BP=OOOO 51=0000 01=85C2 
05=1030 E5=1030 55=1030 C5=1030 IP=0103 NV UP 01 PL NZ NA PO NC 
1030:010359 POP CX 
-T 
AX=24B6 BX=OOOO CX=1423 OX=5F93 5P=18FC BP=OOOO 51=0000 01=85C2 
05=1030 E5=1030 55=1030 C5=1030 IP=0104 NV UP 01 PL NZ NA PO NC 
1030:0104 SA POP OX 
-T 
AX=24B6 BX=OOOO CX=1423 OX=2C6B 5P=18FE BP=OOOO 51=0000 01=85C2 
05=1030 E5=1030 55=1030 C5=1030 IP=0105 NV UP 01 PL NZ NA PO NC 
1030:01055B POP BX 
-T 
AX=24B6 BX=F691 CX=1423 OX=2C6B 5P=1900 BP=OOOO 51=0000 01=85C2 
05=1030 E5=1030 55=1030 C5=1030 IP=0106 NV UP 01 PL NZ NA PO NC 
1030:0106 CC INT 3 

SECTION A.S: EXAMINING/ALTERING THE FLAG REGISTER IN DEBUG 

The discussion of how to use the R command to examine/alter the contents 
of the flag register was postponed until this section, so that program examples that 
affect the flag bits could be included. Table A-I, on the following page, gives the 
codes for 8 bits of the flag register which are displayed whenever a G, T, or R 
DEBUG command is given. 

If all the bits of the flag register were reset to zero, as is the case when 
DEBUG is first entered, the following would be displayed for the flag register: 

NY UP DI PL NZ NA PO NC 
Similarly, if all the flag bits were set to I, the following would be seen: 

OV DN EI NG ZR AC PE CY 

Example A-17 shows how to use the R command to change the setting of 
the flag register. 

Example A-17: Changing the Flag Register Contents 

-RF 
NV UP 01 PL NZ NA PO NC -ON OV NG 
-RF 
OV ON 01 NG NZ NA PO NC -

SECTION A.6: EXAMINING/ALTERING THE FLAG REGISTER IN DEBUG 839 



Example A -17 on the preceding page showed how the flag register can be 
examined, or examined and then altered. When the R command is followed by "F", 
this tells DEBUG to display the contents ofthe flag register. After DEBUG displays 
the flag register codes, it prompts with another "-" at the end of the line of register 
codes. At this point, flag register codes may be typed in to alter the flag register, or 
a simple carriage return may be typed in if no changes are needed. The register 
codes may be typed in any order. 

Table A-I: Codes for the Flag Register 

!ii~--.. '. ... . i Code When SetEll_··_ : Code When Reset (~ O)-~l 
11oF overflow flag ___ . ,0Yioverflowl_._. __ iNYi!lo overflowL_._I_" 

Il1:>.F direction flag ._. _ jJ:)N (downL_._. __ J!JlitllL _ - .. - _ -- Ji r-" fl,g_._. -. : EI (enab .. I, ;""~pO -.-. -.ill! (disable interrupt) .. ~i 
SF &gr! flag ING (negative) _._ .. _JPL(Qhis, oUJ()sitiy&_~1 

I ZF zero flag ____ I ZR (zerQL _____ --1 NZ (not zerQL ._. __ ~I 
!~AF auxiliary cal'l}'..fl.M._ ---+AC (auxiliary carry) -LNA (no auxiliary carryl_~! 

P'F-llilrity iillL . ___ ..JPE (parity even) - .-. -+1'.0 (parity odQL --.-l'l 
I£F carry flag ICY (carry) iNC (no carry) .. ~ 

840 

Impact of instructions on the flag bits 

Example A-18, on the following page, shows the effect of ADD instructions 
on the flag register. The ADD in part (a) involved byte addition. Adding 9C and 64 
results in 00 with a carry out. The flag bits indicate that this was the result. Notice 
the zero flag is now ZR, indicating that the result is zero. In addition, the carry flag 
was set, indicating the carry out. The ADD in part (b) involves word addition. Notice 
that the sign flag was set to NG after the ADD instruction was executed. This is 
because the result, CAEO, in its binary form will have a I in bit 15, the sign bit. 
Since we are dealing with unsigned addition, we interpret this number to be positive 
CAEOH, not a negative number. This points out the fact that the microprocessor 
treats all data the same. It is up to the programmer to interpret the meaning of the 
data. Finally, look attheADD in part (c). AddingAAAAH and 5556H gives 10000H, 
which results in BX = 0000 with a carry out. The zero flag indicates the zero result 
(BX = 0000), while the carry flag indicates that a carry out occurred. 

Hexarlthmetic command 

This command is like an on-line hex calculator that performs hex addition 
and subtractions. Its format is 

H <number 1> <number 2> 

When this command is entered at the DEBUG "-" prompt, DEBUG will 
display their sum followed by their difference (number I - number 2). 

Procedure command 

This command has a syntax similar to the trace command: 

P < = start address> <number of instructions> 

It is used to execute a loop, call, interrupt or repeat string operation as if it 
were a single instruction instead of tracing through every instruction in that proce­
dure. 

APPENDIX A: DEBUG PROGRAMMING 



Example A-I8: Observing Changes in the Flag Register 

(a) 

A>DEBUG 
-A 100 
1030:0100 MOV AL,9C 
1030:0102 MOV DH,64 
1030:0104 ADD AL,DH 
1030:0106 INT 3 
1030:0107 
-T 3 
AX=009C BX=OOOO CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0102 NV UP 01 PL NZ NA PO NC 
1030:0102 B664 MOV OH,64 

AX=009C BX=OOOO CX=OOOO OX=6400 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0104 NV UP 01 PL NZ NA PO NC 
1030: 01 04 OOFO ADD AL,OH 

AX=OOOO BX=OOOO CX=OOOO OX=6400 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0106 NVUPOI PLZRAC PECY 
1030:0106 CC INT 3 

(b) 

-A 100 
1030:0100 MOV AX,34F5 
1030:0103 ADD AX,95EB 
1030:0106 INT 3 
1030:0107 
-T=100 2 
AX=34FS BX=OOOO CX=OOOO OX=6400 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0103 NV UP 01 PL NZ NA PO NC 
1030:01030SEB9S ADD AX,9SEB 

AX=CAEO BX=OOOO CX=OOOO OX=6400 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0106 NV UP 01 NG NZ AC PO NC 
1030:0106 CC INT 3 

(c) 

-A 100 
1030:0100 MOV BX,AAAA 
1030:0103 ADD BX,5556 
1030:0107 INT 3 
1030:0108 
-G =100107 
AX=34FS BX=OOOO CX=OOOO OX=6400 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0107 NV UP 01 PLZRAC PE CY 
1030:0107 CC INT 3 

Example A-19, on the following page, shows how to code a simple program 
in DEBUG, set up the desired data, and execute the program. This program includes 
a conditional jump that will decide whether to jump based on the value of the zero 
flag. This example also points out some important differences between coding a 
program in DEBUG and coding a program for an assembler such as MASM. First 
notice the JNZ instruction. Ifthis were an Assembly language program, the instruc­
tion might be "JNZ LOOP_ADD", where the label LOOP_ADD refers to a line of 
code. In DEBUG we simply JNZ to the address. Another important difference is 
that an Assembly language program would have separate data and code segments. 
In Example A-19, the test data was entered at offset 0200, and consequently, BX 
was set to 0200 since it is being used as a pointer to the data. In an Assembly language 
program, the data would have been set up in the data segment and the instruction 
might have been "MOV BX,OFFSET DATAl" where DATAl is the label associated 
with the data directive that stored the data. 

SECTION A.6: EXAMINING/ALTERING THE FLAG REGISTER IN DEBUG 841 



ExalllI'le A-19: Tracing throu~h a Program to Add 5 Bytes 

A>OEBUG 
-A 100 
1030:0100 MOV CX,05 
1030:0103 MOV BX,0200 
1030:0106 MOV AL,O 
1030:0108 ADD AL,[BX] 
1030:010A INC BX 
1030:010B DEC CX 
1030:010C JNZ 0108 
1030:010E MOV [0205],AL 
1030:0111 INT 3 
1030:0112 
-E02002512151F2B 
-0 0200 020F 
1030:0200 251215 1F 2B 9A DE CE-1E F3 20 20 20 20 20 20 'Yo, .. +,An , 
-G = 100 111 
AX=0096 BX=0205 CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=1030 E5=1030 55=1030 C5=1030 IP=0111 NV UP 01 PL ZR NA PE NC 
1030:0111 CC INT 3 

-00200020F 
1030:0200 2512 151F 2B 96 DE CE-1E F3 20 20 20 20 20 20 'Yo ... +.An. 

Example A-20: Data Transfer Program in DEBUG 

A>OEBUG 
-A 100 
1030:0100 MOV SI,0210 
1030:0103 MOV 01,0228 
1030:0106 MOV CX,6 
1030:0109 MOV AL,[SI] 
1030:010B MOV [OI],AL 
1030:0100 INC SI 
1030:010E INC 01 
1030:010F DEC CX 
1030:0110 JNZ 0109 
1030:0112 INT 3 
1030:0113 
-E 0210 25 4F 85 IF 2B C4 
-00210022F 
1030:0210 25 4F 851F 2B C4 43 OC-01 01 01 0002 FF FF FF 'YoO .. +OC ......... 
1030:0220 FF FF FF FF FF FF FF FF-FF FF FF FF 45 00 CA 2A ............ E.J' 
-G =100 
AX=00C4 BX-OOOO CX=OOOO OX=OOOO 5P=CFOE BP=OOOO 51=0216 01=022E 
05=1030 E5=1030 55=1030 C5=1030 IP=0112 NV UP 01 PL ZR NA PE NC 
1030:0112 CC INT 3 
-00210022F 
1030:0210 25 4F 85 1F 2B C443 OC-01 01 01 0002 FF FF FF 'YoO .. +OC ......... 
1030:0220 FF FF FF FF FF FF FF FF-25 4F 851F 2B C4 CA 2A ........ 'YoO .. +OJ' 

SECTION A_7: ADDITIONAL DEBUG DATA MANIPULATION COMMANDS 

842 

The following commands are often useful in manipulating the data in your 
programs. 

M. the move command: copying data from one location to another 

The move command is used to copy data from one location to another. The 
original location will remain unchanged. The syntax of this command is 

APPENDIX A: DEBUG PROGRAMMING 



M <starting address> <ending address> <destination address> 
M <starting address> <L number of bytes> <destination address> 

[n other words, this command will place a copy of the data found from 
starting address to ending address at the destination address. Part (a) in Example 
A-21 gives an example of using the move command. This command copied the data 
found in locations 130 to 13F to location 140. The same result could have been 
achieved by "M 130 LF [40". 

C, the compare command: checking blocks of data for differences 

The compare command is used to check two areas of memory and display 
bytes that contain different data. [fthe two blocks are identical, DEBUG will simply 
display the command prompt "-". The syntax of the command is 

C <starting address> <ending address> <compare address> 
C <starting address> < L number of bytes> <compare address> 

[n other words, this command will compare the data found from the starting 
address to the ending address with the data found beginning at the compare address 
and will display any bytes that differ. Part (b) in Example A-21 contains examples 
of using the compare command. The first command compared from offsets 130 to 
134 with memory beginning at location 140. Since no differences were found, 
DEBUG responded with the command prompt "-". That command could also have 
been entered as "C 130 L5 140". The next command compared from offsets 130 to 
134 with memory beginning at location 150 and printed all five locations since all 
of them differed. 

Example A-21: Move, Search, and Compare Commands 

(a) Move command 

-F 130 13F FF 
-D 130 15F 
1030:0130 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF ............... . 
1030:0140 0000000000000000-0000000000000000 ............... . 
1030:0150 0000000000000000-0000000000000000 ............... . 
-M 130 13F 140 
-D 130 15F 
1030:0130 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF ............... . 
1030:0140 0000000000000000-0000000000000000 ............... . 
1030:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ............... . 

(b) Compare command 

-c 130 134 140 
-C 130 134 150 
1030:0130 FF 00 1030:0150 
1030:0131 FF 00 1030:0151 
1030:0132 FF 00 1030:0152 
1030:0133 FF 00 1030:0153 
1030:0134 FF 00 1030:0154 

(c) Search command 

-s 150 15F FF 
-S 130 133 FF 
1030:0130 
1030:0131 
1030:0132 
1030:0133 

SECTION A.7: ADDITIONAL DEBUG DATA MANIPULATION COMMANDS 843 



S, the search command: search a block of memory for a data item 

The search command is used to search a block of data for a specific data 
value. If the item is not found, DEBUG simply displays the command prompt "-". 
Otherwise, all locations where the data item was found will be displayed. The syntax 
IS: 

S <starting address> <ending address> <data> 
S <starting address> <L number of bytes> <data> 

DEBUG will search from the starting to the ending address to find data. 
Look at part (c) of Example A-21. This example searched from locations ISO to 
15F for FF and did not find it. The next command searched from 130 to 133 for FF 
and printed all four addresses since all four contained FF. The following command 
would have achieved the same result: "s 130 L4 FF". The data may be a list of data 
items, in which case DEBUG will search for that pattern of data. 

SECTION A.S: LOADING AND WRITING PROGRAMS 

844 

The write and load commands below are used to save a program onto disk 
and load a previously saved program from disk into DEBUG. They both require a 
thorough familiarity with advanced DOS concepts. 

W, the write command: saving instructions on disk 

The write command is used to save instructions onto a disk. Its format is 

W <starting address> <drive number> <starting sector> <sectors> 

Writing to specific sectors is not recommended since a thorough familiarity 
with the way information is stored on drives is needed. Writing to the wrong sector 
could damage the disk's directory, rendering it useless. Example A-23 shows how 
to use the W command without any parameters to save code on a disk, after the N 
command had been used to set up a filename. 

L, the load command: loading instructions from disk 

The load command performs the opposite function of the write command: 
It loads from disk into memory starting at the specified address. Its syntax is 

L <starting address> <drive number> <starting sector> <sectors> 

After the load, registers BX ex will hold the size of the program in bytes. 
Using the load command with all its options requires a thorough understanding of 
disk storage and it is not recommended for beginning students. However, the L 
command may be used after the name command in a simple format, shown below. 

N, the name command: used to load a file from disk 

The name command can be used with the load command to load a program 
into DEBUG. 

-N <filename> 
-L 

The name command above sets up the filename to be loaded by the load 
command. An alternative way to load a program into DEBUG is when you initially 
enter the DEBUG program: 

-DEBUG <filename> 

APPENDIX A: DEBUG PROGRAMMING 



ExamJlle A-22: Loadinl! an Assembled Prllgfam into DEBUG 
(a) Loading with the name and load commands 

-N B:IPROGRAMSIPROG1.EXE 
-L 

(b) Loading on entering DEBUG 

A>DEBUG B:IPROGRAMSIPROG1.EXE 

Example A-23 first shows how to save code that has been entered in 
DEBUG. The code entered is the code for Example A-19. After the code has been 
entered with the A command, registers BX and ex must be set up to contain the 
number of bytes to be saved. ex is set to 12 to save 12 bytes, BX is the high word 
and in this case should be zero. The N command sets up the drive and filename to 
be used, then the W command writes the code to disk. Note that the filename 
extension must be "com" because "exe" files cannot be saved in this manner. The 
rest of Example A-23 shows how to load saved code into DEBUG. The N command 
sets up the file reference and the L command loads the code into DEBUG. Table 
A-2 provides a summary of DEBUG commands. 

Example A-23: Saving and Loading Code 

C>DEBUG 
-A 100 
12BO:Ol00 MOV CX,05 
12BO:Ol03 MOV BX 0200 
12BO:Ol06 MOV AL,O 
12BO:0108 ADD AL,[BX] 
12BO:010A INC BX 
12BO:Ol0B DEC CX 
12BO:Ol0C JNZ 0108 
12BO:Ol0E MOV [0205],AL 
12BO:0111 INT 3 
12BO:0112 
-RCX 
CX 0000 
:12 
-r 
AX=OOOO BX=OOOO CX=0012 OX=OOOO 5P=CFOE BP=OOOO 51=0000 01=0000 
05=12BO E5=12BO 55=12BO C5=12BO IP=0100 NV UP 01 PL NZ NA PO NC 
12BO:0100 B90500 MOV CX,0005 
-N B:EXI 9. COM 
-w 
Writing 0012 bytes 
-Q 

C>DEBUG 
-N B:EXI9.COM 
-L 
-R 
AX=OOOO BX=OOOO CX=0012 OX=OOOO 5P=FFFE BP=OOOO 51=0000 01=0000 
05=12CC E5=12CC 55=12CC CS=12CC IP=0100 NV UP 01 PL NZ NA PO NC 
12CC:0100 B90500 MOV CX,0005 
-u cs:l00 111 
12CC:Ol00 B90500 
12CC:0103 BB0002 
12CC:0106 BOOO 
12CC:Ol080207 
12CC:010A43 
12CC:Ol0B 49 
12CC:Ol0C 75FA 
12CC:Ol0E A20502 
12CC:Ol11 CC 

MOV 
MOV 
MOV 
AOO 
INC 
OEC 
JNZ 
MOV 
INT 

CX,0005 
BX,0200 
AL,OO 
AL,[BX] 

BX 
CX 
0108 
[0205],AL 
3 

SECTION A.S: LOADING AND WRITING PROGRAMS 845 



Table A-2: Summary of DEBUG Commands __ ,,'" 

I Function 
, 

Command Options 
~.- -

Assemble A <starting address> 
-~ 

Compare J <start address> <end address> <compare address> 

<start address> < L number of bytes> <compare address> __ 

Dump iD <start address> <end address> 

D <start address> < L number ofbvtes> 

Enter E <address> <data list> ,I 

f-- - IE <address> --- - -

IFill IF <start address> <end address> <data> I 

If-______ -+'F'-----'<,.,st..,a"'rt'-'a""d"'dr"'e"'s"'s>'--<~L"n"'um""'b"'e"'r_'o"_f_"b~te"'s>'--<,"'d ... a"'ta"'>=--___ _ 

Go G < = start address> <end address(",e",-s )L>__ j 
, 

liHexa"'r"'it..,h'--___ IH <number I> <number 2> ____ _ 

L d IL < tart dd > <d' > < tart t > < t s> oa - s a ress nve ~ sec or sec or _._--, 
, 

II Move 1M <start address> <end address> <destination> 
II 

M <start address> < L number of bytes> <destination> 

Name N <filename> ._--

I Procedure P < = start address> <number of instructions> 

Register IR <register name> --. ~. , 
'I 

Search Is <start address> <end address> <data> I 

c· !~ <start address> < L number of bytes> <data> 

, Trace < = start address> <number of instructions> 
, 

j 
, 

Vnassemble 'v <start address> <end address> 1 

Iv 
I, 

<start address> < L number ofbvtes> 
I, 

, -- -~i 

L Write !W <start address> <drive> <start sector> <sectors> i ~~~ _____ ~_~~~~~~~~~~~~~~~~~~~ _____ d 

Notes: 
1. All addresses and numbers are given in hex. 
2. Commands may be entered in lowercase or uppercase, or a combination. 
3. Ctrl-c will stop any command. 
4. Ctrl-numlock will stop scrolling of command output. To resume scrolling, enter any key. 

846 APPENDIX A: DEBUG PROGRAMMING 



APPENDIX B: 80x86 
INSTRUCTIONS AND TIMING 

In the first section of this appendix, we list the instructions ofthe 8086, give 
their format and expected operands, and describe the function of each instruction. 
Where pertinent, programming examples have been given. These instructions will 
operate on any 8086 or higher IBM-compatible computer. There are additional 
instructions for higher microprocessors (80186 and above); however, these instruc­
tions are not given in this list. The second section is a list of clock counts for each 
instruction across the 80x86 family. 

SECTION B.1: THE 8086 INSTRUCTION SET 

AAA ASCII Adjust after Addition 

Flags: Affected: AF and CF. Unpredictable: OF, SF, ZF, PF. 
Format: AAA 
Function: This instruction is used after an ADD instruction has added two 

digits in ASCII code. This makes it possible to add ASCII numbers without masking 
off the upper nibble "3". The result will be unpacked BCD in AL with carry flag set 
if needed. This instruction adjusts only on the AL register. AH is incremented if 
the carry flag is set. 

Example 1: 
MOV AL,31H 
ADD AL,37H 
AAA 

;AL=31 THE ASCII CODE FOR 1 
;ADD 37 (ASCII FOR 7) TO AL; AL=68H 
;AL=08 AND CF=O 

In the example above, ASCII I (3lH) is added to ASCII 7 (37H). After the 
AAA instruction, AL will contain 8 in BCD and CF = O. The following example 
shows another ASCII addition and then the adjustment: 

Example 2: 
MOV AL,'9' 
ADD AL,'5' 
AAA 
OR AL,30H 

;AL=39 ASCII FOR 9 
;ADD 35 (ASCII FOR 5) TO AL THEN AL=6EH 
;NOW AL=04 CF=1 
;converts result to ASCII 

AAD ASCII Adjust before Division 

Flags: Affected: SF, ZF, PF. Unpredictable: OF, AF, CF. 
Format: AAD 
Function: Used before the DIY instruction to convert two unpacked BCD 

digits in AL and AH to binary. A better name for this would be BCD to binary 
conversion before division. This allows division of ASCII numbers. Before the 
AAD instruction is executed, the ASCII tag of 3 must be masked from the upper 
nibble of AH and AL. 

SECTION B.1: THE 8086 INSTRUCTION SET 847 



848 

Example: 
MOV AX,3435H 
AND AX,OFOFH 
AAD 
MOV 
DIV 
OR 

DL,07 
DL 
AX,3030H 

;AX=3435 THE ASCII FOR 45 
;AX=0405H UNPACKED BCD FOR 45 
;AX=002DH HEX FOR 45 
;DL=07 
;2DH DIV BY 07 GIVES AL=06,AH=03 
;AL=36=QUOTIENT AND AH=33=REMAINDER 

AAM ASCII Adjust after Multiplication 

Flags: Affected: AF, CF. Unpredictable: OF, SF, ZF, PF. 
Format: AAM 
Function: Again, a better name would have been BCD adjust after multi­

plication. It is used after the MUL instruction has multiplied two unpacked BCD 
numbers. It converts AX from binary to unpacked BCD. AAM adjusts only AL, 
and any digits greater than 9 are stored in AH. 

Example: 
MOV AL,'5' 
AND AL,OFH 
MOV BL,'4' 
AND BL,OFH 
MUL BL 
AAM 
OR AX,3030H 

;AL=35 
;AL=05 UNPACKED BCD FOR 5 
;BL=34 
;BL=04 UNPACKED BCD FOR 4 
;AX=0014H=20 DECIMAL 
;AX=0200 
;AX=3230 ASCII FOR 20 

AAS ASCII Adjust after Subtraction 

Flags: Affected: AF, CF. Unpredictable: OF, SF, ZF, PF. 
Format: AAS 
Function: After the subtraction of two ASCII digits, this instruction is used 

to convert the result in AL to packed BCD. Only AL is adjusted; the value in AH 
will be decremented if the carry flag is set. 

Example: 
MOV AL,32H 
MOV DH,37H 
SUB AL,DH 

AAS 

ADC Add with Carry 

;AL=32 ASCII FOR 2 
;DH=37 ASCII FOR 7 
;AL-DH=32-37=FBH WHICH IS -5 IN 2'S COMP 
;CF=1 INDICATING A BORROW 
;NOW AL=05 AND CF=1 

Flags: Affected: OF, SF, ZF, AF, PF, CF. 
Format: ADC dest,source ;dest = dest + source + CF 
Function: If CF=I prior to this instruction, then after execution of this 

instruction, source is added to destination plus I. If CF = 0, source is added to 
destination plus O. Used widely in multibyte and multiword additions. 

ADD Signed or Unsigned ADD 

Flags: Affected: OF, SF, ZF, AF, PF, CF. 
Format: ADD dest,source ;dest = dest + source 
Function: Adds source operand to destination operand and places the 

result in destination. Both source and destination operands must match (e.g., both 
byte size or word size) and only one of them can be in memory. 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



Unsigned addition: 

In addition of unsigned numbers, the status ofCF, ZF, SF, AF, and PF may 
change, but only CF, ZF, and AF are of any use to programmers. The most important 
of these flags is CF. It becomes I when there is carry from D7 out in 8-bit (DO -
D7) operations, or a carry from D IS out in 16-bit (DO - D IS) operations. 

Example 1: 
MOV BH,45H 
ADD BH,4FH 

Example 2: 
MOV AL,FEH 
MOV DL,75H 
ADD AL,DL 

Example 3: 
MOV DX,126FH 
ADD DX,3465H 

MOV BX,OFFFFH 
ADD BX,1 

Signed addition: 

;BH=45H 
;BH=94H (45H+4FH=94H) 
;CF=0,ZF=0,SF=1 ,AF=1 ,and PF=O 

;AL=FEH 
;DL=75H 
;AL=FE+ 75=73H 
;CF=1,ZF=0,AF=0,SF=0,PF=0 

;DX=126FH 
;DX=46D4H (126F=3465=46D4H) 
;CF=0,ZF=0,AF=1,SF=0,PF=1 

;BX=OOOO (FFFFH+1 =0000) 
;AND CF=1 ,ZF=1 ,AF=1 ,SF=0,PF=1 

In addition of signed numbers, the status of OF, ZF, and SF must be noted. 
Special attention should be given to the overflow flag (OF) since this indicates if 
there is an error in the result of the addition. There are two rules for setting OF in 
signed number operation. The overflow flag is set to I: 

1. Ifthere is a carry from D6 to D7 and no carry from D7 out in an 8-bit operation or 
a carry from D 14 to D IS and no carry from D IS out in a 16-bit operation 

2. Ifthere is a carry from D7 out and no carry from D6 to D7 in an 8-bit operation or 
a carry from D IS out but no carry from D 14 to D IS in a 16-bit operation 

Notice that ifthere is a carry both from D7 out and from D6 to D7, then OF 
= 0 in 8-bit operations. In 16-bit operations, OF = 0 if there is both a carry out from 
DIS and a carry from Dl4 to DIS. 

Example 4: 
MOV BL,+8 ;BL=OOOO 1000 
MOV DH,+4 ;DH=OOOO 0100 
ADD BL,DH ;BL=OOOO 1100 SF=O,ZF=O,OF=O,CF=O 
Notice SF = D7 = 0 since the result is positive and OF = 0 since there is 

neither a carry from D6 to D7 nor any carry beyond D7. Since OF = 0, the result is 
correct [(+8) + (+4) = (+12)]. 

Example 5: 
MOV AL,+66 
MOV CL,+69 
ADD CL,AL 

;AL=0100 0010 
;CL=0100 0101 
;CL=1000 0111 = -121 (INCORRECT) 
;CF=0,SF=1 ,ZF=O, AND OF=1 

In Example 5, the correct result is +135 [(+66) + (+69) = (+135)], but the 
result was -121. The OF = I is an indication of this error. Notice that SF = D7 = I 
since the result is negative; OF = I since there is a cany from D6 to D7 and CF=O. 

SECTION B.t: THE 8086 INSTRUCTION SET 849 



850 

Example 6: 
MOV AL,-12 
MOV BL,+18 
ADD BL,AL 

;AL=1111 0100 
;BL=0001 0010 
;BL=OOOO 0110 (WHICH IS +6) 
;SF=O,ZF=O,OF=O, AND CF=1 

Notice above that OF ~ 0 since there is a carry from 06 to 07 and a carry 
from D7 out. 

Example 7: 
MOV AH,-30 
MOV DL,+14 
ADD DL,AH 

;AH=1110 0010 
;DL=OOOO 1110 
;DL=1111 0000 (WHICH IS -16 AND CORRECT) 
;AND SF=1,ZF=O,OF=O, AND CF=O 

OF ~ 0 since there is no carry from 07 out nor any carry from 06 to 07. 

ExampleS: 
MOV AL,-126 
MOV BH,-127 
ADD AL,BH 

;AL=1000 0010 
;BH=10000001 
;AL=OOOO 0011 (WHICH IS +3 AND WRONG) 
;AND SF=O,ZF=O AND OF=1 

OF ~ I since there is carry from 07 out but no carry from 06 to 07. 

AND Logical AND 

Flags: Affected: CF ~ 0, OF ~ 0, SF, ZF, PF. 
Unpredictable: AF. x Y XANDY I 

Format: AND dest,source 
Function: Performs logical AND on the operands, 

bit by bit, storing the result in the destination. 

CALL 

Example: 
MOV BL,39H ;BL=39 
AND BL,09H ;BL=09 
;39 0011 1001 
;09 0000 1001 

;0900001001 

Call a Procedure 

Flags: Unchanged. 

110 0 

0 1 

I 0 

II I 

Format: CALL proc ;transfer control to procedure 

0 
, 

0 

0 

Function: Transfers control to a procedure. RET is used to return control 
to the instruction after the call. There are two types of CALLs: NEAR and FAR. 
Ifthe target address is within the same code segment, it is a NEAR call. If the target 
address is outside the current code segment, it is a FAR CALL. Each is described 
below. 

NEAR CALL: If calling a near procedure (the procedure is in the same 
code segment as the CALL instruction) then the content of the IP register (which is 
the address of the instruction after the CALL) is pushed onto the stack and SP is 
decremented by 2. Then IP is loaded with the new value, which is the offset of the 
procedure. At the end of the procedure when the RET is executed, IP is popped off 
the stack, which returns control to the instruction after the CALL. There are three 
ways to code the address of the called NEAR procedure: 

I, 

!I 

I 

APPENDIX B: SOx86 INSTRUCTIONS AND TIMING 



1. Direct: 
CALL proc1 

proc1 PROC NEAR 

RET 
proc1 ENOP 

2. Register indirect: 

3. Memory indirect: 

CALL [SI) ;transfer control to address in SI 

CALL WORD PTR [01) ;01 points to the address that 
;contains I P address of proc 

FAR CALL: When calling a far procedure (the procedure is in a different 
segment from the CALL instruction), the SP is decremented by 4 after CS:IP of the 
instruction following the CALL is pushed onto the stack. CS:IP is then loaded with 
the segment and offset address of the called procedure. In pushing CS:IP onto the 
stack, CS is pushed first and then IP. When the RETF is executed, CS and IP are 
restored from the stack and execution continues with the instruction following the 
CALL. The following addressing modes are supported: 

1. Direct (but outside the present segment): 
CALL proc1 

proc1 PROC FAR 

RETF 
proc1 ENOP 

2. Memory indirect: 
CALL OWORO PTR [01) ;transfer control to CS:IP where 

;01 and 01+1 point to location of CS and 
;01+2 and 01+4 point to location of IP 

CBW Convert Byte to Word 

Flags: Unchanged. 
Format: CBW 
Function: Copies 07 (the sign flag) to all bits of AH. Used widely to 

convert a signed byte in AL into a signed word to avoid the overflow problem in 
signed number arithmetic. 

Example: 
MOV AX,O 
MOV AL,-5 

CBW 

CLC Clear Carry Flag 

Flags: Affected: CF. 
Format: CLC 

;AL=(-5)=FB in 2'5 complement 
;AX = 0000 00001111 1011 
;now AX=FFFB 
;AX = 1111 1111 1111 1011 

Function: Resets CF to zerc (CF = 0). 

SECTION B.1: THE 8086 INSTRUCTION SET 851 



852 

,. 

CLD Clear Direction Flag 

Flags: Affected: OF. 
Format: CLO 
Function: Resets OF to zero (OF = 0). In string instructions if OF = 0, the 

pointers are incremented with each execution of the instruction. If OF = 1, the 
pointers are decremented. Therefore, CLO is used before string instructions to make 
the pointers increment. 

CLI Clear Interrupt Flag 

Flags: Affected: IF. 
Format: CLI 
Function: Resets IF to zero, thereby masking external interrupts received 

on INTR input. Interrupts received on NMI input are not blocked by this instruction. 

CMC Complement Carry Flag 

Flags: Affected: CF. 
Format: CMC 
Function: Changes CF from 0 to 1 or from 1 to O. 

CMP Compare Operands 

Flags: Affected: OF, SF, ZF, AF, PF, CF. 
Format: CMP dest,source ;sets flags as if "SUB dest,source" 
Function: Compares two operands of the same size. The source and 

destination operands are not altered. Performs comparison by subtracting the source 
operand from the destination and sets flags as if SUB were performed. The relevant 
flags are as follows: 

. .. ------

II. ..... I CF ZF SF OF 
I ~: I. dest >source ~ 0 0 0 'SF I ----! 

if- dest = source " 0 1 0 ISF I 

!I 
...jl 

I 
~ 

dest < source 1 0 1 I inverse of SF ~ 

CMPS/CMPSB/CMPSW Compare Byte or Word String 

Flags: Affected: OF, SF, ZF, AF, PF, CF. 
Format: CMPSx 
Function: Compares strings a byte or word at a time. OS:SI is used to 

address the first operand; ES:Dl is used to address the second. If OF = 0, it 
increments the pointers SI and Dr. If OF = 1, it decrements the pointers. It can be 
used with prefix REPE or REPNE to compare strings of any length. The comparison 
is done by subtracting the source operand from the destination and sets flags as if 
SUB were performed. 

CWD Convert Word to Doubleword 

Flags: Unchanged. 
Format: CWO 
Function: Converts a signed word in AX into a signed doubleword by 

copying the sign bit of AX into all the bits of OX. Often used to avoid the overflow 
problem in signed number arithmetic. 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 

--



Example: 
MOV DX,O 
MOV AX,-5 
;DX= OOOOH 
CWO 
;DX= FFFFH 

;AX=(-5)=FFFB in 2'5 complement 

DAA Decimal Adjust after Addition 

Flags: Affected: SF, ZF, AF, PF, CF, OF. 
Format: DAA 
Function: This instruction is used after addition of BCD numbers to 

convert the result back to BCD. It adds 6 to the lower 4 bits of AL if it is greater 
than 9 or if AF = 1. Then it adds 6 to the upper 4 bits of AL if it is greater than 9 or 
ifCF = 1. 

Example 1: 
MOV AL,47H 
ADD AL,38H 
DAA 

;AL=0100 0111 
;AL=47H+38H=7FH. invalid BCD 
;NOW AL=1000 0101 (85H IS VALID BCD) 

In this example, since the lower nibble was larger than 9, DAA added 6 to 
AL. If the lower nibble is smaller than 9 but AF = 1, it also adds 6 to the lower nibble. 

Example 2: 
MOV AL,29H 
ADD AL,18H 
DAA 

;AL=0010 1001 
;AL=0100 0001 INCORRECT RESULT 
;AL=0100 0111 A VALID BCD FOR 47H. 

The same thing can happen for the upper nibble. 

Example 3: 
MOV AL,52H ;AL=0101001O 
ADD AL,91H ;AL=1110 0011 AN INVALID BCD 
DAA ;AL=0100 0011 AND CF=l 
Again the upper nibble can be smaller than 9 but because CF = 1, it must 

be corrected. 

Example 4: 
MOV AL,94H ;AL=10010100 
ADD AL,91H ;AL=0010 0101 INCORRECT RESULT 
DAA ;AL=1000 0101 A VALID BCD FOR 85 AND CF=l 
It is entirely possible that 6 is added to both the high and low nibbles. 

Example 5: 
MOV AL,54H 
ADD AL,87H 
DAA 

;AL=01010100 
;AL=1101 1011 INVALID BCD 
;AL=0100 0001 AND CF=l (141 IN BCD) 

DAS Decimal Adjust after Subtraction 

Flags: Affected: SF, ZF, AF, PF, CF. Unpredictable: OF. 
Format: DAS 
Function: This instruction is used after subtraction of BCD numbers to 

convert the result to BCD .. If the lower 4 bits of AL represent a number greater than 
9 or if AF = I, then 6 is subtracted from the lower nibble. If the upper 4 bits of AL 
is now greater than 9 or if CF = I, 6 is subtracted from the upper nibble. 

SECTION B.l: THE 8086 INSTRUCTION SET 853 



854 

Example: 
MOV AL,45H 
SUB AL,17H 
DAS 

;AL=0100 0101 BCD for 45 
;AL=0010 1110 AN INVALID BCD 
;AL=0010 1000 BCD FOR 28(45-17=28) 

For more examples of problems associated with BCD arithmetic, see DAA. 

DEC Decrement 

Flags: Affected: OF, SF, ZF, AF, PF. Unchanged: CF. 
Format: DEC dest ;dest = dest - I 
Function: Subtracts I from the destination operand. Note that CF (carry! 

borrow) is unchanged even if a value 0000 is decremented and becomes FFFF. 

DIV Unsigned Division 

Flags: Unpredictable: OF, SF, ZF, AF, PF, CF. 
Format: DIV source ;divide AX or DX:AX by source 
Function: Divides either an unsigned word (AX) by a byte or an unsigned 

doubleword (DX:AX) by a word. If dividing a word by a byte, the quotient will be 
in AL and the remainder in AH. If dividing a doubleword by a word, the quotient 
will be in AX and the remainder in DX. Divide by zero causes interrupt type O. 

ESC Escape 

Flags: Unchanged. 
Format: ESC 
Function: This instruction facilitates the use of math coprocessors (such 

as the 8087), which share data and address buses with the microprocessor. ESC is 
used to pass an instruction to a coprocessor and is usually treated as NOP (no 
operation) by the main processor. 

HLT Halt 

Flags: Unchanged. 
Format: HLT 
Function: Causes the microprocessor to halt execution of instructions. To 

get out of the halt state, activate an interrupt (NMI or INTR) or RESET. 

IDIV Signed Number Division 

Flags: Unpredictable: OF, SF, ZF, AF, PF, CF. 
Format: IDIV source ;divide AX or DX:AX by source 
Function: This division function divides either a signed word (AX) by a 

byte or a signed doubleword (DX:AX) by a word. If dividing a word by a byte, the 
signed quotient will be in AL and the signed remainder in AH. If dividing a 
doubleword by a word, the signed quotient will be in AX and the signed remainder 
in DX. Divide by zero causes interrupt type O. 

IMUL Signed Number Multiplication 

Flags: Affected: OF, CF. Unpredictable: SF, ZF, AF, PF. 
Format: IMUL source ;AX ~source x AL or DX:AX ~source x AX 
Function: Multiplies a signed byte or word source operand by a signed 

byte or word in AL or AX with the result placed in AX or DX:AX. 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



IN Input Data from Port 

Flags: Unchanged. 
Format: IN accumulator,port ;input byte or word into AL or AX 
Function: Transfers a byte or word to AL or AX from an input port 

specified by the second operand. The port address can be direct or register indirect: 

I. Direct: port address is specified directly and cannot be larger than FFH. 

Example 1: 
IN AL,99H ;BRING A BYTE INTO AL FROM PORT 99H 

Example 2: 
IN AX,78H ;BRING A WORD FROM PORT ADDRESSES 78H 

;AND 79H. THE BYTE FROM PORT 78 GOES 
;TO AL AND BYTE FROM PORT 79H TO AH. 

2. Register indirect: the port address is kept by the OX register. Therefore, 
it can be as high as FFFFH. 

Example 3: 
MOV DX,481H 
IN AL,DX 

Example 4: 
IN AX,DX 

INC Increment 

;DX=481H 
;BRING THE BYTE TO AL FROM THE PORT 
;WHOSE ADDRESS IS POINTED BY OX 

;BRING A WORD FROM PORT ADDRESS OF 
;POINTED BY OX. THE BYTE FROM PORT 
;DX GOES TO ALAND BYTE FROM PORT 
;DX+1 TOAH. 

Flags: Affected: OF, SF, ZF, AF, PF. Unchanged: CF. 
Format: INC destination ;dest = dest + I 
Function: Adds I to the register or memory location specified by the 

operand. Note that CF is not affected even if a value FFFF is incremented to 0000. 

INT Interrupt 

Flags: Affected: IF, TF. 
Format: INT type ;transfer control to INT type 
Function: Transfers execution to one of the 256 interrupts. The vector 

address is specified by the type number, which cannot be greater than FFH (0 to FF 
= 256 interrupts). 

The following steps are performed for the interrupt: 

I. SP is decremented by 2 and the flags are pushed onto the stack. 
2. SP is decremented by 2 and CS is pushed onto the stack. 
3. SP is decremented by 2 and the IP of the next instruction after the 

interrupt is pushed onto the stack. 
4. Multiplies the type number by 4 to get the address of the vector table. 

Starting at this address, the first 2 bytes are the value of IP and the next 2 bytes are 
the value for CS of the interrupt handler (interrupt handler is also called interrupt 
service routine). 

5. Resets IF and TF. 

SECTION B.1: THE 8086 INSTRUCTION SET 855 



856 

Interrupts are used to get the attention of the microprocessor. In the 8086/88 
there are a total of 256 interrupts: !NT 00, !NT 01, INT 02, ... , !NT FF. As 
mentioned above, the address that an interrupt jumps to is always four times the 
value of the interrupt number. For example, !NT 03 will jump to memory address 
OOOOCH (4 x 03 = 12 = OCH). Table B-1 is a partial list of the interrupts, commonly 
referred to as the interrupt vector table. 

Table B-1: Interrupt Vector Table 

IlINT # (~ex . ..1 Physical Address 

! INT 00 '00000 

! INT 0 I i 0000~4~ __ 

INT 02.100008 

lINT 03 'IOOOOC 
lINT 04 00010 

i~;~~~;~:Oddress=31 
_---+""100""oQ:0004 __ 'i 

__-II (J000:0008! 

__ +O=OOO:OOOC __ ~I 

!~T 05 !00014 __ _ 

0000:0010 .~I 

'0000:0014 _~ 

.[rnrFF 1003FC 

i 

10000:03FC.J, 

Every interrupt has a program associated with it called the interrupt service 
routine (ISR). When an interrupt is invoked, the CS:IP address of its ISR is retrieved 
from the vector table (shown above). The lowest 1024 bytes (256 x 4 = 1024) of 
RAM are set aside for the interrupt vector table and must not be used for any other 
function. 

Example: Find the physical and logical addresses of the vector table 
associated with (a) !NT 14H and (b) !NT 38H. 

Solution: 
(a) The physical address for !NT 14H is 00050H - 00053H 
(4 x 14H = 50H). That gives the logical address of 0000:0050H -

0000:0053H. 
(b) The physical address for INT 38H is OOOEOH - 000E3H, making the 

physical address OOOO:OOEOH - 0000:00E3H. 

The difference between INTerrupt and CALL instructions 

The following are some ofthe differences between the INT and CALL FAR 
instructions: 

1. While a CALL can jump to any location within the I-megabyte address range (00000 
- FFFFF) of the 8088/86 CPU, "INT nn" jumps to a fixed location in the vector table 
as discussed earlier. 

2. While the CALL is used by the programmer at a predetermined point in a program, 
a hardware interrupt can come in at any time. 

3. A CALL cannot be masked (disabled), but "INT nn" can be masked. 
4. While a "CALL FAR" automatically saves on the stack only the CS:IP of the next 

instruction, "INT nn" saves the FR (flag register) in addition to the CS:IP. 
5. While at the end of the procedure that has been CALLed the RETF (return FAR) is 

used, for "INT nn" the instruction IRET (interrupt return) is used. 

The 256 interrupts can be categorized into two different groups: hardware 
and software interrupts. 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



Hardware interrupts 

The 8086/88 microprocessors have two pins set aside for inputting hardware 
interrupts. They are INTR (interrupt request) and NMI (nonmaskable interrupt). 
Although INTR can be ignored through the use of software masking, NMI cannot 
be masked using software. These interrupts are activated externally by putting 5 
volts on the hardware pins of NMI or INTR. Intel has assigned INT 02 to NMI. 
When it is activated itwiUjump to memory location 00008 to get the address (CS:IP) 
of the interrupt service routine (ISR). Memory locations 00008,00009, OOOOA, and 
OOOOB contain the 4-byte CS:IP. There is no specific location in the vector table 
assigned to INTR because INTR is used to expand the number of hardware interrupts 
and should be allowed to use any "INT nn" instruction that has not been assigned 
previously. In the IBM PC, one Intel 8259 PIC (programmable interrupt controller) 
chip is connected to INTR to add a total of eight hardware interrupts to the 
microprocessor. IBM PC AT, PS/2 80286, 80386, and 80486 computers use two 
8259 chips to allow up to 15 hardware interrupts. 

Table B-2: IBM PC Interrupt System 

Ii Interru t Ph sical Address 

. 0JOO~3:3072 I03EA2 I Divide error 

I06SED 

iFE2C3 

I Single step (trace command in DEBJJQl 

:Nonmaskable interrupt 

06SE6 Breakpoint 

__ ==='-"'-__ ,.9_0"S'-'4-'-7 _____ -+,,,,S.,,ig,.n"'ecd,,""n"'u,.rn .. b"'e ... r",art,..,..·t",h",m",e"tt",·c,-,o"-v ... e .. r"fl,,,o'.'w 

~ ______ ~~~~~ _____ J£fF~S~4~ ______ -4I~Pr~in~t~s~c~re~e~n~(B~IO~S~)'-________ __ 

;'-"-" ___ ~='"'-"""'-_ ... -.rl F",F-"O",,6"..S ____ -+1 V ... I .... · d",-eo~I1.--0-,(.--B~IO",S--.,),--______ ___ 

-----+'I·~"-------+'·'----------

_______________ ..i.i=-DOS function calls 

Software interrupts 

These interrupts are called software interrupts since they are invoked as a 
result of the execution of an instruction and no external hardware is involved. In 
other words, these interrupts are invoked by executing an "INT nn" instruction such 
as the DOS function call "INT 21 H" or video interrupt "INT 1 OH". These interrupts 
can be invoked by a program at any time, the same as any other instruction. Many 
of the interrupts in this category are used by the DOS operating system and IBM 
BIOS to perform the essential tasks that every computer must provide to the system 
and the user. Also within this group of interrupts are predefined functions associ­
ated with some of the interrupts. They are "INT 00" (divide error), "INT 0 1" (single 
step), "INT 03" (breakpoint), and "INT 04" (signed number overflow). Each one is 
described below. These interrupts are shown in Table B-2. Looking at Table B-2, 
one can say that aside from "INT 00" to "INT 04", which have predefined functions, 
the rest of the interrupts, from "INT 05" to "INT FF", can be used to implement 
either software or hardware interrupts. 

---! 
......J' 

SECTION 8.1: THE 8086 INSTRUCTION SET 857 



858 

Functions associated with "INT 00" to "INT 03" 

As mentioned earlier, interrupts "INT 00" to "INT 03" have predefined 
functions and cannot be used in any other way. The function of each is described 
next. 

INT 00 (divide error) 

This interrupt, sometimes referred to as a conditional or exception interrupt, 
is invoked by the microprocessor whenever there is a condition that it cannot take 
care of, such as an attempt to divide a number by zero. "INT 00" is invoked by the 
microprocessor whenever there is an attempt to divide a number by zero. In the 
IBM PC and compatibles, the service subroutine for this interrupt is responsible for 
displaying the message "DIVIDE ERROR" on the screen if a program such as the 
following is executed: 

MOV 
MOV 
DIV 

AL,25 
BL,OO 
BL 

; put 25 into AL 
; put 00 into BL 
; divide 25 by 00 

This interrupt is also invoked if the quotient is too large to fit into the 
assigned register when executing a DIV instruction. 

INT 01 (single step) 

There is often a need to execute a given program one instruction at a time 
and then inspect the registers (possibly memory as well) to see what is happening 
inside the Cpu. This is commonly referred to as single-stepping. IBM and Microsoft 
call it TRACE in the DEBUG program. To allow the implementation of single-step­
ping, Intel has set aside "INT 01" specifically for that purpose. For the Trace 
command in DEBUG after execution of each instruction, the CPU jumps automat­
ically to physical location 00004 to fetch the 4 bytes for CS: IP of the interrupt service 
routine. One ofthe functions ofthis ISR is to dump the contents of the registers onto 
the screen. 

INT 02 (nonmaskable interrupt) 

This interrupt is used in the PC to indicate memory errors, among other 
problems. 

INT 03 (breakpoint) 

While in single-step mode, one can inspect the CPU and system memory 
after execution of each instruction. A breakpoint allows one to do the same thing, 
after execution ofa group of instructions rather than after each instruction. Break­
points are put in at certain points of a program to monitor the flow of the program 
and to inspect the results after certain instructions. The CPU executes the program 
to the breakpoint and stops. One can proceed from breakpoint to breakpoint until 
the program is complete. With the help of single-step and breakpoints, programs 
can be debugged and tested more easily. The Intel 8086/88 CPUs have set aside 
"INT 03" for the sole purpose of implementing breakpoints. When the instruction 
"INT 03" is placed in a program the CPU will execute the program until it encounters 
"INT 03", and then it stops. One interesting point about this interrupt is that it is a 
one-byte instruction, in contrast to all other interrupt instructions, "INT nn", which 
are two-byte instructions. This allows the user to insert I byte of code and remove 
it to proceed with the execution of the program. The opcode for INT 03 is "CC". 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



IBM PC and DOS assignment of interrupts 

When the IBM PC was being developed, the designers at IBM had to 
coordinate the assignment of the 256 available interrupts for the 8086/88 with 
Microsoft, the developer ofthe DOS operating system, lest a conflict occur between 
the BIOS and DOS interrupt designations. The result of cooperation in assigning 
interrupts to IBM BIOS subroutines and DOS function calls is shown in Table B-2. 
The table gives a partial listing of interrupt numbers from 00 to FF, the logical 
address of the service subroutine for each interrupt, their physical addresses, and 
the purpose of each interrupt. It must be mentioned that depending on the computer 
and the DOS version, some of the logical addresses could be different from Table 
B-2. 

How to get the vector table of any PC 

One can get the vector table of any IBM PC/XT, PC AT, PS/2, PSI1, or any 
80x86 IBM-compatible computer and inspect the logical address assigned to each 
interrupt. To do that use DEBUG's DUMP command "-D 0000:0000", as shown 
next. 

A>debug 
-D 0000:0000 
0000:0000 E8 56 2B 02 56 07 70 00-C3 E2 00 FO 56 07 70 00 
0000:0010 5607700054 FF 00 FO-47 FF 00 FO 47 FF 00 FO .... 

Note: The contents of the memory locations could be different, depending 
on the DOS version. 

Example: From the dump above, find the CS:IP of the service routine 
associated with INT 5. 

Solution: To get the address of "INT 5", calculate the physical address of 
00014H (5 x 4 = 00014H). The contents of these locations are 00014 = 54, 00015 
= FF, 00016 = 00, and 00016 = FO. This gives CS = FOOO and IP = FF54. 

INTO Interrupt on Overflow 

Flags: Affected: IF, TF. 
Format: INTO 
Function: Transfers execution to an interrupt handler written for overflow 

if OF (overflow flag) has been set. Intel has set aside INT 4 for this purpose. 
Therefore, if OF = 1 when INTO is executed, the CPU jumps to memory location 
OOOlOH (4 x 4 = 16 = 10H). The contents of memory locations 10H, llH, 12H, 
and 13H are used as IP and CS of the interrupt handler procedure. This instruction 
is widely used to detect overflow in signed number addition. In signed number 
operations, OF becomes 1 in two cases: 

1. Whenever there is a carry from d6 to d7 in 8-bit operations and no carry from D7 
out (or in 16-bit operations when there is carry from d14 to d15 and CF = 0) 

2. When there is carry from from D7 out and no carry from D6 to D7 (or in the case 
of 16-bit operation when there is a carry from D15 out and no carry from D14 to 
D15) 

IRET Interrupt Return 

Flags: Affected: OF, DF, IF, TF, SF, ZF, AF, PF, CF. 
Format: IRET 
Function: Used at the end of an interrupt service routine (interrupt han­

dler), this instruction restores all flags, CS, and IP to the values they had before the 
interrupt so that execution may continue at the next instruction following the INT 
instruction. While the RET instruction is used althe end of the subroutine associated 

SECTION B.t: THE 8086 INSTRUCTION SET 859 



860 

with the CALL instruction, IRET must be used for the subroutine associated with 
the "!NT XX" instruction or the hardware interrupt handler. 

JUMP Instructions 

The following instructions are associated with jumps (both conditional and 
unconditional). They are categorized according to their usage rather than alphabeti­
cally. 

J condition 

Flags: Unchanged. 
Format: }xx target Jump to target upon condition 
Function: Used to jump to a target address if certain conditions are met. 

The target address cannot be more than -128 to + 127 bytes away. The conditions 
are indicated by the flag register. The conditions that determine whether the jump 
takes place can be categorized into three groups, 

(I) flag values, 
(2) the comparison of unsigned numbers, and 
(3) the comparison of signed numbers. 
Each is explained next. 

I. "} condition" where the condition refers to flag values. The status of each 
bit of the flag register has been decided by execution of instructions prior to the 
jump. The following "} condition" instructions check if a certain flag bit is raised 
or not. 

JC 
JNC 
JP 
JNP 
JZ 
JNZ 
JS 
JNS 
JO 
JNO 

Jump Carry 
Jump No Carry 
Jump Parity 
Jump No Parity 
Jump Zero 
Jump No Zero 
Jump Sign 
Jump No Sign 
Jump Overflow 
Jump No Overflow 

jump if CF=1 
jump ifCF=O 
jump if PF=1 
jump if PF=O 
jump if ZF=1 
jump if ZF=O 
jump if SF=1 
jump if SF=O 
jump if OF=1 
jump if OF=O 

Notice that there is no "} condition" instruction for AF. 

2. "} condition" where the condition refers to the comparison of unsigned 
numbers. After a compare (CMP dest,source) instruction is executed, CF and ZF 
indicate the result of the comparison, as follows: 

destination> source 
destination = source 
destination < source 

CF 
o 
o 
1 

ZF 
o 
1 
o 

Since the operands compared are viewed as unsigned numbers, the follow­
ing "} condition" instructions are used. 

JA 
JAE 
JB 
JBE 
JE 
JNE 

Jump Above 
Jump Above or Equal 
Jump Below 
Jump Below or Equal 
Jump Equal 
Jump Not Equal 

jump if CF=O and ZF=O 
jump if CF=O 
jump ifCF=1 
jump if CF=1 or ZF=1 
jump if ZF=1 
jump if ZF=O 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



3. "J condition" where the condition refers to the comparison of signed 
numbers. In the case of the signed number comparison, although the same instruc­
tion, "CMP destination,source", is used, the flags used to check the result are as 
follows: 

destination> source 
destination = source 
destination < source 

OF=SF or ZF=O 
ZF=1 
OF inverse of SF 

Consequently, the "J condition" instructions used are different. They are as 
follows: 

JG 
JGE 
JL 
JLE 
JE 

Jump Greater 
Jump Greater or Equal 
Jump Less 
Jump Less or Equal 
Jump if Equal 

jump if ZF=O or OF=SF 
jump if OF=SF 
jump if OF",SF 
jump if ZF=1 or OF",SF 
jump if ZF = 1 

There is one more "J condition" instruction: 
JCXZ ;Jump if CX is Zero. ZF is ignored. 

All "J condition" instructions are short jumps, meaning that the target 
address cannot be more than -128 bytes backward or + 127 bytes forward from the 
IP of the instruction following the jump. What happens if a programmer needs to 
use a "J condition" to go to a target address beyond the -128 to + 127 range? The 
solution is to use the "J condition" along with the unconditional JMP instruction, as 
shown next. 

ADD BX,[SI] 
JNC NEXT 
JMP TARGET1 

NEXT: 

TARGET1: ADD 01,10 

JMP Unconditional Jump 

Flags: Unchanged. 
Format: IMP [directives] target ;jump to target address 
Function: This instruction is used to transfer control unconditionally to a 

new address. The difference between JMP and CALL is that the CALL instruction 
will return and continue execution with the instruction following the CALL, 
whereas IMP will not return. The target address could be within the current code 
segment, which is called a near jump, or outside the current code segment, which 
is called a far jump. Within each category there are many ways to code the target 
address, as shown next. 

1. Near jump 
(a) direct short jump: In this jump the target address must be within -128 

to + 127 bytes of the IP ofthe instruction after the JMP. This is a 2-byte instruction. 
The first byte is the opcode EBH and the second byte is the signed number 
displacement, which is added to the IP of the instruction following the IMP to get 
the target address. The directive SHORT must be coded, as shown next: 

JMP SHORT OVER 

OVER: 

SECTION 8.1: THE 8086 INSTRUCTION SET 861 



862 

Ifthe target address is beyond the -128 to +127 byte range and the SHORT 
directive is coded, the assembler gives an error. 

(b) Direct jump: This is a 3-byte instruction. The first byte is the opcode 
E9H and the next two bytes are the signed number displacement value. The 
displacement is added to the IP of the instruction following the lMP to get the target 
address. The displacement can be in the range -32,768 to +32,767. In the absence 
of the SHORT directive, the assembler in its first pass always uses this kind of IMP, 
and then in the second pass if the target address is within the -128 and + 127 byte 
range, it uses the NOP opcode 90H for the third byte. This is the reason to code the 
directive SHORT ifit is known that the target address of the IMP is within the short 
range. 

( c) Register indirect jump: In this jump the target address is in a register as 
shown next: 

JMP DI ;jump to the address found in DI 

Any nonsegment register can be used for this purpose. 

(d) Memory indirect jump: In this jump the target address is in a memory 
location whose address is pointed at by a register: 

JMP WORD PTR [SI] ;jump to the address found at the address in SI 

The directive WORD PTR must be coded to indicate this is a near jump. 

2. Farjump 

In a far IMP, the target address is outside the present code segment; 
therefore, not only the offsct value but also the segment value of the target address 
must be given. A far jump is a 5-byte instruction: the opcode EAH and 4 bytes for 
the offset and segment of the target address. The following shows the two methods 
of coding the far jump. 

(a) Direct far jump: This requires that both CS and IP be updated. One 
way to do that is to use the LABEL directive: 

JMP 

TARGET2 LABEL 
ENTRY: 

TARGET2 

FAR 

This is exactly what IBM has done in BIOS of the IBM PC/XT when the 
computer is booted. When the power to the PC is turned on, the 8088/86 CPU begins 
to execute at address FFFF:OOOOH. IBM uses a FARjump to make it go to location 
FOOO:E05BH, as shown next: 

0000 EA5BEOOOFO 

E05B 
E05B 
E05B 
E05C 

RESET 
START: 

;CS=FFFF and IP=OOOO 
JMP RESET 
;CS=FOOO 
ORG OE05BH 
LABEL FAR 

CLI 

The EXTRN and PUBLIC directives also can be used for the same purpose. 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



(b) Memory indirect far jump: The target address (both CS:IP) is in a 
memory location pointed to by the register: 

JMP DWORD PTR [BX] 

The OWORD and PTR directives must be used to indicate that it is a far jump. 

LAHF Load AH from Flags 

Flags: Unchanged. 
Format: LAHF 
Function: Loads the lower 8 bits of the flag register into AH. 

LOS Load Data Segment Register 

Flags: Unchanged. 
Format: LOS dest,source ;Ioad dest and OS starting at source 
Function: Loads into destination (which is a register) the contents of two 

memory locations indicated by source and loads OS with the contents of the two 
succeeding memory locations. This is useful for accessing a new data segment and 
its offset. 

Example: Assume the following memory locations with the contents: 
;DS:1200=(46) 
;DS:1201=(10) 
; DS: 1202=(38) 
;DS: 1203=(82) 
LDS DI,[1200] ;now DI=1 046 and DS=8238. 

EA Load Effective Address 

Flags: Unchanged. 
Format: LEA dest,source ;dest = OFFSET source 
Function: Loads into the destination (a l6-bit register) the effective 

address of a direct memory operand. 

Example 1: 
ORG 

DATA DB 
0100H 
34,56,87,90,76,54,13,29 

;to access the sixth element: 
LEA SI,DATA+5 ;SI=100H+5=105 THE EFFECTIVE ADDRESS 
MOV AL,[SI] ;GET THE SIXTH ELEMENT 

Example 2: 
;if BX=2000H and SI=3500H 
LEA DX,[BX][SI]+1 DOH 
;DX=effective address=2000+3500+1 00=5600H 

The following two instructions show two different ways to accomplish the 
same thing: 

MOV SI,OFFSET DATA ;advantage: executes faster 
LEA SI,DATA 

SECTION B.1: THE 8086 INSTRUCTION SET 863 



864 

LES Load Extra Segment Register 

Flags: Unchanged. 
Format: LES dest,source ;load dest and ES starting at source 
Function: Loads into destination (a register) the contents of two memory 

locations indicated by the source and loads ES with the contents of the two 
succeeding memory locations. Useful for accessing a new extra segment and its 
offset. This instruction is similar to LOS except that the ES and its offset are being 
loaded. 

LOCK Lock System Bus Prefix 

Flags: Unchanged. 
Format: LOCK ;used as a prefix before instructions 
Function: Used in microcomputer systems with more than one processor 

to prevent another processor from gaining control over the system bus during 
execution of an instruction. 

LODS/LODSB/LODSW Load Byte or Word String 

Flags: Unchanged. 
Format: LODSx 
Function: Loads AL or AX with a byte or word from the memory location 

pointed to by DS:SI. If OF = 0, SI wiil be incremented to point to the next location. 
If OF = 1, SI wiil be decremented to point to the next location. SI is incremented/de­
cremented by 1 or 2, depending on whether it is a byte or word string. 

LOOP Loop until CX=O 

Flags: Unchanged. 
Format: LOOP target ;DEC CX, then jump to target ifCX not 0 
Function: Decrements CX by I, then jumps to the offset indicated by the 

operand if CX not zero, otherwise continues with the next instruction below the 
LOOP. This instruction is equivalent to 

DEC CX 
JNZ target 

LOOPEILOOPZ LOOP if Equal I Loop if Zero 

Flags: Unchanged. 
Format: LOOPx target ;DEC CX, jump to target if CX '" 0 and ZF= 1 
Function: Decrements CX by 1, then jumps to location indicated by the 

operand if CX is not zero and ZF is I, otherwise continues with the next instruction 
after the LOOP. In other words, it gets out of the loop only when CX becomes zero 
or when ZF = O. 

Example: 
Assume that 200H memory locations from offset 1680H should contain 

55H. LOOPE can be used to see ifany of these locations does not contain 55H: 
MOV CX,200 ;SET UP THE COUNTER 
MOV SI,1680H ;SET UP THE POINTER 

BACK: CMP [SI],55H ;COMPARE THE 55H WITH MEM LOCATION 

INC SI 
LOOPE BACK 

POINTED AT BY SI 
;INCREMENT THE POINTER 
;CONTINUE THE PROCESS UNTIL CX=O OR 
;ZF=O. IN OTHER WORDS EXIT IF ONE 
;LOCATION DOES NOT HAVE 55H 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



LOOPNE/LOOPNZ LOOP While CF Not Zero and ZF Equal Zero 

Flags: Unchanged. 
Format: LOOPxx target ;DEe ex, then jump if ex and ZF not zero 
Function: Decrements ex by 1, then jumps to location indicated by the 

operand if ex and ZF are not zero, otherwise continues with the next instruction 
below the LOOP. In other words it will exit the loop if ex becomes 0 or ZF = I. 

Example: 
Assume that the daily temperatures for the last 30 days have been stored 

starting at memory location with offset 1200H. LOOPE can be used to find the first 
day that had a 90-degree temperature. 

AGAIN: 

MOV 
MOV 
CMP 
INC 
LOOPNE 

MOV Move 

CX,30 
01,1200H 
[01],90 
01 
AGAIN 

Flags: Unchanged. 

;SET UP THE COUNTER 
;SET UP THE POINTER 

Format: MOV dest,source ;copy source to dest 
Function: Copies a word or by1e from a register, memory location, or 

immediate number to a register or memory location. Source and destination must 
be of the same size and cannot both be memory locations. 

MOVS/MOVSB/MOVSW Move Byte or Word String 

Flags: Unchanged. 
Format: MOVSx 
Function: Moves byte or word from memory location pointed to by DS:SI 

to memory location pointed to by ES:DI. IfDF = 0, both pointers are incremented; 
otherwise, they are decremented. SI and DI are incremented/decremented by I or 2 
depending on whether it is a byte or word string. When used with the REP prefix, 
ex is decremented each time until ex is zero. 

MUL Unsigned Multiplication 

Flags: Affected: OF, CF. Unpredictable: SF, ZF, AF, PF. 
Format: MUL source ;AX = source x AL or DX:AX = source x AX 
Function: Multiplies an unsigned by1e or word indicated by the operand 

by a unsigned byte or word in AL or AX with the result placed in AX or DX:AX. 

NEG Negate 

Flags: Affected: OF, SF, ZF, AF, PF, eF. 
Format: NEG dest ;negates operand 
Function: Performs 2's complement of operand. Effectively reverses the 

sign bit of the operand. This instruction should only be used on signed numbers. 

NOP No Operation 

Flags: Unchanged. 
Format: NOP 
Function: Performs no operation. Sometimes used for timing delays to 

waste clock cycles. Updates IP to point to next instruction following NOP. 

SECTION B.1: THE 8086 INSTRUCTION SET 865 



866 

NOT Logical NOT 

Flags: Unchanged. 
Format: NOT dest ;dest = I's complement of dest 
Function: Replaces the operand with its negation (the l's complement). 

Each bit is inverted. 

OR Logical OR 

Flags: Affected: CF=O, OF=O, SF, ZF, PF. 
Unpredictable: AF. 

Format: OR dest,source ;dest= dest OR source 
Function: Performs logical OR on the bits of two 

operands, replacing the destination operand with the result. 
Often used to turn a bit on. 

OUT Output Byte or Word 

Flags: Unchanged. 
Format: OUT dest,ace ;transfer ace to port dest 
Function: Transfers a byte or word from AL or AX to an output port 

specified by the first operand. Port address can be direct or register indirect as 
shown next: 

1. Direct: port address is specified directly and cannot be larger than FFH. 

Example 1: 
OUT 68H,AL ;SEND OUT A BYTE FROM AL TO PORT 68H 
or 
OUT 34H,AX ;SEND OUT A WORD FROM AX TO PORT 

;ADDRESSES 34H AND 35H. THE BYTE 
;FROM AL GOES TO PORT 34H AND 
;THE BYTE FROM AH GOES TO PORT 35H 

2. Register indirect: port address is kept by the DX register. Therefore, it 
can be as high as FFFFH. 

Example 2: 
MOV DX,64B1H 
OUT DX,AL 

or 
OUT DX,AX 

POP POP Word 

Flags: Unchanged. 

;DX=64B1H 
;SENT OUT THE BYTE IN AL TO THE PORT 
;WHOSE ADDRESS IS POINTED TO BY DX 

;SEND OUT A WORD FROM AX TO PORT 
;ADDRESS POINTED TO DX. THE BYTE 
;FROM AL GOES TO PORT DX AND AND BYTE 
;FROM AH GOES TO PORT DX+1. 

Format: POP dest ;dest = word off top of stack 
Function: Copies the word pointed to by the stack pointer to the register 

or memory location indicated by the operand and increments the SP by 2. 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



POPF POP Flags off Stack 

Flags: OF, DF, IF, TF, SF, ZF, AF, PF, CF. 
Format: POPF 
Function: Copies bits previously pushed onto the stack with the PUSHF 

instruction into the flag register. The stack pointer is then incremented by 2. 

PUSH PUSH Word 

Flags: Unchanged. 
Format: PUSH source ;PUSH source onto stack 
Function: Copies the source word to the stack and decrements SP by 2. 

PUSHF PUSH Flags onto stack 

Flags: Unchanged. 
Format: PUSHF 
Function: Decrements SP by 2 and copies the contents of the flag register 

to the stack. 

RCURCR Rotate Left through Carry and Rotate Right through Carry 

Flags: Affected: OF, CF. 
Format: RCx dest,n ;dest = dest rotate right/left n bit positions 
Function: Rotates the bits of the operand right or left. The bits rotated out 

of the operand are rotated into the CF and the CF is rotated into the opposite end of 
the word or byte. Note: "n" must be 1 or CL. 

RET Return from a Procedure 

Flags: Unchanged. 
Format: RET [nJ ;retum from procedure 
Function: Used to return from a procedure previously entered by a CALL 

instruction. The IP is restored from the stack and the SP is incremented by 2. If the 
procedure was FAR, then RETF (return FAR) is used, and in addition to restoring 
the IP, the CS is restored from the stack and SP is again incremented by 2. The RET 
instruction may be followed by a number that will be added to the SP after the SP 
has been incremented. This is done to skip over any parameters being passed back 
to the calling program segment. 

ROUROR Rotate Left and Rotate Right 

Flags: Affected: OF, CF. 
Format: ROx dest,n ;rotate dest right/left n bit positions 
Function: Rotates the bits of a word or byte indicated by the second operand 

right or left. The bits rotated out of the word or byte are rotated back into the word 
or byte at the opposite end. Note: "n" must be 1 or CL. 

SAHF Store AH in Flag Register 

Flags: Affected: SF, ZF, AF, PF, CF. 
Format: SAHF 
Function: Copies AH to the lower 8 bits of the flag register. 

SECTION B.1: THE 8086 INSTRUCTION SET 867 



868 

SALISAR Shift Arithmetic Leftl Shift Arithmetic Right 

Flags: Affected: OF, SF, ZF, PF, CF. Unpredictable: AF. 
Format: SAx dest,n ;shift signed dest left/right n bit positions 
Function: Shifts a word or byte left fright. SARI SAL arithmetic shifts are 

used for signed number shifting. In SAL, as the operand is shifted left bit by bit, the 
LSB is filled with Os and the MSB is copied to CF. In SAR, as each bit is shifted 
right, the LSB is copied to CF and the empty bits filled with the sign bit (the MSB). 
SALISAR essentially mUltiply/divide destination by a power of2 for each bit shift. 
Note: "n" must be I or CL. 

SBB Subtract with Borrow 

Flags: Affected: OF, SF, ZF, AF, PF, CF. 
Format: SBB dest,source ;dest = dest - CF - source 
Function: Subtracts source operand from destination, replacing destina­

tion. IfCF =1, it subtracts I from the result; otherwise, it executes like SUB. 

SCAS/SCASB/SCASW Scan Byte or Word String 

Flags: Affected: OF, SF, ZF, AF, PF, CF. 
Format: SCASx 
Function: Scans a string of data pointed by ES:DI for a value that is in AL 

or AX. Often used with the REPEIREPNE prefix. If DF is zero, the address is 
incremented; otherwise, it is decremented. 

SHLISHR Shift LeftiShift Right 

Flags: Affected: OF, SF, ZF, PF, CF. Unpredictable: AF. 
Format: SHx dest,n ;shift unsigned dest left/right n bit positions 
Function: These are logical shifts used for unsigned numbers, meaning that 

the sign bit is treated as data. In SHR, as the operand is shifted right bit by bit and 
copied into CF, the empty bits are filled with Os instead of the sign bit as is the case 
for SAR. In the case of SHL, as the bits are shifted left, the MSB is copied to CF 
and empty bits are filled with 0, which is exactly the same as SAL. In reality, SAL 
and SHL are two different mnemonics for the same opcode. SHLISHR essentially 
multiply/divide the destination by a power of 2 for each bit position shifted. Note: 
"n" must be I or CL. 

STC Set Carry Flag 

Flags: Affected: CF. 
Format: STC 
Function: Sets CF to I. 

STD Set Direction Flag 

Flags: Affected: DF. 
Format: STD 
Function: Sets DF to 1. Used widely with string instructions. As explained 

in the string instructions, if DF = 1, the pointers are decremented. 

STI Set Interrupt Flag 

Flags: Affected: IF. 
Format: STI 
Function: Sets IF to 1, allowing the hardware interrupt to be recognized 

through the INTR pin ofthe CPU. 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



STOS/STOSB/STOSW Store Byte or Word String 

Flags: Unchanged. 
Format: STOSx 
Function: Copies a byte or word from AX or AL to a location pointed to 

by ES:D1 and updates DI to point to the next string element. The pointer DI is 
incremented if DF is zero; otherwise, it is decremented. 

SUB Subtract 

Flags: Affected: OF, SF, ZF, AF, PF, CF. 
Format: SUB dest,source ;dest ~ dest - source 
Function: Subtracts source from destination and puts the result in the 

destination. Sets the carry and zero flag according to the following: 

dest >source 
dest=source 
dest < sou rce 

CF 
o 
o 
1 

ZF 
o 
1 
o 

the result is positive 
the result is 0 
the result is negative in 2's comp 

The steps for subtraction performed by the internal hardware of the CPU 
are as follows: 

I. Takes the 2 's complement of the source 
2. Adds this to the destination 
3. Inverts the carry and changes the flags accordingly 
The source operand remains unchanged by this instruction. 

TEST Test Bits 

Flags: Affected: OF, SF, ZF, PF, CF. Unpredictable: AF. 
Format: TEST dest,source ;performs dest AND source 
Function: Performs a logical AND on two operands, setting flags but 

leaving the contents of both source and destination unchanged. While the AND 
instruction changes the contents of the destination and the flag bits, the TEST 
instruction changes only the flag bits. 

Example: 
Assume that DO and D I of port 27 indicate conditions A and B, respectively, 

if they are high and only one of them can be high at a given time. The TEST 
instruction can be used as follows: 

CASE_A: 

CASE_B: 

IN AL,PORT _27 
TEST AL,OOOO 0001 B 
JNZ CASE_A 
TEST AL,OOOO 0010B 
JNZ CASE_B 

SECTION B.l: THE 8086 INSTRUCTION SET 

;CHECK THE CONDITION A 
;JUMP TO INDICATE CONDITION A 
;CHECK FOR CONDITION B 
;JUMP TO INDICATE CONDITION B 
;THERE IS AN ERROR SINCE NEITHER 
; A OR B HAS OCCURRED. 

869 



WAIT Puts Processor in WAIT State 

Flags: Unchanged. 
Format: WAIT 
Function: Causes the microprocessor to enter an idle state until an external 

interrupt occurs. This is often done to synchronize it with another processor or with 
an external device. 

XCHG Exchange 

Flags: Unchanged. 
Format: XCHG dest,source ;swaps dest and source 
Function: Exchanges the contents of two registers or a register and a 

memory location. 

XLAT Translate 

Flags: Unchanged. 
Format: XLAT 
Function: Replaces contents of AL with the contents of a look-up table 

whose address is specified by AL. BX must be loaded with the start address of the 
look-up table and the element to be translated must be in AL prior to the execution 
of this instruction. AL is used as an offset within the conversion table. Often used 
to translate data from one format to another, such as ASCII to EBCDIC. 

XOR Exclusive OR 

Flags: Affected: CF = 0, OF = 0, SF, ZF, PF. 
Unpredictable: AF. 

Format: XOR dest,source 
Function: Performs a logical exclusive OR on the 

bits of two operands and puts the result in the destination. 
"XOR AX,AX" can be used to clear AX. 

r.. I 
II~ Y ; XXORY --J: 

1\0 0 o! 
p-~------I 

\ 0 I I' I--I-------J\ 
~ 0' I JI 
ill 0 ~ 

SECTION B.2: INSTRUCTION TIMING 

870 

In this section of the appendix we provide clock counts for all the instruc­
tions ofIntel's 8086, 286, 386, and 486 microprocessors. The clock count is the 
number of clocks that it takes the instruction to execute. They are extracted from 
Intel's reference manuals on these microprocessors. The number of clocks for each 
instruction is given with the assumption that the instruction is already fetched into 
the CPU. The actual clock count can vary depending on the memory hardware 
design of the system. Note the following points when calculating the clock counts 
for a given CPU. 

I. In calculating the total clock cycles for the 8086/88, one must add the extra clocks 
associated with the effective address (EA) provided in Table B-3. 

2. In calculating the time required for the 8086, 286, and 386SX microprocessors, its 
I 6-bit external data bus must be taken into consideration. In addition, whether the 
operand address is odd or even must be considered. To reduce the time required to 
fetch data from memory, these CPUs require that the data be aligned on even address 
boundaries. Ifaddresses are not on even boundaries, an extra 4 clock-cycle penalty 
is added when fetching a 16-bit operand. Look at the following examples, assuming 
that DS = 2500H and BX = 3000H. 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



MOV AX,[BX] ;total clocks = 10 + 5 

Since the physical address is 25000H+ 3000H~28000H, an even address, and the 
data bus in the 8086 is 16 bits wide, the contents of memory locations 28000H and 
28001 H will be fetched into the CPU in one memory cycle. In a1l80x86 microproc­
essors, the low byte goes to the low address and the high byte to the high address. 
In the example above, the contents of memory location 28000H will go to register 
AL and 28001H to AH. IfBX ~ 3005H, the physical address would be 25000H + 
3005H ~ 28005H, an odd location, and the clocks required would be as follows due 
to the extra 4 clock penalty for nonaligned data. 

MOV AX, [BX] ;total clocks=10+4+5 

In the instruction above the contents of memory location 28005 are moved to AL 
and 28006H to AH. In actuality, the way the 8086 accesses memory is that in the 
first memory cycle, the 16-bit data from 28004H and 28005H is accessed on the DO 
- Dl5 data bus and then the 16-bit data of memory locations 28006H and 28007H 
is fetched in the second memory cycle using the 16-bit data bus. In other words, 
although memory locations 28004H, 28005H, 28006H, and 28007H were addressed 
by the 8086 in two consecutive memory cycles, only the contents of 28005H and 
28006H are used; the contents of memory locations 28004H and 28007H are 
discarded. For this reason the data must be word (16-bit) aligned in the 16-bit data 
bus microprocessors. What happens if an odd address is accessed in the 8086? It 
still will take only one memory cycle consisting of 4 clocks. For example, in "MOV 
AH,[BX]" with BX ~ 3005H and DS ~ 25000H, the contents of memory locations 
28004H and 28005H both are accessed with one memory cycle, but only the contents 
of address 28005H are fetched into register AH. 

3. In the 8088 microprocessor, the time required to execute an instruction can vary 
from the 8086 since the data bus is only 8 bits in the 8088. A l6-bit operand would 
require two memory cycles (each consisting of 4 clock cycles) to move the operand 
in or out of the microprocessor: for example, 

MOV AL,[BX] 

MOV AX,[BX] 

;total clocks = 10 + 5 

;total clocks = 1 0 + 4 + 5 

4. For conditional jumps and LOOP instructions, the first number is the number of 
clocks if the jump is successful Uump is taken) and the second number is for when 
the jump is not taken (noj ~ no jump). For example, the 8086 column for the JNZ 
instruction has "16,noj 4" for the clock count. The 16 is the clock cycle for the case 
when the jump is taken. If there is no jump, the clock is 4. 

5. The clock number for the 80386SX is the same as the 80386, except for accessing 
32-bit operands, for which an extra 2 clocks should be added since the data bus in 
the 80386SX is 16-bit and the memory cycle time ofthe 80386SX is 2 clocks. 

6. An extra 2 clocks must be added for the 80286 and 80386SX if a 16-bit word operand 
is not aligned and also for the 386 if a 32-bit operand is not aligned at the 32-bit 
boundary. See the discussion above in point 2. 

7. The number of clocks given for the 80486 microprocessor is for situations when the 
operand is in the cache memory of the 486 chip; otherwise, extra clocks should be 
added for the cache miss penalty. For the list of the cache miss penalties, refer to 
Intel's "i486 Microprocessor Programming Reference Manual." 

8. PM (privilege mode) instruction timings are for situations when the CPU is switched 
to protected mode. 

SECTION 8.2: INSTRUCTION TIMING 871 



872 

9. The "m" (often seen in 286 and 386 instructions) represents the number of compo­
nents associated with the next instruction to be executed. The value of m varies 
because the size of the instruction located at the target address can vary. Generally, 
m can be averaged to 2. 

10. The "n" represents the number of repetitions of a given instruction. 

II. Due to the ever-advancing architectural design of the 286/386/486 microproces­
sors, the total clock count for a given program cannot be 100% correct. For this 
reason a I 0% margin of error should be taken into consideration when calculating 
the total clock count of a given program. 

12. With every new generation of80x86, new instructions are added; therefore, there 
is no clock count for the prior generations. This indicated by "--". 

Table B-3: Clock Cycles for Effective Address 
r:~~~~~~~-~-~-~~-~- -~-. 

II Addressing Mode _ . _ .' Operand _ _ J CLK _~~ 
Irllirect ________ ,labe_l ______ .. _J6 ____ , 

II Register indirect __ . _____ [BX] ___ ._ --12- _, 

i~-----'--'-- ::--- -; -, 
II .--------~ BP-.. · -. '-.-~ 

lr;;~ative '--==:~sp= 1;= .~ 
1

1

,-----.----.. -- ---- ----1BP]+disp --' --+2-- ---I' 

i! Indexed relative ________ . I [DI]+disp -----~ .. - _:1 
I , 'I 

If---.-·--·--·_·_·_tlliU+disp ____ ----f-2_._.~ j I Based mdexed ._. __ ._ ~X][SL ___ Cc.--.

17 _) 
, i [BXlrDI' , 7 .j---"_ ._ ._ . ______ . cll.""!.L ___ --+ __ ~_ 

if.---·--------- ~Iill'1I~L_ .. -' ---&----.. -~ Ii 

I~ --.- JIill'][DI]J~_' __ 1 

I! Based jndexed relative ____ -----IlBX](SI]+disp -llL- ~' 
If- .----1!3X][DI]+disp .JL-.-_' 

l

r--- ---1illP][SI]+disp ll __ J 
• I [BPJ[DI]+disp 112..J 
Note: 
These times assume no segment override. If a segment override is used, 2 clock cycles 
must be added. 

(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1989) 

A summary of the clock cycles for various Intel microprocessors, by 
instruction, is given in Table B-4. 

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



Table 8-4: Clock Cycles for Various Intel Microprocessors by Instruction 

Code Description 8086 80286 80386 80486 

AAA ASCII adjust for addition 8 3 4 3 
AAD ASCII adjust for division 60 14 19 14 
AAM ASCII adjust for multiplication 83 16 17 15 
AAS ASCII adjust for subtraction 8 3 4 3 
ADC Add with carry 

reg to reg 3 2 2 1 
mem to reg 9+EA 7 6 2 
reg to mem 16+EA 7 7 3 
immed to reg 4 3 2 1 
immed to mem 17+EA 7 7 3 
immed to acc 4 3 2 1 

ADD Addition 
reg to reg 3 2 2 1 
mem to reg 9+EA 7 6 2 
reg to mem 16+EA 7 7 3 
immed to reg 4 3 2 1 
immed to mem 17+EA 7 7 3 
immed to acc 4 3 2 1 

AND Logical AND 
reg to reg 3 2 2 1 
mem to reg 9+EA 7 6 2 
reg to mem 16+EA 7 7 3 
immed to reg 4 3 2 1 
immed to mem 17+EA 7 7 3 
immed to acc 4 3 2 1 

. ARPL Adjust RPL (requested 
privilege level) 
reg to reg 10 20 9 
reg to mem 11 21 9 

BOUND Check array bounds 13noj 10noj 7noj 
BSF Bit scan forward 

reg to reg 10+3n 6/42 
mem to reg 10+3n 7/43 

BSR Bit scan reverse 
reg to reg 10+3n 6/103 
mem to reg 10+3n 7/104 

BSWAP Byte swap 1 
BT Bit test 

reg to reg 3 3 
reg to mem 12 8 
immed to reg 3 3 
immed to mem 6 3 

BTCI Bit test complemenU 
BTRI Bit test reseU 
BTS Bit test set 

reg to reg 6 6 
reg to mem 13 13 
immed to reg 6 6 
immed to mem 8 8 

SECTION B.2: INSTRUCTION TIMING 873 



Table 8-4: Clock Cycles for Various Intel Microprocessors by Instruction (continued) 

Code_ Description 8086 80286 80386 80486 

CALL Call a procedure 
intrasegment direct 19 7+m 7+m 3 
intrasegment indirect 
through register 16 7+m 7+m 5 
instrasegment indirect 
through memory 21+EA 11+m 10+m 5 
intersegment direct 28 13+m 17+m 18 

486: to same level 20 
486: thru Gate to same level 35 
486: to inner level, no parameters 69 
486: to inner level, x parameter (d) words 77+4x 
486: to TSS 37+TS 
486: thru Task Gate 38+TS 
intersegment direct PM 26+m 34+m 
intersegment indirect 37+EA 16+m 22+m 17 
486: to same level 20 
486: thru Gate to same level 35 
486: to inner level, no parameters 69 
486: to innter level, x parameter (d) words 77+4x 
486: to TSS 37+TS 
486: th ru Task Gate 38+TS 
intersegment indirect PM 29+m 38+m 

CBW Convert byte to word 2 2 3 3 
CDQ Convert double to quad 2 
CLC Clear canry flag 2 2 2 2 
CLD Clear direction flag 2 2 2 2 
CLI Clear interrupt flag 2 3 3 5 
CLTS Clear task SWitched flag 2 5 7 
CMC Complement carry flag 2 2 2 2 
CMP Compare 

reg to reg 3 2 2 1 
mem to reg 9+EA 6 6 2 
reg to mem 9+EA 7 5 2 
immed to reg 4 3 2 1 
immed to mem 10+EA 6 5 2 
immed to acc 4 3 2 1 

CMPSI Compare stringl 
CMPSBI Compare byte stringl 
CMPSW Compare word string 

not repeated 22 8 10 8 
REPE/REPNE CMPS/CMPSB/CMPSW 9+22/rep 5+9/rep 5+9/rep 7+7c 

CMPXCHG Compare and exchange 
reg with reg 6 
reg with mem 7/10 

CWD Convert word to doubleword 5 2 2 3 
CWDE Convert word to extended double 3 3 
DM Decimal adjust for addition 4 3 4 2 
DAS Decimal adjust for subtraction 4 3 4 2 

874 APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



Table 8-4: Clock Cycles for Various Intel Microprocessors by Instruction (continued) 

Code Description 8086 80286 80386 80486 

DEC Decrement by 1 
16-bit reg 3 2 2 1 
8-bit reg 3 2 2 1 
memory 15+EA 7 6 3 

DIV Unsigned division 
8-bit reg 80-90 14 14 16 
16-bit reg 144-162 22 22 24 
double 40 
8-bit mem (86-96)+EA 17 17 16 
16-bit mem (150-168)+EA 25 25 24 
double 40 

ENTER Make stack frame 
W,O 11 10 14 
W,1 15 12 17 
dW,db 12+4(n-1) 15+4(n-1) 17+3n 

ESC Escape 
reg 2 9-20 varies 
mem 8+EA 9-20 varies 

HLT Halt 2 2 5 4 
IDIV Integer division 

8-bit reg 101-112 17 19 19 
16-bit reg 165-184 25 27 27 
32-bit reg 43 43 
8-bit mem (107-118) +EA 20 22 20 
16-bit mem (171-190) +EA 28 30 28 
32-bit reg 46 44 

IMUL Integer multiplication 
8-bit reg 80-98 13 9-14 13-18 
16-bit reg 128-154 21 9-22 13-26 
32-bit reg 9-38 13-42 
8-bit mem (86-104)+EA 16 12-17 13-18 
16-bit mem (134-160)+EA 24 12-25 13-26 
32-bit reg 12-41 13-42 
immed to 16-bit reg 21 9-34 13-18 
immed to 32-bit reg 21 9-38 13-18 
reg to reg (byte) 9-38 13-18 
reg to reg (word) 9-38 13-26 
reg to reg (dword) 9-38 13-42 
mem to reg (byte) 12-25 13-18 
mem to reg (word) 12-25 13-26 
mem to reg (dword) 12-41 13-42 
reg with imm to reg (byte) 9-14 13-18 
reg with imm to reg (word) 9-22 13-26 
reg with imm to reg (dword) 9-38 13-42 
mem with imm to reg (byte) 12-17 13-18 
mem with imm to reg (word) 12-25 13-26 
mem with imm to reg (dword) 12-41 13-42 

SECTION B.2: INSTRUCTION TIMING 875 



Table 8-4: Clock Cycles for Various Intel Microprocessors by Instruction (continued) 

Code Description 8086 80286 80386 80486 

IN Input from I/O port 
fixed port 10 5 12 14 
variable port through DX 8 5 13 14 

INC Increment by 1 
16-bit reg 3 2 2 1 
8-bit reg 3 2 2 1 
mem 15+EA 7 6 3 

INSI Input from port to string 
INSBI Input by1e 
INSWI Input word 
INSD Input double 5 15 17 

PM 9,29 10-32 
REP INS/INSB/INSW 5+4/rep 13+6/rep 
REP INS/INSB/INSW PM (7,27)+6/rep 

INT Interrupt 
type=3 52 23+m 33 
type=3 PM (40,78)+m 59,99 
type3 51 23+m 37 
type3 PM (40,78)+m 59,99 

INTO Interrupt if overflow 
interrupt taken 53 24+m 35 
interrupt not taken 4 3 3 
PM (40,78)+m 59,99 

INVD Invalidate data cache 4 
INVLPG Invalidate TLB entry 12/11 
IRET Return from interrupt 32 17+m 22 15 

PM (31,55)+m 38,82 36 
IRETD Return from interrupt double 22 20 

PM 38,82 36 
JA/ Jump if abovel 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JNBE Jump if not below or equal 
JAEI Jump if above or equall 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JNB Jump if not belowl 
JNA Jump if not above 
JCXZ Jump if CX is zero 18,noj 6 8+m,noj 4 9+m,noj 5 8,noj 5 
JECXZ Jump if ECX is zero 8,noj 5 
JEI Jump if equall 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JZ Jump if zero 
JGI Jump if greater 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JNLE Jump if not less, or equal 
JGEI Jump if greater or equall 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JNL Jump if not less 
JU Jump if lessl 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JNGE Jump if not greater, or equal 
JLEI Jump if less or equall 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JNG Jump if not greater 

876 APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



Table 8-4: Clock Cycles for Various Intel Microprocessors by Instruction (continued) 

Code pescripJion 8086 80286 80386 80486 

JMP Jump 
intrasegment direct short 15 7+m 7+m 3 
intrasegment direct 15 7+m 7+m 3 
intersegment direct 15 11+m 12+m 17 
PM 23+m 27+m 18 
intra segment indirect 
through memory 18+EA 11+m 10+m 5 
intrasegment indirect 
through register 11 7+m 7+m 5 
intersegment indirect 24+EA 15+m 12+m 8 
PM 26+m 27+m 18 
direct Intersegment 17 
486: to same level 19 
486: thru call gate to same level 32 
486: thru TSS 42+TS 
486: thr Task Gate 43+TS 
indirect intersegment 13 
486: to same level 18 
486: thru call gate to same level 31 
486: thru TSS 41+TS 
486: thr Task Gate 42+TS 

JNE! Jump if not equal! 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JNZ Jump if not zero 
JNO Jump if not overflow 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JNP! Jump if not parity! 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JPO Jump if parity odd 
JNS Jump if not sign 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JO Jump if overflow 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JP! Jump if parity! 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
JPE Jump if parity even 
JS Jump if sign 16,noj 4 7+m,noj 3 7+m,noj 3 3,noj 1 
LAHF Load AH from flags 4 2 2 3 
LAR Load access rights 

reg to reg 14 15 11 
mem to reg 16 16 11 

LDS! Load pointer using DS! 
LES Load pointer using ES 16+EA 7 7 6 

PM 21 22 12 
LFS! Load far pointer 
LGS! 
LSS 7 6!12 

PM 22-25 
LEA Load effective address 2+EA 3 2 2,noj 1 
LEAVE High level procedure exit 5 4 5 
LGDT Load global descriptor table 11 11 11 
LlDT Load interrupt desc. table 12 11 11 
LLDT Load local desc. table 

reg 17 20 11 
mem 19 24 11 

LMSW Load machine status word 
reg 3 10 13 
mem 6 13 13 

SECTION 8.2: INSTRUCTION TIMING 877 



Table B-4: Clock Cycles for Various Intel Microprocessors by Instruction (continued) 

Code Description 8086 80286 80386 80486 

LOCK Lock bus 2 0 0 
LODSI Load stringl 
LODSBI Load byte stringl 
LODSW Load word string 

not repeated 12 5 5 5 
repeated 9+13/rep 7+4c 

LOOP Loop 17,noj 5 8+m,noj 4 II+m 7,noj 6 
LOOPEI Loop if equall 
LOOPZ Loop if zero 18,noj 6 8+m,noj 4 II+m 9,noj 6 
LOOPNEI Loop if not equall 
LOOPNZ Loop if not zero 19,noj 5 8+m,noj 4 II+m 9,noj 6 
LSL Load segment limit 

reg to reg 14 20,25 10 
mem to reg 16 21,26 10 

LTR Load task register 
reg 17 23 20 
mem 19 27 20 

MOV Move 
acc to mem 10 3 2 
mem to acc 10 5 4 
reg to reg 2 2 2 1 
mem to reg 8+EA 5 4 1 
reg to mem 9+EA 3 2 1 
immed to reg 4 2 2 1 
immed to mem 10+EA 3 2 1 
reg to SS/DS/ES 2 2 2 3/9 
reg to SS/DS/ES PM 17 18 
mem to SS/DS/ES 8+EA 5 5 3/9 
mem to SS/DS/ES PM 19 19 3 
segment reg to reg 2 2 2 3 
segment reg to mem 9+EA 3 2 3 
control reg to reg 6 4 
reg to control reg 0 10 16 
reg to control reg 2 4 4 
reg to control reg 3 5 4 
debug reg 0-3 to reg 22 10 
debug reg 6-7 to reg 14 10 
reg to debug reg 0-3 22 11 
reg to debug reg 6-7 16 11 
test reg to reg 12 3,4 
reg to test reg 12 6,4 

MOVSI Move stringl 
MOVSBI Move byte stringl 
MOVSW Move word string 

not repeated 18 5 7 7 
REP MOVS/MOVSB/MOVSW 9+17/rep 5+4/rep 8+4/rep 12+3/rep 

MOVSX Move with sign-extend 
reg to reg 3 3 
mem to reg 6 3 

MOVZX Move with zero-extend 
reg to reg 3 3 
mem to reg 6 3 

878 APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



Table B-4: Clock Cycles for Various Intel Microprocessors by Instruction (continued) 

Code Description 8086 80286 80386 80486 

MUL Unsigned multiplication 
8-bit reg 70-77 13 9-14 13/18 
16-bit reg 118-133 21 9-22 13/26 
double 9-38 13/42 
8-bit mem (76-83)+EA 16 12-17 13/18 
16-bit mem ( 124-139)+EA 24 12-25 13/26 
double 12-41 13/42 

NEG Negate 
reg 3 2 2 1 
mem 16+EA 7 6 3 

NOP No operation 3 3 3 3 
NOT Logical NOT 

reg 3 2 2 1 
mem 16+EA 7 6 3 

OR Logical OR 
reg to reg 3 2 2 1 
mem to reg 9+EA 7 6 2 
reg to mem 16+EA 7 7 3 
immed to acc 4 3 2 1 
immed to reg 4 3 2 1 
immed to mem 17+EA 7 7 3 

OUT Output to 1/0 port 
fixed port 10 3 10 16 
fixed port PM 4,24 11,31 
variable port 8 3 11 16 
variable port PM 5,25 10,30 

OUTSI Output string to porll 
OUTSBI Output byte 
OUTSWI Output word 
OUTSD Output double 5 14 17 

PM 8,28 10,32 
REP OUTS/OUTSB/OUTSW 5+4/rep 12+5/rep 
REP OUTS/OUTSB/OUTSW PM (6,26)+5/rep 

POP Pop word off stack 
reg 8 5 4 4 
segment reg 8 5 7 3/9 
segment reg PM 20 21 9 
memory 17+EA 5 5 6 

POPAI Pop all 9 
POPAD Pop all double 19 24 9 
POPF Pop flags off stack 8 5 5 9 
POPFD Pop flags off stack double 5 
PUSH Push word onto stack 

reg 11 3 2 4 
segment reg: ES/SS/CS 10 3 2 3 
segment reg: FS/GS 2 3 
memory 16+EA 5 5 4 
immed 3 2 1 

PUSHA Push All 17 18 11 
PUSHFI Push flags onto stack 
PUSHD Push double flag onto stack 10 3 4 4 

SECTION 8.2: INSTRUCTION TIMING 879 



Table 8-4: Clock Cycles for Various Intel Microprocessors by Instruction (continued) 

Code Description 8086 80286 80386 80486 

RCU Rotate left through carry! 
RCR Rotate right through carry! 

reg with single-shift 2 2 9 3 
reg with variable-shift 8+4!bit 5+n 9 8!30 
mem with single-shift 15+EA 7 10 4 
mem with variable-shift 20+EA+4!bit 8+n 10 9!31 
immed to reg 5+n 9 8!30 
immedto mem 8+n 10 9!31 

RET! Return from procedure! 
RETF! Return far! 
RETN Return near 

intrasegment 16 11+m 10+m 5 
intrasegment with constant 20 11+m 10+m 5 
intersegment 26 15+m 18+m 18 
intersegment PM 25+m,55 32+m,62 13 
intersegment with constant 25 15+m 18+m 33 
intersegment w!constant PM 25+m,55 32+m,68 17 
486: imm. to SP 14 
486: to same level 17 
486: to outer level 33 

ROU Rotate left 
ROR Rotate right 

reg with single-shift 2 2 3 3 
reg with variable-shift 8+4!bit 5+n 3 3 
mem with single-shift 15+EA 7 7 4 
mem with variable-shift 20+EA+4!bit 8+n 7 4 
immed to reg 5+n 3 2 
immed to mem 8+n 7 4 

SAHF Store AH into flags 4 2 3 2 
SAU Shift arithmetic left! 
SARI Shift arighmetic right! 
SHU Shift logical left! 
SHR Shift logical right 

reg with single-shift 2 2 3 3 
reg with variable-shift 8+4!bit 5+n 3 3 
mem with single-shift 15+EA 7 7 4 
mem with variable-shift 20+EA +4!bit 8+n 7 4 
immed to reg 5+n 3 2 
immed to mem 8+n 7 4 

SBB Subtract with borrow 
reg from reg 3 2 2 1 
mem from reg 9+EA 7 7 2 
reg from mem 16+EA 7 6 3 
immed from acc 4 3 2 1 
immed from reg 4 3 2 1 
immed from mem 17+EA 7 7 3 

SCAS! Scan string! 
SCASB! Scan byte string! 

880 APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



Table B-4: Clock Cycles for Various Intel Microprocessors by Instruction (continued) 

Code Description 8086 80286 80386 80486 

SCASW Scan word string 
not repeated 15 7 7 6 
REPE/REPNE SCAS/SCASB/SCASW 9+15/rep 5+8/rep 5+8/rep 7+5/rep 

SET Set conditionally 
reg 4 4or3 
mem 5 3 or4 

SGOT Store global descript. table 11 9 10 
SlOT Store interrupt desc. table 12 9 10 
SLOT Store local desc. table 

reg 2 2 2 
mem 3 2 3 

SHLOI Shift left double precisionl 
SHRO Shift right double 

reg to reg 3 2 
mem to mem 7 3 
reg by CL 3 3 
mem byCL 7 4 

SMSW Store machine status word 
reg 2 10 2 
mem 3 3 3 
memPM 2 

STC Set carry flag 2 2 2 2 
STD Set direction flag 2 2 2 2 
STI Set interrupt flag 2 2 3 5 
STOSI Store stringl 
STOSBI Store by1e stringl 
STOSW Store word string 

not repeated 11 3 4 5 
REP STOS/STOSB/STOSW 9+10/rep 4+3/rep 5+5/rep 7+4/rep 

STR Store task register 
reg 2 2 2 
mem 3 2 3 

SUB Subtraction 
reg from reg 3 2 2 1 
mem from reg 9+EA 7 7 2 
reg from mem 16+EA 7 6 3 
immed from acc 4 3 2 1 
immed from reg 4 3 2 1 
immed from mem 17+EA 7 7 3 

TEST Test 
reg with reg 3 2 2 1 
mem with reg 9+EA 6 5 2 
immed with ace 4 3 2 1 
immed with reg 5 3 2 1 
immed with mem 11+EA 6 5 2 

VERR Verify read 
reg 14 10 11 
mem 16 11 11 

VERW Verify write 
reg 14 15 11 
mem 16 16 11 

SECTION B.2: INSTRUCTION TIMING 881 



Table 8·4: Clock Cycles for Various Intel Microprocessors by Instruction (continued) 

Code Description 8086 80286 80386 80486 

WAIT Wait while TEST pin 
not asserted 4 3 6 1-3 

WBINVD Write-back invalid data cache 5 
XADD Exchange and add 

reg with reg 3 
reg with mem 4 

XCHG Exchange 
reg with acc 3 3 3 3 
reg wtih mem 17+EA 5 5 5 
reg with reg 4 3 3 3 

XLATI Translate 11 5 5 4 
XLATB 
XOR Logical excl usive OR 

reg with reg 3 2 2 1 
mem with reg 9+EA 7 7 2 
reg wtih mem 16+EA 7 6 3 
immed with acc 4 3 2 1 
immed with reg 4 3 2 1 
immed with mem 17+EA 7 7 3 

882 APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 



APPENDIX C: ASSEMBLER 
DIRECTIVES AND NAMING RULES 

This appendix consists of two sections. The first section describes some of 
the most widely used directives in 80x86 Assembly language programming. In the 
second section Assembly language rules and restrictions for names and labels are 
discussed and a list of reserved words is provided. 

SECTION C.1 : 80x86 ASSEMBLER DIRECTIVES 

Directives, or as they are sometimes called, pseudo-ops or pseudo-instruc­
tions, are used by the assembler to help it translate Assembly language programs 
into machine language. Unlike the microprocessor's instructions, directives do not 
generate any opcode; therefore, no memory locations are occupied by directives in 
the final ready-to-run (exe) version of the assembly program. To summarize, 
directives give directions to the assembler program to tell it how to generate the 
machine code; instructions are assembled into machine code to give directions to 
the CPU at execution time. The following are descriptions of the some of the most 
widely used directives for the 80x86 assembler. They are given in alphabetical order 
for ease of reference. 

ASSUME 

The ASSUME directive is used by the assembler to associate a given 
segment's name with a segment register. This is needed for instructions that must 
compute an address by combining an offset with a segment register. One ASSUME 
directive can be used to associate all the segment registers. For example: 

ASSUME CS:name1 ,DS:name2,SS:name3,ES:name4 

where name I, name2, and so on, are the names of the segments. The same result 
can be achieved by having one ASSUME for each register: 

ASSUME CS:name1 
ASSUME DS:name2 
ASSUME SS:name3 
ASSUME ES:nothing 
ASSUME nothing 

The key word "nothing" can be used to cancel a previous ASSUME directive. 

DB (Define Byte) 

The DB directive is used to allocate memory in byte-sized increments. 
Look at the following examples: 

SECTION c'l: 80x86 ASSEMBLER'DIRECTIVES 883 



884 

OATA1 
OATA2 
OATA3 

DB 
DB 
DB 

23 
45,97H,10000011 B 
The planet Earth' 

In DATAl a single byte is defined with initial value 23. DATA2 consists 
of several values in decimal (45), hex (97H), and binary (IOOOOOllB). Finally, in 
DATA3, the DB directive is used to define ASCII characters. The DB directive is 
normally used to define ASCII data. In all the examples above, the address location 
for each value is assigned by the assembler. We can assigned a specific offset address 
by the use of the ORO directive. 

DD (Define Doubleword) 

To allocate memory in 4-byte (32-bit) increments, the DD directive is used. 
Since word-sized operands are 16 bits wide (2 bytes) in 80x86 assemblers, a 
doubleword is 4 bytes. 

VALUE1 DO 
RESULT DO 
OAT4 DO 

4563F57H 
? 
25000000 

;RESERVE 4-BYTE LOCATION 

It must be noted that the values defined using the DD directive are placed 
in memory by the assembler in low byte to low address and high byte to high address 
order. This convention is referred to as little endian. For example, assuming that 
offset address 0020 is assigned to VALUEI in the example above, each byte will 
reside in memory as follows: 

OS:20=(57) 
OS:21 =(3F) 
OS:22=(56) 
OS:23=(04) 

DQ (Define Quadword) 

To allocate memory in 8-byte increments, the DQ directive is used. In the 
80x86 a word is defined as 2 bytes; therefore, a quadword is 8 bytes. 

OAT_64B DO 
OAT8 DO 

5677004EE4FF45AH 
10000000000000 

DT (Define Tenbytes) 

To allocate packed BCD data, 10 bytes at a time, the DT directive is used. 
This is widely used for memory allocation associated with BCD numbers. 

DATA OT 399977653419974 

Notice there is no H for the hexadecimal identifier following the number. 
This is a characteristic particular to the DT directive. In the case of other directives 
(DB, DW, DD, DQ), if there is no H at the end of the number, it is assumed to be in 
decimal and will be converted to hex by the assembler. Remember that the little 
endian convention is used to place the bytes in memory, with the least significant 
byte going to the low address and the most significant byte to the high address. DT 
can also be used to allocated decimal data if "d" is placed after the number: 

DATA OT 65535d ;stores hex FFFF in a 10-byte location 

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 



DUP (Duplicate) 

The DUP directive can be used to duplicate a set of data a certain number 
of times instead of having to write it over and over. 

DATA1 
DATA2 
DATA3 
DATA4 
DATA5 

DB 
DW 
DB 
DB 
DB 

DW (Define Word) 

20 DUP (99) 
6 DUP (5555H) 
10 DUP(?) 
5 DUP (5 DUP (0)) 
10 DUP (OO,FFH) 

;DUPLICATE 99 20 TIMES 
;DUPLICATE 5555H 6 TIMES 
;RESERVE 10 BYTES 
;25 BYTES INITIALIZED TO ZERO 
;20 BYTES ALTERNATE 00, FF 

To allocate memory in 2-byte (16-bit) increments, the OW directive is used. 
In the 80x86 family, a word is defined as 16 bits. 

DATAW_1 DW 
DATAW_2 DW 

5000 
7F6BH 

Again, in terms of placing the bytes in memory the little endian convention 
is used with the least significant byte going to the low address and the most 
significant byte going to the high address. 

END 

Every program must have an entry point. To identify that entry point the 
assembler relies on the END directive. The label for the entry and end point must 
match. 

HERE: MOV AX,DATASEG ;ENTRY POINT OF THE PROGRAM 

END HERE ;EXIT POINT OF THE PROGRAM 

If there are several modules, only one of them can have the entry point, and 
the name of that entry point must be the same as the name put for the END directive 
as shown below: 

;from the main program: 
EXTRN PROG1 :NEAR 

MAIN_PRO: MOV AX,DATASG 
MOV DS,AX 

CALL PROG1 

;from the module PROG1: 
PUBLIC PROG1 

PROG1 PROC 

PROG1 
RET 
ENDP 
END 

SECTION C.I: 80x86 ASSEMBLER DIRECTIVES 

;THE ENTRY POINT 

;THE EXIT POINT 

;RETURN TO THE MAIN MODULE 

;NO LABEL IS GIVEN 

885 



886 

Notice the following points about the above code: 

I. The entry point must be identified by a name. In the example above the entry point 
is identified by the name MAIN ]RO. 

2. The exit point must be identified by the same name given to the entry point, 
MAIN PRO. 

3. Since a given program can have only one entry point and exit point, all modules 
called (either from main or from the submodules) must have directive END with 
nothing after it. 

ENDP (see the PROC directive) 

ENDS (see the SEGMENT and STRUCT directives) 

EQU (Equate) 

To assign a fixed value to a name, one uses the EQU directive. The 
assembler will replace each occurrence of the name with the value assigned to it. 

FIX_VALU 
PORT_A 
COUNT 
MA8K_1 

EQU 
EQU 
EQU 
EQU 

1200 
60H 
100 
00001111B 

Unlike data directives such as DB, OW, and so on, EQU does not assign 
any memory storage; therefore, it can be defined at any time at any place, and can 
even be used within the code segment. 

EVEN 

The EVEN directive forces memory allocation to start at an even address. 
This is useful due to the fact that in 8086, 286, and 386SXmicroprocessors, accessing 
a 2-byte operand located at an odd address takes extra time. The use of the EVEN 
directive directs the assembler to assign an even address to the variable. 

ORG 
OB 
EVEN 
OW 

0020H 
34H 

7F5BH 

The following shows the contents of memory locations: 

08:0020 = (34) 
08:0021 = (? ) 
08:0022 = (5B) 
08:0023 = (7F) 

Notice that the EVEN directive caused memory location OS:0021 to be 
bypassed, and the value for OATA_ 2 is placed in memory starting with an even 
address. 

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 



EXTRN (External) 

The EXTRN directive is used to indicate that certain variables and names 
used in a module are defined by another module. In the absence of the EXTRN 
directive, the assembler would search for the definition and give an error when it 
couldn't find it. The format of this directive is 

EXTRN name1 :typea [,name2:typeb] 

where type will be NEAR or FAR if name refers to a procedure, or will be BYTE, 
WORD, DWORD, QWORD, TBYTE if name refers to a data variable. 

;from the main program: 
EXTRN PROG1 :NEAR 
PUBLIC DATA1 

MAIN PROMOV 
MOV 

AX,DATASG 
DS,AX 

CALL PROG1 

END 

;PROG1 is located in a different file: 
EXTRN DATA1:WORD 
PUBLIC PROG1 

PROG1 PROC 

MOV BX,DATA1 

;THE ENTRY POINT 

;THE EXIT POINT 

RET 
ENDP 
END 

;RETURN TO THE MAIN MODULE 
PROG1 

Notice that the EXTRN directive is used in the main procedure to identify 
PROG I as a NEAR procedure. This is needed because PROG I is not defined in that 
module. Correspondingly, PROG I is defined as PUBLIC in the module where it is 
defined. EXTRN is used in the PROG I module to declare that operand DATA I, of 
size WORD, has been defined in another module. Correspondingly, DATA I is 
declared as PUBLIC in the calling module. 

GROUP 

The GROUP directive causes the named segments to be linked into the same 
64K byte segment. All segments listed in the GROUP directive must fit into 64K 
bytes. This can be used to combine segements of the same type, or different classes 
of segments. An example follows: 

SMALL_SYS GROUP DTSEG,STSEG,CDSEG 

The ASSUME directive must be changed to make the segment registers 
point to the group: 

ASSUME CS:SMALL_SYS,DS:SMALL_SYS,SS:SMALL_SYS 

The group will be listed in the list file, as shown below: 

SECTION C.l: 80x86 ASSEMBLER DIRECTIVES 887 



888 

Segments and Groups: 

Name 

SMALL_SYS .. . 
STSEG ...... . 
DTSEG ...... . 
CDSEG .... . 

INCLUDE 

Length Align Combine Class 

GROUP 
0040 PARA NONE 
0024 PARA NONE 
005A PARA NONE 

When there is a group of macros written and saved in a separate file, the 
INCLUDE directive can be used to bring them into another file. In the program 
listing (.1st file), these macros will be identified by the symbol "C" (or "+" in some 
versions of MASM) before each instruction to indicate that they are copied to the 
present file by the INCLUDE directive. 

LABEL 

The LABEL directive allows a given variable or name to be referred to by 
multiple names. This is often used for multiple definition of the same variable or 
name. The format of the LABEL directive is 

name LABEL type 

where type may be BYTE, WORD, DWORD, QWORD. For example, a variable 
name DATA 1 is defined as a word and also needs to be accessed as 2 bytes, as shown 
in the following: 

DATA B LABEL BYTE 
DATA1 DW 25F6H 

MOV AX, DATA 1 ;AX=25F6H 
MOV BL,DATA_B ;BL=F6H 
MOV BH,DATA_B +1 ;BH=25H 

The following shows the LABEL directive being used to allow accessing a 
32-bit data item in 16-bit portions. 

DATA_16 LABEL 
DATDD_4 DD 

MOV 
MOV 

WORD 
4387983FH 

AX,DATA_16 
DX,DATA_16+2 

;AX=983FH 
;DX=4387H 

The following shows its use in a JMP instruction to go to a different code 
segment. 

PROG_A LABEL 
INITI: MOV 

OUT 

FAR 
AL,12H 
PORT,AL 

In the program above the address assigned to the names "PROG _ A" and 
"!NITI" are exactly the same. The same function can be achieved by the following: 

JMP FAR PTR INITI 

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 

--



LENGTH 

The LENGTH operator returns the number of items defined by a DUP 
operand. See the SIZE directive for an example. 

OFFSET 

To access the offset address assigned to a variable or a name, one uses the 
OFFSET directive. For example, the OFFSET directive was used in the following 
example to get the offset address assigned by the assembler to the variable DATAl: 

DATA1 
ORG 
DW 

5600H 
2345H 

MOV SI,OFFSET DATA1 ;SI=OFFSET OF DATA1 = 5600H 

Notice that this has the same result as "LEA SI,DATAI ". 

ORG (Origin) 

The ORG directive is used to assign an offset address for a variable orname. 
For example, to force variable DATAl to be located starting from offset address 
0020, one would write 

ORG 0020H 
DATA1 DW41F2H 

This ensures the offset addresses of 0020 and 0021 with contents 0020H = (F2) and 
0021H = (41). 

PAGE 

The PAGE directive is used to make the" .1st" file print in a specific format. 
The format of the PAGE directive is 

PAGE [Iines],[columns] 

The default listing (meaning that no PAGE directive is coded) will have 66 
lines per page with a maximum of 80 characters per line. This can be changed to 
60 and 132 with the directive "PAGE 60,132". The range for number of lines is 10 
to 255 and for columns is 60 to 132. A PAGE directive with no numbers will generate 
a page break. 

PROC and ENDP (Procedure and End Procedure) 

Often, a group of Assembly language instructions will be combined into a 
procedure so that it can be called by another module. The PROC and ENDP 
directives are used to indicate the beginning and end of the procedure. For a given 
procedure the name assigned to PROC and ENDP must be exactly the same. 

name1 PROC [attribute] 

name1 ENDP 

SECTION C.l: 80x86 ASSEMBLER DIRECTIVES 889 



890 

There are two choices for the attribute of the PROC: NEAR or FAR. Ifno 
attribute is given, the default is NEAR. When a NEAR procedure is called, only IP 
IS saved since CS of the called procedure is the same as the calling program. If a 
FAR procedure is called, both IP and CS are saved since the code segment of the 
called procedure is different from the calling program. 

PTR (Pointer) 

The PTR directive is used to specify the size of the operand. Among the 
options for size are BYTE, WORD, DWORD, and QWORD. This directive is used 
in many different ways, the most common of which are explained below. 

I. PTR can be used to allow an override of a previously defined data directive. 

DATA1 
DATA2 
DATA3 

DB 
DW 
DD 

MOV 
MOV 

23H,7FH,99H,OB2H 
67F1H 
22229999H 

AX, WORD PTR DATA1 
BX, WORD PTR DATA1 + 2 

;AX=7F23 
;BX,B299H 

Although DATAl was initially defined as DB, it can be accessed using the 
WORD PTR directive. 

MOV AL, BYTE PTR DATA2 ;AL=F1H 

In the above code, notice that DATA2 was defined as WORD but it was 
accessed as BYTE with the help of BYTE PTR. If this had been coded as "MOY 
AL,DATA2", it would generate an error since the sizes ofthe operands do not match. 

MOV 
MOV 

AX, WORD PTR DATA3 
DX, WORD PTR DATA3 + 2 

;AX=9999H 
;DX=2222H 

DATA3 was defined as a 4-byte operand but registers are only 2 bytes wide. 
The WORD PTR directive solved that problem. 

2. The PTR directive can be used to specify the size of a directive in order to help the 
assembler translate the instruction. 

INC [DI] ;will cause an error 

This instruction was meant to increment the contents of the memory 
location(s) pointed at by [OIl. How does the assembler know whether it is a byte 
operand, word operand, or doubleword operand? Since it does not know, it will 
generate an error. To correct that, use the PTR directive to specify the size of the 
operand as shown next. 

INC 
or 
INC 
or 
INC 

BYTE PTR [SI] 

WORD PTR [SI] 

DWORD PTR [SI] 

;increment a byte pointed by SI 

;increment a word pointed by SI 

;increment a doubleword pointed by SI 

3. The PTR directive can be used to specify the distance of a jump. The options for 
the distance are FAR and NEAR. 

JMP FAR PTR INTI ;ensures that it will be a 5-byte instruction 

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 



INITI: MOV AX,1200 

See the LABEL directive to find out how it can be used to achieve the same 
result. 

PUBLIC 

To inform the assembler that a name or symbol will be referenced by other 
modules, it is marked by the PUBLIC directive. Ifa module is referencing a variable 
outside itself, that variable must be declared as EXTRN. Correspondingly, in the 
module where the variable is defined, that variable must be declared as PUBLIC in 
order to allow it to be referenced by other modules. See the EXTRN directive for 
examples of the use of both EXTRN and PUBLIC. 

SEG (Segment Address) 

The SEG operntor is used to access the address of the segment where the 
name has been defined. 

DATA1 DW 2341H 

MOV AX,SEG DATA1 ;AX=SEGMENT ADDRESS OF DATA1 

This is in contrast to the OFFSET directive, which accesses the offset 
address instead of the segment. 

SEGMENT and ENDS 

In full segment definition these two directives are used to indicate the 
beginning and the end of the segment. They must have the same name for a given 
segment definition. See the following example: 

DATSEG 
DATA1 
DATA2 
DATA3 
DATSEG 

SEGMENT 
DB 2FH 
DW 1200 
DD 99999999H 
ENDS 

There are severnl options associated with the SEGMENT directive, as 
follows: 

name1 SEGMENT [align] [combine] [class] 

name1 ENDS 

ALIGNMENT: When several assembled modules are linked together, this 
indicates where the segment is to begin. There are many options, including PARA 
(paragraph = 16 bytes), WORD, and BYTE. If PARA is chosen, the segment starts 
at a hex address divisible by IOH. PARA is the default alignment. In this alignment, 
if a segment for a module finished at 00024H, the next segment will start at address 
00030H, leaving from 00025 to 0002F unused. If WORD is chosen, the segment is 
forced to start at a word boundary. In BYTE alignment, the segment starts at the 
next byte and no memory is wasted. There is also the PAGE option, which aligns 
segments along the I OOH (256) byte boundary. While all these options are supported 
by many assemblers, such as MASM and TASM, there is another option supported 
only by assemblers that allow system development. This option is AT. The AT 

SECTION C.l: 80x86 ASSEMBLER DIRECTIVES 891 



892 

option allows the program to assign a physical address. For example, to burn a 
program into ROM starting at physical address FOOOO, code 

ROM_CODE SEGMENT AT FOOOH 

Due to the fact that option AT allows the programmer to specity a physical 
address that conflicts with DOS's memory management responsibility, many assem­
blers such as MASM will not allow option AT. 

COMBINE TYPE: This option is used to merge together all the similar 
segments to create one large segment. Among the options widely used are PUBLIC 
and STACK. PUBLIC is widely used in code segment definitions when linking 
more than one module. This will consolidate all the code segments of the various 
modules into one large code segment. If there is only one data segment and that 
belongs to the main module, there is no need to define it as PUBLIC since no other 
module has any data segment to combine with. However, if other modules have 
their own data segments, it is recommended that they be made PUBLIC to create a 
single data segment when they are linked. In the absence of that, the linker would 
assume that each segment is private and they would not be combined with other 
similar segments (codes with codes and data with data). Since there is only one 
stack segment, which belongs to the main module, there is no need to define it as 
PUBLIC. The STACK option is used only with the stack segment definition and 
indicates to the linker that it should combine the user's defined stack with the system 
stack to create a single stack for the entire program. This is the stack that is used at 
run time (when the CPU is actually executing the program). 

CLASS NAME: Indicates to the linker that all segments of the same class 
should be placed next to each other by the LINKER. Four class names commonly 
used are 'CODE', 'DATA', 'STACK', and 'EXTRA'. When this attribute is used 
in the segment definition, it must be enclosed in single apostrophes in order to be 
recognized by the linker. 

SHORT 

In a direct jump such as "IMP POINT_A", the assembler has to choose 
either the 2-byte or 3-byte format. In the 2-byte format, one byte is the opcode and 
the second byte is the signed number displacement value added to the IP of the 
instruction immediately following the IMP. This displacement can be anywhere 
between -128 and + 127. A negative number indicates a backward IMP and a 
positive number a forward IMP. In the 3-byte format the first byte is the opcode 
and the next two bytes are for the signed number displacement value, which can 
range from -32,768 to 32,767. When assembling a program, the assembler makes 
two passes througb the program. Certain tasks are done in the first pass and others 
are left to the second pass to complete. In the first pass the assembler chooses the 
3-byte code for the IMP. After the first pass is complete, it will know the target 
address and fill it in during the second pass. If the target address indicates a short 
jump (less than 128) bytes away, it fills the last byte with NOP. To inform the 
assembler that the target address is no more than 128 bytes away, the SHORT 
directive can be used. Using the SHORT directive makes sure that the IMP is a 
2-byte instruction and not 3-byte with I byte as NOP code. The 2-byte IMP requires 
I byte less memory and is executed faster. 

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 



-------------------- -----------------

SIZE 

The size operator returns the total number of bytes occupied by a name. 
The three directives LENGTH, SIZE, and TYPE are somewhat related. Below is a 
description of each one using the following set of data defined in a data segment: 

DATA1 DO 
DATA2 DW 
DATA3 DB 
DATA4 DW 
DATA5 DD 

7 
7 
20 DUP (7) 
100 DUP (7) 
10 DUP (7) 

TYPE allows one to know the storage allocation directive for a given 
variable by providing the number of bytes according to the following table: 

bytes 
1 DB 
2 DW 
4 DD 
8 DO 
10 DT 

For example: 
MOV 
MOV 
MOV 
MOV 

BX,TYPE DATA2 
DX,TYPE DATA1 
AX,TYPE DATA3 
CX,TYPE DATA5 

;BX=2 
;DX=8 
;AX=1 
;CX=4 

When a DUP is used to define the number of entries for a given variable, 
the LENGTH directive can be used to get that number. 

MOV 
MOV 
MOV 

CX,LENGTH DATA4 
AX,LENGTH DATA3 
DX,LENGTH DATA5 

;CX=64H (100 DECIMAL) 
;AX=14H (20 DECIMAL) 
;DX=OA(10 DECIMAL) 

If the defined variable does not have any DUP in it, the LENGTH is assumed 
to be 1. 

MOV BX,LENGTH DATA1 ;BX=1 

SIZE is used to determine the total number of bytes allocated for a variable 
that has been defined with the DUP directive. In reality the SIZE directive basically 
provides the product of the TYPE times LENGTH. 

MOV 
MOV 

STRUC (Structure) 

DX, SIZE DATA4 
CX, SIZE DATA5 

;DX=C8H=200 (100 x 2=200) 
;CX=28H=40 (4 x 10=40) 

The STRUC directive indicates the beginning of a structure definition. It 
ends with an ENDS directive, whose label matches the STRUC label. Although the 
same mnemonic ENDS is used for end of segment and end of structure, the 
assembler knows which is meant by the context. A structure is a collection of data 
types that can be accessed either collectively by the structure name or individually 
by the labels of the data types within the structure. A structure type must first be 
defined and then variables in the data segment may be allocated as that structure 
type. Looking at the following example, the data directives between STRUC and 
ENDS declare what structure ASC_AREA looks like. No memory is allocated for 

SECTION C.I: 80x86 ASSEMBLER'DIRECTIVES 893 



894 

such a structure definition. Immediately below the structure definition is the label 
ASC _INPUT, which is declared to be of type ASC _AREA. Memory is allocated 
for the variable ASC_INPUT. Notice in the code segment that ASC_INPUTcan be 
accessed either in its entirety or by its component parts. It is accessed as a whole 
unit in "MaY DX,OFFSET ASC_INPUT". Its component parts are accessed by 
the variable name followed by a period, then the component's name. For example, 
"MaY BL,ASC _ INPUT.ACT _LEN" accesses the actual length field of ASC _ IN­
PUT. 

;from the data segment: 
ASC_AREA 
MAX_LEN 
ACT_LEN 
ASC_NUM 
ASC_AREA 
ASC_'NPUT 

STRUC 
DB 6 
DB 7 
DB 6 DUP (7) 
ENDS 
ASC_AREA <> 

;defines strue for string input 
; maximum length of input string 
; actual length of input string 
; input string 
;end strue definition 
;alioeates memory for strue 

;from the code segment: 

TITLE 

MOV 
MOV 
INT 

AH,OAH 
DX,OFFSET ASC_INPUT 
21H 

MOV SI,OFFSET ASC_INPUT.ASC_NUM ;SI points to ASCII num 
MOV BL,ASC_INPUT.ACT _LEN ;BL holds string length 

The TITLE directive instructs the assembler to print the title of the program 
on top of each page ofthe ".1st" file. What comes after the TITLE pseudo-instruction 
is up to the programmer, but it is common practice to put the name of the program 
as stored on the disk right after the TITLE pseudo-instruction and then a brief 
description of the function of the program. Whatever is placed after the TITLE 
pseudo-instruction cannot be more than 60 ASCII characters (letters, numbers, 
spaces, punctuation). 

TYPE 

The TYPE operator returns the number of bytes reserved for the named data 
object. See the SIZE directive for examples of its use. 

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 



SECTION C.2: RULES FOR LABELS AND RESERVED NAMES 

Labels in 80x86 Assembly language for MASM 5.1 and higher must follow 
these rules: 

1. Names can be composed of: 
alphabetic characters: A - Z and a - z 
digits: 0 - 9 
special characters: "?" "." "@" "~" 11$" 

2. Names must begin with an alphabetic or special character. Names cannot begin with 
a digit. 

3. Names can be up to 31 characters long. 

4. The special character "." can only be used as the frrst character. 

5. Uppercase and lowercase are treated the same. "NAME 1 " is treated the same as 
IIName 1" and "name 1". 

Assembly language programs have five types of labels or names: 

1. Code labels, which give symbolic names to instructions so that other instructions 
(such as jumps) may refer to them 

2. Procedure labels, which assign a name to a procedure 

3. Segment labels, which assign a name to a segment 

4. Data labels, which give names to data items 

5. Labels created with the LABEL directive 

Code labels 

These labels will be followed by a colon and have the type NEAR. This 
enables other instructions within the code segment to refer to the instruction. The 
labels can be on the same line as the instruction: 

ADD_LP: ADD AL,[BX] 

LOOPADDJP 

or on a line by themselves: 

ADD AL,[BX] 

;Iabel is on same line as the instruction 

;Iabel is on a line by itself 
;ADD_LP refers to this instruction 

SECTION C.2: RULES FOR LABELS AND RESERVED NAMES 895 



Register Names: 

AH AL AX 
DI DL DS 

Instructions: 

AM 
AND 
CMC 
DEC 
IN 
JAE 
JGE 
JNB 
JNLE 
JP 
LDS 
LOOPE 
MUL 
OUT 
RCR 
RET 
SBB 
STI 
XLAT 

896 

Procedure labels 

These labels assign a symbolic name to a procedure. The label can be 
NEAR or FAR. When using full segment definition, the default type is NEAR. 
When using simplified segment definition, the type will be NEAR for compact or 
small models but will be FAR for medium, large, and huge models. For more 
information on procedures, see PROC in Section C.l. 

Segment labels 

These labels give symbolic names to segments. The name must be the same 
in the SEGMENT and ENDS directives. See SEGMENT in Section C.l for more 
information. Example: 

SEGMENT 
OW ? 
ENDS 

Data labels 

These labels give symbolic names to data items. This allows them to be 
accessed by instructions. Directives DB, DW, DD, DQ, and DT are used to allocate 
data. Examples: 

DATA1 
DATA2 
SUM 

DB 
DB 
OW 

43H 
F2H 
? 

Labels defined with the LABEL directive 

The LABEL directive can be used to redefine a label. See LABEL in 
Section C.l for more information. 

Reserved Names 

The following is a list of reserved words in 80x86 Assembly language 
programming. These words cannot be used as user-defined labels or variable names. 

BH BL BP BX CH CL CS CX DH 
DX ES SI SP SS 

MD MM MS ADC ADD 
CALL CBW CLC CLD CLI 
CMP CMPS CWD DM DAS 
DIV ESC HLT IDIV IMUL 
INC INT INTO IRET JA 
JB JBE JCXZ JE JG 
JL JLE JMP JNA JNAE 
JNBE JNE JNG JNGE JNL 
JNO JNP JNS JNZ JO 
JPE JPO JS JZ LAHF 
LEA LES LOCK LODS LOOP 
LOOPNE LOOPNZ LOOPZ MOV MOVS 
NEG NIL NOP NOT OR 
POP POPF PUSH PUSHF RCL 
REP REPE REPNE REPNZ REPZ 
ROL ROR SAHF SAL SAR 
SCAS SHL SHR STC STD 
STOS SUB TEST WAIT XCHG 
XOR 

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 



Assembler operators and directives 

$ + f = ? [ I 
ALIGN ASSUME BYTE COMM COMMENT DB 
DD DF DOSSEG DQ DS DT 
DW DWORD DUP ELSE END ENDIF 
ENDM ENDS EQ EQU EVEN EXITM 
EXTRN FAR FWORD GE GROUP GT 
HIGH IF IFB IFDEF IFDIF IFE 
IFIDN IFNB IFNDEF IF1 IF2 INCLUDE 
INCLUDELIB IRP IRPC LABEL LE LENGTH 
LINE LOCAL LOW LT MACRO MASK 
MOD NAME NE NEAR NOTHING OFFSET 
ORG PAGE PROC PTR PUBLIC PURGE 
QWORD RECORD REPT REPTRD SEG SEGMENT 
SHORT SIZE STACK STRUC SUBTTL TBYTE 
THIS TITLE TYPE WIDTH WORD 
.186 .286 .286P .287 .386 .386P 
.387 .8086 .8087 .ALPHA .CODE .CONST 
.CREF .DATA .DATA? .ERR .ERR1 .ERR2 
.ERRB .ERRDEF .ERRDIF .ERRE .ERRIDN .ERRNB 
.ERRNDEF .ERRNZ .FARDATA .FARDATA? .LALL .LFCOND 
.LlST .MODEL %OUT .RADIX .SALL .SEQ 
.SFCOND .STACK .TFCOND .TYPE .xALL .xC REF 
.xLlST 

SECTION C.2: RULES FOR LABELS AND RESERVED NAMES 897 



APPENDIX D: DOS INTERRUPT 21H 
AND 33H LISTING 

This appendix lists many of the DOS 21 H interrupts, which are used 
primarily for input, output, and file and memory management. In addition, this 
appendix covers some functions of !NT 33H, the mouse handling interrupt. As was 
mentioned in Chapter 5, this interrupt is not a part of DOS or BIOS, but is part of 
the mouse driver software. 

SECTION D.1: DOS 21 H INTERRUPTS 

898 

First, before covering the DOS 21H interrupts, a few notes are given about 
file management under DOS. There are two commonly used ways to access files in 
DOS. One is through what is called a file handle, the other is through an FCB, or 
file control block. These terms are defined in detail below. Function calls OFH 
through 28H use FCBs to access files. Function calls 39H through 62H use file 
handles. Handle calls are more powerful and easier to use. However, FCB calls 
maintain compatibility down to DOS version !.l0. FCB calls have the further 
limitation that they reference only the files in the current directory, whereas handle 
calls reference any file in any directory. FCB calls use the file control block to 
perform any function on a file. Handle calls use an ASCIIZ string (defined below) 
to open, create, delete, or rename a file and use a file handle for I/O requests. There 
are some terms used in the interrupt listing that will be unfamiliar to many readers. 
DOS manuals provide complete coverage of the details of file managment, but a 
few key terms are defined below. 

ASCIIZ string 

This is a string composes of any combination of ASCII characters and 
terminated with one byte of binary zeros (OOH). It is frequently used in DOS 2lH 
interrupt calls to specify a filename or path. The following is an example of an 
ASCIIZ string that was defined in the data segment of a program: 

NAME 1 DB 'C:IPROGRAMSISYSTEM_AIPROGRAM5.ASM',O 

Directory 

DOS keeps track of where files are located by means of a directory. Each 
disk can be partitioned into one or more directories. The directory listing lists each 
file in that directory, the number of bytes in the file, the date and time the file was 
created, and other information that DOS needs to access that file. The familiar DOS 
command "DIR" lists the directory of the current drive to the monitor. 

DTA Disk transfer area 

This is essentially a buffer area that DOS will use to hold data for reads or 
writes performed with FCB function calls. This area can be set up by your program 
anywhere in the data segment. Function call IAH tells DOS the location of the 
DTA. Only one DTA can be active at a time. 

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 



FAT File allocation table 

Each disk has a file allocation table that gives information about the clusters 
on a disk. Each disk is divided into sectors, which are grouped into clusters. The 
size of sectors and clusters varies among the different disk types. For each cluster 
in the disk, the FAT has a code indicating whether the cluster is being used by a file, 
is available, is reserved, or has been marked as a bad cluster. DOS uses this 
information in storing and retrieving files. 

FeB File control block 

One FCB is associated with each open file. It is composed of 37 bytes of 
data that give information about a file, such as drive, filename and extension, size 
of the file in bytes, and date and time it was created. It also stores the current block 
and record numbers, which serve as pointers into a file when it is being read or 
written to. DOS INT 21 H function calls OFH through 28H use FCBs to access files. 
Function OFH is used to open a file, l6H to create a new file. Function calls l4H-
28H perform read/write functions on the file, and l6H is used to close the file. 
Typically, the filename information is set up with function call 29H (Parse File­
name), and then the address of the FCB is placed in DS:DX and is used to access 
the file. 

File handle 

DOS function calls 3CH through 62H use file handles. When a file or 
device is created or opened with one of these calls, its file handle is returned. The 
file handle is used thereafter to refer to that file for input, output, closing the file, 
and so on. DOS has a few predefined file handles that can be used by any Assembly 
language program. These do not need to be opened before they are used: 

Handle value 
0000 
0001 
0002 
0003 
0004 

Refers to 
standard input device (typically, the keyboard) 
standard output device (typically, the monitor) 
standard error output device (typically, the monitor) 
standard auxiliary device (AUX 1) 
standard printer device (PTR 1) 

PSP Program segment prefix 

The PSP is a 256-byte area of memory reserved by DOS for each program. 
It provides an area to store shared information between the program and DOS. 

SECTION D.1: DOS 21H INTERRUPTS 899 



900 

AH Function of INT 21 H 

00 Terminate the program 

Additional Call Registers 
CS - segment address of 
PSP (program segment prefix) 

Result Registers 
None 

Note: Files should be closed previously or data may be lost. 

01 Keyboard Input with echo 

Additional Call Registers Result Registers 
None AL = input character 

Note: Checks for ctrl-break. 

02 Output character to monitor 

Additional Call Registers Result Registers 
DL = character to be displayed None 

03 Asynchronous input from auxiliary device (serial device) 

Additional Call Registers 
None 

04 Asynchronous character output 

Additional Call Registers 
DL = character to be output 

05 Output character to printer 

Additional Call Registers 
DL - character to be printed 

06 Console 1/0 

Additional Call Registers 
DL = OFFH if input 
or character to be 
displayed, if output 

Result Registers 
AL = input character 

Result Registers 
None 

Result Registers 
None 

Result Registers 
AL - OH if no character available 

= character that was input, if 
input successful 

Note: If input, ZF is cleared and AL will have the character. ZF is set if input 
and no character was available. 

APPENDIX D: DOS INTERRUPT 21H AND 338 LISTING 



AH Function of INT 21 H 

07 Keyboard input without echo 

Additional Call Registers Result Registers 
None AL = input character 

Note: Does not check for ctrl-break. 

08 Keyboard input without echo 

Additional Call Registers Result Registers 
None AL = input character 

Note: Checks for ctrl-break. 

09 String output 

Additional Call Registers Result Registers 
DS:DX = string address None 

Note: Displays characters beginning at address until a '$' (ASCII 36) is 
encountered. 

OA String input 

Additional Call Registers 
DS:DX = address at which 
to store string 

Result Registers 
None 

Note: Specify the maximum size of the string in byte 1 of the buffer. DOS will 
place the actual size of the string in byte 2. The string begins in byte 3. 

DB Get keyboard status 

Additional Call Registers 
None 

Note: Checks for ctrl-break. 

Result Registers 
AL - 00 if no character waiting 

= OFFH if character waiting 

DC Reset input buffer and call keyboard input function 

Additional Call Registers 
AL - keyboard function number 
01 H, 06H, 07H, 08H or OAH 

Result Registers 
None 

Note: This function waits until a character is typed in. 

SECTION D.I: DOS 21H INTERRUPTS 901 



902 

AH Function of INT 21 H 

00 Reset disk 

Additional Call Registers Result Registers 
None None 

Note: Flushes DOS file buffers but does not close files. 

OE Set default drive 

Additional Call Registers 
DL = code for drive 
(O=A, 1 =B, 2=C, etc.) 

OF Open file 

Additional Call Registers 
DS:DX - address of FCB 

Result Registers 
AL = number of logical drives 
in system 

Result Registers 
AL = 00 if successful 

= OFFH if file not found 

Note: Searches current directory for file. If found, FCB is filled. 

10 Close file 

Additional Call Registers 
DS:DX = address of FCB 

ResultR~eg~i~st~e~rs~~ ______ _ 
AL = 00 if successful 

= OFFH if file not found 

Note: Flushes all buffers. Also updates directory if file has been modified. 

11 Search for first matching filename 

Additional Call Registers Result Registers 
DS:DX = address of FCB AL = 00 if match is found 

= OFFH if no match found 

Note: Filenames can contain wildcards '?' and "'. 

12 Search for next match 

Additional Call Registers Result Registers 
DS:DX = address of FCB AL = 00 if match found 

= OFFH if no match found 

Note: This call should be used only if previous call to 11 H or 12H has been 
successful. 

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 



AH Function of INT 21 H 

13 Delete file(s) 

Additional Call Registers Result Registers 
DS:DX - address of FCB AL = 00 if file(s) deleted 

= OFFH if no files deleted 

Note: Deletes all files in current directory matching filename, provided that 
they are not read-only. Files should be closed before deleting. 

14 Sequential read 

Additional Call Registers 
DS:DX - address of opened FCB 

Result Registers 
AL - DOH if read successful 

= 01 H if end of file and no 
data is read 

= 02H if DTA is too small to 
hold the record 

= 03H if partial record read and 
end of file is reached 

Note: The file pointer, block pointer, and FCB record pointer are updated 
automatically by DOS. 

15 Sequential write 

Additional Call Registers 
DS:DX = address of opened FCB 

Result Registers 
AL = DOH if write successful 

= 01 H if disk is full 
= 02H if DTA is too small to 

hold the record 

Note: The file pointer, block pointer, and FCB record pointer are updated 
automatically by DOS. The record may not be written physically until a cluster 
is full or the file is closed. 

16 Create/open a file 

Additional Call Registers 
DS:DX = addr. of unopened FCB 

= OFFH if unsuccessful 

Result Registers 
AL = DOH if successful 

Note: If the file already exists, it will be truncated to length O. 

17 Rename file(s) 

Additional Call Registers 
DS:DX = address of FCB 

Result Registers 
AL = DOH if file(s) renamed 

= OFFH if file not found 
or new name already exists 

Note: The old name is in the name position of the FCB; the new name is at 
the size (offset 16H) position. 

SECTION D.I: DOS 21H INTERRUPTS 903 



904 

AH Function of INT 21H 

18 Reserved 

19 Get default drive 

Additional Call Registers Result Registers 
None AL - OH for drive A 

= 1H for drive B 
= 2H for drive C 

1A Specify OTA (disk transfer address) 

Additional Call Registers Result Registers 
DS:DX = DTA None 

Note: Only one DTA can be current at a time. This function must be 
called before FCB reads, writes, and directory searches. 

1 B Get FAT (file allocation table) for default drive 

Additional Call Registers 
None 

Result Registers 
AL = number of sectors per cluster 
CX = number of bytes per sector 
DX = number of cluster per disk 
DS:BX FATid 

1C Get FAT (file allocation table) for any drive 

Additional Call Registers 
DL - drive code 
o forA 
1 for B 
2 for C 

10 Reserved 

1E Reserved 

1F Reserved 

20 Reserved 

21 Random read 

Additional Call Registers 
DS:DX = address of opened FCB 

Result Registers 
AL = number of sectors per cluster 
CX = number of bytes per sector 
DX = number of cluster per disk 
DS:BX FATid 

Result Registers 
AL = DOH if read successful 

= 01 H if end of file and no data read 
= 02H if DTA too small for record 
= 03H if end of file and partial read 

Note: Reads record pointed at by current block and record fields into DTA. 

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 



AH Function of INT 21H 

22 Random write 

Additional Call Registers 
DS:DX = address of opened FCB 
= 01 H if disk is full 
= 02H if DTA too small for record 

Result Registers 
AL - OOH if write successful 

Note: Writes from DTA to record pointed at by current block and record fields. 

23 Get file size 

Additional Call Registers 
DS:DX = addr. of unopened FCB 

of records is set in FCB random­
record field (offset 0021 H) 

= OFFH if no match found 

Result Registers 
AL = OOH if file found, number 

Note: The FCB should contain the record size before the interrupt. 

24 Set random record field 

Additional Call Registers Result Registers 
DS:DX - address of opened FCB None 

Note: This sets the random-record field (offset 0021 H) in the FCB. It is used 
prior to switching from sequential to random processing. 

25 Set interrupt vector 

Additional Call Registers 
DS:DX = interrupt handler addr. 
AL = machine interrupt number 

Result Registers 
None 

Note: This is used to change the way the system handles interrupts. 

26 Create a new PSP (program segment prefix) 

Additional Call Registers Result Registers _____ _ 
DX = segment addr. of new PSP None 

Note: DOS versions 2.0 and higher recommend not using this service, but 
using service 4B (exec). 

SECTION D.I: DOS 21H INTERRUPTS 905 



906 

AH Function of INT 21H 

27 Random block read 

Additional Call Registers 
DS:DX - address of opened FCB 
CX = number records to be read 
= 02H if DTA too small for block 
= 03H if EOF and partial block read 
CX = number of records actually read 

Result Registers 
AL - OOH if read successful 
= 01 H if end of file and no data read 

Note: Set the FCB random record and record size fields prior to the interrupt. 
DOS will update the random record, current block, and current record fields 
after the read. 

28 Random block write 

Additional Call Registers 
DS:DX = address of opened FCB 
CX = number records to write 
= 02H if DTA too small for block 
CX = number of records actually written 

Result Registers 
AL = OOH if write successful 
= 01 H if disk is full 

Note: Set the FCB random record and record size fields prior to the interrupt. 
DOS will update the random record, current block and current record fields 
after the write. If CX = 0 prior to the interrupt, nothing is written to the file 
and the file is truncated or extended to the length computed by the random 
record and record size fields. 

29 Parse filename 

Additional Call Registers 
DS:SI - address of command line 
ES:OI = address of FCB 
AL = parsing flags in bits 0-3 

Bit 0 = 1 if leading separators 
are to be ignored; otherwise 
no scan-off takes place 
Bit 1 = 1 if drive 10 in FCB 
will be changed only if drive 
was specified in command line 
Bit 2 = 1 if filename will be 
changed only if filename was 
specified in command line 
Bit 3 = 1 if extension will be 
changed only if extension was 
specified in command line 

Result Registers 
DS:SI - address of first char after 
ES:OI = address of first byte of 

formatted unopened FCB 
AL = OOH if no wildcards were in 

filename or extension 
= 01 H if wildcard found 
= OFFH if drive specifier is invalid 

Note: The command line is parsed for a filename, then an unopened FCB is 
created at DS:SI. The command should not be used if path names are 
specified. 

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 



AH Function of INT 21 H 

2A Get system date 

Additional Call Registers 
None 

2B Set system date 

Additional Call Registers 
CX - year (1980-2099) 
DH = month (1-12) 
DL = day (1-31) 

2C Get system time 

Additional Call Registers 
None 

Result Registers 
CX - year (1980-2099) 
DH = month (1-12) 
DL = day (1-31) 
AL = day of week code 

(0 = Sunday, ... , 6 = Saturday) 

Result Registers 
AL = OOH if date set 
= OFFH if date not valid 

Result Registers 
CH = hour (0 .. 23) 
CL = minute ( 0 .. 59) 
DH = second (0 .. 59) 
DL = hundredth of second 

(0 .. 99) 

Note: The format returned can be used in calculations but can be converted 
to a printable format. 

20 Set system time 

Additional Call Registers 
CH = hour (0 .. 23) 
CL = minute 
DH = second 
DL = hundredth of second 

2E Set/reset verify switch 

Additional Call Registers 
AL - 0 to turn verify off 
= 1 to turn verify on 

Result Registers 
AL = OOH if time set 

= OFFH if time invalid 

Result Registers 
None 

Note: If verify is on, DOS will perform a verify every time data is written to 
disk. An interrupt call to 54H gets the setting of the verify switch. 

2F Get OTA (disk transfer area) 

Additional Call Registers Result Registers 
None ES:BX = address of DTA 

SECTION D.1: DOS 21H INTERRUPTS 907 



908 

AH Function of INT 21 H 

30 Get DOS version number 

Additional Call Registers 
None 

Result Registers 
AL - major version number (O,2,3,etc.) 
AH = minor version number 

31 Terminate process and stay resident (KEEP process) 

Additional Call Registers Resu It Registers 
AL = binary return code None 

DX = memory size in paragraphs 

Note: This interrupt call terminates the current process and attempts to place 
the memory size in paragraphs in the initial allocation block, but does not 
release any other allocation blocks. The return code in AL can be retrieved 
by the parent process using interrupt 21 call 4DH. 

32 Reserved 

33 Ctrl-break control 

Additional Call Registers 
AL - 00 to get state of 

ctrl-break check 
= 01 to modify state of 

ctrl-break check 
DL = 00 to turn check off 
= 01 to turn check on 

Result Registers 
DL - 00 if ctrl-break check off 

= 01 if ctrl-break check on 

Note: When ctrl-break check is set to off, DOS minimizes the times it checks 
for ctrl-break input. When it is set to on, DOS checks for ctrl-break on most 
operations. 

34 Reserved 

35 Get interrupt vector address 

Additional Call Registers 
AL = interrupt number 

36 Get free disk space 

Additional Call Registers 
DL - drive code 
(0 = default, 
1 = A, 2 = B,etc.) 

Result Registers 
ES:BX = address of interrupt handler 

Result Registers 
AX = FFFFH if drive code invalid 

= sectors per cluster if valid 
BX = number of available clusters 
CX = bytes per sector 
DX = total clusters per drive 

APPENDIX D: DOS INTERRUPT 2lH AND 33H LISTING 



AH Function of INT 21 H 

37 Reserved 

38 Country dependent information 

Additional Call Registers 
DS:DX = address of 32-byte 
block of memory 
AL = function code 

39 Create subdirectory (MKDIR) 

Additional Call Registers 
DS:DX - address of ASCIIZ path 

name of new subdirectory 
AX = 3 if path not found 

3A Remove subdirectory (RMDIR) 

Additional Call Registers 
DS:DX - address of ASCIIZ path 
name of subdirectory 

AX = 3 if path not found 
= 5 if directory not empty 
= 15 if drive invalid 

Result Registers 
None 

Result Registers 
Carry flag - 0 if successful 

= 1 iffailed 
= 5 if access denied 

Result Registers 
Carry flag - 0 if successful 

= 1 if failed 

Note: The current directory cannot be removed. 

38 Change the current subdirectory (CHOIR) 

Additional Call Registers 
DS:DX - address of ASCIIZ path 

name of new subdirectory 

3C Create a file 

Additional Call Registers 
DS:DX = address of ASCIIZ path 

and file name 
CX = file attribute 

Result Registers 
Carry flag - 0 if successful 

= 1 if failed 
AX = 3 if path not found 

Result Registers 
Carry flag = 0 if successful 

= 1 iffailed 
AX = handle if successful 

= 3 if path not found 
= 5 if access denied 

Note: Creates a new file if filename does not exist, otherwise truncates the 
file to length zero. Opens the file for reading or writing. A 16-bit handle will 
be returned in AX if the create was successful. 

SECTION D.I: DOS 21H INTERRUPTS 909 



910 

AH Function of INT 21H 

3D Open file 

Additional Call Registers 
DS:DX - addres of ASCIIZ path 
and file name 
AL = mode flags (see below) 

Result Registers 
Carry flag - 0 if successful 

= 1 if failed 
AX = 16-bit file handle if successful 

= 1 if function number invalid 
= 2 if file not found 
= 3 if path not fou nd 
= 4 if handle not available 
= 5 if access den ied 
= OCH if access code invalid 

AL mode flag summary: 

76543210 (bits) 
000 

Result 
open for read 
open for write 
open for read/write 
reserved 

a 
1 

000 
001 
010 
all 
100 

001 
010 

a 
give others compatible access 
read/write access denied to others 
write access denied to others 
read access denied to others 
give full access to others 
file inherited by child process 
file private to current process 

3E Close file 

Additional Call Registers 
BX - file handle 

Result Registers 
Carry flag = 0 if successful 
= 1 if failed 

AX = 6 if invalid handle or file not open 

Note: All internal buffers are flushed before the file is closed. 

3F Read from file or device 

Additional Call Registers 
DS:DX = buffer address 
BX = file handle 
CX = number of bytes to read 

Result Registers 
Carry flag - 0 if successful 

= 1 iffailed 
AX = number of bytes actually read, 

= 5 if access denied 
= 6 if file not open or invalid handle 

Note: When reading from the standard device (keyboard), at most one line of 
text will be read, regardless of the value of CX. 

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 

--



AH Function of INT 21H 

40 Write to file or devi ce 

Additional Call Registers 
DS:DX = buffer address 
BX = file handle 
CX = number of bytes to write 

Result Registers __ ----;---;--__ 
Carry flag - 0 if successful 

= 1 if failed 
AX = number of bytes actually 

written if successful 
= 5 if access denied 
= 6 if file not open or invalid handle 

Note: If the carry flag is clear and AX is less than CX, a parital record was 
written or a disk full or other error was encountered. 

41 Delete file (UNLINK) 

Additional Call Registers 
DS:DX - address of ASCIIZ 

file specification 

Result Registers 
Carry flag - 0 if successful 

= 1 iffailed 
AX = 2 if file not found 

= 5 if access denied 

Note: This function cannot be used to delete a file that is read-only. First, 
change the file's attribute to 0 by using interrupt 21 call 43H, then delete the 
file. No wildcard characters can be used in the filename. This function works 
by deleting the directory entry for the file. 

42 Move file pointer (LSEEK) 

Additional Call Registers 
BX - file handle 
CX:DX = offset 
AL = 0 to move pointer offset 
bytes from start of file 
= 1 to move pointer offset 

bytes from current location 
= 2 to move pOinter offset 

bytes from end-of-file 

Result Registers __ --:--:-__ 
Carry flag - 0 if successful 
= 1 iffail 
AX = 1 if invalid function number 

= 6 if file not open or invalid handle 
DX:AX = absolute offset from start of 

file if successful 

Note: To determine file size, call with AL = 2 and offset = O. 

43 Get or set file mode (CHMOD) 

Additional Call Registers 
DS:DX - address of ASCIIZ 

file specifier 
AL = OH to get attribute 
= 1 H to set attribute 
CX = attribute if setting 
= attribute codes if 

getting (see below) 

SECTION D.I: DOS 2lH INTERRUPTS 

Result Registers 
Carry flag - 0 if successful 

= 1 iffailed 
CX = current attribute if set 
AX = 1 if invalid function number 

= 2 if file not found 
= 3 if file does not exist or 
path not found 

= 5 if attribute cannot be changed 

911 



912 

AH Function of (NT 21H 

43 Get or set file mode (CHMOD) (continued from previous page) 

76543210 attribute code bits 
o reserved 

o reserved 
x archive 

o directory (do not set with 43H; use extended FCB) 
o volume-label (do not set with 43H; use ext. FCB) 
x system 

x hidden 
x read-only 

44 1/0 device control (IOCTL) 

Additional Call Registers 
AL = OOH to get device info 
= 01 H to set device info 
= 02H char read device to buffer 
= 03H char write buffer to device 
= 04H block read device to buffer 
= 05H block write buffer to device 
= 06H check input status 
= 07H check output status 
= 08H test if block device changeable 
= 09H test if drive local or remote 
= OAH test if handle local or remote 
= OBH to change sharing retry count 
= OCH char device I/O control 
= ODH block device I/O control 
= OEH get map for logical drive 
= OFH set map for logical drive 
DS:DX = data buffer 
BX = file handle; CX = number of bytes 

45 Duplicate a file handle (DUP) 

Additional Call Registers 
BX = opened file handle 

Result Registers 
AX - number of bytes 

transferred if CF=O 
otherwise = error code 

Result Registers 
Carry flag = 0 if successful 

= 1 iffailed 
AX = returned handle if successful 

= 4 if no handle available 
= 6 if handle invalid or not open 

Note: The two handles will work in tandem; for example, if the file pointer of 
one handle is moved, the other will also be moved. 

APPENDIX D: DOS INTERRUPT 2lH AND 33H LISTING 



AH Function of INT 21H 

46 Force a duplicate of a handle (FORCDUP) 

Additional Call Registers 
BX - first file handle 
CX = second file handle 

Result Registers ------;-c---­
Carry flag - 0 if successful 
= 1 if failed 

AX = 4 if no handles available 
= 5 if handle invalid or not open 

Note: If the file referenced by CX is open, it will be closed first. The second 
file handle will be forced to point identically to the first file handle. The two 
handles will work in tandem; for example, if the file pointer of one handle is 
moved, the other will also be moved. 

47 Get current directory 

Additional Call Registers 
OL = drive code 
(0 = default,1 = A, ... ) 
OS:SI = address of 54-byte buffer 

Result Registers 
Carry flag = 0 if successful 
= 1 iffailed 

OS:SI = ASCIIZ path specifier 
AX = OFH if drive specifier invalid 

Note: The returned path name does not include drive information or the 
leading "\". 

48 Allocate memory 

Additional Call Registers 
BX = number of paragraphs 

49 Free allocated memory 

Additional Call Registers 
ES - segment address of block 

being released 

Note: Frees memory allocated by 48H. 

SECTION 0.1: DOS 21H INTERRUPTS 

Result Registers 
Carry flag = 0 if successful 
= 1 iffailed 

AX = points to block if successful 
= 7 if memory control blocks destroyed 
= 8 if insufficient memory 

BX = size of largest block available if failed 

Result Registers 
Carry flag - 0 if successful 
= 1 iffailed 

AX = 7 if memory control blocks destroyed 
= 9 if invalid memory block addr in ES 

913 



914 

AH Function of INT 21H 

4A Modify memory allocation (SETBLOCK) 

Additional Call Registers 
ES ; segment address of block 
BX ; requested new block size 

in paragraphs 

Result Registers 
Carry flag - 0 if successful 

; 1 if failed 
BX ; max available block size 

if failed 
AX ; 7 if memory control blocks destroyed 

; 8 if insufficient memory 
; 9 if invalid memory block 

address in ES 

Note: Dynamically reduces or expands the memory allocated by a previous 
call to interrupt 21 function 48H. 

4B Load andlor execute program (EXEC) 

Additional Call Registers 
DS:DX - address of ASCIIZ path 
and filename to load 

ES:BX ; address of 
parameter block 

AL ; 0 to load and execute 
; 3 to load, not execute 

4C Terminate a process (EXIT) 

Additional Call Registers 
AL; binary return code 

Result Registers 
AX ; error code if CF not zero 

Result Registers 
None 

Note: Terminates a process, returning control to parent process or to DOS. 
A return code can be passed back in AL 

40 Get return code of a subprocess (WAIT) 

Additional Call Registers 
None 

Result Registers 
AL ; return code 
AH ; 00 if normal termination 

; 01 if terminated by ctrl-break 
; 02 if terminated by critical 
device error 

; 03 if terminated by call to 
interrupt 21 function 31 H 

Note: Returns the code sent via interrupt 21 function 4CH. The code can be 
returned only once. 

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 

--



AH Function of INT 21H 

4E Search for first match (FIND FIRST) 

Additional Call Registers 
DS:DX - address of ASCIIZ 
file specification 
CX = attribute to use in search 

Result Registers 
Carry flag - 0 if successful 
= 1 iffailed 

AX = error code 

Note: The filename should contain one or more wildcard characters. Before 
this call, a previous call to interrupt 21 function 1AH must set the address of 
the DTA. If a matching filename is found, the current DTA will be filled in as 
follows: 
Bytes 0 - 20: reserved by DOS for use on subsequent search calls 

21 : attribute found 
22 - 23: file time 
24 - 25: file date 
26 - 27: file size (least significant word) 
28 - 29: file size (most significant word) 
30 - 42: ASCIIZ file specification 

4F Search for next filename match (FIND NEXT) 

Additional Call Registers 
None 

Result Registers 
Carry flag = 0 if successful 

= 1 iffailed 
AX = error code 

Note: The current DTA must be filled in by a previous interrupt 21 4EH or 4FH 
call. The DTA will be filled in as outlined on interrupt 21 function 4E. 

50 Reserved 

51 Reserved 

52 Reserved 

53 Reserved 

54 Get verify state 

Additional Call Registers 
None 

Result Registers 
AL - 00 if verify OFF 

= 01 if verify ON 

Note: The state of the verify flag is changed via interrupt 21 function 2EH. 

55 Reserved 

SECTION D_l: DOS 21H INTERRUPTS 915 



916 

AH Function of INT 21 H 

56 Rename file 

Additional Call Registers 
OS:OX - address of old ASCIIZ 
filename specification 
ES:OI = address of new ASCIIZ 
filename specification 

Result Registers 
Carry flag = 0 if successful 
= 1 iffailed 

AX = 2 if file not found 
= 3 if path or file not found 
= 5 if access denied 
= 11 H if different device in new name 

Note: If a drive specification is used, it must be the same in the old and new 
filename specifications. However, the directory name may be different, 
allowing a move and rename in one operation. 

57 Get/set file date and time 

Additional Call Registers 
AL = 00 to get 

= 01 to set 
BX = file handle 
CX = time if setting 
OX = date if setting 

Result Registers __ --;-; __ 
Carry flag = 0 if successful 

= 1 iffailed 
CX = time if getting 
OX = date if getting 
AX = 1 if function code invalid 
= 6 if handle invalid 

Note: The file must be open before the interrupt. The format of date and time is: 

TIME: 
Bits OBH-OFH hours (0-23) 

05H-OAH minutes (0-59) 
00H-04H number of 2-
second increments (0-29) 

58 Get/set allocation strategy 

Additional Call Registers 
AL = 00 to get strategy 
= 01 to set strategy 
BX = strategy if setting 

00 if first fit 
01 if best fit 
02 if last fit 

59 Get extended error information 

DATE: 
Bits 09H-OFH year (re1.19S0) 

05H-OSH month (0-12) 
00H-04H day (0-31) 

Result Registers 
Carry flag = 0 if successful 

= 1 if failed 
AX = strategy if getting 

= error code if setting 

Additional Call Registers R"'es"'u"'lt'-.!R.."e"'g.,.is".t"'er"'s'--_-,-__ _ 
BX = 00 AX = extended error code 

(see Table 0-1 ) 
BH = error class 
BL = suggested remedy 
CH = error locus 

Warning! This function destroys the contents of registers CL, OX, SI, 01, BP, 
OS, and ES. Error codes will change with future version of ~OS. 

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 



AH Function of INT 21 H 

5A Create temporary file 

Additional Call Registers 
DS:DX - address of ASCIIZ path 
CX = file attribute 
(00 if normal, 01 if read-only, 
02 if hidden, 04 if system) 

Result Registers 
Carry flag = 0 if successful 
= 1 iffailed 
AX = handle if successful 
= error code if failed 
DS:DX = address of ASCIIZ path 

specification if successful 

Note: Files created with this interrupt function are not deleted when the 
program terminates. 

58 Create new file 

Additional Call Registers 
DS:DX - address of ASCIIZ 
fi Ie specification 
CX = file attribute 
00 if normal 
01 if read-only 
02 if hidden 
04 if system 

Result Registers 
Carry flag - 0 if successful 
= 1 if failed 
AX = file handle if successful 
= error code if failed 

Note: This function works similarly to interrupt 21 function 3CH; however, 
this function fails if the file already exists, whereas function 3CH truncates the 
file to length zero. 

5C Control record access 

Additional Call Registers 
AL = 00 to lock ,= 01 to unlock 
BX = file handle 
CX:DX = region offset 
SI:DI = region length 

Result Registers 
Carry flag = 0 if successful 
= 1 iffailed 
AX = error code 

Note: Locks or unlocks records in systems that support multitasking or 
networking. 

50 Reserved 

SECTION D.I: DOS 21H INTERRUPTS 917 



918 

AH AL Function of INT 21 H 

SE 00 Get machine name 

Additional Call Registers 
DS:DX = address of buffer 

Result Registers 
Carry flag = 0 if successful 
= 1 if failed 
CH = 0 if name undefined 

" 0 if name defined 
CL = NETBIOS number if successful 
DS:DX = address of identifier if successful 
AX = error code 

Note: Returns a 15-byte ASCIIZ string computer identifier. 

SE 02 Set printer setup 

Additional Call Registers 
BX - redirection list index 
CX = setup strength length 
DS:SI = address of setup string 

Result Registers 
Carry flag - 0 if successful 
= 1 if failed 

AX = error code 

Note: This function specifies a string that will precede all files sent to the 
network printer from the local node in a LAN. Microsoft Networks must be 
running in order to use this function. 

SE 03 Get printer setup 

Additional Call Registers 
BX - redirection list index 
ES:DI = address of buffer 

SF 02 Get redirection list 

Additional Call Registers 
BX - redirection list index 
DS:SI = address of 16-byte 
device name buffer 

ES:DI = address of 128-byte 
netword name buffer 

Result Registers 
Carry flag - 0 if successful 

= 1 if failed 
AX = error code 
CX = length of setup string 
ES:DI = setup string if successful 

Result Registers 
Carry flag - 0 if successful 
= 1 iffailed 
BH = device status flag 
bit 1 = 0 if valid device 

= 1 in invalid device 
BL = device type 
CX = parameter value 
DS:SI = addr. ASCIIZ local device name 
ES:DI = addr. ASCIIZ network name 
AX = error flag 

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 



AH AL Function of INT 21H 

5F 03 Redirect device 

Additional Call Registers 
BL - device type 
03 printer 
04 drive 

Result Registers 
Carry flag - 0 if successful 
= 1 iffailed 
AX = error code 
CX = caller value 
DS:SI = address of ASCIIZ 
local device name 

ES:DI = address of ASCIIZ 
network name 

Note: Used when operating under a LAN, this function allows you to add 
devices to the network redirection list. 

5F 04 Cancel redirection 

Additional Call Registers 
DS:SI - address of ASCIIZ 
local device name 

Result Registers 
Carry flag = 0 if successful 
= 1 if fail 
AX = error code 

Note: Used when operating under a LAN, this function allows you to delete 
devices from the network redirection list. 

60 Reserved 

61 Reserved 

62 Get PSP (program segment prefix) address 

Additional Call Registers 
None 

Result Registers 
BX - address of PSP 

A summary of the IBM error codes is given in Table D-1. 

SECTION D.I: DOS 2lH INTERRUPTS 919 



TABLE 0-1: Extended Error Code Information 

Code -,-
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37-49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73-79 
80 
81 
82 
83 
84 
85 
86 
87 
88 

Error 
Invalid function number 
file not found 
path not found 
too many open files 
access denied 
invalid handle 
memory control blocks destroyed 
insufficient memory 
invalid memory block address 
invalid environment 
invalid format 
invalid access code 
invalid data 
unknown unit 
invalid disk drive 
attempt to remove current directory 
not same device 
no more files 
attempt to write on write-protected diskette 
unknown unit 
drive not ready 
unknown command 
data error (CRG) 
bad request structure length 
seek error 
unknown media type 
sector not found 
printer out of paper 
write fault 
read fault 
general failure 
sharing violation 
lock violation 
invalid disk change 
FCB unavailable 
sharing buffer overflow 
reserved 
network request not supported 
remote computer not listening 
duplicate name on network 
network name not found 
network busy 
network device no longer exists 
net BIOS command limit exceeded 
network adapter hardware error 
incorrect response from network 
unexpected network error 
incompatible remote adapter 
print queue full 
not enough space for print file 
print file was deleted 
network name not found 
access denied 
network device type incorrect 
network name not found 
network name limit exceeded 
net BIOS session limit exceeded 
temporarily paused 
network request not accepted 
print or disk redirection is paused 
reserved 
file exists 
reserved 
cannot make directory entry 
fail on INT 24 
too many redirections 
duplicate redirection 
invalid password 
invalid parameter 
network device fault 

Reprinted by permission from "IBM Disk Operating System Technical Reference" c. 1987 by International Busi­
ness Machines Corporation. 

920 APPENDIX D: DOS INTERRUPT 2lH AND 33H LISTING 



SECTION 0.2: MOUSE INTERRUPTS 33H 

Mouse interrupts are covered in Section 2 of Chapter 5. The following is a 
partial list of commonly used functions of the mouse handler interrupt, 33H. This 
interrupt is loaded into the system with the mouse interrupt handler, which is loaded 
upon reading the "device=" directive in the CONFIG.SYS file. 

AX Function of INT 33H 

00 Initialize the mouse 

Additional Call Registers 
None 

Resu~ Registers 
AX = OH if mouse not available 

= FFFFH if mouse available 
BX = number of mouse buttons 

Note: This function is called only once to initialize the mouse. If mouse support 
is present, AX=FFFFH and the mouse driver is initialized, the mouse pOinter is 
set to the center of the screen and concealed. 

01 Display mouse pointer 

Additional Call Registers Resu~ Registers 
None None 

Note: This function displays the mouse pointer and cancels any excusion area. 

02 Conceal mouse pointer 

Additional Call Registers Resu~ Registers 
None None 

Note: This function hides the mouse pointer but the mouse driver monitors its 
position. Most programs issue this command before they terminate. 

03 Get mouse location and button status 

Additional Call Registers 
None 

Resu~ Registers 
BX=mouse button status 

bit 0 -- left button 
bit 1 -- right button 
bit 2 -- center button 
=0 if up; =1 if down 

CX = horizontal position 
DX = vertical posnion 

Note: The horizontal and vertical coordinates are retumed in pixels. 

04 Set mouse pOinter location 

Addnional Call Registers 
CX = horizontal position 
DX = vertical position 

Resu~ Registers 
None 

Note: The horizontal and vertical coordinates are in pixels. Will display the 
mouse pOinter only within set limits; will not display in exclusion areas. 

SECTION D.2: MOUSE INTERRUPTS 33H 921 



922 

AX Function of INT 33H 

05 Get button press information 

Additional Call Registers 
BX-button: 0 for left; 

1 for right; 2 for center 

Resu~ Registers 
AX=button status 

bit 0 -- left button 
bit 1 -- right button 
bit 2 -- center butten 
=0 if up; =1 if down 

BX = button press count 
CX=horizontal posttion 
DX=vertical position 

Note: This returns the status of all buttons as well as the number of presses 
for the button indicated in BX when called. The position of the mouse pointer 
is given in pixels and represents the position at the last button press. 

06 Get button release infonmation 

Additional Call Registers 
BX=button: 0 for left; 

1 for right; 2 for center 

Result Registers 
AX-button status 

bit 0 -- left button 
bit 1 -- right button 
bit 2 -- center button 
=0 if up; = 1 if down 

BX = button release count 
CX=horizontal posttion 
DX=vertical position 

Note: This returns the status of all buttons as well as the number of releases 
for the button indicated in BX when called. The posttion of the mouse pointer 
is given in pixels and represents the position at the last button release. 

07 Set horizontal limits for mouse pointer 

Addttional Call Registers 
CX-minimum horizontal position 
DX=maximum horizontal position 

Resu~ Registers 
None 

Note: This sets the horizontallimtts (in pixels) for the mouse pointer. 
After this call, the mouse will be displayed within these limits. 

08 Set vertical limits for mouse pointer 

Addttional Call Registers 
CX=minimum vertical position 
DX=maximum vertical position 

Resu~ Registers 
None 

Note: This sets the vertical limits (in pixels) for the mouse pointer. 
After this call, the mouse will be displayed within these limits. 

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 



AX Function of INT 33H 

10 Set mouse pointer exclusion area 

Additional Call Registers 
CX=upper left horizontal coordinate 
DX=upper left vertical coordinate 
SI=lower right horizontal coordinate 
DI=lower right vertical coordinate 

Resutt Registers 
None 

Note: This defines an area in which the mouse pointer will not display. 
An exclusion area can be cancelled by calling functions 00 or 01. 

24 Get mouse information 

Additional Call Registers 
None 

Resutt Registers 
BH-major version 
BL=minor version 
CH=mouse type 
CL=IRQ number 

Note: This returns the version number (e.g., version 7.5: BH=7,BL=5). 
Mouse type: 1 for bus; 2 for serial; 3 for InPort; 4 for PS/2; 5 for HP; 
IRQ=O for PS/2; otherwise=2, 3, 4, 5 or 7. 

SECTION D.2: MOUSE INTERRUPTS 33H 923 



APPENDIX E: BIOS INTERRUPTS 

This appendix covers the most commonly used BIOS interrupts. INT lOH 
is used extensively for graphics programming. INT 11 H returns the equipment 
configuration and INT 12H returns the memory size. INT 14H is used for asynchro­
nous communication. Two functions ofINT 15H are included: one to initiate a wait 
and another to return extended memory size. INT 16H is used for the keyboard and 
INT 17H for the printer. INT lAH handles the timer and RTC. 

SECTION E.1: INT 10H VIDEO FUNCTION CALLS 

924 

AH Function 

00 Set video mode 

Additional Call Registers Result Registers 
AL - video mode None 

See Table E-2 for a list of available video modes and their definition. 

01 Set cursor type 

Additional Call Registers 
CH - beginning line of cursor 
(bits 0 - 4) 
CL = ending line of cursor 
(bits 0 - 4) 

Result Registers 
None 

Note: All other bits should be set to zero. The blinking of the cursor is 
hardware controlled. 

02 Set cursor position 

Additional Call Registers 
BH - page number 
DH = row 
DL= column 

Result Registers 
None 

Note: When using graphics modes, BH must be set to zero. Text coordinates 
of the upper left-hand corner will be (0,0). 

03H Read cursor position and size 

Additional Call Registers 
BH - page number 

Result Registers 
CH - beginning line of cursor 
CL = ending line of cursor 
DH = row 
DL = column 

Note: When using graphics modes, BH must be set to zero. 

APPENDIX E: BIOS INTERRUPTS 



AH Function 

04H Read light pen position 

Additional Call Registers 
None 

05H Select active display page 

Additional Call Registers 
AL - page number 
(see Table E-1 below) 

Result Registers 
AH = 0 if light pen not triggered 
= 1 if light pen triggered 
BX = pixel column 
CH = pixel row (modes 04H - 06H) 
CX = pixel row (modes ODH - 13H) 
DH = character row 
DL = character column 

Result Registers 
None 

Table E-1: Display Pages for Different Modes and Adapters 

Mode Pages Adapters 
OOH 0-7 CGA EGA MCGA VGA 
01H 0-7 CGA EGA MCGA VGA 
02H 0-3 CGA 

0-7 EGA MCGA VGA 
03H 0-3 CGA 

0-7 EGA MCGA VGA 
07H 0-7 EGA VGA 
ODH 0-7 EGA VGA 
OEH 0-3 EGA VGA 
OFH 0-1 EGA VGA 
10H 0-1 EGA VGA 

All other mode-adapter combinations support only one page. 

06 Scroll window up 

Additional Call Registers 
AL - number of lines to scroll 
BH = display attribute 
CH = y coordinate of top left 
CL = x coordinate of top left 
DH = y coordinate of lower right 
DL = x coordinate of lower right 

Result Registers 
None 

Note: If AL = 0, the entire window is blank. Otherwise, the screen will be 
scrolled upward by the number of lines in AL. Lines scrolling off the top of 
the screen are lost, blank lines are scrolled in at the bottom according to the 
attribute in BH. 

SECTION E.l: INT lOH VIDEO FUNCTION CALLS 925 



926 

AH Function 

07 Scroll window down 

Additional Call Registers 
AL - number of lines to scroll 
BH = display attribute 
CH = Y coordinate of top left 
CL = x coordinate of top left 
DH = Y coordinate of lower right 
DL = x coordinate of lower right 

Result Registers 
None 

Note: If AL = 0, the entire window is blank. Otherwise, the screen will be 
scrolled down by the number of lines in AL. Lines scrolling off the bottom of 
the screen are lost, blank lines are scrolled in at the top according to the 
attribute in BH. 

08 Read character and attribute at cursor position 

Additional Call Registers 
BH = display page 

Result Registers 
AH = attribute byte 
AL = ASCII character code 

09 Write character and attribute at cursor position 

Additional Call Registers 
AL - ASCII character code 
BH = display page 
BL = attri bute 
CX = number of characters to write 

Result Registers 
None 

Note: Does not update cursor position. Use interrupt 10 Function 2 to set 
cursor position. 

OA Write character at cursor position 

Additional Call Registers 
AL - ASCII character code 
BH = display page 
BL = graphic color 
CX = number of characters to write 

Result Registers 
None 

Note: Writes character(s) using existing video attribute. Does not update 
cursor position. Use interrupt 10 Function 2 to set cursor position. 

APPENDIX E: BIOS INTERRUPTS 



AH Function 

OB Set color palette 

Additional Call Registers 
BH - OOH to set border or 
background colors 
= 01 H to set palette 
BL = palette/color 

Result Registers 
None 

Note: If BH = OOH and in text mode, this function will set the border color 
only. If BH = OOH and in graphics mode, this function will set background 
and border colors. If BH = 01H, this function will select the palette. In 320 
x 200 four-color graphics, palettes 0 and 1 are available: 

Pixel Colors for Palettes 0 and 1 

Pixel Palette 0 
0 background 
1 green 
2 red 
3 brown/yellow 

OC Write pixel 

Additional Call Registers 
AL - pixel value 
CX = pixel column 
OX = pixel row 
BH = page 

Palette 1 
background 
cyan 
magenta 
white 

Result Registers 
None 

Note: Coordinates and pixel value depend on the current video mode. 
Setting bit 7 of AL causes the pixel value in AL to be XORed with the current 
value of the pixel. 

00 Read pixel 

Additional Call Registers 
CX - pixel column 
OX = pixel row 
BH = page 

OE TIY character output 

Additional Call Registers 
AL - character 
BH = page 
BL = foreground color 

Result Registers 
AL - pixel value 

Result Registers 
None 

Note: Writes character to the display and updates cursor position. TIY mode 
indicates minimal character processing. ASCII codes for bell, backspace, 
linefeed, and carriage return are translated into the appropriate action. 

SECTION E.l: INT IOH VIDEO FUNCTION CALLS 927 



928 

AH AL Function 

OF Get video mode 

Additional Call Registers 
None 

Result Registers 
AH = width of screen in characters 
AL = video mode 
BH = active display page 

Note: See Table E-2 for a list of possible video modes. 

1000 SubFunctlon OOH: set palette register to color correspondence 

Additional Call Registers 
AL- OOH 
BH = color 
CL = palette register 
(OOH to OFH) 

Result Registers 
None 

1001 SUbFunction 01H: set border color 

Additional Call Registers Result Registers 
AL- 01H None 
BH = border color 

1002 SubFunction 02H: set palette and border 

Additional Call Registers 
AL=02H 
ES:DX = address of color list 

13 Write String 

Additional Call Registers 
AL - write mode 

=OOH, attribute in BL, 
cursor not moved 

=01 H, attribute in BL, 
cursor moved 

=02H,attributes follow char, 
cursor not moved 

= 03H, attributes follow char, 
cursor moved 

ES:BP = address of string 
CX = character count 
DH = initial row position 
DL = intial column position 
BH = page 

Result Registers 
None 

Result Registers 
None 

Note: For AL = 00 and 01, the string consists of characters only, which will 
all be displayed with the attribute in BL. For AL = 02 and 03, the data is 
stored with the attributes (char, attrib, char, attrib, and so on). 

APPENDIX E: BIOS INTERRUPTS 



Table E-2: Video Modes and Their Definition 

Char Textl Max Bu ffer 
AL Pixels Characters box ~ Colors AadQter ~ start 
OOH 320x200 40 x 25 8x8 text 16 * CGA 8 B8000h 

320x350 40 x 25 8x14 text 16 * EGA 8 B8000h 
360x400 40 x 25 9x16 text 16 * VGA 8 B8000h 
320x400 40 x 25 8x16 text 16 * MCGA 8 B8000h 

01H 320x200 40 x 25 8x8 text 16 CGA 8 B8000h 
320x350 40 x 25 8x14 text 16 EGA 8 B8000h 
360x400 40 x 25 9x16 text 16 VGA 8 B8000h 
320x400 40 x 25 8x16 text 16 MCGA 8 B8000h 

02H 640x200 80 x 25 8x8 text 16 * CGA 8 B8000h 
640x350 80 x 25 8x14 text 16 * EGA 8 B8000h 
720x400 80 x 25 9x16 text 16 * VGA 8 B8000h 
640x400 80 x 25 8x16 text 16 * MCGA 8 B8000h 

03H 640x200 80 x 25 8x8 text 16 CGA 8 B8000h 
640x350 80 x 25 8x14 text 16 EGA S B8000h 
720x400 80 x 25 9x16 text 16 VGA S B8000h 
640x400 SO x 25 Sx16 text 16 MCGA 8 BSOOOh 

04H 320x200 40 x 25 8xS graph 4 CGA 1 BSOOOh 
320x200 40 x 25 8x8 graph 4 EGA 1 BSOOOh 
320x200 40 x 25 8x8 graph 4 VGA 1 BSOOOh 
320x200 40 x 25 8xS graph 4 MCGA 1 B8000h 

05H 320x200 40 x 25 SxS graph 4 * CGA 1 BSOOOh 
320x200 40 x 25 Sx8 graph 4 * EGA 1 BSOOOh 
320x200 40 x 25 Sx8 graph 4 * VGA 1 BSOOOh 
320x200 40 x 25 8x8 graph 4 * MCGA 1 BSOOOh 

06H 640x200 SO x 25 8x8 graph 2 CGA 1 BSOOOh 
640x200 SO x 25 8xS graph 2 EGA 1 BSOOOh 
640x200 SO x 25 SxS graph 2 VGA 1 BSOOOh 
640x200 80 x 25 Sx8 graph 2 MCGA 1 BSOOOh 

07H 720x350 80 x 25 9x14 text mono MDA S BOOOOh 
720x350 80 x 25 9x14 text mono EGA 4 BOOOOh 
720x400 80 x 25 9x16 text mono VGA S BOOOOh 

08H reserved 
09H reserved 
OAH reserved 
OBH reserved 
OCH reserved 
ODH 320x200 40 x 25 Sx8 graph 16 EGA 2/4 AOOOOh 

320x200 40 x 25 8x8 graph 16 VGA S AOOOOh 
OEH 640x200 SO x 25 8xS graph 16 EGA 1/2 AOOOOh 

640x200 SO x 25 SxS graph 16 VGA 4 AOOOOh 
OFH 640x350 SO x 25 9x14 graph mono EGA 1 AOOOOh 

640x350 80 x 25 Sx14 graph mono VGA 2 AOOOOh 
10H 640x350 80 x 25 Sx14 graph 4 EGA 1/2 AOOOOh 

640x350 SO x 25 Sx14 graph 16 VGA 2 AOOOOh 
llH 640x480 SO x 30 8x16 graph 2 VGA 1 AOOOOh 

640x4S0 SO x 30 Sx16 graph 2 MCGA 1 AOOOOh 
12H 640x4S0 SO x 30 Sx16 graph 16 VGA 1 AOOOOh 
13H 320x200 40 x 25 SxS graph 256 VGA 1 AOOOOh 

320x200 40 x 25 SxS graph 256 MCGA 1 AOOOOh 

* color burst off 

SECTION E.l: INT lOH VIDEO FUNCTION CALLS 929 



SECTION E.2: INT 11H -- EQUIPMENT DETERMINATION 

Get equipment configuration 

Call Registers 
None 

Result Registers 
AX = equipment code (see below) 

Note: BIOS data area 40:10 is set during POST according to the equipment 
code word, which shows the optional equipment that is attached to the 
system. 

Equipment Code Word 

rd15 d14Td1:JTd1:/Td1iTd1Ofd9 Tdsld7 dB Id5 d4 Id3 Id21d1 1dO I 

L,.J I ,-

Initial Video Mode 
00 = Reserved 
01 = 40><25 color 
10 = 80><25 color 
11 = 80x25 monochrome 

L~ L,J 

Number of Floppy Drives 
00 = 1 drive 
01 = 2 drives 

floppy disk drive installed 

math coprocessor installed 

pointing device installed 

not used 

initial video mode (see below) 

floppy drives (see below) 

not used 

number RS-232 cards 

not used 

intermal modem installed 

number printers installed 

SECTION E.3: INT 12H -- MEMORY SIZE DETERMINATION 

930 

Get Conventional Memory Size 

Call Registers 
None 

Result Registers 
AX = memory size (KB) 

Note: Returns amount of conventional memory available to DOS and 
application programs. 

APPENDIX E: BIOS INTERRUPTS 



SECTION E.4: INT 14H --ASYNCHRONOUS COMMUNICATION 

AH Function 

00 Initialize COM Port 

Additional Call Registers 
AL = parameter (see below) 
DX = port number (0 if COM1, 

1 if COM2, etc.) 

Result Registers 
AH = port status (see below) 
AL = modem status (see below) 

Note 1: The parameter byte in AL is defined as follows 

76543210 
xxx 

xx 
x 

xx 

Indicates 
Baud rate (000=110, 001-150, 
010=300,011=600,100=1200, 
101=2400, 110=4800, 111=9600) 
Parity (01=odd, 11=even, xO=none) 
Stop bits (0 = 1, 1 = 2) 
Word length (10=7 bits, 11=8 bits) 

Note 2: The port status returned in AH is defined as follows 

76543210 
1 

1 
1 

1 
1 

1 
1 

1 

Indicates 
TImed-out 
Transmit shift register empty 
Transmit holding register empty 
Break detected 
Framing error detected 
Parity error detected 
Overrun error detected 
Received data ready 

Note 3: The modem status returned in AL is defined as follows 

76543210 
1 

1 
1 

1 
1 

1 
1 

1 

Indicates 
Received line signal detect 
Ring indicator 
DSR (data set ready) 
CTS (clear to send) 
Change in receive line signal detect 
Trailing edge ring indicator 
Change in DSR status 
Change in CTS status 

SECTION E.4: INT 14H -- ASYNCHRONOUS COMMUNICATION 931 



932 

AH Function 

01 Write character to COM Port 

Additional Call Registers 
AL = character 
OX = port number (0 if COM1, 

1 if COM2, etc.) 

Result Registers 
AH bit 7 -0 if successful, 1 if not 
AH bits 0 - 6 = status if successful 
AL = character 

Note: The status byte in AH, bits 0 - 6, after the call is as follows 

6543210 
1 

1 
1 
1 

1 
1 

1 

02 Read character from COM Port 

Additional Call Registers 
OX = port number (0 if COM 1, 

1 if COM2, etc.) 

Indicates 
Transmit shift register empty 
Transmit holding register empty 
Break detected 
Framing error detected 
Parity error detected 
Overrun error detected 
Receive data ready 

Result Registers 
AH bit 7 =0 if successful, 1 if not 
AH bits 0 - 6 = status if successful 
AL = character read 

Note: The status byte in AH, bits 1 - 4, after the call is as follows 

4321 
1 

1 
1 
1 

03 Read COM Port Status 

Additional Call Registers 
OX = port number (0 if COM1, 

1 if COM2, etc.) 

Indicates 
Break detected 
Framing error detected 
Parity error detected 
Overrun error detected 

Result Registers 
AH =port status 
AL =modem status 

Note: The port status and modem status returned in AH and AL are the same 
format as INT 14H function OOH, described above. 

APPENDIX E: BIOS INTERRUPTS 



AH Function 

04 Extended Initialize COM Port 

Additional Call Registers 
AL = OOH (break), 01 H (no break) 
OX = port number (0 if COM1, 

1 if COM2, etc.) 
BH = parity 

= OOH none 
= 01H odd 
= 02H even 
= 03H stick parity odd 
= 04H stick parity even 

BL = stop bits 
= OOH (one stop bit) 
= 01 H (1.5 bits for 5-bit word) 
= 01 H (2 bits for> 5-bit word) 

CH = word length 
= OOH 5-bit 
= 01H 6-bit 
= 02H 7-bit 
= 03H 8-bit 

CL = baud rate 
= OOH 110 baud 
= 01H 150 baud 
= 02H 300 baud 
= 03H 600 baud 
= 04H 1200 baud 
= 05H 2400 baud 
= 06H 4800 baud 
= 07H 9600 baud 
= 08H 19200 baud 

05 Extended COM Port Control 

Additional Call Registers 
AL = OOH (read control register), 

= 01 H (write to control register) 
OX = port number (0 if COM 1, 

1 if COM2, etc.) 
BL = Modem control register 

(see Figure 9-14) 
bits 7 - 5: reserved 
bit 4: loop 
bit 3: out2 
bit 2: out1 
bit 1: RTS 
bit 0: OTR 

Result Registers 
AH = port status (see function AH=O) 
AL = modem status (see function AH=O) 

Result Registers 
If read subfunction, 

BL = modem control register 
If write subfunction, 

AL = modem status (see Figure 9-16) 
AH = line status (see Figure 9-15) 

Note: Subfunction AL = OOH returns the modem control register contents in 
BL. Subfunction AL = 01 H writes the contents of BL into the modem control 
register and returns modem and line status register contents in AL and AH. 

SECTION E.4: INT 14H - ASYNCHRONOUS COMMUNICATION 933 



SECTION E.5: INT 15H - SYSTEM SERVICES 

AH Function 

86H Wait 

Additional Call Registers 
CX:DX time to wait in ms 

Result Registers 
CF = 0 for successful wait 

= 1 if wait not performed 

Note: The duration of the wait will always be a multiple of 976 microseconds. 

88H Extended memory size determination 

Additional Call Registers Result Registers 
None AX - extended memory (KB) 

Note: Returns the amount of installed extended memory in KB, that is, the 
memory beginning at address 1 OOOOOH, as determined by the POST. If DOS 
memory management is in control, 0 will be returned in AX even if you have 
extended memory. 

SECTION E.6: INT 16H -- KEYBOARD 

934 

AH Function 

OOH Keyboard read 

Additional Call Registers 
None 

Result Registers 
AH = key scan code 
AL = ASCII char 

Note: Reads one character from the keyboard buffer and updates the head 
pointer. 

01 H Get keyboard status 

Additional Call Registers 
None 

Result Registers 
If no key waiting, 

ZF = 1. 
If key waiting, 

ZF = 0, 
AH = key scan code, 
AL = ASCII char. 

Note: If a key is waiting, the scan code and character are returned in AH and 
AL, but the head pointer of the keyboard buffer is not updated. 

APPENDIX E: BIOS INTERRUPTS 



AH Function 

02H Get shift status 

Additional Call Registers 
None 

Result Registers 
AL - status byte 

bit 7: Insert pressed 
bit 6: Caps Lock pressed 
bit 5: Num Lock pressed 
bit 4: Scroll Lock pressed 
bit 3: Alt pressed 
bit 2: Ctrl pressed 
bit 1: Left Shift pressed 
bit 0: Right Shift pressed 

Note: The keyboard status byte returned in AL indicates whether certain keys 
have been pressed. If the bit = 1, the key has been pressed. 

03H Set typematic rate 

Additional Call Registers 
AL= 05H 
BH = repeat delay (see below) 
BL = repeat rate (see below) 

Result Registers 
None 

Note: Sets the rate at which repeated keystrokes are accepted. 
The delay value in BH can be OOH (for 250). 01 H (for 500). 02H (for 750). 
or 03H (for 1000). All values are in milliseconds. The repeat rate in BL 
represents the number of characters per second. Options are: 

OOH: 30.0 
01H:26.7 
02H: 24.0 
03H: 21.8 
04H: 20.0 
05H: 18.5 
06H: 17.1 
07H: 16.0 
08H: 15.0 
09H: 13.3 
OAH: 12.0 

OSH: 10.9 
OCH: 10.0 
ODH: 9.2 
OEH: 8.6 
OFH: 8.0 
10H: 7.5 
11H:6.7 
12H: 6.0 
13H 5.5 
14H: 5.0 
15H: 4.6 

10H Extended keyboard read 

Additional Call Registers 
None 

16H: 4.3 
17H: 4.0 
18H: 3.7 
19H: 3.3 
1AH: 3.0 
1SH: 2.7 
1CH: 2.5 
1DH: 2.3 
1EH: 2.1 
1FH: 2.0 
20H to FFH - reserved 

Result Registers 
AH = key scan code 
AL = ASCII char 

Note: Used in place of INT 16H function OOH to allow program to detect F11. F12. 
and other keys of the extended keyboard. After the read, the head pointer of the 
keyboard buffer is updated. 

SECTION E.6: INT 16H -- KEYBOARD 935 



936 

AH Function 

11 H Extended keyboard status 

Additional Call Registers 
None 

Result Registers 
If no key waiting, 

ZF = 1. 
If key waiting, 

ZF =0, 
AH = key scan code, 
AL = ASCII char. 

Note: This function is used instead of INT 16H function 01 H so that 
programs can detect keys of the extended keyboard such as Fll and F12. 
If a key is waiting, the scan code and character are returned in AH and 
AL, but the head pointer of the keyboard buffer is not updated. 

12H Extended shift status 

Additional Call Registers 
None 

Result Registers 
AL - shift status 

bit 7: Insert locked 
bit 6: Caps Lock locked 
bit 5: Num Lock locked 
bit 4: Scroll Lock locked 
bit 3: Alt pressed 
bit 2: Clrl pressed 
bit 1: Left Shift pressed 
bit 0: Right Shift pressed 

AH = extended shift status 
bit 7: SysRq pressed 
bit 6: Caps Lock pressed 
bit 5: Num Lock pressed 
bit 4: Scroll Lock pressed 
bit 3: Right Alt pressed 
bit 2: Right Ctrl pressed 
bit 1: Left Alt pressed 
bit 0: Left Ctrl pressed 

Note: The keyboard status bytes returned in AL and AH indicate whether 
certain keys have been pressed. If the bit = 1, the key has been pressed. 

APPENDIX E: BIOS INTERRUPTS 



SECTION E.7: INT 17H -- PRINTER 

AH Function 

OOH Print character 

Additional Call Registers 
AL - character to print 
OX = printer (0 for LPT1, 

1 for LPT2, 2 for LPT3) 

01 H Initialize printer port 

Additional Call Registers 
OX = printer (0 for LPT1, 

1 for LPT2, 2 for LPT3) 

02H Read status 

Additional Call Registers 
OX - printer (0 for LPT1 , 

1 for LPT2, 2 for LPT3) 

Result Registers 
AH - status 

bit 7: printer not busy 
bit 6: printer acknowledge 
bit 5: out of paper 
bit 4: printer selected 
bit 3: 1/0 error 
bits 2-1: reserved 
bit 0: printer timed-out 

Result Registers 
AH = status (see function OOH) 

Result Registers 
AH - status (see function OOH) 

SECTION E.8: INT 1AH - TIMER AND REAL-TIME CLOCK SERVICES 

AH Function 

OOH Read system-timer time counter 

Additional Call Registers 
None 

Result Registers 
CX = high portion of count 
OX = low portion of count 
AL = 0 if 24 hours has not passed 

since last read 
> 0 if 24 has passed since last read 

Note: This function returns the number of ticks since midnight. A second is 
about 18.2 ticks. When the number of ticks indicates that 24 hours has 
passed, AL is incremented and the tick count is reset to zero. Calling this 
function resets AL so that whether 24 hours has passed can only be 
determined once a day. 

SECTION E.7: INT 17H -- PRINTER 937 



938 

AH Function 

01 H Set system-timer time counter 

Additional Call Registers 
CX = high portion of tick count 
DX = low portion of tick count 

Result Registers 
None 

Note: Calling this function will cause the timer overflow flag to be reset. 

02H Read real-time clock time 

Additional Call Registers 
None 

Result Registers 
CH - hours 
CL = minutes 
DH = seconds 
DL = 01 for daylight savings option 

= 00 for no option 
CF = 0 if clock operating, otherwise = 1 

Note: Hours, minutes, and seconds are returned in BCD format.This function 
is used to get the time in the CMOS time/date chip. 

03H Set real-time clock time 

Additional Call Registers 
CH = hours 
CL = minutes 
DH = seconds 
DL = 01 for daylight savings option 

= 00 for no option 

Result Registers 
None 

Note: Hours. minutes. and seconds are in BCD format. This function is used 
to set the time in the CMOS time/date chip. 

04H Read real-time clock date 

Additional Call Registers 
None 

Result Registers 
CH - century (19 or 20) 
CL = year 
DH = month 
DL = day 
CF = 0 if clock operating. otherwise = 1 

Note: Century. year, month. and day are in BCD format. This function is used 
to get the date in the CMOS time/date chip. 

APPENDIX E: BIOS INTERRUPTS 



AH Function 

OSH Set real-time clock date 

Additional Call Registers 
CH = century (19 or 20) 
CL = year 
DH = month 
DL = day 

Result Registers 
None 

Note: Century, year, month, and day are in BCD format. This function is used 
to set the date in the CMOS time/date chip. 

SECTION E.8: INT lAH -- TIMER AND REAL-TIME CLOCK SERVICES 939 



APPENDIX F: ASCII CODES 

Ctrl Dec Hex Ch Code Dec Hex Ch Dec Hex Ch Dec Hex Ch 

A@ 0 00 NUL 32 20 64 40 @ 96 60 , 
AA 1 01 Q SOH 33 21 ! 65 41 A 97 61 a 
AB 2 02 • STX 34 22 " 66 42 B 98 62 b 
AC 3 03 • ETX 35 23 # 67 43 C 99 63 c 
AD 4 04 • EOT 36 24 $ 68 44 D 100 64 d 
AE 5 05 '" ENQ 37 25 % 69 45 E 101 65 e 
AF 6 06 • ACK 38 26 & 70 46 F 102 66 f 
AG 7 07 • BEL 39 27 , 71 47 G 103 67 g 
AH 8 08 C BS 40 28 ( 72 48 H 104 68 h 
AI 9 09 0 HT 41 29 ) 73 49 I 105 69 i 
AJ 10 OA ~ LF 42 2A * 74 4A J 106 6A j 
AK 11 OB cr VT 43 2B + 75 4B K 107 6B k 
AL 12 OC Q FF 44 2C , 76 4C L 108 6C 1 
AM 13 OD ) CR 45 2D - 77 4D M 109 6D m 
AN 14 OE ~ SO 46 2E . 78 4E N 110 6E n 
AO 15 OF l:> SI 47 2F / 79 4F 0 111 6F 0 
Ap 16 10 ~ DLE 48 30 0 80 50 P 112 70 P 
AQ 17 11 .. DC1 49 31 1 81 51 Q 113 71 q 
AR 18 12 t DC2 50 32 2 82 52 R 114 72 r 
AS 19 13 !! DC3 51 33 3 83 53 S 115 73 5 
AT 20 14 ~ DC4 52 34 4 84 54 T 116 74 t 
AU 21 15 § NAK 53 35 5 85 55 U 117 75 u 
AV 22 16 - SYN 54 36 6 86 56 V 118 76 v 
AW 23 17 t ETB 55 37 7 87 57 W 119 77 w 
AX 24 18 t CAN 56 38 8 88 58 X 120 78 x 
Ay 25 19 • EM 57 39 9 89 59 Y 121 79 Y 
AZ 26 1A -+ SUB 58 3A : 90 5A Z 122 7A z 
A [ 27 1B ~ ESC 59 3B ; 91 5B [ 123 7B { 
A\ 28 1C ~ FS 60 3C < 92 5C \ 124 7C I 

I 
A) 29 1D ... GS 61 3D = 93 5D 1 125 7D } 
A A 30 1E ... RS 62 3E > 94 5E A 126 7E -
A 31 1F " US 63 3F ? 95 5F 127 7F (") 
- -

940 APPENDIX F: ASCII CODES 



APPENDIX G: 110 ADDRESS MAPS 

SECTION G.1: IBM PC AT 1/0 ADDRESS MAP 

Hex Range 

000 - 01F 
020 - 03F 
040 - 05F 
060 - 06F 
070 - 07F 
080 - 09F 
OAO - OBF 
OCO-ODF 
OFO 
OF1 
OF8 - OFF 
1FO-1F8 
200 - 207 
20C - 20D 
21F 
278 - 27F 
2BO-2DF 
2E1 
2E2 & 2E3 
2F8 - 2FF 
300 - 31F 
360 - 363 
364 - 367 
368 - 36B 
36C - 36F 
378 - 37F 
380 - 38F 
390 - 393 
3AO-3AF 
3BO - 3BF 
3CO'3CF 
3DO-3DF 
3FO - 3F7 
3F8 - 3FF 
6E2 & 6E3 
790 - 793 
AE2&AE3 
B90 - B93 
EE2 & EE3 
1390 -1393 
22E1 
2390 - 2393 
42E1 
62E1 
82E1 
A2E1 
C2E1 
E2E1 

Device 

DMA controller 1, 8237A-5 
Interrupt controller 1, 8259A, Master 
Timer, 8254-2 
8042 (keyboard) 
Real-time clock, NMI (non-maskable interrupt) mask 
DMA page register, 74LS612 
Interrupt controller 2, 8237A-5 
DMA controller 2, 8237 A-5 
Clear math coprocessor busy 
Reset math coprocessor 
Math coprocessor 
Fixed disk 
Game I/O 
Reserved 
Reserved 
Parallel printer port 2 
Alternate enhanced graphics adapter 
GPIB (adapter 0) 
Data acquisition (adapter 0) 
Serial port 2 
Prototype card 
PC network (low address) 
Reserved 
PC network (high address) 
Reserved 
Parallel printer port 1 
SDLC, bisynchronous 2 
Cluster 
Bisynchronous 1 
Monochrome display and printer adapter 
Enhanced graphics adapter 
Color/graphics monitor adapter 
Diskette controller 
Serial port 1 
Data acquisition (adapter 1) 
Cluster (adapter 1) 
Data acquisition (adapter 2) 
Cluster (adapter 2) 
Data acquisition (adapter 3) 
Cluster (adapter 3) 
GPIB (adapter 1) 
Cluster (adapter 4) 
GPIB (adapter 2) 
GPIB (adapter 3) 
GPIB (adapter 4) 
GPIB (adapter 5) 
GPIB (adapter 6) 
GPIB (adapter 7) 

Note: I/O address, hex 000 to OFF, are reserved for the system I/O board. Hex 100 to 3FF are available on the 
I/O channel. 

Reprinted by permission from "IBM Technical Reference Personal Computer AT" 
c. 1985 by International Business Machines Corporation. 

SECTION G.l: IBM PC AT 110 ADDRESS MAP 941 



SECTION G.2: IBM PS/2 110 ADDRESS MAP 

Hex Range 

0000 - 001 F 
0020,0021 
0040. 0042 - 0044. 0047 
0060 
0061 
0064 
0070,0071 
0081 - 0083,0087 
0089 - 008B, 008F 
0090 
0091 
0092 
0094 
0096 
OOAO - 00A1 
OOCO - OODF 
00EO,00E1 
OOFO - OOFF 
0100 - 0107 
01FO - 01F8 
0278 - 027B 
02F8 - 02FF 
0378 - 037B 
03B4, 03B5, 03BA 
03BC - 03BF 
03CO - 03C5 
03C6 - 03C9 
03CA, 03CC, 03CE, 03CF 
03D4, 03D5, 03DA 
03FO - 03F7 
03F8 - 03FF 

Device 

DMA controller (0 - 3) 
Interrupt controller (Master) 
System timers 
Keyboard, auxiliary device 
System control port B 
Keyboard, auxiliary device 
RT/CMOS and NMI mask 
DMA page registers (0 - 3) 
DMA page registers (4 - 7) 
Central arbitration control point 
Card selected feedback register 
System control port A 
System board enable/setup register 
Adapter enable/setup register 
Interrupt controller (slave) 
DMA controller (4 - 7) 
Memory encoding registers 
Math coprocessor 
Programmable option select 
Fixed disk drive controller 
Parallel port 3 
Serial port 2 (RS-232C) 
Parallel port 2 
Video subsystem 
Parallel port 1 
Video sybsystem 
Video DAC 
Video subsystem 
Video subsystem 
Diskette drive controller 
Serial port 1 (RS-232C) 

Reprinted by permission from "18M Personal SystemJ2 Hardware Interface Technical Reference" 
c. 1988 by International Business Machines Corporation. 

942 APPENDIX G: 1/0 ADDRESS MAPS 



SECTION G.3: ISA STANDARD 1/0 ADDRESS PORTS 

This section lists the ISA computer 110 address ports as supported by Intel's 
SL SuperSet chips. The SL SuperSet chips, the Intel 386SL and Intel 486SL, consist 
of the core processor (386 or 486) and 110 peripheral components. They support 
ISA standard peripherals. 

I/O PORT LIST 

The following pages contain descriptions of all the I/O ports supported by the SL 
SuperSet. 

Address R/W/S Description 

OH RW DMA Channel 0 base and current address 

Loaded with DMA base address and incremented as transfers take place. 
Low byte accessed after clearing byte pointer, address OOOCH. 

Upper byte loaded or read after low byte access. 

1H RW DMA Channel 0 base and current word count 

Low byte of word count. Count = value + 1 transfers. Accessed after byte 
pointer is cleared (OOOCH.) Current count is read back. 

Upper byte loaded or read after low byte access. 

2H RW DMA Channel 1 base and current address 

Loaded with DMA base address and incremented as transfers take place. 
Low byte accessed after clearing byte pointer, address OOOCH. 

Upper byte loaded or read after low byte access. 

3H RW DMA Channel 1 base and current word count 

Low byte of word count. Count = value + 1 tranfers. Accessed after byte 
pOinter is cleared (OOOCH). Current count is read back. 

Upper byte loaded or read after low byte access. 

4H RW DMA Channel 2 base and current address 

Loaded with DMA base address and incremented as tranfers take place. 
Low byte accessed after clearing byte pointer, address OOOCH. 

Upper byte loaded or read after low byte access. 

SH RW DMA Channel 2 base and current word count 

Low byte of word count. Count = value + 1 transfers. Accessed after byte 
pointer is cleared (OOOCH). Current count is read back. 

Upper byte loaded or read after low byte access. 

6H RW DMA Channel 3 base and current address 

Loaded with DMA base address and incremented as tranfers take place. 
Low byte accessed after clearing byte pointer, address OOOCH. 

Upper byte loaded or read after low byte access. 

(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1992) 

SECTION G.3: ISA STANDARD liO ADDRESS PORTS 943 



IJ:> 
~ 
~ 

'" ro 
intel· I/O PORT UST intel· 1/0 PORT LIST 

"5. 
il 
0-
cr" 

Add .... R/W/S DncrIpIIon Add .... R/W/S o.acrlptlon 

" "' ro 7H RW DMA Channel 3 base and current word count OBH WO Mode Register, DMA controller 1 

3 
~. 

Low byte of word count. Count = value + 1 transfers. Accessed after byte 
pointer is cleared (OOOCH). Current count is read back. 

Bits [7,6] Mode 
0,0 Demand mode 

o· , 
0 
~ 

~ 
(") 
0 -a 
§. 
o· 
? 
n 
0 

"' 

Upper byte loaded or read after low byte access. 

BH WO Command register, OMA controller ,. 

Bit 7 : DACK sense, o-ac:tIve low, l-active high 
Bit 6 : CREQ sense, o-actIve high, I-active low 
Bit 5 : late write, 1-extended write, x-if 83 = 1 
Bit 4 : O-fixed priority, 1-rotating priority 
Bit 3 : D-normal timing, 1-compressed timing 
Bit 2 : O-corItroUer enable, l-controller disable 
Bit 1 : Channel 0 address hold, Q-disable. 1-enable 
Bit 0 : Memory to Memory transfer .. Q-disable, I-enable 

0,1 Signal mode 
I,D Block mode 
1,1 cascade mode 

Bits [4-5] : Reserved 
Bits [3,2] Operation 

0,0 Verify 
0,1 Write 
I,D Read 
1,1 Reserved 

Bits {1,0] channel select 
0,0 0 
0,1 1 
1,0 2 

~. BH RO Status Register, DMA controller 1 1,1 3 

" 
~ 

Bit 7 = 1 channel 3 request 
Bit 6 = 1 channel 2 request 
Bit 5 '" 1 channell request 

OCH WO Clear byte pointer, DMA controller 1 

(") 
0 -a 

Bit 4 = 1 channel 0 request 
Bit 3 = 1 channel 3 reached TC 
Bit 2 = 1 channel 2 reached TC 

ooH WO tJlaster Clear, DMA controller 1 

ODH RO Temporary Register, DMA controller 1 
~ Bit 1 = , channell reached 1C 
~ 

.<::e 
Bit 0 = , channel 0 reached TC OEH WO Clear Mask Register, DMA controller 1 

9H WO Request Register, DMA controller 1 OFH WO Write all Mask Register Bits, DMA controller 1 

> 
"1:1 
"1:1 
t"'l 
Z 
t:I -X 

Bits 13-71 : Reserved 
Bit 2 : O-reset request bit, l-set request bit 
Bits [1,01 channel select 
0,0 0 
0,1 1 
I,D 2 
1,1 3 

20H WO Initialization Control Word ICW1, 
Interrupt Controller 1 Bits {5-7] : MCS SO/85 mode only 
Bit 4 = 1,mustbeset~ 
Bit 3 : Trigger mode, O-edge, Havel 
Bit 2 : Call address interval, 0-8, 1-4 
Bit 1 : Mode, O-cascade, 1-single 
Bit 0 : O-no ICW4 needed, l-ICW4 needed 

S? OAH WO Mask Register, DMA controller 1 
21H WO Initialization Control Word 1CW2, 

Interrupt Controller 1 -~ 0 
> 
t:I 
t:I 

~ 

Bits [3-7: : Reserved 
Bit 2 : O-clear mask bit. 1-set mask bit 
Bits [1,01 channel select 
0,0 0 
0,1 1 
I,D 2 
1,1 3 

BIts {3-7) : Interrupt type, MCS 86,88 mode 
BIts {0-2] : Reserved, MCS 80,85 mode only 

21H WO Initialization Control WOld 1CW3 (Master Device) 
Interrupt Controller 1 

Bits {0-7] : O-IR input has no slave controller 
l-IR Input has a slave controller 

'" Compressed timing and memory to memory transfer functions are not supported. 

'" 
~ 
> 
"1:1 ... A-3 

'" 



'" t""I 
(') 

intel· 1/0 PORTUST intel· 
, 

1/0 PORT LIST 

.., 
" 0 .... 
" 0 5 Z " Q. 

C'l or 
'< ... " .. 
~ . .... 

'" ~. > 0 
0 

'" g, 
~ a-

t!. Z () 

I::l 0 

> 1 ~ p 

~ () 
0 0 " '< 

> ,. 
~ I::l 

I::l ;a 
t!. 

~ () 

~ '" '" :0 
"Ii ~ 

0 ~ 

~ 
'" 

--- R/WIS -..... 
21H WO Initialization Control Word 1CW3 (Slaw Devioe) 

Interrupt Controller 1 

... [3-7) ,0 i 

Bits [2,1 ,OJ Slave 10 
0,0,0 0 
0,0,1 1 
0,1,0 2 

I 0,1,1 3 
1,0,0 4 
1,0,1 5 
1,1,0 • 1,1,1 7 

i 

21H WO Initialization Control Word ICW4, 
Interrupt Controller 1 

I 
Bits [5-7] = 0, Reserved 
Bit 4 : Fully nested mode 

o.not special, I-special 
Bits [3,2J Mode 

I 

0,0 non-buffered mode 
0,1 non-buffered mode 
1,0 slave buffered 
1,1 master buffered 

Bit 1 : End of interrupt 

I 

O-nonnal, l-automatic 
Bit 0 : O-MCS 80/85 mode 

1-8086/8088 mode 

21H RW Operation Control Word OCW1, 

I 
Interrupt Controller 1 

_ .... 
R/WIS -pilon 

22H RW CPU Power Mode Register 

Bit 15 : De-T urbo select/IOCFGOPN 
Bit 14 : 0, Reserved 
Bits [11-13J : Slow numerics option select 
Bits [9-10J : Slow CPU clock select 
Bit 8 : CPUCNFG lock 
Bit 7 : Flash Disk enable 
Bit 6 : Halt status 
Bits [4-5J : Fast CPU clock select 
Bits [2-3J : Unit 10 
Bit 1 : Unit enable 
Bit 0 : Unlock status 

23H RO Configuration Space Status Register 

Bit 7 : 82360Sl configuration open bit 
Q-open, l-dosed 

Bits (0-6J : Reserved 

24H RW Configuration Index Register 

25H RW Configuration Data Register 

40H RW Timer Counter 1 Channel 0 count. 

Load with count value and read back current count. High/Low byte selected 
from Control Register. 

41H RW Timer counter 1 Channell count. 

load with count value and read back current count. High/Low byte setected 
from Control Register. 

42H RW TilTl9f Counter 1 Channel 2 count. 

Bits {{H] : Interrupt masks 
Q-mask reset, I-mask set 

load with count value and read back current count. High/Low byte selected 
from Control Register. 

20H WO Operation Control Word OCW2, 
Interrupt Controller 1 

Bits (5-7J : EOI command 
Bits [3-4J : 0 
Bits [0-2J : interrupt request to be acted upon 

20H WO Operation Control Word OCW3, 
Interrupt Controller 1 

Bit 7 = 0, Reserved 
Bits [5-6] : Special mask 
Bit 4 - 0, Reserved 
Bit 3 - 1, Reserved 
Bit 2 - Command, O-no poll. I-poll 
Bits (1,0] Read register command 

1,0 Read interrupt request register 
1 ,1 Read interrupt in-service register 

- .. 

~ A-4 A-5 



\Q 

"" 
intel· I/O PORT LIST int:el. 1;0 PORT LIST 

Q'I 

" " 'g. Addre .. RfW/S Description Address R(WIS Description 
, 
" 43H WO Timer Counter 1 Command Register BOH R Keyboard Controller data 110 Input buffer 
0-

.r 
'0 

" a 
Bits [7,6] Function 

0,0 Select counter 0 
0,1 Select counter 1 
1,0 Select counter 2 

BOH W Keyboard Controller data 110 output buffer 

61H RO Port 61 

~: , 
0 
~ 

[ 

1,1 Read-back command 
Bits [5.41 FUnction 

0,0 Counter latch command 
0,1 Read/Wrrte least significant byte only 
1,0 Read/Write most significant byte only 
1,1 Read/Write least significant byte first, then most significant 

Bit 7 I-parity error 
Bit 6 110 channel parity error 
BitS 82C54 Timer I counter 2 output 
Bit 4 Refresh detect 

I 
Bit 3 liD parity check enable 

O-enable, I-disable 

n byte Bit 2' System parity check enable, 
0 .a 
@ 
g. 

Bits [3,2,1] Function 
0,0,0 Select Mode 0 
0,0,1 Select Mode 1 
X,I,O Select Mode 2 

O-enable, I-disable 
Bit 1 . Speaker enable, I-enable 
Bit 0 : Timer 2 gate to speaker enable 

a-disable, I-enable 
p X,l,t Select Mode 3 
n 1,0,0 Select Mode 4 61H WO Port 61 
0 
'0 
'< , 
'£-

1,0,1 Select Mode 5 
Bit 0 : O-Binary counter 16 bits 

I-Binary coded decimal counter 

Brt 7 . Reserved 
Brt 6 . Reserved 
Brt 5 . Reserved 

[ 
n 
0 .a 

48H RW Timer Counter 2 Channel 0 count. 

Load with count value and read back current count. Hign/Low byte selected 
from Control Register. 

Bit 4 . Reserved 
Bit 3 . 110 parity check enable 

O-enable, I-disable 
Bit 2 . System parity check enable, 

O-enab!e,1-disable 

:0 
~ 

!:; 
4AH RW Timer Counter 2 Channel 2 count 

Load with count value and read back current count HlghlLow byte selected 

Bit 1 Speaker enable, I-enable 
Bit a Timer 2 gate to speaker enable , 

O-disable, I-enable 

> 
from Control Register. 84H WO Keyboard Controller Command 

":I 
":I 
tol 
Z 
~ -~ 
~ --0 

4BH WO Timer Counter 2 Command Register 

I 
Bits [7,6] Function 

0,0 Select counter 0 
0,1 Select counter 1 
1,0 Select counter 2 
1,1 Read·back command 

Bits [5.4J Function 
0,0 Counter latch command 
0,1 Read/Write least significant byte only 
1,0 Read/Write most significant byte only 
1,1 Read/Wrlte least significant byte first, then most significant 

by1. 

84H RO Keyboard Controller Status 

70H WO CMOS RAM Address port and NMI Mask 

Bit 7 NMI mask, I-disable 
Bits [0-6] CMOS RAM Address 

71H RW RTC CMOS RAM data port 

74H RW Extended CMOS RAM address port (protected) 

Bit 7 Reserved 
Bits [0-6] CMOS RAM Address 

> 
~ 
~ 

~ 
00 

Bits [3,2,1] Function 
0,0,0 Select Mode a 
0,0,1 Select Mode I 
X,I,O Select Mode 2 , 

X,I,1 Select Mode 3 
1,0,0 Select Mode 4 
1,0,1 Select Mode 5 

76H RW Extended CMOS RAM data port (protected) 

80H RW Reserved 

81H RW DMA Memory Address Mapper Page Register Channel 2 

00 Bit ° -O-Blnary counter 16 bits 82H RW DMA Memory Address Mapper Page Register Channel 3 

~ 
I-Binary coded deCimal counter 

B3H RW DMA Memory Address Mapper Page Register Channell 

> --_ .. 

":I 
00 A·6 .., 



'" I:"l intel· I/O PORT LIST intel· I/O PORT LIST 

!":l ..., 1:' -0 z 1 
~ 

" 0-

W 
~ 

.. " - • 

'" 
~. 

> 5" 

'" 
, 

~ 
0 
~ 

Z ~ 
0 b' 
> i3 

::c 
a 

0 
i1. a - ? 

~ b' 0' 
> ~. 
0 g-

O a 
g;; "-

n 

'" 
0 

'" 
i3 

"1:1 '" 
0 '" ~ 

-- R/WiS --84M RW Ro_ 

85M RW R_ 

88M RW 
R ... _ 

a7M RW DMA Memory Add,. .. Mapper Page Regllter Channel 0 

88M RW R_ 

89M RW DMA Memory Addreu Mapper ". Register Channel 8 

8AH RW DMA Memory Add ..... Mapper Page Reg .... Channel 7 

88M RW DMA Memory Addrnl Mapptf Page Regl ... Channel 5 

aCM RW R_ 

OOM RW R_ 

OEM AW ROOOIVod 

aFM RW DMA Memory Add ..... Mapper Page Regi ... - Refresh 

92M Po" 92 

BItI [4-7) : ReaervlCl 

RO BIt 3: PUIWOfd HCUrity lock, '·Iocked 
Bit 2: RIMI'Y1d 

-.... R/WiS DHcrlptlon 

0A1M RW Initialization Control Word IOW3 (SlaY. Device) 
Interrupt Controiler 2 

"'[3-7[ ,0 
Bits [2,I,OJ: Slave 10 

0,0,0 0 
0,0,1 1 
0,1,0 2 
0,1,1 3 
1,0,0 4 
1,0,1 5 
1,1,0 • 1,1,1 7 

0A1M RW Initialization Control Word ICW4, 
Interrupt Controller 2 
Bits [5-7. = 0, Reserved 
Bit 4 : Fully nested mode 

o-nol special, 1-special 
."[3,2. Modo 

0,0 non-buffered mode 
0,1 non-buffered mode 
1,0 slave buffered 
1,1 master buffefed 

Bit 1 : End of Interrupt 
Q-normaJ. '-automatic 

Bit 0 : o-MCS 80/85 mode 
1-8088/8088 mode 

0A1M RW Operation Control Word OCWl , 

~ 
'" 

RW Bit 1: A20 gille, O-disabled, 1-enab1ed 

RW Bit 0: Fast CPU Relet, low to high tranaltJon 

Interrupt Controll8f' 2 

Bits [0-7] : Interrupt masks 
o-mask reset, 1-mask set 

OAOM RW Initialization Control Won:! IOW1, 
Interrupt Controller 2 

Bill {5-7J : MOS 8OJ85 mod, only 
Bit 4 - " must be Ht 

OAOM RW Operation Control Word OCW2. 
Interrupt Controller 2 

." [5-7[ , EOI command 
Bit 3 : Trigger mode, O-edge, 1-1eve1 
Bit 2 : Call addreu Interval, 0-8, 1-4 

."[3-4[ ,0 
Bits [0-21 : Interrupt request to be acted upon 

Bit 1 : Mode. O-cucIIdt, ""ngle 
Bit 0 : Q-no ICW" needed, '·IOW .. nHded OAOM RW Operation Control Word ocwa, 

Interrupt Controller 2 
0A1M RW InltiallZlllon Control Word ICW2. 

Interrupt Controller 2 Bit 7 .. D, Reeerved 
Bits [5-8] : Special mask 

Bill [3-7] : Interrupt type. MO$ 88,88 mod, 
Bits {0-2] : RIHMKf. MOS 80,85 mode only 

Bit 4 - 0, R888Ned 
Bit 3 - 1, Reserved 
Bit 2 - Command, O-no poll, 1-poll 

0A1M RW Inltiallzmlon Control Word 1CW3 (Muter DevIce) 
Interrupt Controller 2 

Bits [1,0] Read register command 
1,0 Read interrupt request register 

BIta [0-7] : Q-IR Input t'Iu no aIavt controller 
1,1 Read Interrupt in-service register 

l-IR Input hal • Slave controller 

~ A-f A·9 
....;a 



\C 
.j:;.. 
QC) 

~ 
-g. 

int'el. 1/0 PORT LIST 

intel· 1/0 PORT LIST 

, 
" 0-

Add ..... RfWlS -0" 
'< OCOH AW DMA Channel 4 base and current address Addr ... RfW/S Description 
~ 
0 

~. 
15 , 
0 
~ 

[ 
n 
0 
-a 
~ 

loaded with DMA base address and incremented as transfers take place. 
low byte accessed after clearing byte pointer, address OOOCH. 

Upper byte loaded or read after low byte access. 

OC2H AW OMA Channel 4 base and current word count 

Low byte of word count. Count = value + 1 transfers. Accessed after byte 
pointer is cleared (OOOCH.) Currant count is read back. 

Upper byte loaded or read after low byte access. 

OC4H AW DMA Channel 5 base and current address 

ODOH WO Command register, DMA controller 2* 
Bit 7 DACK sense, O-active low, I-active high 
Bft 6 : DREQ sense, O-active high, I-active low 
Brt 5: late write, I-extended write, x-if B3=1 
Bit 4; O-fixed priority, I-rotating priority 
Bit 3 : O-normal timing, I-<:ompressed timing 
Bit 2 : O-controller enable, I-controller disable 
Bit I Channel 0 address hold, 

O-disable,l-enable 
Bit 0 : Memory to Memory transfer, 

O-disable, I-enable 

1; 
? Loaded with DMA base address and incremented as transfers take place, 

ODOH AO Status Register, DMA controller 2 

n low byte acc9SS8d after clearing byte pointer, address OOOCH. Bit 7 '" 1 channel 7 request 
0 
~ 
'< 

" "" ;,-

Upper byte loaded or read after low byte access. 

OC6H AW DMA Channel 5 base and current word count 

Bit 6 '" I channel 6 request 
Bit 5 = I channel 5 request 
Bit 4 = I channel 4 request 
Bit 3 = I channel 7 reached TC 

[ 
n 

Low byte of word count. Count = value + 1 tranters. Accessed after byte 
pointer is cleared (OOOCH). Currant count is read bacK 

Bit 2 = I channel 6 reached TC 
Bit I = 1 channel 5 reached TC 
Bit 0 = 1 channel 4 reached TC 

~ Upper byte loaded or read after low byte access 
OD2H WO Request Register, DMA controller 2 

~ 
~ 

OC'H AW DMA Channel 6 base and current address 
Bits [3-71 : Reserved 

'" Loaded with DMA base addr9SS and incremented as tranfsrs take place. Bit 2 : O-reset request bit, I·set request bit 
Low byte accessed after clearing byte pointer, address OOOCH. Bits [1.01 channel select 

;..- Upper byte loaded or read after low byte access. 
0,0 4 
0,1 5 

"CI 
"CI OCAH RW DMA Channel 6 base and current word count 

1,0 6 
1,1 7 

t"l 
Z 
t:I ->< 
~ 

Low byte of word count. Count = value + I transfers. Accessed after byte 
pointer is cleared (OOOCH). Current count is read back. 

Upper byte loaded or read after low byte access. 

OCCH AW DMA Channel 7 base and current address 

Loaded with DMA base address and incremented as tranters take place. 

OO4H WO Mask Register, DMA controller 2 

Bits 13-7J . Reserved 
Bit 2 ; O-clear mask bit, I-set mask bit 
Bits [1,01 channel select 

0,0 4 --0 
Low byte accessed after clearing byte pointer, address OOOCH. 

Upper byte loaded or read after low byte access. 

0,1 5 
1,0 6 
1,1 7 

;..-
t:I 
t:I :c 

OCEH AW DMA Channel 7 base and current word count 

Low byte of word count. Count ,. value + I transfers Accessed after byte 
poInter IS cleared (OOOCHj. Current count is read back. 

- ---

·Compressed timing and memory to memory transfer functIons are not supported. 

t"l 
[Jl 

Upper byte loaded or read after low byte access. 
~-

[Jl 

~ ;..-
"CI 
[Jl 

A-IO A-11 



'" i'"l intel· I/O PORT LIST intel· I/O PORT LIST 

t"l 
~ 

.., .... 
11 0 s· 

Z " 0. 

~ " '< 
W '0 

0 .. 
~. .... 

'" > o· 
" '" 0 
~ 

~ 5' 
"-Z n 

t:I 0 

> "8 
~ ~. 

.§ .... n -, 0 0 '0 
'< 

Add .... R/WIS Deacrlptlon 

OO6H WO Mode Register, DMA controller 2 

Bits [7,6) Mode 
0,0 Demand mode 
0,1 Signal mode 
1,0 Block mode 
1,1 Cascade mode 

Bits [4-5] ; Reserved 
Bits [3,21 Operation 

0,0 Verify 
0,1 Write 
1,0 Read 
1,1 Reserved 

Bits (I,Oj channel select 
0,0 4 
0,1 5 
1,0 6 
1,1 7 

ODSH WO Clear byte pointer, DMA controller 2 

Add .... RIW/S Description 

0102H RW Parallel Port Configuration 

Bit 7: LPT mode, O-unldirectional, 1 - bi-directional 
Bits [6,5] LPT Select 

0,0 LPT 1 
0,1 LPT 2 
1,0 LPT 3 
1,1 LPT disabled 

Bits ]0-4] : Not used 

278H RW LPT2 Data Port 

279H RO LPT2 Status Port 

Bit 7 : O-Printer Busy 
Bit 6 : O-Acknowledge 
Bit 5 : 1-0ut of paper 
Bit 4 : t -Printer is selected 
Bit 3 : G-Error 
Bits[O-2] : Not Used ,. > ~ t:I 

[ t:I 
g;J n 

0 

'" ? 

'" :g >og 
~ 0 

~ 

ODAH WO Master Clear, DMA controller 2 

OOAH RO Temporary Register, OMA controller 2 

OOCH WO Clear Mask Register, OMA controller 2 

ODEH WO Write all Mask Register Bits,DMA controller 2 

OeEH RW Special Feature Set Fast A20 Gate 

Dummy read - disable 
Dummy write - enable 

27AH RW LPT2 Control 

Bits ]6-7] : ReselVed 
Bit 5 : Diraction, PS/2 mode only 
Bit 4 : Interrupt anable, I-enable, O-disable 
Bit 3 : Select printer, I-select 
Bit 2 : Initialize printer, O-initialize 
Bit 1 : Automatic line feed, 1-automatic 
Bit 0 : Data Strobe 

27BH- RW Automatic data strobe registers 
27FH 

'" OEFH RO Special Feature Set Fast CPU Reset 2F8H RO Serial Controller Port B Receiver Buffer 

A dummy read generates a fast CPU Reset Serial Data Receive Buffer when DtAB "" 0 

OFO WO MCP Register 0 2F8H WO Serial Controller Port B Transmit holding Buffer 

A dummy write clears the numerics option busy signal. Serial Data Transmit holding Buffer when DtAB = 0 

OF4H WO Slow CPU Register 2F8H RW Serial Controller Port B Divisor latch Least Significant Byte 

A dummy write slows the CPU clock to the rate specified by the De-Turbo Clock Divisor for BAUD rate when DtAB '" 1 

bit of the CPUPWRMODE register (22H) 
2F9H RW Serial Controller Port B Divisor latch Most Significant Byte 

OF5H WO Fast CPU Register Clock Divisor for BAUD rate when DlAB = 1 

A dummy write causes the CPU clock to run at the rate specified in the Fast 
CPU clock field in the CPUPWRMODE register (22H) 2F9H RW Serial Controller Port B Interrupt Enable Register (DtAB = 0) 

OF9H WO Special Feature Set Disable 
Bits 14-71 = 0 
Bit 3 : Modem status interrupt enable 

A dummy write disables the Special feature set Bit 2 : Receiver line status interrupt enable 
Bit 1 : Transmitter holding register empty interrupt enable 

~ 
OFBH WO Special Feature Set Enable 

A dummy write enables the special feature set 

Bit 0 : Received data available interrupt enable 
1 - enable, 0 - disable 

--

A-12 A-13 



IC 
(JJ 
Q infel· 1/0 PORT LIST infel· 1/0 PORT LIST 

'" 0 

1 Addre .. R/WiS Ducrtptlon Addre •• R/W/S Description 

s. 
.:t" 2FAH RO Serial Controller Port B Interrupt Id Register 2FEH RO Serial Controller Port B MODEM Status Register 

" 0 

§ 
~ o· , 

Bits (3-71 = 0 
Bits {2, ljlnterrupt 10 

0,0 Modem status 
0,1 Transmitter hold'ng register 
, ,0 Received data available 

Bit 7 Data carrier detect 
Bit 6 . Ring indicator 
Bit 5 . Data set ready 
S14 Clear to send 
BII 3 ' Delta data carner detect 

0 
~ 

a 
"-
() 
0 

"8 
@ ". ,§ 
() 

~ ,. 
"" go 

a 
"-

1,1 Receiver line status 
Bit 0 : 0 - interrupt pending 

2FBH RW Serial Controller Port B line Control Register 

Bit 7 : 0 - Receiver buffer, transmitter 
hOlding, or interrupt enable access 
1 - Divisor latch access 

Bit 6 : Set Break, I-enable 
Bit 5 . Stick parity 
Bit 4 : Even parity select 
Bit 3 : Parity enable, I-even, D-odd 
Bit 2 : Number of stop bits 
o - 1 stop bit, 1 - if word length is 5 bits then stop bit length is 11/2 bit limes 

If word length is 6, 7. Or 8, then stop bit length is 2 bit 
times 

Bits 11-0] Bits per character 

Bit 2 : Trailing edge ring Indicator 
Bit I Delta data set ready 
Bit 0 Delta clear to send 

2FFH RW Serial Controller Port B Scralch Register 

Independent Register for General Data 

372H WO Floppy Disk Controller Dlgllal Output Register 

Bits [6-7] 0, Reserved 
Bit 5 . Motor 1 enable, I-enable 
Bit 4 , Motor a enable, 1 -enable 
Bit 3 ' Floppy disk Interrupt and DMA request enable, O-enable 
Bit 2 Floppy disk controller reset, a-reset 
Bit 1 : a, Reserved 
Bit a : Dflve select, a-drive a, I-dflve 1 

() 
0 
-a 
:0 
~ 

~ 

> 
." 
." 
tol 
Z 
I:=' .... 
~ 

9 
"::! 
0 
> 

0,0 5 
0,1 6 
1,0 7 
1,1 8 

2FCH RW Serial Controller Port B MODEM Control Register 

Bits 15-7] - Reserved 
Bit 4 ' I-loopback mode 
Bit 3 : Out2 Interrupt enable, I-enable 
Bit 2 : Outl Active, I-active 
Bit I : Request to send active, I-active 
Bit 0 : Data terminal ready, I-active 

2FOH RO Serial Controller Port B line Stalus Reglster* 

8il7,' 0 
Bit 6 Transmitter empty 
Bit 5 Transmitter holding reglsler empty 
Bil 4 , Break interrupt 
Bil 3 : Framing error 
Bit 2 Parity error 
Bit 1 Overrun error 

374H WO Floppy Disk Controller Main Status Register 

Bit 7 Data register IS ready, I-ready 

I 
Bit 6 Data I/O, I-transfer IS from controller to system 
Bit 5 . Execution mode, l-non-DMA mode 
Bit 4 . FOC busy, I-busy 
Bit 3 Drive 3 busy, I-busy , 

Bit 2 Drive 2 busy, I-busy 

I 

Brt 1 . Dflve 1 busy, I-busy 
Bit a . Drive 0 busy, I-busy 

375H RW FlOPPY Disk Controller Data Register 

376H WO Fixed Disk Register 

Brts [4-7] Reserved 
Bit 3 . a-enables reduced wflIe current 
Bit 2 . Reset fixed diSk, I-reset 
Bit I fixed disk Interrupts enable, a-enable 
Bit 0 Reserved 

377H RO Floppy Disk Controller Digital Input Register 

I:=' 
I:=' 

~ 

Bil 0 . Data ready 

« Writing to this register IS not allowed 

Bit 7 Diskette change 
Bits [1-6] Reserved 
bit 0 . High denSity select 

- - -----

'" '" :s: 
> A-14 A-15 

." 

'" 



fJ) 

t"l 
("'l 

intel· 1/0 PORT LIST intel. I/O PORT LIST .., 
~ ... 

0 -g 
z " ,; 

Addr ... R/wfS Description Address R/WfS Description 

~ 
0-
'S ..., '< .. " ... ~. 

fJ) 
;.- ~ o· 
fJ) = 

~ 
0 
~ 

;;: 
z "-
0 

n 

;.-
0 

~ 
1 
" 0 ... p 

~ n 
0' 0 

" 
;.-

'< 

0 
til· 

" 0 [ ::c 
t"l b' 
fJ) 
fJ) 

-a 

'1:1 :g 
0 .!:! 

:l 
fJ) 

377H WO Floppy Disk Controllar Control Register 

Bits [2-7\ : Reserved 
Bits [0,1] Data Rate 

0,0 500,000 bps 
0,1 300,000 bps 
1,0 250,000 bps 
1,1 Reserved 

378H RW LPTI Data Port 

379H RO LPTI Status 

Bit 7 : Q·Printer Busy 
Bit 6 : O-Acknowledge 
Bit 5 : I-Out of paper 
Bit 4 : I-Printer is selected 
Bit 3 : O-Error 
Bits[O-2] : Not Used 

37AH RW lPTl Control 

Bits [6-71 : Reserved 
Bit 5 : Direction, PS/2 mode only 
Bit 4 : Interrupt enable, I-enable, O-disable 
Bit 3 : Select printer, I-select 
Bit 2 '. Initialize printer, O-initialize 
Bit 1 : Automatic line feed, 1-automatic 
Bit 0 : Data Strobe 

37BH- RW Automatic data strobe r&glsters 
37FH 

3FOH RO Floppy Disk Controller Port Status Register A 
Bit 7 " Interrupt pending 
Bit 6 : Second drive, a-Installed 
Bit 5 Step 
Bit 4 Track a 
Bit 3 Head 1 select 
Bit 2 : Index 
Bit I : Write protect 
Bit ° : Data received 

3F1H RO Floppy Disk Controller Port Status Register B 

Bits [6-7J Reserved 
Bit 5 Select drive 
Bit 4 " Write data 
Bit 3 : Read data 
Bit 2 : Write enable 
Bit I : Drive 1 motor enable, I-enable 
Bit a : Drive a motor enable, I-enable 

3F2H WO Floppy Disk Controller Digital Output Register 

Bits [6-7] : 0, Reserved 
Bit 5 : Motor 1 enable, I-enable 
Bit 4 : Motor a enable, I -enable 
Bit 3 : Floppy disk interrupt and DMA request enable, a-enable 

I 
Bit 2 : Floppy disk controller reset, a-reset 
B"lt 1 : 0, Reserved 
Bit ° : Drive select, a-drive 0, l-drive I 

3F4H WO Floppy Disk Controller Main Status Register 

Bit 7 : Data register is ready, I-ready 
Bit 6: Data 110, I-transfer is from controller to system 

3BCH RW lPT3 Data Port Bit 5 : Execution mode, I-non-DMA mode 
Bit 4: FOe busy, I-busy 

3BDH RO LPT3 Status Bit 3: Drive 3 busy, I-busy 

Bit 7 : O-Printer Busy 
Bit 6 : O-Acknowledge 
Bit 5 : 1-0ut of paper 

Bit 2: Drive 2 busy, I-busy 
Bit I : Drive i busy, I-busy 
Bit 0: Drive 0 busy, i-busy 

Bit 4 : I-Printer is selected 
Bit 3 : O-Error 

3fSH RW Floppy Disk Controller Data Register 

Bits[0-2] : Not Used 'FGH WO Fixed Disk Register 

3BEH RW LPT3 Control Bits [4-7] : Reserved 

Bits [6-71 : Reserved 
Bit 5 : Direction, PS/2 mode only 
Bit 4 : Interrupt enable, I-enable, a-disable 
Bit 3; Select printer, l-select 

Bit 3 : O-enables reduced write current 
Bit 2 : Reset fixed disk, I-reset 
Bit I " fixed disk interrupts enable, a-enable 
Bit a : Reserved 

Bit 2 : Initialize printer, a-initialize 
Bit 1 "Automatic line feed, I-automatic 

3F7H RO Floppy Disk Controller Digital Input Register 

Bit a : Data Strobe Bit 7 : Diskette change 
Bits [1-6J Reserved 
bit a : High density select 

~ - A-16 A-17 



APPENDIX H: IBM PC/PS BIOS 
DATA AREA 

This appendix lists the BIOS data area contents as provided by IBM PS/2 
Technical Reference. 

BIOS Data Area 

The BIOS Data Area is allocated specifically as a work area for 
system BIOS and adapter BIOS. The BIOS routines use 256 bytes of 
memory from absolute address hex 400 to hex 4FF. A description of 
the BIOS data area follows: 

Address Function Size 

40:00 RS~232-C Communications Une 1 Port Base Word 
Address 

40:02 RS-232-C Communications Une 2 Port Base Word 
Address 

40:04 RS-232-C Communications Line 3 Port Base Word 
Address 

40:06 RS-232-C Communications Line 4 Port Base Word 
Address 

Note: The RS-232-C communications line port base address fields may be 
initialized to 0 by the POST jf the system configuration contains less than 
four serial ports. The POST never places 0 in the RS-232-C 
communications line port base address table between two valid RS-232-C 
communications line port base addresses. 

Figure 3-1. RS-232-C Port Base Address Data Area 

Address 

40:08 
40:0A 
40:0C 
40:0E 

Exceptions 

40:0E 

Function 

Printer 1 Port Base Address 
Printer 2 Port Base Address 
Printer 3 Port Base Address 
Reserved 

Size 

Word 
Word 
Word 
Word 

Printer 4 Port Base Address (PC, PC XT, AT, and PC Word 
Convertible) 

Note: The printer port base address fields may be initialized to 0 by the POST if 
the system configuration contains less than four parallel ports. The POST 
never places 0 in the printer port base address table between two valid 
printer port base addresses. 

Figure 3-2. Printer Port Base Address Data Area 

Reprinted by pennission from "IBM Personal Systeml2 and Personal Computer BIOS Interface Technical Reference" 
c. 1987 by International Business Machines Corporation. 

952 APPENDIX H: IBM PC/PS BIOS DATA AREA 



> 
." 
." 0", Address Function Address Function Size tol --3 

Size 

Z ~::!. 
40:10 Byte t::I ~" Installed Hardware Word 40:17 Keyboard CO.nlrol 

"," ... ,<"-
>< 5"~ Bits 15.14 Number of Printer Adapters Bit 7 Insert Locked 

;;: ';'0 Bit 13 Reserved Bit 6 Caps Lock Locked 
3 " ;§ Bit 12 Reserved Bit 5 Num Lock Locked ... o ~ Bits 11,10,9 Number of RS-232-C Adapters Bit 4 Scroll Lock Locked = ~ ~. Bit 8 Reserved Bit 3 All Key Pressed 

3: E.g 
~:::> S"lts 7,6 Number of Diskette Drives (O-based) Bit 2 elrl Key Pressed 

." ~ 0 Bits 5,4 Video Mode Type (Values are Binary) Bit 1 Left Shift Key Pressed 
5"S 

("'J g -= 
Bit a Righi Shift Key Pressed 

>:a ~iii 00 = Reserved 

'" . ;:: 01 = 40x25 Color 40:18 Keyboard Control Byte 

= &'0 10 = BOx25 Color 
5'~ 11 = BOx25 Monochrome Bit 7 Insert Key Pressed ... " ~ 

0 ;;~ Bit 6 Caps Lock Key Pressed 

'" o- Bit 3 Resorved Bit 5 Num Lock Key Pressed 

t::I -§'*' 
Bit 2 Pointing Device Bit 4 Scroll Lock Key Pressed 

~ 
OJ ,; Bit 1 Math Coprocessor Bil3 Pause Locked 
<Z.~ SitO IPL Diskette Bit 2 System Request Key Pressed 

;;; ~ N Bill Left Alt Key Pressed § 

> "- Exceptions Bit 0 Left Ctrl Key Pressed 
'0 

1!l a Bit 13 Internal Modem (PC Convertible Only) 40:19 Alternate Keypad Entry Byte 
0 Sit 2 Reserved (PC, PC XT, AT, and PC ConvertIble) 40:1A Keyboard Buffer Head Pointer Word > = 
E. 40:1C Keyboard Buffer Tail Pointer Word n 
!l Note: Refer 10 INT 11H for equipment return information. 40:1E Keyboard Buffer 32 Bytes 

'0 

" ~ Figure 3-3. 
to 

System Equipment Data Area Figure 3-6. Keyboard Data Area 1 

0 
'" 
~ Address Function Size 

if 40:12 Reserved Byte 
" !f Exceptions 
[ 
0 

40:12 E. Power-On Self-Test Status (PC Convertible Only) Byte 
1:' 
<I' Figure 3-4. Miscellaneous Data Area 1 
~ 
"~ 

Address Function Size 

40:13 Memory Size in Kb (Range 0 to 640) Word 
40:15to 40:16 Reserved Byte 

\C 

l!l Figure 3-5. Memory Size Data Area 



IC 
Ut 

"'" n '" 
Address Function Size Address Function Size 

-.g 
~::J. 40:3E Recalibrate status Byte 40:49 Display Mode set Byte ~a ,," 40:4A Number of Columns Word ,<0-

-" Bit 7 Interrupt Flag 40:4C Length of Regen Buffer in Bytes Word 0'< 
,"'0 Bit 6 Reserved 40:4E Starting Address in Regen Buffer Word 
3 • Bit 5 Reserved 40:50 Cursor Position Page 1 Word ~j Bit 4 Reserved 40:52 Cursor Position Page 2 Word 
§ ~. Bit 3 Recalibrate Drive 3 40:54 Cursor Position Page 3 Word E.g Bit 2 Recalibrate Drive 2 40:56 Cursor Position Page 4 Word g:':::r Bit 1 Recalibrate Drive 1 40:58 Cursor Position Page 5 Word 
S·~ Bit 0 Recalibrate Drive 0 40:5A Cursor Position Page 6 Word 
~ ::: 40:5C Cursor Position Page 7 Word 
~tii 40:3F Motor Status Byte 40:5E Cursor Position Page 6 Word . " 40:60 Cursor Type Word g~ 
o ;l Bit 7 Write/Read Operation 40:62 Display Page Byte 
~ § Bit 6 Reserved 40:63 CRT Controller Base Address Word 
Q!;:. Bits 5.4 Diskette Drive Select Status (Values in Binary) 40:65 Current Setting of 3x8 Register Byte 
-g~ 40:66 Current Setting of 3x9 Register Byte 
t2 ;:; 00 = Diskette Drive 0 Selected 
g~ 01 = Diskette Drive 1 Selected 

Figure 3-8. Video Control Data Area 1 ON 10 = Diskette Drive 2 Selected 
§ 11 = Diskette Drive 3 Selected 
0-

" 
> ~ Bit 3 Diskette Drive 3 Motor On Status 

"C 0 Bit 2 Diskette Drive 2 Motor On Status Address Function Size "- Bit 1 Diskette Drive 1 Motor On Status "C n Bit 0 Diskette Drive 0 Motor On Status i'"l 0 40:67 Reserved DWord 
Z 3 

40:6B Reserved Byte '0 
40:40 Motor off counter Byte t::I ~ .. Exceptions >!i 5 40:41 Last Diskette Drive Operation Status Byte 

::= '" 40:67 Pointer to reset code upon system reset with DWord 
;- DOH = No Error 

memory preserved (Personal System/2 products .. '" 01H = Invalid Diskette Drive Parameter 
t:I:I W 02H = Address Mark not Found 

except Model 30). 

3: " 03H = Write-protect Error 
Reset Flag at 40:72 = 4321H 

"C 0' 04H = Requested Sector not Found 
n 

t"l ~ 
06H = Diskette Change Line Active Figure 3-9. System Data Area 1 

~ 08H = DMA Overrun on Operation 
"- 09H = Attempt to DMA Across a 64Kb Boundary 

'" '" t:I:I " OCH = Media Type not Found 

'" 10H = CRC Error on Diskette Read - <1 
0 0 20H = General Controller Failure Address Function Size 

n 
40H = Seek Operation Failed '" "~ 

t::I BOH = Diskette Drive not Ready 40:6C Timer Counter DWord 

~ 
40:70 Timer Overflow Byte 

40:42 Diskette Drive Controller Status Bytes 7 Bytes (If non 0, timer has counted past 24 hours.) 

>' 
> Figure 3-7. Diskette Drive Data Area Figure 3-10. System-Timer Data Area 

~ 
> 



;.- Address Function Size Address Function Size 
~ 
~ n", 40:71 Break Key State Byte 40:78 Printer 1 Time-out Value Byte 
t"l -iJ 40:72 Reset Flag Word 40:79 Printer 2 Time-out Value Byte 
Z ~::J. 40:7A Printer 3 Time-out Value Byte 
~ ~g 1234H = Bypass Memory Test 40:78 Reserved ,,0 ..... ","- 4321H = Preserve Memory (Personal System/2 
~ _ " ,,,, products except Model 30) Exceptions 

;; "'" 3 0 S67aH = System Suspended (PC Convertible) 
",3 9ABCH = Manufacturing Test Mode (PC 40:78 Printer 4 Time-out Value (PC, PC XT, and AT) Byle ..... o· (i;" Convertible) = ::I ~. 

• 0 ABCDH = System POST Loop Mode (PC 3: -, 
Figure 3-13. Printer Time-Out Value Data Area g;::t> Convertible) 

~ • 0 5'S 
l"'l ~ " Figure - 3: 03 3-11. System Data Area 2 
~ Address Function Size 

'" • 3: = ~!f 40:7C RS-232-C Communications line 1 Time-out Value Byte ..... ~ 0 Address Function Size 40:70 RS-232-C Communications Line 2 Time-out Value Byle 0 n~ 40:7E RS-232-C CommunIcations Line 3 Time-out Value Byte 

'" 0-

~ .g~ 40:74 Last Fixed Disk Drive Operation Status Byle 40:7F RS-232-C Communications Line 4 Time-out Value Byte 

" ->' • 0 ge. OOH = No Error 

~ ? N 01H = Invalid Function Request Figure 3-14. RS-232-C Time-Out Value Data Area 
§ 02H = Address Mark not Found ;.- "- 03H = Write Protect Error .. 

~ ~ 04H = Sector not Found Address Function Size g OSH = Reset Failed ;.- E. 07H = Drive Parameter ActiVity Failed 
n 08H = DMA Overrun on Operation 

40:80 Keyboard Buffer Start Offset Pointer Word 

~ 09H = Data Boundary Error 
40:82 Keyboard Buffer End Offset Pointer Word 

'" & OAH = Bad Sector Flag Detected 
OBH = Bad Track Detected Figure 3-15. Keyboard Data Area 2 

'" DOH = Invalid Number of Sectors on Format 
is OEH = Control Data Address Mark Detected 
'" 
~ 

OFH = DMA Arbitration Level Out of Range 
10H = Uncorrectable ECC or CRC Error Address Function Size ., 11H = ECC Corrected Data Error 

n 
20H = General Controller Failure 40:84 Number of Rows on the Screen (Minus 1) Byte 0 

g' 40H = Seek Operation Failed 40,85 Character Height (Bytes/Character) Word 

[ 80H = Time Out 40;87 Video Control States Byte 
n AAH = Drive not Ready 40:88 Video Control States Byte 
E. BBH = Undefined Error Occurred 40:89 Reserved Byle 
1:' CCH = Write Fault on Selected Drive 40:8A Reserved Byle 

'" EOH = Status Error/Error Register is 0 
~ 
~ FFH = Sense Operation Failed 

Figure 3-16. Video Control Data Area 2 
0" 40:75 Number of Fixed Disk Drives Attached Byle 

40:76 Reserved Byle 
40:77 Reserved Byle 

Exceptions 

[40,74 Reserved (18M ESDI Fixed Disk Drive Adapter/A) Byle 
I,C 40:76 Fixed Disk Drive Control (PC XT) Byle 
(II 
(II 40:77 Fixed Disk Drive Controller Port (PC XT) Byle 

Figure 3-12. Fixed Disk Drive Data Area 



Address Function Size Addres$ Function Size 

40:8B 
\Q 

Media Control Byte 40:96 Keyboard Mode State and Type Flags Byte 

fJt Bits 7,6 Last Diskette Drive Data Rate Selected (Values in Bit 7 Read iD in Progress Q\ 
0", Binary) Bit 6 Last Character was First 10 Character 
-.g Bit 5 Force Num Lock if Read JD and KBX "'" 00 = 500Kb Per Second 101/102-Key Keyboard installed ~-. Bit 4 ~g ,," 01 = 300Kb Per Second Bit 3 Right Alt Key Pressed ",0-

S"~ 10 = 250Kb Per Second Bit 2 Right Ctrl Key Pressed 
<;,,, 11 = Reserved Bill Last Code was EO Hidden Code 
~ " Bit 0 Last Code was El Hidden Code 
"j Bits 5.4 Last Diskette Drive Step Rate Selected o • 
::I ~. Bit 3 Reserved 40:97 Keyboard LED Flags Byte 
• 0 -, Bit 2 Reserved g:'::p Bit 1 Reserved Bit 7 Keyboard Transmit Error Flag .0 
9"S Bit 0 Reserved Bit 6 Mode Indicator Update 
~ = Bit 5 Resend Receive Flag 
~iil 40:8C Fixed IJisk Drive Controlier Status Byte Bit 4 Acknowledgment Received · ;:: 40:8D Fixed Disk Drive Controller Error Status Byte Bit 3 Reserved (Must be 0) 2:;;0 40:8E Fixed Disk Drive Interrupt Control Byte Bits 2,1,0 Keyboard LED State Bits , ~ 
" 0 40:8F Reserved Byte · , ()!>. 

3-18 . Keyboard Data Area 3 .a~ 40:90 Drive 0 Media State Byte Figure 
Sl ~ 40:91 Drive 1 Media State Byte · " =.~ 
~ N Bits 7,6 Diskette Drive Data Rate (Values in Binary) 

Address Function Size § 
0-

00 = 500Kb Per Second " 40:98 Offset Address to User Wait Complete Flag Word 
;.- ~ 01 = 300Kb Per Second 

40:9A Segment Address to User Wait Complete Flag Word 
." 

, 1 0 = 250Kb Per Second 
40:9C User Wait Count - Low Word (Microseconds) Word "- 11 = Reserved ." () 40:9E User Wait Count - High Word (Microseconds) Word 

t"j 0 

Z 3 Bit 5 Double Stepping Required 
40:AO Wait Active Flag Byte " ~ & Bit 4 Media Established 

~ 
Bit 3 Reserved 

Bil7 Wait Time Elapsed and Post OJ Bits 2,1,0 Drive/Media State (Values in Binary) 0 Bits 6 to 1 Reserved 

== '" 000 = 360Kb Disketle/360Kb Drive not Established Bit 0 INT 15H, AH = 86H (Wait) has Occurred 
5' - " 001 = 360Kb Diskette/1.2Mb Drive not Established 

40:Al to 40:A7 Reserved Byte 0: '" 010 = 1.2Mb Diskette/1.2Mb Drive not Established 
~ 

0 
011 = 360Kb Diskette/360Kb Drive Established " 

." ;;i 100 = 360Kb Diskette/1.2Mb Drive Established Figure 3-19. Real-Time Clock Data Area 0 
101 = 1.2Mb Diskette/1.2Mb Drive Established l"'l [ 

-a 0 110 = Reserved 
"- 111 = None of the Above r:Il '" 0: " " 40:92 Reserved Byte - ;; 

0 , 40:93 Reserved Byte 
0 

40:94 Drive 0 Current Cylinder Byte r:Il "~ 

~ 
40:95 Drive 1 Current Cylinder Byte 

~ Exceptions 

>' 
Reserved (PC, PCjr, PC XT 810S Dated 11/8/82, and Byte ;.- 40:88 to 40:95 

::c PC Convertible) 

t"j 
;.- Figure 3-17. Diskette Drive/Fixed Disk Drive Control Data Area 



== ~ l'"J :~ z = ~::I. 
"a ..... ~2. 

~ _0" 

:; ij 
..... 
1:1:1 

got;; . 

::: ~g' 

~ 
g>", 

("'l s· ~ 
>il 

g " 
~ -

'" 
;s::'" ~;S:: 

1:1:1 
g. .. 

..... ~'§ 
0 ~ 0 

'" ~~ 

=. '8~ 

~ 
" ,. 
i'~ ;I>' 

> 8-
f;l ;l' 

~ 
0 

> , 
'" ('l 
0 .g 
~ 
~ 
'" 
~ 
w 
0 

g' 
[ 
0 

'" 1:' 
<I' 

~ 
0, 

~ 

For systems with EGA capability and Personal System/2 products, the 
save pointer table contains pointers that define specific dynamic 
overrides for the video mode set function, INT 10H, (AH) = OOH. 

Address 

40,A8 

DWord 1 

DWord 2 

DWord 3 

Function 

Pointer to Video Parameters and Overrides 

Video Parameter Table Pointer 

Initialized to the BIOS video parameter table. 
This value must contain a valid pOinter. 

Dynamic Save Area Pointer (except Personal 
System/2 Model 30) 

Initialized to 00:00, this value is optional. When 
non 0, this value points to an area in RAM 
where certain dynamic values are saved. This 
area holds the 16 EGA palette register values 
plus the overscan value in bytes (0-16), 
respectively. A minimum of 256 bytes must be 
allocated for this area. 

Alpha Mode Auxiliary Character Generator Pointer 

Initialized to 00:00, this value is optional. When 
non 0, this value points to a table that is 
described as follows: 

Bytes/Character 

Block to Load, a = Normal Operation 

Count to Store, 256 = Normal Operation 

Character Offset, 0 = Normal Operation 

Pointer to a Font Table 

Displayable Rows 
If OFFH, the maximum calculated value is used, 
otherwise this value is used. 

Size 

DWord 

Byte 

Byte 

Word 

Word 

DWord 

Byte 

Consecutive bytes of mode values for this font Byte 
description. The end of this stream is indicated 
by a byte code of OFFH. 

Note: Use of the DWord 3 pointer may cause unexpected cursor type operation. 
For an explanation of cursor type, see INT 10H, (AH) = 01H. 

DWord 4 Graphics Mode Auxiliary Character Generator 
Pointer 

Initialized to 00:00, this value is optional. When 
non 0, this value points to a table that is described 
as follows: 

Figure 3-20 (Part 1 of 2). Save Pointer Data Area 

Address 

DWord 5 

DWord 6 

DWord 7 

Function 

DiSPlayable Rows 

Bytes Per Character 

Pointer to a Font Table 

Consecutive bytes of mode values for this font 
description. The end of this stream is indicated 
by a byte code of OFFH. 

Secondary Save Pointer (except EGA and Personal 
System/2 Model 30) 

Initialized to the BIOS secondary save pointer. 
This value must contain a valid pointer. 

Reserved and set to 00:00. 

Reserved and set to 00:00. 

Figure 3-20 (Part 2 of 2). Save Pointer Data Area 

Address 

Word 1 

DWord 2 

Function 

Table Length 

Initialized to the BIOS secondary save pointer 
table length. 

Display Combination Code (DCC) Table Pointer 

Initialized to ROM DCC table. This value must 
exist. It points to a table described as follows: 

NUmber of Entries in Table 
DCC Table Version Number 
Maximum Display Type Code 
Reserved 

00,00 Entry 0 No Displays 
00,01 Entry 1 MDPA 
00,02 Entry 2 CGA 
02.01 Entry 3 MDPA + CGA 
00,04 Entry 4 EGA 
04,01 Entry 5 EGA + MDPA 
00,05 Entry 6 MEGA 
02,05 Entry 7 MEGA + CGA 
00,06 Entry 8 PGC 
01,06 Entry 9 PGC + MDPA 
05,06 Entry 10 PGC + MEGA 
00,08 Entry 11 CVGA 

Size 

Byte 

Word 

DWord 

Byte 

Size 

Byte 
Byte 
Byte 
Byte 

Figure 3-21 (Part 1 of 3). Secondary Save Pointer Data Area 



Ie 

~ 

?; 
;;g 
~ 
;;< 
[:!: 

~ .., 
~ 
'" 0::1 .... o 
'" ~ 
~ 
~ 
> 
e 

0", 

:o.g 
00 ". 

;;!~ 
,<"'-

=~ 
~~ 
~3 
o"v;" s ra. -g 
~q'> 
• 0 
S" 3 • 
~~ 
g. .. 
s" a 
II g 
QE.. 
"8~ 
§.~ 
~~ 

8. 

I 
~ 
'R 
~ 

'" (3 
on 
5' 
f( 
S' o • 

~ 
"-
1:' 
'" ~ 
Go 

Address 

DWord 3 

Function Size 
01,08 Entry 12 CVGA + MDPA 
00,07 Entry 13 MVGA 
02,07 Entry 14 MVGA + eGA 
02,06 Entry 15 MVGA + PGC 

Abbreviation Meanings: 
MDPA = Monochrome Display and Printer 
Adapter 
eGA = Co for/Graphics Monitor Adapter 
EGA = Enhanced Graphics Adapter 
MEGA:::. EGA with monochrome display 
PGC = Professional Graphics Controller 
VGA = Video Graphics Array 
MVGA = VGA based with monochrome display 
CVGA = VGA based with color display 

Second Alpha Mode Auxiliary Character 
Generator Pointer 

Initialized to 00;00, this value is optional. When 
non 0, this value pOints to a table that is described 
as follows: 

Bytes/Character Byte 

Block to load, should be non 0 for normal Byte 
operation. 

Reserved Byte 

Pointer to a Font Table OWord 

Consecutive bytes of mode values for this font Byte 
description. The end of this stream is indicated 
by a byte code of OFFH. 

Note: Attribute bit 3 is used to switch between primary and secondary fonts. It 
may be desirable to use the user palette profile to define a palette of 
consistent colors independent of attribute bit 3. 

OWord 4 User Palette Profile Table Pointer 

Initialized to 00:00, this value is optional. When 
non 0, this value paints to a table that is described 
as follows: 

Underlining flag (1 = On, 0 = Ignore, -1 =: Off; Byte 
o = Normal Operation) 

Reserved Byte 

Reserved Word 

Internal Palette Count (0-17; 17 = Normal Word 
Operation) 

Figure 3-21 (Part 2 of 3). Secondary Save Pointer Data Area 

Address Function Size 

Internal Palette Index (0-16; ° = Normal Word 
Operation) 

Pointer to Internal Palette OWord 

External Palette Count (0-256; 256 = Normal Word 
Operation) 

External Palette Index (0-255; ° = Normal Word 
Operation) 

Pointer to External Palette OWord 

Consecutive bytes of mode values for this font Byte 
description. The end of this stream is indicated 
bya byte code of OFFH. 

DWord 5 to 
DWord 7 Reserved and set to 00:00. 

Figure 3-21 (Part 3 of 3). Secondary Save Pointer Data Area 

Address Function Size 

40:AC to 
40:FF 
50:00 

Reserved 

Print Screen Status Byte (INT Q5H Status) 

Figure 3-22. Miscellaneous Data Area 2 

Extended BIOS Data Area 

Byte 

Word 

The Extended BIOS Data Area is supported on Personal System/2 
products only. The POST allocates the highest possible (n) Kb of 
memory below 640Kb to be used as this data area. The word value at 
40:13 (memory size), indicating the number of Kb below the 640Kb 
limit, is decremented by (n). The first byte in the Extended BIOS Data 
Area is initialized to the length in Kb of the allocated area. 

To access the Extended BIOS Data Area segment, issue an INT 15, 
(AH) ~ C1H (Return Extended BIOS Data Area Segment Address). 
To determine if an Extended BIOS Data Area is allocated, use INT 15, 
(AH) ~ COH (Return System Configuration Parameters). 



APPENDIX I: DATA SHEETS 

SECTION 1.1: NS8250/NS16450 UART CHIP 

5.0 Block Diagram 

.. .. 
" 
'" 
'" en 

n .. 
OOIS 

ClOUT 

" .. ,' 

,NHRHAl 
D~TA lUI 

,., 
l~'~"~'~j+-~r-'i RICilViR t~------"t~~~ lUI euFf!~ 

IU"IR RIGtlTU 

'" OIVISGR 

" tATCHnll 
lAUD 

DIVISOR 
GUU.IOR 

lUtHIMSI 

utter • CUT~Ot 
(DOlt 

(111 

~OWIR{......!!!L..... 'iV 
SUP'tT ~O~D 

m 
rn 

'" '" Iffii 
Iltl • ..,., 
1311 om 

" , .. 

(Reprinted by permission of National Semiconductor Corporation, Copyright National Semiconductor Corp. 1990) 

SECTION 1.1: NS8250INS16450 UART CHIP 

TLlC/8401-IO 

959 



\C 
0'1 
Q 

> 
." 
." 
t"J :z 
~ 

~ 
!':" 
~ 

~ 
> 
rJl 

~ ..., 
rJl 

~ ;; 
8. 
or 
'< 

lintel" 
~. 

g" 
8, 

[ Address 

f 
$" 

{ 
[ 
6' 
-d 

~ 

A, 
A, 
A, 
A5 

"-
A, 

"-
A9 
A" 
A" 
A" 
A" 
A" 
A" 
A" 
A" 
A" 
A" 
A20 
A" 
A" 
A" 
A" 
A25 
A2' 
A" 
A28 
A" 
A"" 
A" 

014 
A15 
516 
012 
515 
013 
A13 
011 
513 
A12 
57 
010 
55 
A7 
09 
03 
A5 
04 
oa 
05 
07 
53 
DB 
A2 
52 
51 
Al 
P2 
P3 
01 

Data 

DO 
0, 
0, 
0, 
0, 
05 
0, 
0, 
0, 
09 
0" 
0" 
0" 
0" 
0" 
0" 
0" 
0" 
0" 
0" 
020 
0" 
0" 
0" 
0" 
025 
0" 
0" 
028 
0" 
0"" 
0" 

i486TM MICROPROCESSOR 

Pin Cross Reference by Pin Name 

Control 

Pl A20MII 015 
N2 ADS# 517 
Nl AHOlD A17 
H2 BEO# K15 
M3 BE", J16 
J2 BEU J15 
L2 BE3# F17 
L3 BLAST# A16 
F2 BOFF# 017 
01 BAOYII H15 
E3 8REal! 015 
Cl 8sa. 016 
G3 8516# C17 
02 CLK C3 
K3 D/G# M15 
F3 OPO N3 
J3 OPl Fl 
03 OP2 H3 
C2 OP3 AS 
81 EADS# 817 
Al FEAR# C14 
82 FLUSH # C15 
A2 HLDA P15 
A4 HOLD E15 
A6 IGNNE# A15 
86 INTA A16 
C7 KEN# F15 
C6 LOCK # N15 
ca MilO" N16 
Aa NMI 815 
C9 PCO J17 
Ba PCHK# 017 

PWT l15 
PLOCK# 016 
ROY" F16 
RESET C16 
W/R# N17 

Hie Vee Vss 
A3 87 A7 
AlO 89 A. 
A12 811 All 
A13 C4 83 
A14 C5 84 
810 E2 85 
812 E16 El 
813 G2 E17 
814 G16 Gl 
816 H16 G17 
Cl0 Jl Hl 
Cll K2 H17 
C12 K16 Kl , 

C13 L16 K17 
G15 M2 l1 
A17 M16 L17 
54 P16 Ml 

A3 M17 
A6 P17 
Aa 02 
A9 A4 
Al0 56 
All sa 
A14 5. 

510 
511 
512 
514 

inteI" 1486T .. MICROPROCESSOR 

S 

R 

Q 

p 

N 

M 

L 

K 

J 

H 

G 

r 
E 

o 
C 

8 

A 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 _. __ .. _---_ .. - ---­
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ne BUsT, .0.1 vee AS "" vee vee vee VCC A.S vcc A.! VSS 'fCC A25 A2& 
o 0 0 000 0 0 0 0 0 0 0 0 0 0 0 

PCHK, PLOCK, 8REO A2 A7 A5 d A.l AIS A20 An ~24 10.2' Ali All ~s .131 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

~S 'fCC HLOA. 

000 

W/R, 11/10' LOCK, 
000 

vss vee O/C. 
000 

~S 'fCC PWT 
o 0 0 

vss vce 8EO, 

o 0 0 
PCO 8£11 11£2, 
o 0 0 

vss vce B"t)Y, 

000 

VSS 'fCC Ne 
000 

8[3, ROY, KEN, 
o 0 0 

~s 'fCC HOLO 

000 

i4&STW .. Ic ..... oc: ....... Pinout 
TOP SiOE vl£W 

450 .29 00 
000 

D!'O O. 02 

o 0 0 

[).4 vee vss 

000 

07 06 VSS 
o 0 0 

DU vee vss 
000 

016 OS 'fCC 

000 

DP2 01 VSS 
000 

0.2 'fCC ~S 

o 0 0 

D'S oa D!" 
o 0 0 

D«J 'fCC VSS 

o 0 0 

IKlFr~ IISII, .0.20 .. , 011 D13 D9 

000 000 

1IS!6, R[S[TFLUSII,FERR, ><C Ne Ne Ne D5(l D2B [}26 027 yee yee <:I." 018 011 

o 0 0 0 0 0 0 0 0 0 0 0 000 0 0 
[ADSI H<; Nil' He Ne Ne vee Ne yee 001 vee ~5 vss 'ISS 'ISS [121 019 

o 0 0 0 0 0 000 0 0 0 0 0 0 0 0 

-----------------000 0 0 0 0 000 0 0 000 0 0 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Figure 1.2 

S 

R 

Q 

P 

N 

M 

L 

K 

J 

H 

G 

r 
E 

D 

C 

8 

A 

240440-3 

en 
m o 
::::! o z -N .. 
Z 
-I 
m r: 
en 

; 
a> 



SECTION 1.3: INTEL'S PENTIUM 

1.1. PINOUT DIAGRAMS 

1.1.1. Pentium™ Processor Pinouts 
10 11 12 13 14 15 11 17 ~ a M v 

NY .... _ y.., 'Il1O 'II:>: ..... Va: III't oa Yoc Yoc V. Yoc .,.. .,.. .......... lIN DO IM5 

A 000000000000000000000-
~ ~ - ~ ~ ~ ~ ~ ~, ~ va va va ~ _ va _ _ ~ ~ ~ 

_ 000000000000000000000-

---------------------c OOOOOOOOOOOOOOOOOOOOOc 
Yo< __ DO tn, tn5 tnl DIll DI'S D21 DSI !III DIll Dl4 D4G DII DS7 DII '" DII Oq, IJoIOI 

_ 000000000000000000000-
Yo< ~ D1 m ~ IM5 lIN ~ _ 

00000 0000' 
Voe: v. D3 III 

• 0000 
Y .. V_~D1 

GOO 0 0 
'Il1O VII FUN DI'O 

" 0000 
.,. IU I(E* CIQIiI 

0000 _ 'no JIM 101ft 

• 0000 
v •• AHOI.D BIIDVC. MIll" 

L 0000 
V ... InIWT. EAIIII4I HITIIiI 

• 0000 
\I<><; __ _ 

N 0000 
'Icc V. 1# "'*' 

, 0 0 0 0 
Vee ..... IIUI.I. 1El. 

a 0000 
Vee v.. PCHIUI IICYC 

- 0000 
YooI'II~_ 

PENTllIM T .. PROCfSSOA 
~NOUT 

TOP VIEW 

DOl C4I DI7 v... 
0000' 
OUOlllV_Y"" 

o 0 0 0 G 
DR ... V. 011 

0000" 
.. !III .,. .,.., 

0000, 
CUt IIfI Yoo va: 
0000. 

IIIMl Dtt v.. Yoe 

OOOOL 
_fIICIK» VII Yoe 

0000 • 
(50 (5 (5 N 
_ .... ¥II vee 

0000' 
'"'" IIC ..... V. o 0 0 0 a 
_Me v .. v .. 

0000-
....., IIC_TDO 

S 0000 ~----------------------~ 0 0 00. 
va: I'll IWQtU lQ{ ~ _ m m All .I.,. .,, .1.,1 All All M A7 .u IIC lIT lIT TIll 

T OOOOOOOOOOOOOOOOOOOOOT 
Vao I'I.UIIItI PIID' BEllI' _ _ _ ,.,. 142 ,... ..", ." At. .0.,2 Alt ... .1 All "" AU M' 

U OOOOOOOOOOOOOOOOOOOOOU 
BE. ...EQ LOetCI DICII IIOUI "'" V.. va v.. v.. v.. v.. v.. v.. _ v.. v.. '1M All _ An 

, 000000000000000000000' 
_________________ • __ m 

W OOOOOOOOOOOOOOOOOOOOOW 
1 • 10 11 tl » 14 15 " » ,. " a ~ 

Figure 1·1. Pentium'" Processor Pinout (Top View) 

1-1 

(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1993) 

SECTION 1.3: INTEL'S PENTIUM- 961 



Ie 
~ 

> 

~ 
~ 

~ 

~ 
>' 
'" ~ 
t"'l 
-'I 
'" 

'" " " ;; 
[ 
or 
'< 

" " § 
~ ,r 
" 0 
~ 

[ 
n 
0 
.a 
0 

g. 
0 
p 
n 
.g 
~. 
go 
[ 
"-
n 
0 

'!3 
~ 

'" 

intel· PINOUTS 

1.2. PIN CROSS REFERENCE TABLES 

1.2.1. Pentium Processor 

Table 1·1. Pentiumr .. Processor Pin Cross Reference by Pin Name 

Address Data Control 

A3 T17 DO D03 D32 DlO A20M# U05 FACMC# M19 

A4 W19 Dl E03 033 C17 ADS. P04 Hln W02 

AS U18 D2 E04 D34 C19 AOSe# N04 HtTM# M04 

A6 U17 D3 F03 D35 D17 AHOlD l02 HLDA 003 

A7 T16 D4 C04 D36 C18 AP P03 HOLD V05 

AB U16 D5 G03 D37 D16 APCHK# W03 IBT T19 

A9 TIS D6 B04 D3B Dig BEO# U04 IEAR# CO2 

AIO U15 D7 G04 D39 DIS BE1# 004 IGNNE# S20 

All Tl4 DB F04 D40 D14 BE2# U06 IN IT T20 

A12 U14 D9 C12 D41 Big BE3# VOl tNTR NIB 

A13 Tl3 DIO C13 D42 D20 BE .. TOO INV AOI 

Al4 U13 DI1 E05 D43 A20 BES# S04 IU J02 

A15 Tl2 D12 C14 D44 D21 BE" U07 IV B01 

Al6 U12 D13 D04 D45 A21 BE?# WOI KEN# JOO 

Al7 Til D14 D13 D46 E1B BOFF# K04 LOCK# VOO 

AlB Ull DIS DOS D47 B20 BP2 B02 MilO. A02 

Alg TIO D16 D06 D48 B21 BP3 B03 NA. K03 

A20 UIO D17 BOg D49 Fig BROY# l04 NMI N19 

A21 U21 D18 COO D50 C20 BROYC# l03 PCD W04 

A22 UOg Dig CIS D51 FIB ar:EQ V02 PCHK# R03 

A23 U20 D20 D07 D52 C21 BUSCHK# T03 PEN# M18 

A24 UOB D21 C16 D53 G1B CACHE# J04 PMQIBPQ D02 

A25 U19 D22 C07 D54 E20 ClK K18 PM1/BP1 COO 

A26 TOg D23 AIO D55 Gig DIC# V04 PRDY U03 
- -

I·' 

PINOUTS intel· 

Table 1-1. Pentlumn• Processor Pin Cross Reference by Pin Name (Contd.) 

Address Data Control 

A27 V21 D24 BIO D56 H21 DPO H04 PWT S03 

A28 V06 D25 COB D57 F20 DPI COS RIS# RIB 

A29 V20 D26 CI1 D58 J18 DP2 A09 RESET L18 

A30 W05 D27 DOg D59 H19 DP3 D08 Seye R04 

A31 V19 D28 Dl1 D60 l19 DP4 D18 SMI# P18 

D29 C09 D61 K19 DP5 A19 SMIACT# T05 

BTO TOB D30 D12 D62 J19 DP6 E19 TCK T04 

BTl W21 D31 CIO D63 H18 DP7 E21 TOI T21 

BT2 T07 fADS# M03 TOO S21 

BTJ W20 EWBE# A03 TMS P19 

FERR# H03 TAST# S18 

FLUSH# U02 W/R# N03 

WBNoIT# M02 

VCC VSS 

A04 COl N21 W08 B05 B15 H02 l20 020 VIO 

A05 DOl POI WOO B06 B16 H2O MOl R02 VII 

A06 EOI P21 WIO B07 B17 J01 M20 R20 V12 

A07 F01 001 Wl1 B08 B18 J20 N02 S02 V13 

A08 F21 018 W12 Bl1 E02 K01 N20 T02 V14 

All G01 021 W13 B12 F02 K02 P02 V07 V15 

A12 G21 R01 W14 B13 G02 K20 P20 V08 V16 

A13 HOI R21 W15 B14 G20 lOi 002 VOg V17 

A14 J21 SOl WIG V18 

A15 K21 T01 W17 

A16 l21 U01 W18 

A17 M21 W06 Ne: 019 S19 R19 T18 

A18 N01 W07 

18 



SECTION 1.4: INTEL PACKAGING 

infel· PACKAGING 

PACKAGE TYPES 

CERAMIC PACKAGES 

Surface Mount 
f---------- CQFP 

(Ceramic Quad Flalpacl<) 

LGA 
(Land Grid Array) 

Socket Mount 

PGA 
(Pin Grid Array) 

C·DIP 
(Ceramic Dual In-Line Package) 

Insertion/Socket Mount (Side-Braze) 

1-3 

(Reprinted by pennission of Intel Corporation, Copyright Intel Corp. 1992) 

SECTION 1.4: INTEL PACKAGING 

(Bottom View) 

(Bottom 
View) 

240817-1 

963 



>C 

~ 

> 
"C 

~ 
~ 
S< 
~ 

I:' 

~ 
~ 
00 

== I:"l 
I:"l .., 
00 

intel· PACKAGING 

PACKAGE TYPES (Continued) 

I LEADLESS CHIP CARRIER PACKAGES I 

LCC O(-~) (Socket Mount) 

LCC 0 (Bottom VI8W) 
(Surface Mount) 

I GLASS·SEALED PACKAGES I 

CERDIP 

~ (Ceramic Dual In-Una Package) 

(Insertion Moont; uv Window) 

CERQUAD 

~ (Ceramic Quadpack) 

(Surface Mount) 

I MODULES J 
SIMM [DODDlIDI (Single In-Une leadless 
Memory Module) 

(Top VIew) 

SIP 

~ (Single In-Una Leaded 
Memory MOdule) 

[Top View) 

2_17-2 
- - -- - - - ---_._---

1-4 

intel· PACKAGING 

PACKAGE TYPES (Contin,ed) 

PLASTIC PACKAGES 
Surface Mount 

,---SOP 
(Small OU1\ine Pac¥age) 

(Gu'-Wlng) 

Dual Row 
J---=-="-'----t-- SOJ 

(Small Outline Package) 

(J-leed) 

'--TSOP 
(Thin Small Outline Package) 

r-- PLCC 
(Plastic leaded Chip Carrier) 

I-- PQFP 
(Plastic Quad Flatpack) 

Quad Row 

f--QFP 
(Quad Flatpack) 

'-- FLATPACK 

~ 
~ 
V 

o 
/o"'~_ 
~~~H • o 
o

I

240817_3

1-5

trJ
t"'l
(":) .., -o z -:.:.
52 ..,
t"'l
t"'
;:
(":)

~
~
~

~

infel· PACKAGING

PACKAGE TYPES (Coo"o,ed)

Single Row

Dual Row

PLASTIC PACKAGES
- Insertion Mount

ZIP
(ZigZag In-Una Package)

P-DIP
(Plastic Dual In-Line Package)

SHRINK DIP
(Shrink Dual In-Una Package)

SKINNY DIP
(Skinny Dual In-Una Package)

1-6

~
(Side View)

~

~
240817-4

infel· PACKAGING

PACKAGE TYPES (Coo"oooo)

PCMCIA PC CARD-TYPE I AND TYPE II

Type I

~

Type II

"

1-7

(""---,

''i

24Oe17-5

240817_6

1

REFERENCES
Advanced Micro Devices (contact www.amd.com)

Dynamic Memory Design Data Book/Handbook, 1990

Cyrix Corporation (contact www.cyrix.com)

Electronic Design Magazine

Yong-In S. Shin, "Maintain Signal Integrity at High Digital Speeds," May 14, 1992, p. 77.
William Hall, "Avoid Confusion in Choosing Digital Logic," Oct. 24, 1991, pp. 63 - 76.

IBM

IBM Personal System/2 Hardware Interface Technical Reference, 1988
IBM Personal Systeml2 and Personal Computer BIOS Interface Technical Reference, 1987
IBM Technical Reference Personal Computer AT, 1985
IBM Personal Computer Technical Reference, 1984

lOT

High Performance SRAM Data Book, 199211993
IDT Data Book on Logic, 1991, "Characteristics of PCB Traces" by Suren Kodical, AN-49

Intel (contact www.intel.com)

Pentium Processor User's Manual, Volumes I - 3, 1993
Pentium Pro Family Developer's Manual, Volumes I - 3,1996
The PCI Local Bus: A Technical Overview, 1993
Packaging Handbook, 1992
Memory Products, 1992
Microprocessors, Volume II, 1992
INTEL386 SL Microprocessor SuperSet Design Guide, 1992
i486 Microprocessor Programmer's Reference Manual, 1990
8086/8088 User's Manual, Programmer's and Hardware Reference, 1989
Memory Components Handbook, 1987
80386 Hardware Reference Manual, 1986
Microprocessor and Peripheral Handbook, 1983

Motorola

Dynamic RAMs and Memory Models, 1993
Microprocessor, Microcontroller and Peripheral Data, Volume II, 1988

National Semiconductor (contact www.national.com)

Data Communications Local Area Networks UARTs Handbook, 1990

PCI Interest Group

PCI Local Bus, Revision 2.0

Seagate

Product Overview, 1990
Product Overview, March 1994

Samsung

MOS Memory Data Book, 1988

Texas Instruments

TTL Logic Data Book, 1988

967

INDEX

.286 directive 224

.386 directive 224

.486 directive 224

.86 directive 224
16450 UART chip 522,530,959

See also 8250 UART chip
2, powers of 2 267
74xxl38 278 - 279, 318 - 319
74xxl58 286 - 287
74xx 175 249 - 250
74xx244 768
74xx245 244,247 - 249, 256,

287 - 288, 768
74xx280 287 - 288
74xx373 237 - 238, 244, 247, 248
74xx573 238
74xx74 249, 287 - 288
80186/88 microprocessor 632 - 633
80286 microprocessor 246, 250 - 254,

289, 634, 746, 765
80386 microprocessor 237 - 238, 634,

636 - 653,655,765
80386DX microprocessor 641
80386SX microprocessor 634, 641
80486 microprocessor 691 - 696,

765,960
80486SX microprocessor 691
80487 coprocessor 626 - 628
8086 microprocessor 236 - 242, 765
8087 coprocessor 236, 240, 60 I - 628
8088 microprocessor 236 - 242, 248
82284 clock generator 256
82288 bus controller chip 256
8237 DMA chip 249,393,448 -

459,461 - 474
8250 UART chip 509 - 510, 522 -

525, 527, 530, 959
8251 USART chip 509 - 510, 531, 533
8253/54 timer 387 - 388, 390 - 395,

397 - 402, 404 - 406
8255 PPI chip 320 - 325, 329
8259 interrupt controller chip 248,

392,411 - 413, 415 - 416,
418 - 438, 440 - 442, 551

8284 clock generator 242 - 246, 248,
391

8288 bus controller chip 242 - 246, 248

968

colon following labels 50
colon segment override operator

44 - 45

A

A20 driver 746
A20 gate 260, 695, 700, 746
AAA instruction 110, 847
AAD instruction 110, 847
AAM instruction 110, 848
AAS instruction 110, 848
access time

casette tape 571
disks 583, 586, 589, 591 - 592
memory 267,291 - 292, 299

accumulator 26, 310
ACKNLG signal 556
adapter cards 742
ADC (analog-to-digital converter) 373 -

382
ADC instruction 83, 85, 848
ADD instruction 25, 83, 228, 848 - 849
add-in cards 796
addition

BCD 104
binary 6
hex 6 - 7
signed 174 - 179, 181, 183
unsigned 83 - 86

address bus 10 - 13,237 - 239, 247,
786, 790
80286 256
80386 642
Pentium 700

address decoding 3 12 - 3 16
absolute decoding 316
I/O ports 326
linear select decoding 316

addressing
effective address 43
linear 652 - 653
logical address 27 - 28, 30,35
modes 41 - 44, 222
modes of the 80386 637
offset address 27, 224
physical 647, 653
physical address 27 - 28, 30, 35,

43,223
table 45,223

AEN generation circuitry 243, 249

AEN signal 243, 248 - 250, 461, 786
AF (auxiliary carry flag) 38 - 39, 101,

105
AH register 23,88,90 - 91,122,179

- 180,344
AL register 23,88,90 - 92, 179, 310
ALE signal 244, 247, 256, 786
aliases 316
alignment field 20 I
ALU (arithmetic/logic unit) II, 21
AND instruction 93, 850
arguments in macros 151
ASCII 8, 69, 102

addition 109
subtraction 109
table 8,940

ASCIIZ string 593, 898
asm file 54
assemblers 54
assembling a program 54
ASSUME directive 52, 883
ASYNC signal 245
asynchronous communication

See serial communication
AT bus

See ISA bus
AUTOEXEC.BAT file 726 - 727, 729
auxiliary carry 38, 101, 105
AX register 23,88 - 89, 91 - 92, 178

- 180,635

B

background color 122, 125, 129
BACKUP command 730
bank switching 743, 745
based addressing mode 43
based indexed addressing mode 44
batch files 730
bathtub failure rate 776
baud rate 5 12

See also serial communication
BCD (binary coded decimal) 72, 101

addition 104
multiplication 110
packed BCD 102, 116
subtraction 104 - 105
unpacked BCD 102

BE signals 642 - 644, 692, 699
B H register 23
BHE signal 252, 256, 259, 289
biased exponent 602, 604
BICMOS logic family 764 - 765

bidirectional buffer 257
See also 74xx245

bidirectional data bus 248, 562 - 563, 566
big endian 694
binary numbers

addition 6
See also conversion
format 2
subtraction 87

BIOS 122,282 - 283, 418, 736, 744
8253 initialization 392 - 394,

402
8259 initialization 432, 437 -

438
and EISA slots 797
checksum 284 - 286
COM ports 516
delay routine 395
DMA channels 463, 465 - 467,

471
interrupts in C/C ++ 141, 809 - 81 1
keyboard programming 139-

140,549 - 550, 552 -
553

LPT ports 557
NMI interrupts 435
printer programming 554,559,

561
reset 283
serial communication 516,
518-520

BIOS data area 282,419,547,551-
553,557,741,815,952 - 958
accessed in C/C++ 815
COM ports 517
listing 282

BIOS Interrupts
See INT IOH

BIOS ROM 270,283, 302, 484, 491,
495 - 496, 551 - 552, 725, 741
80386 duplicate 645

bipolar transistors
See transistors

BISYNC protocol 535
See also serial communication

bit 9
bit manipulation

See C programming
bit scan instructions 640
BIU (bus interface unit) 2 1 - 22, 695
BL register 23
block

devices 737
error checking 535 - 536
transfers 510 - 511, 530 - 531

969

boot 725
See also cold boot
See also wann boot

boot record 572 - 574, 582, 585
BP register 23, 36, 635
bps (bits per second) 512

See also serial communication
branch penalty 696
branch prediction 702
BREAK command 728
breakpoint 416, 829
BSF instruction 640
BSR instruction 640
BSWAP instruction 693
buffers 247,256,288,292

bidirectional 247
BUFFERS command 729
burst cycle 692, 703
bus 9

address bus 10 - 13
control bus 10 - II
data bus 10 - 12

bus arbitration 249, 785, 794
bus bandwidth 293 - 294, 342, 786

80386 645
graphics 798
I/O devices 343
local bus 802

bus boosting 250
See bus buffering

bus buffering 248 - 249
bus cycle 291 - 292,714

80286/386SX 299
80386 644 - 645
DMA 464
1/0 instructions 338,341 - 344,

471
See also WAIT state

bus protocol 785
See also protocol

bus standard 785, 798
bus throughput

See bus bandwidth
buses 236 - 240, 247, 785

See also address bus
See also control bus
See also data bus
See also EISA bus
See also IBM MCA bus
See also ISA bus
See also local bus

busy flag 736
BUSY signal 254
BX register 23, 635
byte 9

970

BYTE attribute 888, 890 - 891
byte tran sfer

See character transfer

c

C programming 141 - 144,210,
332 - 337, 359, 372,
809 - 822

bitwise operation 114 - 116
calling Assembly language

routines 212, 215
calling convention 213 - 214

216
,

1/0 ports 377 - 379,816,819
inline coding 145, 211
int86 function 141 - 143 809-

811 '
int86x function 144
intdos function 141, 143, 809,

812
intdosx function 144
I/O programming 332 - 337,

359,372
kbhit function 146
keyboard functions 146
logic operators 114
REGS structure 141 - 142 145

809-810 "
shift operators 115
SREGS structure 144 - 145,812

cache 271,662,672
coherency 679
data cache 673
direct mapped 674
first level cache 691
flushing 678
fully associative 673 - 674
on-chip 700
organization 673 - 677
refill policy 679
replacement policy 679
secondary cache 691
set associative 675 - 676
tag cache 673
updating main memory 678

CALL instruction 66, 412, 850 - 851
856 '

capacitance derating 768
capacitors 774
carry 38

See also auxiliary carry
CAS signal 274 - 275, 287, 663

cascade mode 422 - 423, 437, 456
CBW instruction 178, 639, 851
CD (carrier detect) signal 515
CD command 730
CD ROM 726, 728
CDQ instruction 639
CEN signal 243
centronics printer interface

See printer interfacing
CF (carry flag) 37 - 40, 65, 83, 86, 88,

95 - 97, III - 113, 176 - 177,
182,414
access in C language 144

CGA (color graphics adapter) 122,
124 - 125, 127 - 129

CGA adapters 484 - 485
CH register 23
character

BISYNC protocol characters
534

devices 737
number of bits 511,517
parity bit 512
transfer 51 I - 512, 517, 519, 522

character box 482 - 483
character generator ROM 495 - 496
checksum 284 - 286
chip capacity 278
chip enable

See chip select
chip select 278
CHKDSK utility 581
CISC architecture 14, 704
CL register 23, III - 113
class name field 20 I
CLC instruction 851
CLD instruction 185, 852
CLI instruction 266, 413, 852
CLK signal 243, 246 - 248, 252,

694, 786
clock 726, 787

See also 8253/54 timer
frequency 243 - 244, 252, 391,

703
clock cycles 847, 872 - 873
CLOCK signal 240
closing files 594
clusters 573, 580
CMC instruction 852
CMOS logic family 269,271,276,

281, 522, 760, 762 - 765, 780
CMOS RAM 819 - 821
CMP instruction 96 - 97, 182,

852, 860
CMPS instruction 852

CMPSB instruction 185, 188, 852
CMPSW instruction 185, 188, 852
CMPXCHG instruction 694
CODIINTA signal 265
.CODE directive 51 - 52
code segment

See segments
Code View program 224 - 225
cold boot 244, 283, 725, 727
color palette 488, 50 I - 502
com file 76 - 77, 735
COM ports

See serial communication
combine type field 20 I
COMMAND.COM file 579, 726 - 727,

729,731
comments 50

m macros 152
compact

See memory model
conditional jumps

See jumps
CONFIG.SYS file 726 - 730, 737,

751, 754, 756, 921
control bus 10 - I I, 238 - 239, 249,

786
conventional memory 281, 726, 728 -

729,731,741 - 742, 744, 746
- 747, 749 - 752, 811

conversion
ASCII to BCD 102 - 103
ASCII to binary 207
BCD to ASCII 104
binary to ASCII 203 - 205
binary to decimal 2
decimal to binary 2
decimal to hex 4
exe to com 77
hex to binary 4
hex to decimal 4

cooked data 737
coprocessor
COpy command
counters

20,601
730

divide-by-N counter 404
hardware triggered 406
of the 8253/54 timer 387 - 388,

390, 392 - 394, 397
programmable one-shot 404
software triggered 405

CPU 9,11
CPUlD instruction 718
CRAY 210
CRC error checking 535

See also serial communication

971

crf file 56
crosstalk 774
CRT controller 48 I, 484

See also 6845 CRT controller
CRT displays

analog 481
CGA adapter 484
character box 482
color 481
digital 481
EGA adapter 487
horizontal/vertical frequency

479
MCGA adapter 488
MDA adapter 486
raster scanning 478 - 479
resolution 478, 480
SVGA adapter 491
VGA adapter 489
See also video
video frequency 479
video graphics programming

489
video text programming489

crystal 245
trequency 245
oscillator 245 - 246

CS register 23, 27 - 28, 66, 241,
254,411,414,635

CS signal 271
CSYNC signal 246
ctrl-break 728
CTS (clear to send) signal 515
currents 77 I

cursor

dynamic 771
static (DC) 77 I
transient 774

position 122 - 124,493 - 495,
498,500

shape 493,498,500
See also mouse pointer

CWD instruction 178, 639, 852
CX register 23, 635
cylinders 583

o
D latch 238

See also 74xx373
DAA instruction 104 - 105, 853
DAC (digital-to-analog converter) 368

- 371
DACK signal 448, 450, 454, 461, 787

972

daisy chain 590
DAS instruction
data

104,107,853

alignment 646
integrity 284, 288
programming 605 - 606
types 60 I - 604

data acquisition 316 - 317, 373,375,
379

data bus 10 - 12,236 - 239, 248 - 249,
256,273,309,787,790

80286 256
80386 642 - 643
Pentium 699

data dependency 70 I
.DATA directive 74
data directives 69
data segment

See segments
data transfer

block 510,530 - 531
character 51 1- 512, 519, 522
DMA 448,450,453,456,459,

464
data types 68

in MMX 716
DB directive 69, 883
DCE equipment 5 I 5 - 5 I 6

See also serial communication
DD directive 7 I, 605, 884
DEBUG program 55, 825

A (assemble) command 828, 833
C (compare) command 843
D (dump) command 833 - 835
E (enter) command 833, 835 - 837
F (fiD) command 833 - 834
G (go) command 828 - 830
H (hex) command 840
L (load) command 844
M (move) command 842 - 843
N (name) command 844
P (procedure) command 840
Q (quit) command 825 - 826
R (register) command 826 - 827,

839
S (search) command 843 - 844
T (trace) command 831
table of commands 846
table of flag register codes 840
U (unassemble) command 828 -

829,833
W (write) command 844

DEC instruction 854
decoder 278

See also 74xxl38

DEL command 730
delay routine 395,397,399
demultiplexing 274
DEN signal 240, 244, 248
descriptor table 648 - 651
DEVICE command 729,737,749,

751 - 754, 756
device drivers 726, 728 - 729, 731,

736 - 737, 744, 749, 751, 754
block type 737
character type 737
installable 736
standard 729, 755

DEVICEHIGH command 755
OF (direction flag) 38, 185
DH register 23
DI register 23, 635
DIP (dual in-line packaging) 251,

634, 773
DIP switches 342
DlR command 579
DlR signal 248
direct addressing mode 42
directives 50 - 51, 53, 605
directory 572 - 573, 577, 579,

582,585
dirty bit 651, 678
DlSKCOPY command 730
disks

access time 583,586,589,
591 - 592

bootable 579
capacity 583
clusters 572 - 574
cylinders 583
data encoding 586 - 588
density 587
files 593 - 596
floppy 571 - 573, 575 - 578, 582
formatting 585, 592
hard 582 - 585, 587 - 589, 591
heads 583
interfacing
logical 585

588-591

organization 572 - 583, 585,
591 - 592

parking head 592
partitioning 585
programming 593 - 596
reliability 592
sectors 571 - 572
speed 586
timing 587
tracks 571 - 572

display
attribute 123, 125
character to monitor 130
string to monitor 130

DlV instruction 90 - 92, 854
division

signed 179
table 92, 179
unsigned 90 - 92

DL register 23
OLE (data link escape) character 534
DMA 448,745

AT interfacing 468,470
bus control 240, 249,

448,450,461
cascading 456
channel priority 471
control registers 451, 453
data transfer 456, 464, 468, 470
See also DRAM refreshing
interfacing 459
transfer rate 472 - 473

DOS INT21 H Function calls
See INT 21H

DOS operating system 19, 24, 32 - 33,
35, 725 - 730, 741 - 743, 745,
749 - 751,754
batch commands 730
CONFIG.SYS commands 730
external commands 730
internal commands 730

DOS=HIGH command 749
DOS KEY program 730, 755
dot pitch 480
double density disks 587
double precision data 601
DQ directive 72, 605, 884
DRAM (dynamic RAM) 273 - 275,

662 - 663, 665 - 666, 672
EDO 680 - 681
fast page mode 680
hyper-page 681
interfacing 301
nibble mode 665,669,671
page mode 667 - 668, 671
Rambus 683 - 685
refreshing 393, 463, 465, 467
SDRAM 682 - 683
static column mode 665,

669,671
DREQ signal 448, 450, 454, 461, 467
DRQ signals 787
OS register 23, 29 - 30, 240, 266,

295, 329, 635
DSP (digital signal processing) chips 715

973

DSR (data set ready) signal 515
DT directive 72, 605, 884
DT/R signal 240,248
DTA (disk transfer area) 898
DTE equipment 515 - 516

See also serial communication
DTR (data terminal ready) signal 515
dual bus systems 797
DUP directive 70, 885
duplex transmission 510

See also serial communication
D W directive 70, 885
DWORD attribute 888, 890
DX register 23, 88 - 89, 91, 178 -

180,324,635

E

EA
See effective address

EAX register 635 - 636, 639
EBP register 635
EBX register 635
ECHO command 730
ECL chips 780
ECP port 563
ECX register 635 - 636
EDC circuitry 776, 778 - 780
EDI register 635
EDLIN command 730
EDX register 635 - 636, 639
EEPROM (electrically erasable

PROM) 269, 662
effective address 639, 870
EFI signal 245 - 246, 268
EFLA GS register 635
EGA (enhanced graphics adapter) 122,

124
EGA adapters 487
E1P register 635,644
EISA add-in cards 794 - 795
EISA bus 347, 793, 795 - 796
EMM (expanded memory

manager) 745
EMM386.EXE program 743,750-

752, 754, 756
EMS (expansion memory

specification) 743, 745
END directive 53, 195,885
ENDM directive 151
ENDP directive 52, 886, 889
ENDS directive 51, 886, 891
ENQ (enquiry) character 534
entry point 51 - 53, 67

974

EOI (end of interrupt) command 429
EOT (end of transmission) char 534
EPP port 563
EPROM (erasable programmable

ROM) 268 - 269
flash EPROM 270

EQU directive 71,134,886
error detection and correction 776 - 781
ERROR signal 267
ES register 23,32,240,266,295,635
ESC instruction 267, 854
ESI register 635
ESP register 635
ETB (end of transmission block)

character 534
ETX (end of text) character 534
EU (execution unit) 21 - 22, 695
even bank 289 - 290, 299
EVEN directive 292 - 293, 886
exception

divide error 90
exe file 55, 76 - 77, 735
EXE2BIN utility 77, 296, 735
exit point 51
expanded memory 743,745,752

accessmg 756
emulating 756

expansion slot 295,297, 788
exponents 602, 623
extended BIOS data area 419
extended memory 746 - 747,

751, 755, 819 - 820
extra segment

See segments
EXTRN directive 194, 197,862,887

F

FIC signal 245,246
FAR attribute 52,64,66 - 67, 194, 851
FAST (Fairchild Advanced Schottky

TTL) 763
FAT (file allocation table) 572 - 574,

576, 580 - 582, 585, 899
FCB (file control block) 593, 898 - 899
FCT (fast CMOS technology) 763
file handle 593 - 594, 899
files

closing 594
creating 593
opening 594
programming 593 - 596
reading 594
writing 593

FILES command
FIT (failure in time)
fixed disks 583

See also disks

729 - 730
777

flag register 23,37 - 38, 40, 64,
411,635,839 - 841

diagram 414
flash memory

See EPROM
floating point

instructions 620 - 625
programm ing 606 - 614, 620

floating point data
See IEEE floating point standard

floppy disk
See disks

FM (frequency modulation) 586
foreground color 125
FORMAT command 730
formatting 572, 585, 592
FPU (floating point unit) 700
framing 511

See also serial communication
FS register 635
full duplex transmission 510

G

GaAs (gallium arsenide) 764, 780
GOT (global descriptor table) 651
general purpose registers 22 - 23
gigabyte 9
GRAFTABL utility 496
graphic processor 798
graphics

See video
graphics mode 127 - 129
ground bounce 771, 773
GROUP directive 887 - 888
GS register 635

H

half duplex transmission 510
Hamming code 534
handshaking 321,514
hard error 302, 776 - 777
hardware interrupts

See interrupts, hardware
Harvard architecture 700, 707

head pointer 553
Hercules adaptor 491
hexadecimal

See also addition
See also conversion
representation 3
See also subtraction

Hi/Lo byte copier 344 - 345, 469
high memory 746 - 747

See also HMA
HIMEM.SYS file 746,749 - 750
hit 672
HLOA signal 240, 253, 448, 450
HLT instruction 854
HMA (high memory area) 260, 272,

695,700,746, 749 - 751,754
HOLD signal 240, 253, 448, 450
host processor 618
hot keys 732, 734
HRQ signal 449
HRQOMA signal 249
huge

See memory model

1/0
80386 ports 646
address decoding 312 - 313,

316 - 31 8, 344 - 345
address map 317,941 - 942
bus cycle 339, 343
bus timing 325
channel 787
handshaking 321
instructions 310 - 3 11
interfacing 325 - 331
map 317,340
memory mapped 1/0 314
peripheral 110 344 - 345
ports 310
programming with C 332 - 337

1/0 design 312 - 315
IBM AT 251,256 - 257, 260,

468,471,746,786,941
rear panel 274

IBM MCA bus 793 - 794, 798
IBM PS/2 395,413,419,439,472,

484, 488 - 489, 793 - 794,
942,952

IBM token ring 535
IBMBIO.COM file 579
IBM DOS. COM file 579

975

IC interfacing 766, 768 - 772, 774 - 775
capacitance derating 768
fan-inlfan-out 766

IC technology 760 - 765
ID header 592
IDIV instruction 179, 854
I EEE floating point standard 60 I - 603
IF (interrupt flag) 38, 414
immediate addressing mode 41
impedance 762, 775
IMUL instruction 180, 854
IN instruction 3 I 0 - 312, 315, 400,

646,855
INC instruction 855
INCLUDE directive 158 - 159,888
index registers 23
indexed addressing mode 43
inductance 771,773 - 774
in line coding 145,211 - 212
input

/Tom keyboard 131-133,135
input ports

See /10
instruction decoder 12
instruction pairing 702
instruction pointer

See IP
instruction schedul ing 702
instruction timing 870 - 872

table 873 - 882
INT 00 (divide error) 415, 858
INT 01 (single step) 415,858
INT 02 (non-maskable interrupt) 416,

858
INT 03 (breakpoint) 416, 858
INT 04 (signed number overflow) 416
INT 08 732, 735
INT 09 549, 551 - 553, 732
INT IOH 491,493 - 494, 498,

504,734
INT I OH video function calls 122 - 129

See Appendix E 924
INT 12H 419,811
INTI4H 516,518-520
INT 15H 819
INT 16H 139 - 140, 549 - 550,

553,735,812
INT 17H 554, 559, 561
INT IAH 820
INT 21H 141,143,593 - 594,

731 - 732, 809, 812, 820
INT 21 H DOS function calls 122,

130-135,137-138
See Appendix D 900

976

INT33H 161-167, 169,898,921-923
INT instruction 122,411 - 413, 415,

431,441,855 - 856, 858
INTA signal 240, 244, 252, 421, 433
integers 604, 614

programming 614 - 615
integrated circuits

See IC
interlaced scanning 478
interleaving banks 663, 665 - 666, 683
interleaving sectors 591
interrupt chaining 732
interrupt handler 732

See also ISR
interrupt service routine

See ISR
interrupt vector table 411 - 412,

414,732
interrupts 411, 732, 856 - 857, 859

and the 80286 436
assignment table 440
conditional or exception 415
enabling/disabling 427
EOI (end of interrupt) command

429
execution 414
hardware 413,421,430-

434,439,857
hooking into interrupts 732,

735
interrupt vector table 859
NMI sources 433
priority 426 - 427, 429, 441
software 413,857
table of the IBM PC/XT 418

INTO instruction 416, 859
INTR signal 240,266,413 - 414,

421,441
inverters 761 - 762
IO.SYS file 579,726,737
101M signal 238 - 240
lOB signal 249
10CHCHK signal 787
10CHRDY signal 787
lOR signal 240, 387, 449, 787
10RC signal 243 - 244
lOW signal 238 - 240, 449, 787
10WC signal 243 - 244, 249, 270
IP (instruction pointer) register II, 23,

27 - 28, 64, 241, 411, 414,635
IRET instruction 412, 422, 859
IRQ signals 169,392,439,441,551,

787

ISA bus 246, 250 - 251, 255 - 257, 786
- 788, 790 - 792, 795, 796 - 797, 943

limitations 792
timing 789

ISR (interrupt service routine) 411, 413,
419, 732, 735

IU (integer unit) 700

J

JA (jump if above) 64 - 65
JAE (jump if above/equal) 64
JB (jump if below) 64 - 65
JBE (jump if below/equal) 64
JC (jump if carry) 64, 860
JCXZ (jump ifCX=O) 861
JE (jump if equal) 64
JG (jump if greater) 64, 183, 861
JGE (jump if greater/equal) 64, 183,861
JL (jump if less) 64,183,861
JLE (jump if less/equal)64, 183, 861
JMP (unconditional jump) 65,861 - 862
JNA (jump if not above) 64
JNAE (jump if not above/equal)64
JNB (jump if not below) 64
JNBE (jump if not below/equal) 64
JNC (jump if no carry) 64, 860
JNE (jump if not equal) 64
JNG (jump if not greater) 64
JNGE (jump if not greater/equal) 64
JNL (jump if not less) 64
JNLE (jump if not less/equal) 64
JNO (jump if no overflow) 64, 860
JNP (jump if no parity) 860
JNS (jump if no sign) 64, 860
JNZ (jump if not zero) 63 - 64, 860
JO (jump if overflow) 64, 860
JP (jump if parity) 64, 860
JPE (jump if parity even) 64
JPO (jump if parity odd) 64
JS (jump if sign) 64, 860
jumps

conditional jumps 64, 183, 860
far jumps 862
short jumps 64, 861
table 65
unconditional jumps 65, 861

JZ (jump if zero) 65, 860

K

K (unit of measure) 9
kernel 653,726,731,744,751
keyboard 542 - 543

break 546
buffer 552
cable jack 551
capacitive 554
enhanced 550
hard contact 553
See also INT 09
See also INT 16H
interfacing 546
key press detection 543, 545
make 546
matrix 542
overrun 552
programm IIIg
scan codes

keyboard input
See input

kilobyte 9

L

549
547 - 548

LABEL directive 136, 888
labels 50, 67, 895 - 896
LAHF instruction 863
.LALL directive 152, 154
large

See memory model
latch

D latch 238
latency time 586
LCC (leaded chip carrier) 253
LCD 352 - 360, 564
LDS instruction 863
LDT (local descriptor table) 651
LEA instruction 863
LENGTH directive 889, 893
LES instruction 864
LIM (Lotus/Intel/Microsoft) EMS 743
line drivers 513

See also serial communication
line receivers 513

See also serial communication
link map 200
LINK program 54,56 - 57,196 - 197
linking 57, 196 - 197

C with Assembly language 217

977

little end ian 3 I, 61, 72, 226, 636, 694
load/store architecture 705
LOAD HIGH command 755
local bus 247, 797

See also PCI local bus
See also VESA local bus

LOCAL directive 155, 157
locality of reference 673
LOCK instruction 864
LODS instruction 864
LODSB instruction 185 - 186, 864
LODSW instruction 185 - 186, 864
logical pages 745
loop 40
LOOP instruction
LOOPE instruction
LOOPNE instruction
LOOPNZ instruction
LOOPZ instruction
lower memory 741
LPT ports

See printer

86, 864
864
865
865
864

LRU (least recently used)
algorithm 647,679

LSB (least significant bit) 95 - 96,
111- 113,182

1st file 55, 152

M

Mil 0 signal 264
See also 101M signal

machine code 23 - 24, 28
macro 151 - 157, 159- 160, 170

comments in macros 152
invoking macros 151
local names 155, 157
macro definition 151
macro expansion 151

MACRO directive 151
main memory 647
map file 57
maskable interrupts 413
masking bits 93, 98

in C language 116
MASM program 54 - 55, 73, 224
master 785
MASTER signal 790
master/slave configuration 421, 431
math coprocessor 60 I
matrix

keyboard 542, 544, 551, 554
maximum mode 241

978

MCA (microchannel architecture)
See IBM MCA bus

MCB (memory control block) 731
MCE/PDEN signal 244
MCGA adapter 488
MD command 730
MDA (monochrome display

adapter) 122,486 - 487
media descriptor byte 580
medium

See memory model
megabyte 9
MEM command 748
memory

access time 267,291,662,
664,686

addressing 276 - 280, 742
banks 289 - 290, 643, 663
See also cache
cache memory 20
capacity 266
cycle time 660, 662, 686,

692 - 693
See also expanded memory
expansion boards 745
See also extended memory
interfacing 289, 660, 663
memory map 32, 280
nonvolatile memory 267, 276
organization 266, 665 - 666,

692,699
range 19 - 20, 224
virtual memory 19
volatile 271

memory map 280 - 281, 742, 744,
747,751

of the 80286/386SX 3 15
memory mapped 110 314
memory model 74, 648
MEMR signal 243,449,788, 791
MEMW signal 238 - 239, 248 - 249,

258, 277 - 278, 287 - 288, 449,
788,791

MFM (modified frequency
modulation) 586

MGA (monchrome graphics
adapter) 124

mickey 162
microcontroller

keyboard 542, 546, 551
microprocessor 13

80286 19
80386 19 - 20
80386SX 20
80486 19 - 20

8080/85 19
8086 19
8088 19
Pentium 697 - 704, 711,764-

765, 961 - 962
Pentium Pro 710 - 714
table 20

minimum mode 237,240
miss 672
MMX technology 715 - 716, 718
MN/MX signal 240
MODE

C080 command 129
LPTI command 56

MODE command 516 - 517
modem 509

See also serial communication
modular programming 194
modules 194

linking 197
parameter passing 208 - 209

monitor
See CRT displays
See also video

motherboard
See system board

mouse 161 - 169, 726, 728
button 167 - 168
driver 161,169,921
pointer 162 - 164, 168 - 169
programmmg 161,921 - 923
resolution 163
sensitivity 162

MOY instruction 24, 865
MOVS instruction 865
MOVSB instruction 185, 865
MOVSW instruction 185, 865
MOVSX instruction 639
MOVZX instruction 639
MRDC signal 243
MSDOS

See DOS operating system
MSB (most significant bit) 95 - 96,

III - 113, 174 - 175, 182
MSDOS.SYS file 579,726
MTBF (mean time between

failures) 592, 777 - 780
MUL instruction 89 - 90, 229, 865
mu1tibyte processing 86, 88, 105
multiplication

signed 180
table 90, 180
unsigned 89 - 90

mUltiprocessors 616, 703

multiword
85
85, 175

addition
multiword processing
music generation 394, 397 - 400,

816 - 817
MWTC signal 243

N

names
See labels

NEAR attribute 52, 64 - 66, 194, 850
NEG instruction 865
negative number representation 6, 174-

176
nibble 9
nibble mode DRAM 665, 669
NMI signal 240,254,413,416,433,

435,441
NMOS logic family 760, 765
nonmaskable interrupts 413,433

See also NMI signal
nonre-entrant procedures 736
nonvolatile memory 267,276
NOP instruction 865
NOT instruction 87, 866
NV-RAM (nonvolatile RAM) 276

obj file 55
object code

o

See machine code
octal buffer 768

See also 74xx244
odd bank 3 10, 3 12
OF (overflow tlag) 38, 65, 176 - 179,

416
OFFSET directive 889
opcode 27 - 28, 41
opening files 594
OR instruction 93, 866
ORG directive 69, 889
OS/2 440,647,655, 746, 755, 776
OSC signal 246 - 247, 787
OUT instruction 400, 646. 866
output

string to monitor 130
See also OUT instruction

output ports
Scc I/O

overdrive technology 703

979

overflow 176 - 179, 181, 416, 639
overscan 479

p

P286 directive 224
P386 directive 224
P486 directive 224
P8086 directive 224
packaging 963 - 965
PAD (end of /Tame block) character 534
PAGE directive 56, 889
page directory 653
page /Tames 744,752, 756
page mode DRAM 665
paging 651 - 653, 655, 745
palettes

See color palettes
PARA attribute 891
parallel communication 509
parallel execution 702
parity 38, 65, 286 - 288, 692, 700,

776,778
bit generator and checker 286 -

288
partitioning disks 585
PC Bus Extender 325 - 327
PC DOS operating system 725
PC Interface Trainer 327 - 329
PCI (peripheral component

interconnect) 798
PCI local bus 799, 802
PCK signal 288
PCLK signal 246
PEACK signal 254
Pentium microprocessor 697 - 704

711,764-765,961-962 '
Pentium Pro microprocessor 710 - 714
PEREQ signal 254
peripheral I/O 3 14
peripheral interfacing 590
persistence 480
PF (parity flag) 38 - 39, 65
PGA (pin grid array) packaging 634
physical address 647
physical pages 745
pipelining 22, 691, 695 - 698 701 - 702
pixel 127 - 128,478 '
plug and play 802
PMOS logic family
pointer registers
pointers

760, 765
23

80386 Assembly language
636,639

polling devices 337

980

POP instruction 67,866
POPA instruction 633
POPF instruction 867
port addressing 316

COM ports 517, 523
DMA 450,452
LPT ports 557
of the 8237 460
of the 8259 430

ports 310
80386 646
aliases 316
interfacing 316 - 319
of the 8253/54 timer 387 - 388
of the 8255 320 - 325
parallel 562 - 564, 566
See also port addressing

POST (power on self test) 516, 557,
726 - 727

power supply 765,771
powers of 2 267
primary memory 266, 647
primary storage 597

printer
See also RAM

Centronics specifications 555
control characters 560
control signals 556 - 557
DB-25 connector 557
interfacing 554, 557
LPT ports 557
ports 559, 562 - 564
programming 559, 561
status signals 556
time-out 560
timing 561

privilege levels 647
PROC directive 52, 889
procedure 52

See also modules
program counter II
PROM (programmable ROM) 268
PROMPT command 729
protected mode 20, 251, 260, 301, 440,

647 - 653, 655, 695, 746
protocol 511,532,785

asynchronous bus 785
BISYNC 532 536
bus 785 - 786 '
SDLC 532, 536
See also serial communication
synchronous 785

PS/2 port 562 - 563
pseudo-operations

See directives

»

PSP (program segment prefix) 899
PTR directive 89, 890
PUBLIC directive 194 - 195, 197, 862,

891
PUSH instruction
PUSHA instruction
PUSHF instruction

Q

67,867
633
867

QS (queue status) signals 242
QWORD attribute 888, 890

R

RAM (random access memory) 9, II,
32, 278, 282 - 283, 285, 288,
647
interfacing 297
shadow RAM 748
video display RAM 32 - 33, 123

RAS signal 274 - 275, 287, 467, 663
raster lines 482
raster scanning 478
raw data 737
RCL instruction 113, 867
RCR instruction 113, 867
RD signal 238 - 239
RDY/WAIl'signal 245
re-entrant programs 736
read cycle 255, 298, 300
read-ahead buffer 729
reading a file 594
READY signal 240, 241 - 246,

254,660
real mode 20, 251, 254, 260, 280,

301,635,639,695,746
REFRESH signal 787
register addressing mode 41
register indirect addressing mode 42
registers 11, 22, 221 - 222, 226

32-bit 635
80386 635 - 636
80x87 607
RISC 705
table 23, 222

REM command 730
REP pretix 186 - 187
RES signal 244 - 245

reserved names
table 896 - 897

RESET DRY signal 787
RESET signal 241, 244 - 245, 253 -

254,644,725
resolution 479
RET instruction 67, 867
RGB (red green blue) monitors 481
RI (ring indicator) signal 515
RISC architecture 14, 704 - 709
RLL (run length limit) 587 - 588
ROL instruction 112 867
ROM (read only memory) 1'1, 32 - 33,

267 - 271, 275, 742
adapter card ROM 742, 744
BIOS ROM 270,282 ' 283
burning 268
data integrity 284
mask ROM 271

ROR instruction 111, 867
rotate instructions 111 - 113
rotational latency 586, 597
RS-232 513

See also serial communication
RTC (real time clock) 820
RTS (request to send) signal 515
run length 587

s
SO, SI, S2 signals 242 - 243
SAHF instruction 867
SAL instruction 182, 868
,SALL directive 152. 154
SAR instruction 182. 868
SBB instruction 88. 868
scaled index addressing mode 634.

637 - 639
868 SCAS instruction

SCASB instruction
SCAS W instruction
Schottky diode 762

185, 189, 868
185, 868

scrolling the screen 123
SCSI (small computer system

interface) 590
scuzzy

See SCSI
secondary storage 597

See also disk
sectors 572 - 574, 581. 729
seek buffering 589
seek time 586, 597
SEGMENT directive 73 - 75, 201,891
segmentation 648 - 651

981

segments 26 - 27, 29, 31,36,50,
648, 651, 655
alignment 891
class 892
code segment 27 - 28, 52, 201
combine type 892
data segment 29 - 30, 51, 75,

185,201
extra segment 32, 52, 185
full segment definition 73 - 76,

201
overlapping 36
overrides 44 - 45
segment registers 23,27 -

30,34-35
simplified segment definition

50 - 52, 201
stack segment 35,51,62 - 63,

201
semicolon comment indicator 50
serial communication

See also 8250 UART chip
asynchronous 510 - 512, 531
COM ports 516- 517
013-25 513
013-9 513
duplex 510
error checking 535 - 536
framing 511
handshaking 5 14
interface standards 513 - 514
line drivers/receivers 513
modem 509, 515
parity 512
principles 509 - 512
programming 518 - 520
protocol 511, 532
RS-232 513, 515
signals 514 - 515
simplex 510
stop/start bits 511
synchronous 510,531

settling time 586, 597
SF (sign flag) 38 - 39, 65, 178
shadow mask 481
shadow RAM 302,453, 748
SHELL command 726, 729 - 730
shift instructions 95 - 96
SHL instruction 96, 182, 868
SHORT directive 66, 892
SHR instruction 95, 868
S[register 23,635
sign bit 174 - 175, 602, 604
sign extension 178 - 179, 639
signal conditioning 379

982

signed number
representation 174 - 176

significand 602, 604, 623
simplex transmission 510

See also serial communication
single density disks 587
single precision data 60 I
single-stepping 38,415
SIZE directive 893
slave 785
SLOC protocol 535

See also serial communication
small

See memory model
SMEMR signal 258, 296
SMEMW signal 258, 296
SMM (system management mode) 771
soft error 288, 776 - 777
software interrupts

See interrupts, software
SOH (start of header) character 534
SOIC packaging 773

See also packaging
SP register 23, 34 - 35, 414, 635
speaker 394,734
SPP port 562
SRAM (static RAM) 271 - 275, 662-

664,672
SS register 23,34 - 35, 241,635
stack 33 - 35, 62, 67, 607, 609, 838 -

839
stack segment

See segments
start bit

See serial communication
static column mode DRAM 665,669
STC instruction 868
STO instruction 185, 868
stepper motor 362 - 368
STI instruction 413, 868
stop bit

See serial communication
STOSB instruction 185 - 186
STOSW instruction 185 - 186
string instructions 185 - [91

table 185
STROBE signal 556
STRUC directive 893
STX (start of text) character 534
SU13 instruction 87, 869
subprograms

See modules
subroutines 67

subtraction
hex 7
signed 175
unsigned 87 - 88

superpipeline 697 - 698, 711
superscalar 697 - 698, 70 I - 702, 711
superset chips 943
SVGA adaptor 491
SWAP instruction 636
SYNC character 534
synchronous communication

See serial communication
SYS command 579
system board 341,481,551,745,

755, 796
system bus 247

T

table processing 190
tail pointer 553
TASM program 54,73,224
temperature sensor 378 - 380
terabyte 9
tenninals

See CRT displays
TEST instruction 869
TEST signal 241
text mode 124 - 125, 127
TF(trapflag) 38,414-416
timer

timing

tiny

See 8253/54 timer

80386 bus cycle 645
burst cycle 693
DMA 473
DRAM 663, 665, 667, 671
ISA bus 789
of the 8253/54 40 I - 406
printer 561
read cycle 298, 300, 341, 343
SRAM 663. 665

See memory model
TITLE directive 56, 894
TLB (translation lookaside buffer) 652,

654 - 655, 702
tracks 573 - 574, 581
transceiver 247

See also 74xx245
transducer 373
transistors 760 - 761

bipolar 760 - 761
MOS 760 - 761

transmission line ringing 775
tri-state buffer 312
trig functions 612
TSR programs 731 - 732, .735 - 736,

744,749,751,754
TTL logic family 761 - 763
two's complement 6, 174
type command 56, 730
TYPE directive 893 - 894
typematic 551

u
UART

See 8250 UART chip
UMB (upper memory block) 741 - 743,

746,749 - 751, 754
UNDELETE command 730
upper memory 741,743 - 745, 747,

751,754
USART

See 8251 USART chip
UV-EPROM 281

v
vacuum tubes 760
VCC bounce 774
VDR (video display RAM) 280, 282,

481 - 482, 484, 486, 501, 742,
744

VESA local bus 798 - 799
VGA (video graphics adapter) 122,

124,489
videb

adapters 484 - 487, 489 - 490
attribute byte 125
character generation 496 - 497
graphics mode 127
graphics programming 498,

501,503
modes 122, 124, 490 - 491
monitor quality 479 - 481 483
pixel programming 128
principles 478 - 483
resolution 127 - 128
screen 122
screen handling 123 - 124, 129
text mode 122
text programming 491 - 494, 497

. See also VDR(videodisplay RAM)
Virtual 8086 mode 655

983

virtual memory 647 - 648, 702
paging 648, 651 - 653, 655
segmentation 648 - 651

VL bus 798 - 799
volatile memory 271

w
WAIT instruction 240,267,870
WAIT state 291,296,299,660,788
wann boot 725
winchester disk 583

See also disks
word 9
WOR n attribute 888, 890 - 891
WR signal 238 - 239
write cycle 300
WR ITR signal 300
writing to a file 593

x
X I, X2 signals 245
.xALL directive 152, 154
XCHG instruction 870
XTOR signal 308
XLAT instruction 190, 870
XMS (extended memory

specifications) 746
XOR instruction 94, 870

z
zero-extend instructions 639
ZF (zero flag) 38 - 39, 60, 65, 145, 188

984

	Home

	Contents

	Preface

	0 Introduction to Computing

	0.1 Numbering and Coding Systems

	0.2 Inside the Computer

	0.3 Brief History of the CPU

	Answers to Review Questions

	1 The 80x86 Microprocessor

	1.1 Brief History of the 80x86 Family

	1.2 Inside the 8088/8086

	1.3 Introduction to Assembly Programming

	1.4 Introduction to Program Segments

	1.5 More about Segments in the 80x86

	1.6 80x86 Addressing Modes

	Answers to Review Questions

	2 Assembly Language Programming

	2.1 Directives and a simple Program

	2.2 Assemble, Link, and Run a Program

	2.3 More Sample Programs

	2.4 Control Transfer Instructions

	2.5 Data Types and Data Definitions

	2.6 Full Segment Definition

	2.7
Exe vs. COM Files
	Answers to Review Questions

	3 Arithmetic and Logic Instructions and Programs

	3.1 Unsigned Addition and Subtraction

	3.2 Unsigned Multiplication and Division

	3.3 Logic Instructions and Sample Programs

	3.4 BCD and ASCII Operands and Instructions

	3.5 Rotate Instructions

	3.6 Bitwise Operation in the C Language

	Answers to Review Questions

	4 BIOS and DOS Programming in Assembly and C

	4.1 BIOS INT 10H Programming

	4.2 DOS INTERRUPT 21H

	4.3 INT 16H Keyboard Programming

	4.4 Interrupt Programming with C

	Answers to Review Questions

	5 Macros and the Mouse

	5.1 What is a Macro and how is it used ?

	5.2 Mouse Programming with Interrupt 33H

	Answers to Review Questions

	6 Signed Numbers, Strings, and Tables

	6.1 Signed Number Arithmetic Operations

	6.2 String and Table Operations

	Answers to Review Questions

	7 Modules: Modular and C Programing

	7.1 Writing and Linking Modules

	7.2 Some very useful Modules

	7.3 Passing Parameters among Modules

	7.4 Combining Assembly Language and C Programs

	Answers to Review Questions

	8 32-Bit Programming for 386 and 486 Machines

	8.1 80386/80486 Machines in Real Mode

	8.2 Some Simple 386/486 Programs

	8.3 80x86 Performance Comparison

	Answers to Review Questions

	9 8088, 80286 Microprocesors and ISA Bus

	9.1 8088 Microprocessor

	9.2 8284 and 8288 Supporting Chips

	9.3 8-Bit Section of ISA Bus

	9.4 80286 Microprocessor

	9.5 16-Bit ISA Bus

	Answers to Review Questions

	10 Memory and Memory Interfacing

	10.1 Semiconductor Memory Fundamentals

	10.2 Memory Address Decoding

	10.3 IBM PC Memory Map

	10.4 Data Integrity in RAM and ROM

	10.5 16-Bit Memory Interfacing

	10.6 ISA Bus Memory Interfacing

	Answers to Review Questions

	11 I/O and the 8255; ISA Bus Interfacing

	11.1 8088 Input/Output Instructions

	11.2 I/O Address Decoding and Design

	11.3 I/O Address Map of X86 PCs

	11.4 8255 PPI Chip

	11.5 PC Interface Trainer and Bus Extender

	11.6 I/O Programming with C/C++ and VB

	11.7 8-Bit and 16-Bit I/O Timing in ISA Bus

	Answers to Review Questions

	12 Interfacing to the PC: LCD, Motor,
ADC, and Sensor
	12.1 Interfacing an LCD to the PC

	12.2 Interfacing a Stepper Motor to the PC

	12.3 Interfacing DAC to the PC

	12.4 Interfacing ADC and Sensors to the PC

	Answers to Review Questions

	13 8253/54 Timer and Music

	13.1 8253/54 Timer Description and Initialization

	13.2 IBM PC 8253/54 Timer Connections and Programming

	13.3 Generating Music on the IBM PC

	13.4 Shape of 8253/54 Outputs

	Answers to Review Questions

	14 Interrupts and the 8259 Chip

	14.1 8088/86 Interrupts

	14.2 IBM PC and MS DOS Assignment of Interrupts

	14.3 8259 Programmable Interrupt Controller

	14.4 Use of the 8259 Chip in the IBM PC/XT

	14.5 Interrupts on 80286 and higher 80x86 PCs

	Answers to Review Questions

	15 Direct Memory Accessing; The 8237 DMA Chip

	15.1 Concept of DMA

	15.2 8237 DMA Chip Programming

	15.3 8237 DMA Interfacing in the IBM PC/XT

	15.4 Refreshing DRAM Using Channel 0 of the 8237

	15.5 DMA in 80x86-based PC AT-Type Computers

	Answers to Review Questions

	16 Video and Video Adapters

	16.1 Principles of Monitors and Video Adapters

	16.2 Video Adapters and Text Mode Programming

	16.3 Text Mode Programming using INT 10H

	16.4 Graphics and Graphics Programming

	Answers to Review Questions

	17 Serial Data Communication and the 16450/8250/51 Chips

	17.1 Basics of Serial Communication

	17.2 Accessing IBM PC COM Ports Using DOS and BIOS

	17.3 Interfacing the NS8250/16450 UART in the IBM PC

	17.4 Intel 8251 USART and Synchronous Communication

	Answers to Review Questions

	18 Keyboard and Printer Interfacing

	18.1 Interfacing the Keyboard to the CPU

	18.2 PC Keyboard Interfacing and Programming

	18.3 Printer and Printer Interfacing in the IBM PC

	18.4 Bidirectional Data Bus in Parallel Ports

	Answers to Review Questions

	19 Floppy Disks, Hard Disks, and Files

	19.1 Floppy Disk Organization

	19.2 Hard Disks

	19.3 Disk File Programming

	Answers to Review Questions

	20 The 80x87 Math Coprocessor

	20.1 Math Coprocessor and IEEE Floating-Point

	20.2 80x87 Instructions and Programming

	20.3 8087 Hardware Connections in the IBM PC/XT

	20.4 80x87 Instructions and Timing

	Answers to Review Questions

	21 386 Microprocessor: Real vs. Protected Mode

	21.1 80386 in Real Mode

	21.2 80386: A Hardware View

	21.3 80386 Protected Mode

	Answers to Review Questions

	22
High-Speed Memory Interfacing and Cache
	22.1 Memory Cycle Time of the 80x86

	22.2 Page, Static Column, and Nibble Mode DRAMs

	22.3 Cache Memory

	22.4 EDO, SDRAM, and RAMBUS Memories

	Answers to Review Questions

	23 486, Pentium, Pentium Pro and MMX

	23.1 The 80486 Microprocessor

	23.2 Intel's Pentium

	23.3 RISC Architecture

	23.4 Pentium Pro Processor

	23.5 MMX Technology

	23.6 Processor Identification in Intel x86

	Answers to Review Questions

	24 MS DOS Structure, TSR, and Device Drivers

	24.1 MS DOS Structure

	24.2 TSR and Device Drivers

	Answers to Review Questions

	25 MS DOS Memory Management

	25.1 80x86 PC Memory Terminology and Concepts

	25.2 DOS Memory Management and Loading High

	Answers to Review Questions

	26 IC Technology and System Design Considerations

	26.1 Overview of IC Technology

	26.2 IC Interfacing and System Deisgn Considerations

	26.3 Data Integrity and Error Detection in DRAM

	Answers to Review Questions

	27 ISA, PCI, and USB Buses

	27.1 ISA Buses

	27.2 PCI Local Buses

	27.3 USB Port

	Answers to Review Questions

	28 Programming DOS, BIOS Hardware with C/C++

	28.1 BIOS and DOS Interrupt Programming with C

	28.2 Programming PC Hardware with C/C++

	Answers to Review Questions

	A
Debug Programming
	A.1 Entering and Exiting Debug

	A.2 Examining and Altering teh Contents of Registers

	A.3 Coding and Running Programs in Debug

	A.4 Data Manipulation in Debug

	A.5 Examining the Stack in Debug

	A.6 Examining/Altering the Flag Register in Debug

	A.7 Additional Debug Data Manipulation Commands

	A.8 Loading and Writing Programs

	B 80x86 Instructions and Timing

	B.1 The 8086 Instruction Set

	B.2 Instruction Timing

	C Assembler Directives and Naming Rules

	C.1 80x86 Assembler Directives

	C.2 Rules for Labels and Reserved Names

	D DOS Interrupt 21H and 33H Listing

	D.1 DOS 21H Interrupts

	D.2 Mouse Interrupts 33H

	E BIOS Interrupts

	E.1 INT 10H Video Function Calls

	E.2 INT 11H - Equipment Determination

	E.3 INT 12H - Memory Size Determination

	E.4 INT 14H - Asynchronouos Communication

	E.5 INT 15H - System Services

	E.6 INT 16H - Keyboard

	E.7 INT 17H - Printer

	E.8 INT 1AH - Timer and Real-Timer Clock Services

	F ASCII Codes

	G I/O Address Maps

	G.1 IBM PC AT I/O Address Map

	G.2 IBM PS/2 I/O Address Map

	G.3 ISA Standard I/O Address Ports

	H IBM PC/PS BIOS Data Area

	I Data Sheets

	I.1 NS8250/NS16450 UART Chip

	I.2 Intel's 80486

	I.3 Intel's Pentium

	I.4 Intel Packaging

	References

	Index

