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PREFACE TO VOLUMES | AND |l

Purpose

This combined volume is intended for use in college-level courses in
which both Assembly language programming and 8Gx86 PC interfacing are dis-
cussed. It not only builds the foundation of Assembly language programming, but
also provides a comprehensive treatment of 80x86 PC design and interfacing for
students in engineering and computer science disciplines. This volume is intend-
ed for those who wish to gain an in-depth understanding of the internal working
of the IBM PC, PS, and 80x86 compatible computers. It builds a foundation for
the design and interfacing of microprocessor-based systems using the real-world
example of the 80x86 IBM PC. In addition, it can also be used by practicing tech-
nicians, hardware engineers, computer scientists, and hobbyists who want to do
PC interfacing and data acquisition.

Prerequisites

Readers should have a minimal familiarity with the IBM PC and the DOS
operating system in addition to having had an introductory digital course.
Knowledge of other programming languages would be helpful, but is not neces-
sary.

Although a vast majority of current PCs use 386, 486, or Pentium micro-
processors, their design is based on the IBM PC/AT, an 80286 microprocessor
system introduced in 1984. A good portion of PC/AT features, hence its limita-
tions, are based on the original IBM PC, an 8088 microprocessor system, intro-
duced in 1981. In other words, one cannot expect to understand fully the archi-
tectural philosophy of the 80x86 PC and its expansion slot signals unless the
80286 PC/AT and its subset, the IBM PC/XT, are first understood. For this rea-
son, we describe the 8088 and 80286 microprocessors in Chapter 9.

Contents of Volume |

A systematic, step-by-step approach has been used in covering various
aspects of Assembly language programming. Many examples and sample pro-
grams are given to clarify concepts and provide students an opportunity to learn
by doing. Review questions are provided at the end of each section to reinforce
the main points of the section. We feel that one of the functions of a textbook is
to familiarize the student with terminology used in technical literature and in
industry, so we have followed that guideline in this text.

Chapter 0 covers concepts in number systems (binary, decimal, and hex)
and computer architecture. Most students will have learned these concepts in pre-
vious courses, but Chapter 0 provides a quick overview for those students who
have not leared these concepts, or who may need to refresh their memory.

Chapter 1 provides a brief history of the evolution of x86 microproces-
sors and an overview of the internal workings of the 8086 as a basis of all x86
processors. Chapter 1 should be used in conjunction with Appendix A (a tutorial
introduction to DEBUG) so that the student can experiment with concepts being
learned on the PC. The order of topics in Appendix A has been designed to cor-
respond to the order of topics presented in Chapter 1. Thus, the student can begin
programming with DEBUG without having to learn how to use an assembler.

Chapter 2 explains the use of assemblers to create programs. Although
the programs in the book were developed and tested with Microsoft's MASM
assembler, any Intel-compatible assembler such as Borland's TASM may be used.
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Chapter 3 introduces the bulk of the logic and arithmetic instructions for
unsigned numbers, plus bitwise operations m C.

Chapter 4 introduces DOS and BIOS interrupts. Programs in Assembly
and C allow the student to get input from the keyboard and send output to the
monitor. In addition, interrupt programming in C is described, as well as how to
put Assembly language code in C programs.

Chapter 5 describes how to use macros to develop Assembly language
programs in a more time-efficient and structured manner. We also cover INT 33H
mouse function calls and mouse programming,.

Chapter 6 covers arithmetic and logic instructions for signed numbers as
well as string processing instructions.

Chapter 7 discusses modular programming and how to develop larger
Assembly language programs by breaking them into smaller modules to be coded
and tested separately. In addition, linking Assembly language modules with C
programs is thoroughly explained.

Chapter 8 introduces some 32-bit concepts of 80386 and 80486 pro-
gramming. Although this book emphasizes 16-bit programming, the 386/486 is
introduced to help the student appreciate the power of 32-bit CPUs. Several pro-
grams are run across the 80x86 family to show the dramatic improvement in clock
cycles with the newer CPUs.

Contents of VVolume Il

Chapter 9 describes the 8088 and 286 microprocessors and supporting
chips in detail and shows how they are used in the original IBM PC/XT/AT. In
addition, the origin and function of the address, data, and control signals of the
ISA expansion slot are described.

Chapter 10 provides an introduction to various types of RAM and ROM
memories, their interfacing to the microprocessor, the memory map of the 80x86
PC, the timing issue in interfacing memory to the ISA bus, and the checksum byte
and parity bit techniques of ensuring data integrity in RAM and ROM.

Chapter 11 is dedicated to the interfacing of 1/O ports, the use of IN and
OUT instructions in the 80x86, and interfacing and programming of the 8255 pro-
grammable peripheral chip. We describe I/0 programming in several languages,
as well.

Chapter 12 covers the PC Interface Trainer and Bus Extender, which are
used to interface PCs to devices for data acquisition such as LCDs, stepper
motors, ADC, DAC, and sensors.

Chapter 13 discusses the use of the 8253/54 timer chip in the 80x86 PC,
as well as how to generate music and time delays.

Chapter 14 is dedicated to the explanation of hardware and software inter-
rupts, the use of the 8259 interrupt controller, the origin and assignment of IRQ
signals on the expansion slots of the ISA bus, and exception interrupts in 80x86
MICrOpProcessors.

Chapter 15 is dedicated to direct memory access (DMA) concepts, the use
of the 8237 DMA chip in the 80x86 PC, and DMA channels and associated sig-
nals on the ISA bus.

Chapter 16 covers the basics of video monitors and various video modes
and adapters of the PC, in addition to the memory requirements of various video
boards in graphics mode.

Chapter 17 discusses serial communication principles, the interfacing and
programming of National Semiconductor's 8250/16450/16550 UART chip, Intel's
8251 USART chip, and verifying data integrity using the CRC method.

Chapter 18 covers the interfacing and programming of the keyboard in
the 80x86 PC, in addition to printer port interfacing and programming. In addi-
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tion, a discussion of various types of parallel ports such as EPP and ECP is includ-
ed.

Chapter 19 discusses both floppy and hard disk storage organization and
terminology. We also show how to write Assembly language programs to access
files using INT 21H DOS function calls.

Chapter 20 examines the 80x87 math coprocessor, its programming and
interfacing, and 1EEE single and double precision floating point data types.

Chapter 21 explores the programming and hardware of the 386 micro-
processor, contrasts and explains real and protected modes, and discusses the
implementation of virtual memory.

Chapter 22 is dedicated to the interfacing of high-speed memories and
describes various types of DRAM, including EDO and SDRAM, and examines
cache memory and various cache organizations and terminology in detail.

In Chapter 23 we describe the main features of the 486, Pentium and
Pentium Pro and compare these microprocessors with the RISC processors.
Chapter 23 also provides a discussion of MMX technology and how to write pro-
grams to detect which CPU a PC has.

Chapter 24 describes the MS DOS structure and the role of CONFIG.SYS
and batch files in the 80x86 PC, the writing of TSR (terminate and stay restdent)
programs and device drivers.

Chapter 25 explains 80x86 PC memory terminology, such as convention-
al memory, expanded memory, upper memory block, high memory area, as well
as MS DOS memory management.

Chapter 26 provides an overview of the IC technology including the
recent advances in the IC fabrication, describes IC interfacing and system design
issues, and covers error detection and correction.

Chapter 27 is dedicated to the discussion of the various types of PC buses,
such as ISA, EISA, USB, their performance comparisons, the local bus and fea-
tures of the PCI local bus.

In Chapter 28 we show how to use C language to access DOS function
calls, BIOS interrupts, memory, input/output ports, and CMOS RAM of the
80x86.

Appendices

The appendices have been designed to provide all reference material
required for the topics covered in this combined volume so that no additional ref-
erences should be necessary.

Appendix A provides a tutorial introduction to DEBUG. Appendix B pro-
vides a listing of Intel's 8086 instruction set along with clock cycles for 80x86
microprocessors. Appendix C describes assembler directives with examples of
their use. Appendix D lists some commonly used DOS 21H function calls and
INT 33H mouse functions. Appendix E lists the function calls for various BIOS
interrupts. Appendix F provides a table of ASCII codes. Appendix G lists the 1/0
map of 80x86-based ISA computers. Appendix H provides a description of the
BIOS data area. Appendix I contains data sheets for various IC chips.

Lab Manual
The tab manual for this series is available on the following web site:

www.microdigitaled.com
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CHAPTER

INTRODUCTION TO COMPUTING




To understand the software and hardware of the computer, one must first
master some very basic concepts underlying computer design. In this chapter
(which in the tradition of digital computers can be called Chapter 0), the fundamen-
tals of numbering and coding systems are presented. Then an introduction to the
workings of the inside of the computer is given. Finally, in the last section we give
a brief history of CPU architecture. Although some readers may have an adequate
background in many of the topics of this chapter, it is recommended that the material
be scanned, however briefly.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Whereas human beings use base 10 (decimal} arithmetic, computers use the
base 2 (binary) system. In this section we explain how to convert from the decimal
system to the binary system, and vice versa. The convenient representation of binary
numbers called hexadecimal also is covered. Finally, the binary format of the
alphanumeric code, called ASC/J, is explored.

Decimal and binary number systems

Although there has been speculation that the origin of the base 10 system
1s the fact that human beings have 10 fingers, there is absolutely no speculation
about the reason behind the use of the binary system in computers. The binary
system is used in computers because | and 0 represent the two voltage levels of on
and off. Whereas in base 10 there are 10 distinct symbols, 0, 1, 2, ..., 9, in base 2
there are only two, 0 and 1, with which to generate numbers. Base 10 contains digits
0 through 9; binary contains digits 0 and ! only. These two binary digits, 0 and 1,
are commonly referred to as bifs.

Converting from decimal to binary

One method of converting from decimal to binary is to divide the decimal
number by 2 repeatedly, keeping track of the remainders. This process continues
until the quotient becomes zero. The remainders are then written in reverse order
to obtain the binary number. This is demonstrated in Example 0-1.

Example 0-1
Convert 25, to binary.
Solution:
Quotient Remainder
2572 = 12 i LSB (least significant bit)
12/2 = 6 0
6/2 = 3 0
32 = 1 1
1/2 = 0 1 MSB (most significant bit)

Therefore, 25,5 = 11001,.

Converting from binary to decimal

To convert from binary to decimal, it is important to understand the concept
of weight associated with each digit position. First, as an analogy, recall the weight
of numbers in the base 10 system:
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740683, =

x10? = 3
8x10t = 80
ex10° = 600
0x10° = 0000
x10f = 40000
7x10° = 700000

740683

By the same token, each digit position in a number in base 2 has a weight
associated with it:

110101, = o Decimal Binary
1% 2 = 1x1 = 1 1

ox 21 = 0x2 = 0 00

1x2° = 1x4 = 4 100

ox2° = 0x8 = 0 0000

ix2? = 1x16 = 16 10000

1x2° = 1x32 = 32 100000

53 110101

Knowing the weight of each bit in a binary number makes it simple to add
them together to get its decimal equivalent, as shown in Example 0-2.

Example (-2
Convert 11001, to decimal.
Solution:
Weight: 16 8 4 2 1
Digits: 1 1 0 0 1
Knowing the weight associated with each binary bit position allows one to
convert a decimal number to binary directly instead of going through the process of
repeated division. This is shown in Example 0-3.
Example (-3
Use the concept of weight to convert 39, to binary.
Solution:
Weight: 32 16 8 4 2 1
1 0 0 1 1 1
32+ 0+ 0+ 4+ 2+ 1=39

Therefore, 39,5 = 100111,.

Hexadecimal system

Base 16, the hexadecimal system as it is called in computer literature, is
used as a convenient representation of binary numbers. For example, it is much
easier for a human being 1o represent a string of Os and 1s such as 100010010110
asits hexadecimal equivalent of 836H. The binary system has 2 digits, Oand 1. The
base 10 system has 10 digits, O through 9. The hexadecimal (base 16} system must
have 16 digits. In base 16, the first 10 digits, 0 to 9, are the same as in decimal, and
for the remaining six digits, the letters A, B, C, D, E, and F are used. Table 0-1 shows
the equivalent binary, decimal, and hexadecimal representations for 0 to 15.
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Converting between binary and hex

To represent a binary number
as its equivalent hexadecimal number,
start from the right and group 4 bits at
a time, replacing each 4-bit binary
number with its hex equivalent shown
in Table 0-1. To convert from hex to
binary, each hex digit is replaced with
its 4-bit binary equivalent, Converting
between binary and hex is shown in

Examples 0-4 and 0-5.

Converting from decimal to hex

Converting from decimal to

hex could be approached in two ways:

1. Convert to binary first and then con-
vert to hex. Experimenting with this

method is left to the reader.

2. Convert directly from decimal to hex
by the method of repeated division,
keeping track of the remainders. Ex-
ample 0-6 demonstrates this method

of converting decimal to hex.

Converting from hex to decimal

Conversion from hex to deci-
mal can also be approached in two

ways:

1. Convert from hex to binary and then

to decimal.

Table 0-1: Decimal, Binary, and Hex
7 i

Decimal - Binary : Hexadecimal
‘i 0 | 0000 0
1 0001 1
2 0010 2
3 0011 | 3
4 0100 4 |
5 0101 5
6 0110 6
______ 7 o1t | 7 |

8 1000 , 8
9 1001 | 9
10 1010 A
11 o1 B
12 1100 | C_
13 . 101D
14 1110 E
15 1111 F

2. Convert directly from hex to decimal by summing the weight of all digits.
Example 0-7 demonstrates the second method of converting from hex to decimal.

Example 0-4

Represent binary 100111110101 in hex.

Solution:

First the number is grouped into sets of 4 bits: 1001 1111 0101

Then each group of 4 bits is replaced with its hex equivalent:

1001 1111 0101
9 F 5
Therefore, 100111110101, = 9F5 hexadecimal.

Example 0-5

Convert hex 29B to binary.

Solution:
2 9 B
= 0010 100t 1011
Dropping the leading zeros gives 1010011011,
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Example 0-6

(a) Convert 45, to hex.

Solution: Quotient Remainder
45/16 = 2 13 (hex D}  (least significant digit)
2/16 = 0 2 (most significant digit)

Therefore, 45,3 = 2D

{b) Convert decimal 629 to hexadecimal.

Solution: Quotient Remainder
629/16 = 39 5 (least significant digit)
39/16 = 2 7
2/16 = 0 2 {most significant digit)

Therefore, 629, = 275 ;.

{c) Convert 1714 base 10 to hex.

Solution: Quotient Remainder
1714/16 = 107 2 (least significant digit)
107/16 = 6 11 (hex B)
6/16 = 0 6 (most significant digit)

Therefore, 1714, = 6B2 .

Example 0-7
Convert the following hexadecimal numbers to decimal.
(a) 6B216
Selution:
6B?2 hexadecimal = 2x169 =  2x1 =
11x161 = 11x16 = 176
6x162 = 6x256 = 153
1714
Therefore, 6B2 16~ 17 1410.
(b) 9F2D, 6
Solution:
9F2D hexadecimal = 13x160 = 13x1 - 13
2161 = 2x16 = 32
15%x162 = 15x256 = 3840
9x16° = 9x4096 = 36864
40749

Therefore, 9F2D16 = 40749]0.
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Counting in bases 10, 2, and 16

To show the relationship between
all three bases, in Figure 0-1 we show the
sequence of numbers from 0 to 31 in deci-
mal, along with the equivalent binary and
hex numbers. Notice in each base that
when one more is added to the highest
digit, that digit becomes zero and a 1 is
carried to the next-highest digit position.
For example, in decimal, 9+ 1 =0 with a
carry to the next-highest position. In bi-
nary, | + 1 = 0 with a carry; similarly, in
hex, F + 1 =0 with a carry.

Table 0-2: Binary Addition

‘_A +B | Carry Sum
- 0+0 0 _ 0

0+1 0 1
C1+0 0 1
J1+1 | 0

Addition of binary and hex numbers

The addition of binary numbers is
a very straightforward process. Table 0-2
shows the addition of two bits. The dis-
cussion of subtraction of binary numbers
1s bypassed since all computers use the
addition process to implement subtrac-
tion. Alithough computers have adder cir-
cuitry, there 1s no separate circuitry for

Decimal Binary

0o00C
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
13 10019
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28

29

30

=
HOWo-IMn b WwhNEe O

=

Ay -
MY REN
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111190
31 11111
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Figure 0-1. Counting in 3 Bases

subtractors. Instead, adders are used in conjunction with 2 ¥ complement circuitry
to perform subtraction. In other words, to implement "x — 3", the computer takes
the 2’s complement of y and adds it tox. The concept of 2°s complement is reviewed
next, but the process of subtraction of two binary numbers using 2’s complement is
shown in detail in Chapter 3. Example 0-8 shows the addition of binary numbers.

Example 0-8
Add the following binary numbers. Check against their decimal equivalents.
Solution:
Binary Decimal
1101 13
1001 9
+ 10110 22
101100 44

2’s complement

To get the 2°s complement of a binary number, invert all the bits and then
add 1 to the result. Inverting the bits is simply a matter of changing all Os to 1s and
Is to 0s. This is called the [ ¥ complement. See Example 0-9.
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Example 0-9

Solution:

Take the 2’s complement of 10011101.

10011101 binary number

01100010 I’s complement
1

01100011 2’s complement

Addition and subtraction of hex numbers

In studying issues related to software and hardware of computers, it is often
necessary to add or subtract hex numbers. Mastery of these techniques 1s essential.
Hex addition and subtraction are discussed separately below.

Addition of hex numbers

This section describes the process of adding hex numbers. Starting with
the least significant digits, the digits are added together. If the result is less than 16,
write that digit as the sum for that position. Ifitis greater than 16, subtract 16 from
it to get the digit and carry 1 to the next digit, The best way to explain this 1s by
example, as shown in Example 0-10.

Example 0-10

Solution:
23D9

+ 94BE
BR97

LSD: 9+ 14
1+13+11 = 25 25 - 16=9 with a carry to next digit
1+ 3+4 = 8

MSD: 2+9=B

Perform hex addition: 23D9 + 94BE.

It

23 23 — 16 = 7 with a carry to next digit

Subtraction of hex numbers

In subtracting two hex numbers, if the second digit ts greater than the first,
borrow 16 from the preceding digit. See Example 0-11.

Example 0-11

Solution:
59F
~ 2B8
2E7
LSD:

MSD:

Perform hex subtraction: 59F — 2B8.

8 from 15="7
11 from 25 (9 + 16) = 14, whichis E
2fromd(5-1)=2
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ASCll code

The discussion so far has revolved around the representation of number
systems. Since all information in the computer must be represented by Os and s,
binary patterns must be assigned to letters and other characters. In the 1960s a
standard representation called ASCIT (American Standard Code for Information
Interchange) was established. The ASCII (pronounced "ask-E") code assigns binary
patterns for numbers O to 9, all the letters of the English alphabet, both uppercase
(capital) and lowercase, and many control codes and punctuation marks. The great
advantage of this system is that it is used by most computers, so that information
can be shared among computers. The ASCII system uses a total of 7 bits to represent
each code. For example, 100 0001 is assigned to the uppercase letter "A" and 110
0001 is for the lowercase "a", Often, a zero is placed in the most significant bit
position to make it an 8-bit code. Figure 0-2 shows selected ASCII codes. A
complete list of ASCII codes is given in Appendix F. The use of ASCII is not only
standard for keyboards used in the United States and many other countries but also
provides a standard for printing and displaying characters by output devices such
as printers and monitors,

The pattern of ASCII codes was designed to allow for easy manipulation of ASCII data. For example,
digits 0 through 9 are represented by ASCII codes 30 through 39. This enables a program to casily
convert ASCII to decimal by masking off the "3" in the upper nibble. As another example, notice in
the codes listed below that there is a relationship between the uppercase and lowercase letters.
Namely, uppercase letters are represented by ASCII codes 41 through 5A while lowercase letters are
represented by ASCII codes 61 through 7A. Looking at the binary code, the only bit that is different
between uppercase "A" and lowercase "a" is bit 5. Therefore conversion between uppercase and low-
ercase is as simple as changing bit 5 of the ASCII code.

Hex Symbol Hex Symbol
41 A 61 a
42 B 62 b
43 C 63 c
44 D 64 d
45 E 65 e
46 F 66 f
47 G 67 g
48 H 68 h
49 I 69 i
4A J BA j
48 K 6B k
4Cc L 6C I
4D M 6D m
4E N 6E n
4F O 6F 0
50 P 70 p
51 Q 71 q
52 R 72 r
53 S 73 s
54 T 74 t
55 u 75 u
56 v 76 v
57 w 77 w
58 X 78 X
59 Y 79 y
BA Z 7A z

Figure 0-2. Alphanumeric ASCIl Codes
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Review Questions

Why do computers use the binary number system instead of the decimal system?
Convert 3419 to binary and hex.

Convert 1101012 to hex and decimal.

Perform binary addition: 101100 + 101.

Convert 1011002 to its 2°s complement representation.

Add 36BH + F6H.

Subtract 36BH — F6H.

Write "80x86 CPUs" in its ASCII code (in hex form).

INSIDE THE COMPUTER

In this section we provide an introduction to the organization and internal
working of computers. The model used is generic, but the concepts discussed are
applicable to all computers, including the IBM PC, PS/2, and compatibles. Before
embarking on this subject, it will be helpful to review definitions of some of the
most widely used terminology in computer literature, such as K, mega, giga, byte,
ROM, RAM, and so on,

Some important terminology

One of the most important features of a computer is how much memory it
has. Next we review terms used to describe amounts of memory in IBM PCs and
compatibles. Recall from the discussion above that a bit is a binary digit that can
have the value 0 or 1. A byte is defined as 8 bits. A nibble is half a byte, or 4 bits.
Aword is two bytes, or 16 bits. The following display is intended to show the relative
size of these units. Of course, they could all be composed of any combination of
zeros and ones.

Bit 0
Nibble 0000
Byte 00C0 Q000
Word 00C0 0000 0000 0000

A kilobyte is 219 bytes, which is 1024 bytes. The abbreviation K is often
used. For example, some floppy disks hold 356K bytes of data. A megabyte, or
meg as some call it, is 220 bytes. That is a little over 1 million bytes it is exactly
1,048,576, Moving rapidly u 3) the scale in size, a gigabyte is 230 bytes (over 1
billion), and a terabyte is 240 bytes (over 1 trillion). As an example of how some
of these terms are used, suppose that a given computer has 16 megabytes of memory.
That would be 16 x 220, or 24 x 220 which is 2%4. Therefore 16 megabytes is 224
bytes.

Two types of memory commonly used in microcomputers are RAM, which
stands for random access memory (sometimes called read/write memory),
and ROM, which stands for read-only memory. RAM is used by the computer for
temporary storage of programs that it is running. That data is lost when the computer
is turned off. For this reason, RAM is sometimes called volatile memory. ROM
contains programs and information essential to operation of the computer. The
information in ROM is permanent, cannot be changed by the user, and is not lost
when the power is turned off. Therefore, it is called nonvolatile memory.

Internal organization of computers

The internal working of every computer can be broken down into three
parts: CPU (central processing unit), memory , and I/O (input/output) devices (see
Figure 0-3). The function of the CPU is to execute (process) information stored in
memory. The function of I/O devices such as the keyboard and video monitor is to
provide a means of communicating with the CPU. The CPU is connected to memory
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and I/O through strips of wire called a bus. The bus inside a computer carries
information from place to place just as a street bus carnies people from place to place.
In every computer there are three types of buses: address bus, data bus, and control
bus.

For a device (memory or [/0) to be recognized by the CPU, it must be
assigned an address. The address assigned to a given device must be unique; no
two devices are allowed to have the same address. The CPU puts the address (of
course, in binary) on the address bus, and the decoding circuitry finds the device.
Then the CPU uses the data bus either to get data from that device or to send data
to it. The control buses are used to provide read or write signals to the device to
indicate if the CPU is asking for information or sending it information. Of'the three
buses, the address bus and data bus determine the capability of a given CPU.

Address bus
| ]
Memory Peripherals
CPU {monitor,
{(RAM, ROM) printer, etc.)
] J
Data bus

Figure 0-3. Inside the Computer

More about the data bus

Since data buses are used to carry information in and out of a CPU, the more
data buses available, the better the CPU. If one thinks of data buses as highway
lanes, it is clear that more lanes provide a better pathway between the CPU and its
external devices (such as printers, RAM, ROM, etc.; see Figure 0-4). By the same
token, that increase in the number of lanes increases the cost of construction. More
data buses mean a more expensive CPU and computer. The average size of data
buses in CPUs varies between 8 and 64. Early computers such as Apple 2 used an
8-bit data bus, while supercomputers such as Cray use a 64-bit data bus. Data buses
are bidirectional, since the CPU must use them either to receive or to send data. The
processing power of a computer is related to the size of its buses, since an 8-bit bus
can send out 1 byte a time, but a 16-bit bus can send out 2 bytes at a time, which is
twice as fast.

More about the address bus

Since the address bus is used to identify the devices and memory connected
to the CPU, the more address buses available, the larger the number of devices that
can be addressed. In other words, the number of address buses for a CPU determines
the number of locations with which it can communicate. The number of locations
is always equal to 2%, where x is the number of address lines, regardless of the size
of the data bus. For example, a CPU with 16 address lines can provide a total of
65,536 (2'%) or 64K bytes of addressable memory. Each location can have a
maximum of 1 byte of data. This is due to the fact that all general-purpose
microprocessor CPUs are what is called byte addressable. As another example, the
IBM PC AT uses a CPU with 24 address lines and 16 data lines. In this case the
total accessible memory is 16 megabytes (224 = 16 megabytes). In this example
there would be 224 locations, and since each location is one byte, there would be 16
megabytes of memory. The address bus is a unidirectional bus, which means that
the CPU uses the address bus only to send out addresses. To summarize: The total
number of memory locations addressable by a given CPU is always equal to 2¥
where x 18 the number of address bits, regardless of the size of the data bus.
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Figure 0-4. Internal Crganization of Computers

CPU and its relation to RAM and ROM

For the CPU to process information, the data must be stored in RAM or
ROM. The function of ROM in computers is to provide information that is fixed
and permanent. This is information such as tables for character patterns to be
displayed on the video monitor, or programs that are essential to the working of the
computer, such as programs for testing and finding the total amount of RAM
installed on the system, or programs to display information on the video monitor.
In centrast, RAM is used to store information that is not permanent and can change
with time, such as various versions of the operating system and application packages
such as word processing or tax calculation packages. These programs are loaded
into RAM to be processed by the CPU. The CPU cannot get the information from
the disk directly since the disk is too slow. In other words, the CPU gets the
information to be processed, first from RAM (or ROM). Only if it is not there does
the CPU seek it from a mass storage device such as a disk, and then it transfers the
information to RAM. For this reason, RAM and ROM are sometimes referred to
as primary memory and disks are called secondary memory. Figure 0-4 shows a
block diagram of the internal organization of the PC.

Inside CPUs

A program stored in memory provides instructions to the CPU to perform
an action. The action can simply be adding data such as payroll data or controlling
a machine such as a robot. It is the function of the CPU to fetch these instructions
from memory and execute them. To perform the actions of fetch and execute, all
CPUs are equipped with resources such as the following:

. Foremost among the resources at the disposal of the CPU are a number of registers.

The CPU uses registers to store information temporarily. The information could be
two values to be processed, or the address of the value needed to be fetched from
memory. Registers inside the CPU can be 8-bit, 16-bit, 32-bit, or even 64-bit
registers, depending on the CPU. In general, the more and bigger the registers, the
better the CPU. The disadvantage of more and bigger registers is the increased cost
of such a CPU.

. The CPU also has what is called the ALU (arithmetic/logic unit). The ALU section

of the CPU is responsible for performing arithmetic functions such as add, subtract,
multiply, and divide, and logic functions such as AND, OR, and NOT.

. Every CPU has what is called a program counter. The function of the program

counter is to point to the address of the next instruction to be executed. As each
instruction is executed, the program counter is incremented to point to the address
of the next instruction to be executed. It is the contents of the program counter that
are placed on the address bus to find and fetch the desired instruction. In the IBM
PC, the program counter is a register called IP, or the instruction pointer.
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4. The function of the instruction decoder is (o interpret the instruction fetched into

1.

the CPU. One can think of the instruction decoder as a kind of dictionary, storing
the meaning of each instruction and what steps the CPU should take upon receiving
a given instruction. Just as a dictionary requires more pages the more words it
defines, a CPU capable of understanding more instructions requires more transistors
to design.

Internal working of computers

To demonstrate some of the concepts discussed above, a step-by-step
analysis of the process a CPU would go through to add three numbers is given next.
Assume that an imaginary CPU has registers called A, B, C, and D. It has an 8-bit
data bus and a 16-bit address bus. Therefore, the CPU can access memory from
addresses 0000 to FFFFH (for a total of 10000H locations). The action to be
performed by the CPU is to put hexadecimal value 21 into register A, and then add
to register A values 42H and 12H. Assume that the code for the CPU to move a
value to register A is 1011 0000 (BOH) and the code for adding a value to register
A is 0000 0100 (04H). The necessary steps and code to perform them are as follows,

Action Code Data
Move value 21H into register A BOH 21H
Add value 42H to register A 04H 42H
Add value 12H to register A 04H 12H

If the program to perform the actions listed above is stored in memory
locations starting at 1400H, the following would represent the contents for each
memory address location:

Memory address Contents of memory address

1400 {B0)  the code for moving a value to register A
1401 (21}  the value to be moved

1402 (04)  the code for adding a value to register A
1403 (42)  the value to be added

1404 (04)  the code for adding a value to register A
1405 (12)  the value to be added

1406 {(F4) the code for halt

The actions performed by the CPU to run the program above would be as
follows:
The CPU’s program counter can have a value between 0000 and FFFFH. The
program counter must be set to the value 1400H, indicating the address of the first
instruction code to be executed. After the program counter has been loaded with
the address of the first instruction, the CPU is ready to execute.

2. The CPU puts 1400H on the address bus and sends it out. The memory circuitry

3.

finds the location while the CPU activates the READ signal, indicating to memory
that it wants the byte at location 1400H. This causes the contents of memory
location 1400H, which is B0, to be put on the data bus and brought into the CPU.
The CPU decodes the instruction BO with the help of its instruction decoder
dictionary. When it finds the definition for that instruction it knows it must bring
into register A of the CPU the byte in the next memory location. Therefore, it
commands its controller circuitry to do exactly that. When it brings in value 21H
from memory location 1401, it makes sure that the doors of all registers are closed
exceptregister A. Therefore, when value 21H comes into the CPU it will go directly
into register A. After completing one instruction, the program counter points to the
address of the next instruction to be executed, which in this case is 1402H. Address
1402 is sent out on the address bus to fetch the next instruction,

. From memory location 1402H it fetches code 04H. After decoding, the CPU knows

that it must add to the contents of register A the byte sitting at the next address (1403).
After it brings the value (in this case 42H) into the CPUJ, it provides the contents of

12
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register A along with this value to the ALU to perform the addition. It then takes
the result of the addition from the ALU’s output and puts it in register A. Meanwhile
the program counter becomes 1404, the address of the next instruction.

. Address 1404H is put on the address bus and the code is fetched into the CPU,

decoded, and executed. This codeis again adding a value to register A. The program
counter is updated to 1406H.

. Finally, the contents of address 1406 are fetched in and executed. This HALT

struction tells the CPU to stop incrementing the program counter and asking for
the next instruction. In the absence of the HALT, the CPU would continue updating
the program counter and fetching instructions.

Now suppose that address 1403H contained value 04 instead of 42H. How
would the CPU distinguish between data 04 to be added and code (04? Remember
that code 04 for this CPU means move the next value into register A. Therefore,
the CPU will not try to decode the next value. It simply moves the contents of the
following memory location into register A, regardless of its value.

Review Questions

How many bytes is 24 kilobytes?

What does "RAM" stand for? How is it used in computer systems?

What does "ROM" stand for? How is it used in computer systems?

Why is RAM called volatile memory?

List the three major components of a computer system.

What does "CPU" stand for? Explain its function in a computer.

List the three types of buses found in computer systems and state briefly the pur-
pose of each type of bus.

State which of the following is unidirectional and which is bidirectional.

(a) data bus (b) address bus

If an address bus for a given computer has 16 lines, then what is the maximum
amount of memory it can access?

What does "ALU" stand for? What is its purpose?

How are registers used in computer systems?

What is the purpose of the program counter?

What is the purpose of the instruction decoder?

BRIEF HISTORY OF THE CPU

In the 1940s, CPUs were designed using vacuum tubes. The vacuum tube
was bulky and consumed a lot of electricity. For example, the first large-scale digital
computer, ENIAC, consumed 130,000 watts of power and occupied 1500 square
feet. The invention of transistors changed all of that. In the 1950s, transistors
replaced vacuum tubes in the design of computers. Then in 1959, the first IC
(integrated circuit) was invented. This set into motion what many people believe is
the second industrial revolution. [n the 1960s the use of IC chips in the design of
CPU boards became common. It was not until the 1970s that the entire CPU was
put on a single IC chip. The first working CPU on a chip was invented by Intel in
1971. This CPU was called a microprocessor. The first microprocessor, the 4004,
had a 4-bit data bus and was made of 2300 transistors. It was designed primarily
for the hand-held calculator but soon came to be used in applications such as
traffic-light controllers. The advances in IC fabrication made during the 1970s made
it possible to design microprocessors with an 8-bit data bus and a 16-bit address bus.
By the late 1970s, the Intel 8080/85 was one of the most widely used microproces-
sors, appearing in everything from microwave ovens to homemade computers.
Meanwhile, many other companics joined in the race for faster and better micro-
processors. Notable among them was Motorola with its 6800 and 68000 microproc-
essors. Apple’s Macintosh computers use the 68000 series microprocessors. Figure
0-5 shows a block diagram of the internal structure of a CPU.
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Figure 0-5. Internal Block Diagram of a CPU

CISC vs. RISC

Until the early 1980s, all CPUs, whether single-chip or whole-board,
followed the CISC (complex instruction set computer) design philosophy. CISC
refers to CPUs with hundreds of instructions designed for every possible situation.
To design CPUs with so many instructions consumed not only hundreds of thou-
sands of transistors, but also made the design very complicated, time-consuming,
and expensive. In the early 1980s, a new CPU design philosophy called RISC
(reduced instruction set computer) was developed. The proponents of RISC argned
that no one was using all the instructions etched into the brain of CISC-type CPUs.
Why not streamline the instructions by simplifying and reducing them from hun-
dreds to around 40 or so and use all the transistors that are saved to enhance the
power of the CPU? Although the RISC concept had been explored by computer
scientists at IBM as early as the 1970s, the first working single-chip RISC micro-
processor was implemented by a group of researchers at the University of California
at Berkeley in 1980. Today the RISC design philosophy is no longer an experiment
limited to research laboratories. Since the late 1980s, many companies designing
new CPUs (either single-chip or whole-board) have used the RISC philosophy. It
appears that eventually the only CISC microprocessors remaining in use will be
members of the 80x86 family (R086, BORE, 80286, 80386, 80486, 80586, etc.) and
the 680x0 family (68000, 68010, 68020, 68030, 68040, 68050, etc.). The 80x86
will be kept alive by the huge base of IBM PC, PS, and compatible computers, and
the Apple Macintosh is prolonging the life of 680x0 microprocessors.

Review Questions

1. What is a microprocessor?
Describe briefly how advances in technology have affected the size, cost, and avail-
ability of computer systems.

3. Explain the major difference between CISC and RISC computers.
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SUMMARY

PROBLEMS

The binary number systern represents all numbers with a combination of
the two binary digits, 0 and 1. The vse of binary systems is necessary in digital
computers because only two states can be represented: on or off. Any binary number
can be coded directly into its hexadecimal equivalent for the convenience of humans.
Converting from binary/hex to decimal, and vice versa, is a straightforward process
that becomes casy with practice. The ASCII code is a binary code used to represent
alphanumeric data internally in the computer. It is frequently used in peripheral
devices for input and/or output,

The major components of any computer system are the CPU, memory, and
170 devices. "Memory” refers to temporary or permanent storage of data. In most
systems, memory can be accessed as bytes or words. The terms kilobyte, megabyte,
gigabyte, and terabyte are used to refer to large numbers of bytes. There are two
main types of memory in computer systems: RAM and ROM. RAM (random access
memory) is used for temporary storage of programs and data. ROM (read-only
memory) is used for permanent storage of programs and data that the computer
system must have in order to function. All components of the computer system are
under the control of the CPU. Peripheral devices such as 1/0 (input/output) devices
allow the CPU to communicate with humans or other computer systems. There are
three types of buses in computers: address, control, and data. Control buses are used
by the CPU to direct other devices. The address bus is used by the CPU to locate a
device or a memory location. Data buses are used to send information back and forth
between the CPU and other devices.

As changes in technology were incorporated into the design of computers,
their cost and size were reduced dramatically. The carliest computers were as large
as an average home and were available only to a select group of scientists. The
invention of transistors and subsequent advances in their design have made the
computer commonly available. As the limits of hardware innovation have been
approached, computer designers are looking at new design techniques, such as RISC
architecture, to enhance computer performance.

. Convert the following decimal numbers to binary.

(a) 12 (b) 123 (c) 63 (d) 128 (e) 1000
Convert the following binary numbers to decimal.
(a) 100100 (b) 1000001  (c) 11101 (d) 1010 (e) 00100010

Convert the values in Problem 2 to hexadecimal.

Convert the following hex numbers to binary and decimal.

(a) 2B9H (b) F44H (c)912H (d) 2BH (e) FFFFH
Convert the values in Problem 1 to hex.

Find the 2’s complement of the following binary numbers.

(a) 1001010 (b) 111001 (c) 10000010 (d) 111110001

Add the following hex values.

(a) 2CH+3FH (b) F34H+5D6H ({c) 20000H+12FFH (d) FFFFH+2222H
Perform hex subtraction for the following.

(a) 24FH-129H (b) FE9H-5CCH (c) 2FFFFH-FFFIFFH (d) 9FF25H-4DD99H
Show the ASCII codes for numbers 0, 1, 2, 3, ..., 9 in both hex and binary.
Show the ASCII code (in hex) for the following string:

"U.S.A. 15 a country” CR,LF

"in North America" CR,LF

CR is carriage return

LF is line feed
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11.

12,

13.

14.

15.

16.

17.

18.
19.
20.

Answer the following:

(a) How many nibbles are 16 bits?

{(b) How many bytes are 32 bits?

(c) If a word is defined as 16 bits, how many words is a 64-bit data item?

(d) What is the exact value (in decimal) of 1 meg?

{e) How many K is 1 meg?

(f) What is the exact value (in decimal) of giga?

(g) How many K is | giga?

(h) How many meg is 1 giga?

(1) If a given computer has a total of 8 megabytes of memory, how many bytes
(in decimal} is this? How many kilobytes is this?

A given mass storage device such as a hard disk can store 2 gigabytes of informa-

tion. Assuming that each page of text has 25 rows and each row has 80 columns

of ASCII characters (each character = 1 byte), approximately how many pages of

information can this disk store?

In a given byte-addressable computer, memory locations 10000H to 9FFFFH are

available for user programs. The first location is 10000H and the last location is

9FFFFH. Calculate the following:

(a) The total number of bytes available (in decimal)

(b) The total number of kilobytes (in decimal)

A given computer has a 32-bit data bus. What is the largest number that can be

carried into the CPU at a time?

Below are listed several computers with their data bus widths. For each com-

puter, list the maximum value that can be brought into the CPU at a time (in both

hex and decimal).

(a) Apple 2 with an 8-bit data bus

(b) IBM PS/2 with a 16-bit data bus

(c) IBM PS/2 model 80 with a 32-bit data bus

(d) CRAY supercomputer with a 64-bit data bus

Find the total amount of memory, in the units requested, fo