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Preface 

The word "breakthrough" is often abused, especially in the field 
of hobby computer electronics. But what else could you call a new 
video display technique that so dramatically slashes the cost of get
ting words, op-code, and graphics out of a microcomputer and into 
a television set that it is bound to displace most of the traditional 
methods of video display? 

With the ideas in this book, you can replace a $200 video board 
or much of a $500 to $1500 terminal with a single sided pc board 
that can cost as little as $20 and contain only seven integrated 
circuits. And those are real exotic ICs to boot-mostly things like hex 
inverters and baby PRO Ms. 

At the same time you realize such a ludicrous hardware reduction, 
you gain incredible flexibility, thanks to total software control of 
just about everything in this new cheap video world. And all this 
with surprisingly few words of software coding. Your same hardware 
does alphanumeric and graphics displays in virtually any format. 

These new cheap video methods also uniquely solve the tradi
tional problems of getting a microprocessor to go fast enough to 
time a video display and getting the display bandwidth needs low 
enough that a relatively unmodified tv set can handle the output 
attractively. While the book leans heavily toward the 6500 and 6800 
microprocessor systems, you can go outside these families and apply 
cheap video ideas to many other microcomputers. 

Above all, cheap video does not mean poor video. Things like a 
24-line by 80-character display with a full scrollingCursor, complete 
interlace, double stuffing, and memory repacking is easily done, and 
can be made totally transparent while still keeping a lot of time and 



space for other programs to run simultaneously. Things like color 
graphics displays, high-resolution black and white graphics, full 
interlace, and so on, are all easily done with these new cheap video 
methods. 

The first chapter begins with the basics to determine what is 
really needed for alphanumeric and graphics video display systems. 
We look at the design principles of cheap video and then check into 
commercial examples of ready-to-go circuits and kits. From there, 
we go into the secrets behind cheap video, particularly the all-im
portant upstream tap and the Scan microinstruction. 

The second chapter shows you how to design cheap video soft
ware. Software for Scan microinstructions. Software for alphanu
meric programs of virtually any format. Software for color and 
black-and-white high-resolution graphics displays. Software for 
editors and full-performance scrolling Cursors. And software for 
graphics loaders. Important new software designs you will find 
are hardware-free interlace, character density improving double 
stuffing and memory repacking methods for efficient use of 80-char
acter line lengths. 

Hardware is presented in Chapter 3. Here the interface circuitry 
you will need between your computer and tv set is introduced on 
a block-by-block basis. We start with the decoding and Scan micro
instruction controlling PROMs and work through the data-to-video 
conversion, high-frequency timing, sync and positioning circuits, 
video-enhancement ( bandwidth reduction) techniques, and output 
circuitry. After this, you will find the detailed interfacing of a KIM-1 
microcomputer, followed by complete details of adding a new video 
input to your conventional tv set. 

The nuts-and-bolts construction and debug details on the TVT 
6% follow in Chapter 4, along with complete details of four modules 
that program your TVT 63/s for upper- and lower-case alphanumerics 
and high-resolution and color graphics. Full size printed-circuit lay
outs and everything you need to build, debug, and modify your own 
cheap video system is included. 

Chapter 5 covers transparency, or ways to compute and display 
simultaneously. One of the real surprises is the high throughput you 
can have and still be transparent. For instance, you can do a 12 X 80 
display and transparently save almost two thirds of the available 
computer time to run BASIC or some other high-level language. 
Most useful display formats can save well over half the computer 
time for other uses. 

The appendix gives you IC pinouts, ASCII coding, number con
version chart, and duplicates of all pc patterns. 

DON LANCASTER 



Cheap video pc boards, kits, assembled units, and program tapes are available commercially from: PAIA Electronics 
1020 West Wilshire Blvd. Box 14359 Oklahoma City, OK 73114 
( 405) 842-5480 A catalog and price list will be sent on request. Dealer inquiries are invited. 

This book is dedicated to the Yeahbut. 
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CHAPTER 1 

Some Basics 

A microprocessor-based video display can be any scheme to get 
words or pictures out of a microcomputer and onto a tv screen or 
other video display. If they happen to be working with a micro
processor or microcomputer, any of the traditional video terminals 
"glass teletypes," or tv typewriters ( tvt's) are all microprocessor
based video displays. 

But, our interests here will be in something newer, far cheaper, 
and far simpler than these traditional approaches to video display. 
This new cheap video approach to microprocessor-based video dis
play gets you from your microcomputer to a plain old tv set with 
practically no hassle, cost, or complexity. The method combines an 
absolute minimum of dedicated hardware with some operating soft
ware commands, and two new concepts called an upstream tap and 
a Scan microinstruction. The final result of this new architectural 
approach to cheap video display gives us incredible flexibility and 
potential at very low cost. 

For instance, the methods we will be looking at in detail will let 
you display over 2000 upper and lower case ASCII characters on a 
largely or totally unmodified tv set with stock video bandwidth, at a 
cost of around $20, and using only seven integrated circuits worth 
of dedicated hardware on a small single-sided pc card. You can use 
almost the same circuit to build a 256 x 256 graphics display instead, 
totally controlled by your microcomputer. Full-color graphics of 
somewhat lower resolution is equally easy to do. 

If you .are into word processing, the cheap video ideas of this book 
give you extreme flexibility. Double and triple Cursor systems; add-
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ing and removing words, lines, and paragraphs; rearrangement; 
justification and hyphenation; and so on, are easy to provide because 
cheap video gives the display memory to the microcomputer at any 
time for : ny reason. 

The methods we will show you solve the dilemma of how to get 
a microprocessor with an execution time of several microseconds per 
instruction to directbj provide all of the timing signals needed for a 
tv display. This eliminates completely the need for complex stand
alone dedicated-system timing and cursor-control circuits. The 
cheap video methods also drastically reduce the bandwidth needs of 
a video display. This lets you stuff 64 or even 80 high-resolution char
acters per line through an ordinary rf modulator or a tv set with 
a normal video bandwidth. Full interlace is inherent in our methods 
and the ability to double-stuff characters is easy to pick up. 

Cheap video is easily used for stand-alone terminal applications, 
where a single dedicated microprocessor and a few integrated cir
cuits replace the dozens to hundreds previously used. But, our cheap 
video displays really shine when you simply tack cheap video onto 
a computer system that is already doing something else. For instance, 
a small plug-in card lets you display the contents of a KIM-1 micro
computer directly on your tv set, with an absolute minimum of mod
ifications to either. 

Change one small PROM memory and the same card can be used 
on most any 6500- or 6800-based computer system. Cheap video 
works with many other microprocessors but works best if you have 
at least 12 always-there and fully decoded address lines and can 
advance the program counter at a I-microsecond ( µ,s) rate. 

Thanks to a plug-in module approach, you can make the same 
hardware work for graphics or alphanumerics or a combination of 
the two. You can add transparency techniques that let you run other 
programs and your display at the same time-without any apparent 
interruption to either. For instance, you can run a 12 X 80 character 
display and an Extended BASIC program together-with a contin
uous display and still keeping around two thirds of the normal com
puter time for the BASIC. The same transparency ideas work well 
for game displays and their move computation, or for the Cursor, 
character entry, and keyboard scanning involved in word-processing 
systems. 

With a me11Wry repacking scheme that is almost free, you can 
stash 40- and 80-character lines into your display memory with just 
about the same efficiency as binary line lengths. And, while not 
shown here, it is an easy matter to pick up HEX/ ASCII conversion 
for op-code displays, end-of-line bell ringers, color modulators, gen
tle (crawling) Cursors, and loads of other add-ons for your own use, 
once you understand cheap video and what it can do for you. 

10 



THE RULES OF THE GAME 

We have five first principles to cheap video: 

1. Leave the existing microcomputer system nearly as you find it, 
making only a bare minimum of minor changes. 

2. Use a plain old tv set, also leaving it nearly as you found it, 
again making only a bare minimum of minor changes. 

3. Put some hardware between the microcomputer and the tv set 
that lets them talk to each other. Keep the hardware as simple 
and flexible as possible. Use PRO Ms as needed to give flexibility 
from µP system to system. 

4. Add two key elements to the microprocessor architecture. 
One of these is a Scan microinstruction that sequentially ad
dresses a block of memory under control of a PROM in the 
interface hardware. The second is an upstream tap that lets a 
block of memory output to the interface hardware, even, and 
particularly when that memory does NOT have control of the 
µP's data bus. 

5. Use software and firmware sequences to control what the inter
face hardware is going to do. 

What we really want to do is to eliminate anything at all between 
the microprocessor and the tv set. Since this is not quite possible, 
we reduce the size, cost, and the "dedicatedness" of our interface as 
much as we possibly can. Typically, an alphanumeric interface can 
end up with three hex inverters, two baby PROMs, a shift register, 
and a character generator. 

SOME ARCHITECTURE 

Fig. 1-1 shows the three key parts of a microprocessor-based video 
display. These parts are the microprocessor or microcomputer; a 
card of dedicated interface hardware; and the tv set or video 
monitor. 

Characters or graphics to be displayed are usually stored in a 
portion of the memory of the microprocessor. Often, we will use 
one 8-bit word for a standard ASCII alphanumeric character and its 
possibleCursor. In a graphics display, the same 8-bit word may be 
used in any of several formats, with each stored bit representing one 
resolvable element on the display. The memory needs a simple mod
ification before it can be used for video display. A new set of con
nections, called an upstream tap, must be added so the memory can 
output characters or symbols to the interface hardware even if. it 
does NOT have data bus access to the microcomputer. 
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A MICROCOMPUTER HAS . . .  

• A I CLOCK I THAT CAN BE USED FOR ALL SYS1™ TIMING. 

• A ! MEMORY! THAT CAN BE USED TO STORE CHARAC!ERS. 
OP-CODE, OR GRAPHIC SYMBOLS. 

• SOME !ADDRESS! Lit.ES THAT CAN SEQUENTIALLY ACCESS 
CHARAC!ERS. 

• SOME ! DATA! LINES THAT CAN CONTROL HOW Wf 
ACCESS MEMORY. 

• AND !CONTRCU LINES THAT LET US SWITCH BETWEEN 
VIDEO AND NORMAL OPERATION. 

• 

(A) Microprocessor-based video displays get us from here ... 

A TV SET NEEDS . . . 

• I VIDEO!DOTS TO FORM CHARAC!ERS OR GRAPHIC 
SYMBOLS, ARRIVING AT THE RIGHT PLACE AT 
THE RIGHT TIME. 

• HORIZONTAL AND VERTICAL!SYNC !PULSES TO 
LOCK THE TV TO THE MICRCCOMPUlER. 

• !COMPENSATION !OR SOME OTHER WAY TO MAKE 
UP FOR A LIMl!ED BANDWIDTH. 

• SOME INPUT !ACCESS! SUCH AS A CLIP-ON RF 
MODULATOR OR A HEADPHONE JACK USED AS 
A DIRECT VIDEO CHANGEOVER SWITCH. 

(8) ... to here, with ... 

Fig. 1-1. Three key parts of a 



Our interlace hardware does two important jobs for us. On the 
computer side, it causes the microcomputer to access its display 
memory in just the right way so we receive characters in the 
right sequence and at the right time. On the tv side, the interlace 
hardware delivers composite video that contains both bandwidth
enhanced characters and properly positioned horizontal- and vertical
synchronizing pulses. 
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microprocessor-based video display. 
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To get the system to work, we load some Scan software into our 
microcomputer and run it. The Scan software causes the microcom
puter and the interface hardware to talk to each other, Simpler 
versions of Scan software take up thirty to a hundred words of ma
chine-language code. This is easily stored in memory or externally 
on cassette tape. The initial design of Scan software is extra tricky 
since you have to control exactly both what the computer is doing 
and precisely how long it is going to take to do it as well. Further, 
very limited times are available for some of the things the software 
has to do. We will be looking at software design in detail in the 
next chapter. Once designed and debugged, the Scan software is as 
simple and easy to use as any other short program would be. 

The central controller of our interface hardware is called an 
instruction decoder. The instruction decoder decides what is to hap
pen next. The instruction decoder is usually a small read only 
memory or PROM, and is customized to work with the particular 
microprocessor and address locations selected for your system. The 
decoder can activate a Scan microprogram that is a second small 
read only memory. The Scan microprogram in turn can cause the 
computer to sequentially address a block of memory words, typically 
spending one microsecond on each word. This results in a string of 
characters or graphics data being sent to the interface hardware, 
timed just as we need it for a horizontal character line or a horizontal 
line of graphic elements. 

The Scan microprogram makes the microcomputer block-access 
memory on a !-microsecond-per-character basis. The character 
words accessed go out our upstream tap and reach the interface 
hardware where they enter a box we call a data-to-video converter. 
For alphanumerics, the data-to-video converter is usually a dot
matrix character generator, combined with an external- or internal
serial video-shift register. For graphics, the data-to-video converter 
can be nothing more than a video-shift register, or it can combine 
a blanking gate or a data selector and a shift register for other 
graphics formats. The raw video output of the data-to-video con
verter in turn goes to a bandwidth enhancer that predistorts the 
video to anticipate how the tv set is going to try and mess it up 
with its limited bandwidth. One simple form of bandwidth enhancer 
widens the white portions of the display. The amount of widening 
is selected to produce the best compromise between sharpness, 
brightness, and uniformity. 

Our instruction decoder has other tasks besides controlling the 
Scan microprogram. In an alphanumeric system, it tells the char
acter generator which row of dots to work on. In graphics systems, it 
does the formatting and blanking for us. It also decides when hori
zontal or vertical-sync pulses are needed. These are used to lock 
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the tv scan to the computer. Output-sync commands are routed to 
a positioning delay circuit and then to a video combiner where they 
are mixed with enhanced video to form a composite-video output. 
The composite video may be used as is for a monitor, can be inter
nally offset for simple tv interface, or can drive an rf modulator or 
Class 1 tv device for clip-on rf entry. 

We will be looking at much of the details of hardware design 
and television interface in Chapter 3. 

In the simplest of video-display systems, the microcomputer takes 
turns computing and displaying, just like a keyboard monitor may 
take turns running and monitoring. In more elegant cheap video
display systems, you can gain partial to complete transparency, in 
which the computer can do other things at the same time that it is 
displaying. Transparency techniques are important enough that we 
will use all of Chapter 5 for them. 

Our Scan program only causes words already in memory to appear 
on the screen. The Scan program does not care how the words got 
there in the first place. You put the characters or graphics into the 
memory with ordinary software any way you like. Your computer 
has total access to the display memory at any time for any reason. 
The only diHerence between the display memory and any other 
memory in your computer is the upstream tap; this the rest of the 
computer does not know about and need not use. Some very import
ant advantages of immediate memory access are that you can load 
and dump the screen at incredible baud rates; you can easily edit 
and rearrange the contents of the screen; you can remove things 
from the screen, work on them, and replace them, of ten without 
needing additional storage; and you can rapidly update things like 
a real-time clock or a complex game quickly, easily, and without 
the "memory busy" access hassles of more traditional circuits. 

A COMMERCIAL EXAMPLE 

Before we check into the benefits and limitations of this exciting 
new display technique and investigate the key "secrets" behind it, 
let's take a quick look at a commercial system already available. 

The TVT 6% ( Fig. 1-2) is a Synergetics design available com
mercially through PAIA Electronics, 1020 West Whilshire Boulevard, 
Oklahoma City, OK 73114, and several retail computer stores. You 
will find complete construction, design, and debug details on the 
TVT 6% in Chapter 4. 

This is a six integrated-circuit interface-hardware card. Its block 
diagram appears in Fig 1-3. A plug-in module of one or two addi
tional ICs programs the TVT 6% for its alphanumeric, graphics, or 
combined modes of operation. Four available modules include an 
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Fig. 1-2. 1VT 6 5/8 Cheap Video System attached to KIM-1 Microcomputer. 
Cable at top delivers video to tv display. 
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upper-case-only alphanumeric, combined upper- and lower-case 
alphanumeric, high resolution black and white graphics, and color 
graphics versions. / 

The alphanumeric-display formats that already have filly de
signed and debugged software include 1 X 40, 16 X 32, 16 X 40, 
16 X 64, 32 x 64, 12 X 80, and 24 X 80 character groupings. Thanks 
to the total programmability, you can make virtually any display 
format you want. The graphics formats now available include 
96 x 128 color, 128 X 128 black and white, and 2156 X 256 black and 
white. Once again, there is practically no limit on format, thanks 
to the total software control. 

On-card switches give you a choice of line length,Cursor visibility, 
video polarity, and graphics-response speed. Four controls set the 
vertical and horizontal positioning, the output enhancing clarity, 
and the graphics width. 

Besides the Scan programs, software support includes full scrolling 
Cursor programs, graphics loaders, and others. Since almost every
thing is under software control, there are no hardware changes in
volved for extreme Cursor or editing complexity-all you do is add 
words to your programs. 

Fig. 1-4. Typical alphanumeric cheap video display. 
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Three typical display examples using the TVT 6% are shown in 
Figs. 1-4 through 1-6. 

Fig. 1-5. Chess display using color graphics cheap video. 

SOME SECRET FORMULAS 

Much of what has been said so far sounds like we are speeding 
up a microprocessor more than is possible, or that we are stuffing 
too many characters into far too small a bandwidth, or perhaps we 
are forgetting that the sync signals a tv set needs must be very 
exactly specified and provided for, particularly for a stable and fully 
interlaced display. 

To get around these obvious problems that have made earlier 
tvt and video display systems expensive and complicated, we have 
to pull some sneaky tricks. ·we can call these tricks the secret 
formulas behind our new cheap video displays. The details of how, 
why, and where we use these secrets appear later in the book. For 
now, let's take a quick look at some key secrets to our new cheap 
video techniques. 

The Scan Microinstruction 
Basically, you add a new instruction to the instruction set of your 

microcomputer called Scan. When you tell the microprocessor to 
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Fig. 1-6. High resolution black and white graphics display used for typog-
raphy. Note full justification of characters. 

scan, it goes to where you tell it to start and then causes the µ,I"s 
internal program counter to appear on the address lines for a selected 
number of sequential clock cycles. For instance, if we are doing a 
64-character line, our Scan instruction causes the address lines to 
start at some value and count up 64 counts by ones, binary-counter 
style. If we are using a 6500 or 6800 system with a I-megahertz 
( MHz) clock, the Scan instruction advances us one count per 
microsecond for a total of 64 µ,s. 

Fig. 1-7A shows the typical variation of a short portion of a 6502's 
address lines during a traditional program run. In general, the ad
dress line values advance. Sometimes the address lines advance once 
per microsecond, such as when the microcomputer is carrying out 
a two word immediate instruction such as "Load the Y register with 
the· value AO." Sometimes the address lines advance only once each 
2 µ,s. This happens with a one word immediate instruction such as 
"Clear the Carry bit" or "No Operation." Sometimes our address 
lines back up and repeat as the short loop in the middle shows; this 
is often the result of a relative branch causing a loop. And, some
times, the address lines go out of range to pick up a page zero 
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ADDRESS 

TIME 

(A) Typical behavior of 6502 address bus during normal program. 

ADDRESS 

TIME 

(B) Scan microinstruction forces the 6502 to advance addresses uniformly 
once each microsecond from starting address. 

Fig. 1-7. Scan microinstruction is used to sequentially access rows of char
acters stored in memory. 
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address on the bottom or a higher page address during a memory 
read or write instruction. 

In g�neral, the address lines are an apparently random jumble of 
values. But note that sometimes the address lines advance at a 1-µ,s 
rate, even though our fastest usual instructions take 2 µ,s to execute. 
Note al,so that the address lines are connected to all merrwry in the 
system at all times. 

In Fig. l-7B, we have forced the microprocessor into a Scan mode, 
simply by using an external microprogram, counter, or interrupt 
sequence. This makes the address line start at some computed ad
dress and advance exactly a selected 64 counts, spending 1 µ,s on 
each count. For instance, we can give the command "Load the Y 
register with the value AO" repeating 31 times, followed by a 
"Return from Subroutine" command to get the 64 sequential counts 
as needed. 

Be sure to note that this Scan instruction is portable in that we 
can move it around and use it almost anywhere we like. This lets 
us pick up different blocks of characters or lets us tell a character 
generator to work on a different row of dots for a particular char
acter line. Usually we will call our Scan instruction by requesting 
a Jump to Subroutine that goes to an address that activates the 
instruction decoder and Scan microprogram in the interface hard
ware. The length of our Scan instruction is programmable, but 
the hardware and software must agree on the maximum possible 
Scan length. When the Scan instruction is completed, the return 
from subroutine jumps us back to wherever we happened to be in 
the main program. 

During a Scan microinstruction, many strange and wondrous 
things might happen inside the microprocessor. We might, for in
stance, load an otherwise unused Y register with the op-code for 
"load Y," and repeat the operation for a total of 31 times. This ad
mittedly makes absolutely sure that we have the Y register loaded 
before we do not use it. Here, at long last is a perfectly legal and 
major use for a write only memory. The key point is this-No matter 
how strange or ridiculous the coding-IF IT WORKS, USE IT. All 
we want to do during a Scan is advance the address line a selected 
number of characters at a one-per-microsecond rate starting with a 
computed address, nothing more. We do try to keep anything ridic
ulous that is going on during a Scan from wiping out anything we 
might need later, such as flags, the accumulator, pointers, the stack, 
or otherwise used registers. 

Note particularly that we have used normal speed memories and 
normal operating frequencies during the Scan mode. While it may 
seem externally that the microprocessor is running at double speed, 
nothing the microprocessor needs or uses responds to this speed 
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doubling. In fact, the Scan instruction actually takes many times 
longer than a normal instruction to execute. But the neat and handy 
thing is that during the entire long execution time, we have tricked 
the address bus into advancing at the right once-per-microsecond 
rate. 

Even neater is the fact that our Scan microinstruction causes 
ALL memory in the machine to be addressed at the one-word-per
microsecond rate. While only the Scan Microprogram generator 
has data-bus access, every other memory in the machine is addressed 
the same way, with individual memory chip selects or enables pre
venting data-bus interference. 

The Upstream Tap 

An Upstream Tap is a new set of connections that go directly 
from the memory used for character storage to the interface har�
ware. It is of crucial importance that the display memory can output 
to the interface hardware when it does NOT have access to the data 
bus of the microcomputer. 

Fig. 1-8 shows how a typical upstream tap is added. We have to 
have external and noninverting bus drivers present between the 
memory output and the "true" data bus. This is needed even if the 
memory chips used have common input/ output data pins. These 
drivers may be already available on your system; if not, you can 
add them using a 74LS640 or something similar. 

We also add some simple logic to provide either the usual chip 
select to the display memory or a new select called Scan Enable 
that is derived in the interface hardware. This lets your memory 
behave normally during usual computer operation and also enables it 
for character output only during a Scan. This logic can be a single 
AND gate which behaves in the circuit as a negative logic OR gate. 
It may also be included in the instruction decoder in the interface 
hardware. If your upstream tap goes directly to a MOS memory 
output pin, it should be kept physically short to minimize any ca
pacitive loading. Long cables would slow down your memory. Up
stream taps connected to bipolar or TIL outputs are not nearly as 
critical and can be longer. 

Fetch-But-Do-Not-Execute Operation 

A normal microprocessor instruction has two parts-the fetch 
where needed information is gathered, and the execution where the 
intended operation is carried out. During a Scan microinstruction, 
we continuously fetch and never execute. This lets us output char
acters at a rate that seems to be twice as fast as usual. 

Fig. 1-9 shows how the Scan microinstruction and the upstream 
tap gang up to do this fetch-but-do-not-execute maneuver. The 
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Scan program makes the Scan microinstruction advance the micro
processor at a one-character-per-microsecond rate. The character 
memory sends characters out the upstream tap to the interface hard
ware for conversion to serial video. At no time does the microproces
sor wait for an "answer" from the memory. The memory knows it 
is supposed to output characters to the interface and the interface 
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Fig. 1-8. Adding upstream tap to existing microprocessor memory. 
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THE! SCAN PROGRAM I DECI DES A ROW OF 
CHARACTERS IS WANTED. IT P ICKS A STARTING 
ADDRESS THAT G IVES US THE RIGHT PART OF THE 
RIGHT CHARACTERS • 

• 
THIS ACTIVATES THE I SCAN MICROINSTRUCTION I 
WHICH MAKES THE MICROPROCESSOR ADVANCE 
ITS ADDRESS L INES ONCE EACH M ICROSECOND 
PER DES IRED CHARACTER • 

... 
THE D ISPLAY MEMORY RECEIVES THESE ADD RESS ES 
AND OUTPUTS ASC I I  CHARACTER OR GRAPHICS 
CODE BY WAY OF THE !UPSTREAM TAPJ 

... 
THE UPSTREAM TAP ROUTES THE CHARACTER 
CODE TO THE INTERFACE HARDWARE FOR I DOT MATR IX CONVERS ION!AND IS THEN OUTPUT 
AS SERIAL V I DEO. 

Fig. 1-9. Scan microprogram and upstream tap work together to convert code 
In memory to video dots on tv screen. 

knows it is to receive characters and knows what to do with them. 
The CPU, though, is ignorant of both and could not care less. It 

thinks it is busy loading its Y register with worthless data while all 
this is happening. 

Constant One-Microsecond Character Times 
All characters and graphics are chunks usually gotten at a one

per-microsecond rate. This happens regardless of how many char
acters are on a horizontal line. This gives us a minimum video band
width. It lets us stay within the usual bandwidth restrictions of an 
ordinary tv set or a clip-on rf modulator. It also gives us enough 
time to let the computer directly work on characters. Besides making 
the key scan microinstruction possible, this opens all sorts of new 
software and control possibilities. Our "raw" bandwidth needed 
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ranges from 1.5 MHz for color graphics through 3 MHz for a 
5 X 7 character to a maximum of 4 MHz for high resolution graphics. 
These values are further minimized with the bandwidth-enhance
ment circuit in the interlace hardware. 

One result of this once-each-microsecond constant time is that 
very long character lines may have to run with a reduced horizontal 
frequency. Up to 40 characters or its equivalent graphics are easily 
displayed at normal horizontal speeds. Longer character lines may 
mean a reduced horizontal frequency which takes simple hold and 
width modifications to the set in use. Thus, the 64- or SO-character 
lines may not be suitable for video titling, superposition, or for color 
display. 

Double Stuffing 
Double stuffing is a technique that crams twice as many charac

ters vertically than is usual. Fig. 1-10 compares ordinary noninter
laced characters with interlaced and double-stuffed, interlaced 
characters. With no interlace, all character fields are identical, giv
ing us a normal height character with stripes in it. With interlace, 
the even and odd field characters are offset one line from each other; 
this fills in the stripes and greatly improves appearance. 
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Fig. 1-10. How double stuffing puts more characters on Iv screen. 



With double stuffing, we put down half the dots ( lines 0,2,4,6) on 
one field, and the other half ( lines 1,3,5,7 ) on the other field. Double 
stuffing lets us put twice as many characters on the screen as usual. 
Double stuffing can also greatly increase throughput of a trans
parently operating program. In theory, we could get as many as 
64 lines of characters vertically, but 24- to 32-character rows is a 
more practical limit for pleasing and legible results, particularly if 
transparent operation and high throughput is needed. 

Double stuffing does introduce slight flicker to the normal video 
display. This can become downright annoying if the contrast, bright
ness, and room lighting is set wrong, particularly on random full
screen displays that contain lots of dashes. With the proper settings 
and reasonable program material the flicker is not objectionable. 
No flicker is present on reverse video ( black characters on white 
background ) double-stuffed displays . .  

A second double stuffing possibility lets you put characters down 
on one field and graphics on the second. This is handy for games, 
pc layouts and schematics, and similar uses. 

so·ME GOOD THINGS ABOUT 
CHEAP VIDEO DISPLAYS 

Let's briefly sum up the advantages and disadvantages of this 
new cheap video display approach. We will start with the good 
things : 

1. LOW COST -The methods typically cost one tenth of what 
traditional approaches did. High-performance alphanumeric 
circuits can cost less than $20 in singles; graphics even less. 

2. SIMPLE-The method usually takes only seven or eight ordi
nary integrated circuits on a small, single-sided pc card. It 
needs only +5-volt supply power. 

3. LOW BANDWIDTH-Long character lines and high-resolu
tion graphics are easily and attractively put on a tv set with 
normal video bandwidth, with or without routing through a 
conventional rf modulator. 

4. FAST -Characters can be put on and off the screen at incredi
ble baud rates. The microprocessor can real-time interact with 
the display memory, and can easily retrieve information already 
on screen. 

5. VERSATILE-The same hardware gives you many display 
formats simply by changing software. Cheap video works with 
many different microprocessor systems with a few minor modi
fications. Since almost everything is done with software, there 
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is practically no limit to how fancy your cursor or editing system gets. 6. MINIMUM MEMORY-The need for a separate and specialized display memory is gone. The computer can use the area set aside for display memory at any time for any reason. 
AND THE BAD STUFF On the debit side, we have : 1. TRANSPARENCY-In simpler systems, we alternate compute and display modes. Extra transparency takes more effort. Details on this and solutions to the total transparency problem appear in Chapter 5. 2. REDUCED HO RIZO NT AL RATE-Long line lengths may run at a reduced horizontal rate. This may take width and hold modifications and can cause a poorly chosen tv set to sing objectionably. 3. USING EXISTING HARDWARE CAN BE TRICKY-An upstream tap must be provided. Extra tricks are needed if the microprocessor cannot directly change its address lines once each microsecond. Bus oriented systems require that the display memory and the tvt interface hardware work together as a single module. Latches may be needed. 4. DOUBLE STUFFING FLICKERS SLIGHTLY-A wrong choice of program material or control settings can cause an objectionable display if double stuffing is used. This is eliminated by using a reverse video ( black on white ) display. 

WHICH MICROPROCESSOR? Its simply not reasonable to expect any interactive software technique to work with any available microprocessor. There are obvious architectural and language differences that are bound to cause troubles. Which microprocessors can we use and how much hassle is involved? We will almost always assume that a microprocessor is already available and in use, and that your main goal is to add cheap video to an existing design. All the cheap video systems of this book were designed and debugged around the MOS Technology 6502 microprocessor and the KIM-1 and KIM-2 microcomputers. Because of the strong positive feedback involved between developing something and the thing it is being developed on, these displays work elegantly, cheaply, and simply on a KIM-based system. We will use 6500 software, both as theory and design examples. 
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What we are going to show you would very simply extend to any 
other 6500-based system. Conversion to a 6800 series system is 
usually a matter of software reworking and changing the code in 
a single integrated circuit. Early 8080 systems will be somewhat 
more difficult to use since the address outputs are not continuous 
and since it takes extra effort to convince the display memory to 
output characters at a one-per-microsecond rate. These problems 
are eased on the Z-80 systems if they are running fast enough in 
their normal modes. So, the techniques of this book should be rea
sonably applicable to the three mainstream microprocessor tech
nologies in use today, although the 6500 and 6800 will be much 
easier to use than the 8080 or Z-80. 

Going further afield, microprocessors with only eight address 
lines or with multiplexed data and address buses or very slow micro
processors or those with limited drive will introduce serious prob
lems that will take a lot of creative effort of your own to resolve. 

Chart 1-1 sums up the key needs of a microprocessor-based cheap 

Chart 1 -1 .  Picking a Microprocessor-6502 Often Best 
Choice for Methods of This Book 

Microprocessor-Based 
Video Displays Work Your 

Best With . . .  We Can Live With . . .  Microprocessor?? 

1 6  always there & fully 12 fully decoded ad-
decoded address l ines dress lines, latched to 

eliminate any "holes" 

A program counter that Ci rcuitry at 1he display 
can be tricked into ad- memory that creates 
vancing the address the illusion of a once-
bus once each micro- per-microsecond pro-
second gram counter advance 

A display memory that A display memory to 
has noninverting tri- which you can reason-
state buffers between ably add noninverting 
its output and the true tristate buffers between 
deta bus its output and the true 

data bus 

Excess drive of at least Add-on buffers or 
one LS load on all ad- drivers 
dress and data buses 

A single +s-volt supply Multiple supplies 
with 200 mA excess 
cepacity 

video display system. We would like to see 16 address lines there 
all the time, with no holes or dropouts in each cycle but we can 
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live with 12. We have to have a program counter that can advance 
an address bus once each microsecond, or at least be capable of 
humming a few bars and faking it. We must have a way to add 
an upstream tap to the display memory that outputs when it does 
NOT have data-bus access. And, we have to have enough drive 
available for one more LS load on all address and data lines, along 
with 200 MA, or so, of excess + 5-volt supply power. 

If you are new to learning about and building these cheap video 
display techniques, be sure to separate completely understanding 
cheap video from using it on an odd-ball microprocessor system. 
Always start with the debugged software and hardware of this book 
on a KIM-I system; then go on to others, if you must. 

A DESIGN PLAN 

We have now seen what these new cheap video ideas can do for 
us, along with their key design concepts, advantages, and limitations. 
The rest of the book will show you how to design and build your 
own cheap video systems. Software and hardware design theory 
will show up in the next two chapters. This is followed by the nuts
and-bolts construction and debug details of the TVT 6% in Chapter 
4. The all-important transparency techniques are saved for Chapter 
5. 

Some background textbooks and materials that you will want are 
listed in Chart 1-2. You should have these on hand and fully under-

Chart 1-2. Texts to Have on Hand When Working With 
Cheap Video Displays 

* For Video Displays in General : 
TV Typewriter Cookbook (Sams 2131 3) 

* For Machine Language Programming and µ,P Selection :  
A n  Introduction to Microcomputers I (Osborne 2001)  
An Introduction to Microcomputers I I  (Osborne 3001) 

* For Software, Hardware, and System Design:  
6500 Programming Manual (MOS Technology) 
6500 Hardware Manual 
KIM-1 Users Manual 
KIM-2 Users Manual 
MCS650X Instruction Set Summary 
-Plus comparable manuals for your system. 

stand them before you start anything with cheap video. 
Now, on to that software design . . . .  
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CHA P T E R  2 

Software Design 

Microprocessor-based, cheap video uses software and hardware working together to get us from code in a memory to dots on a screen. The software of this chapter has to work hand in hand with the hardware of the next. Neither hardware nor software can stand alone in the cheap video world. They have to continuously interact with each other, especially during your system design. In this chapter, we will be using the MOS Technowgy 6502 microprocessor and the KIM-1 system architecture. This system has a 16-bit-wide address bus and a separate 8-bit-wide data bus and normally runs with a 1-MHz crystal clock rate. Instruction times are usually 2 µs or more. You can easily adapt this software to 6800-based systems. While cheap video will work with other microprocessor families, you will be pretty much on your own if you stray too far from the 6500 or 6800. These are our main software problems: * How do we assign our address and data-bus definitions for display use? * How do we build a Scan microinstruction that gives us a line of character code that outputs at a 1-MHz rate? * How do we combine just enough of the Scan microinstructions in the right place and at the right time to build a complete Scan program that meets the exact timing needs of a tv set? * How do we build a Cursor controller or its graphics wader equivalent so we can enter and remove characters and provide the usual Cursor motions? The answers to these questions are all found in this chapter. You will be seeing fully tested and debugged TVT 6% alphanumeric 
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Chart 2-1 . Alphanumeric and Graphics Cheap Video Can Use Same 
Instruction Decoder. Here Is How Display Instructions Are Decoded 

Addre11 
A15 A14 A13 A12 Alphanumeric Graphics 

0 0 0 0 Normal Computer Use Normal Computer Use 
0 0 0 1 Normal Computer Use Normal Computer Use 
0 0 1 0 Normal Computer Use Normal Computer Use 
0 0 1 1 Normal Computer Use Normal Computer Use 

0 1 0 0 Normal Computer Use Normal Computer Use 
0 1 0 1 Normal Computer Use Normal Computer Use 
0 1 1 0 Output Blank Video Line Output Blank Video Line 
0 1 1 1 Output 1 st Row of Character Output Blank Video Line 

1 0 0 0 Output 2nd Row of Character Output Live Video Line A 
1 0 0 1 Output 3rd Row of Character Output Live Video Line A 
1 0 1 0 Output 4th Row of Character Output Blank Video Line 
1 0 1 1 Output 5th Row of Character Output Blank Video Line 

1 1 0 0 Output 6th Row of Character Output Live Video Line B 
1 1 0 1 Output 7th Row of Character Output Live Video Line B 
1 1 1 0 Output Vertical-Sync Pulse Output Vertical-Sync Pulse 
1 1 1 1 Normal Computer Use Normal Computer Use 



software for 1 X 40, 16 X 32, 16 X 40, 16 X 64, 32 X 64, 12 X 80 and 
24 X 80 character lines, along with graphics software for black and 
white formats of 128 X 128 and 256 X 256; as well as a four-color 
format of 96 X 128. 

We will save some software details for later, such as techniques 
for full transparency, integrated Scan and Cursor programs, and so 
on, after we have picked up the software fundamentals here. 

This is a very heavy chapter, and you will find lots of things done 
in either strange or subtle ways. You are urged to have the back
ground material of Chart 1-2 both mastered and on hand before 
continuing. Fortunately, if you are using a TVT 6% on a KIM, all 
you will need are the results of this chapter without having to go 
too far into the gory details of where the results came from. 

BUS DEFINIT.IONS 

The starting point of any software design is to define what each 
bus line in the microcomputer system is going to do and how it 
is going to be used. In 6502 systems, we have a 16-bit-wide address 
bus and an 8-bit-wide data bus. 

Address Lines 

Some workable definitions for our address bus appear in Fig. 2-1. 
We assign the lowest address lines to the horizontal character posi-
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(A) Alphanumeric, 32 characters or less per line. 
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(B) Alphanumeric, 34 to 64 characters per line. 
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(C) Graphics displays to 256 X 256 . 

. Fig. 2-1. Address bus assignments. 

IAl2 IS REDUNDANTLY CODEOI 
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lions, followed by the vertical character positions. Higher lines still 
are used to define the page of characters ( usually 256 words) that 
is being output. Our highest available address lines are routed to 
a special display instruction decoder circuit which decides whether 
normal or display operation is to be provided. 

For instance, in Fig. 2-lA, for a 16 X 32 alphanumeric display, 
we use five bits for the horizontal character locations, and four more 
bits for the vertical character locations. The next three bits select 
the location of the display memory. The top four bits serve as our 
instruction decoder. 

Note that a one count change of the address bus moves you one 
character to the right, and that 32 sequential address bus advances 
will output a continuous horizontal line of 32 characters. Thus by 
simply letting the program counter of the microprocessor advance 
once each microsecond, the code for a line of characters will be 
output automatically. 

The coding of Fig. 2-lB gives us a 64-character horizontal line by 
adding a most significant horizontal bit and bumping everything 
else up a notch to make room. Normally, you would use the code 
in Fig. 2-lA for lines of 32 characters or less and the code in Fig. 
2-lB for 34 to 64 characters. 

If we try to use these formats on nonbinary line lengths, there 
will be unused locations in the display memory. These unused loca
tions are often too small and too dangerous to use for any other 
program, so they end up wasted. Running the 64-character code at 
32 characters or less per line would give us a memory packing or 
efficiency of 50% or less. Even with memory at a cost of 0.1 cent 
a bit and 4 cents a word, this is often an intolerable waste. 

Later in the chapter, we will look at some sneaky ways to repack 
the lower eight address lines so we can put 40- or SO-character lines 
into our display memory with just about the same memory packing 
efficiency as we used for the binary 32- and 64-character line 
lengths. 

Our graphics formats might follow Fig. 2-lC. In an alphanumeric 
display, each word normally stands for a character. In a graphics 
display, each word relates to a piece of the display we can call a chunk. The chunk might be one line of eight dots, four dots on top 
of four dots, or three dots on top of three along with four possible 
color values for the . entire chunk. Because graphics decoding is 
often simpler, we can use address Al2 redundantly, as both part of 
instruction decoder space and display memory addressing. 

Instruction Decoding 
Chart 2-1 shows how we decide whether to use the computer 

normally or in its display mode. We route the top four address lines 
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to a circuit that acts as an address decoder. A programmable read 
only memory or PROM is one way to do this decoding, as we will 
see in the next chapter. 

The same decoder can be used for graphics or alphanumerics. 
In the TVT 6%, we switch between the two by changing a small 
plug-in hardware module and selecting the proper Scan software. 
On our decoder, combinations 0000, 0001, 0010, OOll, 0100, 0101, 
and llll are reserved for normal computer operation. This final 
"upper-core" decoding is particularly important on the 6502 for 
proper use of the reset, interrupt, and mask vectors in the operat
ing system. 

Intermediate decodings tum the control of the computer over to 
the TVT 6% so that characters or sync can be output. Decoding 
Ill() will output only a vertical-sync pulse, while the remaining 
decodings will decide which line of alphanumeric dots to output 
for a particular pass on a dot matrix ' character generator. For in
stance, decoding 0ll0 gives us a blank line, while decoding Olll 
gives us the top row of dots on an alphanumeric character . .  

The TVT 6% uses a character generator that supplies a 5 x 7 
alphanumeric dot format. A top line is usually all blanks, so this 
means a total of eight horizontal passes is needed for a row of dot 
matrix characters. Should we really want a row of characters, we 
increment the instruction decoder each Scan to pick up the right 
row of dots. If we only want a blank line, we simply output the top 
( blank ) row over and over again as often as needed. 

While fancy 7 X 9 character generators are available, they are 
expensive and take extra video bandwidth. They also use address 
space very inefficiently, limit the number of character rows you can 
get on the screen, and cut heavily into throughput during trans
parent operation. 

A graphics display does not need all those different passes for a 
row of characters. All it needs is a blanking output line and an 
optional A/ B chunk select line that picks the upper or lower half 
of a display chunk. But, there is no reason why we cannot use the 
same instruction decoder for alphanumerics and graphics, simply 
by relabeling some of the outputs on our decoder. 

In fact, there is a subtle and neat trick you can pull using redun
dant decoding for your graphics. You can now make address line 
Al2 into a "don't care" decoding during a Scan which lets you 
address a larger block of graphics display memory. Thus decodings 
1000 OR 1001 can be used for a live "A" graphics Scan, and de
coding llOO OR llOI can be used for a live "B" graphics Scan. 
During these times, we are free to have Al2 a zero OR a one, 
letting us address the BK block of memory we need for a 256 X 256 
graphics display. 
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The display mode memory map of Fig. 2-2 gives a different way to look at what the instruction decoder does. The bottom 24K of the computer is free for any use. Our · display memory should be located somewhere in this bottom 24K. The "middle" 36K of memory space is reserved for control of our cheap video display. The top 4K is available for computer use, particularly operating systems and vector storage. 
Any address in your computer called between 6000 and EFFF 

will activate the display instruction decoder. This turns out to be the key to deciding what part of what character is to be output when. On a KIM-1, we will avoid using page 00 for display memory since it has the operating system storage slots on it and since it is very useful for standard programs. We will also stay off page 01 since this page has the stack on it. On a bare bones KIM-1, we can use pages 03 and 04 for a 512-character 16 X 32 display of 16 lines of 32 characters each. On an expanded ( more RAM ) KIM, we might use pages 04-0A for a 24 X 80 character display. We will note in passing that the KIM has a nice little unused RAM sitting between 1780 and 17E6. This is a dandy place to stuff a Scan program, and gives us a strong reason to keep all Scan programs under a hundred words or so long. 
F F  F F  

F O O O  

6 0 0 0  

0 0 0 0  
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It looks like we are using a large number of addresses simply to 
run our cheap video display. But these addresses are not used any
way in many systems. And the addresses left over are more than 
adequate for, say, running Extended BASIC and a transparent dis
play simultaneously. No attempt was made to further restrict the 
cheap video address space, although this is easily done with extra 
gating. Obvious routes to gaining even more "use the computer 
normally" space are to use a display enable that deactivates the tvt 
during nondisplay times, to use an alternate way to pick up vertical 
sync, to use more complete instruction decodings ( enabling the 
tvt only during valid display memory addresses ) ,  and to use 1/0 
instructions if they are available. 

l • CURSOR 
0 • NO CURSOR 

,-..------CHARA,GTER:-------...._ 

CURSOR ASC I I  ASC I I  ASC I I  ASC I I  ASC I I  ASC I I  ASCI I 
B IT B il l B IT 6  B IT S B I T 4  B IT 3  B IT 2 B il l 
D7 D6 D5 D4 D3 D2 DI DO 

(A) Normal alphanumeric mode. 
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(B) Hexadecimal op-code mode. 
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(E) Color graphics 2 x 3 chunk. 

Fig. 2-3. Data bus assignments. 

37 



The Data Bus 
Our data bus definitions are shown in Fig. 2-3. They are more 

obvious than the address definitions. For normal alphanumerics, 
the usual 7-bit ASCII code goes on the bottom seven bits. The 
eighth bit is reserved as an optional cursor. A one provides a possi
ble Cursor and a zero withholds it. If we go to a special hex op
code mode and use an add-on Hex-ASCII converter, we can slowly 
alternate displaying the upper hex character, the lower hex charac
ter, and a "start of new character" blank in the same screen position. 
For this, we use the format of Fig. 2-3B, where numbers O through 9 
and the letters A through F are displayed in response to a one-of
sixteen hex code. 

The three graphics data-bus assignments change as we change 
what we call a chunk. For one line of eight dots, the data bus looks 
just like the screen, with white normally a "I" and black a "O." The 
chunk with four dots on top of four dots puts the left half up and 
the right half down. Our color format does the same thing, but 
shortens everything to three on three, leaving us with two color
control bits left over in bus positions D3 and D7. 

THE SCAN MICROINSTRUCTION 

The two essential keys to a microprocessor-based cheap video 
display are the software Scan microinstruction and the hardware 
upstream tap. In order for us to get a row of character code out of 
the microcomputer rapidly, we have to add a new instruction called 
SCAN. Since SCAN is not available internally to the CPU chip, 
we have to add it on the outside through a technique called micro
programming. Microprogramming can combine a string of several 
available and existing instructions into a new, longer, instruction 
that does what we want it to. 

In the case of our Scan microinstruction, we want the micropro
gramming to do the following: 

To start at a computed address and then cause the program 
counter to appear on the address bus, and then advance at a 
one microsecond per count rate for N counts. N is often 32, 
40, 64, or 80. 

The trick is to find some combination of existing instructions 
that can be put together in a string to get this result. For openers, 
we will get to our microinstruction with a Jump to Subroutine (JSR) 
command in whatever program that needs the Scan microinstruc
tion. We will end the microinstruction with a Return from Sub
routine ( RTS ) to get back out of the microinstruction. 
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This use of a subroutine for our Scan microinstruction is the key 
to making the microinstruction portable. This lets it be called from 
any of the shaded memory areas of Fig. 2-2. Portability lets us move 
the instruction around nearly anywhere we want to pick up the right 
part of the right line of character code stored in display memory. 

But, what coding can we use to force the needed once-per-micro
second advance? A quick look at the obvious No-Operation ( NOP) 
instruction is discouraging, because a NOP takes two microseconds 
to execute. It advances the address bus only once each two micro
seconds. Thus, the obvious route of 

NOP NOP NOP . . .  NOP RTS 

works beautifully as a Scan microinstruction-except it is slow by a 
factor of two. 

Instead, we will have to look at other instructions in the machine 
that will advance the program counter on the address bus once per 
microsecond. Available instructions are listed in Chart 2-2 for the 

Chart 2-2. Some 6502 Instructions That Will Advance Address 
Bus One Count per Microsecond for 2 µs 

Op-
Instruction Code What Else Is Affected? 

ADC Add Immediate 69 Accumulator, N,Z,C,V Flags 
AND And Immediate 29 Accumulator, N,Z Flags 
BCC Branch on Carry Clear 90 Carry must be set first 
BCS Branch on Carry Set 80 Carry must be clear first 
BEQ Branch on Equal F0 Zero Fl2g must be 0 first 
BMI Branch on Negative 30 Negative Flag must be 0 first 
BNE Branch on Not Equal d0 Zero Fl�g must be 1 first 
BPL Branch on Positive 1 0  Negative Flag must b e  1 first 
BVC Branch on Overflow Clear 50 Overflow must be set first 
BVS Branch on Overflow Set 70 Overflow must be clear first 
CMP Compare Accumulator C9 N,Z,C Flags 
CPX Compare X Register E0 N,Z,C Flags 
CPY Compare Y Register co N,Z,C Flags 
EOR Exclusive Or Immediate 49 Accumulator, N,Z Flags 
LDA Load Accumulator A9 Accumulator, N,Z Flags 
LOX Load X Register A2 X Register Value 
LOY Load Y Register AO Y Register Value 
ORA OR Immediate 09 Accumulator, N,Z Flags 
SBC Subtract Immediate E9 Accumulator, N,Z,X,V Flags 

Note: 
NOP or "No Operation" is missing from the list since i t  is too slow, 
Of i nstructions listed, the Command LOY does the least damage to existing programs, flags, 
and registers, 

6502. There are 19 of them. Any of these instructions could be used 
end-on-end as often as needed to give a microinstruction. 
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But, our Scan microinstruction cannot stand alone. It has to lie 
inside a larger Scan program. All of these 19 instructions change or 
damage something in the machine when they are used. The trick is 
to minimize the damage to anything needed by an existing program. 
This means we want an absolute minimum of changes in flag status, 
the accumulator, and the index registers. 

We might get sneaky and do something like AND the accumulator 
immediately with FF; ORA it immediately with 00; or EOR it 
immediately with 00. And these most often will give us no damage 
to anything. They usually will leave everything just as it was before, 
except for our desired two-count advance of the program counter on 
the address bus. But, as we will see in just a moment, there is an 
even sneakier trick we can pull to cut in half the PROM storage 
needed for our microinstruction-and these three dodges of AND, 
ORA, and EOR for no change will not go along with the memory 
savings. 

Instead, we reserve the Y register for use as a write only memory 
during a Scan. We simply use LDY (AO ) as our element in a Scan 
microinstruction. Each time we load the Y register, the program 
counter advances once per microsecond for 2 µs. No flags are 
changed; the accumulator is unchanged; and the X register is un
changed. We even have partial use of the Y register, as long as we 
do not have to hold a value through a single Scan microinstruction. 

So, we simply stack up enough load-the-Y-register LDY com
mands as needed for the microinstruction. It looks like this: 
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LDY LDY LDY . . .  LDY RTS 

Chart 2-3. The 6502 Scan Microinstruction Coding for 
32-Character, One-Microsecond-per-Character Scan 

xxoo LOY AO AO 
XXO2 LOY AO AO 
XXO4 LOY AO AO 
XXO6 LOY AO AO 
xxoe LOY AO AO 
XXOA LOY AO AO 
xxoc LOY AO AO 
XXOE LOY AO AO Note: 
XX1 O LOY AO AO "XX" is any high address that 
XX1 2 LOY AO AO activates the Scan instruction 
XX14 LOY AO AO decoder. 
XX16  LOY AO AO 

XX1 8  LOY AO AO Coding shown repeats for XX2O 
XX1A LOY AO AO through XXFF, a total of eight 
XX1 C  LOY AO AO times. 
XX1 E  RTS 60 60 



Chart 2-3 shows the Scan microinstruction coding for a 32-
character, 1-µs-per-character Scan. We simply load Y with some
thing fifteen times, followed by an RTS or a Return to Subroutine. 
Each LDY advances us two counts, one on the first microsecond, 
and one on the second. Our RTS instruction does all sorts of strange 
things to the address bus during its 6 µs execution-but the first 2 µ.s advance the program counter on the address line just exactly like the LDY instruction does. And, after the first 2 µ,s, RTS has put us 
back in the main Scan program and out of the Scan microinstruc
tion. 

Fig. 2-4 shows one possible way to generate our microprogram. 
We use a Programmable Read Only Memory of the next chapter. 
When the instruction decoder activates the Scan PROM, its tristate 

Chart 2-4. The 6502 Scan Microinstruction Coding for 
64-Character, One-Microsecond-per-Character Scan 

xxoo LOY AO AO 
XXO2 LOY AO AO 
XXO4 LOY AO AO 
XXO6 LOY AO AO 
xxoe LOY AO AO 
XXOA LOY AO AO 
xxoc LOY AO AO 
XXOE LOY AO AO 
XX1 O LOY AO AO 
XX12 LOY AO AO 
XX14 LOY AO AO 
XX16 LOY AO AO 
XX18 LOY AO AO 
XX1A LOY AO AO 
XX1 C LOY AO AO 
XX1 E  LOY AO AO Note: 
XX2O LDY AO AO "XX" is any high address that 
XX22 LOY AO AO activates the Scan instruction 
XX24 LOY AO AO decoder. 
XX26 LOY AO AO 
XX28 LOY AO AO Coding shown repeats for XX4O 
XX2A LOY AO AO through XXFF, a total of four 
XX2C LOY AO AO times. 
XX2E LOY AO AO 
XX3O LOY AO AO 
XX32 LOY AO AO 
XX34 LOY AO AO 
XX36 LOY AO AO 
XX38 LOY AO AO 
XX3A LOY AO AO 
XX3C LOY AO AO 
XX3E RTS 60 60 
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outputs are activated, and the Scan microinstruction takes command 
of the data bus of the microcomputer and forces a Scan microinstruc
tion. At the same time, a disappearing Decode Enable command 
prevents anything else in the system from grabbing the data bus. 

A quick glance at Chart 2-4 seems to suggest that we need a 
64 X 8 PROM. But, since it does not matter with what we load Y 
and since the code following an RTS instruction does not matter, we can make both columns of Charts 2-3 and 2-4 identical. This means 
that we load the Y register with the command code for load Y, or 
AO, and that we follow the RTS ( 60) with another RTS ( 60) code. 

Now, since both columns are identical, we can use one column 
and call it half as often. To do this, we simply ignore the least sig
nificant address line. And this slashes our PROM down to the baby 
32 X 8, two-dollar size. 

So, once again we have doubled something. This time it is how 
much code we can get out of a 32-word PROM. As a further refine
ment, we add a switch to the most signific-ant address line going to 
the PROM. With this switch connected to address bus line A5, we 
generate the 64-character microinstruction of Chart 2-4. With the 
switch connecting the PROM to the positive supply and force feed
ing a "I," we generate the 32-character microinstruction of Chart 
2-3 instead. Note that both Scans are generated with a 100% packing 
density. 

Our Scan microinstruction usually has to start at some address 
that is an even multiple of the Scan length. For instance, valid start-

FROM 
ADDRESS 

BUS 

Al5 
Al4 
AB 
Al2 

:: 

-
:: 

-

MAXIMUM 
SCAN l£NGTH 

+ 5 V SELECT 

�/ 
"64"('°'7-

INSTRUCTION 

DECODER 

l ENABL£ 

TRISTATE 

32 X 8 

PROM 

A5 
A4 
A3 
A2 
Al 
AO 0---..--- N C  

\ 
IGNORING AO CUTS 
PROM SIZE IN HALF 

:: -
-
::: 

- :: 

-

D7 
D6 
D5 
D4 MICROPROGRAM 
D3 OUTPUT TO DATA BUS 
D2 
DI 
DO 

Fig. 2-4. PROM method of Scan microprogram generation used in TVT 6 5/8. 
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ing addresses for the 64-character lines are XXOO, XX40, XX80, or 
XXC0. The 32-character lines can use these starting locations, as well 
as new addresses XX20, XX60, XXA0, and XXEO. 

By "X", we mean any address that activates the instruction de
coder. It turns out that the rightmost X lets us pick the page of dis
play memory being converted to dots. The leftmost X will give us 
a blank line if X is hexadecimal "6." An X of "7" gives us the top 
row of dots. An X of "8" gives us the second row of dots, and so on 
to an X of "D," which gives us the bottom row of dots. Leftmost X 
values of 0,1,2,3,4,5,E, and F will not activate the Scan microinstruc
tion. Values of 0 through 5, or F allow normal computer operation, 
while an X value of E outputs a vertical-sync pulse only. 

Making It Portable 
By changing the starting address �f the JSR instruction that gets 

us into the Scan, we change which characters are going to be output, 
and which portions of them are going to appear as dots on the screen. 
Several examples in Chart 2-5 should make this clear. An instruction 
of JSR 20 CO 94 will output the third row of dots on the fourth line 
of 64 characters, and so on. 

In this example, the subroutine starts at address 94C0 and scans 
94C0 through 94FF. The "9" says to do a Scan and work on the third 
row of dots. The "4" says to use page 04 of the computer, on which 

Chart 2-5. Examples of How We Call Our Portable 
Scan Microinstruction 

Assume we have a 16 x 64 display format per Fig. 2-1 B and that our 
display memory is on. pages 04 through 07. 

JSR 20 00 60 Outputs a 64-µ.s blank video l ine. 

JSR 20 20 84 Outputs the second row of dots on the second 
l ine of 64 characters. 

JSR 20 20 94 Outputs the third row of dots on the second 
line of 64 characters. 

JSR 20 co 94 Outputs the third row of dots on the fourth 
l ine of 64 characters. 

JSR 20 40 cs Outputs the sixth row of dots on the seventh 
l ine of 64 characters. 

LOY AO 00 d0 Outputs only a vertical-sync pulse. 

JSR 20 1 A  30 Calls some other subroutine in the computer; 
out of range of the Scan decoder. 

JSR 20 02 60 Outputs a blank video l ine that lasts only 62 µ.s 
instead of 64. 

JSR 20 0A 60 Outputs a blank video l ine that lasts only 54 µ.s 
instead of 64. 
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the lower rows of characters for the display are stashed. The "CO'' 
says start on the fourth line of characters that go on the screen. 

Why the fourth line? Check back to Fig. 2-lB. CO decodes as 
1100-0000. So we start with all horizontal bits at zero, and the lower
most vertical bits at 11. The top of our verticle line is 00. The next 
one down is line 01. The next vertical line is coded 10, and our 
fourth line down is coded 11, or Vl = 1 and V2 = 1. 

Note that page 04 has not been enabled to run the data bus, since 
the Scan microinstruction has control of the data bus. But page 04 
has been activated enough to output characters out the upstream tap 
to the interface hardware. 

Be sure to go through all the examples of Chart 2-5 so you under
stand exactly how we move the Scan microinstruction around to get 
the right string of characters outputting the right row of dots. Note 
that we do not use a JSR to get a vertical-sync pulse. A simple Load 
Y or anything similar is used instead. Also note that if we call a 
JSR that is out of the instruction decoder range, the decoder assumes 
this is a normal subroutine that is part of an ordinary computer pro
gram, and that a Scan is NOT wanted. 

We also have the option of jumping into the middle of a Scan 
microinstruction. This gives us a short line. Short lines are handy 
during a blank line to make room for extra computation time. This 
turns out particularly important when we are doing an interlaced 
sync, for nearly an entire line is needed to compute the proper posi
tion of the vertical sync pulse. Short lines also give us a compatible 
but inefficient way to do 40- and BO-character lines, as well as other 
line lengths. Note that the Scan microinstructions can be any length 
so long as they all END a constant time apart. The constant distance 
from falling edge to falling edge of sequential Scan microinstructions 
sets the horizontal line time and is the edge from which our hori-
zontal-sync pulses will be derived. 

Timing Overhead 
Fig. 2-5 shows us the timing overhead needed to call and recover 

from a Scan microinstruction. A total of ten microseconds is needed 

- -SCAN--------SCAN M ICROINSTRUCTION-----+--SCAN-
PROGRAM 32,40, 64, OR 80 µ SEC PROGRAM 

? ? ? RTS 
,..______, 

mR) MICROSECOND 
SETUP TIME ALL OF 
JSR OCCURS BEFORE 
SCAN STARTS. 

RTS ? ? 

--.,....., 
iFOLl!lM ICROSECOND 
RECOVERY TIME. F I RST 
TWO M ICROSECONDS OF 
6 µ S RTS ARE INCLUDED 
IN THE SCAN. --

Fig. 2-5. Timing overhead for a Scan microinstruction using 6502 coding. A 
total of 1 o µs is needed to get into and back out of a Scan. 
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for a 6502 on a I-MHz clock. Six of these microseconds happen before the Scan microinstruction starts; these are used up by the 
JSR command calling the Scan. Four of the microseconds occur after the Scan microinstruction ends as the RTS command is com
pleted. 

Note that the RTS command normally takes 6 µ,s. Two of the six microseconds are spent inside the Scan microinstruction acting as the final two 1-µ,s advances of the program counter on the address bus. The remaining four microseconds are taken out of the regular 
program that is calling the Scan microinstruction. 

SCAN PROGRAMS 

Our Scan microinstruction gives us a convenient way to output 
a group of characters in a one-char3:cter-per-microsecond burst. If 
we simply fed one of these to a tv set, the tv would not have the 
slightest idea what to do with it. All we would get is a disorganized 
and apparently random brief Hash of dots. 

A tv set normally has a Raster Scan in which a video-controlled 
spot moves rapidly to the right and slowly down the screen. One 
trip down the screen is called a field. This may be all we need, but 
more often, two interleaved fields are combined to produce an interlaced frame. During an interlaced raster Scan, there are usually 60 
fields per second, resulting in 30 interlaced frames per second. 

To make our Scan microinstruction burst into recognizable char
acters, we have to repeat them over and over again. This is called refreshing a raster, and a complete refresh is needed 60 times a sec
ond. Our output video can only turn the spot on and off. It does not 
normally determine the spot position. To tell where we are, we have 
to lock the video to the raster with horizontal and vertical synchronizing pulses. 

It is the job of our Scan program to provide sync pulses and 
refresh as needed for a continuous and stable display. A Scan pro
gram is ordinary softwa:re. It has the ability to call a Scan microin
struction any time it needs one. The design of a Scan program is 
rather tricky, since you have to be extra careful not only to have 
the program run, but also the program has to take exactly the right 
number of microseconds to do everything. And there is often too 
few microseconds there to do what you want to do in the available 
time. 

Chart 2-6 summarizes what the tv set needs in the way of video 
and sync signals. Our vertical-sync pulse frequency has to be very 
close to 60 Hz. If it misses by .06 Hz or more, you will get a hum 
bar that will go waltzing through your display at a 10-second-or
faster rate. The hum bar is caused by a tv with poor shielding and 
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power-supply regulation. It may be absent in a quality video moni
tor. This is particularly annoying on the smaller double-stuffed 64-
and 80-character lines. For an ideal display, we should either lock 

Chart 2-6. Some Ground Rules for Scan Software Design 

VERTICAL-SYNC PULSES are needed 60 times a second and last for 
three horizontal line times, typically 200 µs. 
Frequencies above 60.06 Hz or below 59.94 Hz will cause a hum bar 
that crosses the screen faster than once each 10 seconds. Ideally, 
the system timing should be line locked, but crystal control is ade
quate If it is within range. 
A few microseconds of pulse-to-pulse vertical-sync Jitter is tolerable 
during interlaced operation, but its value should be minimized. 

HORIZONTAL-SYNC PULSES are needed once each horizontal line and 
last 5 µs. 

Horizontal frequencies are usually 15,750 Hz for black and white 
and 1 5,735 Hz for color. When video titling or superimposing exist
ing program material, these values must be externally locked. 
Horizontal frequencies as low as 1 0  kHz may be used if the set is 
properly modified for reduced width and extended hold range. Only 
smaller screen portables should be used with extremely low hori
zontal frequencies. 
Twice the horizontal frequency must be an exact and even multiple 
of the vertical rate for no interlace. For full interlace, twice the 
horizontal frequency must be an exact and odd multiple of the 
vertical rate. 
Each horizontal line must be identical in length. Horizontal-sync 
pulses are derived from the FALLING EDGE of the Scan microin
struction. The time from falling edge to falling edge must be constant 
and identical for ALL horizontal lines. 

BLANKING AND RETRACE At least 20 horizontal lines should be re
served for vertical blanking and retrace. Horizontal-sync pulses may 
be omitted during the vertical-sync pulse time if at least ten blank 
horizontal l ines follow the vertical-sync pulse before characters or 
graphics are presented. 
On a stock tv set, at least 1 7  µs per horizontal line should be re
served for blanking, overscan, and spot defocusing toward the 
edge of the screen. 
Horizontal- and vertical-positioning controls should be provided. 

DOT MATRIX CHARACTERS take several sequential lines for their pre
sentation. Usually, the uppermost character line is coded as all 
blanks. 
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A 5 x 7 dot matrix can be presented in eight lines but ten are more 
attractive. A 7 X 1 1  (including descenders) dot matrix can be pre
sented in 1 2  lines, but 14 are more attractive. 
Characters should not be output faster than one per microsecond if 
a tv with stock video bandwidth or an rf modulator is being used. 
A graphics rate of eight dots per microsecond is a comparable 
upper l imit. 



to the power line or else get as close to a stationary hum bar as we 
possibly can. 

Our horizontal-scan frequency is much more tolerant of deviations 
from its normal value, but it also has two critical restrictions. Twice 
the horizontal frequency must be an exact even multiple of the 
vertical-sync pulse for no interlace and an exact odd multiple of 
the vertical sync pulse for full 2: 1 interlace. In addition, we require 
that the spacing from horizontal-sync pulse to horizontal-sync pulse 
is held absolutely constant. 

This means that every loop and every branch in the Scan program 
has to take exactly the same number of microseconds to execute. 
The time from falling edge to falling edge of any Scan microinstruc
tion sets the time between horizontal-sync pulses. 

If we are superimposing video on existing programs for titling 
or annotation, we have to lock to the external program material, 
matching the usual 15,750-Hz black and white or 15,735-Hz color 
frequencies. If we have a stand-alone display, anything near this 
will work well. 

At a I-microsecond-per-character output rate, character lines of 
32 characters and 40 characters can be run at normal horizontal 
frequencies, may be used on a color set, or may be locked to an 
external program. This is also true of any graphics display of 
256 X 256 or fewer resolvable elements. 

The longer character lines of 64 and 80 characters usually need a 
reduced horizontal frequency. This in turn takes the simple hold 
and width modifications to the tv set detailed in Chapter 3. We are 
pretty much limited in our choice of display to small screen, trans
former-operated, black and white portables for these longer line 
lengths. Once again, this reduced horizontal rate for long lines lets 
us get by with unmodified video bandwidth and lets us shove long 
line lengths through an ordinary rf modulator, besides making all 
of the direct microprocessor control possible in the first place. 

Some Magic Numbers 
If at all possible, we would normally like to use the already exist

ing 1.0-MHz or other crystal in the microprocessor for all system 
timing. We also have to end up with a reasonable horizontal fre
quency that is an exact multiple of the vertical-sync rate. The verti
cal-sync rate, in tum, has to be very close to 60 Hz. Only certain 
combinations of clock frequency, microseconds per horizontal line, 
number of horizontal lines, and vertical-sync rates are possible. Fig. 
2-6 shows some magic-number choices for us that are useful for Scan 
programs. 

One of the first sets of magic numbers we will be using combines 
the stock 1.0-MHz crystal with a 63-µ,s horizontal line and a 265-
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line noninterlaced frame. This combination gives us a near standard 
horizontal and a just tolerable hum bar slightly faster than 10 sec
onds. It may be used for very simple Scans of 32 or 40 characters, 
as well as most graphics. The other sets of magic numbers can be 
picked up from Fig. 2-6 for video titling and superposition, inter
lace, 64- and BO-character lines, and other combinations. Ideally, we 
would like to be able to trim the crystal slightly or do an actual 
line lock, but this often is not needed, particularly with large char
acters on shorter lines. Line lock is simple enough to add once your 
application is in its final form. 

As our first Scan program, let's put one line of 40 characters on 
the screen, without interlace. Besides giving us something simple to 
start on, this I X 40 display might be used on a point-of-sale terminal 

µP-6502 
System-KIM-I 

- 1 780 

f"" 
1 784 
1 787 

1 789 

L
1 18b 

J.E 1 18d 
START 178F 

1791 
1 794 
1 797 
1799 

�-179A 
L119c 

NOTES: 

CLC 
STA 
JSR 
ADC 

CMP 
8CS 
BCC 
LDX 

LDY 
JSR 
LDA 
DEX 

BEQ 
BNE 

Start-JMP 178F Displayed-0218.023F 
End-Interrupt Program Space-1 780-1 79d 

(30 words) 

1 8  Clear Carry 
8d (86) (17) Store Upper Address 
20 1 8  62 I I I I I Character Scans 0-7 I I I I I 
69 1 0  Increment Character Scan Counter 

C9 E0 Character Scan Counter Overflow? 
b0 02* Yes, go to blanking scans 
90 F2* No, scan next row of character dots 
A2 00 Load number of blank scans 

AC EA EA Vertical-Sync Pulse 
20 1 8  60 I I I I I Blanking Scans I I I I I I I I I I I I 
A9 62 Initialize Upper Address 
CA One Less Blanking Scan. Done? 

F0 E4* Yes, Start Character Scan 
d0 F4* No, Repeat Blanking Scans 

TVT 6 518 must be connected and both the Scan 658-KS64 and Decode 658-KD8 
PROMs must be in circuit for program to run. 

Step 1 784 goes to where the upper address stored in 1 786 tells it to. This value 
changes throughout the program. 

Horizontal Frequency 1 5,873 Hz with 1 .0-MHz clock. Vertical frequency 60.125 Hz 
with &-second hum bar. No interlace. 256 blanking lines; 8 active scan lines. , 

TVT 6 518 switch musf be in the "64" position. 
) Denotes on absolute address that is program location sensitive. 

* Denotes a relative branch that is program length sensitive. 

Fig. 2-7. Program for a 1-line, 40-character, 

50 



or somewhere else where you only have a bare minimum of RAM 
available, or else have very little information to present. We will 
need 40 characters of display memory storage and 30 locations of 
Scan program storage, for a total of 70 words. The program is shown 
in Fig. 2-7. 

Our characters are stored in locations 0218 through 023F, with 

MODS: 
To display double-height characters, use 1 788 08 and 1 790 F8 
To display another location, set the desired page in 1 798 and the desired lower 

starting address in 1 785. The only valid starting addresses are 1 8, 98, 58, or dB, 

FLOW CHART 

(1780 - 17871 

NO 
(178 9 - 178d) 

START 

1171FI 
(178F - 17911 

(1794 - 17971 

NO YES (1799 - l79C) 

SCAN MICROINSTRUCTION ADDRESSES 

UPPER ADDRESS 
(1784) 

DECODED PER 
F IG .  2-IA 

PAGE TWO 
OF D I SPLAY 

MEMORY 

(SHOWN AS CODE! 

no-interlace TVT 6 5/8 Raster Scan. 

LOWER ADDRESS 
(1785) 

00 18 40 80 co 00 

D I SPLAY 
MEMORY, 

IX<IO 

(SHOWN AS MAP I 
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0238 being the leftmost character. The Scan program is stored in 
1780 through 179d. 

The key to picking a new row of character dots each time is to 
jump to a Scan microinstruction at a computed location. A jump to 
subroutine JSR then activates the Scan microinstruction and outputs 
a row of character code for us. Locations 1785 ( lower address) and 
1786 ( upper address) store our computed starting location. Note 
that these addresses have to be RAM, since you first store the values 
you want the Scan to start with in them, and then use the same two 
locations as an address for a JSR. 

Since we only have a single line of characters, we need only worry 
about computing a new high address; the low address stays constant 
at hex 18. 

Our program starts by loading the right number of blank Scan 
lines in the X register ( l 78F) and producing a vertical-sync pulse 
( 1791). Incidentally, it is always a good idea to load X before the 
vertical-sync pulse. This will help our transparency as we will see 
in Chapter 5. This is followed by our first blank Scan at 1794. After 
each blank Scan, X is reduced by one ( 1799) , and tested. As long 
as the X register has some value other than zero in it, the program 
loops to 1792 and repeats another blank Scan. 

When all the blank Scans are finished, the X register hits zero 
and the Branch on Equal ( 179A) loops us to the part of the pro
gram that is going to put down the character dot rows. 

Step 1784 next puts down the top row of character dots for us as 
it calls a Scan miscroinstruction at a computed address. While this is 
going on, the upper address value is held in the accumulator. After a 
row of dots is scanned, we increment our character Scan "counter" in 
step 1787 and test it for the final character line in 1789. If another 
row of character dots is needed, the program loops to 1781, stores 
the computed new upper address, and then scans that row of dots. 

After the last line of character dots is complete, we go on to 
once again load the number of blank lines wanted for the next frame, 
produce a vertical-sync pulse and then go on to the blank Scans. 
Everything repeats at the noninterlaced 60-Hz frame rate. 

We have pulled a sneaky trick in steps 1792 and 1793 to save two 
words. A vertical-sync pulse can be gotten by any LDY XX EX 
coding. Since the X's do not matter to the sync instruction, let's use 
LDY EA EA. But EA is also a No-Operation (NOP) or a way to 
use up 2 µ,s without doing anything. So, we have two "free" no-op 
words buried in our existing code. These are used to make the blank 
Scans long enough to take the needed 63-µ,s microseconds. If your 
particular microprocessor will not allow this stunt, just add 4 µ,s 
of NOP or some other "wheel spinning" between 179A and 179C, 
and then branch directly to 1794. 
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Loop Timing 

Note particularly the timing of each loop. Our active Scan micro
instruction takes 40 µ.s. The overhead to get into and out of the 
Scan microinstruction takes another 10 µ,s. Thirteen microseconds 
are spent in the program in every loop in every direction, over and 
above the microinstruction call. The Scan plus overhead plus the 
program equals 40 + 10 + 13 = 63 µ.s, the time of one horizontal 
line. 

Let's double check to prove that each loop does, in fact, take 
exactly 13 µ.s to execute : 

Between blank Scans: 
1797 LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 µ.s 
1799 DEX . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . .  2 µ.s 
179A BEQ ( not taken) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 µs 
179C BNE ( taken) . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . 3 µ,s 
1791 NOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 µ.s 
1792 NOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 µ.s 

TOTAL 13 µ.s 
From the last blank Scan to the first dot row : 

1797 LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 J.LS 
1799 DEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 µ.s 
179A BEQ ( taken) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 µ.s 
1780 CLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 J.LS 
1781 STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 µ.s 

TOT AL 13 µ,s 
From a character dot row to the next character dot row: 

1787 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 µ.s 
1789 CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 µ.s 
178b BCS ( not taken) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 µ.s 
178d BCC ( taken) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 µ,s 
1781 STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 µ.s 

TOTAL 13 µ.s 
From the last character dot row to the first blank Scan: 

1787 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 µ.s 
1789 CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 µ.s 
178b BCS ( taken) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 µ,s 
l 78F LDX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 J.LS 
1791 LDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 µ.s 

TOTAL 13 J.LS 
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If any one of these loops takes longer than the others, our Scan 
ends up in deep trouble. We will get a tom or otherwise unstable 
display. Any differences in loop times from falling edge to falling edge of the Scan microinstruction will ruin the disp'lay. 
Some Finer Points 

An odd number of microseconds for each horizontal line time 
seems to be a good initial choice for the 6502 systems. A branch 
is almost always involved in the loops, and branches taken use up 
3 µs, compared to the 2 or 4 µs of most common instructions. We 
can sometimes convert an odd line time into an even one or vice 
versa by taking a branch that goes nowhere, such as BCC 90 00 
with the carry cleared. But this wastes two words and, worse still, 
wastes 3 µs of critical loop time. 

We can call any "wheel spinning" times in the loops equalization. 
The combination PHA PLA gives us 7 µs of delay in only two code 
words. NOP gives us 2 µs of equalization in one code word. Going 
to a subroutine and immediately returning uses up 12 µs in four 
code words. And the combination of loading the Y register, decre
menting it, and branching if not equal can give us 6 + 5Y µs of 
delay in five code words. Delay values of 6, 11, 16, 21, 26, 31, . . . 
microseconds are available simply by picking larger values for Y. 

The trick is to do useful things at the same time you are equaliz
ing, for otherwise, there simply is not enough time both to make 
things come out even and to do the needed calculations as well. Make all your loops the same length, but minimize any equalizationonly steps in doing so. 

Any addition done in a program ( such as 1787) has to be pre
ceded by a known state of the carry Hag. We come out of the blank
ing loop with the carry set, so we have to clear it in 1780. But the 
carry is already cleared, coming out of the BCC from the character 
dot row loop, so it is ready to go without wasting any time reclear
ing it. Note that for immediate additions, we have the option of 
always having the carry set and adding one less than normal. Either 
way, always be certain that the carry is known before any addition is done. 

Is step 178b and l 78C wasted? Can we save two words here? 
Leave the BCS off, and loop the character-scan counter to 1780 
instead of 1781, and this loop still takes 13 µs. But the loop from 
the final character Scan to the first blanking run would now take 
only 12, instead of 13 µs, and there is no free and obvious way to 
equalize 1 µs. In this particular instance, there are lots of blank 
lines following the 1-µ,s error, so we can get away with this simplifi
cation. In general, you must keep all loops identical in execution 
time. 
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Your Turn: 

Design and debug a 1 x 40, TVT 6 5/8 
noninterlaced Scan program needing 28 
or fewer words of storage. Modify it  for 
double-height characters. 

Note the asterisks and parentheses in the program. These will 
help you move the program around. An asterisk is a relative branch; 
these values change if you lengthen or shorten the program; they 
usually do not change if you simply move the program somewhere 
else. The parentheses are absolute locations. They will always 
change if the program is moved somewher� else, but may or may 
not change if the program length changes. 

Two modifications of our 1 x 40 program are also shown in Fig. 
2-7. We get double-height characters by adding only half enough 
each time at 1787. We relocate the display memory anywhere be
low 0FFF we like by putting the desired page in 1798 and the 
desired starting address in 1785. Note that the only valid starting 
addresses are 18, 58, 98, and dB. Why is this? 

16 x 40, No Interlace 
So far, we have been lucky. All the loops worked out just right, 

without making them longer or shorter than needed. But, what can 
we do when we have to compute the location of a new row of char
acters, or the exact position of a vertical-sync pulse? 

There are two things than can help us. First, we can shorten 
any blank line by any even amount we need to gain compute time. 
In the case of a 40-character line, we can go as low as two blanks, 
leaving us an extra 38 µs of compute time on top of the 13 µs we 
already had available. If you are careful, you can do a lot of things 
in 51 µs. And even more time is available in slower 64- and 80-
character Scans. 

A second approach is called pipelining. If there is not enough 
time between Scan microinstructions to do something, you set up 
and prepare for as much of it as you can as early as you can, 
before an intervening blank or live Scan. This will be very handy 
later in our graphics software where blank lines do not exist between 
chunks. 

The obvious extension of our 1 X 40 program is to make it into 
the 16 X 40 no-interlace Scan program of Fig. 2-8. 
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We have kept pretty much the same setup and vertical blanking Scans ( 17A0-17Ad ) ,  and the same sequence to put down a complete set of character dots for one line of characters ( 1780-178b ) . In order to change the character lines, we add a blank line between each row of characters. We make the Scan portion of this blank line short, and then use the extra time available to compute the 
µP-6502 
System-KIM-1 

Start-JMP 1 7AO 
End-Interrupt 

Displayed-041 8-07FF 
Program Space-1 780-1 7b 1 

(47 words) 

- 1780 CLC 1 8  
1 781 STA Bd (86) 
1 784 JSR 20 1 8  
1 787 ADC 69 1 0  

1 789 
..... 1 1eb 

178d 
1 78E 

1 791 
1793 
1 79b 
1 797 

CMP C9 EO sec 90 F3* 
PHA 48 
LDA AD (85) 

ADC 69 3F 
STA SD (85) 
PLA 68 
JSR 20 22 

1 79A ADC 69 80 
179C CMP C9 68 

- 1 79E BCC 90 EO* 
5TART --- 1 7AO LDX A2 79 

17A2 LDY 
1 7A5 JSR 
17A8 LDA 
1 7AA DEX 

AC EA 
20 1 8  
A9 64 
CA 

� 1 7Ab BEQ FO d3* 
L 1 7Ad BNE dO F4* 

Clear Carry 
( 1 7) Store Upper Address 
64 / //// Character Scans 0-7 // / / 

I ncrement Character Scan counter 

Character Scan Counter overflow? 
No, Scan next row of character dots 
Save Upper Address 

( 17) Get Lower Address 

I ncrement Lower Address by 64 
( 17) Store Lower Address, save carry 

Get Upper Address 
60 I I/ I I I Blank Character Scan 8 //// 

Add carry; reset upper address 
Was this the last line of characters? 
No, start a new row of characters 
Load number of blanking scans 

EA Output vertical-sync pulse 
60 I///// Blanking and Retrace Scans //// 

Initialize Upper Address 
One Less Blanking Scan. Done? 

Yes, start top row of characters 
No, do another blanking scan 

NOTES: 

TVT 6 5/8 must be connected and both the Scan 658-KS64 and Decode 658-KDB 
PROMs must be in the circuit for program to run. 

Step 1784 goes lo where the upper address stored in 1786 and the lower address 
stored in 1 785 tell it to. These values change throughout the program as different 
characters and dot rows are selected. 

Horizontal Frequency is 15,873 Hz with 1 .0-MHz clock. Vertical frequency is 59.90 Hz 
with 9.8-second hum bar. No I nterlace. 144 active lines, 121  blank, 265 total. 
) Denotes an absolute address that is. program location sensitive. 

* Denotes a relative branch that is program length sensitive 

Fig. 2-8. Program tor a 1 6-line, 40-character-per-line, 
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MODS, 
To Change the Number of Display Lines or the Height of the Characters, Use: 

Lines Height 179d 1788 17A1 

16  Normal 68 10  
12 Normal 67 10  
8 Normal 66 10  
8 Doublet 66 08 
4 Normal 65 1 0  

Doublet 65 08 

t Only works if upstream tap and chip select is across 1 K or less of display memory. 
FLOW CHART 

START 

NO 

SCAN M ICROINSTRUCTION ADDRESSES 

UPPER ADDRESS 
117841 

11780 - 17871 

(178b - l78dl 

1178E - 179AI 

ll79C - 179EI 

117AO - 17A21 

117A3 -l7AAI 

117Ab - l7Adl 

LOWER ADDRESS 
(17851 

79 
9d 
Cl  
81 
ES 
cs 

00 18 40 58 80 98 CO dB 00 

· I ·  · I · I 
DECODED PER 
FIG. 2-IA 

PAGES 04 THRU 07 
OF D ISPLAY MEMORY 

ISHOWN AS GODEi 

no-interlace TVT 6 5/8 Raster Scan. 

rn:i] mm1 2 r::::::i 3 1:::: ::J 1 
FOUR, 40 - CHARACTER 
ROWS PER LOWER PAGE 

!SHOWN AS MAPI 
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starting address for the next row of characters. We do this in steps 
178d through 179b. 

Remember that our accumulator held the upper address for us 
during the active Scans. We stash this upper address temporarily 
on the stack ( 178d) and then get the lower address for modifica
tion. We add 64 counts to the lower address in 1791 by adding hex 
3F plus a carry. Our new lower address is then restored in 1793. 

Our carry gets set every time there is a lower address page over
flow. This happens once every four character rows. When an over
flow occurs, we have to suitably modify our upper address as well. 
But carry or no carry, our upper address is wrong anyway, since 
its one past the bottom of the character and should be set to the top 
of a new character row. So there are two things we have to do to 
our upper address: We have to reset it to the top line; and, if a 
page overflow happened on the lower address, we have to add one 
to the page select. 

We correct the upper address by getting it back out of the stack 
in 179b, take time out for a blank Scan microinstruction ( this is an 
example · of pipelining) , and then correct the upper address in 
179A. We then check for the last line on the screen, and in 179E, 
either repeat a new character row, or else go on to the blanking 
Scans. 

Timing Details 

It is extremely important that the blank line that computes the 
next row of characters for us is exactly the same length as the 
character row times. If it is not, you get a bunch of teeth that tear 
up the display, handsaw style. Let's check to make sure we have 
taken exactly enough time to move to the next character row, by 
comparing this time against one of the other loops in the Scan pro
gram: 
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From a dot row to the next on the same character: 

1787 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
1789 CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
178b BCC (taken) . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
1780 CLC (equalization) . . . . . . . . . . . . . . . . . . . .  . 
1781 STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

plus 

2 µsec. 
2 µ,sec. 
3 µ,sec. 
2 µ,sec. 
4 µ,sec. 

Scan Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 µ,sec. 
plus 

Scan Microinstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 40 µ,sec. 
TOT AL 63 µsec. 



From the last dot row on one character to the top ( blank) dot row 
on the next row of characters: 

1787 
1789 
178b 
178d 
178E 
1791 
1793 
179b 

plus 

ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
BCC ( not taken) . . . . . . . . . . . . . . . . . . . . . . .  . 
PHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
PLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

2 µsec. 
2 µsec. 
2 µsec. 
3 µsec. 
4 µsec. 
2 µsec. 
4 µsec. 
4 µsec. 

Scan Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IO µsec. 
plus 

Short Blank Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 µsec. 

TOTAL 63 µsec. 

Thus, by making the calculation part of the loop longer by IO µs, 
and shortening the blank Scan by 10 µs, we come out even with a 
63-µs line. 

We have cheated a bit once again by I µs on the first blanking 
loop. But, in this program, there is enough blank Scan time during 
retrace for recovery. Where is this loop? How can you fix it with 
more code? 

Your Turn: 

Design a Scan ,program for a 1 6-line, 64-
character-per-l ine, no interlace TVT 6 5/8 
raster Scan. Use an 85-µs horizontal l ine 
time. Be sure to initial ize the lower ad
dress once each frame. 

Our 16 X 40 Scan looks great at first glance. We get lots of 
characters on the screen, a stock horizontal frequency, and we are 
doing all this with only 47 words of Scan program. But, there are 
many things wrong with this program, and we have shown it to 
you only as a stepping stone to the good stuff that follows. 

Some of the problems we are about to fix are : 

* The Scan will not run on a bare bones KIM-I since the display 
memory is too big to fit on pages 02 and 03. * We actively work on the lower address ( 1785 ) but never re-
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initialize it. Tiris is dangerous and limits us to multiples of 
four character rows per raster. * There is no interlace. Interlace makes much more attractive 
characters, particularly on long line lengths. Interlace is also 
essential for titling and superposition of existing video. * There is no double stuffing possible since we do not have inter
lace. This severely limits how many character rows we can put 
on the screen. * Only 40 of each 64 words of display memory are used. The 
rest are wasted, a total loss of 384 locations. 

Let's attack these problems one by one. They are all solvable with 
some simple mods and a few more words of code. 

Adding Interlace 
In an interlaced Scan, two ¼0th second fields are interwoven in 

order to _ form a single ½0th second frame. On the first pass, the 
scan starts in the upper left comer and ends at the bottom middle 
of the screen, moving rapidly to the right and slowly downward and 
generating one half of the needed horizontal Scan lines. On the 
second trip, the Scan starts in the upper middle and ends at the 
bottom right, putting down the remaining horizontal Scan lines. If 
525 Scan lines are used, there are 262½ spent on each field. Inter
lace always takes an odd number of total Scan lines. 

Interlace does lots of good things for us. It lets us lock our Scan 
to existing interlaced-program material for titling and superposi
tion. It gives us much more attractive characters since it eliminates 
the ugly stripes common to most noninterlaced Scans ( Fig. 1-lOA ) .  
This is extra important on long character lines and characters whose 
width is narrow compared to their height. Finally, interlaced Scans 
seem to be essential for the double-stu-ffeng techniques that let you 
double or nearly double the number of characters on the screen. 

Our microprocessor-based cheap video displays use a very simple 
software interlace, There are no hardware differences at all. To 
pick up interlace, you simply add a few words ( around 25 ) to your 
Scan program. Because of the simplicity and the tremendous ad
vantages of interlace, you should use interlace for practically all 
video displays. 

Fig. 2-9 shows how to add interlace. We reserve the first blank 
Scan line to calculate our interlace activity for that field. On the 
first field, we put down N scan lines and deliver a vertical-sync pulse 
early during the first blank Scan. On the second field, we put down 
N + 1 Scan lines and deliver a vertical-sync pulse late during the 
first blank Scan. The net result is 2N + 1 horizontal Scan and two 
equally spaced vertical-sync pulses per field. This is identical to the 

60 



traditional and more complicated hardware ways of doing the same 
thing. 

There usually will be a very slight jitter between even and odd 
vertical-sync pulses. Typically, you can reduce this to 1 µs. But, 
even if the jitter is 10 or 12 µs, there seems to be no visual effect 
on the screen. All jitter does to us is slightly uncenter the spacing 
between sequential per-frame raster lines, a negligible effect. Never
theless, if you are a programming purist, you will probably want to 
adjust your early- and late-sync times to be as close to exactly one
half the horizontal line time as you can get . 

. 2: I INTERLACED FRAME, 30 PER SECOND 

60·HZ VERT ICAL · SYNC 
INTERVAL, N + 112 SCANS 

60·HZ VERTICAL · SYNC 
INTERVAL. N + 1/2 SCANS 

VERTICAL · SYNC 

_n _________ ..... n ... _________ n_:

LSES 

I 
I 
:early 

I I 
I I 
: late : early 

pr�"";:t"':;i-N--1-,l
r--N--r

l -l-'-T-2--.f;
.,.,,./::t�-

::;)-;;1-N--l ... l
_N _l

,...
N_+_l_, -i:: ��:�z�1�11L 

F I RST F I ELD 
N SCAN L INES 
V SYNC DELIVERED 
EARLY IN FIRST 
BLANK SCAN. 

SECOND F I ELD 
N + I SCAN L INES 
V SYNC DELIVERED 
.bfilI IN F IRST 
BLANK SCAN. 

"EARLY" · AND "LATE" • 
SYNC POSITIONS D IFFER 
BY ONE ·HALF A HORIZONTAL 
SCAN LINE. 

Fig. 2-9. Adding interlace Is essentially free; requires just a few extra words 
in lhe Scan program. 

Our software interlace generator is usually followed by a hard
ware vertical-position control. Once the sync pulses are generated, 
it is a simple matter to delay them. 

16  x 32 Interlaced Scan 

This will be our first Interlaced-Scan program and it is shown 
in Fig. 2-10. The program gives you sixteen lines of 32 characters 
each and will fit nicely and densely on pages 02 and 03 of a bare 
bones KIM-1. A standard horizontal frequency is used and the 
magic numbers give us an almost stationary hum bar. This is an ideal short display, and should be the starting point for everything you do with cheap video displays. 

Except for interlace, the program uses the same ideas we used on 
the 16 X 40 program. All but our first blank Scan line are generated 
in l 7C2 through 17 d3. The characters are generated in 1780 through 
178F. Note the 10 µs of equalization in 1785 and 1786 needed to 
lengthen the Scan lines, since we only have a live character time of 
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µP-6502 Start-JMP 1 7A6 Displayed-0200-03FF 
System-KIM-I End-Interrupt Program Space-1780-17d4 

Upper Address (1 78A) lower Address (1 789) 

I * I * I • I • I O I O I 1 I vs I V4 I V2 I Vl I H1 6  I He I H4 I H2 I H l I 
0-5,F -normal program (no tvt) 
6 -blank scan 
7 -scan row 1 
8 -scan row 2 
. . .  etc. Program length-85 words + 

d -scan row 7 1 word page zero (00 EC) 
E -vertical-sync pulse 

17d1 1780 ClC 1 8  Clear Carry 
1 781 STA 8d (SA) ( 17) Store Upper Address 
1 784 PHA 48 Equalize 10 µs 
1 785 PlA 68 continued 

1786 BNE dO 00 continued 
1 788 JSR 20 00 60 I I I Charader Scans 0-7 I I I 
1 78b ADC 69 1 0  Increment Character Scan Counter 
178d CMP C9 EO Character Scan Counter OverAow? 

1 78F BCC 90 FO* No, Scan next row of character 
1 791 TAX AA Save Upper Address 
1792 LDA Ad (89) ( 17) Get lower Address 
1 795 ADC 69 l f  Increment Lower Address; Save carry 

1 797 STA Bd (89) ( 17) Restore Lower Address; Save carry 
1 79A TXA BA Get Upper Address 
1 79b ADC 69 80 Reset Upper Address; add carry 
1 79d BNE dO 00 Equalize 3 µs 

1 79F JSR 20 04 60 I I I Blank Character Scan 8 / / / 
17A2 CMP C9 64 Is it the "1 7th" row of characters? 

17d1 1 7A4 BCC 90 dA* No, start a new row of characters 
�T�.RT - 1 7A6 LDA AS (EC) Get Interlace Word 

1 7A8 ADC 69 7F Change Field via Carry bit 

C

AA BCS BO 05* Jump if Even Field 
1 7AC LDX A2 76 load Odd (short) # of blank Scans 
1 7AE STA Bd (EC) EO Odd Field V Sync; Restore Interlace 

1 7b 1  LDY AO 05 Equalize 31  µs 

(
1 7b3 DEY 88 continued 
1 7b4 BPL 1 0  Fd* continued 

17bd -- 1 7b6 BCC 90 05* Jump if odd field 

Fig. 2-10. Program for a 16-line, 32-character-per-line, 
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1 7b8 LDX A2 77 
1 7bA STA Bd (EC) 

17b6 - 1 7bd JSR 20 l E  
1 7C0 PHA 48 

1 7C1 PLA 
1 7C2 CLD 
1 7C3 LDA 
1 7C5 STA 

17C8 LDA 
17CA STA 
1 7Cd JSR 
17d0 DEX 

68 
dB 
A9 00 
Bd (89) 

A9 62 
Bd (BAJ 
20 00 
CA 

1780 ..-- 17d l  BMI 30 Ad* 
L 17d3 BPL 1 0  Ed* 

NOTES: 

Load even (long) # of blank Scans 
EO Even Field V Sync; Restore I nterlace 
60 I I I 1 st V Blonking Scan I I I 

Equalize 9 µs 

continued 
continued 

Initialize Lower Address 
(17) continued 

Initialize Upper Address 
(17) continued 
60 I I I Rest of V Blanking -;cans /II 

One less Scan 

Start Character Scan 
Repeat V Blanking Scan 

TVT 6 518 must be connected and both the Scan (658-KS8) and Decode (658-KD64) 
PROMs must be in circuit for program to run. 

Both 1 7AE and 17bA require that page 00 be enabled when page E0 is oddressed. 
This is done automatically in the KIM-I decode circuitry. 

location OOEC on page zero is reserved as an interlace storage bit. 
Step 1 788 goes to where the upper address stored in 178A and the lower address 

stored in 1 789 tells it to. Values in these slots continuously change throughout the 
program. 

For a 525-line system, use 1 7Ad 54 and 1 7b9 55 and a KIM-1 crystal of 992.250 kHz. 
This· is ONLY needed for a video superposition or titling applications; the stock 1 -
MHz crystol i s  used for ALL OTHER uses. 

Normol program horizontal frequency is 15,873.015 Hz; Vertical 60.01 1 4  Hz. 63 µs 
per line, 264.5 lines per field; 2 fields per frame, 529 lines total. 

TVT 6 518 switch must be in the "32" position. 
) Denotes an absolute address that is program location sensitive. 

* Denotes a relative branch that is program length sensitive. 

interlaced TVT 6 5/8 Raster Scan. 
COntlnultd on ned page. 
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To display other pages, use: 

Pages 
Displayed 17Aa 17C9 
0000-0lFF 62 60 
0200-03FF 64 62 
0400-0SFF 66 64 
0600-07FF 68 66 

0800-09FF 6A. 68 
OAOO-ObFF 6C 6A 
OCOO-OdFF 6E 6C 
OEOO-OFFF 70 6E 

For higher pages, move contents to 0200-03FF or 0400-0SFF. 

START 

117A6J 

EVEN 

NO 

NO 

FlOW CHART 

00 
CHARACTER 

SCAN 

TVT 
Connection 

KIM-1 
KIM-1 
KIM-2 
KIM-2 

KIM-2 
KIM-2 
KIM-2 
KIM-2 

[1780 • 17Bbl 

[178<1 • 178F J 

(1791 - 171J'J 

[17A2 • 17A41 

fl7A6 • 17A8J 
ODD 

117bl • 17bbl ___ ,_ __________ _. 117AC·l7b61 

117bd • 17d01 

YES NO 
117dl • 17<141 

Fig. 2-10 Continued. Program for a 16-line, 32-character-per-line, interlaced 
TVT 6 5/8 Raster Scan. 
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32 µs. Our sequential rows of characters are calculated as before in 
steps 1791 through 17 A4. 

Our interlace calculation is done on the first blank Scan line. We 
have to do two things. First, we have to decide how many blank 
Scans we want on the field we just started; and secondly, we have 
to pick an early or late vertical-sync pulse and deliver it during the 
first blank Scan. Always pick the number of blank lines first; this will 
help transparency later. 

We store an interlace word "ILCE" on page zero at location OOEC. 
It does not matter what the value is that this word starts out as. 
In each field, we retrieve ILCE, add hex 80 to it, and replace it. This 
will set the carry on one field and clear it on the next field. We will 
use the resultant carry bit to steer us either to an early sync pulse 
and N blank lines or a late sync pulse N + 1 blank lines. 

On the early sync field, we load the X register for N blank scans 
in 17AC. We next produce a vertical-sync pulse and restore the new 
interlace word in 17AE. This is followed by 31 µs worth of wheel
spinning equalization, after which we go on to the rest of the blank 
Scans. 

On the late sync field, we first wheel spin for 31 µs in 17bl through 
17b4 and then load the X register with N + I blank Scans in 17b9. 
This is followed by the vertical-sync pulse and interlace word res
toration in l 7bA. After this, we go on to the rest of the blank Scans. 

Note particularly the steering action of the carry bit. If carry 
is cleared, we do the early sync program followed by the equaliza
tion. If carry is set, we do the . equalization first, followed by the 
late sync program. 

We run this Scan program by jumping to the starting address at 
17A6. This program will only run when your TVT 6% is connected 
to your KIM-I. The hardware length switch on the TVT 6% must 
be in the "32" position. 

We stop our display by interrupting, either to return to a main 
program, a Cursor controller, or the computer operating system. 

Your Turn: 

Design a 1 6  x 40 i nterlaced TVT 6 5/8 
program running on a normal horizontal 
frequency. Modify it to an 8 x 40 double
height character program that uses pages 
02 and 03 for display memory. 
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Fig. 2-10 also shows us how to move the display memory around 
as needed for other system uses. Remember that your upstream tap 
has to be available at the chosen locations when we do this. If 
you move your 16 X 32 program to KIM-1 pages 00 and 01 and add 
a Hex-ASCII converter, the stack and all operating system values 
can be displayed at once. 

We can convert our 16 x 32 interlaced Scan into exact EIA magic 
numbers of 15,750 Hz horizontal and 60 Hz vertical by using a 
crystal of 992.250 KHz and changing the number of blank lines as 
shown in the program. This is only needed for video superposition 
and titling. All other applications can run with the stock 1-MHz 
crystal. 

Should you want to eliminate interlace for a comparison, just 
load 17A9 FF. Note how the stripes appear in the characters. To 
return to full interlace, load 17A9 7F. 

More Characters 

There are many ways we can get more characters on the screen. 
We have already picked a 5 X 7 character generator to minimize 
video bandwidth and the number of vertical lines per character. 
You can add lines by shortening the number of blank Scans, so 
long as twenty or so blank Scan lines remain. You can also skip the 
top blank line of each character row, but this tends to put the 
characters too close together. 

Another way to put more characters on the screen is to put two 
characters in the same slot, alternating them at a slow rate. This is 
the key to hex op-code displays, but is a very special route to go. 

We might be tempted to spend less time computing and more 
time displaying, still staying within the normal horizontal line time. 
At the computer end, we could use "brute force" software that 
would simply call one Scan microinstruction after another. This 
could get us down to a nonscan time of 10 µ,s, leaving us with a 
limit of 53 characters or so per line. 
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Your Turn: 

Write a "brute force" Scan program that 
calls, rather than computes, all live scans 
needed for a 1 x 53 display. Are you able 
to attractively display this many charac
ters? 



Unfortunately, there is trouble on the tv end that usually pre
vents this. Between the normal time needed for horizontal retrace, 
the extreme overscan of many stock tv sets, and fairly bad spot 
defocusing toward the screen edges, you will find it very difficult 
to attractively display more than 42 characters per horizontal line 
if you stick to a one-microsecond-per-character rate and standard 
horizontal frequency and width on a stock tv set. 

So, what does this leave us? How else can we increase the charac
ter density on the screen? Here are three good ways to go : 

* By double stuffing characters, we can double or nearly double 
the number of characters vertically on the screen. Double 
stuffing only needs Scan program changes and is "free" in the 
same sense that interlace was free with a few extra software 
words. 

* By going to a reduced horizontal rate, we can put 64- or 80-
character lines on the screen, yet still stay within the normal 
video bandwidths of unmodified tv sets and rf modulators. A 
reduced horizontal rate does take hold and width modifications 
to the set, but these are easily and safely done on small-screen 
black and white sets. 

* By using memory repacking techniques, we can store 40- and 
BO-character lines in a display memory in pretty much the 
same space that we can store binary 32 or 64 length lines. This 
raises the number of characters on the screen for a given num
ber of available display memory words or, alternately, reduces 
the per-character storage cost. Memory repacking tends to 
make the Scan and Cµrsor software more complex, but this 
usually takes only a few extra words. 

These three techniques of double stuffing, reduced horizontal, and 
memory repacking can be used in any combination. How much 
of this you want to do depends on your application. 

For minimum memory and simple operation, the 16 X 32 inter
laced Scan is a good choice and should always be your starting point 
for anything fancier. Double stuffing can bring this up to 32 X 32 
or 32 X 40 with a stock horizontal frequency and width. 

The 64-character line is a good choice for general use and text 
editing, and results in very simple Scan programs and Cursor hard
ware. But, much of the software already written for microcomputer 
use assumes an BO-character teletypewriter line. For compatibility, 
we might like to use an BO-character line with reduced horizontal 
operation, or else we can use two 40-character lines per teletype
writer line, staying within the normal horizontal range. Lines 80 
characters long also let us put two separate 40-character lines side 
by side for source and object listings, or anywhere else you want a 
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"before" and "after" presentation. Your tv mods tend to be heavier 
for the BO-character line than the 64, and most often, the 64-
character format will give you more pleasing results. 

Double Stuffing 

In a double stuffed display, we put down the even rows of charac
ter dots on one field and the odd rows of character dots on the 
second field. We do this by adding a few more words to the Scan 
program. No hardware changes are needed. Add-on changes for 
double stuffing are usually included in the interlace calculations 
made during the first blank line. This way, one program can serve 
for normal or double-stuffed Scans simply by changing a few words. 

Fig. 2-11 shows an algorithm that gives us double stuffing. At the 
start of an even field, we initialize our character generator to start 
on the top blank row zero. We start scanning dots in the usual way, 
except that every time we go to a new row of dots, we double the 
amount usually added and skip one row. We move sequentially 
through lines 0,2,4, and 6. The entire field continues in the usual 
way, except for this skipping every second row of dots. 

When we start the next odd field, we initialize our character 
generator to work on the first dot line or line one of our dots. We 
start scanning again, and again pick up every second row of dots. 
But this time, it is dot lines I, 3, 5, and 7 that get put down. 

Half of the character dots go down on the even field and hall 
on the odd field. Characters are totally refreshed and appear whole 
30 times a second. 

If we only use interlace, we have been spending 18 lines to put 
"EVEN" FIELD 

IN JTIALIZE 

EVEN F IELD 

DOT LINES 0, 2, 4, 6, 
OF CHARACTER 

"ODD" F IELD 

INITIALIZE 

ODD FIELD 

DOT L INES 1,3,5, 7 
OF CHARACTER 

Fig. 2-11. Double-•tuffing algorithm puta twice u many characten vertically 
on the screen. 
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down a row of characters, arranged as two fields of 9 lines each. 
Both fields were identical. Seven of these lines are for dots. One 
line is the top blank line. The final line is the blank line needed 
between characters to compute the next character address. 

Now, if we use both interlace and double stuffing, we end up with 
only 10 lines per character, spending 5 per field. Four of these 
are dots, the fifth is the blank line between characters. So, double 
stuffing gives us eighteen tenths of the number of characters verti
cally. This can almost double the number of characters on the 
screen. Alternately, this can almost double the other-program 
throughput during transport operation. 

If you have extra blanking lines available, these can be borrowed 
to actually double the number of character rows on the screen. 
Thus you can usually go from 16 X 32 to 32 X 32; from 16 x 40 to 
32 x 40; from 16 X 64 to 32 x 64; and from 12 x 80 to 24 x 80 char
acter displays. While 32 X 80 is possibl�, there is no throughput left 
for transparency and that is a large number of characters to view 
at once. 

32 x 64 Interlaced Scan 

A double-stuffed 32 x 64 Scan program is shown in Fig. 2-12. 
Except for the new double stuffing calculations made during the 
first blank Scan, everything else is much the same as our earlier 
Interlaced-Scan program. We can see our blank Scans in 17d8 
through 17El, and our character dot row sequencing in 1780 through 
178d. But notice 178A, where we add twice as much to our character 
dot counter so that we skip a dot row each time. New rows of charac
ters are picked up as before in 178F through 17Al. 

Our first blank Scan also has some familiar features. We get an 
interlace word at 17 A3 and use it to set or clear the carry bit, 
steering us to an even or odd field. On the even field, we put down 
a short number of blank Scans and an early vertical-sync pulse. On 
the odd field, one extra blank Scan is loaded into the X register, 
followed by a late vertical-sync pulse. 

Your Turn: 

Design a double-stuffed 32 x 32 Scan pro
gram running at normal horizontal fre
quency. Do not let the Scan program go 
past 1 7E6, the maximum al lowable RAM 
location in the KIM-1 scratchpad. 
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µP-6502 Start-JMP 1 7bF Displayed-0400-0bFF 
System-KIM-1,2 End-Interrupt Pragram Spac-1780-17E2 

I • I • 'if.iv 
6 
7 
8 
• • .  etc. 
d 
E 

Upper Address 1 788 

I * I * I PH I Pl I vs I 
/ 

-narmal program (no tvt) 
-blank �can 
-scan row 1 
-scan row 2 

-scan row 7 
-vertical-sync pulse 

VJ. 

17dE - 1780 LDA A9 (64) 
-- 1 782 STA 8d (88) 

1785 NOP EA 
1 786 JSR 20 00 

1 789 ADC 69 20 
178b CMP C9 EO 
178d BCC 90 F3* 
178F PHA 48 

1790 LDA AD (87) 
1793 ADC 69 3F 
1795 STA 8d (87) 
1 798 PLA 68 

1 799 NOP EA 
179A JSR 20 oc 
179d ADC 69 80 
179F CMP C9 6C 

� 17A1 BCC 90 dF* 
1 7A3 LDA A5 (EC) 
1 7A5 ADC 69 7F 

- 17A7 BCC 90 OF* 

1 7A9 LDX A2 l d  
17Ab STA 8d (EC) 
17AE LDA A9 64 
17b0 STA 8d (81 )  

17b3 LDA A9 6C 
17b5 STA 8d (AO) 

'- 1 7bB LDY AO 07 
17bb - 1 7bA DEY 88 

Lawer Address 1787 

I v2 I v1 I H32 I H16 I Ha I HJ. I H2 I Hl I 
Program length-99 wards + 

1 word page zero (EC) 

Initialize Upper Address 
( 17) Store Upper Address 

Equalize 2 
60 I I I Character Scans 0-7 I I I I 

Increment Character Gen by 2 
Is it Scan 8 or 9? 
No, Do next character Scan 
Save Upper Address 

(17) Get lower Address 
Increment l; Set C on V2 Overflow 

(17) Restore l; save carry 
Get Upper Word 

Equalize 2 
60 Ill Blank scans B, 9, Ill 

Add Carry; Reset Upper Address 
Was this the last line of characters? 

No, Scan a new line of characters 
Get Interlace Word 
Set Carry if Odd Field Finished 
Start Even Field if Carry Set 

load Even #VB Scans - 2  
(E0) Even V Sync + Replace Interlace word 

Initialize Even Upper Address 
(17) continued 

Initialize Even Character End Compare 
( 17) continued 

Equalize 41 µs 
continued 

Fig. 2-12. Program for a 16- or 32-llne, 



17bA - 11bb BPL 1 0  Fd* continued r 11bd BCS b0 OF* Skip if Even Field 
START ---- 1 7bF LOX A2 I E  Load Odd #VB Scans - 2  

17C1 STA 8d (EC) (E0) Odd V Sync + Replace I nterlace ward 

17C4 LOA A9 74 Initialize Odd Upper Address 
1 7C6 STA 8d (81 )  ( 17) continued 
17C9 LOA A9 7C I nitialize Odd Character End Compare 
1 7Cb STA 8d (AO) ( 17) continued 

1 7CE JSR 20 3F 60 /// 1 st V Blonking Scan ///// 
1 7d1  LOA A9 00 Initialize Lower Address 
1 7d3 STA 8d (87) ( 17) continued 
1 7d6 BMI 30 00 Equalize 3 µ,s 

f"" 
CLO dB Equalize 4 microseconds 

1 7d9 NOP EA 'continued 
1 7dA JSR 20 00 60 I I I Rest of V Blanking Scans /// 
17dd DEX CA One Less Scan 

1780 � 1 7dE BMI 30 AO* Start Character Scan 
L 17E0 CLC 1 8  Clear Carry 

17E1 BPL 1 0  F5* Repeat V Blonking Scan 

NOTES: 
TVT 6 5/8 must be connected and both the Scan 658-KS64 and Decode · 658-KDB 

PROMS must be in circuit for program to run. 
Bath 1 7Ab and _ l7C1 require that page 00 be enabled when page E0 is addressed. 

This is done automatically in the KIM-1 decode circuitry. 
Location OOEC on page zero is reserved as an interlace storage bit. 
Step 1 786 goes to where the upper address stored in 1 788 and the lower address 

stored in 1787 tells it to. Values in these slots continuously change throughout the 
program. 

Values in slots 1781 (Upper address start) and 1 7A0 (Character end compare) alter
nate with the field being scanned. 

Horizontal Scan Frequency is 1 1 .494 kHz; Vertical frequency 60.0222 Hz. 87 µ,s per 
line, 1 9 1 .5 lines per field; 2 fields per frame, 383 lines total. 

TVT 6 5/8 switch must be in the "64" position. 
( ) Denotes an absolute address that is program location sensitive. 
• Denotes a relative branch that is program length sensitive. 

Continued on n•d page. 

64-character-per-lii'le, Interlaced TVT 6 5/8 Raster Scan. 
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Progrom may be used for 16 X 64 large characters or 32 X 64 small characters by 
changing the following code: 

Cade Function 16 X 64 32 X 64 

1 78A dot row spacing 1 0  20 
1 7AA even # VB Scans - 2 2d I d  
17AF even start address 64 
17b4 even end compare 68 6C 

17C0 odd # VB Scans - 2  2 E  I E  
17C5 odd start address 64 74 
17CA odd end compare 68 7C 

FLOWCHART 

11780 - 17891 

NO 11786-178£) 

1178F - 179 El 

NO 1179FI 
11711'! 

START 117 A3 - 17A81 

ODD EVEN 

ODD F IELD EVEN FIELD 
V SYNC & SETUP 117b8-17Cdl 117A9-17bCJ V SYNC & SETUP 

117CE - l7ddl 

YES NO 

117d E - 17E21 

Fig. 2·12 Continued. Program tor a 16- or 32-llne, 84-character-per-line, Inter
laced TVT 6 5/8 Raster Scan. 
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The new things we need to pick up double stu:ffiing are also put in this first blank Scan line sequence. On the odd fields, we initialize to dot row one in 17C4-17C8. We also set up an end-of-screen odd compare in 17C9 through 17Cd. The end-of-screen condition differs for even and odd fields and must be separately set up if the same number of characters are going to be put down on both fields. Similarly, we initialize to even dot row O in 17AE-17b2, and set up the end-of-screen even compare in 17b3-17b7. The table in Fig. 2-12 also shows us how to change just six memory locations to use this program as a 16 X 64 or a 32 X 64 display. A hundred words are needed for this Scan program, 99 in the usual 1780 stash and one on page zero for interlace storage. 
Memory Repacking As Fig. 2-13 shows, our 32- and 647character lines completely fill our display memory. The end of one line butts up against the start 

ONE MEMORY PAGE 

32 CHARACTERS/L INE 
JO<r.. PACK ING DENS ITV 

40 CHARACTERS/LINE 
62.� PACKING DENS ITY 

64 CHARACTERS/LINE 
100'- PACK ING DENS ITV 

80 CHARACTERS/LINE 
62.5'- PACK ING DENS ITV 

(A) Normal Scan program and microinstruction uses memory Inefficiently dur
in!:l 40- or BO-character-per-line format. 

00 JO 38 60 88 bO d8 00 

faJ I I 2 I 3 I 4 I 5 I 6 I <IO CHARACTERS/LINE 
93. 75 PACK ING DENS ITV 

WASTED/ 
MEMORY 

LOCAT ION
E]]O 

60 bO 00 I 2 I 3 I 80 CHARACTERS/LINE 
93, 75 PACK ING DENS ITV 

ONE MEMORY PAGE 

(B) Repacked Scan program and microinstruction greatly improves memory 
packing density. 

Fig. 2-13. Improving memory packing density on 40- and BO-character lines. 
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of the next line. Since all display memory locations are used, we 
say we have a memory packing efficiency of 100%, the best we 
can do. 

But, if we use the Scan programs we have so far on a 40- or 80-
character line, it is a very different story. On a 40-character line, 24 
out of every 64 words of display memory are wasted. On an 80-
character line, 48 words out of every 128 are wasted. This is a 
packing density of only 62.5%. 

Conceivably, we could use these wasted locations for other pro
grams. But they are disjointed and short. Worse yet, they are 
dangerous, because a simple or poorly thought out Cursor-control 
program could override these locations and wipe them out, par
ticularly on clear or scrolling. We could also simply ignore the 

Chart 2-7. A 6502 Repacked Scan Microinstruction Coding 
for a Page of Six Scans of 40 Characters Each 

xxoo 

xxoa 

XX10 
XX18 

XX20 
XX28 
XX30 
XX38 

XX40 
XX48 
xxso 

XX58 

XX60 
XX68 
XX70 
XX78 

xxao 

XX88 
XX90 
XX98 

XXAO 
XXA8 
XXbO 
XXb8 

xxco 

xxca 

XXdO 
XXd8 

XXEO 
XXE8 
XXFO 
XXF8 

74 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO 60 60 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO 60 60 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO 60 80 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO 60 60 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO 60 80 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO 60 60 

Note: 
"XX" is any high address 
that activates the Scan 
instruction decoder. 

AO - LDY 
60 - RTS 



locations. On a 24 X 80 display, well over a thousand locations would go unused. One way to repack memory is shown in Fig. 2-13B. We put six lines of 40 characters or three lines of 80 characters per computer page of 256 locations. We make each page the same to keep the scanning and cursor activities reasonable and straightforward. We still waste 16 locations out of 256, but this gives us a memory packing of almost 94%. Even in the long 24 X 80 display, only 128 locations are wasted, a 10: 1 improvement. Memory repacking is not free. We have to change the Scan microinstruction coding, and no longer can use the PROM that is coded in Chart 2-4. The correct coding for six Scans of 40 characters per 
Chart 2-8. A 6502 Repacked Scan Microinstruction Coding 

for a Page of Three Scans of 80 Characters Each 

xxoo 
xxos 
XX1O 
XX18 

XX2O 
XX28 
XX3O 
XX38 
XX4O 
XX48 
XX5O 
XX58 

XX60 
XX68 
XX7O 
XX78 

xxso 
XX88 
XX90 
XX98 

XXAO 
XXAS 
XXbO 
XXb8 

xxco 
xxcs 
XXdO 
XXd8 

XXEO 
XXES 
XXFO 
XXFS 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO 60 60 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO 60 60 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 

AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO AO AO 
AO AO AO AO AO AO 60 60 

Note: 
"XX" is any high address 
that activates the Scan 
instruction decoder. 

AO - LDY 
60 - RTS 
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page appears in Chart 2-7, while the coding for three Scans of 80 characters per page is shown in Chart 2-8. At first glance, it would look like we now need an eight input PROM for our Scan microinstruction generation. Once again, with a 6502 we can ignore the least significant address line AO and do everything "by twos." This helps a little. Now, if you go through the logic you will find that we can use a simple AND of address lines Al, A2, and A3 to form a precoded input for our PROM. So, we are once again down to a five input 32 X 8 PROM. The new gate seems to be needed for the 40-line Scans. But, on the BO-line Scans, if we are willing not to display characters 75 through 80 on each line, we can simply ignore Al and A2 as well, routing A3 directly to the PROM. This leaves things as simple as they were before, except for the use of a different PROM and different socket address interconnections. When we do this, we retain the 80-line Teletype software compatibility, and also pick up a magic number that hits a stable hum bar with a shorter horizontal line and a stock crystal. So, this strange sounding compromise may turn out to be a useful simplification. Repacking will also add complications to the Cursor-control program, particularly on the carriage return and backspace. Your Scan program also gets lengthened by seven words. If you decide you want the 40- or BO-character lines instead of the simpler 64- and 32-length binary counterparts, the price of repacking memory usually pays for itself, even with the complications. The Scan program needs one seven-word addition for repacking. The addition is needed to bridge the wasted locations every time the page overflows. Normally, on a 40-character line, we add 4010 to each starting location to get to the next starting location for a new Scan. Except, when we go from line 6 to line 7 ( the first line on the next page ) ,  we have to add 4010 plus 1610 to get across the unused locations. Very fortunately, the carry bit sets every time we overHow the page, so we can use this as a Hag to tell us to add an extra sixteen. Our Scan program repacking correction goes like this : 
* On a 40-character Scan line, add 4010 to get to the start of the next character line. If the page overHows, add 1610 more. 
* On an 80-character Scan line, add 8010 to get to the start of the next character line. If the page overflows, add 1610 more. 

24 x 80 Scan Program Memory repacking, double stuffing, and interlace are combined in the 24 x 80 Scan program of Fig. 2-14. By now, your program areas of blank Scans ( 17 db-l 7E2 ) ,  active-character Scans ( 1780-
78 



178C ) ,  next character row computation ( 178E-l 7 A4 ) ,  and first 
blank-line interlace and double-stuffing setup ( 17A6-17d9) should 
be obvious to you. 

Our bridging, needed for the memory repacking, is done in 1794. 
Should there be no page overflow, the carry remains clear, and the 
program goes from 1794 to l 7E4 to 1799 and takes 6 µs to do so. 
Should you have a page overflow, we know we have to add an 
extra 1610 to get to the next lower starting address, besides the usual 
change of upper address. So, if carry is set, we go from 1794 to the 
"add sixteen" of 1796 and the carry restoration of 1798, again taking 
6 µs. 

This program takes a special PROM coding 658-KSBO similar 
to Chart 2-8, and special connections to that PROM. As Fig. 2-14 
shows, you have several ways you can ,use the Scan program. 

If you are willing to display only the first 76 characters on each 
BO-character line, you end up with a near-stationary hum bar and no 
extra gating. If you want the full 80 characters, you add an extra 
AND gate. The full BO-character display has a rather fast hum bar 
of 5.5 seconds. You can stop this by speeding up your clock to 
1.003 MHz, either by pulling the old crystal or changing to a new 
one. 

Either setup works compatibly with 80 line existing tty software. 
Locations are changed as shown to get the right operation for either 
mode. 

You can change back to a 12 X 80 display by making the six word 
changes as noted in the program. 

Your Turn: 

Design a 32 x 40 double stuffed, inter
laced, and memory repacked TVT 6 5/8 
Scan running at a normal horizontal fre
quency. 

Note that custom Cursor programs will be needed for memory 
repacked Scans. 

GRAPHICS SCAN PROGRAMS 

Graphics displays are usually a lot simpler to design than alpha
numeric ones. We do not have the hassles of a character generator 
and repeat bips for the character dot rows. We actually display 
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µP-6502 · Start-JMP 17C2 Displayed-041 0-0bFF 
System-KIM-1,2 End-Interrupt Pragram Space-1780-17E5 

Program length-1 03 words + 
1 word page zero (EC) 

17d f --. 1 780 LOA A9 6" I nitialize Upper Address 
1782 STA 8d (87) (17) Store Upper Address 
1785 JSR 20 1 0  6" I I I Character Scans G-7 I I I 
1788 ADC 69 20 Increment Character Gen by 2 rows 

1 78A CMP C9 EO Is it Scan 8 or 9? 
1 78C BCC 90 F4* No, do next character Scan 
178E PHA "8 Save Upper Address 
178F LOA Ad (86) ( 17) Get Lower Address 

1 792 ADC 69 4F Increment l: Set Carry on page overflow 

fT 1 794 BCC 90 4E* Is repacking bridge needed? 
1 796 ADC 69 OF Yes, bridge wasted locations 

17U 1798 SEC 38 Restore Carry 

Ll.. 1 799 STA 8d (86) ( 17) Restore l; Save Carry 

l '� 
PLA 68 Get Upper Address 

179d JSR 20 CJ 60 Ill Blank Scans 8, 9 Ill 
17AO ADC 69 80 Add Carry; Reset Upper Address 
17A2 CMP C9 6C Was this the last line of characters? 
1 7A4 BCC 90 dC* No, scan a new line of characters 

1 7A6 LOA AS (EC) Get Interlace Word ILCE 
17A8 ADC 69 7F Set Carry if odd field finished 
1 7AA BCC 90 OF* Start Even Field if carry set 
17AC LOX A2 35 load Even # VB Scans - 2  

17AE STA 8d (EC) (EO) Even V Sync + Replace ILCE 
17b1 LOA A9 64 Initialize Even Upper Address 
1 7b3 STA 8d (81) ( 17) continued 
17b6 LOA A9 6C Initialize Even End Compare 

1 768 STA 8d (A3) ( 17) continued 
17bb LOY AO 07 Equalize 41 µs 
17bd DEY 88 continued 
17bE BPL 10  Fd* continued 

1 7CO BCS bO OF* Skip if Even Field 
START - 17C2 LOX A2 36 load Odd # VB Scans - 2  

17C4 STA 8d (EC) EO Odd V Sync + Replace ILCE 
1 7C7 LOA A9 74 Initialize Odd Upper Address 

17C9 STA 8d (81 )  ( 1 7)  continued 
17CC LOA A9 7C Initialize Odd end compare 
17CE STA 8d (Al) ( 17) continued 
1 7d 1  JSR 20 FO 60 I I I 1st V Blanking Scan /II 

Fig. 2-14. Program tor a 12- or 24-line, BO-character-per-line, 
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17d4 LOA A9 1 0  Initialize Lower Address 
1 7d6 STA 8d (86) ( 1 7) continued 
1 7d9 BNE d0 00 Equalize 3 µs 
17db JSR 20 OE 60 / / / Rest of V Blanking Scans /// 

r
l7de DEX CA One Less Scan 

1780 -+--'- 1 7df BMI 30 9F* Start Character Scans 
Ll 7E1 CLC 1 8  I nitialize Carry 

1 7947 17E2 BPL 1 0  F7* Repeat Blank Scan 
1799 -17E4 ace 90 b3* Bypass when bridging is not needed 

NOTES1 
TVT 6 5/8 must be connected and both the . Scan 658-KSBO and Decode 658-KD8 

PROMS must be in circuit for program to run. 
Both 17AE and 1 7C4 require that pc,ge 00 be enabled when page E0 is addressed. 

This is done automatically in the KIM-1 deco.de circuitry. 
Location OOEC on page zero is reserved as an inter/ace storage bit. 
Step 1785 goes to where the upper address stored in 1787 and the lower address 

stored in 1786 tells it to. Values in these slots continuously change throughout the 
program. 

Values in slots 1781  (Upper Address start) and 17A3 (Character end compare) alter-
nate with the field being scanned. 

TVT 6 5/ 8 switch must be in tl,e "64" position. 
( ) Denotes an absolute address that is program location sensitive. 
* Denotes a relative branch that is program length sensitive. 
One of the two following operation modes should be picked, 

MODE l 

CHARACTERS 75-80 
NEVER D ISPLAYED 

PROM CONNECTIONS, 

A7 ---<,.__.c,---1,-7 
A6 -------1 658 • KSIIO AS -----1 
A4 ---
A3 ---
A2 -- NC 
Al --NC 
AO -- NC 

175. 5 L INE F IELD 
95 µ SEC H LINE 
10. 526 H RATE 

48- SECOND HUM BAR 

MODE I I  

CHARACTERS ALL 
D ISPLAYED 

PROM CONNECTIONS, 

A7 -o.-o----4 
A6 ------4 
AS .658 · KS90 
M ------4 

�� 
Al J..:::/"' 
AO -- NC ,__ __ _. 

165.5 LIIIE FIELD 
101 µSEC H LINE 
9901 H RATE 
5-SECOND HUM BAR 

STATIONARY HUM BAR 
WITH 1.003-MHz CLOCK 

Continued on ned page. 

Interlaced, double-sMled, memory repacked TYT 6 5/8 Raster Scan. 
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Code should be changed as follows: 

Location 
1789 
17Ad 
1 7b7 
17C3 

17C8 
1 7Cd 

12 X 80 12 X 80 24 X 80 
Function MODE I MODE II MODE 

dot spacing 1 0  1 0  20 
even VB scans -2 41 C7 35 
even end compare 68 68 6C 
odd VB scans -2 42 ca 36 

odd start address 64 64 74 
odd end compare 68 68 7C 

SCAN MICROINSTRUCTION ADDRESSES 

UPPER ADDIESS LOWER ADDRESS 
111861 111sn 

I · I .  I 0 1 I 1 °  1 °  I ..... I_ ........ I _...._I ______,I 
DECOMO PER 
CHART Z-1 

PAGES OIi THRU 06 
OF DISPLAY MEMORY 

(SHOWN AS COl:U 

mc21 
START 

ODO 

ODD FIELD 

SET UP + V SYNC 

(11bb- l7dAJ 

FLOW CHART 

NO 

YES NO 

THREE SO-CHARACTER 
ROWS PER LOWER PAGE 

{SHOWN AS MAP) 

EVEN FIB.O 

SETUP •V SYNC 

117911 - 17t!: l7Edl 

U7AC • HCOI 

(17db - 171() 

m<F - 17E2l 

I 

24 X 80 
MODE II 

20 
26 
6C 
27 

74 
7C 

Fig. 2·14 Continued. Program for a 12- or 24-llne, 8Cl-character-per-llne, Inter
laced, double-stuffed, memory repacked 1VT 8 5/8 Raster Scan. 
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the code stored in memory rather than converting it to something 
else. All the graphics displays we will be showing you run at a 
normal horizontal rate. Cursors, double stuffing, and memory re
packing are no longer needed . We can still use the same Scan 
( 658-KS64) and Decode ( 658-KDB) PROMS we used for most of 
the alphanumeric Scans as well. A plug-in module on our TVT 6% 
converts it for graphics-output modes. 

One thing our graphics displays will need, though, is plenty of 
available RAM for your display memory. The 512 locations on pages 
02 and 03 of a bare bones KIM is only enough for a 64 X 64 black 
and white or a 64 x 48 color display. This is big enough to be inter
esting and a good way to learn graphics. It may also be handy for 
simple games and color art displays. But, for many applications, 
we will want more memory and lots of it. 

The minimum workable graphics siz!c' is somewhere around 128 X 
128 elements, which needs 2K of display memory. You can do a lot 
more with a high resolution 2.56 x 256 display, but this takes a full 
BK of memory provided with the usual upstream tap. Super displays 
up to 400 x 512 or so are possible, but you will have to be a real 
graphics freak to provide the 25K or so of RAM you will need; 
rapid changes of this much information will also be rather tricky 
to accomplish. 

Two medium resolution graphics formats that will use the same 
Scan program are shown in Fig. 2-15. We call the word stored 
in display memory and its presentation on the display a chunk. For 
our 128 X 128 format, we use a "four over four" chunk that puts 
down four dots or undots on one Scan and then another four directly 
below on the next Scan line. The four-dots-per-microsecond rate 
gives us very modest bandwidth needs ( about half of what we 
needed for alphanumerics ) .  We also have the option of double
height elements stored in only a single memory location. This is 
especially handy for a moving ball or puck in a game display as 
only a single calculation and storage is needed. 

The three-over-three 128 X 96 color format gives us about the 
same resolution. The video ( luminance ) bandwidth is now even 
lower since we only put down three dots or undots per microsecond. 
Only six bits per word are used for dots. The two remaining display 
memory bits are used for one-of-four color information. The re
duced rate is picked up by changing a width control on the TVT 
63/s. The entire chunk lights to one selected color, but the individual 
bits have the option of being lit or black. This nicely resolves the 
dilemma of the color ( chrominance )  bandwidth of a tv set being 
much lower than the video ( luminance ) bandwidth. This way, we 
get a sharp display with still a reasonable number of color changes 
per horizontal line. 
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� 
I l]SEC ,..........__ 

0400 0401 0402 
0420 0421 0422 

• • • 
64 CHUNKS • . • 
1128 DOTS! . . • 

. 
• . 

32 CHUNKS 
(128 DOTS! 

. 
• 
• 

Olllf 

Oll3F . . 
• . . • 

(A) "Four over four" 128 x 128 black and white. 

64 CHUNKS 
(128 DOTS! 

I µSEC 
,..--.., 

32 CHUNKS 
196 DOTSI 

2048 CHUNKS 
116,384 DOTS! 

TOTAL 

2048 CHUNKS 
112,228 DOTSI 

TOTAL 

(B) "Three over three" 1 28 x 96 color. Each chunk may be one of four colors. 

Fig. 2-15. Medium resolution graphics formats. 

128 x 128 Format The Scan program for either the 128 X 128 or 128 X 96 color format is shown in Fig. 2-16. Our magic numbers use a standard horizontal frequency and interlace, and are the same as we used in the utility 16 X 32 alphanumeric Scan of Fig. 2-10. In fact, if you want to, you can use a variation of double stuffing in which you put the graphics down on one field and the alphanumerics ( scores, annotation, time, etc . . . .  ) on a second field, simply by going to a custom module. on the TVT 63/s. Everything about the first blank line and interlace setup, along with the remaining blank Scans, remains as before. Our live Scans, of course, are substantially different. We call a pass that is putting down the upper chunk row of dots an "A" Scan, and the pass that is working on the lower chunk row of dots a "B" Scan. We set up a correct starting address. Then we do an A Scan. Then we change 
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to a B Scan. After a B Scan, we change to a new initial chunk 
address and on to the next A Scan, repeating the process. 

There is not quite enough time available between one B Scan 
and the next A Scan to do everything we would like to, so we use 
pipelining in which we borrow some of the extra time available 
in going from an A Scan to a B Scan to help out. When we go from 
A to B, we tell the TVT 6% and its graphics module "C" to switch 
to its B output side. We also make a test for the end of the display 
screen, getting this detail out of the critical B to A timing loop. 

We also calculate the next upper A address as pipelining to save 
us time. But we do not restore this calculation; we save it in the 
accumulator till the B Scan is done. It is there, ready and waiting, 
the instant the B to A Scan loop calculations need it. 

The same JSR instruction is used to do either an A or a B Scan. 
This saves us from having to compute. and store two separate sets 
of absolute addresses. The carry bit is used as a flag to tell us 
whether we are doing an A Scan or a B Scan. The carry is set during 
an A Scan and is cleared during a B Scan. 

The TVT 6% is hardware programmed by module "C" to alter
nately be able to pick up four bit A and B Scans. For 128 X 128 
black and white use, the width control is set to four dots per micro
second; for 128 X 96 color use, you set it to three dots per micro
second. The format of the data stored in the display memory is 
also changed to pick up the color information. 

Your Turn: 

Design a TVT 6 5/8 64 x 64 black ,and 
white and a 64 x 48 color Soan program 
using pages 02 and 03 of a KIM as a dis
p·lay memory. Change only the Scan pro
gram and make no adjustments to do this. 

256 x 256 Format 

The 256 x 256 high-resolution format of Fig. 2-17 puts down 
eight dots per microsecond, all in sequence on a single horizontal 
line. A total of 32 chunks are used per line, giving us 256 dots 
horizontally. A new set of chunks is needed for each line. 

1nis program needs an 8K memory located at 0400 through 05FF, 
with a continuous upstream tap. You can do this with a KIM-3 or 
another 8K memory. You can also easily rewrite the program to 
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use less memory, but ending with fewer lines. For instance, a 128 X 256 format can be done with 4K of memory. There is a sneaky and sticky detail involved in this 256 X 256 format. Your memory address space and decode space overlap. 
During the live portions of the Scan, you have to be able to call 
both the proper memory locations AND call for a live Scan. Fortunately, your 658-KDB instruction decoder is redundantly decoded during a high-resolution mode, with codes 1000, 1001, 1100 and 1101 all calling a live Scan. Note that code 1100 simultaneously calls memory page 4000 ( as far as the upstream tap) and that code 1101 simultaneously calls page 5000. If you move your memory or shorten it, be sure you are still able to call a live graphics Scan for all needed memory addresses. This overlap usually happens only when you have more than 4K of display memory in use. You will find the 256 x 256 Scan program in Fig. 2-18. Since this program is relatively short, we have thrown in an optional 

µ.P-6502 
System-KIM-1,2 

Start-JMP 17A1 
End-Interrupt 

Upper Address 178F 

Displayed-0400-0bFF 
Program Space-1780-17d2 

Lower Addreu 178E 

I * I * I * I * I p I V32 I Vl6 I VB I . I v4 j v2 j v1 I H16 I He I H4 I H2 j HI I: 

14 

'--v------" 
0-5,F -normal program (no tvt) 
6,7,A,b -blank Scan 
8,9 -A Scan (Upper chunk half) 
c,d -8 Scan (Lawer chunk half) 
E -V sync only 

r� ADC 69 I F  
STA 8d (BE) 

1 785 TXA BA 
1 786 ADC 69 40 

17dl
l

l788 STA 8d (BF) 
1 78b NOP EA 
1 78C NOP EA 

� 1 7� JSR 20 00 

1790 BCS bO EE* 
1792 CMP C9 cc 

17Al 

L
™ BCS b0 Ob* 

1796 ADC 69 co 

1 798 STA 8d (BF) 
179b TAX AA 
179C LDA Ad (8E) 
179F BCS bO EC* 

(17) 

(17) 

84 

(17} 

( 17) 

Program Length-83 words 
+ I word page zero (EC) 

Increment Lower Address 
Restore Lower Addreu, Save Carry 
Get Upper Word 
Add C; Reset to A; Clear Carry 

Store Upper Word 
Equalize 4 µ.s 

continued 
/// Graphics Scan / // / 

Set up B Scan if carry set 
Test for last live Scan 
Go to V sync if last Scan done 
Switch to B Scan 

Store Upper word 
Save Upper word 
Get Lower Ward 
Do lower or B Scan 

Fig. 2-16. A 128 >< 127 Interlaced graphics Scan program for 



START _____J._ 17A1 
1 7A3 
17A5 
1 7A7 

1 7A9 
1 7AC 
1 7AE 
1 7AF 

c· 
17b3 
17b5 
17b8 

17bb 
17bC 

17Cd - 17bd 
17bE 

1 7C0 
17C3 
1 7C5 
1 7C8 

17Cb 
1 7CC 

17db - 1 7Cd 
17CF 

1 7d0 
1788 - 17d1 

NOTES: 

LOA AS 
ADC 69 
ace 90 
LOX A2 

STA Bd 
LOY AO 
DEY 88 
BPL 1 0  

BCS b0 
LOX A2 
STA 8d 
JSR 20 

PHA 48 
PLA 68 
CLO dB 
LOA A9 

STA Bd 
LOA A9 
STA 8d 
JSR 20 

DEX CA 
CLC 1 8  
BNE d0 
NOP EA 

NOP EA 
BEQ F0 

(EC) Get interlace word I LCE 
7F Set carry if odd field finished 
05* Start even field if carry set 
B6 

(EC) E0 Even field V sync & replace ILCE 
04 Equalize 26 µ,s 

continued 
Fd* continued 

05* Jump If odd field 
87 load odd # VB Scans - 2  

(EC) EO Odd field V sync + Replace ILCE 
IC 60 1111 1st V Blanking Scan 1111 

Equalize 7 µ,s 
continued 

Equalize 2 µ,s 
00 Initialize lower address 

(BE) ( 17) continued 
C4 Initialize Upper address 

(BF) ( 17) continued 
00 60 I I I Remaining Blank Scans I I I I 

One less Scan 
Clear Carry I nitialize 

EE* Repeat Blank Scan 
Equalize 4 µ,s 

contin�ed 
b5* Start live graphics Scans 

TVT 6 518 must be connected and both the Scan PROM 658-KS64 and the Decode 
PROM 658-KDB must be in the circuit for the program to run. 

Both 17A7 and 1 7b5 require that page 00 be enabled when page CO is addressed. 
This is done automatically in the KIM-1 decode circuitry. 

Location OOEC on page zero is reserved as an infer/ace storage bit. 
Step 1 78d goes to where the upper address stored in 1 7BF and the lower address 

stored in 17BE tells it to. These values continuously change throughout the program. 
An upper or "A" graphics scan is done with the carry set during step 178d; a lower 

or "B" graphics scan is done with the carry cleared during 1 78d. 
Program Horizontal frequency is 1 5,873.015 kHz; vertical is 60.01 1 4  Hz. 88.5-second 

hum bar; 63 µ,s per line, 264.5 lines per field. 2 fields per frame; 529 lines total. 
TVT 6 518 width control must be set fo deliver 4 dots per microsecond for BIW use 

and 3 dots per microsecond for color use. Switches should be set to "32"; "off"; 
"slow"; "+". Use module "C." 
) Denotes an absolute location that is program location sensitive. 

* Denotes a relative branch that is program length sensitive. 

Continued on neat page. 

"four over four" black and while or "three over three" color TYT-6 5/8. 
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FLOW CHART 

(178d) 

17Al 

WAS B 

(1790) 
(17921 (1780 - 17871 

(1796 - 179Fl (1787 - 178Cl 

EVEN 

(17Al - 17A51 
EVEN FIELD 

117A7 - 17b01 
V S VNC + SETUP 

(17AC - l7bn 

117b8 - 17d2) 

NO YES 

(17dll 

Fig. 2-16 ConUnued. A 128 X 128 Interlaced graphics Scan program for 
"four over four" black and white or "three over three" color TVT-6 5/8. 

software-controlled vertical position. You might find this useful for centering if you chose a shorter version ( fewer lines; less memory ) of this high-resolution display. It also has some animation possibilities. The time to compute a new row address after a live Scan is once again critical. This time, there is no place to pipeline anything from. But, we can get out of this bind by noting that we never have to change the upper address by more than one count at a time. 
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EIGHT D IS PLAY DOTS � 
PER CHUNK 2000 

2010 

• 
• 
• 

3FEO 
3fFO 

lµSEC -------
2001 
2011 . 
• 
• 

3FE1 
3fFl 

• 
• 
• 

32 CHUNKS 
(256 DOTS) 

201F 
203f . 
• 
• 

Fig. 2-17. High-resolution 256 x 256 graphics format 

8192 CHUNKS 
(65.536 DOTS) 

This is unlike all the earlier Scan programs where we used the upper 
address also to pick a row of dots or do an A/B chunk select for us. 
We can now leave the upper address where it is normally stashed 
in the JSR instruction and use the powerful INC ( increment mem
ory) command. This lets us keep the lower memory address in the 
accumulator for immediate use, restoring it immediately before each 
live Scan. • 

After each live Scan, we increment the lower address. If no 
carry is produced, we go on to another live Scan, wheel spinning 
enough to make up the needed time. If a carry is produced, we test 
for end of screen, then increment the upper address in place, and 
go on to another live Scan. 

Your Turn: 

* Show how this program can be used as 
a 64 x 256 display using RAM starting 
at 0400. Demonstrate the use of soft
ware position and animation. * Design a 256 x 256 graphics Scan that 
uses double stuffing to put down half 
the dots on one field and half on the 
second. This wiH maximize the avai l
able blank Scan time which, in turn, can 
be used to improve tr,ansparency and 
increase throughput. 
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But, how on earth can we tell the end of the screen if we cannot test the upper address? A different approach is clearly needed. Before we get into the live Scans, but after the blank Scans are finished, we load the X register with a number equal to one eighth of the desired number of live Scans. Every eight live Scans, a carry is produced to signal a change of upper address, since there are eight 32-chunk lines per 256 word page. We decrement X every eight live Scans, and when X goes negative, we have reached the end of the live Scan. Our software-position control throws in some extra blank Scans after the live ones and before the vertical-sync pulse. For vertical 
µP-6502 
System---:KIM-1,3 

Start-JMP 1 7A7 Displayed-4000-5FFF 
Program Space-1780-1 7dA End-Interrupt 

(This bit used redundantly) 
pper Address 1 78A Lower Address 1789 

86 

0-5,F -normal program (no tvt) 
6,7,AJ, -blank Scan 
8,9,Cd -active Scan 
E -V Sync only 

r- 1 780 PHA 48 

I 1 781 PLA 68 .... 
I 

1 782 ICC ,0 
1783 SEC 38 

r 

1785 STA 8d 
1 788 JSR 20 
1 78b ADC 69 
178d BCC 90 

I 1 78F DEX CA 

;�:� ��� :� 
1 795 BNE d0 

1797 LOX A2 
17A5 - 1799 PHA 48 

1 79A PLA 68 
1 79b BCS b0 

1 79d JSR 20 
1 7A0 DEX CA 

17A7 - 1 7Al BEQ F0 
1 7A3 NOP EA 

00 

(89) 
00 
l f  
F l *  

05* 
(BA) 
EE* 

01 

00 

00 

04* 

( 17) 
20 

(17) 

Program Length-90 words 
+ 1 word page zero (EC) 

Equalize 7 µs 
continued 

Equalize 3 µs 
Set Corry 

Store Lower word 
I I I I I Graphics live Scan I I I I 
Increment Lower Address to next line 
Does upper address need incremented? 

Yes, but decrement line counter first 
Go to blank Seo ns if end of screen 
Increment upper word 
Repeat graphics liveScon 

Load presync blank Scans 
Equalize 1 0  

continued 
continued 

60 I I I Presync blank Scans I I I I 
One less presync Scan 
Presync Scans done? 
Equalize 4 µs 

Fig. 2-18. A 256 x 256 Interlaced graphics 



1799 --......_ 1 7A4 
17AJ � l 7A5 
START --+- 1 7A7 

1 7A9 

[ "" 1 7Ad 
1 7Af 
17b2 

[ 17b4 
17b5 

17bE - 1 7b7 
1 7b9 

17bb 
17b7 -- 17bE 

17C1 
1 7C2 

- 1 7C3 
1 7C4 
17C6 
17C9 

1 7Cb 
17CE 
1 7d1  
1 7d2 

'- 17d3 
17cj5 
1 7d7 

1782 - 17dB 

NOTES: 

NOP EA 
BNE d0 
LOA AS 
ADC 69 

BCS bO 
LOX A2 
STA 8d 
LOY AO 

DEY 88 
BPL 1 0  
BCC 90 
LOX A2 

STA Bd 
JSR 20 
PHA 48 
PLA 68 

CLO dB 
LOA A9 
STA Bd 
LOA A9 

STA 8d 
JSR 20 
DEX CA 
SEC 38 

BPL 1 0  
LOX A2 
NOP EA 
BCS b0 

continued 
F2* Repeat presync blank Scan 

(EC) Get Interlace Word 
7F Set Carry if odd 'field finished 

05* Jump if even field 
05 Load Odd # VB Scans - 3 

(EC) (dO) Odd Field V Sync + restore ILCE 
04 Equalize 26 µs 

continued 
Fd* continued 
05* Jump if odd field 

06 Load Even # VB Scans -3 

(EC) d0 Even Field V Sync + ILCE Restore 
I A  60 //// First Scan after V Sync //// 

Equalize 7 µs 
continued 

Equalize 2 microseconds 
co Initialize Upper Address 

(BA) (17) continued 
00 Initialize Lower Address 

(89) (17) continued 
00 60 ///// Remaining Blank Scans //// 

One less Scan 
Initialize Carry 

EE* Do another blank Scan 
20 Load 1/Bth # of adive Scans 

Equalize 2 
AB* Start Adive Scans 

TVT 6 5/B must be connected and both the Scan PROM 658-KS64 and the Decode 
PROM 658-KDB must be in the circuit for the program to run. 

Both 17AF and 1 7bb require that page 00 be enabled when page d0 is addressed. 
This is done automatically in the KIM-1 decode circuitry. 

Location OOEC on page zero is reserved as on inter/ace storage bit. 
Step 1 788 goes to where the upper address stored in 178A and the lower address 

stored in 178E tells it to. These values continuously change throughout the program. 
The V Sync pulse con be delayed under software control by adding to 1 798 the some 

number of scan lines that is removed from 17bl and 17bA. 
TVT 6 5/8 width control m ust be set to deliver 8 dots per microsecond. Set switches to 

"32"; "off"; "fast"; "+." Use graphics module "8." 
Program horizontal frequency is 1 5,873.015  Hz; vertical 60.01 1 4  Hz. 88.5-second hum 

bar. 63 µs per line, 264.5 lines per field 2 fields per frame, 529 lines total. 
) denotes an absolute location that is program location sensitive. 

* denotes a relative branch that is program length sensitive. 

Conllnulld on nHI page. 

Scan program tor TYT 6 5/8, 
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FLOW,CHART 

OPTIONAL SOFTWARE 
POSIT ION CONTROL 

START 

(17A71 

(1760 - 1765) 

YES 

INCREMENT 
UPPER 

ADDRESS 

NO 

(1780-1788) 

(178b) 

(178d) 

(178F - 17901 

DO 
PRE-SYNC 

.._ ____ ___, (1792) 

BLANC SCANS (1797 - 17A5l 

EVEN 

EVEN F IELD 
V SYNC + SETUP 

NO 

ODD F I ELD 
V SYNC + SETUP 

(17C3 - 17d21 

(17d3) 

(1762 - 17bb) 

Fig. 2-18 Continued. A 256 >< 256 interlaced graphics Scan program for 
TVT 6  5/8. 



motion on shorter displays, you remove counts from the usual even 
( l 7bl) and odd ( l 7bA) blank Scan loadings and add these counts 
to the new presync blank Scan ( 1798) . Since l 7bl and l 7bA are 
used on alternate fields, and 1798 is used on all fields, you move 
the same number of lines per field. Thus, to move the screen up by 
four lines, remove four from both l 7bl and l 7bA, and add four 
to 1798. 

This software position control is also one key to a "gentle" or 
crawling Cursor scrolling on an alphanumeric display. How would 
you do this? 

CURSOR SOFTWARE 

Your Cursor softioare decides when and how characters are to be 
put on or taken off the screen. Cursor software also gives you the 
fancy editing motions needed to move around the screen without 
making changes, to erase portions of the screen, to scroll up, and 
so on. Cursor software is often a different program than your Scan 
Program. The Scan Program causes characters already stored in 
memory to appear on the screen; the Cursor software puts the 
characters into memory as needed. 

Our cheap video displays give us access to a very powerful 
software-controlled Cursor system. This lets us get anything onto 
or off of the display memory at any time for any reason at zero 
hardware cost and extreme flexibility. This is far more powerful 
and more versatile than traditional terminals with fixed-hardware 
Cursors, particularly when you want to get one or two values back 
off the screen or display a real time clock. 

Since your display memory is in every way ordinary compared to 
any other RAM in your computer, any old software you want can 
work as a Cursor. You can even build a cursor with Extended BASIC 
or some other higher-level language if you have the Peek and Poke 
ability to change machine locations. 

Cursor Guidelines 
Since your Cursor is ordinary software, there are various ways to 

do the job. Anything that works can be used. Your obvious goals 
should be to get by with a reasonably short program and to limit 
the total time needed for any action to times that are short enough 
that we do not get into transparency problems. 

Here are some hints and guidelines that will help you simplify 
your Cursor designs: 

1. Always test for a valid Cursor location. 
If the memory locations that hold your "next character" loca-
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tion ever get c,ff the display memory pages, you are in deep 
trouble. Your next character entry will plow up some other pro
gram rather than get entered. Always test for a valid location 
first. If you are in the display memory space, go ahead with 
your entry. If you are out of range, home the Cursor immedi
ately! 

2. Erase, change, then replace the Cursor. 
The lower seven bits of a display memory word are usually 
used to store an ASCII character. The eighth most-significant 
bit is used as a Cursor. If this most-significant bit is a one, 
the Cursor is optionally displayed. If it is a zero, it is not. 
Rather than try to figure out what happens to your Cursor 
for each and every possible screen motion, always erase the 
old Cursor first. Then make any changes you want. Then find 
out where the new Cursor belongs. Finally, restore the Cursor 
at the new location. 

3. Use Subroutines. 
If several Cursor motions need the same operation, combine 
these in subroutine code. Three useful subroutines are Enter 
Character and Increment; Enter Spaces; and Home Cursor. Enter Character and Increment is obviously used to enter 
characters and move on to the next location. It is also used 
to enter spaces during a screen erase, scrolling, or an erase 
to end of paragraph. By jumping into the middle of this sub
routine, you can increment only. This is useful during Cursor 
right commands and carriage return. A carriage return can be 
done by moving to the extreme right-hand character of the 
old line and then incrementing one to get to the start of the 
next line. Enter Spaces is useful for clearing, erasing to end of line, 
erasing to end of screen, and to erase the bottom line after 
scrolling. It may be used to call a nested Enter and Increment 
subroutine. Home Cursor is used by itself to move the Cursor to the upper 
left. It is also used at the start and finish of an Erase Screen 
command. You also need it if you are in a wraparound mode 
when the screen overflows, and it is used to get an out-of
range Cursor back onto the screen. 
One time you do NOT want to use a subroutine is if time gets 
out of hand for long, repetitive programs. A transparent scrol
ling Cursor is one design where nested subroutines should be 
avoided. 



4. Use memory remapping from scrolling. 
A scrolling display moves up one from the bottom each time a 
bottom line is completed. In cheap video systems, you can do 
a powerful scrolling by reading a memory location and then 
storing it on the next line up, repeating the process for the 
entire screen. 

Fig. 2-19 shows a simplified flowchart for a typical Cursor. We can 
enter our Scan program by way of an interrupt, any time a key is 
pressed. We then test for a valid Cursor location. If we are some
where legal on the screen, we erase the old Cursor. We then decode 
the keypressed entry. If it is a character, we go ahead and enter 
it. If it is a machine command, we decode this command to see if 
it applies to us. We then carry out any valid command. Typical 
machine commands include Clear ( CAN) , Carriage Return ( CR) , 
Backspace ( BS), and so on. 

After the character is entered or removed or after your machine 
instruction is carried out, we find the new Cursor location and write 
the Cursor back into it. You then return from the interrupt and 
resume scanning. 

We also have the option of including the Cursor in the main Scan 
program. This eliminates any need for interruptions. If carefully 

IRQ 

RTI 

Fig. 2-19. Slmpllfled flowchart of a typlcal Curaor 
control program. 
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designed, this also gives you complete transparency. You can also 
do things like scan a keyboard at the same time and eliminate the 
need for a hardware encoder. We call this an Integrated Scan pro
gram. Integrated programs often take more code, are harder to write, 
and harder to change. But they are probably what you will eventu
ally want to get. 

For now, we will stick with the interrupt-driven Cursor. You can 
pick up the fancier versions once you have your basics up and 
properly working. Details on this will appear in the last chapter. 

A Full-Performance Scrolling Cursor 
Fig. 2-20 gives a 6502 coded program for a full-performance 

scrolling Cursor. It is useful for 16 X 32, 16 X 64, and 32 X 64 alpha
numeric display formats. It gives you a choice of scrolling or wrap
around Cursor by changing a single software word. You can similarly 
protect or not protect the screen as well as display or not display 
your Cursor. 

As Fig. 2-20 shows, you enter your ASCII character on the paral
lel A inputs on your KIM. An interrupt driven from the keypressed 
output causes character entry or Cursor motions. This IRQ signal 
should be a negative-going pulse that lasts 10 J.LS. The Cursor pro
gram is located on KIM page 01 below the stack. 

In operation, any key pressed causes an interrupt which stops 
the scanning and jumps us to location 0100. The Cursor is tested to 
make sure it is on a legal display memory page location, and then 
the old Cursor is erased. Refer to the flowchart in Fig. 2-20 for 
actual locations of all these operations. If the Cursor location is 
legal, a new character is picked up from the A parallel interface. 
If it is a character, it is directly entered. If it is a control command, 
it is decoded. If it is a valid command, that command is acted on. 
If not, the command gets entered as a screen character. 

After the command or character is completed, the Cursor is re
stored to its new locations and the interrupt is halted with a RTI 
command that jumps us back to the main Scan program. 
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Here is how the individual commands work: 

* Enter a Character-Character is stored in a memory location 
using Cursor values in OOEd ( low) and OOEE ( high) . Cursor 
values are then incremented, starting with the lower page 
( always) and the upper page ( if needed) . On screen over
flow, program jumps to a home Cursor command for wrap
around, or to a scrolling sequence. 

* Home Cursor-Subroutine is used to load upper and lower page 
values in locations OOEd and OOEE. 

* Clear Screen-Cursor is sent home with subroutine. An ASCII 



space ( 20) is loaded in the accumulator and stored sequen
tially in all locations using the enter spaces subroutine which 
calls a nested enter and increment subroutine. Entry continues 
till screen is filled. Cursor is then sent home to complete clear
ing. 

* Carriage Return-Cursor location is moved to extreme right of 
old line, using ORA IF for a 32-character line and ORA 3F 
for a 64-character line. Cursor location is then incremented by 
jumping into middle of enter-and-increment subroutine. This 
moves you to the start of the next line. If the Cursor overflows 
display memory, program jumps to scrolling or wraparound as 
selected. 

* Cursor Up-One line of characters is subtracted from old Cur
sor location. If the Cursor location goes off the screen by under
flowing, the Cursor is sent home with a subroutine. 

* Cursor Doum-One line of characters is added to the old Cursor 
location. If the Cursor location goes off the screen by overflow
ing, the program jumps to a selected wraparound or scroll 
sequence. 

* Cursor Right-Increment portion of enter and increment sub
routine is used. If Cursor overflows display memory, wrap
around or scrolling sequence is picked up. 

* Cursor Left-Cursor is decremented. If page underflows, upper 
Cursor page is decremented. If screen underflows, Cursor is 
sent home with subroutine. 

* Erase to End of Screen-Present Cursor location is saved on 
stack. Screen is erased from present location to end. Present 
Cursor location is retrieved from stack and reused. 

* Wraparound-If wraparound is selected, any overflow of mem
ory homes Cursor. 

* Scrolling-A page overflow that results from a character entry 
or a Cursor motion activates the scrolling sequence. Scrolling 
is NOT permitted on clear screen or erase to end of screen to 
prevent a permanent loop. When scrolling is called for and 
allowed, an indirect address is used to get a character and 
move it up one line, storing the character 32 or 64 slots earlier in 
memory. When scrolling is complete, the old top line is gone, 
and everything else has moved up one line. The bottom and 
next to bottom lines are identical. The bottom line is next 
erased by doing an Erase to End of Screen, starting with the 
first character on the bottom line. The Cursor is then returned 
to the first character on the bottom line. 
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µ,P-6502 Start-lRQ Program Space-01 00-0ldf 
System-KIM-1,2 End-RTI + Twa words page O (EO,EE) 

Input to parallel Word A I O I A7 I A6 I AS 1. A4 I A3 I A21 Al I 
L...J

IRQ 

� 

10 µ,s 
Clear-CAN ( 1 8) Cursor Right-HT (09) I-KP 
Carriage Return-CR (Od) Cursor Home-SCH (01 )  
Cursar Up-VT (Ob) Erase To EOP-ETX (03) 
Cursor Down-LF (OA) Enter-All characters and all 
Cursor left-BS (08) unused CTRL commands 

Enter via 
IRQ 

L..- 0100 PHA 48 Save A 
0101 LDY AO 00 Reset Y Index 
0103 LDA A5 (EE) Get Cursor and Test for Range 
0105 CMP C9 04 Is cursor below maximum? 

0143 - 0107 BCS bO 3A* No, Home Cursar 
01 09 CMP C9 02 Is cursor above minimum? 

0143 - 010b BCC 90 36* No, Home Cursor 
010d LDA bl (Ed) Get old cursed character 

OlOF AND 29 7F Erase Old Cursor 
01 1 1  STA 91 (Ed) Replace character without Cursar 
01 1 3  LOA Ad 00 1 7  Get new character from A parallel Input 
01 16  CMP C9 20 Is it a character to be entered? 

013A- 01 1 8  BCS bO 20* Yet, go and enter character 
01 1A CMP C9 1 8  Clear Screen? 

OISE - 01 1C BEQ FO 40* Yes, Go clear screen 
Ol l E  CMP C9 0d Return Carriage? 

01s2 - 0120 BEQ FO 30* Yes, go return carriage 
0122 CMP C9 Ob Move Cursor Up? 

0194 - 0124 BEQ FO 6E* Yes, Move Cursar up 
0126 CMP C9 OA Move Cursor Down? 

0166 - 0128 BEQ FO 3C* Yes, move Cursor down 
012A CMP C9 09 Move Cursor right? 

01se - 012c BEQ FO 2A* Yes, Move Cursor Right 
012E CMP C9 08 Move Cursor left? 

01A7 - 0130 BEQ FO 75* Yes, move Cursar to left 
0132 CMP C9 01 Home Cursor? 

0143 - 0134 BEQ FO Od* Yes, Home Cursor 
0136 CMP C9 03 Erase to End of Screen? 

Olbl - 0138 BEQ FO 77* Yes, Erase to End of Screen 
013A CLO dB Assure binary arithmetic mode 
013b JSR 20 (d3) (01 )  /// Enter Character via Subroutine /// 

0146 - 013E BNE dO 06* Did Screen overflow? 

Fig. 2-20. Full-performance scrolling Cursor for TVT 6 5/8 KIM 
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0140 JMP 4C (75) (01 ) Select Scroll or Wraparound 
0143 JSR 20 (C2) (01) I I I I Home Cursor via Subroutine I I I 

013E - 0146 LDA bl (Ed) I I I I Restore Cursor I I I 
0148 ORA 09 80 Add Cursor to Cursed Character 

014A STA 91 (Ed) Restore Cursed Character 
014C DEX CA I mp rove transparency 
014d DEX CA continued 
014E NOP EA continued 

014F NOP EA continued 
0150 PLA 68 Restore Accumulator 

our - 01 s1  RTI 40 Return to Scan 
0152 LDA AS (Ed) I I I Carriage Return I I I (getCursor) 

0154 ORA 09 I F  Move Cursor to extreme right 
0156 STA 85 (Ed) Restore Cursor 
0158 JSR 20 (d5) (01)  I ncrement Cursor 

013E- 015b JMP 4C (3E) (01 ) Scroll or wraparound if needed; finish 

OISE JSR 20 (C2) (01 )  I I I I I CLEAR I I I I I (home Cursor) 
0161 JSR 20 (Cb) (01) Clear screen via subroutine 

0143 - 01 64 BEQ F0 dd* Finish; home Cursor 
0166 LDA AS (Ed) 1111 CURSOR DOWN Ill (getCursor) 

0 168 CLC 18  Clear Carry 
0169 ADC 69 20 MoveCursor down one line 
016b STA 85 (Ed) Restore Cursor 
016d BCC 90 03* Page overflow? 

016F JSR 20 (d9) (01 ) Yes, I ncrement next higher page 
013E - 0172 JMP 4C (3E) (01 ) Scroll or wraparound if needed; finish 

0175 JSR 20 (C2) (01) I I I I SCROLL UP / / / (home Cursor) 

["" 
LDY AO 20 Add offset to Y index 

017A LDA bl (Ed) Get offset indexed character 
017C LDY AO 00 Remove offset from index 
017E JSR 20 (d3) (01 )  Enter moved character and increment 
01 81  BNE d0 FS* Repeat? 

0183 CLC 1 8  Clear Carry 
0192 - 0184 LDA A9 03 Set A to Page of Last line 

0186 STA 85 (EE) Set Cursor to page of last line 
0188 LDA A9 E0 Load A to start of last line 

018A STA 85 (Ed) Set Cursor to start of last line 
0146 - 018C BCS b0 b8* Finish if carry set 

018E JSR 20 (Cb) (01 )  Clear Last line 
0191 SEC 38 Set carry 

COnllnued on nHI page. 

based 16 x 32, 16 x 64, and 32 x 64 alphanumeric displays. 
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0184 - 0192 BCS b0 F0* Restore Cursor to start of last line 
0194 LOA AS (Ed) I I I CURSOR UP I I I I (getCursor) 
0196 SEC 38 Set Carry 
0197 SBC E9 20 Move up one line 

0199 STA 85 (Ed) Restore Cursor 
0146 - 019b BCS bO A9* Underflow of page? 

019d DEC C6 (EE) Yes, Decrement Page 
019F LOA A9 01 Set A to page below home page 

OJAI CMP cs (EE) Did screen underflow? 
0146 -- 01A3 BNE dO Al * No, Finish 
0143 - 01A5 BEQ F0 9C* Yes, HomeCursor 

01A7 DEC C6 (Ed) I I I CURSOR LEFT I I I (decrementCursor) 

01A9 LOA A9 FF Set A to page underflow 
0IAb CMP cs (Ed) Test for page underflow 

019d - 0IAd BEQ F0 (EE) Change page if off page 
0146 - 0lAF BNE do 95* Finish if on page 

0lbl  LOA AS (EE) I I I ERASE EOS I I I (get Cursor) 
Olb3 PHA 48 Save Upper Cursor location on stack 
0lb4 LOA AS (Ed) Get lower Cursor location 
0lb6 PHA 48 Save lower Cursor location on stack 

01b7 JSR 20 (Cb) (01) Clear to end of screen 
0lbA PLA 68 Get lower Cursor location off stack 
Olbb STA 85 (Ed) Restore lower Cursor 
0lbd PLA 68 Get upper Cursor location off stack 

0lbE STA 85 (EE) Restore Upper Cursor 
0146- OIC0 BNE d0 84* Finish 

0 1 C2 LOA A9 00 SUBROUTINE-HOME CURSOR ****** 
0 I C4 STA 85 (Ed) Set lower Cursor to home value 

0 I C6 LOA A9 02 load A with home page value 
0 I C8 STA 85 (EE) Set upper Cursor to home page 
0lCA RTS 60 Return to main Cursor program 

[ 
0 I Cb LOA A9 20 SUBROUTINE-ENTER SPACES ******* 

01Cd JSR 20 (d3) (01) Enter space vie, character entry sub 
0ld0 BNE d0 F9* Repeat if not to end of screen 
01d2 RTS 60 Return to main Cursor program 
0ld3 STA 91  (Ed) SUBROUTINE-ENTER AND INCREMENT 

01d5 INC E6 (Ed) lncrem·ent Cursor 
0ldF - 01d7 BNE d0 06* Overflow of page? 

01d9 INC E6 (EE) Yes, I ncrement Cursor page 
0ldb LOA A9 04 load A with page above display 

Fig. 2-20 Continued. Full-performance scrolling Cursor for TVT 6 5/8 KIM 
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0ldd CMP CS (EE) Test for Overflow 
0ld 7 -- 0ldF RTS 60 Return to main Cursor program 

NOTES: 
For auto-scrolling, use 0141 75. For wraparound use 0141  43. To protect page, load 

00F3 04. To enable entry, use OOF3 00. To display Cursor, load 0149 80. For no 
display use 0149 00. 

/RQ vector m ust be stored in 17FE 00 and 1 7FF 0 I .  
Cursor address is stored o t  00Ed /ow and 00EE high. 

Total available stock length is 32 words. Approximately 16 ore used by operating 
system, Cursor, and Scan program. Stock must be initialized to 01 FF as is done in 
KIM operating system. For 30 more stock locations, relocate subroutines starting at 
01C2 elsewhere. For total stock availability, relocate entire program elsewhere. 

• Denotes a relative branch that is program length sensitive. 
( ) Denotes on absolute add ress that is program location sensitive. 
To match this program to your Scan p rogram, cha.nge the following slots: 

1 6  X 32 16 X 32 1 6  X 64 32 X 64 
Location Function 0200-03FF 0400-05FF 0400-07FF 0400-0bFF 

0106 Cursor max + I 04 06 08 oc 
010A Cursor minimum 02 04 04 04 
0155 CR line length I F  l F  3 F  3 F  
016A LF line length 20 20 40 40 

0 1 79 Scroll Offset 20 20 40 40 
0185 Scroll lost page 03 OS 07 0A 
0 1 89 Scroll lost line E0 E0 co co 
0 1 98 VT line length 20 20 40 40 

0l A0 Underflow page 01 03 03 03 
01C7 Home page 02 04 04 04 
0ldC Overflow page 04 06 08 oc 

ConUnued on n81f.l page. 

based 16  x 32, 16  x 64, and 32 x 64 alphanumeric displays. 
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START 

iiil! FlOW CHART - 16 X 32 SCR0l1ING CURSOR 1D1001 

(D105 • D1D61 

(D111' • D1131 

(01161 

(OllAI HOME CURSOR CLIAR SCREEN 

1015£1 

!OllEI RETURN 
CARRIAGE 

10152 • 015bl 

(01221 CURSOR 
UP 

101261 CURSOR 
DOWN 

(0166 - 01721 

!012AI INCREMENT 
CURSOR 

(0158 • 015bl 

(012EI DECREMENT 
CURSOR 

ID1A7 · OlA<I 
NO 

"A" 118 1 1  "D'' 
"C" "E" 

Fig. 2-20 ConUnued. Full-performance acrolllng Cul'IOr for TVT 8 5/1 KIM 
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"A" 

(01321 

NO 

ENTER 
(013bl CHARACTER 

(01361 

C014AI 

AND INCREMENT 

LOAD NEW 
CURSOR 

(01.51 RTI 

END 

YES 

FLOW CHART - 16 , 32 SCROLLING CURSOR- CONT. 

SCROLL ERASE 
UP LAS T L  I NE 

(1075 - 01811 (0183 - DJ8CI 

SAVE CLEAR TO END RESTORE 
CURSOR OF SCREEN CURSOR 

COlbl - Olb61 (01671 C016A - OICDI 

(AUTO SCROLL! 

SCROLL ! 0141 - "47"1 

HOME 
CURSOR 

WRAPAROUND !0141 - "75"1 

based 16 x 32, 16 X 64, and 32 X 64 alphanumerlc dlsplaJs. 

"8" "C" "D'"'E" 

t t 
I I 
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µP-6502 Start-lRQ Program space-01 00-0136 
System-KIM-1,2 End-RTI + Three words page O (Eb, Ed, EE) 

Input to parallel Word A I O I A7 I A6 I A.5 1  A4 I A3 I A2 I Al I LJ IRQ 

1st KP 
Enter 
via 

IRQ 
L....-- 0100 PHA 

· 01 01 LOA 
0104 CMP 
0106 BCC 

0108 ADC 
010A ASL 
010b ASL 
0lOC ASL 

010d ASL 
0l0E STA 
01 10 LOA 

Out to 01 1 2  STA 
await 
2nd KP

l._.. 
01 15 PLA 
0116  RTI 

1
0 1 1 7  PHA 
01 1 8  LOA 

2nd KP 
Enter 01 1 b  CMP 
via 

[ 
0 1 1 d  ace 

IRQ 01 l f  ADC 
0121  AND 

0123 CLC 
01 24 ADC 
0126 LOY 
0128 STA 

012A I NC 
012C BNE 
012E INC 
0130 LOA 

o· 32 STA 
0135 PLA 

Out 0136 RTI 
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PA7 PAO -I 
�O :;ec 

48 Save Accumulator 
AD (00) (17) Get charader from A parallel Interface 
C9 40 Is it a numeral or a letter? 
90 02* Skip if a number 

69 08 Change letter to equivalent binary #. 
0A Shift left four spaces to position 
0A continued 
0A continued 

0A continued 
85 (Eb) Store shifted hex temporarily 
A9 17  Change iici vedor for second KP  
8d (FE) (17) store IRQ vedor 

68 Restore Accumulator 
40 Return to Scan; await second KP 
48 Save Accumulator 
Ad (00) (tn Get 2nd character from A parallel Int. 

C9 40 Is it a numeral or a letter? 
90 02• Skip if a number 
69 08 Change letter to equivalent binary # 
29 OF Mask to make room for upper hex 

1 8  Clear Carry 
65 (Eb) Add lower hex to upper hex 
AO 00 Reset Y ind ex 
91 (Ed) Store charader as display chunk 

E6 (Ed) Increment display location 
d0 02• Did display location page overflow? 
E6 (EE) Yes, incr�nt upper address 
A9 00 Change IRQ vedor for fint KP 

8d (FE) (17) store I RQ vector 
68 Restore Accumulator 
40 Return to Scan; entry complete 

Fig. 2-21. Simple graphics 



Several program words have to be changed to customize your 
Cursor for the location and the size of the display memory as shown. 
Other words are changed to select scrolling or wraparound; visible 
or invisible Cursor; and protected or usable screen. 

Your Turn: 

Show the modifications needed to let this 
Cursor program run with a 40- and BO-char
acter repacked memory Scan. 

Our particular cursor example is a medium complexity one taking 
200 odd words of code. To do all this with hardware would be a 
real mess, not to say anything about flexibility. You can greatly 
simplify this Cursor for simple character entry, or you can go the 
other way and add lots of extra functions for super fancy editing. 
Typical things you might like to add include erase to end of line, 
insert and delete words, lines, or characters, ring bells near line end, 
interchange lines, and so on. 

A GRAPHICS LOADER 

A graphics loader is the equivalent of an alphanumeric Cursor 
program. It lets you build up and modify a graphics display a 
chunk at a time, actually viewing the final result as chunks are 
put down. A rather primitive graphics loader is shown in Fig. 2-21. 

To operate the loader, you put the starting address of what you 
want to modify on your display in OOEd and OOEE. Every time you 

Starting display location is placed in OOEd (law) and 0OEE (high). Typing a pair of 
hex charocten enten the charaders as a graphics chunk, then goes on to the next 
chunk location. 

NOTES: 
IRQ vedor must be Initialized as 1 7FE 00 and 1 7FF 0 1 .  
Starting display address must be set a s  OOEd (low) and 00EE (high). 
Loader must be stopped before leaving display memory space. 

Charaden must be entered as pairs. Characters other than 0-9 and A through F will 
be erroneously entered. 

• Denotes a relative branch that is program length sensitive. 
( ) Denotes on absolute address that is program location sensitive. 

loader for 1VT 6 5/8. 
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type a pair of hex characters, that chunk gets entered and the dis
play changes as needed. 

The program works by getting a character, converting it to hexa
decimal, and shifting it left four spaces. This character is temporarily 
saved. A new character is gotten and hex converted. It is then 
masked to make room for the old shifted character. The old and 
the new character are added together into a composite 8-bit data 
chunk. The chunk is then entered in the desired location and the 
starting address is incremented one location. 

The IRQ entry location is changed every time, so that the first 
KP gives us the rightmost hex character and the second the leftmost 
one and the actual screen update. Since this is a very · simple pro
gram, you always have to load your starting address before you 
start, and always have to stop before you run out of display-memory 
space. 

Your Turn: 

Add the fol lowing bells and whistles to 
your graphics loader: Off display protec
tion; home to starting ·address; four way 
Cursor motion; a visible Cursor; abi l ity to 
complement cursed code; and a bell to 
indicate two-character chunk completion. 

One thing you might like to look into is storing your graphics 
symbols as a subroutine file of subelements. In other words, you 
stash a basic set of symbols somewhere and then call them from 
your "library" as needed for display. This gives you tremendous 
software simplification since you can now call an entire symbol, 
such as a chess piece, and load it into the display memory with a 
single software word. Loading the screen and display design be
comes much less of a hassle. Now, instead of having to individually 
load as many as 64,000 bits of screen information, you simply call 
larger blocks of ready-to-go elements as needed and let the computer 
do the work. 

TRANSPARENCY 

The Scan programs we have looked at so far make continuous 
100% use of the microcomputer during a display. The Cursor-control 
software interrupts the Scan anytime a change is needed. The 
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amount of interruption varies, so this results in a brief to long dropout of the Scan operation. You will see this on a screen as a flash, a blank, or tearing of the display. Usually you will alternate your compute and display modes. For many simple uses, this brief tearing or dropout is acceptable. For others it is not. There are several ways to make our display totally transparent, so that time is left to do things like simultaneously run a BASIC program or complicated game calculations. One obvious but complicated way to make a Cursor program transparent is to integrate it into the Scan program so that Cursor motions are carried out during the vertical blanking time without interruption of the Scan timing. We will be looking at alternate ways of picking up partial to full transparency in Chapter 5. 
VOLATILITY-RAM versus ROM Almost all the programs shown to you in this chapter use RAM memory. The nice thing about RAM is that it is uncommitted and undedicated. This makes things flexible and easy to change. The bad thing about RAM is that we have to reload all the programs every time the power goes off. Programs stored in RAM can also be wiped out if they or another program goes berserk and decides to plow up memory locations. There is no problem in putting the Cursor software into ROM or PROM once you have decided exactly what you want your cursor to do and have in fact debugged it. This will restrict you to fixed formats of operation, but often this is exactly what you want for final use applications. Note that even with a ROM cursor, a few RAM locations will be needed in the stack and for the cursor location. Putting your Scan programs in ROM or PROM is a bit stickier. Some PROMs slow down the microprocessor cycle time and could introduce timing and magic number problems. But the crucial hangup is that all our Scan programs rely on a jump to subroutine at a 16-bit-wide absolute calculated address. At least for the 6502, the two slots following the JSR command MUST be RAM. There usually is not time enough to jump down to page zero or some similar stunt each time we want a new Scan. Our back is usually to the wall with Scan loop timing, as you should be aware by now. How do we get out of this bind? Is there any way to put our Scan programs permanently in ROM or PROM? The simplest way is to notice that the Scan programs are usually only a hundred words or less long. So, you simply move the whole program from ROM to RAM anytime you need it. A simple "move 
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the next hundred words to 1780" loader that goes before the actual 
Scan program in ROM or PROM does the job for us. 

How often you reload the RAM depends on your system. This 
can be done once on system reset. Just have the NMI vector go to 
the Scan PROM first, and then to the usual operating system reset. 
Or, you can do a load by calling a starting address any time you 
need one. You could even automatically reload every vertical blank
ing time, but this probably is too much. Another obvious possibility 
is to store your Scan program on a floppy disc or other file and 
transfer it to RAM as you need and use it. 

Yet another route is to use brute force coding that calls, rather 
than calculates, JSR addresses. This will take many more words of 
coding but it can still fit in a reasonably priced PROM. 
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CHAPTER 3 

Hardware Design 

Our most obvious cheap video hardware concern is the interface 
card that goes between the microcomputer and the tv set. Important 
parts of a typical interface card include the instruction decoder; the 
Scan microprogram PROM; a character generator ( for alphanumer
ics) or a data formatter ( for graphics) ; high-frequency timing; out
put circuitry; and sync positioning circuits. 

Two other important hardware problem areas are the interface 
to the television set itself, and the modification and interconnections 
you need between the microcomputer and the interface card. In 
this chapter, we will look at these hardware concepts in more detail. 
Once we have this background, we can go on to the complete system 
construction details of the TVT 6% in Chapter 4. 

INTERFACE CARD HARDWARE DESIGN 

Our interface card has to hold most of the dedicated circuitry 
needed between a microprocessor and a tv set. You will find a block 
diagram of a typical card shown in Fig. 3-1. Depending on its de
sign details and plug-in modules, you can use this type of card with 
graphics, alphanumerics, or a combination of the two. 

The instruction decoder is the central controller of a cheap video 
display. It is usually a small bipolar PROM. When activated by the 
Scan program, the instruction decoder decides when a Scan of video 
is needed and what video is going to be produced. Control signals 
are delivered to the rest of the interface circuitry by the instruction 
decoder. These signals include sync pulses and disabling signals that 
go back to make certain nothing else tries to use the microcomputer 
at the same instant the tvt needs it . 
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The Scan microprogram generator is a second PROM that out
puts a Scan microinstruction to the microprocessor. This PROM 
is activated by the instruction decoder every time a Scan of video 
is wanted. 

The data-to-video converter is usually a dot-matrix character 
generator integrated circuit for alphanumeric use and is usually a 
shift register or a shift register and data selector combination for 
graphics use. This converter block converts code stored in the 
display memory of the computer and received by way of the new 
upstream tap into serial video that you can display. The instruction 
decoder controls the data-to-video converter by telling it which 
row of dots to output on a character or which part of a word to 
output for a graphics format. By making this circuit on a plug�in 
module, the same interface card may be used for alphanumerics or 
graphics. High-frequency timing controls when the serial video dots are 
to be output and at what rate. This block can be a hex inverter gated 
oscillator driven from the main clock in the microcomputer. A Cursor 
circuit is often used in alphanumeric tvt's. The Cursor introduces the 
"winking" underline or box that shows us the next character loca
tion. The Cursor circuit usually is made up of a low-frequency oscil-
lator and some gating. 

The sync and position block takes horizontal- and vertical-timing 
signals from the instruction decoder. It then delays these timing 
signals as needed.Jor positioning. After this, it goes on to shape these 
sync commands into the proper time widths for tv use. 

CLOCK 

UPSTREAM 
TAP 

HIGH 
ADDREss ---

ENABLE 

H IGH 
FREQUENCY 

TIMING 

INSTRUCTION 
DECODER 

SCAN 
LOW 
ADDRESS ---� ICROINSTRUCTION 

GENERATOR 

DATA 

V IDEO 
OUTPUT 

C IRCUITRY 

SYNC 
& POS ITION 

V I DEO OUTPUT 

� 
TO MONITOR, 
TV, OR RF 
MODULATOR 

.,,, 

Fig. 3-1. Block diagram of a typical Interface card. 
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Our video-output circuitry combines video and sync and then 
provides a composite output suitable for monitor, rf modulator, or 
direct video interface. One important part of the output circuitry 
is the bandwidth enhancer. This simple compensation circuit is 
usually included to predistort the output video in anticipation of 
how the tv set will try to mess it up. The result is denser and sharper 
characters for a given tv bandwidth. 

Bandwidth enhancement is one of the keys to displaying long 
character lines on an ordinary tv set. 

Let's take a closer look at these interface hardware blocks and 
see just what is involved in their design and use. 

Instruction Decoder 
Our instruction decoder PROM is the control center for tvt use 

of a microprocessor. The important things the instruction decoder 
has to do are summarized in Fig. 3-2. The instruction decoder has 

The 

INSTRUCTION 

DECODER 

must: 
* ACTIVATE THE SCAN MICROPROGRAM WHEN A SCAN IS NEEDED. 

* DISABLE EVERYTHING ELSE TRYING TO USE THE COMPUTER CPU WHEN A SCAN 
IS NEEDED. 

* SELECT THE RIGHT GRAPHICS FORMAT OR ALPHANUMERIC DOT ROW. 

* OUTPUT SYNC PULSES AS NEEDED. 

* OTHERWISE NOT INTERFERE WITH NORMAL COMPUTER OPERATION. 

Fig. 3-2. Instruction Decoder PROM Is key controlling block of the 
Interface hardware. 

to tell the microprocessor when to generate a Scan of characters. 
It has to pick the right part of whatever it is you are going to display. 
And, it has to firmly take over command of the microcomputer when 
the tvt is in use. When not in use, the instruction decoder has to 
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make the interface hardware appear invisible to normal computer 
operation. 

A 256-bit bipolar PROM of 32 words of 8 bits each is a good 
choice as an instruction decoder. This is the smallest PROM you 
can buy, costing under two dollars. Important advantages of using 
a PROM for the instruction decoder are the flexibility of assigning 
what each address does, the ease of making changes, and the single 
IC simplicity of board layout. 

Fig. 3-3 shows us one good way to use a 32 x 8 PROM as an 
instruction decoder. We input high order address lines Al5, Al4, 
Al3, and Al2. 

There are eight output leads available. One of these is used for a 
decode enable that takes over command from the normal address 
decoding of the computer. On a KIM, this is line KO and is low for 
normal computer use and high for M use. A second output is a chip
select command which goes low when we want to activate the 
display memory as far as the upstream tap. A third output drives 
our Scan microprogram generator, going low to produce a Scan 
microinstruction. Two sync outputs are needed, one horizontal and 
one vertical. Often the decode enable output can double as a hori
zontal-sync output, saving us a pin. 

The remaining four output lines can be used to format the output 
data. In alphanumerics, these can be the three or four "what line is 
it?'' row commands that go to the character generator. For graphics, 
we can use the same pins as a blanking output and an upper/lower 
output. 

Our 32 X 8 PROM has a fifth input. We can pick just what we 
are going to do with it. In Fig. 3-3, an external AND gate was used 

AJ5 
Al4 
AJ3 
AJ2 

---FORMAT 

INSTRUCTION 
DECODER ---SYNC 

PROM SCAN 
ENABLE 

DECODE _______ _. 
ENABLE 

cs 1 ------1 

cso ---------' 
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Fig. 3-3. Instruction Decoder PROM 
using external gate for display mem

ory chip select 



to combine the normal computer chip select with the M chip select 
to provide a composite CSO that activates the display memory as 
needed. This external gate is physically an AND gate and is shown 
with its usual positive logic symbol but, in reality, it is used as an 
"either input low gives a low output," or as its DeMorgan equivalent 
negative logic OR gate. 

We can call our fifth PROM input a tvt enable, and activate this 
input from some external logic. This lets you use the higher order 
memory slots for other things besides tvt use ( see Fig. 2-2) . A low 
M enable lets the M work; when the enable is high, the tvt re
mains inactive and the computer is free to do whatever else it wants 
to do with its high address lines. For all-the-time M use, you can 
simply ground this input. 

Note that we have to keep our instruction decoder outputs active 
at all times to prevent messing up the decode-enable commands. 
This usually means that the usual enable input of the PROM must 
stay grounded at all times. Thus, we must switch our PROM outputs 
from an "active" to a "passive" state as far as M operation is con
cerned, but we must never actually float the tristate outputs. 

CS I  ----+-1 

Al5 ----+-1 
AM ----+-1 
AB ___ __, 
Al2 ----

ENABLE 

INSTRUCT ION 
DECODER 

PROM 

,__ _____ FORMAT 
,__ _____ SYNC 

l DEGLITCH ING 

,__ _____ SCAN ENABLE 

cso ----------' 
DECODE ENABLE __________ __, 

Fig. 3-4. Instruction Decoder PROM with internal gating for display memory 
chip select. 

We also have the option of using our fifth PROM address input 
as a chip-select input from the computer. This internalizes the AND 
gate used for the chip selects. A diagram of this is shown in Fig. 3-4. 
We did this in the older TVT-6L as part of the mania for doing an 
entire video display in only six integrated circuits. There are two 
penalties to pay when you use internal-display memory CS selection. 
One is that your outputs glitch, which means you have to filter the 
sync outputs crudely. The second is that you cannot use many of 
the higher address locations for anything except M use. The TVT 
6% offers a choice of external or internal CS gating. 

Fig. 3-5 shows the truth table for an instruction decoder having an 
internal-chip select. This is the PROM to be used on the TVT 6o/s. 
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INPUTS 

WHAT DOES 0 

TH IS WORD DO? y c.. 
0 

1:5 

NORMAL 40 
" 40 
" 40 
" 40 
" 40 
" 40 

BLANK SCAN 20 

LINE I SCAN 21 
" 2 " 22 
" 3 " 23 
" 4 " 24 

" 5 " 25 
" 6 " 26 
" 7 " 27 

VERT SYNC 50 

NORMAL 40 
" co 
" co 
" co 
" co 
" co 
" co 

BLANK SCAN 20 

L INE I SCAN 21 
" 2 " 22 

" 3 " 23 
" 4 " 24 
" 5 " 25 
" 6 " 26 
" 7 " 27 

VERT SYNC dO 

NORMAL co 

OUTPUTS 

08 Q7 Q6 05 Q4 03 02 QI ... 
� � "" .. <( V, � f' <( 15 ;;;! 

s 15 ... !,! iii ... ... 
:z C :;!,. :z 

0 I- <( -' :::; -' <( � � c.. V, u "' C> u V, C > !C u u u 

0 • 0 0 0 0 0 0  
o •o o  D O D D  

0 • 0 0 0 0 0 0  
0 • 0 0 0 0 0 0  
0 • 0 0 0 0 0 0 
0 • 0 0 0 0 0 0 
0 0 • 0 0 0 0 0  
o o • o o o o •  

o o • o o o • o  

o o • o o o • •  
o o • o o • o o  

o o • o o • o •  

o o • o o • • o  

o o • o o • • •  
o • o • o o o o  

0 • 0 0 0 0 0 0  
• • 0 0 0 0 0 0  
• • 0 0 0 0 0 0  
• • 0 0 0 0 0 0  
• • 0 0 0 0 0 0  
• • 0 0 0 0 0 0  
• • 0 0 0 0 0 0  
0 0 • 0 0 0 0 0  
o o • o o o o •  

o o • o o o • o  

o o • o o o • •  
o o • o o • o o  

o o • o o • o •  

o o • o o • • o  

o o • o o • • •  

• • o • o o o o  

• • 0 0 0 0 0 0  

PROM NUMBER 

D · ''O" 

• · "l" 

lPOS ITIVE LOG I CJ 
USE FOR TVT 6-5/8 ON A 
6502 SYSTEM 
CG LINE 2 IS ALSO USED AS 
A GRAPHICS "BLANKING" 
OUTPUT. 
CG L INE 4 IS ALSO USED AS 
A GRAPH ICS "A/B SELECT" 
OUTPUT. 

Fig. 3-5. Truth table for 6502 decode PROM (used on KIM 1,2). 



EN 
QI AO 

Al Q2 

A2 Q3 

A3 Q4 

A4 Q5 

"2" 0UTPUT IS ALSO GRAPHICS 
"BLANK ING" COMMAND 

"4" OUTPUT IS Al.SO GRAPH ICS 
IM561D OR EQUIV AlfNT "A/B SEU CT" COMMAND 
32 X 8 TRISTAlE 
B IPOLAR PROM 

I 
Liff: SEL£CT TO 
CHARACTER 
GENERATOR 

SYNC 

Al2 ----t 
AB ----t 
Al4 -----1 
AI5 ----t 
CS I  -----1 

Q6 

"V" } 1---+--+----� "H" 

1 470pf Q7 

Q8 
658-KDS J J ����:s 

cso _______ __, '---• SCAN ENABU 
�N -•---------' 

Fig. 3-6. Connections for decode PROM &58-KDI. 

Locations 0-15 are selected if the decoder is to pass through an 
existing low CSI. Locations 16-31 are selected if the tvt is only to 
provide its own CSO when needed to the display memory. The only 
output difference you will see between these two halves of the 
truth table is the CSO output itself. 

The remaining inputs are driven from Al2 through Al5 and select 
normal computer operation, a blank Scan, a vertical-sync pulse, or 
Scan of lines one through seven. Outputs include the character gen
erator line commands ( which double as graphics commands), the 
vertical-sync output, the Scan enable for the microprogram genera
tor, the decode enable for the computer, and the chip-select output 
for the display memory. Typical connections are shown in Fig. 3-6. 

Your Turn: 

Show a truth table for a similar decode 
PROM whose fifth i nput is a tvt enable 
line. Show how external logic can switch 
between tvt operation and other use of 
high order address slots. 

Scan Microprogram Generator 

Tlie Scan microprogram generator is a second PROM used as 
part of our interface hardware. Its purpose is to force a Scan micro
instruction onto the microprocessor. The microprocessor, in tum, 
gives us a sequential one-character-per-microsecond code output 
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that lasts for as many characters or chunks as you want in a horizontal line. Fig. 3-7 sums up what our Scan microprogram generator has to do. To produce a Scan, our Scan software program from Chapter 2 calls a subroutine at an address that activates the instruction decoder. The instruction decoder then activates the Scan microprogram generator, which produces the microcode needed for a sequential Scan. As we saw in Chapter 2, the 6502 coding can be a sequence of LDY commands, followed by a RTS. When a Scan is wanted, the instruction decoder provides a ground on its Scan Enable output line. This ground is used to activate the tristate PROM that generates our Scan microinstruction. Once it is activated, this PROM take over control of the computer data bus. When not activated, the tristate outputs :float and remain transparent to the data bus. This lets your computer behave normally during nonscan times. When you are scanning, it is very important that anything else that might want to use the data bus is disabled-this is what the DEN output on the instruction decoder is for. This output disables everything except the Scan microprogram PROM when a scan is needed. The DEN output goes low for normal computer use and high for Scan microinstruction times. Typical coding for a Scan microprogram PROM is shown in Fig. 3-8. Our code consists of 31 LDY commands followed by a 
The 

SCAN 

MICROPROGRAM 

GENERATOR 

must: 

* GENERATE THE RIGHT CODING TO SEQUENTIALLY SCAN A ROW OF VIDEO. 

* OPTIONALLY PROVIDE FOR ALPHANUMERIC MEMORY REPACKING. 

* BE TRANSPARENT DURING OTHER COMPUTER USES. 

Fig. 3-7. The Scan microprogram PROM generates the long mlscroinatructlon 
needed to sequentially output a row of characters or graphics dots. 
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I NPUTS OUTPUTS 

QB Q7 Q6 QS Q4 Q3 Q2 QI 

I 85US84 
WHAT DOES PROM NUMBER .. TH IS WORD DO? 

0 0 • "O" "' -0 � � � 0 0 "' !: ., "' "' "' "' "' "' 
0 0 0 0 0 0 0 

• · "!" 

0 LDY AO • o • O O O O O  (POSITIVE LOG IC! 

I " AO • 0 • 0 0 0 0 0  6502 COD ING 

2 " AO • 0 • 0 0 0 0 0  USE FOR: 
ALPHANUMER I C  SCANS: 

3 " AO • 0 • 0 0 0 0 0  -32 CHARACTER L INES 
-64 CHARACTER LINES ::: 4 " AO • 0 • 0 0 0 0 0  - OTHER L INES THAT ARE NOT "' 5 " AO • 0 • 0 0 0 0 0 REPACKED. 
GRAPH ICS SCANS= 

6 " AO • 0 • 0 0 0 0 0  - 811 BNI 
< 

7 AO • 0 • 0 0 0 0 0  -412 BNI 
" -312 COLOR 

8 " AO • 0 • 0 0 0 0 0  
� 9 AO • 0 • 0 0 0 0 0  8 .. 
:::, 10 " AO • 0 • 0 0 0 0 0  

• 0 • 0 0 0 0 0  z 11 " AO 

12 .. AO • 0 • 0 0 0 0 0  
13 .. AO • 0 • 0 0 0 0 0  
14 " AO • 0 • 0 0 0 0 0  
15 .. AO • 0 • 0 0 0 0 0  
16 " AO • 0 • 0 0 0 0 0  
17 " AO • 0 • 0 0 0 0 0  
18 " AO • 0 • 0 0 0 0 0  
19 " AO • 0 • 0 0 0 0 0  

V> 20 " AO • 0 • 0 0 0 0 0  
21 " AO • 0 • 0 0 0 0 0  

-' • 0 • 0 0 0 0 0  � 22 " AO 
-' n " AO • 0 • 0 0 0 0 0  
< • 0 • 0 0 0 0 0 "' 24 " AO 
� • 0 • 0 0 0 0 0  8 2S " AO 
V> 

• 0 • 0 0 0 0 0  :::, 26 " AO 

27 " AO • 0 • 0 0 0 0 0  
18 " AO • 0 • 0 0 0 0 0  
29 .. AO • 0 • 0 0 0 0 0  
30 .. AO • 0 • 0 0 0 0 0  
31 RTS 60 0 • • 0 0 0 0 0  

Fig. 3-8. Truth table for Scan PROM 658-KS64. 
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single RTS. By ignoring address AO, we double this capability to 
get 62 µs worth of "Load Y with the command for Load Y," followed 
by 2 µs worth of advancing RTS. 

This PROM coding can be used anywhere you want a Scan of 
most any length, so long as memory repacking is not needed. Some 
typical connections appear in Fig. 3-9. With input A4 positive, we 
can scan 32 or less characters per line. Any even number of charac
ters is possible, but the packing density drops as you use less chara
acters. This PROM is used for 32 alphanumeric characters, and for 
32 graphics chunks that result in 96, 128, or 256 horizontal dots. 

SCAN ENABLE 
IM5610 

EN 

r-� 
AB! AO 

ADDRESS ABZ Al BUS 
QI DBO 
Q2 DBI AB3 A2 

AB4 A3 
+ 5 V  A4 

Q3 DB2 
Q4 DB3 
Q5 DB4 
Q6 DB5 
Q7 DB6 
QB DB7 

658-KS64 

!Al 32 - CHARACTER L INES & MOST 
GRAPHICS. 

ABO - NC 

AB! 
AB2 

AB3 ---
AB4 -----t 
AB5 ------1 
AB6 ----

DATA 
BUS 

SCAN ENABLE 

EN 
QI AO Q2 Al 

A2 Q3 
A3 

Q4 

A4 Q5 
Q6 
Q7 
QB 

658-KS64 

(Cl 80 - CHARACTER L INES 
!NO REPACKING! 

SCAN ENABLE 

ABO -NC 
IM5610 

AB! AO EN 
QI A82 Al DBO 

AB3 A2 Q2 DBI 

AB4 A3 
DB2 

A4 DB3 AB5 DB4 
Q6 DB5 
Q7 DB6 
Q8 DB7 

658-KS64 

(Bl 40 & 64 - CHARACTER LINES 
(NO REPACK ING) 

IM5610 

DBO 
DBI 
DB2 
083 
DB4 
DB5 
086 
DB7 

Fig. 3-9. Connections for Scan PROM 658-KS64 SCAN enable Input comes 
from the Instruction decoder. 

If all five inputs are used, we pick up a 34- to 64-character-per-line 
capability. This includes densely packed 64-character lines and 
nonrepacked 40-character lines. Finally, if we add an external AND 
gate, we can go from 68 to 128 characters per line to pick up an 
BO-character, nonrepacked capability. Line lengths with this gate 
must be some multiple of four. 
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Your Turn: 

Show the PROM connections and memory 
map for densely packed lines of 8 and 1 6  
characters. 

Note that this PROM must have tristate outputs, since it is abso
lutely essential to float the outputs going to the data bus during 
non-tvt times. Note further, that your coding will change with any 
change in the microprocessor family. 

Somewhat fancier and more specialized PROM coding is needed 
if we are going to densely repack 40- or BO-character lines, follow
ing the guidelines of the last chapter. Fig. 3-10 shows the 6502 
coding for a 40-character Scan, while Fig. 3-11 shows the coding 
for an BO-character Scan. Both PROMs provide for repacking so 
that each page of 256 words has three BO-character lines or six 40-
character lines. 

Connections for either repacked PROM are shown in Fig. 3-12. 
An external three-input AND gate is normally used that lets us get 
the needed 128 equivalent words out of a 32-word PROM. 

Your Turn: 

Show how three switches or jumpers may 
be added to Fig. 3-1 2 to allow the same 
interface ci rcuit board to work with any of 
the three Scan truth tables shown. 

Be sure to notice the difference in how the enable input is treated 
between the Decode PROM and the Scan PROM. In the instruc
tion decoder, the outputs must always be active, so we permanently 
enable this PROM. In the Scan microprogram PROM, we have to 
be able to tristate float the outputs for all non-tvt times, and we 
drive the chip enable of the PROM from an instruction-decoder out
put, going low only when a Scan is wanted. The instruction-decoder 
PROM could be tristate, open collector, or even permanently in
ternally enabled, but the Scan microprogram PROM must be 
tristate. 

The instruction decoder and the Scan microprogram PROMs, 
and possibly an AND gate or two, are usually all we need to get a 
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I NPUTS 

WHAT D0£S 
THIS WORD DO? 

0 
;: 

0 LOY 

I " 

2 " 

3 " 

4 " 

5 " 

6 RTS 
7 LOY 
8 " 

9 " 

JO " 

JI RTS 
12 LDY 

13 " 

14 " 

15 " 

16 RTS 
17 LOY 
18 " 

19 " 

20 " 

21 RTS 
22 LOY 

23 " 

24 " 

25 " 

26 RTS 
27 LOY 

28 " 

29 " 

30 " 

31 RTS 

OUTPUTS 

Q8 Ql Q6 Q5 Q4 Q3 Q2 QI 

;:;s � � � ;:; .., N C, 

a, a, a, a, a, a, a, 
:,: C C C C C C> C C 

AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0 
60 0 • • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
60 0 • • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
60 0 • • 0 0 0 0 0  
N) • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
60 0 • • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
60 0 • • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
AO • 0 • 0 0 0 0 0  
60 0 • • 0 0 0 0 0  

PROM NUMBER 

0 • "0'' 

• • "I" 

(POSITIVE LOGIC! 

6502 CODING 
USE ONLY FOR 40-£HARACTER 
LINE REPACKED 
ALPHANUMERIC SCANS. 

Fig. 3-10. Truth table for Scan PROM 658-KS40. 
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74L511 
LI (FROM INSTRUCTION DECODER) 

ABO - NC SCAN ENABLE 
ABI IM5610 AB2 

ADDRESS BUS AB3 AO EN 
QI DBO 

AB4 Al 
AB5 A2. 02 DBI 

AB6 A3 03 D82 

AB7 A4 04 DB3 DATA BUS 
05 DB4 
06 DB5 
Ql D86 

658-KS40 OR 
Q8 DB7 658-KSBO 

Fig. 3-12. Connections for 658-KS40 and 658-KSB0 Scan PROMs that give 
densely repacked 40- or BO-character lines. 

microprocessor outputting character or chunk words in a sequence 
and a form that eventually will give us good video. The only signals 
fed back from the interface hardware to the microcomputer originate 
in these two PROMs. These signals are: 

DEN 

cso 

-The Decode Enable that goes high whenever a Scan 
is to be produced, and stops anything else from 
grabbing the data bus during Scan times. 

-The Chip-Select Output that enables the display 
memory, either when the computer wants it for 
normal use, or when the tvt wants to get characters 
out the upstream tap. 

DB0-DB7-The Data Bus outputs from the Scan microprogram 
generator that are active whenever a Scan is wanted, 
but tristate floated otherwise. 

The important thing to note is that these two PROMs plus any 
supporting gating always should be designed, tested, and debugged 
first in any microprocessor-based cheap video display system. If 
the PROMs cannot make the computer behave the way you want 
it to, nothing else you add in the way of interface hardware is going 
to work either. 

Data-to-Video Conversion 
The next most important block in our interface hardware is the 

data-to-video converter. This block gets us from code sent out the 
upstream tap to serial raw video. 

Graphics data-to-video conversion is usually simpler than alpha
numeric conversion. For graphics use, we can sometimes get by 
with nothing but a shift register that converts the parallel chunk 
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code into serial video. To this we might add blanking or an elec
tronic selector to rearrange the chunk as needed for other formats. 
This selector can be a 4pdt switch that picks the upper or lower 
part of a chunk on a given Scan. 

For alphanumeric tvt's, there is no "one-on-one" relationship be
tween the ASCII and Cursor stored code in the display memory and 
the dots on the screen. Somehow, we hav� to irrationally "fluff up" 
our 6-, 7-, or 8-bit code into a 35-dot serial video code. Since the 
character dots do not have any logical relationship to the ASCII 
code, any bits-and-pieces logic scheme is bound to be a complex 
disaster. 

Instead, we go to the code conversion capabilities of a read only 
memory or ROM. You can use your own PROM for this, but code 
converting read only memories called dot matrix character genera
tors are easy to get, usually cheaper, and often a better choice. 
Details on these character generators appear in the TV Typewriter Cookbook ( SAMS 21313 ) .  Character generators can offer a choice 
of upper case or combined upper and lower case. They will either 
do the entire conversion to serial video by themselves, or else they 
will have multiple outputs that have to go to an external video
shift register for final conversion. 

For tvt use, your character generator must be of the row scan 
type. There is another type called a column Scan character generator, 
but this is only good for strip printers, advertising signs, and similar 
uses where the serial or parallel output runs up and down rather 
than back and forth. 

An alphanumeric data-to-video converter using a 2513 character 
generator is shown in Fig. 3-13. The character generator accepts 
ASCII words from the upstream tap on the display memory. These 
ASCII words change once each microsecond for each new character 
to be output. The 2513 also accepts three "what line is it" commands 
from the instruction decoder. In exchange for these inputs, five 
dots are output at once, corresponding to one row on a 5 X 7 dot 
matrix character. An eight input, one output shift register then con
verts these dots, along with spacing undots from grounded inputs, 
into raw serial output video. The input ASCII character coding 
repeats itself at least seven times to generate the entire seven dot 
rows involved in a row of characters. Our shift register is driven by 
a high-frequency timing circuit that outputs a narrow Load pulse 
once each microsecond, along with a Clock output that runs con
tinuously at the desired dot rate. 

An optional Cursor is shown in the lower right of Fig. 3-13. The 
4585 is a 3-Hz oscillator that sets up the Cursor winking rate. If 
ASCII input bit No. 8 is high, the CUR input will go high and a 
white line is output on leads Ql through Q5. The right diode causes 
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FROM HIGH - FREQUENCY 
TIM ING 

2513 CHARACTER GENERATOR FOR LOWER CASE, 
"" USE 6574 & 

A � u CONNECT VD7 
g 

B u (MODULE "A'? 

ASC 1 1  VD2 3 DOTS 03oz CHARACTERS ASC I I  --'----f 
(VIDEO DATA! VD3----t 4  IN OUT 04.,.......--,----1 

C 
D 

F 

SERIAL 
QH RAW 

VIDEO 
OUTPUT 

��� ! } !01 

FROM D ISPLAY VD4 5 05 --'----f 
MEMORY VD5 6 ROW IN G 74165 SH IFT H UPSTREAM TAP VD6 ___ NC 124 CS REG ISTER 

CURSOR 
/ 

Fig. 3-13. Alphanumeric data-to-video converter using 2513 
character generator. this line to blink off and on, while the left diode allows winking Cursors only during valid character times. Since lower case is not available on a 2513, ASCII bit No. 7 remains unused. Note that if you want to display lower-case characters as upper case, you must add a simple external gate, for the lower six bits of a lower case "u" are the same as a "5," and not a capital "U," and some conversion is needed. ( See Chapter 4. )  The 2513 is cheap and easy to get. The newer, single supply +5-V versions by General Instruments and others are far easier to use than the old +5-V, ground -5-V, -12-V versions. This is particularly important since the rest of the interface hardware all can run on a +5-volt supply. Lower case versions of the 2513 are also available. You can use a pair of 2513s, one upper, one lower, for full alphabet capability. 

Your Turn: 

Show how switching may be added to Fig. 
3-13 to give you manual control of Cursor 
visibi'lity. 

An alphanumeric data-to-video converter using the Motorola 6674 character generator is used as the module "A" plug-in for the TVT 
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6%. This circuit gives you both upper and lower case. Input VD6 
( Fig. 3-13) is used to pick up the new characters. 

Your serial video output is called raw video because it contains 
only character dots when and where needed and blank logic zeros 
everywhere else. To get from here to something a tv set, monitor, 
or rf modulator can handle, we have to add the sync pulses and 
predistort the raw video for improved clarity. We call everything 
compensated and combined in our composite video. 

Fig. 3-14 shows us our nrst graphics interface. This is used as 
module "B" in the TVT 6% whenever eight dots per chunk in a 

VDO 

VOi 

VD2 

GRAPHICS VD3 
CHUNKS 
(VIDEO DATA! 
FROM D I  SPLAY VD4 
MEMORY 
UPSTREAM TAP 

VD5 

VD6 

V07 

BLANKING 

74LS08 12) 

"I" • UNBLANK 

FROM H IGH 
FREQUENCY TIM ING 

QH 1--11--0 
SERIAL RAW 
VI 0£0 OUTPUT 

Fig. 3-14. Graphics dala-to-video converter to display eight horizontal dots 
per chunk. 

row are needed. Input video data chunks from the display memory 
are routed to the eight inputs of a shift register by way of a blank
ing gate. High-frequency timing applies just the right Load and 
Clock commands to output continuous dots during graphics dis
play times. Timing is adjusted for minimum over- or underlap be
tween sequential chunks. 

Fig. 3-15 shows us a graphics interface used for three or four 
dots per chunk output. This is plug-in module "C" on the TVT 6% 
upper- and lower-chunk halves alternate for sequential lines or line 
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GRAPH ICS 
CHUNKS 

74LSl57 SELECTOR 

VDO --,t"-", .. _ 
VD4 --1_......, 
VDl ----

!VIDEO DATAI VD5 __ ......, 
FROM DISPLAY VD2 _----t......._ 
MEMORY 
UPSTREAM TAP VD6 --0-t-0 

VD3 -----t-o,._ 
VD7 --0-t-0 

FROM 
{ 

A/B 
INSTRUCTION 
DECODER BLANK 

"l" • UNBLANK 

FROM H IGH- FREQUENCY 
TIMING 

+ 5 V  

LOAD CLOCK 
A 
B 
C 

74165 
SHIFT REG I STER 

SERIAL RAW 
V I DEO OUTPUT 

Fig. 3-15. Graphics data-to-video converter to display three or four horizontal 
dots per chunk on alternate line pairs. 

pairs. A data selector is added to the inputs to pick upper-chunk 
halves, lower-chunk halves, or blanking. Blanking is done by forcing 
all the inputs of the shift register low. The inverter gives us a system 
convention of low = blanked for compatibility with the decode 
PROM. 

Your Turn: 

Show how modular plug-ins can be used 
to let one interface hardware card serve 
for upper- or upper- and lower-case alpha
numerics, 1 x 8, 2 x 4, 2 x 3 graphics, 
and combined alphanumerics and graph
ics. 

Color can be added to the circuit in Fig. 3-15 with an external 
color modulator. The color format can be three dots on top of three 
dots, with the remaining two-chunk bits letting us call any of four 
colors plus black. 

High-Frequency Timing 
It is up to the high-frequency timing to give the Load and Clock 

signals needed for serial output of video from our data-to-video 
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converter. Traditionally, these circuits use crystal oscillators and counter-dividers for this job. All we really need in a cheap video system is to borrow the existing microprocessor clock and add a simple gated oscillator using a hex inverter to get our Load and Clock waveforms. Fig. 3-16 tells what our high-frequency timing has to do, while Fig. 3-17 shows a circuit that works with any of the three data-tovideo converters we have already looked at. The waveforms involved are shown in Fig. 3-18. 
The 

HIGH

FREQUENCY 

TIMING 

must: 

* DELIVER A "LOAD" PULSE TO THE VIDEO SHIFT REGISTER. 

* TIME THE "LOAD" PULSE TO ARRIVE ONLY WHEN DATA IS VALID. 

* DELIVER "CLOCK" PULSES TO SET THE VIDEO DOT RATE. 

* LOCK "LOAD" AND "CLOCK" PULSES TOGETHER TO PREVENT JITTER. 

Fig. 3-16. High-frequency timing traditionally has used crystals and divider 
chains, but a hex Inverter gated oscillator is often all that is needed. The Load output of the timing circuit has to transfer parallel dots into the video shift register. This Load pulse must be carefully timed to arrive only when data is ready and settled from earlier portions of the data-to-video converter. Often you will have two choices of input clock available; if one phase does not do it, the other one probably will. Usually, it is best to arrange the load command so that it always arrives 1 µs after the addresses change. This gives you a nearly maximum processing time and minimizes any settling or bad data problems. Note that the Cursor• and blanking of individual characters should be introduced before this 1-µs delay 
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takes place; otherwise, the Cursor and blanking will be skewed by 
one or more characters. 

The Load command must be normally high and go briefly low 
when driving a 74165 shift register. The load command also should 
be as narrow as possible. This is particularly important in graphics 
modes where too long a load pulse or a misplaced one can cause 
dot underlap or overlap. 

470 
7-Jl_ 

I MH� pf CLOCK INPUT 

1N4148 

74LS()'; +5 V 

UK 

� 

LOAD 

:i::
33 pf OUTPUT 

22 () 

SLOW 

FAST0 l300 pf 

JLJLJL 
CLOCK 
OUTPUT 

Fig. 3-17. High-frequency timing is derived from 1.0-MHz computer clock with 
gated oscillator. 

Your Clock line decides how fast the dots are going to come out 
as serial video. The WIDTH control and the FAST-SLOW switch set 
the clock rate. Slow is used for the 4/2 and 3/2 graphics modes, 
while Fast is used for the 8/ l graphics and both alphanumeric 
modes. The WIDTH control is adjusted for proper spacing and a 
stable display in alphanumeric modes, while it is set for the right 
number of dots and proper dot matching ( no overlap or underlap) 
in graphic modes. 

Clock and Load must be locked together to prevent the dot loca
tions from jittering or otherwise smearing. It is also especially 
important to make sure the Load command does not distort the 
clock graphics displays; otherwise clockings end up wider or nar
rower with respect to each other. 

In Fig. 3-17 the first inverter acts as a buff er to make us indepen
dent of system clock rise and fall times. The second inverter is a 
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I �SEC 

_J r INPUT 

7J u- LOAD 

CLOCK 

(A) 1 x 8 graphics-8 cycles per µ.s. 

_J r INPUT 

L.J Lr LOAD 

CLOCK 

(8) Alphanumerics-6 or 7 cycles per µ.s. 

_J r INPUT 

L.J u- LOAD 

CLOCK 

(C) 2 X 4 graphics-4 cycles per µ.s. 

_J r INPUT 

7J u- LOAD 

CLOCK 

(D) 2 x 3 graphics-3 cycles per µ.s. 

Fig. 3-18. High-frequency timing Is adjusted to suit operating mode. These are 
typical waveforms. 

half monostable device whose output briefly drops to ground for 30 
nanoseconds on the falling edge of the clock input. The three in
verters in the center are a gated ring oscillator. The frequency of 
this oscillator is coarsely set with the extra capacitor that is switched 

Your Turn: 

Show a way of raising and lowering the 
microprocessor clock frequency to allow 
locking of the video display vertical rate 
to the power l ine. This wiH give you a sta
tionary hum bar. 
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in by the "FAST-SLOW" switch, and finely adjusted with the WIDTH 
control. The diode gates the oscillator and locks it to the Load 
command. A final buffer and inverter is used to square up the clock 
line. The RC network on the Load output is a glitch filter used 
for added stability. 

As a rough rule of thumb, the output-video frequency will be 
around one half of the dot rate set by the high-frequency timing 
clock. Thus, eight dots per microsecond gives around 4-MHz band
width, while three dots per microsecond needs only a 1.5-MHz 
bandwidth. A black and white tv set has a 4-MHz bandwidth, ex
tendable somewhat by defeating the sound trap. The video band
width of a color set is limited to a 3-MHz bandwidth. As you can 
see, the output frequencies associated with your cheap video dis
plays are compatible with most tv sets. This is a dramatic improve
ment over the much higher video bandwidths often demanded by 
traditional video terminal systems. 

Sync and. Position 
When we run a properly debugged Scan program our instruc

tion decoder will give us signals at the needed vertical ( v SYNC ) 
and horizontal ( DEN ) rates. We can then selectively delay these 
signals to gain control over position. This is then followed by pulse 
shaping to get the proper widths of the sync signals for tv use. Since 
the tv set locks itself to the sync pulses, backing up or moving these 
pulses forward has the effect of moving the entire display. Hori
zontal-delay changes cause back and forth position changes in the 
display. Vertical-sync changes control up and down positioning. 

A typical circuit is shown in Fig. 3-19. Once again, it is six in
verters to the rescue. Only, this time two of the inverters have to 
have open collectors and very low output impedances and are TTL, 
while four of them need extremely high input impedances and a 
snap action, so they are CMOS Schmitt inverters. 

Our V-sync pulse starts out as a 1-µs positive pulse that is glitch 
filtered to get rid of anything that crops up during the PROM set
tling times. The 7405 discharges the 4700-pF capacitor completely 
once each ¼o of a second. This capacitor is recharged by a rate you 
set with the V POS control. When the recharging reaches one half 
the supply voltage, the Schmitt snaps on, and our second-stage 
output becomes a square wave delayed by the amount set on the 
position pot. Because of the extreme differences in charge to dis
charge times of the capacitor doing the positioning, the TTL/CMOS 
combination is called for. The delayed output is shaped into a posi
tive going 200-µ,s pulse by the final Schmitt and RC network. The 
output resistor aids in interfacing the TfL stage that follows in the 
video-output circuitry. 
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4584 

(A) Vertical-sync pulse. 

+5 V 
+5 V 

_fl_ 

f--v · 1/60 sEc---j 

� 

1.5K 

r-- H ·-1 

H SYNC <DENI ____ _, ::�-+--1 ::�-1 ,---1 ><>--- H SYNC TO V IDEO OUTPUT 
FROM 
INSTRUCTION 
DECODER 

470 pF I� 270 pF I GLITCH 
.,,,- FILTER 

(B) Horizontal-sync pulse. 

1.5K 

Fig. 3-19. Sync and position circuitry. 

The horizontal circuit is similar, with only the timing details 
changing. The DEN output of the instruction decoder can often 
be used instead of needing a special H SYNC line. Delay of a por
tion of the horizontal line is done with the first variable RC network, 
while the second RC combination gives us a 5-µ,s sync pulse once 
every horizontal line. 

This particular sync and position circuit needs continuous arrival 
of H and V signals from the instruction decoder. This continuous 
need limits the transparency and throughput of the computer on 
other programs that are also active while the tvt is displaying. 

Fig. 3-20 shows a different way to get horizontal-sync pulses. This 
counter method can free the computer for other uses during vertical
retrace times. This in turn can greatly increase the transparency 
and throughput. We will be looking at this in more detail in Chap
ter 5. 

What we do is use a divide-by-H counter. H is set to the number 
of microseconds per horizontal line. Every overflow, an H sync 
pulse is delivered, regardless of what the computer happens to be 
up to. This counter is synchronized to the Scan program by resetting 
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SPECIAL INPUT FROM ----fiITTi'j""""--7 
INSTRUCTION DECODER RESET 

OUT 
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H SYNC TO 
V IDEO 
OUTPUT 

Fig. 3-20. Modified horizontal sync and position circuits give high trans
parency and throughpul (See Chapter 7.) 

it with the instruction decoder. The synchronization and reset can 
take place on every active line, once during vertical retrace, or even 
only once during power up. Horizontal sync is maintained through 
vertical-retrace, even if the computer is busy working on something 
else. 

Bandwidth Compensation and Video Output 
We now have three signals available-raw video, vertical sync, 

and horizontal sync. We somehow have to combine these and pick 
up some line drive capability if we are going to interface a tv set, 
monitor, or rf modulator. This final interface is done with the 
video-output circuitry. 

Our raw video first goes to a bandwidth compensator. This super 
important circuit tries to anticipate how the tv set is going to de
grade the response and then predistorts the video in the opposite 
direction beforehand. Bandwidth compensation is done by making 
the dots longer than the undots. One way is to OR the raw video 
with a delayed replica of itself. A simpler but very sneaky way is 
shown in Fig. 3-21. An open-collector TTL inverter has a much 
lower output low ON impedance than its output high OFF imped
ance. If we add capacitance from this output to ground, the capaci
tor will discharge fast but its charge rate will be much slower and 
set by the value of the pull up resistor, which in this case is a 
CLARITY pot. Since this is an inverter, a white dot is low and a black 
undot is high at the capacitor. It takes longer to get out of the low 
state, so our dots automatically get lengthened. 

How much lengthening is set by the CLARITY pot. This pot is 
adjusted for the densest, clearest characters on the final tv screen. 
The optimum setting is often the one that just barely closes the 
inside of an "M" or a "W" on the display. The use of this bandwidth 
compensator, taken together with our 1-µs constant character or 
chunk time are the two keys to display of quality characters or 
graphics on a tv set with unmodified video bandwidth. 

Three more open-collector inverters are used for video combina
tion. At the VIDEO output, sync pulses are nearly at ground, while 
black is at +0.5 volt, and white is near +2 volts. The ratios of these 
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Fig. 3-21. Bandwidth compensator and video output clrcuil "Video" output 
is lor monitors and rl modulators, "lV" output is pretranslated lor minimum 

set modification. 

three values are set by the three resistors. This output is pretty much 
a standard form for video monitors, rf modulators, and tv sets that 
have been completely preconverted internally for direct-video 
monitor use. 

But, we have also provided a new "tv" output. This tv output has 
the same waveform, but it is translated up so that white is at +4 
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volts and sync at +3 volts. The +4-volt white level is the normal bias 
level at the video detector of most solid-state tv sets. You can often 
use this tv output to go directly into the first video stage of many tv 
sets, without needing anything else in the way of translation or bias 
circuits. We will look at more details on this later in the chapter. 

Some monitors have separate VIDEO and SYNC inputs. These are 
called split sync systems, and an alternate dual output circuit shown 
in Fig. 3-22 may be used if split sync is needed or wanted. 

RAW 
Vlll£0 

V SYNC -----1 

H SYNC ----t 

+5 V  

''CLARITY" IOK 

rl30
Jf 

7405 

+5 V  

220 

220 

+ 5 V  

220 

220 

Vlll£0 OUTPUT 

P
fWH ll£ • + 2.51 
fBLACK • O VI 
- f lOO Q I  

SYNC OUTPUT 

P 
fSYNC • +2.5 VI 
INC RMAL • 0 VI 

. - IOO Q  

Fig. 3-22. Video-output circuit for monitors with separate sync lnpul 

COMPUTER INTERFACE 

You will find that there are about 32 connections you will have to 
make between your microcomputer and the interface hardware card. 
A lot of these connections are ready-to-go on existing bus lines and 
expansion connectors, but a few are not, and you will have to dig 
into the works to get at them. Most of these connections are "add 
on" connections, but the one involving the display memory chip 
enable is usually a "cut" that involves a change in the circuitry of 
your computer. If your interface card is to be removable, some sort 
of changeover switch might also be needed for non-M operation 
times. 

It is far easier to add a microprocessor-based cheap video display 
to a new system design than it is to retrofit to an existing system. 
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Also, since most of our examples use the 6502 microprocessor, you 
will find computer interconnections easiest with 6502-based sys
tems. Because of their similarities, 6800 series microcomputers will 
be only slightly more difficult to interface. The 8080 interface is 
somewhat more tricky and will take some creative work on your 
part. 

As you go further afield from these "mainstream" microcomputer 
families, your interface and tvt operation will get harder and harder. 

It is best to intimately associate the interface circuitry with the 
display memory. Preferably, both should be the same pc board, or 
at least a permanently connected pair of boards. There are two 
reasons for this. The first is that almost all of the "oddball" connec
tions we need to get the tvt to work come from or go to the display 
memory upstream tap and chip enable. These are not available on 
bus lines, and even if you have an extra nine or ten pins as spares 
on your system bus, there are certainly better things to be doing 
with them than using them for the upstream tap. The second good 
reason to have the interface hardware and the display memory close 
together is that your upstream tap is often the bare output of an 
MOS memory chip. Any capacitive loading, particularly from an 
expansion cable, is almost certain to slow the memory down enough 
so that it will be erratic or even quit entirely. Do not use extension 
cables on MOS upstream taps! 

In the case of a KIM, to display all or parts of pages 01 through 
03, you can add a connector to the top of the main computer board 
that accepts the interface hardware card. On the TVT 6%, a 36-pin, 
single readout, 0.156-in (3.96-mm ) connector can be used. To dis
play part or all of pages 04 through OF, a similar connector can be 
added to your KIM-2 4K add-on memory, or its equivalent. 

Larger computer systems than the KIM-1 are usually bus oriented. 
Typical examples are the Heath H-8 system using the Benton Harbor 
50-pin bus, and the MITS and IMSAI systems that use the S-100 
bus. For these bus-oriented systems, it's best to design a single card 
that contains both the display memory and the interface hardware. 
Another possibility is to add spacers to an existing 4K or 8K memory 
card and permanently attach the interface hardware so that they 
both plug into the bus through a single connector. Two slots may 
be needed. 

As Chart 3-1 shows, we can logically group our interface con
nections. These groupings include the supply pins, the data bus, 
the address lines, the system clock, the upstream tap, the display 
memory chip enable lines, and the system decode enable. Let's take 
a general look at just what is involved with each group of intercon
nections; then we will find out how to interface the KIM-1 and 
KIM-2 to the TVT 6% detailed in the following chapter. 
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Chart 3-1 . Interconnections Needed Between Your 
Microcomputer and TVT Interface Hardware 

Power Supply 

Address Bus 

Dala Bus 

Clock 

Upstream Tap 

Decode Enable 

Chip Select 

Supply Pins 

Gives +s volts and ground for tvt power. Goes from 
µ,P to tvt. 
Runs tvt instruction and Scan PROMs. Goes from µ,P 
to tvt. 
Receives Scan Microprogram from Scan PROM. 
Goes from tvt to µ,P. 
Drives High Frequency Timing. Goes from µ,P to tvt. 

Delivers characters or chunks to the data-to-video 
converter. Goes from µ,P to tvt. 

Disables other computer use during tvt Scan times. 
Goes from tvt to µ,P. 
Enables Display memory either for normal or tvt 
operation. CS/ goes from µ,P to tvt; CSO goes from 
tvt to µ,P. 

The supply lines are an obvious place to start. We often power 
our interface hardware from an existing +5-volt supply on the com
puter or display memory card. Approximately 250 milliamperes is 
usually needed. Reasonably heavy connections should be used for 
both the +5-volt and ground leads. 

Your +5-volt line must be well regulated and well filtered. A 
local regulator and some extra bypassing is usually a good idea. 
Supply line noise can cause plenty of trouble. If noise gets into the 
position circuits, you get slanted or broken characters. If noise gets 
into the video output, you get variable character brightness. If 
noise gets into the high-frequency timing, fuzzy or sugar-coated 
characters can result. Since these circuits are essentially analog, the 
supply filtering requirements are more stringent than would usually 
be the case. 

Address Lines 
Around half the address lines of the computer may be needed. In 

the TVT 63/s we use Al through A5 and Al2 through Al5, and 
optionally use A6 and A7. 

Each address line drives the input of a bipolar PROM. This is 
less than one LS TTL load, so extra buffering just for the M inter
face often is not needed. 

But, if you are tapping a display memory card or something else 
that has its own address drivers, it pays to use the buffered side 
rather than adding extra load on the microcomputer itself. Address 
lines are usually easy to get to and often have available pins on the 
system bus or expansion connector. 
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Some bus systems use complements of the address lines, expecting 
you to use inverting bus drivers on everything that plugs onto the 
bus. If this occurs, you can add your own drivers, borrow existing 
ones, or else redefine the truth tables on your PROMs to work with 
complementary code. 

If you are retrofiting an existing microcomputer or memory card, 
use a wiring pencil for your interconnections. This is far and away 
the neatest, simplest, and fastest way to make needed add-on con
nections. You can use wiring-pencil connections for everything 
except the supply lead and ground. 

Data Bus 

Data-bus connections are as easy to do as the address-line con
nections. You can pick these off of your expansion connectors or 
system bus. The interface hardware drives your address bus from 
the tristate Scan microprogram PROM during Scan times, but 
floats its bus access otherwise. A typical PROM can drive eight 
regular TTL loads. Everything else hung on the data bus must be 
less than this, or you will need more buffering. 

Clock 
A 1-MHz clock is needed. If this is also your microprocessor 

system clock frequency, you are usually home free. The clock must 
have the capability to drive one LS TTL gate in the high-frequency 
timing. 

It is extremely important to pick the right clock phase or delay 
to make sure that the video-shift register gets loaded during data
valid times. One timing scheme that usually works is to load your 
video shift register 1 µ,s after you change the addresses to your 
data-to-video converter. 

If you do not have a megahertz floating around your system, you 
can usually get one by dividing down your system clock with a 
flip-flop or two. An inverter can give you the opposite clock phase, 
or a delay of one half a microsecond. Remember that this frequency 
must be exactly known and stable, since it defines the critical 
vertical-sync rate. 

Upstream Tap 

So far, all of our interconnections have been obvious and easy 
to do. The rest of them, however, have to go to special places in 
your microcomputer that are not normally brought out to system 
bus lines or expansion connectors. 

Your new upstream tap ( Fig. 1-8 ) consists of eight wires that 
come directly from the output of your display memory. A nonin
verting driver of some kind must be present between your memory 
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output and the true data bus. This driver is present on the KIM-I 
and on practically all plug-in static-memory cards. 

If your microcomputer display-memory RAM outputs go directly 
te; the data bus, you will have to add a noninverting buffer between 
that memory and the true data bus. Fig. 3-23 shows the typical con-

D I SPLAY 
MEMORY RAM 

!8 B ITS DEEPI 

NEW UPSTREAM 
: ... TAP VDO-VD7 
I 
: BUS DR IVER 
I 

1 l [> 1 • ����D��S 

(A) Using existing bus drivers. 

DI SPLAY 
MEMORY RAM 
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, -- -----------------+- TAP VDO-VD7 
I 
I NEW BUS DR IVER 
: 174LS240, ETC.  I 

i ---I>·--7 
I I 
I I 

c+ '"'' l �--,------· ... 
�:����� 

'-------
1
.,--8 B-cl

-:-:TS
c-:D:::EE:-=P:-

1 
____ _. 

(B) Adding your own bus driver. 

Fig. 3-23. Adding the upstream tap. 

nections for your upstream tap using either an existing or a new bus 
driver. The bus driver gets activated only when the computer wants to read the display memory. During Scan times, the display is 
activated only as far as the upstream tap, letting the Scan micro
program PROM have control of the data bus. 
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input/ output pins. 



The loading on your upstream tap varies with the application, 
but, at worst, it is about one LS TTL load per line. For graphics 
uses, we usually go directly to the LS inputs on a register, selector, 
or blanking driver. On alphanwnerics, the botton six or seven lines 
go to the MOS inputs of a character generator, while the eighth line 
will source or sink one half a milliampere as part of the Cursor 
circuit. 

Display Memory Chip Selects 
During normal computer operation, your display memory must 

be enabled when it is wanted for a read or a write. During computer 
read times, both the memory and the output bus driver are acti
vated. During M Scan times, the memory is activated only as far 
as the upstream tap. During Scan times, the Scan microprogram 
generator has control of the data bus, 

So we have to break the existing memory chip-select connection 
and add a way to enable only the memory during Scan times, as 
well as retaining the normal chip selection needed for ordinary 
computer use. 

Most memory chip selects or enables are active low. Thus, you 
want a negative logic OR circuit that gives a low output for either 
input low. This turns out to be the DeMorgan equivalent of a plain 
old positive logic AND gate. You can use a 7 4LS08 or its internal 
PROM equivalent. 

Usually this AND gate or its PROM equivalent goes in the inter
face hardware. We route a lead from the existing display-memory 
chip-select source to the M interface and call it CSI or Chip Select 
Input. After logical gating, we route a new lead from the M inter
face to the display memory and call it the Chip Select Output, or 
cso. 

Figure 3-24 shows how we add this new chip-select gating to 
your display memory. To review: 

* The existing chip select going only to the memory CS inputs 
is cut. The source of this signal is called CSI. 

* CSI is routed to the interface hardware and appears as a new 
output CSO. CSO is activated low either when the computer or 
the tvt wants use of the display memory. 

* CSO is routed to the display memory. 
* No change is made to the logic driving the output buffers. 

Note particularly that the logic going to the output buffers stays 
the way it was. These bus drivers get activated only when the 
computer wants to read this particular memory. Chart 3-2 swn
marizes key upstream tap and chip-select interface rules. 
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NEW CHIP-SELECT 
INPUT FROM TVT 

INSTRUCTION DECODER 

NEW NEGATIVE LOG IC 
"OR" GATE OR 
EQU IVALENT PROM COD ING 

MEMORY TO BE 
D I SPLAYED 

x---1 CS 
�AA �  ----�� 

FOIL RUN 

EX ISTING CS SOURCE 
I KO ON K IM-11 

NEW UPSTREAM TAP 

V I DEO DATA 
TO TVT 

Fig. 3-24. Changes In chip-select circuitry needed to activate display memory 
during normal OR tvt Scan times. 

Chart 3r2. Checklist for Upstream Tap and Chip-Select 
Interface Connections 

D Your upstream tap comes directly from the display 
memory. 

D The upstream tap leads are short to prevent ca
pacitive loading. 

D A noninverting driver is present between the up
stream tap and the true data bus. 

D The Display Memory gets enabled either when the 
the computer or the tvt uses it, but not otherwise. 

D During tvt operation, the display memory gets en
abled only as far as the upstream tap. 

D The output bus driver gets enabled only when the 
computer wants to read the display memory. 

Decode Enable 
The Decode Enable output ( DEN) is an output from the tvt 

interface hardware. Its purpose is to stop anything else from using 
the data bus during Scan times. On the KIM-1, the Decode En
able goes high during Scan times to disable the KO line of the 
KIM address decoder. This is an easy-to-reach point on the KIM. 

On your particular system, you will somehow have to arrange to 
stop all other address enablings from happening during Scan times, 
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starting with this DEN command. If your particular microcomputer uses a full decoding of all 65K address spaces for everything tacked onto your system, the DEN output will not be needed and can be ignored. The only time you must use DEN is if there is something else trying to use the data bus during M Scan times. 
Changeover Even with your Chip-Select line cut and all the extra connections made, your microcomputer will behave normally during non-M times, as long as certain addresses are not called and as long as the 
interface hardware remains plugged in. The number of "no-no" addresses can be further minimized by using a M that can be enabled, or more elaborate tvt decoding. Usually, some extra logic will be involved to free these extra addresses. With the full transparency ,schemes of Chapter 5, we are 

ENABLE A4 INSTRUCTION 
Al5 A3 DECODER 
Al4 A2 PROM 
Al3 Al --MUST BE CODED FOR 
Al2 AD ENABLE: EXTERNAL 

CS GATING USED. 

(A) Using decode PROM with tvt enable coding. 

ENABLE ----o,-----, 74LS08 
CS I  ----0-----------� A4 

� � 
A2 

ill Af 
Al3 AO 
Al2 

INSTRUCTION 
DECODER 
PROM 

MAK ING ENABLE H IGH 
AllOWS NORMAL M 
OPERATION. 
Al2, Al3 ARE ''DON ' T  CARE" 
STATES IF Al4 & Al5 ARE LOW. 

(8) Forcing a benign tvt decoding with and gates. 

UP• D ISABLED 

+5 8 c ) DOWN• NORMAL BNK 

"'!'" I 

SEI 

+
5

6 a � ; TVT CONNECTOR P I_NS 
I SEO r-- ·  

� r7  c DEN ) DEN OUT TO 
COMPUTER. 

(C) Switching at the tvt connector. 
Fig_ 3-25. 11,ree wars to disable rour tvt during nondlaplar times. 
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able to activate the M only during active Scan lines and do other 
computation during other times. 

Fig. 3-25 shows three ways to disable your tvt circuit during non
tvt times. In Fig. 3-25A, we use an instruction decoder with an in
ternally decoded enable command. In Fig. 3-2.5B we use an external 
gate to "force feed" the instruction decoder into a "use the computer 
normally" state. In Fig. 3-25C, external switching is added to the tvt 
connector. 

If you want to be able to remove the M interface from your 
computer, or if you want to be able to use everything that came 
with the computer with no restrictions on addresses, you will have 
to add simple switching to activate or deactivate the M. Fig. 3-26 
shows one possible changeover switch. 

MEMORY 
CH IP SELECT 1 
FROM COMPUTER 

DECODE 
ENABLE 
TO COMPUTER 

COMPOS ITE 
CHIP SElfCT 

CS I TO TVT CSO FROM TVT 

L'TVT"
,,-<°--- TO D ISPLAY 

• MEMORY CHIP 
"NORMAL" : SELECT 

I 
I 
I 

0' 
DECODE ENABLE 
DEN FROM TVT 

NEEDED ON KIM-1 
MAY NOT BE NEEDED ON 
COMPUTERS WITH 
FULL 65K ADDRESS 
DECODINGS. 

/ 

Fig. 3-26. Changeover switch may be needed if an interfaced microcomputer 
is to run normally wilh tvt unplugged. 

Your TVT-NORMAL switch has to do two things. It must route CSI 
through the tvt to arrive as CSO at the display memory during tvt 
times. Otherwise, it directly connects CSI to CSO, effectively "re
pairing" the cut foil on the Chip-Select line. 

The second switching contact has to route the decode enable 
from the tvt to the microcomputer during tvt times and has to 
permanently activate the decode enable during non-tvt times. This 
second switching may not be needed on systems with full 65K 
address decoding. 

In the case of a KIM-1, a dpdt changeover switch can be added 
between the main board and the tvt connector. This switch gives 
you a choice of NORMAL or TVT operation. If you are using a 
second memory on your KIM, a second changeover switch must be 
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used with a new connector. Remember that the upstream tap always has to come from the memory being displayed and CS Enabled. Use of a changeover switch during a program may bomb the program, so do your switching with the power off. If you need switching under program control, use a tvt enable or an electronic switch "cold" driven from a debounced contact.• 
KIM-1 INTERFACE Chart 3-3 lists all the connections needed for a KIM-I and a KIM-2 interface. These connections are repeated in instruction form in Fig. 3-27 and 3-29 and as a pictorial in Fig. 3-28. 

1. Add a new 36-pin, single readout connecto� along the top of the KIM-1 above the 
crystal. Small "L" brackets can be added to use existing holes. 

2. Make short and direct wire connections as described in Chart 3-3. Use a wiring 
pencil for all connections except +5 and GND, which should be short lengths of 
No. 18 wire, 
Do not use ribbon cable or offempt extending the TVT 6 5/8, 

3. Break ONE foil run as shown, and add a dpdt changeover switch: 

M 

,..-M---r(, __ D_rn __ ) 20 
DECODE ENABLE ) P IN 12 U4 .,..,__ ____ : 0 

K IM 
I 
I 
I 

K IM EXPANS ION 

(_20_½ 
MEMORY CS 
P IN 13 U5-Ul2 

I 

L ���--�: __ : ;:: EXTERNAL 
GROUND 

/x 

REMOVE All EXTERNAL CUT FOIL KO DECODE CONNECTIONS FROM K IM·l 
P IN l, U4 APPLICATIONS "K " 

With the switch in the TVT position, operation is totally transparent so long as the 
TVT 6 5/8 is in its socket and addresses 6000-dFFF are not called. 

Fig. 3-27. Modifying your KIM-1 for the TVT 6 5/8. 

On the KIM-I conversion, a 36-pin .I56-in ( 3.96-mm )  singlereadout connector is placed along the top. All connections between connector and computer are made with a wiring pencil, with the exception of the supply and ground runs. Make these runs with 
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... 
t Chart 3-3. Connections Needed to Interface TVT 6 5/8 to KIM-1 or KIM-2 

KIM-1 KIM-2 
Pin ldent Function Load Connection Connection 

1 *  GND Ground return-heavy foil or wi re - Expansion 22 Connector 1 
2 BNK Blanking input (ground) 1 TTL TVT pin 1 TVT pin 1 
3 HIN Horizontal-sync Input 1 TTL TVT pin 20 TVT pin 20 
4 VD7 Cursor or Graphics bit 8 varies Pin 1 2  of US Pin 2 of U3 

5 VD6 ASCII bit 7 from display memory 1 NMOS Pin 12 of US Pin 6 of U3 
6 VD5 ASCII bit 6 from display memory 1 NMOS Pin 12 of U7 Pin 10 of U2 
7 VD4 ASCII bit 5 from display memory 1 NMOS Pin 12 of US Pin 2 of U2 
8 VD3 ASCII bit 4 from display memory 1 NMOS Pin 12 of U9 Pin 6 of U2 

9 VD2 ASCII bit 3 from dlsplay memory 1 NMOS Pin 12 of U10 Pin 10  of  U1 
10 VD1 ASCII bit 2 from display memory 1 NMOS Pin 12 of U1 1 Pin 2 of U1 
1 1  VDO ASCII bit 1 from display memory 1 NMOS Pin 12 of U12 Pin 6 of U1 
1 2  A15 Address l ine 15 1 LSTTL Expansion T Connector U 

1 3  A14 Address l ine 14 1 LSTTL Expansion S Connector T 
14 A1 3 Address line 1 3  1 LSTTL Expansion R Connector S 
1 5  A1 2 Address line 1 2  1 LSTTL Expansion P Connector R 
1 6* cso Chip Select TO display memory TTL Out Pin 1 3  Pin 2 of US 

U5-U12 
17*  CSI Chip Select FROM Enable Decoding 1 LSTTL Pin 1 of U4 Pin 4 of U 1 1  
1 8  SEO Scan Enable OUTPUT TTL Out TVT pin 1 9  TVT pin 1 9  
1 9  SEI Scan Enable INPUT 1 LSTTL TVT pin 1 8  TVT pin 1 8  
20· DEN Decode Enable TO KIM TTL Out Pin 1 2  of U4 Connector 3 



... ... 
w 

21 VRF Vertical Reference TTL Out no connection no connection 
22 A5 Address l ine 5 1 LSTTL Expansion F Connector H 
23 A4 Address l ine 4 1 LSTTL Expansion E Connector F 
24 A3 Address line 3 1 LSTTL Expansion D Connector E 

25 A2 Address l ine 2 1 LSTTL Expansion C Connector D 
26* A1 Address line 1 1 LSTTL Expansion B Connector C 
27 DB7 Data Bus 7 TTL TS OUT Expansion 8 Connector 8 
28 DB6 Data Bus 6 TTL TS OUT Expansion 9 Connector 9 

29 DBS Data Bus 5 TTL TS OUT Expansion 10 Connector 10 
30 DB4 Data Bus 4 TTL TS OUT Expansion 1 1  Connector 1 1  
31 DB3 Data Bus 3 TTL TS OUT Expansion 1 2  Connector 1 2  
32 DB2 Data Bus 2 TTL TS OUT Expansion 13 Connector 13 

33 DB1 Data Bus 1 TTL TS OUT Expansion 14 Connector 1 4  
34 DB0 Data Bus 0 TTL TS OUT Expansion 15  Connector 15  
35* VCL Video Clock .el2 1 LSTTL Expansion U Pin 4 of U10 
36* +sv +5-volt supply 200 ma Expansion 21 Connector V 

Notes: (See • Above} 
Pin 1-Ground should be heavy foil or No. 18 wire-al l  other connections are wire pencil short leads. Do not use ribbon cables or attempt extension. 
Pin 1 6, 1 7-Chlp-select l ine from decoding to display memory is broken by cutting foil and then replaced with a negative logic OR (positive AND} of 

the original chip select and the tvt chip select. 
Pin 20-Decode Enable output goes low when tvt is NOT scanning; goes high otherwise. Decoding must be disabled during active Scans to allow Scan 

memory access to data bus. 
Pin 26-Address l i ne AO is not used In M module as ihe Scan microinstruction indexes every second microsecond. AO is used, however, In  display memory 

addressing . 
Pin 3&--Video Clock must load character generator only when data output is stable and valid. Clock �2 on the KIM. 
Pin 36-+5-volt power from computer must be noise free and well regulated. Heavy wire. 



short pieces of heavy wire. A changeover switch goes near the 
crystal to let you select tvt or normal operation. One foil run is cut 
as shown. 

The KIM-2 conversion is similar with the connector going along 
the far side of the memory card. If you are using some other 4K or 
SK memory add-on instead of the KIM-2, the conversion details will 
stay about the same. 
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Fig. 3-28. Pictorial of KIM-1 to TYT 6 5/8 interface. 



1 .  Add a new, 36-pin, single readout connector along the left edge of the card, the 
side away from the regulator. Small "L" brackets can use existing holes if one of 
the handle eyelets is replaced with a #6 screw. 

2. Make short and di rect wire connections as described in Chart 3-3 . Use a wiring 
pencil for al l  connections except +s a nd GND. 

3. Break TWO foil leads as shown, and add a dpdt cha ngeover switch: 

lVT 
K IM-2 

��:��S� )
,_ 

__ DEN ____________ � DEN )20 

(MOO IFIEDI OR 
...__ _ _, 

: l_ 
APPL ICATION K i "'!" 
_,,,.,, 

. , . .. . .. "' "" ' '"�" ,. , K NEW • V x� 

FROM 
K IM-1 C , 0 , E , F  

K IM-2 

APPLICATION ...-/ 
!DECODED 1-4) / 

PREV IOUSLY UNUSED 
INVERTER 

/ 
CUT FO IL lVT 

cs r  11 

REMOVE ALL EXTERNAL CONNECTIONS 
FROM K IM-2 "BO SELECTE D "  16 

Note that we now have a new input pin on Connector 5 that is d riven by KIM-1 de
codings K l ,  2, 3, and 4 i n  parallel from Application connector C, D, E, and F. 
We a lso have a new output pin on Connector 3 that provides a ground for the KIM-1 
Decode Enable. This is connected to Application Connector K on an  unmodified KIM-1 
and to Expansion Connector 20 or a KIM-1 modified per Fig. 3-27. 
Note further that BO SELECTED output Connector 16 is not used . 
These modifications cause your KIM-2 to respond to addresses 0400-1 3FF. The program 
address switches are no longer used. 

Fig. 3-29. Modifying your KIM-2 for the TVT 6 5/8. 

Always be sure to keep your upstream tap connections short and 
be sure to connect your upstream tap to the memory you are going 
to display. Note that your "bare" KIM-1 is usually limited to 512-
character or smaller displays. 

Other Micros 

Chart 3-4 is a checklist that describes how to interface a proces
sor-based video display to your particular microprocessor. As we 
have seen, interface to the KIM and other 6502 systems is very 
easy, and conversion to 6800 systems usually is about as easy. 

What about the other microprocessors, particularly the 8080, Z-80, 
1802 COSMAC, the 2650, the 8048, Bipolar beasts, and so on? The 
answer right now is "we simply have not tried it." Microprocessor
based video displays should, in theory, be useable with any micro 
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Chart 3-4. Checklist for Adapting Your Microprocessor-Based 
Video Display to Your Microprocessor (Most 6500, 6800, 8080, 

and Z-80 Systems Can Be Made to Meet These Needs) 

D Upstream Tap Must Be Separately Available From Data Bus. 
-This means that a noninverting, separately enabled external driver 

must exist or be added between memory output and the computer 
true data bus. 

D During a Scan, the Display Memory Addresses Must Change Once 
Each Microsecond. 
-This means the program counter must be able to cycle at a 1 -MHz 

rate, or else something must be done at the display memory to 
cause the address l ines to appear to change at this rate. 

D Display Memory Addresses Must All Be Present During a Scan. 
-This means that In systems having multiplexed data and address 

l ines, all lower address l ines and at least some higher address 
l ines must be stored for stable use. This also means addresses 
have to be latched and held during "floating" times, such as the 
"Status word" time on an 8080. 

D Each Character or Chunk Time Must Be a Constant 1 Microsecond. 
-This may mean that the fetch and execute times must be the same 

on slower microprocessors. 

D Everything Else Must Be Disabled During a Scan. 
-This means the Decode Enable output from the interface hardware 

has to be able to deactivate all other addressed locations. 

D The Display Memory Must Be Enabled Either From the Computer or 
the TVT Interface Circuit 
-This means that the normal CS line on the display memory must be 

broken and OR logic or its PROM equivalent must be added. 

if you go to enough trouble. On the other hand, we hand picked the 
6502 since it seemed the best suited to develop these techniques. 

TELEVISION INTERFACE 

AH of your graphics Scan programs, all shorter-line alphanumeric 
programs, and a few long-line alphanumeric programs run with a 
display at normal or near-normal horizontal rates. If you have a rf 
modulator, a video monitor, or a fully converted tv set on hand, all 
you have to do is connect the Video output of your tvt to the 
Video input of the monitor, modulator, or modified ( old way ) 
television set. 

You use a shielded cable. If you have control over the connectors, 
use a phono jack on the tvt end and a miniature phone plug at the 
display end. For premium display systems, use BNC connectors 
instead. 
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Fig. 3-30 shows the two output waveforms available from the TVT 6%. The Video output approximates EIA ( Electronic Industries Association ) standard video. White is a positive voltage of approximately I volt. Black is a positive voltage of approximately 0.25 volt, and sync tips are "blacker than black" at ground. A new "tv" output is also available. This offsets the waveform so the white level is at +4 volts. This +4 volts is the same bias voltage that many solid-state tv sets need at their first video stage input. The tv output greatly simplifies interface since the translating is already done for you. 
WHllE 

I ------------ + 4 V 

---- -----/--------- ,_ 
/ BLACK 

----- + 3.25 V 
------- + 3 V 

SYNC 

(A} "TV" output. 

WHITE 

----------- + 1 V 

----- -t0.25 V 
------- GND 

SYNC 

(B) "VID" output. 
Fig. 3-30. Tvt output waveforms. "TV" output simplifies Iv direct video inter

face. "YID" is for monitors. 

Adding a TVT Input to Your Television Set The conversion to be described next will let you use the television set normally or as a M display. Automatic video changeover is done with the headphone jack. Unplugging your M restores normal operation. Note that what we are about to show you will onl,y work 
with a tvt circuit that has a pretranslated tv output avaflable. A checklist of the things in your tv set which you want for conversion is provided in Chart 3-5. Always start with this list and then select a suitable tv set. Do not just grab any old junker set and try to use it. You will want a small screen black and white portable set, solid state, no tubes. Above all, the set must have a power transformer 
and must not be a hot-chassis type. A Sams PHoTOFACT Folder or other schematic MUST be on hand. ( Obtain PHoTOFACT Folder 
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Chart 3-5. The Best Possible TV Set for Cheap Video Display 
Use Will Have These Features 

O Not a Hot Chassis; Uses Power Transformer 

O Has Photofact or Other Schematic Available 

O Black and white 

O Small screen 

O Easy to work on 

D Low horizontal supply voltage (40 volts or less) 

O Has headphone jack 

O Has horizontal yoke Inductance between 1 00 and 350 mlcrohenrys 

from your local electronics parts disbibutor, or order direct from 
Howard W. Sams & Co. Inc.) 

An already-there earphone jack will be a big help. And, if you 
are going to modify the width, things will be easiest if the horizontal 
deflection works off of a low-voltage supply, and the deflection 
horizontal inductance of the yoke is between 100 and 350 micro
henrys. 

The worst possible set to use is an old tube-type clunker. These 
use a different first video bias level than solid-state sets and rarely 
have enough sharpness or uniformity for a quality display. They are 
also a mess to work on. 

The best possible set is one that has an optional battery pack 
that goes with it. While we usually will not need the battery, the 
design of this type set almost always uses a low horizontal deflection 
supply voltage and includes a power transformer and earphone 
jack; it often is extremely easy to work on and gives a sharp display 
as well. 

Your actual conversion is very simple. You borrow the earphone 
jack and put it in the video line between the video detector and the 
first video stage so that plugging in the tvt switches you over auto
matically. Details are shown in Fig. 3-31 for a Sears, Roebuck & 
Company tv set. 

You can do your conversion this way: 

D With your schematic, first verify that you do NOT have a hot
chassis set by finding the power transformer. Now, find the 
input to the first video stage and make sure it needs an input 
bias level of +3 to +4.2 volts. 
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Fig. 3-31. Modifying a Iv set for direct video Input from "TV" output of cheap 
video system. 

D Find the headphone jack and familiarize yourself with its 
circuitry. In particular, note the switching action that dis
connects one lead when the jack is u�ed. 

D Remove all connections from the jack, including, if possible, 
any ground connection. Reconnect together any leads as 
needed to restore normal speaker operation. Check to make 
sure that the speaker still works after removing all jack con
nections. 

D Prepare two pieces of shielded cable that will reach from the 
video detector to the phono jack and from the phono jack to 
the first video stage. Make these runs as short as possible, but 
provide enough room to work. RG-174U miniature coax is 
best, but any quality audio or CB shielded cable will do. 
Shielded cable ends are usually prepared by carefully poking 
a hole in the braid and pulling out the center conductor. 

D Break the connection between the video detector and the first 
video stage by cutting foil as needed. Make sure that any and 
all bias components stay on the video detector end of the cut. 
A "bare" input to the first video stage base or IC input pin 
should be the only thing on one side of the cut. 

O Connect your first shielded cable between the bare input to 
your first video stage and the phone jack contact that gets 
connected to the center of the miniature phone plug when 
the plug is inserted. Connect the ground of this cable to a 
shield or other ground point as close as possible to the first 
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video input stage. Connect the ground on the other end to the 
frame of the phone jack. O Connect the second shielded cable to the video detector and biasing components. Connect the other end to the contact on the phone jack that gets disconnected when the plug is inserted. The ground of this cable goes to a shield or other ground near the video input on end and to the frame of the phone jack on the other, just like the other cable. Avoid any other ground or chassis connections at the phone fack end. D Put the tv set back together and check it for normal operation. Plug a miniature phone plug into the phone jack. Change tuner to a blank channel. The screen should go blank with no background noise. Remove the jack, change channels and the program should return. With any television interface, you will get best operation on an unused channel at minimum contrast levels and just enough brightness for a viewable display. Too much contrast cuts ·your video bandwidth and too much brightness blooms your spot size. There might be a 2-megohm or so lightning protection resistor between the hot side of the power line and the chassis. If this is present, remove it unless you are still going to use the set on an outdoor antenna. The current through this resistor is not enough to give a dangerous shock, but it can produce a "liveness" or fuzzy sensation if the chassis or the computer is touched. 

Removing the Sound Trap A sound trap is a 4.5-MHz filter somewhere in the video path of the television set. This trap is used to keep audio from visibly interfering with the picture. If your set is to be used mostly as a cheap video display, you might want to remove the sound trap. This will increase the video bandwidth and improve the transient response. Always study your schematic before altering any television set. The sound trap is often a series coil and capacitor to ground forming a series resonant circuit. Often you can simply lift one end of the capacitor to defeat the trap. While series traps are the most common, there are many odd-ball variations on sound traps. Some Panasonic tv sets use a 4.5-MHz crystal; this is defeated by lifting the hot lead. A few sets may use a parallel resonant trap that the video has to go through to reach the output stage. These traps are defeated by shorting, rather than opening. Some cheap sets combine the sound pickoff with the sound trap; these can present problems. The best method on these 
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is a try-it-and-see approach. If your modification improves the dis
play, use it. 

You can minimize the effect of a sound trap without modifying 
it simply by backing the slug almost all the way out. Normal tv 
operation is restored by readjusting for minimum visible audio 
interference in the picture. 

Extending Hold Range 

Should you want to use the 64- or BO-character lines or anything 
else that needs a reduced horizontal rate, you will have to run at 
lower than normal horizontal- Scan rates. This might be below the 
range of your horizontal-hold control that sets the horizontal-Scan 
frequency. You can check this detail without taking the set apart. 
Simply hold a scope probe somewhere near the left rear comer of 
the set by the high voltage cage and vjew the flyback pulse. 

As you adjust your horizontal-hold control ( on a blank channel) 
the pulse-to-pulse spacing should change. A 63.5-µ,s period is needed 
for normal horizontal operation and should be in the center of the 
hold-control range. On some sets a special square or hex alignment 
tool may be needed to adjust your hold control. These are available 
at tv parts supply houses at little cost. 

For BO-character lines, you should be able to extend the hold con
trol beyond 105 µ,s. If this is out of range, study your schematic and 
find the capacitor that determines the horizontal-hold frequency. 
Often this will be a capacitor that is directly across part of the 
horizontal-hold coil. Add a new mylar capacitor of one third the 
original value in parallel with this existing capacitor and recheck 
the hold-control range. Adjust the capacitor value if needed. After 
you get the low range plus a little bit more, be certain to check the 
high end to make sure you can still lock on ordinary program 
material at 63.5 µ,s. 

Fig. 3-32 shows how to change this capacitor on two typical sets. 
Once again, be sure you are working on a small screen, black and 
white, portable, solid-state set without hot-chassis design. 

Reducing Width 

When you run at a reduced horizontal frequency, the width may 
go up. You will want a narrower display. You also might want to 
reduce width on a normal display, either to minimize overscan 
built into the tv set or to avoid spot defocusing that takes place at 
the screen edges. 

We reduce set width by adding a small, homemade coil in series 
with the horizontal-yoke lead. Fig. 3-33 shows how this is done. 
The method we will show you works on small screen sets with a 
low horizontal-deflection supply voltage and having a horizontal-
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Fig. 3-32. Extending horizontal hold range for lower horizontal 

frequency operation. 

yoke inductance of several hundred microhenrys. 
If you have an existing width control or jumper, check it first 

to make sure it is on its minimum position. This usually won't help 
much. 

For your initial trial, wind 50 turns of No. 22 enamel wire on a 
½-in ( 1.27-cm) nylon form and put this in series with the horizontal
yoke lead. Always remove tv set power when making yoke connec-
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tions. Never power a tv set with an open yoke conection. And never 
reduce the width of a color tv set. 

Have your tvt up and generating characters in the right format 
and have your hold locked before checking width. If the coil does 
the job, you are all set. If the width is still too wide, add turns. 
Remove turns if you have gone too far. Cutting the turns by 30% 
cuts the inductance in half. Increasing the turns by 40% doubles 
the inductance. 

When you have the right number of turns, firmly mount the new 
width coil in some convenient place. Try to have the coil away from 
everything, more or less supported in mid air, but close to the yoke. 
If you get too close to the neck of the tube, you might get some 
field distortion that will give you a wavy or "S" shaped display. 
Repositioning should correct this. 

Never use an iron core, a high-loss core material ( e.g., wood) , or 
fine wire for your new width coil. This must be a high Q coil to 
preserve linearity. 

You can add a switch that shorts out your new width coil as 
needed to restore ordinary width. Never open the yoke connections 
of a powered tv set. 

After you have reduced the width on your tv set, you will 
probably want to change the display height and positioning. Usually 
you will find a vertical-height control at the rear of the television 
set. A vertical-linearity control also should be nearby. These two 
controls strongly interact on most sets, so you have to adjust them 
both every time you change the display size. Linearity is properly 
set when all character rows are evenly spaced and the same height. 
These controls are usually screwdriver adjustable. 

The positioning of the display is usually controlled by two small 
ring magnets on the crt neck behind the deflection yoke. These are 
rotated as needed to center your raster. Note that the positioning 
controls on your tvt can only move the live, unblanked portion of 
the display around with respect to the total raster. The raster itself 
can be moved only by readjusting these ring magnets. 

Running at reduced width and reduced horizontal frequency at 
the same time should not be particularly rough on a small screen 
tv set that uses a low-voltage supply for horizontal deflection. If 
you get any obvious unhappiness such as bad linearity, high-voltage 
problems, etc., return to normal operation and sneak up on the 
problem. 

Reduced horizontal operation can make the flyback sing at an 
audio rate. Depending on your set, this can range from just barely 
noticeable to absolutely "up the wall" intolerable. The singing is 
caused by the flyback transformer. Its normal pitch is high enough 
that most people cannot hear it, until you reduce the Scan fre-
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quency. You can minimize this singing by "glopping" parts of the 
flyback with silicon bathtub caulk. Be sure to use clear silicon 
rubber and avoid increasing winding capacitance or putting so 
much on that the flyback overheats. Extra circuit board supports 
and tightening everything will also help, as will covering up any 
new holes such as left off tuning knobs or anything similar. Internal 
sound deadening material can also help provided that it does not 
interfere with air circulation and is not extremely flammable. 

Generally, you can minimize, but not eliminate, the singing. If the 
final result is still annoying, try a different brand television set, or 
run programs with a higher horizontal frequency. 

You can get a fair idea ahead of time on this singing by simply 
lowering the horizontal frequency as far as possible and switching 
to an unused channel. The problem should not be as bad with sets 
that have the flyback inside a high-voltage cage. 
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CHAPTER 4 

Building The TVT 6 5/8 

The TVT 6% is a typical example of what you can do with cheap 
video techniques. This is a single sided pc board as shown in Fig. 
4-lA that holds six low cost integrated circuits. One or two additional 
ICs are added in the form of a small plug-in module. A closeup view 
of a plug-in module appears in Fig. 4-lB. The large socket in the 
center accepts an upper-case-only character generator or any of a 
number of plug-in modules for upper- and lower-case alphanumerics; 
color; or high-resolution graphics displays. 

Chart 4-1 lists some of the many things you can do with this cheap 

Chart 4-1 . What Your TVT 6 5/8 Can Do 

Alphanumeric Displays: 
* 1 l ine of 8, 1 6, 32, or 40 characters * 1 2  llnes of 80 characters * 16 llnes of 32, 40, or 64 characters 
*' 24 lines of 80 characters 
*' 32 lines of 32, 40, or 64 characters * PLUS . . . .  most any other combination you can dream up 

Graphics Displays: 
* 128 X 128 and 256 X 256 black and white * 48 x 64 and 96 x 128 color 
* PLUS . . . .  most any other combination you can dream up 

Optional System Features: 
*' Full Transparency with high throughput 
* Choice of ASCII characters or graphics chunks 
* Scrolling Cursor with full editing * Immediate access to screen memory at any time * Works with 6502, 6800, and other micros 
* Combined graphics and alphanumeric displays 
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(A) Video card. 

(B) Closeup of four-color graphics module. 

Fig. 4-1. TVT 6 5/8 cheap video card and plug-in module. 

video system. This is a third-generation design that picks up the 
best features of the TVT6 and TVT6L that earlier appeared in vari
ous issues of Kilobaud and Popular Electronics. New features added 
include the full graphics ability, transparency options, a simpler and 
cheaper overall circuit, and much more modest use of microcomputer 
address space. 

In this chapter we will show you everything you need to build and 
use the TVT 6% on your own. Your cost should be under $20 if you 
etch your own board and bum your own PROMS. If you prefer, 
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assembled units, kits, circuit boards, and software tapes are commercially available. One source is PAIA Electronics, Box 14359, Oklahoma City, OK 73114. Other sources include several retail computer stores. You will also be shown how to check out and debug this board, again using the 6502 software and a KIM. Then, in the next chapter, we will look at how to pick up full transparency. 
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Fig. 4-2. Block diagram of TVT 6 5/8. 
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HOW IT WORKS A block diagram of the TVT 6o/s is shown in Fig. 4-2, followed by the schematic in Fig. 4-3 and a parts list in Chart 4-2. · 
C1 ,3 
C2,6 
C4 
C5 
C7 
CB, 1 5-18 
C9 
C1 0 
C1 1 
C1 2 
C13 
C14 
D1-8 

IC1 

IC2 

IC3 
IC4 
IC5 
IC6 
IC7 
J1 ,2 
R1 ,15 
R2 
R3 
R4,6 
R5,7 
RB 
R9 
R10 
R1 1 
R12, 1 6  
R13 
R14 
R17 
S1-S4 

MISC. 
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Chart 4-2. TVT 6 5/8 Parts List 

470 pF disc ceramic capacitor 
270 pF polystyrene capacitor 
4700 pF polystyrene or mylar capacitor 
.01 µF mylar capacitor 
0.22 µF mylar capacitor 
0.1 µF disc ceramic capacitor 
33 µF tantalum capacitor 
62 pF polystyrene capacitor 
1 50 pF polystyrene capacitor 
33 pF polystyrene capacitor 
1 200 pF polystyrene or mylar capacitor 
3300 pF polystyrene or mylar capacitor 
1 N4149 or equivalent slllcon computer diode; D3 must be 

quality unit with low storage time 
IM5610 or equivalent 32 X 8 TRI-STATE bipolar PROM, 

programmed to DECODE truth table selected 
IM5610 or equivalent 32 X 8 TRI-STATE bipolar PROM, 

programmed to Scan truth table selected 
4584 CMOS Hex Schmitt Trigger 
741 65 Parallel In, Serial Out Shift Register, TTL 
7405 Hex open collector TTL Inverter 
74LS04 Hex LS TTL Inverter 
Plug-In Module-see text and Figs. 4-10 through 4-14 
Side entry pc phono jack 
4. 7K, 1 / 4 watt carbon resistor 
100K Upright pc trimmer, H POS 
SOOK Upright pc trimmer, V POS 
22K, 1 / 4 watt carbon resistor 
1 .5K, 1 / 4 watt carbon resistor 
1 K, 1 / 4 watt carbon resistor 
3.3 Megohm, 1 / 4 watt carbon resistor 
10K upright pc trimmer, CLARITY 
1 00 ohm, 1 /4 watt carbon resistor 
22 ohm, 1 / 4 watt carbon resistor 
150 ohm, 1 / 4 watt carbon resistor 
470 ohm, 1 / 4 watt carbon resistor 
250 ohm upright pc trimmer, WIDTH 
Miniature spdt slide switches, 0.1 25 Inch centers, 

Poly Paks EID3429 or equivalent 
Pc board, etched and drilled (see Figs. 4-5 through 4-7) ; 

bus strips for + and ground (see Figs. 4-8 and 4-9); 
data-to-video IC? programming modules (see Figs. 4-10 
through 4-1 4) ; Jumper material ; pc test point termlnals 
(1 1 ) ;  insulated sleeving; solder; 24-pln IC socket (1 ) ;  
16-pin I C  sockets (3) ; 14-pin I C  sockets (3) ; Optional-
36-pin 0.156" single entry pc connector; Optional-out
put cable, shielded phono jack to miniature phone 



Most of the circuit is based on the hardware details we looked at 
in the preceding chapter. A Decode PROM ( I Cl) is our control cen
ter that decides what the tvt is to do and when it is to do it. The Decode PROM controls our Scan PROM (IC2) which gives us a 
Scan microinstruction when activated. 

A plug-in data-to-video module is used to pick alphanumeric or 
graphics display options. We will shortly be looking at details on 
four different modules. The input to our data-to-video module comes 
from the upstream tap in the display memory of the microprocessor. 

Three lines are routed from the Decode PROM to the Data-to
Video converter. One is a Row 1 command used for alphanumerics. 
One is a Row 2 command for alphanumerics or a Blanking command 
for graphics. The final is a Row 4 command for alphanumerics and 
an Al B Select command for graphics with split chunk formats. 

Yet another data-to-video module input is derived from VD7 by 
way of a winking cursor generator. ThisCursor command is blinked 
by oscillator IC3 and gated by diodes Dl and D2. 

The plug-in module outputs to a video-shift register IC4. Loading 
and clocking of the video-shift register is handled by gated oscillator 
IC6. The coarse clock rate is set by the SLOW-FAST switch, while the 
fine rate is tuned with the WIDTII control. These rates are adjusted 
depending on the module in use. 

The output of the video-shift register goes through a polarity se
lector S3 to pick normal ( + ) or inverted ( -) video. The selected 
video is routed to the bandwidth enhancer in IC5 that works with 
RIO and CU. The CLARITY control predistorts the video to meet the 
needs of a limited tv video bandwidth. 

Meanwhile, horizontal- (DEN) and vertical- (VR) sync outputs 
are routed to a positioning and delay circuit located in IC3 and IC5. 
Horizontal and vertical delayed-sync signals are combined at the 
R6, C6 junction to form composite sync. 

The composite sync and the enhanced video are combined with 
IC5 and output as ordinary video at Jl, with an approximate output 
impedance of 100 ohms. The diode and resistor offset network 
formed by D4 through D7 and Rl3 up-translate the video for our 
tv output which is referenced to a +4-volt white level. A remaining 
gate in IC5 is used to pick up a blanking input. 

Besides the plug-in modules, the graphics options, and the more 
efficient use of address space, several obvious differences can be 
noted between the TVT 6% and earlier designs. These are: 

* .  The SCAN Enable lead from the instruction decoder PROM to 
the SCAN PROM is broken and now goes off board. A jumper must be provided for 6502 or 6800 operation. 
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* The horizontal-sync input is also broken and now goes off 
board. This can let you run full transparency by filling in sync 
pulses from some other source. A jumper must be provided be
tween DEN and HIN for normal use. 

* An asynchronous blanking input is now available. This can be 
used to help transparency or simply to turn off the display. The 

BNK input must be grounded for a visible display. 

Note particularly that the TVT 6% is NOT pin compatible with 
earlier designs and earlier interface connections. This pin compati
bility was traded off for improved operation, lower cost, and better 
transparency. 

CONSTRUCTION DETAILS 

A full size printed-circuit layout appears in Fig. 4-4 with its me
chanical and drilling details in Fig. 4-5, and solder mask in Fig. 4-6. 
A single-sided layout with only ten jumpers is used. Components are 
arranged as shown in Fig. 4-7. 

Two bus strips are used across the back of the circuit board for 
supply and ground connections. Fig. 4-8 shows the full-size pat
terns for these strips. These are made by filing, routing, or otherwise 
cutting pieces of ½6-inch X ¾6-inch plated-brass strip. Ordinary 
½2-inch X ¼-inch hobby-shop brass strip may be substituted. Fig. 

1/61 
DR ILL 

1----------- 5 314" ------�o=NE�
RE

=o,�
D

-- �M=AK,,-E 1 
114• 6CM) FROM l/16" SINGLE 

S I DED G-IO MAT'L 
Fig. 4-5. Mechanical and drilling details for TVT 6 5/8. 
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4-9 shows the locations of these strips on the foil side of the circuit 
board. Note that the ground strip does NOT contact the +5-volt 
foil run; that the +5-volt sbip does NOT contact the ground foil; and 
that the +5-volt strip does NOT contact any pins on the Data-to
Video converter module or diode DB. 

DATA-TO-VIDEO MODULES 

The available pinouts to our data-to-video module are listed in 
Chart 4-3. A 24-pin IC socket is used as a connector. Inputs to the 

Chart 4-3. Pinouts for the Data-to-Video Converter Modules 

Pin Function 
1 Video Shift Register Serial Input 
2 Video Shift Register Parallel Input A 
3 Video Shift Register Parallel Input B 
4 Video Shift Register Parallel Input C 
5 Video Shift Register Parallel Input D 
6 Video Shift Register Parallel Input E 
7 Video Shift Register Parallel Input F 
8 Video Shift Register Parallel Input G 
9 Video Shift Register Parallel Input H 
10  Ground 
1 1  Winking Cursor input 
12  No Connection- reserved 
13 Video Data Input VD7 
14 Row 1 select 
15  Row 2 or Blanking Select 
1 6  Row 4 o r  A/B select 
1 7  Video Data Input VD0 
18 Video Data Input VD1 
19  Video Data Input VD2 
20 Video Data Input VD3 
21 Video Data Input VD4 
22 Video Data Input VD5 
23 Video Data Input VD6 
24 +5-volt supply 

module consist of eight video-data lines, three instruction decoder 
lines, and aCursor-control line. The outputs from the module go to 
the eight parallel inputs and the single serial input of a video-shift 
register. An unconnected pin, +5-volt supply, and ground completes 
the count. 
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(8) Overlay with phantom foll. 

for 1VT 6 5/8. 
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(A) + bus. (B) Ground bus. 

Fig. 4-8. Full size bus strip pallems. 

You will find details on four different data-to-video modules in 
Figs. 4-10 through 4-13. The construction of these modules is some
what unusual, but they are simple and inexpensive to build. 

Module A provides upper- and lower-case alphanumeric charac
ters. Module B is used for 256 X 256 graphics and is the only module 
that uses a second integrated circuit. Module C is used for 96 X 128 
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GROUND FOIL 
RUN 

GROUND BUS 
( 7TABSI� 

Fig. 4-9. Bus strips are located on the foil side as shown. 

color graphics or 128 X 128 black and white graphics. Module C 
combines an integrated circuit LS TTL quad selector switch with a 
transistor blanking inverter. 

Module D is not really a module-it is a plain old single supply 
2513 character generator with a jumper wire attached at five places. 
This is the most economical alphanumeric module and is upper case 
only. 

Modules A, B, and C plug in with their ICs "upside down," that 
is, the pins are pointing away from the main circuit board. Module 
D plugs in the usual way. This strange convention is used to make 
all the modules as pin compatible as possible while keeping a low 
profile. Jumpers are used in all four modules to enable us to use a 
single-sided pc board layout. 

STEP BY STEP ASSEMBLY 

The upcoming step-by-step assembly instructions assume you have 
on hand a fully-etched, drilled, and solder-masked pc board, along 
with two ready-to-install bus strips. We will further assume you are 
using the 658-KD8 ("Kirn Decode-8-dot character") PROM of Fig. 
3-5 for ICl and that you are using the 658-KS64 ( "Kirn Scan-64 
characters" ) PROM of Fig. 3-8 for IC2. You should have on hand a 
modified KIM-1, following the interface details of the previous chap
ter, a modified tv set or other way of accepting and displaying video, 
and a triggered-sweep scope for debugging. 

If you are using a commercial kit to build your TVT 6%, be 
sure to check for any updates or corrections on the instructions that 
follow. 

Your TVT 6% board assembly can go like this : 

D Carefully inspect the board for opens, solder bridges, mask, or 
overlay problems, etc . . . .  Try tinning one of the large round 
areas on the board. If there is any problem with easy solder 

169 



adhesion, carefully clean all areas to be soldered with an ordi
nary pink eraser. Avoid handling the board as it will make 
soldering more difficult. 

D Insert the optional 11 pc terminals in the following locations. 
The terminals are staked to the foil side using an automatic 
center punch. They are then soldered after staking: 

0 GND 
0 GND 

0 HR 
0 CK 

0 VR 
O LD 

0 RV 
0 DV 

D cu 
D +5 
D CV 

D Add three jumpers using insulated sleeving to the component 
side of the board and solder in place: 

D Jumper below IC4 ( long ) 
D Jumper below IC4 ( short) 
D Jumper above "HR" test point 

D Add seven bare jumpers to the component side of the board 
and solder in place : 

D Jumper to the left of "HR" 
D Jumper to the left of "Cl" 
D Jumper to the right of "Cl" 
D Jumper to the right of "C3" 
D Jumper inside IC7 callout. Make sure this jumper is Hat 

against the board. 
D Vertical jumper between ICl and IC4 
D Vertical jumper below "LD" test point 

D Add a 24-pin socket at IC7. If the socket has polarity marks on 
it, orient the socket to match the printing on the board. Bend 
all leads Hat against the board. On this socket, keep the solder 
joints as Hat as possible. 

D Add three 16-pin sockets at the following locations, again 
watching polarity if the socket is so marked :  

0 ICl D IC2 D IC4 
D Similarly, add three 14-pin sockets at the following locations :  

0 IC3 D IC5 D IC6 
D Place a 1N4148 or similar silicon computer diode at DB, being 

careful to observe polarity. Be sure to cut the leads on this 
particular diode very close to the foil. 

D Add six more 1N4148 or similar diodes at the following loca-
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tions, again observing polarity : 
0 Dl D D4 0 D6 
D D2 D D5 D D7 
D D3 



D Tin all the points the ground bus is to contact. Then carefully remove as much of this new solder as possible, using a solder syringe or solder capillary braid. Then carefully tin both ends of the seven-tab ground bus. D Refer to Fig. 4-9 for the location of the ground bus. It goes nearest the connector. Make sure the ground bus is fl.at against the board and perfectly vertical and centered from end to end on the pads it has to contact. Tack the bus in place at the ends only. 
D Check to make certain that your ground bus starts at the ground end, contacts seven places total, but does NOT extend to the +5-V line. D Solder the ground bus on both sides at each of seven places. Alternate sides of the bus on your first soldering pass to keep the bus from twisting or bending. Check the solder at all pads. 
D Similarly prepare the pads for the eight-tab + bus by first tinning and then removing solder. Tin both ends of the + bus and tack in place as shown in Fig. 4-9. D Check to be certain that the + bus starts at the +5-V foil run, contacts eight places total, and touches nothing else, ESPECIALLY ANY PINS ON IC7, OR DIODE DB. D Solder the + bus to all eight pads on both sides of the bus. Check the solder at all pads. D Once again, carefully inspect both the + bus and the ground bus for contacting only where they are supposed to go. D Add resistors in the following sequence : D Rl5 4.7K, yellow-purple-red D Rl6 22 ohms, red-red-black 

D RS lK, black-brown-red D Rl4 470 ohms, yellow-purple-brown D Rl3 150 ohms, brown-green-brown 
D Rl 4.7K, yellow-purple-red D R5 1.5K, brown-green-red D R6 22K, red-red-orange D R4 22K, red-red-orange D R9 3.3 Meg, orange-orange-green 
D R7 1.5K, brown-green-red D Rl2 22 ohms, red-red-black D Rll 100 ohms, black-brown-brown Solder the resistors in place. 
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D Add 0.1-µ,F disc ceramic capacitors at the following locations: 
D C8 D Cl7 
D Cl5 D Cl8 
D Cl6 

D Add a 33-µ,F tantalum capacitor at C9, observing polarity. 
D Add two 470-pF disc capacitors at the following locations: 

D Cl 
D C3 

D Add a 0.015-µ,F mylar capacitor at C5 
D. Add a 4700-pF mylar capacitor at C4 

\_ , 

D Add a 1200-pF polystyrene or mylar capacitor at Cl4 
D Add a 3300-pF polystyrene or mylar capacitor at Cl3 
D Add a 62-pF polystyrene capacitor at ClO, near IC6 

D Add a 33-pF polystyrene capacitor at Cl2 
D Add a 150-pF polystyrene capacitor at Cll 

D Add two 270-pF polystyrene capacitors at these locations: 
D C2 
O .C6 

D Add two phono jacks at Jl and J2. Be sure the jacks are flush 
with the board before soldering in place. 

D Add four spdt slide switches to the following locations : 
0 SLOW/FAST 
D 64/32 
D +/-
0 CON/OFF 

D Add WIDTH control Rl7, 250-ohm trimmer pot (might be coded 
R251 ) 

D Add CLARITY control RIO, 10-K trimmer pot ( might be coded 
Rl03 ) 

D Add v POS control R3, 500-K trimmer pot (might be coded 
R504 ) 

D Add H POS control R2, 100-K trimmer pot ( might be coded 
R104 )  

D Carefully inspect the board for 
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D Everything properly soldered 
D Anything missing 
D Bus to board clearances 
D Diode polarity 
D Electrolytic polarity 



O Do NOT install the integrated circuits at this time. 
O This completes assembly of your TVT 6%. Proceed to module 

construction. 

MODULE CONSTRUCTION 

MODULE "A": Module "A" is an upper- and lower-case alpha
numeric module, detailed in Fig. 4-10. 

O Carefully inspect the circuit board for opens, solder bridges, 
etc. Try tinning one of the runs on the board. If there is any 
problem with easy solder adhesion, carefully clean all areas to 
be soldered with an ordinary pink eraser. A void handling the 
board as it will make soldering more difficult. 

O Set your pc board bare side up with the notch in the upper 
left-hand comer. Insert a 0.1-µ.F disc ceramic capacitor in the 
two middle, left-most holes. Solder the capacitor in place. 
Save the excess leads. 

O Use the excess leads from the previous step to provide a jumper 
in the two middle, right-most holes. 

O Now provide a second jumper immediately to the left of the 
one installed previously. 

O Add an 18-pin integrated-circuit socket in the remaining holes 
between the capacitor and jumper. If the socket has orienta
tion marks on it, place these toward the capacitor. 

O Insert a pin strip above the socket. The long end of the pins 
and the spacer go on the bare side; the short pin side goes to 
the foil and is soldered. Be sure this strip is flat before solder
ing. 

O Add a pin strip to the 12 remaining holes at the bottom. Be 
sure this strip is flat before soldering. 

O Carefully study Fig. 4-10D and add the following wire pencil 
connections on the FOIL SIDE: 

O IC pin 12 to module pin 4 
D IC pin 13 to module pin 5 
O IC pin 15 to module pin 7 
D IC pin 16 to module pin 8 

Be sure you understand the numbering before you start. On 
the foil side, the connector pins run counterclockwise; the 18-
pin IC count runs clockwise; and end jumper or capacitor pads 
are not counted. 

D Check the previous step. Your four connections· should be a 
"cross within a cross" that reverses the sequence of five side
by-side pad pairs. 
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VD7 ©- NC 

Upper-and Lower-Case 

Parts List 

1-MCM6674 Character Generator (Motorola) 
1-18-pin low-profile IC socket 
1 -0.1 -µ,F disc ceramic capacitor 
2-12-pin strips (AMP 1 -640098-2) 
1-circuit board "A" 
2-jumpers made from capacitor leads 
4-jumpers made with wiring pencil 

-solder 

Vee 

A6 

A5 

8670 

A4 00 

Al 

A2 

DI 

D2 

Al DJ 
AO 04 

RSl 

RS2 

RSI NOTCH AS SHOWN 

(A) Schematic. (B) Foil pattern. 

Fig. 4-10. Module A 



A 
Alphanumeric M.odule 

How It  Works 

ASCII code is input on pins YOO through VD6. Row l , 
2, and 4 commands are input from instructlon de
coder. Winking cursor CS command is input from 
cursor gate when switch selected. Dot matrix code is 
output to video-shift-register leads C, D, E, F, and G. 
Ground is hard-wired to video-shift-register leads A, 
B, H, and the video-shift-register serial input. Input 
VD7 is not used. 

P IN  STRIPS 121 

0 
13 

24 • • I 
• • 
• • 
• • 
• • 
• 

6674 
• 

• • 
• • 
• • 
• JO • 
• • 

13 • 

I 
• 12 24 

JUMPERS 121 

(C) Pin side. (D) Foi l side. 

WIRE PENC IL  
JLMPERS l4J 

Normal Settings: I Cursor ON; FAST clock; WIDTH set to SEVEN pulses., 

construction details. 
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256 X 256 Black and White 

Parts List 

2-7 4LS08 Quad AND Gate, LS TTL 
1 -0. l-µ,F disc ceramic capacitor 
1 -circuit board "B" 
2-1 2-pin strips, AMP # 1 -640098-2 
2-insulated sleeving, l /2" 
1 -jumper wire, 3" 
-solder 

PIN 14 74.S08 121 
ICA,B 

>IV ®---1 . � � SERIAi.OUT 

VD6 ��1 ,, � 0 A 
A 11 I I 

=�1 1rtt-r .. � 
VO, � � 0 OUT 

1116" 
1(2. lCMl 

1 13116" 
14.6CMl ::: � t!Q'.?:, I : I � 

.�:::� +-<fv GROUND 

Rl ® NC NC ® CURSOR 

NOTCH AS SHOWN 

(A) Schematic. (B) Foll pattern. 

Fig. 4-11 .  Module B 
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Graphics· Module B 
How It Works 

Eight-bit chunk code is input on pins VD0 through 
VD7. Row 2 command from instruction decoder PROM 
used as a blanking input. Input code is passed out to 
video-shift-register inputs A through H when blanking 
is high. Blank (all zeros) code passed to video-shift
register when blank input is low. Cursor is not used. 
Video-shift-register serial input is hard-wired to 
ground. 

• 
• • 

• 
• 
• 
• 
• 
• 
• . 

(C) Pin side. 

I 

12 

SLEEV ING ON 
CAPACITOR LEAD 

WIRE PENC IL 
JUMPER 161 

Normal Settings: Cursor OFF; FAST clock; WIDTH set to EIGHT pulses. 

construction details. 



D Insert an MC6674 Character generator IC placing the dot and 
notch at the capacitor end. 

D Store your completed Module A in the protective foam sup
plied with the character generator. Always return your rrwd
ule to this foam when not in use. 

This completes assembly of your Module "A." 

MODULE "B": Module B is a 256 X 256 graphics module, de
tailed in Fig. 4-11. 

D Carefully inspect the circuit board for opens, solder bridges, 
etc. Try tinning one of the runs on the board. If there is any 
problem with easy solder adhesion, carefully clean all areas to 
be soldered with an ordinary pink eraser. Avoid handling the 
board as it will make soldering more difficult. 

O Take a 74LS08 Quad AND gate and bend the following pins up 
and over the back of the integrated circuit : 

O Pin 2 O Pin 9 
O Pin 5 O Pin l2 

O Repeat this process with the second 74LS08 Quad AND Gate. 
O Set your pc board bare side up with the notch in the upper 

left-hand comer. Add one of the AND Gates to the left center 
group of holes, so that the notch and dot goes to the extreme 
left. 

O Add the second AND gate so its notch and dot abut the previ
ously installed IC . Solder both ICs in place. 

O Insert a pin strip above the ICs. The long end of the pins and 
the spacer go on the bare side; the short pin side goes to the foil and is soldered. Be sure this strip is flat before soldering. 

O Add a pin strip to the remaining 12 holes at the bottom, again 
making certain it is flat before soldering. 

D Study Fig. 4-lOC. Prepare a 2-inch bare wire. Form a small 
loop in one end and solder this to module pin 15, the third from 
the lower right when the notch is in the upper left. Make this 
solder connection as close as possible to the spacer on the pin 
strip. 

O Route the other end of this wire to the eight pins folded over 
the top of the AND gates. Arrange things for neat and flat ap
pearance, and then solder this wire to all eight folded up pins. 

O Carefully study Fig. 4-11D and add the following six wire 
pencil connections on the FOIL SIDE: 
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D "A" IC pin 3 to module pin 8 
O "A" IC pin 6 to module pin 6 



D "A" IC pin 11 to module pin 7 
D "B'' IC pin 3 to module pin 4 
D "B" IC pin 6 to module pin 2 
D "B" IC pin 11 to module pin 3 

Be sure you understand the numbering before you start. On 
the foil side, the connector pins run counterclockwise, while 
the 14-pin IC counts individually run clockwise. 

D Check the previous step. Your six connections and one foil run 
should reverse the sequence of seven side-by-side pad pairs. 

D Bend two loops near the body of a 0.1-µF disc ceramic capaci
tor. Note that pin 7 of the right-hand gate has no connections 
and needs to be connected to ground. Note that the left-hand 
gate has no connection to pin 14 and needs a connection to 
+5 V. Solder the capacitor between the presently unconnected 
pins 7 and 14 as close to the capacitor body as you can. Do not 
cut the leads. 

D Add a %-inch piece of insulated sleeving to both capacitor 
leads. 

D Lay the lower pin 14 lead flat against the board and solder it 
to the end pin 14 of the other integrated circuit. This lead 
should go to the lower left, parallel to the pad rows. Trim any 
remaining lead beyond this second connection. 

D Lay the upper pin 7 lead flat against the board and solder it 
to the end pin 7 of the other integrated circuit. This lead 
should go to the upper right, parallel to the pad rows. Trim any 
remaining lead beyond this second connection. 

D Store this completed module in protective foam. The foam is 
not needed for static protection on this particular module, but 
helps keep the pins from bending. 

This completes your Module "B." 

MODULE "C": Module C is a 96 x 128 color graphics or a 128 X 
128 black and white graphics module detailed in 
Fig. 4-12. 

D Carefuly inspect, test tin, and clean the circuit board as you 
did for the two previous modules. 

D Set your pc board bare side up with the notch in the upper 
left-hand comer. Add a 2.2-K, red-red-red resistor to the center 
holes in the extreme left side. 

D Add a 0.1-µF disc ceramic capacitor immediately to the right 
of the resistor. Leave enough lead length between the base of 
the capacitor and the board so that you can fold the capacitor 
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V 06  

VD> 

V04 

VDJ 

VD2 

VOi 

VDO 
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96 X 128 Color 

Parts list 

l -74LS1 57 Quad Selector, LS TTL 
l -2N4400 or equivalent silicon NPN switching transistor 
1 -1 K, l / 4 watt resistor 
l -2.2K, l / 4 watt resistor 
1 -0. 1 -µF ceramic disc capacitor 
1 -circuit board "C" 
2-1 2-pin strips, AMP # 1 -640098-2 
4-lnsulated wire jumpers 
1 -jumper made from component lead 
,-solder 

• I V  

2.2K 

(A) Schematic. 

1
0. 11,1F 

!"5151 

Ne--@ 

Ne -@ 

BOTTOM VIEW 

SERIAL OUTPUT 

PARALLEL 
OUTPUTS 

GROUND 

CURSOR 

NC 

NOTCH AS SHOWN 

(B) Foil pattern. 

Fig. 4-12. Module C 



Graphics Module C 

HOOKUP WIRE 
JUMPERS!4J 

How It Works 

Lower chunk code is input on pins VD0 through VD3. 
Upper chunk code is input on pins VD4 through VD7. 
A/8 select code is input from instruction decoder as 
"Row 4" command. Blanking is input from instruction 
decoder as "Row 2" command, and inverted with 
transistor RTL inverter. Selected chunk half is .routed 
to video-shift-register D,E,F, and G outputs when un
blanked. Ground is hard-wired to video-shift-register 
serial input and parallel inputs A,B,C, and D. Cursor 
is not used. 

NPN TRANSISTOR PIN STRIPS (21 

(C) Pin side. (D) Foil side. 

WIR[ PENCIL 
JINPERS I)) 

Normal Settings: Cursor OFF; SLOW clock; WIDTH set to FOUR 
pulses for 1 28 X 1 28 black and white, or to 
THREE pulses for 96 X 1 28 color. 

construction detailL 
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over on top of the resistor and have it lie flat. ( Note : if a miniature capacitor is used, ignore this detail. The pins should stick up well beyond the highest point on the capacitor. ) Save one of the capacitor leads after trimming. D Add a jumper immediately to the right of the capacitor using the lead saved above. At this point, the six left-most, center holes should be filled, looking from the bare side with the notch in the upper left. D Take a 74LS157 Quad Selector 16-pin Integrated Circuit, and bend the following pins up over the top of the IC: O Pin 3 D Pin lO D Pin 6 D Pin 13 D Install this integrated circuit so that the dot and notch are nearest the jumper. D Add a 12-pin strip to an outside row of holes. The short end goes to the foil side. Be sure pin strip is flat before soldering. D Add a second pin strip in the remaining holes. D Prepare four I-inch-long pieces of solid, insulated hookup wire. Bend a small loop in one end of each wire. D Carefully study Fig. 4-12C. Connect these four wires as fol-lows: D IC pin 3 to module pin 13 D IC pin 6 to module pin 22 D IC pin 10 to module pin 21 D IC pin 13 to module pin 23 Be sure to solder the module pins as close to the spacer as possible. Be sure you understand the numbering before you start. On the bare side, the connector pins run clockwise, while the 16-pin IC count runs counterclockwise. D Add a 2N4400 or similar npn switching transistor to the three holes at the end of the integrated circuit. The flat side of the transistor goes toward the flat end of the IC. D Add a 1-K resistor, brown-black-red, to the remaining two holes to the right of the transistor. D Carefully inspect all solder connections on both sides of the module. Turn the module to the foil side with the notch in the upper right. D Carefully study Fig. 4-12D. Add the following three wire 
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pencil connections to the foil side: D IC pin 9 to module pin 6 D IC pin 7 to module pin 7 D IC pin 4 to module pin 9 



Once again, watch the pin numbering. On the foil side, the 
connector pins run counterclockwise, while the 16-pin IC count 
runs clockwise. 

D Check the previous step. Your four connections and one foil 
run should reverse the sequence of five side-by-side pad pairs. 

D Store your completed module in protective foam. While not 
needed for static protection on this particular module, the 
foam will prevent the pins from becoming bent or misaligned. 

This completes assembly of Module "C." 

MODULE "D": Module D is a Lower-Case-only alphanumeric 
module detailed in Fig. 4-13. No circuit board is 
used with this module. 

D Secure a piece of protective foam to a piece of wood, your 
bench, or otherwise nail it down so that it will not move. 

D Insert a 2513 character generator into this piece of foam. Tin 
leads 1, 2, 3, 9, and 10. 

D Make a wiring pencil connection between pins 1, 2, 3, 9, and 10. 
D Check to be certain the wire does not contact any other pins, 

particularly pins 4 and 8. 
D Return the 2513 to protective foam for storage. 

This completes the assembly of Module "D." 

DEBUG AND CHECKOUT 

A cheap video system uses hardware and software working to
gether to produce a final display. If something does not seem right, 
this could be a hardware problem, a software problem, or an opera
tor problem. 

Hardware problems can be something wrong with the computer, 
with the computer interface, with the tvt card, with the modules, or 
with the tv interlace. 

Software problems can be an actual coding error, a mismatch be
tween what the software and hardware is trying to do, or a program 
that is misconfigured by having the wrong format, incorrect starting 
address, memory locations in the wrong slots, and so on. 

Operator problems are the most common. These include misad
justed switches and controls, programs that have bombed or other
wise are not doing what you think they are, flags and IRQ vectors 
set wrong, running software and hardware that is not compatible, 
and so on. 

If you have any problem with a cheap video system, remember it 
could be hardware, software, operation, or some combination of the 
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Upper Case Only 

Parts List 

1 -251 3 character generator (General Instruments) 
(MUST be single supply type) 

1 -jumper wire from wiring pencil 
-solder 

2513 

+ 5 V  5 V  NC SERIAL OUT 

VD6 NC NC 2 A 

VD5 A9 NC 

VD4 AB 01 C 

VD3 Al 02 5 I D 

6 I PARALLEL our 
VD2 A6 03 

VDl A5 04 7 I 
8 VDO A4 05 G 

R4/A·B A3 NC H 

R2/BLANK A2 GND 10 GROUND 

RI Al IN4 II CURSOR 

VD7 NC 12 N/C 

(A) Schematic. 

Fig. 4-13. Module D 



Alphanumeric ,Module D 
How It Works 

ASCII code is input on pins VD0 through VD6. Row l ,  
2, and 4 commands are input from instruction de
coder PROM. Winking cursor CS command is input 
from cursor gate when switch selected. Dot matrix 
code is output to video-shift-register leads C, D, E, 
F, and G. Ground is hard-wired to video-shift-register 
leads A, B, H, and the video-shift-register serial input. 
ASCII code inputs VD6 and VD? are not used. 

(8) Jumper detail. 

Normal Settings: Cursor ON; FAST clock; WIDTH set to SIX pulses. 

construction details. 
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three. Always assume you have an operator problem first, but do not 
ever discount a hardware or software solution completely, no matter 
how obvious the source of the problem is. Remember that computers 
are dumber than people but smarter than programmers. 

The debug and checkout that follows assumes you are running on 
a KIM-1 or a KIM-1 with expanded memory. We will further as
sume you have a ready-to-go video monitor or converted tv set, and 
that your KIM interface is complete and presumably working. 

While it is not essential, a good triggered-sweep oscilloscope will 
be handy, particularly if hardware problems crop up. 

Above all, be sure to get your TVT 6% and its modules up and 
working and tlwroughly checked out before applying it to any sys
tem other than a KI.M. If you do not have a KIM system, use a ready
to-go assembled TVT 6% or have someone else ( perhaps a local 
computer club member ) check your board out foi: you. 

When you debug any cheap video system, always start with the 
simplest possible tests and work from there. Always start with the 
utility 16 X 32 upper case alphanumeric mode before trying any
thing fancy. Always get your actual display software up and working 
before worrying about Cursors or loaders. 

In the debug and checkout list that follows, NEVER GO BE
YOND A PARTICULAR DEBUG STEP UNLESS YOU ARE 
CERTAIN EVERYTHING UP TO THAT POINT IS WORKING 
PROPERLY. Avoid adding or removing ICs in a powered circuit. 
Always reload or otherwise verify your programs and your flags and 
vectors in each step immediately before trial. On a KIM, always 
check the obvious things such as staying in your binary mode 
(OOFl-00) ,  having your NMI ready for the operating system ( OOFA 
00 IC ) ;  and having your IRQ vector (OOFd low; 00FE high ) where 
you want it to go. It pays to further disable your interrupt line 
physically with a switch to prevent interrupts before they are 
needed. Accidentally bumping a keyboard can bomb everything you 
have done if your software is not ready for an interrupt. 

Your TVT 6% checkout can go like this : 
D With the changeover switch in the KIM position and the tvt 

unplugged, try running a simple program. If the program will 
not run, look for solder shorts on the display memory upstream 
tap or incorrect switch wiring. Switch to the tvt position. Your 
program should bomb and refuse to operate. 

D Plug in your still empty tvt card. Switch to TVT. Center all 
controls. Have switches set to "Fast", "+", "32", "Off'. Add 
only the ICl Decode PROM 658-KD8. Repower the computer 
and attempt to run the following program: 
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[0000 EA 
0001 4C 00 00 

Test Program A 

Normal loop 

Single stepping the program should alternate between 0000 
and 0001. Should the computer not run normally, something 
is happening to your CSI and CSO so that chip selects are not 
passing through properly, or something is wrong with your 
DEN, perhaps the decode enable line. 
If test program A runs, try running a complicated, existing pro
gram of your own. Operation should be normal and transparent. 

0 Now add your Scan PROM at IC2, using PROM 658-KS64. 
Rerun test program A. Everything should remain normal. If 
the test program will not run, look for !Cl incorrectly grabbing 
the data bus. 

O Check memory location 6000. It should be an AO. IF IT IS 
NOT, STOP IMMEDIATELY AND FIND OUT WHY. One 
obvious thing to watch is a mixup on the PROMs. 

D Check the next 256 memory locations. You should get twenty
nine more AO's, followed by two 60's, followed by thirty more 
A0's, followed by two 60's, all the way up. Should you get 
funny spacing, check your address lines going to the Decode 
PROM for possible errors or poor soldering. Do not go beyond 
this point unless you can call a sequence of thirty AO's followed 
by two 60's continuously anywhere between 6000 and dFFF. 
With the switch in the "64" position, check for sixty-two AO's 
followed by two 60's. 

D Load the following program: 

0000 JSR 20 00 60 
0003 JMP 4C 00 00 

Test Program B 

KIM calling a 32-character Scan; 
Scan returning control to KIM. 

Single step the program with the switch at "32." You should go 
from 0000 to 6000 to 6002, and then advance by two's to 601E. 
After 601E you should go to 0003, then 0001, and then the se
quence should repeat. If this program works, the KIM is cap
able of calling a Scan from the tvt and the tvt is capable of 
returning control to the KIM at the end of the SCAN com
mand. DO NOT GO BEYOND THIS POINT UNTIL TEST 
PROGRAM B WILL RUN. 

D Insert IC3, IC5, and IC6 and verify that test program B will 
still run. You will have to reload your program and vectors 
every time you reapply power. If there is any change, look for 
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a backwards or wrong socketed IC or some similar problem. 
IC3, 5, and 6 should have no apparent effect at this time. 

D Load the Program of Chart 4-4, a 16 x 32 interlaced alpha
numeric Scan. Verify all program locations after loading. Verify 
your binary mode and NMI vectors. Save the program on tape 
if you do not have a copy at this time. 

D Check to be sure the TVT switch is still in the 32 position. With 
SST OFF, hit reset. Then go to address 17 A6. Run the program. 
Stop the program. The program should stop and light the dis
play, with the display reading some address between 1780 and 
17d3, or some address between 6000 and dFFF. Hit GO, then 
STOP alternately. The program should always return yoti to 
the keyboard and always be in the bounds of 1780-17d3 or 
6000-dFFF. If your program will not do this, single step it until 
you find the problem. Note that you can shorten all the blank 
Scan trips by waiting until the second or third blanking Scan 
stops at 6000. Then you load a one in the X register by OOF5 01. 
Then you return to 6000 and continue single stepping as 
needed until the problem is solved. 
DO NOT GO BEYOND THIS POINT UNTIL YOU GET 
PROPER PROGRAM OPERATION. 

D Center with the v Pos control. Now, using a triggered-sweep 
scope, look for a I-millisecond pulse at test point DV in Fig. 
4�3. The POSITION control should change the width of this pulse 
from 0.2 to 1.5 milliseconds or so. Recenter with the control. 

D Now for a crucial test. With the program shown in Fig. 2-10 
running and checking test point- DV, switch your scope to 
LINE sync. This pulse should break loose and wander around 
VERY slowly. Set the time base of the scope so that a second 
pulse is seen only when the present pulse moves off one or the 
other end of the screen. It should take 40 seconds or more for 
a pulse to leave the screen. If you pass this test, your tvt is 
properly controlling your KIM and your Scan program is 
apparently working correctly, hitting a magic number for 60 
Hz vertical. 

D Center with the H Pos control. Recenter the control. Check pin 
10 of IC3 for a 63-µ,s rectangular pulse. The low time should be 
adjustable from 2 to 20 µ,s with the H P0S control. Recenter with 
the control. 

D Check for a composite sync signal 1 volt high at test point CV. 
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The sync tips should go near ground. Check for a similar signal 
referenced to +4 volts at the tv output jack. 



D Connect a monitor to the VID output or a properly converted 
tv set to the tv output. Reload and rerun the Scan program. 
You should get a clean and stable blank raster, locked both 
horizontally and vertically. Retouch the hold controls if 
needed. As a final check, misadjust the VERTICAL-HOLD control 
of the tv until you can briefly produce a stationary thin black 
bar in the middle of the raster. 

D With or without any program running, check the LD test point 
of Fig. 4-3 with your scope. You should get a normally high 
waveform that goes low for 35 nanoseconds each microsecond. 
If you get something else, fl.rst check your 10: 1 scope probe 
ground connection and calibration. This is the Load pulse for 
your video shift register and must be available and clean before 
you go on. 

D With the sync of your scope locked on Load, check the wave
form at CK. With the switch in the Fast position, you should 
be able to get eight, seven, or six clock pulses per load pulse 
as you vary the WIDTH control. These pulses should be adjust
able for a stable, clean display. If you seem to have trouble get
ting eight clean pulses, reduce capacitor Cl4, perhaps by 200 
pF. If you cannot get six clean pulses, increase Cl4 as needed, 
but not so much that you cannot get eight clean pulses as well. 
Normally, you should have more than enough range with the 
supplied capacitor to cover six, seven, and eight clock pulses. 

D Now switch to Slow, and adjust your WIDTH control. You 
should get three or four clean pulses per load pulse. If you can
not get four pulses, reduce Cl3; if you cannot get three pulses 
increase Cl3; this should almost never be needed. Return to 
Fast and adjust the WIDTH control to seven clean clock pulses. 
Center the WIDTH control in the middle of the seven clock pulse 
stable area. 

D Switch to CON and check test point CU of Fig. 4-3 for a 3-Hz 
square wave. This is your winking cursor oscillator. 

D Use a wire to topside jumper pins 7 and 8 to 10 on the D/V con
verter socket IC7. Plug in IC4. Switch to "-." Reload and re
run the program from Fig. 2-10. You should get a· display of 
thin vertical stripes. Adjust the CLARITY control. These stripes 
should get thinner or thicker. A complete dropout near one 
extreme end of the CLARITY control is normal. If you have no 
stripes, look for shift-register loading and clocking problems. 
If you cannot control the stripes, look for Clarity-Control cir
cuit problems. 
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D Insert module "D'' in slot IC7 after removing the jumpers. Be 
sure the notch lines up with pin 1 of the 2513 character gen
erator. Reload and rerun the program from Fig. 2-10. Switches 
should be set at "32", "Fast", "+", and "Off". You should 
get a random character "display. Adjust CONTRAST and BRIGHT

NESS and your POSITION controls until you get a display with 
which you are completely happy. If slight sugar appears on the 
characters, adjust the WIDTH control as needed. Try other posi
tions of the WIDTH control. Try various CLARITY control settings. 
The best usually just closes the display of a "M" or a "W". DO 
NOT GO ON UNTIL YOU HAVE A DISPLAY WITH 
WHICH YOU ARE COMPLETELY AND ABSOLUTELY 
HAPPY. 

D Briefly switch to CON. Your screen should wildly wink several 
hundred cursor boxes at you. You get all those Cursors since 
you have a random character load. Any time VD7 is a one, a 
Cursor results. They will disappear when you write a proper 
Cursor program. Switch to OFF. 

D Now load the following slots, starting with 0200: 
0200 57 45 4C 43 4F 4d 45 20 54 4F 20 54 48 45 20 43 
0210 48 45 41 50 20 56 49 44 45 4F 20 57 4F 52 4C 44 
0220 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
� 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
Run the program shown in Fig. 2-10. You shoulq. have a secret 
message displayed on the top line, followed by a line of blanks. If you do not get a message, look for upstream tap problems or 
VD-line mixups or opens. 

D Change to module "A," and rerun the Fig. 2-10 program and 
the test data of the previous step. You should get the same dis
play as above. Now, go through the above program and every 
time you see a most significant "5", make it a 7. Every time you 
see a most significant "4", make it a 6. But leave 0200 at 57. 
Rerun the Fig. 2-10 program. Your message should be lower 
case, starting with a capital. 

D This completes the alphanumeric portion of the checkout. Your 
interconnections, tvt card, and modules A and B are apparently 
working. From here, you should try your cursor programs and 
then go on to your final format. 

D Insert module "B" and check for normal computer operation. 
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Now load the program shown in Fig. 2-18 ( 256 X 256 graphics) 
and run it. Check first for run-stop normal operation in the 
bounds of the 1780 scratchpad and high addresses 6000-dFFF. 
Then check for a stationary DV signal on line sync. You should 
get a display of random dots. Switch to FAST and adjust the 



WIDTH control to get eight dots per load. Change from + to -
to invert the display. Use near-minimum CLARITY control values 
for - displays. 

D Load the following data at locations as shown: 
0200 00 00 
0220 80 00 
0240 40 00 
0260 20 00 
02S0 10 00 
02A0 08 00 
02C0 04 00 
02E0 02 00 
0300 01 00 
0320 00 00 
You should get a display of eight slanting lines besides the 
random display you had before. The WIDTH control lets you 
pick six, seven, or eight dots per slant. Set it to eight stable dots 
with no sugar. 

D The reason you get things repeated eight times over in the 
previous test is that your program wants BK of memory and 
you are only giving it lK, so it is repeating itself eight times. 
To properly use Module B, you will have to have at least 4K of 
useable RAM for a 128 X 256 display or 8K of RAM for a 
256 x 256 display. 

D If you have extended RAM in your KIM, check it out at this 
time, using the connector and changeover switch that goes to 
the upstream tap of the memory selected for display use. Re
member to switch only one changeover switch to tvt operation 
at any time. If there are two switches ( one on the bare KIM; 
one on the extension memory ) ;  make sure both of them are in 
the KIM position for normal computer use, and only one of 
them is in the tvt position for display use. The tvt must, of 
course, be plugged into the selected upstream tap. 

D If you have at least 3K of RAM available starting at memory 
location 0400, load and run the "Special Fonts" test program 
of Chart 4-4. Note that this is a display memory data listing; 
you also still have to load and run the Scan program of Fig. 
2-18 to get a display. The data decides what goes on the 
screen; the Scan program puts it there. 

D Remove module B and insert module C. Load and run the 
program of Fig. 2-16. Have switches set to "Slow", "+", "Off", 
and "32". You should get a random display of somewhat 
coarser proportions than you did with the previous module. 
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Chart 4-4. Data for the "Special Fonts" Typography Display of 
Fig. 1-6 

Use TVT 65/a and Module B Format---40 x 256 
Use Scan Program of Fig. 2-16 Display Space-0600-0AFF 

0600 00 00 00 OF 80 00 00 00 00 00 00 01 CO 00 00 1 F  
061 0 80 00 00 00 7C 00 00 00 00 03 00 00 00 00 00 00 
0620 00 00 00 1 F CC 00 00 00 00 00 00 01 C0 00 00 1 F  
0630 80 00 00 00 FE 00 00 00 00 03 00 00 00 00 00 00 
0640 00 00 00 3F EC 00 00 00 00 00 00 01 co 00 00 1 F  
0650 80 00 00 00 FF 00 00 00 00 03 00 00 00 00 00 00 
0660 00 00 00 7F FC 00 00 00 00 00 00 01 co 00 00 1 F  
0670 80 00 00 01 E3 00 00 00 00 03 00 00 00 00 00 00 
0680 00 00 00 7F FC 00 00 00 00 00 00 00 00 00 00 03 
0690 80 00 00 01 C3 00 00 00 00 03 00 00 00 00 00 00 
06AO 00 00 00 FB FC 00 00 00 00 00 00 00 00 00 00 03 
06b0 80 00 00 01 co 00 00 00 00 03 00 00 00 00 00 00 
OSCO 00 00 00 FO 3C 00 00 00 00 00 00 00 00 00 00 03 
06d0 80 00 00 01 co 00 00 00 00 07 00 00 00 00 00 00 
06EO 00 00 00 co oc 00 00 00 00 00 00 00 00 00 00 03 
06FO 80 00 00 01 co 00 00 00 00 07 00 00 00 00 00 00 
0700 00 00 00 co oc 00 00 00 00 00 00 00 00 00 00 03 
0710 80 00 00 01 co 00 00 00 00 OF 00 00 00 00 00 00 
0720 00 00 00 CO OC 7E 38 00 78 00 78 OF co OF 00 03 
0730 80 00 00 OF F8 OF 00 FO CO 3F EO 07 98 00 00 00 

0740 00 00 00 EO oc 7E 7C 00 FC 00 FC OF co 1 F  80 03 
0750 80 00 00 OF FB 1 F  80 F3 EO 3F EO 1 F  dB 00 00 00 
0760 00 00 00 70 OC 7E FE 01 FE 01 FE OF CO 3F EO 03 
0770 80 00 00 OF FB 3F CO F7 FO 3F EO 3F FB 00 00 00 

0780 00 00 00 38 00 7E FE 01 FE 01 FE OF CO 7F EO 03 
0790 80 00 00 OF FB 3F CO F7 FO 3F EO 7F FB 00 00 00 
07AO 00 00 00 1 C  00 07 CF 03 CF 03 CF 01 CO FB FO 03 
07b0 80 00 00 01 co 79 EO 3E 78 07 00 7C FB 00 00 00 

07CO 00 00 00 07 00 07 87 03 87 03 87 01 CO FO 70 03 
07d0 80 00 00 01 CO FO EO 3C 38 07 00 78 38 00 00 00 
07EO 00 00 00 03 80 07 03 87 03 87 03 81 CO EO 30 30 
07FO 80 00 00 01 CO EO 70 38 1 C  07 00 70 18 00 00 00 

0800 00 00 00 00 EO 07 03 87 03 87 03 81 co 00 30 03 
081 0  80 00 00 01 CO EO 70 38 1 C  07 00 30 18 00 00 00 
0820 00 00 00 00 70 06 01 86 01 86 03 81 co 00 30 03 
0830 80 00 00 01 co co 30 30 oc 07 00 3C 00 00 00 00 

0840 00 00 00 00 38 06 01 86 01 86 00 01 co 00 70 03 
0850 80 00 00 01 co co 30 30 oc 07 00 1 E  00 00 00 00 
0860 00 00 00 00 1 C  06 01 87 FF 86 00 01 co 01 FO 03 
0870 80 00 00 01 co co 30 30 oc 07 00 07 80 00 00 00 

0880 00 00 00 00 1 C  06 01 87 FF 86 00 01 co 07 bO 03 
0890 80 00 00 01 co co 30 30 oc 07 00 01 EO 00 00 00 
OBAO 00 00 00 CO OE 06 01 86 00 06 00 01 CO 1E 30 03 
OBbO 80 00 00 01 co co 30 30 oc 07 00 00 70 00 00 00 
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OSCO 00 00 00 EO 06 06 01 86 00 06 00 01 co 38 30 03 

08d0 80 00 00 01 co co 30 30 oc 07 00 00 38 00 00 00 

OBEO 00 00 00 FO 06 06 01 86 03 86 03 81 co 70 30 03 

OBFO 80 00 00 01 co co 30 30 oc 07 00 60 1 C  00 00 00 

0900 00 00 00 FO 06 07 03 87 03 87 03 81 CO EO 30 03 

0910 80 00 00 01 CO EO 70 30 oc 07 OC 60 1C 00 00 00 

0920 00 00 00 F8 OE 07 03 87 03 87 03 81 CO EO 73 03 

0930 80 00 00 01 CO EO 70 30 oc 07 OC 70 1 C  00 00 00 

0940 00 00 00 FC 1 E  07 87 03 87 03 87 01 CO EO 73 03 

0950 80 00 00 01 co 70 EO 30 oc 07 oc 78 3C 00 00 00 

0960 00 00 00 FF FE 07 CF 03 CF 03 CF 01 CO FO db 03 

0970 80 00 00 01 co 79 EO 30 OC 07 9C 7C 7C 00 00 00 

0980 00 00 00 FF FC 06 FE 01 FE 01 FE OF F8 FF dF 1 F  

0990 FO 00 00 OF F8 3F CO FC 3F 07 FC 7F F8 00 00 00 

09AO 00 00 00 dF FC 06 FE 01 FE 01 FE OF FB 7F 9F 1 F  

09b0 FO 00 00 OF F8 3F CO FC 3F 03 F8 6F F8 00 00 00 

09CO 00 00 00 CF F8 06 7C 00 FC 00 FC OF F8 3F OE 1 F  

09d0 FO 00 00 OF F8 1 F  80 FC 3F 03 FO 67 FO 00 00 00 

09EO 00 00 00 C7 EO 06 38 00 78 00 78 OF F8 1 F  06 1 F  

09FO FO 00 00 OF F8 OF 00 FC 3F 01 EO 63 co 00 00 00 

OAOO 00 00 00 00 00 06 00 00 00 00 00 00 00 00 00 00 

OA10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

OA20 00 00 00 00 00 06 00 00 00 00 00 00 00 00 00 00 

OA30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

OA40 00 00 00 00 00 06 00 00 00 00 00 00 00 00 00 00 

DASO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

OA60 00 ao 00 00 00 06 00 00 00 00 00 00 00 00 00 00 

OA70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

OA80 00 00 00 00 00 7F co 00 00 00 00 00 00 00 00 00 

OA90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

OAAO 00 00 00 00 00 7F CO 00 00 00 00 00 00 00 00 00 

OAbO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

OACO 00 00 00 00 00 7F co 00 00 00 00 00 00 00 00 00 

OAdO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

OAEO 00 00 00 00 00 7F co 00 00 00 00 00 00 00 00 00 

OAFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

D Load the following data ( this assumes you are back on a bare 
KIM; if not, find a suitable starting address) 
0200 77 00 77 77 07 70 77 77 00 

You should get a batch of bars that repeats twice in your dis
play. The proper color setting is to set your WIDTII control so 
that you get a short "equals" followed by a long equals that ex
tends continuously on the right end. 

After this equals ends, a new "upside down" one should start. 
This gives you three clocks per chunk. Reset your WIDTII con-
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trol so that stable black bars appear, and you are ready to run 
on 128 x 128 black-and-white graphics. 

D If you have extended memory available, at least 2K starting at 
location 0600, load and run the color chessboard of Chart 4-5. 
You wi11 have to use a color modulator for a full-color display. 
Once again, Chart 4-5 is data. You have to run the Scan pro
gram of Fig. 2-16 with it to get a display. 

Chart 4-5. Data for the Chessboard Background of Fig. 1 -5 

Use TVT 6% and Module C Format: 96 x 96 color 
Use Scan Program of Fig .  2-18 Display Space: 0600- ObFF 

Board is programmed to color "00" 

0600 76 70 70 73 00 00 00 00 76 70 70 73 00 00 00 00 
0610 76 70 70 73 00 00 00 00 76 70 70 73 00 00 00 00 
0620 44 00 00 1 1  00 00 00 00 44 00 00 1 1  00 00 00 00 
0630 44 00 00 1 1  00 00 00 00 44 00 00 1 1  00 00 00 00 
0640 44 00 00 1 1  00 00 00 00 44 00 00 1 1  00 00 00 00 
0650 44 00 00 1 1  00 00 00 00 44 00 00 1 1  00 00 00 00 
0660 44 00 00 1 1  00 00 00 00 44 00 00 1 1  00 00 00 00 
0670 44 00 00 1 1  00 00 00 00 44 00 00 1 1  00 00 00 00 
0680 44 00 00 1 1  00 00 00 00 44 00 00 1 1  00 00 00 00 
0690 44 00 00 1 1  00 00 00 00 44 00 00 1 1  00 00 00 00 
06AO 67 07 07 37 00 00 00 00 67 07 07 37 00 00 00 00 
06b0 67 07 07 37 00 00 00 00 67 07 07 37 00 00 00 00 
06CO 00 00 00 00 76 70 70 73 00 00 00 00 76 70 70 73 
06d0 00 00 00 00 76 70 70 73 00 00 00 00 76 70 70 73 
06EO 00 00 00 00 44 00 00 1 1  00 00 00 00 44 00 00 1 1  
06FO 00 00 00 00 44 00 00 1 1  00 00 00 00 44 00 00 1 1  
0700 00 00 00 00 44 00 00 1 1  00 00 00 00 44 00 00 1 1  
071 0 00 00 00 00 44 00 00 1 1  00 00 00 00 44 00 00 1 1  
0720 00 00 00 00 44 00 00 1 1  00 00 00 00 44 00 00 1 1  
0730 00 00 00 00 44 00 00 1 1  00 00 00 00 44 00 00 1 1  
0740 00 00 00 00 44 00 00 1 1  00 00 00 00 44 00 00 1 1  
0750 00 00 00 00 44 00 00 1 1  00 00 00 00 44 00 00 1 1  
0760 00 00 00 00 67 07 07 37 ob 00 00 00 67 07 07 37 
0770 00 00 00 00 67 07 07 37 00 00 00 00 67 07 07 37 
0780-08FF Repeat above code 
0900-0A7F Repeat above code 
OA80-0bFF Repeat above code 

D Add chessmen to your display as desired by hand loading as 
shown in Fig. 4-14 and Chart 4-6. You will eventually want to 
write a software loader to do this for you. 

D This completes the preliminary checkout of your TVT 6% 
and the four available modules. 
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Number your chessboard this woy: 

---x-
0 l 2 3 4 5 6 7  

Let X be the number of squares right from upper left. (0-7) 

Let Y be the number of squares down from upper left. (0-7) 

Let S be the starting address needed to load a chess piece. 

If your display memory starts at 6000, your S will equal I S = 0621 + (4 * X) + (CO * Y) I 

r 1 ---+-+--+-+-+-1 I i  l----<1--4---4---"-4-.-'--I 

in HEXADECIMAL. For instance, the third square to the right has an X value of "2." 
The fifth square down has a Y value of "4." To find S, we take 0621 and add 4 to it 
twice and add CO ta it four times, or 

lrs-=_
06
_2_1 """'+-(4_*_2_) -+-(-CO-*-,"'-l =-0-92

--.
91 

Your chess piece consists of eight memory words. These words go in a 2 X 4 chunk 
matrix that calls -411 doh, resulting in a 6 X 8 symbol. If S is your starting address, 
the symbol chunk locations are: 

s 

S + 20 

S + 40 

S + 60 

with each chunk arranged as 

S + 1 

S + 2 1  

S + 41 

S + 61 

VD6 VD5 VD4 

VD2 VOi VDO 

Color is set by VD7 (most significant bit) and VD3 (least significant bit) for a choice 
of four colors plus black. 

Fig. 4-14. Calling chess pieces from a file. 

MODIFICATIONS 

Usually, you will change software to get your TVT 6% to do dif
ferent things. You also have quite a few hardware options. Many of 
these options are listed in Chart 4-7. The next chapter details the 
most important option of full transparency. 

Your SLOW-FAST switch and the WIDTH control are normally set 
visually for the right number of clocks per microsecond. Seven or 
eight clocks are usually best for combined upper- and lower-case 
( Module B) alphanumerics, while six or seven will look best with 
upper-case-only ( Module D) displays. For graphics displays, the 
clock must, of course, be properly set to the selected 3, 4, or 8 
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Chart 4-6. Data for Chess Piece File 

Piece s+oo s+o1 s+20 s+21 S+40 S+41 s+ao s+a1 

Blank 00 00 00 00 00 00 00 00 
Pawn 00 00 1 1  44 1 3  46 76 73 
Bishop 1 1  44 77 77 1 1  44 1 7  47 
Knight 26 00 23 07 32 62 27 27 
Rook 57 57 33 66 33 66 37 67 
Queen 1 3  46 75 75 74 71 76 73 
King 57 57 75 75 67 37 73 76 

For color 00, add nothing to above 
For color 01,  add 08 to above 
For color 1 0, add 80 to above 
For color 1 1 ,  add 88 to above 

Chart 4-7. Some Hardware Use Options for Your TVT 6 5/8 

Blanking-You blank the display by making the BNK input positlva. 
For a normal dlsplay, ground BNK. Blanking is useful for im
proving transparency or any other time you want the display off. 

Horlzon'ial FIii In-Your horizontal-sync timing pulses can come from 
another source by breaking the DEN to HIN connector jumper and 
routing new horizontal-sync pulses to HIN. Position delay starts 
from the + to ground transition of a signal input to HIN. This is 
useful for fully transparent operation when horizontal-sync pulses 
are supplled from somewhere else during vertical blanking times. 

Verllcal Lock-The VRF pin outputs a 1-µ.s pulse at the undelayed 
start of each frame. This signal is useful for line-locklng system 
timing and for delaying character entry untll the start of the blank 
vertical time. 

Video Polarity-Video polarity Is selected with the +. - switch. The 
CLARITY control only works in the + position and should be set 
to its near minimum value If you are running with inverted video. 
(See Fig. 4-17). 
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Scan Enabl�Breaking the SEO to SEI line disables any scanning. 
To prevent scanning, keep SEI high. This is useful as a tvt enable 
means. 

Exlemal CS Gallng-The display memory CS gating can be moved out 
of the Instruction PROM. To do this using an instruction PROM 
having internal CS gating, connect CSI to +5V and relable CSO 
to CSOT, the Chip Select output from your tvt. CSOT goes low 
when the tvt wants use of the upstream tap. 

Dual Mod�You can run graphics and alphanumerics on alternate 
fields by combining modules Into one super module. Your field 
changeover can be done with a flip-flop that Is clocked with the 
VRF signal. To Initialize your flip-flop, note that CG Row 1 high 
output is never used in the graphics mode. If  this coincidence 
.occurs, reset the flip-flop to the alphanumeric state. 



VD6 (ASC I I  B IT 71 

Fig. 4-15. Logical gating needed to display combined upper- and lower-case 
characters as upper case only. 

clocks per chunk selected. Otherwise part of your display will be 
missing or may have "bulldozer tracks" running through it. If there 
is any sugar or other display instability, readjust your WIDTH control 
and set it to the middle of the stable area. 

Your "32-64" switch is set in the "32" position for most graphics 
and 32-character lines. Set it to the "64" position for practically any
thing else. 

Your winking Cursor rate is set by R9 and C7. Increasing either of 
these will lower the wink frequency and vice versa. 

A 74LS165 shift register can be used instead of the 74165 to de-

The inputs to your SCAN PROM are labeled Al, A2, A3, A-4, and AS. These are the 
connedions you use on a nonrepacked 6.502 cheop video system. Address connections 
may change for other uses. Here are three typical examples: 

M ICZ 

AS � l4 

A4 � 1l 

A3 � 12  

M 
IC2 

Al ----t(..__22 _ _,}- 14 

M -----<( 2l }- 13 ---
., ----1(..__" _ _,}- 12 

•5 V 

r 
M 

IC2 

Al k C 22 }- 14 

Ao � "  

A5 12 

A2 � II A4 ----1( 25 }- 11 A4 ----t( 25 }- II 

Al � ID 

AD - Nie 

(a) 6.500, 6800 
no repacking 

� � 10 Al � 
741.Sll 

AD --NIC 

(b) 6.500, 6800 
repacked 

� � � - 10 Al � 
7,1.Sll 

AD -Nie 

(c) 6500, 6800 
either way 

Connection ic) is aften the best choice, but needs a gate plus two switches and it is 
limited to multiples of eight characters or chunks per line. 

Fig. 4-16. Scan PROM address options. 
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crease the supply current, but you may need five to eight 4.7-K pullup resistors on the inputs for proper Cursor operation. . Note that we have two different places to blank our display. The blanking on modules B and C is synchronous with the characters and blanks whole characters or chunks. Since the video shift register takes 1 µ,s to output a character or chunk afrer it is received, there is a 1-µ,s blanking skew difference between blanking at Module B or C and blanking on the BNK input. Use the BNK input for generalpurpose "paint the display black" uses; use module blanking to blank specific whole characters. 
IC4 

74165 

OUT 

''CLARITY" 
+5 V  

+5 V 

CV 
V I DEO 
OUTPUT 

Rl2 
22 Q 

Rll 
IOO Q 

Fig. 4-17. Alternate clarity circuit works on normal or Inverted video. 

If you attempt to use an upper-case-only character generator on mixed upper- and lower-case data, all the lower-case characters will be read wrong. Normally, you should match the input coding with the character generator in use. Fig. 4-15 shows you simple gating that will convert upper- and lower-case ASCII code into upper-cas� only ASCII code. The address inputs to your Scan PROM change as you change to memory repacking or switch to a different computer system. These options are shown in Fig. 4-16. Be sure that your Scan PROM, your intended rrwde of operation, and your computer connections are compatible. The original CLARITY control used for video-bandwidth enhancement only works with normal "+" ( white characters on a black screen) video. Fig. 4-17 shows an alternate circuit that works with either normal or inverted " -" ( black characters on a white screen )  video. Inverted operation is a handy way to totally eliminate any flicker on double-stuffed displays. The one extra gate needed for this modification is borrowed from the blanking circuit. Blanking is either lost or picked up with a new gate or an added npn transistor. Some typical waveforms for the 16 X 32 interlaced display are shown in Fig. 4-18. The waveforms are present only when the Scan 
198 



program is working properly, so they are not too useful as a debug
ging tool. These waveforms will change wildly as you change Scan 
software and will disappear entirely during nonscan times. 

63 µSEC 

31 µSEC 

1.__ ___ B_LA_N_K_&_R_ET_RA_C_E _ ___. 
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VARIES WITH PROGRAM 

32 µSEC 

SCAN 

(A) Horizontal rate. 

7 l- 63 µSEC 

·�oo I 

ONLY DUR ING 
L IVE SCANS 

I 
I I I 

0 2 5 6 

(B) Character rate. 
Fig. 4-18. 16 x 32 Scan waveforms. 
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CHAPTER 5 

Transparency 

If you have a transparent cheap video display system, you can let 
the microprocessor do other things at the same time you are display
ing, or at least seem to do so. Transparency looks good, but more im
portantly, it lets you run a BASIC program and a continuous dis
play together, or a graphics game display and its move calculations 
at the same time. To a transparent display, other computer goings-on 
will be invisible, without any breaks or tearing in the picture. 

Transparency is obviously going to ·be tricky, since the tv seems to 
need continuous sync and video signals. So far, our cheap video cir
cuits have apparently needed 100% of the available computer time 
during a display. We might suspect that the "more" we want in the 
way of transparency, the more it is going to cost us in circuitry, soft
ware, throughput, and design time. 

SOME TRANSPARENCY PRINCIPLES 

Most digital instruments only light a single display numeral at any 
particular time. This is called multiplexing. It is done to simplify 
circuitry and cut down on the number of display leads. Only one 
numeral is lit at a time, but the numerals are scanned in sequence 
faster than the eye can follow. You end up with the illuswn of a con
tinuous display. If we demanded a "perfect" display that was lit all 
the time, it would cost a lot more-and nobody would be able to tell 
the difference anyway. 

The same concept goes for video displays. Namely, we do not need 
true transparency. Anything that gives us an acceptable illusion of 
transparency will do the fob for us. This idea tells us to do other 
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things while the screen is black. A particularly handy time is the 
long vertical-blanking interval. 

A second transparency principle tells us that seldom happening 
events are not nearly {1,S bad as those that happen aften. So, if we 
make the more glaringly obvious computer goings-on transparent, 
we can probably ignore many of the rest and nobody will notice. 

A third handle on transparency tells us to watch fust how we hurt 
the display. Interruptions that disrupt the vertical timing so badly 
that the tv has to relock its vertical hold will be the worst of all to 
live with. Interruptions that last exactly one or two horizontal lines 
or exactly a full field usually will not be as bad. Recovery from a 
horizontal error takes a small fraction of a millisecond. This may 
look bad, but it turns out to be easy to fix. On the other hand, re
covery from a vertical-sync error can take a tenth of a second or 
more, and always will look far worse !l,nd be much more difficult to 
fix. Thus, you have to be far more careful with longer interruptions 
to your SCAN programs. A vertical-sync pulse that is late ( and stays 
late) by half a horizontal line will not be noticeable. One that misses 
by a line will appear as a slight bump, and anything more will be 
painfully obvious. 

A fourth clue to transparency tells us to lock any interruptions to 
the display scanning. You can do this simply by delaying the inter
ruption until convenient, or by integrating the interruption. Integra
tion is done by including what used to be an interruption activity as 
part of the Scan program. 

Principle number five tells us to "paint it black." Anything that 
completely blanks the screen is far less bad than interruptions that 
tear up the screen. It is much easier to spot something lit and out of 
place than just temporarily missing. 

These simple rules are all we need for the usual service type pro
grams-those that enter characters, handle the Cursor, Scan a com
panion keyboard, and so forth. But if we are going to run something 
heavy at the same time-like a BASIC program, or the move com
putations for a game display- we may have to get both sneakier and 
fancier in what we do in the way of transparency. 

So, rule number six tells us to fill in sync signals from somewhere 
else when the computer is busy. Somewhere else could be a simple 
binary counter, a programmable divider, a software-controlled timer, 
a line-locked phase-lock loop, or a television vertical chip. 

And, our final transparency rule is the sledgehammer concept. If 
all else faffs, throw in another microprocessor chip. They are cheap, 
simple, and easy to use these days. 

Let's see just how these transparency ideas can be applied to sys
tems that work. We will look at several routes to transparency more 
or less in an order of increasing hassle. 
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IGNORE IT 

In most real-world micro uses, display tearing and interruption 
sounds much worse than it really turns out to be. This is especially 
true if the display is for your personal use or if very low display cost 
and complexity is important to you. 

This "let her rip" philosophy also gives you a free "the computer 
is busy" signal that tells you what your other programs happen to 
be up to. 

So, simplest of all is to for get completely about transparency until 
you are absolutely sure you need it. A good rule is to develop your 
display first without anything special in the way of transparency, 
and then include the absolute minimum in the way of additions to 
get something with which you or your users are happy. 

Almost always, your final result can be far simpler than you may 
first think possible. Always try alternating your compute and display 
modes (just like the KIM-1 now does with its operating system) 
first; perhaps that is all you will need. 

TIME IT 

If you make a short interruption exactly equal the number of 
microseconds in one or two horizontal lines, there will be a minimum 
screen disturbance. This can be more than enough time to enter 
several characters, scan a keyboard, move a Cursor, change a game 

(A) Interrupted Scan less than one 
horizontal l ine--tears to the le1t. 

(B) Interrupted Scan equals one hori- (C) Interrupted Scan more than one 
zontal l ine--slight vertical "bump." horizontal line--tears to the right. 

Fig. 5-1. Scan interruptions of exactly one horizontal line have almost no ef
fect on display. 
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symbol, or do other relatively simple things. By taking exactly one 
or two horizontal lines, there will be no horizontal tearing and only 
a very slight vertical jog will result. 

Fig. 5-1 shows the effect of three short interruptions. In Fig. 5-IA, 
our interruption takes less than one horizontal line and tears to the 
left. In Fig. 5-lB, we take exactly one horizontal line and get no tear
ing. In Fig. 5-lC, we have overdone things and taken longer than a 
single horizontal line, which tears to the right. 

The closer you get to exactly one line, the smaller the amount of 
tearing. If you try to match three or more horizontal lines, the 
amount of vertical jog gets too high. 

Longer interruptions will give you more objectionable screen mo
tions. If you can make your program interruption last exactly one 
field, you can eliminate vertical tearing, but some time will be 
needed to regain horizontal lock. Sci;olling programs, screen reads, 
and erase to end of screen lend themselves to exactly one field time. 

LOCK IT 

An exactly timed interruption can be much further improved by 
synchronizing it so that it starts at some convenient point in the Scan. 
If you start a one line horizontal interruption during the horizontal 
retrace time, you will get a whole line dropped out, rather than a 
random pair of lines that start and stop during a live Scan. 

The best time to start an interruption is on the undelayed vertical
sync command. Thi.s causes most of the interruption and much of the 
recovery time to happen while the screen is blank. 

Locking an interruption is a powerful and simple way to gain 
transparency. Its basic limitations are that you have to add an ex
ternal flip-Bop, and that you are limited to 60 interrupts per second 
maximum. Note that this is much faster than you can type, and that 
one interruption can be used to add or remove several characters. 

Figure 5-2 shows how to lock an interrupt from a keyboard to a 
TVT 6% working with a KIM-1. The keypressed pulse sets the flip
flop, which is reset by the undelayed vertical-sync pulse from the 
instruction decoder. The falling edge of the Hip-Bop is used to 
interrupt the Scan program. Interruption always takes place im
mediately after the undelayed vertical-sync pulse, during the black 
retrace time of the screen. 

LOCK IT AND SHORTEN THE NEXT FIELD 

Once we have locked our interruption to the vertical sync, there 
is an even neater trick we can pull to gain more transparency. And, 
all it costs are two software words. 
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These two words are DEX. If you know your interruption is 
going to take approximately two horizontal lines, you simply knock 
two lines off the total number of blank Scan lines to be used this 
time around during retrace. This either eliminates the vertical bump 
completely or else makes it so small you will not notice it. 

JL 
KP FROM KEYBOARD o---------, 

+ 5 V 
0 
I 
I 
I 

:, 3,3K 
� ION KIM � LINEI 

SET 
,0051f ! -

T 
IRQ OUTPUT JL 

VRF FROM TVT 6 5/8 o----... C 

VRF 

KP 

Q 

Q 

40138 

(A) Circuit. 

(B) Waveforms. 

K 

r 

+5 
0 

+ 5 V  
D 

+ 5 V 
D 

+ 3 V  
D 

Fig. 5-2. Delaying character entry or other Interrupts until start of vertical 
blanking time greatly helps transparency. 

Our scrolling Cursor program of Fig. 2-20 already has this "knock 
two lines off" capability built into it in the pair of DEX commands 
at steps 014C and 014d. If an interruption does NOT take place, the 
normal number of vertical blank Scans are used. If an interruption 
does take place, the interruption is delayed until the vertical-blank
ing time, after the number of Scans needed has been loaded into 
the X register. Most of the Cursor program interruptions take up 
approximately two horizontal lines. These two extra lines are re
moved from the upcoming blank Scans by decrementing the X 
register twice. 

For this technique to work, your interrupt MUST be synchronized 
to the vertical-sync pulse of the interface hardware. Your Scan 
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program also must load the number of retrace lines to be used BEFORE the vertical-sync command. To recap how retrace shortening works, when there is no interrupt, the normal number of vertical-blank Scans is used. When there is a character-entry interrupt, the interrupt time takes about two horizontal Scans and then knocks off two horizontal Scans from the Scan program, making things come out even. If you want to go to the trouble, you can make everything come out exactly even for each and every Cursor motion. One way to do this is to equalize each route through your Cursor program so that it takes identical time to execute. A much simpler approach would have you start a software timer and measure how long the interruption took; your main Scan length would then be corrected with some DEX commands and a short blank subroutine. But all this hassle is rarely needed. If you get a perfect ,match on the most common loop through the Cursor program ( single character entry ) ,  most everything else is close enough that you will never notice. 
PAINT IT BLACK A screen that goes totally blank for a brief time is not nearly as bad as one that tears. It is much easier to spot something that is bright and obviously wrong, however brief, than something that 

J1.. +SV 
KEYPRESSED 
INPllT--------t,C 

TO iii<! 

KP n 

Q 

Cl.EAR 

Q 

4013 

t---------- BLANKING OUTPUT 
TO M 6 5111 

1N4148 

(A) Circuit. 

n 

L_ 

(B) Waveforms. 

Fig. 5-3. Blanklng display after Interruption also helps transparency. 
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_fl 
KP FROM -------, 
KEYBOARD 

JL 
VRF FROM ----
M 

4013 

o+5 V  
I 
:� 3.3K 

• 005 1 (ON KIMI 
,------1 ... ----1+----• COMPUYER 

. TiR) 
y 4 .71( 

Qt----..... JL 

:r05 

---•BLANKING 
UIIK TO M 

Fig. 5-4. Combined blanking and delay circuit 

is black and just not there. Blanking can also be used to make all 
disturbances identical so that they look like they belong. 

The TVT 6% has a blanking input, pin 2 BNK. This input is 
normally grounded. If you make it positive, the screen goes black 
for the length of time the BNK input is high. 

A simple blanking generator is shown in Fig. 5-3. This uses a 
CMOS Type D flip-flop as a triggerable monostable component. The 
blank time is adjustable. Blanking times of a few character rows are 
almost invisible and eliminate most, if not all, horizontal tearing. 

Blanking, locking, and shortening are easily combined as shown 
in Fig. 5-4. This circuit uses both halves of a 4013 CMOS Type D 
flip-Hop and needs the two extra code words in your Cursor program 
-not a bad price to pay to gain nearly complete transparency of an 
interrupting Cursor program. 

This particular circuit fixes the entire Cursor except for three long
time operations-Erase, Erase to End of Screen, and Scroll up. 
Erase is free-it quickly removes characters from the screen, tear
ing up a blank or nearly blank display, so it presents no prob
lem. Erase to End of Screen creates more of a disturbance, but 
it also gives us some blanking and is rare enough that you don't 
have to worry about it. The Scrolling Cursor is more of a problem. 
We will note in passing that the Cursor tearing during a scroll can 
be dramaticaliy improved by making the Cursor scroll take exactly 
one vertical interval. 

INTEGRATE IT 

In an integrated Scan program, you build everything else you 
want to do with your computer into the Scan program. You do 
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the other things during your vertical-retrace time. Since everything 
else gets done during blank time and since there can be continuous 
timing without interruption, you can end up with a totally trans
parent display. 

An integrated program works well for things like cursors and 
editors, as well as scanning and debouncing a companion ASCII 
keyboard. Some motions for simpler game graphics are also possible. 
It also frees the computer interrupt structure for other uses. 

There are several hassles involved. Your Scan program will 
be longer and more complex. Your programs will be harder to 
change. Design and debug also will take longer. The other things 
the computer is to do must be stuffed into a few milliseconds re
occurring 60 times a second. Integrated programs are totally un
suited for games with complex graphics or where you are running 
a display and BASIC or another high�r-level language together. 

Just combining everything into one program does not guarantee 
transparency. You have to make the tv timing continuous, at least 
for the more often used program functions. 

There are two ways to make sure your timing is continuous for 
transparency. One is to make certain each and every major path 
through the "something else" software takes exactly the same time. 
Another route is to start a software timer and measure how long the 
"something else" routine took. After measuring the time, you can 
then equalize the remaining Scan program by shortening one blank 
Scan and lopping off as many others as you have to. 

The each-and-every path is usable for simple Cursors and key
board Scans, but you will want the timer route anytime you need a 
full performance_ Cursor or run any other program that has several 
different or variable execution times. 

As an example of an integrated program, let's build a simple 
16 X 32 interlaced alphanumeric display that has a built-in trans
parent Cursor that allows us to sequentially enter characters, car
riage return, or screen erase. We will use the each-and-every method 
for transparency since there are only four routes through the Cursor 
program. These routes are do nothing, enter, return, and clear. 

Since we are no longer interrupt driven, we cannot use the inter
rupt line for a keypressed indication. Instead, we use the dual flip
flop circuit of Fig. 5-5. An external keypressed command toggles the 
first flip-flop. Every time a field is complete, an "entry test" pulse 
transfers the contents of the first flip-flop onto the second. The first 
flip-flop is also set at the same time. Our second flip-flop in tum 
holds and passes on a "O" to parallel input PA 7 if a character is to be 
entered and a 'T' if no character is to be entered. 

Besides freeing the interrupt structure for other uses, this two 
flip-flop synchronizer gives us a full handshaking interface that 
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minimizes any of the times when a character could be ignored or 
double entered. 

Our integrated program is shown in Fig. 5-6. To keep things 
simple, we have kept the program in two pieces. The Scan part of 
our program is our old program of Fig. 2-10, the 16 X 32 utility inter
laced Scan. This program is patched in two places, as shown, to 
jump to the Curse part of the program shortly after the start of the 
vertical-blanking interval. 

+5 V 

<!013 (CMOSI 

f· l •NO ENTRY 
0 • ENTER 

JL PA7 

KP 

a 

30 �  
4. 7K 

C II 

Q 

(A) Circuit. 

PBI n 
--- ....J L  

ENTRY 
TEST 

__ __.n� _____ _.n .... _ __.n�------ KEYPRESSED 

u 

L..J ___ _, --------�----------------�--
IGNORE ENTER IGNORE ENYER ENTER IGNORE 

(8) Waveforms. 

ENTRY TEST 

QI 

an 

Fig. 5-5. Keypressecl handshaking Interface for Integrated Scan programs. 

Shortly after the vertical-blanking time starts, our Curse pro
gram starting at 0100 outputs a pulse to our handshaking flip-Hops 
to test if a new key has been pressed. The program then tests for 
the four possible conditions of do nothing, enter, return, and clear. 
The do-nothing is based on a most significant parallel input bit ( A 7 )  
of "l," and returns us directly to the Scan program, taking up 
just enough time to properly space the horizontal-sync times. 
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µ.P-6502 
System-KIM-1 

Start-JMP 17A6 
End-Interrupt 

Displayed 0200-03FF 
Progrom Space 1 780-1 7d4; 

0100-018b + 3 words 
poge zero EC; Ed; EE 

Input to parallel word A I EN I A7 I A6 I A5 I A4 I A3 I A2 I A 1 I 
Clear-CAN (18) 
Carriage Return-CR (Od) 
Enter-All characters and 

all unused CTRL commands 

EN is an enter command 
per Fig. 5-5. 

Program is shown in two parts. Scan program is identical to Fig. 2-10 except for the 
following patches: 

17CO JMP 4C (00) (01) Jump to integrated Cursor 

1 7d3 CLO d8 
17d4 BPL 1 0  Ed* 

Equalize two microseconds 
Repeat V blanking Scan 

JMP 
from Cursor entry portion of program: 
Scan 
17CO - 0100 LDA 

0102 STA 
0105 STA 
0108 LDA 

010A STA 
010d TAY 
OlOE LOA 

r
01 1 0  BPL 

exit to 
Scan --..a-- 01 1 3  JMP 
when L o1 1 6 PHA 
no key 01 17  LDA 
pressed 01 19 CMP 

G"" 
BCS 

01 1 d  CMP 
Ol l f  BCS 

t 
0121 JSR 

0124 LDA 
0126 AND 
0128 STA 
012A PLA 

A9 02 
Sd (03) 
Sd (02) 
A9 00 

Sd (02) 
AS 
Ad (00) 
10 03* 

4C (Cd) 
48 
A5 (EE) 
C9 04 

bO 04* 
C9 02 
bO 03* 
20 (76) 

bl (Ed) 
29 7F 
91 (Ed) 
68 

Make PB 1 an output 
(17) continued 
(17) Make PBl output high to strobe EN 

Finish PB1 pulse by making PBl low 

( 17) continued 
Reset Y index to zero 

(17) Read input character 
Was key pressed? 

(17) No, return to Scan program 
Save input character on stack 
Get upper Cursor 
Is Cursor below maximum page? 

No, home Cursor 
Is Cursor above minimum? 
No, home Cursor 

(01) HomeCursor via subroutine 

Get old Cursed character 
Erase Cursor 
Replace old character without Cursor 
Get new character off stack 

Fig. 5-6. Program for 16-llne, 32 character per line, interlaced TVT 6 5/8 
Raster Scan with Integrated minimum Cursor. 
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012b 
015b -- Ol2d 

012F 
OUA - 01 3 1  

0133 
0158 

c
01 36 
01 38 
013b 

013d 
013F 
0141 
0142 

enter 
and CR 0145 
return 0146 
toScan - 01 47 

_/
014A 

0131  014C 
014E 
0150 
0153 

0154 
0155 
0156 
0157 

0158 
015b 

[
"' 

0160 

0163 
0165 
0168 
016b 

016C 
016d 

013b -- 01 6E 
0171 

0172 
0173 
0174 
0175 

CMP C9 
BEQ FO 
CMP C9 
BEQ FO 

JSR 20 
BNE dO 
JSR 20 
LOA bl 

ORA 09 
STA 91 
DEX CA 
JSR 20 

NOP EA 
DEX CA 
JMP 4C 
LOA A5 

ORA 09 
STA 85 
JSR 20 
PHA 48 

PLA 68 
PHA 48 
PLA 68 
NOP EA 

JMP 4C 
JSR 20 
LOA A9 
JSR 20 

BNE dO 
JSR 20 
LOA Ad 
NOP EA 

NOP EA 
NOP EA 
JMP 4C 
NOP EA 

NOP EA 
NOP EA 
NOP EA 
NOP EA 

1 8  Clear Screen? 
2C* Yes, clear screen 
Od Return Carriage? 
17  Yes, return carriage 

(7F) (01) ENTER CHARACTER via Subrautine 
03* Did screen overflow? 

(76) (01) Yes, home Cursor via subroutine 
(Ed) Restore Cursor to new location 

80 continued 
(Ed) continued 

Equalize return for transparency 
1 0  60 continued 

continued 
continued 

(C3) ( 1 7) Return to Scan 
I I I CARRIAGE RETURN /// get Cursor 

I F  Move Cursor to extreme right 
(Ed) Restore Cursor 
(81 )  (01 )  Increment Cursor 

Equalize return for transparency 

continued 
continued 
continued 
continued 

(36) (01 )  Exit via screen overflow test 
(76) (01 )  / / /  CLEAR SCREEN / /  / home Cursor 
20 Enter space into accumulator 
(7F) (01) Enter space and increment via sub 

FA* Repeat if not to end of screen 
(76) (01 )  Home Cursor via subroutine 
(00) (EO) Provide vertical sync pulse 

Equalize return for transparency 

continued 
continued 

(3b) (01) Return to main entry program 
Spare 

Spare 
Spare 
Spare 
Spare 

Fig. 5-6 Continued. Program for 16-llne, 32 character per line, 
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0176 LDA A9 00 SUBROUTINE-/// HOME CURSOR //// 
0178 STA 85 (Ed) Set lower C.unor to 00 
017A LOA A9 02 Set upper Cunor to 02 
017C STA 85 (EE) continued 

017E RTS 60 Return 
017F STA 91 (Ed) SUB-/ I ENTER AND INCREMENT // 
0181 INC E6 (Ed) Increment lower addren 

[°'� 
BNE d0 06* Did page overflow? 

01 85 INC E6 (EE) I ncrement upper addren 
0187 LOA A9 04 load page above display maximum 
0189 CMP cs (EE) Test for screen overflow 
018b RTS 60 Return 

NOTES: 
Refer to notes at end of Fig. 2-10. 
Cursor Address is stored at OOEd low and OOEE high. 
Available remaining stack length is approximately 100 words. 
* Denotes a relative branch that is program length sensitive. 
( ) Denotes an absolute address that is program location sensitive. 

Continued on neat page. 

interlaced TVT 6 5/8 Raster Scan with integrated minimum Cursor. 
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FLOW CHART: 

NO 

NO 

START 

l7A6 

EVEN 

EVEN F IELD 
V SYNC AND 

SIT UP 

(1761 - 1766) 

YES 

(1780 - 178b) 

(178d - I 78F) 

(1791 - 179Fl 

(17A2-17A4l 

>
..;;.O""'DD;...._-, (17A6 - 17ABI 

ODD F IELD 
V SYNC 

AND SET UP 

(17AC- 17b6l 

JUMPS TO CURSOR PORTION 
ON F IRST BLANK SCAN • 

..----- A 

.--------------------- 8 

(17bd - 17cll) 

"SCAN" PORTION 

RETURNS TO SCAN Wl£N 
CURSOR IS F IN ISlt:D 

Fig. 5-6 Continued. Program for 18-llne, 32 character per line, 
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A 

B 

NO 

(012b - 01321 

ENTER 

f0133-0B5) 

ENTER 
ANO 

INCREMENT 

NO 

RESTORE 
CURSOR 

ERASE 
OLD 

CURSOR 

(0116 - 01211 

(0124 - 012AI 

CLEAR 

CARR IAGE RETURN 

RETURN !014A - OlSAI CHARR IAGE 

(0176 - 017EI 

YES HOME 
CURSOR 

"CURSE" PORT ION 

10176 - 017[) 

HOME 
CURSOR 

HOME 
CURSOR 

(0176 - 017EI 

IO!Sb - 0170) 

!0176 - 017EI 

interlaced 1VT 6 5/8 Raster Scan with integrated minimum Cursor. 
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The keypressed commands of enter, carriage return, and clear are 
done pretty much the same way we did with the Scrolling Cursor 
program of Fig. 2-20. The only differences are that we add extra 
equalization time as needed to get everything to take the right 
amount of time. 

"Enter" and "Carriage Return" take slightly more than one hori
zontal time, so we add equalization to come up to a whole number 
of Scan lines, and then knock two lines out of the blank Scans to 
make things come out even. On a "Clear" command, we take an 
entire field to complete clearing since we have to repeat enter a 
space 512 consecutive times. At the end of this "used" field, we 
throw in a new vertical-sync pulse to hold vertical lock and then go 
on to the Scan program. 

The coding in this program is a little sloppy. You should be able 
to make it much more efficient. At the same time, we get "perfect" 
invisible equalization of the display, but you may find a few back
ground glitches that are annoying on a reverse-video ( black on 
white) display. These can be fixed with a little extra work on your 
part. 

Your Turn: 

Combine both program halves into a 
single integrated Scan and Cursor ,pro
gram. Make tihe coding more efficient and 
further improve the transparency. T'hen 
add coding that will ·let you transparently 
Scan a companion ASCI I keyboard. Do ·not 
use an external keyboard encoder. 

As you will see when you use this program, absolutely perfect 
equalization of all the paths through the program is not often 
needed. This is particularly true for seldom happening things like 
extra code that is picked up because of a page overflow, and so on. 

Since your Cursor is part of the Scan program, the amount of 
equalization needed will change as you change the number of 
microseconds of horizontal-Scan time. 

Should you want to integrate a more complicated Cursor or other 
program, consider measuring how long the other activities take 
with a timer and then correct for it rather than keeping track of 
each and every possible path through the software. 
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FILL IN THE SYNC PULSES 

Integrated Scan programs are nice for totally transparent Cursors, 
keyboard scanning, 1/0, and similar support tasks. But, if we want 
to run a display along with a higher-level language such as Extended 
BASIC, or if we have very involved game motion calculations, 
integrating the two programs together either will not work at all 
or else will be "mind blowingly" complex. Something fancier is 
needed if we are going to get full transparency with heavier 
programs. 

One solution to total transparency is called the counter method, 
otherwise known as sync fill-in. We note our usual tvt Scan pro
gram is not up to very much during the entire vertical-blanking 
interval. All the Scan program does during this time is provide 
horizontal-sync pulses and keep track of the total lines in the field. 
If we can find some other ways to do these two simple tasks, the 
entire blanking time can be released for other uses. Obvious "other 
ways" include a counter or a software timer. 

A good approach is to reverse the roles of tvt scanning and the 
main program from what we have done so far. We let our main 
program be the main program, running all the time, and interrupted 
by the tvt scanning. The main program gets interrupted 60 times a 
second. During an interrupt, the Scan program provides us with 
the live portion only of a field. After the live portion of the field is 
complete, some source of continuing horizontal-sync pulses and 

60 TIMES 
A SECOND 

AN INTERRUPT BREAKS THE MAIN 
PROG.RAM AND G IVES US A LIVE 
SCAN FIELD • .__ _________ _, 

F ILL-IN SOURCES OF HOR IZONTAL SYNC 
AND A 60 HERTZ "NEXT FIELD INTERRUPT" 
ARE SET UP. 

* ���iT 

Fig. 5-7. Sync fill-In in method gives total transparency by letting main pro
gram run during display vertical blanking time. 
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Fig. 5-8. Counter to add to 1VT 6 5/8 for transparent sync Fill-In. 

start-the-next-field timing is located. The interrupt is then released 
and the main program continues. 

The sync fill-in method is similar to the interrupting of a running 
program by a front-panel monitor, as is commonly done in many 
microcomputers. Fig. 5-7 sums up what we have to do for the sync 
fill-in method to work. 

We can add a single, long binary counter to our TVT 6% to pick 
up fully transparent, sync fill-in operation. Details of the new 
counter are shown in Fig. 5-8. Our new counter is driven by the 
1-MHz system clock. Once every 64 µ,s, a horizontal-sync pulse is 
output. Once every 128 horizontal lines after reset, an interrupting 
pulse is output. By resetting the counter at the end of each field 
with the VRF command, we automatically set up 128 blanking lines 
during which the main program runs normally. 

Details of a 14 x 32 Scan software program that works well 
with the counter method are shown in Fig. 5-9. Since our counter 
calls for a 64-µs line, the software is adjusted to provide the same 
length. Except for one very obscure and sticky detail, the Scan 
program is very simple and straightforward. We start out by saving 
all the registers on the stack so the main program can resume 
normal operation later. Then we do some equalization. Then we 
initialize the starting addresses and the number of lines to be 
scanned. We then do the usual character row Scans. After the last 
line, we do some more equalization, output a vertical-sync pulse and 
reset our counter, restore the registers and return to the main pro
gram. 

The obscure and sticky detail was slid over with the word "equali
zation" in the above description. If we could be sure that an inter
rupt always took place the instant we told it to, there would be no 
problem at all. But, that is not the way interrupts work. Interrupts 
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µP-6502 Start-lRQ Displayed-0220-03dF 
System-KIM-I End-RTI Program Space-1780-17d3 

Upper Address ( 17A8) lower Address ( 1 7  A7) 

l · l · l · l · l 0 l 0 l 1 I VB I I V4 I v2 I v1 I H 1 6  I He I H4 I H2 I H I I 
'----v---------
0-5, F -normal program (no TVT) Program length-84 words 
6 -blank Scan 
7 -scan row I Remaining Throughout-SO% 
8 -Kan row 2 
. . .  etc. 
d -Kan row 7 
E -vertical-sync pulse 

Enter 
via 
l�Q 

1 780 PHA 48 Save Accumulator 
1781 TYA 98 Save Y Register 
1782 PHA 48 continued 
1 783 TlCA BA Save X Register 

1 784 PHA 48 continued 
1 785 LOA Ad (46) ( 17) Read timer to measure IRQ jitter 
1788 EOR 49 FF Change down count to up count 
1 78A LSR 4A Shift LSB Jitter into carry flag 

1 78b BCS bO 00 Equalize 2; 3 microseconds 
1 78d STA 8d (97) ( 17) Complete equalization; load blank Scan 
1 790 LOA A9 00 Initialize lower address 
1 792 STA Bd (A7) ( 17) continued 

1 795 CLC 1 8  Clear Carry 
1 796 JSR 20 00 60 I I I I Equalizing Blank Scan I I I I 
1 799 BEQ FO 00 Equalize 3 microseconds 
1 79b LOA A2 OF load no. of character rows + 

1 79d LOA A9 A2 Initialize Upper Address 
17CO 1 79F STA Bd (AB) ( 17) Store Upper Address 

1 7A2 PHA 48 Equalize 1 1  microseconds 
1 7A3 PLA 68 continued 

1 7A4 NOP EA continued 
1 7A5 NOP EA continued 
17A6 JSR 20 00 62 I I I Character Scans 0-7 I I I I 
1 7A9 ADC 69 1 0  I ncrement character Scan counter 

1 7Ab CMP C9 EO scan counter overflow? 
4- 1 7Ad ace 90 FO* No, scan next row of character 

1 7AF TAY AB Save Upper Address 
1 7b0 LOA Ad (A7) ( 17) Get lower Address 

Continued on ned page. 

Fig. 5-9. Transparent 14 X 32 Scan program for TVT 8 5/8 using counter 
method for sync fill-In. 
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1 7b3 ADC 69 I F  I ncrement Lower Address; save carry 
1 7b5 STA 8d (A7) ( 1 7) Restore Lower Address 
1 7b8 TYA 98 Get upper address 
1 7b9 ADC 69 90 Add Carry; reset upper address 

1 7bb JSR 20 00 62 // / // Blank Scan 8 ///// 
1 7bE CLC 1 B  Clear Carry 
1 7bF DEX CA End of screen? 

179F 1 7C0 BNE d0 dd* No, do a new character row 

1 7C2 LDA A9 38 Set Timer to measure IRQ jitter 
1 7C4 STA Bd (44) ( 17) continued 
1 7C7 LDA Ad 00 E0 Output Vertical-Sync Pulse 
1 7CA PLA 68 Restore X Register 

1 7Cb TAX AA continued 
1 7CC PLA 48 Restore Y Register 
1 7Cd TAY AB continued 
1 7CE PLA 68 Restore Accumulator 

1 7CF PHA 4B Equalize 14 microseconds 
1 7d0 PLA 68 continued 
1 7d l  PHA 48 continued 
1 7d2 PLA 68 continued 

exit to 
main 1 7d3 RTI 40 Return from Interrupt 
program 

NOTES: 
TVT 6 5/8 must be connected and both the Scan (658-KSB) and Decode (658-KD64) 

PROMs must be in circuit for program to run. TVT 6 SIB must be in "32" position. 
This program runs by interrupting another one. For a default main program use 

0 100 EA EA 4C 00 01 . Counter of Fig. 5-8 must also be in use. 
Load 20 in locations 0200-02 1 F to blank top equalization lines. 
Step 1 7A6 goes to where the upper address stored in 1 7A8 and the lower address 

stored in 1 7A7 tells it to. Values in these slots continuously change throughout 
the program. 

Program horizontal frequency 1 5,625 Hz; Verticol 59.98 Hz; 64 µ,s per line, 260.5 
lines total, no interlace. SO-second hum bar. 
) Denotes an absolute address that is program location sensitive. 

* Denotes a relative branch that is program length sensitive. 

Fig. 5-9. Transparent 14 x 32 Scan 
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FLOW CHART IRQ 

(1780 - 17841 

11785 - l79EI 

(l79F - l7AAI 

NO 
(17Ab - l7AEI 

(17Af - l7bfl 

NO 
(17C0 - l7Cll 

ll7C2 - l7C61 

(17C7 - 17C91 

U7CA - l7d31 

RTI 

program for TYT 6 5/8 using counter method for sync fill-In. 
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always wait until the present instruction is carried out. Depending 
on your computer, this wait will depend on whatever instruction the 
main program happens to be working on, and can range from one to 
ten or more microseconds. If we ignore this, we will get several over
lapping displays, randomly jittering around as the actual time-to
interrupt dictates. 

So, a precise method of finding out how long an interrupt took is 
needed. In the KIM-1, we use the "free" software timer buried in 
the cassette circuitry. We initialize this timer at the end of one field. 
After the next interrupt, we measure the time in the timer. This will 
give us a number that relates to the number of microseconds of jitter 
the interrupting process caused us. We then go on to correct the 
jitter by lengthening or shortening the time before the first character 
row. 

Since the KIM timer is a down counter, this is the opposite of what 
we need. So, we complement the time reading at 1788, converting the 
answer into a string of numbers that increases with increasing time. 
Next, we shift everything right one bit, putting the least significant 
bit into the carry. A BCS 00 will take 2 µs for a zero and 3 µs for a 
one. This takes part of the problem and solves it for us. 

We then take the remaining value and use it as a lower address to 
start a blank Scan. Each unit change in blank Scan address gives us 
a change of 2 µs, nicely dividing out the "times two multiply" we 
got with the right shift. The value initially loaded into the timer not 
only does our equalization, but also gives us a position control. 

In your own system, anything that works can be used. What you 
have to do is find some way to measure how long after you told your 
computer to interrupt that it actually did so, and then use this num
ber to shorten or lengthen things so that the first character row 
always takes the same number of microseconds after the interrupt 
command is given. 

Our counter and its Scan program is an extremely elegant example 
of how simple it is to pick up full transparency in a tvt system. This 
is admittedly a special case as we are limited to Scans with 64 µs 
per line and 128 lines of available transparency during vertical 
retrace. 
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Your Turn: 

Add Interlace and Double Stuffing to this 
Scan program. Note that you wi l l  need a 
new way to reset your counter when you 
go to full i nterlace. 
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In general, you have lots of options toward total
° 

transparency 
with sync fill-in. By going to a divide-by-N counter for the H source, 
you can get any line length you want. A traditional, but not cost 
effective, divide-by-H and divide-by-V counter appears in Fig. 5-10. 
Tiris will be fine to get you started, but you will want something 
better in your final system. 

The obvious, crying-to-be-used source for the 60-Hz interrupt is, 
of course, the power line. This also will give you a stationary display 
with the resulting line lock. To use the power line, a phase measure
ment must be made to speed up or slow down the microprocessor 
clock so that lock can be held. Another route is to add or remove
equalizing delay with suitable software; this lets you run at a con
stant clock frequency. This can be very easy to do, but is very system 
specific. The details are left up to you. 

, Your Turn: 

Line lock your interlaced, double-stuffed, 
transparent, counter method Scan pro
gram. 

Other sources for our 60-Hz field interrupt are the second half of 
the counter of Fig. 5-10, or one of the new television vertical-counter 
sync chips such as a National LM1880. If we are sneaky, we can 
eliminate the need for a separate timer to compensate the interrupt 
jitter. For instance, if the first few stages of your divide-by-H counter 
are available, these can be directly read to get a measurement of the 
jitter. Once again, the details are system specific. 

The crucial question is "How much throughput does an interrupt
driven cheap video Scan leave us?" The quick answer is "Much more 
than you would guess." 

Chart 5-1 shows the available throughput remaining for many 
popular display formats. Short displays will have an almost negligi
ble effect on throughput. We see that we can get a double-stuffed 
12 x 80 display and still have almost two thirds of the usual through
put available for normal computer use. 

The throughput is calculated by seeing how many total lines you 
have, and subtracting three more than the number you need for your 
live Scan. The result is expressed as a percentage. The extra three 
lines take care of your sync and setup. If you are careful, these lines 
can also be used for your companion Cursor and keyboard scanning. 

Double stuffing will always help us much on throughput. The 
most dramatic example is in the 256 X 256 graphics, where the 
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Chart 5-1 . Full Transparency Throughput Versus Display Format 

Computer 
Time 

Aphanumerics Remaining 
1 x 32 or 1 x 40, double stuffed . . . . . . . . . . . . . . . . . . . 97% 
1 x 32 or 1 x 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95% 

1 6  x 32 or 1 6  x 40, double stuffed . . . . . . . . . . . . . . . . . . 68% 
1 2  x 80, double stuffed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62% 
16 x 64, double stuffed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58% 
1 6  X BO, double stuffed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50% 
32 X 32 or 32 X 40, double stuffed . . . . . . . . . . . . . . . . . . 38% 
1 6  X 32 or 1 6  X 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38% 
1 2  X 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25% 
24 x BO, double stuffed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25% 
1 6  X 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7% 
32 x 64, double stuffed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7% 

Graphics 
1 28 x 128, double stuffed . . . . . . . . . . . . . . . . . . . . . . . . . . . 74% 
1 28 X 1 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50% 
256 X 256, double stuffed . . . . . . . . . . . . . . . . . . . . . . . . . . 50% 
256 X 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2% 

throughput is 2% for a regular display and 50% for a double-stuffed 
display. To maximize your throughput, keep your display as short 
and compact as possible, use double stuffing, and minimize the num
ber of lines between character rows. 

One surprise in Chart 5-1 is that 64-character lines are less effi
cient than BO-character lines when it comes to throughput. For a 
given number of characters on the screen, the number of lines you 
are usually willing to eliminate going to 80 characters exceeds the 
percentage change involved in lengthening each line from 64 to 80 
characters, explaining the discrepancy. 

USE A SLEDGEHAMMER 

Sometimes your display and its Cursor may be so sophisticated or 
complex that it needs nearly the full attention of your microproces
sor. Or other programs in your computer system may need all the 
throughput they can get. There may be limits on your other pro
grams that prevent any interruptions at all. One situation in which 
this happens is when timer loops, real-time clocks, or other timing 
activities are an important part of the program. Other times, you 
might want to run your display remotely from your computer in the 
traditional terminal fashion. 

What can you do to get full transparency in these special cases? 
The answer is obvious. You throw in your own microprocessor and 
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TO MAIN 
COMPU1ER 

�-J::� i"- ,-------, 
I ASC I I  I 1 UART I PARALLEL 110, 

..,__.....,; KEYBOARD I I (OPTIONALI I TIMER, ROM 
L_!°!_T�N�l_j L-----...J 

I K  X 8 
RAM M 6 5/8 ---o VIDEO OUT 

Fig. 5-11. Adding dedicated mlcroproc:esaor chip Is sledgehammer (but still 
cost-effective) approach to transparent cheap video. 

display memory ahead of your TVT 6% and dedicate these new 
parts to exclusive display and support use. 

Fig. 5-11 shows the block diagram of a typical system. We use a 
CPU that works with a lK display memory RAM and a lK or so 
program ROM ahead of the tvt circuitry. One IC would be needed 
for the microprocessor; two for the memory ( using 4K static chips ) ;  
one for the upstream tap; one for a parallel interface and PROM 
program combination; and possibly a UART/bit rate generator chip 
for a serial interface. A total of six or seven extra ICs would be in
volved, fewer if we pick one of the new "single chip" µ,p systems. 
The same circuit could support a scanning ASCII keyboard, a 
cassette interface, and so on, along with serial and parallel inter
faces to the main computer system. 

Your Turn: 

Show a stand-alone cheap video terminal 
system using 'less than 1 5  integrated cir
cuits. Have it provide all the features of a 
traditional deluxe video terminal and then 
some. 

The use of a "whole new computer" may sound like a last resort 
sledgehammer. And, in fact, it is very rarely needed. But micro-
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processors and their support chips are rapidly dropping in price. Even with these added chips, the cheap video approach of an upstream tap and a Scan microinstruction dramatically slashes system complexity so much that it often provides the simplest and best route to video display. 
NOW WHAT? You have seen just what cheap video can do for you. Now you should be able to design your own cheap video software and hardware. You can see just how easy it is to let ordinary speed microcomputers do all the timing needed for video display, while still staying within the limited bandwidth of a largely stock tv set. You should be able to use the cheap video tricks-of-the-trade on your own, picking up double stuffing, full interlace, memory repacking, and whatever degree of transparency you need for your use. VVhat is next? Where do you go from here? Here are several cheap video concepts that need your attention and you can be an important part in helping to find their solution : * Design an 8080 Adaptor that goes between the TVT 6% and an 8080 microcomputer system. Use two 74LS174 latches on the high address and the upstream tap lines to get around the 8080's Boating address times. Connect your display memory address line A9 to a source of 500 kHz during a Scan to double the apparent memory-access speed to once each microsecond. * Provide a cheap video system to pick up Benton Harbor and S-100 bus compatibility. The best way to do this initially is as a simple tvt add-on to an existing memory card. Patch or otherwise modify your Extended BASIC or other software to work directly into display memory space. · * Can you use a single microprocessor and a pair of 4K static RAMs ahead of your tvt to do a complete, transparent, standalone terminal? Can you do the entire terminal, including keyboard, with fewer than 15 integrated circuits and costing less than $50 at hobbyist retail? * Do long line-length alphanumeric Scans at normal horizontal speeds. Approaches to this on a 6.500 or 6800 would include brute force Scan programs, address line A9 switching ( a la 8080) ,  or speeding up the CPU, either all the time or else only during a Scan Microinstruction. * Build a HEX-ASCII adaptor that lets you directly display machine op-code. Titis makes your cheap video system into a super front-panel debugging aide. One workable approach appeared in the October, 1977, Popular Electronics. A better route would 
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be a much smaller card that fits between the M and the charac
ter-generator module. 

* Create an end-of-line bell ringer that uses one of those dollar 
"Japanese Sonalerts" to signal end of line and other entry or 
Cursor errors. 

* Use some refinements on software controlled vertical position 
to produce a gentle scrolling cursor that slowly moves up 
( crawls) rather than jumps disconcertingly as do almost all 
present Cursor systems. 

* Show Scan and Cursor coding for a 6800 base system. What 
about other systems like COSMAC, the IM6100, and so on? 

* Use a LM1889 to build a modulator that gives you one of four 
colors for color displays. Add circuitry as needed to get Chan
nel 3 and 4 rf output as well as full sound capability. 

So, where does cheap video go from here? It is all up to you! 
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APPE N D I X  A 

The ASCI I Computer Code 
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Table 1-1. The Standard ASCII Code 

BIT NUMBERS 
0 0 0 0 1 1 

I I 
� 0 0 1 1 0 0 

0 1 0 1 0 1 
I , 

b7 ... bs ... ba b,. ... 
� 

0 1 2 3 4 5 
.j. .j. .j. .j. .j. J, .j. J, 

0 0 0 0 0 NUL DLE SP 0 @ p 

0 0 0 1 1 SOH DCl ! 1 A Q 

0 0 1 0 2 STX DC2 ff 2 B R 

0 0 l 1 3 ETX DC3 # 3 C s 

0 l 0 0 4 EOT DC4 $ 4 D T 

0 1 0 1 5 ENQ NAK % 5 E u 

0 1 1 0 6 ACK SYN & 6 F V 

0 1 1 1 7 BEL ETB ' 7 G w 

1 0 0 0 8 BS CAN ( 8 H X 

1 0 0 1 9 HT EM ) 9 I y 

1 0 1 · 0 A LF SUB * : J z 

1 0 I 1 b VT ESC + ; K [ 
1 1 0 0 C FF FS < L "-
1 1 0 1 d CR GS - -- M I 
1 1 1 0 E so RS > N A 

l 1 1 1 F "  SI us I ? 0 -
In the TVT 6 5/8, ASCII bit 8 is reserved as a cursor or an entry flag. 
A "1"  displays the cursor; A "O" does not. 
A "1" prevents entry; A "C " allows entry. 

1 
1 
0 

6 

a 

b 

C 

d 

e 

f 

9 

h 

i 

i 
k 

I 

m 

n 

0 

Examples: The numeral "3" is an ASCII Hex 33 or Binary 001 1001 1 ASCII Coding 
"6b" is a lower case "k." 

228 

1 
1 
1 

7 

p 

q 
r 

s 

t 

u 
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V 
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APPE N D I X  B 

Hex-Octal-Decimal 
Conversion Chart 

229 



LOWER HEX DIGIT 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 
0 1 2 3 4 5 6 7 8 9 10  1 1  1 2  1 3  1 4  15  

000 001 002 003 004 005 006 007 010 0 1 1  012 013 014 015 016 017 

1 
16  1 7  1 8  19  20 21  22 23 24 25 26 27 28 29 30 3 1  

020 021  022 023 024 025 026 027 030 031 032 033 034 035 036 037 

2 
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057 

3 
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077 

4 
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

100 101 102 103 104 105 106 107 1 10 1 1 1  1 12 1 13 1 1 4 1 15 1 16 1 17 

5 
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137 

6 
96 97 98 99 100 101  102 103 104 1 05 106 107 108 1 09 1 10 1 1 1  ... 140 141  142 143 144 145 146 147 150 151  152 153 154 155 156 157 

7 
1 1 2 1 1 3 1 14 1 15 1 16 1 1 7  1 1 8  1 19 1 20 121  1 22 123 124 125 126 127 

>C 160 161 162 163 164 165 166 167 170 171 1 72 173 1 74 175 1 76 177 

8 
128 129 130 1 3 1  132 133 134 135 136 137 138 139 140 141 1 42 143 

ai= 200 201 202 203 204 205 206 207 210 2 1 1  2 12  213 214 215 216 217 

9 
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 
220 22 1 222 223 224 225 226 227 230 231 232 233 234 235 236 237 

A 
160 161 162 163 164 165 166 1 67 1 68 169 170 171  1 72 1 73 1 74 1 75 
240 24 1 242 243 244 245 246 247 250 251 252 253 254 255 256 257 

B 
1 76 177 1 78 1 79 180 181 1 82 1 83 1 84 1 85 186 187 1 88 1 89 190 191 
260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277 

C 
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 
300 301 302 303 304 305 306 307 310 3 1 1  312 313 314 315 316 317 

D 
208 209 210 21 1 2 12  213  2 14  215 126 127 128 129 220 22 1 222 223 
320 32 1 322 323 324 325 326 327 330 331 332 333 334 335 336 337 

E 
224 225 226 227 228 229 230 231 232 233 234 235 236 236 238 239 
340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357 

F 
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 
360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377 

Octal Values are shawn in italics; e.g., 377 
Examples: 

Hexadecimal 6D is Octal 155 or Decimal 1 09. 
Odal 154 is Decimal 108 or Hexadecimal 6C. 
Decimal 195 is Octal 303 or Hexadecimal C3. 
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A P P E N D I X  C 

Pinouts of Selected 

Integrated Circuits and 

Other Components 
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232 

ALL IC'S SHOWN TOP VIEW 

+5 V 

+ 5 V  

+ 5  V 

2513 CHARACTER GENERATOR 
(5 1 7, UPPER AND LOWER CASE ONLY) 

(GENERAL INSTRUMENTS) 

4013 CMOS DUAL "D" fUP-FLDP 

(RCA) 

4020 CMOS BINARY COUNTER 

(RCA) 



+ S V  

5810 32XB PROM 
(INTERSIL) 

6670 CMOS CHARACTER GENERATOR 
(5 x 7, UPPER AND LOWER CASE) 

(MOTOROLA) 
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234 

+5 V 

+5 V 

74lS04 TTL HEX INVERTER 

(TEXAS INSHUMENTS) 

7405 TTL HEX INVERTER (OPEN COLLECTOR) 

(TEXAS INSTRUMENTS) 

+ 5 V 

74LSD8 TTL QUAD AND GATE 

(TEXAS INSTRUMENTS) 



+ 5 V  

+ 5 V 

74l5157 TIL QUAD SElECTOR 

(fEXAS INSTRUMENTS) 

7416' TTL SHIFT REGISTER 

( PARALLEL IN, SERIAL OUT) 

(TEXAS INSTRUMENTS) 

IN 4919 SILICON DIODE (FAIRCHILD) 
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B 

2N4400 
NPN SILICON TRANSISTOR 
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APPE N D I X D 

Printed-Circuit Patterns 
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Full size pc b oard p attem for 1VT 6 5/8. 
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Solder mask for TVT 6 5/8 (full size). 
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(A) + bus. (B) Ground bus. 

Full size bus strip pattems. 
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I 
1 1 116" -----....j 

- (2. 7CM) 
I 

1 9/16" 

(4CMl 

NOTCH AS SHOWN 

Module A foil pattern. 

I 13116" 
14. 6CM l  

NOTCH AS SHOWN 

Module B foil pattern. 
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f--- 1 1/16" 

I 12.
7
CM) I 

NOTCH AS SHOWN 

Module C foil pattern. 
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Accumulator, 22 
Adding 

interlace, 60-61 
tvt input to your television set, 147-

150 
Add-on HEX/ ASCII converter, 38 
Address 

bus assignments, 33-34 
decoder, 35 
lines, 33-34, 134-135 
lower, 52 
upper, 52 

Algorithm, double-stuffing, 68 
Alphanumeric 

cheap video display, 18, 155 
system, 14 

Alphanumerics, 10 
AND gate, 23 
Architecture, 1 1-15 
ASCII 

characters, 9 
computer code, 227-228 

Backspace ( BS ) , 93 
Bandwidth 

compensation, 130-132 
compensator, 131 
stock video, 9 

Bandwidth-enhancement circuit, 26 
Bandwidth enhancer, 14 
Black and white 

formats, 33 
graphics display, high resolution, 20 

Blank 
line, 35 
row, 35 

Blanking, 14, 35, 46, 196 
gate, 14 
skew, 198 

Blank-line interlace, 77 
Block-access memory, 14 
BNK input, 163 
Branch on equal, 52 
"Brute force" software, 66 
Buffer, 126 
Building the TVT 6", 155-199 
"Bulldozer tracks," 197 
Bus 

data, 1 1  
definitions, 33-38 
strip patterns, full size, 168 

Call, 22 
Calling chess pieces from a file, 195 
Carriage Return ( CR ) ,  93, 95, 2 14 
Changeover, 139-141 

switch, 140 
Character 

generator, 107 
dot matrix, 14 

lines, 33 
times, constant one microsecond, 25-

26 

I ndex 

Characters 
dot matrix, 46 
double-stuffed, 10 

interlaced and, 26-27 
justification of, 20 
noninterlaced, 26 
normal interlaced, 26 

Cheap video, 9 
card, TVT 6", 156 
display, alphanumeric, 18 

Checkout, debug and, 183-195 
Chess 

display using color graphics cheap 
video, 19 

piece file, data for, 196 
Chessboard background, data for, 194 
Chip select, 23 

Input ( CSI ) ,  137 
Output ( CSO ) ,  120, 137 

Chrominance, 81 
Chunk, 34 
Clear ( CAN ) ,  93, 214 

screen, 95 
Clip-on rf modulator, 25 
Clock, 135 

commands, 123-128 
cycles, sequential, 20 
real-time, 15 

CMOS Schmitt inverters, 128 
Code, machine-language, 14 
Color modulators, 10 
Column Scan, 121 
Commercial example, 15-19 
Composite video, 13, 15 
Connections for 

interface of TVT 6" to KIM-1 or 
KIM-2, 142-143 

Scan 658-KS64, 1 16 
658-KD8, 113 
658-KSB0, 120 
658-KS40, 120 

Converter, data-to-video, 14 
Counter method, 215 
CPU, 25 

chip, 38 
Cursor 

controlled circuit, 10 
controller, 31  
down, 95 
guidelines, 9 1-94 
left, 95 
right, 95 
software, 91-103 
up, 95 
visibility, 18 
winking rate, 121-122 

Cursors, 81 
gentle ( crawling) , 10 

Data 
bus ( DB ) ,  38, 120, 135 

assignments, 37-38 
""true," 23 
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Data-cont 
formatter, 107 

Data for chess piece file, 196 
Data for "Special Fonts" typography 

display, 192-193 
Data-to-video 

conversion, 120-124 
converter, 14, 107 

graphics, 123-128 
Debug and checkout, 183-195 
Decode Enable ( DEN) ,  120, 138-139 

command, 42 
( 658-KD8 ) PROM, 81 

Decoder, 14, 35, 107 
Decoding, 35 
Delaying character entry, 204 
DeMorgan equivalent negative logic OR 

gate, 1 1 1  
DEN, 163 
Design plan, 30 
DEX, 204 
Display 

instruction decoder, 34 
memory chip selects, 137-138 
microprocessor-based video, 9-10 

Displays 
alphanumeric, 155 

cheap video, 18 
graphics, 155 

Dot-matrix 
character generator, 14 
characters, 46 

Double 
displays, 27 
speed, 22 
stuffed characters, 10, 26-27 
stuffing, 26-28, 67-69 

algorithm, 68 
Driver, 74LS640, 23 
Dual mode, 196 

EIA ( Electronic Industries Association ) , 
147 

8-bit 
wide data bus, 31  
word, 1 1  

8080, 29, 145 
8048, 145 
End-of-line bell ringers, 10 
End-of-screen odd compare, 73 
Enter, 214 

character and increment, 92 
spaces, 92 

Equalization, 54, 216 
Erase to end of screen, 95, 206 
Even 

field, 68 
rows, 68 

Execution, 23 
Extending hold range, 151 
External CS gating, 196 
External-serial video-shift register, 14 

Fetch, 23 
-but-do-not-execute operation, 23-25 

Field, 45 
even, 68 
odd, 68 

Fill in the sync pulses, 215-222 
Fixed-hardware Cursors, 91  
Flags, 22 
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Flicker, 27 
Floppy disc, 106 
Flyback transformer, 153-154 
Four-color format, 33 
"Four over four" chunk, 81-82 
Formatting, 14 
Formats, 18 
Full-performance scrolling Cursor, 94 
Full scrolling Cursor programs, 18 

Gated oscillator, 125-126 
Gentle ( crawling ) Cursors, 10 
"Glopping," 154 
Graphics, 10 

displays, 155 
formats, 18, 8 1  
loaders, 18, 3 1 ,  102-104 
-response speed, 18 
Scan programs, 77-91 

Ground rules for Scan software design, 
46 

Handshaking interface, 207-208 
Hardware 

designs, 107-154 
upstream tap, 38 
use options, 196 

HEX/ ASCII conversion, 10 
Hex-octal-decimal conversion chart, 229-

230 
High-frequency timing controls, 107-108, 

124-128 
High resolution black and white graphics 

display, 20 
HIN, 163 
Hold range, extending, 151 
Home Cursor, 92 
Horizontal 

( DEN ) rate, 128 
fill in, 196 
-synchronizing pulses, 13, 14, 46 
-yoke lead, 151-153 

How display instructions are decoded, 
32 

Hum bar, 45, 47 
stationary, 61  

Ignore it, 202 
Immediate instruction, 20 
Improving memory packing density, 73 
Increment memory ( INC ) ,  87 
Instruction 

decoder, 14, 107, 109-1 13 
PROM, 109 

decoding, 34-37 
immediate, 20 

Integrate, 105 
it, 206-214 

Interconnections, microcomputer and tvt 
interface, 134 

Interface 
hardware, 1 1  
TVT 6" to KIM-I or KIM-2, con

nections for, 142-143 
Interlace ( ILCE ) ,  65 

adding, 60-61 
Interlaced 

characters, 26-27 
frame, 45 



Internal 
program counter, 20 
-serial video-shift register, 14 

Jitter, 61 
Jumper for 6502 or 6800 operation, 159 
Jump to subroutine ( JSR) ,  22, 38, 52, 

105-106 
Justification of characters, 20 

Key parts of microprocessor-based video 
display, 12-13 

Keypressed pulse, 203 
KIM-based system, 28-29 
KIM-1, 28, 59 

interface, 141-146 
microcomputer, 10, 16 
system, 3 1  

KIM-2, 28 

Load command, 123-128 
Lock it, 203 
Loop timing, 53-54 
Lower address, 52 
Luminence, 81 

Machine-language code, 14 
Making it portable, 43-44 
Mechanical details, TVT 6'1\, 163 
Medium resolution graphics formats, 82 
Memory, 1 1  

block-access, 14 
map, 36 
packing, 34 
repacking, 10, 67, 73-76 

Microcomputers 
KIM-1, 28 
KIM-2, 28 

Microcomputer system, 11 ,  20-21 
Microinstruction, Scan, 9 
Microprocessor, 1 1  

-based video display, 9-10 
advantages, 27-28 
disadvantages, 28 

Microprogramming, 38 
Minimum memory, 28 
Modifications, 195-199 
Modifying 

KIM-1 for TVT 6'1\, 141 
KIM-2 for TVT 6'1\, 145 

Modulator, clip-on rf, 25 
Module A construction details, 173-178 
Module B construction details, 176-179 
Module C construction details, 179-183 
Module D construction details, 183-185 
More characters, 66-68 
MOS 

memory, 23 
technology 6502, 28, 31  

Multiplexing, 200 

Negative logic OR gate, 23 
Noninterlaced frame, 50 
No-operation ( NOP ) ,  39, 52 

Odd 
field, 68 
rows, 68 

On-card switches, 18 
1802 COSMAC, 145 
One-microsecond character times, 25-26 

128 X 128 format, 82-83 
Op-code, 22 

display, 10 
Optional system features, 155 
Output-sync commands, 15 
Overhead, timing, 44-45 
Overlap, 126 

Page 
overflow, 58, 76 
zero, 20 

Paint it black, 205-206 
PC 

board pattern for TVT 6%, 162 
card, single-sided, 9 

Picking a microprocessor, 29-30 
Pinouts 

for data-to-video modules, 165 
of selected !Cs and other components, 

231-236 
Pipelining, 55 
Plug-in 

modules, 16 
module, TVT 6l, 156 
submodules, 17 

Pointers, 22 
Precoded input, 76 
Printed-circuit patterns, 237-251 
Programmable counter useful for TVT 

development, 221 
PROM, 14, 105-106 

method of Scan generation, 42 
storage, 40 

Pulses, sync, 14 

RAM, 52, 105-106 
unused, 36 

Raster Scan, 45 
Raw video, 14 
RC network, 128 
Read only memory, 14 
Real-time clock, 15 
Reduced horizontal rate, 28, 67 
Reducing width, 151-154 
Redundant decoding, 35 
Refreshing a raster, 45 
Register, video-shift, 14 
Removing the sound trap, 150-151 
Reset, 58 
Retrace, 46 
Return from subroutine ( RTS ) ,  22, 38 
Reverse-video display, 214 
ROM, 105 
Row Scan, 121 
Rows of character dots, 68 
Rules of the game, 11 

Scan 
enable, 196 
microinstruction, 9, 11 ,  19-25, 38-45 
microprogram, 14 

generator, 1 13-120 
PROM, 107 

program address options, 197 
programs, 45-77 
( 658-K564 ) PROM, 81 
software, 14 

Schematic TVT 6%, 160-161 
Scrolling, 95, 103 
Scroll up, 206 
Secret formulas, 19 

255 



Sequential clock cycles, 20 
Serial video, 24 
7-bit ASCII code, 38 
74LS165 shift register, 198 
74LS640 driver, 23 
74165 shift register, 126 
Simple, 27 
Single-sided pc card, 9 
6800 series system, 29 
6502 

Repacked Scan, 74-75 
Scan microinstruction coding, 40-4 1 

16-bit wide address bus, 31 
16 X 40, no interlace, 55-58 

program for, 56-57 
16 X 32 

interlaced Scan, 61-66 
Scan waveforms, 199 

Skew, blanking, 198 
Software 

design, 31-106 
Scan, 14 

microinstruction, 38 
Sound trap removal, 150-151 
"Special Fonts," typography display, data 

for, 192-193 
Special PROM, 77 
Speed, 27 
Split sync systems, 132 
Stack, 22 
Stash, 58 
Stationary hun1 bar, 61 
Stock video bandwidth, 9 
Subroutine 

file of subelements, 104 
jumps to, 22 
return from, 22 

Superposition, 50 
Supply pins, 134 
Sync 

611-in, 215 
positioning circuits, 107-108, 128-132 

Synchronizing pulses, 13, 14, 45 
Symbols, 11 

Tap, upstream, 9, 1 1  
Television interface, 146-147 
"Three over three" chunk, 81-82 
32 X 64 interlaced scan, 69-73 
Throughput, 27, 222-223 
Time it, 202 
Timing 

details, 58-60 
loop, 53-54 
overhead, 44-45 

Tilting, 50 
Transparency, 10, 15, 28, 104-105, 200-

226 
"True" data bus, 23 
Truth table 

Scan PROMs, 1 15, 1 18, 1 19 
6502 decode PROM, 1 12 

TTL 
outputs, 23 
stage, 128 
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Tv set, 11  
Tvt enable, 11  l 
TVT 61', 15-17 

block diagram, 157 
building, 155-199 
cheap video card, 156 
component location for, 166-167 
construction details, 163-165 
data-to-video modules, 165-169 
drilling details, 163, 166, 167 
how it works, 158-163 
mechanical details, 163 
parts list, 158 
pc board pattern, 162 
plug-in module, 156 
Raster Scan, 51 
schematic, 160-161 
solder mask for, 164 
step by step assembly, 169-173 
Synergetics design, 15 

2650 microprocessor, 145 
24 X 80 Scan program, 76-77 
2513 character generator, 122 
256 X 256 format, 83-91 
TY1JOgraphy, 20 

Underlap, 126 
Unused RAM, 36 
Upper address, 52 
"Upper-core" decoding, 35 
Upstream tap, 9, 1 1 ,  23-25, 135-137 

adding to existing microprocessor or 
memory, 24 

Use a sledgehammer, 223-225 
Using existing hardware, 28 

Vector storage, 36 
Versatility, 27-28 
Vertical 

-height control, 153 
-linearity control, 153 
lock, 196 
-synchronizing pulses, 13, 14, 46 
( V SYNC ) rate, 128 

Video 
combiner, 15 
display, microprocessor-based, 9-10 

advantages, 27-28 
disadvantages, 28 

monitor, 1 1  
-output circuitry, 128, 130-132 
polarity, 18, 196 
-shift register, 14 

Volatility-RAM versus ROM, 105-106 

"Wheel spinning," 52, 54 
Width, reducing, 151-154 
Winking rate, Cursor, 121-122 
Wraparound, 95, 103 
Write only memory, 22 

Yoke lead, horizontal, 151-153 
Y register, 20, 22, 40 

Z-80 systems, 29, 145 
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Chart 3-3. Connections Needed to Interface TVT 6 5/8 to KIM-1 or KIM-2 

Pin 

1 *  

2 

3 

4 

5 
6 
7 
8 

9 
1 0  
1 1  

1 2  

1 3  
1 4  
1 5  
16* 

17* 

1 8  
1 9  
20· 

21 
22 

23 
24 

25 
26* 

27 
28 

29 
30 
31 
32 

33 

34 
35• 
36* 

ldent 

GND 
BNK 
HIN 
VD7 

VD6 
VD5 
VD4 
VD3 

VD2 
VD1 
VDO 
A15 

A14 
A1 3 
A1 2 
cso 

CSI 
SEO 
SEI 
DEN 

VRF 
AS 
A4 
A3 

A2 
A1 
DB7 
DB6 

DBS 
DB4 
DB3 
DB2 

DB1 
DBO 
VCL 
+sv 

Notes: (See • Above} 

Function 

Ground return-heavy foil or wire 
Blanking input (ground) 
Horizontal-sync Input 
Cursor or Graphics bit 8 

ASCII bit 7 from display memory 
ASCII bit 6 from display memory 
ASCII bit 5 from display memory 
ASCII bit 4 from display memory 

ASCI I bit 3 from display memory 
ASCII bit 2 from display memory 
ASCII bit 1 from display memory 
Address l ine 1 5  

Address line 1 4  
Address line 1 3  
Address line 1 2  
Chip Select TO display memory 

Chip Select FROM Enable Decoding 
Scan Enable OUTPUT 
Scan Enable INPUT 
Decode Enable TO KIM 

Vertical Reference 
Address l ine 5 
Address l ine 4 
Address line 3 

Address l ine 2 
Address line 1 
Data Bus 7 
Data Bus 6 

Data Bus 5 
Data Bus 4 
Data Bus 3 
Data Bus 2 

Data Bus 1 
Data Bus 0 
Video Clock .el2 
+5-volt supply 

Load 

1 TTL 
1 TTL 

varies 

1 NMOS 
1 NMOS 
1 NMOS 
1 NMOS 

1 NMOS 
1 NMOS 
1 NMOS 
1 LSTTL 

1 LSTTL 
1 LSTTL 
1 LSTTL 
TTL Out 

1 LSTTL 
TTL Out 
1 LSTTL 
TTL Out 

TTL Out 
1 LSTTL 
1 LSTTL 
1 LSTTL 

1 LSTTL 
1 LSTTL 

TTL TS OUT 
TTL TS OUT 

TTL TS OUT 
TTL TS OUT 
TTL TS OUT 
TTL TS OUT 

TTL TS OUT 
TTL TS OUT 

1 LSTTL 
200 ma 

KIM-1 
Connection 

Expansion 22 
TVT pin 1 
TVT pin 20 
Pin 1 2  of US 

Pin 1 2  of U6 
Pin 1 2  of U7 
Pin 12 of US 
Pin 1 2  of U9 

Pin 12 of U10 
Pin 1 2  of U 1 1  
Pin 1 2  o f  U12 
Expansion T 

Expansion S 
Expansion R 
Expansion P 
Pin 1 3  

U5-U12 
Pin 1 of U4 
TVT pin 1 9  
TVT pin 1 8  
Pin 1 2  o f  U4 

no connection 
Expansion F 
Expansion E 
Expansion D 

Expansion C 
Expansion B 
Expansion 8 
Expansion 9 

Expansion 10  
Expansion 1 1  
Expansion 1 2  
Expansion 1 3  

Expansion 1 4  
Expansion 1 5  
Expansion U 
Expansion 21 

KIM-2 
Connection 

Connector 1 
TVT pin 1 
TVT pin 20 
Pin 2 of U3 

Pin 6 of U3 
Pin 1 0  of U2 
Pin 2 of U2 
Pin 6 of U2 

Pin 10 of U1 
Pin 2 of U1 
Pin 6 of U1 
Connector U 

Connector T 
Connector S 
Connector R 
Pin 2 of U6 

Pin 4 of U 1 1  
TVT pin 1 9  
TVT pin 1 8  
Connector 3 

no connection 
Connector H 
Connector F 
Connector E 

Connector D 
Connector C 
Connector 8 
Connector 9 

Connector 10 
Connector 1 1  
Connector 1 2  
Connector 1 3  

Connector 1 4  
Connector 15  
P in  4 of U10 
Connector V 

Pin 1-Ground should be heavy foil or No. 18 wire-al l  other connections are wire pencil short leads. Do not use ribbon cables or attempt extension. 
Pin 1 6, 1 7-Chlp-select l ine from decoding to display memory is broken by cutting foil and then replaced with a negative logic OR (positive AND} of 

the original chip select and the tvt chip select. 
Pin 20-Decode Enable output goes low when tvt is NOT scanning; goes high otherwise. Decoding must be disabled during active Scans to allow Scan 

memory access to data bus. 
Pin 26-Address l i ne AO is not used In M module as the Scan microinstruction indexes every second microsecond. AO is used, however, in  d isplay memory 

addressing. 
Pin 35--Video Clock must load character generator only when data output is stable and valid. Clock ¢2 on the KIM. 
Pin 36-+5-volt power from computer must be noise free and well regulated. Heavy wire . 
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VD7 ©- NC 

Upper-and Lower-Case Alphanumeric M.odule 
A 

Parts List 
1-MCM6674 Character Generator (Motorola) 
1-18-pin low-profile IC socket 
1 -0.1 -µ,F disc ceramic capacitor 
2-12-pin strips (AMP 1 -640098-2) 
1-circuit board "A" 
2-jumpers made from capacitor leads 
4-jumpers made with wiring pencil 

-solder 

Vee 

A6 

A5 

8670 

A4 00 

Al DI 

A2 D2 

Al DJ 

AO D4 

RSl 

RS2 

1 9116" 

RSI NOTCH AS SHOWN 

How It Works 

ASCII code is input on pins VD0 through VD6. Row l , 
2, and 4 commands are input from instructlon de
coder. Winking cursor CS command is input from 
cursor gate when switch selected. Dot matrix code is 
output to video-shift-register leads C, D, E, F, and G. 
Ground is hard-wired to video-shift-register leads A, 
B, H, and the video-shift-register serial input. Input 
VD7 is not used. 

P IN  STRIPS 121 

24 • 0 • 1 
• • 
• • 
• • 
• • 
• 

6674 
• 

• • 
• • 
• • 
• 10 • 
• • 

13 • 
I 

• 12 

JUMPERS 121 

(A) Schematic. (B) Foil pattern. 
(C) Pin side. (D) Foil side. 

Normal Settings: Cursor ON; FAST clock; WIDTH set to SEVEN pulses. 

Fig. 4-10. Module A construction details. 
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256 X 256 Black and White Graphics Module B 
Parts List 

2-7 4LS08 Quad AND Gate, LS TTL 
1 -0. l-µ,F disc ceramic capacitor 
1 -circuit board "B" 
2-1 2-pin strips, AMP # 1 -640098-2 
2-insulated sleeving, l /2" 
1 -jumper wire, 3" 
-solder 

PIN 14 74.S08 121 
ICA,B 

>IV ®---1 . � � SERIAi.OUT 

::: �u � I � •  

·� ®--, � � 
VD) ®------i �. , , 1 , rl r0 
VD1 �

�0 

VDL � I L-6 
PARALlR 
OUT 

1116" 
1(2. lCMl 

1 13116" 
14.6CMl 

How It Works 

Eight-bit chunk code is input on pins VD0 through 
VD7. Row 2 command from instruction decoder PROM 
used as a blanking input. Input code is passed out to 
video-shift-register inputs A through H when blanking 
is high. Blank (all zeros) code passed to video-shift
register when blank input is low. Cursor is not used. 
Video-shift-register serial input is hard-wired to 
ground. 

• 
• • 

• 
• 
• 
• 
• 
• 

I 

SLEEV ING ON 
CAPACITOR LEAD 

WIRE PENC IL 
JUMPER 161 

VDD t-1' �I � 
B 11 

.�:::� +-<fv GROUND 

Rl ® NC 9 NC ® CURSOR 

• . 12 

NOTCH AS SHOWN 

(A) Schematic. (B) Foll pattern. (C) Pin side. 

Normal Settings: Cursor OFF; FAST clock; WIDTH set to EIGHT pulses. 

Fig. 4-11. Module B construction details. 
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,,v 

V 06  

VD> 

V04 

VDJ 

VD2 

VOi 

VDO 

180 

96 X 128 Color Graphics Module C 
Parts list 

l -74LS1 57 Quad Selector, LS TTL 
l -2N4400 or equivalent silicon NPN switching transistor 
1 -1 K, l / 4 watt resistor 
l -2.2K, l / 4 watt resistor 
1 -0. 1 -µF ceramic disc capacitor 
1 -circuit board "C" 
2-1 2-pin strips, AMP # 1 -640098-2 
4-lnsulated wire jumpers 
1 -jumper made from component lead 
,-solder 

1
0. 11,1F  

!"5151 

Ne--@ 

+ S V  Ne --@ 

2.2K 

SERIAL OUTPUT 

PARALLEL 
OUTPUTS 

GROUND 

CURSOR 

NC 

1--- 1 1/16" -------1 I 12. 7CMI 

I 

IOCMI 

IK BOTTOM VIEW NOTCH AS SHOWN 

(A) Schematic. (B) Foil pattern. 

HOOKUP WIRE 
JUMPERS!4J 

How It Works 

Lower chunk code is input on pins VD0 through VD3. 
Upper chunk code is input on pins VD4 through VD7. 
A/8 select code is input from instruction decoder as 
"Row 4" command. Blanking is input from instruction 
decoder as "Row 2" command, and inverted with 
transistor RTL inverter. Selected chunk half is .routed 
to video-shift-register D,E,F, and G outputs when un
blanked. Ground is hard-wired to video-shift-register 
serial input and parallel inputs A,B,C, and D. Cursor 
is not used. 

WIRE PENCIL 
JINPERS I)) 

NPN TRANSISTOR PIN STRIPS (21 

(C) Pin side. (D) Foil side. 

Normal Settings: Cursor OFF; SLOW clock; WIDTH set to FOUR 
pulses for 1 28 X 1 28 black and white, or to 
THREE pulses for 96 X 1 28 color. 

Fig. 4-12. Module C construction detailL 
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Upper Case Only Alphanumeric ,Module D 
Parts List 

1 -251 3  character generator (General Instruments) 
(MUST be single supply type) 

1 -jumper wire from wiring pencil 
-solder 

2513 

+ 5 V  5 V  NC 

VD6 NC NC 2 

VD5 A9 NC 

VD4 AB 01 

VD3 Al 02 

VD2 A6 03 6 

VDl A5 04 

VDO A4 05 8 

R4/A·B A3 NC 

R2/BLANK A2 GND 10 

RI Al IN4 II 

VD7 NC 12 

(A) Schematic. 

I 
I 
I 

SER IAL OUT 

A 

C 

D 

G 

PARALLEL our 

H 

GROUND 

CURSOR 

N/C 

How It Works 

ASCII code is input on pins VD0 through VD6. Row l ,  
2, and 4 commands are input from instruction de
coder PROM. Winking cursor CS command is input 
from cursor gate when switch selected. Dot matrix 
code is output to video-shift-register leads C, D, E, 
F, and G. Ground is hard-wired to video-shift-register 
leads A, B, H, and the video-shift-register serial input. 
ASCII code inputs VD6 and VD? are not used. 

(8) Jumper detail. 

10 12 

Normal Settings: Cursor ON; FAST clock; WIDTH set to SIX pulses. 

Fig. 4-13. Module D construction details. 
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FLOW CHART: 

NO 

NO 

START 

17A6 

EVEN 

EVEN F IELD 
V SYNC AND 

SIT UP 

(1761 - 1766) 

YES 

(1780 - 178b) 

(178d - I 78F) 

(1791 - 179Fl 

(17A2-17A4l 

>..;;.O""'DD;...._-, (17A6 - 17ABI 

ODD F IELD 
V SYNC 

AND SET UP 

(17AC- 17b6l 

JUMPS TO CURSOR PORTION 
ON F IRST BLANK SCAN • 

..----- A 

.--------------------- 8 

(17bd - 17cll) 

"SCAN" PORTION 

RETURNS TO SCAN Wl£N 
CURSOR IS F IN ISlt:D 

A 

B 

NO 

(OJ2b - 0132) 

ENTER 

(OJ33-0B51 

ENTER 
AND 

INCREMENT 

NO 

RESTORE 
CURSOR 

ERASE 
OLD 

CURSOR 

(0116 - 01211 

(OJ24 - 012AI 

CLEAR 

CARR IAGE RETURN 

YES 

IOUA - OlSAI 

(0176 - 017EI  

HOME 
CURSOR 

"CURSE" PORT ION 

10176 - 017EI 

HOME 
CURSOR 

HOME 
CURSOR 

!0176 - om 1 

IOISb - 0170) 

!0176 - 0l7EI 

Fig. 5-6 Continued. Program for 18-llne, 32 character per line, interlaced 1VT & 5/8 Raster Scan with integrated minimum Cursor. 
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The Cheap Video Cookbook picks up where the TV Typewriter 
Cookbook ended. Here i ·s a brand new, super low-cost way to ,get 
words, p ictures, and op-code out of a computer and onto an ordi
nary tv set with min imum modifications to either. You wi l l  find 
complete do-it-yourself nuts and bolts construction detai'ls with 
thoroughly documented and debugged support software. 

I nside are detai ls on the seven IC circuit cal led 1he TVT 6 5/8. You 
can bui ld this for as l itt le  as $20, and then software and module pro
gram it for vi rtual ly any alphanumeric format, i neluding a scrol l ing 
24 l i nes by 80 characters; or  for virtually any g raphics format in
cluding a h igh-resolution 256 x 256 mode -and four-color graphics 
modes. And those seven ICs g ive cu rsor, load i ng, and editi ng capa
bi l it ies l i mited only by, your imagination, and do everythi ng with in 
the l imited bandwidth abi l ity of an ord inary tv set. The system runs 
on most any 6500 or 6800 system, and can be adapted to other 
microcomputers. 

But, more important are the complete des ign  detai ls beh ind a . 
total ly new arch itecture wh ich so dramatical ly s impl i f ies d isp lay of 
computer memory that it i s  bound to e l im inate many of the trad i
t ional approaches. Jhe new twi n concepts of the upstream tap and 
the SCAN microinstruction are exp lored in depth so you can 
understand and apply them to your own special ized micropro-
cessor-based video display needs. 

Round ing out the book are complete detai ls  on transparency 
techn iques that let you com ute and d isplay at the same t ime wh i le  
keeping surpris ing ly h i gh  t!1 roughput. 

Don Lancaster heads Synergetics, an electronics design and consult,ing firm, He has 
written many art icles on electrori ic  and computer applications, both for technical 
journals and for hobby magazines·. His nonelectronic interests include ecological 
studies, firef ighting, cave exploration, and bicycl ing.  Don's other SAMS books in
clude Active-Filter Cookbco"', IV Typewriter Cookbook, RTL Cookbook, TTL 
Cookbook, and CMOS Cookboo , along with two wallcharts - the User's Guide to 
TTL and The Big CMOS Wal/cha-rt. 

Howard W. Sams & Co., Inc. 
4300 WEST 62ND ST , INDIANAPOLIS, INDIANA 46268 USA 

$5.95/21 524 




