

The

Cheap Video

Cookbook

by

Don Lancaster

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INOIANAPOLIS, INOIANA 46268 USA

Copyright© 1978 by Howard W. Sams & Co., Inc.
Indianapolis, Indiana 46268

FIRST EDITION
SECOND PRINTING-1979

All rights reserved. Reproduction or use, without
express permission, of editorial or pictorial content,
in any manner, is prohibited. No patent liability is
assumed with respect to the use of the information
contained herein. While every precaution has been
taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 0-672-21524-1
Library of Congress Catalog Card Number: 78-51584

Printed in the United States of America.

Preface

The word "breakthrough" is often abused, especially in the field
of hobby computer electronics. But what else could you call a new
video display technique that so dramatically slashes the cost of get
ting words, op-code, and graphics out of a microcomputer and into
a television set that it is bound to displace most of the traditional
methods of video display?

With the ideas in this book, you can replace a $200 video board
or much of a $500 to $1500 terminal with a single sided pc board
that can cost as little as $20 and contain only seven integrated
circuits. And those are real exotic ICs to boot-mostly things like hex
inverters and baby PRO Ms.

At the same time you realize such a ludicrous hardware reduction,
you gain incredible flexibility, thanks to total software control of
just about everything in this new cheap video world. And all this
with surprisingly few words of software coding. Your same hardware
does alphanumeric and graphics displays in virtually any format.

These new cheap video methods also uniquely solve the tradi
tional problems of getting a microprocessor to go fast enough to
time a video display and getting the display bandwidth needs low
enough that a relatively unmodified tv set can handle the output
attractively. While the book leans heavily toward the 6500 and 6800
microprocessor systems, you can go outside these families and apply
cheap video ideas to many other microcomputers.

Above all, cheap video does not mean poor video. Things like a
24-line by 80-character display with a full scrollingCursor, complete
interlace, double stuffing, and memory repacking is easily done, and
can be made totally transparent while still keeping a lot of time and

space for other programs to run simultaneously. Things like color
graphics displays, high-resolution black and white graphics, full
interlace, and so on, are all easily done with these new cheap video
methods.

The first chapter begins with the basics to determine what is
really needed for alphanumeric and graphics video display systems.
We look at the design principles of cheap video and then check into
commercial examples of ready-to-go circuits and kits. From there,
we go into the secrets behind cheap video, particularly the all-im
portant upstream tap and the Scan microinstruction.

The second chapter shows you how to design cheap video soft
ware. Software for Scan microinstructions. Software for alphanu
meric programs of virtually any format. Software for color and
black-and-white high-resolution graphics displays. Software for
editors and full-performance scrolling Cursors. And software for
graphics loaders. Important new software designs you will find
are hardware-free interlace, character density improving double
stuffing and memory repacking methods for efficient use of 80-char
acter line lengths.

Hardware is presented in Chapter 3. Here the interface circuitry
you will need between your computer and tv set is introduced on
a block-by-block basis. We start with the decoding and Scan micro
instruction controlling PROMs and work through the data-to-video
conversion, high-frequency timing, sync and positioning circuits,
video-enhancement (bandwidth reduction) techniques, and output
circuitry. After this, you will find the detailed interfacing of a KIM-1
microcomputer, followed by complete details of adding a new video
input to your conventional tv set.

The nuts-and-bolts construction and debug details on the TVT
6% follow in Chapter 4, along with complete details of four modules
that program your TVT 63/s for upper- and lower-case alphanumerics
and high-resolution and color graphics. Full size printed-circuit lay
outs and everything you need to build, debug, and modify your own
cheap video system is included.

Chapter 5 covers transparency, or ways to compute and display
simultaneously. One of the real surprises is the high throughput you
can have and still be transparent. For instance, you can do a 12 X 80
display and transparently save almost two thirds of the available
computer time to run BASIC or some other high-level language.
Most useful display formats can save well over half the computer
time for other uses.

The appendix gives you IC pinouts, ASCII coding, number con
version chart, and duplicates of all pc patterns.

DON LANCASTER

Cheap video pc boards, kits, assembled units, and program tapes are available commercially from: PAIA Electronics
1020 West Wilshire Blvd. Box 14359 Oklahoma City, OK 73114
(405) 842-5480 A catalog and price list will be sent on request. Dealer inquiries are invited.

This book is dedicated to the Yeahbut.

Contents

CHAPTER f

SOME BASICS
The Rules of the Game-Some Architecture-A Commercial Example
-Some Secret Formulas-Some Good Things About Microprocessor
Based Video Displays-And the Bad Stuff-Which Microprocessor?
A Design Plan

CHAPTER 2

SoFIW ARE DESIGN
Bus Definitions-The SCAN Microinstruction-SCAN Programs
Graphics SCAN Programs-Cursor Software-A Graphics Loader
Transparency-Volatility-RAM Versus ROM

CHAPTER 3

9

31

HARDWARE DESIGN 107
Interface Card Hardware Design-Computer Interface-KIM-I Inter
face-Television Interface

CHAPTER 4

BUII.DING THE TVT 6% . . 155
How It Works-Construction Details-Data-to-Video Modules-Step
By-Step Assembly-Module Construction-Debug and Checkout
Modifications

CHAPTER 5

TRANSPA 1ENCY 200
Some Transparency Principles-Ignore It-Time It-Lock It-Lock It
and Shorten the Next Field-Paint It Black-Integrate It-Fill in the
Sync Pulses-Use a Sledgehammer-Now What?

APPENDIX . 227

INDEX . 253

CHAPTER 1

Some Basics

A microprocessor-based video display can be any scheme to get
words or pictures out of a microcomputer and onto a tv screen or
other video display. If they happen to be working with a micro
processor or microcomputer, any of the traditional video terminals
"glass teletypes," or tv typewriters (tvt's) are all microprocessor
based video displays.

But, our interests here will be in something newer, far cheaper,
and far simpler than these traditional approaches to video display.
This new cheap video approach to microprocessor-based video dis
play gets you from your microcomputer to a plain old tv set with
practically no hassle, cost, or complexity. The method combines an
absolute minimum of dedicated hardware with some operating soft
ware commands, and two new concepts called an upstream tap and
a Scan microinstruction. The final result of this new architectural
approach to cheap video display gives us incredible flexibility and
potential at very low cost.

For instance, the methods we will be looking at in detail will let
you display over 2000 upper and lower case ASCII characters on a
largely or totally unmodified tv set with stock video bandwidth, at a
cost of around $20, and using only seven integrated circuits worth
of dedicated hardware on a small single-sided pc card. You can use
almost the same circuit to build a 256 x 256 graphics display instead,
totally controlled by your microcomputer. Full-color graphics of
somewhat lower resolution is equally easy to do.

If you .are into word processing, the cheap video ideas of this book
give you extreme flexibility. Double and triple Cursor systems; add-

9

ing and removing words, lines, and paragraphs; rearrangement;
justification and hyphenation; and so on, are easy to provide because
cheap video gives the display memory to the microcomputer at any
time for : ny reason.

The methods we will show you solve the dilemma of how to get
a microprocessor with an execution time of several microseconds per
instruction to directbj provide all of the timing signals needed for a
tv display. This eliminates completely the need for complex stand
alone dedicated-system timing and cursor-control circuits. The
cheap video methods also drastically reduce the bandwidth needs of
a video display. This lets you stuff 64 or even 80 high-resolution char
acters per line through an ordinary rf modulator or a tv set with
a normal video bandwidth. Full interlace is inherent in our methods
and the ability to double-stuff characters is easy to pick up.

Cheap video is easily used for stand-alone terminal applications,
where a single dedicated microprocessor and a few integrated cir
cuits replace the dozens to hundreds previously used. But, our cheap
video displays really shine when you simply tack cheap video onto
a computer system that is already doing something else. For instance,
a small plug-in card lets you display the contents of a KIM-1 micro
computer directly on your tv set, with an absolute minimum of mod
ifications to either.

Change one small PROM memory and the same card can be used
on most any 6500- or 6800-based computer system. Cheap video
works with many other microprocessors but works best if you have
at least 12 always-there and fully decoded address lines and can
advance the program counter at a I-microsecond (µ,s) rate.

Thanks to a plug-in module approach, you can make the same
hardware work for graphics or alphanumerics or a combination of
the two. You can add transparency techniques that let you run other
programs and your display at the same time-without any apparent
interruption to either. For instance, you can run a 12 X 80 character
display and an Extended BASIC program together-with a contin
uous display and still keeping around two thirds of the normal com
puter time for the BASIC. The same transparency ideas work well
for game displays and their move computation, or for the Cursor,
character entry, and keyboard scanning involved in word-processing
systems.

With a me11Wry repacking scheme that is almost free, you can
stash 40- and 80-character lines into your display memory with just
about the same efficiency as binary line lengths. And, while not
shown here, it is an easy matter to pick up HEX/ ASCII conversion
for op-code displays, end-of-line bell ringers, color modulators, gen
tle (crawling) Cursors, and loads of other add-ons for your own use,
once you understand cheap video and what it can do for you.

10

THE RULES OF THE GAME

We have five first principles to cheap video:

1. Leave the existing microcomputer system nearly as you find it,
making only a bare minimum of minor changes.

2. Use a plain old tv set, also leaving it nearly as you found it,
again making only a bare minimum of minor changes.

3. Put some hardware between the microcomputer and the tv set
that lets them talk to each other. Keep the hardware as simple
and flexible as possible. Use PRO Ms as needed to give flexibility
from µP system to system.

4. Add two key elements to the microprocessor architecture.
One of these is a Scan microinstruction that sequentially ad
dresses a block of memory under control of a PROM in the
interface hardware. The second is an upstream tap that lets a
block of memory output to the interface hardware, even, and
particularly when that memory does NOT have control of the
µP's data bus.

5. Use software and firmware sequences to control what the inter
face hardware is going to do.

What we really want to do is to eliminate anything at all between
the microprocessor and the tv set. Since this is not quite possible,
we reduce the size, cost, and the "dedicatedness" of our interface as
much as we possibly can. Typically, an alphanumeric interface can
end up with three hex inverters, two baby PROMs, a shift register,
and a character generator.

SOME ARCHITECTURE

Fig. 1-1 shows the three key parts of a microprocessor-based video
display. These parts are the microprocessor or microcomputer; a
card of dedicated interface hardware; and the tv set or video
monitor.

Characters or graphics to be displayed are usually stored in a
portion of the memory of the microprocessor. Often, we will use
one 8-bit word for a standard ASCII alphanumeric character and its
possibleCursor. In a graphics display, the same 8-bit word may be
used in any of several formats, with each stored bit representing one
resolvable element on the display. The memory needs a simple mod
ification before it can be used for video display. A new set of con
nections, called an upstream tap, must be added so the memory can
output characters or symbols to the interface hardware even if. it
does NOT have data bus access to the microcomputer.

11

12

A MICROCOMPUTER HAS . . .

• A I CLOCK I THAT CAN BE USED FOR ALL SYS1™ TIMING.

• A ! MEMORY! THAT CAN BE USED TO STORE CHARAC!ERS.
OP-CODE, OR GRAPHIC SYMBOLS.

• SOME !ADDRESS! Lit.ES THAT CAN SEQUENTIALLY ACCESS
CHARAC!ERS.

• SOME ! DATA! LINES THAT CAN CONTROL HOW Wf
ACCESS MEMORY.

• AND !CONTRCU LINES THAT LET US SWITCH BETWEEN
VIDEO AND NORMAL OPERATION.

•

(A) Microprocessor-based video displays get us from here ...

A TV SET NEEDS . . .

• I VIDEO!DOTS TO FORM CHARAC!ERS OR GRAPHIC
SYMBOLS, ARRIVING AT THE RIGHT PLACE AT
THE RIGHT TIME.

• HORIZONTAL AND VERTICAL!SYNC !PULSES TO
LOCK THE TV TO THE MICRCCOMPUlER.

• !COMPENSATION !OR SOME OTHER WAY TO MAKE
UP FOR A LIMl!ED BANDWIDTH.

• SOME INPUT !ACCESS! SUCH AS A CLIP-ON RF
MODULATOR OR A HEADPHONE JACK USED AS
A DIRECT VIDEO CHANGEOVER SWITCH.

(8) ... to here, with ...

Fig. 1-1. Three key parts of a

Our interlace hardware does two important jobs for us. On the
computer side, it causes the microcomputer to access its display
memory in just the right way so we receive characters in the
right sequence and at the right time. On the tv side, the interlace
hardware delivers composite video that contains both bandwidth
enhanced characters and properly positioned horizontal- and vertical
synchronizing pulses.

;
II.
II)
i:i
0
Ill
Q

>
Q
Ill

!
ii:
�
Ill
u
0 a:
II.
0 a: u
i
<
Q ...
s m e
Ill a:

I

....
i= z

� 0
3: u
O Z z <
< :,: "' 15

<.:> �
:l:
;::

z
2
V'>
0 "-
u·

� � "' <
;;:
0 "' <
:,: �

z u
2 < � z � < u � V'>

. a:
C :c
Ill

----1-----1---- --1--- -1-----

� a:
Ill

!
�
I:
Ill

i!:
Ill z
ii
I:
8

--1----1--- - --- "'

V'>
V'>
I!;!
0
0
<

"-<
� "'
V'> "-
::,

ill
z
0 u

ll!; "'

V'>V'>
V'>::,
i:!i! "'
0
0 <

0
V'>
�
u

� "-�
u

:l:

V'>
::, "'
�
C

(C) ... as little of this as possible.

microprocessor-based video display.

13

To get the system to work, we load some Scan software into our
microcomputer and run it. The Scan software causes the microcom
puter and the interface hardware to talk to each other, Simpler
versions of Scan software take up thirty to a hundred words of ma
chine-language code. This is easily stored in memory or externally
on cassette tape. The initial design of Scan software is extra tricky
since you have to control exactly both what the computer is doing
and precisely how long it is going to take to do it as well. Further,
very limited times are available for some of the things the software
has to do. We will be looking at software design in detail in the
next chapter. Once designed and debugged, the Scan software is as
simple and easy to use as any other short program would be.

The central controller of our interface hardware is called an
instruction decoder. The instruction decoder decides what is to hap
pen next. The instruction decoder is usually a small read only
memory or PROM, and is customized to work with the particular
microprocessor and address locations selected for your system. The
decoder can activate a Scan microprogram that is a second small
read only memory. The Scan microprogram in turn can cause the
computer to sequentially address a block of memory words, typically
spending one microsecond on each word. This results in a string of
characters or graphics data being sent to the interface hardware,
timed just as we need it for a horizontal character line or a horizontal
line of graphic elements.

The Scan microprogram makes the microcomputer block-access
memory on a !-microsecond-per-character basis. The character
words accessed go out our upstream tap and reach the interface
hardware where they enter a box we call a data-to-video converter.
For alphanumerics, the data-to-video converter is usually a dot
matrix character generator, combined with an external- or internal
serial video-shift register. For graphics, the data-to-video converter
can be nothing more than a video-shift register, or it can combine
a blanking gate or a data selector and a shift register for other
graphics formats. The raw video output of the data-to-video con
verter in turn goes to a bandwidth enhancer that predistorts the
video to anticipate how the tv set is going to try and mess it up
with its limited bandwidth. One simple form of bandwidth enhancer
widens the white portions of the display. The amount of widening
is selected to produce the best compromise between sharpness,
brightness, and uniformity.

Our instruction decoder has other tasks besides controlling the
Scan microprogram. In an alphanumeric system, it tells the char
acter generator which row of dots to work on. In graphics systems, it
does the formatting and blanking for us. It also decides when hori
zontal or vertical-sync pulses are needed. These are used to lock

14

the tv scan to the computer. Output-sync commands are routed to
a positioning delay circuit and then to a video combiner where they
are mixed with enhanced video to form a composite-video output.
The composite video may be used as is for a monitor, can be inter
nally offset for simple tv interface, or can drive an rf modulator or
Class 1 tv device for clip-on rf entry.

We will be looking at much of the details of hardware design
and television interface in Chapter 3.

In the simplest of video-display systems, the microcomputer takes
turns computing and displaying, just like a keyboard monitor may
take turns running and monitoring. In more elegant cheap video
display systems, you can gain partial to complete transparency, in
which the computer can do other things at the same time that it is
displaying. Transparency techniques are important enough that we
will use all of Chapter 5 for them.

Our Scan program only causes words already in memory to appear
on the screen. The Scan program does not care how the words got
there in the first place. You put the characters or graphics into the
memory with ordinary software any way you like. Your computer
has total access to the display memory at any time for any reason.
The only diHerence between the display memory and any other
memory in your computer is the upstream tap; this the rest of the
computer does not know about and need not use. Some very import
ant advantages of immediate memory access are that you can load
and dump the screen at incredible baud rates; you can easily edit
and rearrange the contents of the screen; you can remove things
from the screen, work on them, and replace them, of ten without
needing additional storage; and you can rapidly update things like
a real-time clock or a complex game quickly, easily, and without
the "memory busy" access hassles of more traditional circuits.

A COMMERCIAL EXAMPLE

Before we check into the benefits and limitations of this exciting
new display technique and investigate the key "secrets" behind it,
let's take a quick look at a commercial system already available.

The TVT 6% (Fig. 1-2) is a Synergetics design available com
mercially through PAIA Electronics, 1020 West Whilshire Boulevard,
Oklahoma City, OK 73114, and several retail computer stores. You
will find complete construction, design, and debug details on the
TVT 6% in Chapter 4.

This is a six integrated-circuit interface-hardware card. Its block
diagram appears in Fig 1-3. A plug-in module of one or two addi
tional ICs programs the TVT 6% for its alphanumeric, graphics, or
combined modes of operation. Four available modules include an

15

Fig. 1-2. 1VT 6 5/8 Cheap Video System attached to KIM-1 Microcomputer.
Cable at top delivers video to tv display.

16

a ll
• IP
i ..

I {.I , �
� tn
'II CII

g· �
- c

i !
f-e.
c a

1 s·

l i
n c
� i'

e i
: ;,
f l -· -
=a

O i1
.. 1,
: a
= o :i ..
ji" II
II -• 1,
41t II ... N :I � 'r

:£ .· · · · · ·· ;:;:��:-

., "'" I W I DTH

GATED

OSC ILLATOR
LOAD CLOCK

ADDRESS

cs

M I I
NEW

1··1

UPSTREAM ---
._ •

t

jj

TAP

_1::1
DECODE
ENABLE

AJ2
AD
Al4
Al5

CS IN-
Al

Rivi --\ / A2
A3
A4
A5

ii

1::1 \l
1·=1 ::

CURSOR

BLINKER

DATA RII�
I,,,

---- ' --- ll
- · t •

K IM-I CR OTHER µP SYSTEM

J.:l � • . . . •.·,···························-·.:,·,:···.-:-:-:,:-:-.-:-:-:-:-:,!-.-... •.·.·-·········-···········-···············-·!-.-:-: ... :-:-:-:-:-::;:

V IDEO SHIFT
REG I STER

H V
POSITION

OFFSET

GENERATOR

CLARITY

TVT-6 5/8

@ rv ouTPUT

9 VIDEO OUTPUT

ON MODULI "A" - - UPPER & LOWER ALPHANUMERICS
''B" - - 256 X 256 B/W ALPHANUMERICS
''C" - - 96 X 128 COLOR GRAPH ICS
''D" - - UPPER CASE ALPHANUMERICS

upper-case-only alphanumeric, combined upper- and lower-case
alphanumeric, high resolution black and white graphics, and color
graphics versions. /

The alphanumeric-display formats that already have filly de
signed and debugged software include 1 X 40, 16 X 32, 16 X 40,
16 X 64, 32 x 64, 12 X 80, and 24 X 80 character groupings. Thanks
to the total programmability, you can make virtually any display
format you want. The graphics formats now available include
96 x 128 color, 128 X 128 black and white, and 2156 X 256 black and
white. Once again, there is practically no limit on format, thanks
to the total software control.

On-card switches give you a choice of line length,Cursor visibility,
video polarity, and graphics-response speed. Four controls set the
vertical and horizontal positioning, the output enhancing clarity,
and the graphics width.

Besides the Scan programs, software support includes full scrolling
Cursor programs, graphics loaders, and others. Since almost every
thing is under software control, there are no hardware changes in
volved for extreme Cursor or editing complexity-all you do is add
words to your programs.

Fig. 1-4. Typical alphanumeric cheap video display.

18

Three typical display examples using the TVT 6% are shown in
Figs. 1-4 through 1-6.

Fig. 1-5. Chess display using color graphics cheap video.

SOME SECRET FORMULAS

Much of what has been said so far sounds like we are speeding
up a microprocessor more than is possible, or that we are stuffing
too many characters into far too small a bandwidth, or perhaps we
are forgetting that the sync signals a tv set needs must be very
exactly specified and provided for, particularly for a stable and fully
interlaced display.

To get around these obvious problems that have made earlier
tvt and video display systems expensive and complicated, we have
to pull some sneaky tricks. ·we can call these tricks the secret
formulas behind our new cheap video displays. The details of how,
why, and where we use these secrets appear later in the book. For
now, let's take a quick look at some key secrets to our new cheap
video techniques.

The Scan Microinstruction
Basically, you add a new instruction to the instruction set of your

microcomputer called Scan. When you tell the microprocessor to

19

Fig. 1-6. High resolution black and white graphics display used for typog-
raphy. Note full justification of characters.

scan, it goes to where you tell it to start and then causes the µ,I"s
internal program counter to appear on the address lines for a selected
number of sequential clock cycles. For instance, if we are doing a
64-character line, our Scan instruction causes the address lines to
start at some value and count up 64 counts by ones, binary-counter
style. If we are using a 6500 or 6800 system with a I-megahertz
(MHz) clock, the Scan instruction advances us one count per
microsecond for a total of 64 µ,s.

Fig. 1-7A shows the typical variation of a short portion of a 6502's
address lines during a traditional program run. In general, the ad
dress line values advance. Sometimes the address lines advance once
per microsecond, such as when the microcomputer is carrying out
a two word immediate instruction such as "Load the Y register with
the· value AO." Sometimes the address lines advance only once each
2 µ,s. This happens with a one word immediate instruction such as
"Clear the Carry bit" or "No Operation." Sometimes our address
lines back up and repeat as the short loop in the middle shows; this
is often the result of a relative branch causing a loop. And, some
times, the address lines go out of range to pick up a page zero

20

ADDRESS

TIME

(A) Typical behavior of 6502 address bus during normal program.

ADDRESS

TIME

(B) Scan microinstruction forces the 6502 to advance addresses uniformly
once each microsecond from starting address.

Fig. 1-7. Scan microinstruction is used to sequentially access rows of char
acters stored in memory.

21

address on the bottom or a higher page address during a memory
read or write instruction.

In g�neral, the address lines are an apparently random jumble of
values. But note that sometimes the address lines advance at a 1-µ,s
rate, even though our fastest usual instructions take 2 µ,s to execute.
Note al,so that the address lines are connected to all merrwry in the
system at all times.

In Fig. l-7B, we have forced the microprocessor into a Scan mode,
simply by using an external microprogram, counter, or interrupt
sequence. This makes the address line start at some computed ad
dress and advance exactly a selected 64 counts, spending 1 µ,s on
each count. For instance, we can give the command "Load the Y
register with the value AO" repeating 31 times, followed by a
"Return from Subroutine" command to get the 64 sequential counts
as needed.

Be sure to note that this Scan instruction is portable in that we
can move it around and use it almost anywhere we like. This lets
us pick up different blocks of characters or lets us tell a character
generator to work on a different row of dots for a particular char
acter line. Usually we will call our Scan instruction by requesting
a Jump to Subroutine that goes to an address that activates the
instruction decoder and Scan microprogram in the interface hard
ware. The length of our Scan instruction is programmable, but
the hardware and software must agree on the maximum possible
Scan length. When the Scan instruction is completed, the return
from subroutine jumps us back to wherever we happened to be in
the main program.

During a Scan microinstruction, many strange and wondrous
things might happen inside the microprocessor. We might, for in
stance, load an otherwise unused Y register with the op-code for
"load Y," and repeat the operation for a total of 31 times. This ad
mittedly makes absolutely sure that we have the Y register loaded
before we do not use it. Here, at long last is a perfectly legal and
major use for a write only memory. The key point is this-No matter
how strange or ridiculous the coding-IF IT WORKS, USE IT. All
we want to do during a Scan is advance the address line a selected
number of characters at a one-per-microsecond rate starting with a
computed address, nothing more. We do try to keep anything ridic
ulous that is going on during a Scan from wiping out anything we
might need later, such as flags, the accumulator, pointers, the stack,
or otherwise used registers.

Note particularly that we have used normal speed memories and
normal operating frequencies during the Scan mode. While it may
seem externally that the microprocessor is running at double speed,
nothing the microprocessor needs or uses responds to this speed

22

doubling. In fact, the Scan instruction actually takes many times
longer than a normal instruction to execute. But the neat and handy
thing is that during the entire long execution time, we have tricked
the address bus into advancing at the right once-per-microsecond
rate.

Even neater is the fact that our Scan microinstruction causes
ALL memory in the machine to be addressed at the one-word-per
microsecond rate. While only the Scan Microprogram generator
has data-bus access, every other memory in the machine is addressed
the same way, with individual memory chip selects or enables pre
venting data-bus interference.

The Upstream Tap

An Upstream Tap is a new set of connections that go directly
from the memory used for character storage to the interface har�
ware. It is of crucial importance that the display memory can output
to the interface hardware when it does NOT have access to the data
bus of the microcomputer.

Fig. 1-8 shows how a typical upstream tap is added. We have to
have external and noninverting bus drivers present between the
memory output and the "true" data bus. This is needed even if the
memory chips used have common input/ output data pins. These
drivers may be already available on your system; if not, you can
add them using a 74LS640 or something similar.

We also add some simple logic to provide either the usual chip
select to the display memory or a new select called Scan Enable
that is derived in the interface hardware. This lets your memory
behave normally during usual computer operation and also enables it
for character output only during a Scan. This logic can be a single
AND gate which behaves in the circuit as a negative logic OR gate.
It may also be included in the instruction decoder in the interface
hardware. If your upstream tap goes directly to a MOS memory
output pin, it should be kept physically short to minimize any ca
pacitive loading. Long cables would slow down your memory. Up
stream taps connected to bipolar or TIL outputs are not nearly as
critical and can be longer.

Fetch-But-Do-Not-Execute Operation

A normal microprocessor instruction has two parts-the fetch
where needed information is gathered, and the execution where the
intended operation is carried out. During a Scan microinstruction,
we continuously fetch and never execute. This lets us output char
acters at a rate that seems to be twice as fast as usual.

Fig. 1-9 shows how the Scan microinstruction and the upstream
tap gang up to do this fetch-but-do-not-execute maneuver. The

23

Scan program makes the Scan microinstruction advance the micro
processor at a one-character-per-microsecond rate. The character
memory sends characters out the upstream tap to the interface hard
ware for conversion to serial video. At no time does the microproces
sor wait for an "answer" from the memory. The memory knows it
is supposed to output characters to the interface and the interface

IK X I
RAM

IK X I
RAM

-- • NEW

IK X I
RAM

IK X I
RAM

IK X I
RAM

IK X I
RAM

IK X I

NEW CS LOG IC PROVIDES RAM
NEGAT IVE LOG IC OR OF
SCAN & USUAL CS

\ IK X I
RAM

;_r
Kl

R/W

EXTERNAL TRISTATE
BUS DRIVERS

DB7

DB6

DB5

DB4

EXISTING
DATA
BUS

I
DB3

1 1
1 1

DB2

1 1 1
1 1 1

DBI

1 1 1 1
1 1 1 1

DBO

I I I I

§'J
)I O 6
)I D 5

4 NEW
3 UPSTREAM

2
TAP

I
0

7..r 0 NEW SCAN
I(ENABLE

Fig. 1-8. Adding upstream tap to existing microprocessor memory.

24

THE! SCAN PROGRAM I DECI DES A ROW OF
CHARACTERS IS WANTED. IT P ICKS A STARTING
ADDRESS THAT G IVES US THE RIGHT PART OF THE
RIGHT CHARACTERS •

•
THIS ACTIVATES THE I SCAN MICROINSTRUCTION I
WHICH MAKES THE MICROPROCESSOR ADVANCE
ITS ADDRESS L INES ONCE EACH M ICROSECOND
PER DES IRED CHARACTER •

...
THE D ISPLAY MEMORY RECEIVES THESE ADD RESS ES
AND OUTPUTS ASC I I CHARACTER OR GRAPHICS
CODE BY WAY OF THE !UPSTREAM TAPJ

...
THE UPSTREAM TAP ROUTES THE CHARACTER
CODE TO THE INTERFACE HARDWARE FOR I DOT MATR IX CONVERS ION!AND IS THEN OUTPUT
AS SERIAL V I DEO.

Fig. 1-9. Scan microprogram and upstream tap work together to convert code
In memory to video dots on tv screen.

knows it is to receive characters and knows what to do with them.
The CPU, though, is ignorant of both and could not care less. It

thinks it is busy loading its Y register with worthless data while all
this is happening.

Constant One-Microsecond Character Times
All characters and graphics are chunks usually gotten at a one

per-microsecond rate. This happens regardless of how many char
acters are on a horizontal line. This gives us a minimum video band
width. It lets us stay within the usual bandwidth restrictions of an
ordinary tv set or a clip-on rf modulator. It also gives us enough
time to let the computer directly work on characters. Besides making
the key scan microinstruction possible, this opens all sorts of new
software and control possibilities. Our "raw" bandwidth needed

25

ranges from 1.5 MHz for color graphics through 3 MHz for a
5 X 7 character to a maximum of 4 MHz for high resolution graphics.
These values are further minimized with the bandwidth-enhance
ment circuit in the interlace hardware.

One result of this once-each-microsecond constant time is that
very long character lines may have to run with a reduced horizontal
frequency. Up to 40 characters or its equivalent graphics are easily
displayed at normal horizontal speeds. Longer character lines may
mean a reduced horizontal frequency which takes simple hold and
width modifications to the set in use. Thus, the 64- or SO-character
lines may not be suitable for video titling, superposition, or for color
display.

Double Stuffing
Double stuffing is a technique that crams twice as many charac

ters vertically than is usual. Fig. 1-10 compares ordinary noninter
laced characters with interlaced and double-stuffed, interlaced
characters. With no interlace, all character fields are identical, giv
ing us a normal height character with stripes in it. With interlace,
the even and odd field characters are offset one line from each other;
this fills in the stripes and greatly improves appearance.

26

- ------· --- ----
- --------- ----

- --------- ----
EVEN FIELD ODD F IELD RESULT

(A) No interlace-simple timing but striped characters. - - -- -- ---- -
-
------ s

EVEN FIELD ODD F IELD RESULT
(B) Normal interlace-improves appearance.

- - -- -- - - -- s
EVEN F IELD ODD FIELD RESULT

(C) Double-stuffed interlaced-improves vertical density.

Fig. 1-10. How double stuffing puts more characters on Iv screen.

With double stuffing, we put down half the dots (lines 0,2,4,6) on
one field, and the other half (lines 1,3,5,7) on the other field. Double
stuffing lets us put twice as many characters on the screen as usual.
Double stuffing can also greatly increase throughput of a trans
parently operating program. In theory, we could get as many as
64 lines of characters vertically, but 24- to 32-character rows is a
more practical limit for pleasing and legible results, particularly if
transparent operation and high throughput is needed.

Double stuffing does introduce slight flicker to the normal video
display. This can become downright annoying if the contrast, bright
ness, and room lighting is set wrong, particularly on random full
screen displays that contain lots of dashes. With the proper settings
and reasonable program material the flicker is not objectionable.
No flicker is present on reverse video (black characters on white
background) double-stuffed displays . .

A second double stuffing possibility lets you put characters down
on one field and graphics on the second. This is handy for games,
pc layouts and schematics, and similar uses.

so·ME GOOD THINGS ABOUT
CHEAP VIDEO DISPLAYS

Let's briefly sum up the advantages and disadvantages of this
new cheap video display approach. We will start with the good
things :

1. LOW COST -The methods typically cost one tenth of what
traditional approaches did. High-performance alphanumeric
circuits can cost less than $20 in singles; graphics even less.

2. SIMPLE-The method usually takes only seven or eight ordi
nary integrated circuits on a small, single-sided pc card. It
needs only +5-volt supply power.

3. LOW BANDWIDTH-Long character lines and high-resolu
tion graphics are easily and attractively put on a tv set with
normal video bandwidth, with or without routing through a
conventional rf modulator.

4. FAST -Characters can be put on and off the screen at incredi
ble baud rates. The microprocessor can real-time interact with
the display memory, and can easily retrieve information already
on screen.

5. VERSATILE-The same hardware gives you many display
formats simply by changing software. Cheap video works with
many different microprocessor systems with a few minor modi
fications. Since almost everything is done with software, there

27

is practically no limit to how fancy your cursor or editing system gets. 6. MINIMUM MEMORY-The need for a separate and specialized display memory is gone. The computer can use the area set aside for display memory at any time for any reason.
AND THE BAD STUFF On the debit side, we have : 1. TRANSPARENCY-In simpler systems, we alternate compute and display modes. Extra transparency takes more effort. Details on this and solutions to the total transparency problem appear in Chapter 5. 2. REDUCED HO RIZO NT AL RATE-Long line lengths may run at a reduced horizontal rate. This may take width and hold modifications and can cause a poorly chosen tv set to sing objectionably. 3. USING EXISTING HARDWARE CAN BE TRICKY-An upstream tap must be provided. Extra tricks are needed if the microprocessor cannot directly change its address lines once each microsecond. Bus oriented systems require that the display memory and the tvt interface hardware work together as a single module. Latches may be needed. 4. DOUBLE STUFFING FLICKERS SLIGHTLY-A wrong choice of program material or control settings can cause an objectionable display if double stuffing is used. This is eliminated by using a reverse video (black on white) display.

WHICH MICROPROCESSOR? Its simply not reasonable to expect any interactive software technique to work with any available microprocessor. There are obvious architectural and language differences that are bound to cause troubles. Which microprocessors can we use and how much hassle is involved? We will almost always assume that a microprocessor is already available and in use, and that your main goal is to add cheap video to an existing design. All the cheap video systems of this book were designed and debugged around the MOS Technology 6502 microprocessor and the KIM-1 and KIM-2 microcomputers. Because of the strong positive feedback involved between developing something and the thing it is being developed on, these displays work elegantly, cheaply, and simply on a KIM-based system. We will use 6500 software, both as theory and design examples.
28

What we are going to show you would very simply extend to any
other 6500-based system. Conversion to a 6800 series system is
usually a matter of software reworking and changing the code in
a single integrated circuit. Early 8080 systems will be somewhat
more difficult to use since the address outputs are not continuous
and since it takes extra effort to convince the display memory to
output characters at a one-per-microsecond rate. These problems
are eased on the Z-80 systems if they are running fast enough in
their normal modes. So, the techniques of this book should be rea
sonably applicable to the three mainstream microprocessor tech
nologies in use today, although the 6500 and 6800 will be much
easier to use than the 8080 or Z-80.

Going further afield, microprocessors with only eight address
lines or with multiplexed data and address buses or very slow micro
processors or those with limited drive will introduce serious prob
lems that will take a lot of creative effort of your own to resolve.

Chart 1-1 sums up the key needs of a microprocessor-based cheap

Chart 1 -1 . Picking a Microprocessor-6502 Often Best
Choice for Methods of This Book

Microprocessor-Based
Video Displays Work Your

Best With . . . We Can Live With . . . Microprocessor??

1 6 always there & fully 12 fully decoded ad-
decoded address l ines dress lines, latched to

eliminate any "holes"

A program counter that Ci rcuitry at 1he display
can be tricked into ad- memory that creates
vancing the address the illusion of a once-
bus once each micro- per-microsecond pro-
second gram counter advance

A display memory that A display memory to
has noninverting tri- which you can reason-
state buffers between ably add noninverting
its output and the true tristate buffers between
deta bus its output and the true

data bus

Excess drive of at least Add-on buffers or
one LS load on all ad- drivers
dress and data buses

A single +s-volt supply Multiple supplies
with 200 mA excess
cepacity

video display system. We would like to see 16 address lines there
all the time, with no holes or dropouts in each cycle but we can

29

live with 12. We have to have a program counter that can advance
an address bus once each microsecond, or at least be capable of
humming a few bars and faking it. We must have a way to add
an upstream tap to the display memory that outputs when it does
NOT have data-bus access. And, we have to have enough drive
available for one more LS load on all address and data lines, along
with 200 MA, or so, of excess + 5-volt supply power.

If you are new to learning about and building these cheap video
display techniques, be sure to separate completely understanding
cheap video from using it on an odd-ball microprocessor system.
Always start with the debugged software and hardware of this book
on a KIM-I system; then go on to others, if you must.

A DESIGN PLAN

We have now seen what these new cheap video ideas can do for
us, along with their key design concepts, advantages, and limitations.
The rest of the book will show you how to design and build your
own cheap video systems. Software and hardware design theory
will show up in the next two chapters. This is followed by the nuts
and-bolts construction and debug details of the TVT 6% in Chapter
4. The all-important transparency techniques are saved for Chapter
5.

Some background textbooks and materials that you will want are
listed in Chart 1-2. You should have these on hand and fully under-

Chart 1-2. Texts to Have on Hand When Working With
Cheap Video Displays

* For Video Displays in General :
TV Typewriter Cookbook (Sams 2131 3)

* For Machine Language Programming and µ,P Selection :
A n Introduction to Microcomputers I (Osborne 2001)
An Introduction to Microcomputers I I (Osborne 3001)

* For Software, Hardware, and System Design:
6500 Programming Manual (MOS Technology)
6500 Hardware Manual
KIM-1 Users Manual
KIM-2 Users Manual
MCS650X Instruction Set Summary
-Plus comparable manuals for your system.

stand them before you start anything with cheap video.
Now, on to that software design

30

CHA P T E R 2

Software Design

Microprocessor-based, cheap video uses software and hardware working together to get us from code in a memory to dots on a screen. The software of this chapter has to work hand in hand with the hardware of the next. Neither hardware nor software can stand alone in the cheap video world. They have to continuously interact with each other, especially during your system design. In this chapter, we will be using the MOS Technowgy 6502 microprocessor and the KIM-1 system architecture. This system has a 16-bit-wide address bus and a separate 8-bit-wide data bus and normally runs with a 1-MHz crystal clock rate. Instruction times are usually 2 µs or more. You can easily adapt this software to 6800-based systems. While cheap video will work with other microprocessor families, you will be pretty much on your own if you stray too far from the 6500 or 6800. These are our main software problems: * How do we assign our address and data-bus definitions for display use? * How do we build a Scan microinstruction that gives us a line of character code that outputs at a 1-MHz rate? * How do we combine just enough of the Scan microinstructions in the right place and at the right time to build a complete Scan program that meets the exact timing needs of a tv set? * How do we build a Cursor controller or its graphics wader equivalent so we can enter and remove characters and provide the usual Cursor motions? The answers to these questions are all found in this chapter. You will be seeing fully tested and debugged TVT 6% alphanumeric
31

r::

'

Chart 2-1 . Alphanumeric and Graphics Cheap Video Can Use Same
Instruction Decoder. Here Is How Display Instructions Are Decoded

Addre11
A15 A14 A13 A12 Alphanumeric Graphics

0 0 0 0 Normal Computer Use Normal Computer Use
0 0 0 1 Normal Computer Use Normal Computer Use
0 0 1 0 Normal Computer Use Normal Computer Use
0 0 1 1 Normal Computer Use Normal Computer Use

0 1 0 0 Normal Computer Use Normal Computer Use
0 1 0 1 Normal Computer Use Normal Computer Use
0 1 1 0 Output Blank Video Line Output Blank Video Line
0 1 1 1 Output 1 st Row of Character Output Blank Video Line

1 0 0 0 Output 2nd Row of Character Output Live Video Line A
1 0 0 1 Output 3rd Row of Character Output Live Video Line A
1 0 1 0 Output 4th Row of Character Output Blank Video Line
1 0 1 1 Output 5th Row of Character Output Blank Video Line

1 1 0 0 Output 6th Row of Character Output Live Video Line B
1 1 0 1 Output 7th Row of Character Output Live Video Line B
1 1 1 0 Output Vertical-Sync Pulse Output Vertical-Sync Pulse
1 1 1 1 Normal Computer Use Normal Computer Use

software for 1 X 40, 16 X 32, 16 X 40, 16 X 64, 32 X 64, 12 X 80 and
24 X 80 character lines, along with graphics software for black and
white formats of 128 X 128 and 256 X 256; as well as a four-color
format of 96 X 128.

We will save some software details for later, such as techniques
for full transparency, integrated Scan and Cursor programs, and so
on, after we have picked up the software fundamentals here.

This is a very heavy chapter, and you will find lots of things done
in either strange or subtle ways. You are urged to have the back
ground material of Chart 1-2 both mastered and on hand before
continuing. Fortunately, if you are using a TVT 6% on a KIM, all
you will need are the results of this chapter without having to go
too far into the gory details of where the results came from.

BUS DEFINIT.IONS

The starting point of any software design is to define what each
bus line in the microcomputer system is going to do and how it
is going to be used. In 6502 systems, we have a 16-bit-wide address
bus and an 8-bit-wide data bus.

Address Lines

Some workable definitions for our address bus appear in Fig. 2-1.
We assign the lowest address lines to the horizontal character posi-

D ISPLAY INSTRUCTION
DECODE

VERT ICAL CHARACTER
POS IT ION

HOR IZCNTAL CHARACTER
POS IT ION

I • I • I • I • I
PAGE

I
PAGE

IP��EI va l I V4 I V2 I VI I Hl6 I H8 I H4 I H2 I HI I
Al5 Al4 AB Al2 All AIO A9 A8 A7 A6 AS A4 A3 AZ Al AO

(A) Alphanumeric, 32 characters or less per line.

DISPLAY INSTRUCTION
DECODE

VERTICAL CHARACTER
POSIT ION

HORIZONTAL CHARACTE�
POS IT ION

I · I • I • I • I
PAGE

I P��E I vs I v4 I I v2 I v1 I H32 I HI6 I HS I H4 I H2 I HI I
AIS Al4 AB Al2 All AIO A9 A8 A7 A6 AS A4 A3 A2 Al AO

(B) Alphanumeric, 34 to 64 characters per line.

DISPLAY INSTRUCTION
DECODE

VERTICAL CHUNK
POS ITION

HORIZONTAL CHUNK
POS I T ION

Vl28 V64 V32 OR OR OR Vl6 VB
PAGE PAGE PAGE I V4

I
V2 I

VI I H
l6 I H8 I H4 I H2 I H I I

A!5 Al4 AB Al2 All AIO A9 AB A7 A6 AS A4 A3 A2 Al AO

(C) Graphics displays to 256 X 256 .

. Fig. 2-1. Address bus assignments.

IAl2 IS REDUNDANTLY CODEOI

33

lions, followed by the vertical character positions. Higher lines still
are used to define the page of characters (usually 256 words) that
is being output. Our highest available address lines are routed to
a special display instruction decoder circuit which decides whether
normal or display operation is to be provided.

For instance, in Fig. 2-lA, for a 16 X 32 alphanumeric display,
we use five bits for the horizontal character locations, and four more
bits for the vertical character locations. The next three bits select
the location of the display memory. The top four bits serve as our
instruction decoder.

Note that a one count change of the address bus moves you one
character to the right, and that 32 sequential address bus advances
will output a continuous horizontal line of 32 characters. Thus by
simply letting the program counter of the microprocessor advance
once each microsecond, the code for a line of characters will be
output automatically.

The coding of Fig. 2-lB gives us a 64-character horizontal line by
adding a most significant horizontal bit and bumping everything
else up a notch to make room. Normally, you would use the code
in Fig. 2-lA for lines of 32 characters or less and the code in Fig.
2-lB for 34 to 64 characters.

If we try to use these formats on nonbinary line lengths, there
will be unused locations in the display memory. These unused loca
tions are often too small and too dangerous to use for any other
program, so they end up wasted. Running the 64-character code at
32 characters or less per line would give us a memory packing or
efficiency of 50% or less. Even with memory at a cost of 0.1 cent
a bit and 4 cents a word, this is often an intolerable waste.

Later in the chapter, we will look at some sneaky ways to repack
the lower eight address lines so we can put 40- or SO-character lines
into our display memory with just about the same memory packing
efficiency as we used for the binary 32- and 64-character line
lengths.

Our graphics formats might follow Fig. 2-lC. In an alphanumeric
display, each word normally stands for a character. In a graphics
display, each word relates to a piece of the display we can call a chunk. The chunk might be one line of eight dots, four dots on top
of four dots, or three dots on top of three along with four possible
color values for the . entire chunk. Because graphics decoding is
often simpler, we can use address Al2 redundantly, as both part of
instruction decoder space and display memory addressing.

Instruction Decoding
Chart 2-1 shows how we decide whether to use the computer

normally or in its display mode. We route the top four address lines

34

to a circuit that acts as an address decoder. A programmable read
only memory or PROM is one way to do this decoding, as we will
see in the next chapter.

The same decoder can be used for graphics or alphanumerics.
In the TVT 6%, we switch between the two by changing a small
plug-in hardware module and selecting the proper Scan software.
On our decoder, combinations 0000, 0001, 0010, OOll, 0100, 0101,
and llll are reserved for normal computer operation. This final
"upper-core" decoding is particularly important on the 6502 for
proper use of the reset, interrupt, and mask vectors in the operat
ing system.

Intermediate decodings tum the control of the computer over to
the TVT 6% so that characters or sync can be output. Decoding
Ill() will output only a vertical-sync pulse, while the remaining
decodings will decide which line of alphanumeric dots to output
for a particular pass on a dot matrix ' character generator. For in
stance, decoding 0ll0 gives us a blank line, while decoding Olll
gives us the top row of dots on an alphanumeric character . .

The TVT 6% uses a character generator that supplies a 5 x 7
alphanumeric dot format. A top line is usually all blanks, so this
means a total of eight horizontal passes is needed for a row of dot
matrix characters. Should we really want a row of characters, we
increment the instruction decoder each Scan to pick up the right
row of dots. If we only want a blank line, we simply output the top
(blank) row over and over again as often as needed.

While fancy 7 X 9 character generators are available, they are
expensive and take extra video bandwidth. They also use address
space very inefficiently, limit the number of character rows you can
get on the screen, and cut heavily into throughput during trans
parent operation.

A graphics display does not need all those different passes for a
row of characters. All it needs is a blanking output line and an
optional A/ B chunk select line that picks the upper or lower half
of a display chunk. But, there is no reason why we cannot use the
same instruction decoder for alphanumerics and graphics, simply
by relabeling some of the outputs on our decoder.

In fact, there is a subtle and neat trick you can pull using redun
dant decoding for your graphics. You can now make address line
Al2 into a "don't care" decoding during a Scan which lets you
address a larger block of graphics display memory. Thus decodings
1000 OR 1001 can be used for a live "A" graphics Scan, and de
coding llOO OR llOI can be used for a live "B" graphics Scan.
During these times, we are free to have Al2 a zero OR a one,
letting us address the BK block of memory we need for a 256 X 256
graphics display.

35

The display mode memory map of Fig. 2-2 gives a different way to look at what the instruction decoder does. The bottom 24K of the computer is free for any use. Our · display memory should be located somewhere in this bottom 24K. The "middle" 36K of memory space is reserved for control of our cheap video display. The top 4K is available for computer use, particularly operating systems and vector storage.
Any address in your computer called between 6000 and EFFF

will activate the display instruction decoder. This turns out to be the key to deciding what part of what character is to be output when. On a KIM-1, we will avoid using page 00 for display memory since it has the operating system storage slots on it and since it is very useful for standard programs. We will also stay off page 01 since this page has the stack on it. On a bare bones KIM-1, we can use pages 03 and 04 for a 512-character 16 X 32 display of 16 lines of 32 characters each. On an expanded (more RAM) KIM, we might use pages 04-0A for a 24 X 80 character display. We will note in passing that the KIM has a nice little unused RAM sitting between 1780 and 17E6. This is a dandy place to stuff a Scan program, and gives us a strong reason to keep all Scan programs under a hundred words or so long.
F F F F

F O O O

6 0 0 0

0 0 0 0

36

4K AVAILABLE
FOR NORMAL USE

ADDRESSES RESERVED
FOR D I SPLAY CONTROL

24K AVA ILABLE FOR D ISPLAY
MEMORY OR NORMAL USE

Fig. 2-2. Memory map for
Chart 2-1.

It looks like we are using a large number of addresses simply to
run our cheap video display. But these addresses are not used any
way in many systems. And the addresses left over are more than
adequate for, say, running Extended BASIC and a transparent dis
play simultaneously. No attempt was made to further restrict the
cheap video address space, although this is easily done with extra
gating. Obvious routes to gaining even more "use the computer
normally" space are to use a display enable that deactivates the tvt
during nondisplay times, to use an alternate way to pick up vertical
sync, to use more complete instruction decodings (enabling the
tvt only during valid display memory addresses) , and to use 1/0
instructions if they are available.

l • CURSOR
0 • NO CURSOR

,-..------CHARA,GTER:-------...._

CURSOR ASC I I ASC I I ASC I I ASC I I ASC I I ASC I I ASCI I
B IT B il l B IT 6 B IT S B I T 4 B IT 3 B IT 2 B il l
D7 D6 D5 D4 D3 D2 DI DO

(A) Normal alphanumeric mode.

,-..--- UPPER----,-..---LOWER-----,

UB

D7

U4 I U2

D6 D5

Ul

D4 D3 D2 Dl DO

(B) Hexadecimal op-code mode.

LEFT ------------------ RIGHT

AB Af I M I M I M I M I � Al

DI D6 D5 D4 D3 D2 Dl DO

(C) B/W graphics 1 x 8 chunk.

UPPER UPPER LOWER LOWER
LEFT _______ R IGHT LEFT _______ RIGHT

84

D7

Cl

DI

83

D6

82

D5

Bl I A4

D4 D3

A3 A2 Al

D2 DI DO

(D) B and W graphics 2 x 4 chunk.

83

D6

UPPER

82 Bl

D5 D4

co
D3

LOWER

A3 I A2 I Al

D2 DI DO

CO, Cl ARE CHUNK COLOR CONTROL B ITS

(E) Color graphics 2 x 3 chunk.

Fig. 2-3. Data bus assignments.

37

The Data Bus
Our data bus definitions are shown in Fig. 2-3. They are more

obvious than the address definitions. For normal alphanumerics,
the usual 7-bit ASCII code goes on the bottom seven bits. The
eighth bit is reserved as an optional cursor. A one provides a possi
ble Cursor and a zero withholds it. If we go to a special hex op
code mode and use an add-on Hex-ASCII converter, we can slowly
alternate displaying the upper hex character, the lower hex charac
ter, and a "start of new character" blank in the same screen position.
For this, we use the format of Fig. 2-3B, where numbers O through 9
and the letters A through F are displayed in response to a one-of
sixteen hex code.

The three graphics data-bus assignments change as we change
what we call a chunk. For one line of eight dots, the data bus looks
just like the screen, with white normally a "I" and black a "O." The
chunk with four dots on top of four dots puts the left half up and
the right half down. Our color format does the same thing, but
shortens everything to three on three, leaving us with two color
control bits left over in bus positions D3 and D7.

THE SCAN MICROINSTRUCTION

The two essential keys to a microprocessor-based cheap video
display are the software Scan microinstruction and the hardware
upstream tap. In order for us to get a row of character code out of
the microcomputer rapidly, we have to add a new instruction called
SCAN. Since SCAN is not available internally to the CPU chip,
we have to add it on the outside through a technique called micro
programming. Microprogramming can combine a string of several
available and existing instructions into a new, longer, instruction
that does what we want it to.

In the case of our Scan microinstruction, we want the micropro
gramming to do the following:

To start at a computed address and then cause the program
counter to appear on the address bus, and then advance at a
one microsecond per count rate for N counts. N is often 32,
40, 64, or 80.

The trick is to find some combination of existing instructions
that can be put together in a string to get this result. For openers,
we will get to our microinstruction with a Jump to Subroutine (JSR)
command in whatever program that needs the Scan microinstruc
tion. We will end the microinstruction with a Return from Sub
routine (RTS) to get back out of the microinstruction.

38

This use of a subroutine for our Scan microinstruction is the key
to making the microinstruction portable. This lets it be called from
any of the shaded memory areas of Fig. 2-2. Portability lets us move
the instruction around nearly anywhere we want to pick up the right
part of the right line of character code stored in display memory.

But, what coding can we use to force the needed once-per-micro
second advance? A quick look at the obvious No-Operation (NOP)
instruction is discouraging, because a NOP takes two microseconds
to execute. It advances the address bus only once each two micro
seconds. Thus, the obvious route of

NOP NOP NOP . . . NOP RTS

works beautifully as a Scan microinstruction-except it is slow by a
factor of two.

Instead, we will have to look at other instructions in the machine
that will advance the program counter on the address bus once per
microsecond. Available instructions are listed in Chart 2-2 for the

Chart 2-2. Some 6502 Instructions That Will Advance Address
Bus One Count per Microsecond for 2 µs

Op-
Instruction Code What Else Is Affected?

ADC Add Immediate 69 Accumulator, N,Z,C,V Flags
AND And Immediate 29 Accumulator, N,Z Flags
BCC Branch on Carry Clear 90 Carry must be set first
BCS Branch on Carry Set 80 Carry must be clear first
BEQ Branch on Equal F0 Zero Fl2g must be 0 first
BMI Branch on Negative 30 Negative Flag must be 0 first
BNE Branch on Not Equal d0 Zero Fl�g must be 1 first
BPL Branch on Positive 1 0 Negative Flag must b e 1 first
BVC Branch on Overflow Clear 50 Overflow must be set first
BVS Branch on Overflow Set 70 Overflow must be clear first
CMP Compare Accumulator C9 N,Z,C Flags
CPX Compare X Register E0 N,Z,C Flags
CPY Compare Y Register co N,Z,C Flags
EOR Exclusive Or Immediate 49 Accumulator, N,Z Flags
LDA Load Accumulator A9 Accumulator, N,Z Flags
LOX Load X Register A2 X Register Value
LOY Load Y Register AO Y Register Value
ORA OR Immediate 09 Accumulator, N,Z Flags
SBC Subtract Immediate E9 Accumulator, N,Z,X,V Flags

Note:
NOP or "No Operation" is missing from the list since i t is too slow,
Of i nstructions listed, the Command LOY does the least damage to existing programs, flags,
and registers,

6502. There are 19 of them. Any of these instructions could be used
end-on-end as often as needed to give a microinstruction.

39

But, our Scan microinstruction cannot stand alone. It has to lie
inside a larger Scan program. All of these 19 instructions change or
damage something in the machine when they are used. The trick is
to minimize the damage to anything needed by an existing program.
This means we want an absolute minimum of changes in flag status,
the accumulator, and the index registers.

We might get sneaky and do something like AND the accumulator
immediately with FF; ORA it immediately with 00; or EOR it
immediately with 00. And these most often will give us no damage
to anything. They usually will leave everything just as it was before,
except for our desired two-count advance of the program counter on
the address bus. But, as we will see in just a moment, there is an
even sneakier trick we can pull to cut in half the PROM storage
needed for our microinstruction-and these three dodges of AND,
ORA, and EOR for no change will not go along with the memory
savings.

Instead, we reserve the Y register for use as a write only memory
during a Scan. We simply use LDY (AO) as our element in a Scan
microinstruction. Each time we load the Y register, the program
counter advances once per microsecond for 2 µs. No flags are
changed; the accumulator is unchanged; and the X register is un
changed. We even have partial use of the Y register, as long as we
do not have to hold a value through a single Scan microinstruction.

So, we simply stack up enough load-the-Y-register LDY com
mands as needed for the microinstruction. It looks like this:

40

LDY LDY LDY . . . LDY RTS

Chart 2-3. The 6502 Scan Microinstruction Coding for
32-Character, One-Microsecond-per-Character Scan

xxoo LOY AO AO
XXO2 LOY AO AO
XXO4 LOY AO AO
XXO6 LOY AO AO
xxoe LOY AO AO
XXOA LOY AO AO
xxoc LOY AO AO
XXOE LOY AO AO Note:
XX1 O LOY AO AO "XX" is any high address that
XX1 2 LOY AO AO activates the Scan instruction
XX14 LOY AO AO decoder.
XX16 LOY AO AO

XX1 8 LOY AO AO Coding shown repeats for XX2O
XX1A LOY AO AO through XXFF, a total of eight
XX1 C LOY AO AO times.
XX1 E RTS 60 60

Chart 2-3 shows the Scan microinstruction coding for a 32-
character, 1-µs-per-character Scan. We simply load Y with some
thing fifteen times, followed by an RTS or a Return to Subroutine.
Each LDY advances us two counts, one on the first microsecond,
and one on the second. Our RTS instruction does all sorts of strange
things to the address bus during its 6 µs execution-but the first 2 µ.s advance the program counter on the address line just exactly like the LDY instruction does. And, after the first 2 µ,s, RTS has put us
back in the main Scan program and out of the Scan microinstruc
tion.

Fig. 2-4 shows one possible way to generate our microprogram.
We use a Programmable Read Only Memory of the next chapter.
When the instruction decoder activates the Scan PROM, its tristate

Chart 2-4. The 6502 Scan Microinstruction Coding for
64-Character, One-Microsecond-per-Character Scan

xxoo LOY AO AO
XXO2 LOY AO AO
XXO4 LOY AO AO
XXO6 LOY AO AO
xxoe LOY AO AO
XXOA LOY AO AO
xxoc LOY AO AO
XXOE LOY AO AO
XX1 O LOY AO AO
XX12 LOY AO AO
XX14 LOY AO AO
XX16 LOY AO AO
XX18 LOY AO AO
XX1A LOY AO AO
XX1 C LOY AO AO
XX1 E LOY AO AO Note:
XX2O LDY AO AO "XX" is any high address that
XX22 LOY AO AO activates the Scan instruction
XX24 LOY AO AO decoder.
XX26 LOY AO AO
XX28 LOY AO AO Coding shown repeats for XX4O
XX2A LOY AO AO through XXFF, a total of four
XX2C LOY AO AO times.
XX2E LOY AO AO
XX3O LOY AO AO
XX32 LOY AO AO
XX34 LOY AO AO
XX36 LOY AO AO
XX38 LOY AO AO
XX3A LOY AO AO
XX3C LOY AO AO
XX3E RTS 60 60

41

outputs are activated, and the Scan microinstruction takes command
of the data bus of the microcomputer and forces a Scan microinstruc
tion. At the same time, a disappearing Decode Enable command
prevents anything else in the system from grabbing the data bus.

A quick glance at Chart 2-4 seems to suggest that we need a
64 X 8 PROM. But, since it does not matter with what we load Y
and since the code following an RTS instruction does not matter, we can make both columns of Charts 2-3 and 2-4 identical. This means
that we load the Y register with the command code for load Y, or
AO, and that we follow the RTS (60) with another RTS (60) code.

Now, since both columns are identical, we can use one column
and call it half as often. To do this, we simply ignore the least sig
nificant address line. And this slashes our PROM down to the baby
32 X 8, two-dollar size.

So, once again we have doubled something. This time it is how
much code we can get out of a 32-word PROM. As a further refine
ment, we add a switch to the most signific-ant address line going to
the PROM. With this switch connected to address bus line A5, we
generate the 64-character microinstruction of Chart 2-4. With the
switch connecting the PROM to the positive supply and force feed
ing a "I," we generate the 32-character microinstruction of Chart
2-3 instead. Note that both Scans are generated with a 100% packing
density.

Our Scan microinstruction usually has to start at some address
that is an even multiple of the Scan length. For instance, valid start-

FROM
ADDRESS

BUS

Al5
Al4
AB
Al2

::

-
::

-

MAXIMUM
SCAN l£NGTH

+ 5 V SELECT

�/
"64"('°'7-

INSTRUCTION

DECODER

l ENABL£

TRISTATE

32 X 8

PROM

A5
A4
A3
A2
Al
AO 0---..--- N C

\
IGNORING AO CUTS
PROM SIZE IN HALF

:: -
-
:::

- ::

-

D7
D6
D5
D4 MICROPROGRAM
D3 OUTPUT TO DATA BUS
D2
DI
DO

Fig. 2-4. PROM method of Scan microprogram generation used in TVT 6 5/8.

42

ing addresses for the 64-character lines are XXOO, XX40, XX80, or
XXC0. The 32-character lines can use these starting locations, as well
as new addresses XX20, XX60, XXA0, and XXEO.

By "X", we mean any address that activates the instruction de
coder. It turns out that the rightmost X lets us pick the page of dis
play memory being converted to dots. The leftmost X will give us
a blank line if X is hexadecimal "6." An X of "7" gives us the top
row of dots. An X of "8" gives us the second row of dots, and so on
to an X of "D," which gives us the bottom row of dots. Leftmost X
values of 0,1,2,3,4,5,E, and F will not activate the Scan microinstruc
tion. Values of 0 through 5, or F allow normal computer operation,
while an X value of E outputs a vertical-sync pulse only.

Making It Portable
By changing the starting address �f the JSR instruction that gets

us into the Scan, we change which characters are going to be output,
and which portions of them are going to appear as dots on the screen.
Several examples in Chart 2-5 should make this clear. An instruction
of JSR 20 CO 94 will output the third row of dots on the fourth line
of 64 characters, and so on.

In this example, the subroutine starts at address 94C0 and scans
94C0 through 94FF. The "9" says to do a Scan and work on the third
row of dots. The "4" says to use page 04 of the computer, on which

Chart 2-5. Examples of How We Call Our Portable
Scan Microinstruction

Assume we have a 16 x 64 display format per Fig. 2-1 B and that our
display memory is on. pages 04 through 07.

JSR 20 00 60 Outputs a 64-µ.s blank video l ine.

JSR 20 20 84 Outputs the second row of dots on the second
l ine of 64 characters.

JSR 20 20 94 Outputs the third row of dots on the second
line of 64 characters.

JSR 20 co 94 Outputs the third row of dots on the fourth
l ine of 64 characters.

JSR 20 40 cs Outputs the sixth row of dots on the seventh
l ine of 64 characters.

LOY AO 00 d0 Outputs only a vertical-sync pulse.

JSR 20 1 A 30 Calls some other subroutine in the computer;
out of range of the Scan decoder.

JSR 20 02 60 Outputs a blank video l ine that lasts only 62 µ.s
instead of 64.

JSR 20 0A 60 Outputs a blank video l ine that lasts only 54 µ.s
instead of 64.

43

the lower rows of characters for the display are stashed. The "CO''
says start on the fourth line of characters that go on the screen.

Why the fourth line? Check back to Fig. 2-lB. CO decodes as
1100-0000. So we start with all horizontal bits at zero, and the lower
most vertical bits at 11. The top of our verticle line is 00. The next
one down is line 01. The next vertical line is coded 10, and our
fourth line down is coded 11, or Vl = 1 and V2 = 1.

Note that page 04 has not been enabled to run the data bus, since
the Scan microinstruction has control of the data bus. But page 04
has been activated enough to output characters out the upstream tap
to the interface hardware.

Be sure to go through all the examples of Chart 2-5 so you under
stand exactly how we move the Scan microinstruction around to get
the right string of characters outputting the right row of dots. Note
that we do not use a JSR to get a vertical-sync pulse. A simple Load
Y or anything similar is used instead. Also note that if we call a
JSR that is out of the instruction decoder range, the decoder assumes
this is a normal subroutine that is part of an ordinary computer pro
gram, and that a Scan is NOT wanted.

We also have the option of jumping into the middle of a Scan
microinstruction. This gives us a short line. Short lines are handy
during a blank line to make room for extra computation time. This
turns out particularly important when we are doing an interlaced
sync, for nearly an entire line is needed to compute the proper posi
tion of the vertical sync pulse. Short lines also give us a compatible
but inefficient way to do 40- and BO-character lines, as well as other
line lengths. Note that the Scan microinstructions can be any length
so long as they all END a constant time apart. The constant distance
from falling edge to falling edge of sequential Scan microinstructions
sets the horizontal line time and is the edge from which our hori-
zontal-sync pulses will be derived.

Timing Overhead
Fig. 2-5 shows us the timing overhead needed to call and recover

from a Scan microinstruction. A total of ten microseconds is needed

- -SCAN--------SCAN M ICROINSTRUCTION-----+--SCAN-
PROGRAM 32,40, 64, OR 80 µ SEC PROGRAM

? ? ? RTS
,..______,

mR) MICROSECOND
SETUP TIME ALL OF
JSR OCCURS BEFORE
SCAN STARTS.

RTS ? ?

--.,.....,
iFOLl!lM ICROSECOND
RECOVERY TIME. F I RST
TWO M ICROSECONDS OF
6 µ S RTS ARE INCLUDED
IN THE SCAN. --

Fig. 2-5. Timing overhead for a Scan microinstruction using 6502 coding. A
total of 1 o µs is needed to get into and back out of a Scan.

44

for a 6502 on a I-MHz clock. Six of these microseconds happen before the Scan microinstruction starts; these are used up by the
JSR command calling the Scan. Four of the microseconds occur after the Scan microinstruction ends as the RTS command is com
pleted.

Note that the RTS command normally takes 6 µ,s. Two of the six microseconds are spent inside the Scan microinstruction acting as the final two 1-µ,s advances of the program counter on the address bus. The remaining four microseconds are taken out of the regular
program that is calling the Scan microinstruction.

SCAN PROGRAMS

Our Scan microinstruction gives us a convenient way to output
a group of characters in a one-char3:cter-per-microsecond burst. If
we simply fed one of these to a tv set, the tv would not have the
slightest idea what to do with it. All we would get is a disorganized
and apparently random brief Hash of dots.

A tv set normally has a Raster Scan in which a video-controlled
spot moves rapidly to the right and slowly down the screen. One
trip down the screen is called a field. This may be all we need, but
more often, two interleaved fields are combined to produce an interlaced frame. During an interlaced raster Scan, there are usually 60
fields per second, resulting in 30 interlaced frames per second.

To make our Scan microinstruction burst into recognizable char
acters, we have to repeat them over and over again. This is called refreshing a raster, and a complete refresh is needed 60 times a sec
ond. Our output video can only turn the spot on and off. It does not
normally determine the spot position. To tell where we are, we have
to lock the video to the raster with horizontal and vertical synchronizing pulses.

It is the job of our Scan program to provide sync pulses and
refresh as needed for a continuous and stable display. A Scan pro
gram is ordinary softwa:re. It has the ability to call a Scan microin
struction any time it needs one. The design of a Scan program is
rather tricky, since you have to be extra careful not only to have
the program run, but also the program has to take exactly the right
number of microseconds to do everything. And there is often too
few microseconds there to do what you want to do in the available
time.

Chart 2-6 summarizes what the tv set needs in the way of video
and sync signals. Our vertical-sync pulse frequency has to be very
close to 60 Hz. If it misses by .06 Hz or more, you will get a hum
bar that will go waltzing through your display at a 10-second-or
faster rate. The hum bar is caused by a tv with poor shielding and

45

power-supply regulation. It may be absent in a quality video moni
tor. This is particularly annoying on the smaller double-stuffed 64-
and 80-character lines. For an ideal display, we should either lock

Chart 2-6. Some Ground Rules for Scan Software Design

VERTICAL-SYNC PULSES are needed 60 times a second and last for
three horizontal line times, typically 200 µs.
Frequencies above 60.06 Hz or below 59.94 Hz will cause a hum bar
that crosses the screen faster than once each 10 seconds. Ideally,
the system timing should be line locked, but crystal control is ade
quate If it is within range.
A few microseconds of pulse-to-pulse vertical-sync Jitter is tolerable
during interlaced operation, but its value should be minimized.

HORIZONTAL-SYNC PULSES are needed once each horizontal line and
last 5 µs.

Horizontal frequencies are usually 15,750 Hz for black and white
and 1 5,735 Hz for color. When video titling or superimposing exist
ing program material, these values must be externally locked.
Horizontal frequencies as low as 1 0 kHz may be used if the set is
properly modified for reduced width and extended hold range. Only
smaller screen portables should be used with extremely low hori
zontal frequencies.
Twice the horizontal frequency must be an exact and even multiple
of the vertical rate for no interlace. For full interlace, twice the
horizontal frequency must be an exact and odd multiple of the
vertical rate.
Each horizontal line must be identical in length. Horizontal-sync
pulses are derived from the FALLING EDGE of the Scan microin
struction. The time from falling edge to falling edge must be constant
and identical for ALL horizontal lines.

BLANKING AND RETRACE At least 20 horizontal lines should be re
served for vertical blanking and retrace. Horizontal-sync pulses may
be omitted during the vertical-sync pulse time if at least ten blank
horizontal l ines follow the vertical-sync pulse before characters or
graphics are presented.
On a stock tv set, at least 1 7 µs per horizontal line should be re
served for blanking, overscan, and spot defocusing toward the
edge of the screen.
Horizontal- and vertical-positioning controls should be provided.

DOT MATRIX CHARACTERS take several sequential lines for their pre
sentation. Usually, the uppermost character line is coded as all
blanks.

46

A 5 x 7 dot matrix can be presented in eight lines but ten are more
attractive. A 7 X 1 1 (including descenders) dot matrix can be pre
sented in 1 2 lines, but 14 are more attractive.
Characters should not be output faster than one per microsecond if
a tv with stock video bandwidth or an rf modulator is being used.
A graphics rate of eight dots per microsecond is a comparable
upper l imit.

to the power line or else get as close to a stationary hum bar as we
possibly can.

Our horizontal-scan frequency is much more tolerant of deviations
from its normal value, but it also has two critical restrictions. Twice
the horizontal frequency must be an exact even multiple of the
vertical-sync pulse for no interlace and an exact odd multiple of
the vertical sync pulse for full 2: 1 interlace. In addition, we require
that the spacing from horizontal-sync pulse to horizontal-sync pulse
is held absolutely constant.

This means that every loop and every branch in the Scan program
has to take exactly the same number of microseconds to execute.
The time from falling edge to falling edge of any Scan microinstruc
tion sets the time between horizontal-sync pulses.

If we are superimposing video on existing programs for titling
or annotation, we have to lock to the external program material,
matching the usual 15,750-Hz black and white or 15,735-Hz color
frequencies. If we have a stand-alone display, anything near this
will work well.

At a I-microsecond-per-character output rate, character lines of
32 characters and 40 characters can be run at normal horizontal
frequencies, may be used on a color set, or may be locked to an
external program. This is also true of any graphics display of
256 X 256 or fewer resolvable elements.

The longer character lines of 64 and 80 characters usually need a
reduced horizontal frequency. This in turn takes the simple hold
and width modifications to the tv set detailed in Chapter 3. We are
pretty much limited in our choice of display to small screen, trans
former-operated, black and white portables for these longer line
lengths. Once again, this reduced horizontal rate for long lines lets
us get by with unmodified video bandwidth and lets us shove long
line lengths through an ordinary rf modulator, besides making all
of the direct microprocessor control possible in the first place.

Some Magic Numbers
If at all possible, we would normally like to use the already exist

ing 1.0-MHz or other crystal in the microprocessor for all system
timing. We also have to end up with a reasonable horizontal fre
quency that is an exact multiple of the vertical-sync rate. The verti
cal-sync rate, in tum, has to be very close to 60 Hz. Only certain
combinations of clock frequency, microseconds per horizontal line,
number of horizontal lines, and vertical-sync rates are possible. Fig.
2-6 shows some magic-number choices for us that are useful for Scan
programs.

One of the first sets of magic numbers we will be using combines
the stock 1.0-MHz crystal with a 63-µ,s horizontal line and a 265-

47

t

:!I
'P

Cl) 0
3 CD
3 DI ca
n'
:I
C
3 ICI' CD

1 .0-MHz Clock
63 µs Horizontal Line
265 line Field
One field per frame

1 .0-MHz Clock
63 µs Horizontal Line
264.5 line Field
Two fields per frame

1 .0-MHz Clock
85 µs Horizontal Line
1 96 Line Field
One field per frame

1 .0-MHz Clock
87 µs Horizontal Line
1 91 .5 Line Field
Two fields per frame

�

�

�

Ev

15,B73 Ho,; • ...,

�
59.90 Vertical
9.8-Second Hum Bar
No I nterlace

15,B73 Ho,; •• ,.

�
60.01 Vertical
88.5-Second Hum Bar
Full Interlace

1 1 ,765 Horla""'

j
60.02 Vertical
41 .7-Second Hum Bar
No Interlace

1 1�94 Horla""'
� 60.02 Vertical

45.4-Second Hum Bar
Full Interlace

E)
�

E)

E)

32-Character Linea
-'0-Character lines

&
Most Graphics

32-Character Tines
40-Character Lines

&
Most Graphics

64-Character Lines

64-Character lines

.. co

::I

I
a.

I
I
c·
:'

1 .0-MHz Clock

EV 1 01 µ,s Horizontal Line
1 65 Line Field
One field per frame

1
1 .003-MHz Clock

�

101 µ,s Horizontal Line
1 65.5 Line Field
Two fields per frame

.992250-MHz Clock

�

63.5 µ,s Horizontal Line
262.5 Line Field
Two fields per frame

9,901 Horizontal

�

60.006 Vertical I 80-Charader Lines
1 67-Secand Hum Bar
No Interlace

9,930 Horizontal

�

60.00 Vertical I BO-Character Lines
Stationary Hum Bar
Full Interlace

15,750 Horizontal

�

Video Titling and
60.00 Vertical Superposition;
Stationary Hum Bar &
Full Interlace EIA standard video

line noninterlaced frame. This combination gives us a near standard
horizontal and a just tolerable hum bar slightly faster than 10 sec
onds. It may be used for very simple Scans of 32 or 40 characters,
as well as most graphics. The other sets of magic numbers can be
picked up from Fig. 2-6 for video titling and superposition, inter
lace, 64- and BO-character lines, and other combinations. Ideally, we
would like to be able to trim the crystal slightly or do an actual
line lock, but this often is not needed, particularly with large char
acters on shorter lines. Line lock is simple enough to add once your
application is in its final form.

As our first Scan program, let's put one line of 40 characters on
the screen, without interlace. Besides giving us something simple to
start on, this I X 40 display might be used on a point-of-sale terminal

µP-6502
System-KIM-I

- 1 780

f""
1 784
1 787

1 789

L
1 18b

J.E 1 18d
START 178F

1791
1 794
1 797
1799

�-179A
L119c

NOTES:

CLC
STA
JSR
ADC

CMP
8CS
BCC
LDX

LDY
JSR
LDA
DEX

BEQ
BNE

Start-JMP 178F Displayed-0218.023F
End-Interrupt Program Space-1 780-1 79d

(30 words)

1 8 Clear Carry
8d (86) (17) Store Upper Address
20 1 8 62 I I I I I Character Scans 0-7 I I I I I
69 1 0 Increment Character Scan Counter

C9 E0 Character Scan Counter Overflow?
b0 02* Yes, go to blanking scans
90 F2* No, scan next row of character dots
A2 00 Load number of blank scans

AC EA EA Vertical-Sync Pulse
20 1 8 60 I I I I I Blanking Scans I I I I I I I I I I I I
A9 62 Initialize Upper Address
CA One Less Blanking Scan. Done?

F0 E4* Yes, Start Character Scan
d0 F4* No, Repeat Blanking Scans

TVT 6 518 must be connected and both the Scan 658-KS64 and Decode 658-KD8
PROMs must be in circuit for program to run.

Step 1 784 goes to where the upper address stored in 1 786 tells it to. This value
changes throughout the program.

Horizontal Frequency 1 5,873 Hz with 1 .0-MHz clock. Vertical frequency 60.125 Hz
with &-second hum bar. No interlace. 256 blanking lines; 8 active scan lines. ,

TVT 6 518 switch musf be in the "64" position.
) Denotes on absolute address that is program location sensitive.

* Denotes a relative branch that is program length sensitive.

Fig. 2-7. Program for a 1-line, 40-character,

50

or somewhere else where you only have a bare minimum of RAM
available, or else have very little information to present. We will
need 40 characters of display memory storage and 30 locations of
Scan program storage, for a total of 70 words. The program is shown
in Fig. 2-7.

Our characters are stored in locations 0218 through 023F, with

MODS:
To display double-height characters, use 1 788 08 and 1 790 F8
To display another location, set the desired page in 1 798 and the desired lower

starting address in 1 785. The only valid starting addresses are 1 8, 98, 58, or dB,

FLOW CHART

(1780 - 17871

NO
(178 9 - 178d)

START

1171FI
(178F - 17911

(1794 - 17971

NO YES (1799 - l79C)

SCAN MICROINSTRUCTION ADDRESSES

UPPER ADDRESS
(1784)

DECODED PER
F IG . 2-IA

PAGE TWO
OF D I SPLAY

MEMORY

(SHOWN AS CODE!

no-interlace TVT 6 5/8 Raster Scan.

LOWER ADDRESS
(1785)

00 18 40 80 co 00

D I SPLAY
MEMORY,

IX<IO

(SHOWN AS MAP I

51

0238 being the leftmost character. The Scan program is stored in
1780 through 179d.

The key to picking a new row of character dots each time is to
jump to a Scan microinstruction at a computed location. A jump to
subroutine JSR then activates the Scan microinstruction and outputs
a row of character code for us. Locations 1785 (lower address) and
1786 (upper address) store our computed starting location. Note
that these addresses have to be RAM, since you first store the values
you want the Scan to start with in them, and then use the same two
locations as an address for a JSR.

Since we only have a single line of characters, we need only worry
about computing a new high address; the low address stays constant
at hex 18.

Our program starts by loading the right number of blank Scan
lines in the X register (l 78F) and producing a vertical-sync pulse
(1791). Incidentally, it is always a good idea to load X before the
vertical-sync pulse. This will help our transparency as we will see
in Chapter 5. This is followed by our first blank Scan at 1794. After
each blank Scan, X is reduced by one (1799) , and tested. As long
as the X register has some value other than zero in it, the program
loops to 1792 and repeats another blank Scan.

When all the blank Scans are finished, the X register hits zero
and the Branch on Equal (179A) loops us to the part of the pro
gram that is going to put down the character dot rows.

Step 1784 next puts down the top row of character dots for us as
it calls a Scan miscroinstruction at a computed address. While this is
going on, the upper address value is held in the accumulator. After a
row of dots is scanned, we increment our character Scan "counter" in
step 1787 and test it for the final character line in 1789. If another
row of character dots is needed, the program loops to 1781, stores
the computed new upper address, and then scans that row of dots.

After the last line of character dots is complete, we go on to
once again load the number of blank lines wanted for the next frame,
produce a vertical-sync pulse and then go on to the blank Scans.
Everything repeats at the noninterlaced 60-Hz frame rate.

We have pulled a sneaky trick in steps 1792 and 1793 to save two
words. A vertical-sync pulse can be gotten by any LDY XX EX
coding. Since the X's do not matter to the sync instruction, let's use
LDY EA EA. But EA is also a No-Operation (NOP) or a way to
use up 2 µ,s without doing anything. So, we have two "free" no-op
words buried in our existing code. These are used to make the blank
Scans long enough to take the needed 63-µ,s microseconds. If your
particular microprocessor will not allow this stunt, just add 4 µ,s
of NOP or some other "wheel spinning" between 179A and 179C,
and then branch directly to 1794.

52

Loop Timing

Note particularly the timing of each loop. Our active Scan micro
instruction takes 40 µ.s. The overhead to get into and out of the
Scan microinstruction takes another 10 µ,s. Thirteen microseconds
are spent in the program in every loop in every direction, over and
above the microinstruction call. The Scan plus overhead plus the
program equals 40 + 10 + 13 = 63 µ.s, the time of one horizontal
line.

Let's double check to prove that each loop does, in fact, take
exactly 13 µ.s to execute :

Between blank Scans:
1797 LDA . 2 µ.s
1799 DEX , 2 µ.s
179A BEQ (not taken) . 2 µs
179C BNE (taken) 3 µ,s
1791 NOP . 2 µ.s
1792 NOP . 2 µ.s

TOTAL 13 µ.s
From the last blank Scan to the first dot row :

1797 LDA . 2 J.LS
1799 DEX . 2 µ.s
179A BEQ (taken) . 3 µ.s
1780 CLC . 2 J.LS
1781 STA . 4 µ.s

TOT AL 13 µ,s
From a character dot row to the next character dot row:

1787 ADC . 2 µ.s
1789 CMP . 2 µ.s
178b BCS (not taken) . 2 µ.s
178d BCC (taken) . 3 µ,s
1781 STA . 4 µ.s

TOTAL 13 µ.s
From the last character dot row to the first blank Scan:

1787 ADC . 2 µ.s
1789 CMP . 2 µ.s
178b BCS (taken) . 3 µ,s
l 78F LDX . 2 J.LS
1791 LDY . 4 µ.s

TOTAL 13 J.LS

53

If any one of these loops takes longer than the others, our Scan
ends up in deep trouble. We will get a tom or otherwise unstable
display. Any differences in loop times from falling edge to falling edge of the Scan microinstruction will ruin the disp'lay.
Some Finer Points

An odd number of microseconds for each horizontal line time
seems to be a good initial choice for the 6502 systems. A branch
is almost always involved in the loops, and branches taken use up
3 µs, compared to the 2 or 4 µs of most common instructions. We
can sometimes convert an odd line time into an even one or vice
versa by taking a branch that goes nowhere, such as BCC 90 00
with the carry cleared. But this wastes two words and, worse still,
wastes 3 µs of critical loop time.

We can call any "wheel spinning" times in the loops equalization.
The combination PHA PLA gives us 7 µs of delay in only two code
words. NOP gives us 2 µs of equalization in one code word. Going
to a subroutine and immediately returning uses up 12 µs in four
code words. And the combination of loading the Y register, decre
menting it, and branching if not equal can give us 6 + 5Y µs of
delay in five code words. Delay values of 6, 11, 16, 21, 26, 31, . . .
microseconds are available simply by picking larger values for Y.

The trick is to do useful things at the same time you are equaliz
ing, for otherwise, there simply is not enough time both to make
things come out even and to do the needed calculations as well. Make all your loops the same length, but minimize any equalizationonly steps in doing so.

Any addition done in a program (such as 1787) has to be pre
ceded by a known state of the carry Hag. We come out of the blank
ing loop with the carry set, so we have to clear it in 1780. But the
carry is already cleared, coming out of the BCC from the character
dot row loop, so it is ready to go without wasting any time reclear
ing it. Note that for immediate additions, we have the option of
always having the carry set and adding one less than normal. Either
way, always be certain that the carry is known before any addition is done.

Is step 178b and l 78C wasted? Can we save two words here?
Leave the BCS off, and loop the character-scan counter to 1780
instead of 1781, and this loop still takes 13 µs. But the loop from
the final character Scan to the first blanking run would now take
only 12, instead of 13 µs, and there is no free and obvious way to
equalize 1 µs. In this particular instance, there are lots of blank
lines following the 1-µ,s error, so we can get away with this simplifi
cation. In general, you must keep all loops identical in execution
time.

54

Your Turn:

Design and debug a 1 x 40, TVT 6 5/8
noninterlaced Scan program needing 28
or fewer words of storage. Modify it for
double-height characters.

Note the asterisks and parentheses in the program. These will
help you move the program around. An asterisk is a relative branch;
these values change if you lengthen or shorten the program; they
usually do not change if you simply move the program somewhere
else. The parentheses are absolute locations. They will always
change if the program is moved somewher� else, but may or may
not change if the program length changes.

Two modifications of our 1 x 40 program are also shown in Fig.
2-7. We get double-height characters by adding only half enough
each time at 1787. We relocate the display memory anywhere be
low 0FFF we like by putting the desired page in 1798 and the
desired starting address in 1785. Note that the only valid starting
addresses are 18, 58, 98, and dB. Why is this?

16 x 40, No Interlace
So far, we have been lucky. All the loops worked out just right,

without making them longer or shorter than needed. But, what can
we do when we have to compute the location of a new row of char
acters, or the exact position of a vertical-sync pulse?

There are two things than can help us. First, we can shorten
any blank line by any even amount we need to gain compute time.
In the case of a 40-character line, we can go as low as two blanks,
leaving us an extra 38 µs of compute time on top of the 13 µs we
already had available. If you are careful, you can do a lot of things
in 51 µs. And even more time is available in slower 64- and 80-
character Scans.

A second approach is called pipelining. If there is not enough
time between Scan microinstructions to do something, you set up
and prepare for as much of it as you can as early as you can,
before an intervening blank or live Scan. This will be very handy
later in our graphics software where blank lines do not exist between
chunks.

The obvious extension of our 1 X 40 program is to make it into
the 16 X 40 no-interlace Scan program of Fig. 2-8.

55

We have kept pretty much the same setup and vertical blanking Scans (17A0-17Ad) , and the same sequence to put down a complete set of character dots for one line of characters (1780-178b) . In order to change the character lines, we add a blank line between each row of characters. We make the Scan portion of this blank line short, and then use the extra time available to compute the
µP-6502
System-KIM-1

Start-JMP 1 7AO
End-Interrupt

Displayed-041 8-07FF
Program Space-1 780-1 7b 1

(47 words)

- 1780 CLC 1 8
1 781 STA Bd (86)
1 784 JSR 20 1 8
1 787 ADC 69 1 0

1 789
..... 1 1eb

178d
1 78E

1 791
1793
1 79b
1 797

CMP C9 EO sec 90 F3*
PHA 48
LDA AD (85)

ADC 69 3F
STA SD (85)
PLA 68
JSR 20 22

1 79A ADC 69 80
179C CMP C9 68

- 1 79E BCC 90 EO*
5TART --- 1 7AO LDX A2 79

17A2 LDY
1 7A5 JSR
17A8 LDA
1 7AA DEX

AC EA
20 1 8
A9 64
CA

� 1 7Ab BEQ FO d3*
L 1 7Ad BNE dO F4*

Clear Carry
(1 7) Store Upper Address
64 / //// Character Scans 0-7 // / /

I ncrement Character Scan counter

Character Scan Counter overflow?
No, Scan next row of character dots
Save Upper Address

(17) Get Lower Address

I ncrement Lower Address by 64
(17) Store Lower Address, save carry

Get Upper Address
60 I I/ I I I Blank Character Scan 8 ////

Add carry; reset upper address
Was this the last line of characters?
No, start a new row of characters
Load number of blanking scans

EA Output vertical-sync pulse
60 I///// Blanking and Retrace Scans ////

Initialize Upper Address
One Less Blanking Scan. Done?

Yes, start top row of characters
No, do another blanking scan

NOTES:

TVT 6 5/8 must be connected and both the Scan 658-KS64 and Decode 658-KDB
PROMs must be in the circuit for program to run.

Step 1784 goes lo where the upper address stored in 1786 and the lower address
stored in 1 785 tell it to. These values change throughout the program as different
characters and dot rows are selected.

Horizontal Frequency is 15,873 Hz with 1 .0-MHz clock. Vertical frequency is 59.90 Hz
with 9.8-second hum bar. No I nterlace. 144 active lines, 121 blank, 265 total.
) Denotes an absolute address that is. program location sensitive.

* Denotes a relative branch that is program length sensitive

Fig. 2-8. Program tor a 1 6-line, 40-character-per-line,

56

MODS,
To Change the Number of Display Lines or the Height of the Characters, Use:

Lines Height 179d 1788 17A1

16 Normal 68 10
12 Normal 67 10
8 Normal 66 10
8 Doublet 66 08
4 Normal 65 1 0

Doublet 65 08

t Only works if upstream tap and chip select is across 1 K or less of display memory.
FLOW CHART

START

NO

SCAN M ICROINSTRUCTION ADDRESSES

UPPER ADDRESS
117841

11780 - 17871

(178b - l78dl

1178E - 179AI

ll79C - 179EI

117AO - 17A21

117A3 -l7AAI

117Ab - l7Adl

LOWER ADDRESS
(17851

79
9d
Cl
81
ES
cs

00 18 40 58 80 98 CO dB 00

· I · · I · I
DECODED PER
FIG. 2-IA

PAGES 04 THRU 07
OF D ISPLAY MEMORY

ISHOWN AS GODEi

no-interlace TVT 6 5/8 Raster Scan.

rn:i] mm1 2 r::::::i 3 1:::: ::J 1
FOUR, 40 - CHARACTER
ROWS PER LOWER PAGE

!SHOWN AS MAPI

57

starting address for the next row of characters. We do this in steps
178d through 179b.

Remember that our accumulator held the upper address for us
during the active Scans. We stash this upper address temporarily
on the stack (178d) and then get the lower address for modifica
tion. We add 64 counts to the lower address in 1791 by adding hex
3F plus a carry. Our new lower address is then restored in 1793.

Our carry gets set every time there is a lower address page over
flow. This happens once every four character rows. When an over
flow occurs, we have to suitably modify our upper address as well.
But carry or no carry, our upper address is wrong anyway, since
its one past the bottom of the character and should be set to the top
of a new character row. So there are two things we have to do to
our upper address: We have to reset it to the top line; and, if a
page overflow happened on the lower address, we have to add one
to the page select.

We correct the upper address by getting it back out of the stack
in 179b, take time out for a blank Scan microinstruction (this is an
example · of pipelining) , and then correct the upper address in
179A. We then check for the last line on the screen, and in 179E,
either repeat a new character row, or else go on to the blanking
Scans.

Timing Details

It is extremely important that the blank line that computes the
next row of characters for us is exactly the same length as the
character row times. If it is not, you get a bunch of teeth that tear
up the display, handsaw style. Let's check to make sure we have
taken exactly enough time to move to the next character row, by
comparing this time against one of the other loops in the Scan pro
gram:

58

From a dot row to the next on the same character:

1787 ADC . .
1789 CMP . .
178b BCC (taken) . .
1780 CLC (equalization) . .
1781 STA . .

plus

2 µsec.
2 µ,sec.
3 µ,sec.
2 µ,sec.
4 µ,sec.

Scan Overhead . 10 µ,sec.
plus

Scan Microinstruction . 40 µ,sec.
TOT AL 63 µsec.

From the last dot row on one character to the top (blank) dot row
on the next row of characters:

1787
1789
178b
178d
178E
1791
1793
179b

plus

ADC . .
CMP . .
BCC (not taken) . .
PHA . .
LDA . .
ADC . .
STA .
PLA . .

2 µsec.
2 µsec.
2 µsec.
3 µsec.
4 µsec.
2 µsec.
4 µsec.
4 µsec.

Scan Overhead . IO µsec.
plus

Short Blank Scan . 30 µsec.

TOTAL 63 µsec.

Thus, by making the calculation part of the loop longer by IO µs,
and shortening the blank Scan by 10 µs, we come out even with a
63-µs line.

We have cheated a bit once again by I µs on the first blanking
loop. But, in this program, there is enough blank Scan time during
retrace for recovery. Where is this loop? How can you fix it with
more code?

Your Turn:

Design a Scan ,program for a 1 6-line, 64-
character-per-l ine, no interlace TVT 6 5/8
raster Scan. Use an 85-µs horizontal l ine
time. Be sure to initial ize the lower ad
dress once each frame.

Our 16 X 40 Scan looks great at first glance. We get lots of
characters on the screen, a stock horizontal frequency, and we are
doing all this with only 47 words of Scan program. But, there are
many things wrong with this program, and we have shown it to
you only as a stepping stone to the good stuff that follows.

Some of the problems we are about to fix are :

* The Scan will not run on a bare bones KIM-I since the display
memory is too big to fit on pages 02 and 03. * We actively work on the lower address (1785) but never re-

59

initialize it. Tiris is dangerous and limits us to multiples of
four character rows per raster. * There is no interlace. Interlace makes much more attractive
characters, particularly on long line lengths. Interlace is also
essential for titling and superposition of existing video. * There is no double stuffing possible since we do not have inter
lace. This severely limits how many character rows we can put
on the screen. * Only 40 of each 64 words of display memory are used. The
rest are wasted, a total loss of 384 locations.

Let's attack these problems one by one. They are all solvable with
some simple mods and a few more words of code.

Adding Interlace
In an interlaced Scan, two ¼0th second fields are interwoven in

order to _ form a single ½0th second frame. On the first pass, the
scan starts in the upper left comer and ends at the bottom middle
of the screen, moving rapidly to the right and slowly downward and
generating one half of the needed horizontal Scan lines. On the
second trip, the Scan starts in the upper middle and ends at the
bottom right, putting down the remaining horizontal Scan lines. If
525 Scan lines are used, there are 262½ spent on each field. Inter
lace always takes an odd number of total Scan lines.

Interlace does lots of good things for us. It lets us lock our Scan
to existing interlaced-program material for titling and superposi
tion. It gives us much more attractive characters since it eliminates
the ugly stripes common to most noninterlaced Scans (Fig. 1-lOA) .
This is extra important on long character lines and characters whose
width is narrow compared to their height. Finally, interlaced Scans
seem to be essential for the double-stu-ffeng techniques that let you
double or nearly double the number of characters on the screen.

Our microprocessor-based cheap video displays use a very simple
software interlace, There are no hardware differences at all. To
pick up interlace, you simply add a few words (around 25) to your
Scan program. Because of the simplicity and the tremendous ad
vantages of interlace, you should use interlace for practically all
video displays.

Fig. 2-9 shows how to add interlace. We reserve the first blank
Scan line to calculate our interlace activity for that field. On the
first field, we put down N scan lines and deliver a vertical-sync pulse
early during the first blank Scan. On the second field, we put down
N + 1 Scan lines and deliver a vertical-sync pulse late during the
first blank Scan. The net result is 2N + 1 horizontal Scan and two
equally spaced vertical-sync pulses per field. This is identical to the

60

traditional and more complicated hardware ways of doing the same
thing.

There usually will be a very slight jitter between even and odd
vertical-sync pulses. Typically, you can reduce this to 1 µs. But,
even if the jitter is 10 or 12 µs, there seems to be no visual effect
on the screen. All jitter does to us is slightly uncenter the spacing
between sequential per-frame raster lines, a negligible effect. Never
theless, if you are a programming purist, you will probably want to
adjust your early- and late-sync times to be as close to exactly one
half the horizontal line time as you can get .

. 2: I INTERLACED FRAME, 30 PER SECOND

60·HZ VERT ICAL · SYNC
INTERVAL, N + 112 SCANS

60·HZ VERTICAL · SYNC
INTERVAL. N + 1/2 SCANS

VERTICAL · SYNC

_n _________ n ... _________ n_:

LSES

I
I
:early

I I
I I
: late : early

pr�"";:t"':;i-N--1-,l
r--N--r

l -l-'-T-2--.f;
.,.,,./::t�-

::;)-;;1-N--l ... l
_N _l

,...
N_+_l_, -i:: ��:�z�1�11L

F I RST F I ELD
N SCAN L INES
V SYNC DELIVERED
EARLY IN FIRST
BLANK SCAN.

SECOND F I ELD
N + I SCAN L INES
V SYNC DELIVERED
.bfilI IN F IRST
BLANK SCAN.

"EARLY" · AND "LATE" •
SYNC POSITIONS D IFFER
BY ONE ·HALF A HORIZONTAL
SCAN LINE.

Fig. 2-9. Adding interlace Is essentially free; requires just a few extra words
in lhe Scan program.

Our software interlace generator is usually followed by a hard
ware vertical-position control. Once the sync pulses are generated,
it is a simple matter to delay them.

16 x 32 Interlaced Scan

This will be our first Interlaced-Scan program and it is shown
in Fig. 2-10. The program gives you sixteen lines of 32 characters
each and will fit nicely and densely on pages 02 and 03 of a bare
bones KIM-1. A standard horizontal frequency is used and the
magic numbers give us an almost stationary hum bar. This is an ideal short display, and should be the starting point for everything you do with cheap video displays.

Except for interlace, the program uses the same ideas we used on
the 16 X 40 program. All but our first blank Scan line are generated
in l 7C2 through 17 d3. The characters are generated in 1780 through
178F. Note the 10 µs of equalization in 1785 and 1786 needed to
lengthen the Scan lines, since we only have a live character time of

61

µP-6502 Start-JMP 1 7A6 Displayed-0200-03FF
System-KIM-I End-Interrupt Program Space-1780-17d4

Upper Address (1 78A) lower Address (1 789)

I * I * I • I • I O I O I 1 I vs I V4 I V2 I Vl I H1 6 I He I H4 I H2 I H l I
0-5,F -normal program (no tvt)
6 -blank scan
7 -scan row 1
8 -scan row 2
. . . etc. Program length-85 words +

d -scan row 7 1 word page zero (00 EC)
E -vertical-sync pulse

17d1 1780 ClC 1 8 Clear Carry
1 781 STA 8d (SA) (17) Store Upper Address
1 784 PHA 48 Equalize 10 µs
1 785 PlA 68 continued

1786 BNE dO 00 continued
1 788 JSR 20 00 60 I I I Charader Scans 0-7 I I I
1 78b ADC 69 1 0 Increment Character Scan Counter
178d CMP C9 EO Character Scan Counter OverAow?

1 78F BCC 90 FO* No, Scan next row of character
1 791 TAX AA Save Upper Address
1792 LDA Ad (89) (17) Get lower Address
1 795 ADC 69 l f Increment Lower Address; Save carry

1 797 STA Bd (89) (17) Restore Lower Address; Save carry
1 79A TXA BA Get Upper Address
1 79b ADC 69 80 Reset Upper Address; add carry
1 79d BNE dO 00 Equalize 3 µs

1 79F JSR 20 04 60 I I I Blank Character Scan 8 / / /
17A2 CMP C9 64 Is it the "1 7th" row of characters?

17d1 1 7A4 BCC 90 dA* No, start a new row of characters
�T�.RT - 1 7A6 LDA AS (EC) Get Interlace Word

1 7A8 ADC 69 7F Change Field via Carry bit

C

AA BCS BO 05* Jump if Even Field
1 7AC LDX A2 76 load Odd (short) # of blank Scans
1 7AE STA Bd (EC) EO Odd Field V Sync; Restore Interlace

1 7b 1 LDY AO 05 Equalize 31 µs

(
1 7b3 DEY 88 continued
1 7b4 BPL 1 0 Fd* continued

17bd -- 1 7b6 BCC 90 05* Jump if odd field

Fig. 2-10. Program for a 16-line, 32-character-per-line,

62

1 7b8 LDX A2 77
1 7bA STA Bd (EC)

17b6 - 1 7bd JSR 20 l E
1 7C0 PHA 48

1 7C1 PLA
1 7C2 CLD
1 7C3 LDA
1 7C5 STA

17C8 LDA
17CA STA
1 7Cd JSR
17d0 DEX

68
dB
A9 00
Bd (89)

A9 62
Bd (BAJ
20 00
CA

1780 ..-- 17d l BMI 30 Ad*
L 17d3 BPL 1 0 Ed*

NOTES:

Load even (long) # of blank Scans
EO Even Field V Sync; Restore I nterlace
60 I I I 1 st V Blonking Scan I I I

Equalize 9 µs

continued
continued

Initialize Lower Address
(17) continued

Initialize Upper Address
(17) continued
60 I I I Rest of V Blanking -;cans /II

One less Scan

Start Character Scan
Repeat V Blanking Scan

TVT 6 518 must be connected and both the Scan (658-KS8) and Decode (658-KD64)
PROMs must be in circuit for program to run.

Both 1 7AE and 17bA require that page 00 be enabled when page E0 is oddressed.
This is done automatically in the KIM-I decode circuitry.

location OOEC on page zero is reserved as an interlace storage bit.
Step 1 788 goes to where the upper address stored in 178A and the lower address

stored in 1 789 tells it to. Values in these slots continuously change throughout the
program.

For a 525-line system, use 1 7Ad 54 and 1 7b9 55 and a KIM-1 crystal of 992.250 kHz.
This· is ONLY needed for a video superposition or titling applications; the stock 1 -
MHz crystol i s used for ALL OTHER uses.

Normol program horizontal frequency is 15,873.015 Hz; Vertical 60.01 1 4 Hz. 63 µs
per line, 264.5 lines per field; 2 fields per frame, 529 lines total.

TVT 6 518 switch must be in the "32" position.
) Denotes an absolute address that is program location sensitive.

* Denotes a relative branch that is program length sensitive.

interlaced TVT 6 5/8 Raster Scan.
COntlnultd on ned page.

63

To display other pages, use:

Pages
Displayed 17Aa 17C9
0000-0lFF 62 60
0200-03FF 64 62
0400-0SFF 66 64
0600-07FF 68 66

0800-09FF 6A. 68
OAOO-ObFF 6C 6A
OCOO-OdFF 6E 6C
OEOO-OFFF 70 6E

For higher pages, move contents to 0200-03FF or 0400-0SFF.

START

117A6J

EVEN

NO

NO

FlOW CHART

00
CHARACTER

SCAN

TVT
Connection

KIM-1
KIM-1
KIM-2
KIM-2

KIM-2
KIM-2
KIM-2
KIM-2

[1780 • 17Bbl

[178<1 • 178F J

(1791 - 171J'J

[17A2 • 17A41

fl7A6 • 17A8J
ODD

117bl • 17bbl ___ ,_ __________ _. 117AC·l7b61

117bd • 17d01

YES NO
117dl • 17<141

Fig. 2-10 Continued. Program for a 16-line, 32-character-per-line, interlaced
TVT 6 5/8 Raster Scan.

64

32 µs. Our sequential rows of characters are calculated as before in
steps 1791 through 17 A4.

Our interlace calculation is done on the first blank Scan line. We
have to do two things. First, we have to decide how many blank
Scans we want on the field we just started; and secondly, we have
to pick an early or late vertical-sync pulse and deliver it during the
first blank Scan. Always pick the number of blank lines first; this will
help transparency later.

We store an interlace word "ILCE" on page zero at location OOEC.
It does not matter what the value is that this word starts out as.
In each field, we retrieve ILCE, add hex 80 to it, and replace it. This
will set the carry on one field and clear it on the next field. We will
use the resultant carry bit to steer us either to an early sync pulse
and N blank lines or a late sync pulse N + 1 blank lines.

On the early sync field, we load the X register for N blank scans
in 17AC. We next produce a vertical-sync pulse and restore the new
interlace word in 17AE. This is followed by 31 µs worth of wheel
spinning equalization, after which we go on to the rest of the blank
Scans.

On the late sync field, we first wheel spin for 31 µs in 17bl through
17b4 and then load the X register with N + I blank Scans in 17b9.
This is followed by the vertical-sync pulse and interlace word res
toration in l 7bA. After this, we go on to the rest of the blank Scans.

Note particularly the steering action of the carry bit. If carry
is cleared, we do the early sync program followed by the equaliza
tion. If carry is set, we do the . equalization first, followed by the
late sync program.

We run this Scan program by jumping to the starting address at
17A6. This program will only run when your TVT 6% is connected
to your KIM-I. The hardware length switch on the TVT 6% must
be in the "32" position.

We stop our display by interrupting, either to return to a main
program, a Cursor controller, or the computer operating system.

Your Turn:

Design a 1 6 x 40 i nterlaced TVT 6 5/8
program running on a normal horizontal
frequency. Modify it to an 8 x 40 double
height character program that uses pages
02 and 03 for display memory.

65

Fig. 2-10 also shows us how to move the display memory around
as needed for other system uses. Remember that your upstream tap
has to be available at the chosen locations when we do this. If
you move your 16 X 32 program to KIM-1 pages 00 and 01 and add
a Hex-ASCII converter, the stack and all operating system values
can be displayed at once.

We can convert our 16 x 32 interlaced Scan into exact EIA magic
numbers of 15,750 Hz horizontal and 60 Hz vertical by using a
crystal of 992.250 KHz and changing the number of blank lines as
shown in the program. This is only needed for video superposition
and titling. All other applications can run with the stock 1-MHz
crystal.

Should you want to eliminate interlace for a comparison, just
load 17A9 FF. Note how the stripes appear in the characters. To
return to full interlace, load 17A9 7F.

More Characters

There are many ways we can get more characters on the screen.
We have already picked a 5 X 7 character generator to minimize
video bandwidth and the number of vertical lines per character.
You can add lines by shortening the number of blank Scans, so
long as twenty or so blank Scan lines remain. You can also skip the
top blank line of each character row, but this tends to put the
characters too close together.

Another way to put more characters on the screen is to put two
characters in the same slot, alternating them at a slow rate. This is
the key to hex op-code displays, but is a very special route to go.

We might be tempted to spend less time computing and more
time displaying, still staying within the normal horizontal line time.
At the computer end, we could use "brute force" software that
would simply call one Scan microinstruction after another. This
could get us down to a nonscan time of 10 µ,s, leaving us with a
limit of 53 characters or so per line.

66

Your Turn:

Write a "brute force" Scan program that
calls, rather than computes, all live scans
needed for a 1 x 53 display. Are you able
to attractively display this many charac
ters?

Unfortunately, there is trouble on the tv end that usually pre
vents this. Between the normal time needed for horizontal retrace,
the extreme overscan of many stock tv sets, and fairly bad spot
defocusing toward the screen edges, you will find it very difficult
to attractively display more than 42 characters per horizontal line
if you stick to a one-microsecond-per-character rate and standard
horizontal frequency and width on a stock tv set.

So, what does this leave us? How else can we increase the charac
ter density on the screen? Here are three good ways to go :

* By double stuffing characters, we can double or nearly double
the number of characters vertically on the screen. Double
stuffing only needs Scan program changes and is "free" in the
same sense that interlace was free with a few extra software
words.

* By going to a reduced horizontal rate, we can put 64- or 80-
character lines on the screen, yet still stay within the normal
video bandwidths of unmodified tv sets and rf modulators. A
reduced horizontal rate does take hold and width modifications
to the set, but these are easily and safely done on small-screen
black and white sets.

* By using memory repacking techniques, we can store 40- and
BO-character lines in a display memory in pretty much the
same space that we can store binary 32 or 64 length lines. This
raises the number of characters on the screen for a given num
ber of available display memory words or, alternately, reduces
the per-character storage cost. Memory repacking tends to
make the Scan and Cµrsor software more complex, but this
usually takes only a few extra words.

These three techniques of double stuffing, reduced horizontal, and
memory repacking can be used in any combination. How much
of this you want to do depends on your application.

For minimum memory and simple operation, the 16 X 32 inter
laced Scan is a good choice and should always be your starting point
for anything fancier. Double stuffing can bring this up to 32 X 32
or 32 X 40 with a stock horizontal frequency and width.

The 64-character line is a good choice for general use and text
editing, and results in very simple Scan programs and Cursor hard
ware. But, much of the software already written for microcomputer
use assumes an BO-character teletypewriter line. For compatibility,
we might like to use an BO-character line with reduced horizontal
operation, or else we can use two 40-character lines per teletype
writer line, staying within the normal horizontal range. Lines 80
characters long also let us put two separate 40-character lines side
by side for source and object listings, or anywhere else you want a

67

"before" and "after" presentation. Your tv mods tend to be heavier
for the BO-character line than the 64, and most often, the 64-
character format will give you more pleasing results.

Double Stuffing

In a double stuffed display, we put down the even rows of charac
ter dots on one field and the odd rows of character dots on the
second field. We do this by adding a few more words to the Scan
program. No hardware changes are needed. Add-on changes for
double stuffing are usually included in the interlace calculations
made during the first blank line. This way, one program can serve
for normal or double-stuffed Scans simply by changing a few words.

Fig. 2-11 shows an algorithm that gives us double stuffing. At the
start of an even field, we initialize our character generator to start
on the top blank row zero. We start scanning dots in the usual way,
except that every time we go to a new row of dots, we double the
amount usually added and skip one row. We move sequentially
through lines 0,2,4, and 6. The entire field continues in the usual
way, except for this skipping every second row of dots.

When we start the next odd field, we initialize our character
generator to work on the first dot line or line one of our dots. We
start scanning again, and again pick up every second row of dots.
But this time, it is dot lines I, 3, 5, and 7 that get put down.

Half of the character dots go down on the even field and hall
on the odd field. Characters are totally refreshed and appear whole
30 times a second.

If we only use interlace, we have been spending 18 lines to put
"EVEN" FIELD

IN JTIALIZE

EVEN F IELD

DOT LINES 0, 2, 4, 6,
OF CHARACTER

"ODD" F IELD

INITIALIZE

ODD FIELD

DOT L INES 1,3,5, 7
OF CHARACTER

Fig. 2-11. Double-•tuffing algorithm puta twice u many characten vertically
on the screen.

18

down a row of characters, arranged as two fields of 9 lines each.
Both fields were identical. Seven of these lines are for dots. One
line is the top blank line. The final line is the blank line needed
between characters to compute the next character address.

Now, if we use both interlace and double stuffing, we end up with
only 10 lines per character, spending 5 per field. Four of these
are dots, the fifth is the blank line between characters. So, double
stuffing gives us eighteen tenths of the number of characters verti
cally. This can almost double the number of characters on the
screen. Alternately, this can almost double the other-program
throughput during transport operation.

If you have extra blanking lines available, these can be borrowed
to actually double the number of character rows on the screen.
Thus you can usually go from 16 X 32 to 32 X 32; from 16 x 40 to
32 x 40; from 16 X 64 to 32 x 64; and from 12 x 80 to 24 x 80 char
acter displays. While 32 X 80 is possibl�, there is no throughput left
for transparency and that is a large number of characters to view
at once.

32 x 64 Interlaced Scan

A double-stuffed 32 x 64 Scan program is shown in Fig. 2-12.
Except for the new double stuffing calculations made during the
first blank Scan, everything else is much the same as our earlier
Interlaced-Scan program. We can see our blank Scans in 17d8
through 17El, and our character dot row sequencing in 1780 through
178d. But notice 178A, where we add twice as much to our character
dot counter so that we skip a dot row each time. New rows of charac
ters are picked up as before in 178F through 17Al.

Our first blank Scan also has some familiar features. We get an
interlace word at 17 A3 and use it to set or clear the carry bit,
steering us to an even or odd field. On the even field, we put down
a short number of blank Scans and an early vertical-sync pulse. On
the odd field, one extra blank Scan is loaded into the X register,
followed by a late vertical-sync pulse.

Your Turn:

Design a double-stuffed 32 x 32 Scan pro
gram running at normal horizontal fre
quency. Do not let the Scan program go
past 1 7E6, the maximum al lowable RAM
location in the KIM-1 scratchpad.

69

70

µP-6502 Start-JMP 1 7bF Displayed-0400-0bFF
System-KIM-1,2 End-Interrupt Pragram Spac-1780-17E2

I • I • 'if.iv
6
7
8
• • . etc.
d
E

Upper Address 1 788

I * I * I PH I Pl I vs I
/

-narmal program (no tvt)
-blank �can
-scan row 1
-scan row 2

-scan row 7
-vertical-sync pulse

VJ.

17dE - 1780 LDA A9 (64)
-- 1 782 STA 8d (88)

1785 NOP EA
1 786 JSR 20 00

1 789 ADC 69 20
178b CMP C9 EO
178d BCC 90 F3*
178F PHA 48

1790 LDA AD (87)
1793 ADC 69 3F
1795 STA 8d (87)
1 798 PLA 68

1 799 NOP EA
179A JSR 20 oc
179d ADC 69 80
179F CMP C9 6C

� 17A1 BCC 90 dF*
1 7A3 LDA A5 (EC)
1 7A5 ADC 69 7F

- 17A7 BCC 90 OF*

1 7A9 LDX A2 l d
17Ab STA 8d (EC)
17AE LDA A9 64
17b0 STA 8d (81)

17b3 LDA A9 6C
17b5 STA 8d (AO)

'- 1 7bB LDY AO 07
17bb - 1 7bA DEY 88

Lawer Address 1787

I v2 I v1 I H32 I H16 I Ha I HJ. I H2 I Hl I
Program length-99 wards +

1 word page zero (EC)

Initialize Upper Address
(17) Store Upper Address

Equalize 2
60 I I I Character Scans 0-7 I I I I

Increment Character Gen by 2
Is it Scan 8 or 9?
No, Do next character Scan
Save Upper Address

(17) Get lower Address
Increment l; Set C on V2 Overflow

(17) Restore l; save carry
Get Upper Word

Equalize 2
60 Ill Blank scans B, 9, Ill

Add Carry; Reset Upper Address
Was this the last line of characters?

No, Scan a new line of characters
Get Interlace Word
Set Carry if Odd Field Finished
Start Even Field if Carry Set

load Even #VB Scans - 2
(E0) Even V Sync + Replace Interlace word

Initialize Even Upper Address
(17) continued

Initialize Even Character End Compare
(17) continued

Equalize 41 µs
continued

Fig. 2-12. Program for a 16- or 32-llne,

17bA - 11bb BPL 1 0 Fd* continued r 11bd BCS b0 OF* Skip if Even Field
START ---- 1 7bF LOX A2 I E Load Odd #VB Scans - 2

17C1 STA 8d (EC) (E0) Odd V Sync + Replace I nterlace ward

17C4 LOA A9 74 Initialize Odd Upper Address
1 7C6 STA 8d (81) (17) continued
17C9 LOA A9 7C I nitialize Odd Character End Compare
1 7Cb STA 8d (AO) (17) continued

1 7CE JSR 20 3F 60 /// 1 st V Blonking Scan /////
1 7d1 LOA A9 00 Initialize Lower Address
1 7d3 STA 8d (87) (17) continued
1 7d6 BMI 30 00 Equalize 3 µ,s

f""
CLO dB Equalize 4 microseconds

1 7d9 NOP EA 'continued
1 7dA JSR 20 00 60 I I I Rest of V Blanking Scans ///
17dd DEX CA One Less Scan

1780 � 1 7dE BMI 30 AO* Start Character Scan
L 17E0 CLC 1 8 Clear Carry

17E1 BPL 1 0 F5* Repeat V Blonking Scan

NOTES:
TVT 6 5/8 must be connected and both the Scan 658-KS64 and Decode · 658-KDB

PROMS must be in circuit for program to run.
Bath 1 7Ab and _ l7C1 require that page 00 be enabled when page E0 is addressed.

This is done automatically in the KIM-1 decode circuitry.
Location OOEC on page zero is reserved as an interlace storage bit.
Step 1 786 goes to where the upper address stored in 1 788 and the lower address

stored in 1787 tells it to. Values in these slots continuously change throughout the
program.

Values in slots 1781 (Upper address start) and 1 7A0 (Character end compare) alter
nate with the field being scanned.

Horizontal Scan Frequency is 1 1 .494 kHz; Vertical frequency 60.0222 Hz. 87 µ,s per
line, 1 9 1 .5 lines per field; 2 fields per frame, 383 lines total.

TVT 6 5/8 switch must be in the "64" position.
() Denotes an absolute address that is program location sensitive.
• Denotes a relative branch that is program length sensitive.

Continued on n•d page.

64-character-per-lii'le, Interlaced TVT 6 5/8 Raster Scan.

71

Progrom may be used for 16 X 64 large characters or 32 X 64 small characters by
changing the following code:

Cade Function 16 X 64 32 X 64

1 78A dot row spacing 1 0 20
1 7AA even # VB Scans - 2 2d I d
17AF even start address 64
17b4 even end compare 68 6C

17C0 odd # VB Scans - 2 2 E I E
17C5 odd start address 64 74
17CA odd end compare 68 7C

FLOWCHART

11780 - 17891

NO 11786-178£)

1178F - 179 El

NO 1179FI
11711'!

START 117 A3 - 17A81

ODD EVEN

ODD F IELD EVEN FIELD
V SYNC & SETUP 117b8-17Cdl 117A9-17bCJ V SYNC & SETUP

117CE - l7ddl

YES NO

117d E - 17E21

Fig. 2·12 Continued. Program tor a 16- or 32-llne, 84-character-per-line, Inter
laced TVT 6 5/8 Raster Scan.

72

The new things we need to pick up double stu:ffiing are also put in this first blank Scan line sequence. On the odd fields, we initialize to dot row one in 17C4-17C8. We also set up an end-of-screen odd compare in 17C9 through 17Cd. The end-of-screen condition differs for even and odd fields and must be separately set up if the same number of characters are going to be put down on both fields. Similarly, we initialize to even dot row O in 17AE-17b2, and set up the end-of-screen even compare in 17b3-17b7. The table in Fig. 2-12 also shows us how to change just six memory locations to use this program as a 16 X 64 or a 32 X 64 display. A hundred words are needed for this Scan program, 99 in the usual 1780 stash and one on page zero for interlace storage.
Memory Repacking As Fig. 2-13 shows, our 32- and 647character lines completely fill our display memory. The end of one line butts up against the start

ONE MEMORY PAGE

32 CHARACTERS/L INE
JO<r.. PACK ING DENS ITV

40 CHARACTERS/LINE
62.� PACKING DENS ITY

64 CHARACTERS/LINE
100'- PACK ING DENS ITV

80 CHARACTERS/LINE
62.5'- PACK ING DENS ITV

(A) Normal Scan program and microinstruction uses memory Inefficiently dur
in!:l 40- or BO-character-per-line format.

00 JO 38 60 88 bO d8 00

faJ I I 2 I 3 I 4 I 5 I 6 I <IO CHARACTERS/LINE
93. 75 PACK ING DENS ITV

WASTED/
MEMORY

LOCAT ION
E]]O

60 bO 00 I 2 I 3 I 80 CHARACTERS/LINE
93, 75 PACK ING DENS ITV

ONE MEMORY PAGE

(B) Repacked Scan program and microinstruction greatly improves memory
packing density.

Fig. 2-13. Improving memory packing density on 40- and BO-character lines.

73

of the next line. Since all display memory locations are used, we
say we have a memory packing efficiency of 100%, the best we
can do.

But, if we use the Scan programs we have so far on a 40- or 80-
character line, it is a very different story. On a 40-character line, 24
out of every 64 words of display memory are wasted. On an 80-
character line, 48 words out of every 128 are wasted. This is a
packing density of only 62.5%.

Conceivably, we could use these wasted locations for other pro
grams. But they are disjointed and short. Worse yet, they are
dangerous, because a simple or poorly thought out Cursor-control
program could override these locations and wipe them out, par
ticularly on clear or scrolling. We could also simply ignore the

Chart 2-7. A 6502 Repacked Scan Microinstruction Coding
for a Page of Six Scans of 40 Characters Each

xxoo

xxoa

XX10
XX18

XX20
XX28
XX30
XX38

XX40
XX48
xxso

XX58

XX60
XX68
XX70
XX78

xxao

XX88
XX90
XX98

XXAO
XXA8
XXbO
XXb8

xxco

xxca

XXdO
XXd8

XXEO
XXE8
XXFO
XXF8

74

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO 60 60
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO 60 60

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO 60 80
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO 60 60
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO 60 80
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO 60 60

Note:
"XX" is any high address
that activates the Scan
instruction decoder.

AO - LDY
60 - RTS

locations. On a 24 X 80 display, well over a thousand locations would go unused. One way to repack memory is shown in Fig. 2-13B. We put six lines of 40 characters or three lines of 80 characters per computer page of 256 locations. We make each page the same to keep the scanning and cursor activities reasonable and straightforward. We still waste 16 locations out of 256, but this gives us a memory packing of almost 94%. Even in the long 24 X 80 display, only 128 locations are wasted, a 10: 1 improvement. Memory repacking is not free. We have to change the Scan microinstruction coding, and no longer can use the PROM that is coded in Chart 2-4. The correct coding for six Scans of 40 characters per
Chart 2-8. A 6502 Repacked Scan Microinstruction Coding

for a Page of Three Scans of 80 Characters Each

xxoo
xxos
XX1O
XX18

XX2O
XX28
XX3O
XX38
XX4O
XX48
XX5O
XX58

XX60
XX68
XX7O
XX78

xxso
XX88
XX90
XX98

XXAO
XXAS
XXbO
XXb8

xxco
xxcs
XXdO
XXd8

XXEO
XXES
XXFO
XXFS

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO 60 60

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO 60 60
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO

AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO AO AO
AO AO AO AO AO AO 60 60

Note:
"XX" is any high address
that activates the Scan
instruction decoder.

AO - LDY
60 - RTS

75

page appears in Chart 2-7, while the coding for three Scans of 80 characters per page is shown in Chart 2-8. At first glance, it would look like we now need an eight input PROM for our Scan microinstruction generation. Once again, with a 6502 we can ignore the least significant address line AO and do everything "by twos." This helps a little. Now, if you go through the logic you will find that we can use a simple AND of address lines Al, A2, and A3 to form a precoded input for our PROM. So, we are once again down to a five input 32 X 8 PROM. The new gate seems to be needed for the 40-line Scans. But, on the BO-line Scans, if we are willing not to display characters 75 through 80 on each line, we can simply ignore Al and A2 as well, routing A3 directly to the PROM. This leaves things as simple as they were before, except for the use of a different PROM and different socket address interconnections. When we do this, we retain the 80-line Teletype software compatibility, and also pick up a magic number that hits a stable hum bar with a shorter horizontal line and a stock crystal. So, this strange sounding compromise may turn out to be a useful simplification. Repacking will also add complications to the Cursor-control program, particularly on the carriage return and backspace. Your Scan program also gets lengthened by seven words. If you decide you want the 40- or BO-character lines instead of the simpler 64- and 32-length binary counterparts, the price of repacking memory usually pays for itself, even with the complications. The Scan program needs one seven-word addition for repacking. The addition is needed to bridge the wasted locations every time the page overflows. Normally, on a 40-character line, we add 4010 to each starting location to get to the next starting location for a new Scan. Except, when we go from line 6 to line 7 (the first line on the next page) , we have to add 4010 plus 1610 to get across the unused locations. Very fortunately, the carry bit sets every time we overHow the page, so we can use this as a Hag to tell us to add an extra sixteen. Our Scan program repacking correction goes like this :
* On a 40-character Scan line, add 4010 to get to the start of the next character line. If the page overHows, add 1610 more.
* On an 80-character Scan line, add 8010 to get to the start of the next character line. If the page overflows, add 1610 more.

24 x 80 Scan Program Memory repacking, double stuffing, and interlace are combined in the 24 x 80 Scan program of Fig. 2-14. By now, your program areas of blank Scans (17 db-l 7E2) , active-character Scans (1780-
78

178C) , next character row computation (178E-l 7 A4) , and first
blank-line interlace and double-stuffing setup (17A6-17d9) should
be obvious to you.

Our bridging, needed for the memory repacking, is done in 1794.
Should there be no page overflow, the carry remains clear, and the
program goes from 1794 to l 7E4 to 1799 and takes 6 µs to do so.
Should you have a page overflow, we know we have to add an
extra 1610 to get to the next lower starting address, besides the usual
change of upper address. So, if carry is set, we go from 1794 to the
"add sixteen" of 1796 and the carry restoration of 1798, again taking
6 µs.

This program takes a special PROM coding 658-KSBO similar
to Chart 2-8, and special connections to that PROM. As Fig. 2-14
shows, you have several ways you can ,use the Scan program.

If you are willing to display only the first 76 characters on each
BO-character line, you end up with a near-stationary hum bar and no
extra gating. If you want the full 80 characters, you add an extra
AND gate. The full BO-character display has a rather fast hum bar
of 5.5 seconds. You can stop this by speeding up your clock to
1.003 MHz, either by pulling the old crystal or changing to a new
one.

Either setup works compatibly with 80 line existing tty software.
Locations are changed as shown to get the right operation for either
mode.

You can change back to a 12 X 80 display by making the six word
changes as noted in the program.

Your Turn:

Design a 32 x 40 double stuffed, inter
laced, and memory repacked TVT 6 5/8
Scan running at a normal horizontal fre
quency.

Note that custom Cursor programs will be needed for memory
repacked Scans.

GRAPHICS SCAN PROGRAMS

Graphics displays are usually a lot simpler to design than alpha
numeric ones. We do not have the hassles of a character generator
and repeat bips for the character dot rows. We actually display

77

µP-6502 · Start-JMP 17C2 Displayed-041 0-0bFF
System-KIM-1,2 End-Interrupt Pragram Space-1780-17E5

Program length-1 03 words +
1 word page zero (EC)

17d f --. 1 780 LOA A9 6" I nitialize Upper Address
1782 STA 8d (87) (17) Store Upper Address
1785 JSR 20 1 0 6" I I I Character Scans G-7 I I I
1788 ADC 69 20 Increment Character Gen by 2 rows

1 78A CMP C9 EO Is it Scan 8 or 9?
1 78C BCC 90 F4* No, do next character Scan
178E PHA "8 Save Upper Address
178F LOA Ad (86) (17) Get Lower Address

1 792 ADC 69 4F Increment l: Set Carry on page overflow

fT 1 794 BCC 90 4E* Is repacking bridge needed?
1 796 ADC 69 OF Yes, bridge wasted locations

17U 1798 SEC 38 Restore Carry

Ll.. 1 799 STA 8d (86) (17) Restore l; Save Carry

l '�
PLA 68 Get Upper Address

179d JSR 20 CJ 60 Ill Blank Scans 8, 9 Ill
17AO ADC 69 80 Add Carry; Reset Upper Address
17A2 CMP C9 6C Was this the last line of characters?
1 7A4 BCC 90 dC* No, scan a new line of characters

1 7A6 LOA AS (EC) Get Interlace Word ILCE
17A8 ADC 69 7F Set Carry if odd field finished
1 7AA BCC 90 OF* Start Even Field if carry set
17AC LOX A2 35 load Even # VB Scans - 2

17AE STA 8d (EC) (EO) Even V Sync + Replace ILCE
17b1 LOA A9 64 Initialize Even Upper Address
1 7b3 STA 8d (81) (17) continued
17b6 LOA A9 6C Initialize Even End Compare

1 768 STA 8d (A3) (17) continued
17bb LOY AO 07 Equalize 41 µs
17bd DEY 88 continued
17bE BPL 10 Fd* continued

1 7CO BCS bO OF* Skip if Even Field
START - 17C2 LOX A2 36 load Odd # VB Scans - 2

17C4 STA 8d (EC) EO Odd V Sync + Replace ILCE
1 7C7 LOA A9 74 Initialize Odd Upper Address

17C9 STA 8d (81) (1 7) continued
17CC LOA A9 7C Initialize Odd end compare
17CE STA 8d (Al) (17) continued
1 7d 1 JSR 20 FO 60 I I I 1st V Blanking Scan /II

Fig. 2-14. Program tor a 12- or 24-line, BO-character-per-line,

78

17d4 LOA A9 1 0 Initialize Lower Address
1 7d6 STA 8d (86) (1 7) continued
1 7d9 BNE d0 00 Equalize 3 µs
17db JSR 20 OE 60 / / / Rest of V Blanking Scans ///

r
l7de DEX CA One Less Scan

1780 -+--'- 1 7df BMI 30 9F* Start Character Scans
Ll 7E1 CLC 1 8 I nitialize Carry

1 7947 17E2 BPL 1 0 F7* Repeat Blank Scan
1799 -17E4 ace 90 b3* Bypass when bridging is not needed

NOTES1
TVT 6 5/8 must be connected and both the . Scan 658-KSBO and Decode 658-KD8

PROMS must be in circuit for program to run.
Both 17AE and 1 7C4 require that pc,ge 00 be enabled when page E0 is addressed.

This is done automatically in the KIM-1 deco.de circuitry.
Location OOEC on page zero is reserved as an inter/ace storage bit.
Step 1785 goes to where the upper address stored in 1787 and the lower address

stored in 1786 tells it to. Values in these slots continuously change throughout the
program.

Values in slots 1781 (Upper Address start) and 17A3 (Character end compare) alter-
nate with the field being scanned.

TVT 6 5/ 8 switch must be in tl,e "64" position.
() Denotes an absolute address that is program location sensitive.
* Denotes a relative branch that is program length sensitive.
One of the two following operation modes should be picked,

MODE l

CHARACTERS 75-80
NEVER D ISPLAYED

PROM CONNECTIONS,

A7 ---<,.__.c,---1,-7
A6 -------1 658 • KSIIO AS -----1
A4 ---
A3 ---
A2 -- NC
Al --NC
AO -- NC

175. 5 L INE F IELD
95 µ SEC H LINE
10. 526 H RATE

48- SECOND HUM BAR

MODE I I

CHARACTERS ALL
D ISPLAYED

PROM CONNECTIONS,

A7 -o.-o----4
A6 ------4
AS .658 · KS90
M ------4

��
Al J..:::/"'
AO -- NC ,__ __ _.

165.5 LIIIE FIELD
101 µSEC H LINE
9901 H RATE
5-SECOND HUM BAR

STATIONARY HUM BAR
WITH 1.003-MHz CLOCK

Continued on ned page.

Interlaced, double-sMled, memory repacked TYT 6 5/8 Raster Scan.

79

Code should be changed as follows:

Location
1789
17Ad
1 7b7
17C3

17C8
1 7Cd

12 X 80 12 X 80 24 X 80
Function MODE I MODE II MODE

dot spacing 1 0 1 0 20
even VB scans -2 41 C7 35
even end compare 68 68 6C
odd VB scans -2 42 ca 36

odd start address 64 64 74
odd end compare 68 68 7C

SCAN MICROINSTRUCTION ADDRESSES

UPPER ADDIESS LOWER ADDRESS
111861 111sn

I · I . I 0 1 I 1 ° 1 ° I I_ I _...._I ______,I
DECOMO PER
CHART Z-1

PAGES OIi THRU 06
OF DISPLAY MEMORY

(SHOWN AS COl:U

mc21
START

ODO

ODD FIELD

SET UP + V SYNC

(11bb- l7dAJ

FLOW CHART

NO

YES NO

THREE SO-CHARACTER
ROWS PER LOWER PAGE

{SHOWN AS MAP)

EVEN FIB.O

SETUP •V SYNC

117911 - 17t!: l7Edl

U7AC • HCOI

(17db - 171()

m<F - 17E2l

I

24 X 80
MODE II

20
26
6C
27

74
7C

Fig. 2·14 Continued. Program for a 12- or 24-llne, 8Cl-character-per-llne, Inter
laced, double-stuffed, memory repacked 1VT 8 5/8 Raster Scan.

80

the code stored in memory rather than converting it to something
else. All the graphics displays we will be showing you run at a
normal horizontal rate. Cursors, double stuffing, and memory re
packing are no longer needed . We can still use the same Scan
(658-KS64) and Decode (658-KDB) PROMS we used for most of
the alphanumeric Scans as well. A plug-in module on our TVT 6%
converts it for graphics-output modes.

One thing our graphics displays will need, though, is plenty of
available RAM for your display memory. The 512 locations on pages
02 and 03 of a bare bones KIM is only enough for a 64 X 64 black
and white or a 64 x 48 color display. This is big enough to be inter
esting and a good way to learn graphics. It may also be handy for
simple games and color art displays. But, for many applications,
we will want more memory and lots of it.

The minimum workable graphics siz!c' is somewhere around 128 X
128 elements, which needs 2K of display memory. You can do a lot
more with a high resolution 2.56 x 256 display, but this takes a full
BK of memory provided with the usual upstream tap. Super displays
up to 400 x 512 or so are possible, but you will have to be a real
graphics freak to provide the 25K or so of RAM you will need;
rapid changes of this much information will also be rather tricky
to accomplish.

Two medium resolution graphics formats that will use the same
Scan program are shown in Fig. 2-15. We call the word stored
in display memory and its presentation on the display a chunk. For
our 128 X 128 format, we use a "four over four" chunk that puts
down four dots or undots on one Scan and then another four directly
below on the next Scan line. The four-dots-per-microsecond rate
gives us very modest bandwidth needs (about half of what we
needed for alphanumerics) . We also have the option of double
height elements stored in only a single memory location. This is
especially handy for a moving ball or puck in a game display as
only a single calculation and storage is needed.

The three-over-three 128 X 96 color format gives us about the
same resolution. The video (luminance) bandwidth is now even
lower since we only put down three dots or undots per microsecond.
Only six bits per word are used for dots. The two remaining display
memory bits are used for one-of-four color information. The re
duced rate is picked up by changing a width control on the TVT
63/s. The entire chunk lights to one selected color, but the individual
bits have the option of being lit or black. This nicely resolves the
dilemma of the color (chrominance) bandwidth of a tv set being
much lower than the video (luminance) bandwidth. This way, we
get a sharp display with still a reasonable number of color changes
per horizontal line.

81

�
I l]SEC ,..........__

0400 0401 0402
0420 0421 0422

• • •
64 CHUNKS • . •
1128 DOTS! . . •

.
• .

32 CHUNKS
(128 DOTS!

.
•
•

Olllf

Oll3F . .
• . . •

(A) "Four over four" 128 x 128 black and white.

64 CHUNKS
(128 DOTS!

I µSEC
,..--..,

32 CHUNKS
196 DOTSI

2048 CHUNKS
116,384 DOTS!

TOTAL

2048 CHUNKS
112,228 DOTSI

TOTAL

(B) "Three over three" 1 28 x 96 color. Each chunk may be one of four colors.

Fig. 2-15. Medium resolution graphics formats.

128 x 128 Format The Scan program for either the 128 X 128 or 128 X 96 color format is shown in Fig. 2-16. Our magic numbers use a standard horizontal frequency and interlace, and are the same as we used in the utility 16 X 32 alphanumeric Scan of Fig. 2-10. In fact, if you want to, you can use a variation of double stuffing in which you put the graphics down on one field and the alphanumerics (scores, annotation, time, etc) on a second field, simply by going to a custom module. on the TVT 63/s. Everything about the first blank line and interlace setup, along with the remaining blank Scans, remains as before. Our live Scans, of course, are substantially different. We call a pass that is putting down the upper chunk row of dots an "A" Scan, and the pass that is working on the lower chunk row of dots a "B" Scan. We set up a correct starting address. Then we do an A Scan. Then we change
82

to a B Scan. After a B Scan, we change to a new initial chunk
address and on to the next A Scan, repeating the process.

There is not quite enough time available between one B Scan
and the next A Scan to do everything we would like to, so we use
pipelining in which we borrow some of the extra time available
in going from an A Scan to a B Scan to help out. When we go from
A to B, we tell the TVT 6% and its graphics module "C" to switch
to its B output side. We also make a test for the end of the display
screen, getting this detail out of the critical B to A timing loop.

We also calculate the next upper A address as pipelining to save
us time. But we do not restore this calculation; we save it in the
accumulator till the B Scan is done. It is there, ready and waiting,
the instant the B to A Scan loop calculations need it.

The same JSR instruction is used to do either an A or a B Scan.
This saves us from having to compute. and store two separate sets
of absolute addresses. The carry bit is used as a flag to tell us
whether we are doing an A Scan or a B Scan. The carry is set during
an A Scan and is cleared during a B Scan.

The TVT 6% is hardware programmed by module "C" to alter
nately be able to pick up four bit A and B Scans. For 128 X 128
black and white use, the width control is set to four dots per micro
second; for 128 X 96 color use, you set it to three dots per micro
second. The format of the data stored in the display memory is
also changed to pick up the color information.

Your Turn:

Design a TVT 6 5/8 64 x 64 black ,and
white and a 64 x 48 color Soan program
using pages 02 and 03 of a KIM as a dis
p·lay memory. Change only the Scan pro
gram and make no adjustments to do this.

256 x 256 Format

The 256 x 256 high-resolution format of Fig. 2-17 puts down
eight dots per microsecond, all in sequence on a single horizontal
line. A total of 32 chunks are used per line, giving us 256 dots
horizontally. A new set of chunks is needed for each line.

1nis program needs an 8K memory located at 0400 through 05FF,
with a continuous upstream tap. You can do this with a KIM-3 or
another 8K memory. You can also easily rewrite the program to

13

use less memory, but ending with fewer lines. For instance, a 128 X 256 format can be done with 4K of memory. There is a sneaky and sticky detail involved in this 256 X 256 format. Your memory address space and decode space overlap.
During the live portions of the Scan, you have to be able to call
both the proper memory locations AND call for a live Scan. Fortunately, your 658-KDB instruction decoder is redundantly decoded during a high-resolution mode, with codes 1000, 1001, 1100 and 1101 all calling a live Scan. Note that code 1100 simultaneously calls memory page 4000 (as far as the upstream tap) and that code 1101 simultaneously calls page 5000. If you move your memory or shorten it, be sure you are still able to call a live graphics Scan for all needed memory addresses. This overlap usually happens only when you have more than 4K of display memory in use. You will find the 256 x 256 Scan program in Fig. 2-18. Since this program is relatively short, we have thrown in an optional

µ.P-6502
System-KIM-1,2

Start-JMP 17A1
End-Interrupt

Upper Address 178F

Displayed-0400-0bFF
Program Space-1780-17d2

Lower Addreu 178E

I * I * I * I * I p I V32 I Vl6 I VB I . I v4 j v2 j v1 I H16 I He I H4 I H2 j HI I:

14

'--v------"
0-5,F -normal program (no tvt)
6,7,A,b -blank Scan
8,9 -A Scan (Upper chunk half)
c,d -8 Scan (Lawer chunk half)
E -V sync only

r� ADC 69 I F
STA 8d (BE)

1 785 TXA BA
1 786 ADC 69 40

17dl
l

l788 STA 8d (BF)
1 78b NOP EA
1 78C NOP EA

� 1 7� JSR 20 00

1790 BCS bO EE*
1792 CMP C9 cc

17Al

L
™ BCS b0 Ob*

1796 ADC 69 co

1 798 STA 8d (BF)
179b TAX AA
179C LDA Ad (8E)
179F BCS bO EC*

(17)

(17)

84

(17}

(17)

Program Length-83 words
+ I word page zero (EC)

Increment Lower Address
Restore Lower Addreu, Save Carry
Get Upper Word
Add C; Reset to A; Clear Carry

Store Upper Word
Equalize 4 µ.s

continued
/// Graphics Scan / // /

Set up B Scan if carry set
Test for last live Scan
Go to V sync if last Scan done
Switch to B Scan

Store Upper word
Save Upper word
Get Lower Ward
Do lower or B Scan

Fig. 2-16. A 128 >< 127 Interlaced graphics Scan program for

START _____J._ 17A1
1 7A3
17A5
1 7A7

1 7A9
1 7AC
1 7AE
1 7AF

c·
17b3
17b5
17b8

17bb
17bC

17Cd - 17bd
17bE

1 7C0
17C3
1 7C5
1 7C8

17Cb
1 7CC

17db - 1 7Cd
17CF

1 7d0
1788 - 17d1

NOTES:

LOA AS
ADC 69
ace 90
LOX A2

STA Bd
LOY AO
DEY 88
BPL 1 0

BCS b0
LOX A2
STA 8d
JSR 20

PHA 48
PLA 68
CLO dB
LOA A9

STA Bd
LOA A9
STA 8d
JSR 20

DEX CA
CLC 1 8
BNE d0
NOP EA

NOP EA
BEQ F0

(EC) Get interlace word I LCE
7F Set carry if odd field finished
05* Start even field if carry set
B6

(EC) E0 Even field V sync & replace ILCE
04 Equalize 26 µ,s

continued
Fd* continued

05* Jump If odd field
87 load odd # VB Scans - 2

(EC) EO Odd field V sync + Replace ILCE
IC 60 1111 1st V Blanking Scan 1111

Equalize 7 µ,s
continued

Equalize 2 µ,s
00 Initialize lower address

(BE) (17) continued
C4 Initialize Upper address

(BF) (17) continued
00 60 I I I Remaining Blank Scans I I I I

One less Scan
Clear Carry I nitialize

EE* Repeat Blank Scan
Equalize 4 µ,s

contin�ed
b5* Start live graphics Scans

TVT 6 518 must be connected and both the Scan PROM 658-KS64 and the Decode
PROM 658-KDB must be in the circuit for the program to run.

Both 17A7 and 1 7b5 require that page 00 be enabled when page CO is addressed.
This is done automatically in the KIM-1 decode circuitry.

Location OOEC on page zero is reserved as an infer/ace storage bit.
Step 1 78d goes to where the upper address stored in 1 7BF and the lower address

stored in 17BE tells it to. These values continuously change throughout the program.
An upper or "A" graphics scan is done with the carry set during step 178d; a lower

or "B" graphics scan is done with the carry cleared during 1 78d.
Program Horizontal frequency is 1 5,873.015 kHz; vertical is 60.01 1 4 Hz. 88.5-second

hum bar; 63 µ,s per line, 264.5 lines per field. 2 fields per frame; 529 lines total.
TVT 6 518 width control must be set fo deliver 4 dots per microsecond for BIW use

and 3 dots per microsecond for color use. Switches should be set to "32"; "off";
"slow"; "+". Use module "C."
) Denotes an absolute location that is program location sensitive.

* Denotes a relative branch that is program length sensitive.

Continued on neat page.

"four over four" black and while or "three over three" color TYT-6 5/8.

85

FLOW CHART

(178d)

17Al

WAS B

(1790)
(17921 (1780 - 17871

(1796 - 179Fl (1787 - 178Cl

EVEN

(17Al - 17A51
EVEN FIELD

117A7 - 17b01
V S VNC + SETUP

(17AC - l7bn

117b8 - 17d2)

NO YES

(17dll

Fig. 2-16 ConUnued. A 128 X 128 Interlaced graphics Scan program for
"four over four" black and white or "three over three" color TVT-6 5/8.

software-controlled vertical position. You might find this useful for centering if you chose a shorter version (fewer lines; less memory) of this high-resolution display. It also has some animation possibilities. The time to compute a new row address after a live Scan is once again critical. This time, there is no place to pipeline anything from. But, we can get out of this bind by noting that we never have to change the upper address by more than one count at a time.
88

EIGHT D IS PLAY DOTS �
PER CHUNK 2000

2010

•
•
•

3FEO
3fFO

lµSEC -------
2001
2011 .
•
•

3FE1
3fFl

•
•
•

32 CHUNKS
(256 DOTS)

201F
203f .
•
•

Fig. 2-17. High-resolution 256 x 256 graphics format

8192 CHUNKS
(65.536 DOTS)

This is unlike all the earlier Scan programs where we used the upper
address also to pick a row of dots or do an A/B chunk select for us.
We can now leave the upper address where it is normally stashed
in the JSR instruction and use the powerful INC (increment mem
ory) command. This lets us keep the lower memory address in the
accumulator for immediate use, restoring it immediately before each
live Scan. •

After each live Scan, we increment the lower address. If no
carry is produced, we go on to another live Scan, wheel spinning
enough to make up the needed time. If a carry is produced, we test
for end of screen, then increment the upper address in place, and
go on to another live Scan.

Your Turn:

* Show how this program can be used as
a 64 x 256 display using RAM starting
at 0400. Demonstrate the use of soft
ware position and animation. * Design a 256 x 256 graphics Scan that
uses double stuffing to put down half
the dots on one field and half on the
second. This wiH maximize the avai l
able blank Scan time which, in turn, can
be used to improve tr,ansparency and
increase throughput.

87

But, how on earth can we tell the end of the screen if we cannot test the upper address? A different approach is clearly needed. Before we get into the live Scans, but after the blank Scans are finished, we load the X register with a number equal to one eighth of the desired number of live Scans. Every eight live Scans, a carry is produced to signal a change of upper address, since there are eight 32-chunk lines per 256 word page. We decrement X every eight live Scans, and when X goes negative, we have reached the end of the live Scan. Our software-position control throws in some extra blank Scans after the live ones and before the vertical-sync pulse. For vertical
µP-6502
System---:KIM-1,3

Start-JMP 1 7A7 Displayed-4000-5FFF
Program Space-1780-1 7dA End-Interrupt

(This bit used redundantly)
pper Address 1 78A Lower Address 1789

86

0-5,F -normal program (no tvt)
6,7,AJ, -blank Scan
8,9,Cd -active Scan
E -V Sync only

r- 1 780 PHA 48

I 1 781 PLA 68
I

1 782 ICC ,0
1783 SEC 38

r

1785 STA 8d
1 788 JSR 20
1 78b ADC 69
178d BCC 90

I 1 78F DEX CA

;�:� ��� :�
1 795 BNE d0

1797 LOX A2
17A5 - 1799 PHA 48

1 79A PLA 68
1 79b BCS b0

1 79d JSR 20
1 7A0 DEX CA

17A7 - 1 7Al BEQ F0
1 7A3 NOP EA

00

(89)
00
l f
F l *

05*
(BA)
EE*

01

00

00

04*

(17)
20

(17)

Program Length-90 words
+ 1 word page zero (EC)

Equalize 7 µs
continued

Equalize 3 µs
Set Corry

Store Lower word
I I I I I Graphics live Scan I I I I
Increment Lower Address to next line
Does upper address need incremented?

Yes, but decrement line counter first
Go to blank Seo ns if end of screen
Increment upper word
Repeat graphics liveScon

Load presync blank Scans
Equalize 1 0

continued
continued

60 I I I Presync blank Scans I I I I
One less presync Scan
Presync Scans done?
Equalize 4 µs

Fig. 2-18. A 256 x 256 Interlaced graphics

1799 --......_ 1 7A4
17AJ � l 7A5
START --+- 1 7A7

1 7A9

["" 1 7Ad
1 7Af
17b2

[17b4
17b5

17bE - 1 7b7
1 7b9

17bb
17b7 -- 17bE

17C1
1 7C2

- 1 7C3
1 7C4
17C6
17C9

1 7Cb
17CE
1 7d1
1 7d2

'- 17d3
17cj5
1 7d7

1782 - 17dB

NOTES:

NOP EA
BNE d0
LOA AS
ADC 69

BCS bO
LOX A2
STA 8d
LOY AO

DEY 88
BPL 1 0
BCC 90
LOX A2

STA Bd
JSR 20
PHA 48
PLA 68

CLO dB
LOA A9
STA Bd
LOA A9

STA 8d
JSR 20
DEX CA
SEC 38

BPL 1 0
LOX A2
NOP EA
BCS b0

continued
F2* Repeat presync blank Scan

(EC) Get Interlace Word
7F Set Carry if odd 'field finished

05* Jump if even field
05 Load Odd # VB Scans - 3

(EC) (dO) Odd Field V Sync + restore ILCE
04 Equalize 26 µs

continued
Fd* continued
05* Jump if odd field

06 Load Even # VB Scans -3

(EC) d0 Even Field V Sync + ILCE Restore
I A 60 //// First Scan after V Sync ////

Equalize 7 µs
continued

Equalize 2 microseconds
co Initialize Upper Address

(BA) (17) continued
00 Initialize Lower Address

(89) (17) continued
00 60 ///// Remaining Blank Scans ////

One less Scan
Initialize Carry

EE* Do another blank Scan
20 Load 1/Bth # of adive Scans

Equalize 2
AB* Start Adive Scans

TVT 6 5/B must be connected and both the Scan PROM 658-KS64 and the Decode
PROM 658-KDB must be in the circuit for the program to run.

Both 17AF and 1 7bb require that page 00 be enabled when page d0 is addressed.
This is done automatically in the KIM-1 decode circuitry.

Location OOEC on page zero is reserved as on inter/ace storage bit.
Step 1 788 goes to where the upper address stored in 178A and the lower address

stored in 178E tells it to. These values continuously change throughout the program.
The V Sync pulse con be delayed under software control by adding to 1 798 the some

number of scan lines that is removed from 17bl and 17bA.
TVT 6 5/8 width control m ust be set to deliver 8 dots per microsecond. Set switches to

"32"; "off"; "fast"; "+." Use graphics module "8."
Program horizontal frequency is 1 5,873.015 Hz; vertical 60.01 1 4 Hz. 88.5-second hum

bar. 63 µs per line, 264.5 lines per field 2 fields per frame, 529 lines total.
) denotes an absolute location that is program location sensitive.

* denotes a relative branch that is program length sensitive.

Conllnulld on nHI page.

Scan program tor TYT 6 5/8,

89

90

FLOW,CHART

OPTIONAL SOFTWARE
POSIT ION CONTROL

START

(17A71

(1760 - 1765)

YES

INCREMENT
UPPER

ADDRESS

NO

(1780-1788)

(178b)

(178d)

(178F - 17901

DO
PRE-SYNC

.._ ____ ___, (1792)

BLANC SCANS (1797 - 17A5l

EVEN

EVEN F IELD
V SYNC + SETUP

NO

ODD F I ELD
V SYNC + SETUP

(17C3 - 17d21

(17d3)

(1762 - 17bb)

Fig. 2-18 Continued. A 256 >< 256 interlaced graphics Scan program for
TVT 6 5/8.

motion on shorter displays, you remove counts from the usual even
(l 7bl) and odd (l 7bA) blank Scan loadings and add these counts
to the new presync blank Scan (1798) . Since l 7bl and l 7bA are
used on alternate fields, and 1798 is used on all fields, you move
the same number of lines per field. Thus, to move the screen up by
four lines, remove four from both l 7bl and l 7bA, and add four
to 1798.

This software position control is also one key to a "gentle" or
crawling Cursor scrolling on an alphanumeric display. How would
you do this?

CURSOR SOFTWARE

Your Cursor softioare decides when and how characters are to be
put on or taken off the screen. Cursor software also gives you the
fancy editing motions needed to move around the screen without
making changes, to erase portions of the screen, to scroll up, and
so on. Cursor software is often a different program than your Scan
Program. The Scan Program causes characters already stored in
memory to appear on the screen; the Cursor software puts the
characters into memory as needed.

Our cheap video displays give us access to a very powerful
software-controlled Cursor system. This lets us get anything onto
or off of the display memory at any time for any reason at zero
hardware cost and extreme flexibility. This is far more powerful
and more versatile than traditional terminals with fixed-hardware
Cursors, particularly when you want to get one or two values back
off the screen or display a real time clock.

Since your display memory is in every way ordinary compared to
any other RAM in your computer, any old software you want can
work as a Cursor. You can even build a cursor with Extended BASIC
or some other higher-level language if you have the Peek and Poke
ability to change machine locations.

Cursor Guidelines
Since your Cursor is ordinary software, there are various ways to

do the job. Anything that works can be used. Your obvious goals
should be to get by with a reasonably short program and to limit
the total time needed for any action to times that are short enough
that we do not get into transparency problems.

Here are some hints and guidelines that will help you simplify
your Cursor designs:

1. Always test for a valid Cursor location.
If the memory locations that hold your "next character" loca-

91

92

tion ever get c,ff the display memory pages, you are in deep
trouble. Your next character entry will plow up some other pro
gram rather than get entered. Always test for a valid location
first. If you are in the display memory space, go ahead with
your entry. If you are out of range, home the Cursor immedi
ately!

2. Erase, change, then replace the Cursor.
The lower seven bits of a display memory word are usually
used to store an ASCII character. The eighth most-significant
bit is used as a Cursor. If this most-significant bit is a one,
the Cursor is optionally displayed. If it is a zero, it is not.
Rather than try to figure out what happens to your Cursor
for each and every possible screen motion, always erase the
old Cursor first. Then make any changes you want. Then find
out where the new Cursor belongs. Finally, restore the Cursor
at the new location.

3. Use Subroutines.
If several Cursor motions need the same operation, combine
these in subroutine code. Three useful subroutines are Enter
Character and Increment; Enter Spaces; and Home Cursor. Enter Character and Increment is obviously used to enter
characters and move on to the next location. It is also used
to enter spaces during a screen erase, scrolling, or an erase
to end of paragraph. By jumping into the middle of this sub
routine, you can increment only. This is useful during Cursor
right commands and carriage return. A carriage return can be
done by moving to the extreme right-hand character of the
old line and then incrementing one to get to the start of the
next line. Enter Spaces is useful for clearing, erasing to end of line,
erasing to end of screen, and to erase the bottom line after
scrolling. It may be used to call a nested Enter and Increment
subroutine. Home Cursor is used by itself to move the Cursor to the upper
left. It is also used at the start and finish of an Erase Screen
command. You also need it if you are in a wraparound mode
when the screen overflows, and it is used to get an out-of
range Cursor back onto the screen.
One time you do NOT want to use a subroutine is if time gets
out of hand for long, repetitive programs. A transparent scrol
ling Cursor is one design where nested subroutines should be
avoided.

4. Use memory remapping from scrolling.
A scrolling display moves up one from the bottom each time a
bottom line is completed. In cheap video systems, you can do
a powerful scrolling by reading a memory location and then
storing it on the next line up, repeating the process for the
entire screen.

Fig. 2-19 shows a simplified flowchart for a typical Cursor. We can
enter our Scan program by way of an interrupt, any time a key is
pressed. We then test for a valid Cursor location. If we are some
where legal on the screen, we erase the old Cursor. We then decode
the keypressed entry. If it is a character, we go ahead and enter
it. If it is a machine command, we decode this command to see if
it applies to us. We then carry out any valid command. Typical
machine commands include Clear (CAN) , Carriage Return (CR) ,
Backspace (BS), and so on.

After the character is entered or removed or after your machine
instruction is carried out, we find the new Cursor location and write
the Cursor back into it. You then return from the interrupt and
resume scanning.

We also have the option of including the Cursor in the main Scan
program. This eliminates any need for interruptions. If carefully

IRQ

RTI

Fig. 2-19. Slmpllfled flowchart of a typlcal Curaor
control program.

93

designed, this also gives you complete transparency. You can also
do things like scan a keyboard at the same time and eliminate the
need for a hardware encoder. We call this an Integrated Scan pro
gram. Integrated programs often take more code, are harder to write,
and harder to change. But they are probably what you will eventu
ally want to get.

For now, we will stick with the interrupt-driven Cursor. You can
pick up the fancier versions once you have your basics up and
properly working. Details on this will appear in the last chapter.

A Full-Performance Scrolling Cursor
Fig. 2-20 gives a 6502 coded program for a full-performance

scrolling Cursor. It is useful for 16 X 32, 16 X 64, and 32 X 64 alpha
numeric display formats. It gives you a choice of scrolling or wrap
around Cursor by changing a single software word. You can similarly
protect or not protect the screen as well as display or not display
your Cursor.

As Fig. 2-20 shows, you enter your ASCII character on the paral
lel A inputs on your KIM. An interrupt driven from the keypressed
output causes character entry or Cursor motions. This IRQ signal
should be a negative-going pulse that lasts 10 J.LS. The Cursor pro
gram is located on KIM page 01 below the stack.

In operation, any key pressed causes an interrupt which stops
the scanning and jumps us to location 0100. The Cursor is tested to
make sure it is on a legal display memory page location, and then
the old Cursor is erased. Refer to the flowchart in Fig. 2-20 for
actual locations of all these operations. If the Cursor location is
legal, a new character is picked up from the A parallel interface.
If it is a character, it is directly entered. If it is a control command,
it is decoded. If it is a valid command, that command is acted on.
If not, the command gets entered as a screen character.

After the command or character is completed, the Cursor is re
stored to its new locations and the interrupt is halted with a RTI
command that jumps us back to the main Scan program.

94

Here is how the individual commands work:

* Enter a Character-Character is stored in a memory location
using Cursor values in OOEd (low) and OOEE (high) . Cursor
values are then incremented, starting with the lower page
(always) and the upper page (if needed) . On screen over
flow, program jumps to a home Cursor command for wrap
around, or to a scrolling sequence.

* Home Cursor-Subroutine is used to load upper and lower page
values in locations OOEd and OOEE.

* Clear Screen-Cursor is sent home with subroutine. An ASCII

space (20) is loaded in the accumulator and stored sequen
tially in all locations using the enter spaces subroutine which
calls a nested enter and increment subroutine. Entry continues
till screen is filled. Cursor is then sent home to complete clear
ing.

* Carriage Return-Cursor location is moved to extreme right of
old line, using ORA IF for a 32-character line and ORA 3F
for a 64-character line. Cursor location is then incremented by
jumping into middle of enter-and-increment subroutine. This
moves you to the start of the next line. If the Cursor overflows
display memory, program jumps to scrolling or wraparound as
selected.

* Cursor Up-One line of characters is subtracted from old Cur
sor location. If the Cursor location goes off the screen by under
flowing, the Cursor is sent home with a subroutine.

* Cursor Doum-One line of characters is added to the old Cursor
location. If the Cursor location goes off the screen by overflow
ing, the program jumps to a selected wraparound or scroll
sequence.

* Cursor Right-Increment portion of enter and increment sub
routine is used. If Cursor overflows display memory, wrap
around or scrolling sequence is picked up.

* Cursor Left-Cursor is decremented. If page underflows, upper
Cursor page is decremented. If screen underflows, Cursor is
sent home with subroutine.

* Erase to End of Screen-Present Cursor location is saved on
stack. Screen is erased from present location to end. Present
Cursor location is retrieved from stack and reused.

* Wraparound-If wraparound is selected, any overflow of mem
ory homes Cursor.

* Scrolling-A page overflow that results from a character entry
or a Cursor motion activates the scrolling sequence. Scrolling
is NOT permitted on clear screen or erase to end of screen to
prevent a permanent loop. When scrolling is called for and
allowed, an indirect address is used to get a character and
move it up one line, storing the character 32 or 64 slots earlier in
memory. When scrolling is complete, the old top line is gone,
and everything else has moved up one line. The bottom and
next to bottom lines are identical. The bottom line is next
erased by doing an Erase to End of Screen, starting with the
first character on the bottom line. The Cursor is then returned
to the first character on the bottom line.

95

µ,P-6502 Start-lRQ Program Space-01 00-0ldf
System-KIM-1,2 End-RTI + Twa words page O (EO,EE)

Input to parallel Word A I O I A7 I A6 I AS 1. A4 I A3 I A21 Al I
L...J

IRQ

�

10 µ,s
Clear-CAN (1 8) Cursor Right-HT (09) I-KP
Carriage Return-CR (Od) Cursor Home-SCH (01)
Cursar Up-VT (Ob) Erase To EOP-ETX (03)
Cursor Down-LF (OA) Enter-All characters and all
Cursor left-BS (08) unused CTRL commands

Enter via
IRQ

L..- 0100 PHA 48 Save A
0101 LDY AO 00 Reset Y Index
0103 LDA A5 (EE) Get Cursor and Test for Range
0105 CMP C9 04 Is cursor below maximum?

0143 - 0107 BCS bO 3A* No, Home Cursar
01 09 CMP C9 02 Is cursor above minimum?

0143 - 010b BCC 90 36* No, Home Cursor
010d LDA bl (Ed) Get old cursed character

OlOF AND 29 7F Erase Old Cursor
01 1 1 STA 91 (Ed) Replace character without Cursar
01 1 3 LOA Ad 00 1 7 Get new character from A parallel Input
01 16 CMP C9 20 Is it a character to be entered?

013A- 01 1 8 BCS bO 20* Yet, go and enter character
01 1A CMP C9 1 8 Clear Screen?

OISE - 01 1C BEQ FO 40* Yes, Go clear screen
Ol l E CMP C9 0d Return Carriage?

01s2 - 0120 BEQ FO 30* Yes, go return carriage
0122 CMP C9 Ob Move Cursor Up?

0194 - 0124 BEQ FO 6E* Yes, Move Cursar up
0126 CMP C9 OA Move Cursor Down?

0166 - 0128 BEQ FO 3C* Yes, move Cursor down
012A CMP C9 09 Move Cursor right?

01se - 012c BEQ FO 2A* Yes, Move Cursor Right
012E CMP C9 08 Move Cursor left?

01A7 - 0130 BEQ FO 75* Yes, move Cursar to left
0132 CMP C9 01 Home Cursor?

0143 - 0134 BEQ FO Od* Yes, Home Cursor
0136 CMP C9 03 Erase to End of Screen?

Olbl - 0138 BEQ FO 77* Yes, Erase to End of Screen
013A CLO dB Assure binary arithmetic mode
013b JSR 20 (d3) (01) /// Enter Character via Subroutine ///

0146 - 013E BNE dO 06* Did Screen overflow?

Fig. 2-20. Full-performance scrolling Cursor for TVT 6 5/8 KIM

96

0140 JMP 4C (75) (01) Select Scroll or Wraparound
0143 JSR 20 (C2) (01) I I I I Home Cursor via Subroutine I I I

013E - 0146 LDA bl (Ed) I I I I Restore Cursor I I I
0148 ORA 09 80 Add Cursor to Cursed Character

014A STA 91 (Ed) Restore Cursed Character
014C DEX CA I mp rove transparency
014d DEX CA continued
014E NOP EA continued

014F NOP EA continued
0150 PLA 68 Restore Accumulator

our - 01 s1 RTI 40 Return to Scan
0152 LDA AS (Ed) I I I Carriage Return I I I (getCursor)

0154 ORA 09 I F Move Cursor to extreme right
0156 STA 85 (Ed) Restore Cursor
0158 JSR 20 (d5) (01) I ncrement Cursor

013E- 015b JMP 4C (3E) (01) Scroll or wraparound if needed; finish

OISE JSR 20 (C2) (01) I I I I I CLEAR I I I I I (home Cursor)
0161 JSR 20 (Cb) (01) Clear screen via subroutine

0143 - 01 64 BEQ F0 dd* Finish; home Cursor
0166 LDA AS (Ed) 1111 CURSOR DOWN Ill (getCursor)

0 168 CLC 18 Clear Carry
0169 ADC 69 20 MoveCursor down one line
016b STA 85 (Ed) Restore Cursor
016d BCC 90 03* Page overflow?

016F JSR 20 (d9) (01) Yes, I ncrement next higher page
013E - 0172 JMP 4C (3E) (01) Scroll or wraparound if needed; finish

0175 JSR 20 (C2) (01) I I I I SCROLL UP / / / (home Cursor)

[""
LDY AO 20 Add offset to Y index

017A LDA bl (Ed) Get offset indexed character
017C LDY AO 00 Remove offset from index
017E JSR 20 (d3) (01) Enter moved character and increment
01 81 BNE d0 FS* Repeat?

0183 CLC 1 8 Clear Carry
0192 - 0184 LDA A9 03 Set A to Page of Last line

0186 STA 85 (EE) Set Cursor to page of last line
0188 LDA A9 E0 Load A to start of last line

018A STA 85 (Ed) Set Cursor to start of last line
0146 - 018C BCS b0 b8* Finish if carry set

018E JSR 20 (Cb) (01) Clear Last line
0191 SEC 38 Set carry

COnllnued on nHI page.

based 16 x 32, 16 x 64, and 32 x 64 alphanumeric displays.

97

0184 - 0192 BCS b0 F0* Restore Cursor to start of last line
0194 LOA AS (Ed) I I I CURSOR UP I I I I (getCursor)
0196 SEC 38 Set Carry
0197 SBC E9 20 Move up one line

0199 STA 85 (Ed) Restore Cursor
0146 - 019b BCS bO A9* Underflow of page?

019d DEC C6 (EE) Yes, Decrement Page
019F LOA A9 01 Set A to page below home page

OJAI CMP cs (EE) Did screen underflow?
0146 -- 01A3 BNE dO Al * No, Finish
0143 - 01A5 BEQ F0 9C* Yes, HomeCursor

01A7 DEC C6 (Ed) I I I CURSOR LEFT I I I (decrementCursor)

01A9 LOA A9 FF Set A to page underflow
0IAb CMP cs (Ed) Test for page underflow

019d - 0IAd BEQ F0 (EE) Change page if off page
0146 - 0lAF BNE do 95* Finish if on page

0lbl LOA AS (EE) I I I ERASE EOS I I I (get Cursor)
Olb3 PHA 48 Save Upper Cursor location on stack
0lb4 LOA AS (Ed) Get lower Cursor location
0lb6 PHA 48 Save lower Cursor location on stack

01b7 JSR 20 (Cb) (01) Clear to end of screen
0lbA PLA 68 Get lower Cursor location off stack
Olbb STA 85 (Ed) Restore lower Cursor
0lbd PLA 68 Get upper Cursor location off stack

0lbE STA 85 (EE) Restore Upper Cursor
0146- OIC0 BNE d0 84* Finish

0 1 C2 LOA A9 00 SUBROUTINE-HOME CURSOR ******
0 I C4 STA 85 (Ed) Set lower Cursor to home value

0 I C6 LOA A9 02 load A with home page value
0 I C8 STA 85 (EE) Set upper Cursor to home page
0lCA RTS 60 Return to main Cursor program

[
0 I Cb LOA A9 20 SUBROUTINE-ENTER SPACES *******

01Cd JSR 20 (d3) (01) Enter space vie, character entry sub
0ld0 BNE d0 F9* Repeat if not to end of screen
01d2 RTS 60 Return to main Cursor program
0ld3 STA 91 (Ed) SUBROUTINE-ENTER AND INCREMENT

01d5 INC E6 (Ed) lncrem·ent Cursor
0ldF - 01d7 BNE d0 06* Overflow of page?

01d9 INC E6 (EE) Yes, I ncrement Cursor page
0ldb LOA A9 04 load A with page above display

Fig. 2-20 Continued. Full-performance scrolling Cursor for TVT 6 5/8 KIM

98

0ldd CMP CS (EE) Test for Overflow
0ld 7 -- 0ldF RTS 60 Return to main Cursor program

NOTES:
For auto-scrolling, use 0141 75. For wraparound use 0141 43. To protect page, load

00F3 04. To enable entry, use OOF3 00. To display Cursor, load 0149 80. For no
display use 0149 00.

/RQ vector m ust be stored in 17FE 00 and 1 7FF 0 I .
Cursor address is stored o t 00Ed /ow and 00EE high.

Total available stock length is 32 words. Approximately 16 ore used by operating
system, Cursor, and Scan program. Stock must be initialized to 01 FF as is done in
KIM operating system. For 30 more stock locations, relocate subroutines starting at
01C2 elsewhere. For total stock availability, relocate entire program elsewhere.

• Denotes a relative branch that is program length sensitive.
() Denotes on absolute add ress that is program location sensitive.
To match this program to your Scan p rogram, cha.nge the following slots:

1 6 X 32 16 X 32 1 6 X 64 32 X 64
Location Function 0200-03FF 0400-05FF 0400-07FF 0400-0bFF

0106 Cursor max + I 04 06 08 oc
010A Cursor minimum 02 04 04 04
0155 CR line length I F l F 3 F 3 F
016A LF line length 20 20 40 40

0 1 79 Scroll Offset 20 20 40 40
0185 Scroll lost page 03 OS 07 0A
0 1 89 Scroll lost line E0 E0 co co
0 1 98 VT line length 20 20 40 40

0l A0 Underflow page 01 03 03 03
01C7 Home page 02 04 04 04
0ldC Overflow page 04 06 08 oc

ConUnued on n81f.l page.

based 16 x 32, 16 x 64, and 32 x 64 alphanumeric displays.

99

START

iiil! FlOW CHART - 16 X 32 SCR0l1ING CURSOR 1D1001

(D105 • D1D61

(D111' • D1131

(01161

(OllAI HOME CURSOR CLIAR SCREEN

1015£1

!OllEI RETURN
CARRIAGE

10152 • 015bl

(01221 CURSOR
UP

101261 CURSOR
DOWN

(0166 - 01721

!012AI INCREMENT
CURSOR

(0158 • 015bl

(012EI DECREMENT
CURSOR

ID1A7 · OlA<I
NO

"A" 118 1 1 "D''
"C" "E"

Fig. 2-20 ConUnued. Full-performance acrolllng Cul'IOr for TVT 8 5/1 KIM

100

"A"

(01321

NO

ENTER
(013bl CHARACTER

(01361

C014AI

AND INCREMENT

LOAD NEW
CURSOR

(01.51 RTI

END

YES

FLOW CHART - 16 , 32 SCROLLING CURSOR- CONT.

SCROLL ERASE
UP LAS T L I NE

(1075 - 01811 (0183 - DJ8CI

SAVE CLEAR TO END RESTORE
CURSOR OF SCREEN CURSOR

COlbl - Olb61 (01671 C016A - OICDI

(AUTO SCROLL!

SCROLL ! 0141 - "47"1

HOME
CURSOR

WRAPAROUND !0141 - "75"1

based 16 x 32, 16 X 64, and 32 X 64 alphanumerlc dlsplaJs.

"8" "C" "D'"'E"

t t
I I

101

µP-6502 Start-lRQ Program space-01 00-0136
System-KIM-1,2 End-RTI + Three words page O (Eb, Ed, EE)

Input to parallel Word A I O I A7 I A6 I A.5 1 A4 I A3 I A2 I Al I LJ IRQ

1st KP
Enter
via

IRQ
L....-- 0100 PHA

· 01 01 LOA
0104 CMP
0106 BCC

0108 ADC
010A ASL
010b ASL
0lOC ASL

010d ASL
0l0E STA
01 10 LOA

Out to 01 1 2 STA
await
2nd KP

l._..
01 15 PLA
0116 RTI

1
0 1 1 7 PHA
01 1 8 LOA

2nd KP
Enter 01 1 b CMP
via

[
0 1 1 d ace

IRQ 01 l f ADC
0121 AND

0123 CLC
01 24 ADC
0126 LOY
0128 STA

012A I NC
012C BNE
012E INC
0130 LOA

o· 32 STA
0135 PLA

Out 0136 RTI

102

PA7 PAO -I
�O :;ec

48 Save Accumulator
AD (00) (17) Get charader from A parallel Interface
C9 40 Is it a numeral or a letter?
90 02* Skip if a number

69 08 Change letter to equivalent binary #.
0A Shift left four spaces to position
0A continued
0A continued

0A continued
85 (Eb) Store shifted hex temporarily
A9 17 Change iici vedor for second KP
8d (FE) (17) store IRQ vedor

68 Restore Accumulator
40 Return to Scan; await second KP
48 Save Accumulator
Ad (00) (tn Get 2nd character from A parallel Int.

C9 40 Is it a numeral or a letter?
90 02• Skip if a number
69 08 Change letter to equivalent binary #
29 OF Mask to make room for upper hex

1 8 Clear Carry
65 (Eb) Add lower hex to upper hex
AO 00 Reset Y ind ex
91 (Ed) Store charader as display chunk

E6 (Ed) Increment display location
d0 02• Did display location page overflow?
E6 (EE) Yes, incr�nt upper address
A9 00 Change IRQ vedor for fint KP

8d (FE) (17) store I RQ vector
68 Restore Accumulator
40 Return to Scan; entry complete

Fig. 2-21. Simple graphics

Several program words have to be changed to customize your
Cursor for the location and the size of the display memory as shown.
Other words are changed to select scrolling or wraparound; visible
or invisible Cursor; and protected or usable screen.

Your Turn:

Show the modifications needed to let this
Cursor program run with a 40- and BO-char
acter repacked memory Scan.

Our particular cursor example is a medium complexity one taking
200 odd words of code. To do all this with hardware would be a
real mess, not to say anything about flexibility. You can greatly
simplify this Cursor for simple character entry, or you can go the
other way and add lots of extra functions for super fancy editing.
Typical things you might like to add include erase to end of line,
insert and delete words, lines, or characters, ring bells near line end,
interchange lines, and so on.

A GRAPHICS LOADER

A graphics loader is the equivalent of an alphanumeric Cursor
program. It lets you build up and modify a graphics display a
chunk at a time, actually viewing the final result as chunks are
put down. A rather primitive graphics loader is shown in Fig. 2-21.

To operate the loader, you put the starting address of what you
want to modify on your display in OOEd and OOEE. Every time you

Starting display location is placed in OOEd (law) and 0OEE (high). Typing a pair of
hex charocten enten the charaders as a graphics chunk, then goes on to the next
chunk location.

NOTES:
IRQ vedor must be Initialized as 1 7FE 00 and 1 7FF 0 1 .
Starting display address must be set a s OOEd (low) and 00EE (high).
Loader must be stopped before leaving display memory space.

Charaden must be entered as pairs. Characters other than 0-9 and A through F will
be erroneously entered.

• Denotes a relative branch that is program length sensitive.
() Denotes on absolute address that is program location sensitive.

loader for 1VT 6 5/8.

103

type a pair of hex characters, that chunk gets entered and the dis
play changes as needed.

The program works by getting a character, converting it to hexa
decimal, and shifting it left four spaces. This character is temporarily
saved. A new character is gotten and hex converted. It is then
masked to make room for the old shifted character. The old and
the new character are added together into a composite 8-bit data
chunk. The chunk is then entered in the desired location and the
starting address is incremented one location.

The IRQ entry location is changed every time, so that the first
KP gives us the rightmost hex character and the second the leftmost
one and the actual screen update. Since this is a very · simple pro
gram, you always have to load your starting address before you
start, and always have to stop before you run out of display-memory
space.

Your Turn:

Add the fol lowing bells and whistles to
your graphics loader: Off display protec
tion; home to starting ·address; four way
Cursor motion; a visible Cursor; abi l ity to
complement cursed code; and a bell to
indicate two-character chunk completion.

One thing you might like to look into is storing your graphics
symbols as a subroutine file of subelements. In other words, you
stash a basic set of symbols somewhere and then call them from
your "library" as needed for display. This gives you tremendous
software simplification since you can now call an entire symbol,
such as a chess piece, and load it into the display memory with a
single software word. Loading the screen and display design be
comes much less of a hassle. Now, instead of having to individually
load as many as 64,000 bits of screen information, you simply call
larger blocks of ready-to-go elements as needed and let the computer
do the work.

TRANSPARENCY

The Scan programs we have looked at so far make continuous
100% use of the microcomputer during a display. The Cursor-control
software interrupts the Scan anytime a change is needed. The

104

amount of interruption varies, so this results in a brief to long dropout of the Scan operation. You will see this on a screen as a flash, a blank, or tearing of the display. Usually you will alternate your compute and display modes. For many simple uses, this brief tearing or dropout is acceptable. For others it is not. There are several ways to make our display totally transparent, so that time is left to do things like simultaneously run a BASIC program or complicated game calculations. One obvious but complicated way to make a Cursor program transparent is to integrate it into the Scan program so that Cursor motions are carried out during the vertical blanking time without interruption of the Scan timing. We will be looking at alternate ways of picking up partial to full transparency in Chapter 5.
VOLATILITY-RAM versus ROM Almost all the programs shown to you in this chapter use RAM memory. The nice thing about RAM is that it is uncommitted and undedicated. This makes things flexible and easy to change. The bad thing about RAM is that we have to reload all the programs every time the power goes off. Programs stored in RAM can also be wiped out if they or another program goes berserk and decides to plow up memory locations. There is no problem in putting the Cursor software into ROM or PROM once you have decided exactly what you want your cursor to do and have in fact debugged it. This will restrict you to fixed formats of operation, but often this is exactly what you want for final use applications. Note that even with a ROM cursor, a few RAM locations will be needed in the stack and for the cursor location. Putting your Scan programs in ROM or PROM is a bit stickier. Some PROMs slow down the microprocessor cycle time and could introduce timing and magic number problems. But the crucial hangup is that all our Scan programs rely on a jump to subroutine at a 16-bit-wide absolute calculated address. At least for the 6502, the two slots following the JSR command MUST be RAM. There usually is not time enough to jump down to page zero or some similar stunt each time we want a new Scan. Our back is usually to the wall with Scan loop timing, as you should be aware by now. How do we get out of this bind? Is there any way to put our Scan programs permanently in ROM or PROM? The simplest way is to notice that the Scan programs are usually only a hundred words or less long. So, you simply move the whole program from ROM to RAM anytime you need it. A simple "move

105

the next hundred words to 1780" loader that goes before the actual
Scan program in ROM or PROM does the job for us.

How often you reload the RAM depends on your system. This
can be done once on system reset. Just have the NMI vector go to
the Scan PROM first, and then to the usual operating system reset.
Or, you can do a load by calling a starting address any time you
need one. You could even automatically reload every vertical blank
ing time, but this probably is too much. Another obvious possibility
is to store your Scan program on a floppy disc or other file and
transfer it to RAM as you need and use it.

Yet another route is to use brute force coding that calls, rather
than calculates, JSR addresses. This will take many more words of
coding but it can still fit in a reasonably priced PROM.

106

CHAPTER 3

Hardware Design

Our most obvious cheap video hardware concern is the interface
card that goes between the microcomputer and the tv set. Important
parts of a typical interface card include the instruction decoder; the
Scan microprogram PROM; a character generator (for alphanumer
ics) or a data formatter (for graphics) ; high-frequency timing; out
put circuitry; and sync positioning circuits.

Two other important hardware problem areas are the interface
to the television set itself, and the modification and interconnections
you need between the microcomputer and the interface card. In
this chapter, we will look at these hardware concepts in more detail.
Once we have this background, we can go on to the complete system
construction details of the TVT 6% in Chapter 4.

INTERFACE CARD HARDWARE DESIGN

Our interface card has to hold most of the dedicated circuitry
needed between a microprocessor and a tv set. You will find a block
diagram of a typical card shown in Fig. 3-1. Depending on its de
sign details and plug-in modules, you can use this type of card with
graphics, alphanumerics, or a combination of the two.

The instruction decoder is the central controller of a cheap video
display. It is usually a small bipolar PROM. When activated by the
Scan program, the instruction decoder decides when a Scan of video
is needed and what video is going to be produced. Control signals
are delivered to the rest of the interface circuitry by the instruction
decoder. These signals include sync pulses and disabling signals that
go back to make certain nothing else tries to use the microcomputer
at the same instant the tvt needs it .

107

The Scan microprogram generator is a second PROM that out
puts a Scan microinstruction to the microprocessor. This PROM
is activated by the instruction decoder every time a Scan of video
is wanted.

The data-to-video converter is usually a dot-matrix character
generator integrated circuit for alphanumeric use and is usually a
shift register or a shift register and data selector combination for
graphics use. This converter block converts code stored in the
display memory of the computer and received by way of the new
upstream tap into serial video that you can display. The instruction
decoder controls the data-to-video converter by telling it which
row of dots to output on a character or which part of a word to
output for a graphics format. By making this circuit on a plug�in
module, the same interface card may be used for alphanumerics or
graphics. High-frequency timing controls when the serial video dots are
to be output and at what rate. This block can be a hex inverter gated
oscillator driven from the main clock in the microcomputer. A Cursor
circuit is often used in alphanumeric tvt's. The Cursor introduces the
"winking" underline or box that shows us the next character loca
tion. The Cursor circuit usually is made up of a low-frequency oscil-
lator and some gating.

The sync and position block takes horizontal- and vertical-timing
signals from the instruction decoder. It then delays these timing
signals as needed.Jor positioning. After this, it goes on to shape these
sync commands into the proper time widths for tv use.

CLOCK

UPSTREAM
TAP

HIGH
ADDREss ---

ENABLE

H IGH
FREQUENCY

TIMING

INSTRUCTION
DECODER

SCAN
LOW
ADDRESS ---� ICROINSTRUCTION

GENERATOR

DATA

V IDEO
OUTPUT

C IRCUITRY

SYNC
& POS ITION

V I DEO OUTPUT

�
TO MONITOR,
TV, OR RF
MODULATOR

.,,,

Fig. 3-1. Block diagram of a typical Interface card.

108

Our video-output circuitry combines video and sync and then
provides a composite output suitable for monitor, rf modulator, or
direct video interface. One important part of the output circuitry
is the bandwidth enhancer. This simple compensation circuit is
usually included to predistort the output video in anticipation of
how the tv set will try to mess it up. The result is denser and sharper
characters for a given tv bandwidth.

Bandwidth enhancement is one of the keys to displaying long
character lines on an ordinary tv set.

Let's take a closer look at these interface hardware blocks and
see just what is involved in their design and use.

Instruction Decoder
Our instruction decoder PROM is the control center for tvt use

of a microprocessor. The important things the instruction decoder
has to do are summarized in Fig. 3-2. The instruction decoder has

The

INSTRUCTION

DECODER

must:
* ACTIVATE THE SCAN MICROPROGRAM WHEN A SCAN IS NEEDED.

* DISABLE EVERYTHING ELSE TRYING TO USE THE COMPUTER CPU WHEN A SCAN
IS NEEDED.

* SELECT THE RIGHT GRAPHICS FORMAT OR ALPHANUMERIC DOT ROW.

* OUTPUT SYNC PULSES AS NEEDED.

* OTHERWISE NOT INTERFERE WITH NORMAL COMPUTER OPERATION.

Fig. 3-2. Instruction Decoder PROM Is key controlling block of the
Interface hardware.

to tell the microprocessor when to generate a Scan of characters.
It has to pick the right part of whatever it is you are going to display.
And, it has to firmly take over command of the microcomputer when
the tvt is in use. When not in use, the instruction decoder has to

109

make the interface hardware appear invisible to normal computer
operation.

A 256-bit bipolar PROM of 32 words of 8 bits each is a good
choice as an instruction decoder. This is the smallest PROM you
can buy, costing under two dollars. Important advantages of using
a PROM for the instruction decoder are the flexibility of assigning
what each address does, the ease of making changes, and the single
IC simplicity of board layout.

Fig. 3-3 shows us one good way to use a 32 x 8 PROM as an
instruction decoder. We input high order address lines Al5, Al4,
Al3, and Al2.

There are eight output leads available. One of these is used for a
decode enable that takes over command from the normal address
decoding of the computer. On a KIM, this is line KO and is low for
normal computer use and high for M use. A second output is a chip
select command which goes low when we want to activate the
display memory as far as the upstream tap. A third output drives
our Scan microprogram generator, going low to produce a Scan
microinstruction. Two sync outputs are needed, one horizontal and
one vertical. Often the decode enable output can double as a hori
zontal-sync output, saving us a pin.

The remaining four output lines can be used to format the output
data. In alphanumerics, these can be the three or four "what line is
it?'' row commands that go to the character generator. For graphics,
we can use the same pins as a blanking output and an upper/lower
output.

Our 32 X 8 PROM has a fifth input. We can pick just what we
are going to do with it. In Fig. 3-3, an external AND gate was used

AJ5
Al4
AJ3
AJ2

---FORMAT

INSTRUCTION
DECODER ---SYNC

PROM SCAN
ENABLE

DECODE _______ _.
ENABLE

cs 1 ------1

cso ---------'

110

Fig. 3-3. Instruction Decoder PROM
using external gate for display mem

ory chip select

to combine the normal computer chip select with the M chip select
to provide a composite CSO that activates the display memory as
needed. This external gate is physically an AND gate and is shown
with its usual positive logic symbol but, in reality, it is used as an
"either input low gives a low output," or as its DeMorgan equivalent
negative logic OR gate.

We can call our fifth PROM input a tvt enable, and activate this
input from some external logic. This lets you use the higher order
memory slots for other things besides tvt use (see Fig. 2-2) . A low
M enable lets the M work; when the enable is high, the tvt re
mains inactive and the computer is free to do whatever else it wants
to do with its high address lines. For all-the-time M use, you can
simply ground this input.

Note that we have to keep our instruction decoder outputs active
at all times to prevent messing up the decode-enable commands.
This usually means that the usual enable input of the PROM must
stay grounded at all times. Thus, we must switch our PROM outputs
from an "active" to a "passive" state as far as M operation is con
cerned, but we must never actually float the tristate outputs.

CS I ----+-1

Al5 ----+-1
AM ----+-1
AB ___ __,
Al2 ----

ENABLE

INSTRUCT ION
DECODER

PROM

,__ _____ FORMAT
,__ _____ SYNC

l DEGLITCH ING

,__ _____ SCAN ENABLE

cso ----------'
DECODE ENABLE __________ __,

Fig. 3-4. Instruction Decoder PROM with internal gating for display memory
chip select.

We also have the option of using our fifth PROM address input
as a chip-select input from the computer. This internalizes the AND
gate used for the chip selects. A diagram of this is shown in Fig. 3-4.
We did this in the older TVT-6L as part of the mania for doing an
entire video display in only six integrated circuits. There are two
penalties to pay when you use internal-display memory CS selection.
One is that your outputs glitch, which means you have to filter the
sync outputs crudely. The second is that you cannot use many of
the higher address locations for anything except M use. The TVT
6% offers a choice of external or internal CS gating.

Fig. 3-5 shows the truth table for an instruction decoder having an
internal-chip select. This is the PROM to be used on the TVT 6o/s.

111

""
0
;:

0

I

2

J

4
I- 5

V, 6

7 u
:.! 8

9 z
10

11

12

lJ

14

15

16

17

18

19

2D

I- 21
u

22

� 23
u

24 I-

25

26

27

28

29

JD

JI

112

INPUTS

WHAT DOES 0

TH IS WORD DO? y c..
0

1:5

NORMAL 40
" 40
" 40
" 40
" 40
" 40

BLANK SCAN 20

LINE I SCAN 21
" 2 " 22
" 3 " 23
" 4 " 24

" 5 " 25
" 6 " 26
" 7 " 27

VERT SYNC 50

NORMAL 40
" co
" co
" co
" co
" co
" co

BLANK SCAN 20

L INE I SCAN 21
" 2 " 22

" 3 " 23
" 4 " 24
" 5 " 25
" 6 " 26
" 7 " 27

VERT SYNC dO

NORMAL co

OUTPUTS

08 Q7 Q6 05 Q4 03 02 QI ...
� � "" .. <(V, � f' <(15 ;;;!

s 15 ... !,! iii
:z C :;!,. :z

0 I- <(-' :::; -' <(� � c.. V, u "' C> u V, C > !C u u u

0 • 0 0 0 0 0 0
o •o o D O D D

0 • 0 0 0 0 0 0
0 • 0 0 0 0 0 0
0 • 0 0 0 0 0 0
0 • 0 0 0 0 0 0
0 0 • 0 0 0 0 0
o o • o o o o •

o o • o o o • o

o o • o o o • •
o o • o o • o o

o o • o o • o •

o o • o o • • o

o o • o o • • •
o • o • o o o o

0 • 0 0 0 0 0 0
• • 0 0 0 0 0 0
• • 0 0 0 0 0 0
• • 0 0 0 0 0 0
• • 0 0 0 0 0 0
• • 0 0 0 0 0 0
• • 0 0 0 0 0 0
0 0 • 0 0 0 0 0
o o • o o o o •

o o • o o o • o

o o • o o o • •
o o • o o • o o

o o • o o • o •

o o • o o • • o

o o • o o • • •

• • o • o o o o

• • 0 0 0 0 0 0

PROM NUMBER

D · ''O"

• · "l"

lPOS ITIVE LOG I CJ
USE FOR TVT 6-5/8 ON A
6502 SYSTEM
CG LINE 2 IS ALSO USED AS
A GRAPHICS "BLANKING"
OUTPUT.
CG L INE 4 IS ALSO USED AS
A GRAPH ICS "A/B SELECT"
OUTPUT.

Fig. 3-5. Truth table for 6502 decode PROM (used on KIM 1,2).

EN
QI AO

Al Q2

A2 Q3

A3 Q4

A4 Q5

"2" 0UTPUT IS ALSO GRAPHICS
"BLANK ING" COMMAND

"4" OUTPUT IS Al.SO GRAPH ICS
IM561D OR EQUIV AlfNT "A/B SEU CT" COMMAND
32 X 8 TRISTAlE
B IPOLAR PROM

I
Liff: SEL£CT TO
CHARACTER
GENERATOR

SYNC

Al2 ----t
AB ----t
Al4 -----1
AI5 ----t
CS I -----1

Q6

"V" } 1---+--+----� "H"

1 470pf Q7

Q8
658-KDS J J ����:s

cso _______ __, '---• SCAN ENABU
�N -•---------'

Fig. 3-6. Connections for decode PROM &58-KDI.

Locations 0-15 are selected if the decoder is to pass through an
existing low CSI. Locations 16-31 are selected if the tvt is only to
provide its own CSO when needed to the display memory. The only
output difference you will see between these two halves of the
truth table is the CSO output itself.

The remaining inputs are driven from Al2 through Al5 and select
normal computer operation, a blank Scan, a vertical-sync pulse, or
Scan of lines one through seven. Outputs include the character gen
erator line commands (which double as graphics commands), the
vertical-sync output, the Scan enable for the microprogram genera
tor, the decode enable for the computer, and the chip-select output
for the display memory. Typical connections are shown in Fig. 3-6.

Your Turn:

Show a truth table for a similar decode
PROM whose fifth i nput is a tvt enable
line. Show how external logic can switch
between tvt operation and other use of
high order address slots.

Scan Microprogram Generator

Tlie Scan microprogram generator is a second PROM used as
part of our interface hardware. Its purpose is to force a Scan micro
instruction onto the microprocessor. The microprocessor, in tum,
gives us a sequential one-character-per-microsecond code output

113

that lasts for as many characters or chunks as you want in a horizontal line. Fig. 3-7 sums up what our Scan microprogram generator has to do. To produce a Scan, our Scan software program from Chapter 2 calls a subroutine at an address that activates the instruction decoder. The instruction decoder then activates the Scan microprogram generator, which produces the microcode needed for a sequential Scan. As we saw in Chapter 2, the 6502 coding can be a sequence of LDY commands, followed by a RTS. When a Scan is wanted, the instruction decoder provides a ground on its Scan Enable output line. This ground is used to activate the tristate PROM that generates our Scan microinstruction. Once it is activated, this PROM take over control of the computer data bus. When not activated, the tristate outputs :float and remain transparent to the data bus. This lets your computer behave normally during nonscan times. When you are scanning, it is very important that anything else that might want to use the data bus is disabled-this is what the DEN output on the instruction decoder is for. This output disables everything except the Scan microprogram PROM when a scan is needed. The DEN output goes low for normal computer use and high for Scan microinstruction times. Typical coding for a Scan microprogram PROM is shown in Fig. 3-8. Our code consists of 31 LDY commands followed by a
The

SCAN

MICROPROGRAM

GENERATOR

must:

* GENERATE THE RIGHT CODING TO SEQUENTIALLY SCAN A ROW OF VIDEO.

* OPTIONALLY PROVIDE FOR ALPHANUMERIC MEMORY REPACKING.

* BE TRANSPARENT DURING OTHER COMPUTER USES.

Fig. 3-7. The Scan microprogram PROM generates the long mlscroinatructlon
needed to sequentially output a row of characters or graphics dots.

114

I NPUTS OUTPUTS

QB Q7 Q6 QS Q4 Q3 Q2 QI

I 85US84
WHAT DOES PROM NUMBER .. TH IS WORD DO?

0 0 • "O" "' -0 � � � 0 0 "' !: ., "' "' "' "' "' "'
0 0 0 0 0 0 0

• · "!"

0 LDY AO • o • O O O O O (POSITIVE LOG IC!

I " AO • 0 • 0 0 0 0 0 6502 COD ING

2 " AO • 0 • 0 0 0 0 0 USE FOR:
ALPHANUMER I C SCANS:

3 " AO • 0 • 0 0 0 0 0 -32 CHARACTER L INES
-64 CHARACTER LINES ::: 4 " AO • 0 • 0 0 0 0 0 - OTHER L INES THAT ARE NOT "' 5 " AO • 0 • 0 0 0 0 0 REPACKED.
GRAPH ICS SCANS=

6 " AO • 0 • 0 0 0 0 0 - 811 BNI
<

7 AO • 0 • 0 0 0 0 0 -412 BNI
" -312 COLOR

8 " AO • 0 • 0 0 0 0 0
� 9 AO • 0 • 0 0 0 0 0 8 ..
:::, 10 " AO • 0 • 0 0 0 0 0

• 0 • 0 0 0 0 0 z 11 " AO

12 .. AO • 0 • 0 0 0 0 0
13 .. AO • 0 • 0 0 0 0 0
14 " AO • 0 • 0 0 0 0 0
15 .. AO • 0 • 0 0 0 0 0
16 " AO • 0 • 0 0 0 0 0
17 " AO • 0 • 0 0 0 0 0
18 " AO • 0 • 0 0 0 0 0
19 " AO • 0 • 0 0 0 0 0

V> 20 " AO • 0 • 0 0 0 0 0
21 " AO • 0 • 0 0 0 0 0

-' • 0 • 0 0 0 0 0 � 22 " AO
-' n " AO • 0 • 0 0 0 0 0
< • 0 • 0 0 0 0 0 "' 24 " AO
� • 0 • 0 0 0 0 0 8 2S " AO
V>

• 0 • 0 0 0 0 0 :::, 26 " AO

27 " AO • 0 • 0 0 0 0 0
18 " AO • 0 • 0 0 0 0 0
29 .. AO • 0 • 0 0 0 0 0
30 .. AO • 0 • 0 0 0 0 0
31 RTS 60 0 • • 0 0 0 0 0

Fig. 3-8. Truth table for Scan PROM 658-KS64.

115

single RTS. By ignoring address AO, we double this capability to
get 62 µs worth of "Load Y with the command for Load Y," followed
by 2 µs worth of advancing RTS.

This PROM coding can be used anywhere you want a Scan of
most any length, so long as memory repacking is not needed. Some
typical connections appear in Fig. 3-9. With input A4 positive, we
can scan 32 or less characters per line. Any even number of charac
ters is possible, but the packing density drops as you use less chara
acters. This PROM is used for 32 alphanumeric characters, and for
32 graphics chunks that result in 96, 128, or 256 horizontal dots.

SCAN ENABLE
IM5610

EN

r-�
AB! AO

ADDRESS ABZ Al BUS
QI DBO
Q2 DBI AB3 A2

AB4 A3
+ 5 V A4

Q3 DB2
Q4 DB3
Q5 DB4
Q6 DB5
Q7 DB6
QB DB7

658-KS64

!Al 32 - CHARACTER L INES & MOST
GRAPHICS.

ABO - NC

AB!
AB2

AB3 ---
AB4 -----t
AB5 ------1
AB6 ----

DATA
BUS

SCAN ENABLE

EN
QI AO Q2 Al

A2 Q3
A3

Q4

A4 Q5
Q6
Q7
QB

658-KS64

(Cl 80 - CHARACTER L INES
!NO REPACKING!

SCAN ENABLE

ABO -NC
IM5610

AB! AO EN
QI A82 Al DBO

AB3 A2 Q2 DBI

AB4 A3
DB2

A4 DB3 AB5 DB4
Q6 DB5
Q7 DB6
Q8 DB7

658-KS64

(Bl 40 & 64 - CHARACTER LINES
(NO REPACK ING)

IM5610

DBO
DBI
DB2
083
DB4
DB5
086
DB7

Fig. 3-9. Connections for Scan PROM 658-KS64 SCAN enable Input comes
from the Instruction decoder.

If all five inputs are used, we pick up a 34- to 64-character-per-line
capability. This includes densely packed 64-character lines and
nonrepacked 40-character lines. Finally, if we add an external AND
gate, we can go from 68 to 128 characters per line to pick up an
BO-character, nonrepacked capability. Line lengths with this gate
must be some multiple of four.

116

Your Turn:

Show the PROM connections and memory
map for densely packed lines of 8 and 1 6
characters.

Note that this PROM must have tristate outputs, since it is abso
lutely essential to float the outputs going to the data bus during
non-tvt times. Note further, that your coding will change with any
change in the microprocessor family.

Somewhat fancier and more specialized PROM coding is needed
if we are going to densely repack 40- or BO-character lines, follow
ing the guidelines of the last chapter. Fig. 3-10 shows the 6502
coding for a 40-character Scan, while Fig. 3-11 shows the coding
for an BO-character Scan. Both PROMs provide for repacking so
that each page of 256 words has three BO-character lines or six 40-
character lines.

Connections for either repacked PROM are shown in Fig. 3-12.
An external three-input AND gate is normally used that lets us get
the needed 128 equivalent words out of a 32-word PROM.

Your Turn:

Show how three switches or jumpers may
be added to Fig. 3-1 2 to allow the same
interface ci rcuit board to work with any of
the three Scan truth tables shown.

Be sure to notice the difference in how the enable input is treated
between the Decode PROM and the Scan PROM. In the instruc
tion decoder, the outputs must always be active, so we permanently
enable this PROM. In the Scan microprogram PROM, we have to
be able to tristate float the outputs for all non-tvt times, and we
drive the chip enable of the PROM from an instruction-decoder out
put, going low only when a Scan is wanted. The instruction-decoder
PROM could be tristate, open collector, or even permanently in
ternally enabled, but the Scan microprogram PROM must be
tristate.

The instruction decoder and the Scan microprogram PROMs,
and possibly an AND gate or two, are usually all we need to get a

117

�

§--4
z < u

!"
z <
V,

<
V,

�
z <
V,

�
z < u

�
:z <
V,

118

I NPUTS

WHAT D0£S
THIS WORD DO?

0
;:

0 LOY

I "

2 "

3 "

4 "

5 "

6 RTS
7 LOY
8 "

9 "

JO "

JI RTS
12 LDY

13 "

14 "

15 "

16 RTS
17 LOY
18 "

19 "

20 "

21 RTS
22 LOY

23 "

24 "

25 "

26 RTS
27 LOY

28 "

29 "

30 "

31 RTS

OUTPUTS

Q8 Ql Q6 Q5 Q4 Q3 Q2 QI

;:;s � � � ;:; .., N C,

a, a, a, a, a, a, a,
:,: C C C C C C> C C

AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
60 0 • • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
60 0 • • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
60 0 • • 0 0 0 0 0
N) • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
60 0 • • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
60 0 • • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
AO • 0 • 0 0 0 0 0
60 0 • • 0 0 0 0 0

PROM NUMBER

0 • "0''

• • "I"

(POSITIVE LOGIC!

6502 CODING
USE ONLY FOR 40-£HARACTER
LINE REPACKED
ALPHANUMERIC SCANS.

Fig. 3-10. Truth table for Scan PROM 658-KS40.

..
C

0
;:

0

l

2

J

4

5

z 6

u 7 VI

B

9

10

11

12

ll

14

15

16

17

19

20

21

22

23

24

25

� 26
z

27 u

28

29

JO

ll

INPUTS

WHAT DOES 0

TH IS WORD DO?

� :c

LOY AO
" AO

" AO
" AO

" AO
" AO
" AO
" AO
" AO

" AO

" AO

RTS 60

LOY AO

" AO

" AO

" AO

" AO

" AO

" AO

" AO

" AO

RTS 60

LOY AO

" AO

" AO

" AO

" AO
" AO
" AO
" AO
" AO

RTS 60

OUTPUTS

Q8 Q7 Q6 Q5 Q4 Q3 Q2 QI

� "' - .. � N Ill <D <D m ... <D
C, C, C C, C, C, C, C,

• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• o • o d o o o
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
0 • • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
0 • • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
• 0 • 0 0 0 0 0
o • • o o c o o

PROM NUMBER

0 · "O"

• · "l"

IPOS ITIVE LOG ICl
6502 CODING
USE ONLY FOR 80 -
CHARACTER LINE REPACKED
ALPHANUMERIC SCANS.

Fig. 3-11. Truth table for Scan PROM 658-KS8ct

119

74L511
LI (FROM INSTRUCTION DECODER)

ABO - NC SCAN ENABLE
ABI IM5610 AB2

ADDRESS BUS AB3 AO EN
QI DBO

AB4 Al
AB5 A2. 02 DBI

AB6 A3 03 D82

AB7 A4 04 DB3 DATA BUS
05 DB4
06 DB5
Ql D86

658-KS40 OR
Q8 DB7 658-KSBO

Fig. 3-12. Connections for 658-KS40 and 658-KSB0 Scan PROMs that give
densely repacked 40- or BO-character lines.

microprocessor outputting character or chunk words in a sequence
and a form that eventually will give us good video. The only signals
fed back from the interface hardware to the microcomputer originate
in these two PROMs. These signals are:

DEN

cso

-The Decode Enable that goes high whenever a Scan
is to be produced, and stops anything else from
grabbing the data bus during Scan times.

-The Chip-Select Output that enables the display
memory, either when the computer wants it for
normal use, or when the tvt wants to get characters
out the upstream tap.

DB0-DB7-The Data Bus outputs from the Scan microprogram
generator that are active whenever a Scan is wanted,
but tristate floated otherwise.

The important thing to note is that these two PROMs plus any
supporting gating always should be designed, tested, and debugged
first in any microprocessor-based cheap video display system. If
the PROMs cannot make the computer behave the way you want
it to, nothing else you add in the way of interface hardware is going
to work either.

Data-to-Video Conversion
The next most important block in our interface hardware is the

data-to-video converter. This block gets us from code sent out the
upstream tap to serial raw video.

Graphics data-to-video conversion is usually simpler than alpha
numeric conversion. For graphics use, we can sometimes get by
with nothing but a shift register that converts the parallel chunk

120

code into serial video. To this we might add blanking or an elec
tronic selector to rearrange the chunk as needed for other formats.
This selector can be a 4pdt switch that picks the upper or lower
part of a chunk on a given Scan.

For alphanumeric tvt's, there is no "one-on-one" relationship be
tween the ASCII and Cursor stored code in the display memory and
the dots on the screen. Somehow, we hav� to irrationally "fluff up"
our 6-, 7-, or 8-bit code into a 35-dot serial video code. Since the
character dots do not have any logical relationship to the ASCII
code, any bits-and-pieces logic scheme is bound to be a complex
disaster.

Instead, we go to the code conversion capabilities of a read only
memory or ROM. You can use your own PROM for this, but code
converting read only memories called dot matrix character genera
tors are easy to get, usually cheaper, and often a better choice.
Details on these character generators appear in the TV Typewriter Cookbook (SAMS 21313) . Character generators can offer a choice
of upper case or combined upper and lower case. They will either
do the entire conversion to serial video by themselves, or else they
will have multiple outputs that have to go to an external video
shift register for final conversion.

For tvt use, your character generator must be of the row scan
type. There is another type called a column Scan character generator,
but this is only good for strip printers, advertising signs, and similar
uses where the serial or parallel output runs up and down rather
than back and forth.

An alphanumeric data-to-video converter using a 2513 character
generator is shown in Fig. 3-13. The character generator accepts
ASCII words from the upstream tap on the display memory. These
ASCII words change once each microsecond for each new character
to be output. The 2513 also accepts three "what line is it" commands
from the instruction decoder. In exchange for these inputs, five
dots are output at once, corresponding to one row on a 5 X 7 dot
matrix character. An eight input, one output shift register then con
verts these dots, along with spacing undots from grounded inputs,
into raw serial output video. The input ASCII character coding
repeats itself at least seven times to generate the entire seven dot
rows involved in a row of characters. Our shift register is driven by
a high-frequency timing circuit that outputs a narrow Load pulse
once each microsecond, along with a Clock output that runs con
tinuously at the desired dot rate.

An optional Cursor is shown in the lower right of Fig. 3-13. The
4585 is a 3-Hz oscillator that sets up the Cursor winking rate. If
ASCII input bit No. 8 is high, the CUR input will go high and a
white line is output on leads Ql through Q5. The right diode causes

121

FROM HIGH - FREQUENCY
TIM ING

2513 CHARACTER GENERATOR FOR LOWER CASE,
"" USE 6574 &

A � u CONNECT VD7
g

B u (MODULE "A'?

ASC 1 1 VD2 3 DOTS 03oz CHARACTERS ASC I I --'----f
(VIDEO DATA! VD3----t 4 IN OUT 04.,.......--,----1

C
D

F

SERIAL
QH RAW

VIDEO
OUTPUT

��� ! } !01

FROM D ISPLAY VD4 5 05 --'----f
MEMORY VD5 6 ROW IN G 74165 SH IFT H UPSTREAM TAP VD6 ___ NC 124 CS REG ISTER

CURSOR
/

Fig. 3-13. Alphanumeric data-to-video converter using 2513
character generator. this line to blink off and on, while the left diode allows winking Cursors only during valid character times. Since lower case is not available on a 2513, ASCII bit No. 7 remains unused. Note that if you want to display lower-case characters as upper case, you must add a simple external gate, for the lower six bits of a lower case "u" are the same as a "5," and not a capital "U," and some conversion is needed. (See Chapter 4.) The 2513 is cheap and easy to get. The newer, single supply +5-V versions by General Instruments and others are far easier to use than the old +5-V, ground -5-V, -12-V versions. This is particularly important since the rest of the interface hardware all can run on a +5-volt supply. Lower case versions of the 2513 are also available. You can use a pair of 2513s, one upper, one lower, for full alphabet capability.

Your Turn:

Show how switching may be added to Fig.
3-13 to give you manual control of Cursor
visibi'lity.

An alphanumeric data-to-video converter using the Motorola 6674 character generator is used as the module "A" plug-in for the TVT
122

6%. This circuit gives you both upper and lower case. Input VD6
(Fig. 3-13) is used to pick up the new characters.

Your serial video output is called raw video because it contains
only character dots when and where needed and blank logic zeros
everywhere else. To get from here to something a tv set, monitor,
or rf modulator can handle, we have to add the sync pulses and
predistort the raw video for improved clarity. We call everything
compensated and combined in our composite video.

Fig. 3-14 shows us our nrst graphics interface. This is used as
module "B" in the TVT 6% whenever eight dots per chunk in a

VDO

VOi

VD2

GRAPHICS VD3
CHUNKS
(VIDEO DATA!
FROM D I SPLAY VD4
MEMORY
UPSTREAM TAP

VD5

VD6

V07

BLANKING

74LS08 12)

"I" • UNBLANK

FROM H IGH
FREQUENCY TIM ING

QH 1--11--0
SERIAL RAW
VI 0£0 OUTPUT

Fig. 3-14. Graphics dala-to-video converter to display eight horizontal dots
per chunk.

row are needed. Input video data chunks from the display memory
are routed to the eight inputs of a shift register by way of a blank
ing gate. High-frequency timing applies just the right Load and
Clock commands to output continuous dots during graphics dis
play times. Timing is adjusted for minimum over- or underlap be
tween sequential chunks.

Fig. 3-15 shows us a graphics interface used for three or four
dots per chunk output. This is plug-in module "C" on the TVT 6%
upper- and lower-chunk halves alternate for sequential lines or line

123

GRAPH ICS
CHUNKS

74LSl57 SELECTOR

VDO --,t"-", .. _
VD4 --1_......,
VDl ----

!VIDEO DATAI VD5 __,
FROM DISPLAY VD2 _----t......._
MEMORY
UPSTREAM TAP VD6 --0-t-0

VD3 -----t-o,._
VD7 --0-t-0

FROM
{

A/B
INSTRUCTION
DECODER BLANK

"l" • UNBLANK

FROM H IGH- FREQUENCY
TIMING

+ 5 V

LOAD CLOCK
A
B
C

74165
SHIFT REG I STER

SERIAL RAW
V I DEO OUTPUT

Fig. 3-15. Graphics data-to-video converter to display three or four horizontal
dots per chunk on alternate line pairs.

pairs. A data selector is added to the inputs to pick upper-chunk
halves, lower-chunk halves, or blanking. Blanking is done by forcing
all the inputs of the shift register low. The inverter gives us a system
convention of low = blanked for compatibility with the decode
PROM.

Your Turn:

Show how modular plug-ins can be used
to let one interface hardware card serve
for upper- or upper- and lower-case alpha
numerics, 1 x 8, 2 x 4, 2 x 3 graphics,
and combined alphanumerics and graph
ics.

Color can be added to the circuit in Fig. 3-15 with an external
color modulator. The color format can be three dots on top of three
dots, with the remaining two-chunk bits letting us call any of four
colors plus black.

High-Frequency Timing
It is up to the high-frequency timing to give the Load and Clock

signals needed for serial output of video from our data-to-video

124

converter. Traditionally, these circuits use crystal oscillators and counter-dividers for this job. All we really need in a cheap video system is to borrow the existing microprocessor clock and add a simple gated oscillator using a hex inverter to get our Load and Clock waveforms. Fig. 3-16 tells what our high-frequency timing has to do, while Fig. 3-17 shows a circuit that works with any of the three data-tovideo converters we have already looked at. The waveforms involved are shown in Fig. 3-18.
The

HIGH

FREQUENCY

TIMING

must:

* DELIVER A "LOAD" PULSE TO THE VIDEO SHIFT REGISTER.

* TIME THE "LOAD" PULSE TO ARRIVE ONLY WHEN DATA IS VALID.

* DELIVER "CLOCK" PULSES TO SET THE VIDEO DOT RATE.

* LOCK "LOAD" AND "CLOCK" PULSES TOGETHER TO PREVENT JITTER.

Fig. 3-16. High-frequency timing traditionally has used crystals and divider
chains, but a hex Inverter gated oscillator is often all that is needed. The Load output of the timing circuit has to transfer parallel dots into the video shift register. This Load pulse must be carefully timed to arrive only when data is ready and settled from earlier portions of the data-to-video converter. Often you will have two choices of input clock available; if one phase does not do it, the other one probably will. Usually, it is best to arrange the load command so that it always arrives 1 µs after the addresses change. This gives you a nearly maximum processing time and minimizes any settling or bad data problems. Note that the Cursor• and blanking of individual characters should be introduced before this 1-µs delay

125

takes place; otherwise, the Cursor and blanking will be skewed by
one or more characters.

The Load command must be normally high and go briefly low
when driving a 74165 shift register. The load command also should
be as narrow as possible. This is particularly important in graphics
modes where too long a load pulse or a misplaced one can cause
dot underlap or overlap.

470
7-Jl_

I MH� pf CLOCK INPUT

1N4148

74LS()'; +5 V

UK

�

LOAD

:i::
33 pf OUTPUT

22 ()

SLOW

FAST0 l300 pf

JLJLJL
CLOCK
OUTPUT

Fig. 3-17. High-frequency timing is derived from 1.0-MHz computer clock with
gated oscillator.

Your Clock line decides how fast the dots are going to come out
as serial video. The WIDTH control and the FAST-SLOW switch set
the clock rate. Slow is used for the 4/2 and 3/2 graphics modes,
while Fast is used for the 8/ l graphics and both alphanumeric
modes. The WIDTH control is adjusted for proper spacing and a
stable display in alphanumeric modes, while it is set for the right
number of dots and proper dot matching (no overlap or underlap)
in graphic modes.

Clock and Load must be locked together to prevent the dot loca
tions from jittering or otherwise smearing. It is also especially
important to make sure the Load command does not distort the
clock graphics displays; otherwise clockings end up wider or nar
rower with respect to each other.

In Fig. 3-17 the first inverter acts as a buff er to make us indepen
dent of system clock rise and fall times. The second inverter is a

126

I �SEC

_J r INPUT

7J u- LOAD

CLOCK

(A) 1 x 8 graphics-8 cycles per µ.s.

_J r INPUT

L.J Lr LOAD

CLOCK

(8) Alphanumerics-6 or 7 cycles per µ.s.

_J r INPUT

L.J u- LOAD

CLOCK

(C) 2 X 4 graphics-4 cycles per µ.s.

_J r INPUT

7J u- LOAD

CLOCK

(D) 2 x 3 graphics-3 cycles per µ.s.

Fig. 3-18. High-frequency timing Is adjusted to suit operating mode. These are
typical waveforms.

half monostable device whose output briefly drops to ground for 30
nanoseconds on the falling edge of the clock input. The three in
verters in the center are a gated ring oscillator. The frequency of
this oscillator is coarsely set with the extra capacitor that is switched

Your Turn:

Show a way of raising and lowering the
microprocessor clock frequency to allow
locking of the video display vertical rate
to the power l ine. This wiH give you a sta
tionary hum bar.

127

in by the "FAST-SLOW" switch, and finely adjusted with the WIDTH
control. The diode gates the oscillator and locks it to the Load
command. A final buffer and inverter is used to square up the clock
line. The RC network on the Load output is a glitch filter used
for added stability.

As a rough rule of thumb, the output-video frequency will be
around one half of the dot rate set by the high-frequency timing
clock. Thus, eight dots per microsecond gives around 4-MHz band
width, while three dots per microsecond needs only a 1.5-MHz
bandwidth. A black and white tv set has a 4-MHz bandwidth, ex
tendable somewhat by defeating the sound trap. The video band
width of a color set is limited to a 3-MHz bandwidth. As you can
see, the output frequencies associated with your cheap video dis
plays are compatible with most tv sets. This is a dramatic improve
ment over the much higher video bandwidths often demanded by
traditional video terminal systems.

Sync and. Position
When we run a properly debugged Scan program our instruc

tion decoder will give us signals at the needed vertical (v SYNC)
and horizontal (DEN) rates. We can then selectively delay these
signals to gain control over position. This is then followed by pulse
shaping to get the proper widths of the sync signals for tv use. Since
the tv set locks itself to the sync pulses, backing up or moving these
pulses forward has the effect of moving the entire display. Hori
zontal-delay changes cause back and forth position changes in the
display. Vertical-sync changes control up and down positioning.

A typical circuit is shown in Fig. 3-19. Once again, it is six in
verters to the rescue. Only, this time two of the inverters have to
have open collectors and very low output impedances and are TTL,
while four of them need extremely high input impedances and a
snap action, so they are CMOS Schmitt inverters.

Our V-sync pulse starts out as a 1-µs positive pulse that is glitch
filtered to get rid of anything that crops up during the PROM set
tling times. The 7405 discharges the 4700-pF capacitor completely
once each ¼o of a second. This capacitor is recharged by a rate you
set with the V POS control. When the recharging reaches one half
the supply voltage, the Schmitt snaps on, and our second-stage
output becomes a square wave delayed by the amount set on the
position pot. Because of the extreme differences in charge to dis
charge times of the capacitor doing the positioning, the TTL/CMOS
combination is called for. The delayed output is shaped into a posi
tive going 200-µ,s pulse by the final Schmitt and RC network. The
output resistor aids in interfacing the TfL stage that follows in the
video-output circuitry.

128

+ 5 V

1 1 V POS 11

fl 7405
V SYNC FROM r
INSTRUCTION
DECODER

I 470 pF I 4700 pF
GLITCH

.,,,- FILTER -.,,-

+5 V

22K

4584

(A) Vertical-sync pulse.

+5 V
+5 V

fl

f--v · 1/60 sEc---j

�

1.5K

r-- H ·-1

H SYNC <DENI ____ _, ::�-+--1 ::�-1 ,---1 ><>--- H SYNC TO V IDEO OUTPUT
FROM
INSTRUCTION
DECODER

470 pF I� 270 pF I GLITCH
.,,,- FILTER

(B) Horizontal-sync pulse.

1.5K

Fig. 3-19. Sync and position circuitry.

The horizontal circuit is similar, with only the timing details
changing. The DEN output of the instruction decoder can often
be used instead of needing a special H SYNC line. Delay of a por
tion of the horizontal line is done with the first variable RC network,
while the second RC combination gives us a 5-µ,s sync pulse once
every horizontal line.

This particular sync and position circuit needs continuous arrival
of H and V signals from the instruction decoder. This continuous
need limits the transparency and throughput of the computer on
other programs that are also active while the tvt is displaying.

Fig. 3-20 shows a different way to get horizontal-sync pulses. This
counter method can free the computer for other uses during vertical
retrace times. This in turn can greatly increase the transparency
and throughput. We will be looking at this in more detail in Chap
ter 5.

What we do is use a divide-by-H counter. H is set to the number
of microseconds per horizontal line. Every overflow, an H sync
pulse is delivered, regardless of what the computer happens to be
up to. This counter is synchronized to the Scan program by resetting

129

SPECIAL INPUT FROM ----fiITTi'j""""--7
INSTRUCTION DECODER RESET

OUT
l .OµSEC CLOCK ---+t._C_Lo_c_K __ __,

DIV IDE - BY - H
COUNTER. H
EQUAL NUMBER OF µ SEC
PER L INE.

F IG. 3-198
C I RCU IT

H SYNC TO
V IDEO
OUTPUT

Fig. 3-20. Modified horizontal sync and position circuits give high trans
parency and throughpul (See Chapter 7.)

it with the instruction decoder. The synchronization and reset can
take place on every active line, once during vertical retrace, or even
only once during power up. Horizontal sync is maintained through
vertical-retrace, even if the computer is busy working on something
else.

Bandwidth Compensation and Video Output
We now have three signals available-raw video, vertical sync,

and horizontal sync. We somehow have to combine these and pick
up some line drive capability if we are going to interface a tv set,
monitor, or rf modulator. This final interface is done with the
video-output circuitry.

Our raw video first goes to a bandwidth compensator. This super
important circuit tries to anticipate how the tv set is going to de
grade the response and then predistorts the video in the opposite
direction beforehand. Bandwidth compensation is done by making
the dots longer than the undots. One way is to OR the raw video
with a delayed replica of itself. A simpler but very sneaky way is
shown in Fig. 3-21. An open-collector TTL inverter has a much
lower output low ON impedance than its output high OFF imped
ance. If we add capacitance from this output to ground, the capaci
tor will discharge fast but its charge rate will be much slower and
set by the value of the pull up resistor, which in this case is a
CLARITY pot. Since this is an inverter, a white dot is low and a black
undot is high at the capacitor. It takes longer to get out of the low
state, so our dots automatically get lengthened.

How much lengthening is set by the CLARITY pot. This pot is
adjusted for the densest, clearest characters on the final tv screen.
The optimum setting is often the one that just barely closes the
inside of an "M" or a "W" on the display. The use of this bandwidth
compensator, taken together with our 1-µs constant character or
chunk time are the two keys to display of quality characters or
graphics on a tv set with unmodified video bandwidth.

Three more open-collector inverters are used for video combina
tion. At the VIDEO output, sync pulses are nearly at ground, while
black is at +0.5 volt, and white is near +2 volts. The ratios of these

130

i:i �
> � "' =
+ �

i
C>
!!l

>
> �> .. N N

+ + +
I I
I I

I I I

� u - :5 § m

� "---- u
V,

o- a
� 8 ,_ _
6 1

� ew----.•
�
ig

> > >
N "' O
+ + +

I I
I I
I I

I

la!
::c
;;::

� a
e:s => -
0 1

� @---11·
>

§

'a
�

.__ __ .,__->.Jo.,,.,..,.-----1H•·

�

u z >v,
>

Fig. 3-21. Bandwidth compensator and video output clrcuil "Video" output
is lor monitors and rl modulators, "lV" output is pretranslated lor minimum

set modification.

three values are set by the three resistors. This output is pretty much
a standard form for video monitors, rf modulators, and tv sets that
have been completely preconverted internally for direct-video
monitor use.

But, we have also provided a new "tv" output. This tv output has
the same waveform, but it is translated up so that white is at +4

131

volts and sync at +3 volts. The +4-volt white level is the normal bias
level at the video detector of most solid-state tv sets. You can often
use this tv output to go directly into the first video stage of many tv
sets, without needing anything else in the way of translation or bias
circuits. We will look at more details on this later in the chapter.

Some monitors have separate VIDEO and SYNC inputs. These are
called split sync systems, and an alternate dual output circuit shown
in Fig. 3-22 may be used if split sync is needed or wanted.

RAW
Vlll£0

V SYNC -----1

H SYNC ----t

+5 V

''CLARITY" IOK

rl30
Jf

7405

+5 V

220

220

+ 5 V

220

220

Vlll£0 OUTPUT

P
fWH ll£ • + 2.51
fBLACK • O VI
- f lOO Q I

SYNC OUTPUT

P
fSYNC • +2.5 VI
INC RMAL • 0 VI

. - IOO Q

Fig. 3-22. Video-output circuit for monitors with separate sync lnpul

COMPUTER INTERFACE

You will find that there are about 32 connections you will have to
make between your microcomputer and the interface hardware card.
A lot of these connections are ready-to-go on existing bus lines and
expansion connectors, but a few are not, and you will have to dig
into the works to get at them. Most of these connections are "add
on" connections, but the one involving the display memory chip
enable is usually a "cut" that involves a change in the circuitry of
your computer. If your interface card is to be removable, some sort
of changeover switch might also be needed for non-M operation
times.

It is far easier to add a microprocessor-based cheap video display
to a new system design than it is to retrofit to an existing system.

132

Also, since most of our examples use the 6502 microprocessor, you
will find computer interconnections easiest with 6502-based sys
tems. Because of their similarities, 6800 series microcomputers will
be only slightly more difficult to interface. The 8080 interface is
somewhat more tricky and will take some creative work on your
part.

As you go further afield from these "mainstream" microcomputer
families, your interface and tvt operation will get harder and harder.

It is best to intimately associate the interface circuitry with the
display memory. Preferably, both should be the same pc board, or
at least a permanently connected pair of boards. There are two
reasons for this. The first is that almost all of the "oddball" connec
tions we need to get the tvt to work come from or go to the display
memory upstream tap and chip enable. These are not available on
bus lines, and even if you have an extra nine or ten pins as spares
on your system bus, there are certainly better things to be doing
with them than using them for the upstream tap. The second good
reason to have the interface hardware and the display memory close
together is that your upstream tap is often the bare output of an
MOS memory chip. Any capacitive loading, particularly from an
expansion cable, is almost certain to slow the memory down enough
so that it will be erratic or even quit entirely. Do not use extension
cables on MOS upstream taps!

In the case of a KIM, to display all or parts of pages 01 through
03, you can add a connector to the top of the main computer board
that accepts the interface hardware card. On the TVT 6%, a 36-pin,
single readout, 0.156-in (3.96-mm) connector can be used. To dis
play part or all of pages 04 through OF, a similar connector can be
added to your KIM-2 4K add-on memory, or its equivalent.

Larger computer systems than the KIM-1 are usually bus oriented.
Typical examples are the Heath H-8 system using the Benton Harbor
50-pin bus, and the MITS and IMSAI systems that use the S-100
bus. For these bus-oriented systems, it's best to design a single card
that contains both the display memory and the interface hardware.
Another possibility is to add spacers to an existing 4K or 8K memory
card and permanently attach the interface hardware so that they
both plug into the bus through a single connector. Two slots may
be needed.

As Chart 3-1 shows, we can logically group our interface con
nections. These groupings include the supply pins, the data bus,
the address lines, the system clock, the upstream tap, the display
memory chip enable lines, and the system decode enable. Let's take
a general look at just what is involved with each group of intercon
nections; then we will find out how to interface the KIM-1 and
KIM-2 to the TVT 6% detailed in the following chapter.

133

Chart 3-1 . Interconnections Needed Between Your
Microcomputer and TVT Interface Hardware

Power Supply

Address Bus

Dala Bus

Clock

Upstream Tap

Decode Enable

Chip Select

Supply Pins

Gives +s volts and ground for tvt power. Goes from
µ,P to tvt.
Runs tvt instruction and Scan PROMs. Goes from µ,P
to tvt.
Receives Scan Microprogram from Scan PROM.
Goes from tvt to µ,P.
Drives High Frequency Timing. Goes from µ,P to tvt.

Delivers characters or chunks to the data-to-video
converter. Goes from µ,P to tvt.

Disables other computer use during tvt Scan times.
Goes from tvt to µ,P.
Enables Display memory either for normal or tvt
operation. CS/ goes from µ,P to tvt; CSO goes from
tvt to µ,P.

The supply lines are an obvious place to start. We often power
our interface hardware from an existing +5-volt supply on the com
puter or display memory card. Approximately 250 milliamperes is
usually needed. Reasonably heavy connections should be used for
both the +5-volt and ground leads.

Your +5-volt line must be well regulated and well filtered. A
local regulator and some extra bypassing is usually a good idea.
Supply line noise can cause plenty of trouble. If noise gets into the
position circuits, you get slanted or broken characters. If noise gets
into the video output, you get variable character brightness. If
noise gets into the high-frequency timing, fuzzy or sugar-coated
characters can result. Since these circuits are essentially analog, the
supply filtering requirements are more stringent than would usually
be the case.

Address Lines
Around half the address lines of the computer may be needed. In

the TVT 63/s we use Al through A5 and Al2 through Al5, and
optionally use A6 and A7.

Each address line drives the input of a bipolar PROM. This is
less than one LS TTL load, so extra buffering just for the M inter
face often is not needed.

But, if you are tapping a display memory card or something else
that has its own address drivers, it pays to use the buffered side
rather than adding extra load on the microcomputer itself. Address
lines are usually easy to get to and often have available pins on the
system bus or expansion connector.

134

Some bus systems use complements of the address lines, expecting
you to use inverting bus drivers on everything that plugs onto the
bus. If this occurs, you can add your own drivers, borrow existing
ones, or else redefine the truth tables on your PROMs to work with
complementary code.

If you are retrofiting an existing microcomputer or memory card,
use a wiring pencil for your interconnections. This is far and away
the neatest, simplest, and fastest way to make needed add-on con
nections. You can use wiring-pencil connections for everything
except the supply lead and ground.

Data Bus

Data-bus connections are as easy to do as the address-line con
nections. You can pick these off of your expansion connectors or
system bus. The interface hardware drives your address bus from
the tristate Scan microprogram PROM during Scan times, but
floats its bus access otherwise. A typical PROM can drive eight
regular TTL loads. Everything else hung on the data bus must be
less than this, or you will need more buffering.

Clock
A 1-MHz clock is needed. If this is also your microprocessor

system clock frequency, you are usually home free. The clock must
have the capability to drive one LS TTL gate in the high-frequency
timing.

It is extremely important to pick the right clock phase or delay
to make sure that the video-shift register gets loaded during data
valid times. One timing scheme that usually works is to load your
video shift register 1 µ,s after you change the addresses to your
data-to-video converter.

If you do not have a megahertz floating around your system, you
can usually get one by dividing down your system clock with a
flip-flop or two. An inverter can give you the opposite clock phase,
or a delay of one half a microsecond. Remember that this frequency
must be exactly known and stable, since it defines the critical
vertical-sync rate.

Upstream Tap

So far, all of our interconnections have been obvious and easy
to do. The rest of them, however, have to go to special places in
your microcomputer that are not normally brought out to system
bus lines or expansion connectors.

Your new upstream tap (Fig. 1-8) consists of eight wires that
come directly from the output of your display memory. A nonin
verting driver of some kind must be present between your memory

135

output and the true data bus. This driver is present on the KIM-I
and on practically all plug-in static-memory cards.

If your microcomputer display-memory RAM outputs go directly
te; the data bus, you will have to add a noninverting buffer between
that memory and the true data bus. Fig. 3-23 shows the typical con-

D I SPLAY
MEMORY RAM

!8 B ITS DEEPI

NEW UPSTREAM
: ... TAP VDO-VD7
I
: BUS DR IVER
I

1 l [> 1 • ����D��S

(A) Using existing bus drivers.

DI SPLAY
MEMORY RAM

NEW UPSTREAM
, -- -----------------+- TAP VDO-VD7
I
I NEW BUS DR IVER
: 174LS240, ETC. I

i ---I>·--7
I I
I I

c+ '"'' l �--,------· ...
�:�����

'-------
1
.,--8 B-cl

-:-:TS
c-:D:::EE:-=P:-

1
____ _.

(B) Adding your own bus driver.

Fig. 3-23. Adding the upstream tap.

nections for your upstream tap using either an existing or a new bus
driver. The bus driver gets activated only when the computer wants to read the display memory. During Scan times, the display is
activated only as far as the upstream tap, letting the Scan micro
program PROM have control of the data bus.

136

Your Turn:

Show how to provide an external driver to
a display memory RAM having common
input/ output pins.

The loading on your upstream tap varies with the application,
but, at worst, it is about one LS TTL load per line. For graphics
uses, we usually go directly to the LS inputs on a register, selector,
or blanking driver. On alphanwnerics, the botton six or seven lines
go to the MOS inputs of a character generator, while the eighth line
will source or sink one half a milliampere as part of the Cursor
circuit.

Display Memory Chip Selects
During normal computer operation, your display memory must

be enabled when it is wanted for a read or a write. During computer
read times, both the memory and the output bus driver are acti
vated. During M Scan times, the memory is activated only as far
as the upstream tap. During Scan times, the Scan microprogram
generator has control of the data bus,

So we have to break the existing memory chip-select connection
and add a way to enable only the memory during Scan times, as
well as retaining the normal chip selection needed for ordinary
computer use.

Most memory chip selects or enables are active low. Thus, you
want a negative logic OR circuit that gives a low output for either
input low. This turns out to be the DeMorgan equivalent of a plain
old positive logic AND gate. You can use a 7 4LS08 or its internal
PROM equivalent.

Usually this AND gate or its PROM equivalent goes in the inter
face hardware. We route a lead from the existing display-memory
chip-select source to the M interface and call it CSI or Chip Select
Input. After logical gating, we route a new lead from the M inter
face to the display memory and call it the Chip Select Output, or
cso.

Figure 3-24 shows how we add this new chip-select gating to
your display memory. To review:

* The existing chip select going only to the memory CS inputs
is cut. The source of this signal is called CSI.

* CSI is routed to the interface hardware and appears as a new
output CSO. CSO is activated low either when the computer or
the tvt wants use of the display memory.

* CSO is routed to the display memory.
* No change is made to the logic driving the output buffers.

Note particularly that the logic going to the output buffers stays
the way it was. These bus drivers get activated only when the
computer wants to read this particular memory. Chart 3-2 swn
marizes key upstream tap and chip-select interface rules.

137

NEW CHIP-SELECT
INPUT FROM TVT

INSTRUCTION DECODER

NEW NEGATIVE LOG IC
"OR" GATE OR
EQU IVALENT PROM COD ING

MEMORY TO BE
D I SPLAYED

x---1 CS
�AA � ----��

FOIL RUN

EX ISTING CS SOURCE
I KO ON K IM-11

NEW UPSTREAM TAP

V I DEO DATA
TO TVT

Fig. 3-24. Changes In chip-select circuitry needed to activate display memory
during normal OR tvt Scan times.

Chart 3r2. Checklist for Upstream Tap and Chip-Select
Interface Connections

D Your upstream tap comes directly from the display
memory.

D The upstream tap leads are short to prevent ca
pacitive loading.

D A noninverting driver is present between the up
stream tap and the true data bus.

D The Display Memory gets enabled either when the
the computer or the tvt uses it, but not otherwise.

D During tvt operation, the display memory gets en
abled only as far as the upstream tap.

D The output bus driver gets enabled only when the
computer wants to read the display memory.

Decode Enable
The Decode Enable output (DEN) is an output from the tvt

interface hardware. Its purpose is to stop anything else from using
the data bus during Scan times. On the KIM-1, the Decode En
able goes high during Scan times to disable the KO line of the
KIM address decoder. This is an easy-to-reach point on the KIM.

On your particular system, you will somehow have to arrange to
stop all other address enablings from happening during Scan times,

138

starting with this DEN command. If your particular microcomputer uses a full decoding of all 65K address spaces for everything tacked onto your system, the DEN output will not be needed and can be ignored. The only time you must use DEN is if there is something else trying to use the data bus during M Scan times.
Changeover Even with your Chip-Select line cut and all the extra connections made, your microcomputer will behave normally during non-M times, as long as certain addresses are not called and as long as the
interface hardware remains plugged in. The number of "no-no" addresses can be further minimized by using a M that can be enabled, or more elaborate tvt decoding. Usually, some extra logic will be involved to free these extra addresses. With the full transparency ,schemes of Chapter 5, we are

ENABLE A4 INSTRUCTION
Al5 A3 DECODER
Al4 A2 PROM
Al3 Al --MUST BE CODED FOR
Al2 AD ENABLE: EXTERNAL

CS GATING USED.

(A) Using decode PROM with tvt enable coding.

ENABLE ----o,-----, 74LS08
CS I ----0-----------� A4

� �
A2

ill Af
Al3 AO
Al2

INSTRUCTION
DECODER
PROM

MAK ING ENABLE H IGH
AllOWS NORMAL M
OPERATION.
Al2, Al3 ARE ''DON ' T CARE"
STATES IF Al4 & Al5 ARE LOW.

(8) Forcing a benign tvt decoding with and gates.

UP• D ISABLED

+5 8 c) DOWN• NORMAL BNK

"'!'" I

SEI

+
5

6 a � ; TVT CONNECTOR P I_NS
I SEO r-- ·

� r7 c DEN) DEN OUT TO
COMPUTER.

(C) Switching at the tvt connector.
Fig_ 3-25. 11,ree wars to disable rour tvt during nondlaplar times.

139

able to activate the M only during active Scan lines and do other
computation during other times.

Fig. 3-25 shows three ways to disable your tvt circuit during non
tvt times. In Fig. 3-25A, we use an instruction decoder with an in
ternally decoded enable command. In Fig. 3-2.5B we use an external
gate to "force feed" the instruction decoder into a "use the computer
normally" state. In Fig. 3-25C, external switching is added to the tvt
connector.

If you want to be able to remove the M interface from your
computer, or if you want to be able to use everything that came
with the computer with no restrictions on addresses, you will have
to add simple switching to activate or deactivate the M. Fig. 3-26
shows one possible changeover switch.

MEMORY
CH IP SELECT 1
FROM COMPUTER

DECODE
ENABLE
TO COMPUTER

COMPOS ITE
CHIP SElfCT

CS I TO TVT CSO FROM TVT

L'TVT"
,,-<°--- TO D ISPLAY

• MEMORY CHIP
"NORMAL" : SELECT

I
I
I

0'
DECODE ENABLE
DEN FROM TVT

NEEDED ON KIM-1
MAY NOT BE NEEDED ON
COMPUTERS WITH
FULL 65K ADDRESS
DECODINGS.

/

Fig. 3-26. Changeover switch may be needed if an interfaced microcomputer
is to run normally wilh tvt unplugged.

Your TVT-NORMAL switch has to do two things. It must route CSI
through the tvt to arrive as CSO at the display memory during tvt
times. Otherwise, it directly connects CSI to CSO, effectively "re
pairing" the cut foil on the Chip-Select line.

The second switching contact has to route the decode enable
from the tvt to the microcomputer during tvt times and has to
permanently activate the decode enable during non-tvt times. This
second switching may not be needed on systems with full 65K
address decoding.

In the case of a KIM-1, a dpdt changeover switch can be added
between the main board and the tvt connector. This switch gives
you a choice of NORMAL or TVT operation. If you are using a
second memory on your KIM, a second changeover switch must be

140

used with a new connector. Remember that the upstream tap always has to come from the memory being displayed and CS Enabled. Use of a changeover switch during a program may bomb the program, so do your switching with the power off. If you need switching under program control, use a tvt enable or an electronic switch "cold" driven from a debounced contact.•
KIM-1 INTERFACE Chart 3-3 lists all the connections needed for a KIM-I and a KIM-2 interface. These connections are repeated in instruction form in Fig. 3-27 and 3-29 and as a pictorial in Fig. 3-28.

1. Add a new 36-pin, single readout connecto� along the top of the KIM-1 above the
crystal. Small "L" brackets can be added to use existing holes.

2. Make short and direct wire connections as described in Chart 3-3. Use a wiring
pencil for all connections except +5 and GND, which should be short lengths of
No. 18 wire,
Do not use ribbon cable or offempt extending the TVT 6 5/8,

3. Break ONE foil run as shown, and add a dpdt changeover switch:

M

,..-M---r(, __ D_rn __) 20
DECODE ENABLE) P IN 12 U4 .,..,__ ____ : 0

K IM
I
I
I

K IM EXPANS ION

(_20_½
MEMORY CS
P IN 13 U5-Ul2

I

L ���--�: __ : ;:: EXTERNAL
GROUND

/x

REMOVE All EXTERNAL CUT FOIL KO DECODE CONNECTIONS FROM K IM·l
P IN l, U4 APPLICATIONS "K "

With the switch in the TVT position, operation is totally transparent so long as the
TVT 6 5/8 is in its socket and addresses 6000-dFFF are not called.

Fig. 3-27. Modifying your KIM-1 for the TVT 6 5/8.

On the KIM-I conversion, a 36-pin .I56-in (3.96-mm) singlereadout connector is placed along the top. All connections between connector and computer are made with a wiring pencil, with the exception of the supply and ground runs. Make these runs with
141

...
t Chart 3-3. Connections Needed to Interface TVT 6 5/8 to KIM-1 or KIM-2

KIM-1 KIM-2
Pin ldent Function Load Connection Connection

1 * GND Ground return-heavy foil or wi re - Expansion 22 Connector 1
2 BNK Blanking input (ground) 1 TTL TVT pin 1 TVT pin 1
3 HIN Horizontal-sync Input 1 TTL TVT pin 20 TVT pin 20
4 VD7 Cursor or Graphics bit 8 varies Pin 1 2 of US Pin 2 of U3

5 VD6 ASCII bit 7 from display memory 1 NMOS Pin 12 of US Pin 6 of U3
6 VD5 ASCII bit 6 from display memory 1 NMOS Pin 12 of U7 Pin 10 of U2
7 VD4 ASCII bit 5 from display memory 1 NMOS Pin 12 of US Pin 2 of U2
8 VD3 ASCII bit 4 from display memory 1 NMOS Pin 12 of U9 Pin 6 of U2

9 VD2 ASCII bit 3 from dlsplay memory 1 NMOS Pin 12 of U10 Pin 10 of U1
10 VD1 ASCII bit 2 from display memory 1 NMOS Pin 12 of U1 1 Pin 2 of U1
1 1 VDO ASCII bit 1 from display memory 1 NMOS Pin 12 of U12 Pin 6 of U1
1 2 A15 Address l ine 15 1 LSTTL Expansion T Connector U

1 3 A14 Address l ine 14 1 LSTTL Expansion S Connector T
14 A1 3 Address line 1 3 1 LSTTL Expansion R Connector S
1 5 A1 2 Address line 1 2 1 LSTTL Expansion P Connector R
1 6* cso Chip Select TO display memory TTL Out Pin 1 3 Pin 2 of US

U5-U12
17* CSI Chip Select FROM Enable Decoding 1 LSTTL Pin 1 of U4 Pin 4 of U 1 1
1 8 SEO Scan Enable OUTPUT TTL Out TVT pin 1 9 TVT pin 1 9
1 9 SEI Scan Enable INPUT 1 LSTTL TVT pin 1 8 TVT pin 1 8
20· DEN Decode Enable TO KIM TTL Out Pin 1 2 of U4 Connector 3

... ...
w

21 VRF Vertical Reference TTL Out no connection no connection
22 A5 Address l ine 5 1 LSTTL Expansion F Connector H
23 A4 Address l ine 4 1 LSTTL Expansion E Connector F
24 A3 Address line 3 1 LSTTL Expansion D Connector E

25 A2 Address l ine 2 1 LSTTL Expansion C Connector D
26* A1 Address line 1 1 LSTTL Expansion B Connector C
27 DB7 Data Bus 7 TTL TS OUT Expansion 8 Connector 8
28 DB6 Data Bus 6 TTL TS OUT Expansion 9 Connector 9

29 DBS Data Bus 5 TTL TS OUT Expansion 10 Connector 10
30 DB4 Data Bus 4 TTL TS OUT Expansion 1 1 Connector 1 1
31 DB3 Data Bus 3 TTL TS OUT Expansion 1 2 Connector 1 2
32 DB2 Data Bus 2 TTL TS OUT Expansion 13 Connector 13

33 DB1 Data Bus 1 TTL TS OUT Expansion 14 Connector 1 4
34 DB0 Data Bus 0 TTL TS OUT Expansion 15 Connector 15
35* VCL Video Clock .el2 1 LSTTL Expansion U Pin 4 of U10
36* +sv +5-volt supply 200 ma Expansion 21 Connector V

Notes: (See • Above}
Pin 1-Ground should be heavy foil or No. 18 wire-al l other connections are wire pencil short leads. Do not use ribbon cables or attempt extension.
Pin 1 6, 1 7-Chlp-select l ine from decoding to display memory is broken by cutting foil and then replaced with a negative logic OR (positive AND} of

the original chip select and the tvt chip select.
Pin 20-Decode Enable output goes low when tvt is NOT scanning; goes high otherwise. Decoding must be disabled during active Scans to allow Scan

memory access to data bus.
Pin 26-Address l i ne AO is not used In M module as ihe Scan microinstruction indexes every second microsecond. AO is used, however, In display memory

addressing .
Pin 3&--Video Clock must load character generator only when data output is stable and valid. Clock �2 on the KIM.
Pin 36-+5-volt power from computer must be noise free and well regulated. Heavy wire.

short pieces of heavy wire. A changeover switch goes near the
crystal to let you select tvt or normal operation. One foil run is cut
as shown.

The KIM-2 conversion is similar with the connector going along
the far side of the memory card. If you are using some other 4K or
SK memory add-on instead of the KIM-2, the conversion details will
stay about the same.

144

080 ;,i; --------1
180 ::::: -----'
zso � ---------'

£80 .s ---------'
\>80 � -------'

� --------'
980 � -----------'
l8Q � ---------'

co u Q LI.I u..

� � � � �

IV "-l ..._ ________ ____,

zv � -------------'
£V � ------------'

vv � ----------------'
IV � --------------'

18A 0::
NlO !si

S 13S �
03S �
I SJ :::; --·1-----------�

OSJ � ----1------------1 -,
ZIV :<l --1---------
nv :!: ---l---------

v1v � __ .._ ______ _
�IV � --1-------
00A :::: ---1-----�
laA S __ ,, ____ _
ZQA o- __ , ____ _
£QA � ----1---�
!QA

90A
LOA
N I H
�NS
ON�

Fig. 3-28. Pictorial of KIM-1 to TYT 6 5/8 interface.

1 . Add a new, 36-pin, single readout connector along the left edge of the card, the
side away from the regulator. Small "L" brackets can use existing holes if one of
the handle eyelets is replaced with a #6 screw.

2. Make short and di rect wire connections as described in Chart 3-3 . Use a wiring
pencil for al l connections except +s a nd GND.

3. Break TWO foil leads as shown, and add a dpdt cha ngeover switch:

lVT
K IM-2

��:��S�)
,_

__ DEN ____________ � DEN)20

(MOO IFIEDI OR
...__ _ _,

: l_
APPL ICATION K i "'!"
_,,,.,,

. , "' "" ' '"�" ,. , K NEW • V x�

FROM
K IM-1 C , 0 , E , F

K IM-2

APPLICATION ...-/
!DECODED 1-4) /

PREV IOUSLY UNUSED
INVERTER

/
CUT FO IL lVT

cs r 11

REMOVE ALL EXTERNAL CONNECTIONS
FROM K IM-2 "BO SELECTE D " 16

Note that we now have a new input pin on Connector 5 that is d riven by KIM-1 de
codings K l , 2, 3, and 4 i n parallel from Application connector C, D, E, and F.
We a lso have a new output pin on Connector 3 that provides a ground for the KIM-1
Decode Enable. This is connected to Application Connector K on an unmodified KIM-1
and to Expansion Connector 20 or a KIM-1 modified per Fig. 3-27.
Note further that BO SELECTED output Connector 16 is not used .
These modifications cause your KIM-2 to respond to addresses 0400-1 3FF. The program
address switches are no longer used.

Fig. 3-29. Modifying your KIM-2 for the TVT 6 5/8.

Always be sure to keep your upstream tap connections short and
be sure to connect your upstream tap to the memory you are going
to display. Note that your "bare" KIM-1 is usually limited to 512-
character or smaller displays.

Other Micros

Chart 3-4 is a checklist that describes how to interface a proces
sor-based video display to your particular microprocessor. As we
have seen, interface to the KIM and other 6502 systems is very
easy, and conversion to 6800 systems usually is about as easy.

What about the other microprocessors, particularly the 8080, Z-80,
1802 COSMAC, the 2650, the 8048, Bipolar beasts, and so on? The
answer right now is "we simply have not tried it." Microprocessor
based video displays should, in theory, be useable with any micro

145

Chart 3-4. Checklist for Adapting Your Microprocessor-Based
Video Display to Your Microprocessor (Most 6500, 6800, 8080,

and Z-80 Systems Can Be Made to Meet These Needs)

D Upstream Tap Must Be Separately Available From Data Bus.
-This means that a noninverting, separately enabled external driver

must exist or be added between memory output and the computer
true data bus.

D During a Scan, the Display Memory Addresses Must Change Once
Each Microsecond.
-This means the program counter must be able to cycle at a 1 -MHz

rate, or else something must be done at the display memory to
cause the address l ines to appear to change at this rate.

D Display Memory Addresses Must All Be Present During a Scan.
-This means that In systems having multiplexed data and address

l ines, all lower address l ines and at least some higher address
l ines must be stored for stable use. This also means addresses
have to be latched and held during "floating" times, such as the
"Status word" time on an 8080.

D Each Character or Chunk Time Must Be a Constant 1 Microsecond.
-This may mean that the fetch and execute times must be the same

on slower microprocessors.

D Everything Else Must Be Disabled During a Scan.
-This means the Decode Enable output from the interface hardware

has to be able to deactivate all other addressed locations.

D The Display Memory Must Be Enabled Either From the Computer or
the TVT Interface Circuit
-This means that the normal CS line on the display memory must be

broken and OR logic or its PROM equivalent must be added.

if you go to enough trouble. On the other hand, we hand picked the
6502 since it seemed the best suited to develop these techniques.

TELEVISION INTERFACE

AH of your graphics Scan programs, all shorter-line alphanumeric
programs, and a few long-line alphanumeric programs run with a
display at normal or near-normal horizontal rates. If you have a rf
modulator, a video monitor, or a fully converted tv set on hand, all
you have to do is connect the Video output of your tvt to the
Video input of the monitor, modulator, or modified (old way)
television set.

You use a shielded cable. If you have control over the connectors,
use a phono jack on the tvt end and a miniature phone plug at the
display end. For premium display systems, use BNC connectors
instead.

146

Fig. 3-30 shows the two output waveforms available from the TVT 6%. The Video output approximates EIA (Electronic Industries Association) standard video. White is a positive voltage of approximately I volt. Black is a positive voltage of approximately 0.25 volt, and sync tips are "blacker than black" at ground. A new "tv" output is also available. This offsets the waveform so the white level is at +4 volts. This +4 volts is the same bias voltage that many solid-state tv sets need at their first video stage input. The tv output greatly simplifies interface since the translating is already done for you.
WHllE

I ------------ + 4 V

---- -----/--------- ,_
/ BLACK

----- + 3.25 V
------- + 3 V

SYNC

(A} "TV" output.

WHITE

----------- + 1 V

----- -t0.25 V
------- GND

SYNC

(B) "VID" output.
Fig. 3-30. Tvt output waveforms. "TV" output simplifies Iv direct video inter

face. "YID" is for monitors.

Adding a TVT Input to Your Television Set The conversion to be described next will let you use the television set normally or as a M display. Automatic video changeover is done with the headphone jack. Unplugging your M restores normal operation. Note that what we are about to show you will onl,y work
with a tvt circuit that has a pretranslated tv output avaflable. A checklist of the things in your tv set which you want for conversion is provided in Chart 3-5. Always start with this list and then select a suitable tv set. Do not just grab any old junker set and try to use it. You will want a small screen black and white portable set, solid state, no tubes. Above all, the set must have a power transformer
and must not be a hot-chassis type. A Sams PHoTOFACT Folder or other schematic MUST be on hand. (Obtain PHoTOFACT Folder

147

Chart 3-5. The Best Possible TV Set for Cheap Video Display
Use Will Have These Features

O Not a Hot Chassis; Uses Power Transformer

O Has Photofact or Other Schematic Available

O Black and white

O Small screen

O Easy to work on

D Low horizontal supply voltage (40 volts or less)

O Has headphone jack

O Has horizontal yoke Inductance between 1 00 and 350 mlcrohenrys

from your local electronics parts disbibutor, or order direct from
Howard W. Sams & Co. Inc.)

An already-there earphone jack will be a big help. And, if you
are going to modify the width, things will be easiest if the horizontal
deflection works off of a low-voltage supply, and the deflection
horizontal inductance of the yoke is between 100 and 350 micro
henrys.

The worst possible set to use is an old tube-type clunker. These
use a different first video bias level than solid-state sets and rarely
have enough sharpness or uniformity for a quality display. They are
also a mess to work on.

The best possible set is one that has an optional battery pack
that goes with it. While we usually will not need the battery, the
design of this type set almost always uses a low horizontal deflection
supply voltage and includes a power transformer and earphone
jack; it often is extremely easy to work on and gives a sharp display
as well.

Your actual conversion is very simple. You borrow the earphone
jack and put it in the video line between the video detector and the
first video stage so that plugging in the tvt switches you over auto
matically. Details are shown in Fig. 3-31 for a Sears, Roebuck &
Company tv set.

You can do your conversion this way:

D With your schematic, first verify that you do NOT have a hot
chassis set by finding the power transformer. Now, find the
input to the first video stage and make sure it needs an input
bias level of +3 to +4.2 volts.

148

11.4 V

RllJ
33K

FROM V I DEO ______
T
-<:
Pl
,_
2

__ _
DillCTOR H V

Fig. 3-31. Modifying a Iv set for direct video Input from "TV" output of cheap
video system.

D Find the headphone jack and familiarize yourself with its
circuitry. In particular, note the switching action that dis
connects one lead when the jack is u�ed.

D Remove all connections from the jack, including, if possible,
any ground connection. Reconnect together any leads as
needed to restore normal speaker operation. Check to make
sure that the speaker still works after removing all jack con
nections.

D Prepare two pieces of shielded cable that will reach from the
video detector to the phono jack and from the phono jack to
the first video stage. Make these runs as short as possible, but
provide enough room to work. RG-174U miniature coax is
best, but any quality audio or CB shielded cable will do.
Shielded cable ends are usually prepared by carefully poking
a hole in the braid and pulling out the center conductor.

D Break the connection between the video detector and the first
video stage by cutting foil as needed. Make sure that any and
all bias components stay on the video detector end of the cut.
A "bare" input to the first video stage base or IC input pin
should be the only thing on one side of the cut.

O Connect your first shielded cable between the bare input to
your first video stage and the phone jack contact that gets
connected to the center of the miniature phone plug when
the plug is inserted. Connect the ground of this cable to a
shield or other ground point as close as possible to the first

149

video input stage. Connect the ground on the other end to the
frame of the phone jack. O Connect the second shielded cable to the video detector and biasing components. Connect the other end to the contact on the phone jack that gets disconnected when the plug is inserted. The ground of this cable goes to a shield or other ground near the video input on end and to the frame of the phone jack on the other, just like the other cable. Avoid any other ground or chassis connections at the phone fack end. D Put the tv set back together and check it for normal operation. Plug a miniature phone plug into the phone jack. Change tuner to a blank channel. The screen should go blank with no background noise. Remove the jack, change channels and the program should return. With any television interface, you will get best operation on an unused channel at minimum contrast levels and just enough brightness for a viewable display. Too much contrast cuts ·your video bandwidth and too much brightness blooms your spot size. There might be a 2-megohm or so lightning protection resistor between the hot side of the power line and the chassis. If this is present, remove it unless you are still going to use the set on an outdoor antenna. The current through this resistor is not enough to give a dangerous shock, but it can produce a "liveness" or fuzzy sensation if the chassis or the computer is touched.

Removing the Sound Trap A sound trap is a 4.5-MHz filter somewhere in the video path of the television set. This trap is used to keep audio from visibly interfering with the picture. If your set is to be used mostly as a cheap video display, you might want to remove the sound trap. This will increase the video bandwidth and improve the transient response. Always study your schematic before altering any television set. The sound trap is often a series coil and capacitor to ground forming a series resonant circuit. Often you can simply lift one end of the capacitor to defeat the trap. While series traps are the most common, there are many odd-ball variations on sound traps. Some Panasonic tv sets use a 4.5-MHz crystal; this is defeated by lifting the hot lead. A few sets may use a parallel resonant trap that the video has to go through to reach the output stage. These traps are defeated by shorting, rather than opening. Some cheap sets combine the sound pickoff with the sound trap; these can present problems. The best method on these
150

is a try-it-and-see approach. If your modification improves the dis
play, use it.

You can minimize the effect of a sound trap without modifying
it simply by backing the slug almost all the way out. Normal tv
operation is restored by readjusting for minimum visible audio
interference in the picture.

Extending Hold Range

Should you want to use the 64- or BO-character lines or anything
else that needs a reduced horizontal rate, you will have to run at
lower than normal horizontal- Scan rates. This might be below the
range of your horizontal-hold control that sets the horizontal-Scan
frequency. You can check this detail without taking the set apart.
Simply hold a scope probe somewhere near the left rear comer of
the set by the high voltage cage and vjew the flyback pulse.

As you adjust your horizontal-hold control (on a blank channel)
the pulse-to-pulse spacing should change. A 63.5-µ,s period is needed
for normal horizontal operation and should be in the center of the
hold-control range. On some sets a special square or hex alignment
tool may be needed to adjust your hold control. These are available
at tv parts supply houses at little cost.

For BO-character lines, you should be able to extend the hold con
trol beyond 105 µ,s. If this is out of range, study your schematic and
find the capacitor that determines the horizontal-hold frequency.
Often this will be a capacitor that is directly across part of the
horizontal-hold coil. Add a new mylar capacitor of one third the
original value in parallel with this existing capacitor and recheck
the hold-control range. Adjust the capacitor value if needed. After
you get the low range plus a little bit more, be certain to check the
high end to make sure you can still lock on ordinary program
material at 63.5 µ,s.

Fig. 3-32 shows how to change this capacitor on two typical sets.
Once again, be sure you are working on a small screen, black and
white, portable, solid-state set without hot-chassis design.

Reducing Width

When you run at a reduced horizontal frequency, the width may
go up. You will want a narrower display. You also might want to
reduce width on a normal display, either to minimize overscan
built into the tv set or to avoid spot defocusing that takes place at
the screen edges.

We reduce set width by adding a small, homemade coil in series
with the horizontal-yoke lead. Fig. 3-33 shows how this is done.
The method we will show you works on small screen sets with a
low horizontal-deflection supply voltage and having a horizontal-

151

R409

6.8 K

C407

/
. 033

ADD -�µF�
-022 µF

t HORIZ
HOLD
L401

+ll. 5 V

(A) Panasonic TR-525.

ADD
/

. 033 µF

C408
R410 . 068 µF

20 t HORIZ
�--- HOLD

T401

(B) Sears 562-5026.
Fig. 3-32. Extending horizontal hold range for lower horizontal

frequency operation.

yoke inductance of several hundred microhenrys.
If you have an existing width control or jumper, check it first

to make sure it is on its minimum position. This usually won't help
much.

For your initial trial, wind 50 turns of No. 22 enamel wire on a
½-in (1.27-cm) nylon form and put this in series with the horizontal
yoke lead. Always remove tv set power when making yoke connec-

152

�

NEW W IDTH COIL
50 TURNS •• 1/2" NYLON FORM
NO. 22 ENAMELED W IRE

HOR IZONTAL YOKE LEAD

Fig. 3-33. Reducing tv set display width.

tions. Never power a tv set with an open yoke conection. And never
reduce the width of a color tv set.

Have your tvt up and generating characters in the right format
and have your hold locked before checking width. If the coil does
the job, you are all set. If the width is still too wide, add turns.
Remove turns if you have gone too far. Cutting the turns by 30%
cuts the inductance in half. Increasing the turns by 40% doubles
the inductance.

When you have the right number of turns, firmly mount the new
width coil in some convenient place. Try to have the coil away from
everything, more or less supported in mid air, but close to the yoke.
If you get too close to the neck of the tube, you might get some
field distortion that will give you a wavy or "S" shaped display.
Repositioning should correct this.

Never use an iron core, a high-loss core material (e.g., wood) , or
fine wire for your new width coil. This must be a high Q coil to
preserve linearity.

You can add a switch that shorts out your new width coil as
needed to restore ordinary width. Never open the yoke connections
of a powered tv set.

After you have reduced the width on your tv set, you will
probably want to change the display height and positioning. Usually
you will find a vertical-height control at the rear of the television
set. A vertical-linearity control also should be nearby. These two
controls strongly interact on most sets, so you have to adjust them
both every time you change the display size. Linearity is properly
set when all character rows are evenly spaced and the same height.
These controls are usually screwdriver adjustable.

The positioning of the display is usually controlled by two small
ring magnets on the crt neck behind the deflection yoke. These are
rotated as needed to center your raster. Note that the positioning
controls on your tvt can only move the live, unblanked portion of
the display around with respect to the total raster. The raster itself
can be moved only by readjusting these ring magnets.

Running at reduced width and reduced horizontal frequency at
the same time should not be particularly rough on a small screen
tv set that uses a low-voltage supply for horizontal deflection. If
you get any obvious unhappiness such as bad linearity, high-voltage
problems, etc., return to normal operation and sneak up on the
problem.

Reduced horizontal operation can make the flyback sing at an
audio rate. Depending on your set, this can range from just barely
noticeable to absolutely "up the wall" intolerable. The singing is
caused by the flyback transformer. Its normal pitch is high enough
that most people cannot hear it, until you reduce the Scan fre-

153

quency. You can minimize this singing by "glopping" parts of the
flyback with silicon bathtub caulk. Be sure to use clear silicon
rubber and avoid increasing winding capacitance or putting so
much on that the flyback overheats. Extra circuit board supports
and tightening everything will also help, as will covering up any
new holes such as left off tuning knobs or anything similar. Internal
sound deadening material can also help provided that it does not
interfere with air circulation and is not extremely flammable.

Generally, you can minimize, but not eliminate, the singing. If the
final result is still annoying, try a different brand television set, or
run programs with a higher horizontal frequency.

You can get a fair idea ahead of time on this singing by simply
lowering the horizontal frequency as far as possible and switching
to an unused channel. The problem should not be as bad with sets
that have the flyback inside a high-voltage cage.

154

CHAPTER 4

Building The TVT 6 5/8

The TVT 6% is a typical example of what you can do with cheap
video techniques. This is a single sided pc board as shown in Fig.
4-lA that holds six low cost integrated circuits. One or two additional
ICs are added in the form of a small plug-in module. A closeup view
of a plug-in module appears in Fig. 4-lB. The large socket in the
center accepts an upper-case-only character generator or any of a
number of plug-in modules for upper- and lower-case alphanumerics;
color; or high-resolution graphics displays.

Chart 4-1 lists some of the many things you can do with this cheap

Chart 4-1 . What Your TVT 6 5/8 Can Do

Alphanumeric Displays:
* 1 l ine of 8, 1 6, 32, or 40 characters * 1 2 llnes of 80 characters * 16 llnes of 32, 40, or 64 characters
*' 24 lines of 80 characters
*' 32 lines of 32, 40, or 64 characters * PLUS most any other combination you can dream up

Graphics Displays:
* 128 X 128 and 256 X 256 black and white * 48 x 64 and 96 x 128 color
* PLUS most any other combination you can dream up

Optional System Features:
*' Full Transparency with high throughput
* Choice of ASCII characters or graphics chunks
* Scrolling Cursor with full editing * Immediate access to screen memory at any time * Works with 6502, 6800, and other micros
* Combined graphics and alphanumeric displays

155

(A) Video card.

(B) Closeup of four-color graphics module.

Fig. 4-1. TVT 6 5/8 cheap video card and plug-in module.

video system. This is a third-generation design that picks up the
best features of the TVT6 and TVT6L that earlier appeared in vari
ous issues of Kilobaud and Popular Electronics. New features added
include the full graphics ability, transparency options, a simpler and
cheaper overall circuit, and much more modest use of microcomputer
address space.

In this chapter we will show you everything you need to build and
use the TVT 6% on your own. Your cost should be under $20 if you
etch your own board and bum your own PROMS. If you prefer,

156

assembled units, kits, circuit boards, and software tapes are commercially available. One source is PAIA Electronics, Box 14359, Oklahoma City, OK 73114. Other sources include several retail computer stores. You will also be shown how to check out and debug this board, again using the 6502 software and a KIM. Then, in the next chapter, we will look at how to pick up full transparency.

UPSTREAM
TAP DATA

ADOll:SS

ADDRESS

DATA BUS

BNK

SEO

DEN

VRF

HIN

SEI

WIDTH

CURSOR
IC3

DECODE
PROM
ICI

H POS V

ENABLE
SCAN
PROM

• IC2

DATA BUS

VIDEO·SHIFT
REGISTER

IC4

DOT
DATA·TO·VIDEO

CONVERTER
IC7

ROW FROMAT

CLARITY

TRANSLATOR
DH

Fig. 4-2. Block diagram of TVT 6 5/8.

157

HOW IT WORKS A block diagram of the TVT 6o/s is shown in Fig. 4-2, followed by the schematic in Fig. 4-3 and a parts list in Chart 4-2. ·
C1 ,3
C2,6
C4
C5
C7
CB, 1 5-18
C9
C1 0
C1 1
C1 2
C13
C14
D1-8

IC1

IC2

IC3
IC4
IC5
IC6
IC7
J1 ,2
R1 ,15
R2
R3
R4,6
R5,7
RB
R9
R10
R1 1
R12, 1 6
R13
R14
R17
S1-S4

MISC.

158

Chart 4-2. TVT 6 5/8 Parts List

470 pF disc ceramic capacitor
270 pF polystyrene capacitor
4700 pF polystyrene or mylar capacitor
.01 µF mylar capacitor
0.22 µF mylar capacitor
0.1 µF disc ceramic capacitor
33 µF tantalum capacitor
62 pF polystyrene capacitor
1 50 pF polystyrene capacitor
33 pF polystyrene capacitor
1 200 pF polystyrene or mylar capacitor
3300 pF polystyrene or mylar capacitor
1 N4149 or equivalent slllcon computer diode; D3 must be

quality unit with low storage time
IM5610 or equivalent 32 X 8 TRI-STATE bipolar PROM,

programmed to DECODE truth table selected
IM5610 or equivalent 32 X 8 TRI-STATE bipolar PROM,

programmed to Scan truth table selected
4584 CMOS Hex Schmitt Trigger
741 65 Parallel In, Serial Out Shift Register, TTL
7405 Hex open collector TTL Inverter
74LS04 Hex LS TTL Inverter
Plug-In Module-see text and Figs. 4-10 through 4-14
Side entry pc phono jack
4. 7K, 1 / 4 watt carbon resistor
100K Upright pc trimmer, H POS
SOOK Upright pc trimmer, V POS
22K, 1 / 4 watt carbon resistor
1 .5K, 1 / 4 watt carbon resistor
1 K, 1 / 4 watt carbon resistor
3.3 Megohm, 1 / 4 watt carbon resistor
10K upright pc trimmer, CLARITY
1 00 ohm, 1 /4 watt carbon resistor
22 ohm, 1 / 4 watt carbon resistor
150 ohm, 1 / 4 watt carbon resistor
470 ohm, 1 / 4 watt carbon resistor
250 ohm upright pc trimmer, WIDTH
Miniature spdt slide switches, 0.1 25 Inch centers,

Poly Paks EID3429 or equivalent
Pc board, etched and drilled (see Figs. 4-5 through 4-7) ;

bus strips for + and ground (see Figs. 4-8 and 4-9);
data-to-video IC? programming modules (see Figs. 4-10
through 4-1 4) ; Jumper material ; pc test point termlnals
(1 1) ; insulated sleeving; solder; 24-pln IC socket (1) ;
16-pin I C sockets (3) ; 14-pin I C sockets (3) ; Optional-
36-pin 0.156" single entry pc connector; Optional-out
put cable, shielded phono jack to miniature phone

Most of the circuit is based on the hardware details we looked at
in the preceding chapter. A Decode PROM (I Cl) is our control cen
ter that decides what the tvt is to do and when it is to do it. The Decode PROM controls our Scan PROM (IC2) which gives us a
Scan microinstruction when activated.

A plug-in data-to-video module is used to pick alphanumeric or
graphics display options. We will shortly be looking at details on
four different modules. The input to our data-to-video module comes
from the upstream tap in the display memory of the microprocessor.

Three lines are routed from the Decode PROM to the Data-to
Video converter. One is a Row 1 command used for alphanumerics.
One is a Row 2 command for alphanumerics or a Blanking command
for graphics. The final is a Row 4 command for alphanumerics and
an Al B Select command for graphics with split chunk formats.

Yet another data-to-video module input is derived from VD7 by
way of a winking cursor generator. ThisCursor command is blinked
by oscillator IC3 and gated by diodes Dl and D2.

The plug-in module outputs to a video-shift register IC4. Loading
and clocking of the video-shift register is handled by gated oscillator
IC6. The coarse clock rate is set by the SLOW-FAST switch, while the
fine rate is tuned with the WIDTII control. These rates are adjusted
depending on the module in use.

The output of the video-shift register goes through a polarity se
lector S3 to pick normal (+) or inverted (-) video. The selected
video is routed to the bandwidth enhancer in IC5 that works with
RIO and CU. The CLARITY control predistorts the video to meet the
needs of a limited tv video bandwidth.

Meanwhile, horizontal- (DEN) and vertical- (VR) sync outputs
are routed to a positioning and delay circuit located in IC3 and IC5.
Horizontal and vertical delayed-sync signals are combined at the
R6, C6 junction to form composite sync.

The composite sync and the enhanced video are combined with
IC5 and output as ordinary video at Jl, with an approximate output
impedance of 100 ohms. The diode and resistor offset network
formed by D4 through D7 and Rl3 up-translate the video for our
tv output which is referenced to a +4-volt white level. A remaining
gate in IC5 is used to pick up a blanking input.

Besides the plug-in modules, the graphics options, and the more
efficient use of address space, several obvious differences can be
noted between the TVT 6% and earlier designs. These are:

* . The SCAN Enable lead from the instruction decoder PROM to
the SCAN PROM is broken and now goes off board. A jumper must be provided for 6502 or 6800 operation.

159

G ROUND - 1

* BLANKING IN· -

* HOR I NPUT
-

VIDEO DATA
FROM

UPSTREAM TAP

�&g�ESS
L INES 1

11

lJ

15

{
- 16 D I SPLAY

MEMORY CS - 17

. {--
1

1

9
8 *TVT SCAN

ENABLE

* DECODE
ENABLE

VERT REF

.!:��RESS L INES
A D NOT USED

160

p IN 8 - IC 1, 2, 4 P IN 7 - ICJ, 5, 6 ;
ODULE P I N 10 IC7 M

, . "· & "SE I " TO '�EO" ·� IN" TO DEN ,

N

-

- Fi !!I, 3 Schematic Fig. 4-

+ 5 V

Rl5 r
4. 7K f

"W IDTH"

RH
150 0

IC6 74l504
Rl6
27 Q

C R8
lK

D
S4

G
H

K

22K

C4
I'. 4700 pf

IC5
08 7405

M

+ 5 V

+ C9
? ll µ F + 5 V (SOURCEI

r---,--�--��-..---� P I N 14 ICl, 5, 6
P I N 16 IC!, 2, 4

+ 5 V

N ----1·

of TVT 6 5/8.

MODULE 24

Cl4 rr
3300 pf

+ 5 V

p 7V OUTPUT
J2

04 - 7

1N4149

Jl
p V I DEO OUTPUT

• · fEST PO INT
ALL D IODES IN14149
D • ICl 4584
GND • GROUND 121
+ 5 V • + 5 V SUPPLY

CV • COMPOS ITE V I DEO
RV • RAW V I DEO
HR • HOR IZONTAL RAfE
VR • VERTICAL RAfE
OS • DELAY VERTICAL
CK • CLOCK

LO • LOAD
CU • CURSOR

161

162

Fig. 4-4. Full size pc b---=-:---- ..
..

ioard pattern f or TVT 6 5/8.

* The horizontal-sync input is also broken and now goes off
board. This can let you run full transparency by filling in sync
pulses from some other source. A jumper must be provided be
tween DEN and HIN for normal use.

* An asynchronous blanking input is now available. This can be
used to help transparency or simply to turn off the display. The

BNK input must be grounded for a visible display.

Note particularly that the TVT 6% is NOT pin compatible with
earlier designs and earlier interface connections. This pin compati
bility was traded off for improved operation, lower cost, and better
transparency.

CONSTRUCTION DETAILS

A full size printed-circuit layout appears in Fig. 4-4 with its me
chanical and drilling details in Fig. 4-5, and solder mask in Fig. 4-6.
A single-sided layout with only ten jumpers is used. Components are
arranged as shown in Fig. 4-7.

Two bus strips are used across the back of the circuit board for
supply and ground connections. Fig. 4-8 shows the full-size pat
terns for these strips. These are made by filing, routing, or otherwise
cutting pieces of ½6-inch X ¾6-inch plated-brass strip. Ordinary
½2-inch X ¼-inch hobby-shop brass strip may be substituted. Fig.

1/61
DR ILL

1----------- 5 314" ------�o=NE�
RE

=o,�
D

-- �M=AK,,-E 1
114• 6CM) FROM l/16" SINGLE

S I DED G-IO MAT'L
Fig. 4-5. Mechanical and drilling details for TVT 6 5/8.

163

164

•• • ••• • • • e e e e e ••••••• e e • • • •
• ! : : • ••••••• • • • • • • • • • • • • . , . ••
• • •• • •• 111••••••• • • ••• •• • , .. : ;.
•••••••• • ••••••• • • • • ••• • ••••••••••• ·1· · . • . : • • •• •••••••••••• • • • • • • • • • •• . . ·····- . . •: : . ·--······ :. ••• . . · - . ..
• 1-• • ti. •••••••I •_.

...... . .
• • • •

Fig. 4-6. Solder mask for TVT 6 5/8 (full size).

4-9 shows the locations of these strips on the foil side of the circuit
board. Note that the ground strip does NOT contact the +5-volt
foil run; that the +5-volt sbip does NOT contact the ground foil; and
that the +5-volt strip does NOT contact any pins on the Data-to
Video converter module or diode DB.

DATA-TO-VIDEO MODULES

The available pinouts to our data-to-video module are listed in
Chart 4-3. A 24-pin IC socket is used as a connector. Inputs to the

Chart 4-3. Pinouts for the Data-to-Video Converter Modules

Pin Function
1 Video Shift Register Serial Input
2 Video Shift Register Parallel Input A
3 Video Shift Register Parallel Input B
4 Video Shift Register Parallel Input C
5 Video Shift Register Parallel Input D
6 Video Shift Register Parallel Input E
7 Video Shift Register Parallel Input F
8 Video Shift Register Parallel Input G
9 Video Shift Register Parallel Input H
10 Ground
1 1 Winking Cursor input
12 No Connection- reserved
13 Video Data Input VD7
14 Row 1 select
15 Row 2 or Blanking Select
1 6 Row 4 o r A/B select
1 7 Video Data Input VD0
18 Video Data Input VD1
19 Video Data Input VD2
20 Video Data Input VD3
21 Video Data Input VD4
22 Video Data Input VD5
23 Video Data Input VD6
24 +5-volt supply

module consist of eight video-data lines, three instruction decoder
lines, and aCursor-control line. The outputs from the module go to
the eight parallel inputs and the single serial input of a video-shift
register. An unconnected pin, +5-volt supply, and ground completes
the count.

165

...
OI
OI

i ..
I �
0
0
3
'8
:I
ID
:I -
0
�
C:
0
:I

�
0
0
3
'tJ
0
:::,
CD
;?
5
C,

�
5

I ?

� rv.11. _._v,o . TVT s-5/8 V POS H

fTl fTI c17 0 cv I Ri1 I O c'2 I I
I c1 s J2 Jl ca O .,., 1 O FF cn I Rl 2 GN D f C4 RJ-

I
-R2

I

�

• ¼t¼t -
L D ;:!:! 51 0 I I I I C9 R13 W I DT H � CLARITY 01 -R�7- � : -R\0- D;-R7- -R9- • _

• D4-7 I IC4 CO N ..,, -C7- cu Cl S +5 SLOW 6 4 -
D3 J

l

I I I I I • • • -- - Dl I I . I I R1 5 R1 6 Cl4 0 0 0
J Rl R4 CS

I ¼ I R,a I cp O O 9 s2-4 � • �----. I �s I ., C
1
6

FAST 32 + I +bus� DV -.o-... ··o-.. RV�

�

- ·
...

- - · - r--. o- · i;

o

-· '
V C U v
0 I CK Z O o note .,., co .,, N <

• u
�

> o 1
D a �

-' Ci u w I -..... ""
"'° I "' c -, c " R6
"1c6 Ic2

vR Ic1 I Ic1 Ics I 1c3
, .. m - - • - - - - _ ._ - - ... - - � _ ..

ci6 1 - - gnd bus J _a111111111 ______ J ____ ., -CJ- GND - J -
-ao- - J ----;:iR.

O by synerg etics - J - -c1- - J -'O
>

--' O - N M V ll"I � � � z O o O _ N M "" "' � " � c .,., u m m m m m m m m - N M V ll"l � w w � � � � � c c c c c o c c � z + > c c c c c c c c < c:i: c:i: < < > c "' � u � < < < < > > > > > > > > � � �

(8) Overlay with phantom foll.

for 1VT 6 5/8.

167

(A) + bus. (B) Ground bus.

Fig. 4-8. Full size bus strip pallems.

You will find details on four different data-to-video modules in
Figs. 4-10 through 4-13. The construction of these modules is some
what unusual, but they are simple and inexpensive to build.

Module A provides upper- and lower-case alphanumeric charac
ters. Module B is used for 256 X 256 graphics and is the only module
that uses a second integrated circuit. Module C is used for 96 X 128

168

GROUND FOIL
RUN

GROUND BUS
(7TABSI�

Fig. 4-9. Bus strips are located on the foil side as shown.

color graphics or 128 X 128 black and white graphics. Module C
combines an integrated circuit LS TTL quad selector switch with a
transistor blanking inverter.

Module D is not really a module-it is a plain old single supply
2513 character generator with a jumper wire attached at five places.
This is the most economical alphanumeric module and is upper case
only.

Modules A, B, and C plug in with their ICs "upside down," that
is, the pins are pointing away from the main circuit board. Module
D plugs in the usual way. This strange convention is used to make
all the modules as pin compatible as possible while keeping a low
profile. Jumpers are used in all four modules to enable us to use a
single-sided pc board layout.

STEP BY STEP ASSEMBLY

The upcoming step-by-step assembly instructions assume you have
on hand a fully-etched, drilled, and solder-masked pc board, along
with two ready-to-install bus strips. We will further assume you are
using the 658-KD8 ("Kirn Decode-8-dot character") PROM of Fig.
3-5 for ICl and that you are using the 658-KS64 ("Kirn Scan-64
characters") PROM of Fig. 3-8 for IC2. You should have on hand a
modified KIM-1, following the interface details of the previous chap
ter, a modified tv set or other way of accepting and displaying video,
and a triggered-sweep scope for debugging.

If you are using a commercial kit to build your TVT 6%, be
sure to check for any updates or corrections on the instructions that
follow.

Your TVT 6% board assembly can go like this :

D Carefully inspect the board for opens, solder bridges, mask, or
overlay problems, etc Try tinning one of the large round
areas on the board. If there is any problem with easy solder

169

adhesion, carefully clean all areas to be soldered with an ordi
nary pink eraser. Avoid handling the board as it will make
soldering more difficult.

D Insert the optional 11 pc terminals in the following locations.
The terminals are staked to the foil side using an automatic
center punch. They are then soldered after staking:

0 GND
0 GND

0 HR
0 CK

0 VR
O LD

0 RV
0 DV

D cu
D +5
D CV

D Add three jumpers using insulated sleeving to the component
side of the board and solder in place:

D Jumper below IC4 (long)
D Jumper below IC4 (short)
D Jumper above "HR" test point

D Add seven bare jumpers to the component side of the board
and solder in place :

D Jumper to the left of "HR"
D Jumper to the left of "Cl"
D Jumper to the right of "Cl"
D Jumper to the right of "C3"
D Jumper inside IC7 callout. Make sure this jumper is Hat

against the board.
D Vertical jumper between ICl and IC4
D Vertical jumper below "LD" test point

D Add a 24-pin socket at IC7. If the socket has polarity marks on
it, orient the socket to match the printing on the board. Bend
all leads Hat against the board. On this socket, keep the solder
joints as Hat as possible.

D Add three 16-pin sockets at the following locations, again
watching polarity if the socket is so marked :

0 ICl D IC2 D IC4
D Similarly, add three 14-pin sockets at the following locations :

0 IC3 D IC5 D IC6
D Place a 1N4148 or similar silicon computer diode at DB, being

careful to observe polarity. Be sure to cut the leads on this
particular diode very close to the foil.

D Add six more 1N4148 or similar diodes at the following loca-

170

tions, again observing polarity :
0 Dl D D4 0 D6
D D2 D D5 D D7
D D3

D Tin all the points the ground bus is to contact. Then carefully remove as much of this new solder as possible, using a solder syringe or solder capillary braid. Then carefully tin both ends of the seven-tab ground bus. D Refer to Fig. 4-9 for the location of the ground bus. It goes nearest the connector. Make sure the ground bus is fl.at against the board and perfectly vertical and centered from end to end on the pads it has to contact. Tack the bus in place at the ends only.
D Check to make certain that your ground bus starts at the ground end, contacts seven places total, but does NOT extend to the +5-V line. D Solder the ground bus on both sides at each of seven places. Alternate sides of the bus on your first soldering pass to keep the bus from twisting or bending. Check the solder at all pads.
D Similarly prepare the pads for the eight-tab + bus by first tinning and then removing solder. Tin both ends of the + bus and tack in place as shown in Fig. 4-9. D Check to be certain that the + bus starts at the +5-V foil run, contacts eight places total, and touches nothing else, ESPECIALLY ANY PINS ON IC7, OR DIODE DB. D Solder the + bus to all eight pads on both sides of the bus. Check the solder at all pads. D Once again, carefully inspect both the + bus and the ground bus for contacting only where they are supposed to go. D Add resistors in the following sequence : D Rl5 4.7K, yellow-purple-red D Rl6 22 ohms, red-red-black

D RS lK, black-brown-red D Rl4 470 ohms, yellow-purple-brown D Rl3 150 ohms, brown-green-brown
D Rl 4.7K, yellow-purple-red D R5 1.5K, brown-green-red D R6 22K, red-red-orange D R4 22K, red-red-orange D R9 3.3 Meg, orange-orange-green
D R7 1.5K, brown-green-red D Rl2 22 ohms, red-red-black D Rll 100 ohms, black-brown-brown Solder the resistors in place.

171

D Add 0.1-µ,F disc ceramic capacitors at the following locations:
D C8 D Cl7
D Cl5 D Cl8
D Cl6

D Add a 33-µ,F tantalum capacitor at C9, observing polarity.
D Add two 470-pF disc capacitors at the following locations:

D Cl
D C3

D Add a 0.015-µ,F mylar capacitor at C5
D. Add a 4700-pF mylar capacitor at C4

_ ,

D Add a 1200-pF polystyrene or mylar capacitor at Cl4
D Add a 3300-pF polystyrene or mylar capacitor at Cl3
D Add a 62-pF polystyrene capacitor at ClO, near IC6

D Add a 33-pF polystyrene capacitor at Cl2
D Add a 150-pF polystyrene capacitor at Cll

D Add two 270-pF polystyrene capacitors at these locations:
D C2
O .C6

D Add two phono jacks at Jl and J2. Be sure the jacks are flush
with the board before soldering in place.

D Add four spdt slide switches to the following locations :
0 SLOW/FAST
D 64/32
D +/-
0 CON/OFF

D Add WIDTH control Rl7, 250-ohm trimmer pot (might be coded
R251)

D Add CLARITY control RIO, 10-K trimmer pot (might be coded
Rl03)

D Add v POS control R3, 500-K trimmer pot (might be coded
R504)

D Add H POS control R2, 100-K trimmer pot (might be coded
R104)

D Carefully inspect the board for

172

D Everything properly soldered
D Anything missing
D Bus to board clearances
D Diode polarity
D Electrolytic polarity

O Do NOT install the integrated circuits at this time.
O This completes assembly of your TVT 6%. Proceed to module

construction.

MODULE CONSTRUCTION

MODULE "A": Module "A" is an upper- and lower-case alpha
numeric module, detailed in Fig. 4-10.

O Carefully inspect the circuit board for opens, solder bridges,
etc. Try tinning one of the runs on the board. If there is any
problem with easy solder adhesion, carefully clean all areas to
be soldered with an ordinary pink eraser. A void handling the
board as it will make soldering more difficult.

O Set your pc board bare side up with the notch in the upper
left-hand comer. Insert a 0.1-µ.F disc ceramic capacitor in the
two middle, left-most holes. Solder the capacitor in place.
Save the excess leads.

O Use the excess leads from the previous step to provide a jumper
in the two middle, right-most holes.

O Now provide a second jumper immediately to the left of the
one installed previously.

O Add an 18-pin integrated-circuit socket in the remaining holes
between the capacitor and jumper. If the socket has orienta
tion marks on it, place these toward the capacitor.

O Insert a pin strip above the socket. The long end of the pins
and the spacer go on the bare side; the short pin side goes to
the foil and is soldered. Be sure this strip is flat before solder
ing.

O Add a pin strip to the 12 remaining holes at the bottom. Be
sure this strip is flat before soldering.

O Carefully study Fig. 4-10D and add the following wire pencil
connections on the FOIL SIDE:

O IC pin 12 to module pin 4
D IC pin 13 to module pin 5
O IC pin 15 to module pin 7
D IC pin 16 to module pin 8

Be sure you understand the numbering before you start. On
the foil side, the connector pins run counterclockwise; the 18-
pin IC count runs clockwise; and end jumper or capacitor pads
are not counted.

D Check the previous step. Your four connections· should be a
"cross within a cross" that reverses the sequence of five side
by-side pad pairs.

173

174

VD7 ©- NC

Upper-and Lower-Case

Parts List

1-MCM6674 Character Generator (Motorola)
1-18-pin low-profile IC socket
1 -0.1 -µ,F disc ceramic capacitor
2-12-pin strips (AMP 1 -640098-2)
1-circuit board "A"
2-jumpers made from capacitor leads
4-jumpers made with wiring pencil

-solder

Vee

A6

A5

8670

A4 00

Al

A2

DI

D2

Al DJ
AO 04

RSl

RS2

RSI NOTCH AS SHOWN

(A) Schematic. (B) Foil pattern.

Fig. 4-10. Module A

A
Alphanumeric M.odule

How It Works

ASCII code is input on pins YOO through VD6. Row l ,
2, and 4 commands are input from instructlon de
coder. Winking cursor CS command is input from
cursor gate when switch selected. Dot matrix code is
output to video-shift-register leads C, D, E, F, and G.
Ground is hard-wired to video-shift-register leads A,
B, H, and the video-shift-register serial input. Input
VD7 is not used.

P IN STRIPS 121

0
13

24 • • I
• •
• •
• •
• •
•

6674
•

• •
• •
• •
• JO •
• •

13 •

I
• 12 24

JUMPERS 121

(C) Pin side. (D) Foi l side.

WIRE PENC IL
JLMPERS l4J

Normal Settings: I Cursor ON; FAST clock; WIDTH set to SEVEN pulses.,

construction details.

175

256 X 256 Black and White

Parts List

2-7 4LS08 Quad AND Gate, LS TTL
1 -0. l-µ,F disc ceramic capacitor
1 -circuit board "B"
2-1 2-pin strips, AMP # 1 -640098-2
2-insulated sleeving, l /2"
1 -jumper wire, 3"
-solder

PIN 14 74.S08 121
ICA,B

>IV ®---1 . � � SERIAi.OUT

VD6 ��1 ,, � 0 A
A 11 I I

=�1 1rtt-r .. �
VO, � � 0 OUT

1116"
1(2. lCMl

1 13116"
14.6CMl ::: � t!Q'.?:, I : I �

.�:::� +-<fv GROUND

Rl ® NC NC ® CURSOR

NOTCH AS SHOWN

(A) Schematic. (B) Foll pattern.

Fig. 4-11 . Module B

176

Graphics· Module B
How It Works

Eight-bit chunk code is input on pins VD0 through
VD7. Row 2 command from instruction decoder PROM
used as a blanking input. Input code is passed out to
video-shift-register inputs A through H when blanking
is high. Blank (all zeros) code passed to video-shift
register when blank input is low. Cursor is not used.
Video-shift-register serial input is hard-wired to
ground.

•
• •

•
•
•
•
•
•
• .

(C) Pin side.

I

12

SLEEV ING ON
CAPACITOR LEAD

WIRE PENC IL
JUMPER 161

Normal Settings: Cursor OFF; FAST clock; WIDTH set to EIGHT pulses.

construction details.

D Insert an MC6674 Character generator IC placing the dot and
notch at the capacitor end.

D Store your completed Module A in the protective foam sup
plied with the character generator. Always return your rrwd
ule to this foam when not in use.

This completes assembly of your Module "A."

MODULE "B": Module B is a 256 X 256 graphics module, de
tailed in Fig. 4-11.

D Carefully inspect the circuit board for opens, solder bridges,
etc. Try tinning one of the runs on the board. If there is any
problem with easy solder adhesion, carefully clean all areas to
be soldered with an ordinary pink eraser. Avoid handling the
board as it will make soldering more difficult.

O Take a 74LS08 Quad AND gate and bend the following pins up
and over the back of the integrated circuit :

O Pin 2 O Pin 9
O Pin 5 O Pin l2

O Repeat this process with the second 74LS08 Quad AND Gate.
O Set your pc board bare side up with the notch in the upper

left-hand comer. Add one of the AND Gates to the left center
group of holes, so that the notch and dot goes to the extreme
left.

O Add the second AND gate so its notch and dot abut the previ
ously installed IC . Solder both ICs in place.

O Insert a pin strip above the ICs. The long end of the pins and
the spacer go on the bare side; the short pin side goes to the foil and is soldered. Be sure this strip is flat before soldering.

O Add a pin strip to the remaining 12 holes at the bottom, again
making certain it is flat before soldering.

D Study Fig. 4-lOC. Prepare a 2-inch bare wire. Form a small
loop in one end and solder this to module pin 15, the third from
the lower right when the notch is in the upper left. Make this
solder connection as close as possible to the spacer on the pin
strip.

O Route the other end of this wire to the eight pins folded over
the top of the AND gates. Arrange things for neat and flat ap
pearance, and then solder this wire to all eight folded up pins.

O Carefully study Fig. 4-11D and add the following six wire
pencil connections on the FOIL SIDE:

178

D "A" IC pin 3 to module pin 8
O "A" IC pin 6 to module pin 6

D "A" IC pin 11 to module pin 7
D "B'' IC pin 3 to module pin 4
D "B" IC pin 6 to module pin 2
D "B" IC pin 11 to module pin 3

Be sure you understand the numbering before you start. On
the foil side, the connector pins run counterclockwise, while
the 14-pin IC counts individually run clockwise.

D Check the previous step. Your six connections and one foil run
should reverse the sequence of seven side-by-side pad pairs.

D Bend two loops near the body of a 0.1-µF disc ceramic capaci
tor. Note that pin 7 of the right-hand gate has no connections
and needs to be connected to ground. Note that the left-hand
gate has no connection to pin 14 and needs a connection to
+5 V. Solder the capacitor between the presently unconnected
pins 7 and 14 as close to the capacitor body as you can. Do not
cut the leads.

D Add a %-inch piece of insulated sleeving to both capacitor
leads.

D Lay the lower pin 14 lead flat against the board and solder it
to the end pin 14 of the other integrated circuit. This lead
should go to the lower left, parallel to the pad rows. Trim any
remaining lead beyond this second connection.

D Lay the upper pin 7 lead flat against the board and solder it
to the end pin 7 of the other integrated circuit. This lead
should go to the upper right, parallel to the pad rows. Trim any
remaining lead beyond this second connection.

D Store this completed module in protective foam. The foam is
not needed for static protection on this particular module, but
helps keep the pins from bending.

This completes your Module "B."

MODULE "C": Module C is a 96 x 128 color graphics or a 128 X
128 black and white graphics module detailed in
Fig. 4-12.

D Carefuly inspect, test tin, and clean the circuit board as you
did for the two previous modules.

D Set your pc board bare side up with the notch in the upper
left-hand comer. Add a 2.2-K, red-red-red resistor to the center
holes in the extreme left side.

D Add a 0.1-µF disc ceramic capacitor immediately to the right
of the resistor. Leave enough lead length between the base of
the capacitor and the board so that you can fold the capacitor

179

,,v

V 06

VD>

V04

VDJ

VD2

VOi

VDO

180

96 X 128 Color

Parts list

l -74LS1 57 Quad Selector, LS TTL
l -2N4400 or equivalent silicon NPN switching transistor
1 -1 K, l / 4 watt resistor
l -2.2K, l / 4 watt resistor
1 -0. 1 -µF ceramic disc capacitor
1 -circuit board "C"
2-1 2-pin strips, AMP # 1 -640098-2
4-lnsulated wire jumpers
1 -jumper made from component lead
,-solder

• I V

2.2K

(A) Schematic.

1
0. 11,1F

!"5151

Ne--@

Ne -@

BOTTOM VIEW

SERIAL OUTPUT

PARALLEL
OUTPUTS

GROUND

CURSOR

NC

NOTCH AS SHOWN

(B) Foil pattern.

Fig. 4-12. Module C

Graphics Module C

HOOKUP WIRE
JUMPERS!4J

How It Works

Lower chunk code is input on pins VD0 through VD3.
Upper chunk code is input on pins VD4 through VD7.
A/8 select code is input from instruction decoder as
"Row 4" command. Blanking is input from instruction
decoder as "Row 2" command, and inverted with
transistor RTL inverter. Selected chunk half is .routed
to video-shift-register D,E,F, and G outputs when un
blanked. Ground is hard-wired to video-shift-register
serial input and parallel inputs A,B,C, and D. Cursor
is not used.

NPN TRANSISTOR PIN STRIPS (21

(C) Pin side. (D) Foil side.

WIR[PENCIL
JINPERS I))

Normal Settings: Cursor OFF; SLOW clock; WIDTH set to FOUR
pulses for 1 28 X 1 28 black and white, or to
THREE pulses for 96 X 1 28 color.

construction detailL

181

over on top of the resistor and have it lie flat. (Note : if a miniature capacitor is used, ignore this detail. The pins should stick up well beyond the highest point on the capacitor.) Save one of the capacitor leads after trimming. D Add a jumper immediately to the right of the capacitor using the lead saved above. At this point, the six left-most, center holes should be filled, looking from the bare side with the notch in the upper left. D Take a 74LS157 Quad Selector 16-pin Integrated Circuit, and bend the following pins up over the top of the IC: O Pin 3 D Pin lO D Pin 6 D Pin 13 D Install this integrated circuit so that the dot and notch are nearest the jumper. D Add a 12-pin strip to an outside row of holes. The short end goes to the foil side. Be sure pin strip is flat before soldering. D Add a second pin strip in the remaining holes. D Prepare four I-inch-long pieces of solid, insulated hookup wire. Bend a small loop in one end of each wire. D Carefully study Fig. 4-12C. Connect these four wires as fol-lows: D IC pin 3 to module pin 13 D IC pin 6 to module pin 22 D IC pin 10 to module pin 21 D IC pin 13 to module pin 23 Be sure to solder the module pins as close to the spacer as possible. Be sure you understand the numbering before you start. On the bare side, the connector pins run clockwise, while the 16-pin IC count runs counterclockwise. D Add a 2N4400 or similar npn switching transistor to the three holes at the end of the integrated circuit. The flat side of the transistor goes toward the flat end of the IC. D Add a 1-K resistor, brown-black-red, to the remaining two holes to the right of the transistor. D Carefully inspect all solder connections on both sides of the module. Turn the module to the foil side with the notch in the upper right. D Carefully study Fig. 4-12D. Add the following three wire

182

pencil connections to the foil side: D IC pin 9 to module pin 6 D IC pin 7 to module pin 7 D IC pin 4 to module pin 9

Once again, watch the pin numbering. On the foil side, the
connector pins run counterclockwise, while the 16-pin IC count
runs clockwise.

D Check the previous step. Your four connections and one foil
run should reverse the sequence of five side-by-side pad pairs.

D Store your completed module in protective foam. While not
needed for static protection on this particular module, the
foam will prevent the pins from becoming bent or misaligned.

This completes assembly of Module "C."

MODULE "D": Module D is a Lower-Case-only alphanumeric
module detailed in Fig. 4-13. No circuit board is
used with this module.

D Secure a piece of protective foam to a piece of wood, your
bench, or otherwise nail it down so that it will not move.

D Insert a 2513 character generator into this piece of foam. Tin
leads 1, 2, 3, 9, and 10.

D Make a wiring pencil connection between pins 1, 2, 3, 9, and 10.
D Check to be certain the wire does not contact any other pins,

particularly pins 4 and 8.
D Return the 2513 to protective foam for storage.

This completes the assembly of Module "D."

DEBUG AND CHECKOUT

A cheap video system uses hardware and software working to
gether to produce a final display. If something does not seem right,
this could be a hardware problem, a software problem, or an opera
tor problem.

Hardware problems can be something wrong with the computer,
with the computer interface, with the tvt card, with the modules, or
with the tv interlace.

Software problems can be an actual coding error, a mismatch be
tween what the software and hardware is trying to do, or a program
that is misconfigured by having the wrong format, incorrect starting
address, memory locations in the wrong slots, and so on.

Operator problems are the most common. These include misad
justed switches and controls, programs that have bombed or other
wise are not doing what you think they are, flags and IRQ vectors
set wrong, running software and hardware that is not compatible,
and so on.

If you have any problem with a cheap video system, remember it
could be hardware, software, operation, or some combination of the

183

184

Upper Case Only

Parts List

1 -251 3 character generator (General Instruments)
(MUST be single supply type)

1 -jumper wire from wiring pencil
-solder

2513

+ 5 V 5 V NC SERIAL OUT

VD6 NC NC 2 A

VD5 A9 NC

VD4 AB 01 C

VD3 Al 02 5 I D

6 I PARALLEL our
VD2 A6 03

VDl A5 04 7 I
8 VDO A4 05 G

R4/A·B A3 NC H

R2/BLANK A2 GND 10 GROUND

RI Al IN4 II CURSOR

VD7 NC 12 N/C

(A) Schematic.

Fig. 4-13. Module D

Alphanumeric ,Module D
How It Works

ASCII code is input on pins VD0 through VD6. Row l ,
2, and 4 commands are input from instruction de
coder PROM. Winking cursor CS command is input
from cursor gate when switch selected. Dot matrix
code is output to video-shift-register leads C, D, E,
F, and G. Ground is hard-wired to video-shift-register
leads A, B, H, and the video-shift-register serial input.
ASCII code inputs VD6 and VD? are not used.

(8) Jumper detail.

Normal Settings: Cursor ON; FAST clock; WIDTH set to SIX pulses.

construction details.

185

three. Always assume you have an operator problem first, but do not
ever discount a hardware or software solution completely, no matter
how obvious the source of the problem is. Remember that computers
are dumber than people but smarter than programmers.

The debug and checkout that follows assumes you are running on
a KIM-1 or a KIM-1 with expanded memory. We will further as
sume you have a ready-to-go video monitor or converted tv set, and
that your KIM interface is complete and presumably working.

While it is not essential, a good triggered-sweep oscilloscope will
be handy, particularly if hardware problems crop up.

Above all, be sure to get your TVT 6% and its modules up and
working and tlwroughly checked out before applying it to any sys
tem other than a KI.M. If you do not have a KIM system, use a ready
to-go assembled TVT 6% or have someone else (perhaps a local
computer club member) check your board out foi: you.

When you debug any cheap video system, always start with the
simplest possible tests and work from there. Always start with the
utility 16 X 32 upper case alphanumeric mode before trying any
thing fancy. Always get your actual display software up and working
before worrying about Cursors or loaders.

In the debug and checkout list that follows, NEVER GO BE
YOND A PARTICULAR DEBUG STEP UNLESS YOU ARE
CERTAIN EVERYTHING UP TO THAT POINT IS WORKING
PROPERLY. Avoid adding or removing ICs in a powered circuit.
Always reload or otherwise verify your programs and your flags and
vectors in each step immediately before trial. On a KIM, always
check the obvious things such as staying in your binary mode
(OOFl-00) , having your NMI ready for the operating system (OOFA
00 IC) ; and having your IRQ vector (OOFd low; 00FE high) where
you want it to go. It pays to further disable your interrupt line
physically with a switch to prevent interrupts before they are
needed. Accidentally bumping a keyboard can bomb everything you
have done if your software is not ready for an interrupt.

Your TVT 6% checkout can go like this :
D With the changeover switch in the KIM position and the tvt

unplugged, try running a simple program. If the program will
not run, look for solder shorts on the display memory upstream
tap or incorrect switch wiring. Switch to the tvt position. Your
program should bomb and refuse to operate.

D Plug in your still empty tvt card. Switch to TVT. Center all
controls. Have switches set to "Fast", "+", "32", "Off'. Add
only the ICl Decode PROM 658-KD8. Repower the computer
and attempt to run the following program:

186

[0000 EA
0001 4C 00 00

Test Program A

Normal loop

Single stepping the program should alternate between 0000
and 0001. Should the computer not run normally, something
is happening to your CSI and CSO so that chip selects are not
passing through properly, or something is wrong with your
DEN, perhaps the decode enable line.
If test program A runs, try running a complicated, existing pro
gram of your own. Operation should be normal and transparent.

0 Now add your Scan PROM at IC2, using PROM 658-KS64.
Rerun test program A. Everything should remain normal. If
the test program will not run, look for !Cl incorrectly grabbing
the data bus.

O Check memory location 6000. It should be an AO. IF IT IS
NOT, STOP IMMEDIATELY AND FIND OUT WHY. One
obvious thing to watch is a mixup on the PROMs.

D Check the next 256 memory locations. You should get twenty
nine more AO's, followed by two 60's, followed by thirty more
A0's, followed by two 60's, all the way up. Should you get
funny spacing, check your address lines going to the Decode
PROM for possible errors or poor soldering. Do not go beyond
this point unless you can call a sequence of thirty AO's followed
by two 60's continuously anywhere between 6000 and dFFF.
With the switch in the "64" position, check for sixty-two AO's
followed by two 60's.

D Load the following program:

0000 JSR 20 00 60
0003 JMP 4C 00 00

Test Program B

KIM calling a 32-character Scan;
Scan returning control to KIM.

Single step the program with the switch at "32." You should go
from 0000 to 6000 to 6002, and then advance by two's to 601E.
After 601E you should go to 0003, then 0001, and then the se
quence should repeat. If this program works, the KIM is cap
able of calling a Scan from the tvt and the tvt is capable of
returning control to the KIM at the end of the SCAN com
mand. DO NOT GO BEYOND THIS POINT UNTIL TEST
PROGRAM B WILL RUN.

D Insert IC3, IC5, and IC6 and verify that test program B will
still run. You will have to reload your program and vectors
every time you reapply power. If there is any change, look for

187

a backwards or wrong socketed IC or some similar problem.
IC3, 5, and 6 should have no apparent effect at this time.

D Load the Program of Chart 4-4, a 16 x 32 interlaced alpha
numeric Scan. Verify all program locations after loading. Verify
your binary mode and NMI vectors. Save the program on tape
if you do not have a copy at this time.

D Check to be sure the TVT switch is still in the 32 position. With
SST OFF, hit reset. Then go to address 17 A6. Run the program.
Stop the program. The program should stop and light the dis
play, with the display reading some address between 1780 and
17d3, or some address between 6000 and dFFF. Hit GO, then
STOP alternately. The program should always return yoti to
the keyboard and always be in the bounds of 1780-17d3 or
6000-dFFF. If your program will not do this, single step it until
you find the problem. Note that you can shorten all the blank
Scan trips by waiting until the second or third blanking Scan
stops at 6000. Then you load a one in the X register by OOF5 01.
Then you return to 6000 and continue single stepping as
needed until the problem is solved.
DO NOT GO BEYOND THIS POINT UNTIL YOU GET
PROPER PROGRAM OPERATION.

D Center with the v Pos control. Now, using a triggered-sweep
scope, look for a I-millisecond pulse at test point DV in Fig.
4�3. The POSITION control should change the width of this pulse
from 0.2 to 1.5 milliseconds or so. Recenter with the control.

D Now for a crucial test. With the program shown in Fig. 2-10
running and checking test point- DV, switch your scope to
LINE sync. This pulse should break loose and wander around
VERY slowly. Set the time base of the scope so that a second
pulse is seen only when the present pulse moves off one or the
other end of the screen. It should take 40 seconds or more for
a pulse to leave the screen. If you pass this test, your tvt is
properly controlling your KIM and your Scan program is
apparently working correctly, hitting a magic number for 60
Hz vertical.

D Center with the H Pos control. Recenter the control. Check pin
10 of IC3 for a 63-µ,s rectangular pulse. The low time should be
adjustable from 2 to 20 µ,s with the H P0S control. Recenter with
the control.

D Check for a composite sync signal 1 volt high at test point CV.

188

The sync tips should go near ground. Check for a similar signal
referenced to +4 volts at the tv output jack.

D Connect a monitor to the VID output or a properly converted
tv set to the tv output. Reload and rerun the Scan program.
You should get a clean and stable blank raster, locked both
horizontally and vertically. Retouch the hold controls if
needed. As a final check, misadjust the VERTICAL-HOLD control
of the tv until you can briefly produce a stationary thin black
bar in the middle of the raster.

D With or without any program running, check the LD test point
of Fig. 4-3 with your scope. You should get a normally high
waveform that goes low for 35 nanoseconds each microsecond.
If you get something else, fl.rst check your 10: 1 scope probe
ground connection and calibration. This is the Load pulse for
your video shift register and must be available and clean before
you go on.

D With the sync of your scope locked on Load, check the wave
form at CK. With the switch in the Fast position, you should
be able to get eight, seven, or six clock pulses per load pulse
as you vary the WIDTH control. These pulses should be adjust
able for a stable, clean display. If you seem to have trouble get
ting eight clean pulses, reduce capacitor Cl4, perhaps by 200
pF. If you cannot get six clean pulses, increase Cl4 as needed,
but not so much that you cannot get eight clean pulses as well.
Normally, you should have more than enough range with the
supplied capacitor to cover six, seven, and eight clock pulses.

D Now switch to Slow, and adjust your WIDTH control. You
should get three or four clean pulses per load pulse. If you can
not get four pulses, reduce Cl3; if you cannot get three pulses
increase Cl3; this should almost never be needed. Return to
Fast and adjust the WIDTH control to seven clean clock pulses.
Center the WIDTH control in the middle of the seven clock pulse
stable area.

D Switch to CON and check test point CU of Fig. 4-3 for a 3-Hz
square wave. This is your winking cursor oscillator.

D Use a wire to topside jumper pins 7 and 8 to 10 on the D/V con
verter socket IC7. Plug in IC4. Switch to "-." Reload and re
run the program from Fig. 2-10. You should get a· display of
thin vertical stripes. Adjust the CLARITY control. These stripes
should get thinner or thicker. A complete dropout near one
extreme end of the CLARITY control is normal. If you have no
stripes, look for shift-register loading and clocking problems.
If you cannot control the stripes, look for Clarity-Control cir
cuit problems.

1 89

D Insert module "D'' in slot IC7 after removing the jumpers. Be
sure the notch lines up with pin 1 of the 2513 character gen
erator. Reload and rerun the program from Fig. 2-10. Switches
should be set at "32", "Fast", "+", and "Off". You should
get a random character "display. Adjust CONTRAST and BRIGHT

NESS and your POSITION controls until you get a display with
which you are completely happy. If slight sugar appears on the
characters, adjust the WIDTH control as needed. Try other posi
tions of the WIDTH control. Try various CLARITY control settings.
The best usually just closes the display of a "M" or a "W". DO
NOT GO ON UNTIL YOU HAVE A DISPLAY WITH
WHICH YOU ARE COMPLETELY AND ABSOLUTELY
HAPPY.

D Briefly switch to CON. Your screen should wildly wink several
hundred cursor boxes at you. You get all those Cursors since
you have a random character load. Any time VD7 is a one, a
Cursor results. They will disappear when you write a proper
Cursor program. Switch to OFF.

D Now load the following slots, starting with 0200:
0200 57 45 4C 43 4F 4d 45 20 54 4F 20 54 48 45 20 43
0210 48 45 41 50 20 56 49 44 45 4F 20 57 4F 52 4C 44
0220 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
� 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Run the program shown in Fig. 2-10. You shoulq. have a secret
message displayed on the top line, followed by a line of blanks. If you do not get a message, look for upstream tap problems or
VD-line mixups or opens.

D Change to module "A," and rerun the Fig. 2-10 program and
the test data of the previous step. You should get the same dis
play as above. Now, go through the above program and every
time you see a most significant "5", make it a 7. Every time you
see a most significant "4", make it a 6. But leave 0200 at 57.
Rerun the Fig. 2-10 program. Your message should be lower
case, starting with a capital.

D This completes the alphanumeric portion of the checkout. Your
interconnections, tvt card, and modules A and B are apparently
working. From here, you should try your cursor programs and
then go on to your final format.

D Insert module "B" and check for normal computer operation.

190

Now load the program shown in Fig. 2-18 (256 X 256 graphics)
and run it. Check first for run-stop normal operation in the
bounds of the 1780 scratchpad and high addresses 6000-dFFF.
Then check for a stationary DV signal on line sync. You should
get a display of random dots. Switch to FAST and adjust the

WIDTH control to get eight dots per load. Change from + to -
to invert the display. Use near-minimum CLARITY control values
for - displays.

D Load the following data at locations as shown:
0200 00 00
0220 80 00
0240 40 00
0260 20 00
02S0 10 00
02A0 08 00
02C0 04 00
02E0 02 00
0300 01 00
0320 00 00
You should get a display of eight slanting lines besides the
random display you had before. The WIDTH control lets you
pick six, seven, or eight dots per slant. Set it to eight stable dots
with no sugar.

D The reason you get things repeated eight times over in the
previous test is that your program wants BK of memory and
you are only giving it lK, so it is repeating itself eight times.
To properly use Module B, you will have to have at least 4K of
useable RAM for a 128 X 256 display or 8K of RAM for a
256 x 256 display.

D If you have extended RAM in your KIM, check it out at this
time, using the connector and changeover switch that goes to
the upstream tap of the memory selected for display use. Re
member to switch only one changeover switch to tvt operation
at any time. If there are two switches (one on the bare KIM;
one on the extension memory) ; make sure both of them are in
the KIM position for normal computer use, and only one of
them is in the tvt position for display use. The tvt must, of
course, be plugged into the selected upstream tap.

D If you have at least 3K of RAM available starting at memory
location 0400, load and run the "Special Fonts" test program
of Chart 4-4. Note that this is a display memory data listing;
you also still have to load and run the Scan program of Fig.
2-18 to get a display. The data decides what goes on the
screen; the Scan program puts it there.

D Remove module B and insert module C. Load and run the
program of Fig. 2-16. Have switches set to "Slow", "+", "Off",
and "32". You should get a random display of somewhat
coarser proportions than you did with the previous module.

191

Chart 4-4. Data for the "Special Fonts" Typography Display of
Fig. 1-6

Use TVT 65/a and Module B Format---40 x 256
Use Scan Program of Fig. 2-16 Display Space-0600-0AFF

0600 00 00 00 OF 80 00 00 00 00 00 00 01 CO 00 00 1 F
061 0 80 00 00 00 7C 00 00 00 00 03 00 00 00 00 00 00
0620 00 00 00 1 F CC 00 00 00 00 00 00 01 C0 00 00 1 F
0630 80 00 00 00 FE 00 00 00 00 03 00 00 00 00 00 00
0640 00 00 00 3F EC 00 00 00 00 00 00 01 co 00 00 1 F
0650 80 00 00 00 FF 00 00 00 00 03 00 00 00 00 00 00
0660 00 00 00 7F FC 00 00 00 00 00 00 01 co 00 00 1 F
0670 80 00 00 01 E3 00 00 00 00 03 00 00 00 00 00 00
0680 00 00 00 7F FC 00 00 00 00 00 00 00 00 00 00 03
0690 80 00 00 01 C3 00 00 00 00 03 00 00 00 00 00 00
06AO 00 00 00 FB FC 00 00 00 00 00 00 00 00 00 00 03
06b0 80 00 00 01 co 00 00 00 00 03 00 00 00 00 00 00
OSCO 00 00 00 FO 3C 00 00 00 00 00 00 00 00 00 00 03
06d0 80 00 00 01 co 00 00 00 00 07 00 00 00 00 00 00
06EO 00 00 00 co oc 00 00 00 00 00 00 00 00 00 00 03
06FO 80 00 00 01 co 00 00 00 00 07 00 00 00 00 00 00
0700 00 00 00 co oc 00 00 00 00 00 00 00 00 00 00 03
0710 80 00 00 01 co 00 00 00 00 OF 00 00 00 00 00 00
0720 00 00 00 CO OC 7E 38 00 78 00 78 OF co OF 00 03
0730 80 00 00 OF F8 OF 00 FO CO 3F EO 07 98 00 00 00

0740 00 00 00 EO oc 7E 7C 00 FC 00 FC OF co 1 F 80 03
0750 80 00 00 OF FB 1 F 80 F3 EO 3F EO 1 F dB 00 00 00
0760 00 00 00 70 OC 7E FE 01 FE 01 FE OF CO 3F EO 03
0770 80 00 00 OF FB 3F CO F7 FO 3F EO 3F FB 00 00 00

0780 00 00 00 38 00 7E FE 01 FE 01 FE OF CO 7F EO 03
0790 80 00 00 OF FB 3F CO F7 FO 3F EO 7F FB 00 00 00
07AO 00 00 00 1 C 00 07 CF 03 CF 03 CF 01 CO FB FO 03
07b0 80 00 00 01 co 79 EO 3E 78 07 00 7C FB 00 00 00

07CO 00 00 00 07 00 07 87 03 87 03 87 01 CO FO 70 03
07d0 80 00 00 01 CO FO EO 3C 38 07 00 78 38 00 00 00
07EO 00 00 00 03 80 07 03 87 03 87 03 81 CO EO 30 30
07FO 80 00 00 01 CO EO 70 38 1 C 07 00 70 18 00 00 00

0800 00 00 00 00 EO 07 03 87 03 87 03 81 co 00 30 03
081 0 80 00 00 01 CO EO 70 38 1 C 07 00 30 18 00 00 00
0820 00 00 00 00 70 06 01 86 01 86 03 81 co 00 30 03
0830 80 00 00 01 co co 30 30 oc 07 00 3C 00 00 00 00

0840 00 00 00 00 38 06 01 86 01 86 00 01 co 00 70 03
0850 80 00 00 01 co co 30 30 oc 07 00 1 E 00 00 00 00
0860 00 00 00 00 1 C 06 01 87 FF 86 00 01 co 01 FO 03
0870 80 00 00 01 co co 30 30 oc 07 00 07 80 00 00 00

0880 00 00 00 00 1 C 06 01 87 FF 86 00 01 co 07 bO 03
0890 80 00 00 01 co co 30 30 oc 07 00 01 EO 00 00 00
OBAO 00 00 00 CO OE 06 01 86 00 06 00 01 CO 1E 30 03
OBbO 80 00 00 01 co co 30 30 oc 07 00 00 70 00 00 00

192

OSCO 00 00 00 EO 06 06 01 86 00 06 00 01 co 38 30 03

08d0 80 00 00 01 co co 30 30 oc 07 00 00 38 00 00 00

OBEO 00 00 00 FO 06 06 01 86 03 86 03 81 co 70 30 03

OBFO 80 00 00 01 co co 30 30 oc 07 00 60 1 C 00 00 00

0900 00 00 00 FO 06 07 03 87 03 87 03 81 CO EO 30 03

0910 80 00 00 01 CO EO 70 30 oc 07 OC 60 1C 00 00 00

0920 00 00 00 F8 OE 07 03 87 03 87 03 81 CO EO 73 03

0930 80 00 00 01 CO EO 70 30 oc 07 OC 70 1 C 00 00 00

0940 00 00 00 FC 1 E 07 87 03 87 03 87 01 CO EO 73 03

0950 80 00 00 01 co 70 EO 30 oc 07 oc 78 3C 00 00 00

0960 00 00 00 FF FE 07 CF 03 CF 03 CF 01 CO FO db 03

0970 80 00 00 01 co 79 EO 30 OC 07 9C 7C 7C 00 00 00

0980 00 00 00 FF FC 06 FE 01 FE 01 FE OF F8 FF dF 1 F

0990 FO 00 00 OF F8 3F CO FC 3F 07 FC 7F F8 00 00 00

09AO 00 00 00 dF FC 06 FE 01 FE 01 FE OF FB 7F 9F 1 F

09b0 FO 00 00 OF F8 3F CO FC 3F 03 F8 6F F8 00 00 00

09CO 00 00 00 CF F8 06 7C 00 FC 00 FC OF F8 3F OE 1 F

09d0 FO 00 00 OF F8 1 F 80 FC 3F 03 FO 67 FO 00 00 00

09EO 00 00 00 C7 EO 06 38 00 78 00 78 OF F8 1 F 06 1 F

09FO FO 00 00 OF F8 OF 00 FC 3F 01 EO 63 co 00 00 00

OAOO 00 00 00 00 00 06 00 00 00 00 00 00 00 00 00 00

OA10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OA20 00 00 00 00 00 06 00 00 00 00 00 00 00 00 00 00

OA30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OA40 00 00 00 00 00 06 00 00 00 00 00 00 00 00 00 00

DASO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OA60 00 ao 00 00 00 06 00 00 00 00 00 00 00 00 00 00

OA70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OA80 00 00 00 00 00 7F co 00 00 00 00 00 00 00 00 00

OA90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OAAO 00 00 00 00 00 7F CO 00 00 00 00 00 00 00 00 00

OAbO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OACO 00 00 00 00 00 7F co 00 00 00 00 00 00 00 00 00

OAdO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OAEO 00 00 00 00 00 7F co 00 00 00 00 00 00 00 00 00

OAFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

D Load the following data (this assumes you are back on a bare
KIM; if not, find a suitable starting address)
0200 77 00 77 77 07 70 77 77 00

You should get a batch of bars that repeats twice in your dis
play. The proper color setting is to set your WIDTII control so
that you get a short "equals" followed by a long equals that ex
tends continuously on the right end.

After this equals ends, a new "upside down" one should start.
This gives you three clocks per chunk. Reset your WIDTII con-

193

trol so that stable black bars appear, and you are ready to run
on 128 x 128 black-and-white graphics.

D If you have extended memory available, at least 2K starting at
location 0600, load and run the color chessboard of Chart 4-5.
You wi11 have to use a color modulator for a full-color display.
Once again, Chart 4-5 is data. You have to run the Scan pro
gram of Fig. 2-16 with it to get a display.

Chart 4-5. Data for the Chessboard Background of Fig. 1 -5

Use TVT 6% and Module C Format: 96 x 96 color
Use Scan Program of Fig . 2-18 Display Space: 0600- ObFF

Board is programmed to color "00"

0600 76 70 70 73 00 00 00 00 76 70 70 73 00 00 00 00
0610 76 70 70 73 00 00 00 00 76 70 70 73 00 00 00 00
0620 44 00 00 1 1 00 00 00 00 44 00 00 1 1 00 00 00 00
0630 44 00 00 1 1 00 00 00 00 44 00 00 1 1 00 00 00 00
0640 44 00 00 1 1 00 00 00 00 44 00 00 1 1 00 00 00 00
0650 44 00 00 1 1 00 00 00 00 44 00 00 1 1 00 00 00 00
0660 44 00 00 1 1 00 00 00 00 44 00 00 1 1 00 00 00 00
0670 44 00 00 1 1 00 00 00 00 44 00 00 1 1 00 00 00 00
0680 44 00 00 1 1 00 00 00 00 44 00 00 1 1 00 00 00 00
0690 44 00 00 1 1 00 00 00 00 44 00 00 1 1 00 00 00 00
06AO 67 07 07 37 00 00 00 00 67 07 07 37 00 00 00 00
06b0 67 07 07 37 00 00 00 00 67 07 07 37 00 00 00 00
06CO 00 00 00 00 76 70 70 73 00 00 00 00 76 70 70 73
06d0 00 00 00 00 76 70 70 73 00 00 00 00 76 70 70 73
06EO 00 00 00 00 44 00 00 1 1 00 00 00 00 44 00 00 1 1
06FO 00 00 00 00 44 00 00 1 1 00 00 00 00 44 00 00 1 1
0700 00 00 00 00 44 00 00 1 1 00 00 00 00 44 00 00 1 1
071 0 00 00 00 00 44 00 00 1 1 00 00 00 00 44 00 00 1 1
0720 00 00 00 00 44 00 00 1 1 00 00 00 00 44 00 00 1 1
0730 00 00 00 00 44 00 00 1 1 00 00 00 00 44 00 00 1 1
0740 00 00 00 00 44 00 00 1 1 00 00 00 00 44 00 00 1 1
0750 00 00 00 00 44 00 00 1 1 00 00 00 00 44 00 00 1 1
0760 00 00 00 00 67 07 07 37 ob 00 00 00 67 07 07 37
0770 00 00 00 00 67 07 07 37 00 00 00 00 67 07 07 37
0780-08FF Repeat above code
0900-0A7F Repeat above code
OA80-0bFF Repeat above code

D Add chessmen to your display as desired by hand loading as
shown in Fig. 4-14 and Chart 4-6. You will eventually want to
write a software loader to do this for you.

D This completes the preliminary checkout of your TVT 6%
and the four available modules.

194

Number your chessboard this woy:

---x-
0 l 2 3 4 5 6 7

Let X be the number of squares right from upper left. (0-7)

Let Y be the number of squares down from upper left. (0-7)

Let S be the starting address needed to load a chess piece.

If your display memory starts at 6000, your S will equal I S = 0621 + (4 * X) + (CO * Y) I

r 1 ---+-+--+-+-+-1 I i l----<1--4---4---"-4-.-'--I

in HEXADECIMAL. For instance, the third square to the right has an X value of "2."
The fifth square down has a Y value of "4." To find S, we take 0621 and add 4 to it
twice and add CO ta it four times, or

lrs-=_
06
_2_1 """'+-(4_*_2_) -+-(-CO-*-,"'-l =-0-92

--.
91

Your chess piece consists of eight memory words. These words go in a 2 X 4 chunk
matrix that calls -411 doh, resulting in a 6 X 8 symbol. If S is your starting address,
the symbol chunk locations are:

s

S + 20

S + 40

S + 60

with each chunk arranged as

S + 1

S + 2 1

S + 41

S + 61

VD6 VD5 VD4

VD2 VOi VDO

Color is set by VD7 (most significant bit) and VD3 (least significant bit) for a choice
of four colors plus black.

Fig. 4-14. Calling chess pieces from a file.

MODIFICATIONS

Usually, you will change software to get your TVT 6% to do dif
ferent things. You also have quite a few hardware options. Many of
these options are listed in Chart 4-7. The next chapter details the
most important option of full transparency.

Your SLOW-FAST switch and the WIDTH control are normally set
visually for the right number of clocks per microsecond. Seven or
eight clocks are usually best for combined upper- and lower-case
(Module B) alphanumerics, while six or seven will look best with
upper-case-only (Module D) displays. For graphics displays, the
clock must, of course, be properly set to the selected 3, 4, or 8

195

Chart 4-6. Data for Chess Piece File

Piece s+oo s+o1 s+20 s+21 S+40 S+41 s+ao s+a1

Blank 00 00 00 00 00 00 00 00
Pawn 00 00 1 1 44 1 3 46 76 73
Bishop 1 1 44 77 77 1 1 44 1 7 47
Knight 26 00 23 07 32 62 27 27
Rook 57 57 33 66 33 66 37 67
Queen 1 3 46 75 75 74 71 76 73
King 57 57 75 75 67 37 73 76

For color 00, add nothing to above
For color 01, add 08 to above
For color 1 0, add 80 to above
For color 1 1 , add 88 to above

Chart 4-7. Some Hardware Use Options for Your TVT 6 5/8

Blanking-You blank the display by making the BNK input positlva.
For a normal dlsplay, ground BNK. Blanking is useful for im
proving transparency or any other time you want the display off.

Horlzon'ial FIii In-Your horizontal-sync timing pulses can come from
another source by breaking the DEN to HIN connector jumper and
routing new horizontal-sync pulses to HIN. Position delay starts
from the + to ground transition of a signal input to HIN. This is
useful for fully transparent operation when horizontal-sync pulses
are supplled from somewhere else during vertical blanking times.

Verllcal Lock-The VRF pin outputs a 1-µ.s pulse at the undelayed
start of each frame. This signal is useful for line-locklng system
timing and for delaying character entry untll the start of the blank
vertical time.

Video Polarity-Video polarity Is selected with the +. - switch. The
CLARITY control only works in the + position and should be set
to its near minimum value If you are running with inverted video.
(See Fig. 4-17).

196

Scan Enabl�Breaking the SEO to SEI line disables any scanning.
To prevent scanning, keep SEI high. This is useful as a tvt enable
means.

Exlemal CS Gallng-The display memory CS gating can be moved out
of the Instruction PROM. To do this using an instruction PROM
having internal CS gating, connect CSI to +5V and relable CSO
to CSOT, the Chip Select output from your tvt. CSOT goes low
when the tvt wants use of the upstream tap.

Dual Mod�You can run graphics and alphanumerics on alternate
fields by combining modules Into one super module. Your field
changeover can be done with a flip-flop that Is clocked with the
VRF signal. To Initialize your flip-flop, note that CG Row 1 high
output is never used in the graphics mode. If this coincidence
.occurs, reset the flip-flop to the alphanumeric state.

VD6 (ASC I I B IT 71

Fig. 4-15. Logical gating needed to display combined upper- and lower-case
characters as upper case only.

clocks per chunk selected. Otherwise part of your display will be
missing or may have "bulldozer tracks" running through it. If there
is any sugar or other display instability, readjust your WIDTH control
and set it to the middle of the stable area.

Your "32-64" switch is set in the "32" position for most graphics
and 32-character lines. Set it to the "64" position for practically any
thing else.

Your winking Cursor rate is set by R9 and C7. Increasing either of
these will lower the wink frequency and vice versa.

A 74LS165 shift register can be used instead of the 74165 to de-

The inputs to your SCAN PROM are labeled Al, A2, A3, A-4, and AS. These are the
connedions you use on a nonrepacked 6.502 cheop video system. Address connections
may change for other uses. Here are three typical examples:

M ICZ

AS � l4

A4 � 1l

A3 � 12

M
IC2

Al ----t(..__22 _ _,}- 14

M -----<(2l }- 13 ---
., ----1(..__" _ _,}- 12

•5 V

r
M

IC2

Al k C 22 }- 14

Ao � "

A5 12

A2 � II A4 ----1(25 }- 11 A4 ----t(25 }- II

Al � ID

AD - Nie

(a) 6.500, 6800
no repacking

� � 10 Al �
741.Sll

AD --NIC

(b) 6.500, 6800
repacked

� � � - 10 Al �
7,1.Sll

AD -Nie

(c) 6500, 6800
either way

Connection ic) is aften the best choice, but needs a gate plus two switches and it is
limited to multiples of eight characters or chunks per line.

Fig. 4-16. Scan PROM address options.

197

crease the supply current, but you may need five to eight 4.7-K pullup resistors on the inputs for proper Cursor operation. . Note that we have two different places to blank our display. The blanking on modules B and C is synchronous with the characters and blanks whole characters or chunks. Since the video shift register takes 1 µ,s to output a character or chunk afrer it is received, there is a 1-µ,s blanking skew difference between blanking at Module B or C and blanking on the BNK input. Use the BNK input for generalpurpose "paint the display black" uses; use module blanking to blank specific whole characters.
IC4

74165

OUT

''CLARITY"
+5 V

+5 V

CV
V I DEO
OUTPUT

Rl2
22 Q

Rll
IOO Q

Fig. 4-17. Alternate clarity circuit works on normal or Inverted video.

If you attempt to use an upper-case-only character generator on mixed upper- and lower-case data, all the lower-case characters will be read wrong. Normally, you should match the input coding with the character generator in use. Fig. 4-15 shows you simple gating that will convert upper- and lower-case ASCII code into upper-cas� only ASCII code. The address inputs to your Scan PROM change as you change to memory repacking or switch to a different computer system. These options are shown in Fig. 4-16. Be sure that your Scan PROM, your intended rrwde of operation, and your computer connections are compatible. The original CLARITY control used for video-bandwidth enhancement only works with normal "+" (white characters on a black screen) video. Fig. 4-17 shows an alternate circuit that works with either normal or inverted " -" (black characters on a white screen) video. Inverted operation is a handy way to totally eliminate any flicker on double-stuffed displays. The one extra gate needed for this modification is borrowed from the blanking circuit. Blanking is either lost or picked up with a new gate or an added npn transistor. Some typical waveforms for the 16 X 32 interlaced display are shown in Fig. 4-18. The waveforms are present only when the Scan
198

program is working properly, so they are not too useful as a debug
ging tool. These waveforms will change wildly as you change Scan
software and will disappear entirely during nonscan times.

63 µSEC

31 µSEC

1.__ ___ B_LA_N_K_&_R_ET_RA_C_E _ ___.

-1 L,},'=i
,

iti,i=======i=}=ii=i:i==,=ti:i:i,i,iii?=il

VARIES WITH PROGRAM

32 µSEC

SCAN

(A) Horizontal rate.

7 l- 63 µSEC

·�oo I

ONLY DUR ING
L IVE SCANS

I
I I I

0 2 5 6

(B) Character rate.
Fig. 4-18. 16 x 32 Scan waveforms.

lfE DEN

AD

Al

AZ

AJ

I...IZI A4

DEN

ROW I
114/IC71
ROW 2
115/IC7l
ROW 4

I (16/IC 7)
I CG ROW
0 ADDRESSED

199

CHAPTER 5

Transparency

If you have a transparent cheap video display system, you can let
the microprocessor do other things at the same time you are display
ing, or at least seem to do so. Transparency looks good, but more im
portantly, it lets you run a BASIC program and a continuous dis
play together, or a graphics game display and its move calculations
at the same time. To a transparent display, other computer goings-on
will be invisible, without any breaks or tearing in the picture.

Transparency is obviously going to ·be tricky, since the tv seems to
need continuous sync and video signals. So far, our cheap video cir
cuits have apparently needed 100% of the available computer time
during a display. We might suspect that the "more" we want in the
way of transparency, the more it is going to cost us in circuitry, soft
ware, throughput, and design time.

SOME TRANSPARENCY PRINCIPLES

Most digital instruments only light a single display numeral at any
particular time. This is called multiplexing. It is done to simplify
circuitry and cut down on the number of display leads. Only one
numeral is lit at a time, but the numerals are scanned in sequence
faster than the eye can follow. You end up with the illuswn of a con
tinuous display. If we demanded a "perfect" display that was lit all
the time, it would cost a lot more-and nobody would be able to tell
the difference anyway.

The same concept goes for video displays. Namely, we do not need
true transparency. Anything that gives us an acceptable illusion of
transparency will do the fob for us. This idea tells us to do other

200

things while the screen is black. A particularly handy time is the
long vertical-blanking interval.

A second transparency principle tells us that seldom happening
events are not nearly {1,S bad as those that happen aften. So, if we
make the more glaringly obvious computer goings-on transparent,
we can probably ignore many of the rest and nobody will notice.

A third handle on transparency tells us to watch fust how we hurt
the display. Interruptions that disrupt the vertical timing so badly
that the tv has to relock its vertical hold will be the worst of all to
live with. Interruptions that last exactly one or two horizontal lines
or exactly a full field usually will not be as bad. Recovery from a
horizontal error takes a small fraction of a millisecond. This may
look bad, but it turns out to be easy to fix. On the other hand, re
covery from a vertical-sync error can take a tenth of a second or
more, and always will look far worse !l,nd be much more difficult to
fix. Thus, you have to be far more careful with longer interruptions
to your SCAN programs. A vertical-sync pulse that is late (and stays
late) by half a horizontal line will not be noticeable. One that misses
by a line will appear as a slight bump, and anything more will be
painfully obvious.

A fourth clue to transparency tells us to lock any interruptions to
the display scanning. You can do this simply by delaying the inter
ruption until convenient, or by integrating the interruption. Integra
tion is done by including what used to be an interruption activity as
part of the Scan program.

Principle number five tells us to "paint it black." Anything that
completely blanks the screen is far less bad than interruptions that
tear up the screen. It is much easier to spot something lit and out of
place than just temporarily missing.

These simple rules are all we need for the usual service type pro
grams-those that enter characters, handle the Cursor, Scan a com
panion keyboard, and so forth. But if we are going to run something
heavy at the same time-like a BASIC program, or the move com
putations for a game display- we may have to get both sneakier and
fancier in what we do in the way of transparency.

So, rule number six tells us to fill in sync signals from somewhere
else when the computer is busy. Somewhere else could be a simple
binary counter, a programmable divider, a software-controlled timer,
a line-locked phase-lock loop, or a television vertical chip.

And, our final transparency rule is the sledgehammer concept. If
all else faffs, throw in another microprocessor chip. They are cheap,
simple, and easy to use these days.

Let's see just how these transparency ideas can be applied to sys
tems that work. We will look at several routes to transparency more
or less in an order of increasing hassle.

201

IGNORE IT

In most real-world micro uses, display tearing and interruption
sounds much worse than it really turns out to be. This is especially
true if the display is for your personal use or if very low display cost
and complexity is important to you.

This "let her rip" philosophy also gives you a free "the computer
is busy" signal that tells you what your other programs happen to
be up to.

So, simplest of all is to for get completely about transparency until
you are absolutely sure you need it. A good rule is to develop your
display first without anything special in the way of transparency,
and then include the absolute minimum in the way of additions to
get something with which you or your users are happy.

Almost always, your final result can be far simpler than you may
first think possible. Always try alternating your compute and display
modes (just like the KIM-1 now does with its operating system)
first; perhaps that is all you will need.

TIME IT

If you make a short interruption exactly equal the number of
microseconds in one or two horizontal lines, there will be a minimum
screen disturbance. This can be more than enough time to enter
several characters, scan a keyboard, move a Cursor, change a game

(A) Interrupted Scan less than one
horizontal l ine--tears to the le1t.

(B) Interrupted Scan equals one hori- (C) Interrupted Scan more than one
zontal l ine--slight vertical "bump." horizontal line--tears to the right.

Fig. 5-1. Scan interruptions of exactly one horizontal line have almost no ef
fect on display.

202

symbol, or do other relatively simple things. By taking exactly one
or two horizontal lines, there will be no horizontal tearing and only
a very slight vertical jog will result.

Fig. 5-1 shows the effect of three short interruptions. In Fig. 5-IA,
our interruption takes less than one horizontal line and tears to the
left. In Fig. 5-lB, we take exactly one horizontal line and get no tear
ing. In Fig. 5-lC, we have overdone things and taken longer than a
single horizontal line, which tears to the right.

The closer you get to exactly one line, the smaller the amount of
tearing. If you try to match three or more horizontal lines, the
amount of vertical jog gets too high.

Longer interruptions will give you more objectionable screen mo
tions. If you can make your program interruption last exactly one
field, you can eliminate vertical tearing, but some time will be
needed to regain horizontal lock. Sci;olling programs, screen reads,
and erase to end of screen lend themselves to exactly one field time.

LOCK IT

An exactly timed interruption can be much further improved by
synchronizing it so that it starts at some convenient point in the Scan.
If you start a one line horizontal interruption during the horizontal
retrace time, you will get a whole line dropped out, rather than a
random pair of lines that start and stop during a live Scan.

The best time to start an interruption is on the undelayed vertical
sync command. Thi.s causes most of the interruption and much of the
recovery time to happen while the screen is blank.

Locking an interruption is a powerful and simple way to gain
transparency. Its basic limitations are that you have to add an ex
ternal flip-Bop, and that you are limited to 60 interrupts per second
maximum. Note that this is much faster than you can type, and that
one interruption can be used to add or remove several characters.

Figure 5-2 shows how to lock an interrupt from a keyboard to a
TVT 6% working with a KIM-1. The keypressed pulse sets the flip
flop, which is reset by the undelayed vertical-sync pulse from the
instruction decoder. The falling edge of the Hip-Bop is used to
interrupt the Scan program. Interruption always takes place im
mediately after the undelayed vertical-sync pulse, during the black
retrace time of the screen.

LOCK IT AND SHORTEN THE NEXT FIELD

Once we have locked our interruption to the vertical sync, there
is an even neater trick we can pull to gain more transparency. And,
all it costs are two software words.

203

These two words are DEX. If you know your interruption is
going to take approximately two horizontal lines, you simply knock
two lines off the total number of blank Scan lines to be used this
time around during retrace. This either eliminates the vertical bump
completely or else makes it so small you will not notice it.

JL
KP FROM KEYBOARD o---------,

+ 5 V
0
I
I
I

:, 3,3K
� ION KIM � LINEI

SET
,0051f ! -

T
IRQ OUTPUT JL

VRF FROM TVT 6 5/8 o----... C

VRF

KP

Q

Q

40138

(A) Circuit.

(B) Waveforms.

K

r

+5
0

+ 5 V
D

+ 5 V
D

+ 3 V
D

Fig. 5-2. Delaying character entry or other Interrupts until start of vertical
blanking time greatly helps transparency.

Our scrolling Cursor program of Fig. 2-20 already has this "knock
two lines off" capability built into it in the pair of DEX commands
at steps 014C and 014d. If an interruption does NOT take place, the
normal number of vertical blank Scans are used. If an interruption
does take place, the interruption is delayed until the vertical-blank
ing time, after the number of Scans needed has been loaded into
the X register. Most of the Cursor program interruptions take up
approximately two horizontal lines. These two extra lines are re
moved from the upcoming blank Scans by decrementing the X
register twice.

For this technique to work, your interrupt MUST be synchronized
to the vertical-sync pulse of the interface hardware. Your Scan

204

program also must load the number of retrace lines to be used BEFORE the vertical-sync command. To recap how retrace shortening works, when there is no interrupt, the normal number of vertical-blank Scans is used. When there is a character-entry interrupt, the interrupt time takes about two horizontal Scans and then knocks off two horizontal Scans from the Scan program, making things come out even. If you want to go to the trouble, you can make everything come out exactly even for each and every Cursor motion. One way to do this is to equalize each route through your Cursor program so that it takes identical time to execute. A much simpler approach would have you start a software timer and measure how long the interruption took; your main Scan length would then be corrected with some DEX commands and a short blank subroutine. But all this hassle is rarely needed. If you get a perfect ,match on the most common loop through the Cursor program (single character entry) , most everything else is close enough that you will never notice.
PAINT IT BLACK A screen that goes totally blank for a brief time is not nearly as bad as one that tears. It is much easier to spot something that is bright and obviously wrong, however brief, than something that

J1.. +SV
KEYPRESSED
INPllT--------t,C

TO iii<!

KP n

Q

Cl.EAR

Q

4013

t---------- BLANKING OUTPUT
TO M 6 5111

1N4148

(A) Circuit.

n

L_

(B) Waveforms.

Fig. 5-3. Blanklng display after Interruption also helps transparency.

205

_fl
KP FROM -------,
KEYBOARD

JL
VRF FROM ----
M

4013

o+5 V
I
:� 3.3K

• 005 1 (ON KIMI
,------1 ... ----1+----• COMPUYER

. TiR)
y 4 .71(

Qt----..... JL

:r05

---•BLANKING
UIIK TO M

Fig. 5-4. Combined blanking and delay circuit

is black and just not there. Blanking can also be used to make all
disturbances identical so that they look like they belong.

The TVT 6% has a blanking input, pin 2 BNK. This input is
normally grounded. If you make it positive, the screen goes black
for the length of time the BNK input is high.

A simple blanking generator is shown in Fig. 5-3. This uses a
CMOS Type D flip-flop as a triggerable monostable component. The
blank time is adjustable. Blanking times of a few character rows are
almost invisible and eliminate most, if not all, horizontal tearing.

Blanking, locking, and shortening are easily combined as shown
in Fig. 5-4. This circuit uses both halves of a 4013 CMOS Type D
flip-Hop and needs the two extra code words in your Cursor program
-not a bad price to pay to gain nearly complete transparency of an
interrupting Cursor program.

This particular circuit fixes the entire Cursor except for three long
time operations-Erase, Erase to End of Screen, and Scroll up.
Erase is free-it quickly removes characters from the screen, tear
ing up a blank or nearly blank display, so it presents no prob
lem. Erase to End of Screen creates more of a disturbance, but
it also gives us some blanking and is rare enough that you don't
have to worry about it. The Scrolling Cursor is more of a problem.
We will note in passing that the Cursor tearing during a scroll can
be dramaticaliy improved by making the Cursor scroll take exactly
one vertical interval.

INTEGRATE IT

In an integrated Scan program, you build everything else you
want to do with your computer into the Scan program. You do

208

the other things during your vertical-retrace time. Since everything
else gets done during blank time and since there can be continuous
timing without interruption, you can end up with a totally trans
parent display.

An integrated program works well for things like cursors and
editors, as well as scanning and debouncing a companion ASCII
keyboard. Some motions for simpler game graphics are also possible.
It also frees the computer interrupt structure for other uses.

There are several hassles involved. Your Scan program will
be longer and more complex. Your programs will be harder to
change. Design and debug also will take longer. The other things
the computer is to do must be stuffed into a few milliseconds re
occurring 60 times a second. Integrated programs are totally un
suited for games with complex graphics or where you are running
a display and BASIC or another high�r-level language together.

Just combining everything into one program does not guarantee
transparency. You have to make the tv timing continuous, at least
for the more often used program functions.

There are two ways to make sure your timing is continuous for
transparency. One is to make certain each and every major path
through the "something else" software takes exactly the same time.
Another route is to start a software timer and measure how long the
"something else" routine took. After measuring the time, you can
then equalize the remaining Scan program by shortening one blank
Scan and lopping off as many others as you have to.

The each-and-every path is usable for simple Cursors and key
board Scans, but you will want the timer route anytime you need a
full performance_ Cursor or run any other program that has several
different or variable execution times.

As an example of an integrated program, let's build a simple
16 X 32 interlaced alphanumeric display that has a built-in trans
parent Cursor that allows us to sequentially enter characters, car
riage return, or screen erase. We will use the each-and-every method
for transparency since there are only four routes through the Cursor
program. These routes are do nothing, enter, return, and clear.

Since we are no longer interrupt driven, we cannot use the inter
rupt line for a keypressed indication. Instead, we use the dual flip
flop circuit of Fig. 5-5. An external keypressed command toggles the
first flip-flop. Every time a field is complete, an "entry test" pulse
transfers the contents of the first flip-flop onto the second. The first
flip-flop is also set at the same time. Our second flip-flop in tum
holds and passes on a "O" to parallel input PA 7 if a character is to be
entered and a 'T' if no character is to be entered.

Besides freeing the interrupt structure for other uses, this two
flip-flop synchronizer gives us a full handshaking interface that

207

minimizes any of the times when a character could be ignored or
double entered.

Our integrated program is shown in Fig. 5-6. To keep things
simple, we have kept the program in two pieces. The Scan part of
our program is our old program of Fig. 2-10, the 16 X 32 utility inter
laced Scan. This program is patched in two places, as shown, to
jump to the Curse part of the program shortly after the start of the
vertical-blanking interval.

+5 V

<!013 (CMOSI

f· l •NO ENTRY
0 • ENTER

JL PA7

KP

a

30 �
4. 7K

C II

Q

(A) Circuit.

PBI n
---J L

ENTRY
TEST

__ __.n� _____ _.n _ __.n�------ KEYPRESSED

u

L..J ___ _, --------�----------------�--
IGNORE ENTER IGNORE ENYER ENTER IGNORE

(8) Waveforms.

ENTRY TEST

QI

an

Fig. 5-5. Keypressecl handshaking Interface for Integrated Scan programs.

Shortly after the vertical-blanking time starts, our Curse pro
gram starting at 0100 outputs a pulse to our handshaking flip-Hops
to test if a new key has been pressed. The program then tests for
the four possible conditions of do nothing, enter, return, and clear.
The do-nothing is based on a most significant parallel input bit (A 7)
of "l," and returns us directly to the Scan program, taking up
just enough time to properly space the horizontal-sync times.

208

µ.P-6502
System-KIM-1

Start-JMP 17A6
End-Interrupt

Displayed 0200-03FF
Progrom Space 1 780-1 7d4;

0100-018b + 3 words
poge zero EC; Ed; EE

Input to parallel word A I EN I A7 I A6 I A5 I A4 I A3 I A2 I A 1 I
Clear-CAN (18)
Carriage Return-CR (Od)
Enter-All characters and

all unused CTRL commands

EN is an enter command
per Fig. 5-5.

Program is shown in two parts. Scan program is identical to Fig. 2-10 except for the
following patches:

17CO JMP 4C (00) (01) Jump to integrated Cursor

1 7d3 CLO d8
17d4 BPL 1 0 Ed*

Equalize two microseconds
Repeat V blanking Scan

JMP
from Cursor entry portion of program:
Scan
17CO - 0100 LDA

0102 STA
0105 STA
0108 LDA

010A STA
010d TAY
OlOE LOA

r
01 1 0 BPL

exit to
Scan --..a-- 01 1 3 JMP
when L o1 1 6 PHA
no key 01 17 LDA
pressed 01 19 CMP

G""
BCS

01 1 d CMP
Ol l f BCS

t
0121 JSR

0124 LDA
0126 AND
0128 STA
012A PLA

A9 02
Sd (03)
Sd (02)
A9 00

Sd (02)
AS
Ad (00)
10 03*

4C (Cd)
48
A5 (EE)
C9 04

bO 04*
C9 02
bO 03*
20 (76)

bl (Ed)
29 7F
91 (Ed)
68

Make PB 1 an output
(17) continued
(17) Make PBl output high to strobe EN

Finish PB1 pulse by making PBl low

(17) continued
Reset Y index to zero

(17) Read input character
Was key pressed?

(17) No, return to Scan program
Save input character on stack
Get upper Cursor
Is Cursor below maximum page?

No, home Cursor
Is Cursor above minimum?
No, home Cursor

(01) HomeCursor via subroutine

Get old Cursed character
Erase Cursor
Replace old character without Cursor
Get new character off stack

Fig. 5-6. Program for 16-llne, 32 character per line, interlaced TVT 6 5/8
Raster Scan with Integrated minimum Cursor.

209

012b
015b -- Ol2d

012F
OUA - 01 3 1

0133
0158

c
01 36
01 38
013b

013d
013F
0141
0142

enter
and CR 0145
return 0146
toScan - 01 47

_/
014A

0131 014C
014E
0150
0153

0154
0155
0156
0157

0158
015b

[
"'

0160

0163
0165
0168
016b

016C
016d

013b -- 01 6E
0171

0172
0173
0174
0175

CMP C9
BEQ FO
CMP C9
BEQ FO

JSR 20
BNE dO
JSR 20
LOA bl

ORA 09
STA 91
DEX CA
JSR 20

NOP EA
DEX CA
JMP 4C
LOA A5

ORA 09
STA 85
JSR 20
PHA 48

PLA 68
PHA 48
PLA 68
NOP EA

JMP 4C
JSR 20
LOA A9
JSR 20

BNE dO
JSR 20
LOA Ad
NOP EA

NOP EA
NOP EA
JMP 4C
NOP EA

NOP EA
NOP EA
NOP EA
NOP EA

1 8 Clear Screen?
2C* Yes, clear screen
Od Return Carriage?
17 Yes, return carriage

(7F) (01) ENTER CHARACTER via Subrautine
03* Did screen overflow?

(76) (01) Yes, home Cursor via subroutine
(Ed) Restore Cursor to new location

80 continued
(Ed) continued

Equalize return for transparency
1 0 60 continued

continued
continued

(C3) (1 7) Return to Scan
I I I CARRIAGE RETURN /// get Cursor

I F Move Cursor to extreme right
(Ed) Restore Cursor
(81) (01) Increment Cursor

Equalize return for transparency

continued
continued
continued
continued

(36) (01) Exit via screen overflow test
(76) (01) / / / CLEAR SCREEN / / / home Cursor
20 Enter space into accumulator
(7F) (01) Enter space and increment via sub

FA* Repeat if not to end of screen
(76) (01) Home Cursor via subroutine
(00) (EO) Provide vertical sync pulse

Equalize return for transparency

continued
continued

(3b) (01) Return to main entry program
Spare

Spare
Spare
Spare
Spare

Fig. 5-6 Continued. Program for 16-llne, 32 character per line,

210

0176 LDA A9 00 SUBROUTINE-/// HOME CURSOR ////
0178 STA 85 (Ed) Set lower C.unor to 00
017A LOA A9 02 Set upper Cunor to 02
017C STA 85 (EE) continued

017E RTS 60 Return
017F STA 91 (Ed) SUB-/ I ENTER AND INCREMENT //
0181 INC E6 (Ed) Increment lower addren

[°'�
BNE d0 06* Did page overflow?

01 85 INC E6 (EE) I ncrement upper addren
0187 LOA A9 04 load page above display maximum
0189 CMP cs (EE) Test for screen overflow
018b RTS 60 Return

NOTES:
Refer to notes at end of Fig. 2-10.
Cursor Address is stored at OOEd low and OOEE high.
Available remaining stack length is approximately 100 words.
* Denotes a relative branch that is program length sensitive.
() Denotes an absolute address that is program location sensitive.

Continued on neat page.

interlaced TVT 6 5/8 Raster Scan with integrated minimum Cursor.

211

FLOW CHART:

NO

NO

START

l7A6

EVEN

EVEN F IELD
V SYNC AND

SIT UP

(1761 - 1766)

YES

(1780 - 178b)

(178d - I 78F)

(1791 - 179Fl

(17A2-17A4l

>
..;;.O""'DD;...._-, (17A6 - 17ABI

ODD F IELD
V SYNC

AND SET UP

(17AC- 17b6l

JUMPS TO CURSOR PORTION
ON F IRST BLANK SCAN •

..----- A

.--------------------- 8

(17bd - 17cll)

"SCAN" PORTION

RETURNS TO SCAN Wl£N
CURSOR IS F IN ISlt:D

Fig. 5-6 Continued. Program for 18-llne, 32 character per line,

212

A

B

NO

(012b - 01321

ENTER

f0133-0B5)

ENTER
ANO

INCREMENT

NO

RESTORE
CURSOR

ERASE
OLD

CURSOR

(0116 - 01211

(0124 - 012AI

CLEAR

CARR IAGE RETURN

RETURN !014A - OlSAI CHARR IAGE

(0176 - 017EI

YES HOME
CURSOR

"CURSE" PORT ION

10176 - 017[)

HOME
CURSOR

HOME
CURSOR

(0176 - 017EI

IO!Sb - 0170)

!0176 - 017EI

interlaced 1VT 6 5/8 Raster Scan with integrated minimum Cursor.

213

The keypressed commands of enter, carriage return, and clear are
done pretty much the same way we did with the Scrolling Cursor
program of Fig. 2-20. The only differences are that we add extra
equalization time as needed to get everything to take the right
amount of time.

"Enter" and "Carriage Return" take slightly more than one hori
zontal time, so we add equalization to come up to a whole number
of Scan lines, and then knock two lines out of the blank Scans to
make things come out even. On a "Clear" command, we take an
entire field to complete clearing since we have to repeat enter a
space 512 consecutive times. At the end of this "used" field, we
throw in a new vertical-sync pulse to hold vertical lock and then go
on to the Scan program.

The coding in this program is a little sloppy. You should be able
to make it much more efficient. At the same time, we get "perfect"
invisible equalization of the display, but you may find a few back
ground glitches that are annoying on a reverse-video (black on
white) display. These can be fixed with a little extra work on your
part.

Your Turn:

Combine both program halves into a
single integrated Scan and Cursor ,pro
gram. Make tihe coding more efficient and
further improve the transparency. T'hen
add coding that will ·let you transparently
Scan a companion ASCI I keyboard. Do ·not
use an external keyboard encoder.

As you will see when you use this program, absolutely perfect
equalization of all the paths through the program is not often
needed. This is particularly true for seldom happening things like
extra code that is picked up because of a page overflow, and so on.

Since your Cursor is part of the Scan program, the amount of
equalization needed will change as you change the number of
microseconds of horizontal-Scan time.

Should you want to integrate a more complicated Cursor or other
program, consider measuring how long the other activities take
with a timer and then correct for it rather than keeping track of
each and every possible path through the software.

214

FILL IN THE SYNC PULSES

Integrated Scan programs are nice for totally transparent Cursors,
keyboard scanning, 1/0, and similar support tasks. But, if we want
to run a display along with a higher-level language such as Extended
BASIC, or if we have very involved game motion calculations,
integrating the two programs together either will not work at all
or else will be "mind blowingly" complex. Something fancier is
needed if we are going to get full transparency with heavier
programs.

One solution to total transparency is called the counter method,
otherwise known as sync fill-in. We note our usual tvt Scan pro
gram is not up to very much during the entire vertical-blanking
interval. All the Scan program does during this time is provide
horizontal-sync pulses and keep track of the total lines in the field.
If we can find some other ways to do these two simple tasks, the
entire blanking time can be released for other uses. Obvious "other
ways" include a counter or a software timer.

A good approach is to reverse the roles of tvt scanning and the
main program from what we have done so far. We let our main
program be the main program, running all the time, and interrupted
by the tvt scanning. The main program gets interrupted 60 times a
second. During an interrupt, the Scan program provides us with
the live portion only of a field. After the live portion of the field is
complete, some source of continuing horizontal-sync pulses and

60 TIMES
A SECOND

AN INTERRUPT BREAKS THE MAIN
PROG.RAM AND G IVES US A LIVE
SCAN FIELD • .__ _________ _,

F ILL-IN SOURCES OF HOR IZONTAL SYNC
AND A 60 HERTZ "NEXT FIELD INTERRUPT"
ARE SET UP.

* ���iT

Fig. 5-7. Sync fill-In in method gives total transparency by letting main pro
gram run during display vertical blanking time.

215

VCL

VRF

� BREAK).(

,.......
1.
_
o M_H_z

--tCOUNT i6 i----------t. HIN

JL
RESET 213

40208
(CMOSI

9 + � V
I
� 3. 3K
{ (ON K IMI y.-1

IRO
.001 pf

K

Fig. 5-8. Counter to add to 1VT 6 5/8 for transparent sync Fill-In.

start-the-next-field timing is located. The interrupt is then released
and the main program continues.

The sync fill-in method is similar to the interrupting of a running
program by a front-panel monitor, as is commonly done in many
microcomputers. Fig. 5-7 sums up what we have to do for the sync
fill-in method to work.

We can add a single, long binary counter to our TVT 6% to pick
up fully transparent, sync fill-in operation. Details of the new
counter are shown in Fig. 5-8. Our new counter is driven by the
1-MHz system clock. Once every 64 µ,s, a horizontal-sync pulse is
output. Once every 128 horizontal lines after reset, an interrupting
pulse is output. By resetting the counter at the end of each field
with the VRF command, we automatically set up 128 blanking lines
during which the main program runs normally.

Details of a 14 x 32 Scan software program that works well
with the counter method are shown in Fig. 5-9. Since our counter
calls for a 64-µs line, the software is adjusted to provide the same
length. Except for one very obscure and sticky detail, the Scan
program is very simple and straightforward. We start out by saving
all the registers on the stack so the main program can resume
normal operation later. Then we do some equalization. Then we
initialize the starting addresses and the number of lines to be
scanned. We then do the usual character row Scans. After the last
line, we do some more equalization, output a vertical-sync pulse and
reset our counter, restore the registers and return to the main pro
gram.

The obscure and sticky detail was slid over with the word "equali
zation" in the above description. If we could be sure that an inter
rupt always took place the instant we told it to, there would be no
problem at all. But, that is not the way interrupts work. Interrupts

218

µP-6502 Start-lRQ Displayed-0220-03dF
System-KIM-I End-RTI Program Space-1780-17d3

Upper Address (17A8) lower Address (1 7 A7)

l · l · l · l · l 0 l 0 l 1 I VB I I V4 I v2 I v1 I H 1 6 I He I H4 I H2 I H I I
'----v---------
0-5, F -normal program (no TVT) Program length-84 words
6 -blank Scan
7 -scan row I Remaining Throughout-SO%
8 -Kan row 2
. . . etc.
d -Kan row 7
E -vertical-sync pulse

Enter
via
l�Q

1 780 PHA 48 Save Accumulator
1781 TYA 98 Save Y Register
1782 PHA 48 continued
1 783 TlCA BA Save X Register

1 784 PHA 48 continued
1 785 LOA Ad (46) (17) Read timer to measure IRQ jitter
1788 EOR 49 FF Change down count to up count
1 78A LSR 4A Shift LSB Jitter into carry flag

1 78b BCS bO 00 Equalize 2; 3 microseconds
1 78d STA 8d (97) (17) Complete equalization; load blank Scan
1 790 LOA A9 00 Initialize lower address
1 792 STA Bd (A7) (17) continued

1 795 CLC 1 8 Clear Carry
1 796 JSR 20 00 60 I I I I Equalizing Blank Scan I I I I
1 799 BEQ FO 00 Equalize 3 microseconds
1 79b LOA A2 OF load no. of character rows +

1 79d LOA A9 A2 Initialize Upper Address
17CO 1 79F STA Bd (AB) (17) Store Upper Address

1 7A2 PHA 48 Equalize 1 1 microseconds
1 7A3 PLA 68 continued

1 7A4 NOP EA continued
1 7A5 NOP EA continued
17A6 JSR 20 00 62 I I I Character Scans 0-7 I I I I
1 7A9 ADC 69 1 0 I ncrement character Scan counter

1 7Ab CMP C9 EO scan counter overflow?
4- 1 7Ad ace 90 FO* No, scan next row of character

1 7AF TAY AB Save Upper Address
1 7b0 LOA Ad (A7) (17) Get lower Address

Continued on ned page.

Fig. 5-9. Transparent 14 X 32 Scan program for TVT 8 5/8 using counter
method for sync fill-In.

217

1 7b3 ADC 69 I F I ncrement Lower Address; save carry
1 7b5 STA 8d (A7) (1 7) Restore Lower Address
1 7b8 TYA 98 Get upper address
1 7b9 ADC 69 90 Add Carry; reset upper address

1 7bb JSR 20 00 62 // / // Blank Scan 8 /////
1 7bE CLC 1 B Clear Carry
1 7bF DEX CA End of screen?

179F 1 7C0 BNE d0 dd* No, do a new character row

1 7C2 LDA A9 38 Set Timer to measure IRQ jitter
1 7C4 STA Bd (44) (17) continued
1 7C7 LDA Ad 00 E0 Output Vertical-Sync Pulse
1 7CA PLA 68 Restore X Register

1 7Cb TAX AA continued
1 7CC PLA 48 Restore Y Register
1 7Cd TAY AB continued
1 7CE PLA 68 Restore Accumulator

1 7CF PHA 4B Equalize 14 microseconds
1 7d0 PLA 68 continued
1 7d l PHA 48 continued
1 7d2 PLA 68 continued

exit to
main 1 7d3 RTI 40 Return from Interrupt
program

NOTES:
TVT 6 5/8 must be connected and both the Scan (658-KSB) and Decode (658-KD64)

PROMs must be in circuit for program to run. TVT 6 SIB must be in "32" position.
This program runs by interrupting another one. For a default main program use

0 100 EA EA 4C 00 01 . Counter of Fig. 5-8 must also be in use.
Load 20 in locations 0200-02 1 F to blank top equalization lines.
Step 1 7A6 goes to where the upper address stored in 1 7A8 and the lower address

stored in 1 7A7 tells it to. Values in these slots continuously change throughout
the program.

Program horizontal frequency 1 5,625 Hz; Verticol 59.98 Hz; 64 µ,s per line, 260.5
lines total, no interlace. SO-second hum bar.
) Denotes an absolute address that is program location sensitive.

* Denotes a relative branch that is program length sensitive.

Fig. 5-9. Transparent 14 x 32 Scan

218

FLOW CHART IRQ

(1780 - 17841

11785 - l79EI

(l79F - l7AAI

NO
(17Ab - l7AEI

(17Af - l7bfl

NO
(17C0 - l7Cll

ll7C2 - l7C61

(17C7 - 17C91

U7CA - l7d31

RTI

program for TYT 6 5/8 using counter method for sync fill-In.

219

always wait until the present instruction is carried out. Depending
on your computer, this wait will depend on whatever instruction the
main program happens to be working on, and can range from one to
ten or more microseconds. If we ignore this, we will get several over
lapping displays, randomly jittering around as the actual time-to
interrupt dictates.

So, a precise method of finding out how long an interrupt took is
needed. In the KIM-1, we use the "free" software timer buried in
the cassette circuitry. We initialize this timer at the end of one field.
After the next interrupt, we measure the time in the timer. This will
give us a number that relates to the number of microseconds of jitter
the interrupting process caused us. We then go on to correct the
jitter by lengthening or shortening the time before the first character
row.

Since the KIM timer is a down counter, this is the opposite of what
we need. So, we complement the time reading at 1788, converting the
answer into a string of numbers that increases with increasing time.
Next, we shift everything right one bit, putting the least significant
bit into the carry. A BCS 00 will take 2 µs for a zero and 3 µs for a
one. This takes part of the problem and solves it for us.

We then take the remaining value and use it as a lower address to
start a blank Scan. Each unit change in blank Scan address gives us
a change of 2 µs, nicely dividing out the "times two multiply" we
got with the right shift. The value initially loaded into the timer not
only does our equalization, but also gives us a position control.

In your own system, anything that works can be used. What you
have to do is find some way to measure how long after you told your
computer to interrupt that it actually did so, and then use this num
ber to shorten or lengthen things so that the first character row
always takes the same number of microseconds after the interrupt
command is given.

Our counter and its Scan program is an extremely elegant example
of how simple it is to pick up full transparency in a tvt system. This
is admittedly a special case as we are limited to Scans with 64 µs
per line and 128 lines of available transparency during vertical
retrace.

220

Your Turn:

Add Interlace and Double Stuffing to this
Scan program. Note that you wi l l need a
new way to reset your counter when you
go to full i nterlace.

ll
'P u
er ... RI
,=, .,,
.i
ii
51

I u
+ 5 V

.,.
i"
8 CLOCK

IN
i:::
::I
S' ..

S' ..
!

-a
I

� ...

CL£AR LOAD
+ 5 V

UP 0-

DOWN BORROW i--
D C B A

I + 5 V

�

- 4.7K - 116PLACESI

[[[[
128 64 32 16

H SET

I l
CLEAR LOAD

UP

DOWN BORROW
D C B A

- 4.7K

� -

rrrr
8 4 2

All IC 'S 74 LS193

I I
CLEAR LOAD Cl£AR LOAD + 5 V + 5 V

0- UP 0- UP

DOWN BORROW i---- DOWN BORROW ,___
D C B A D C B A

+ 5 V + 5 V + 5 V

- 4.7K - 4. 7K - r-- -
H OUT

V rrrr
128 64 32 16

rrrr V OUT

"lf
V SET

In general, you have lots of options toward total
°

transparency
with sync fill-in. By going to a divide-by-N counter for the H source,
you can get any line length you want. A traditional, but not cost
effective, divide-by-H and divide-by-V counter appears in Fig. 5-10.
Tiris will be fine to get you started, but you will want something
better in your final system.

The obvious, crying-to-be-used source for the 60-Hz interrupt is,
of course, the power line. This also will give you a stationary display
with the resulting line lock. To use the power line, a phase measure
ment must be made to speed up or slow down the microprocessor
clock so that lock can be held. Another route is to add or remove
equalizing delay with suitable software; this lets you run at a con
stant clock frequency. This can be very easy to do, but is very system
specific. The details are left up to you.

, Your Turn:

Line lock your interlaced, double-stuffed,
transparent, counter method Scan pro
gram.

Other sources for our 60-Hz field interrupt are the second half of
the counter of Fig. 5-10, or one of the new television vertical-counter
sync chips such as a National LM1880. If we are sneaky, we can
eliminate the need for a separate timer to compensate the interrupt
jitter. For instance, if the first few stages of your divide-by-H counter
are available, these can be directly read to get a measurement of the
jitter. Once again, the details are system specific.

The crucial question is "How much throughput does an interrupt
driven cheap video Scan leave us?" The quick answer is "Much more
than you would guess."

Chart 5-1 shows the available throughput remaining for many
popular display formats. Short displays will have an almost negligi
ble effect on throughput. We see that we can get a double-stuffed
12 x 80 display and still have almost two thirds of the usual through
put available for normal computer use.

The throughput is calculated by seeing how many total lines you
have, and subtracting three more than the number you need for your
live Scan. The result is expressed as a percentage. The extra three
lines take care of your sync and setup. If you are careful, these lines
can also be used for your companion Cursor and keyboard scanning.

Double stuffing will always help us much on throughput. The
most dramatic example is in the 256 X 256 graphics, where the

222

Chart 5-1 . Full Transparency Throughput Versus Display Format

Computer
Time

Aphanumerics Remaining
1 x 32 or 1 x 40, double stuffed 97%
1 x 32 or 1 x 40 . 95%

1 6 x 32 or 1 6 x 40, double stuffed 68%
1 2 x 80, double stuffed . 62%
16 x 64, double stuffed . 58%
1 6 X BO, double stuffed . 50%
32 X 32 or 32 X 40, double stuffed 38%
1 6 X 32 or 1 6 X 40 . 38%
1 2 X 80 . 25%
24 x BO, double stuffed . 25%
1 6 X 64 . 1 7%
32 x 64, double stuffed . 1 7%

Graphics
1 28 x 128, double stuffed . 74%
1 28 X 1 28 . 50%
256 X 256, double stuffed . 50%
256 X 256 . 2%

throughput is 2% for a regular display and 50% for a double-stuffed
display. To maximize your throughput, keep your display as short
and compact as possible, use double stuffing, and minimize the num
ber of lines between character rows.

One surprise in Chart 5-1 is that 64-character lines are less effi
cient than BO-character lines when it comes to throughput. For a
given number of characters on the screen, the number of lines you
are usually willing to eliminate going to 80 characters exceeds the
percentage change involved in lengthening each line from 64 to 80
characters, explaining the discrepancy.

USE A SLEDGEHAMMER

Sometimes your display and its Cursor may be so sophisticated or
complex that it needs nearly the full attention of your microproces
sor. Or other programs in your computer system may need all the
throughput they can get. There may be limits on your other pro
grams that prevent any interruptions at all. One situation in which
this happens is when timer loops, real-time clocks, or other timing
activities are an important part of the program. Other times, you
might want to run your display remotely from your computer in the
traditional terminal fashion.

What can you do to get full transparency in these special cases?
The answer is obvious. You throw in your own microprocessor and

223

TO MAIN
COMPU1ER

�-J::� i"- ,-------,
I ASC I I I 1 UART I PARALLEL 110,

..,__.....,; KEYBOARD I I (OPTIONALI I TIMER, ROM
L_!°!_T�N�l_j L-----...J

I K X 8
RAM M 6 5/8 ---o VIDEO OUT

Fig. 5-11. Adding dedicated mlcroproc:esaor chip Is sledgehammer (but still
cost-effective) approach to transparent cheap video.

display memory ahead of your TVT 6% and dedicate these new
parts to exclusive display and support use.

Fig. 5-11 shows the block diagram of a typical system. We use a
CPU that works with a lK display memory RAM and a lK or so
program ROM ahead of the tvt circuitry. One IC would be needed
for the microprocessor; two for the memory (using 4K static chips) ;
one for the upstream tap; one for a parallel interface and PROM
program combination; and possibly a UART/bit rate generator chip
for a serial interface. A total of six or seven extra ICs would be in
volved, fewer if we pick one of the new "single chip" µ,p systems.
The same circuit could support a scanning ASCII keyboard, a
cassette interface, and so on, along with serial and parallel inter
faces to the main computer system.

Your Turn:

Show a stand-alone cheap video terminal
system using 'less than 1 5 integrated cir
cuits. Have it provide all the features of a
traditional deluxe video terminal and then
some.

The use of a "whole new computer" may sound like a last resort
sledgehammer. And, in fact, it is very rarely needed. But micro-

224

processors and their support chips are rapidly dropping in price. Even with these added chips, the cheap video approach of an upstream tap and a Scan microinstruction dramatically slashes system complexity so much that it often provides the simplest and best route to video display.
NOW WHAT? You have seen just what cheap video can do for you. Now you should be able to design your own cheap video software and hardware. You can see just how easy it is to let ordinary speed microcomputers do all the timing needed for video display, while still staying within the limited bandwidth of a largely stock tv set. You should be able to use the cheap video tricks-of-the-trade on your own, picking up double stuffing, full interlace, memory repacking, and whatever degree of transparency you need for your use. VVhat is next? Where do you go from here? Here are several cheap video concepts that need your attention and you can be an important part in helping to find their solution : * Design an 8080 Adaptor that goes between the TVT 6% and an 8080 microcomputer system. Use two 74LS174 latches on the high address and the upstream tap lines to get around the 8080's Boating address times. Connect your display memory address line A9 to a source of 500 kHz during a Scan to double the apparent memory-access speed to once each microsecond. * Provide a cheap video system to pick up Benton Harbor and S-100 bus compatibility. The best way to do this initially is as a simple tvt add-on to an existing memory card. Patch or otherwise modify your Extended BASIC or other software to work directly into display memory space. · * Can you use a single microprocessor and a pair of 4K static RAMs ahead of your tvt to do a complete, transparent, standalone terminal? Can you do the entire terminal, including keyboard, with fewer than 15 integrated circuits and costing less than $50 at hobbyist retail? * Do long line-length alphanumeric Scans at normal horizontal speeds. Approaches to this on a 6.500 or 6800 would include brute force Scan programs, address line A9 switching (a la 8080) , or speeding up the CPU, either all the time or else only during a Scan Microinstruction. * Build a HEX-ASCII adaptor that lets you directly display machine op-code. Titis makes your cheap video system into a super front-panel debugging aide. One workable approach appeared in the October, 1977, Popular Electronics. A better route would

225

be a much smaller card that fits between the M and the charac
ter-generator module.

* Create an end-of-line bell ringer that uses one of those dollar
"Japanese Sonalerts" to signal end of line and other entry or
Cursor errors.

* Use some refinements on software controlled vertical position
to produce a gentle scrolling cursor that slowly moves up
(crawls) rather than jumps disconcertingly as do almost all
present Cursor systems.

* Show Scan and Cursor coding for a 6800 base system. What
about other systems like COSMAC, the IM6100, and so on?

* Use a LM1889 to build a modulator that gives you one of four
colors for color displays. Add circuitry as needed to get Chan
nel 3 and 4 rf output as well as full sound capability.

So, where does cheap video go from here? It is all up to you!

226

APPE N D I X A

The ASCI I Computer Code

227

Table 1-1. The Standard ASCII Code

BIT NUMBERS
0 0 0 0 1 1

I I
� 0 0 1 1 0 0

0 1 0 1 0 1
I ,

b7 ... bs ... ba b,. ...
�

0 1 2 3 4 5
.j. .j. .j. .j. .j. J, .j. J,

0 0 0 0 0 NUL DLE SP 0 @ p

0 0 0 1 1 SOH DCl ! 1 A Q

0 0 1 0 2 STX DC2 ff 2 B R

0 0 l 1 3 ETX DC3 # 3 C s

0 l 0 0 4 EOT DC4 $ 4 D T

0 1 0 1 5 ENQ NAK % 5 E u

0 1 1 0 6 ACK SYN & 6 F V

0 1 1 1 7 BEL ETB ' 7 G w

1 0 0 0 8 BS CAN (8 H X

1 0 0 1 9 HT EM) 9 I y

1 0 1 · 0 A LF SUB * : J z

1 0 I 1 b VT ESC + ; K [
1 1 0 0 C FF FS < L "-
1 1 0 1 d CR GS - -- M I
1 1 1 0 E so RS > N A

l 1 1 1 F " SI us I ? 0 -
In the TVT 6 5/8, ASCII bit 8 is reserved as a cursor or an entry flag.
A "1" displays the cursor; A "O" does not.
A "1" prevents entry; A "C " allows entry.

1
1
0

6

a

b

C

d

e

f

9

h

i

i
k

I

m

n

0

Examples: The numeral "3" is an ASCII Hex 33 or Binary 001 1001 1 ASCII Coding
"6b" is a lower case "k."

228

1
1
1

7

p

q
r

s

t

u

V

w

)(

V

z

{

} -
DEL

APPE N D I X B

Hex-Octal-Decimal
Conversion Chart

229

LOWER HEX DIGIT

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
0 1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 15

000 001 002 003 004 005 006 007 010 0 1 1 012 013 014 015 016 017

1
16 1 7 1 8 19 20 21 22 23 24 25 26 27 28 29 30 3 1

020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037

2
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057

3
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077

4
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

100 101 102 103 104 105 106 107 1 10 1 1 1 1 12 1 13 1 1 4 1 15 1 16 1 17

5
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137

6
96 97 98 99 100 101 102 103 104 1 05 106 107 108 1 09 1 10 1 1 1 ... 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157

7
1 1 2 1 1 3 1 14 1 15 1 16 1 1 7 1 1 8 1 19 1 20 121 1 22 123 124 125 126 127

>C 160 161 162 163 164 165 166 167 170 171 1 72 173 1 74 175 1 76 177

8
128 129 130 1 3 1 132 133 134 135 136 137 138 139 140 141 1 42 143

ai= 200 201 202 203 204 205 206 207 210 2 1 1 2 12 213 214 215 216 217

9
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
220 22 1 222 223 224 225 226 227 230 231 232 233 234 235 236 237

A
160 161 162 163 164 165 166 1 67 1 68 169 170 171 1 72 1 73 1 74 1 75
240 24 1 242 243 244 245 246 247 250 251 252 253 254 255 256 257

B
1 76 177 1 78 1 79 180 181 1 82 1 83 1 84 1 85 186 187 1 88 1 89 190 191
260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277

C
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
300 301 302 303 304 305 306 307 310 3 1 1 312 313 314 315 316 317

D
208 209 210 21 1 2 12 213 2 14 215 126 127 128 129 220 22 1 222 223
320 32 1 322 323 324 325 326 327 330 331 332 333 334 335 336 337

E
224 225 226 227 228 229 230 231 232 233 234 235 236 236 238 239
340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357

F
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

Octal Values are shawn in italics; e.g., 377
Examples:

Hexadecimal 6D is Octal 155 or Decimal 1 09.
Odal 154 is Decimal 108 or Hexadecimal 6C.
Decimal 195 is Octal 303 or Hexadecimal C3.

230

A P P E N D I X C

Pinouts of Selected

Integrated Circuits and

Other Components

231

232

ALL IC'S SHOWN TOP VIEW

+5 V

+ 5 V

+ 5 V

2513 CHARACTER GENERATOR
(5 1 7, UPPER AND LOWER CASE ONLY)

(GENERAL INSTRUMENTS)

4013 CMOS DUAL "D" fUP-FLDP

(RCA)

4020 CMOS BINARY COUNTER

(RCA)

+ S V

5810 32XB PROM
(INTERSIL)

6670 CMOS CHARACTER GENERATOR
(5 x 7, UPPER AND LOWER CASE)

(MOTOROLA)

233

234

+5 V

+5 V

74lS04 TTL HEX INVERTER

(TEXAS INSHUMENTS)

7405 TTL HEX INVERTER (OPEN COLLECTOR)

(TEXAS INSTRUMENTS)

+ 5 V

74LSD8 TTL QUAD AND GATE

(TEXAS INSTRUMENTS)

+ 5 V

+ 5 V

74l5157 TIL QUAD SElECTOR

(fEXAS INSTRUMENTS)

7416' TTL SHIFT REGISTER

(PARALLEL IN, SERIAL OUT)

(TEXAS INSTRUMENTS)

IN 4919 SILICON DIODE (FAIRCHILD)

235

B

2N4400
NPN SILICON TRANSISTOR

236

APPE N D I X D

Printed-Circuit Patterns

237

Full size pc b oard p attem for 1VT 6 5/8.

239

. . . • e e • • e e ••••••• e e • • • • . • : : . ••···•· . . • • • • • • • • • • • . ,.• • • •• ••• 11••••••• • • ••• •• • • ••• •••••••• e e •••••••• '
........

• • • • ••• • •••••••••••
•1• • • I • .. • • •• •••••••••••• •
• • • • • • • • • •• . . ·····- . . •: : . ·--······ :. ••• . . . - . ..

• \ • • ' •••••••I • • • • • •••••••• • •
• • • •
Solder mask for TVT 6 5/8 (full size).

241

!

n
0
:I
1 :I
!
I .. er ..
�
•
en
pi

V POS H
�TV.a. ..11.VID . TVT 6-5/8

rn rn C17 • CV I Rll I • c'2 I I I c1s J2 Jl ca O .,, 1 O FF c11 I R1 2 GND I c4 R3- -R2
�

• ¼t¼t -
LD � Sl • I I I I I C9 R13 WIDTH � CLAR ITY 01 · R17- � : -R�O- 02

R7- -R9- • _

• D4-7 I I C4 CON ... I -C7- cu Cl e
+S SLOW 6 4 -D3 J

'

I I

I I I • • • -- J - D1 I

I . I I Rl S R16 C14 • • 0 Rl R4 CS I ¼ I R,a I cp O O • S2-4 � • .-..--, I �s I Oi C
1
6

FA ST 32 + I +bus" DV
.... D- ... ··o-.. Rv-;

[1

- · ... - - · - �-o- .. ·;

o

- • I
0 I CK Z O o0 note u 11'1 "t, : "' N c(

• .
> O DB 11'1

-' Ci u :.: \ I -..... ""' I ., or I "' c � -. c " R6
"1c6 1c2

VR
1c1 I 1c1 1cs I ICJ

I• m - - • - - - - _ ._ - - -+ - _,... _ .,.
a6 1 - - gnd bus _:,. -------• J ______ •C3- GN o - J -

-ao- - J HR . by synergetics - J - -c1- - J -'O
> � O - N M ., .,, � � . � z o o O _ N M ., .,, � ,.._ � c .,, u m m m m m m m m - N M ., .., � ... � � � � � � c c c c c c o o � z + > o c o c o o c c < ci: ct < < > o "' � u � < < < < > > > > > > > > � � �

(A) + bus. (B) Ground bus.

Full size bus strip pattems.

245

I
1 1 116" -----....j

- (2. 7CM)
I

1 9/16"

(4CMl

NOTCH AS SHOWN

Module A foil pattern.

I 13116"
14. 6CM l

NOTCH AS SHOWN

Module B foil pattern.

247

f--- 1 1/16"

I 12.
7
CM) I

NOTCH AS SHOWN

Module C foil pattern.

249

251

Accumulator, 22
Adding

interlace, 60-61
tvt input to your television set, 147-

150
Add-on HEX/ ASCII converter, 38
Address

bus assignments, 33-34
decoder, 35
lines, 33-34, 134-135
lower, 52
upper, 52

Algorithm, double-stuffing, 68
Alphanumeric

cheap video display, 18, 155
system, 14

Alphanumerics, 10
AND gate, 23
Architecture, 1 1-15
ASCII

characters, 9
computer code, 227-228

Backspace (BS) , 93
Bandwidth

compensation, 130-132
compensator, 131
stock video, 9

Bandwidth-enhancement circuit, 26
Bandwidth enhancer, 14
Black and white

formats, 33
graphics display, high resolution, 20

Blank
line, 35
row, 35

Blanking, 14, 35, 46, 196
gate, 14
skew, 198

Blank-line interlace, 77
Block-access memory, 14
BNK input, 163
Branch on equal, 52
"Brute force" software, 66
Buffer, 126
Building the TVT 6", 155-199
"Bulldozer tracks," 197
Bus

data, 1 1
definitions, 33-38
strip patterns, full size, 168

Call, 22
Calling chess pieces from a file, 195
Carriage Return (CR) , 93, 95, 2 14
Changeover, 139-141

switch, 140
Character

generator, 107
dot matrix, 14

lines, 33
times, constant one microsecond, 25-

26

I ndex

Characters
dot matrix, 46
double-stuffed, 10

interlaced and, 26-27
justification of, 20
noninterlaced, 26
normal interlaced, 26

Cheap video, 9
card, TVT 6", 156
display, alphanumeric, 18

Checkout, debug and, 183-195
Chess

display using color graphics cheap
video, 19

piece file, data for, 196
Chessboard background, data for, 194
Chip select, 23

Input (CSI) , 137
Output (CSO) , 120, 137

Chrominance, 81
Chunk, 34
Clear (CAN) , 93, 214

screen, 95
Clip-on rf modulator, 25
Clock, 135

commands, 123-128
cycles, sequential, 20
real-time, 15

CMOS Schmitt inverters, 128
Code, machine-language, 14
Color modulators, 10
Column Scan, 121
Commercial example, 15-19
Composite video, 13, 15
Connections for

interface of TVT 6" to KIM-1 or
KIM-2, 142-143

Scan 658-KS64, 1 16
658-KD8, 113
658-KSB0, 120
658-KS40, 120

Converter, data-to-video, 14
Counter method, 215
CPU, 25

chip, 38
Cursor

controlled circuit, 10
controller, 31
down, 95
guidelines, 9 1-94
left, 95
right, 95
software, 91-103
up, 95
visibility, 18
winking rate, 121-122

Cursors, 81
gentle (crawling) , 10

Data
bus (DB) , 38, 120, 135

assignments, 37-38
""true," 23

253

Data-cont
formatter, 107

Data for chess piece file, 196
Data for "Special Fonts" typography

display, 192-193
Data-to-video

conversion, 120-124
converter, 14, 107

graphics, 123-128
Debug and checkout, 183-195
Decode Enable (DEN) , 120, 138-139

command, 42
(658-KD8) PROM, 81

Decoder, 14, 35, 107
Decoding, 35
Delaying character entry, 204
DeMorgan equivalent negative logic OR

gate, 1 1 1
DEN, 163
Design plan, 30
DEX, 204
Display

instruction decoder, 34
memory chip selects, 137-138
microprocessor-based video, 9-10

Displays
alphanumeric, 155

cheap video, 18
graphics, 155

Dot-matrix
character generator, 14
characters, 46

Double
displays, 27
speed, 22
stuffed characters, 10, 26-27
stuffing, 26-28, 67-69

algorithm, 68
Driver, 74LS640, 23
Dual mode, 196

EIA (Electronic Industries Association) ,
147

8-bit
wide data bus, 31
word, 1 1

8080, 29, 145
8048, 145
End-of-line bell ringers, 10
End-of-screen odd compare, 73
Enter, 214

character and increment, 92
spaces, 92

Equalization, 54, 216
Erase to end of screen, 95, 206
Even

field, 68
rows, 68

Execution, 23
Extending hold range, 151
External CS gating, 196
External-serial video-shift register, 14

Fetch, 23
-but-do-not-execute operation, 23-25

Field, 45
even, 68
odd, 68

Fill in the sync pulses, 215-222
Fixed-hardware Cursors, 91
Flags, 22

254

Flicker, 27
Floppy disc, 106
Flyback transformer, 153-154
Four-color format, 33
"Four over four" chunk, 81-82
Formatting, 14
Formats, 18
Full-performance scrolling Cursor, 94
Full scrolling Cursor programs, 18

Gated oscillator, 125-126
Gentle (crawling) Cursors, 10
"Glopping," 154
Graphics, 10

displays, 155
formats, 18, 8 1
loaders, 18, 3 1 , 102-104
-response speed, 18
Scan programs, 77-91

Ground rules for Scan software design,
46

Handshaking interface, 207-208
Hardware

designs, 107-154
upstream tap, 38
use options, 196

HEX/ ASCII conversion, 10
Hex-octal-decimal conversion chart, 229-

230
High-frequency timing controls, 107-108,

124-128
High resolution black and white graphics

display, 20
HIN, 163
Hold range, extending, 151
Home Cursor, 92
Horizontal

(DEN) rate, 128
fill in, 196
-synchronizing pulses, 13, 14, 46
-yoke lead, 151-153

How display instructions are decoded,
32

Hum bar, 45, 47
stationary, 61

Ignore it, 202
Immediate instruction, 20
Improving memory packing density, 73
Increment memory (INC) , 87
Instruction

decoder, 14, 107, 109-1 13
PROM, 109

decoding, 34-37
immediate, 20

Integrate, 105
it, 206-214

Interconnections, microcomputer and tvt
interface, 134

Interface
hardware, 1 1
TVT 6" to KIM-I or KIM-2, con

nections for, 142-143
Interlace (ILCE) , 65

adding, 60-61
Interlaced

characters, 26-27
frame, 45

Internal
program counter, 20
-serial video-shift register, 14

Jitter, 61
Jumper for 6502 or 6800 operation, 159
Jump to subroutine (JSR) , 22, 38, 52,

105-106
Justification of characters, 20

Key parts of microprocessor-based video
display, 12-13

Keypressed pulse, 203
KIM-based system, 28-29
KIM-1, 28, 59

interface, 141-146
microcomputer, 10, 16
system, 3 1

KIM-2, 28

Load command, 123-128
Lock it, 203
Loop timing, 53-54
Lower address, 52
Luminence, 81

Machine-language code, 14
Making it portable, 43-44
Mechanical details, TVT 6'1\, 163
Medium resolution graphics formats, 82
Memory, 1 1

block-access, 14
map, 36
packing, 34
repacking, 10, 67, 73-76

Microcomputers
KIM-1, 28
KIM-2, 28

Microcomputer system, 11 , 20-21
Microinstruction, Scan, 9
Microprocessor, 1 1

-based video display, 9-10
advantages, 27-28
disadvantages, 28

Microprogramming, 38
Minimum memory, 28
Modifications, 195-199
Modifying

KIM-1 for TVT 6'1\, 141
KIM-2 for TVT 6'1\, 145

Modulator, clip-on rf, 25
Module A construction details, 173-178
Module B construction details, 176-179
Module C construction details, 179-183
Module D construction details, 183-185
More characters, 66-68
MOS

memory, 23
technology 6502, 28, 31

Multiplexing, 200

Negative logic OR gate, 23
Noninterlaced frame, 50
No-operation (NOP) , 39, 52

Odd
field, 68
rows, 68

On-card switches, 18
1802 COSMAC, 145
One-microsecond character times, 25-26

128 X 128 format, 82-83
Op-code, 22

display, 10
Optional system features, 155
Output-sync commands, 15
Overhead, timing, 44-45
Overlap, 126

Page
overflow, 58, 76
zero, 20

Paint it black, 205-206
PC

board pattern for TVT 6%, 162
card, single-sided, 9

Picking a microprocessor, 29-30
Pinouts

for data-to-video modules, 165
of selected !Cs and other components,

231-236
Pipelining, 55
Plug-in

modules, 16
module, TVT 6l, 156
submodules, 17

Pointers, 22
Precoded input, 76
Printed-circuit patterns, 237-251
Programmable counter useful for TVT

development, 221
PROM, 14, 105-106

method of Scan generation, 42
storage, 40

Pulses, sync, 14

RAM, 52, 105-106
unused, 36

Raster Scan, 45
Raw video, 14
RC network, 128
Read only memory, 14
Real-time clock, 15
Reduced horizontal rate, 28, 67
Reducing width, 151-154
Redundant decoding, 35
Refreshing a raster, 45
Register, video-shift, 14
Removing the sound trap, 150-151
Reset, 58
Retrace, 46
Return from subroutine (RTS) , 22, 38
Reverse-video display, 214
ROM, 105
Row Scan, 121
Rows of character dots, 68
Rules of the game, 11

Scan
enable, 196
microinstruction, 9, 11 , 19-25, 38-45
microprogram, 14

generator, 1 13-120
PROM, 107

program address options, 197
programs, 45-77
(658-K564) PROM, 81
software, 14

Schematic TVT 6%, 160-161
Scrolling, 95, 103
Scroll up, 206
Secret formulas, 19

255

Sequential clock cycles, 20
Serial video, 24
7-bit ASCII code, 38
74LS165 shift register, 198
74LS640 driver, 23
74165 shift register, 126
Simple, 27
Single-sided pc card, 9
6800 series system, 29
6502

Repacked Scan, 74-75
Scan microinstruction coding, 40-4 1

16-bit wide address bus, 31
16 X 40, no interlace, 55-58

program for, 56-57
16 X 32

interlaced Scan, 61-66
Scan waveforms, 199

Skew, blanking, 198
Software

design, 31-106
Scan, 14

microinstruction, 38
Sound trap removal, 150-151
"Special Fonts," typography display, data

for, 192-193
Special PROM, 77
Speed, 27
Split sync systems, 132
Stack, 22
Stash, 58
Stationary hun1 bar, 61
Stock video bandwidth, 9
Subroutine

file of subelements, 104
jumps to, 22
return from, 22

Superposition, 50
Supply pins, 134
Sync

611-in, 215
positioning circuits, 107-108, 128-132

Synchronizing pulses, 13, 14, 45
Symbols, 11

Tap, upstream, 9, 1 1
Television interface, 146-147
"Three over three" chunk, 81-82
32 X 64 interlaced scan, 69-73
Throughput, 27, 222-223
Time it, 202
Timing

details, 58-60
loop, 53-54
overhead, 44-45

Tilting, 50
Transparency, 10, 15, 28, 104-105, 200-

226
"True" data bus, 23
Truth table

Scan PROMs, 1 15, 1 18, 1 19
6502 decode PROM, 1 12

TTL
outputs, 23
stage, 128

251

Tv set, 11
Tvt enable, 11 l
TVT 61', 15-17

block diagram, 157
building, 155-199
cheap video card, 156
component location for, 166-167
construction details, 163-165
data-to-video modules, 165-169
drilling details, 163, 166, 167
how it works, 158-163
mechanical details, 163
parts list, 158
pc board pattern, 162
plug-in module, 156
Raster Scan, 51
schematic, 160-161
solder mask for, 164
step by step assembly, 169-173
Synergetics design, 15

2650 microprocessor, 145
24 X 80 Scan program, 76-77
2513 character generator, 122
256 X 256 format, 83-91
TY1JOgraphy, 20

Underlap, 126
Unused RAM, 36
Upper address, 52
"Upper-core" decoding, 35
Upstream tap, 9, 1 1 , 23-25, 135-137

adding to existing microprocessor or
memory, 24

Use a sledgehammer, 223-225
Using existing hardware, 28

Vector storage, 36
Versatility, 27-28
Vertical

-height control, 153
-linearity control, 153
lock, 196
-synchronizing pulses, 13, 14, 46
(V SYNC) rate, 128

Video
combiner, 15
display, microprocessor-based, 9-10

advantages, 27-28
disadvantages, 28

monitor, 1 1
-output circuitry, 128, 130-132
polarity, 18, 196
-shift register, 14

Volatility-RAM versus ROM, 105-106

"Wheel spinning," 52, 54
Width, reducing, 151-154
Winking rate, Cursor, 121-122
Wraparound, 95, 103
Write only memory, 22

Yoke lead, horizontal, 151-153
Y register, 20, 22, 40

Z-80 systems, 29, 145

... ..
w

Chart 3-3. Connections Needed to Interface TVT 6 5/8 to KIM-1 or KIM-2

Pin

1 *

2

3

4

5
6
7
8

9
1 0
1 1

1 2

1 3
1 4
1 5
16*

17*

1 8
1 9
20·

21
22

23
24

25
26*

27
28

29
30
31
32

33

34
35•
36*

ldent

GND
BNK
HIN
VD7

VD6
VD5
VD4
VD3

VD2
VD1
VDO
A15

A14
A1 3
A1 2
cso

CSI
SEO
SEI
DEN

VRF
AS
A4
A3

A2
A1
DB7
DB6

DBS
DB4
DB3
DB2

DB1
DBO
VCL
+sv

Notes: (See • Above}

Function

Ground return-heavy foil or wire
Blanking input (ground)
Horizontal-sync Input
Cursor or Graphics bit 8

ASCII bit 7 from display memory
ASCII bit 6 from display memory
ASCII bit 5 from display memory
ASCII bit 4 from display memory

ASCI I bit 3 from display memory
ASCII bit 2 from display memory
ASCII bit 1 from display memory
Address l ine 1 5

Address line 1 4
Address line 1 3
Address line 1 2
Chip Select TO display memory

Chip Select FROM Enable Decoding
Scan Enable OUTPUT
Scan Enable INPUT
Decode Enable TO KIM

Vertical Reference
Address l ine 5
Address l ine 4
Address line 3

Address l ine 2
Address line 1
Data Bus 7
Data Bus 6

Data Bus 5
Data Bus 4
Data Bus 3
Data Bus 2

Data Bus 1
Data Bus 0
Video Clock .el2
+5-volt supply

Load

1 TTL
1 TTL

varies

1 NMOS
1 NMOS
1 NMOS
1 NMOS

1 NMOS
1 NMOS
1 NMOS
1 LSTTL

1 LSTTL
1 LSTTL
1 LSTTL
TTL Out

1 LSTTL
TTL Out
1 LSTTL
TTL Out

TTL Out
1 LSTTL
1 LSTTL
1 LSTTL

1 LSTTL
1 LSTTL

TTL TS OUT
TTL TS OUT

TTL TS OUT
TTL TS OUT
TTL TS OUT
TTL TS OUT

TTL TS OUT
TTL TS OUT

1 LSTTL
200 ma

KIM-1
Connection

Expansion 22
TVT pin 1
TVT pin 20
Pin 1 2 of US

Pin 1 2 of U6
Pin 1 2 of U7
Pin 12 of US
Pin 1 2 of U9

Pin 12 of U10
Pin 1 2 of U 1 1
Pin 1 2 o f U12
Expansion T

Expansion S
Expansion R
Expansion P
Pin 1 3

U5-U12
Pin 1 of U4
TVT pin 1 9
TVT pin 1 8
Pin 1 2 o f U4

no connection
Expansion F
Expansion E
Expansion D

Expansion C
Expansion B
Expansion 8
Expansion 9

Expansion 10
Expansion 1 1
Expansion 1 2
Expansion 1 3

Expansion 1 4
Expansion 1 5
Expansion U
Expansion 21

KIM-2
Connection

Connector 1
TVT pin 1
TVT pin 20
Pin 2 of U3

Pin 6 of U3
Pin 1 0 of U2
Pin 2 of U2
Pin 6 of U2

Pin 10 of U1
Pin 2 of U1
Pin 6 of U1
Connector U

Connector T
Connector S
Connector R
Pin 2 of U6

Pin 4 of U 1 1
TVT pin 1 9
TVT pin 1 8
Connector 3

no connection
Connector H
Connector F
Connector E

Connector D
Connector C
Connector 8
Connector 9

Connector 10
Connector 1 1
Connector 1 2
Connector 1 3

Connector 1 4
Connector 15
P in 4 of U10
Connector V

Pin 1-Ground should be heavy foil or No. 18 wire-al l other connections are wire pencil short leads. Do not use ribbon cables or attempt extension.
Pin 1 6, 1 7-Chlp-select l ine from decoding to display memory is broken by cutting foil and then replaced with a negative logic OR (positive AND} of

the original chip select and the tvt chip select.
Pin 20-Decode Enable output goes low when tvt is NOT scanning; goes high otherwise. Decoding must be disabled during active Scans to allow Scan

memory access to data bus.
Pin 26-Address l i ne AO is not used In M module as the Scan microinstruction indexes every second microsecond. AO is used, however, in d isplay memory

addressing.
Pin 35--Video Clock must load character generator only when data output is stable and valid. Clock ¢2 on the KIM.
Pin 36-+5-volt power from computer must be noise free and well regulated. Heavy wire .

G ROUND - 1

* BLANKING IN· -

* HOR I NPUT -

VIDEO DATA
FROM

UPSTREAM TAP

�6g�ESS
L INES

[

11

13

15

{
- 16 D I SPLAY

MEMORY CS - 17

*TVT SCAN
ENABLE

* DECODE
ENABLE

VERT REF

. {--
18

k�;RESS L INES
A o NOT USED

DATA BUS

160

"SE l " TO '�EO"

A

N

3 Schematic of Fig. 4 • .

N - �

TYT 6 5/8.

+ 5 V (SOURCEI

p IN 14 ICJ, 5. 6
4 P I N 16 IC!, 1,

MODULE 14

• · TIS! PO INT
ALL D I ODES IN14149
g . ICJ 4584
GNO • GR05

U
V
N�J�PLY + 5 V • +

• COMPOS ITE V I DEO CV

RAW V I DEO RV • HOR IZONTAL RATE
�: : VERTICA

M
f
iL OS • DELA Y V

CK • CLOCK
LO . LOAD
CU • CURSOR

161

174

VD7 ©- NC

Upper-and Lower-Case Alphanumeric M.odule
A

Parts List
1-MCM6674 Character Generator (Motorola)
1-18-pin low-profile IC socket
1 -0.1 -µ,F disc ceramic capacitor
2-12-pin strips (AMP 1 -640098-2)
1-circuit board "A"
2-jumpers made from capacitor leads
4-jumpers made with wiring pencil

-solder

Vee

A6

A5

8670

A4 00

Al DI

A2 D2

Al DJ

AO D4

RSl

RS2

1 9116"

RSI NOTCH AS SHOWN

How It Works

ASCII code is input on pins VD0 through VD6. Row l ,
2, and 4 commands are input from instructlon de
coder. Winking cursor CS command is input from
cursor gate when switch selected. Dot matrix code is
output to video-shift-register leads C, D, E, F, and G.
Ground is hard-wired to video-shift-register leads A,
B, H, and the video-shift-register serial input. Input
VD7 is not used.

P IN STRIPS 121

24 • 0 • 1
• •
• •
• •
• •
•

6674
•

• •
• •
• •
• 10 •
• •

13 •
I

• 12

JUMPERS 121

(A) Schematic. (B) Foil pattern.
(C) Pin side. (D) Foil side.

Normal Settings: Cursor ON; FAST clock; WIDTH set to SEVEN pulses.

Fig. 4-10. Module A construction details.

175

256 X 256 Black and White Graphics Module B
Parts List

2-7 4LS08 Quad AND Gate, LS TTL
1 -0. l-µ,F disc ceramic capacitor
1 -circuit board "B"
2-1 2-pin strips, AMP # 1 -640098-2
2-insulated sleeving, l /2"
1 -jumper wire, 3"
-solder

PIN 14 74.S08 121
ICA,B

>IV ®---1 . � � SERIAi.OUT

::: �u � I � •

·� ®--, � �
VD) ®------i �. , , 1 , rl r0
VD1 �

�0

VDL � I L-6
PARALlR
OUT

1116"
1(2. lCMl

1 13116"
14.6CMl

How It Works

Eight-bit chunk code is input on pins VD0 through
VD7. Row 2 command from instruction decoder PROM
used as a blanking input. Input code is passed out to
video-shift-register inputs A through H when blanking
is high. Blank (all zeros) code passed to video-shift
register when blank input is low. Cursor is not used.
Video-shift-register serial input is hard-wired to
ground.

•
• •

•
•
•
•
•
•

I

SLEEV ING ON
CAPACITOR LEAD

WIRE PENC IL
JUMPER 161

VDD t-1' �I �
B 11

.�:::� +-<fv GROUND

Rl ® NC 9 NC ® CURSOR

• . 12

NOTCH AS SHOWN

(A) Schematic. (B) Foll pattern. (C) Pin side.

Normal Settings: Cursor OFF; FAST clock; WIDTH set to EIGHT pulses.

Fig. 4-11. Module B construction details.

176

,,v

V 06

VD>

V04

VDJ

VD2

VOi

VDO

180

96 X 128 Color Graphics Module C
Parts list

l -74LS1 57 Quad Selector, LS TTL
l -2N4400 or equivalent silicon NPN switching transistor
1 -1 K, l / 4 watt resistor
l -2.2K, l / 4 watt resistor
1 -0. 1 -µF ceramic disc capacitor
1 -circuit board "C"
2-1 2-pin strips, AMP # 1 -640098-2
4-lnsulated wire jumpers
1 -jumper made from component lead
,-solder

1
0. 11,1F

!"5151

Ne--@

+ S V Ne --@

2.2K

SERIAL OUTPUT

PARALLEL
OUTPUTS

GROUND

CURSOR

NC

1--- 1 1/16" -------1 I 12. 7CMI

I

IOCMI

IK BOTTOM VIEW NOTCH AS SHOWN

(A) Schematic. (B) Foil pattern.

HOOKUP WIRE
JUMPERS!4J

How It Works

Lower chunk code is input on pins VD0 through VD3.
Upper chunk code is input on pins VD4 through VD7.
A/8 select code is input from instruction decoder as
"Row 4" command. Blanking is input from instruction
decoder as "Row 2" command, and inverted with
transistor RTL inverter. Selected chunk half is .routed
to video-shift-register D,E,F, and G outputs when un
blanked. Ground is hard-wired to video-shift-register
serial input and parallel inputs A,B,C, and D. Cursor
is not used.

WIRE PENCIL
JINPERS I))

NPN TRANSISTOR PIN STRIPS (21

(C) Pin side. (D) Foil side.

Normal Settings: Cursor OFF; SLOW clock; WIDTH set to FOUR
pulses for 1 28 X 1 28 black and white, or to
THREE pulses for 96 X 1 28 color.

Fig. 4-12. Module C construction detailL

181

184

Upper Case Only Alphanumeric ,Module D
Parts List

1 -251 3 character generator (General Instruments)
(MUST be single supply type)

1 -jumper wire from wiring pencil
-solder

2513

+ 5 V 5 V NC

VD6 NC NC 2

VD5 A9 NC

VD4 AB 01

VD3 Al 02

VD2 A6 03 6

VDl A5 04

VDO A4 05 8

R4/A·B A3 NC

R2/BLANK A2 GND 10

RI Al IN4 II

VD7 NC 12

(A) Schematic.

I
I
I

SER IAL OUT

A

C

D

G

PARALLEL our

H

GROUND

CURSOR

N/C

How It Works

ASCII code is input on pins VD0 through VD6. Row l ,
2, and 4 commands are input from instruction de
coder PROM. Winking cursor CS command is input
from cursor gate when switch selected. Dot matrix
code is output to video-shift-register leads C, D, E,
F, and G. Ground is hard-wired to video-shift-register
leads A, B, H, and the video-shift-register serial input.
ASCII code inputs VD6 and VD? are not used.

(8) Jumper detail.

10 12

Normal Settings: Cursor ON; FAST clock; WIDTH set to SIX pulses.

Fig. 4-13. Module D construction details.

185

FLOW CHART:

NO

NO

START

17A6

EVEN

EVEN F IELD
V SYNC AND

SIT UP

(1761 - 1766)

YES

(1780 - 178b)

(178d - I 78F)

(1791 - 179Fl

(17A2-17A4l

>..;;.O""'DD;...._-, (17A6 - 17ABI

ODD F IELD
V SYNC

AND SET UP

(17AC- 17b6l

JUMPS TO CURSOR PORTION
ON F IRST BLANK SCAN •

..----- A

.--------------------- 8

(17bd - 17cll)

"SCAN" PORTION

RETURNS TO SCAN Wl£N
CURSOR IS F IN ISlt:D

A

B

NO

(OJ2b - 0132)

ENTER

(OJ33-0B51

ENTER
AND

INCREMENT

NO

RESTORE
CURSOR

ERASE
OLD

CURSOR

(0116 - 01211

(OJ24 - 012AI

CLEAR

CARR IAGE RETURN

YES

IOUA - OlSAI

(0176 - 017EI

HOME
CURSOR

"CURSE" PORT ION

10176 - 017EI

HOME
CURSOR

HOME
CURSOR

!0176 - om 1

IOISb - 0170)

!0176 - 0l7EI

Fig. 5-6 Continued. Program for 18-llne, 32 character per line, interlaced 1VT & 5/8 Raster Scan with integrated minimum Cursor.

212 213

The Cheap Video Cookbook picks up where the TV Typewriter
Cookbook ended. Here i ·s a brand new, super low-cost way to ,get
words, p ictures, and op-code out of a computer and onto an ordi
nary tv set with min imum modifications to either. You wi l l find
complete do-it-yourself nuts and bolts construction detai'ls with
thoroughly documented and debugged support software.

I nside are detai ls on the seven IC circuit cal led 1he TVT 6 5/8. You
can bui ld this for as l itt le as $20, and then software and module pro
gram it for vi rtual ly any alphanumeric format, i neluding a scrol l ing
24 l i nes by 80 characters; or for virtually any g raphics format in
cluding a h igh-resolution 256 x 256 mode -and four-color graphics
modes. And those seven ICs g ive cu rsor, load i ng, and editi ng capa
bi l it ies l i mited only by, your imagination, and do everythi ng with in
the l imited bandwidth abi l ity of an ord inary tv set. The system runs
on most any 6500 or 6800 system, and can be adapted to other
microcomputers.

But, more important are the complete des ign detai ls beh ind a .
total ly new arch itecture wh ich so dramatical ly s impl i f ies d isp lay of
computer memory that it i s bound to e l im inate many of the trad i
t ional approaches. Jhe new twi n concepts of the upstream tap and
the SCAN microinstruction are exp lored in depth so you can
understand and apply them to your own special ized micropro-
cessor-based video display needs.

Round ing out the book are complete detai ls on transparency
techn iques that let you com ute and d isplay at the same t ime wh i le
keeping surpris ing ly h i gh t!1 roughput.

Don Lancaster heads Synergetics, an electronics design and consult,ing firm, He has
written many art icles on electrori ic and computer applications, both for technical
journals and for hobby magazines·. His nonelectronic interests include ecological
studies, firef ighting, cave exploration, and bicycl ing. Don's other SAMS books in
clude Active-Filter Cookbco"', IV Typewriter Cookbook, RTL Cookbook, TTL
Cookbook, and CMOS Cookboo , along with two wallcharts - the User's Guide to
TTL and The Big CMOS Wal/cha-rt.

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST , INDIANAPOLIS, INDIANA 46268 USA

$5.95/21 524

