XFORTH

by A.I.M. RESEARCH

S AN Rp—— 3 e T = AL i i L

Table of Contents

Chapter 1 Preliminaries. i-i
Chapter 2 First Steps. 2-1
Chapter 3 Manipulating the stack. 31
Chapter 4 Defining your own words. 4-1
Chapter 5 Loading and listing definitions and
commands from disc. O-1
Chapter & Control Structures. ' &1
Chapter 7 Constants and variables. 7—1
Chapter 8 Text strings and characters. 8~1
Chapter 9 Virtual memory. 91
,W]’ Chapter 10 Interfacing with the operating system. 10-1
Chapter 11 Other topics. t1-1
Appendix A The screen editor. A1
A.1 Starting up the editor. A2
A.2 Using the editor. N—2
A.3 Changing the key bindings. -7
A.4 Editor-related functions. 8-7
Appendix B Using the FIG Editor. B-1
B.1 Loading the editor B-1
B.2 Selecting a block and input of text B-2
B.3 Line editing B~3
B.4 Cursor control and string edltlng bB—-4
B.5 Block editing commands B—é&
Appendix C The demonstration package and the basic
examples. -1
\J C.l Jack C—-1
.2 Fractions : C-2

LZo

.3 Random numbers. C-2
C.4 The Sieve of Eratosthenes. c-2
C.H9 The eight queens problem. C~3
C.6 Quicksort. C-4
C.7 SEARCH L5
C.8 crypt o5
C.? The “to solution’. C-5
C.10 Easter C—&
C.11 Hamurabi -7
C.12 Exponent o7
C.13 Lite C-7
C.14 DisForth C-8
C.15 New-—-loop -9
C.16 Modules C~-9
Appendix D The Filing System. D1
D.1 Random access files. D—-2
D.2 Sequential input/output. D5
D.3 Some other useful words. D-7
Appendix E The debuqg package. E--1
E.1 Protection. -2
E.2 Tracing. E-3
Appendix F The assembler. F—1 @
Appendix G Adapting your system G—-1
G.1 General G-1
G.2 Basic terminal handling. G2
G.3 Cursor addressing G-3
5.4 The screen editor. G—-4
G.3 Removing the screen editor G4
G.6& Prompts and showing the stack G4
Appendix H Bugs. H—1

Lzo

e e ke B 18 o B W 3 bttt A el A o o R R RS 1 RN S N g

{(c) A.I1.M. Research

How to uee this sanual.

Although this manual cannot teach you all about Forth, it
will help you get started. The best way is to read Chapters 1
and 2 first, ther work through Chapter 2 at the console. After
that you’ll be ready to read the rest of the Chapters and as
much of the technical material in the fppendices as you need.
Even by the time you reach Chapter 8 you’ll be able to do far
more than most Basic systems would allow.

The FORTH-79 and xForth reference lists summarize the
meanings of all the xForth words described in the text and more
besides. It may be worth sticking them on the wall near your
terminal.

Studying the examples on your disc in conjunction with the
Appendix describing them will probably help you get a feel for
Farth programming, as long as you’ve worked through the basic
material first. The screen editor source code in the file

SEE.BLK also shouldn’t be too hard to follow and is a gaod
example of a non-trivial program coded easily in xForth. Mote
that the editor has been written to be simple to modify rather
than with ’efficiency’” in mind: this editor spends most of its
time waiting for the user anyway. You should Find it
reascnably easy to produce your own customized version (but
remember the xForth licence covers the design and original
coding so you may not sell or give away the modified version).
The system source code on blocks 30 to 42 is harder to follow,
mainly because it uses xForth words that are only defined in
the xForth Technical Manual, but vou can still get some feel
for what’s going on.

To learn more about Forth, your best bet is to join the
Forth Interest Group (FIG).
Its address is
Fmrth Interest Group,

—Horste Rocet, Fusr ;
{ Z] 57 %’ MEmpegad @ Sez. ¥ & (0
2 S B
/1u A 7\:,os/e:§:w:v\ & RESeEIT
g}laﬂtf " YOO < e
Conpiver &S 2Py
Forth Interest Group,

P.0. Box i 10;.!, é- ’ 7 - 4
o SQS QM/L‘L‘W‘\ .
Gan Carlos s ‘

for U.K. users

RN S O UGN P cwssn.

(c) A.I.M, Research

- CA 94070,]
usA |
for others.

The best teaching book is usually considered to be
‘Starting Forth®’ by Leo Brodie, published by Prentice—Hall in
1981. It is likely that the BBC book will also be goodj even
though it is aimed at Forth for the BBC microcomputer, most of
it will be applicable to xForth because xForth obeys the
Forth79 standard.

Watch for magazine articles; most of the computer magazines
have had articles on Forth; for example, Computing Today had a
whole series in 1981-82 and Byte had a special issue on Forth
in August 1980.

ety

L7Z0

|-

{(c) A.I.M. Research Preliminaries.

Chaptar 1

Praeliminaries.

Forth is a computing language that at first sight is VErY
different +rom most others. It’s best if vyou temporarily

forget what you already know about computing and read this
introduction with an open mind.

To use xForth, you type “words’ at a terminal. The words
needn’t be English words: a word is in fact any sequence of
non- blank ASCII characters, up to 31 characters long, so

++ 4+ dog Dog DOG +dog dog+ degs 1 . 4 !

are all (different) possible xForth words. The xForth system
reads the first word - that is, after yoiur type a carriage
return to tell it you’re ready, it takes the first sequence of
non-blank characters. It lookg up the word in a dictionary
that is built into the system. If it finds the word, it
pertoras an action that has previously been defined for that
word. Then it goes on to the next word, and so on until
there’s nothing left to read, when it waits for you to type in
more words. This process of looking up words and obeying their
definitions is called interpreting, and the part of xForth that
does the job is called the interpreter.

It may be helpful to think of xForth words as like English
verbs, which also describe actions. Some verbs in English
don’t need a noun after them (‘yawn’) while others do need a
noun after them (‘do something’). Similarly, some xForth words
can act on their own, as in BELL which sounds the terminal’s
noise-maker, while others operate on words that follow them and
that the xForth interpreter hasn’t seen vet. An example is
VARIABLE which takes the next word and adds it to the
dictionary with an appropriate definition so that VARIABLE x

acts in much the same way as you’d expect it to in any
language.

Writing programs in Forth consists of defining sequences of
actions in terms of existing words, and assigning the sequences
to new words which are added to the dictionary. You’ll learn

how to do this in Section 4, but the idea is to end up being
able to type, say,

R

T

- Y

Preliminaries. () A.I.M. Research

3 frames
to do three frames of your animation program, or
Saturn—-probe

to run your video game. The process of word building is helped
by the controlling words already in the dictionary that let you
handle conditionals, loops and so on.

0f course, the different words will have to communicate
somehow and in Forth most messages are sent simply by being
left on a stack Ffor the next word to pick up. The stack is
just like a tidy pile of papers: most words pick messages off
the top of the pile and leave others there, rather than making
an untidy mess ' by scrabbling around lower down the pile. 7o
help beginners (and experts who adeit they sometimes make
mistakes) xForth is initially set up to show what’s on the
stack every time control is returned to the terminal. A side
effect of having a stack is that arithmetic can be done using
‘reverse Polish’ notation very easily, so Forth systems aren’t
usually supplied with a direct means of understanding the usual
algebraic type of notation. One could be supplied, but most
programmers find the rewards of programming directly with the
stack - once they’'ve got used to it - are so great that they
never get round to writing an algebraic expression parser.

Even if{ you haven’t followed everything that’s been said s0
far, go on and read the next section and try ocut the examples.
You®ll find it’s really easy.

H
N

lzo

() A.I.M. Research Firet Steps.

Chaptaer 2

Firet Steps.

You are now ready to start using xForth, though it’s worth

skimming through this chapter before actually sitting down at a
terminal with it.

You’ll certainly make the odd typing mistake when using
wForth, so make some now and correct them: unless vyou chose
some other character during the CONFIG process, xForth responds
to backspace (control/H if you baven’t a backspace key) by
backing up and removing the last character typed. It responds
to control/X (or whatever you chose for yourself) by removing
the whole line typed so far. If control/P is typed, & copy of
everything that appears at the terminal will go to the printer
until such time as you type another control/P. 1§ you have a
teletype or a VDU that can’t backspace, you should have let the
CONFIG program know. If you didn’t, you should now type

LOAD-FILE TTY-RUB.BLK

followed by a carriage return, and then backspace and control/X
#ill behave in a more suitable way for your terminal.

Type
«" Hello
followed by a carriage return. Make sure there’s a space aftter
the first quote, and make sure the dot is there. xForth will
reply (on the same line)
Hello ok
and then type on a new lino

Stack empty

What has happened 1is this. The interpreter read the word .°
(dot-quote) from the input. As explained earlier, anything not

S

A

Lz70

e i A B s s 34 SRR AL a8 b+ e s SN A ¢t s i e B

T

First Steps. ' {(c) A.I.M. Ressarch

containing a blank is a word as far as Forth is cuncarn@d.l
This particular word is defined to read all text up to the next
double-quote character " and type out that text. Having done
this, the interpreter finds there is nothing left to read =o it
returns control to you, typing ok to let you know there were no
errors, and then prompting you <for more input. The prompt is
initially set to show the present state of the stack. You’ll
find later that the prompt and the ok print can be changed: for
example, if your terminal has & separate status line you can
put the stack picture there, out of the way. Now try

" Hello * TYVPE

You get the same as before. The word " has read and stored the
text appearing the input up to the next * then has left a
message on the stack saying where it stored the text and how
much text there is, which is exactly what TYPE needs to type
out stored text.

Type 1 2 3 4 and get

Ok
SGtack base | 2 3 4

When xForth’s interpreter sees a word it can’t recognize, it
tries to decode it as a number and if it surceeds, 1t leaves
that number on the stack. If it fails, it issues an ervor
nessage (a question mark) indicating that it can’t find the
word in its dictionery. Try typing AAA and see this in
action.

Type 1 2 3 4 + and the stack will contain 1 2 7. The word +
takes the top two numbers off the stack and puts back their
SuM. Type . and the 7 will be typed out, leaving 1 2 on the
stack, since the word . removes and prints the number or the
stack top. Type - and get -1 on the stack. Type . to print . L

and the stack will be empty. Type . again and see what
happens.

The words + -~ % / MOD = ¢ > <= >= <> AND OR XOR all take
two ditems from the stack and put back the result of the
apprapriate operation. For instance, % is integer

multiplication and >= is ‘greater—than or equal to”. Note that
/ is integer division and MAD is remainder, so 1 2 / gives O

1. Sometimes, we will distinguish an xForth word from normal
text or punctuation by putting it between a reverse and a
forward single quote. For example, we could have written °."7
for dot-quoteae. As a reverse quote is never used in xForth,
this should always make it clear what’s meant.

(c) A.I.M. Research

First Gteps.

and 1 2 MOD gives 1 . You can get both at once with /MOD which
leaves the result of division on top and the remainder
underneath. The word = means ‘equal’ and leaves TRUE (i.e. 1)
on the stack if the top two items were equael, and FALBE (i.e.
0) 1¥ they weren't. The word <> means “‘not equal’. The
logical operators work bitwise so 1 2 0R is 3
this better by working in base 2 arithmetic: type

« YOou can see

BINARY 1 10 OR

and see 11 on the stack. Now type DECIMAL and the 11 wilil be
typed as 3I . This facility to change base is very handy.
xForth has the words BINARY DECIMAL and HEX which arrange for
all further numerical input and output to be in the appropriate
base. Actually, all bases are possible within the limitations
of the ASCII character set to represent them. You’ll learn
later how to get an arbitrary base.

Internally, numbers are 16 bit signed binary integers and
s0 they lie in the (decimal) range -32768 to 32767. Double
precision (32 bit) integers and unsigned 16 bit integers are
also available: see the ‘Handy Reference’. If you ordered the
floating point package, you will also have floating point
numbers with 10 digits of precision, and all the appropriate
opaerators and functions to go with them.

The words NEGATE and ABS take one item from the stack top
and replace it by its negative or its absolute value
respectively. The word 0= leaves a logical true (1 in fact) i+
the stack top was O and a logical false (0) otherwise. NOT
reverses the logical state of the stack top {(and you can see
it’s equivalent to 0= }. The word 0< leaves true if the stack
top was negative so qives the same result as typing the two
words 0 < . Try it for yourself. Try 0> too.

Now you know how to do simple arithmetic and how to print
messages. Try this out for a while. You’ll discover that the
stack is cleared after errors, but 1if you want to clear the

stack explicitly, use the word SP! which throws away
everything.

-3

Lz

{c) A.I.M. Research Manipulating the stack.

Chapter X

Manipulating the stack.

It doesn’t take long to get used to stack arithmetic. Even
if it seems a pain at first, you’ll discover that the
versatility of Forth’s simple message passing system makes more
advanced work easy, so bear with it. You can always write an
algebraic notation converter later. Notice that brackets are
never necessary. The algebraic notation (1+2)%(3-4) becomes

1 2+ 3 4 - X

in Forth. This is much as you’d think of it: take 1 and 2 and
add them, noting the result (on the stack), then take 3 and 4
and subtract them, noting the result, then take the noted
results and multiply them. Actually, brackets are sufficiently
redundant that they are used to enclose comments: the word (¢

gobbles up everything in the input until a) is found. As a
result, you can write

12+ (Add 1 and 2) 3 4 — (Subtract 4 from 3)

Try it. What happens if you leave out the final closing
bracket? By the way, (is a Forth word and so must be
surrounded by spaces. The closing) is just something the word
(is looking for so it doesn’t need a space before it, though
most people put one there.

Often you want to make a copy of what’s on top of the
stack. The word DUP does this, replacing the stack top with
two copies of what was there. Eo 99 DUP leaves 99 99 and
99 DUP + is one way to get 198. The word SWAP reverses the
order of the top two items so 99 100 SWAP — leaves 1 rather
than the -1 that 99 100 - would leave. The word OVER copies
the second top item so 99 100 OVER leaves 99 100 99 . With

these words you can do most of the manipulations vyou need.
Other useful ones are

ROT (rotate) which pulls out the third item down
and puts it on top: 1 2 3 ROT leasves 2 3 1.

ROLL 1s a generalized rotate, defined so that typing
3 ROLL gives the same effect as ROT. So

31

N

e

1 =~ ~

Manipulating the stack. {c) A.I.M. Research

79 100 101 3 ROLL leaves 100 101 99 . Verify
for yourself that 2 ROLL is like SWAP and 1
ROLL does nothing. What happens with O ROLL ?

PICK 3 like ROLL except that it copies the
appropriate item rather than pulling it out.
Soc 99 100 101 3 PICK leaves 99 100 101 99. What
are 2 PICK and 1 PICK equivalent to? khat
about O PICK °2

Actually, DUP SWAP OVER and ROT are enough for nearly all
work with the stack, and since they are efficient they tend to
be favoured. If you are having to fiddle with lots of stack
items you probably should be breaking your definitions up into
smaller pieces: more on that later.

Some arithmetic operations are so common that it’s worth
taking advantage of inbuilt machine facilities to do them
faster, even though the same effect can be achieved otherwise.
Thus 1+ is defined to have the same effect as 1 + (i.e. 1t
increments the stack top), and 1— 2+ 2- 2% all have the obvious

effect.

Other useful words will be found in the reference lists.
For example, .R prints an integer right-aligned in a +field, so
101 4 .R prints 101 preceded by a blank, but without the usual
following blank that the free-format output word . gives The
idea is that with .R vyou always know how many character
positions a number will occupy (as long as it isn”t too big to
fit in the space you asked for). SPACE prints a space and
6 SPACES prints &6 spaces. CR moves to the start of a new line
while 3 CRS moves down 3 lines. 44 TAB moves the cursor or
print head of the terminal to the 44th position in the line, if
it can do so without backing up. ‘

1l 70

(c) A.I1.M. Research Defining your own words.

Chapter 4

Defining your own words.

Now we can really get going. As you saw earlier,
programming in Forth is about defining new words. This is done
mostly by the word : (colon) which takes the next word in the
input and prepares a dictionary entry for it. The definition
to be entered in the dictionary is specified by all following
words until a semicolon is encountered. So

: 4% 2% 2% ;

defines a new word that multiplies the stack top by 4. In
future, when 4% is read by the interpreter, the sequence of
actions 2% 2% will be carried out. However these words won’t
be looked up again so the interpreter doesn’t waste time or

spaces this is part of the secret of Forth’s small size and
high speed.

If you have programmed in Basic or in APL, vou will need to
know that when you make a definition 1like this, Forth does not
keep the exact text you type in. When xForth or any other
Forth system puts a word in its dictionary, it keeps the
definition in special internal form. This means you can’t edit
the definition 1like you can in, say, Basic. If you think this
is a limitation, you haven’t vet learned how fast and powerful
®Faorth 1s! To make definitions that you can edit — the normal
way of working — you put them in disc blocks as explained in
the next chapter.

Since Forth works differently from other languages, it is a
good i1dea to learn a bit about how the interpreter and the
colon operate in definitions. When @ executes, 1t enters the
word following (for example, 4% in the above example) intc the
dictionary and then tells the interpreter to store (compile)
the actions described by words that follow instead of executing
them as it reads them. The interpreter does so until it finds
a semicolon, after which it reverts to its normal behaviour.
Comments still work correctly. Try out

: Blast-off 1 23 4 5 . . o « « " We have 1ift off."
{ And notice you can have a colon definition stretching
(over more than one line, but comments should always)

R S i A YIS M A A 05 M S0 S 9 N A3 . B TN 8 ool 5. R G015 s

e

R

ohn SRR e s BPRPRR Ao ok S b

Defining your own words. () A T.M. Research

{ be closed at the end of a line.)
2 CRE A7 EMIT 92 EMIT 15 CRS g

You'll discover that wForth resminds you you'ere in the middle of
a colen definttion by putting & prompt & at the start of each
new line until the ciosing 3 is typed. Incidentally, the word
EMIT cutputs one character whose ABCIT code is on the stack.
Later yvou’ll see how to avoid having to look up the ABLII codes
for characters to be esmitted. MNow type Blast—off to see what
yvou just defined.

We could define a word 20UF that would make a copy of the
top two stack items.

: 2DUP OVER OVER g

If you try this xForth will tell you a definition already
exists for that word, since 2Z2DUP is built into the system wibth,
as it happens, an equivalent definition to the present one.
This is not treated as an error:s yvour definition is added to
the dictionary and will be the one used in future definitions,
si1nce the most recent definition is always found when the
interpreter looks in the dictionary. HNow we could write a word
that prints the sum and difference of the top two stack
numbers.

3 sumddiff 2DueP + -~ H

Notice that definitions are more readable if you put logically
connected items close together, separated by spaces or new
lines from cthers. In xForth, unlike Basic, neat formabtting
and comments do not cost you memory space, S0 you may as well
make life easy for yourselt!

fis you might expect,
3 NOCOF 5

defines a word that has no efftect . anything. Definitions can
be as short as this or as long as you like, but on the whole
they should be at most a few lines long. Complicated problems
should ba split into sispler parts to achieve thisy the
solution will then be much easier to write and test.
Generally, you should design “from the top down®, by looking at
your problem and deciding how to split it up, then deciding how
to split up the separate bits themselves, and so on until you
have words that can be defined in terms of words that are
already in the dictionary. Then you type in and test your
low-laevel definitions +irst, followed by the next level up, and
0 on until you're back up at the top level with a debugged and
working program. This technique not only makes sure you never
need to wonder whether what you want is 8 levels deep or 9

42

&

{c) A.I.M. Research Defining your own words.

levels deep on the stack, it also makes it much easier to write
correct programs in the first place and to make the changes you
invariably want to make later.

Note that when reading programs you should realize that
they’ll have been designed in this way, so start at the end
where the high level words are and work your way back to the
low level ones.

The remainder of this Chapter may be skipped on first
reading.

To help you when vou come back & months later to a
definition, you should add lots of comments as we noted above.
A useful convention is to add, right after the word being

defined, a comment that describes the action on the stack, as
follows:

P 2DUP (1l n2 - nl n2 nl n2) OVER OVER

The information before the ——— is what’s on the stack before
and the information after is what’s there aftter. I+ vou use
descriptive names like addr or #bytes you’ll +Ffind it wsuch
easier to keep track of what your words are supposed to be
doing, and xForth’s stack display will be more useful to you.
Another piece of notation used in some xForth descriptions
(mainly in the technical manual) is

3 " { +++ addr length) seaena 3§

where the +++ says something is read from the input stream and
the other items in the comment say the word takes nothing off
the stack but leaves two items, an address and a length with
the length on top.

A useful trick is to start every new set of definitions
with a dummy word that has a useful mnemonic name. For
example, if you are writing a word processing praogram, you can
make the first definition : Words ; and this acts as a marker
in the dictionary for where you started. When you’ve made lots
of errors and want to clean it all out and start again {or i¥
you need the memory space for something else), type EMPTY and
all your definitions will be removed. If vyou only want to
remove some of them - say, all the definitions since Words, and
including Words itself - type

FORGET Words
and everything you defined since Words will be removed.

Incidentally, to see what’s in the dictionary, type VLIST
{which means vocabulary-list) and you will get a long list of

P q

LZO

Defining your own words. (c) A.I.M. Research

words most of which you’ve never heard of.z Don*t be tempted
to try them out at random, since some are system words that
interface to CP/M, for example, and they could have disastrous
@ffects i+ misused. If you want to get deeply involved with
the system programming aspect of xForth, get the xForth
Technical Manual or even the Meta system. Returning to VLIST,
the reason for the name of the command is that the dicticnary
can be split into separate vocabularies, each dealing with &
specific topic. We don’t say much about this in the present
manual, but if you read the Appendix describing the assembler
you®ll learn a little about the subject since the assembler
words are kept in a separate vocabulary so they don’t get in
the way during normal use.

i+ you type COLD at any time, the xForth system will reasat
itself to a pre-defined ‘protected’ state. The resetting will
include removing all unprotected definitions, emptying all
buffers and stacks, and resetting the filing system and the
execution wvariables. (Some of these terms are not defined
until later in the manual.) The protected state is usually the
state xForth is in when you enter it from CP/M, but vyou can
type PROTECT at any time and the present state will becoms the
protected state and so will be restored by COLD . This is
mainly of use when you have a set of working words you don’t
want to lose, and you're debugging some new set. You will
learn later about the need for PROTECT if you alter an
execution variable. '

2. You can stop the listing temporarily by hitting control/Ss,
and restart it by hitting any key except contrel/C. (T abort
the listing, type control/C either while the listing is running
or while it’s been paused with control/S.) This general
technique of pausing or breaking output applies to all words
that use CR, and so to all system words that send output to the
terminal.

bt M R s SRR AR R s

#

\\\\\)

L0

(c) A.1.M. Research Loading and listing

Chapter 9

Loading and listing definitions and commands from diec.

Until now you have been typing everything at the terminal.
You can also put definitions and commands onto disc where they
will be kept for future use and can be altered whenever

necessary. However, there’s a little more to learn about Forth
first.

Normally, Forth doesn’t work directly in terms of diso
files but uses an idea called virtual memory instead. I+ you
imagine a huge memory space, with each place in it needing two
numbers to identify it (a block number and an address within
the block) then vyou have the idea. 0f course, present
microcomputer memories don’t contain the wmany megabytes that
this implies, so not all of the huge memory space can be
present in the true memory at ance. To get round this, xForth
automatically transfers blocks (of size 1K, i.e. 1024 bytes)
to and from disc as required. Even discs don’t usually have
enough storage, but xForth lets you assign any virtual memory
block until the disc is full, then gives you an error message.
You could have, for example, hlocks 1 to 200 and 16321 to 16520
an a 400K disc. So when vyou’re writing programs that
manipulate files, you just pretend you have a huge memory and

read and write within it nearly as easily as you do in true
LEeEMOrY .

What has all this to do with keeping definitions on disc?
Well, xForth can interpret from vidftual memory instead of from
the input buffer, and in practice this means reading from
disc. Suppose {for the moment you have somehow got a definition
into virtual memory and you want to compile it. The word LOAD
takes the number on the stack as the identifier for a 1K block
of virtual memory, reads it into true memory 1f necessary, and

then interprets its contents as if you’d just typed them in.
For example,

29 LOAD
would load all the definitions on block 29%.

When the end of the block is reached, the interpreter
returns to where it left off when it obeyed LOAD. This could be

- M

L.oading and listing (c) A.I.M. Research

to the terminal, to another block that contained the LOAD (yes,
.0ADs can be nested, though it’s bad style to nest them deeply)
or even to a word that contained LOAD. A sisple example is
BYSGEN in the kernel system, which is defined as

: BYGEGEM I LOAD j;

Now vou could hunt around for an empty block (by listing
everything yvou could think of, using, say, 34 LIST). Then vyou
could put your definitions in it somebhow and finally type
54 LOAD. In fact, this is what most Forth systems make you do.
But even though the system of having numbered blocks of virtual
maemory is great for use within praograms that manipulate +files,
when you want to write an application it’s much nicer to have
named files since these are easier to remember than a string of
numbers. This is where xForth scores heavily over most other
versions of Forth, since it gives vyou the best of both worlds.
You will learn later how you can associate named Files with
different regions of virtual memory. For just now, let’s see
how easy it is to create a file and then load it.

First, type
SEE-FILE myfile.blk

The word SEE~-FILE is an xForth word that takes the word
follawing it (here, myfile.blk) and tries to convert it to a
file name acceptable to the operating system. For CP/M, this
would be an acceptable name 1if it were in upper case, 50
SEE-FILE treats it as if you had typed

SEE~-FILE MYFILE.BLK

and then proceeds to try to find a file of that name. I+ none
exists, a new file 13 created. Then the screen editor is
called up at the start of the first block of the file. If this
is a new file, the editor will {tell you that you have a new
block as soon as it starts wup. You can now enter your
definitions (sae the relevant Appendix for detailed
instructions on how to use the editor) and then return to the
wForth interpreter level by typing control/Z.

Now you can load your definitions by typing
LOAD-FILE myfile.blk

which makes the interpreter go to the first block of that file
and start interpreting from there instead from the keyboard
input buffer. (Actually, what LOAD-FILE does is to wmake the
file "myfile.blk’ possess blocks 8001 to 8999 and then do 8001

LOAD. The Appendix on the filing system describes this in
detail.)

-w‘)

L7Z0

e st e ok S VRN

(c) A.1.M. Research loading and listing

You may have wondered what the “.blk’ extension is doing on
the end of these file names. The answer is that this extension
tells the screen editor and the loader that this File is a
picture of blocks of virtual memory and so is suitable for
loading Forth programs. 4 ublk is missing SEE-FILE and
LOAD-FILE will refuse to ceooperate, to give a wmeasure of
protection against mistakes.

From now on you can put vyour definitions and so on into
disc blocks, using the editor. This means you can always see
Just what vyou defined, and also means that when you make a
mistake you don’t have to retype everything. In fact, to make
things easy the interpreter leaves information on the stack D
it finds an error during loading. You can then type WRERE and
the editor will come into action with its cursor pointing just
after the offending word.

To use the screen editor on a numbered black, just type
(say) 43 SEE. Biocks 1 to 1000 are set up initially to belong
to a file called FORTH.BLK on the currently selected default
dics drive, and the system expects to find its error messages
and s0 on there. So it you insist, you can treat xForth like
any other Forth usystem and ignore the filing system intertace
altogether. VYou should, however, note that blocks 1 to 48
inclusive are regarded as reserved for syastem use, even i{ your
system is delivered with nothing on these blocks. In
particular, bleock 3 is used +or temporary storage in asost
systems.

Notewms
1. The word —-> makes the interpreter go to the start of the
next block, even in the middle of a colon definition. It

can be used to string blocks together so you don’t have
to type lots of LOADs.

2, To help catch errors, a colon definition isn’t allowed to
croas a block boundary except when ——» is used.

3. To see what’s on a block without editing it, use LIST.
For example, 4 LIST will show you some of the error
massagesy; and LIST-FILE see.blk will list the soreen
editor. LIST-FILE will try to list any file that doezn’t
have a .blk extension, by treating it as a normal ABCII
file and listing it with line nuebers at the console.
You can get a printed copy of any file (.blk or not? by
typing control/P to turn on the printer, then using
LIST-FILE, then typing control/P again to turn the

Loading and listing (c) A.I.M. Research

printer off. As with all words that produce output, LIST
o and LIST-FILE can be paused or aborted by typing
control/8 or control/C.

4. A word TRIAD is useful in keeping permanent documentation
if you'd rather work in teres of numbered blocks than
named files. Try typing 30 TRIAD and then try a few
other block numbers until you see what’s happening. If
vou want to fine—tune the faormat to suit vyour printer,
the source for TRIAD (and LIST and INDEX) is on block 37
in most systems.

3. A useful convention 18 to make the first line of every
hlock a comment line. This is particularly useful with
INDEX which prints the first lines of a range of blocks:
30 41 INDEX shows the headers for the basic system file.

6. The whole block is treated as one long line so the last
column of each line shown by the editor is effectively
adjacent to the first column of the next line. 8o take

care not to run a teresinating § into the & starting the
next definition.

7. Use the same trick as you learned earlier: type

3 TASK ; LOAD-FILE foo.blk

or the like, so you can do FORGET TASK when vyou're
finished, or to remove junk caused by errors. Better
still, put

: a~descriptive-name j

at the beginning of your load blocks and then you needn’t
remember to define a dummy before loading. You can type

FORGET a—descriptive-name

to clean up.

This might be a good time to try out the example *Jack’
described in the Appendix. It usezs one or two Features you
haven”t met yet but you should still get the general idea. If,
like us, vyou always try things out before reading the
instructions, you only need to know to type

LOAD-FILE jack.blk

to get started. You might well want {to look at the
instructions a few sezconds later, though.

izZo

(c) A.1.M. Research Control Structures.

Cheptaer &

Control Structures.

Within colon definitions, though not outside, the
interpreter allows you to use certain control structures for
repetitive or conditional execution. The main ones are IF ...

ENDIF and BEGIN ... UNTIL but some others are also useful and
will be described.

Often one wants a certain sequence of words to be performed
only if a certain condition is true, indicated by the stack top
being nonzero. This is achieved by enclosing them between IF

and ENDIF which may be regarded as a special pair of opening
and closing brackets. Thus

3 say-if-greater > IF ." Greater." ENDIF j

types ‘Greater.” in reply to 2 1 say—if—greater but nothing in
reply to 1 2 say-if-greater . If you want something else to be
done if the condition is false (i.e. if there’s a O on top of
the stack when IF executes) put the do-this—if-true part

between IF and ELSE and the do-this—if-false part between ELSE
and ENDIF .

t say-whether—greater > IF ." Greater.*
ELSE ." Not greater.”
ENDIF 3

Actually, FORTH-79? uses THEN instead of ENDIF but we feel this
is confusing to people who know other languages so xForth

allows you the choice of either ENDIF or THEN . This manual
always uses ENDIF .

Another common problem is to execute a series of words
again and again until some condition is found to be true. To
do this, enclose the words between the special brackets BEGIN
and UNTIL , and make sure the word before UNTIL leaves the
condition test result on the stack.

3 annoy BEGIN BELL ?TERMINAL UNTIL 3

will sound the bell until any ley is hit, since ?TERMINAL is a
word that returns true (1) if a key has been struck, and false

&4

PRIV

Control Structures. (c) A.I.M. Research

{(0) i+ not.

I+ you want to make a test at the beginning or in the
middle of a loop, use BEGIN ... WHILE ... REPEAT , in which the
words between BEGIN and WHILE are executed, then WHILE tests
the stack and allows execution to continue if it’e true but
jumps to beyond REPEAT if it's false. 1¥ the condition 1is
true, the words between WHILE and REPEAT are executed and then
execution starts again from just after BEGIN .

A counting loop is obtained by using DO ... LOOP .
: count—to—-9 10 1 DO I . LOOFP j

defines a word that prints the digits 1 through 9. What happens
is that at execution time, DO takes the stack top as the
initial wvalue and the number below it as one more than the
final value. Then everything between DO and LOGP is executed
the requisite nusber of times, with the counting index I being
set to the initial value the first time through, to that value
plus 1 the next time through and so on. Notice that writing
10 1 DO rather than 1 10 DO is nice because the finishing
condition is more often passed as a parameter on the stack than
the starting condition. I+ we define

i1 count 1+ 1 DO I . LOOP 3
then *10 count® prints out 1 through 10.

Like all conditionals and lcop words, DO ... LOOP may be
nested. The 1limit to DO ... LOOP nesting depth is machine—
dependent but is never less than five and is usually far more.
The index I always refers to the innermost loop (the one you’re
presently in) but you can get the cone from the next enclosing
locp by using J . Try out

: pairs 3 0 DO CR
20DOJ . I . 10 6PACES LOOF
LOOP
CR

for yourself.

The structuring words you have met so far are the most
aften used. There are two more constructs to describe; but you
may want to skip them for now and come back later.

If a loop index is to be incremented by some different
amount than 1 each time, use DO ... +LOOP . The increment is
nlaced on the stack just before +LO0OP is reached and control
passes back to just after DO if the index, after incrementing,
is greater than or equal to the limit, assuming the increment

R

(c) A.I.M. Research Control Structures.

is positive. So DO ... 1 +L00P is equivalent to DO ... LOOP ,
Owing to an unfortunate FORTH-79 standards caomnmittee decision,
+.00P behaves addly if the increment is negative, so we advise
you te avoid negative increments - the more so because a change
in the standard is threatened on thia point. The action for
this case is defined in the FORTH-79 ‘Handy Reference’.

Quite a common problem is to do a lot of successive tests
tor equality of the stack top against some constants. The word
KEY waits for a terminal key to be struck and returns its ASCILI

code on the stack, so in an editor one might want something
like the following.

1 obey-command
{EY DUP 65 = IF do-the-A-thing
ELGE DUP 66 = IF do-the—-B-thing
ELSE DUP &7 = IF ...
ENDIF
ENDIF
ENDIF 3

This works, but is ugly and error—prone. It's better to write

1 obey-command
KEY CASE &5 OF do—-the—-A-thing ENDOF
66 OF do-the-B-thing ENDOF
647 OF do—-the-C-thing ENDOF

--. DEFAULT
do-the-default—thing ENDCASE

which is xForth’s way of writing successive tests. The stack
top before CASE was entered is tested against the stack taop
before the first OF and if they’re equal, the words up to ENDOF
are executed and then control passes to beyond ENDOF . If
they’re unequal, the next stack top is tested and so on until
either a single OF ... ENDOF part has been executed or the
DEFAULT part has been reached. I+ the DEFAULT part is reached,
1t always executes, with the original test number (left by KEY
here) still available on the stack.

Any humber of words, including nane, can appear between OF
and ENDDF . Also, any number of words may appear between CASE
or ENDOF and the next OF , as long as precisely one number is
left on the stack for comparison with what was originally there
beftore CASE was entered. If an OF part is obeyed, the original
number {i.e. the result of KEY here) is gone, since the OF part
knows what it must have been. I+ the DEFAULY part is obeyed,
haowever, the number is still there in cace you have some other
action to perform. If there i1s no default part, the effect is
as if you had written DEFAULT DROP.

SN S R e s N A S RN O LA AN v S

L e e e PV

{(c}) A.1.M. Research Constents and variables.

Chapter 7

Conastants and veriliables.

It is good practice not to have too many magic numbers in a
program. For instance, the editor needs to use the number A3
quite a lot becauss the columns are numbered 0 through 63, but
it would be a bad idea to have lots of 63’s around since that
would mean lots of changes if the number of columns were
changed. Instead, at an early stage a constant is defined:

&3 CONSTANT Max-Cou

which puts the word MAX-COL in the dictionary and makes its
exaecution code put 63 on the stack. bNote that CONSTANT is a
defining word like : and constants go in the dictionary just
like anything else, are forgotten by FORBET just like anything
else, and have the same rules for naming as anything else -~ up
to 31 characters excluding blank and null. Now whensver
MAX-COL appears inside or outside a colon definition it will
have the same effect as if &3 had appeared there. 0Ff course,
we could have produced the original 63 indirectly, since

CONSTANT ims only interested on what’s an the stack, not how it
got there:

B/7BUF 16 /7 1- CONSTANT MaX-COL

would have done the job since B/BUF is a predefined constant
that returns the number of bytes in a butter, viz 1024,

Although the stack makes it less necessary in Forth than in
most languages to use lots of temporary storage locations,
there are times when the only sensible way to go is to define a
variable. This is done by the word VARIABLE which defines a
new dictionary entry and gives it execution code that merely
returns on the stack the address of a storage location. ©So if
we've typed

VARIABLE x

then whenever x executes, a memory address appears on top of
the stack. We're usually interested in seeing what’s stored at
that address or in putting something there. {The contents will
be rubbizh when the variable is first defined because FORTH-79

{720

Constants and variables. (c) A.I.M.

Research

doesn’t initialize variables.)

To put something in it, we use ! (pronounced “store’} which
stores the number at the second top of the stack in the address
at the top. So 2 x ! makes x point to a location containing
the value 2. Make sure you get the order right, since x 2 ' is
a perfectly good instruction that will put something in the
address 2 and will probably cause grief later. The optional
debug package protects you against these errors and others at
the expense of execution speed: we recommend you use it until

vou’re used to xForth, and even then use it except for
production runs.

To see what’s in a variable, use @ (pronounced “fetch’)
which de-references the address on the stack, i.e. it replaces

the address by whatever is stored at that address. So % @ now
leaves 2 on the stack.

Some common operations on variables have special words, If
X has been defined as above, 3 x +! adds 3 to the contents of x
and leaves nothing behind on the stack. Adding and subtracting

1 are so0 often needed that 1+! and 1-! are supplied so you can
type x 1+! to increment the value of x and x 1-!' to decrement
it.

Arrays work as follows, The word [IVARIABLE (pronounced
‘row variable’) defines a vector such that 10 [IVARIABLE vy
makes y refer to a vector of 11 elements, numbered © through
10. At execution time, 3 vy returns the address of the element
with index 3. The notation L[IVARIABLE helps you to remember
where to write the index. Gimilarly 3 4 (,IVARIABLE z defines
a matrix with 4 rows numbered 0 through 3, and 5§ columng
numbered ¢ through 4. The defining word [,IVARIABLE is
pronounced ‘matrix variable”’. At execution time, 1 2 z returns
the address of the element with row index 1 and column index Z.
Now you can type things like

6y @ x ! 1 22 1+ O 7y !

and so on.

You can try the first 3 examples described in the Appendix
now. Example 4 is also worth locking at, but uses ideas you
haven’t met vet. The +final paragraphs of this section are a

little more advanced and may be skipped the first time
through.

Some variables already defined within the system are OUT
BABE PRINTER-ON? WARNINMG >LINE and XOFF-CHAR. There are also
many so-called exgcution variables. The rest of this sectiaon
explainse how these work.

o I w0 e AR i < s

- " - At s ARSI D SO NN U i s

{c) A.I.M. Research Constants and variables.
;) The variable OUT holds the present position of the cursor
£ or print head, and is adjusted by all the output operations.

S50 you might define

80 CONSTANT cols

1 ENBURE-LINE (n ———) (Check room for up to n chars)}
OUT @ + cols > IF CR ENDIF 3

(This word already exists in the dictionary and does exactly
this job.)

The variable MINE is incremented by CR just as OUT is
incremented by EMITy it is not used by xForth but you may find
it useful for keeping track of output.

The wvariable XOFF-CHAR noreally contains the code for
control/S, and is read by ?PAUSE. If XOFF-CHAR is altered to
cantain -1, the word ?PAUSE does nothing at all. Gtherwise
PPAUSE looks for a key to be typedy if none is typed, it
returns to the word it was called from while if a key has been
struck, it checks whether it was control/C — in which case it
aborts by calling & ERROR - or the contents of XOFF-CHAR, in
which case it waits until another key is struck before
retuwrning to the calling word. {I¥ control/C is struck,
however, it aborts.) Of course, this is what CR uses to check
whether to pause, but you can put ?7PAUSE in any word you like.

‘NE’ I+ you don’t want any pausing or breaking, set XOFF-CHAR to ~1.
I¥f you want breaking but not pausing, set it to -2 or some
other value that isn’t an ASCII code.

The variable BASE halds the current base {for input and
output of numbers, so 2 BASE ! is eguivalent to BINARY . Since
BASE 9 . will always print 10 (why?) the word .BASE is supplied
to show the present base in decimal. Try ocut the effect of

HEEX . BASE BAGSE 72
BINARY .BASE BASE 7
DECIMAL .BASE BASE 72

(The word ? is exactly equivalent to @ . i.e. it prints the
contents of a variable.)

The variable PRINTER-ON? is O when output is guing to the
terminal only and 1 when it is being reflected to the printer,

S0 vou can switch reflection on and off from inside a colon
detinition.

The variable WARNING is normally set to 1. If you set it to

0, error messages will come out as numbers instead ot as text.
= Message O means a word can’t be found in the dictionary and
w&% others are relative to the start of block 4. The main reason

LZ0O

Tk SN NS i R N PR XSt LA PR o

t70

Constants and variables. (c) P.I.M.

Research

for this facility ie to allow vyou to use a non standard disc
without getting nonsensical error messages. If WARNING is set
to -1 error messages will be read from disc, but you will no
longer get the "isn’t unique"” message that vyou normally get
when you redefine a word.,.

One special use of variables in xForth is for execution
addresses. Certain variables such as XPAGE and XCURBOR contain
addresses of definitions that are executed by other words.
This makes it easier to alter installation—dependent Jfeatwes
such as cursor addressing. The Appendix ‘Altering your system’
tells you how to do the lattery let’s look here at XPAGE.
Whenever a word calls on PAGE to be executed (for instance,
TRIAD does so0) the definition stored in XPAGE is actually
used. On delivery this is set just to be CR . Suppose vyour
terminal needs control/L to clear the screen (or your printer
needs it to do a paper throw). Define

1 (page}) CTRL L EMIT ;

(note that CTRL L gives the ASCII code +or control/L — we’ll

learn more about this later) and then put this definition into
XPAGE by typing

XPAGE REPLACED-BY (page)

The word REPLACED-BY takes the execution definition of the
word following it and assigns it to whatever address was on the
stack, which is just what we want. Whenever you make a change

like thia, type PROTECT because FORGET (page) would leave XPAGE
pointing into limbo. .

i

n\\\,\)

I >

{c) A.I.M. Research Text strings and characters.

Chapter @

Taxt wirings and characters.

Gtrings of text are handled as single entities almost like
numbers. You can declare

16 STRING Customer’s—name

which makes the word after STRING into a string variable with
room for up to 16 characters (or in general, for up to the
number of characters given by the stack top). Then

" Smith” Customer’s—name $!

will assign the text ‘Smith’ to the variable. Note that %!
should only be uJsed to assign to string variables. It trims

the string at the right if necessary to fit in the maximum
length you have asked for.

Now when you type Customer’s-name two items will be left on
the stack: the address of the first character and, on the top,
the present length of the text stored. This means that, for
example, TYPE will type it ocut. If you type

4 STRING abbrev Customer’s—name abbrev $! abbrev YYPE
you'll get *Smit” typed at the terminal.
Btrings are joined (concatenated) using $¢+ as follows:

Customer’s-name " —-Jones” $+ TYPE

types “Smith-Jones’.

Note that string literals, defined by the word “ which
reads text up to the next " , leave the same stack information
as string variables so they can be used in exactly the sames way
except that they can’t be assigned to. The word " works inside
colon definitions just as .* and (do. When you use " from the
terminal but outside a colon definition, vyou should realize
that " merely returns the address of the relevant text in the
input buffer, so you must not expect the string literal to
still be there when vyou’ve typed another line. Thus you can

T -

S o AR A B A & R S b A

Text strings and characters. {€) ALT.M. Resgarch

type

" abcd” " efgh™ $+ TYPE
and get abcdefgh but if you type

" abed®
" etgh" $+ TYPE

yoeu’ll not get what you probably intended. This never causes
any problems in practice because the second example is
unrealistic, but it is as well to be aware of what Y is
actually doing.

Btrings are compared using $= which returns true i+ they
are identical, and %< which returns true if¥ the first is
alphabetically prior to the second, using the entire ASCIHI
character set. S5o

Customer’es—name " Adamson™ %<
leaves a false flag (0) on the stack.

xForth also provides facilities for dealing with single
characters. It doesn’t seem worth saving single bytes by
having special variables for characters, but you do need single
e byte store and fetch. These are ! (“c—store’) which stores
the low-order byte of the second-top stack item in the address
on the stack top, and Cd (‘c—tetch’) which replaces the address
on the stack with the byte contents, setting the high-order 8
bits aof the stack top to O.

A common requirement is to get the ASCII coda of some
character for comparison with some input command. This is done
with ASCII which takes the first character of the next word and
legves its ASCII code on the stack. It works in or out of
colon definitiona. Similariy, CTRL leaves the low-order 4 bits
of tha next word’s firet character, eo

CTRL C and CTRL. «

both leave 3.

If you want to read a string in during a program, the
easiest way 1is to use EXPECTS which takes an address and a
maximum length and returns a string literal. So

PAD 40 EXPECTS
would allow you to type in up to 40 characters terminated by @&

retrun, with all the usual facilities 1like rubout, printer
e toggle, break with control/C and so oen. The string would be

Faim)
e
R

LZ0

LZzo

(c} A.I.M. Raesearch Text strings and characters.

stored at PAD which is the address of a scratchpad area of
store that can hold at least 80 characters. Then the address

of PAD and the actual length of the string would be left on the
stack so your program could do

Customer’s—name $!

to store the information away.

The words #—->% and $-># are used +or internal numnber

formatting. The first converts a double precision number to 3
string, so

G->D #->% TYPE

is egquivalent to 0 .R because 5->D converts a single precision
number to a double precision number. The second word %->#
tries to convert a string to a double number. I+ the string
contains anything other than digits and possibly a leading
minus sign, the number found so far is left and a FALSE +lag is
left on top of it. Otherwise the number is left with a TRUE
tlag. 5o you can do things like

r get-number

BEGIN PAD 10 EXPECTS $-># NOT WHILE
e A ¥
REPEAT

DROP ; (DROP converts double to single)

a8-3

A i o ; Al A I RN 15060 %

(c) A.I.M. Research Virtual memory.

Chapter 9

Virtual memory.

One of the most powerful features of all proper Forth
systems is the virtual memory system we learned about in
Chapter 3, which gives you the effect of a much larger memcry
by swapping 1K blocks to and from disc. These blocks
(sometimes called screens) are handled automatically by
commands such as LOAD and SEE but yvou can use them yourself
directly via the words BLOCK and UPDATE. For example, 14 BLOCK
returns the address of a buffer containing the 14th 1K block,
which will be read if need he from disc. So 14 BLOCK C& will
give the contents of the first byte of the block, while

14 BLOCK B/BUF O DO DUP I + @ foo 2 +L0O0OP DROP

inside a colon detinition passes the word “foo’ the 912
sixteen-bit integers contained in bleck 14, assuming foo leaves
nothing on the stack.

Blocks are read in and out of buffers automatically, so the
address given is only valid until the next call of BLOCK (or
LIST or any other word that uses BLOCK). If a buffer is necded
for another block, its previous contents are written back to
disc if they have been updated: vyou mark the contents as
updated by calling UPDATE {(which doesn’t touch the stack) while
the buffer address is still valid.

To associate a named file with a virtual memory segment,
you have to create a file structure and then assign it to that
seqment, like this:

FILE name.ext 9 name.ext fassign

will create a file structure called name.ext by xForth and
{initially, at least) referring to a CP/M file called name.ext
on the current default disc drive. Then the +file will he
associated with the S5th virtual memory segment, namely blocks
5001 to 5999. Bo now, S001 BLOCK C2 will give vou the first
character in the file name.ext. I the file is newly created,
that character will be a CP/M end aof file marker (contral/Z)
tollowed by 127 zero bytes. When you are finished with the
file it’s a good idea to tidy up by typing

Virtual memory. () A.T.M. Research

S frelease

which removes the association you set up earlier.

There are 8 segments available for normal use, numbered O
to 7. For more details see the Appendix on the filing system.

Noteaa:s

1. SAVE-BUFFERS ensures all updated buffers are written to
disc. Use it before doing anything risky. Note that BYE
calls SAVE—-BUFFERS automatically so get in the habit of

always logging out with BYE rather than just switching
att.

2. EMPTY-BUFFERS marks all buffers as empty, so undoing the
effect of any updates.

%, See also the operating system interface description in
Chapter 10 and the Appendix describing the filing
system.

B

@

(c} A.I.M. Research

Chapter 10

Interfacing with the operating asystem.

This section describes how xForth for CP/M2.2x systeas
interacts with CP/M, how you can use CP/M’s facilities, and how
to access 8080/ZI80 input—output ports.

Virtual aemory blocks are 1K segments of random access
files. The file for blocks 1 to 999 is set up on loading to be
FORTH.BLK on the current CP/M default drive and if you like you
can work with this all the time, as long as you remember to
leave blocks 1 to 48 for the system’s use. Within xForth this
file is called SYSFILE. Note that ervror messages are always
read from blocks 4 to 7 so you should neot change these blocks.
Also, 1t is a good idea to make sure you have a backup copy of
the original FORTH.BLK file in case you clobber it, since it
contains the filing system and the structuring and input/cutput
words, loaded by SYSGERN.

To copy blocks either within a file cor between two files,
just use COPY for a single block or COPIES for several, giving
the appropriate block numbers, as in 20 1020 12 COPIES. This is
explained in Appendix A.3.

For more information on the filing system, read the
relevant Appendix. On the whole, it’s best to use lots of short
files rather than one enormous one, since LOAD-FILE can happily
be called from within another file being loaded so you can have
aone master file that loads many others. It may be useful to
you to know that CP/M’s PIP doesn’t copy properly in the case
where you’ve used, say, blocks 1 to 54 and 82 to 99 of a file:
the second part will not normally be copied. This 1is a
well-known PIP bug and is nothing to do with any limitation of
xForth. Go use xForth’s COPIES command instead.

You can access any of CP/M’'s system functions using the
word CPM-CALL which takes the stack second teop as the parameter
to be left in the DE register and the top item as the number of
the function. So 2 14 CPM-CALL DROP will select drive B as the
default drive. Another example is O 13 CPM-CALL DROP which
resets the disc system and allows you to change discs. If you
da this, type SAVE-BUFFERS first to make sure everything is
safely on disc. The contents of the HL register on return from

10-1

o D, 14 ot ASGh R R My RN et e s e ok = RN SRR o8

Interfacing with the operating system.

.

PP TSR WP T T

Interfacing with the operating system. () A.I.M. Research

CP/M are left on top of the stack, since they often have
necessary information. Thie is why we needed DROP above.
Unfortunately, imitations of CP/M such as CDOS don’t leave this
information compatibly with CP/M2.2, so0 an additional word
CPM~CALLDL is provided to leave the contents of the accumalator
on return from the CP/M call.

To allow direct use of i/0 ports J{rom xForth, the words P!
and P? are supplied. They work very like normal store and
fetch operations:

127 15 P! and iq4 P

respectively send 127 to port 195 and read port 14, leaving the
result on the stack.

16-2

LZn

Mgt A v oo a & e Y

{c) A.I.M. Research Other topics.

Chapter i1

Other topics.

This section contains miscellaneous information. It covers
<CHMOVE> FILL R> >R R? and it refers to double number formatting
and mentions asome advanced topics, namely recursion and the
words IMMEDIATE COMPILE [1 LCOMPILE] CREATE DOES> Most of what
is described here is not covered in detail.

To move blocks of memory around, use <CMOVE> which is a
‘emart’ word in that it handles overlapping blocks correctly.
It is pronounced ‘bidirectional c-move’. The arguments are

from to #bytes <CMOVE>

where “from® is the address of the first byte of the block to
be moved, ‘to” is the address of the first byte of the
destination, and “#bytes’ is the number of bytes, treated as an
unsigned integer in the range O through 65535. FORTH-79 detines
a word CMOVE that only works safely for non—overlapping blocks
and that treats the number as a signed integer. We recommend
you use <CHMOVE> instead.

To fill a block of memory with a single byte, use FILL Yor
which the arguments are addr #bytes byte FILL.

The words >R R> and R deal with the return stack, which is
what xForth uses to keep track of where it is in the program.
It can be used for temporary storage (within colon definitions
only) by executing >R (“to-r’) which transfers the normal
(parameter) stack top to the return stack, and R> (“from—v7)
which brings it back again. These aust be used with great
care, and must always be balanced correctly within any level of
structure of a word. Moreover, they shouldn’t be used within a
DO ... LOCOP construction since the return stack is used for
index manipulation. You can read whatever vyou left on the

return stack without deleting it from there using R
(‘r—fetch”),

It is possible to handle double precision numberss;
definitions are given to add and subtract them and to do the
basic stack operaticns. A versatile set of formatting words is
available for double number output. All of these facilities

111

tzo

W s

Other topics. | {c) A.1.M,

Resgarch

are standard Forth facilities - see any book on Forth.

Loock at the ‘8 queens’ program described in the examples
fppendix as a non trivial program with some information on the
topic of recursion. In general, recursion in xForth can be
done in several ways but the easiest is via the word MYSELF
which makes a word call itsel$. Another and more versatile way
is to use execution variables as in

VARIABLE forward—ref

: this forward-ref ¥ EXECUTE
3 that this 3

forward-ref REPLACED-BY that

which makes “this’ call “that® and makes “that’ call “this” -
to no avail here since we’ve just set up an infinite loop which
will finally terminate when the return stack overflows.

You may have wondered how the words (“ .* ABCII and OCTRL
(not to mention all the structuring words) manage to do their
tricks whaen the interpreter is supposed to be compiling rather
than executing everything it sees. The answer is that it is
possible to mark a word for execution even when everything else
is being compiled:s if the word IMMEDIATE is executed, it marks
the most recent dictionary entry so that the interpreter will
know 1t 1s to be executed even if Found inside a «olon
definition. Once we start getting involved with this, we have
to get into the advanced topics of words like COMPILE and
[COMPILE] and then into [1 CREATE DOES> which would take too
much explaining for this introductory manual. If you get to
the stage of needing to find out about them, it’s time to join
FIG and get some books on the subject! The xForth Technical
Manual has information on these topics; but it assumes you’'ve
absorbed everything in this manual first.

i1-2

R I T ™ ey

{c) A.1.M. Resparch The screen editor.

Appendixk A

The screen editor.

xForth’s editor is a screen editor that is specially suited
to the block-based virtual memory disc system needed for the
FORTH-79 standard. It is compatible with nearly all
cursor-addressable VDU’s, since it can scroll both horizontally
and vertically if your VDU screen is too narrow or too shorts
in addition, since the source code is supplied it can be
adapted for any special requiresents vou have.

Merely changing the key bindings (i.e. saying which special
key is for what action) doesn’t require you to touch the sorce
code. There is a special program to do that interactively,
described later. As delivered, the command keys are set up as
shown in the table later in this Appendix: most are simple

1’ mnemonics of the form control/S for grarch, but there are too
many actions to fit happily into the set of control characters,

50 some are of the form ESE1 foilowad by a character. This
fits in well with the special function keys of many terminals,
which send ESC followed by a character. By following the table
you will be able to use the editor until you have time to
change the command keys to suit yourself.

The cursor addressing is set up during normal xForth
configuration; the configuration program knows about the more
common VDUs such as those that use DEC VTS2 compatible cursor
addressing. Unusual cursor sequences require vyou to do some

minor programming tasks, as explained in the Appendix ‘Altering
your system’.

WJP 1. ESC is the code control/{ sent by the key marked EGC or
ESCAPE or ALTMODE on most terminals.

Lzo -1

i siot L AR st T

The screen editor. () A.1.M. Research

e s S o s e

The usual way to enter the editor is to type, say,
SEE-FILE my-defs.blk

to invoke the editor starting at the first block of file
HMY-DEFS.BLK. As usualy Forth79 compatibility is maintained in
that you can also type

12 SEE

to edit block 12 (and blocks before and atter this, 1§ vyou
liked. If you are loading a prepared set of definitions from
disc, either with LOAD or with LOAD-FILE, and an error message
is given, you can type WHERE to go straight to where the error
accurrad: the block being read when the error was detected will

be shown with the cursor positioned immediately after the
offending word.

2 Using the editor.

The editor is simple yet versatile. A cursor is moved
around the screen by control keys. Whatever you type appears
at the cursor position, either overwriting the present contents
aor displacing the present contents to the right, depending on
the maode which vou can change with another control key. You
can delete a single character, causing the text to cleose up to
£ill the gap, you can delete a whole line, causing the lines
below to mova up, or you can delete it but leave a blank line
instead of moving up the lines below. You can search {for a
string, with or without replacing it by another one. You can
copy a line to another place, move to the block atter or the
hlock before the present one, or exit from the editor with or
without writing the updated block to disc.

Assuming you’ ve set up the screen width and depth correctly
during caonfiquration, the screen will scroll sideways and/or up

and daown whenever necessary to keep the cursor in the visible
part.

The following description gives names to each of the editor qﬁk
actions. The keys corresponding to the names are shown in the

B i

------- 2 . B VA S R E JIPR R . . v

e R o 3 Gt e e

(c) A.X1.M. Research The screen editor.
table, e.qg. fwd (meaning Fforward to the next block) is
control /F, obtained by holding down the control key and typlng
[~y

When vou enter the editor by typing something like 12 SEE
the bleck appears on the screen with the cursor in the top left
(home) position. To return the cursor there at any time, use
home. To move the cursor right one place, use righty to move it
left use laft; to move it up use upi to move it down use downg
and to move it right in sultiples of 8 colusns use tab. You
will Find vyow terminal’s repeat key (or automatic repeat)

-?
wsatul {for eoving the cursor rapidly.” The newline key

functions as vou’d expect, moving the cursor to the start of
the ne.t line so you cen type in text normally.

While typing in text, you will +ind the rubout and cancel
keyes uaafula the first deletes the character immediately to the
left of the cursor position, closing up any text to the right
and putting a blank in the last column, and the second replaces
the whole line with blanks., Like &)l keys, these may also be
used during correction of previously prepared text.

Initially the editor 13 in overwite mode, as shown in the
top right aof the screen. This means anything vou type replaces
what was there before, Tesmuing the mode command changes you Lo
insert acde, in which whatever was at the cursor position aoves
to the right as yvou type in new text. Anything that disappears
off the right hand edge is lost. Issuing mode again rebturns
youi to overwrite mode.

To delete the character at (rather than before) the cursor,
use del-ch. The line closes up and a blank appears at the end.
To insert a line before the cursor line, use open. The lines
below scroll down, leaving a blank line to work with. W®hatever
was in the last line of the block is lost. To delete the whole
cursor line use del-line. The lines below socroll up, and bilanks
appear in the last line. The line you have just deleted is
saved {in the xForth PAD) and can be recalled by from—pad,
which takes whatever was last saved and copies 1t to the cursor
line, destroying the line’s previous contents. You will see &
copy of what’s in the PAD at the feoot of the screen. Tao save &
copy of a line without deleting it;, use to-pad. Saved lines
survive outaide the editor for a short tise, so you can save a

2. However, take care with terminzls having cursor movesant

keys that send multiple characters, as sometimes escape
sequences can be missed 14 the repeat key is used, o that
spurious characters appear. The best thing to do if you get

this problem is to use the prev-cmd key to do the repeating,
making sure you’ve bound it to a simple control character!

R

g

S

o, ks bRt el A ke i s

The screen editor. () A.I.M. Research

line, exit, type say 99 SEE, and then copy the line into block
?9. (Note the commands +fwd, back, start and end described
later: they may save you from having to exit.)

On rare occasions you may want to write control characters
in the text. This is done with the quote key, which puts any
character following it into the cursor peosition (either
inserting or overwriting) regardless of what that character may
be. Go to insert an ESC you hit the gquote key and then the ESC
key. If your VDU has a reverse video or dim mode or the 1ike,
you can alter the word XEMIT in the editor to display a
character in this mode, and then control characters (and
characters with the high bit set) will be shown like this. a&n

ASCII delete (127) will be shown as a reverse video or dim
question mark.

To search for a string, use asearch. This is essentially
sel f-explanatory, since 1t asks for the string and vyou
terminate it with the return key as you’d expect. However,
here are a few notess

- When you are asked for the search string, note that it is
entered with the normal xForth interpreter’s editing
conventions for character deletion and so on, rather than
with whatever keys you have set up for SEE.

- The search starts with the character just after the
cursor, so 1f you search for xyz and the cursor is on an
Xy, that x won’t play any part in the search. This is done
to simplify repeated searches as described below.

— If you want to go on with the search, you can use prev-cmd
to continue without being asked for the search string
again. The search continues until a CP/M end of file is
encountered, so the search facility is most suitable for
use with SEE-FILE rather than with SEE.

- If you get unexpected results you might like to remember
that in Forth79 blocks, the end of one line is adjacent to
the start of the next!

You can also do global replacements: use replace instead of
aearch. You will be asked for a new search string and then for
the string to replace 1t. The replacement string you give will
be trimmed, or padded on the right with spaces, to make it the
same length as the search string. Again, prev-cmd will
continue the operation, using the same strings as before.

I+ you want to replace a block’s contents completely, use
Clear to fill it with blanks. Since this is a potentially
disastrous command, you will be asked for confirmation. RNote
that a newly created block will automatically be filled with

b s e e AL A O M A SN NN R i

E]

R

i Sl S

(c) A.I.M. Research

The screen editor.

blanks, and there will be a message at the top of the screen
indicating that this is a new block.

To move on to the next block, use fwd. The present block
may or may not be written to disc if it was changeds thig
depends on whether the virtual memory system needs the Mmemory
space at present. Similarly, to move back a block use back. To
move to the end of the file use end and to move to the start
use start., The latter is especially useful with searching and
replacement since when a search fails you are left with the
block containing the last match, or the block you started from
if there was no match. You can use start to go back to the
beginning and try a different string.

To finish editing and ensure that all changed blocks are
written to disc, use finish. To abandon editing and scrap any
work you’ve done on the present block, use abandon. In this
case, the block you’re on is discarded but all other blocks are
written back to disc to preserve the integrity of the filing
system. (Note that this is different Ffrom the effect of
ABANDON in the old xForth editor.)

N

S

1 720

The screen editor. () A.1.M. Resesarch

Table of editor keys as set up on delivery.

fAction Kaeys
laft “H or backspace
right ~L
up ~K
down ~J or linefeed
home ESC H
tab TAB or ~I
neeline RETURN or ™M
rubout Key marked RUBOUT or DELETE
cancel “~X
acde ‘ ESC X
del-ch ~D
dal-~line ESC X
Cpan ~0
from-pad ESC <
to—-pad ESC >
quote “~Q
naarch ~8
replace ~R
prev-cmd ~P
clear ~C
fwd ’ ~F
back “~B
start ESC 8
end ESC E
+inish ~Z
abandon “A
Notes: “H means control/H etc. A sequence like ESC A means an

escape character (control/[) is sent and then an & is sent.
Mest terminals’ special function keys work in this way, so it
should be easy to set up the editor for your terminal. Any

control keys or escape sequences not shown are rejected: the
terminal beeps.

\\@‘)

(c) A.1.M. Research The screen editor.

To change the relationship between keys and actions, type

LOAD-FILE BINDINGS.BLK

and wait while the program loads. You will be asked 1§ you
want to delete all the old bindings. This will set all control
keys just to beep - handy if you want to remove an old set of

key bindings before vyou start. If you have just generated a
new system from the kernel, the keys will be set up like this
and you’ll have to set the bindings to make the editor usable.

Otherwise, there’s no need to re-initialise everything since

you will be told what action corresponds to any key before you
change it.

Then vyou will be asked to hit a control key (or the ESC key
followed by a key) and state what action from the table is to
be bound to that key. Several keys can have the same action.
To make a key have no action, give its action as BELL. To
finish, type return when you’re asked for an action. (The
original action for the present key will remain.) Note that
after ESC, any of the keystrokes A @ or ~A will have the same
effect - you don’t need to worry about what shift you’re in.
As a result, when vyou type things like ESC > you may see
something else reflected, but you can still type the mnemonic

that suits you bests for example, the > in ESC > is intended to
be an arvowhead.

A.4 Editor-related functions.

To copy blocks use COPY and COPIES. The first behaves in
the obvious way: 15 7061 COPY would copy block 15 to block
7061. Multiple copying is done as in 15 7061 2 COPIES which
would copy block 15 to 7061 and 16 to 7042. Overlapping
sequences are handled correctly, s0 1 2 30 COPIES and 2 § 30
COPIES both do what you'd hope.

By the way, PIP (at least in the versions of CP/M we’ve
used) doesn’t work properly if there are holes in the file.
That is, if you’ve used a file and created, say, black 2 but
not block 1, then PIP will fail to copy it. This is a bug in
PIP, not in xForth. Use COPIES to copy individual blocks in

A R kil i e R AN B S S A LA SR LI 0 AR e 3 RN s s

() A.1.M. Resesarch

The screen editor.

funny’ files like this. Any file created by GEE-FILE will be
perfectly all right to copy with PIP - it's only if you’ve bpen
doing your own direct virtual memory access that there may he

problems.
to read the Appendix on the filing system to

You may want
tind how to handle copies bhetween different files.

S

e

-8

¢

A.I1.M. Research Using the FIB Editor.

Appendix B

Using the FIG Editor.

Note:

Appendix B is part of the Forth Interest Group Installation
Manual and describes the FIG editor, supplied with xForth as
file FIG-ED.BLK. The description was written by Bill Gtoddart.
It and the editor itself have been updated by A.I.M. Research
to meet the FORTH-77 Standard. Like all publications of FIG,
this Appendix (but not any cother part of the xForth manual) may
be freely copied provided the following notice is included:

This publication has been made available through
the courtesy of the Forth Interest Group, PO Box
1105, San Carlos, CA 94070, USA; and of A.I.M.
Research, 20 Montague Road, Cambridge, England.

B.1 Loading the editor

The FI6 context editor is loaded by typing
LOAD-FILE FIG-ED.BILK +from xForth. It Can be instal led

permanently in your system in place of the screen editor: see
the Appendix “Altering your system’.

Rt

Using the FIG Editor.

A.I.M. Research

To start an editing session, the user loads the editor 1f
necessary and then types EDITOR to invoke the appropriate
vocabulary. To end it later, it is important to type
BAVE-BUFFERS to ensure that changes are written to the disc,
and then to type FORTH (or DEBUG if the debug vocabulary is
being used) to reset the vocabulary to normal. Note that i+
the vocabulary is not reset, very strange things can happen
since, for example, the word *I? has a different meaning in the
EDITOR vocabulary from its meaning in the FORTH vaocabul ary.

The block (or “screen’) to be edited is then

selected,
using either:

a0 LIST (List block n and select it for editing) OR
n CLEAR (Clear block n and select it for editing)

To input new text to block n after LIST or CLEAR the P
{put) coemmand is used, as in:

O P This is how
1 P to input text
2P to lines 0, 1 and 2 of the selected block.

A.1.M. Research Using the FIG Editor.

During this description of the editor, reference is made to
PAD. This is a text buffer which may hold a line of text to be
found or deleted by a string editing command.

PAD can be used to transfer a line from one editing block

to another, as well as to perform edit operations within a
single block.

Linn'mditor commande

nH Hold line n at PAD. Used by system more often
than by user.

n D Delete line n, but heold it in PAD. Line 19

- becomes blank as lines n+l to 15 move up one
line.

n T Type line n and save it in PaAD.

n R Replace line n with the text in PAD.

n I Insert the text from PAD at line n, moving down
the old line n and following lines. Line 15 is
lost.

n E Erase line n with blanks.

n s Spread at line n. Line n and subsequent lines
move down one line. Line n becomes blank.

Line 135 is lost.

L cbal e B X A & Avdnuds

Using the FIG Editor. A.I.M.

Research

S

B.4 Cursor control and string editing

The block of text being edited resides in a buffer area of
storage. The editing cursor is a variable holding an offset
into this buffer area. Commands are provided for the user to
position this cursor, either directly or by searching +for a
string of buffer text, and to insert or delete text at the
cursor position.

Commands to position the cursor

TOP Position the cursor at the start of the block.

n M Move the cursor by a signed amount n and print
the cursor line. The position of the cursor on
its line is shown by a (underline).

A @

B8tring editing commands

F text Bearch forward from the current cursor position
until the string “text” is <found. Leave the
cursor at the end of the text string, and print
the cursor line. If the string is not found,
give an error and position the cursor at the
top of the block.

B Used after F to back up the cursor by the
length of the most recent text.

H Find the next occurrence of the string found by
an F command.

X text Find and delete the string ‘next”.

C text Copy in text to the cursor line from the cursor
till the end of the string ‘*text’. Notwms Typing
€ with no text will copy a null into the text
at the cursor position. This will abruptly @
- stop later compiling, since a null marks the

Y B A0 A OO o A RSBSOS

A.I1.M. Research Using the FIG Editor.

w end of the input stream. To correct this
error, type TOP X ‘return®.

"

e

Using the FIG Ed

B

n LIST

n CLEAR

ni n2 COPY

SAVE-BUFFERS

itor. A.I1.M. Research

List block n and select it for editing.
Clear block n and select it for editing.

Copy block n1 to block n2. Note that this and
the more general word COPIES are contained in
the file COPY.BLK and are described in the
screen editor (*SEE”) Appendix.

List the current block. The cursor line is
re-listed after the block listing, to show the
cursor position.

Used at the end of an editing session to ensure
all entries and updates of text have been
transterred to disc.

e

‘i\‘&)’

L7220

{(c) A.1.M. Research Demonstration and examples

Appendix ©

The demonstration package and the basic examples.

This Appendix describes the examples supplied with the
basic system as well as the demonstration package. The <+first
five examples are the basic ones and the rest are from the demo
package, though the 8 queens example from the basic package is
a lot harder to understand than most of the others. I+ you
have the option, look at later ones before this.

The demonstration package consists of a set of applications
which are either useful or enjoyable in themselves, or which
show how to do particular things. For example, you will see
how to modify the xForth language, adding new data types and
operators and even new structure words. The best way to learn
Forth is to use it and to try to understand Forth code, and

this package is intended as much as a teaching aid as anything
else.

The following notes are a brief guide toc the main features
of the programs. In general, you type LOAD-FILE name.blk to

load the package called NAME and you type SEE-FILE name.blk to
edit it.

C.1l Jack

For a simple set of definitions that’s just for fun, type
LOAD-FILE JACK.BLK and then type a return every time vyou’ve
finished reading what’s on the screen. List the file to see
how the effect is achieved. The original was by Frederick
Winsor, and the Forth version by Bill Ragsdale.

P

g

R

N

Demonstration and examples () A.T.M.

Research

C.2 Fractions

The file FRACTION.BLK defines arithmetic operations on
ftractions. Type LOAD-FILE FRACTION.BLK and then

12 14 $r+ fr.

and get 3/4 as output. List the file. The first word god was
coentributed to “Forth Dimensions” by R. L. 8mith. If you don’t
know Euclid’s algorithm for finding the greatest common divisor
of two numbers, you may find it mysterious, but it’s certainly
concise!

The other words should be clear. As an exercise, try
changing fr. to give 2/1 instead of 2 in response to 78 39
tr. FAsk yourself if the word simplify needs to appear as often
as it does.

KA
120
o
12
i
e
12
i2
ot
i3
lag
i
14
Y

Another numerical example is in the file RANDOM.BLE. it
produces pseudo-random numbers, useful in games and in
simulation programs. This is based on a “Forth Dimensions’
article by J. E. Rickenbacker. To use it type (say)

25 RANDOM
to get a random number between O and 24. The workings should be

apparent, though unless you know about random number generators
vyou probably won’t see why some of the arithmetic is as it is.

The file SIEVE.BLK contains a program that calculates all
the primes less than 146384 in about 7.8 seconds. This was used
as a benchmark test i1in Byte and has become very popular among
software sellers as “proof’ that their system is the best. The
KForth program runs at about 1/5 of the speed of an optimized @%@
conpiled program (in, say, Whitesmith®s C) and up to 1000 times *

i
!
3

»

(c) A.I.M. Research Demonstration and examples

as fast as some Basic versions. [t is slightly faster than FIG
Forth according to the figures in the Byte article.

On the file QUEENS.BLK there’s a program developed From a
Forth Dimensions submission by Jerry Levan. It solves the eight
queens praoblem in chess: find all the ways you can put B8 queens
on a chessboard such that none of them threatens any other. In
this version you can actually have a chesshoard that’s any size
from 1 by 1 to 12 by 12, with the requisite number of gueens.
You type 8 queens or 3 queens etc. The program is gquite hard
to follow, but the main reason for its inclusion is that it

shows you how to do recursion, i.e. how to let a word call on
itself.

In xFORTH, a word can call on itself in several ways, the
easiest of which is to use the special word MYSELF as follows

3 a-word some—-words
IF MYSELF
ELSE 1
ENDIF
some-more-words

The effect is as if MYSELF had been replaced by a-word. The
reason it’s done like this 1is that until the 3 has been
raeached, a8 new definition is made invisible to help in error

checking. This has the useful side effect that vyou can do
thinga like

3 LIST PAGE LIST BEGIN 7TERMINAL UNTIL
to define a new word called LIST in terms of the old cne.

The idea behind the main word “try’ of the queens program
is that once a queen has been placed, you can delete its row
and column from the chessboard and then solve the problem for
the new, smaller board with one queen fewer. A complication is
that the smaller board has to have some squares painted ocut
because they’re threatened by the queen’s diagonal moves. This
is dealt with by the words ‘same’ ‘mark’ and ‘unmark’.

= R I R M NN >
Rk Al o ST A O 3 LA 20 BN e dos PR

i i i I ey i NS I o £ A o 00 i = o™

Demonstration and exaaples {¢) A.1.M. Research

R

C.6 Buicksort.

et —

The +ile GQUICK.BLK contains an imsplementation of the
quicksort algorithm. {Bee Knuth, “Searching and Sor*ting’.} One
of the nicest features of Forth is that you can sort anything
you like - numbers, words, datebase records ~ just by changing
the word <" to do the reqguired job. There i1is a suggestion
for strings in the text of the file; to sort, say, integers in
descending order you only need change the definition of "<" in
the first block to

n 1% c: [T > ;
Gee the last block of the file for a siaple example.

Quicksort is another example of a recursive process.
Contrary to what some people say, recursion is not necessarily
inefficient and in xForth, this particular program runs fast.

The work is all done in the word “partition® which splits
an arvay into twoe pieces, with all the elements in the left %
piece less than or equal to a given element and all those on
the right greater than or equal to that element. The special
element is taken to be the initial last element of the array,
but other choices are possible. There are several tweaks one
can make for efficiency - at present, there may be as many as

W

around 1.35nlogn compariaonas for n elements instead of the
nlagn or so that can be achieved, because the word partition
avoids special cases like the plague, and s0 sometimes takes
longer than 1t mwight. For all normal use, the effort of
improving the performance is almost certainly not worthwhile.

G.7 BEARCH

This 15 a sieople utility for searching through some blocks

for a piece of text. It uses the search facility in the FIG
editor, so load FIG-ED before you lcad SEARCH. You use it like
thiss

3. legs are to base 2.

£-4

(c) A.I.M. Research Demaonstration and examplas

EDITOR 10 16 SEARCH Some text to look for.

will look through blocks 10 to 16 and type cut every occurrence
of thae text from GEARCH to the end of the line. The blank
inmediately after SEARCH is ignored, being eaten up by the
interpreter, but all other blanks are significant. BEARCH has
been put in the EDITOR vocabulary, but there is no reason why
you shouldn’t leave it in FORTH if you prefer. I+ you do keep
it in EDITOR, don’t forget to type FORTH (or DEBUG) when you
are finished searching, especially as the FIG ERITOR redefines
*I” and s0 you will get some very mysterious goings—on in your
loops if you remain in the EDITOR vocabulary.

This is an enciphering and deciphering word patterned after
one in Software Tools. The source code gives full instructions
on how to use it. The idea of choosing two passwords of
diftferent lengths is that this gives the same effect as a
single long password and even if you were te encode a long

string of nulls, it would be hard to find the key {for
decoding.

C.2 The *to salution’.

If you have the assembler, load it and then load
TO-SOLN.BLK. Otherwise load HILEV-TO.BLK which is slower, but
etill adequate for most purposes. The idea is to define a new
data type (called INT here, for integer) which acts like a
constant most of the time but can still be assigned to without
fuss. This means the words ! and @ needn’t be used except for
writing to buffers and the like. As a result, one of the
biggest sources of error has been removed and the code is
easier to read. The method of assigning to an INT is to
precede it with the word to as in

INT % INT v 100 to x X 3+ 6 MOD to vy

which sets x to 100 and y to 1. The magic is done by the words
x and y themselves which look at a flag to decide whether to
write their values on the stack or store the value from the
stack. The flag is called %“to and all that to does is set Zto.

i
M
|
i
bl
3
é

e

[V

-~ o~

Demonstration and examples {(c) A.I.M. Research

The assembler version is just as fast as @ and ' would be
with standard FORTH-79 variables.

Examples of how to use “to” are given in the next two
programs.

C.10 Easter

Lopad the file EASTER.BLK. This calculates dates of LCaster
using Clavius’s algorithm, as explained by Knuth in volume 1 of
*The Art of Computer Programming’. (Buy it! It?11 teach vyou
more about computing than a hundred other books.)

As an example, 1970 1990 Easters will print a table of
dates of Easter for the years 1970, 1971, ... 19720. The code
shows how to use ‘to’ and also shows how to make one defining
word make lots of dictionary entries.

Notice how this program automatically loads the “to® words
if they aren’t already there. It uses FIND to see if the
needed words are in the dictionary and tests whether the result
is zero using the { | } construction described in the assembler
Appendix. If the result of the FIND is zero (so the word isn’t
there) it loads the needed file, again checking whether the
assembler is available to decide which file to load.

C.11 Hamurabi

1f you load HAMURABI.BLK, the RANDOM and Easter words will
be loaded automatically if required, using the trick described
under the EFaster heading. Hamurabi is a game from the People’s
Computer Company’s famous book *What to do after you hit
RETURN’. It has spawned many imitators, and is a good example
of a simulation~type game. Load it and then type

‘Hamurabi

and try to work out what’s going on. Look at the source code
later to find out how to read keyboard input from within a
word, giving the user the usual facilities to delete
characters, switch the printer on and off, and break out using
control /C.

.) » . A i Tt
(c) A.I.M. Research Demonstration and examples
C.12 Exponent

This is a definition of a word ¥% that does integer
exponentiation. It isnt as trivial as it sounds — it takes
less than 20 arithmetic operations to raise something to the
power 1000, for instance (though 16 bit integers can only hold
1 to the power 1000 anyway). This method is used in the
floating point package. See if you can understand it.

C.13 Lite

The file LIFE.BLK contains is a fast version of John
Conway™s game “Life’. Most computing magazines have had
articles on it. This implementation could be made even faster
by improving the word +neighbours. The word Life itself expects
a virtual memory block number to be on the stack. You can use
the screen editor to set up an initial pattern: anything
non—-blank is considered to be alive. Note that you must have
the cursor positioning commands and the word SEE warking
correctly before vyou can use this. Alsa, there is no check
that your screen is big enough - it assumes you can use GEE

without the automatic horizontal and vertical scrolling coming
intao action. '

A sample pattern to start with is tacked on the end of the
file LIFE.BLK and can be read by typing

INSTALL-$%% life.blk 8005 Life

C.14 DisForth

This 1is a solidly useful program, yet is surprisingly
short. Load DISFORTH.BLK and type

DECOMPILE SEE
to reconstitute the original form of SEE. It can’t cope with

everything, but it’s easy to add to, as all the special cases
are dealt with in one place. If it runs off the end of a word

c-7

e

T

AR

Demonstration and examples (c) A.I.M. Ressarch

(e.g. SYBADAPT) hit control/C to stop it.

£.13 New-loop

Here is how to change the syntax of the language'! The file
MEW-LOOP.BLK contains definitions that overcome what we think
are weaknesses in the FORTH-79 loop words. The new words are
fewer, simpler, and more logically coherent than the existing
ones. Be warned, though, that this is only a demonstration and
there is no proper error checking. If enough people write to
A.1.M. Research and tell ws this is what they want, wa’ll
produce fast and safte versions.

If you load it, your definitions can contain
begin some-stuff repeat
where “some-stuff’ can contain any number (including zero} of
occurrences of the word while giving a direct generalization of
the BEGIN ... WHILE ... REPEAT and BEGIMN ... UNTIL and BEGIN
eas AGAIN structures. There is no spesed penalty at run time,

but beware of typing WHILE when you really mean “while’ and so
Gn.

If *begin’ is replaced by “cycle’ vyou get a properly
designed counting loop with index ‘i’ though the given
implementation is slow because it’s all at high level. Thus

591 cycle 1 . repeat

types 1 2 3 4 35 (not 1 2 3 4 as you'd get with DO ... LOOP).
You can also use ‘while’ for early exits:

B/BUF 1 cycle wordl word? ZTERMINAL NOT while
word3 while
repeat

I1¥ the final value 1s less than the initial value, ‘cycle’ does
the right thing by not doing any iterations at all:s

-1 0 cycle ." Erraor" repeat

prints nothing.
You can use +cycle for a step other than +1, as in

0 10 -1 +cycle 1 . repeat

PR o |

e GO o B L SR B0, 0. (ORI T M M N BRI A

{(c) A.I.M. Research Demonstration and examples

which prints 109 8 7 6 54 X 2 1 0.

Nested loops work correctly and the words 37 and k7
return the values of the loop counters one and two levels out.
The return stack isn’t used so 1f you like you can even raad
loop indices from within other words, though this is bad
style.

Modular programming is a particular sort of structured
programaing. The idea is to write small wmodules ({(say, one
block each) which have their own private words as well as
public cnes. You write applications that take the fore

START-MODULE
somne-definitions
EXTERNAL
more-~detinitions
END-MODULE

and then the definitions between START-MODULE and EXTERNMAL will
be private, known only to those between EXTERNAL and
END-MODUILLE, which themselves are public, appearing i1in the
dictionary normally.

Note that the module words use the stack so you swust take
care to leave it intact while vou are making yowr detinitions.

s

1 ey

(c) A.1.M. Research

The Filing System.

Appendix D

The Filing System.

The xForth filing system gives vyou a versatile but
straightforward means of using virtual memory and disc files.
It maintains compatibility with Forth blocks S0 that
applications written for less advanced systems still work. For
example, you can make

LOAD-FILE craccounts.blk

do the same job as 134 LOAD might do on an ordinary systea.
You can have many random access files open at once, all looking
like segments of virtual memory, and you can also access files
sequentially, taking advantage of features, like pipes, which
are not usually found on microcomputers. The two kinds of file
access are described separately below, and if you are not using
the sequential access facilities you need not load them, so
they cost you nothing in terms of wasted memory. Before going
into detail, let us look briefly at the simplest and commonest
kinds of use. You can then try out the system without worrying
too much about the details, and come back later on to
understand more advanced use.

Suppose you have the demonstration package and you want to
load the decompiler. You need only type

LOAD-FILE disforth.blk

(where the file name may be in either lower case or upper case)
and the decompiler will be loaded and be ready Ffor use. The
word LOAD-FILE reads the word Following it and tries to
interpret it as a Ffile name as defined by your operating
system. For CP/M systems, the file extension .blk indicates
that the file is a virtual memory image and can be loaded as
above. A file being loaded may itself contain LOAD-FILE
instructions, of course, so this is a very useful feature for
organizing vour programming.

If you want to read or edit the decompiler you can type

SEE-FILE disforth.blk

i

DR

The Filing Bystem. () A.I.M.

Research

and the screen editor will come into action with the cursor at
the beginning of the file. The block numbers will be shown as
80601 onwards {or reasons explained later. Modified virtual
memory blocks will always be written back to disc if they are
changed, even 1if you exit using ABANDON. This is because the
system keeps its house in order at all times to allow things
like nested loading as described above. If you like to jump in
and out of the editor without constantly retyping file names,
there 13 a way to do so using INSTALL~-$%% as described below.

To list a file with line numbers, use LIST-FILE name.ext
which handles both .blk and other files, by assuming that any
extansion other than .blk indicates a text file that is to bte
listed in an obvious way. You can pause or break the listing
by bhitting control/8 or control/C as usual. LIGBT-FILE 1is
particularly useful in conjunction with the printer, which is
switched on and aoff using control/P or by setting the variable
PRINTER-ON? to TRUE or FALSE.

D.1 Random access files.

Files are xForth data objects like strings, integers and so
on. They are declared like this:

FILE data

which creates an xForth word called “‘data” which contains all
the intormation the system needs for +file manipulation. The
word can be anything you like, since it is not necessary for
the xForth name to be the same as the CP/M name, but whern you
declare a file it is initially given the same CP/M name as its
xFarth name. (If this is an 1illegal CP/M name, even after
conversion to upper case, you will get an error message but the
®Forth word will still be there ready for you to give a wvalid
CP/M name to.) Since assignment of CP/M names to files need
not be done until you are running a program, you can write
applications in terms of files and then decide on the CP/N
names of your files at execution time. To give a file a new

CP/M name, use the word fname! as follows:
* biresults?.dat? data +fname!
The word fname! (pronounced “f—-name-store”) takes a string and

a file argument and sets the file name to the string if the
string is a legal name.

If you forget what a file’s CP/M name is, you can find it
by using "s-—-name like thiss

(c) A.I.M. Research The Filing Systeam.

data ‘s-name TYPE

will type out BiRESULTS.DAT. The word “s—-name takes a Jile

argument from the stack and replaces it by a string argument
which is the CP/M name of the file.

To use a file vyou must allocate it a segament of virtuasl
memory. This is done by the word fassign as follows:

2 data fassign

will assign virtual memory segment 2, i.e. blocks 2001 through
2999, to the File you have just declared. (1f any other file
previously owned segment 2, it will be closed and detached from
the segment before data is assigned.) There are 8 segments,
numbered 0 to 7, and on initial startup or after COLD has been
typed, segment 0 belongs to FORTH.BLK on the default CP/M
drive. (The xForth name of this Ffile is SYSFILE.) You are
advised not to change the allocation of segment O because ervor
messages are read +From there, and some internal buffer
operations use this file. Blocks I to 48 of segment O are

reserved for system use, even in systems which apparently do
not use all of these blocks.

Virtual memory segments are all the same size - contained
in the constant seg-size - and are normally 1000 blocks long,
though 31¥ you type; say,

SAVE-BUFFERS 1024 ’ seg-size ! CaoLp

the segments will become 1 Meqgabyte in (virtual) size. The
value 1000 was chosen becauae 100 is sometimes a bit small and
anything alse is a lot less convenient for human beings to

4
use. Mow you can type, say,
2071 1010 COPY

to copy block 71 of the CP/M file B:RESULTS.DAT to block 10 of
the file B:FORTH.BLK.

Initially, bhlocks 2 to 7 are not allocated to any file.
You can allocate them as explained above and then treat them
just like pieces of virtual memory: if block 2 were assigned to
the file B:RESULTS.DAT you could read or write that file

4. If you have a CP/M1.4 system, files can only be 256K in size
50 block numbers within a segment are taken modulo 286. Thus
blocks 1 to 256 behave normally but 257 is the same as 1, 258

is the same as 2 and sc on. Similarly 2260 is the same as 2004
etc.

e

The Filing System. {(c) A.I.M. Research

starting at block 2001 or anywhere else. This makes file
access hardly more complicated than writing to a memory
location. GSee chapter 9 of the manual for details. Files are
created if¥{ necessary when written to, and will be aopened and
closed automatically. If you try to read from a part that has
not been written you will get a block whose first character is
the CP/M endfile marker control/Z, followed by 127 nulls. This
condition i1s recognised by the screen editor, and causes it to
fill the block with blanks and announce it’s a new block. (The

block is not marked as wupdated until vyou actually do some
editing on it,; however.)

To find what file, if any, is allocated to a segment, use
the word "th-FILE as in 4 "th-FILE which will return O if there

is no corresponding file and the address of the file
otherwise. 8o

2 7th-FILE ?s-—name TYPE

gives BiRESULTS.DAT.
You can de—-allocate a file using “frelease’ like this:
2 frelease

which is & good idea when vyou’re Ffinished with it as your
valuable data will then be protected from mistakes you wmight
make later.

For simple use, there is a quick and dirty way of handling
files. The system maintains a temporary file called 3% which
always owns the segment just beyond the last user-accessible

one, i.e. blocks 8001 to 8999 unless seg-size has been
changed. You can 3just type

INSTALL-%%% FILE.BLK

to make these blocks correspond to the file X:FILE.BLK where X:
is the present default CP/M drive. So for example, if you had
a file you wanted to do some editing on and also to do some
copying to, vou could install it as above and type, say,

15 8001 10 COPIES 8007 SEE
The assignment lasts until next time you use INSTALL-%$%$ and in

fact 18 restored whenever LOAD-FILE, LIST-FILE and BSEE-FILE
make temporary use of $$%.

AR DR DR

kR st 50 A s AR RN e e e A R R AR AB IR s ik

(c) A.I.M. Research The Filing System.

2_Sequential input/output.

-
e e X - e e aT o e e K T s o

The commonest form of file acress is to read or write one
character at a time in order, starting +from the beginning.
Programs that only read one file and write another in this way
are often called filters -~ they perform one operation on the
file such as changing tabs to multiple spaces. It is often
better to write a lot of simple filters and then string theam
together when required, as this allows you to put together new
cperations in terms of simple existing ones. For a +ull
discussion of this and many other points of good programming
technique, read the book “Software Tools” by Kernighan and
Plauger (Addison-Wesley, 1976.)

To read a sequential file, use the word getc which gets a
character from the presently selected seguential input file.
I+ the end of the file has been reached or the file does not
exist, getc returns control/Z every time 1t is called. To
write a character to the presently selected sequential output
file, use putc as in

AGCII A putc
which writes the letter A. To write a string, use put$ as in
" This will go to the output file." puts

If you load the sequential i/o operations by LOAD-FILE
seq-io.blk {(as you will have to do to use getc, putc and put®)
the default ocutput file is the console, except that output is
spobled: that is, i1t is all collected together in a temporary
file hefore typing out at the console. So i1f you had an xForth
word poem that produced random gibberish, you could type

poemn

and the whale output would be written to virtual memory and
then typed back at you. The default input Ffile 1s anocther
spool file thet is initially emplty. Buppose you have written
words encode and decode that use getc and putc to convert text
hetween encrypted and plain fores. You could type

<< secuwre.dat decode
to decode and then type the data Ffrom the file SECURE.DAT. The

N D word << takes a file name following it and makes it the
sequential input file. In similar vein, the word >> selects

LR
. LD

N

A

e

L7270

SR M e N s i M 45

The Filing System. () A.1.M.

Research

the file name following it for output, as in
poem >> archive.txt

You can also redirect to the pseudo-file L8T: which is the CP/M
list device. Of course, you can combine these:

<K raw.dat process >> L8T:

will let the word process take its input from the file raw.dat
and send its output to the list device.

The simplest such filter is one that just does enough
getc's and putc’s to transfer its input to its output, and this
is supplied for vou. It is called, logically enough, copy, and
one way to type ocut a text file without line numbers is

<< letter.txt copy

If you redirect the output to LST: the file will be sent to the
printer.

The words >> and << are called redirection words, since
they redirect input and output from their defaults. This idea
seems to have been most extensively used in the Unix operating
asystem, where the eguivalent of our xForth words would be
different processes in the machine, all running at once.
Another idea used in Unix is the pipeline. The output from one
word can be piped (think of the output as a stream in the
literal sense!) into another. In xForth the pipeline word is
== which is supposed to look like a picture of a pipe. You
might do something like

<< secure.dat decode == process == encode) secure.res
ta decode some data, praocess it, and encode the results.

The pipline word can be very useful since it lets you write
small words that do simple jobs on files, and then put them
together as you need them. An additional example is

<< unsorted.dat sort == 10 discard-—all-but-last
which might type out the last 10 items in a list. This may
seen inefficient, but the point is that if you aren’t going to

want to do this very often, why bother writing a special word
to dao it?

\§\\\)

¢

I ey

(c) A.I1.M. Research The Filing System.

To examine your disc directory, use 1 DIR or 2 DIR which
gives a listing very like the CP/M directory command. I¥ you
have some other number of disc drives than 2, you should change
the drive number checking part of DIR (in block 16 in most
systems). The reason for trapping illegal drive numbers at
this stage is that CP/M gives a hard error if an illegal drive
is called for, rather than returning an error code to the
calling routine.

Tao delete a file, use fdelete with an xForth file
identifier. If data is still as it was above,

data fdelete

will delete the file Bi:RESULTS.DAT and return a TRUE flag to
let you know it managed. If fdelete fails you get a FALSE flag
back. If you intend to do a lot of deleting, you can define a
new word DELETE-FILE like this.

1 DELETE-FILE (file-voc) INSTALL-$%% $%¢% fdelete
NOT IF CR ." Can’t delete." CR ENDIF
RESTORE-$$% ;

The first word (file-voc) tells xForth that you are going to be
using some definitions from the vocabulary called (file—voc).
The second word INSTALL-3$%$$ reads the file name From the input
stream at the time DELETE-FILE is executed, and makes that the
name of $%%. Then $%% is deleted and if the deletion fails
(because the file doesn’t exist, or is write protected! a
message 1s given. Finally RESTORE-$$% resets $$%% to whatever
it was before INSTALL-%%$% was called.

You can now try to define a few file handling words of your
own. A good one to start with is PRINT-FILE which prints a
file without line numbers. Either use the method suggested in
(b) or use the fact that LIST-FILE actually won’t put in line
numbers if the flag #s7 in (file-voc) is set to FALSBE. I+ vyou
do it this way, don’t forget to reset #s? before exit from
PRINT-FILE. Note that #s? is a constant, so you have to use ’
to get at its address so it can be altered. This is the same
as in the case of seq-size above.

e A e e o A TAMA LB e N 1 s 0 ¢

(c) A.I.M. Research The debug packagae.

Appendix E

The debug package.

The debug package provides two things: extra protection
against common errors, and a tracing facility that allows
execution of a word or words to be followed either
interactively or ctherwise. ¢ bonus is that executioen can be
paused or interrupted even if tracing is turned off. Gince the
source code 1is supplied, it is easy to add other facilities.
An example might be a profiler, which records how often certain
words are executed as an aid to locating "inner leops’ when
epeed is important.

The package is installed by lecading the file DEBUG.BLK. The
system is then left in an altered state. A minor point you
might notice is that XOFF-CHAR is set to -1, so that CR doesn’™t
intercept key presses. This is to allow the debug words easy

access to the keyboard. Although scrolling control for
listings etc is switched off, you can now pause and interrupt
execution altogether for words that are in the debug

vocabulary.

Other changes are more significant., Instead of new words
being added to the FORTH vocabulary, and existing definitions
being locked up there, words are added to a new vocabulary
ralled DEBUG. (A vocabulary is merely a conceptually distinct
part of the dictionary, rather like a separate chapter.) ¥#ords
are also looked up in DEBUG, but DEBUG is linked to FORTH in
such @ way that if a word isn’t found in DEBUG, the FORTH
vocabulary will be searched for it. This means that, +for
example, the new definition of ! in DEBUG will be used but

since ? does not appear in DEBUG, the original FORTH definition
will be used for it.

The idea is to 1load DEBUG before testing any N
definitions, then test vour new ideas with the help of its
facilities. If the DEBUG vocabulary has already been loaded,
you merely type DEBUG DEFINITIONS before defining untested
winrds and FORTH DEFINITIONS before defining tested ones.
(Actually, you could use the DEBUG vocabulary at all times, but
there iz an execution time penalty which may be significant in
LOME CasSes.)

AN, i kOB S AN N D B e s

N

oy

The debug package. () A.I.M. Research

Once your new definitions are working properly, you can
FORGET them, then reload them into the FORTH vocabulary. By
the way, FORGET does FORTH DEFINITIONS o i+t you want to use
the DEBUG vocabulary after a FORGET, don’t forget to type
DEBUG DEFIMITIONS. Words defined after FORTH DEFINITIONSG will
be added +to and will use definitions from the original FORTH
vacabulary; they will not be traceable, for example.

The protection facilities divide into two groups: complile
time protection and execution time protection. He take the
latter first.

On the last block of the file a word 7' is defined to be
axecuted before any of the words ' C!' 2! or TOGGBLE alters the
contents of a memory location. It checks that the location is
safe to write to and issues an error message if not. The
definition of “safe’ is rather difficult, and the choice made
here is a trade-of4 between speed loss and reasconable
protection: it is possible to write to a few dangerous
locations or to be prevented from wrriting to some safte ones.

The commonest beginners’ errors are trapped, however, such as
X 1 ! instead of 1 X !

If you are trying to understand the action of 7!y, note the
use of [... 1 LITERAL to calculate an expression at compile
time and store its value as a literal, to be put on the stack
at execution time. Here the use is to find the code executed
by something that is known to be a variable at compile time, to
determine whether a variable is being assigned to at execution
time. (A constant i3 also allowed, being checked for in the
Same way. Otherwise, any location in the disc buffer area and
any location not protected against FORGET is permitted.}

More execution time checks are provided on an earliaer
block, where arrays are redefined to check they have legitimate
index wvalues. (If your original xForth system already did
this, you will now have been supplied with code that dogsn’ L,
and s0 runs a little faster. Aas always, you should only use

the unsafe code if¥ speed is important and youwr definitions are
debugged.)

On the very first block of the file the words >R R> LIT and
LEAVE are defined to do compile-time checks. {(The same is done
for @ later on.) This incurs no penalty at execution time. To
do this they have to be made IMMEDIATE so that even when most
words are being compiled, the redefined words execute and check

S AR

g &\\\‘)

(c} A.I.M. Research The debug package.

that they like their environment, then themselves compile the
necessary execution—time actions. Except for >R and R>, the
new definitions merely check that compilation really is taking
place, since (for example) LEAVE alters the return stack with
fatal effects if typed from a terminal. The new >R and RY do
an additional job of making sure they are nested and balanced
correctly. I+ they are not, an error message is given. I+ an
R> appears without a preceding >R at the same nesting level ,
the error message says the return stack isn’t balanced. If a
>R isn’t closed by an R> the error message says conditionals
aren’t matched if you are just leaving a conditional or looping
structure, and it says the definition isn’t finished if you’ve
reached a semicolon.

The tracing facility works by redefining : to complile a
call to the tracer as the first instruction in any word. To
allow selective tracing, vyou can turn this off by typing
make—-untraceable and on again by typing make-traceable .

A word with tracing ability compiled will behave apparently
normally unless you type a special key while it isg executing,
as described below, or you have previously typed trace-on or
pause-on . (The opposites of these are, of course, trace-off
and pause-off .) If trace-on has been typed, the namne of |Very
traceable word is typed when it is executed, together with a
picture of the stack. I¥ pause-on has been typed, tie action
is the same except that “ck?” is then typed and the system
pauses until you hit a key. The special keys below have their
special actions and all others cause normal execution to
continue.

Traceable words call PTERMINAL as well as checiking ithe
state of the tracing and pause switches. Since 2TERMINAL has
been redefined in the debug package, certain keys are treated
specially. (OFf course, any of yow definitions that use
PTERMINAL will alse have access to this facility, regardless of
whether they are traceable.) The keys are as foliows; all
others are ignored.

Control/C causes immediate return of control o the
terminal .

Contral /P toggles the printer on and off, Just as in
naormal ioput.

bl Kb ekt s P O SIS Bl Nt o8

The debug package. () A.I.M. Research

Control/s

R

e

1l 70

temporarily stops everything until any key
{except control/C, which behaves as above) is
typed. This is useful for controlled scrolling
ot output, among other things.

acts to suspend execution: it returns control
to the terminal, but saves everything including
the previous terminal input buffer contents.
I¥f you type

resume

then execution will continue where it left off,
but in the meantime you may have turned pausing
or tracing on or off, altered the stack, or
even edited blocks of wvirtual memory. Note
that the interpreter now types “ok+” to let you
know vyou are not at the usual level of
interpretation.

@

. R TN
. » i i Wmmmmﬁ

(c) A.1.M. Research The assembler.

Appendix F

The asseabler.

Most programs spend nearly all their time executing a very
small party, known as the “inner loop’. For example, Faorth
systems on microcomputers — including xForth - spend most of
their time in the “inner interpreter” which arranges for
inastructions to be threaded together in the correct order. I+
speed is important, inner loops can be coded in assembler while
the rest of the program is written normally. This can result
in a program that runs nearly as fast as a pure assembler
program, while retaining xForth’s advantages of compactness and
gase of writing and maintaining.

This Appendix assumes vyou already know 8080 assembly
1l anguaqge. It taells you how to define words which execute just
like other xForth words but which operate at the machine code
level,; so bypassing the inner interpreter. You should never
start by writing xForth words in assembler: write and test thens
at high level first, then if absolutely necessary, re—-code the
few words that are executed most often. (If you are not
convinced, re-code a randomly chosen word from one of your
prograns. I§ 1t isn’t an inner loop word, you will probably be
disappointed at the small speed increase).

The file ASSEMBLE.BLK contains the source of the xForth
assembler which is itself written in high level xForth. The
file DUMP.BLK contains a dump utility producing output similar
to that of DDT’S dumpy use it like this: 20000 100 DUMFP which
displays the contents of 112 bytes starting at 20000. {(The
reason 112 bytes are displayed vrather than 100 is that DUMP
alway rounds up to a multiple of 16.)

To define a word that will execute directly, enclose it
between CODE and END-CODE instead of between 3 and ;3 as you
usually do. Then you type in assembly language instructions
using Intel 8080 mnemonics except that reverse polish (i.e.

stack—-oriented) notation is used. For example,
A C MOV,

stores code to move the contents of the A register to the O
register. The order of all the instructions is

N

S

L0

The assembler. {(c) A.1.M. Research

source destination instruction

We use, say, 10 D LXI, where conventional assemblers use LXI D,
10. The comma at the end of MOV, or LXI, reminds you it’s an

instruction rather than a parameter, and so will actually store
some code.

All the standard 8080 instructions are available (see the
source code) together with some Z80 extensions like EXX; which
switches back and forth between the two registers sets, EXA,
which does the same for the accumul ator/flag sets, PCIX, which
Jumps to the address in the IX register, and LDI, LDD, LDIR,
LDOR, which perform 280 semi—automatic block MOVES.
Instructions like

0 IX LXI,

work correctly but not all Z80 instructions are supplied. With
the samples given you can see how to make your own extensions.

Wwhile in the assembler you can still use xForth’s
structuring facilities. For example,

o= 1F, 1 OUT, ENDIF,

will write the accumulator to port 1 if the zero flag is set.

The code produced is exactly the came as a conventional
asseabler would produce given

JNZ L1 our 1 LT ...

Similarly BEGIN, LDI, PE NOT UNTIL, performs a I80 semi-
automatic block move in which the LDI instruction has to be
repeated until the parity flag is unset.

The available constructions are IFy... ELSE,...ENDIF, and
BEGIN,UNTIL, and BEGIN,... WHILE,...REPEAT, The tests
paerformed by IF, UNTIL, and WHILE, have to be statead
explicitlys PE for parity flag set, O= for zero flag s=t, O<
for negative flag set and C8 for carry flag set; these can all
be negated by following them directly by NOT

For the rare occasions where explicit labels are nesded,
you can set them by saying, for instance,

LABEL L1 H D MOV,

and then any of the usual jumps like L1 JINZ, will work. a+f
course, labels are just xForth words s0 things like
John's—-label are legitimate. You must, however, take care:
labelling a subroutine and then calling it is fine, but putting
a label in the middle of some code (whatever for?) will cause

-2

“@

1720

() A.1.M. Research The assembler.

disaster unless vyou jump round it, since a label is a
dictionary entry and will be entered along with the wmachine
code being assembled.

To insert a character string in line, use " as in
LABEL stringl * This is string one *

which puts a one byte character count at the point labelled by
stringl and puts the text immediately following.

Conditional assembly is often useful. For example, the
source of xForth has a flag 7280 that is true when Z80 code is
to be compiled, and false otherwise. The flag is tested by {
which acts like IF except it takes effect at assembly time,
The analogues of ELSE and ENDIF are ! and }. For example,

Z80 < A XRA, SBX, | SSUB CALL, ?

either inserts in-line 780 code for 16 bit subtraction, or
calls a subroutine. As it happens, {...!...3} can also be used
in other places outside a colon definition so you can type
things like
2 RANDOM { ¢ colour ."Black" j
! 1 colour ."White" ;
3

The last thing you must do in an assembler word is to thread
your definition back into xForth. To do so, restore the
original BC register contents (which point to the next xForth
instruction to be obeyed) and jump to NEXT which is a label in
the inner interpreter.

CODE 2% H POP, H DAD, H PUSH,
NEXT JMP, END-CODE

(Note that the 8080 stack pointer really does point to the
xForth stack)

R e LA RN KA NS5 5 oG 3 il SN BRI TRk oo b i PO B ;i Bt i BRS04 B s Ok S AL LA s 5t

The assembler. () A I.M. Research

S

IBO { CODE 2SWAP EXX, H FOP, D POP,
EXX, H POP, D POP,
EXX, D PUSH, H PUSH,
EXX, D PUSH, H PUSH,
NEXT JMP, END-CODE

L | 268WAP ROT >R ROT R> 3
b

(Note that { ! and } must all be in the same xForth block)

CODE BYE O JMP, END-CODE %

CODE 2/M00 (unsigned ——— remainder result)
H POP, A XRA, { Clear carry)
Ha MOV, RAR, A H MOV, (Left hal¥f)
L A MOV, RAR, A L MOV, (Right half)
C8 IF, 1 D LXI, ELSE, O D LXI, ENDIF,
NEXT 2- JMpP, { Push D and then H)
END~CODE

A note on vocabuleriso

To avoid confusion between the many assembler mnemonics and

other xForth words, the mnemonics are kept in a separate part

- ot the dictionary that 1s only looked at if CODE or LABEL has
been typed,and until END-CODE is typed. The separate npart is

=
H
H

1720

(c) A.1.M. Research The assembler.

called a vocabulary and advanced programs like ametaForth
manipulate several different vocabularies. The interpreter
searches the assembler vecabulary when looking for words. and
1if it fails to +ind a word it then searches the Forth
vocabulary. This means you can use all of xForth’s normal
facilities for arithmetic and so on, while in the middle of a
CODE definition. Note that CODE definition time is not
considered to be compile time, sc all words between CODE and
END-Code execute at once, which is always what’s required. All
you really need to know here is that an error during a CODE
detinition leaves vyou in the assembler vocabulary. Type FORTH
(or DEBUG if you have the debug package) to return to normal.

L R B 4NN X N S e e RN s

L N

{c) A.I.M. Research Adapting your system

Appendix &

Adapting your system

6.1 General

You can alter or add to your system and then save the new
version s it can be run directly from CP/M. For example, vyou
might want to add the assembler permanently: in that case, just
load it and then read on.

(a) The wusual way is to make whatever changes you want,
type n SYSADAPT (where n is however many virtual memory buffers
vou want ~ at least 2) and then save the system as described in
the Preface “Getting Started’. That is, you use the CP/M GAVE
command to save a file XFORTH.COM of whatever size SYSADAPT
tells you to use. (You can use CONFIG instead of OSYSADAPT;
this is useful if¥ vyou intend to change assignments to things
like the delete key.) If vyou are doing a lot of work with
files, it is worth having more buffers: SYSADAPT won’t let you
allocate more buffers than there’s space for, but of course if
vou're about to leoad a huge application then it’s prudent to
leave enough room Ffor 1t. With the sequential i1/0 file
package, it’s sometimes useful to have as many as 16 buffers,
since this reduces disc activity for the spool files.

(b} If vyou want to alter the editor or other basic xForth
words, you can change the relevant blocks then exit to CFP/M and
type

ASKERNZBO or AKERNSOBO
to load a kernel system. Then type SYSGEN and the new system
will be built. It can be saved as in (a) above. Block 1

handles the system building so by changing that you can
custom—-build a system to suit yoursslf.

6—-1

e

t 70

Adapting your system (c) A.I.M.

Rewsearch

G.2 Basic_terminal handling.

The following information is not normally needed, but is
included so you can understand the action of CONFIG. Terminals
that have several possible screen formats can be dealt with by
defining a Forth word that does whatever is needed to change

the mode, then puts the correct values in things like C/L and
L/8.

xForth needs to know how wide your screen is so it can wrap
long 1lines and so the editor can decide whether and how to
scroll. If you have a VDU that wraps lines but has the common
bug that if you write in the last column it takes a new line
without waiting to see if you were going to send a printable
character next (e.g. SuperBrain and TRS80 Model I1), vou should
tell xForth you have one column less than you really do have:
79 instead of 80, in most cases. This is not needed if YOou use
CONFIG, since it subtracts 1 always if you say your terminal
wraps long lines.

The constant C/L contains what xForth thinks is the number
of characters per line for your terminal. It is set to 80 on

delivery unless we have told you otherwise. To change it to,
say, 79, type

9 T C/L

which uses the word > to get at the address where the constant

value is stored. Similarly, you can change L/S to the number
of lines in your VDU screen.

Two variables you can alter are DEL-KEY and CAN-KEY which
are respectively the character used to rub out the last

character typed and the character used to remove the whole
line. For example,

127 DEL-KEY !

will make the standard “DELETE® key rub out characters and
backspaces will then be reflected as “H. Note that these keys
only refer to standard input as done by EXPECT or QUERY, which
are the words used by the interpreter. If vou call KEY you get
exactly what was typed, with no system intervention.

Another variable which has already been mentioned is
XOFF-CHAR, which contains the code used in controlled scrolling
of the screen. You could change it to space by using

(<) A.I.M. Research , Adapting your system

BL. XOFF-CHAR ' and then just hit the space bar to arrest
autput, or you could set it to saome impossible value like -2 to
switch off scrolling control. If you set it to ~-1 there is a

special effect ~ both scrolling control and control/C breaking
are switched of+f.

6.3 _Cursor addressing

If you have a cursor-addressable terminal, the first thing
ig to tell xForth how to positicn the cursor. I¥ your terminal
wasn’t mentioned in the configuration menu, you will have to
write a special word. This is quite simple. For example, here
is how wa wote a word to cope with the popular DEC VIDZ
method: this allows us to go to row r, column c rvelative to
r=0, c=0 as top left, by sending EBC ¥ 324r 3I2+c where ESHC is
the escape code control/L{. This is done as follows:

: {(cursor) CTRL € EMIT
AGCII Y EMIT
GHAP 32 + EMIT
32 + EMIT ;

Look at the manual for your terminal to +find how to

position the cursor. If, say, it uses control/P 32+ 32+c then
type in

3 (cursor) CTRL P EMIT
SWAP 32 + EMIT
I2 + EMIT ;

Mow test vyour works type O O (cursor) and wmake sure ok

appears in the top lett corner. Take particular care that it
appears in the top left and not 1 character away in either the
horizontal or the vertical direction. You will know vyou've

added the wrong offset (32 above) if this happens or 1§ the
cursar is out of step with where 1t should be when yvou use the
editor later. Now type 10 O (cursor) to get it about hal$d way
down the left column and ¢ 40 {(cursor) to get it about half way
across the top row. This makes sure you have row and column
the right way round.

Once all is well, type

XCURSOR REPLACED-BY (cursor)

and go to 1{a}) above.

M R MDA AL A i R iga i s L NS Sl O 2 —

R

e

e

BNl o e s R B o s R O B b TR ¥olhdo SR B i

Adapting your system €} A.I.M. Research

G.4 _The screen_editor

The screen editor is now configured almost entirely by
using the file BINDINGS.BLK which lets vyou choose the keys to
have whatever functions you want.

I¥ your terminal can display in reverse video or dis (we
dan’t really recommend +lashing) yvou can redefine ¥EMIT in the
editor source to output a character in this form, which will
show up control characters hetter.

I¥ you make any changes, type LOAD-FILE GEE.BLK and test
the modified editor very thoroughly. When you are sure all is
well, go to 1(b} above.

If you don”t have a cursor-—addressable terminal, you may
want to remove the screen editor to save space, replacing it
with the FIG editor supplied on the file FIG-ED.BLK and
described in the relevant Appendix.

Ta do the replacement, edit block 1 to load FIG-FD.BLK

instead of SEE.BLK, and alter occurrences of (EDITOR)Y in
COPY.BLK to EDITOR. Then go to (b) above.

G.6 Prompts and showing t

Tao remove the stack prompt altogether, type
XPROMPYT REPLACED-BY CR

To change it, say, so that the stack picture appears on your
terminal s status line,;, define and test I words

Save-Cursor

to-status—line
restore-cursor

G4

i\\\J

tzo

(c) A.I.M. Research Adapting your system

and then edit block 9 so that .STACK becomes
1 .BTACK save cursor
to—-status—-line

restore—cursor
CR 3

Check your new definition and then go to 1{b)
Similarly you can change the "ok" message, for example,
XOK REPLACED-BY NOOP

will remove 1t altogether.

*I\\\\“)

L7220

() A.I.M. Research Bugs.

Appendix H

Bugs.

We believe our software is reliable and well-designed, but
of course we welcome information that will help us to remove
errors or make improvements. If you think there is a fault in
the system we supplied, or even a bad design feature that is

inhaerent in xForth rather than in the FORTH-79 standard, plea&e
lat us know.

To help us help you, please make absolutely sure the fault
isn’t in your program and make sure you have done your best to
isolate where the fault lies. Try to remove anything not
relevant to the problem, and send us the shortest program you
can together with output that displays the fault. You must
show every step from loading the kernel system, typing CSYSGBEN
{with blocks 1 through 41 exactly as in the delivered system)
to the point where the error occurred. We are sorry that we
cannot undertake to deal with errors in systems that have been
altered or patched in any way, or in systems that use
imitations of CP/M instead of CP/M itself. None of this is
intended to intimidate you - it’s merely to give us some chance
of helping you!

Note that hecause of the great freedom xForth gives vyoii, it
1s possible to crash the system by overwriting xForth, CP/#M or
the buffers, stacks or user variables. This is why we
recommend the debug package and vocabulary for all normal uses
it protects you against nearly all common errors. Even without
the debug option, you are far better protected in xForth than
in wmost other Forth systems, and if you take care with the
words ! C! 2! R> and >R you should have no trouble.

	Cover Page
	Table of Contents
	How to Use This Manual
	1. Preliminaries
	2. First Steps
	3. Manipulating the Stack
	4. Defining Your Own Words
	5. Loading and Listing Definitions and Commands From Disc
	6. Control Structures
	7. Constants and Variables
	8. Text Strings and Characters
	9. Virtual Memory
	10. Interfacing With the Operating System
	11. Other Topics
	A. The Screen Editor
	B. Using the FIG Editor
	C. The Demonstration Package and the Basic Examples
	D. The Filing System
	E. The Debug Package
	F. The Assembler
	G. Adapting Your System
	H. Bugs

