Chapter

1.
1.2
L.
1

»

ot
T A N I

>

Pt g gt e et

Chapter

o

[N NG
B
)

2
2
2.5
2
‘.
2
)
2.5
2
2.7
Chapter
Arpendi
Al
A2
- A3

Lzo

Table of Contents

L Updates in xForth 2

ltitasking

New file system facilitiegs

New input/output facilities,

Miscellaneous changes,

Changes needed to xPorth optional packages

ASSEMRBLE . BLK
FPLRLK

.
.
by

.

(S
*
o

<5.3 TRIGS.BLK
<54 DEBUG.BLK

»
W
.

5 NARRATE.BLK from Turtle graphics pack.
> Multi-tasking in xForth.

Simple multitasking.

semaphores, or how tasks communicate.,

L. Two state semaphores, and demons.

] T4 1
LAl d Mualr

The example filesg.

9L d BUFFER, BLK

.5.3 SPOOL.RLK

2504 WINDOWS .BLK and TASKDEMO . BLE

Summary: task types and e tates,

.6.1 Task tyvpes
LOL.7 Task statos

Gaeneral task management
3 Trouble

X A Alphabetic list of

ban sl
=
&
al
o
-
o’
.
c
-

wWords deleted,

words unchanged,

Vocabulary listing with detfinitiors of new
words,

[

-~ U e

~

e}

16
17
L7
19

19
i9

29

RS

i

R

Lo bnd

PN

26

LzZo

XForth 2 (¢) Alistair Mees

Your new xForth system

Copy your disc before doing anything else.

The upgrade from xForth 1 to xForth 32 consists of this

documentation

as described in the contents table, and in

particular containing a glossary update, together with a disc
or discs containing the following files:

XFORTH.COM

XF808014.COM

FORTH.BLK

SEB.BLK

SEREDATALRLK

CONFIG.BLK

BINDINGS.BLK
NEWSIEVE.BLK
SPOCL.BLK

DELAY .BLK

TDELAY .BLK

BUFIER.BLK

This is the normal xForth system.
when you first use it.

Call CONFIG

I1f you have an 8080 processor or your operating
system is CPMl.4 or CDOS, or you have trouble
as described in "Trouble®" below, use this file
instead of XFORTH.COM. You will lose the
ability to access user areas in CP/M and will
be restricted to 256K files. Not supplied with
Torch systems.

The usual FORTH.BLK file with some updates and
with blocks 30 onward removed.

The screen editor with some minor updates,
TORCHSEE.BLK for Torch systems has some
slightly different facilities.

Sets up editor keys from a file instead of from
keybcocard. TSEEDATA.BLK differs slightly.

Called by CONFIG, minor changes from version 1.
TORCONF.BLK for Torch differs slightly.

Changes editor keys. Same as old version.
Faster Fratosthenes sieve.
A file listing background task.

Multitasking clock words. Needs edits to adapt
to your system,

DELAY.BLK configured for Torch.

Print buffer using multitasking. Needs edits
to adapt to your system,

tzZo

XForth 2 (c¢) Alistair Mees

TRUFFER.BLK

WINDOWS .BLK

TASKDEMO,.BLK

NARRATE,BLK

SAVE.BLK

BUFFER.BLK configured for Torch.

Simple multitasking windowing demonstration for
Torch, needs adaptation to other systems.

Demonstration of WINDOWS.BLK, for Torch only.

Modified file for turtle graphics owners. Sece

comments on changes to xForth optional
packages,

For systems with no SAVE command e.q,
Turbodos, you can load this file then type
SAVE-AS MYXFORTH.COM after configuration.

Other files are not supplied since they are mostly the same

as in xForth 1;
that certain
"Changes needed

you can copy them to your working disc. Note

optional packages need slight changes: see

to xForth optional packages®,

R

B:DIR?

A>B:DIR

TowwrwowwmR

»s

[s9)
bt

DWW E W

D

XFORTH
SEE
NEWSIEVE
SAVE

TASKDEMO

corY
QUEENS
OLDSTUFF
DEBUG
SEARCH
EASTER

IR

BUILD
METASYS
CPM-DISC
-READ

B:DIR

COM
BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK

BLK
TXT
BLK
ME-

LIFE
SEEDATA
SPOOL
WINDOWS
NARRATE
TTY-RUB
SIEVE
SEQ-10
DUMP
CRYPT
HAMURABI

XFCODESBO
XFUPPER

CPM-EQUT
ASSEMBLE

BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK

TXT
BLK
BLK
BLK

NEW-LOOP
CONFIG
TDELAY
DELAY
QERROR
FIG-ED
RANDOM
VMOVE
QUICK
TO~SOLN
EXPONENT

XFHILEV
SYSEQUTS
FLAGS
VMOVE

BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK
BLK

TXT
BLK
BLK
BLK

.

ee so

.
.

FORTH
BINDINGS
BUFFER
TBUFFER
XF808014
JACK
FRACTION
ASSEMBLE
VLIST
HILEV-TO
MODULES

XFTASK
CPM~1/0
XFORTH
FORTH

BLK
BLK
BLK
BLK
COM
BLK
BLK
BLK
BLK
BLK
BLK

TXT
BLK
CoM
BLK

R

LZo

Al

For

FORTH.RBLK
a DEC
r .1. j SRR

for

wour

Yo build

e
satt
will
1t

Various
loave

f1le
Angs.
o away for
proheCey
omtians
avied

Torch set

Note

LOAT-
faaster

That
FILE,
thoan

VT-52
Nee e
SYGLEN.

&8k

Arytyre re Gread.mel

convent

o

aNel
Bl
I

thoa

M T

kuinvl

BLK

oL
Some
ViE b

20,

Farth

thie
sion of
terminal).
to run

This
BUILE.

myﬁtem
ancswer Y to the
N to
with

answer
time,
system.)

Laurce

i

are suppiieds in

83

to FALSE

constructs all
edited.

Codd

ﬁf&

Extended Directory version 3

BREAD ~MER
h%qlﬁ HLE L BLK
nuLLL » BLK
LF M(“D HC.BLK
CPMOEQUT.BLK
CPMETIEG JBLK
I WG
FLAGE - BLK
FORTH o B
METASYS JTXT
BYSEQUTS L BLE
UMOVE < BLE
KFCONESO.TXT
SEHILEY JTXY
AFORTH L COHM

HETASK LT
AFUPEER nQ‘“

ing
uwtiiity i

e

i
Pl
Ak
10k
il
1
3
3l
8.
10k
1k
2l
244
28k
20k
k.

1 i

hiock

Y (il

E R B S

[

the
The
LT~

he

. TXT

st
and Torch

files

o

0re

diac
AFORTH.
NEE VY

BLK

Not

FalSE.,

UE3ers

coide
conbalns
Lhat
Lhe
and baild

file

must

loaded (slowlyd

gseguentinl i/0 package’s

FILE
Gnoone
could
o owhere
e b

Nnewsdad)

for
Line
convert
it

« ITXT
which
the

filey
would
o TXT
required,

segquential-i1/0 package.

149K,

Spages

SO

truncated .
pre-contflgured
contains

KEHNEL CQMW
Ly
qundyiun
y minimal
all
particuior,
Naon-Torch
set Lt to TRUE,

s1btﬂii UFEJJB
camments,

st leave

unacsedis®

R oo

Additional notes.

SYSGEN

abForth Wors

Lo ogener ate

CYLGEN, you have o renmove all

delrvered block 1 owas loaded,
RROME T el alCED-HY OR
LS TONON RURLACED-2Y O
FUONCE - BELOW COLD
SRGTECT

GY il

supplied only a

=3

e

T

CHOts 1wl i bed L
somelhing sete bhaen e
v vou ve

dek e sure they

[R O R A

LW

Fresiavend
te

LI SRV S0

riee e

R

e manuwal mentyons Gon the

aborth ran under multrcashting

vevbosrd., Note that thils will

tasbing a0 normnal compille and

satletactory +tor applications

M0 E S ar Y. Hare 19 how to do

mearns LAST-HEY will no longer

tine assenbleaer permanently o

to HEX and comma 1t dn,

LAkl Bldn LLHLD D DAD,

COdiE reY) BOoFUDH, 6D
AL MUV, O

LMD CODE

AEEY O REFLACED-RY (FEND

Oy AW T X ORTHL COM

the
a private wystem by modityving biack |

everythiog UF
crtored
s at

et

a1 dent

LXT,
MY T

Frle YEUOROH,COM @0 1f you wWary

and calling
simce the
foollowss

thes

T

dest 1 ned
e oceed

WO s
do sa,

G

LGNGRD

var abr e are et
to e

vy bl

Ma L e eout T on

Phvact

arty Livi ney

Fie?

XEEY
t 0.

o

s
TYED 4

Changing KEY so 1t doesn’t scan the keyboard.

A way 0t nelklng

T

"Trouble')
Gy ntems
vivtually
it
woh
Thie
I+

YOy

T
i d g

without competing
ety oy stow b
still be
FesUst wheraver
P st @l
L)

ol

»

T NI T
whe e
it

WO .

My

LN

solutron Py e
v don t

Conver b

by v g3

Wt
by

& fowing

FOHL

EIOS Calli.

R e R R RS S

FRROTECT i af YR

() A.1.M. Research ﬁiJ?Lm Jﬁﬂ;uiﬁ&dﬂ

Ker
XFPormwd

Getting started.

To run xForth you need an 8080, B08S or 780 microprocessor
with at least 20 of memory, running the CP/ operating
stem. You really need at least 32K to o anything
‘thwhile. A VDU with cursor positioning ability is a great
versions for
ons for CP/Mi.4
of the so—-called
probably {find no

and CR/M2.2 are different. I+ you have on
mpatible’™ operating systems, you wi
problems\but we don’t guarantee it - ther

Before yoN do anything else, cop
the original awgy in a safe place.
your licence agry

the whole disc and put
Now £i1l1 out and return
‘done so already.

The disc yvou hay

11 be vyour initial working
disc. Use CP/M's

(or COPY with appropriate
options, on some itk a copy of your operating
system on this disc. been supplied with both 8OBO
and I80 versions of Forth,/ you can make extra space by
deleting the files you dob d (titles containing 8080 or
Z80). You are ready to starnt.

Put the working disc i rive A and type

A>28K I8 A>28K80BO

to load up a basic system that whll run under as little as 28K
CP/M {i.e. xForth takes 20K and CPXM takes B8K). The A> is typed
by the CP/M system.

wForth will the

will see
ok
Stack pty

sign On. Type carriage return and you

Now type

CONFIG

fallowed by a carriage return, and xForth
questior

wil
and answer session with you to set itself

conduct a
p for your

.

() A.1.M. Research

~
%,
\\

terminal an your number of disc drives. You might like %o
know that most terminals have 80 columns and 24 rows, and do
wrap long lines (i.e. lines longer than 80 characters “spill

over to the next line rather than having the rightmogt part
lost altogether)\,
\

&

7

To aliow thé\ screen editor to work, xForth eds to know
how to postion the cursor. If you have any g% a number of
common cursor addressable terminals such as ADMYS; Superbrain or
119, the code is alr ady written and you will Me able to chnose
the right code from a\menu. If you don’t have a terminal that
appears on the configukation menu or is cogfatible with one of
the terminals appearing there, you’ll haveg to write a little
cursor handler as explhined in the pendix *Altering your
system’. However, you can use everyhing except the screen
editor right away, so don’t bother out thie wuntil you’ve got
used to the basic system.

After the question and
itself to be able to use as
system. Notice that afte
#Forth teils you how many
then;, when you are back ij

wer session, xForth will adjust
h memory as possible in vyour
pting itself to vyour system,
P/M pages it occupies. Type BYE and
ype

SAVE 65 XFORTH.COM

vhere &5 is replaged by however ma Y pages xForth just told
you. From now on,/you merely need to\type

/,/
/ ADXFORTH

to get going, /unless you change your CP/M\ system size, in which
case you shguld repeat the above steps.

N,

AN

A\

s

XForth 2 (¢) Alistair Meeg

Chapter 1

Updates in xForth 2

Don't be put off by the length of this document; much of it
is a glossary containing a detailed description. To get going
You probably only need to know about the following:

- Multitasking;
- New file system facilities (mainly user numbers and DIR):

~ New character input/output facilities (mainly enhanced
input/output streams);

- Miscellaneous new features;

=~ Minor changes needed to assembler and floating point pack
due to change to direct threaded code, and to debug and
turtle graphics packs due to changes to 1/0 systemn.
Also, the decompiler no longer works.

The following is a summary of the most important features.

The detailed glossary should be consulted in cases of doubt,
and for precise definitions.

1.1 Multitasking

This is described in detail in the next chapter. Note here
that the multitasking demonstration files may need to be set
up for your system before you try to load them.

1.2 New file system facilities

The filing system now knows about Cp/M2 CP/M3 and CPN user
arcas., If a user number is given in square brackets at the
end of a file name that user number will be used for the file,

LzZo

xForth 2 (c) Alistair Mees

@
Yo

LOAD-FILE random.txt{0]

This 1is particularly useful for users with high capacity
discs. If no user number is given the currently set operating
system default user number is assumed. The new words sctuser
and getuser have been introduced to allow contrcl over this.

DIR now reads an ambiguous file specification with optional
user number from the input stream, and lists on the currently
selected output streams all files in the stated user area that
match the specification. Note that no stack argument ie used
as in xPorth 1. If the file specification is empty it is
assumed to be *.* so that typing DIR and pressing return has
the same effect as it has in the operating system. Some
examples of calls are:

DIR

DIR *_, BLK

DIR f?g*.x[5])
DIR c¢:[2]

DIR b:

DIR [15]

DIR a:b?2d.*[11]

The word S$DIR takes a string argument and operates on it in
the same way.

LOAD~-FILE now allows ordinary text files (prepared with any
standard editor) to be read as if they were being typed from
the keyboard. This is done by selecting input stream 2 which
is connected to the file in question. Loads may be nested and
files of type .BLK, which are treated as usual, may load and
be loaded by text files. The sequential i/o package providesg
utilities to convert block files to and from BASCII files.

Since the word WHERE is no longer so useful with text
files, a variable "echo” is provided. If it is set to TRUE,
as in “echo on”, each line of the file being loaded is
reflected to all currently selected outputs before being
interpreted. Note that the usual rules about (and ({ having
to have matching) and } on the same line in console input are
relaxed for text files, but that defining words such as : and
VARIABLE must be followed on the same line by the word they
are defining.

*Forth 2 (¢) Alistair Mess

1.3 New input/output facilities.

The input-output facilities are much shinier ¢than before,
They are now vectored in such a way that thare may be 4
distinct input streams and 4 distinct output streams, and any
task may select any of them.

The method is to use bits set in the user variable QUTPUTS
(which all tasks have a private copy of) to select output
streams, and bits set in the analogous user variable INFUTE to
select input streams. Conventionally, the lowest order bits
are the normal output and input so that setting INPUTE and
CUTPUTS both to 1 gives normal operation. The next higher
order bit in QUTPUTS corresponds to the printer and is toggled
when control/P is typed. Thus to select the printer alone
from within a program, set OUTFUTS to 2; to select both the
printer and the wvdu set it tc 3, since EMIT sends its
character to every stream that has its bit set,. {Note,
however, that KEY only asks for a character from the input
stream with the lowest order bit set.)

The next bit, corresponding to setting OUTPUTS or INPUTS to
4, 1is reserved for file stream i/¢ though only a (slowish)
version for input is provided in the standard system. It is
used by LOAD-FILE to load ASCII files containing xForth
Programs.

The next bits, corresponding to setting OQUTPUTS or INPUTS
to 8, are free for your own use.

The actual streams are defined by the execution vectors
XEMIT and XKEY which have room for 4 codes each instead of the
1 zach in xForth 1. On delivery, the codes for XEMIT are
EMITT, EMITP, DROP and DROP, O©On delivery, the codes for XKEY
are (KEY), EOF, getc and BEQF where getc reads from a file,
The intention 1is that you should always use BMIT in vour
programs, altering OUTPUTS and INPUTS to get the desired
effect, and leaving use of EMITT and EMITP and so on to system
words.,

Finally, “EMIT now interprets "M . as a call to CR,
interprets "L as a call to PAGE, ignores "J, and expands tabs
to a multiple of the constant tabsize which is normally 8 but
may be changed on configuratiocn, {5 1s a good value for
programming,)

i
[
i

ten

xForth 2 (¢) Alistair Mees

1.4 Miscellaneous changes,

xForth 2 is somewhat faster than xForth 1 since it uses
direct threaded code instead of indirect threaded code. This
change was made because it paves the way for a code optimizer
in future. The overall improvement in speed is about 15%:
test 1t on SIEVE and on QUEENS. By the way, vyour disc
includes a program NEWSIEVE which was written to do the Byte
SIEVE benchmark properly in FORTH and so give a fairer
compariscn between Forth and other languages. It takes about
43 seconds for 10 iterations in xForth 2 on a 4MHz 2§¢
machine,

Note that a few changes are needed as a result of the move
to direct threaded code. They are described in the next
section.

xForth 2 now sizes memory automatically so there is no need
for the 28xXZ80 followed by CONFIG followed by SYSADAPT
operation formerly needed. Just type XFORTH. You still need
to run CONFIG to set up for your terminal.

xForth 2 1is about 2600 bytes larger than xForth 1.21,
though because of the way free space is now measured (see
DICTLIM) the amount shown on signon may not appear to agree
with this.,

Three new words have been added: “on” “off” and “0!". They
set a variable whose address is on the stack to TRUE, FALSE
and 0. For example, you can say “echo on” and “echo off~’.

A number of other new words have been added, some of them
from Forth 83. One example is >BODY which converts a code
field address to a parameter field address, i.e. it is the
opposite of CFA. Make sure that anywhere you were using 2+ to
do this job you now use >BODY since the size of the code field
is no longer 2 and is not guaranteed to have any fixed size.

Two other new words from Forth 83 are SPAN and #TIB which
hold the number of characters read by the last call to EXPECT,
and the number of characters in the text input buffer.

One new word, not from Forth 83, is +LIST which lists from
a block number until the end of file is encountered.

A number of words have been removed: an example is (LOOP)
which is merely the code compiled by LOOP. It is hoped that
thos2 removed will not be missed: actually, we were glad to

tezo

XForth 2 (c) Alistair Mees

see the back of them. They are summarized at the beginning of
the glossary update.

There are minor changes to the screen editor: for example,
you get a chance to change your mind if you hit the abandon
key. The word “count” has been shifted into the (EDITOR)
vocabulary.

USER 1is slightly changed: it no longer wuses a stack
argument to tell it where to put its variable relative o the
bottom of the USER variable area, Instead it keeps track of
how many user variables there are in the constant §UVARS.

1.5 Changes needed to xForth optional packages

The following changes need to be made to packages you have
already purchased from us. They are mainly concerned with
production of CODE sections and result from the change to
direct threaded code which has changed the header structure of
xForth words. If you have written any CODE words vyourself
they will only need to be recompiled unless you have made use
of special knowledge of the structure of word headers,

There are also a couple of changes to the DERUG pack which
are concerned with deletion of a definition and with the new
input output facilities.

If you have bought packages with or since the upgrade to
version 2 the changes will have been made for you,

1.5.1 ASSEMBLE,BLK

In line 10 of block 3 of the assembler, the definition of
CODE should now be

: CODE 7?EXEC CREATE SMUDGE -3 ALLOT
[COMPILE] ASSEMBLER I1CSP H IMMEDIATE

i.e, 1instead of ‘HERE DELTA - -2 ALLOT ,” we simply have -3
ALLOT ",
1.5.2 FP.ALK

In line 11 of the first block of the flisating point pack,
w3 now need

tzn

xForth 2 {¢) Alistair Mees

CREATE fppack HERE 4 + -3 ALLOT HEX 0C3 ¢,
OECIMAL

’

which puts a jump to HERE+4 in to the code field instead of
merely comma-ing in the addvess of HERE+4.

In line 1 of block 2 of the floating point pack, replace
"FIND fppack @° with “FIND fppack 1+ @° to compensate for the
above change,

1.5.3 TRIGS.BLK

Owners of the turtle graphics package should remove the
code definition for “U2/° in the file TRIGS.BLK and replace
all occurrences of it with “2/°.

1.5.4 DEBUG.BLK

The debug pack needs to have a couple of changes. Since
the lethal word LIT is no longer present, line 12 of the first
block of the debug pack, which redefines it to be safer,
should be deleted. Also, because of the new input/output
facilities the definition of “wait” on block 4 of debug.blk
doesn't work. Delete the definition of (last-key) and replace
the definition of ‘wait’ with

wait KEY DUP INTRPT-KEY @ =
IF XINTRPT @ EXECUTE ENDIF ;

You can also check for hitting control/C if you like. The
normal interrupt facilities during output are still there; all
that this affects is the operation when pausing is turned on.

1.5.5 NARRATE.BLK from Turtle graphics pack.

A tricksy Forth definition was supplied with the turtle
graphics demo, to let selected parts of Forth blocks be echoed
while loading. Because of the changes to input/output
facilities, a slightly different set of dirty tricks is
needed. Replace the file NARRATE.BLK from your original
turtle demo with the new one on the upgrade disc. Ignore the
revolting style and layout of this file!

LZo

1 P S A A A AT e L AR SR A sl Pivin s L4 F i Wi RN SR B Rk

xForth 2 (¢) Alistair Mees

Chapter 2

Multi-tasking in xFcrth.

In computer jargon, “"multitasking" refers to a situation
where a computer appears to be doing several different and
possibly unrelated things ("tasks" or "processes™) at the same
time. Most computers, and nearly all microcomputers, do not
really do several things at once, but chop up all of their
tasks into bits and do a bit of one, then a bit of the next,
and so on. This requires great care if the tasks want to
communicate with one another successfully.

XForth multitasking facilities are more powerful than those
we know of in any other Forth. For most purposes they are
easy to use; the instructions that follow describe them in
general terms, and the example files and the update glossary
give more details.

An obvious use for multitasking is to let slow peripherals
like printers be driven by special background tasks instead of
holding up normal use of xForth. This can be done either by
providing a print buffer or by making sure that any tasks
which talk to the printer are in the background. Examples of
both are supplied: for the second case, a word PRINT-FILE is
defined which passes a file over to a background task for
printing and does not need a large print buffer.

some of the other uses for multitasking range from simply
showing a clock or calendar in a fixed part of the wvdu screen,
through displaying the current values of memory locations as a
check during debugging, to timed control and data collection
tasks. A sample windowing program is provided so you can see
different tasks working at once. The only limitation is your
imagination!

2.1 Simple multitasking.

A "task" in xForth is a special sort of definition that
looks like a colon definition except that it starts with
"TASK: ” instead with “:°. When first defined it does nothing,

R

e

R

,,,,, 1 e T —— et LA ol i DR, A Bl S 5l e M ol

xForth 2 (¢) aAlistair Mees

but once it is started, it takes over control of the computer
and retains control until it runs to completion, or it
temporarily hands over control to another task, or it gets
blocked until some event happens. What this means is that
tasks in xForth cooperate with cng another, by not
deliberately hanging on to the computer for long periods of
time.

In the first case, where the task rung to completion,
control then passes to the next task in a gqueue which s
managed in such a way as to give all tasks a fair chance. The
same happens in the second case, except that the task 1is
reinserted at the tail of the gueue., When its turn comes it
will continue where it left off. The third case, waiting for
an event, occurs when the task asks to be held up until some
particular time, or until it receives a signal from another
task saying, perhaps, that there is some data waiting to be
procesgsed.

Here is an example of a task that sounds an alarm if the
value of a variable gets outside a certain range. This sort
of thing is useful for debugging, as you can run the watchdog
task then start up whatever vou are debugging. This will werk
as long as the word being debugged gives up control from time
to time. As was menticned above, this is only one of many
uses for multitasking.

VARIABLE var -- Assumed to be used by some other tas
0 CONSTANT minvar 9998 CONSTANT maxvar

TASK: checkvar BEGIN var @ minvar maxvar in-range?
WHILE PAUSE
REPEAT
BELL 2 CRS ." var = " var ? 2 CRS :

As you can see, this is just like a colon definition excent
that it starts with “TASK: instead with “:-. Nothing happens
when you first define it but once you start it, with

checkvar START

it loaps around, checking the value of “var-” ¢n each pass. If
the value is ok, checkvar calls the special word “PAUSE’ which
says “"pass control to the next task that'sg waiting to go, but
put me back in the queue so [get a chance to run again™,
When it next runs it will restart where it left off, with the
stacks and so on all intact, so it will meet REPEAT which
sends it back to BEGIN and another time around. If the wvalue
is bad, it sounds the alarm and then stops, because vou
presumably want a chance to put things right. In this case
tne tasks stopped because it reached the end of its definition
but it could also have called QUIT from within the
definition.

. @

xForth 2 (¢) Alistair Mees

Now try typing in the above example and starting the task,
and then define

changevar BEGIN 10001 RANDOM var ! PAUSE 2TERMIMNAL UNTTI

7

and run “changevar’. You can stop it by hitting any key, but
if you don't then eventually it will set “var” to 9999 or
10000 and “checkvar” will complain. The use of PAUSE in this
example makes sure the user task (the one you're talking to
normally) gives other tasks their chance to run. It would
also have done so without special action on your part if it
had called KEY which has a call to PAUSE in its definition,
In fact, a possible definition of the keyboard reading part of
KEY is

: (KEY) BEGIN ?TERMINAL NOT WHILE PAUSE REPEAT LAST-KEY :
Notice how the so-called “busy waiting” loop
: (KEY) BEGIN ?TERMINAL UNTIL LAST-KEY

has been changed to give other tasks a chance if the present
task is waiting for input.

If that were all you had available to control when a task
runs, vyou could still do quite a lot. Many large data
monitoring and control applications have been written in this
‘WJ% way, including, I understand, American Airlines' baggage
handler, speed and depth monitoring on Missippi tugboat
trains, and many others. However, 1if two tasks have +to
cooperate they must be written very carefully. The xForth
task handler allows advanced control via delays, semaphores,
counting semaphores, demons and monitors. Before studying
them we have to think a little about the structure of a task.

2.2 User variables and private stacks.

A task needs to be able to work largely independently of
other tasks. To do so it needs its own stack and return stack
(although so-called multitasking systewms exist which try to do
without this). It also needs some private variables so that
it can, for example, change OUTPUTS to send its output
somewhere without messing up other tasks.

Such variables are traditionally called USER variables in

Forth. They are provided in xForth for each task, with a

complete set being available for normal tasks and a limited

set for small "background" tasks. When you type the name of a

ﬁ" task it leaves the base of its user variable area on the stack

LZ0

xForth 2 (c) Alistair Mees

and this is used by other words to manipulate the task.

When you define a task xForth sets aside an area of memory
for user variables, with the stacks and, for normal tasks, a
terminal input buffer and a small private dictionary area.
This is initialized when a task starts up and is accessed only
by the task itself. Tasks communicate via ordinary VARIABLEs
or via semaphores as we will see later.

2.3 Delays

Delays are easiest to explain. Suppose you want a task
that just does one thing at a fixed future time: maybe it
opens a control valve, puts an appointment reminder on your
vdu, or something gquite different that you can no doubt think
of yourself, You need a clock. If your computer has a
built-in clock you will .find out later how to tell xForth
about it, but for now Jjust 1lcad the file DELAY.BLK which
simulates a clock by having a little task that just increments
a variable every time it has its chance to run. (Torch users
can load the file TDELAY.BLK which uses the BBZ micro's clock
correctly.) Now type

5 seconds DELAYFOR

and xForth will go dead for a while (which is unlikely to be
very near 5 seconds unless you have a Torch or vyour computer
is very similar to ours). What has happened is that the user
task -~ the one that talks to you and listens to your answer -
was put on a delay list with a tag saying when it was to be
restarted, and a clock monitor checked the list whenever its
turn came to run; when the pseudo~timer said the time was 5
seconds later than it was when you first typed DELAYFOR, the
user task was allowed to continue.

The reason for having a special clock monitor is that there
may be- many delayed tasks, but they do not all need to keep
coming back to check the clock since the special clock monitor
task can do so more efficiently. Indeed, it may be possible
on some systems to make the clock monitor interrupt-driven, so
it doesn't consume any time at all unless a task is due to be
run. .

A more realistic use of DELAYFOR {and its friend
DELAYUNTIL, which waits until the clock shows a certain time)
is in a task such as

TASK: readdata
19 hours DELAYUNTIL

o)
o b

xForth 2 (¢) Alistair Mees

initialize
BEGIN meterl read meter2 read

5 minutes 20 seconds D+ DELAYFOR
AGAIN

The words “hours’, “minutes’ and “seconds” all take a single
precision integer from the stack and scale it to a double
precigsion number which is the correct number of clock ticks
for your system. To combine them we use D+ as in the last
example. Both DELAYUNTIL and DELAYFOR expect a double
precision number of clock ticks on the stack, and you can

generate it any way you like, not just with “seconds” and so
on.

2.4 Semaphores, or how tasks communicate.

Tasks communicate to some extent via public (non-USER)
variables, but there are certain types of communication that
are so common and so important that it is a good idea to
provide special facilities. These facilities are concerned
with event control.

A good way to think about the way the delay words work Iis
to say that words that call them are giving up control of the
computer until a certain event occurs: in this case, a certain
time shows on the clock. Other sorts of events can be handled
too, via "semaphores" which are indicator lights that are red
when an event hasn't happened or a facility is in use by
someone else, and green when the event has happened or the
facility is available for use.

2.4.1 Two state semaphores, and demons.

For example, suppose several tasks are sending output to
the printer. We don't want their output to get tangled up so
we make them obey the semaphores like traffic 1lights or
railway signals., They use the word WAIT to look at the signal
and hold off if required. We define a semaphore:

SEMAPHORE printer
which is an object with a variable and a queue. If the
variable 1is nonzero, (typically 1) the light is green and we
can go ons:

printer WAIT

will decrement the variable and do nothing else. But assuming

- 13 -

TSP T TR TSP R IRORUSTRR——

tzno

xForth 2 (¢) Alistair Mees

the variable was 1, if some other task calls “printer WAIT®
then WAIT discovers the signal 1is red and suspends execution

of the task, adding it to the tail of the queue managed by
WAIT.

When our first task is finished with the printer, it tells
the world by saying

printer AVAILABLE

which removes the first task from the queue (leaving the light
at red to hold up the next one) and makes it ready to continue
execution where it left off. If there were no tasks waiting,
AVAILABLE would have changed the light to green. In either
case, AVAILABLE dcesn't pass on control: if vou want this to
happen, call PAUSE afterwards.

By cunning use of semaphores you can have demons: programs
which lurk unseen until some event occurs, when they jump onto
the stage and cast their spells. The clock monitor and the
print buffer manager in the example files are both implemented
as demons: they don't appear unless there's work for them to
do. This 1is much better than constantly cycling round,
calling PAUSE when there's nothing interesting to do.

2.4.2 Multi-state semaphores.

Someétimes it is useful to have values other than red and
green for the variable, giving so-called counting semaphores.
SEMAPHORE and WAIT work as happily with counting semaphores
but AVAILABLE has to be replaced by SIGNAL. For most uses,
AVAILABLE 1s the one to use.

2.4.3 Buffers.

One of the supplied facilities using semaphores is a set of
buffer management routines. To define a buffer of size 100
you say

100 BUFFER: foo
and this defines a data object with lots of associated
semaphores, counters etc. Buffers are first-in, first-out
devices, unlike stack which are last-in, first out devices.
Buffers may only be used via their monitor words “deposit” and
“fetch®, which work in the obvious way:

foo fetch EMIT

will fetch and display a character from buffer foo if there is
one available, while if the buffer is empty the task will be

- 14 -

ol 1O b & -

xForth 2 (¢) Alistair Mees

put on a queue managed by a semaphore in the buffer. (As you
may have guessed, fetch does a call to WAIT.) Similarly,

ASCII Q foo deposit

Wwill put a Q in the buffer foo if there is room, and ot}
wait until the buffer is signalled as being nonfull,

W LsE

The files DELAY .BLK, BUFFER.BLK, SPOOL.BLK and WI%‘JDC}WS(,B’i'.,,}fi
have examples of the use of fetch and deposit and of WALT and
AVAILABLE,

2.5 The example files.

2.5.1 DELAY.BLK

Look first at the file DELAY.BLK. This has a psaudo-clock
made from a background task +hat just increments a double

precision variable every time it runs. The function ~time
returns the value of that variable. If your computer has &

clock or timer that you can access, redefine “time’ to return
the number of clock ticks as a2 32 bit count. For example,
TDELAY.BLK does this by calls to OSWORD which is an ocperating
system call,

How redefine “seconds’, “minutes’ and ‘hours® to convert a

Stack quantity to the requisite number of clock ticks. For
the BBC micro, the ticks are every centisecond so the

definitions are

: seconds 100 u*

and so on.

This file also hus a clock monitor which is a demon that
stays out of things when no tasks are waiting but stayvs active
all the time, checking the clock, when any are waiting. This
means only one task 1s checking the clock, which is bettar
than everybody having to keep looking at it. The monitor uscs
some knowledge of the internals of semaphores to compensate
for the fact that the delay queue isn't an ordinary first-in
first-out queue. We suggest you lock at the other files
before trying to work out what it does; and we don't recomnmend
You copy this procedure yourself since other sorts of gueuns
are best managed in the standard ways. The c¢lock menitor,

like the print demen defined later, is a background task
defined via BTASK: since it needs few {in this case, noj
input/output facilities. Background tasks use less memory

than foreground tasks.

Reos

Lzo

xForth 2 (c) Alistair Mees

2.5.2 BUFFER.BLK

This file implements a print buffer. You need to do a
little installation as explained at the end of this section,

The buffer works by setting aside an area (1000 bytes as
delivered) for character storage when the printer isn't
ready. There is a small task whose only job is to fetch from
the buffer and output to the printer using EMITP. It is a
background task since it doesn't use the dictionary or PAD
areas at all. It writes to the printer using EMITP and no
other task should use EMITP. Once it has been defined, we can
re~-vector the printer output in XEMIT+2 tc deposit a character
in the buffer and let the buffer task handle the actual
output. Now whenever OQUTPUTS has bit 1 set (e.g. "2 QUTPUTS
17) output will go via the buffer. This will be true for all
tasks that wuse EMIT or any standard xForth output, which
always uses EMIT.

This file also defines the semaphore “printer” which - as
long as everyone trying to print uses it - Xkeeps output from
different tasks separate. Tasks wanting to use the printer
should do

printer WAIT
before Ltrying to output and
printer AVAILABLE

when done. The control/P toggle for the slaving the printer
to the main task output does not consult this semaphore: don't
use it when the print monitor is lcaded. The reason it
doesn't work is that we thought it would be too risky to have
your system hanging because you accidentally hit control/P and
another task had failed to reset the semaphore.

Before loading BUFFER.BLK you need to edit it to tell
xForth how to read vour printer status. This is often, but
not always, possible by a BIOS call, and you way want to
implement this yourself. Another common way 1is by a direct
port read; an example is shown in the file for our North Star
Horizon. The idea is to return a TRUE flag if the printer is
busy. (If vyou are completely stuck you can leave the
definition as it is in the file, returning FALSE always so the
buffer printer always tries to output and so will often hang
uselessly.) The Torch has a special O0OSBYTE call that is
implemented in TBUFFER.BLK.

Depending on what you manage to do about the printer busy
flag, on your printer speed, and on other characteristics of

i
4
1

LzZo

xForth 2 (¢) Alistair Mecs

your system, you may find it helpful to tune the printer
buffer performance by trying different combinations of the
presence or absence of PAUSE in the words (EMITT) and {(EMITP)
defined in the file. Don't be afraid to experiment.

It is possible, but lesz often usaful, to define keyboard
and VDU buffers. Samples are given in the file; you need to
provide a status word (analogous to ?PRBUSY) for your vdu, and
insert a “-->° continuation word at the end of the last print

buffer definition block so that the other buffers get loaded
too.

2.5.3 SPOOL.BLK

This file implements a background file listing spooler. A
word PRINT-FILE reads a file name and assigns it to a
temporary file in order to check it exists. If all is well it
puts the name in a buffer which is monitored by a demon whose
job is to wait for file names then print them out. This can
work whether or not you .have installed a print buffer. The
point is that when you say ~PRINT-FILE abc.def’ you aget
control immediately and you can send another file to the
printer in the same way, and so on until the file name buffer
fills up. The supplied version allows at least 5 files at a
time; more if they have short names.

2.5.4 WINDOWS.BLK and TASKDEMO.BLX

Full windowing requires a memory mapped display. Some VDUs
such as the BBC micro allow hardware defined windows for both
text and graphics, and the file WINDOWS.BLK shows how to take
advantage of these. If you have more powerful facilities, you

should find it easy to modify the code.l If all you have is a
standard VDU you can still manage if you write software to
take care that all output stays within its window.

The method is to define a new set of USER variables that
specify text and graphics window edges, and graphics cursor
position. (The text cursor position is kept in >LINE and OUT
which is consistent with normal xForth usage). Then we define
words “make”, “open” and “close’ which create such windows and

- —-— o o— v -

l. For example, if you can read the contents of a window you
can handle overlapping windows by arranging that when a window
is opened you store the exXisting contents somewhere, and
restore them when the window is closed. Fach task will need
its own temporary storage area, big enough to hold a complete
copy of the window. This can even be done with the BBC micro
and Torch.

R

LzZo

XForth 2 (c¢) Alistair Mees

control access to the screen. For example

it

Headlines" twindow make

makes a text window with a label "Headlines" at the top left.
And

Brownian motion" gwindow make

makes a graphics window with a suitable label. 1In each case
the window edges are given by the values of the variables at
the time make is called: for example, the left edge of a
task's graphics window is given by x1.

To use a window, you have to say
twindow open

before sending output, which checks a semaphcore to see if the
screen 1s available, then sets up the windows. After writing
to it for a while, say

twindow close

to restore the default text area and flag the screen as
avallable to some other task. It would be reasonable to do
this after every 1line or two of text. With graphics, how
often you close the window to give others a chance depends on
the application.

Torch users can load the file TASKDDEMO.BLK to get a
running demonstration with 2 graphics windows, 2 text windows
and a reserved window at the bottom of the screen where normal
editing, compilation and so on can take place. Try typing DIR
or VLIST and see what happens. When you pause the output
using control/S the other tasks will go on while the display
is help up. As well as the tasks owning the windows, there
are several other tasks like the clock monitor running, and
you should still find it feasible to load the print buffer and
print spooler and use them. To get a four colour display we
use mode 1 which makes editing a bit painful because the
screen width is too small, but if you use mode 0 instead vou
will find you can edit quite happily while the demonstraticn
is going on. It may help if you modify the “log” task to be
less greedy in its use of the window. At present it may print
out several lines before giving anyone else a chance to run.

gt
oo
i

LzZo

XForth 2 (¢) Alistair Mees

2.6 Summary: task tvypes and states,

2.6.1 Task types

A task may be one of two types: a normal task or a
background task. A normal task can call all xForth words,
though unless it is the normal user task it usually only has a
tiny private dictionary so it should not attempt to compile
anything. A background task takes up less room than a normal
task but has no terminal input buffer, has smaller stacks, and
has no PAD and only a few user variables. Nevertheless, asg
long as it does no file name operations, or calls to WORD or
number formatting words or most string words, it can do a
great deal. For information about how to change stack sizes

ete of tasks, see “taskframe® and "btaskframe” in the
glossary.

2.6.2 Task states

A task may be in any of 3 states: stopped, active and
waiting.

Tasks are stopped when first created or when they have
attempted to run after STOP has been applied to them (see
later). 1In particular, a task goes into the stopped state if
it calls QUIT or if it runs to completion.

Active tasks may be running or ready to run. The running
task is the one that has control at any particular moment and
the address of its user variable area is returned by the word
UP@. Tasks that are ready to run get their chance when PAUSE
is called, either explicitly or implicitly as in KEY. They
also get their chance to run if a running task gets moved to a
queue by WAIT or by one of the DELAY words.

Walting tasks may be waiting in a semaphore queue, where
they were put by WAIT and whence they may be removed by SIGNAL
Or by AVAILABLE, or in the clock queue where they were put by
4 DELAY word and whence they may be removed by the
clockmonitor,

e

LZzo

B L1 S N S T SN

e s RS S s s L s conbk e A kiR Aok Ak

xForth 2 {c¢) Alistair Mees

2.7 General task management

To start a task that is in the stopped state, use START.
To stop one that is active or waiting use ST0OP. Thus

taskl START taskZz STOP

can be called from the main user task. 2A STOP does not take
effect until the next time a task tries to run: it 1is
equivalent te inserting QUIT in place of the instruction the
task 1is next due to execute. As we saw before, a task will
always STOP itself if it calls QUIT or if it reaches the end
of its definition.

To output the name of a task, use .TASK as in
taskl ,TASK

which wculd merely output ~“taskl”. If you have loaded the
file DELAY. B LK you can output the names of all active tasks by
using .TASKS which takes no arguments, and you can output the
pames of all tasks that are waiting for the clock by using
LDELAYED which also takes no arguments.,

When tasks have been d
about uses of PORCET or

efined, you have to be rather careful
PryY, You must make sure all tatnﬂ

that will be removed froa the dictionary are stopped, by
calling 3T0P for them then signalling any Memaphoras they are
waiting on, (For example, 1t 15 ok to type “delayed
AVRAIYABYE™ as often as ‘quiW*d te flush out the delayed
queue.) Alternatively you can reinitialize all semaphores by

repeating

9 0 woema 210

for every semaphore, replacing “sema” by the appropriate
name, In that case any tasks that were walting on them are

lost unless restarted with START

If you call COLD, there is an immediate call to EMPTY
then all tasks are killed on the spot. The main user tas
will restart after the code in XSIGNON has heen executed. i
you want to make xForth come up running several tasks either
OP initial startup or after COLD is typed, yﬁ“ can vector

XSIGHON to a word that starts all necessary tasks. Don't
forget to run PROTLECT bgfozo you save the modified system

Y
s
w oo
=

rr
o5

1

P
&1

[

xForth 2 (¢) Alistair Mees

Chapter 3

Trouble

Obviously we want to know about any bugs you discover, but
our experience, believe it or not, 1s that most problems are
caused by the fact that xForth reaches the parts of vyour
operating system that most programs don't.

If you have trouble getting xForth toc run at all, there is
possibly a bug in the BIOS of your CP/M. We have been amazed
at how many well-known and respected systems have bugs in
their versions of CP/M. The commonest are as follows:

- Failure to produce output on vdu, or crash after disc
access e.g. Zorba.

* The most likel yroblem is that the BICS uses gsome
Y F

280 additional registers and fails to restore them.
Use the 8080/CPMl.4 version of xForth.

~ VDU output and terminal input OK but can't handle disc
files, e.g. listing a file you know to exist gives long
strings of “@ (i.e. nulls), e.g. early ALTOS.

* The random access disc routines are not properly
implemented. Use the 8080/CPM1.4 version of xForth.

- Cursor fails to appear, but input and output are ok
except that you don't know where you are on screen, e.3.
Sharp with Xtal CPM, early Gemini.

* The cursor is flashed in software and is not
interrupt driven. The only effective solution is to
insist that your supplier give you a bug-free
version of CPM, In the meantime, put up with the
lack of cursor or else write your own word to read
keys (using CPM-CALL for function 6, for exampie)
and put it in XKEY. You will lose most multitasking
abilities. It might be worth trying to bhuild a
flashing cursor with the xForth delay words: sone
character appears for so many clock ticks, then is
removed, then is replaced and so on.

- D
P

O i 5 SN T N TR U oy, T & " et "

LzZo

xForth 2 (¢) Alistair Mees

- xForth greatly slows down a system running MP/M or other
multitasking DOS.

*

What can you expect when two multitasking systens
compete for resources! You can re-vector KEY as
above, and give up most multitasking, or you can
persuade other users to use xForth instead!

22 -

s

e e,

T S Kl E B e Wil R, St b

Sl M T SN a0

XForth 2 (¢) Alistair Mees

Xl 2 Uf_g{wb%"l

Appendix A

Alphabetic list of words in xPForth

A.l Words deleted.

-COVOC .CUVOC ;S (DO) (LOOP) (+LOOP) (OF) BLISTS FILE-INIT
INDEX LISTS LIT PRINTER-ON? SEC/BLK TRIAD XCANCEL

Also, OBRANCH has been renamed ?BRANCH and CPM-CALL and
CPM-CALLb have been renamed DOS-CALL and DOS-CALLDb

LZ0

A.2 Words unchanged.

! 1CSP " #
$->8 #> #BUFF #files
#S 5! S+ $->4%
$< s SFIND ’
“s~FCB ‘$-STATUS~-BYTE “th-FILE (
(ASCII) (EDITOR) {(file-voc) (FIND)
(FLUSH) (ID) (LINE) (skip~until)
(skip-while) ([,1VARIABLE) ([JVARIABLE) *
*/ * /MOD + +1
+- +LOOP , -
- -1 ~-TRAILING .
L .CPU LLINE .R
.SIZE .STACK .VERSION /
/MOD 0 0« =
0> 1 1+ 1+
1- 11 2 21
2 24 2~ 2@
2CONSTANT 2DROP 2DUP 20VER
2ROT 2SWAD 2VARIABLE 3
79-STANDARD : : ;CODE
< <H = <>
<CMOVE> = > =
>IN >LINE >R ?

~>~0 2COMP ?CSP ?DEPTH ?DUP

e

e

xForth 2 (¢) Alistair Mees

?ERROR
?PAUSE
AGAIN
B/BUF
BINARY
BLOCK

Ci

ce
close~files
CONFIG
COPIES
CREATE
CURRENT
D.

D<
DEFAULT
DLITERAL
DO

DP

DUP
EMPTY
ENDOF
ERROR
fassign
FILL
FORGET
HLD

IF
INTRPT~CHAR
LEAVE
L.OAD
M/MOD
MOD

NEXT
NUMBER
OVER
PAGE
QUERY

R>
RESTORE~-$$S
RP!
SAVE-BUFFERS
seg~slize
sSpa@
STRING
SYSGEN
TRUE

U.

UCHAR
VARIABLE
WARM
WORD
XOFF~CHAR

?EXEC
?TERMINAL
ALLOT

BASE

BL

BRANCH

C#

CAN-KEY
CMOVE
CONSTANT
cory

CRS

D+

D.R

D=
DEFINITIONS
DMAX

DOES>

DPL

ELSE
EMPTY~BUFFERS
ENSURE-LINE

- EXECUTE

FCREATE
FIND
FORTH
HOLD
IMMEDIATE
J

LFA
LOOP
MAX
MOVE
NFA
OPEN

P!

PFA

R#

R@
REVERSE
RP@

SCR
SIGN
SPACE
SWAP
THEN
TYPE
U.R
UNTIL
VLIST
WARNING
wrap
XOK

?LOADING
@

AND
BEGIN
BLANKS
BUFFER
Cy

CASE
CoLD
CONTEXT
COUNT
csp

D+~

DOL
DABS
DEL-KEY
DMIN
DOS-CALL
DROP
EMITP
ENDCASE
EOF
EXIT
FENCE
FIRST
HERE

I
in-range?
L/S
LIST

M*
MESSAGE
MYSELF
NOOP

OR

pa

PICK
R/W
REPEAT
ROLL
S->D
SEE
SMUDGE
SPACES
SYSADAPT
TIB

Us
U/MOD
UPDATE
VOC-LINK
WHILE
XCURSOR
XOR

?PAIRS
ABS
ASCII
BELL
BLK

BYE

C/L
CLOSE
COMPILE
CONVERT
CR

CTRL

D_..

DO=
DECIMAL
DEPTH
DNEGATE
DOS-CALLb
DU
EMITT
ENDIF
ERASE
FALSE
FILE
fname!
HEX

iD.
INSTALL-S$SS
LATEST
LITERAL
M/

MIN
NEGATE
NOT

ouT

PAD
PREV

RO
REPLACED~BY
ROT

S0
SEE-FILE
Sp!
STATE
SYSFILE
TOGGLE
U*

U<

USE
VOCABULARY
WIDTH
XNUMBER
XPAGE

L. xForth 2 (¢) Alistair Mees

XPROMPT XRUBOUT XSIGNON [
[,]VARIABLE. [COMPILE] [JVARIABLE]

-~ { I }

XForth 2 (c¢) Alistair Mees

ST
A.3 Vocabulary listing with definitions of new words,

These are all the words in the vocabulary FORTH in xForth
2. Where they are changed from xForth 1 or new to xForth 2,
they are defined here. The usual notation of the xForth

technical manual is used: stack pictures are of the form

(stack before --- gtack after)

unless text is read from the input in which case they take the

form

(stack before +++ stack after).

Stack items are

S string (address and count),
c character or byte,
flag logical,
n 16 bit integer,
u 16 bit unsigned integer,
d 32 bit signed integer,
du 32 bit unsigned integer, and
addr 16 bit address.
-
! Unchanged
ICSP Unchanged
" Unchanged
Unchanged
$->3% Unchanged
> Unchanged
#BUFF Unchanged
§files Unchanged
#S Unchanged
§TIR (--- addr) U

A USER wvariable containing the length of text in
terminal input buffer when it is being used for input.

$UVARS (~-- n)

t 20y

the

L20

XForth 2 (¢) Alistair Mees

A CONSTANT returning the number of USER variables so far
defined.

$! Unchanged
S+ Unchanged
at"e Unchanged
$~>U# ($§ === du flag)

Convert string $ to an unsigned double number and leave the
result under a flag which is TRUE if and only if the string
consisted entirely of digits in the present base.

$< Unchanged
$= Unchanged
$break (§ ¢ -~== 81 $2 flag) "String break"

such that $ is $2c¢c$1 and leave a true flag. If ¢ is nc

contained in $ then $2 is empty, $1 is identical with $, and
the flag is false.

1f character ¢ is contained in string $, return $1 and $2
ot

SDIR (S ===

Send a directory 1listing to the current output device
corresponding to the ambiguous file and user specification
contained in string $. See the entry for DIR.

SFIND Unchanged
! Unchanged
‘s-FCB Unchanged
‘s-name (file —-=- $)

Return the name of the operating system file currently
assigned to “file’, in the form A:NAME.EXT[u] where u is a
number in the range 0 to 15.

“s-STATUS-BYTE Unchanged

“th-FILE Unchanged
(Unchanged
(ASCII) Unchanged

- 27 -

> 2VaY

xForth 2 (c) Alistair Mees

{EDITOR)
(file-voc)
{FIND)
{FLUSH}
(get)

(ID)

(KEY)

The default code for input stream 0.
a character typed at the

Unchanged
Unchanged
Unchanged
Unchanged
Internal use; do not use.
Unchanged

(=== cCc)

(See INPUTS.)
calling PAUSE as

aturns

console, often as

necessary if a character is not ready.

(LINE)

(prompt)

Unchanged

(e)

The default prompt message: a stack displav.
e piajl

(SIGNON)

The default signon command which displays the
after cold

start.

text printed
If the contents of XSIGNON are changed from

(SIGNON) to a user defined word then xForth will execute that
word on startup.
(skip=-until) Unchanged
(skip-while) Unchanged
{({;]VARIABLE) Unchanged
([JZVARIABLE) Unchanged
* Unchanged
*/ Unchanged
* /MOD Unchanged
- Unchanged
+ | Unchanged
een Unchanged
+LIST (U ==)

Call ©LIST for all blocks from block u until a block
starting with EOF is read.
+L0O0P Unchanged

- 28 -

XForth 2 (¢) Alistair Mees

, Unchanged
- Unchanged

- (+++)

Ignore all text until the end of the current input line
being interpreted. Lines are terminated with carriage return
(control/M) during input from all streams except when BLK is
nonzero, when they are all 64 characters long.

- Unchanged
-1 Unchanged
-TEXT (addrl nl addr2 --- n2)

Compare two strings over the length nl beginning at addrl
and addr2. Return zero if the strings are equal. If unequal,
return n2, the difference between the last two characters
compared,

~TRATILING Unchanged
. Unchanged
" Unchanged
. BASE (===

Type the current base, in decimal, on the currently
selected output stream(s), followed by a space.

.CPU Unchanged
LLINE Unchanged
. R Unchanged
AN Unchanged
.STACK Unchanged
.STORE (=——=)

Type on the standard output an unsigned number which is the
number of bytes between the the current dictionary top (HERE)
and the value stored in DICTLIM.

.TASK (addr ---)

For the task whose user variable base is at addr, print its
dictionary name on the currently selected output stream(s).

- 29 -

&

-~ o

xForth 2 (c¢)

LVERSION

/
/MOD
0

0!

Store 0 in the two bytes starting at addr.

0<

0>
1
1+
1+)
l..
1-1

lsttime

Leave on the stack a double unsi
delayed
Undefined if there are no delayed tasks.

time the

2

21
2*
2+
2_.

2/

Replace nl with its arithmetic right shift,
highest
Equivalent to floored division by 2, i.e.

shifted

is -2.

2@
2CONSTANT
2DROP
2DUP
20VER
2ROT
2SWAP

soonest

Alistair Mees

Unchanged
Unchanged
Unchanged
Unchanged

(addr ---

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

(=== ud)

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

(nl =—— n2

but the

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

)

)

task

30

gned number which is the
restarted,

remains

3 2/ is 1 but -3 2/

e
2
¥

xForth 2 (¢) Alistair Mees

2VARIABLE Unchanged

3 Unchanged

4 Leave 4 on the stack.
79-STANDARD Unchanged

: Unchanged

; Unchanged

; CODE Unchanged (but see comments on direct threaded code:
< Unchanged

<# Unchanged

<= Unchanged

<> Unchanged

{CMOVE> Unchanged

<MARK (——- addr) "packward mark"

A system word extension. Used at the destination of a
backward branch. addr is typically only used by <RESOLVE to
compile a branch address.

<RESOLVE (addr ~--) "backward resolve"

A system word extension. Used at the source of a backward
branch after either BRANCH or ?BRANCH. Compiles a branch
address using addr as the destination address.

= Unchanged
> Unchanged
>= Unchanged
>BODY (cfa -~- pfa)

Replace the execution address (code field address) on the
stack with the corresponding body address (parameter field
address).

>IN Unchanged
>LINE Unchanged
>MARK (--- addr) "forward mark"

A system word extension. Used at the source of a forward

ranch. Typically wused after either BRANCH or ?BRANCH.

Compiles space in the dictionary for a branch address which
will later be resolved by >RESOLVE.

I 70

xForth 2 (¢) Alistair Mees

>R Unchanged w

>RESOLVE (addr ---) “"forward resolve"

Used at the destination of a forward branch. Calculates
the branch address (to the current location in the dictionary)
using addr and places this branch address in the space left by
>MARK.

? Unchanged

?BRANCH Same as O0BRANCH in xForth 1.
?COMP Unchanged

?2CS8P Unchanged

?DEPTH Unchanged

?DICYT (-==)

Check that the PAD (which lies above HERE) is at least 96
bytes below the .value stored in DICTLIM and call ERROR if
not,

?DUP Unchanged @
?ERROR Unchanged
2EXEC Unchanged
?LOADING Unchanged
?PAIRS Unchanged
?PAUSE Unchanged.

But note that if output is suspended using XOFF-CHAR other
tasks may still execute.

?STACK {(=)

Check that the stack pointer lies between S1 @ and SO @,
and that the return stack pointer lies between Rl @ and RO @,
and call ERROR if not.

?TERMINAL Unchanged
¢ Unchanged
ABORT (===)

[s

s s bl wn b Pt i b e it aotobl; S

g 5 b n s v, W T - i ’ PR .

#Forth 2 {(¢) Alistair Mees

Clear the stack and call QUIT. No message is printed.

ABS Unchanged
active (=—- addr)

A variable which points to the tail of the circular list of
currently active tasks.

advance (addr =~-)

Adjust the circular list taill pointer stored in addr so
that the current head becomes the tail and the successor of
the current head becomes the new head.

AGAIN Unchanged
ALLOT . Unchanged
AND Unchanged
append (addrl addr2 =---)

Add the item at addrl to the circular linked list whose
tail pointer is addr2. Used typically to append the task
which has user area base at addrl to the tail of the circular
list whose tail pointer is at addr2.

ASCII Unchanged
AVAILABLE (addr ===)

In conjunction with WAIT, manage a two-state semaphore.
That 1is, assuming addr is the address of a semaphore, check
whether there are any tasks queued by the semaphore. 1f so,
remove the first in the queue and add it to the tail of the
active list, but do not call PAUSE. If there are no tasks
queued, set the semaphore's counter to 1. See WAIT and
SEMAPHORE and SICNAL.

B/BUF Unchanged
BASE Unchanged
BEGIN Unchanged
BELL Unchanged
BINARY Unchanged

forth 2 (c) Alistair Mees

BL Unchanged
BLANKS Unchanged
BLK Unchanged
blkdestroy (u ===

1f virtgal memory block u is in a buffer, mark the buffer
as empty without writing its contents to disc.

BLOCK Unchanged
BRANCH Unchanged
BTASK: (+++)

Define a background task; that is, allocate space for 12
USER variables (the only public ones being S0 S1 RO Rl XERROQOR
INPUTS OUTPUTS restart-time) and initialize them according to
the pattern in btaskframe, but with the values offset
correctly. Then perform various pre-initialization tasks, and
finally switch to compilation mode. If "3’ 1is executed
successfully the-result is to define a background task that is
initially in the stopped state. A background task has only
the user wvariables indicated and in particular has no
dictionary or PAD so it may not call WORD . R O#->$% s+
LOAD-FILE DIR or any other number formatting word or string

handling word (or any other word) that uses the PAD.

btaskframe (-~~~ addr)

The address of a 4 byte region which is used to determine
the size of the stacks in a background task. The values are
the size of the stack and the size of the return stack in that

order. On delivery the stacks are both 40 (decimal) bytes
long.

BUFFER Unchanged

BUFFER: { n +++)

Define a buffer of size n, where n lies between 1 and
10,000. This buffer is only to be accessd via the monitors
"deposit” and “fetch”. Example:

1000 BUFFER: printbuffer

When “printbuffer” is executed it leaves. its address on the
stack. See also “buffinit’” which is called on buffer creation

b e

xiorth 2 (¢) Alistalr Mees

but may be called, with care, at other times.

buffinit { addyr =---)

Initialize the buffer at “addr” so that it is empty, has no
waiting tasks, and is ready for use.

BYE Unchanged
! Unchanged
CEg Unchanged
c, Unchanged
C/L Unchanged
Ccd Unchanged
CAN-KEY Unchanged
CASE Unchanged
CFA (pfta --- cfa)

Return - the execution address {code field address)
corresponding to the body address (parameter field address) on
the stack. Not necessarily equivalent to 2Z- as it was in
xForth 1.

CEFA->NFA (¢cfa ——- nfa)

Return the code field address corresponding to the name
field address.

ch~in-str? { ¢ $ ~-~=n)

If character ¢ 1s to be found in string §, return 1its
position in the string (with the first character treated as
1y. If not, return 0.

CLOSE Unchanged
close-files Unchanged
CMOVE Unchanged
COLD Unchanged in meaning; does additional jobs.
COMPILE Unchanged
CONPIG Unchanged
CONSTANT Unchanged
CONTEXT Unchanged
CONVERT Unchanged

- _

——

i70

xForth 2 (c) Alistair Meeos

COPIES Unchanged
COoPY Unchanged
COUNT Unchanged
CR Unchanged

But note that it calls ?PAUSE as it has done since xForth
1.21

CREATE Unchanged
CRS Unchanged
CS~-S14K (=== n)

Return the number of bytes in the cold start table which is
used to initialize the USER variables from SO up.

CS—-TABLE { =-- addr)

Return the address of the cold start table. Sece CS-STZE.

CSP Unchanged
CTRL Unchanged
CURRENT Unchanged
CURSOR (row col =-~-)

Move the cursor to the given row and column, and set OUT to
the value of col and >LINE to the value of row.

D+ Unchanged
D+~ Unchanged
D- Unchanged
D. Unchanged
D.R Unchanged
D0< Unchanged
DO= Unchanged
D< Unchanged
D= Unchanged
DARBS Unchanged
DECIMAL Unchanged
DEFAULT Unchanged
defdrv { === n)

- 2 aY

XForth 2 (¢) Alistair Meeg

Return the presently selected drive known to CP/M as the
default drive.

DEFINITIONS Unchanged

defuser (=-~~-n)

Return the CP/M user number that was in force the last time
COLD was called. This will be wused by file operations
(including DIR) if no user number is specified. Typically 0.

DEL-KEY Unchanged
delayed (-=—- addr)

A semaphore used by the clock monitor to hold a queue of
tasks waiting to be restarted when the value returned by
“time” becomes greater than or eqgual to their restart-times.
Not for use. except by the clock monitor.

DELAYUNTIL (ud ---)

Set the USER variable “restart-time” to ud. Then remove
the present task from the active list and insert it into the
list managed by the semaphore “delayed”, such that the list is
in increasing order of restart times.

deposit (¢ addr ===)

A monitor for buffers. If the buffer at addr is not full,
deposit byte ¢ in the buffer, and signal that the buffer is
nct empty. If the buffer is full, remove the present task
from the active list and add it to the queue managed by the
buffer and its monitors.

DEPTH Unchanged
DICTLIM (-=-- addr) U
A USER variable containing the address used by ?DICT to

determine whether the dictionary 1is within bounds. Set on
delivery to be 2 less than the contents of Sl.

g

i 70

T — e e s

-

xForth 2 (¢) Alistair Mees

DIR { +++)

Read the next WORD, delimited by blanks, from the currently
selected input stream. Convert all letters to upper case and
then attemwpt to interpret it as an ambiquous file and user
specification (afus) as follows:

afus: drive:name.ext{u]

where “drive:” 1is any drive specification legal for the
system, “pame” is up to 8 characters legal for CP/M file
names, together with ? and * with their usual meanings; “ext”
3 such characters; and "u’ is a user number in the range 0 to
15. All parts are optiocnal and have defaults defdrv for the
drive; defuser for the user number; and empty for the name and

extension except that if both are empty they are treated as
T -

DLITERAL Unchanged

DMAX Unchanged

DMIN Unchanged

DNEGATE Unchanged

Do Unchanged

DOES> Unchanged

DOS-CALL Unchanged (but was called CPM-CALL in some versions).
DOS-CALLDb Unchanged (but was called CPM-CALLb in some versions).
DP Unchanged

DPL Unchanged

DROP Unchanged

Du< Unchanged

DUP Unchanged

echo (--- addr)

A variable which is used by LOAD-FILE to determine whether
each line of input from streams other than the terminal or
.BLK files is to be copied to the currently selected outputs
before it is interpreted.

ELSE Unchanged
EMIT (¢ -}

Send the character ¢ to each of the currently selected
output streams. See QUTPUTS and XEMIT.

H
¥

b

t >N

xForth 2 (¢) Alistair Mees

EMITP Unchanged
EMITT Unchanged
EMPTY Unchanged
EMPTY~-BUFFERS Unchanged
ENDCASE Unchanged
ENDIF Unchanged
ENDOF Unchanged
ENSURE-LINE Unchanged
EOF Unchanged
eof? (—-- flag)

A constant used by EXPECT to signal to LOAD-FILE that the
end of file has been reached on an input stream. See EXPECT
and XBOr.

eol? (=--- flag)

Return TRUE if a return "M or an end of file “92 hag just
been read, or if at the end of a block when BLK is nonzero.

ERASE Unchanged
ERR>IN (--- addr)

A variable which is set by STD-ERROR to the value of >IN
when the error occurred. Used by WHERE.

BRRBLK (--- addr)

A variable which 1is set by STD-ERROR to the value of BLK
when the error occurred. Used by WHERE.

ERROR Unchanged
EXECUTE Unchanged
exist-delayed (—=- addr)

A semaphore used to put the clock monitor intoc a waliting
state 1f there are no delayed tasks to execute. Not to be
used except by the clock monitor.

Lgon

xForth 2 (c) Alistair Mees

EXIT Unchanged. (The code compiled by ;)

’

EXPECT (addr n -==-)

Reads up to n characters from the currently selected input
stream and stores them in a string beginning at addr. Allcw
editing by character and line deletion when ths characters in
DEL-KEY and CAN-KEY are received. The string is terminated
when n characters have been read, or if return "M or end of
file "2 is read. A space is output if return is read. The
USER variable SPAN is set to the number of characters actually
put in the buffer. Tabs are expanded to multiples of
“tabsize”, line-feeds are ignored, and "2, as well as being
treated as a carriage return, causes the code in XEOQOF to be
executed after the line has been interpreted. These changes
are to allow input from text files. See LOAD-FILE.

EXPECTS { addr n --- addr n')

As EXPECT but return the string read.

fallocate (file =~= n)

If the file 1is already allocated to a virtual memory
segment, return the number of the segment (0 to #FILES-1). If
the file is not allocated, allocate it an unused segment if
there is one and return its number. Otherwise return 0. (Note
that SYSFILE is permanently allocated to segment 0.)

FALSE Unchanged

fassign Unchanged (but it is better to use fallocate).
FCREATE Unchanged

FIENCE Unchanged

FENCE~BELOW { +++)

Read the next word from the input stream, delimited by
blanks, and call BERROR if it is not 1in the dictionary.
Example:

FENCE~BELOW word

Then set the value of FENCE to what HERE was before “word” was
created,

xForth 2 (¢) Alistair Mees

fetch (addr -=- ¢)

If the buffer at addr is nonempty, remove a character c¢
from it and signal that it is nonfull. If it is empty, remove
the current task from the active list and put it on a queue
managed by the buffer and its monitors deposit and fetch.

FILE Unchanged
FILL Unchanged
FIND Unchanged
FIRST Unchanged
fname! Unchanged
FORGET Unchanged
'ORTH Unchanged
frelease (n ===

Close the file that is allocated to virtual memory segment
n, and mark the scgment as unused.

GET~-FPILE { v ~--- ul addr)
Given a virtual mewory block number u, return the address
of the corresponding file and the operating system sector ul

cf the start of that block. Tf the block corresponds to no
file, call BRROR,

getuser (=== n

Return the presently selected CP/M user number.

HERE Unchanged
Hirx Unchanged
HLD Unohanged
HOLD Unchanged
r Unchanged
ID. Unchanged
Ir Unchanged
[MMEDIATE Hnchanged
in-addr { === addr)

Return the address of the next character to be read when
interpreting.

Lzon

B e

XForth 2 (c) Alistair Mees

in-range? Unchanged
INPUTS (--- addr) U

A USER variable whose leasgt significant 4 bits determine
what input stream is selected when BLK is zero. KEY will take
input from the stream with the lowest bit set; conventionally,
setting the lowest bit by 1 INPUTS !’ will cause input to be
taxen from the CP/M terminal device. If INPUTS is 0 then FOF
is returned by KEY. See KEY and XKEY,

INSTALL-SSS Unchanged

INTERPRET Unchanged (but vectored through XINTERPRET).
INPRPU~CHAR Unchanged

J ' Unchanged

K1Y (~=-c

1Y the 4 low order bits of INPUTS are set to 0, return
EOF. Otherwise, execute the code pointed to by the element of
XKEY corresponding to the lowest order set bit of INPUTS,
2.4, if KEY is set to 8=2"3 then execute the code at
AKEY+2*3=XKEY+6., See INPUTS and XKEY.

L/Ss Unchanged
LAST~-KEY (=== c)

Return the last byte input from the CP/M terminal device.

Laresy Unchanged
LEAVE Unchanged
LI'A Unchangaed
LIMLYT (~=- addr)

Lxecute the code pointed to by XLIMIT. Used by COLD to
determine how nuch space s available for xForth; “addr”
should be 1 more than the last address permitted,.

LIgt Unchanged
LIST=-FILE (++4+)

LzZ0o

XForth 2 (¢) Alistair Mees -

Read a word from the input stream delimited by blanks, and
attempt to interpret it as an unambiguous file and user
specification. If unsuccessful, call ERROR. Otherwise, if
the file does not exist, call ERROR. Otherwise, if the file
15 a BLK file then list it in the format used by LIST.
Otherwise, 1list it as an ASCI1 file, expanding tabs to
multiples of “tabsize- and calling PAGE whenever centrol/L is
read. OQutput goes to all currently selected output streams;
line feeds "J are ignored and carriage returns "M cause CR to
be called.

LITERAL Unchanged
LOAD Unchanged
LOAD-FILE (+++)

Read a word from the input stream delimited by blanks, ana
attempt to interpret it as an unambiguous file and user
specification. If unsuccessful, call ERROR., Otherwise, if
the file does not exist, call ERROR. Otherwise, if the file
s a .BLK. file then load its first block using LOAD.
Otherwise, select input stream 2 (i.e. set INPUTS to 4) and
interpret one file of input; if the variable ‘echo” is set to
TRUE then reflect each line of the file to all currently
selected outputs before attempting to interpret the line,
Note that even although BLK is set to 0, the normal rules
about terminating comments and execution conditionals
(delimited by parens () and braces (}) are relaxed. The input
file is terminated by EOF i.e. 7. Files for loading may be
nested and .BLK and others may be mixed arbitrarily.

Locayn (addrl addr2 --- addr3)

Given the USER variable address addrl for the current task
and the wuser variable basge addr2 (typically belonging to
another task) return the corresponding USER variable address
for that base. Example:

S0 depthtask LOCAL

LOOP Unchanged
M* Unchanged
M/ Unchanged
M/MOD Unchanged
MaX Unchanged
maxdrv (=== n)

E

tzo

xForth 2 (c) Alistair Mees

Return the number of drives xForth thinks the system has,

MESSAGE Unchanged
MIN Unchanged
MOD Unchanged
MOVE Unchanged
MYSELF Unchanged
n-TAaAB (u —-==)

Used for zoned printing. Output one or more spaces to make
OUT a muitiple of u, if this is possible without OUT exceeding
C/L, and provided there would still be at least u positions
left on the line. Otherwise execute CR.

NEGATE Unchanged
NEXT Unchanged
NEA Unchanged
NOOP Unchanged
NOT Unchanged

not-in-memory? Internal use. Do not use.

NUMBER Unchanged
OF Unchanged
of £ (addr ---)

Set the two bytes at addr to FALSE.

on { addr ---)

Set the two bytes at addr to TRUE.

OPEN Unchanged
OR Unchanged
ouT Unchanged
outTPUTS (--- addr) U

A USER wvariable determining which output streams are
selected. EMIT sends its byte to each stream whose bit is
set; there are 4 streams, corresponding to the 4 low order
bits of OUTPUTS. Conventionally, output stream 0 is the VDU
(i.e. the CP/M standard output device). OUTPUTS is set to 1

@

xForth 2 (c) Alistair Mees

on cold start and after errors, so that output goes to the VDU
in such cases.

QVER Unchanged
P! Unchanged
pd Unchanged
PAD Unchanged
PAGE Unchanged
PAUSE (-—=)

Move the present task to the tail of the active list and
transfer control to the task which is now at the head of the
active list. Should always be used in "busy waits" (loops
which do nothing while waiting for some event to happen such
as a key press) though semaphores are the preferred and
usually more efficient way to handle cases such as this. 1Is
implicitly called by KEY if there is no character waiting to
be read, and by ?PAUSE. if the output pause character in
XQOFF-CHAR has been pressed.

PFA Unchanged
physical~eof? (--- flag)

TRUE if the last disc input operation attempted to read an
unallocated operating system sector.

BICK Unchanged
PREV Unchanged
PROTECT

Unchanged except that it calls EMPTY after setting othner
variables. This ensures the vocabulary links are correct.

QUERY Unchanged
QuUIT (===
1f the current task is the main user task, clear the return

stack, set interpret mode and select console input.
Otherwise, put the task in the stopped state.

S A o 0 D ot B S e B 5 A AN 5 . o e R Rttt T R R VR N

XxForth 2 (¢) Alistair Meeg

- R Unchanged
R/W Unchanged
RO Unchanged
R1 (~-- addr) U

A USER variable containing the return stack lower bound;
used by ?STACK in checking that the stack is within bounds.

R> Unchanged
R@ Unchanged
remove (addrl --- addr2)

Assuming addrl is the address of a variable which is a
circular 1list tail pointer, remove the head of the list and
teave its address addr2. -Typically used to remove a task from
a queue,

REPEAT Unchanged
REPLACED~BY Unchanged %
-
restart-time (=~— addr) U
A USER 2VARIABLE containing the time a task will be
restarted by the clock monitor. Only valid when the task is
on the list managed by the semaphore “delayed-”.
RESTORE=-SS Unchanged
REVERSE Unchanged
ROLL Unchanged
ROT Unchanged
RPI Unchanged
Rpd Unchanged
S5->D Unchanged
50 Unchanged
sl (--- addr) U
A USER variable containing the stack lower limit. Used by
?8TACK to check that the stack is within bounds.
- SAVE-BUFPERS Unchanged

LZo

L7200

XForth 2 (c) Alistair Mees

SCR Unchanged
SEE Unchanged
SEE-FILE Unchanged
seg-size Unchanged
SEMAPHORE { +++)

A defining word used to define semaphores as in
SEMAPHORE printer

which defines a semaphore called ‘printer’. When “printer”
executes it leaves its address on the stack. Typical usage is

printer WAIT

RN -- Some operations
using the printer

printer AVAILABLE

See AVAILABLE and SIGNAL and WAIT.

setuser { n ~==)

Set the current operating system user number to n.

SIGN Unchanged

SIGNAL (addr -=-)

In conjunction with WAIT, manage a counting semaphore.
That 1is, assuming addr is the address of a semaphore, check
whether there are any tasks waiting in the semaphore's queue
and if so, transfer the first one to the tail of the active
list but do not call PAUSE. Otherwise, increment the
semaphore's count by one., SIGNAL is mainly useful in buffer
management but is included since counting semaphores have
other uses. For normal use, AVAILABLE is more appropriate.

skip-until (¢ ===

Advance the input pointer >IN until a character equal to ¢
has been reached or the end of file 1is reached. In this
context, a file is any of

1. A line of input when BLK is zero and the input stream is
not 2; »

- 47 -

o

LzZ0

- —— N

xForth 2 (c) Alistair Mees

2. A complete ASCII file terminated by EOF when BLK is zero
and the input stream is 2;

3. A 1K block of virtual memory when BLK is nonzero.

In case 2 a new line is read into TIB and >IN is set to 0 if
the end of a line is reached.

skip~while (¢ -==)

Advance the output pointer until it points to a character
other than ¢ or until the end of file has been reached. A
file is defined in the same way as for “skip-until-~.

SMUDGE Unchanged

SOFTWRAP (~-- flag)

A constant that is TRUE except in Torch/BBC systems; it
causes "EMIT to call CR if there is insufficient space on the
line for the character it is outputting, as measured by the
contents of OUT compared with the value of C/L.

SP1! Unchanged
spd Unchanged
SPACE Unchanged
SPACES Unchanged
SPAN (=== addr) U

A USER variable set by EXPECT to the number of characters
it actually read.

START (addr ~---~)

Assuming addr is the address of the start of the user
variable area of a task and assuming that task is in the
stopped state, initialize it to start executing at the
beginning of its code and append it to the tail of the active
list. Then call PAUSE. If the task is not in a stopped state
the effect is undefined (and often disastrous).

STATE Unchanged

- 48 -

XForth 2 (¢) Alistair Mees

, STD-ERROR (n ---)

The standard xForth error routine which outputs, on stream
0 and any other streams currently selected, an error message
which has been read from disc if the low order bit of WARNING
1s set and a numeric error message otherwise, Then it sets
OUTPUTS to 1 (i.e. selects output stream 0) and calls QUIT.

STOP (addr =---)

Assuming addr is the address of the beginning of the user
variable area of a task, and assuming the task is on the
active list but is not executing, set its next instructien so
that it will be removed from the active list and put in the
stopped state as soon as it attempts to execute.

STRING Unchanged
SWAP . Unchanged
SYSADAPT Unchanged
SYSFILE Unchanged
: Q SYSGEN Unchanged
TAB (n =-==)

If the contents of OUT are greater than or equal to n, do

nothing. Otherwise, call SPACE often enough to make the value
of OUT equal to n.

tabsize (=== n)

A constant used (by the screen editor and by EXPECT) to
determine the width of a tab stop. For example, EXPECT will
convert a tab character one or more spaces so as to make the
number of characters input equal to a multiple of tabsize.

TASK: { +4++)

Define a foreground task; that is, allocate space for
$UVARS USER variables and initialize them according to the
pattern in taskframe, but with the values offset correctly.
Then perform variocus pre-initialization .tasks, and finally

j.’ switch to compilation mode. If ";° is executed successfully

tzo

L7270

XForth 2 (¢) Alistair Mees

the result is to define a task that is initially in the
stopped state. A foreground task may perform any functions
but typically only has a small dictionary area used mainly for
the sake of its PAD and to allow WORD to be called. Unlike a
background task, it has a terminal input buffer and a PAD; it

may use all file handling, string handling and number
formatting words.

taskframe (==~ addr)

The address of an 8 byte region which is used to determine
the sizes of the stacks, of the terminal input buffer, and of
the private dictionary in a background task. The values are
the size of the stack, the size of the return stack, the size
of the terminal input buffer and the size of the dictionary
area in that order. On delivery the sizes of both stacks are
128 bytes, that of the TIB is 86 bytes and that of the
dictionary is 192 bytes. Note that the PAD is 68 bytes above
the dictionary pointer and is used widely, so do not make the
dictionary area too small. On the other hand, it is often
acceptable to make the size of the TIB zero since this is not
normally used except during compilation,

THEN Unchanged
TIB Unchanged
TOGGLE Unchanged
TRUE Unchanged
TYPE Unchanged
us Unchanged
U* Unchanged
u. Unchanged
U.R Unchanged
U/MOD Unchanged
U< Unchanged
UCHAR Unchanged
UNTIL Unchanged
uPrl (a ===

Set the user variable pointer to u. VERY DANGEROUS. Used
by the “windows® demonstration to fool a word into saving or

restoring the main user task's variables instead of those of
the calling task.

upd (=-- addr)

- 50 -

LZ20

XForth 2 (c) Alistair Mees

Leave on the stack the address of the beginning of the user
variable area for the present task. For system use, but may

be useful in allowing a word to determine what task is calling
it.

UPDATE Unchanged
USE Unchanged
USER (+++)

Define a new USER variable, incrementing #UVARS so that the
next defined USER variable will have a unique locaticn, Note

that COLD 1leaves space for 16 new user variables to be
defined.

VARIABLE Unchanged
VLIST Unchanged -
VOC-LINK Unchanged
VOCABULARY - Unchanged
WAIT (addr =---)

Assuming addr is the address of a semaphore, check whether
its count is nonzero. If this is the case, decrement the
count and continue execution. Otherwise, remove the present
task from the active list and transfer it to the tail of the

semaphore's queue and transfer control to the new head of the
active list,

WARM Unchanged
WARNING Unchanged
WHERE { ~==)

Invoke the screen editor with the cursor at the block and

position within the block given by the contents of ERRBLK and
ERR>IN.

WHILE Unchanged
WIDTH Unchanged
WORD Unchanged
wrap Unchanged
XCURSOR Unchanged
XEMIT (-—-- addr)

- 51 -

e

LzZo

xForth 2 (c) Alistair Mees

Leave on the stack the start of a region containing 4
execution addresses which are used by EMIT when the
corresponding bits of OUTPUTS are set, Thus when the 1low
order bit is set, the action is XEMIT @ EXECUTE, when the next
bit is set it is XEMIT 2+ @ EXECUTE and so on.

XEOF (=--- addr)

An execution variable containing the code to be called when
EXPECT reads the end of a file when INPUTS is set to 4 (i.e,
input stream 2 is selected).

XERROR (--- addr)

An execution variable containing the code to be called by
ERROR. Set to STD-ERROR on delivery.

XINTERPRET (“~-— addr)

An execution variable containing the code called when
INTERPRET executes. Used by the metacompiler; lethal; avoid.

XINTRPT (--~ addr)

An execution variable containing the code called when the
user interrupt key contained in INTRPT-KEY is read by ?PAUSE.

XKEY (--- addr)

Leave on the stack the start of a region containing ¢
execution addresses which are used by KEY. The code
corresponding to the lowest order set bit: of INPUTS isg
called. Conventionally, the low order bit corresponds to the
operating system standard input.

XLIMIT (-=-- addr)

An execution variable containing the code executed by
LIMIT. Set to 6 @° on delivery. :

- 52 -

xForth 2 (¢) Alistair Mees

XNUMBER Unchanged
XOFF~CHAR Unchanged
XOK Unchanged
XOR Unchanged
XPAGE Unchanged
XPROMPT Unchanged
XRUBOUT Unchanged
XSIGNON Unchanged
[Unchanged
[,]VARIABLE Unchanged
[COMPILE] Unchanged
{ JVARIABLE Unchanged
] Unchanged
“EMIT {¢c ——)

Strip the high order bit of ¢ so it lies in the range 0 to
127, If it is 127, discard it and call ." ~?% while if it is
32 to 126 inclusive, call EMIT for the value on the stack. If
it is 13 ("M) call CR; if-it is 12 ("L) call PAGE; if it is 10
("J) ignore it; if it is 9 ("I) tab to the next multiple of
tabsize., Otherwise output a caret "~ followed by the stack
value plus 64, so that 3 is output as “C and so on.

“TYPE (§ ===

If $§ has length zero, do nothing. Otherwise, call “EMIT
for each of the characters in the string in turn.

{ Unchanged
| Unchanged
} Unchanged

- 53 =

	Table of Contents
	Your New xForth System
	xForth 2 Source Code Disc
	Addtional Notes
	1. Updates in xForth 2
	2. Multi-Tasking in xForth
	3. Trouble
	A. Alphabetic List of Words in xForth

