—4\\«)

LZ0

Chapter
Chapter
Chapter
Chdp£er
Chapter

Chapter

e

b

&

XFoTH TectiNICAC
MAENU A

Table of Contents

The inner interpreter

The outer interpreter

Dictionary headers

; CODE and DOUOES>

Virtual memory and the filing system.

ABORT, COLD and the cold start tables

Appendix A Additional notes.

Appendix B Error handling.

Appendix C Notes on the glossary.

LZo

(c) A.1.M. Research
xForth technical manual

Preface

This manual is not intended for the novice. It 1s not
really suitable for someone who does not have a good grasp of
the fundamentals of FORTH programming, at the very least to the
extent that he understands the xForth introductory manual and
all of 1ts appendices very well. The main part of the manual
1s the glossary, but the first part contains useful information
such as memory maps.

I+ you have difficulty with this manual, try reading ane of
the excellent books which are now becoming available, such as
‘Threaded Interpretive Languages’ by Ronald lL.oeliger, published
by Byte Books {(a division of McGraw-Hill).

P—————— |

A 2B BB R

s T oy

(c) A.I.M. Research The i1nner interpreter
xForth technical manual

Chapter 1

The inner interpreter

Forth uses “indirect threaded code’ to achieve 1ts fast and
compact form. All this means is that the definitions of most
Forth words - those defined via the colon — consist of gueues
of addresses. The adidresses are so—called compilation
addresses (sometimes called code-field addresses) for which the
corresponding memory location contains another address, this
time pointing to actual machine code.

‘[- " “* - - L2]
| i defl H i det?2 B H H
‘@ T ey T T T T et T machine
3 e e .. Code
v address e : H H H
T P T IMP NEXT!

This scunds wunnecessarily complicated at first, and 1t has
often heen zuggested that the aiddle link shown in the diagram
should be removed, giving Sdirect threaded code’, but the
present consensus seems to be that the standard Forth aethod’s
gains 1in flexibility for advanced use outweigh the slight

losses 1n speed and simplicity.
The diagram shows a colon detinrtion {defl) bheing
erxecuted. At present we are at a point where def?, which

appeared in defl’s definition, 1s to be used. The compilation
address of def2 contalns a pointer to machine code which is
executed and which terminates in a jump to a system label NEXT.
Control will fthen return to the Sinner interpreter”, which
arranges for the next compilation address in defl’s gqueue (o be
used, and so on. (14 def? 1 a colon word too, the machine
code executed will save defl’s gqueue position on a special
stack, then tell the inner interpgreter to start looking up the
\‘ compilation addresses in det+d’s gueue. This 1w disgussed in
‘@ Chapter 2.)

The inner interpreter (c) A.T.M.
*xForth technical manual

Researoch

For the moment we are concernped only with how to run
through a queue of compilation addresses such as thoese Iin
defl. The exact methoed differs for different CPU’s but the
general idea 1s to keep the pointer which marks the place in
defl’s queue in a register, and to perform the indirection by a
short routine starting at label NEXT. This routine has the job
of looking up the contents of the address pointed to by the
register, then looking up the address pointed to by what 1t has
Jjust looked up, and finally jumping to this last address. All
machine code segments have the duty to save the relevant
register; in fact, the run—time code for colon actually saves
1t on the return stack (to be restored by semicolon) then puts
a different value in the register so the inner interpreter will
start executing from a new gueus. Other words such as BRANCH
(the code compiled by ELSE) alter the register value without
putting 1t on a stack, 0 giving the effect of a jump.

In xForth, the inner interpreter lives in low memory, Just
atter the table of 1nitialization valuss. Its address 1%
placed on the stack by the constant NEXT, so assembler words
exit using JMP NEXT (or its equivalent in some other assembly
language than Intel’s 8080). The rest of this discussion refers
to the xForth implementation in 80B0 code, version W20 for
CP/M2.2. Other versions and implementations for other languages
and operating systems will differ in detail, but not in overall
concept. ‘

The queue pointer referred to above 1is kept 1in the BC
register, which must be saved and restored 1f¥ necessary by any
code you write. The value is pre—incremented: that is, iy the
time there’s some code bLeing executed it points to the queue
position to be used next rather than the one currently being
used. When the inner interpreter jumps to machine code, the DE
register contains 1 more than the compilation address (of def?2
in the diagram). This value need not be preserved but is often
useftul to know. The return stack, used by colon and semicolorn
to push and pop BC register values, is an area in high memory
at the top end of the terminal input buffer; the stacking

mechanism 1s simulated, using a wmemory location as a stack
pointer.

Most of xForth 1s written at high level (i.e. az= colen
definitions): all ot the disc handling and virtual memory, +or
examnple, uses high level words and cammunicates with CP/M via
the word CPM-CALL, which is a simple register—twiddle—and—jump
assembler word. The dictionary, which is a collection of all
definitions, grows up from low memory, starting just aftter the
inner interpreter. The stack (sometimes called the parameter
stack, to distinguish 1t from the return stack) uses the normal
8080 stack polnter and grows down from high memory. Above the
stack base are the storage locations used by system variables

(c) A.I.M. Research . The inner interpreter
xForth technical manual

such as XCURBOR and BASE, and above them are the disc
input—-output buffers, whose addresses are returned by the word
BLOCK in virtual memory operations. The word SYSADAPT allows
the number of blocks and the position of the top of the last
block to be altered, by resetting various pointers and calling
for a cold start. (Any words which try this should be written
with great care, particularly if a cold start is not called,
since the order of operations is significant; for example,
stacks can end up overwriting one ancther if one is not
careftul.) All of this is summed up in the following memory

map .
Y FolkTH 4
Memoty ML
LAMAT
(start of cpfm)
BLOCK BUFFERS
§ 4}
FIRET —p TN PREV
MEMORY MAp USER VARIABLES,
Coqrtesﬁ of
Forth Interest RETURM
szup STACK
e AN
TERMINAL <
BUFFER L& TR
, N &TAQK
W X2 .
TEXT BUFFER c PAD
‘WoRD' BUFFER
HERE Sy
DICTIONARY
oL START TABLE
‘- 160 H

W2 s e SRR St U b b B Ao S A i, bl D

()} A. .M. Research
xForth technical manual

The outer interpreter

Chapter 2

The outer interpreter

When xForth is first loaded, some initialization 1s done
(see Chapter 7) and then QUIT 1is executed. GUIT 1s a
colon—defined word whose function is to pass control to the
terminal: it does this by clearing the return stack (which may
have had return addresses or data on it, i1f QUIT was executed
from within some word) and then going into a loop.

Clearing the return stack does not affect QUIT because the
inner interpreter has its own pointer; if semicolon were to be
executed there would be trouble, because semicolon tries to pop
the return stack to find a return address, but QUIT’s loop is
one from which there is no escape except via another QUIT.

The important point about the loop is that it contains the
word INTERPREY. Initially, INTERPRET is set by QUIT to read
words from the terminal by setting variable BLK to zero.
However, words such as LOAD reset the pointer BLK so that
INTERPRET reads from elsewhere — in the case of LOAD, from
virtual memory. At first INTERPRET merely calls on the inner
interpreter to execute words successively from the input, until
the 1nput 1is exhausted. As explained in the introductory
manual, some words such as colon switch INTERPRET over to
storing the compilation addresses of words it meets, rather
than executing them at once. This 1is done by changing the
value of the variable STATE. If it is zero, words are executed
as they are read while 1if it is nonzero, words are compil led

unless they have been marked (by IMMEDIATE) for imeediate
execution.

At this stage it is necessary to look a little more closely
at the action ot colon. When coleon is executed by INTERPRET,
cantrol passes to CREATE which reads the next word <from the
input and begins a dictionary entry for it, as described Iin
Chapter 4. The dictiocnary entry has, in its compilation address
tield, a pointer to some special code which will adjust the
return stack and the execution queue pointer when the new word
is used later. The wvariable STATE is then set to a nonzero
value (implementation-dependent) and control returns to the
interpreter. From then on, until STATE is reset (by semicolon,

The ocuter interpreter (c) A.I.M.
xForth technical manual

Research

usually) non-immediate words are compiled: that 1is, their
compirlation addresses are entered into the quede in the
dictionary entry for the new word. A typical immediate word is
IF, which compiles a word OBRANCH. At execution time OBRANCH
tests the stack top and, if 1t is =zero, adijusts the gueue
pointer to point past the ELSE or ENDIF matching IF.
{Obviously, the amount of adjustment i1s calculated at compile
time, when ENDIF is executed.) Semicclon is an immediate word
that resets S5TATE as already described, and compiles the word
S which pops the return stack into the queue pointer.

The net etfect of all this is to give the familiar FORTH
behaviour: words are read from the terminal or virtual memory
as required, and are executed or complled as required.

Sometimes 1t is necessary to alter the usual compiling
process, though. This i1s done by the words [COMPILE] aend [and
1. I+ an IMMEDIATE word has to be compiled (such as a
vocabulary name, 1+ we want the vocabulary change to take place
at execution time) it can be preceded by [COMPILE]. The effect
of [COMPILE] (which is itself IMMEDIATE) is to force the word
following it to be compiled whether or not it is immediate.
For example,

TOAXK .. FCOMPILET FORTH ...

More or less the opposite effect is obtained with [which
19 immediate and whose action i1s to set STATE to zero. STATE
can be reset again by 1 so that

YYY e £ HEX 1 10 € DECIMAL 1 1Q ... 3

will compile code that when executed will put decimal 146 on the
stack and then decimal 10 on the stack. (Had we not put in the
word DECIMAL, there would be +two 16s instead of a 16 and a 10,
and at compile time the number base would still be set to 16
aftter the semicolon.) The words [and 1 are useful for, sav,
calculating quantaities known at compile time. They may be used
in conjunction with [ITERAL which is an im;mediate word that

compiles the value the stack top as a literal to be put back
on the stack at e: ton time. So
I OYYY wea { HEX 10 1 LITERAL

U DECIMAL 10 1 LITERAL

-
“ouow [

achieves the same effect as the previous definition of yyy.

Non—-trivial examples of these and other wonders are to be
found in the system code on blocks 30 to 42 (in most systems). %

Lzo

LZ0

e L Ut L MR PR

(c} A.1I.M. Research

Pictionary headers
xForth technical mainual

Chapter 3

Dictionary headers

A dictionary entry consists of two parts: a header and a
hody. The header part consists of the name of the word and
information linking the word to previous words to allow the
dictionary to be searched. I wersions of xForth up to 1.21,
the header consists of a name fileld followed by a link field.
In earlier versions (hefore 1.20) the name field is a character
count and then a text string, while in later versions the text
string comes beftore the character count and is reversed; this
is done to speed up dictionary searches. In all versions the
link +field is merely a pointer to the name +field of the
previous word in the dictionary. The character count 1s only
valid in its low order 9 bits, since the remaining bits are
usad by SMUDBE and by IMMEDIATE. The precise details of all
this may change in future systems.

The body consists of a code +field followed by a parameter
field., The code field address 1is often also called the
compilation address,. The code field contains the threading
pointer and in the case of a colon definittion 1t points to the
run-time code for colon. This code pushes the BL register on
the return stack and then sets BC to the first address of the
parameter {field, which will be the {first member of the gueue of
words to be executed Ly that colon word., For a variable, the
covde +1eld points to some code that returns the address of the
parameter +ield on the stack. For other words, the code field
will point to whatever special code they correspond to.

he word COREATE 1s used by all words that make named
dictionary entries. CREATE reads the next word from the input
stream and makes a dictionary header for i1it, then sets the code
field to point to the code for VARIABLE, so that you can buaild
tabhles by doing

CREATE name 1 4, 2

which makes a dictionary entry called namse, followed by a code
field address which returns the address of a 10 byte region
containing the numbers 1 to 5, in order. {(The word , (commal
takes the stack top and inserts 1t as a 2 byte value in the

i
bt

ik

LR

B

LzZz0

Dictionary headers {(¢) A.I.M. Research
xForth technical manual
dictionary, then increments the dictionary pointer.) Usually,

CREATE 15 used in conjunction with a word DOES> that alters
this tentative cade field pointer to whatever is needed for the
entry being created.

The code Field of a word can always be located using FIND
and the parameter field can always be located using 7 {(tick).
For example, FIND DROP will return the code field address of
DROP (which contains a pointer to the very next 16 bit memory
location, as 1t happens) while > DROP will return the parameter
tfreld address of DROP, which is 2 more than the code +field
address in versions up to 1.21. 1 ig possible to locate all of
the +ields in present vErsions of ®Forth, though for
compatibility with FORTH-79 and with future versions of xForth
this fact should not normally be used. The relevant words are
CFa, LFA, NFA and PFA, which are described in the glossary.

3-2

I 7N

(c) A.I1.M. Research ; CODE and DOES>
¥Forth technical manual

Chapter 4

1 CODE and DOES>

Defining words such as 1 or STRING have two jobs to do when
they execute: they must create a dictionary entry and they must

create a definition corresponding to that entrvy. The
definition, as we have seen, 1is a code field - a location
containing the address of code to be executed - foliowad

possibly by a parameter field, whose contents depend on the
particular word. For example, the parameter field of a word
defined by STRING is a pair of 16 bit locations containing the
maximum length and the current length, followed by enough space
to contain the maximum length string. The code field points to
code that returns the address of the text space and the current
length. For a word defined by : on the other hand, the code
field points to code that manipulates the retwn stack, while
the parameter field is the qgqueue of addresses mentioned i
Chapter 1, namely a sequence of pointers to other definitions’
code Ffields (compilation addresses), interspersed with in-line
data such as onumeric values of literals to be placed on the
stack at execution time.

We have already seen how CREATE makes a dictionary entry,
but how are the code field and the parameter field of a new
word produced? As we saw, CREATE does build the beginning of a
definition after it makes the dictionary entry, since it makes
the code field point to code that leaves the parameter field
address on the stack. Often this will have to be changed, and
nearly always a parameter field will have to be created.

The easiest way to do this is to use the word DOES> after
CREATE. Let us look at a simplified version of the word STRING.
We want 10 STRING s to create a dictionary entry called s with
a parameter field containing 10, then the present length of s,
then 10 bytes. UWhen s executes we want it to leave the address
of the start of those 10 bytes followed by the present length
of s, so the code field of s will have to point to code that
accomplishes this., Here i1s the definition.

: STRING CREATE (Make a dictionary header)
pup , 0 , (Put in max & present lengths)
ALLGT (Leave enough space)
4-—-1

B

Lzo

proon % 4 B i i 2 T

; CODE and DDRES> () A.I.M. Research
xForth technical manual

DOES> { Point to address at exec time
2+ DUFP 3 (Present length on stack)
SWAP 2+ SWAP 3 (Exit with addr & length)

When STRING executes, CREATE reads the next word from the input
stream (e.g. the word following STRING) and makes a dictionary
entry for 1t. So 10 STRING s makes an entry called s. CREATE
sets up a code field like that of VARIABLE but allots nothing
to the parameter tield. Then DUP , stores the stack top (10 in
the above example) in the parameter field and allots space for
it so that the next assignment to the parameter field will use
another memory location. Next O , puts zero in the next meaory
location (so the string has initial length zero) and ALLOT
takes the 10 that was DWPed +to decide how much space to
allocate to the text string. The dictionary pointer is left
pointing to the end of the text space, ready for ancther word
to be created.

Next, the special word DOES> comes into action. Its job 15
to make the code field point to the correct code, which is the
code between DOES> and the semicolon in the definition of
STRING. At execution time, the address of the parameter will be
pushed on the stack and the code following DOES> will bhe
executed. Here, we add 2 to the start of the parameter tield
to get the location containing the max length and then two
again to get the address of the text space.

As another example, here is a simplified version of
CIVARIABLE.

: [IVARIABLE CREATE
2% ALLOT
BOES> 2% +

§

In this case, 10 [IVARIABLE vec makes a dictionary entry called

vec and then allots 20 bytes (space for 10 integers).
Executing 3 vec wuses the address of vec’s parameter field,
plus &, to be 1+ .U on the stack. In our simple example, no
range checking 1s done either when vec is defined or when vec
1s executed, s0 ~100 [IVARIABLE xx will cause disaster and
0 20 vec ! may well do so. ‘

It is also possible to define execution time rcode in
assembly language, by replacing DUOES> with ;CODE. In that case,
everything between ;CODE and END-CODE will be assembled, and at
execution time the interpreter will Jump to just after : CODE.
To use this successfully, you have to know the details of how
vour particul ar implementation simul ates the Forth
pseudo-machine, as in Chapter 1. For example, the 8080/7280
system bhas the BC register as the threading pointer for the

L

(c) A.I.M. Research ; CODE and DOES>
xForth technical manual

inner 1nterpreter, and the DE register contains 1 less than the
parameter field address. The BC register aust be restored
before jumping to NEXT but the DE and HL registers need not
be. Versions of xForth for different processors are supplied
with the corresponding i1nformation about where the pointers are
kept.

Thus we could define [IVARIABLE for the 8080/180 system by

: [IVARIABLE CREATE 2% ALLOT Make space at

compile time.
And do this
at exec time:
D now points
to parm +tield.
Get stack top.

3

}

; CODE }
)

)

)

)

Double it.)
3

}

)

)

¥

}

)

D INX,
POP,

DAD,
DAD,

oIl x

Add the parm
field address
to get addr
of required
element 1n HiL.
NEXT 1- JMP, (Push HL &

{ return.

P N T T I I Y

END-CODE

where we have used the fact that location NEXT-1 contains
H PUSH, Note that ;CODE deoes exactly what is there: there 1s no
hidden pushing of the parameter field address onto the stack as
in DOES>, so we have to get it from the DE register.

{c) A.1.M. Research Virtual memory and the filing system.

xForth technical manual

Chapter 3

Virtual memory and the filing svstem.

All virtual memory operations are done through the word
BLOCK. Ewxecuting BLOCK results in the removal of a block number
from the stack and its replacement by an address in true
MEMOTY .

BLOCK determines whether the required block 1is in senory
and if so, returns the budfer address at once. It the block i1s
not in memory, BLOCK uses an approximation to a Yleast recently
used’ algorithbm for buffer allocation, to select a new butfer.
Fach buffer has a 146 bit tag whose high bit 1s set 1+ UPDATE
has been called. This aethod of marking blocks as updated may
change in systems beyond 1.20. I the required buffer has this
hit set it is written to disc, the relevant file being created
i¥ necessary. The final stage is to read the appropriate part
of a dise file into the buffter and leave the buffer address on
the stack. I¥ the bleock has never before been witten to, the
first byte will be a CP/M end of file mark {(control/7) and the
next 127 bytes will be zero. The subsidiary words BUFFER and
R/W are called by BLOCK to perform disc operations.

The connexion bhetween disc files and block numbers, as
described in the Appendix of the users” manual, is established
by the word GET-FILE, which maintains a table of files. The
Ird file 1n the table corresponds to the 3rd virtual manory
segment and so on; i€ no file is associated with a segment the
stored address is 0. Executing get-file causes a block number
to be taken off the stack and divided by seg-size to give an
index in the file table. I¥f the corresponding table entry is
zero an error message 1s given, and otherwise the file and the
appropriate CP/M record number are left on the stack.

For example, 1§ table entry & puinfg to the »wForth +ile
structure file6 (so that & *th-FILE places the same thing in
the stack as does filebd) then

&004 get-tile

leaves the same stack result as

L.

preve

Lzo

Y ABEI Rt N e MR

Virtual memory and the filing system. (c) A.I.M. Research
xForth technical manual

24 fileb

would, since the 4th 1k block of fileé starts with CP/M sector
24 of the file.

Sequential 1nput-output 18 actually simulated uming
standard xForth virtual memory operations. This allows
spoanling to be done in virtual memory so that by allocating a
large buffer space using SYSADAPT the user can wminimize disc
activity. Note that if the sequential input-output is needed,
QUIT is redefined to type out the contents of the output spool,
1f any, and SAVE-BUFFERS is redefined to delete the input and
output spools.

Byte-oriented input-output via getc and putc is done by
maintaining block and character pointers. If it is too slow
the simplest solution is to write new words that do their own
buffering and only call BLOCK occcasionally rather than for
every byte. (In particular, put$ could have been defined as a
loop containing putc, but you can see how it does a block
memnory move instead.)

The greatest advantage of using virtual memory far
sequential input-output is in the simplicity of the pipe and
redirection words, which (like COPY) just renumber virtual
memory blocks using (copies). The word (copies) in (file-voc)
is like COPIES except that COPIES flushes virtual memory then
optimizes disc access, and always copies the requested number
of blocks, while (copies) does not +Flush virtual oemory,
stealing blocks from its input even if they should have been
written to disc. Also, (copies) stops at any block beginning
with an end-of-file. Note that this means the input to
(copies) may not be correctly represented on disc {which
doesn’t matter for a spool file) and that, depending on the
exact details of your CP/M implementation, it will usually stop
at the first 1k block following thae end of fila.

&

¢

LZn

b it el it 2 SN

(c} A.1.M. Research ABORT, COLD and the cold start tables

xForth technical manual

Chapter &

ABORT, COLD and the cold start tables

When xForth is loaded and run, control is transferred to a
short assembler segment that sets up the stack and return stack
correctly, and then COLD is called. The job of COLD is to
initialize such things as XEMIT, the variable containing the
code executed by the word EMIT before the output pointer OUT is
incremented. All the information needed at initialization is
contained in a table at the base of memory, which also contains
information such as the version number. This table is read by
COLD and written by PROTECT; the main part of the operation is
a block memory transfer between the cold-start table {whose
address 1s given by CS-TABLE) and the “user variable® area, a

region 1in high memory used for the current values of things
like XEMIT.

The last thing COLD does is call EMPTVY-BUFFERS and then
ABORT. ABORT resets the stack and return stack pointers
(unnecessarily in this case, but often needed) and executes the
code pointed to by XSIGNON. Then it calls QUIT which gives
control to the terminal.

Because of subtleties concerning the way multiple
vocabularies are linked together, COLD is redefined by the
xForth high level system to call EMPTY first if it is executed
by the user or by a user—defined word. I+ this were not done,
it would be possible to have mysterious delayed crashes caused

by corruption of the dictionary structure in a way that only
becomes evident later.

{c)

who

1.

A.l1.M. Research

Additional notes.

Appendix A

Additional notes.

The +ollowing are a few hints that may be helpful for users
want to change their systems.

A minimal system can be constructed by altering blocik 1§
of FORTH.BLK and the blocks and files that block 1 loads
vihen SYSGEN is typed from the kernel system. You only
need the structuring words (except CASE and its +friends)
and the most elementary output words, plus a few assorted
others, to have a FORTH-7? system.

If you want to reserve an area in memory for use by other
code {(say, code from another compiler) and you are
nervous about putting it directly into the dictionary,
vou can leave a gap between the top of xForth and the
CP/M system. Do this by changing & @ in the word
SYSADAPT to, say, 6 @ 1024 — and then regenerating the
system from the kernel. Then when you type, say,
4 GYSADAPT the system will be set to observe the new
upper limit and will put its buffers below this.

The metacompiler can make words with no headers. This
makes for a much smaller system.

The two locations before the start of the inner
interpreter contain D PUSH, and H PUSH, so to push both D
and H from a CODE definition, end up by jumping to MNEXT
2- while to push just H jump to NEXT 1-

Lzo

(c) A.I1.M. Research Error handling.

Appaendix B

Error handling.

The FORTH-79 Standard defines the {following types of error
candition. In xForth, the word ERROR is executed whenever an
error is detected, and leads to the effect described below as
long as the system variable WARNING has the value 1. For the
effects of other values of WARNING, see the entry for WARNING.

1. Input stream exhausted before a required <name>. The

xForth system gives the error message “Unexpected end of
input’.

2. Empty stack and full stack for the text interpreter. The
xForth system gives the error message “Empty stack” or
*Full stack”.

3. An unknown word which is not a wvalid number for the text
interpreter. The xForth system gives an error message

consisting of the unknown word, followed by a question
mark.

4. Compilation of 1incorrectly nested conditionals. The
xForth system gives the error message “Conditionals
incorrectly nested’.

3. Interpretation of words restricted to compilation. if
the word i1s IMMEDIATE, the xForth system gives the error
message *Compilation only; tried to use outside

definition’. ¥ the word is not IMMEDIATE, the error is
ignored and execution continues as usual. See the notes
on the glossary for more details.

H. FORGETting within the system to a point that vemoves a
word required for correct execution. The xForth system
gives the error message “in protected dictionary’.

7. Insufficient space remaining i1n the dictionary. The
xFarth system gives the error message ‘Dictionary full’.

A

(c) A.I.M. Research Notes on the glossary.

Appendix C

Notes on the glossary.

xFarth is a FORTH-79 Standard System with Assembler
Standard Extensions (if the assembler has been purchased). It

contains nearly all of the words in the Double Number Standard
Extension.

The glossary that follows describes the action of nearly
all xForth words in the vocabulary FORTH. Words in other
vocabularies are not described, as they are typically
specialised words not intended for use ocutside that vocabul ary,
e.qg. (file-voc) and (EDITOR). In general, words enclosed in
parentheses are specialised and not intended for normal use; if
the parenthesised word is a vacabulary name none of the words
in the vocabulary are intended for normal use.

The glossary entries consist of a header with the word and
its effect on the stack, followed in some cases by some

information in square brackets. The stack effect is described
in the form

(stack-before ——— stack—atter)

or, 1f the word reads from the input stream when it executes
(e.g. VARIABLE), in the form

(stack-before +++ stack—-after)

Here each of stack-—-before and stack-after contains an ordered
list of stack items, with the top of the stack (most

accessible!) on the right. The stack items are any of the
followings:

n a signed 16 bit integer;

u an unsigned 16 bit integer;

addr a 16 bit address;

byte a 16 bit stack item with only the low order 8

bits of interest;

C-—-1

S

tzo

Notes on the glossary. (€) A.I.M. Research

char a 16 bit stack item with only the low order 7 @
bits of interest;

B a string identifier consisting of an address

and a count of the number of characters;

file the address of the base of a file control
structure;

d a 32 bit signed integers;

ud a 32 bit unsigned integer;

flag a boolean flag: TRUE is defined as 1, FALBE as

zero. All xForth supplied words treat anything
nonzero as TRUE.

The stack items are sometimes followed by digits 1, 2 etc where
necessary to avoid ambiguity.

The information in square brackets is one or more of the
followings

- A number corresponding to the number of the FORTH-79
definition.

— The letter C, meaning that the word should only be used @
during compilation (i.e. within a colon definition. All
such words that are also immediate execute ERROR if called
outside a colon definition. MWords such as »R do nat give
an error message in such cases, unless the DEBUG
vocabulary is being used. The general action for words
that give no error message is to continue execution,
ignoring the error. However, the side effects of the
incorrect use may be such as to crash the system. For

this reason, we recommend that vyou use the DEBUG
vaocabulary for all testing.

- The letter I, wmeaning that the word is marked Ffor
immediate execution and so will execute even if
encountered during a colon definition (e.qg. IF}). To
compile an immediate word, precede it by [COMPILE]. See
the entries for [COMPILE] and IMMEDIATE.

- The letter U, meaning the word is the name of a user

variable (a system variable). See the glossary entry for
USER.

e e B e A o BN b 1 s R ;i A B BN e s 2
s Y

(c) A.I.M. Research Glossary of xForth words

! { n addr -——-—) £112]
Store n at address. Ystore®
P (momeee)

Save the stack position in variable CSP. Used for
error checks during compiling.

* (+++ g) £I1

Interpreted or used in a colon definition in the
ftorms

~

1]

cce”

Read the Jfollowing text from the input stream,
terminated by a double-quote. I¥ executing, leave
the address and length of a text string which will
remain equal to the text read at least until the
Q;) input stream is exhausted. I+ compiling, compile so
that later execution will leave the address and
length of such a text string, valid at all times. ot
least 127 characters are allowed in the text. I¥ the
input stream is exhausted before the terminating
double—quote, ERROR is executed. "double—-quote®

4 (udl ——— ud2) £1581

Generate from an unsigned double number udl the
next ASCII character, which is placed in an aoutput
string. Result ud? is the guotient after division by
BASE and is maintained <for further processing. Used
between <# and #>. “sharp"

#$~>% (d -~ 8)

Convert double number d to a text string,
according to the current base for output conversion.
The string contains only digits, except that the
first character is a minus sign if¥ d is negative. If
Nﬂ) 4 is zero, the string consists of one zerc.

Glossary-1
LZ0O

Glossary of xForth words (c) A.I.H.

Research
Otherwise, the leading digit is always nonzero.
-
@> (d —— addr n) (1501

End pictured numeric cutput conversion. Drop d,
leaving the text address, followed by the character
count, suitable for TYPE. "sharp-greater"

#BUFF (=~ n)

A constant returning the number of buffers at
present allocated for virtual memory operations.

12} (ud ——— 0 0) ‘ . (2091

Convert all digits of an unsigned 32 bit number
ud, adding each to the pictured numeric output text,
until remainder is zero. A single zero is added +to
the output string if the number was originally zero.

Use only between <# and #)>. “sharp—-s"
.
#filem (——— n)

A constant returning 8, the number of virtual

memory segments normally accessible to the user.
s (81 82 ———)

Assign the string literal s1 to the string

variable s2, truncating si at the right if necessary.
-+ (81 82 ——— addr3I n)

Concatenate strings. The string s2 is joined to
the right of the string s1, the result being left at
the PAD. The PAD address addr3 and the length of the
combined string is left on the stack.

Glozsary-2
LzZo

L70

(c) A.I.M. Research Glossary of xForth words

> (8 ——— d flag)

Attempt to convert string s to a signed double
number, according to the present BASE. The string may
optionally be preceded by a minus sign, but otherwise
may contain only digits in the present base. If the
conversion succeeds, d contains the result and the
flag is set to TRUE.

e~ >U# (& ~—— ud flag)

Attempt to convert string s to an unsigned double
number. The behaviour is identical with that of &—>#

{which calls %->U#) except that no leading minus is
allowed.

8< (81 w2 ~~— flag)

Return TRUE if s1 is lexically prior to s2, using
AGCII ordering.

Qo= (81 82 —— flag)

Return TRUE if the strings are identical.

S$FIND (& —~—— addr)

Attempt to locate the string s in the vocabulary,
according to the rules for FIND. Identical to FIND
except that string s is used instead of a string read
from the input being interpreted.)

’ { +++ addr) : f1,1711
Used in the form 7 <name>

If executing, leave the parameter field address
of the next word accepted from the input stream. I¢
compiling, compile this address as a literalj later
execution will place this value on the stack. ERROR
is executed if <name> is not found after a search of
CONTEXT and FORTH vocabularies (and any vocabularies

Glossary—3

L o s ik . T w—

Glossary of xForth words () AJI.M.

contained in CONTEXT). Within a colon—-definition,
* <name> is identical to [* <name> 1 LITERAL. “"tick"

'a-FCB (addril ~-— addr2)

Given the address addri of a file control
structure, return the address addr2 of a part of
memory used to communicate file control information
with the operating system.

'a-B8TATUS-BYTE (file —-- addr)

Return the address of a byte in the control
structure of file that is used for information on the
present status of the file (e.g. whether it is open).

'g-name (addr -——— @)

Given the address of a file control structure,
return the address and length of a string containing
the ASCII name of the corresponding CP/M file.

*th—-FILE (n —-—— addr)

Return the address of the file control structure
owning the n’th virtual memory segment, if this
segment has been allocated to a file. Otherwise
return 0. If n is negative or too large ERROR is

executed. The meaning of “too large’ depends on the
system.

(4 {(++4+)

Used in the form (ccc)

Read und ignore characters from the input stream,
until the next right parenthesis. Being a FORTH-79
word, the left parenthesis must be {ollowed by one
blank. It may be used freely while executing or
compirling. ERROR 1is executed if the input stream
ends before a right parenthesis has been found.

Glossary—-4

Resasarch

£1,1223

iz

(c) A.1.M. Resedrch

Glossary of xForth words

(EDITOR) (===) £i3

The name of the vocabulary of internal screen

editor words. Execution makes (EDITOR) the CONTEXT
vocabulary.

(FLUSH) (==)

Request the operating syastem to write all blocks
to mass—-storage that have been flagged as UPDATEd,
but do not necessarily force them or their directory
information to be written physically. (The operating
system may keep them in its own buffers.) Not
intended for normal use.

(ID) (addr ——- g)

Given a name field addrecss addr, leave a string s
containing the name.

(LINE) (nl P2 -~ @)

Return a &4 character string containing the text
from line ni of block n2.

(file—vac) { ===) CI3

The name of the vocabulary of words used
internally by the filing system and not normally

intended to be accessed by other words. Contains the
file $%%,

(akip-until) (addri char --- addr2)
Increase addrl by O or more until the byte

address pointed to centains char or 0. Used by
skip-until but may also be used independently.

Glossary—-5

Blossary of xForth words () A L. M. Research

g (gkip~whila) { addrl char -—— addr2)

¥/M0D

&
L ¥4
<+
+!
o

LzZo

Increase addri by O or more wuntil the byte
address pointed to does not contain char or does
contain O. Used by skip-while but may alsoc be used
independently.

{ nl N2 -~ n3) L1381

Leave the arithmetic product of ni and n2.
"times"

(Nl N2 N3 —— N4) ' £2201

Multiply n!l by n2, divide the result by n3, and
leave the quotient n4, rounded towards zero. The
intermediate product is maintained as a 32 bit value
for greater precision thamn the otherwise equivalent
nl n2 N3 % / "times—divide"

(ni n2 N3 = N4 n9) L1923

Multiply nl by n2, divide the result by n3, and
leave the remainder n4 and the gquatient nS. The
intermediate product is maintained as a 32 bit
value. The remainder has the same sign as ni.

*times—divide-mad®

(Nl N2 === n3) L1213
Leave the arithmetic sum of nl and n2. "plus®
{ n addyr ——— } F1571

Add n to the 16 bit signed value at the address.
"nlus—store"

(Nl N2 ——~ n3)

Glossary—é

(c) A.I.M. Research Glossary of xForth words

ﬁ’ . Apply the sign of n2 to nl, which is left as n3.

+L.00P {n ———) [I,C,1412
Add the signed increment n to the loop index and
compare the total with the limit. Return execution
to the corresponding DO unless the new index is equal
to or greater than the limit (n>0), or unless the new
index is less than the limit (n<Q). Upon exit from
the locop, discard the loop control parameters,
continuing exection beyond +LO0OP. Index and limit are
signed integers in the range (~-32768 ... 32767 }.
"plus—loop” (Comment: It is an unfortunate Standards
Committee decision that the 1limit for n<oO is

irregular. Further consideration of the
characteristic is likely.)

, o ——) 1431

Allot two bytes in the dictionary and store n
there. "comma"

- (Nl N2 === nXx) {1343
Subtract n2 from nl and leave the difference n3.
"minus*"
— (———) £I, 1313

Continue interpretation with the next block.
"next block"

~TRAILING (addr n1 -—— addr n2) {1481

Adjust the character count nl of a text string
beginning at addr to exclude trailing blanks, i.e.
the characters at addr+n2 to addr+ni-1 are blanks.
ERROR is executed if ni is negative. “dash-trailing”

-/ . (R ——) 1933

Glossary-7
Lzo

Lo

Glossary of xForth words (c) A.1.M. Research

Display n converted according to BASE in a
free—field format with one trailing blank. If n<©
display a negative sign. “dot"

M (44+) £1,133]

Interpreted or used in a colon definition in the
form:

" ocece®

Read the following text Ffrom the input stream,
terminated by a double-quote. If executing, transmit
this text to the selected output device. I+
compiling, compile so that later execution will
transmit the text to the autput device selected at
execution time. At least 127 characters are al lowed
in the text. If the input stream is exhausted before

the terminating double-quote, ERROR is executed.
"dot—quote”

« BABE ¢ ~—)

Type the present base for numeric input/output,
in decimal.

.COVOC_—(===) ’ // 7
- é/ / - //7"7
the n/mE'mf the esent c gntext vocgéiiarvgf/

« CPU (—==)

Type the name of the CPU the present xForth
version was designed for.

reaent céipeﬁi vn%épufg:;7

R { Nl N2 ——=)

blossary—6

e aom S i ot . W ~ wmwmmﬂ

@

Lzo

{c) A.I1.M. Research

-8IZE

Glossary of xForth words

Type a signed number in the current base, right
aligned in a field of width n2.

(===)

Type the number of CP/M 256 byte pages that need ‘
to be SAVEd to make an executable copy of xForth.

SBTACK (———)

Type a copy of the stack on the currently
selected output device, without disturbing the stack.

L8ETORE (==)

Type the number of bytes presently available for
dictionary and stack expansion.

« VERBION (=—)

/MOD

Type the version number of xForth being used.

{nl n2 - n3) £1781

Divide nl1l by n2 and leave the quotient n3,
rounded towards zero. Overflow or divide by zero may
not be detected on some processors, for efficiency
reasons. I+ it is not faulted, division by zero
gives the result -1. "divide®

{ nl N2 == n3 n4g) L1981

Divide ni by n2 and leave the remainder n3 and
the guotient n4a. n3 has the same sign as nl.
"divide—-mod”

(n —— flag) £144)

Glossary—9

R AR

Glossary of xForth words (c) A.I.M,

Research
True if n is negative. Yzero—-less" w
o
Qs (n ~—— flag) 1803
True if n is zero. “zero-equals"
0> (n ~—— flag) 1181
True if n is positive. “zero-greater"
OBRANCH (flag ~-—-)
The execution time procedure to branch

conditionally. I+ flag is O the following in-line
number is added to the interpretive pointer (in BC in
8080/7180 systems) to branch ahead or back. Compiled
by IF, UNTIL and WHILE.

e 1+ (n === n+1) £1071 ﬁ
Increment the stack top. ‘“one-plus*
1+! { addr -———)

Add 1 to the 16 bit number at addresg,
“"one-plus—store"

1- (n ——= n-1) 10351
Decrement the stack top. “one-minus®
1~ { addr --——)

Subtract 1 from the 16 bit number at address.
"one-minus—store"

Lz Glossary-10

LZo

(c) A.I.M. Research

2!

2%

2%

29

2DROP

2DupP

Z0VER

28WAP

Glossary of xForth words

(d addr -—--)

Store the double number d in 4 bytes starting at
addr. "two-staore”

(N == 20n)

Double the number on the stack top. "two—-times”

(N —=— n+2) 13583

Add 2 to the stack top. "two-plus"

(n ~=— n=-2) : . L1293

Subtract 2 from the stack top. “two-minus"

(addr ——- d)

Fetch a double number from 4 bytes starting at
addr. “two-fetch"

(d ——-)

Discard the double number on top of the stack.

(d ———d d)

Duplicate the double number on top of the stack.

(d1 d2 ——- d1 d2 d1)

Copy the second top stack double number.

(dl d2 ——— d2 df)

Glossary-11

Glossary of xForth words ()

A.I.M. Research

Exchange the top two stack double numbers,

79-8TANDARD (~—) fii91

Execute ensuring that a FORTH-79 Standard system
is available. Note: On xForth systems with version
numbers 1.1x, this merely sets the FORTH vocabulary,
which 1is guaranteed to contain all the FORTH-79
words. However, it is the user’s responsibility to
ensure that none of these words has been redefined.
It may be that the standard expects redefinition to
be faulted: this is under consideration.

5 (+++) [116]

A defining word used in the form:
t <name> ... j;

Select the CONTEXT vocabulary to be identical to
CURRENT. Create a dictionary entry for <name)> in
CURRENT, and set compilation mode. Words thus
- defined are called "colon—-definitions". The
dictionary entry created is temporarily made
invisible to FIND by setting a ‘“smudge" bit. The
compilation addresses of subsequent non-immediate
words from the input stream are stored into the
dictionary to be executed when <name> is executed
later. Immediate words are executed as encountered.

Words in the input stream are 1looked up in the
dictionary according to the cenvention for FIND. This
means that the CONTEXT vocabulary is searched first,
followed by any vocabularies contained in the CONTEXT
vocabulary, in the reverse order they were defined.
Note that all vocabularies chain to FORTH eventually,
50 FORTH is always searched. The chaining is such
that an entire vocabulary is always searched before
another one is tried; this includes definitions made

atter the vocabularies were originally chained
together. :
if a word is not found, conversion and

compilation of a literal single or double number or
(with the floating point option installed) a floating
point number is attempted, with regard to the current
BASE. That failing, ERROR is executed.

Glossary—12
LzZo

(c) A.I.M. Research Glossary of wForth words

D

$ CODE

P

\w}

LZo

Mote that colon is not immediate in FORTH-79,
though it is made so in FIG-Forth and in the xForth
DEBUG vocabulary in corder to catch the common error
of a missing semicolon.

"colon”
(=== {1,C, 1961
Terminate a coalon definition and stop

compilation. Make the latest word created visible to
FIND by unsetting its smudge bit. If compiling from
mass storage and the input stream is exhausted before
encountering 3 ERROR is executed. “semi—colon®

(—m——) ' [1,C,2063
Define the run—time action of a word created by a

mixed high and low level defining word. Used in the
forms

¢ <name> ... CREATE ... 3CODE ... END-CODE

and later <name> <namex>

Marks the termination of the defining part of the
defining word <name>, sets the CONTEXT vocabulary to
ASSEMBLER, and begins the definition of the run time
action for words such as <namex> that will later be
defined by <named>. On execution of <namex> the

assembler language sequence between s CODE and
END-CODE will be entered. “"semicolon—code®

(Nl n2 —— flag) L1391

True if nl is less than n2. "less—than

Glossary-13

Glossary of xForth words (c) A.I.M.

Research

T

<# ¢ == [1691

Initiali:e pictured numeric output. The words:
<# # #S HOLD SIGN #>
can be used to specify the conversion of a double

precision number into an ASCII character string
stored in right-to-left order. "less—-sharp”

<< { +++)

Read the next word in the input stream as a CP/M
tile name, and make that file the spooled input for
reading with getc. “"redirect-in"

o (Nl N2 ——— flag)

True if nl is less than or equal to n2.

<> (nl N2 -—— flag)
True if nl is not equal to n2. "not-equal™
<CMOVE> (addrl addr2 u ———)

' Move u bytes from addril to addir-2, if u is
nonzero. Overlapping moves are handled correctly.
"bidirectional ~cmove"

= (n1 N2 ~——= flag) ' 1732
True if nl is equal to n2. "equals"
L] (===)
Make the previous spooled output for putc the new
- spocled input for getc. “pipe"

Glossary—14
tzZo

LZo

- SR
(c) A.I.M. Research Glossary of xForth words
> { nl N2 ——— flag) L1023
True if nl is greater than n2. “greater—~than®
S (N1 N2 ——— flag)
True if nl is greater than or equal to n2.
>> { +++)
Read the next word in the input stream as a CP/M
file name, and copy to that file the spooled output
written previously by putc. ‘“"redirect-out”
>IN (—— addr) LU, 2011
Leave the address of a variable that contains the
present character offset within the input stream.
(Range 0 ... 1023) “to-in"
SLINE (——— addr)
A variable that is incremented by CR May be used
for paging control etc.
>R (n ——) {C,2001

Transfer n to the return stack. Every >R must be
balanced by a R> in the same control structure
nesting level of a colon-definition. “to-r*

? (addr —=—) L1941

Display the signed 16 bit number at the address.
“question—-mark"

Glossary—195

o R S 1 i bbb FLARL e 3 8 g s 4 sl

Glossary of xForth words

2 BRMNH gp FRRp

(c) A.I.M, Research

cComp (=)

Execute ERROR i+¢ not compiling.

?CEP (===)

Execute ERROR if the

present stack position
differs from that saved

in variable CSP.

PDEPTH (1 ~——)

Execute ERROR if the

2 stack hasg less than n
entries below n iteel s,

?DUP (N~~~ n) or (n - nn) £ig41
Duplicate n if it is non-zeraqo. "query-dup"
PERROR ¢ flag n -—-)
If flag is TRUE, execute N ERROR. 1+ flag isg
false, remove it and n and continue normally,
PEXEC (==)
Execute ERROR if not executing.
PLOADING { =~)
Execute ERROR i+ not loading from virtual memnory.
PPAIRE (N1 N2 ——m 3
Execute ERROR i+¢ nl is not equal to n?2. Used in
checking syntax of conditionals.

Lzo

R L ot s
Y i e . o sttt ; o AN

(c) A.I.M. Research Glossary of xForth words

‘. PPAUSE (——~-)

I1f the variable XOFF-CHAR contains ~1, do
nothing. Otherwise, execute ?TERMINAL and if no key
has been struck, do nothing; if control/C has been
struck, execute 6 ERROR; if the key has the ASCII
code in XOFF-CHAR then pause until another key is
struck and then continue unless the key is control/C
(which aborts as before). Called by CR after every
new line is output.

PETACK (===)

Execute ERROR if the stack is out of bounds.

PTERMINAL (-~ flag)

Return TRUE if any key has been struck, leaving
the actual key to be read if desired from LAST-KEY

@ (addr ~—— n) L199]
lLeave on the stack the number contained at the
address. “fetch"
ABORT { ===} £i013
Clear the data and return stacks, setting

execution mode. Return control to the terminal and
execute the code pointed to by XSIGNON.

ABS (n - Inl) . £1083
Leave the absolute value of n. "absolute”
ALLOT (n ———} [154]
Add n bytes to the parameter field of the most
W’ recently defined word. The bytes are not initialized

Glossary—-17

teo

O S AL b L s AN LDV A A i b
Glossary of xForth words () A.I.M. Research
or changed by ALLOT.
_ @
AND (Nl n2 ~—= n3) £1833
Leave the bitwise logical *and’ of nil and n2.
ABCII { +++ char)
Read the next word from the input and leave the
ASCII code of its first character.
ASBEMBLER { ==) LI,166]
The name of the vocabulary of assembler words.
Execution makes ASSEMBLER the CONTEXT vocabulary.
B/BUF (—~—=— 1024)
s A constant returning 1024, the number of bytes in
a virtual memory buffer.
BASE (=—~ addr) CU, 1151
Leave the address of a variable containing the
current i1input-output numeric conversion base, which
must lie in the range 2...70.
BEGIN { ~——=) L1,C, 1471
Used in a colon definition in the forms:
BEGIN ... flag UNTIL or
BEGIN ... flag WHILE ... REPEAT
BEGIN marks the start of a word sequence for
repetitive execution. A BEGIN-UNTIL loop will be
repeated until t. flag is true; a BEGIN-WHILE-REPEAT
loop will be repeated until the flag is false. The
words after UNTIL or REPEAT will be executed when @
R either loop is finished. flag is always dropped

Glossary—-18
Lzo

(c) A.I.M. Research Glossary of xForth words

after being tested.
The effect of BEGIN and the other loop words is
achieved by the fact that they are immediate and so

can calculate branches, and can compile appropriate
code, while a colon definition is being formed.

BELL (~==)

Send ASCII code 7 to the terminal. This normally
sounds a noise-maker.

BINARY (—=—)

Set the base for numeric input/output to 2.

BL (——~ 32)

A constant returning the ASCII code of a blank.

BLANKE (addr n —~—-)

Fill memory with n blanks starting at addr. I+
n{=0 do nothing.

BLK { ——— addr) i, 1321

Leave the address of a variable containing the
number of the mass storage block being interpreted as
the input stream. If the content is zero, the input
stream is taken from the terminal. "b-1-k"

BLLOCK (n —— addr) ’ Ei1913

Leave the address of the first byte in block n.
I+ the block is not already in memory, it is
transferred from mass storage into whichever memory
buffer has been least recently accessed. If the
block occupying that buffer has been UPDATEd (i.e.
marked as modified) it is rewritten onto mass storage

Glossary—-19

Glossary of xForth words

(c) A.I1.M. Research

before block n is read into the buffer. n is an
unsigned number. I+ correct mass storage read or
write is not possible, ERROR is executed. Only data
within the latest block referenced by BLOCK is valid
by byte address, due to sharing of the blaock buffers.

The execution time procedure to branch
unconditionally. The following in—-line number is
added to the interpretive pointer (in BC in 8080/780

systems) to branch ahead or back. Compiled by ELSE
and REPEAT.

BUFFER (n —~— addr) L1303

This is used by BLOCK but not normally by other
words. Obtain the next block buffer, assigning it to
block n. The block is NOT read from mass storage.
I+ the previous contents of the buffer has been
marked as UPDATEd it is written to mass storaqge. If
correct writing to mass storage is not possible, w
- ERROR is executed. The address left is the first
byte within the buffer for data storage. n is an
unsigned number.

BYE (~—)

Call SAVE-BUFFERS and then return control to the
operating system.

c! (n addr «——) [2191
Store the least significant 8 hits of n at addr.
Yc-store"
c, (bytel -—~)

Allot a byte in the dictionary, storing bytel
there.

e

Lz Glossary—-20

{120

{(c) A.I.M. Research Glossary of xForth words

C/L (=== n)

A constant returning the number of characters in
a line of output. {Get to 80 on delivery.)

ca { addr ~—— byte) 1547

Leave on the stack the contents of the byte at
addr {(with higher bits zerae, in a 16 bit Ffield).
Yc—ftetch”

CAN-KEY (——- addr) | Lyl

A system variable containing the ASCII code of a
key used during input by EXPECT and GQUERY to remove
all characters so far typed.

CABE (n - n) £1,c3
Used in a colon definition in the form

CASE =e. OF ... ENDOF
«es OF ... ENDOF
DEFAULT ...
ENDCASE

Execute the first part between the OF ... ENDOF for
which the stack top on entry to CASE matches the
stack top on entry to OF. Note that the stack top is
dropped by OF if the OF ... ENDOF part is performed.

I¥ any OF ... ENDOF part is performed, control passes
from ENDOF to beyond ENDCASE. If there is no match
erecute any code between the final ENDOF and DEFGULT
or ENDCASE, then execute the DEFAULT part if there is
ona. Note that DEFAULT does not remove the stack
top, and ENDCASE only removes the stack top if there
was no DEFAULT. In all cases continue beyond ENDCASE.

CFA (addrl -~~- addr2)

Convert the parameter field eaddress addrl of a
definition to its code field address addr2. Not

Glossary-21

S xForth.

Glossary of xForth words (c) A.I.M. Research

guaranteed to be available in future versions of

CLOSE (addr -—— flag)

Attempt to close the file whose file control
structure is at addr, leaving a true flag if
successful and a false flag otherwise.

CMOVE (addril adder2 n -——) L1831

Move n bytes beginning at addri tc addr?2. The
contents of addrl are moved first, then those of
addrl+1l and so on. If n<=0 nothing is moved. See
also <CMOVE>. “c-move"

CODE {(+4+4+) £1113]

A defining word used in the form:
CODE <name> ... END-CODE

to create a dictionary entry for <name>», to be
defined by a following sequence of assembly language
words. ASSEMBLER becomes the contesxt vocabul ary.

coLb { ——=)

Reset the system to the state it had when PROTECT
was last called, or to the initial start-up state.
This includes removing all new definitions, resetting
the filing system without saving buffers or closing
files, and resetting all system and execution
variables. Finally call ABORT.

COMPILE (——-) £C, 1441

When a word containing COMPILE executes, the 1&
bit wvalue following the compilation address of @
. COMPILE is copied (compiled) into the dictionary.

Gloszary-—-22
tego

(c) A.1.M. Research

Blossary of xForth words

wﬂ) Thus COMPILE DUP will copy the compilation address of
DUP and COMPILE [O , 1 will copy zero.

CONFIG (—==)

Load block 2. This is usually set up to conduct a
question and answer session with the user to set the
values of things like DEL-KEY.

CONBTANT (n +++) L1833
A defining word used in the form:
n CONSTANT <name>

to create a dictionary entry for <name>, leaving n in
its parameter field. When <name)> is later executed,
n will be left on the stack.

Qw' CONTEXT (=-- addr) (U, 1511

Leave the address of a variable specifying the
vocabulary in which dictionary searches are to be
made (e.g. by FIND and during compilation).

CONVERT (di addrl --— d2 addr2) L1933

Convert the text beginning at addri+i to a double
number, with regard to BASE, and add it to di to give

d2. addr2 is the address of the first
nocn—-convertible character.

COPIEB (nl n2 n3 ~—-)

Copy block nl to n2, ni+l to n2+1 etc until n3

blocks have been copied. Overlapping shifts are done
correctly.

i corPy (nl n2 =)

Lzo Glussary—-23

it70

Glossary of xForth words {c) A.I.M.

Research

Copy block nil to n2.

COUNT (addr --- addr+i n.) £139]

Used to convert text from packed to string form:
in packed form the number of characters is stored in
the first byte, so COUNT merely returns the contents

n of that byte and increments the address. Range of
N 1s 0,...4255.

Kinamed DOS -CilL
IPM-ERLL { n1 byte ~—— n2)

Make a call to the CP/M system for function byte
with nl in the DE register. The contents of the HL

register on return are left as n2. In CP/M1.4 the
contents of BA rather than the contents of HL are
left.

Ponamed DOS-Coa LG
_EPH-CALAL (n bytel —— byte2)

Execute CPM-CALL and then mask off the high order
byte of the result.

CR (=~) Li601]

Make the current output device take a new line.
(Send ASCII return and line feed.) Then increment
the variable D>LINE and execute 7?PAUSE. Any word that
produces output thus automatically checks for

control/S (or other pause character set in XOFF~CHAR)
and for control/C.

CREATE (+++ £239]

A defining word used in the form:

CREATE <name> to create a dictionary entry for
<name >, without allocating any parameter field
memory. When <{name> is subsequently executed, the
address of the first byte of its parameter field is
left on the stack unless DOES> has modified the

Glossary-24

(c) A.I1.M. Research Blossary of xForth words
) dictionary entry.
CRS {n ——)

Perform CR n times if n>0. Do nothing if n<=Q,

C8-TABLE { —~~— addr)
Return the address of the base of a table used tn

initialize system variables on initial start or after
COILD is typed.

CeP {(——— addr)

A variable used for temporarily storing the stack
pointer position. Used +For error checks during
compiling.

ﬁﬂ) CTRL (+++ char)

Read the next word from the input and leave the
low order S5 bits of the ASCII code of its first
character.

CURRENT (——— addr) fU,1373

Leave the address of a variable specifying the
vocabulary into which new word definitions are to be
entered.

CURBOR (nl n2 —-——)

Execute the code pointed to by XCURSOR. The code
should move the terminal’s cursor to row nl and
column n2, relative to 0 0 as the top left corner.

l D+ (dl d2 ——— d3) £2417

Glossary—-29
LZO

Glossary of xForth words {€) A.1.M. Research

Add signed double numbers dl and d2 and leave the q%%

et result as d3. “d-plus®
D= (di n == d2)

Apply the sign of N to the double number di,
leaving it as d2.

D. (d ~—=) [1291

Type a signed double number in the current base,
followed by a blank. Display the sign only if
negative. “d-dot” .

D.R (dn =~}

Type a signed double number in the current base,
right aligned in a field of width n. Display the
sign only if negative. “d-dot-r"

-
D« (d1 d2 === flag) {2441

True i1f dl is less than d2. “"d-less-than”

DABH (di —~—- d2)

Leave as a positive double number d2 the absolute
value of a double number di. The result lies in the
range O,...,2147483447.

DEBUG { ===) ' N

The vocabulary used for debugging and tracing.

DECIMAL { ——~—) L1971

Set the input-output numeric conversion to 10.

Glossary-26
LzZo

SN o A e Sk R 0, i Ao

(c) A.I.M. Research Glossary of xForth waords

DEFAULT (n ~==n) £i,Cc3

At compile time, arrange for ENDCASE not to

compile code to drop the stack top. At execution
time, do nothing.

DEFINITIONS (=~=) £158351

Set CURRENT to the CONTEXT vocabulary so that
subsequent definitions will be created in the
vocabulary previously selected as CONTEXT.

DEL~-KEY (——- addr) , (AWM

A system variable containing the ASCII code of a
key used during input by EXPECT or QUERY to remove
the last character typed.

DEPTH (~==n) £23891

Leave the number of 16 bit values contained in
the data stack, before n was added.

DIR (n —-—)

Display the directory of the disc in CP/M drive
n, where nx=l gives drive A and so on.

DLITERAL (d ———)

If compiling, compile the stack double value d as
a 32 bit literal, to be left on the stack at later
execution.

DNEGATE (d ~—— —d } {2451

i“ Leave the twos complement of a double number.

Lz0 Glossary—27

Glossary of xForth words (c) A.1.M.

Research

DO (nl N2 ===) £1,C,142]
Used in a colon definition in the forms
DO ... LOOP or DO ... +LOOP

Start a counting loop. The loop index begins at n?2
and terminates according to a test on the present
value of the index and the limit nl. See LOOP or
+LOOP for details of termination. Note that the loop
is always performed at least once, because the test
is made at the end. The index I only returns a valid
quantity between DO and LOOP or +L0OOP.

DO ... LOOP may be nested to a great depth: the

precise value depends on the system but will usually
be at least 20.

DOES > { —=—— £I,C,1683

Define the run-time action of a word created by a
— high-level defining word. Used in the form: @

: <name> ... CREATE ... DOES> ... 3

jand later <name> <namex)>

Marks the termination of the defining part of the
defining word <name> and begins the definition of the
run time action for words that will later be defined
by <name>. On execution of <pamex> the sequence of
words between DOES> and ;3 will be executed, with the

address of <namex>’s parameter field on the stack.
"does"

bp (—=—— addr) ful

A system variable, the dictionary pointer, which
contains the address of the next free memory location

above the dictionary. Do not alter directly: read by
HERE and change by ALLOT.

DPL (~—— addr) &

1z0 Glossarv—28

|
(c) A.I.M. Research Glossary of xForth words
1' A variable that contains the number of digits to
et the right of the decimal on double number input. It
may also be used to hold output column location of a
decimal point, in user generated <formatting. The
value on single number input is -1,
DROP {n ——) L2331
Discard the number on top of the stack.
DupP {n —— nn) 2033
Duplicate the number on top of the stack.
ELEBE (-~) [I,C,1671
Used in a colon definition in the form:
IF ... ELSE ... ENDIF or
) IF ... ELSE ... THEN
(The THEN form is the FORTH-79 standard.) ELSE
executes after the true part following IF and passes
execution to just beyond ENDIF or THEN. It also acts
as a marker for the part to be executed if there is a
false flag on the stack when IF executes. ELSE has
no effect on the stack. See IF.
EMIT (char ——) [2071]
Transmit char to the currently selected output
device and increment QUT.
EMITP (char ———)
Transmit char to the CP/M list device (the
‘printer’). Do not increment OUT or look to see what
devices are selected.
ﬁ;) EMITT (char ———)

Lz0 Glossary—29

e

Lzo

Glossary of xForth words () A.TI.M.

Research

Transmit char to the CP/M console device (the

‘terminal’. Do not increment OUT or look to see what
devices are selected.

EMPTY (——=)

Remave all unprotected definitions without
altering the stacks. See PROTECT.

EMPTY-BUFFERS (===) £14%51

Mark all blocks as empty, whether or not they
were actually marked as updated.

END-CODE (===)

Terminate a code definition, resetting the
CONTEXT vocabulary to the CURRENT vacabulary. If no
errars have occurred, the code definition is made
available for use.

ENDCABE (~—-) ar (n ——=) (I,C3
At compile time, complete the action of a CASE
statement as follows. Fill in all the branch
addresses from instances of ENDOF. Then if DEFAULT
has not been executed, compile DROP so that at
execution time, the stack top will be dropped i+ the

point where ENDCASE was is reached rather than being
Jjumped past from an ENDOF.

ENDIF (==~ (1,c1

A synonym for THEN

ENDOF (——) £1,C3

Pass control tn beyond the next ENDCASE.

Glossary—-30

LZO

(c) A.I.M. Research

Glossary of xForth words

ENBURE-LINE (n -—)

If there are less than n character positions
remaining on the present output line, execute CR .

EOF {(=== n)

A constant returning the value (26) of the CP/M
end-of-file marker.

ERAGE { addr n ——— }

Fill memory with n zeroes starting at addr. If
n<=0 do nothing.

ERROR L B

Execute the code pointed to by XERROR. By
default, the code is STD-ERROR which issues error
message n and executes QUIT.

EXECUTE (addr ———) L1631

Execute the dictionary entry whose compilation
address is on the stack,.

EXIT { womeme) EC, 1171

When compil ed within a colon—~definition,
terminate execution of that definition, at that
point. May not be used within DG ... LOOP or i€
anything has been left on the return stack.

EXPECT (addr n «~--) C1a91

Transter characters from the terminal beginning
at addr, upward, until a "return" has been received
or the count of n has been reached. Take no action
for nd=0, One or two nulls are added at the end of

Glossary—-31

Glossary of xForth words () A.I.M. Research

the text.

EXPECTe (addr nl -—- addr n2)

Execute EXPECT and return the address of the

string read from the terminal, with its actual length
nl. {Note n2<=n1l.)

FALSE (=== 0)

A constant returning the value of a FALSE +laq,
namely O.

FCREATE {(addr ——-)

Given the address of a file control structure,
attempt to create a new disc file with the naame given
in the structure. If unsuccessful, execute ERROR.

- @

FENCE (—=—= addr) ful

A system variable containing an address below
which FORGET will refuse to work. Set by PROTECT.

FILE { +4+)
A detfining word used in the forms
FILE <name)>

to create a Ffile control structure. The initial
operating system name of the corresponding file is
set to be the same as the xForth name. Since names
are checked +for correct operating system syntax,
ERROR is executed if <name> (after conversion to
upper case 1f . cessary) is not a legal operating
system name. Execution of <name)> leaves the address

of the file control structure on the stack. See also
fname! and *s—~FCB.

Glossary—32
Lzo

() A.I.M. Research

)

g

FILL (addr n byte ———) £2341

Fill memory beginning at addr with a sequence of
n copies of byte. If n<=0 take no action.

FIND (+++ addr) [203]

Leave the compilation address of the next word,
which is read from the input stream. I+ that word
cannot be found in the dictionary after a search of
the CONTEXT vocabulary and all vocabularies contained
in it, leave 0. Note that all vocabularies chain to

“J' FORTH eventually, so FORTH is always searched.

- Chaining is done in such a way that all entries in a
vocabulary are searched before the next vocabulary is
tried.

FIRST (=—— addr)

A constant returning the address of the first
virtual memory buffer.

FORGET (+44) £1861]
Used in the form:
FORGET <name>

Set the CONTEXT vocabulary to CURRENT and attempt to
find <name’> according to the conventions for FIND. If
<name> cannot be found, ERROR is executed. If <name)>
is found, check whether it is protected and if S0,
cause an erroar; if not, remove <name> and all words

) added to the dictionary after <name), regardless of
h their vocabulary.

Glossary-33
LzZzo

e

tgo

Glossary of xForth words {c) A, I.M. Research

FORTH (===) £i,1873

The name of the primary vocabulary. Execution
makes FORTH the CONTEXT wvocabulary.

New definitions become a part of FORTH until a
different CURRENT vocabulary is established.

User wvocabularies conclude by ‘chaining®™ to

FORTH, w0 it should be considered that FORTH 1is
‘contained’ within each user’s vocabulary.

BET-FILE { nl —~ addr N2)
For block nl, Ffind the corresponding file i+
there is one, and return its address addr and the

cperating-system dependent sector number n2 of its
base. If no file owns block nil, execute ERROR.

HERE (-—— addr) {1681

Return the address of the next available
dictionary loccation.

HEX (o)

Set the base for numeric input/output to 16.

HLD { ——— addr)

A variable that stores the address of the latest
character of text during numeric output conversion.

HOLD { char ———) £1751

Insert char into a pictured numeric output
string. May only be used between <# and #>.

Gl ossary—34

EONR

J

Lo

(c) A.I.M. Research Glossary of xForth words

I (==— n) €C, 1362

Copy the loop index onto the data stack. May be
only used in the form:

PO« . « 1 . « . LOOP o-r DO . . o I . . . +LOOP

iD. - (addr ———)

Given a name field address addr, type the nane.

IF (flag ——-) | [(1,C,2101

Used in a colon~definition in the forms:

flag IF . . . ELS8E . . . THEN or
flag IF . . . THEN

If flag is true, the words following IF are executed
and the words following ELSE are skipped. The E1SE
part i1s optiocnal.

If flag is ftalse, words between IF and ELSE, or
between IF and THEN (when no ELSE is used), are
skipped. IF-ELSE-THEN conditionals may be nested.

In xForth, ENDIF is a synonym for THEN.

IMMEDIATE (——— 3 L1031
Mark the most recently made dictionary entry as a

word which will be executed when encountered during
compilation rather than compiled.

/)
INDEX/ | ¢ ni n2r=-) //\‘- e

{
! /
i /

/ /
\ / Exefute \PAGE then | type/ the| first
k\// each o bluﬁ#s ?1 to 2, /executing CR
R characters. \May be st d by hitting c
\ Y, N4
\

INBTALL-0%8 { +++)

Glossary—39

Glossary of xfForth words (i Heul.M. Research

Read the next word from the input stream as a
CP/M $1le and make it the CP/M name of a file control
structure owning the segment of virtual memary beyond
the last user—accessible segment. The Ffile control
structure has xForth name t$9 in vacabul ary
(file-voc). It is used Ffor temporary allocation by
words such as LOAD-FILE.

INTERPRET { === 3
Execute (or compile, if STATE iz nonzera) the
text from the present input. The input is from the

keyboard if the value of BLK is nonzero and from the
virtual memory block numbered by BLK otherwise.

J { === n) | [C, 2553

Return the index of the next ocuter loop. May
only be used within a nested DO-LOOFP in the form:

DO ... DO ... J ... LOOFP ... LOOP

KEY {(=== char) £1003

Leave the ASCII value of the next available
character from the current input device.

L./8 { -~~~ n)

A constant returning the number of lines in a VDU
screen. {(Get to 24 con delivery.)

LABEL { bt)
A defining word used in the form
LABEL <{name)
to set the CONTEXT and CURRENT vocabularies to

ASSEMBLER and create a dictionary entry for <named.

Note that <name’> will therefore be in the ASSEMBLER
vocabulary.

Gloussary-36&6

(c) A.1.M. Research

LABT-KEY (== char)

Return the ASCII code of the last key read by KEY
or 7?TERMINAL.

LATEST (~—— addr)

Leave the name field address of the most recently
created word 1n the CURRENT vocabulary.

Glossary of xForth words

LEAVE (———) ' £c, 2131

Force termination of a DUO-LOOP at the next LOOP
or +LO0OP by setting the loop limit equal to the
current value of the index. The index itself remains
unchanged, and execution proceeds normally until the
loop terminating word is encountered.

LFa { addrl --— addr2)

Convert the parameter field address addrl of a
definition to its 1link +field address addrZ2. bNot
guaranteed to be available in future versions of
®Forth.

LIMIT { ——— addr)

A constant returning the address immediately
beyond the last address used by xForth. By careful
alteration of the value put into LIMIT by SYSADART
the user can create areas of memory which can be
reserved for other programs.

LIST {n —~=) L1093

_ List the ASCII symbolic contents of screen n on
the current ocutput device, setting SCR to contain n.

’ n is unsigned.

Glossary—-37

Glossary of xForth words (c) A.I.M. Research

LIST-FILE {(+4++)
Read the next word from the input stream as a
CP/M file name and list the file in LIST form if the

file extension is .BLK Otherwise assume the file is
an ASCII text file and list it as such.

LIgT8 A 1n2-—/:\\ /’ ™ \
LIST locks \i;//io n2 in€lusi ,//é::)&zg//;&J

etween each.
|
LIT (‘
%}ﬂé/;im i
by
N ack the 16 bit quantity following i

for in-l1

- LITERAL (n ——-) £1,215]

I¥ compiling, then compile the stack value n as a
16-bit literal, which when later executed, will leave
n on the stack.

LOAD (n ==~ {2021

Begin interpretation of screen n by making it the
input stream; preserve the locators of the present
input stream (from >IN and BLK). If interpretation is
not terminated explicitly it will be terminated when
the input stream is exhausted. Control then returns
to the input stream containing LOAD, determined by
the input stream locators >IN and BLK.

LOAD-FILE (+4++)

Read the next word from the input stream as a
CP/M file name and LOAD the first block of the file

if the file extension is .BLK Otherwise ERROR is @
- executed.

Glossary—-38
Lz0 oBEary

Lzo

(c) A.1.M. Research Glossary of xForth words

LOOP (===) [i,C,1241]

Increment the DO-LOOP index by one, terminating
the loop if the new index is equal to or greater than
the limit. The limit and index are signed numbers in
the range ~32,768,...,32,767.

ME& { nl n2 -—— d)

Multiply nl1 by n2, leaving the result as a 32 bit
signed number d.

M/ { d ni - n2 NI)

A mixed magnitude operator that leaves the signed
remainder nZ2 and signed quotient n3 from a 32 bit
signed dividend d and a 16 bGit signed divisor nl.
The remainder takes its sign from the dividend.

M/H0D (udl ul -~=—— u2 ud2 ?

An unsigned mixed precision version of /MOD,
leaving a double quotient ud2 and a single remainder
u?2 obtained by dividing the single number ul into the
double number udl.

MAR { nl n2 ~—— n3 } 2183

lLLeave the greater of two numbers. "max "

MEBBAGE (i ———)

Type error aessage n but continue normally.

MIN (n1 N2 ~=—= n3) L1273

Glossary—39

Lzo

Glossary of xForth words (c) A.I.M. Research
Leave the lesser of two numbers. "min" @«
MOD (nl n2 ~—— n3) L1041
Divide nil by n2, leaving the remainder n3, with
the same sign as nl. "mod"
MOVE (addrl addr2 n —--) L1833

Move the specified quantity n of 16-bit memory
cells beginning at addrl into memory at addr2. The
contents of addrl is moved first. I+ n is negative
or zero, nothing is moved.

MYBELF (===)
Compile a reference to the latest definition

(usually the definition MYSELF is contained in).
Allows recursion.

NEGATE (n —— -n) L1773

Leave the two’s complement of a number, i.e., the
difference of 0 less n.

NEXT (——— addr)

A constant returning the address of the xForth
inner interpreter, which aust be jumped to by
assembler words if normal threading is to resume.

NFA (adderi ——— addr?)

Convert the parameter field address addrl of a
definition to its name field address addr2. Not

guaranteed to be available in future versions of
xForth.

Glossary—-490

ot i 03t B s e

. T

(c) A.1.M. Research Glossary of xForth words

NOOP (===)

e

Do nothing.

NOT (flagl =~ flagl) [1653

Reverse the boolean value of flagl. This is
identical to 0=,

NUMBER (addr —-—— d)

Convert a character string left at addr, with a
count at addr-1, to a signed double number d
according to the present value contained in BAGE. I+
a decimal point is encountered in the text, its
position will be given in DPL but no other effect
OCCUrs. 1f numeric conversion is impossible, ERROR
will be executed.

) aF {(nl n2 === ni1) or (Ni N2 =) L1,Cc3
If n1 is not equal to n2, pass control to beyond
the next ENDOF, leaving nil on the stack for further

testing. If nil=n2, continue execution beyond OF
having removed nl and n2 from the stack.

OPEN {(addr -—— flag)

Attempt to open the file whose file control
structure is at addr, leaving a true flag i+
successful and a false flag otherwise.

OR { Nl N2 ~~=— n3) . L2231

Leave the bitwise inclusive—or of two nuonbers.

ouT (——— addr)

) A variable holding the present position of the
b output pointer. Incremented by EMIT, reset to O by

Lzo Glossary—41

e

Glossary of xForth words () A.I.M. Rasearch

CR and adjusted by all other xForth cutput words.

OVER (N1 N2 - ni N2 nt) C17013

lLeave a copy of the second number on the stack.

P! (bytel byte2 ——)

Send bytel to the 8080 port address given by
byte2. ‘"p-store"

P (bytel --- byte2)

Return the byte ocbtained by inputting from the
8080 port address given by bytel. “p-fetch"

PAD { == addr) L2261
The address of a scratch area used to hold
character strings for intermediate processing. The

minimum capacity of PAD is &4 characters (addr
through addr+&3).

PAGBE (==)

Execute the definition pointed to by XPAGE.
Usually causes a paper throw or blanks a screen.

PFA { addrl -——— addr2)
Convert the name field address addrl of a

definition to its parameter field address addr2. Not

quaranteed to be available in future versions of
xForth,.

PICK (Nl —~— np2) [2403

Glossary—42

LzZ0

(c) A.I.M. Research Glossary of xForth words

PREV

k

\

PRINTER-DN? //;”L—— adar)/
|/ & varfablé that if skt t
//cop a?/ﬁﬁé the printér. \Tog

Return the contents of the nil-th stack value, not
counting nl itself. ERROR is executed i+ n is less
than one.

2 PICK is equivalent to OVER.

(~~~ addr) tul

A system variable containing the number of the
block most recently referenced via BLOCK. The high
bit of the block number is set if the block is
updated.

/

EXP&QT T omay h5~s and et under

PROTECT (=== }

et the initialisation sequence so that the
present state will be restored by COLD. Set the
variable FENCE so that all definitions presently
existing are protected against removal by FORGET or
EMPTY.

QUERY { ——) L2357

QUIT

Accept input of up to 80 characters (or until a
‘return’) from the operator’s terminal, into the
terminal input buffer. WORD may be used to accept
text from this buffer as the input stream, by setting
IN and BLK to zero.

{ ===) [2i11

Clear the return stack, setting execution mode,
and return control to the terminal. No message is
given.

Glossary—-43

Glossary of xForth words (c) A.I.M. Research

- R# (=~= addr)} LUl

A system variable that is used by the editors
(for example) to keep track of the cursor position.

R/7W (addr n flag —-——)

Read or write block n to a 1K buffer starting at
addr. If flag is 1 then read; if flag is O then
write. This word does all file allocation and, i+
necessary, creation or opening of disc files.
Normally for system use only; not guaranteed to be
present in future releases of xForth.

R> (=== n) {C; 1103
Transfer n from the return stack to the data
stack. “re-trom®
S R® (=== n) LG, 2283

Copy the number on the top of the return stack to
the data stack. "r—-fetch®

REPEAT { ~—-=) £1,C,12013
Used in a colon definition in the forms
BEGIN ... WHILE ... REPEAT

At run—time, REPEAT returns to Jjust after the
corresponding BEGIN.

REPLACED~-BY { addr +++)

Find the compilution address of the next woird in
the input stream, anuy store it in addr. If the next
word has not previously been compiled, execute ERROR.

s

Lzo Glossary 44

Pt KNI T AT b .t

(c) A.1.M. Research Glossary of xForth words
f’ RESTORE-6%8 (==
If used after INSTALL-%$%¢$ and before control has
been returned to the console, restores the name of
the temporary file ¢$¢$% to what it was before
INSTALL-$$% was executed.
REVEREBE (8 ———)
Reverse the order of the characters of s. Note
that this is done in place so 5 should always be a
‘safe’ copy of an original. Used mainly by the
system, but can be used with care by users.
ROLL (n ——=) . L2361
Extract the n’th stack value to the top of the
stack, not counting n itself, moving the remaining
values into the vacated position. ERROR is executed
if n is less than one.
) I ROLL = ROT
s 1 ROLL = null operation

ROT (nl N2 n3 ~—- n2 n3 n1) 2123

Rotate the top three values, bringing the deepest
to the top. “rote”

RP ! (==)

Resets the return stack pointer. Note that this
means execution of ;5 (as compiled by ;) may crash
the system: RP! should not normally be called by the
user.,

&5->D (n ~——d)

Extend the signed single number n to a signed
double number d.

Glossary—45
L7270

Glossary of xForth words {(€) A.l.M. Research

BAVE-BUFFERSB (===) L2213

Write all blocks to mass—storage that have been
flagged as UPDATEd. ERROR is executed if mass—storage
writiq i not completed.

GCR { —~—— addr) LU, 2171

Leave the address of a variable containing the
number of the screen most recently listed. "s—c-r”

/

/ / ' A
/ An parating-sSysitem depegndent ﬁDﬁ#éa t eqgual tg
\\/Ehe nuabe of o @ragingws ste baézt asstst v age

)
8 C/BLW’“ **—‘;y)

uni&i }1 a ik black. Not aranteed Ao be p eseﬁ@/ﬁn
future’ versions/of xForth “
. S AN

p—— e

i

8EE (n ==}

Invoke the screen editor with the cursor pointing
to the first character of block n.

SEE-FILE (+44)

Read the next word from the input stream as a
CP/M file name and invoke the screen editor with the
cursor pointing to the first character of the file,
if the file extension is .BLK

8IGN (R~) EC, 1401

Insert the ASCII 7" {(minus sign) 1into the
pictured numeric output string, if n is negative.

SMUDGE (—-—)

Used during word definition to toggle the “smudge
bit”? af the name field of the latest definition,

Blassary-46

// o

@

{c) A.I.M. Research Glosgary of xFaorth words
1’ 1,0, the one whose name field address is contained
S in the variable LATEST. This prevents the word from

being found by FIND and so makes an uncompleted
definition invisible until it is completed without

error.
ap! (any ———)
Discard all items on the stack. "stack pointer
store"
sPa (——— addr)
A system dependent procedure to return the

address of the stack top as it was before §SP9 was
executed. Not normally for user execution.

SPACE (===) [2321
‘1' Tranasmit an ASCII blank to the current output
S device.
8PACEE (n ——) [2311

Transmit n spaces to the current output device.
Take no action if n<=0,

STATE (== addr) (U, 15641

feave the address of the variable containing the
compilation state. A non—-zeroc content indicates
compilation is occurring, but the wvalue itself may
depend on the version of xForth.

STD—-ERROR (n =——)

The default code executed by ERROR. Executes
n MESSAGE and then QUIT.

Glossary—47
Lzo

Glossary of xForth words {c) A.I.M. Research

- BTRING (n +++)
A defining word used in the form:
n STRING <name>

to create a dictionary entry which is a string
variable to hold a text string of length up to n
characters. I+ n exceeds 255, the maximum length
will be 255. At execution time, <name)> returns the
address of the first character and the current length
of the string in a form suitable for TYPE.

SWAP (Nl n2 —= n2 nil } . L2301

Exchange the top two stack numbers.

BYSADAPT (n =)

Call PROTECT then set the initialisation sequence
50 that n buffers will be used Ffor virtual memory,
it and set LIMIT so that when COLD is executed, all
possible memory will be used. Then call COLD. Note
that the code of SYSADAPT may be changed to set LIMIT
to some different value so that not all possible
memory will be used.

SYSFILE { ——— addr)

Return the address of a file control structure
owning virtual memory segment 0. (Blocks 1 to 1000 in
the standard system).

BYBGEN (=-=)

Generate the standard system from the kernel
system. I+ the present system is not the kernel
system, execute ERROR.

TAB (n -— 1}

g

Lza Glossary—4g

s - o ; IW' i I 2 .

(c) A.I.M. Research Glossary of xForth words

ﬂ, Type as many spaces as needed to bring the output
- pointer to position n, if possible. Otherwise do
nothing.
THEN {(——— [I,C,1611

Used in a colon-definition, in the forms:

IF w.. ELSE ... THEN or
IF ... THEN

THEN is the point where the execution resumes after
ELSE or IF (when no ELSE is present).

TIB {(~—— addr) ftul

A system variable containing the address of the
terminal input buffer.

) TOGGLE (addr bytel ———)

Complement the byte at addr by the bit pattern
contained in bytel.

TRIAD A ——) q |
S / Vi
e
//// Tybe 3 - een . ing\ n, ip/g/f rm 5§}€;;éf
~for hard cedpy. Ma s bitting /C—

og} ol

TRUE (== 1)

A constant returning the value of a TRUE +lag,
namely 1. :

TYPE (addr n ~——) [2221
Transmit n characters beginning at address to the
current output device. No action takes place for o
] less than or equal to zero.

Glossary—49
tzo

Glossary of xForth words {€) A.I.M.

Research

us (s ~~— g)

Apply UCHAR to each character of s, so changing
it to upper case if it was a letter and stripping the
high bit in all cases. Note that the operation is
done in place, i.e. the actual s is changed.

Uz (unl un2 ——— ud3) £2421
Perform an unsigned multiplication of unl by un2,

leaving the double number product ud3. All values
are unsigned. "u-times"

u. (un ~=-) ‘ L1043
Display un converted according to BASE as an

unsigned number, in a free-field format, with one
trailing blank. "u-dot"

U.R {un ——)

Print the unsigned 16 bit value u right aligned
in a field of width n. If n is too small, overflow
to the right as required.

U/MoD (udl un22 --— un3 un4g) [2431

Perform the unsigned division of double number
udl by un2; leaving the remainder un3, and quotient

und4. All values are unsigned. “u-divide—-mod"
u< { unl un2 -—— flag) L1503
Leave the flag representing the magnitude
comparison of unl < un? where unl and un2 are treated
as 16-bit unsigned integers. "u-less—than®
—_ UCHAR { byte ——— char) @

Glossary-50
LZO

.....

T T

(c) A.I1.M. Research Slossary of xForth words

T) Remove the high bit of byte; if the corresponding
s character 1is lower case, convert it to upper case.
UNTIL (fieg ———) (1,C, 2371

Within a colon definition, mark the end of a
BEGIN-UNTIL loop, which will terminate based on a
flag. I+ flag is true, the loop is terminated. ¥
flag is false, execution returns to the first word
after BEGIN. BEGIN-UNTIL structures may be nested.

uPDATE (~——) (2291
Mark the most recently referenced block as
modified. The block will subsequently te

automatically transferred to mass storage should 1its
memory buffer be needed for storage of a different
block, or upon execution of SAVE-BUFFERS.

) UBER (n +++)

A defining word used in the form:
n USER <name?>

to create a dictionary entey for a system {(or “user’)
variable. The value of n is the offset relative to

the user reqgister pointer. When <name> is executed,
the address left will be the sum of n and the user
register pointer. sed to put variables in RAG6M when
the system itself is in ROM, and in multi-user
systems.

VARIABLE (444) L2271

A defining word used in the farm:
VARIABLE <name>

to create a dictionary entry for <name> and allot two

bytes for storage in the parameter field. The

application must initialize the stored value, i.8.

' xForth does not set it to any particular value. When

WJ' <name> is later executed, it will place the storage

Glossary—51
L70

Glossary of xForth words (c) A.I.M. Research

address on the stack.

- €

VLIST (==~)

List all the words in the present context
vocabulary, and all vocabularies contained in it.
May be stopped by hitting control/C.

VOC~LINK { ——— addr) cul

A system variable used for vocabulary linking.
Mot for user alteration!

VOCABULARY (+++) , £2081

A defining word used in the form:

VOGCABULARY <name?>

to create (in the CURRENT vocabulary) a
dictionary entry for <name’>, specifying a new ordered
list of w. 4 definitions. Subsequent execution of
<name> will make it the COMNTEXT vocabul vy. When
<{name> becomes the CURKENT vocabul ary (see

DEFINITIONS), new definitions will be created in that
list.

in xForth, new vocabularies chain to the
vocabulary they were created in, so that when a
dictionary search through a vocabulary is exhausted,
the vocabulary they chain to is searched. The search
starts with the most recently created word, whether

or not that word was created after the outer
vocabulary.

WARM (===)

Call EMPTY-BUFFERS and then ABORT.

- WARNING (~—— addr) LUl

Glossary—52
L70

e e a0 4 b A s o Ak T k.18 5 e A

(c) A.I.M. Research Glossary of xForth words

1' A system variable used for error handling. I+4
e its low order bit is set to 1, error messages are
read from blocks 4 onwards of FILE-A. If the low
order bit is set to 0, numeric error messages are
given. If the high order (sign) bit is set to zZerao,
a warning message (message 4) is given when a word is
redefined. If the high order bit is set to 1,
message 4 is suppressed.

WHERE { Nnl n2 -——)

Invoke the screen editor with the cursor pointing
after character ni1 of block n2. If used after ERROR
caused by a compilation error while reading from

disc, will leave the cursor just after the word where
the error was detected.

WHILE (flag ——~) (I,Cp1491]

Used in a colon definition in the form:

Q BEGIN ... WHILE ... REPEAT

Select conditional execution based on the flag. On a
true flag, continue execution through to REPEAT,
which then returns back to just after BEGIN. On a
false flag, transfer execution to just after REPEAT.

WIDTH (——~ addr) ful

A system variable containing the maximum number
of letters saved in the compilation of a definition’s
name. The default value is 31 and the allowed rangeg
is 1,...,31. If the value of WIDTH is less than the
natural character count for a word, only WIDTH

characters will be saved, together with the actual
character count. ‘

WORD (char +++ addr) £ig11

Receive characters from the input stream until
the non-zero delimiting character is encountered or

) the input stream is exhausted, ignoring leading
delimiters. The characters are stored as a packed

Glossary-—-53
LZzo

Glossary of xForth words (c) A.l.M. Research

. ‘ string at addr, with the character count at addr and
the string following. The actual delimiter
encountered (char or null) is stored at the end of
the text but is not included in the count.

Note: The facts that (i) leading delimiters are
skipped, and (ii) WORD needs to move its text +to
insert the count, often 1lead to difficulties. The
xForth words skip-while and wrap achieve the same

effects as WORD with greater flexibility.

XCURSOR (——— addr }

A system variable

tul

containing the compilation

address of the code used by CURSOR.
&
XEMIT { ==~ addr) Luz
A system variable containing the compilation
address of the code used by EMIT.
XERROR («—— addr) Cul
A system variable containing the compilation
address of the code used by ERROR. Set to STD-ERROR
initially.
XKEY { =~ addr) LUl
A system wvariable containing the compilation
address of the code used by KEY.
- XNUMBER (——-~ addr) ful
tz0 Glousary—-54

Ll 76

{(c) A.I.M. Research Glossary of xForth words

A system variable containing the compilation
address of code called by the interpreter to attempt
to decode a word not found in the dictionary. Set
initially to attempt to decode the word as a number
in the present base; i1+ the number contains one or
more decimal points the number will be taken to be a
double number and DPL will be set to the position of
the last such decimal point. If the word cannot be
decoded as a number, the default code executes
0 ERROR.

XOFF-CHAR (——~ addr)

A variable containing -1 or else the ASCII code
of the variable used to temporarily pause execution.
Typically set to the ABCITI character XOFF, wviz.
control/S. See 7?PAUSE.

XOK {(=== addr) fuld

A system variable containing the compilation
address of the code called to indicate normal return
of control to terminal.

XOR { nl N2 -~ n3) {1741
Leave the bitwise exclusive—-or of two numbers.
“x-or "
XPAGE { ——— addr) ful

A system wvariable containing the compilation
address of the code called by PAGE, usually to blank
a scresn or cause a paper throw.

XPROMPT (~--—- addr) RN

A system wvariable containing the compilation
address of the code always called just before control
is returned to terminal.

Glossary—55

e ik Sk G A S AR

SR e NN S N R AT AP S RME N iR

Glossary of xForth words (c) A.I.M. Research
-
LRUBOUT (——— addr) £l
A system variable containing the compilation
address of the code used in EXPECT to remove last
character typed.
XGBIGNON (——— addr) £l
A system variable containing the compilation
address of the code called by ABORT just before
control is returned to terminal.
L { ==) £1,1281
End the compilation mode. The text from the
input stream is subsequently executed. See 1.
“left-bracket"
o L, IVARIABLE { nl N2 +++)

A defining word used in the fora:
ni n2 [,IVARIABLE <name>

to create a dictionary entry for a two dimensicnal
array of 16 bit integers, with rows numbered 0 to ni
and columns 0 to nZ. On later execution,
n3 n4 <name> returns the address of the element in
row N3 and column n4.

CCOMPILED (+4+4+) LI, C,17%7

Used in a colon definition in the form:
[COMPILE] <name>
Force compilation of the following word. This allaows

compilation of an IMMEDIATE word that would otherwise
be executed. "bracket-caompile®

CIVARIABLE (Nl +++)

C o Glossary—-5S4%

(c) A.1.M. Research

A defining word used in the form:
ni CIVARIABLE <name’>
to create a dictionary entry for an array of 16 bit

integers numbered 0 to nl. On later execution,
n2 <name> returns the address of element n2.

(==) (1261

Set the compilation mode. The text from the

input stream 1is subsequently compiled. GSee [and
LITERAL., "right-bracket®

{ byte ———)

Strip the high bit of byte to convert it to a
char, then if the result is a printing character,
execute EMIT after having First executed CR if the
value of CUT was not less than C/L. If the result is
not a printing character, take a new line if the
value of OUT is not at least 1| less than C/L. Then
send ~X to the output device, where X is replaced by
the ASCII character formed by adding the value of
char to the ASCII code for 3. In the special case of
ABCII 127, send ~72.

(8 —==)

Send the string s to the output device, usingv
~“EMIT for each character instead of EMIT. (This will

wrap long lines and will print control characters
visibly.)

ch-in—ate? { char &« -——— n)

I¥ char is contained in s, return its position in
Sa Otherwise return zero. Note that Ffor most

purposes (e.g. testing with IF) n can be regarded as
a true/false flag.

close—files (===)

Glossary—57

Giossary of xForth words

Glassary of xForth words () A.l.M. Research

Close all files that presently own virtual memory m
segments.
copy (—==)

Copy the input spool to the output spool.

count (addr ---— addr n)
Return the number of characters in the string

starting at addr and terminated by a null {(zero
byte). Used by EXPECTS.

defdrv {(—=—n)

Return the presently selected (‘default’) disc
drive. Drive A: is 1, B: is 2 etc.

®0l? { = flag) @

Returns TRUE if the present input is exhausted.

ant {(=== addr)
A variable containing the extent which will be

opened by OPEN when it opens a file. For CP/M1.4
systems only. Not normally for user alteration.

fasasign ((n file ———)

Allocate the n’th virtual memory segment to the
file.

fdelete {(addr -—— flag)

Attempt to delete the operating system file
caorresponding to the file control structure at addr,
returning TRUE 14 successful. ﬁ

Glossary-58

(c) A.l1.M. Research Glossary of xForth words

fname!' { 8 addr ———)

Let the name of the file control structure at
addr be the string s, if the syntax of s is correct;
otherwise execute ERROR.

freleass {n ———)

Make virtual memory segment n belong to no file,
flushing buffers and closing any Ffile presently
owning the segment if necessary.

getc (== c)

Read the next character from the input spool.
Return contrel/Z if the input is ended. The input
spool is set up using the redirection words == and <<
as described under the appropriate entries.

in—-addr (~—-— addr)

Return the address of the next byte loocked at by
the interpreter.

in-range? (nl n2 N3 -~ flag)

Return true if n2<{=nl1<{=ns3.

maxdry (——— n)

Return the number of drives xForth thinks the
system has. Get by CONFIG. '

n—-TAB (n =———)

Print enough spaces to make the value of OUT a
*" multiple of n, 1if this is possible without OUT

Glossary—-99
Lzon

Glossary of xForth words {(c) A.I.M. Resesarch

equalling or exceeding C/L.. Otherwise execute CR. w

pute { & ~—=)

Write a string to the output spool. See putc.

putc (€ ~~=)
Write a character to the output spool. If there

are any characters on the spool when control returns
to the terminal, the spool is typed and left empty.

sag-size { === n)

A constant returning the size of a virtual memory
sagment. (Set to 1000 on delivery.)

skip-char (===) &

Pass over one character from the input without
interpreting it, i.e. increment the input pointer
unless the input is exhausted.

skip-until { char -——)

Advance the input pointer by zero or more until
char has been reached or the input is exhausted.

skip-whila (char -—-—)

Advance the input pointer by zero or more as long
as char is found, stopping if the input is exhausted.

wr ap (char ~—— &)

Advance the input pointer by zero or more until
char is found or the input is exhausted. Return the
address and length of the string passed over in this

Glossary—-60

A a0 e . AR

P (c) A.I.M. Research Blossary of xForth words

\W]' way. l.eave the input pointer bevond char.

Used 1in conjunction with skip-while, this
achieves the same effect as WORD but with a normal
rather than a packed string returned. One has the
additional flexibility that empty strings may be
dealt with.

< (flag ——-)

If flag is true, continue executiony i1f flag is
false, advance the input stream pointer until a
matching word i or ¥} is found, then continue
interpretation as usual. Used in the form:

condition { do-if-true ... | do-if-false ...

3
where the |+ and the do-if-false part are optional.
This gives a limited +Form of IF ... ELSE ... ENDIF
usable at execution time. { V' ¥ may be nested but

little error checking is done. Note that all of { |
and } aust be in the same input stream, i.e. in the

same disc block or on the same terminal input line.

J ERROR 1s executed if { with a false flag fails to
find a matching | or } before the input stream is
ended.

! (flag ———)

Used in conjunction with { and }, giving an
execution time version of ELSE. See entry for {.

I+ executed rather than skipped to, | causes the
input pointer to be advanced until a wmatching 3 is

found. If the end of the input stream 1is reached,
ERROR is executed.

} {(——=—)

Used in conjunction with { and {(optionally) | to
give an execution time version of ENDIF. See entrvy
for (.

I¥f executed rather than skipped to, 3} has no

wu) action.

Glossary—61

[e

e

FFORTH HANDY REFEREMND;E
Kords in xForth in addition to the FORTH-79 words,

STACK MANIPULATION

70ROP {d~--- Discard double itea on top of stack.
20up {d---dd) Duplicate double itea on top of stack.
20VER { d1 42 --- di d2 d1)
Copy second top stack double ites,
26H4P (df 42 — 42 dl) Exc ange top two stack double itess,
§p! { any ~—-} Discard all items on stack, ‘“stack pointer store®
COMPARIGON
O { ol n2 -— flag } True if nl not equal to n2. "not-equal®
ARITHHMETIC AND LOGICAL
2t {n--— 2} Double the stack top. “two-tises®
DABS (d---idi}) gbsolute value of a double nusber,
Nt { nt n2 -—--4¢) Double nuaber signed product of signed single nusbers,
§-20 tn~-4d) Extend signed single nuaber to signed double nuaber.
MEMORY
je! { addr -~} fdd 1 to nuseber at address. “one-plus-store®
-t (addr ~--) Subtract | froa nusber at address. “"one-ainus-store®
2! { d addr --~) Store double number d in 4 bytes starting at addr.
23 { addr ~-- d) Fetch double auaber froa 4 bytes starting at addr,
(CHOVE) { addr! adér2 u ---)
fiove u b‘tes froa addr! to addrZ, 1f u is nonzero,
are handled correctll.
BLANKS (addr n ---) Fill semory with o blanks sterting at addr.
ERASE { addr a -) Fill meaory with n nulls starting at addr.

CONTROL BTRUCTURES
CASE ... OF ... EMDOF ... OF ... ENDOF ... DEFAULT ... ENDCASE (n ---)

txecute the first part between the OF ... EMDOF for which the stack

top on entry to CASE satches the stack top on entr
satch, perfora the DEFAULT part if there is one.

EXDCASE,

EMDIF { === A synonya for THEM

TERMINAL INPUT-OUTPUT

JLINE { --- addr) Return the address of a variable that is incresented by CR. May be
used for éx;ginq' a VU

PAUSE { == [t XOFF-CHAR contains -1, do nothing. Otherwise execute ?TERMINAL

and return @t once if no key has been struck, I the key whose ASCII
code is in XOFF-CHAR has been struck then wait until any key except

control/C is struck before returning., [f control/U is struck, either
betore or during the paused state, execute & ERROR.
PPAUSE so all words that produce cutput may be paused or interrupted.

TTERHINAL { --- #lag) Return TRUE if any kel has been struck, leaving the actual key to be
read if desired from LAST-KEY

BELL { === Send ASCII code 7 to the tersinal. This normally sounds 2
noise-saker.

Bl {-—-12) Constant reterning ASCII code of a blank.

e (---n) Constant returning nusber of characters in a line of output. (Set to
80 on delivery.)

CURSOR (nln2---) Execute the code pointed to by XCURSOR. The code should sove the
tersinal’s cursor to row n! and coluen n2, relative to 0 0 as the top
lett corner,

RS {(n---1} Perfora CR n tives if 030,

ERITP (¢ Send ¢ to the printer only, without incresenting OUT or checking what
output is selected.

gnitY (¢ =) Send c to the terminal only, without increaenting OUT or checking
what output is welected.

ENSURE-LIKE {a~--) If there are less than n character positions resaining on the present
output line, execute CR ., _

L/s (-=-n) %oq;tant ge(urning nusber of lines 1n a VDU screen. (Set to 24 on

elivery.

LAST-KEY (==~ char) Return the ASCI! code of the last key read by KEY or 2TERMINAL.

ouT { === addr) Varizble hnlding gresent position of outfut pinter. Incresented b
ENIT, reset to CR and adjusted by all other xForth output words,

PAGE {---) Execute the definition pointed to by IPAGE. Usually causes a paper

throw or blanks a screen.

Qverlapping soves

{ no aatch and no
peFaul part, resove the stack tep. In all cases continue beyond

Notes CR calls

v2t

PRINTER-ON? {

- addr)

TR3 {a~-~—)

Y0FF-CHAR { -~ addr)~

wap { char -~ 5)
“ERIT (byte --- }

~TYPE {s---)
NUMERIC CONVERSION
BASE { ==}

R { nl a2 ---}
BIRARY { ==

D, {d---)

b.R {dn~-)

HEX (===

MABE BTORAGE INPUT
$files {=-=-n)

's-FC8 { addrl --- addr2)
'g-nase (addr -~~~ g }
'th-FILE (n --- addr)

-=) { ===}

« { +¢4 }

L] { ===

) { 444}

COPIES { al n2 n§ ~-~)
copy { nl a2 -~}
CPN-CALL { nl byte -~ n2)
CPH-CALLD { n bytel --- byte2
DIR (n-~)

INDEX { 0 p2 ~=}
INSTALL-$%4 (4e¢)

LIST-FILE { 464)

LOAD-FILE { ++4)

pt { byte!l byted -)
P3 { bytel --- byte2)
PREY { ~-- addr)

SEE (-

SEE-FILE (444}

Operand tey

b 3 Wl S G B s e A

A varisbie thet i 2l to d causeﬁ_autgua . o2 copied to the
printer. Toggled by control/P during EXPECT or may be set and reset
under progras control.
Type as many spaces as needed to bring the output pointer to position
n, if possible, Otheruise do nothing,
A variable containing the character used in PPAUSE to pause
erecution, [f it containg -f, PPAUSE will never attespt to read tha
keyboard. Set to control/5 on de}iverl.
For the input presently being interpreted, advance the pointer until
char is found or the input is exhausted. Return the address and
length of the string passed over in this way. Leave the input

ointer beyond char,

recute ENIT for the ASCII value foreed from the lower 7 bits of
byte, taking a new line if the value of OUT exceeds C/L. 1§ the value
is 127 then tgge A7 If the value is less than 32 then EMIT *
followed by ASLII value bd+value. (S0 3 “EMIT gives *C)
As TYPE but use “EMIT to type each character.

Fype the present base for numeric inﬁut/uutput in decimal.

Tygfhi ;iqneﬁ nusber in the current base, right aligned in a field of
uidth nZ.

Set the base for auaeric input/output to 1.

Type @ sigrad double nueber in the current base, followed by a blank,
Type a signed double nuaber in the current base, right aligned io a
field of width n.

Set the base for nuseric input/output to 14,

/0UTPUT AND VIRTUAL MEMORY

A constant returning 8, the nusber of virtual sesory segeents

norsally accessible to the user,

Given the address addrl of 3 file control structure, return the
address addr?2 of a part of memory used to cnnnuniciée file control
inforeation with the operating systes.

Given the address of a file control structure; return the address and
length of a string containg the ASCI] nase of the corresponding CP/H

tile.
Return the address of the file control structure owning the n’th
virtual aesory se%nent, if this segaent has been allocated to a file,
Otherwise return 0,
Continue interpretation with the next block. *next block*
Read the next word in the input streas as a CP/N file nase, and make
that file the spooled input tor reading with getc, ‘redirect-in®
Ha:e the previcus spocled output for putc the new spooled input for
etc. “pipe”
ead the next ward in the input streas as a CP/M {ile nase, and copy
to that file the spocled output written previously by putc.
"redirect-gut®
Copy block nl to n2, nl+i to n2+1 etc until n3 blocks hava been
copied, Overlapping shifts are done correctly.
Copy biock nl to a2,)
Hake a call to the CP/M systes for function byte with nl in the OF
gegister. The contents of the HL register on return are left ay a2,
Execute CPH-CALL and mask off all but the low order byte of the
result,
Display the directory of the disc in CP/H drive n, where n={ gives
drive £ and so on.
Type the first &4 characters each of blocks nl to a2, May be stopped
by hitting any key.)
flead the next word fros the input streaa as a CP/N file and sake it
the CP/M nase of 2 teaporary file owning the segsent of virtual
sesory heyond the last user-accessible segment.)
Read the next word from the input streaa as a (P/H file nase and list
the file in LIST fore if the file extension is .BLK Otheruvise
assuee the file is an ASCII text file and list it as such,
Read the next word from the input stream as a CP/H tile nasze and LOAD
the first block of the file if the file extension is JBLK
Send bytel to the port address given by byteZ,
EE:U{G the byte obtained by inputting from the port address given by
ytel,
Systes variable containinq nuster of block most recently referenced
via BLOCK, High bit of block nusber is set if block is updated.
Invoke the screen editor with the cursor pointing to the first
character of black n.
Read the next word froa the input stream as a CP/H file nase and
invake the screen editor with the cursor pointing to the first
character of the file, if the file extension is ~,BLK

as for FORTE-79 except: 5 &1 €2 are all addreas and count for string,

C R T Y Y

TRIAD
YHERE

copy
fassign

frelease
gete
putd

pute
seg-size

T odede 7

(n--—-)
{ nl p2 ===)

(~=-)
{nfile ---)
tn=--

{ =~}
{8 =)

(¢ ==
{~-n)

DEFINING WORDS

FILE wxx
STRING nxx

(OH')
(n 4)

xxxi (=== 5)

[, JVARIABLE xxx { nl n2 ++¢)

[IVARIABLE xxx

GELUTH Wi sGuiebn Ur 8 TOIR CURLTGE Souniure ORRING vAYLual LeRory

segaent 0. (Blocks | to 999 in the standard systea).

Type 3 blocks, including bleck n, in a fore suitable for hard copy.
Invoke the screen editor with the cursor pointing after character nf
of block n2. 1f used atter ERROR, will leave the cursor just after
the word where the error was detected.

Copy the input spool to the output spool.

Allocate the n'th virtual eeaory seqament to the file.

fg}ease the n’th virtual sesory segaent so that it belongs to no
ile,

Read the next character froa the {nput spool. Return control/l if
the input is ended.

s nutc but writes a string,

RKrite a character to the output spool.

A constant returning the size of a virtual sesory segaent. (Set to
1060 on delivery.)

(V)

See entry under HASS STORAGE.

Create a string variabie to hold a text string cf len?tﬁ up to a
characters. [f n exceeds 256, the saximus length will be 256,
Returns address of first character and current length of string when
executed.

Create a two dieensional array of 16 bit integers, with rows nuabered
0 to nl and colusns 0 to a2,

xx%t { nt n2 --- addr)

{n ¢et)

Returns address of eleaent in row nl and colusn n? when executed.
Create an array of 16 bit integers nusbered 0 to n.

saki (0 --- addr) Returns address of elegent n when executed.

VOCABULARIES
(ERITOR) (-
ASSEMBLER { ===

DEBUG (~--=)

EMPTY { ===

LIST { --=)
COMPILER

¢ { +4¢ g)
SFIND (s -~ addr)
INTERPRET { -~

L, { byte ---)
HYBELF { -

HiDTH { ~~= addr)
eol? { --- flag)
in-addr { === addr |}
skip-char (-~
skip-until { char --- 1}
skip-while (char ~--)
wrap { char ~—- g }

The vocabulary of internal screen editor words.
The vocabulary of asseabler words.

The vocabulary used for debugiing and tracin?,
gsagggrall unprotected definitions without altering the stacks. See
List all the words in the present context vncabular{ and all
vocabularies contained in it. Hay be stopped by hi %ing any hey.

Return address and lenqth of string terminated by nest ®

1f used in a definition, return address and count when executed.
LiketFIND, but uses s instead of reading a word fros the current
input.,

Execute (or compile, if STATE is nonzero) the text froa the present
input. The input is froa the keyboard if the value of BLX is nonzero
and fros the virtual semory block nusbered by BLK otherwise.

Coapile a byte into the dictionary,

Congile a reference to the latest definition (usualiy the definition
HYSELF is contained in}. Allows recursion.

Bystea variable containing maxisus length stored in dictionary for a
nase, The interpreter stores the nusber of characters in the name
;nd its natural characters vp to the value in NIDTH. The default is
Returns TRUE if present input is exhausted. “end-of-line?"

Return address of next byte looked at by interfreker.

Pass aver one character without interpretin% it.

Advance the input pointer until char has Deen reached or the input
is exhausted.

Rdvance the input pointer as leng as char is found, stopping if the
input is exhausted.

For the input presently being interpreted, advance the pointer until
char is found ar the input is exhausted. Return the address and
length of the string passed over in this way, Leave the input
pointer beyend char,

?EXT STRINGS AND CHARACTERS

{ 44 5) Return address and length of string terminated by next *
If used in definition, return address and count when executed.

§! { sf 62 ~—) Assign the string literal sl to the string variable s2, truncating st
at the right if necessary,

t+ {5182 ---]) Concatenate strings.

LIS { 51 s2 --- {la Return TRUE if s1'is lexicall{ prior to s2,

L | (s -—d flag Return TRUE if s contained only digits and, optionally, a leading
ainus sign. [f TRUE is returned then d is the value ul the nuaber
represented by & in the current base.

§= (8152 --- flag } Return TRUE i’ the strings are identical.

#SCHI { ¢+ char) Read the next word from the input and leave the ASCII code of its

Gperand bey as for FORTE-TH excepts o sl 82 are all address and count for string.

y 0O
i

A PP At

first character.

B (---132) Return the ABCII codw of a blank,

CiRL { 44+ char } Read the next word froa the {nput and leave the low order § bits of
the ASCII code of its first character,

EXPECTS { addr n -~ 8) Read up to n characters fros the keyboard as for EXPECT, storing thee

at addr. Return a string denotation, consisting of addr and the
actual nusber of characters typed.
{skip-until) { addr] char --- addr2)

e Increase addrl by O or sore until the byte address pointed to
contains char or 0.

{skip-while) { addr! char --- addr2)

Increase addr! by 0 or sore until the byte address pointed to does
nut contain char or does contain 0.

EXECUTION YARIABLES)

REPLACED-BY { addr +¢¢) Find the execution code of the next word in the input streaa, and
store it in addr.

ICANCEL { -~ addr } Points to execution code used in EXPECT to cancel all input.

ICURSOR { ~=- addr ! Points to execution code used by CURSOR.

1ERTT (~== addr | Points to execution code used by EMIT.

XERROR { -=~ addr } Points to execution code used by ERROR.

IKEY { ~~- addr) Points to execution code used by KEY.

XHUMBER (--- addr | Points to execution code used by WUMBER., This is called hx INTERPRET
to decode a word that cannot be found in the dictionary. By defauit,
it attespts to decode the word as a nusber (or as a double nusber if
it contains | or sore decimal points) in the present BASE, and calls
¢ ERROR if it fails.

0K { === addr) Points to execution code called to indicate norsal return of control
to tersinal,

TPRONPT { -~- addr)} Points to execution code always called just before control is
returned to terainal,

IRUBOUT { --- addr] {oin}s to execution code used in EXPECT to remove last character

yped.

ISIGHON { --- addr) Pognts to code called by ABORT just before control is returned to
terainal.

CONSTANTS

BL (~--32) Return the ASCII code of a blank.)

c/L { ~-n) Return the nusber of characters per lina in normal input/output. Bet
by CONFIG. T‘pically 0.

FALSE { -0 Return the value of a FALSE flag.)

N Li§ (-~=n) Return the nusber of lines per %age {i.e. per VDU screen) in norsal
input/output. Get by CONFIB, Typically 24,

TRUE (-1} feturn the value of a TRUE flag.

ERROR HANDLING

2C0NP { === Error i not coapiling. .

7DEPTH {a--) Error if stack has less than n entries below n itself. ’

7ERROR { flagn ===) If flag is TRUE, call n ERROR. If flag is false, resove it and n
and continue noraally.

2 IEC { === Error if not e:ecutin?.

LOADING (-=-) Errar if not loading froa virtual sesory.)

WAIRS { al a2 -~} Error if nl is not equal to n2, Used in checking syntax of
conditionals.

28TACK { -} Error if stack is gut of bounds.

ERROR {n-—) Execute the definition whose code field address is in XERROR. Set to
STD-ERROR on delivery.

HESSAGE {n---) Type error aessage n but continue noreally.

STD-ERROR (n---1 Issue error aessage n, clear stacks, and uhez Quit.)

UARKING { === addr) A system variable used for error handling. 1f its lowest order bit
is set to |, error messages are read from blocks 4 onwards of FILE-A,
If this bit is set to 0, numeric error messages are given. If the
high order bit is set to I {i.e. the value is negative), warning
gessages are suppressed whatever the value of the low order bit
although true errors are caught as usual.

in-range? { nl 02 nd ~-- flag)

True it n2¢{=ni{=n3,

ASSEMBLER

CODE xxx (+4¢) Begin definition of word in assesbler code,

END-CODE (- End CODE or jCODE definition.

LABEL xxx { +44) Insert a label in the dictionary and set the CONTEXT vocabulary to
ASSEMBLER.

‘W>
‘gperand key as for FOATE-79 except! s sl 82 are all address and count for string,

Ch {3 (-] Lal} SAVE-RUFFZRS and then return control to the aperatiﬂ% systen, 021 i
coLh {~) Reset the systea to the state i1t had when PROVECT was last called, or
to the initial start-up state. This includes resoving all new
definitions, resetting the filing systea without saving buffers or
closing files, and resetting all systes and execution variables,
Finally call ABORT,
LONFIE { ==~} Equivalent to Z LOAD. Set up on delivery to ask the user for the values of (
e DEL-KEY etc, then allow the user to change the editor key bindings if g
‘ dgsérg?, and finally to esecute BYSADAPT with a ‘reasonable’ nusber ?
of hutfers,

— PROTECT { ~=-) fet the initialisation sequence sa that the present state will be
restored bE £oLn.)
BYSADAPT {a-—1 Call PROTELT then set the initialisation sequence so that n buffers

will be used for virtual semory, and all possible meeory will be
used. Then call COLD,

SYS5EN { =) Generate the standard s{sten from the kernel systes.

BARN { === Call ENPTY-BUFFERS and then ABORY,

S

e

Oparand key s for FORIE-T9 excepts ¢ sl 82 are all address and count for strimg.

! z v E0

N JATRIEIT TT e, P 3

S

g

DuP
CROP
SWAP
OVER
ROT
PiCK
ROLL
70UP
>R

2 0d
Raw
DEPTH

COMPARISON

<

-

>
o<
O
0>
<
U<
NOT

B Wk b rAE R o i ey AL e k. N st s SN DS ¢
FFEhE NS WOTRR P R LR ey

&

Stack inpute and outpuls are shown; top of stack on right. Se8 operand key al boitom,
STACK MANIPULATION

{(n—~nn)

(n-—}

{ntn2 ~n2ny)
{(ntn2 - nitn2n)
{(nTn2n3 -~n2n3n1)
{(nl = n2)
(n—)
{n—n(n))
(=)

{ —=n)

(~n}

{ ~n)

{nt n2 - flag)
{ntnZ ~ flag)
(nt n2 - tlag)
{n - tlag)

{(n ~flag)

{n — tiag)
{dt d2 — tlag}
{unt un2 —~ Hag)
(fiag ~ =tlag)

ARITHMETIC AND LOGICAL

+
D+

i+
§-
2+
2
*

/

MO0
MOD
°/MOD
*/

U
U/MOD
MAX
MIN
ABS
NEGATE
ONEGATE
AND

OR

XOR

MEMORY

"]

!

Cwo

Cl

?

+1
MOVE
CMQVE
FitL

{01 n2 ~ sum)

{d1 d2 ~ gum)

(M n2 — aitt)
(n—n+t)

(n - n~)
(n-n+2)
{n-—-n-2)

{n1 n2 —~ prod)

(a1 n2 ~ quot)

{1 n2 ~ rem)

(nt n2 ~ rem quot)
{n1n2n3 ~ remquot)
{n1 n2 n2 -~ quot)
{unt un2 - ud)

{ud un — urem uguot)
{(ni n2 —~ max)

{n1 n2 —~ qun)

“{n-=Inl)

(n==n)
(d—~ ~d}
{ntn2 ~ and)
(ntn2 ~or)
(N1 n2 ~ xor)

{agdr - n)
(naddr —)

{ 2ddr ~ byte)
{(naddr ~)

(8ddr —)

(nagdr ~)
{addrt addr2 n ~)
(gt addr n —)
{ 8007 N byle ~)

CONTROL STRUCTURES

DO ... LOOR

t

J

LEAVE

DO ... +LOOP

IF.. {true). . . THEN
F. . (true). .. ELSE
- {Selse). . THEN
BEGIN ... UNTIL
BEGIN . WHILE

... REPEAY
ExIT (—)
EXECUTE {addr ~)
Opersnd key: dal,..
ant, L 165-Dit signed numbars u

do: (end+1 start —)
{ = ndex}

(~ indax)

(I

00 { hrut start —~)
+oop: (n ~)

i { Hag —)

i (tlag =)

until: (tlag —~)
whilg: { tlag ~)

Duplicate top of stack.

Discard top of stack.

Exchange top two stack items.

Make copy of second item on top.

Rotate third item to top. “rote”

Copy ni-th item to top. (Thus 1 PICK = DUP , 2 PICK = QVER)
Rolate n-thitem to top. (Thus 2 ROLL = SWAP , 3 ROLL = ROT }
Duplicate only it non-zero. "query-dup”

Move top item 10 “return stack™ tor temporary storage {use caution). “to-r"
Retrieve itam from return stack. “r-from”

Copy top of retum stack onto stack. “r-fetch”

Count numbwr of items on stack.

True if n1 less than n2. “less-than”

True if top two numbers are equal. “equals”

True if n1 greater than n2. "greater-than”

True ii top number negative. “zero-ess”

Trua it top number zero. (Equivalent to NOT) “zero-equals”
Truw it top number greater than zero. "zero-greater”

True if d1 less than d2. “d-lass-than”

Compare top two items as unsigned integers. “u-less-than”
Reverse truth value. (Equivaiant 1o 0=)

Add. “plus”

Add double-precision numbers. “d-plug”

Subtract (n1--n2) "minus”

Add 1 to top number, “one-plug”

Subtract 1 from top aumber. “one-minug”

Add 2 to top number, “two-plus”

Subtract 2 trom top number. “two-minus”

Multiply. "times”

Dwide (n1/n2). (Quotient rounded toward zero) “divide™

Moduio {Le., remainder from dvision n1/n2). Remainder has same 8ign as n1. "mod”
Divida, giving remainder and quotient. “divide-mod”

Multiply, then divide (n1*n2/n3), with double-precision intermediate. "times-divide-mod”
Like */MGD |, but give quotiunt only, rounded toward zero. “times-Givide”

Muitiply unsigned numbers, leaving unsigned double-precision result. “y-times”
Divide doubie number by singte, giving remainder and quotient, all unsigned. *u-divide-mod”
Leave greater of two numbers. "max”

Loave losser of two numbars. “"min”

Absoiute value. "absolute”

Leave two's complement.

Leave two's complement of double-precision numbaer. “d-nagate”

Bitwise logical AND.,

Bitwise logical OR.

Biwise logicat exciusive-OR. “x-or”

Roplace address by numbaer at address. "fetch”

Sture n at sddr, “store”

Fatch loast sigmificant byte only. “c-tetch”

Stora lesst signticant byta anly. "c-store”

Display numbser al address. “question-mark”

Add n to number at addr. “plus-story”

Move n numbers starting at addr! to memory starting at addr?, if n>0.

Move n bytes starting &t ador! to memory starting at addr2, it n>0. “¢c-move”
Fill n bytes in memory with byte beginning at uddr, it n>0.

Sat up loop, given index ranga.

Place current loop index on data stack.

Return index of next outer loop in same definition.

Terminate loop at next LOOP or +LOOP , by setung limit equal to index.

Like DO .. LOOP, but adds stack value {instead of always 1) 1o index. Loop termmates when
index is greater than or equal to hmit (n>0), or when index is less than limit (n<0). “plus-ioop”
it top of stack true, exacute.

Same, but it taige, execute ELSE clause.

Loop back to BEGIN until true at UNTIL .

Loop while true ut WHILE ; REPEAT loopa unconditionaily to BEGIN . When false, continue afiar
REPEAT .

Terminate execution of colon detintion. (May not be used within DO . .. LOOP }

Exacute dictionary entry at compiiation address on stack {a.g., address returned by FiND).

. 32-bit signed numbers addr, addrl, ... addresses char 7-bit ascil character vaiue

uhsigned oyt 8-hil bvta flan bocdean Nan

A

g

CR

(=)
EmiT (char — }
SPACE { -)
SPACES (n-}
TYPE (adorn —)
COUNT { a0 —~ addr+1 n)
-THAILING (addr nt ~ addr n2)
KEY { —~ char)
EXPECT (addrn—)
QUERY (~)
WORD (char -~ addr }
NUMERIC CONVERSION
BASE { - addr)
DECIMAL (=}
. {n~)
uU. (un -)
CONVERT
<& (=)
) (udl — ud2)
&S (ud - 00)
HOLD (char ~)
SIGN (n—)
8> (d — addrn)

MASS STORAGE INPUT/QUTPUT

tsT

LOAD

SCR

BLOCK

UPDATE

BUFFER
SAVE-BUFFEAS
EMPTY-BUFFERS

P by ad e

(41 addr1 ~ d2 addr2) Convert string at addr 1 -+1 10 double number. Addtod1 leaving aum d2 and addr?

{(n~}
{n-~)
(— addr)
(n —~ edar)
{~)
{n — addr)
(~)
(=)

DEFINING WORDS

. KXX
;JARIABLE XX
CONSTANT xxx

VOCABULARY xxx

(~)
()
(~)
woc (- addr)
(n—~)
W ~n)
{~)

CREATE ... DOES> does: { — addr)

VOCABULARIES
COMNTEXT (= addr)
CURAENT {(- adar)
FORTH { -~)
DEFINITIONS {~)
XXX { — addr)
FIND { —~ addr)
FORGET xux { =)
COMPILER

. (n-)
ALLCT {n—~)
(-
IMMEDIATE (=)
LITERAL (n—~)
STATE { — addr)
{ (=)

! (-=)
COMPILE (~)
[COMPILE) (=)
MISCELLANEOUS

(()
HERE (~ adgar)
PAD (~ adar)
>iN { — addr)
BLK (= agdr)
ABORT { =)
aur { -)
Te-STANDARD { =)

Do a camiage return and line leed. “c-r'

Type ascii vaiue from stack.

Type one spuce.

Type n spaces, if n>0.

Type string of n characters baeginning at addr, if n>0.

Change address of string (pretixed by length byte at addr) to TYPE tom.

Roduce character count of slring at addr to omit trasting blanks. “dash-trating”

Road key and leave asci value on stack.

Read n characters (or untii carriuge retuim) from terminal to addraas, with nuil(s) at end.
Read line of up to 80 characters trom terminal to input butier.

Reead noxt word from Input stream using char a8 dolimiter, or until null. Leave addr oflength byts.

Syatem vaniable contaning radix for numenc conversion.

Set decimal number buse.

Print number with one traiting blank and sign if negative. “dot”

Print top of stack as unsigned number with one trading blank. “u-dot”

Lol first non-digt.
Start numeric output atring conversion. “less-gsharp”
Convert next digit of unsigned double number and add character to output slring. “sharp”
Convert all signiticant digits of unsigned double number to output string. “sharp-g”

Add ascil char 1o output string.

Add minus sign 1o output string if n<0.

Orop d and terminate numeric output atring, leaving addr and count for TYPE . “sharp-greater”

List screen n and set SCR to contain n.

Interpret screen n, then resume interpretation of the current input stream.

System variable containing screen number most recantly listed.

Leave memory uddress of block, reading from mass storage if necossary.

Murk last block referenced as modilied.

Louve uddr of a ree bulter, assigned to block n, write pravicua contents to maas storage f UPDATEG.
Wiita all UPDATEQ blocks to mass storage.

Mark all block buffers as empty, without writing UPDATEd blocks to mass slorage.

Begin colon detinition of xxx . “coion”
End colon detinition. “semi-colon”
Croate & two-byte vanable named xxx : returna address when executed.

Create a constant named xix with value n; returng velue when executed.

Create a vocabulary named xxx ; becomes CONTEXT vocabulary when executed.
Used to create a new defining word, with execution-tirma routine in high-level FORTH. “does™

System vaniabla polnting to vocabulary whers word namaes are seaiched for.

System variable pointing to vocabulary where naw definitions are put.

Main vocabulary, contained in alf other vocabularies. Execution of FORTH seta contax! vocabulary.
Seta CURRENT vocabulary 1o CONTEXT.

Find address of xxx in dictionary; if used in detinition, complta address. “lick”

Leave compilation address of next word in input stream. ¥ not tound in GONTEXT or FORTH, leava 0.
Forget all definitions back to and nciuding xxx , which must be in CURRENT or FORTH,

Compile a number into the dictionary. “comma”

Add two bytes o the parameter fisid of the mosi recently-defined word.

Print message (terminated by “). I used in detinttion, print when executed. “dot-quote”
Mark last-dehined word to be executed when encounterad in a definition, rather than compiled.
i compiling, save n in dictionary, 10 be returned o stack when dslinition is executed.
System variable whose value is non-zero when compilation is occurring.

Stop compiling input text and begin execuling. “left-bracket”

Stop executing input text and begin comping. “right-bracket”

Compile the address of the next non-IMMEDIATE word into the dictionary.

Compiie the following word, even it IMMEDIATE. “bracket-compile”

Begin comment, terminated by) on same line or 8Creen; space afier (. “paren”, “close-paren”
Leave address of next available dictionary location.

Leave address of a scratch area of at least 684 bytes.

System variable containing character oftset into input butter; used, e.g., by WORD. *to-in”
System variable containing block number Currently being interpreted, or O if trom terminal. “b--k”
Clear data and return stacks, set execution mode, return control to teminal.

Like ABORT , except does not Clear data stack or print any measage.

Verity that aystem contorms to FORTH-79 Standard.

FORTH INTEREST GROUP, P.0. Box 1105, San Carlos, CA 84070, USA

RS

Lzo

Please t11l 1n and sign this agreement and return it with your ardar.
Although the licence only covers & singie camputer, it may he extended
at a reduced price by agrecement with us. I+ you sell your computer,
we may transrer the licence to the new awner for a nominal charge.
Registering with us means you will be abie ta get updates and new
manuals at specirally reduced pricesn.

A.1.M. Researc!.
20 Montague Road, Cambridge CB4 1BX.

Sattware Licence Agreement.

A.l. M. Research agrees to grant and the customer si1gning below

thereinatter "the Customer") agrees to accept on the following
conditions a non-transferable and naon-exclusive licence to use
thue software detalled below ("the Softwara”) on the computer

system detalled belaow (“"the System").

The Software may be used in any machine-readable form on the

Systew by the Customer or by others under the Customer’s personal
supervinion. Any number of copies of the Software may be made

tor use on the System under the conditions of this licence.

The Software may be modified or adapted for use on tha System

but neirther in its original nor in its modified form may the
Suttware be sold or otherwise transferred without the prior written
consent of A.I1.M. Research. In this context, transfer includes=

but is not restricted to any means by which the sowce code,

the executable code or the decign of the software may be made

avallable, directly or indirectly, for use by anyone wha 1s
not a licence holder. -

In the absence of a specific written agreement by A.l.M. Research
that the Software 1s suitable for a given purpose, the liability
of A.1.M. Research shall be restricted to the replacement of the
Sottware or, at our aption, the refund of 1ts purchase price.

Custumer:

Names s Signature:
Date:

Addresa:

Sywtemn:

Masutacturers

Mode ¢ SBeri1al number:

Operating system: Seriral nuuber:

Suttwarc: uwForth

	Table of Contents
	Preface
	1. The Inner Interpreter
	2. The Outer Interpreter
	3. Dictionary Headers
	4. ;CODE and DOES>
	5. Virtual Memory and the Filing System
	6. ABORT, COLD and the Cold Start Tables
	A. Additional Notes
	B. Error Handling
	C. Notes on the Glossary
	xForth Handy Reference
	Software License Agreement

