
AT&T 3B2 and 3B5 Computer
Driver Design Guide

AT&T PROPRIETARY
Use pursuant to terms and
conditions of resale agreement.

Copyright © 1984 AT&T
All Rights Reserved
Printed in U.S.A.

November 1984
305-495, Issue 1

====AT&T

TRADEMARKS

The following is a listing of the trademarks that are used in this manual:

• DATAKIT - Trademark of AT&T

• TELETYPE - Registered trademark of AT&T Teletype

• UNIX - Trademark of AT&T Bell Laboratories

• WE - Trademark of AT&T Technologies

NOTICE

The information in this document is subject to change without notice. AT&T
Technologies assumes no responsibility for any errors that may appear in this
document.

CONTENTS

Chapter 1. INTRODUCTION

Chapter 2. FIRMWARE IMPLEMENTATION

Chapter 3. KERNEL/DRIVER INTERFACE

Chapter 4. DRIVER CONFIGURATION

Chapter 5. 3B2 COMPUTER DEPENDENT
INFORMATION

Chapter 6. 3B5 COMPUTER DEPENDENT
INFORMATION

Chapter 7. DIAGNOSTICS

Appendix A. TTY SUBSYSTEM

Appendix B. BLOCK 1/0 SUBSYSTEM

Appendix C. SLEEP AND WAKEUP EXAMPLE

Appendix D. SELF-CONFIGURATION COMMANDS

Appendix E. MASTER FILE

Appendix F. SYSTEM FILE

Appendix G. 3B2 COMPUTER EDIT_TBL COMMAND

Appendix H. REGISTERS

Appendix I. 3B2 COMPUTER BLOCK DEVICE DRIVER

Appendix J. 3B2 COMPUTER CHARACTER DRIVER

Appendix K. 3B5 COMPUTER BLOCK DEVICE DRIVER

Appendix L. 3B5 COMPUTER CHARACTER DRIVER

GLOSSARY

INDEX

- Ill -

Chapter 1

INTRODUCTION

PAGE

OVERVIEW.. 1-1

DESCRIPTION OF CONTENTS.. 1-2
Firmware Implementation.. 1-2
Kernel/Driver Interface.. 1-2
Driver Configuration.. 1-2
3B2 Computer Dependent Information.. 1-3
3B5 Computer Dependent Information.. 1-3
Diagnostics... 1-3
Appendices ... 1-3

Chapter 1

INTRODUCTION

OVERVIEW

AT&T 3B2 and 3B5 Computer Driver Design Guide is designed to provide
information to users writing device drivers. It is assumed that persons writing
device drivers know how the UNIX* Operating System works and know
advanced C coding techniques. While users of the 3B5 Computer will have C
software [including Software Generation System (SGS)] on the basic unit, 3B2
Computer users will have to purchase C software and SGS (including Extended
SGS) to create device drivers.

Manuals for the 3B2 and 3B5 Computers that are referenced throughout this
document include:

AT&T 3B2 Computer UNIX System V Release 2.0 System Administration
Utilities Guide (for 3B2 Computers) and UNIX System Administrator Reference
Manual (for 3B5 Computers) - which contain system maintenance commands
and application programs (generally found in / etc directory), special files, and
system maintenance procedures (such as crash recovery and boot procedures).
In this manual, references to the UNIX System Administrator's Guide will
mean either of these two books.

AT&T 3B2 Computer UNIX System V Release 2.0 User Ref e,·ence Manual (for
3B2 Computers) and UNIX System User Guide (for 3B5 Computers) - which
contain programs intended to be invoked directly by the user or by command
language procedures (generally commands in /bin directory). These include
general-purpose commands, communications commands and graphics
commands. In this manual, references to the UNIX System User's Guide will
mean either of these two books.

AT&T 3B2 Computer UNIX System V Release 2.0 Prourammer Reference
Manual (for 3B2 Computers) or UNIX System Reference Manual (for 3B5
Computers) - which contain system calls, subroutines, file formats, and
miscellaneous facilities. The system calls section of the programmer reference
manual describes the entries into the UNIX System kernel, including the C

* Trademark of AT&T Bell Laboratories

1-1

INTRODUCTION

language interface. The subroutine section describes the subroutines available
in the /lib and /usr/lib directories. In the file formats section, header files
that contain layouts for system files and data structures generally found in
/usr/include and /usr/include/sys directories are documented. Miscellaneous
facilities describe, for example, characters sets and macro packages. In this
manual, references to the the UNIX System Programmer's Manual will mean
either of these two books.

3B2 ComJYUter Feature Card Interface Design Manual (for 3B2 Computers) or
3B5 ComJYUter I/0 Board Interface Design Manual (for 3B5 Computers) -
which provide information Original Equipment Manufacturers (OEMs) need to
design Feature Cards (for the 3B2 Computer) or I/O boards (for the 3B5
Computer).

DESCRIPTION OF CONTENTS

Firmware Implementation

Chapter 2, FIRMWARE IMPLEMENTATION, describes the firmware entries
and explains how the system interfaces with the boards. Diagnostics for and
initialization of Feature Cards (for the 3B2 Computer), I/O boards (for the 3B5
Computer), memory boards, and the input/ output expansion board are
introduced. A description of how the device driver schedules work for boards or
Feature Cards is also included.

Kernel/Driver Interface

Chapter 3, KERNEL/DRIVER INTERFACE, describes the kernel interface to
driver services such as open, close, read, write, strategy, and ioctl. It discusses
the handling of interrupts, power failures (for the 3B5 Computers), and errors.
Data types, system constants, user data access, and initialization are also
explained.

Driver Configuration

Chapter 4, DRIVER CONFIGURATION, explains how the 3B2 and 3B5
Computers configure themselves when the system is booted. It describes how
to write, add, and debug device drivers.

1-2

INTRODUCTION

3B2 Computer Dependent Information

Chapter 5, 3B2 COMPUTER DEPENDENT INFORMATION, defines 3B2
Computer-specific information needed to write device drivers.

3B5 Computer Dependent Information

Chapter 6, 3B5 COMPUTER DEPENDENT INFORMATION, describes 3B5
Computer-specific information needed to write device drivers.

Diagnostics

Chapter 7, DIAGNOSTICS, defines diagnostics structures and explains the
software and firmware interfaces to the diagnostics environment.

Appendices

Appendices at the end of the manual explain, in more detail, the memory
driver, tty subsystem, block 1/0 subsystem, self-configuration commands,
master file, system file, 3B2 Computer edit_tbl command, and registers, 3B2
Computer block device driver, 3B2 Computer character driver, 3B5 Computer
block device driver, and 3B5 Computer character driver. Appendices are
referenced throughout the manual.

1-3

Chapter 2

FIRMWARE IMPLEMENTATION

PAGE

INTRODUCTION... 2-1

DESCRIPTION OF 3B2 COMPUTER FIRMWARE ENTRIES....................... 2-1

Diagnostics for the 3B2 Computer.. 2-3
INIT File System.. 2-4
Boot Firm ware .. ·......................... 2-4
Tran sf er Vector.. 2-4

Scenario for the 3B2 Computer.. 2-5
Queue Types .. 2-7
Queue Operation... 2-8
Queue Structures.. 2-8
Queue Size.. 2-11
Entry Structure.. 2-11
Scheduling Jobs.. 2-13

Requesting a Job from the Feature Card.. 2-14
Completion Reports from the Feature Card....................................... 2-15
Express Work.. 2-16
Error Handling... 2-16
Common Status and Commands... 2-17
Determine Su bdevices ... 2-17
Common Status .. 2-17
Checking Configuration Information... 2-18

DESCRIPTION OF 3B5 COMPUTER FIRMWARE ENTRIES....................... 2-19

Diagnostics... 2-21
Input/Output Controller Boards... 2-22
Interface Boards... 2-22
Board Com pl exes.. 2-22

Scenario for the 3B5 Computer.. 2-23
System Generation... 2-28
Queues .. 2-29
Job Scheduling.. 2-29

Chapter 2

FIRMWARE IMPLEMENTATION

INTRODUCTION

To be effective, computers need to be able to interface easily with other
computer equipment and other computers. A computer designed for expansion
lets users add equipment as their needs grow. The 3B Computers are designed
to facilitate this growth.

The firmware of the 3B Computers was created to let users tailor the system to
their needs and to grow with their needs.

DESCRIPTION OF 3B2 COMPUTER FIRMWARE
ENTRIES

The System Board is built into the computer and provides basic facilities.
Feature Cards are circuit boards designed to connect peripherals to the 3B2
Computers. Memory cards add primary memory to the 3B2 Computer systems.
An Input/Output (I/0) Expansion Board routes the I/0 bus from the System
Board to the Feature Cards. The 3B2/300 Computer is designed to house:

• One System Board (Slot 0)

• Up to four Feature Cards (Slot 1-4)

• Up to two memory cards

• Input/Output Expansion Board.

The 3B2/300 System Board contains:

• WE 32000 Series Processor Module

• Dynamic RAM Controller

• Feature Card Interface Support

2-1

FIRMWARE IMPLEMENTATION

• Direct Memory Access (DMA) Subsystem including

• DMA Controller

• Hard Disk Con troll er

• Floppy Disk Controller

• Universal Asynchronous Receiver Transmitter (DARTS)

• Interrupt Structure

• Timers

• Control and Status Register

• Backup Battery

• PROM

• Nonvolatile RAM

Dynamic RAM and associated drivers are on two boards that plug into the
System Board. A third board, the 3B2 Computer Input/Output Expansion
Board, is also provided. It, too, plugs into the System Board. The 3B2/300
Computer has four Feature Card port connectors on the Expansion Board.

The System Board, 1/0 Expansion Board, Memory Cards, and Feature Cards
are in the computer cabinets of the 3B2 Computers. Cables carry peripheral
control signals from each Feature Card to the correct connectors. The
peripheral to be connected to the 3B Computers are plugged into its connector.
This mates the peripheral to its Feature Card. All standard Feature Cards
support automatic configuration and diagnostics.

Feature Cards may be programmable or intelligent. Programmable Feature
Cards operate when they are programmed by the System Board CPU. These
Feature Cards do not usually contain a microprocessor. Programmable Feature
Cards communicate with the System Board through interrupts and on-board
registers. Intelligent Feature Cards contain microprocessors or
microcomputer-integrated circuits that can execute stored programs within
their own memory. These Feature Cards operate autonomously. Intelligent
Feature Cards use request and completion queues in primary memory to
communicate with the System Board CPU.

Feature Cards can be 8- or 16-bits wide while primary memory is 32-bits wide.
The 1/0 bus has a 16-bit data bus; so, up to two data bytes can be transferred

2-2

FIRMWARE IMPLEMENTATION

in one transaction. The System Board houses a Byte Rotation Unit (BRU) that
formats the data for the proper interface between primary memory and the
Feature Cards.

Diagnostics for the 3B2 Computer

Routines are run when the system is powered up to ensure the integrity of the
hardware and firmware. As soon as the system is powered up, the
noninteractive mode of the Maintenance and Control Program (MCP) resets the
system and performs basic sanity checks. Sanity checks include diagnosing the
WE 32000 Series processor module, hard disk drives, dual ported dynamic RAM,
and UART. When the sanity checks are finished, a self-configuration process
takes place.

In self-configuration, the computer identifies each Feature Card and notes
Feature Card type (identification code) and position on the bus. So, a hardware
identification register is needed on each Feature Card. The identification code
read and the Feature Card location on the I/0 bus is stored in an Equipped
Device Table (EDT) for later use by diagnostics and the UNIX Operating
System.

The EDT is built in two stages. The first stage is finished in self-configuration.
In self-configuration, a device code is read from a fixed location on each board.
The second stage occurs in filledt when a table of devices is downloaded from
the disk. Each device code is then associated with its device name, possible
option, and so on.

A hardware timer on the System Board is provided to cause a fault on a
"hung'' bus. A nonexistent Feature Card (an empty I/0 bus slot, for example)
will be flagged as an I/ 0 bus error.

When self-configuration terminates, more extensive diagnostics run causing the
computer to enter either the interactive mode of MCP or, if no failures are
found, an exit routine that boots the UNIX Operating System.

If a problem has been found, MCP prompts for a password. When the
password is entered, diagnostics and utilities can be run to find the problem.
MCP is in PROM with the boot firmware for diagnostics and utilities.

FIRMWARE IMPLEMENTATION

INIT File System

The INIT file system has been merged into / (root). Space is needed on disk in
the root file system for the /dgn directory, which contains two diagnostic files
per device type. As new Feature Cards add new device files to the system, the
disk area may grow. So, a new Feature Card may be added without changing
PROM. All that is required is that the file containing the correct phase is
added to the disk under the root file system. (The edittbl command, described
in an appendix, lets users change the file in the root file system that filledt
reads during self-configuration to set the device and subdevice lookup tables.)

The diagnostics search the root system for diagnostic phases, and the firmware
uses it for pulling in utilities. During initialization, the UNIX Operating
System mounts the root system to pull in autoconfiguration information and
the kernel. Software additions, such as adding new diagnostics and drivers, are
done through installation scripts. Under the control of the UNIX System, this
utilities installs the new files.

Boot Firmware

A large part of the boot program exists on the disk itself. The PROM resident
firmware downloads the boot program from the disk to Dual Ported Dynamic
RAM (DPDRAM) and calls it. A buffer defined in the transfer vector table
passes the pathname of the program to be booted to/from these two modules.

The boot firmware is also used by the MCP to bring up FILLEDT and the
diagnostic monitor when the system is powered up and the operating system is
up.

Transfer Vector

All routines and global data must be accessed indirectly through a structure of
pointers called vectors. In this way, routines in PROM may be accessed
indirectly through the same address. So, recompilations will not affect
addressing. This is important because it lets PROM loads and disks loads occur
independently.

The transfer vector table can be found in /usr/include/sys/sbd.h. Additions
may be made by adding to the end of the structure.

2-4

FIRMWARE IMPLEMENTATION

Scenario for the 3B2 Computer

When the system is powered on, the System Board resets all of the Feature
Cards to their initialization routine address. The I/0 Bus control signal resets
line SYSRSTO, which starts the initialization. The Feature Card CPU writes
its identification code to its identification/vector register in the Feature Card
I/0 bus interface circuit (PROM). The ID code must be written within 100
milliseconds so that the self-configure program on the System Board does not
attempt to read the code before it is written. After the ID code is written, the
Feature Card runs the basic sanity checks.

The ID code is read by the System Board, which causes INTO (INT is short for
interrupt). The ID code is stored in the EDT, which is maintained by the
System Board firmware. The EDT contains information about the device such
as the ID code, an ASCII name of the device, slot, board type and corresponding
slot and sequence number, boot device, boot capability, number of subdevices,
size of request and completion queue, width of data transfer (8 or 16 bits),
console capability, and structure defining up to 15 subdevices. The System
Board correlates the location of the Feature Card on the I/0 bus with the ID
code. In other words, the System Board knows which Feature Card is in which
slot.

After INTO, the Feature Card knows that it has been identified by the System
Board and expects the System Board to put it through the system generation
(sysgen) sequence. The Feature Card might get more than one INTO from the
System Board when it reads the board ID/vector register. If the interrupt
(INTO and INTl) is not generated, the Feature Card never sysgens. When the
Feature Card does not sysgen, system diagnostics fail and the operating system
will not be loaded. After the INTO sequence, firmware operations will stop and
wait for a sysgen (INTI) interrupt. A sysgen INTl interrupt occurs when the
System Board reads or writes that control register.

Attention interrupts (INTI) happen when the System Board addresses an
Intelligent Feature Card control register. An attention interrupt tells the
Intelligent Feature Card to fetch the information in the request queue.

2-5

FIRMWARE IMPLEMENTATION

A data block for each Feature Card is created by the System Board firmware.
The sysgen data block contains:

• Address of request queue

• Address of completion queue

• Request queue size

• Completion queue size

• Interrupt vector

• Number of request queues for a Feature Card.

A pointer to the first entry in the sysgen data block of the Feature Card is
generated by the System Board firmware. It is stored in primary memory at
location 2000000 (hexadecimal). All Feature Cards share that location so it
must be used carefully. After an INTl reset, the Intelligent Feature Card gets
this pointer and uses it to reference the sysgen data block. The Feature Card
firmware rewrites the ID/vector code register with the interrupt vector. Then,
the System Board can read the ID/vector code register, if it wants to. Usually,
the register is used at interrupt acknowledge time. This means the System
Board firmware only has one chance to read a Feature Card ID code without
resetting the Feature Card.

The sysgen data block also directs the Intelligent Feature Card to its queues in
primary memory (DPDRAM). After the sysgen data block is created, the
queues can be used by the Intelligent Feature Card. The structure of the
sysgen follows:

struct sysgen {

2-6

long request;

long complt;

/•address of request queue•/

/•address of completion queue•/

unsigned char reg size;

unsigned char int _vect;

unsigned char no_rque;

/•number of entries in request queue•/

/•base interrupt vector•/

/•number of request queues•/

FIRMWARE IMPLEMENTATION

Queue Types

Feature Cards use two types of queues: request and completion. A request
queue is used by the System Board CPU to hold jobs for a specific Intelligent
Feature Card. When the Feature Card is done with a job, an entry is made in
its completion queue.

The System Board CPU sets up a job request in the request queue and issues
an attention interrupt (INTI) to the Intelligent Feature Card. The Intelligent
Feature Card fetches the job from the request queue through attention
interrupt INTL

An Intelligent Feature Card may have as many job requests in its queue as are
defined in its sysgen data block. The number of request queues are dependent
on the number of subdevices that need a request queue on an Intelligent
Feature Card.

Feature Cards handle two types of requests: normal and express. Normal
requests are executed by the Feature Card on a first come, first serve basis.
Express requests have the highest priority. Express requests are allocated in
the request queue. The System Board CPU uses the express request when it
wants the Intelligent Feature Card to finish the job being executed and then
executes the express entry. The System Board uses INTO to tell (signal) the
Feature Card about the express job. (INTO is used to read the Feature Card ID
code when the system is turned on. Thereafter, INTO is used to signal the
Feature Card of an express entry.)

When the Intelligent Feature Card is done with its job, it makes an entry in its
completion queue. The Intelligent Feature Card generates an interrupt request
to the WE 32000 series CPU. The WE 32000 series CPU acknowledges this
request, which lets the Feature Card gate the interrupt vector in the ID/vector
register onto the 1/0 bus. The interrupt vector is used by the WE 32000 series
to identify the interrupting Feature Card. When the interrupt Feature Card is
identified, the appropriate completion queue can be read. The System Board
CPU uses this information to assign new tasks.

Any Feature Card that can interrupt the System Board must respond with a
vector at acknowledge time. These Feature Cards need to write its vector in
the ID/vector register before it can generate an interrupt request. A Feature
Card must not access its ID/vector register or try to cause an interrupt while it
has an interrupt pending.

2-7

FIRMWARE IMPLEMENTATION

Queue Operation

The sysgen data block address-of-request queue points to the contiguous job
request queue. The System Board loads these queues with jobs for the Feature
Card. The address-of-completion queue points to the job completion queue.
The Feature Card fills this queue with job completion reports and status
information for the System Board.

Request queues are declared, one per subdevice, on the Feature Card. Since
there is only one completion queue per Feature Card, the driver knows exactly
where the completion report is and doesn't need to poll multiple queues. The
structure is the same for request and completion queues. The only differences
between queues are the number of queues, number of entries, and the size of an
entry.

In this explanation, it is assumed that there is only one subdevice on the
Feature Card and, therefore, only one request queue. If multiple request
queues are used, they must be the same size and must be contiguous. The
sysgen data block points to the first incidence of each queue.

Size members of the sysgen data structure give the number of possible entries
in each request and completion queue. Each job request or completion report is
an entry. The int_vect entry holds the interrupt vector the Feature Card is to
use in subsequent operations that involve the System Board. This vector is a
base number of which the upper four bits remain fixed. The lower four bits
may change to serve up to 16 vectors per Feature Card. The final entry is the
number of contiguous request queues declared for use by the subdevices of a
Feature Card.

The Feature Card may now communicate with the System Board through these
queue entries. The last thing the Feature Card does in the startup sequence is
place a sysgen completion status report in the job completion queue. This
starts normal operation mode.

Queue Structures

Normally, a Feature Card fetches jobs from the appropriate request queue, does
the assigned work, and places status reports in the completion queue. The
common firmware core maintains and provides access to these queues for the
Feature Card. Two different data structures facilitate the queue
communication protocol: the actual queue itself and the entries that contain
information about the queue.

2-8

FIRMWARE IMPLEMENTATION

The job request and completion queues use the structures for sysgen (discussed
earlier) and que_sets. The structure for que_sets follows:

typedef struct que_sets

ENTERY express;

struct queue

union

/•entry for express requests•/

/•RENTRY or CENTRY as per queue.h•/

/•Three ways to access load and•/

/•unload pointers•/

}QUEUE;

long all; /• All pointers at once•/

/•16-bit load pointer•/ struct

/•and 16-bit unload pointer•/

short load;

short unload;

bit16;

struct

bit8;

} p _queues;

/•8-bit load pointer and 8-bit•/

/•unload pointer•/

char pad 1;

char load;

char pad2;

char unload;

/•the queue entries - RQSIZE or CQSIZE•/

ENTRY entry [QSIZE): /•RENTRY or CENTRY as per queue.h•/

~ueue[NUM_QUES); /•multiple queue declaration•/

/•for request queue one•/

/•for completion queue•/

/•RQUEUE OR CQUEUE•/

Although there are different typedefs (type definitions) for request and
completion queues and entries, they share a common structure. The only
difference is the size of the members of the structures. For this reason, only
one ENTRY typedef and one QUEUE typedef are shown. When declared, these
should be separate typedefs referred to as RQUEUE and CQUEUE, for request
and completion queues, respectively. When declared like this and in the
following order, the different sizing option may be used.

2-9

FIRMWARE IMPLEMENTATION

/•application defined

typedef struct rapplic {

long datal;

long etc;

}RAPP;

/•application defined

typedef struct capplic {

long datal;

long etc;

)cAPP;

area in each request.•/

area in each completion.•/

/•number of request queues defined.•/

/•recommended one per subdevice•/

#define NUM_QUES 1

#define RQSIZE 8

#define CQSIZE 8

#de f ine R ADDR &request

#define C ARRD &complt

#include <queue.h >

RQUEUE request;

CQUEUE complt;

/•address of request queue defined by driver•/

/•address of completion queue defined by driver•/

/•now that constants are defined, include queue.h•/

To declare a request and completion queue in the driver, several constants must
be defined. The order of these declarations relative to the #include <queue.h>
is important and should be as explained below.

The System Board enters a job request to the Feature Card by moving a job
entry to the address pointed to by the request queue load pointer. The System
Board increments the load pointer by the size of an entry. The Feature Card,
then, unloads jobs from its unload pointer, increments the unload pointer by
the size of an entry, and does the assigned task. The same protocol is used in
the completion queue with the Feature Card loading and the System Board
unloading.

The System Board or Feature Card must be able to access the queue pointers in
three different ways: all pointers at the same time, as two 16-bit pointers, or as
two 8-bit pointers. It is convenient to access the pointers as a long integer so
they may all be written at the same time during initialization. This mode
should not be used during normal operations. The other two modes of pointer

2-10

FIRMWARE IMPLEMENTATION

access, described in the union portion of the data structure, are used m the
operational mode.

If a 16-bit Feature Card is communicating with the 32-bit System Board, only a
16-bit pointer may be used. If 32-bit pointers are used, it is possible the
Feature Card could write the lower 2 bytes of the pointer and the System Board
read the old upper 2 bytes with the new lower 2 bytes. But, this operation
would break down the entire protocol. The problem gets more complex with an
8-bit Feature Card that can only access memory a byte at a time.

To solve this problem, 16-bit pointers are used for 2-byte wide devices and 8-bit
pointers are used for single byte devices. These pointers are not pointers in the
true sense-they are offsets from the beginning of the entry structure.

An example of macros for accessing the queues are defined in the header file
queue.h. These macro definitions, as well as the queue definitions, exist in a
header file under the UNIX System header directory.

Queue Size

An 8-bit device may have 32 entries.

256 pointer address range / 8 bytes minimum per entry = 32 entries

The 16-bit device is limited by the queue size in the sysgen data block. Since
this field is a byte, a 16-bit device may have 256 entries. These limits are
maximums. Any queue may be declared to be smaller than the maximum value
by changing its size in the sysgen data block.

A device may have one less job than the number of entries in its queue since
the numbering may start at zero, instead of one.

Entry Structure

The entry list in the queue structure directs the Feature Card to the work to be
done. Entry data structures are common between job request and job
completion but the fields take on different meanings.

2-11

FIRMWARE IMPLEMENTATION

Byte Count
I

cmd_stat seqbit Subdev Opcode
2 bytes 1 bit 1 bit 6 bits 1 byte

Data or Address
4 bytes

Application Fields

1 Byte= 8 Bits

The declaration of the completion entry in queue.h follows:

typedef struct entry {

union {

}ENTRY

struct {

}codes ;

unsigned bytcnt:16; /•offset of last byte to transfer•/

l•o transfers byte o•/
unsigned cmd _stat:1; /•flag for command/status opcode•/

unsigned seqbit:1; /•flag for block available•/

unsigned subdev:6; /•subdevice being addressed•/

unsigned opcode:8; /•command or status opcode•/

}bits;

struct

}bytes;

unsigned short bytcnt;

char subdev;

char opcode;

unsigned long addr; /•data or memory address of data•/

APP appl; /•application of defined area•/

/•CAPP or RAPP for CENTRY or RENTRTY•/

l•CENTRY or RENTRY in reg or cmplt queue•/

The byte count (bytcnt) field of the entry structure represents the offset of the
last byte to be transferred on a request. So, a zero in this field means transfer
one byte. If 255 appeared in this field, 256 bytes would be transferred. This
lets a full 64-kilobyte transfer take place. An absolute count would not.

On a completion report, this field contains the byte number of the last byte
t ransferred. For example, if an error occurred during a scheduled request, the
bytcnt field of the completion report would contain the byte on which the error
occurred.

The command/status (cmd_stat) field is usually zero. On a request, a zero in
this field means that the operation code (opcode) field contains a command. A
completion queue entry contains a zero in this location to indicate that status is
contained in the opcode field.

2-12

FIRMWARE IMPLEMENTATION

The Feature Card may give the System Board commands by sending back a
completion report with the cmd_stat bit equal to one. Requests for processor
status, additional memory, or other commands may be passed to the System
Board. The System Board passes back the completion reports to the Feature
Card by setting the cmd_stat bit to one, placing a report in the request queue,
and triggering the attention interrupt to the System Board. This gives the
System Board and Feature Card great flexibility. In special applications, the
Feature Card may use the System Board as a slave. The Feature Card may not
give the System Board commands in the express queue because each Feature
Card has only one interrupt.

The subdevice (subdev) field contains the subdevice being addressed. The
driver fills this field in the request queue and the Feature Card returns it in
the completion queue. Usually, commands are issued in the request queue or
completion status is returned in the completion queue through the operation
code (opcode) field. The System Board uses the sequence bit (seq bit) field to
determine when the Feature Card has entered an express job completion
report. The data/address (addr) field of the structure is a 32-bit/byte of data
or the physical address of the data block to be accessed.

The application field of the structure is an application defined typedef. This
field is allocated so that the entry size can change and be determined by the
application. RAPP or CAPP must be defined by the application before the
queue.h is included.

Scheduling Jobs

To explain job scheduling, a job will be discussed. Ten kilobytes of data in
primary memory at address 2100000 will be moved to port zero of a 16-bit wide
Feature Card.

To request work from the Feature Card, a sysgen sequence must have been
successfully executed. This may be done by reading the sysgen completion
report and by checking for a successful status opcode. This operation should be
done before any other access is attempted.

2-1 !l

FIRMWARE IMPLEMENTATION

The queues have been declared and passed to the Feature Card through the
sysgen data block. The System Board fetches the unload pointer from the
completion queue to determine the location of the sysgen completion report and
reads the status:

if (TIMEOUT)

Feature Card is dead, assert PFAIL, and halt.

else {

Read SYSGEN status completion report at unload pointer in

completion queue.

Increment unload pointer by size of an entry

Enter operational mode.

If the Feature Card does not respond with the sysgen status before the timeout
interval, the System Board assumes the Feature Card failed its sanity checks
and is dead. This interval should be con trolled by a hard ware timer, not
software since a software timer changes with processor speed. If the Feature
Card responds with the proper status, the System Board increments the unload
pointer of the completion queue so that the sysgen report is erased. The
Feature Card is ready to accept jobs.

Requesting a Job from the Feature Card

The System Board enters job requests by placing the job entries on the request
queue of the subdevice and then alerting the Feature Card through an INTL
This interrupt, used in operational mode, is the attention interrupt. The System
Board writes the job entry to the load pointer and increments the pointer by
the size of the entry. It then sends the attention interrupt to the Feature Card.
The Feature Card, in turn, begins processing the job at the unload pointer.

In this example, the ENTRY structure looks like this:

27FF hex) 0 0 00 WRITE
2100000 (hex)

The Feature Card firmware sees the WRITE opcode and calls the application
write subroutine. It passes the subroutine a pointer to the ENTRY structure.

2-14

FIRMWARE IMPLEMENTATION

Completion Reports from the Feature Card

Completed jobs, with the exception of a reset type command, must register a
completion report with the System Board. A completion report is another
structure of type ENTRY. It contains a byte count-the byte being transferred
when the job termination occurred. A normal termination places the offset of
the last byte transferred in this field. If an error occurs, the byte number on
which the error occurred is registered in this location.

The cmd_stat field is zero. This indicates that a status report is in the
completion queue. The opcode is NORMAL unless a unique code appears in this
field. If a code appears in the opcode field, an error is indicated. The subdevice
and buffer address remain unchanged between the request and completion
queue entries.

When the job is done, the Feature Card writes an interrupt request to the
System Board. The System Board, then, removes the completion report from
the queue by responding to the return status as defined by the driver. The
System Board increments the unload pointer.

For this example, the Feature Card should leave a completion entry for a
successful completion, which looks like this:

27FF (hex) I O I O I 00 I NORMAL
2100000 (hex)

If an error occurred while transferring byte 20 (the 21st sequential byte), the
completion report would look like this:

14 (hex) I O I O I 00 I Error Code
21000000 (hex)

The System Board and the Feature Card both monitor the queues to make sure
t he limits of each queue are not overrun. If the System Board detects that
either the load pointer on the request queue or the unload pointer on the
completion queue are at the end of their allocated space, the System Board
resets them to the beginning of the entry structure. The Feature Card
maintains the unload pointer on the request queues and the load pointer on the
completion queue.

As part of this pointer update, the Feature Card and System Board must
ensure that the load pointer never catches the unload pointer. If this happens,
it indicates that the queue is empty when it is really full. So, the load pointer
must always point to an empty slot in the queue.

2-15

FIRMWARE IMPLEMENTATION

When a queue becomes full, the Feature Card waits for the System Board to
clear the completion queue before accepting any more jobs for that subdevice.
Before the System Board can add more jobs, it waits for the Feature Card to
clear the request queue for that subdevice.

Express Work

In some situations, the System Board may need to send a job to the Feature
Card for immediate processing. The express entries in the request and
completion que_set structures are used to do this. The System Board builds its
express request and places it in the express entry reserved at the head of the
queues. An express interrupt (INTO) is sent to the Feature Card.

The Feature Card suspends the current operation, if possible, and downloads
the request and any indirection, for servicing. If the current operation 1s
uninterruptible, the Feature Card services the interrupt at the next break.

The Feature Card constructs a completion entry for the express jobs run. The
express completion entry, however, is placed in the special space reserved for it
at the head of the completion queue. A normal completion interrupt is sent to
the System Board to indicate the job was done.

The System Board uses the seqbit to indicate that this is a new express
completion entry and not a leftover from a previous express operation. This
flag, stored in a local variable, is initialized to zero at sysgen time. Every time
an express completion is placed in the queue, seqbit is complemented by both
the System Board and the Feature Card and placed in the correct field in the
completion entry. This lets a type of semaphore differentiate between old and
new entries since only one attention interrupt is provided back to the System
Board.

Error Handling

The application firmware must provide space in low core for error and
interrupt vectors, which straps all exceptions and interrupts to handlers. The
error handlers should mask all interrupts, write the error code into the
interrupt vector register (all error codes have bits seven to four equal to one,
allowing 16 possible error codes), and assert the Feature Card fail (PF AILO)
and hang .

. When the System Board sees PF AILO, it polls the Feature Cards by checking
the most significant nibble of all ID/vector registers. This causes each Feature
Card to get an INTO. The sane Feature Card can distinguish this from an
express interrupt, which is also INTO, because of the order in which it receives

2-16

FIRMWARE IMPLEMENTATION

INT0s. Express interrupts occur first. Thereafter, INT0s are regular INTO
interrupts.

Common Status and Commands

Because of the common queue protocol, many opcodes are the same across
Feature Cards. Common command opcodes include the downloading code, the
code to examine memory, and the code to jump to a new address. Firmware
makes extensive use of these common routines to download code to the board
for remote execution. The first 32 eight-bit opcodes are reserved for common
commands. Opcodes 20 through FE are application defined. FF is reserved for
common I/0 activities.

Determine Subdevices

The System Board uses the determine subdevices (DSD) command [opcode 05
(hexadecimal)] to determine the subunit equipage of the Feature Card. A
buffer in primary memory is passed as the address. All other fields are " don't
care" s. The information DSD uses is determined in usrinit() by the
application by defining a subdevs structure and populating it with the needed
data. The subdevs structure is type defined (typedefed) in the header file dsd.h
as DSD_POLL. The DSD command then uploads this area to the System Board
into the address specified.

The first DSD each Feature Card receives after a complete system reset comes
from a System Board routine that doesn't know the queue sizes of each Feature
Card. This routine has to use express interrupts (INTO) to do the DSD
command, so all Feature Cards must be able to handle at least three INT0s: one
or more for the read of the board ID register, and one for the DSD.

Common Status

Common status opcodes are useful for returning error status relating to the
firmware code and queue entries that are common across all Feature Cards.

2-17

FIRMWARE IMPLEMENTATION

The first 32 eight-bit opcodes are reserved for common status.

• Normal Status-NORMAL: The status code (0, in hexadecimal) for a
normal completion of a job is defined as NORMAL.

• Fault Status-FAULT: The fault status (01, in hex) must be returned
if the hardware vectors to one of the default exception handlers
during execution of a job.

• Invalid Queue Entry-QFAULT: The invalid queue entry status (02,
hex) may be returned if the command opcode is undecodable or if
requests are made to do impossible actions (such as abort a job that
does not exist).

• Successful Sysgen-SYSGEN: This status opcode (03, hex) is returned
after a successful sysgen.

Checking Configuration Information

The system definition (sysdef) command analyzes the file and extracts
configuration information. This information covers all hardware devices as
well as system devices and all tunable parameters. The sysdef program uses
the master files in /etc/master.d to get information about devices. Hardware
devices, software devices, and loadable modules are defined in separate files in
master.d. Master.d files contain the element characteristic (like block or
character device), number of interrupt vectors needed by a hardware device,
handler prefix, software driver major number, number of subdevices, interrupt
priority level, and, optionally, a dependency list. Master files are described in
more detail in an appendix.

2-18

FIRMWARE IMPLEMENTATION

DESCRIPTION OF 3B5 COMPUTER FIRMWARE
ENTRIES

The 3B5 Computer can come in one or two cabinets, depending on the selected
configuration. All 3B5 Computers include eight standard RS-232-C
asynchronous input/output (1/0) user terminal ports. Some of the features
offered are: high-speed Central Control (CC) with cache, disk and tapes
systems, RS-232-C and RS-449 peripheral interfaces, an uninterruptible power
source, and peripheral interface growth capability. The 3B5 Computer is a 32-
bit computer with eight megabytes of primary memory, expandable in one and
two megabyte increments.

Three different hardware units are available for mounting circuit boards in the
various 3B5 Computer models. They are:

• Basic Control Unit-Mounts in the basic computer cabinet of all 3B5
Computer models.

• Growth Control Unit-Mounts in the basic cabinet in Models l00B
and D and Models 200E, F, and G. (Not included in Models lO0A and
C.)

• Extended Local Bus Unit-Mounts only m the second computer
cabinet in Models 200E, F, and G.

The basic control unit is where the main circuit boards, DC power converters,
and interconnections are mounted. Major circuit boards include:

• Central Control (CC)

• Main Store Controller

• Integrated Disk File Controller (IDFC)

• Power Control, Interface and Display.

The basic control unit also provides:

• Four slots for Main Store Array

• One slot for the cache unit

• Five 1/0 slots

2-19

FIRMWARE IMPLEMENTATION

• Two general-purpose slots

• One maintenance and test slot (used only by the factory for testing).

The 1/0 slots can mount the following types of boards:

• 1/0 Accelerator (IOA)

• Asynchronous Data Link Interface (ADLI)

• Synchronous Data Link Interface (SDLI)

• Synchronous/ Asynchronous Data Link (SADL)

• Interface for TELETYPE* Terminals (TTI)

• Intelligent Tape Controller (ITC)

• All types of 3BNET and DAT AKITt Packet Switch interfaces

• Local Bus Extender (LBE).

General purpose slots are for:

• Storage Module Drive Circuit board(s)

• Certain 3BNET and DA TAKIT Packet Switch circuit boards.

The growth control unit provides power converters and additional slots for 1/0
and memory circuit boards. If a growth unit is installed, no disk drives can be
installed in the basic computer cabinet. Disk drivers would be in vertical or
horizontal growth cabinets.

* Registered trademark of AT&T Teletype
t Trademark of AT&T

2-20

FIRMWARE IMPLEMENTATION

The only standard circuit boards that are provided in the growth control unit
are the two power converters. The remaining slots in the growth control unit
are empty slots and can be used for the following:

• Four slots for Main Store Array circuit boards.

• Ten Input/Output slots.

• Two general-purpose slots.

The extended local bus unit is in a horizontal growth cabinet next to the basic
computer cabinets. It provides 14 more 1/0 slots. Only the 1/0A and IOA­
supported circuit boards are mounted in the extended local bus unit. All other
3B5 Computer circuit boards are mounted in the basic computer cabinet. The
extended local bus unit also provides its own power converters.

All 3B5 Computer circuit boards are housed in slots in the basic control unit,
the growth control unit, or in the extended local bus unit.

The CC circuit board is the main processing element of the 3B5 Computer. This
microprocessor-controlled board contains:

• Read Only Memory (ROM)

• Random Access Memory (RAM)

• Memory management hardware

• Interrupt handling hardware

• Local bus arbiter

• Sanity and interval timer

• Two 1/0 interfaces

• Control and status register

• Diagnostic signature analysis circuit.

For more information about circuit boards, see the 3B5 Computer
Owner/Operator Manual and the 3B5 Computer 1/0 Board Inte1face Design
Manual.

2-21

FIRMWARE IMPLEMENTATION

Diagnostics

The diagnostic structure of the 3B5 Computer is based on self-diagnosing
boards. It will support a variety of diagnostic information but the structure of
diagnostic information must be uniform across all boards on the local bus.
Diagnostic software runs in stand-alone mode, independent of the operating
system and hardware configuration.

The boards of the 3B5 Computer have been designed to be self-diagnosing or at
least containing their own tests in on-board PROM. So, the diagnostic code on
these boards must be structured uniformly and each board must contain all of
the tests needed for that board to be diagnosed. Each board must also have a
ROM-resident file that contains diagnostic information about that board. The
3B5 Computer does not have an Equipment Configuration Database (ECD).

The 3B5 Computer is a simplex machine made up of a CC, Main Store (MAS),
cache, and intelligent (microprocessor-based) peripheral controllers that
communicate over a common bus, the local bus.

Input/Output Controller Boards

All boards on the local bus that are Common Interface Circuit (CIC)-based, or
have some other diagnostic processing capability, are intelligent boards.
Intelligent boards contain all of the diagnostic tests for that board in on-board
PROM. The diagnostic control program that resides in PROM accepts
diagnostic commands and runs its own tests. A special diagnostic control
program, the diagnostic monitor, resides on the CC. The diagnostic monitor
oversees the execution of all system diagnostics and can be thought of as a
subset of the diagnostic monitor.

Interface Boards

All boards on the local bus that contain no processing capability are considered
slave boards. The slave boards need to hold, in on-board PROM, the diagnostics
tests necessary for them to be diagnosed properly. The diagnostic monitor on
the CC is responsible for downloading and executing these tests, when required.

Board Complexes

Some boards on the local bus driver are board complexes. For example, 3BNET
and Network Interface Controller (NIC) are on three boards but the CC sees
only one board. Some bits (equipage) in the EDT tell the CC that other boards
are included. In other words, the CC ·treats board complexes as a single board.

2-22

FIRMWARE IMPLEMENTATION

The diagnostic monitor only knows the local bus board that drives the board
complex. The local bus board, therefore, must diagnose its complex by
executing on-board tests, if it is an intelligent board, or supply on-board tests
that can be downloaded and executed on the CC. For this reason, the
diagnostic control software provides no special handling of subdevices. A
subdevice failure message exists, which the controller board passes back to the
diagnostics monitor.

The diagnostic software does not contain any prov1s10ns for direct terminal
communications. It relies on a CC-resident Interactive Access Utility (IA U)
program to provide two way terminal communications. The IA U accepts
diagnostic input commands, parses them, and transfers control to the
diagnostic software on the CC. It also provides a common output routine to be
used by the diagnostic software to output diagnostic results.

Since a self-diagnostic philosophy implies that no Equipment Configuration
Database (ECD) exists in the 3B5 Computer, some other way to identify board
type and system configuration information is needed. To meet this need, every
circuit pack connected to the local bus must have an on-board ROM file, an
On-board Device Information Table (ODIT), that contains the boards' generic
name, release and point of issue information for any ROM-resident firmware
and the date (month/year) that the PRO Ms were installed. In this way, the
information is distributed throughout all boards in the system and 1s
automatically updated as boards are added to or removed from the system.

Scenario for the 3B5 Computer

When the system is powered on, the 3B5 Computer automatically resets all of
the boards in the system. The CC polls each 1/0 address. It looks for an ODIT
at 0x48F. If a board is in the polled slot, the IA U in the CC creates an
Equipped Device Table (EDT), which contains board descriptor information.
Every board has its ODIT at the same location so the IAU knows where to find
it. Both the ODIT and the relative components must be consistent and uniform
across all boards on the local buses.

The ODIT is the only information table that is required to be at a fixed
address. All other diagnostic information on boards may "float" instead of
being hard coded. This floating is accomplished by maintaining a transfer
vector table in ROM on each board. The transfer vector table is pointed to by
an entry in the ODIT. The vector table, in turn, contains loaded-dependent
addresses of diagnostic structures on that board.

When the IAU finds the ODIT, it copies the information it needs from that
ODIT into the EDT entry for that board. CC can tell from an entry in the
ODIT if a board is an 1/0 interface board (dumb board) or an 1/0 controller
board (intelligent board).

2-23

FIRMWARE IMPLEMENTATION

•'

Intelligent boards run their own diagnostics and send a pass or fail message to
the message queue. Dumb boards have their own diagnostics on-board, too, but
the CC must pull the diagnostics into the CC and then execute that code.

The CC checks the message queue to make sure all intelligent boards have
passed diagnostics. When all diagnostics pass, the CC resets the whole system
again and then boots the UNIX System.

The IO Accelerator (IOA) is one device driver that uses the EDT. The EDT
tells the IOA driver which ADLis, SDLis, and TTis are connected to which
IOA.

2-24

/• Fixed ROM address •I

struct Odit {

l .
J •

char dev size;

char dev _type;

char dev _name[9);

int: 16;

short phnum;

long phtadr;

long romsz;

long ramstrt;

long ramsz;

long errmask;

short reldate;

short version;

#define S8BIT 1

#define S16BIT 2

#define S16HBIT 3

#define S32BIT 4

/••••item b•••••/

#define IOCONTRL

$define IOINTERF 2

FIRMWARE IMPLEMENTATION

Firmware Header for ODIT

/•see item a•/

/•see item b•/

/•device name•/

/•number of d iagnostic phases•/

/•vector table pointer•/

/•device ROM size•/

/•RAM start address•/

/•RAM size•/

/•control and status register (CSR) error mask for\

UNIX fault recovery•/

/•release date•/

/•version number•/

/•defines 8-bit addressable unit•/

/•defines 16-bit addressable unit•/

/•defines 16-bit with holes (bits 16-31)•/

/•defines 32-bit addressable unit•/

/•1/0 controller board•/

/•1/0 interface board•/

The transfer vector table is maintained on each local bus board. The vector
table contains addresses of diagnostic structures on that board that need to be
accessed by the diagnostic control firmware on the CC.

2-25

FIRMWARE IMPLEMENTATION

Valid ODIT, Vector Table, and Phase Table

struct Odit cic odit •

S16BIT,

IOCONTRL,

"IDFC",

20

(unsigned long)&cicvects,

OxcOOO,

Ox30000,

Ox2000,

Ox0000009F,

Ox0282,

Ox0001 \.
J•

extern struct Ksg_req cic req;

extern struct Ksg_que cic_que;

struct vect cicvects •

Ox03L,

2-26

(unsigned long)tbl,

(unsigned long)&cic_req,

(unsigned long)&cic_que,

OXOOL,

OxOOL

\.
J•

FIRMWARE IMPLEMENTATION

#define NRMLPH 0

#define LBTPH 1

#define DEMAND 2

#define DMNDSUB 3

struct phtbl

/•non-interboard communication normal phase•/

/•local bus test phase•/

/•demand phase•/

/•demand phase with helper subdevice specified•/

char type;

short phsz;

int <•phaddr)();

\.
J I

extern cpu68 1 () , cpu68 _ 2 () , cpu68 _ 3 () , cpu68 _ 4 () , rom(), ram() , s ignnlC) ,

idfcsr() ,intcntl() ,intencr() ,cicitst() ,iencrtst() ,sit() ,lbcntlC);

struct phtbl tbll I = {

{NRMLPH, 1500, cpu68 _ 1 },

{NRMLPH, 1500,cpu68 _2 },

{NRMLPH, 1500, cpu68 _3 },

~RMLPH,1500,cpu68 4 },

{NRMLPH, 1500, rom },

{NRMLPH, 1500, ram},

{NRMLPH, 1500,signal },

~RMLPH,1500,idfcsr },

~RMLPH,1500,intcntl},

~RMLPH,1500,intencr},

~RMLPH,1500,cicitst},

~RMLPH,1500,iencrtst},

~RMLPH,1500,sit},

{LBTPH, 1500, lbcntl l
};

short int thlsz ~ sizeof(tbl)/sizeof(struct phtbl) +1;

Each board that has diagnostic firmware also contains descriptor information
(size, address, etc.) on each diagnostic routine (phase). This descriptor
information is described in a structure of a phase table. A phase table, simply
put, is a linear list on n sequential entries, where n is the number of phases on
that board, and each entry is a phase descriptor. The phase table pointer
contained in the ODIT is the address of the first phase descriptor, n. The
number of phases on a board (n) is also contained in its ODIT.

2-27

FIRMWARE IMPLEMENTATION

System Generation

During sysgen, the following happens:

• The device driver sets the request reset bit in the intelligent board.

• Once the board has initialized itself, it sets the reset complete bit in
its CSR.

• While the board was being initialized, the driver has been polling the
reset complete bit in the intelligent board's CSR and either recognizes
that the reset is complete or recognizes that the board failed to reset.
(A countdown timer displays an expiration message at the console if
the board fails to reset.)

• If the board reset, a stand-alone command block (composed of a
sysgen operation code and a pointer to the main store resident sysgen
data block) is written to the board's RAM at the Offset Stand-Alone
Command Block (OSACB) defined in /usr/include/sys/firmware.h.
The sysgen data block is written in main store and describes where
the work queues and queue pointers are located. For an example of a
sysgen data block, see /usr/include/sys/sysgdb.g.

• The driver sets Program Interrupt Register 1 (PIRl) in the PIR on
the intelligent board and goes into a countdown loop of sufficient
length to allow sysgen to complete.

• On the intelligent board, the sysgen data block is copied from main
store to the intelligent board. The queue handling initialization is
completed. The intelligent board then issues a hard interrupt on
vector zero back to the CC as an indication that sysgen is complete.

• If the countdown expires, the driver displays on the console that the
device failed sysgen. Otherwise, the interrupt handler captures the
interrupt and sets a flag that indicates that sysgen is complete. This
flag is what the initialization routine is loop on so as soon as the
interrupt handler relinquishes control, the initialization routine notes
that sysgen is complete.

This procedure is followed for each intelligent device.

2-28

FIRMWARE IMPLEMENTATION

Queues

Communication between the driver and its peripheral is usually done through a
set of queues manipulated by the driver and the device's firmware. All block
devices are intelligent and, therefore, have operational firmware that knows
how to manipulate these queues. Each piece of firmware in the 3B5 may use
different queues to communicate with the device driver. For this reason,
writers of device drivers for the 3B5 need to get specific information from the
firmware designer. Basic philosophies, however, are similar. At least two
queues, a job request queue and a job completion queue, are used. These queues
may be replicated if the controller manages more than one device and jobs to
each of those devices can be handled in parallel such as the Intelligent Disk
File Controller (IDFC).

Along with each of these queues are associated queue pointers: a load pointer
and an unload pointer. The load pointer always points to the next available
slot in the queue to insert a job request. The unload pointer always points to
the next job request to be processed.

The queues are circular so the unload pointer chases the load pointer. To
guarantee consistency, the driver only alters the request queue load pointer and
the completion queue unload pointer. The firmware manipulates the alternate
two. The only exception to this is at initialization time when the driver sets
both to the top entry in the queue.

Job Scheduling

Once again, firmware designers may implement job scheduling in different
ways so device driver writers need to get specific information from the
designers. Basically, a job is scheduled by following these steps:

1. The device driver checks the job request queue to see if a free slot
exists. If there isn't a free slot, the process goes to sleep. When a
job is completed, the firmware interrupts the driver and the driver
wakes up sleeping processes waiting for empty slots. Sleeping
processes will be assigned empty slots. Any processes that are not
assigned empty slots will go to sleep again.

2. The driver creates a job in the request queue.

3. The driver increments the job queue load pointer and wraparound if
its incremented value is greater than the end address of the queue.

2-29

FIRMWARE IMPLEMENTATION

2-30

4. The device driver interrupts the block device to call its attention to
the new job in the queue.

5. The firmware fetches the jobs from the request queue, does the
assigned work, and places status reports in the completion queue.

6. The firmware interrupts the driver to call attention to the
completion report in the completion queue.

7. The driver removes the completion report, which wakes up sleeping
processes. Job scheduling continues, starting again at step 1.

Chapter 3

KERNEL/DRIVER INTERFACE

PAGE

DRIVER CONVENTIONS... 3-1
Major/Minor Device Numbers and Translations....................................... 3-1

KERNEL INTERFACE TO DRIVERS... 3-2

KERNEL INTERFACE TO DRIVER SERVICES.. 3-2
Bringing the Device Into Service... 3-3
Taking a Device Out of Service.. 3-3
Character Device Data Transfer ... 3-4
Block Device Data Tran sf er.. 3-5
Device Access Other Than Read/Write ... 3-5
Block Device Print Warning Message .. 3-7
Boot Time Initialization.. 3-7
Power Failure Functions... 3-7
Handling Interrupts... 3-8
Reporting Errors... 3-9

DRIVER INTERFACES TO KERNEL SERVICES... 3-9
General System Constants and Data Types.. 3-9
User Data Access.. 3-9

Defining the User Process and I ts State... 3-10
'_rranslating Virtual Addresses to Physical Addresses..................... 3-11
Transferring Data from User Data Space to Driver Buffers
and Back Again.. 3-12
Verifying User Access Permissions.. 3-14

The TTY /Character Subsystem... 3-15
Block 1/0 .. 3-15
Driver Execution Control.. 3-15

Changing the CPU Execution Level... 3-15
Blocking Execution Awaiting an Event... 3-17
Getting to a Sane Point in the User Process 3-19
Blocking Execution for a Specified Real Time Interval................... 3-20

Recording Time Intervals... 3-21
System Error Messages and Halting the System.............................. 3-21
Sending Signals to Processes... 3-22

Managing Driver Memory Allocation... 3-23

Chapter 3

KERNEL/DRIVER INTERFACE
Accompanying each add-on peripheral device for 3B2 and 3B5 Computers is a
loadable software module called the device driver. The device driver relates the
add-on peripheral specific hardware interface to a standard UNIX System
kernel interface.

This chapter describes major and minor device numbers and the standard
kernel/driver interface supported on 3B2 and 3B5 Computers.

DRIVER CONVENTIONS

Major/Minor Device Numbers and Translations

The major and minor numbers are the means by which the UNIX System
associates a peripheral device with a file name. Each number is an 8-bit
quantity, and both together are termed the device number. In systems not
supporting a self-configuring UNIX System, the major number identifies a
specific device driver and is assigned by the master file. The minor number is
essentially a sequential number which identifies the logical device number for
all devices controlled by a driver. It is determined by the order in which the
devices are specified in the configuration file used as input by the config(lM)
program. However, in a self-configuring system, major numbers are associated
with physical hardware addresses. This ensures that the special files in the
/dev directory remain constant and refer to the same physical device
regardless of any configuration changes.

For actual hardware devices, the major number is the board hardware address
code or board slot. Software drivers are assigned (by the drvinstall command,
see Chapter 4) major numbers that do not conflict with the major numbers
assigned to hardware devices. Major numbers for software drivers range from
16 to 127 for the 3B2 Computer and from 64 to 127 for the 3B5 Computer. The
external major number (this is the major number that is visible in the special
device file) must be translated to obtain the actual driver number, that is, the
index in the block or character device switch table. This number (termed the
internal major number) is assigned at boot time.

The external minor number will only identify the logical device on the
individual board identified by the external major number. It too must be
translated to obtain the actual logical device number used by device drivers.

KERNEL/DRIVER INTERFACE

Decoding the external device number into the internal major and mmor
numbers is accomplished by macros m the system header
/usr/include/sys/sysmacros.h:

maj = major(dev);
min = minor (dev);

There are two cases where the driver should not perform the external to
internal device number translation. The first is unbuffered read or write
operations. Here the translation will be performed later when the strategy
function is called by physio (see Appendix B). The second is the driverprint
function which needs to identify specific hardware (that is, the external device
number) in an output message.

KERNEL INTERFACE TO DRIVERS

This section defines the standard kernel/driver interface supported on 3B2 and
3B5 Computers. The driver/kernel interface may be divided into two parts:

• Services the driver provides for the kernel

• Services the kernel provides for the driver.

The interface to the function is defined by arguments passed to the function,
operations performed by the function, and results returned by the function.

KERNEL INTERFACE TO DRIVER SERVICES

The services the driver provides for the kernel are generally accessed through
the tables. Throughout this chapter, the prefix driver is used to replace the
prefix which would actually be used. The actual prefix must be specified in the
master file for that driver.

3-2

KERNEL/DRIVER INTERFACE

Bringing the Device Into Service

The open system call calls the driver open function when the special file
associated with that device is opened.

driveropen (dev, flag)
dev_t dev;
int flag;

The parameters of the driver open function are the device number of the device
file, a variable of type dev_t, and the flags described in the ofiag field of the
open system call [see the open (2)] manual page of the UNIX System
Programmer Reference Manual. (Type dev_t is defined as a short in
/usr/include/sys/types.h). These flags correspond to the flag values in a file
descriptor data structure (field /_flag m the header file
/usr/include/sys/file.h).

The open function must validate the minor portion of the device number
(accessed via the minor macro). An incorrect special device file could cause
the driver open function to be passed an incorrect device number. To perform
this check, a driver will typically use a variable whose value is set up at "boot
time." This is described in more detail in Chapter 4.

Additional work done by the open function is very much dependent upon the
device being opened. For example, the open function for a removable media
disk drive could lock the door to the disk drive and cause the disk controller to
select the drive. The open function for a terminal interface controlle.r would
establish a connection between the user process issuing the open and the device
being opened.

An open function should:

1. Adhere to the use of the flag parameter as specified m the open (2)
manual page when applicable.

2. Set up the device for data transfer.

Taking a Device Out of Service

The kernel calls the driver close function when the last process that is using the
device issues a close system call or exits.

3-3

KERNEL/DRIVER INTERFACE

driverclose (dev, flag)
dev_t dev;
int flag;

The parameters of the close function are the device number and the flags from
the file descriptor associated with the open request (field f _flag in system
header /usr/include/sys/file.h). The close function typically performs inverse
operations to those of the open function. Note that a device may be opened
simultaneously by multiple processes, and the driveropen function is called on
each open. However, the driverclose function is only called once, when the last
process that is using the device closes it.

A close function should:

1. Adhere to the use of the flag parameter as specified m the close (2)
manual page when applicable

2. Make the device available for later use.

Character Device Data Transfer

When the user issues a read (write) system call from (to) a special file, the
driver associated with the special file is called to initiate and supervise the data
transfer from (to) the device to (from) the user data area (ublock).

and

driverread (dev)
dev_t dev;

driverwrite (dev)
dev_t dev;

The only argument passed to either the driver read or write function is the
device number. If an error occurs the functions should set the u_error flag.
Read and write parameters are defined in /usr/include/sys/user.h.

As was stated earlier, driver read and write functions are accessed through the
character device switch table. When the device being accessed is truly a
character device (not a block device being accessed through the character
device switch table), the data being transferred must be buffered by the driver.
That is, data is not transferred from the device directly to the user data area;
instead, the driver transfers data between the user area and its own buffers
and between its buffers and the device. When data is transferred to the device
the reverse holds true.

3-4

KERNEL/DRIVER :C:NTERFACE

Drivers for low-speed character devices like terminals and printers which are
required to perform semantic processing of data typically use the clist data
structure and the tty subsystem to perform buffering and transfer in and out of
the user data area. The clists and the interface to the tty subsystem are
described in detail in Appendix A. Drivers for high-speed character devices
like network interface boards generally set up their own buffering schemes.
The kernel provides several functions for copying data in and out of user
memory.

When the device being accessed by the read or write system call is a block
device, the data transfer is usually performed directly from user memory to the
device. To facilitate this, the kernel provides the physio function. The device
driver read and write functions call the physio function which in turn calls the
driver strategy function. The physio function is discussed in Appendix B.

Block Device Data Tran sf er

Block device drivers must provide a strategy function to handle the data
transfer to and from the device. A strategy function takes as its argument the
address of an instance of the buffer header data structure defined in the system
header file /usr/include/sys/huf.h.

driverstrategy (hp)
struct huf *hp;

A detailed description of the buffer header is presented in Appendix B. All
information about the data transfer is contained in the buffer header. The
buffer header is also used to return status and error information to the kernel,
which conveys the information to the user.

The strategy function is responsible for initiating block data transfer. It
validates the buffer header information and then uses this information to
generate the appropriate device operations required to start the block data
transfer.

Device Access Other Than Read/Write

The ioctl function is traditionally and most commonly provided by drivers for
terminal interface devices. It controls device hardware parameters and
establishes the protocol used by the driver in the semantic processing of data.
However, the ioctl function has become the catch-all function for facilitating all
device access that is not normal read/write access.

KERNEL/DRIVER INTERFACE

driverioctl (dev, cmd, arg, mode)
dev_t dev;
int cmd, arg, mode;

The driver ioctl function is accessed through the ioctl system call [see the
UNIX System Programmer Reference Manual for the manual pages on
ioctl (2)]. The function takes four arguments:

dev

cmd

arg

mode

The device number.

A command argument that the driver ioctl function interprets
as the type of operation to be performed. The command types
vary across the range of devices; the user manual specifies the
command types that must work for terminals. Terminal
interface drivers typically have a command to read the current
ioctl settings and at least one other that sets new settings. The
kernel does not interpret the command type; so, a driver is free
to define its own commands.

An arbitrary argument that can pass parameters between a
user program and the driver. When used with terminals, the
argument can be the address of a structure in the user program
that contains settings for the driver or hardware. The driver
reads the settings from the user program via the copyin
function and does the appropriate operations. Similarly, the
driver collects current settings and uses the copyout function to
return settings to the user program structure. Alternatively,
the argument may be an arbitrary integer that has some
meaning to the driver. The interpretation of the argument is
driver dependent and usually depends on the command type;
the kernel does not interpret the argument.

A mode argument that contains values set when the device was
opened. The mode need not be used. However, the driver can
use it to determine if the device was opened for reading or
writing by checking the FREAD or FWRITE setting.

The use of the ioctl function by nonterminal drivers is open ended. For
example, on 3B5 Computers, the ioctl function is used to rewind tapes. On 3B2
Computers, the ioctl function is used to format diskettes and implement bad
block handling.

3-6

KERNEL/DRIVER INTERFACE

Block Device Print Warning Message

Block device drivers must provide a print function to output appropriate
warning messages when various abnormal situations are detected by the kernel,
for example, out of space on the device.

driverprint (dev, str)
dev_t dev;
char *str;

The nature of the problem is included in the character string str; this should be
included in the driver output. Normally, the driver will also include
information in the output to identify the specific hardware associated with dev.
The kernel function print/ is usually used by the driver to output a message to
the system console.

Boot Time Initialization

Most drivers and peripheral devices require initialization before the kernel can
use them. This initialization is typically performed during system boot. Driver
functions to perform initialization generally initialize driver global variables
and data structures and initialize peripheral hardware.

driverinit ()

and

drivers tart ()

The init functions are used to initialize drivers and devices essential to
initialization of the kernel. Drivers for the root file system device or the
system console device would require init functions. The start functions perform
initialization for devices and drivers which are not essential to initialization of
the kernel. These functions are called immediately after kernel initialization.

Power Failure Functions

The 3B5 Computer supports an optional power holdover feature which allows
the system to shutdown gracefully on power failure. Each driver may provide a
function, driverclr, to facilitate this.

driverclr ()

3-7

KERNEL/DRIVER INTERFACE

The driverclr function sets a flag prohibiting the initiation of any further I/O
activity and notifies user processes awaiting I/O that the I/O has failed.
Another function of driverclr is to purge all outstanding I/O requests that may
be pending. The driverclr function accepts no arguments and returns no
values.

Handling Interrupts

The driver interrupt handler is entered when a hardware interrupt is received
from the device controlled by the driver. This function is passed a single
argument: a number or " interrupt vector" corresponding to the interrupting
device.

driverint (ivec)
int ivec;

The driver must translate the input argument into a logical controller number
in order to be able to access the I/O hardware and to locate the status
information associated with the interrupting device. This translation is
dependent on the number of unique interrupt vectors per device controller and
typically involves a shift operation. For example, suppose that for a given
device, each controller has eight different interrupt vectors. Then to get the
logical controller number corresponding to ivec shift right three times as
follows.

ivec >> 3

The function of the device driver interrupt handler is very much dependent
upon the device. In general, driver interrupt functions service the interrupting
hardware or peripheral firmware, and notify the processes associated with the
device that a transfer is complete. To service the peripheral hardware or
firmware, an interrupt function might read data from firmware/driver buffers
or hardware registers into driver buffer space. It might read transfer
completion status information from driver/firmware buffers or hardware
status registers and respond accordingly. When intelligent I/O drivers
maintain their own work queues, the interrupt function also scans the work
queue for new work and starts the next job if new work is found.

Since an interrupt is not associated with any user process, the driver interrupt
handler must not attempt to access the user structure. Also, any previous local
variables set up by the driver are not available. Each interrupt causes
execution to begin on an empty stack.

3-8

KERNEL/DRIVER INTERFACE

Reporting Errors

Drivers must report I/O errors to the kernel. Character device drivers return
errors in the u_error field of the user data structure unless the error comes
from an interrupt handler. Block device drivers return errors in the b_flags
and b_error fields of the buffer header data structure. These data structures
and error codes are discussed later.

DRIVER INTERFACES TO KERNEL SERVICES

In order to ensure portability of drivers from one release of the UNIX System
to the next, the UNIX System kernel provides a set of standard service
functions and data structures for use by the drivers. Use of any other feature
or data structure can result in a driver which will not port to a new software
release. The discussion of the driver interface to kernel services is divided into
three parts: general system constants and data types; kernel services which
provide the driver access to user data; and services which allow the driver to
control system execution flow.

General System Constants and Data Types

The kernel defines general system constants and data types for use by drivers
in the system header files types. h, pa ram. h, sysmacros. h, ~ignal. h, and errno. h.
These headers are found in the system directory /usr/include/sys. Types.h,
param.h, and sysmacros.h should be included by all drivers, as they contain
type definitions, macros, and parameters which are used in other system
header files. If the driver sends signals to other processes [see psignal and
signal in this chapter and the signal (2)) manual page in the UNIX Programmer
Reference Manual it must include the file signal.h. Standard error codes
returned from drivers to the kernel in the user data structure and buffer
headers are contained in the header file errno.h. The intro(2) manual page of
the UNIX Programmer Reference Manual defines the error codes. To ensure
portability of drivers, future changes to any of the header files mentioned in
this paragraph will be upward compatible.

User Data Access

Before discussing the kernel services which allow the driver to control
execution flow, we will discuss the services which allow the driver to control
data flow. Included are descriptions of key data structures related to the user
process and its state. These are also important to the execution flow services
described later.

KERNEL/DRIVER INTERFACE

Defining the User Process and Its State

Each process has allocated to it one user and one proc data structure. Together
these structures contain all the per-process information defining the process
and its state to the UNIX System kernel. These structures are defined in
/usr/include/sys/user.h and /usr/include/sys/proc.h, respectively. Since
the user and proc data structures are basic to the UNIX System kernel, they
are subject to change from one software release to another. However, some
drivers require access to certain fields in these data structures. Therefore, the
size and offset of a limited set of fields in these structures are guaranteed not
to change. Elements of the user structure which will be frozen are:

u_error

u_base

u_offset

u_count

u_segflg

u_ruid and u_rgid

u_uid and u_gid

u_procp

u_r

3-10

This field is used to return errors information
(see error.h) to the kernel which is then passed
on to the user. The introduction to section two of
the UNIX System manual describes the error
codes.

This field specifies the base address for I/O to
and from user data space.

This field specifies the off set into the file from
which or to which data is being transferred.

By convention, this field specifies the number of
bytes which have not yet been transferred during
an I/O transaction.

This field is an I/O flag.

These fields identify the real user and group ids,
respectively.

These are the effective process user and group
identification fields. They may be used to
provide a process identified by the user and
group identification fields (u_ruid and u_rgid)
with the access permissions of another process or
process group.

This field is the address of the proc structure
associated with this user structure.

This union is used to return values to system
calls.

u_ttyp

u_qsav

KERNEL/DRIVER INTERFACE

This field is the address of the process group
field (pgrp) of the tty structure for the terminal
associated with this process.

This field is used as an argument to the kernel
longj mp function.

The fields in the proc structure which will be frozen are:

p_pid This is the unique process identification field.

p_uid This is the user identification field.

p_pgrp This field identifies a process group.

Translating Virtual Addresses to Physical Addresses

When a driver receives a memory address from the kernel, that address is
virtual. The use of that address by the driver itself works correctly as memory
management is performed by the CPU. However, some devices which access
memory directly deal only with physical memory addresses. In such cases, the
driver must provide the device with physical memory addresses. To perform
the translation from virtual addresses to physical addresses, the kernel
provides the function vtop. The 3B2 and 3B5 Computers provide slightly
different vtop functions.

For the 3B2 Computer:

paddr_t
vtop (vaddr, p)
char *vaddr;
struct proc *p;

The vtop function accepts as arguments a virtual address and a pointer to a
proc structure. (The paddr_t function is the type for a physical memory
address. It is defined in the system header file /usr/include/sys/types.h.)
The virtual address is the memory address being translated. The pointer to the
proc structure is used by vtop to locate the information (tables) used for
memory management. To indicate that the address is in kernel virtual space or
in the driver itself, the second argument should be NULL. Block device drivers
which can transfer data directly in and out of user memory space must use the
b_proc element of the buffer header data structure as the second argument.
The vtop function returns the translated address. If for some reason the
virtual address cannot be translated correctly, vtop returns zero.

3-11

KERNEL/DRIVER INTERFACE

For the 3B5 Computer:

paddr_t
vtop (vaddr)
char *vaddr;

The vtop function accepts the virtual address to be translated as its argument.
This can be an address in the current user virtual address space, in the kernel,
or in the driver itself. The vtop function returns the translated address or a -1
if the virtual address cannot be translated correctly. Note that vtop can only
be used to translate a user address in the currently active process. As a result,
it cannot be used in an interrupt handler or a time-out entry.

Trans(erring Data from User Data Space to Driver Buffers and Back Again

Many drivers provide their own method of buffering data between the devices
they control and the user data area. To assist the data transfer between driver
buffers and the user data area, the kernel provides drivers with the fubyte,
fuword, copyout, subyte, suword, and copyin functions. The copyout, subyte,
and suword functions are used to copy data from driver buffers to user data
space.

copyout (driverbuf, userbuf, n)
char *driverbuf, *userbuf;
int n;

subyte (userbuf, c)
char *userbuf, c;

suword(userbuf, i)
int *userbuf, i;

The copyout function is used to copy blocks of information from the driver
buffer to user space. It accepts as arguments the address of the driver buffer,
the address of the user buffer, and the number of bytes to be copied. The
subyte function is used to copy a single character from the driver buffer to user
space. It accepts two arguments: the address of the user buffer and the
character to be copied. The suword function is used to copy a single integer
from the driver buffer to user space. It accepts two arguments: the address of
the user buff er and the integer to be copied.

3-12

KERNEL/DRIVER INTERFACE

By convention, within the UNIX System kernel, when a driver read or write
function is entered, the u_base field of the u:;er data structure contains the
address of the buffer in the user address space, and the u_count field contains
the number of bytes remaining to be transferred. After the copyout, subyte or
suword function call completes, the driver should increment the value of the
u_base field and decrement the value of the u_count field by the number of
bytes transferred. These functions return O if the transfer is successful. If a
nonzero value is returned, the u_error field of the user structure should be set
to EFAULT.

3-13

KERNEL/DRIVER INTERFACE

The functions copyin, fubyte and Ju word are used to copy data from a user
buffer to a driver buffer. They are used in like manner to copyout, subyte, and
suword, respectively.

copyin (userbuf, driverbuf, n)
char *driverbuf, *userbuf;
int n;

char
fubyte (userbuf)
char *userbuf;

int
fuword (userbuf)
int *userbuf;

Instead of using copyin in the preceding example, you could also use the
iomove (addr, n, flag) to move the data.

The kernel is not responsible for a bad address in u_ba~e, which is set as a
result of a user system call. For example, if the user is reading 512 bytes from
the device into a data structure that is only 256 bytes long, the system will not
detect the error.

Verifying User Access Permissions

A device driver must sometimes verify that a user has access permission to the
memory area specified in a read or write system call. The kernel function
useracc performs this verification.

useracc(base,count,access)
caddr_t base;
int count;
int access;

The useracc function accepts three arguments. The first argument is the start
address of the user data area (the u_base field of the user structure). The field
base is of type caddr_t. (Type caddr_t is defined as a character pointer in
/usr/sys/include/types.h.) The second argument is the size of the data
transfer in bytes (the u_count field of the user structure). The third field
specifies whether the access is a read or write. The defined constant B_READ
specifies a write into memory (the user is performing a read operation). This
requires that the user have write access permission for the specified data area.
The defined constant B_ WRITE specifies a read from memory; that is, it
requires read access permission for the data area. (B_READ and B_ WRITE

3-14

KERNEL/DRIVER INTERFACE

are defined m the system header file /usr/include/buf.h, which must be
included.)

'_The useracc function returns O if the user does not have the proper access
permission to the memory specified and returns 1 otherwise. If the user does
not have the proper access permission, the driver should set the u_error field of
the user structure to EFAULT.

The TTY/Character Subsystem

The UNIX System kernel provides common functions and data structures which
can be used by drivers for low-speed character devices like printers and
terminals which are required to perform semantic processing of data. The tty
subsystem and the clist and tty data structures provide both buffering and
semantic processing of data. Special interface requirements are placed on
device drivers which use the tty subsystem, which is discussed in Appendix A.

Block 1/0

The UNIX System block I/0 subsystem provides a common interface and
buffering scheme for block device drivers. The block I/0 subsystem is described
in Appendix B.

Driver Execution Control

The UNIX System kernel provides functions which allow a driver to control
system execution flow. Some functions allow the driver to block its execution
for a specific period of time or until a certain event occurs. Others allow the
driver to raise, lower, and restore the execution level of the CPU. .Still others
allow the driver to notify the system console when significant error conditions
arise or to actually halt the system when the error condition mandates it. In
this section we list these functions, define the interface between them and the
driver, and discuss when and when not to call them.

Changing the CPU Execution Level

When a process is executing code in a driver, the system will not switch context
from that process to another executing process unless it is explicitly told to do
so by the driver. This protects the integrity of the kernel and driver data
structures. However, the system does allow devices to interrupt the processor
and handles interrupts immediately. The integrity of system data structures
would be destroyed if an interrupt handler were to manipulate the same data
structures as a process executing in the driver.

3-15

KERNEL/DRIVER INTERFACE

To prevent such problems, the kernel provides the spln (set priority level)
function where n is the priority level which the processor is set. These
functions allow the driver to set processor execution levels and, thus, prohibit
interrupts below the level set.

int s;
s = spin();

The spln functions take no arguments since it sets the execution level to a
specific value and returns the execution level of the processor at the time it was
called.

The selection of the appropriate spln function is quite important. The execution
level to which the processor is set must be high enough to protect the region of
code; but this level should not be so high that it unnecessarily locks out
interrupts which need to be processed quickly. A hardware device is assigned
to one of two interrupt priority levels depending on whether it is a character
device or a block device. By using the appropriate spln function, a driver can
inhibit interrupts from its device or other devices at the same or lower
interrupt priority levels. The following tables show the correspondence
between interrupt levels (processor execution levels) and the spln functions
used by drivers.

INTERRUPT
LEVEL

3B2 3B5
0 0

10 6
12 10
15 15

USE

Base level
Character devices
Block devices
Inhibit all interrupts

spin FUNCTION TO
BLOCK THIS AND

LOWER INTERRUPTS
splO
spl4 or spl5
spl6
solhi

The splO function is used by drivers to restore base execution level. A driver
function may use splO when the function has been called through a system call;
that is, it is known that the level being restored is indeed base level. Other
spln functions are used by drivers not to restore execution level but to raise
execution level and, thus, protect critical regions of code.

Note that character device drivers may use either spl4 or spl5; these have the
same effect.

For regions of code that must be protected from all interrupts, the splhi
function should be called. However, it should be noted that splhi locks out
everything, including the clock, and should be used sparingly. (spl6 on the 3B5
computer also inhibits clock interrupts and should, therefore, be used with
care.)

3-16

KERNEL/DRIVER INTERFACE

A spln function is usually called in conjunction with the splx function.

splx (n)
int n;

The splx function sets the processor level to that specified by its argument n.
The argument to splx must be a value returned by a previous spln function call.

Blocking Execution Awaiting an Event

Drivers must sometimes suspend or block execution to await certain events,
such as reaching a known system state in hardware or software. For instance,
when a process wants to read a device and no data is available, the semantics
of the read may require the driver to wait for data to become available before
returning to the kernel. The driver blocks by calling the sleep function. This
causes the kernel to perform a context switch and schedule another process.
The process which invoked the driver awaits the arrival of data for the device.

The sleep function takes two arguments: the address (signifying an event) upon
which the process will sleep, and a priority value that is assigned to the process
when it is awakened.

sleep (addr, pri)
caddr_t addr;
int pri;

The address used for sleeping may be the address of a kernel data structure or
one of the device driver own data structures. The sleep address is an arbitrary
address that has no meaning except to the corresponding wakeup function call.
This does not mean that any arbitrary kernel address should be used for
sleeping. Doing this could conflict with other, unrelated sleep/wakeup
operations in the kernel. A kernel address used for sleeping should be the
address of a kernel data structure directly associated with the driver I/O
operation (for example, a buffer assigned to the driver). A driver should not
sleep on the address of the user structure. When a process goes to sleep
awaiting an event, the driver usually sets a flag in a driver data structure
indicating the reason for the sleep.

3-17

KERNEL/DRIVER INTERFACE

When the event on which the process is sleeping occurs, either an interrupt
handler or another process which knows that processes might be sleeping on
the event calls the wakeup function to awaken the sleeping process. The
wakeup function is called with one argument, the address upon which a process
could be sleeping.

wakeup(addr)
caddr_t addr;

The wakeup function awakens all processes sleeping on the address, enabling
them to execute when chosen by the scheduler. If no process is sleeping on the
address when wakeup is called, wakeup silently returns with no adverse side
effects. It is recommended for code readability and for efficiency to have a
one-to-one correspondence between events and sleep addresses. Also, there is
usually one bit in the driver flag field which corresponds to each reason for
sleeping.

Interrupt handlers must not call sleep, since they cannot suspend execution.
executing when the device interrupted. If the interrupt handler goes to sleep,
the process that was interrupted is effectively put to sleep for reasons beyond
its control and unpredictable results will occur.

The interrupt handler must, therefore not invoke other functions that could
lead to a call to sleep.

Whenever a driver calls sleep, it should make a test after the call to sleep to
ensure that the event on which it slept has really occurred. There is an
interval between the time the sleeping process is awakened and the time it
resumes execution during which the state forcing the sleep may have again
been entered. This is due to the fact that all processes waiting for an event are
awakened at the same time. The first process given control by the scheduler
will ususally gain control of the event. All other processes that were awakened
should recognize that they cannot continue and should reissue sleep.

An example demonstrating the use of sleep and wakeup is provided m
Appendix C.

Sleep Priorities

The second argument to sleep is used for scheduling purposes when the process
awakens. The parameter, called the sleep priority, has critical effects on the
sleeping process reaction to signals. Sleep priorities range from O to 60, where
higher numerical values indicate lower priority levels. If the numerical value
of the sleep priority is less than or equal to the manifest constant PZERO
(defined as 25 on both 3B2 and 3B5 Computers), then the system does not

3-18

KERNEL/DRIVER INTERFACE

awaken sleeping processes on receipt of a signal. However, if it is greater than
PZERO (values 26 to 60), the system will awaken the sleeping process
prematurely (that is, before the event on which it was sleeping occurs) on
receipt of a signal.

When a driver must call sleep, how can the driver developer determine the
sleep priority? The first decision is whether the process should ignore the
receipt of signals or not. If the driver puts the process to sleep for an event
that is certain to happen, it should ignore receipt of signals and sleep at
priority numerically less than PZERO.

If the driver puts a process to sleep while it awaits an event that may not
happen, the process must sleep at a priority numerically greater than PZERO.
An example of an event that may not happen is the arrival of data from a
remote device. When the system tries to read data from a terminal, the
terminal driver might sleep (that is, put the current user process to sleep)
waiting for data to arrive from the terminal. If data never arrives, the driver
will sleep indefinitely. When a user at the terminal hits the break key or even
hangs up, the terminal driver interrupt handler sends a signal to the reading
process, which is still asleep. The signal causes the reading process to finish
the system call without having read any data. If the driver sleeps at a priority
value that ignores signals, the process could hav.e be awakened only by a
specific wakeup call. If that wakeup call never happened (the user hung up the
terminal), then the process sleeps forever.

Standard sleep priorities are defined m the system header file
/usr/include/sys/param.h.

Getting to a Sane Point in the User Process

When the sleep process is terminated prematurely by a signal, it is necessary to
abort the system call and return to a sane point in the user process. The kernel
longjmp function provides this capability by transferring control any arbitrary
depth in the kernel back to the user process. The effect seen by the user is the
system call returning with an error (error code EINTR in u. u_error). Thus,
when a sleeping process receives a signal, the sleep function does not normally
return to the function which called it, but instead, executes lonyjmp.

3-19

KERNEL/DRIVER INTERFACE

However, drivers calling sleep must occasionally perform cleanup operations
before longjmp is called. Typical items that need cleaning up are locked data
structures that should be unlocked when the system call completes. If the sleep
priority argument is or'ed with the defined constant PCATCH, the sleep
function does not call longjmp on receipt of a signal; instead, it returns the
value 1 to the calling function. If the sleeping process is awakened by an
explicit wakeup call rather than by a signal, the sleep call returns 0. The code
sequence

if (sleep(sleep_address, priority I PCATCH))

I• driver code cleanup •I

longjmp(u.u_qsav, 1);

allows the driver to clean up before performing the longjmp. The first
argument to the longjmp function call must be the u_qsav field of the user
structure (this is where the kernel saves the safe return state). No other
argument should be used. Likewise, the second argument should always be 1.

Blocking Execution for a Specified Real Time Interval

In some cases, a driver will arrive at a state where there is no more work for it
to do, but it wishes to reenter the driver after a given time interval at a specific
function. The driver uses the timeout function for this purpose. Timeout takes
three arguments: the function to be invoked when the time increment expires,
an argument with which the function should be called, and the number of clock
cycles to wait before the function is called. A sample timeout call is

id = timeout (driverscan, n, HZ/2);

or

id = delay(HZ/2);

where n is the parameter to the function driverscan, to be · called after
approximately 1/2 second. HZ is the number of clock cycles per second and is
defined in /usr/include/sys/param.h. On both ~he 3B2 and 3B5 Computers,
HZ is defined to be 100. The exact time interval over which the timeout takes
effect cannot be guaranteed, but the value given is closely approximated. A
function called by timeout must adhere to the same restrictions as a driver
interrupt handler. It can neither access the user structure, nor can it use
previously set up local variables.

3-20

KERNEL/DRIVER INTERFACE

The timeout function returns an identifier which may be passed to the
untimeout function to cancel a pending request.

untimeout (id)
int id;

_Recording Time Intervals

The kernel provides a variable which allows drivers to keep track of the time
elapsed between events. The kernel variable lbolt (" lightning bolt") is
incremented by the kernel HZ times a second. The variable lbolt is of type
time_t. (Type time_t is defined as a long /usr/include/sys/types.h). A driver
can record the value of lbolt as different events occur and use the differences of
the recorded values to closely approximate the time elapsed between events.

System Error Messages and Halting the System

At times, a device driver may run across error conditions which require the
attention of someone monitoring a system console. These conditions may even
mandate halting the machine; however, this must · be done only with great
caution. Except during the debugging stage, a driver should only halt the
system in. the case of an error which affects the operation of the entire system.

On the 3B5 Computer the kernel function print! provides driver access to the
system console. The kernel function panic is called to halt the machine. The
kernel printf function is a scaled down version of the C-library printf. Only the
% s, % u, % d, % o, % x, and % D option arguments are recognized. Kernel printf
is used to print diagnostic information directly on the system console.

The panic function is called when unresolvable fatal errors are found. The
panic function accepts as arguments a message (character string) to be printed
on the system console. The panic function identifies the reason for panic, saves
the state of the machine and exits the operating system by returning to
firmware.

On the 3B2 Computer, drivers do not call panic and kernel printf directly.
Instead, the UNIX System kernel provides the function cmn_err which in turn
calls printf or panic. In the example below, ARCS represents a printf
argument string where the maximum number of arguments is six.

#include <sys/cmn_err.h>
cmn_err (level, ARGS)
int level;

3-21

KERNEL/DRIVER INTERFACE

The cmn_err function is passed two arguments. The first argument is a
defined constant, indicating the severity level of the error condition. The four
severity levels are:

CE_CONT A CE_CONT level message is used to specify that the error
message is a continuation of the previous message. This is
used when the error message is too long to be passed as
one string.

CE_NOTE A CE_NOTE level message is used to report system events
which do not necessarily require user action, but may be of
interest to the user. The fact that a sector on a disk
needed to be accessed repeatedly before it could be accessed
correctly might qualify as such an event.

CE_ WARN A CE_ WARN level message is used to report system events
which require immediate attention; that is, if no action is
taken, the system may panic. For example, when a
peripheral device does not initialize correctly, this level
should be used.

CE_PANIC A CE_PANIC level message results in a system panic.
Drivers should specify the CE_PANIC level only under the
most severe conditions: only when the error condition
means that the system cannot continue to function. If the
error is recoverable or not essential to continued system
operation, the panic severity level should not be specified.

The second argument to cmn_err is basically the set of arguments which would
be passed to printf. The cmn_err function with the CE_NOTE argument (on
3B2 Computers) and the kernel printf function (on 3B5 Computers) can be used
by driver developers as a tool for debugging driver code but will likely change
system timing characteristics.

Sending Signals to Processes

Some device drivers are required to signal processes of the occurrence of
certain events. For example, when a user types a break character, the driver
controlling the device which receives the character must signal all processes
associated with the device that the break was received. The kernel provided
functions signal and psignal are used by drivers for this purpose.

signal (pgrp, sig)
int pgrp;
int sig;

3-22

KERNEL/DRIVER INTERFACE

The signal function is called to send signals to all the processes associated with
a certain process group. The identification number of the process group being
signaled is the first argument to signal. The second argument to the signal
function is the signal itself. All signals are defined in the system header file
/usr/include/sys/signal.h.

A second function, psignal, is called by drivers that need to send a signal to a
single process rather than to a process group.

psignal (p, sig)
struct proc *p;
int sig;

The first argument is a pointer to the proc structure of the process being
signaled. The second argument is the signal itself.

Managing Driver Memory Allocation

Drivers may define private map structures for allocation of memory space, in
terms of arbitrary units, using the malloc and mfree functions and the mapinit
macro. The drivers must include the file /usr/include/sys/map.h. The
system maintains the map list structure by size and index, computed in units
appropriate for the map. For example, units may be byte addresses, pages of
memory, or device blocks. The elements of the map are sorted by index, and
the system uses the size field so that adjacent objects are combined into one
map entry. The system allocates objects from the map on a first-fit basis.

Drivers call malloc using the following format:

malloc (mp, size)
struct map *mp;
int size;

where mp is the map from where the resource is drawn, and size is the number
of units of the resource. The malloc function returns a zero if all map entries
are already allocated. Drivers call mfree using the following format:

mfree (mp, size, i)
struct map *mp;
int size, i;

where mp is the map pointer described above, i is the index of the first unit of
the allocated resource, and size is the number of units being freed.

3-23

KERNEL/DRIVER INTERFACE

The driver must initialize the map structure by calling mapinit, as in

mapinit (mp, mapsize)
struct map *mp;
int mapsize;

where mapsize is the number of entries for the map table. Two map table
entries are reserved for internal system use, and they are not available for map
usage. The mapinit function does not cause the map entries to be marked as
available. This must be done via mfree before objects can actually be allocated
from the map.

Suppose a driver wishes to use buffers of size 256 bytes, and it wants to have 10
buffers configured in the system. A simple way to control buffer allocation
using maps is to allocate memory for the buffers, as in

char mybufs[2560];

then to allocate the map.

struct map mymap(12); I• number of buffers+ 2 slots for

mapinit(mymap, 12);

mfree(mymap, 10, 1); I• 10 buffers available for

Allocation of the buffers takes the form

if (i .. mal loc (mymap, 1))

cp = &mybufs(256 * (i - 1));

} else

I• no free memory •I

3-24

* map book-keeping

•I

* allocation beginning

* at buffer 1

•I

KERNEL/DRIVER INTERFACE

and freeing the buff er is done by

mfree(mymap, 1, i);

3-25

Chapter 4

DRIVER CONFIGURATION

PAGE

DYNAMIC SELF-CONFIGURATION OVERVIEW.. 4-1
Self-Configuration Goals... 4-1
Self-Configuration Description.. 4-2
Performance and Resource Requirements... 4-3

INTERFACE REQUIREMENTS.. 4-4
Driver Development .. ~.. 4-4
Installer's Perspective ... 4-4

Adding Drivers... 4-5
Removing Drivers From the System.. 4-5
Reconfiguring a UNIX System Kernel .. 4-6
Manual Boot Procedure... 4-6

The Developer's Perspective... 4-7
Driver Install and U ninstall Programs... 4-7

DRIVER DEVELOPMENT... 4-8
Driver Addition... 4-8
Driver Debugging ... 4-10

OPERATIONAL OVERVIEW.. 4-11
Firmware Operation... 4-11
Mboot Operation ... 4-12
Lboot Operation .. 4-12
Mk boot Command... 4-12
Mkunix Command... 4-12
Newboot Command... 4-13

DA TA STRUCTURES.. 4-13
Major and Minor Numbers... 4-13

3B2 Computer Conventions.. 4-14
3B5 Computer Conventions.. 4-14

Equipped Device Table.. 4-15
Master File... 4-16
System File.. 4-16
File and Directory Structure.. 4-18
Driver Naming Convention... 4-19

DRIVER INTERFACES IN A SELF-CONFIGURING SYSTEM................... 4-19
Device Switch Tables... 4-19
Driver Initialization and Power Fail Tables... 4-20
Interrupt Vectors u... 4-20
Device Address Table... 4-20
Data Structure Allocation... 4-21

Driver Coding Restrictions Imposed by Self-Configuration.................... 4-22
Driver Development Checklist... 4-22

SUPPORT PROGRAMS... 4-23
mkboot(lM) .. 4-23
mkunix(lM) .. 4-24
sysdef(lM) .. 4-24
newboot(lM).. 4-25

EXTERNAL REQUIREMENTS... 4-25
Hard ware.. 4-25
3B2 Computer Requirements.. 4-25

Peripherals.. 4-26
LBOOT-UNIX System Interface.. 4-26
Drivers.. 4-26
VTOC ... 4-28

TUNING SYSTEM PARAMETERS.. 4-29
Driver Development Checklist... 4-30

EXAMPLE DRIVERS.. 4-31

Chapter 4

DRIVER CONFIGURATION
This chapter describes automatically changing the configuration of a UNIX
System kernel when a device driver or software module is added to or removed
from a system. This feature allows boot time selection of drivers and modules
to be included in the operating system without recompiling the UNIX System
object. This feature also includes the utilities to simplify the installation of
new UNIX System drivers, thereby, reducing human interaction. The
traditional method of generating a conf.c file using confiu are eliminated. This
chapter provides guidelines on how to write a driver to function in a self­
configuring UNIX System.

The reconfiguration activity that takes place during the boot sequence is hidden
from a user. Also, you have the capability of changing system parameters such
as buffers and inodes. The schemes for installing and removing drivers and
modules are also presented. The mechanism for reconfiguring the UNIX
System is common for both the 3B5 and the 3B2 Computers.

This chapter also describes the self-configuration boot program and associated
utilities.

DYNAMIC SELF-CONFIGURATION OVERVIEW

The following sections describe the self-configuration feature including the
dependencies. A glossary of key terms is included in a glossary in the back of
this document.

Self-Configuration Goals

The objectives are:

• Standardize the mechanism for installing drivers on 3B2 and 3B5
Computers. This does not imply that drivers developed for one
computer can be easily ported to the other.

• Simplify the user interface for installing and removing drivers. This
objective allows a non-UNIX System expert to install a new driver
package.

4-1

DRIVER CONFIGURATION

Self-configuration provides:

• A simplified mechanism for including/ excluding new drivers into an
existing system.

• Interface definition for tools needed to set up files used m the self­
configuring UNIX System.

Self-configuration does not include:

• Documentation of the acceptance criteria for drivers and other add-on
packages. However, it does provide the foundation for adding new
drivers via the self-configuration interface.

• Implementation of automatic tuning of parameters. Tuning of system
parameters will continue to be done manually. Automatic tuning of
parameters would allow the boot program to set parameter values
based on the configuration of the system, possibly by looking at
memory size, disk size, and the number of drivers in the system.

• Definition of how to write drivers for use in a UNIX System. It only
deals with the requirements for self-configuration. An assumption
made is that the detailed interface between the kernel and drivers is
covered by the add-on developer's guide.

• Requirements for firmware and diagnostics for peripherals.

Self-Configuration Description

Self-configuration is a tool used to link the UNIX System kernel during the
boot process. The boot program which loads the UNIX Operating System
determines what hardware devices are actually in the system and generates a
UNIX System kernel consisting of the core or basic UNIX Operating System as
well as the drivers for the hardware devices. A system file defines any
software drivers that are to be loaded.

Self-configuration provides the following features:

• The master file is broken into a set of individual files, one for each
module, where a module represents a peripheral driver or an object that
provides special software features such as the module supporting
interprocess communication. Each individual file is named with its
applicable module name. This collection of files is maintained in a new
directory called /etc/master.d. Each individual file has the exact
format of the "old" master file-but there is only a single driver or

DRIVER CONFIGURATION

module entry per file. For convenience, this collection of files will be
referred to as the master file, as though it were a single file. This
allows a reference to the master file to mean the individual file in the
master.d directory that corresponds to the name of a device or module.

• Detect hardware and software configuration changes and automatically
relink objects used to build the operating system when required. This
removes the need for reconfiguring the system on every boot.

• Provide administrative interfaces for installing and removing drivers.
These interfaces are integrated into the simple administration menu
driven interface. Part of this enhancement includes providing the tools
needed to update system files, such as the /etc/system and the
restructured master files.

• Place system description data, used in tuning parameters, in the UNIX
System kernel object file as is done for drivers, such that data structures
in the kernel may be adjusted without use of the config program or a
software generation system (SGS).

Performance and Resource Requirements

Specific requirements have been placed on the implementation of a self­
configuring UNIX System. They are:

• Memory Usage - (3B2 Computer Only) To reconfigure the UNIX System
kernel, minimal memory must be used during normal system operation.
Normal user level operations will not be disrupted because the
reconfiguration is performed during the boot sequence. The
reconfiguration procedure requires that a system have a minimum of 512
kilobytes of memory. During boot, the 3B5 and the 3B2 Computers
require the upper 64 kilobytes of the equipped memory to be free for the
boot program, requiring the total size of the kernel and the selected
drivers to not exceed 350 kilobytes.

• Disk Usage - (3B2 Computer Only) The space required on disk for files
needed for configuring a minimal UNIX System includes space needed
for two copies of the UNIX System kernel, one configured and one
nonconfigured; two system description files; and required drivers.

Note: A minimal UNIX System is defined as a UNIX System
generated by the source in all directories except those in the io
directory but includes the driver supporting the boot and root
devices, console driver, and the system interface to the block and
character I/0 subsystem.

4-3

DRIVER CONFIGURATION

The maximum disk allocation for a minimal system will not exceed 700
kilobytes.

• Configuration Time - The time required for the boot program to
configure a UNIX System consisting of the core UNIX and the minimal
set of drivers for the 3B5 or 3B2 Computers will not exceed 90 seconds.
Configuration is expected to be done infrequently. If no configuration is
needed, it should take at most 30 seconds to transfer control to the UNIX
System kernel from the boot program.

INTERFACE REQUIREMENTS

Driver Development

This section discusses some of the administrative details involved in driver
development. A brief discussion on driver debugging is also included. At the
end of this section, a driver development "checklist" is provided. This checklist
briefly summarizes the rules and recommendations that driver developers must
consider.

Installer's Perspective

Hardware and software drivers can be added to a system, removed from the
system or be replaced by a new version. Facilities allowing a user to make
changes to the number of drivers in a system are provided through a simple
administration interface on the 3B2 Computer and a driver install interface on
the 3B5 Computer. Both interfaces serve as a buffer between the user and the
system to reduce the number of errors that may occur when making changes to
system files. Driver add-on packages require the following functions:

install-used

uninstall- used

The mechanism for adding drivers is included in the Driver Configuration
Utilities. What is presented in the following sections are methods for
introducing driver packages into a system.

4-4

DRIVER CONFIGURATION

Adding Drivers

Adding new drivers involves two distinct modes: installation of the software
package and driver configuration during a reboot. The following steps are the
procedures for adding drivers. Step 1 installs the software package while steps
2, 3 and 4 allow the driver configuration to take place. Step 4 occurs when
hardware is associated with the driver being added. It is recommended that
the state of the machine be single-user mode when adding drivers to the
system.

1. Invoke the install command. The user is told to load the install medium.

2. Power down the system when hardware is being added, or reboot the
system to configure software driver objects into the UNIX System
kernel.

3. Install the hardware if a hardware driver is being added.

4. Power up the system.

When these steps have been completed, the new driver will be accessible
through the UNIX System kernel. The installer is allowed to install several
drivers before the system is powered down or rebooted. Although it is
recommended that the system be checked after each driver installation.

Some hardware driver add-on packages will require a different method of
installation. Some may require two steps for installing: the install method
stated above and an install procedure after the system boots. Others may
require that install be done after the hardware is in place. The install steps
necessary may be decided by the driver developer.

Removing Drivers From the System

The removal of a UNIX System driver means removing from the system the
driver object, associated files, and any hardware associated with the driver.
Removal of a driver is done in single user mode. To remove a driver, the user
must:

1. Invoke the uninstall command.

2. Power down the system if hardware is being removed, or reboot the
system.

4-5

DRIVER CONFIGURATION

3. Remove the associated hardware if required.

4. Power up the computer and boot the system.

During the boot sequence, the UNIX System kernel is configured to exclude any
removed drivers. Again, several drivers may be uninstalled before the system
is rebooted.

Reconfiguring a UNIX System Kernel

During the configuration of the UNIX System, the position of hardware
peripherals is embedded within the UNIX System. Subsequent booting of the
UNIX System assumes that these positions remain unchanged. Rearranging
peripherals may cause undesirable results and may result in system panics or
failures to boot. This is especially a problem on the 3B2 Computer which
requires that no slots be empty between boards. This implies that removing
one driver may require a complete rearranging of other boards.

Manual Boot Procedure

While configuring the system, some error conditions may require user
intervention to return the system to a sane state. Errors occurring on a power
up boot will cause the system to go to the firmware level after an appropriate
error message has been printed. A manual procedure to aid in error recovery
will be available for the more experienced UNIX System user. Under most
conditions, the knowledgeable installer may manually boot the system and be
allowed to supply data that will allow the boot procedure to continue.

To boot the system manually, enter boot from the firmware level. On the 3B2
Computer, the user is prompted for the name of the boot device, which is the
integral disk or the integral floppy. The boot program prompts for the name of
the system file. The options available to the user for booting the UNIX System
are:

/unix

/etc/system

/KERNEL

Note: There are other files that may be given (for example, diagnostic
programs), but here we deal only with those options used to boot the
UNIX Operating System.

4-6

DRIVER CONFIGURATION

Entering /unix causes the boot program to load a fully configured kernel and
print warning messages indicating discrepancies with the existing hardware
configuration. The UNIX System will not boot if the /unix file contains drivers
for hardware which has been removed.

Entering /etc/system causes the boot program to use data m that file to
configure the system.

When /KERNEL or /boot/KERNEL on the 3B2 Computer is entered, the user
will be prompted for software drivers to include and exclude. Hardware drivers
are automatically included when the boot program detects that the hardware
exists. The boot program prints

INCLUDE?

The response may be a carriage return (meaning no additional modules are to
be loaded), or the response may be a comma or blank separated list of drivers
to be included in the system. Next,

EXCLUDE?

is printed. Again, the installer may enter a carriage return (meaning no
drivers are to be excluded), or the response may be a comma or blank separated
list of drivers to exclude from the system. On the 3B5 Computer, you are
prompted is done for the root, swap, pipe and dump devices. The response to
these prompts must be that of the appropriate system file entry.

If the system still fails to boot, the user must call his/her service
representative, or restore the system by using system restore procedures.

The Developer's Perspective

The following sections describe the interface that will be used by driver
developers. It also presents a scenario for driver install and uninstall.

Driver Install and Uninstall Programs

This feature requires that there exist driver install and uninstall programs to
update special files on the computer. The driver install program provides an
interface for the driver developer install script to update /etc/master.d and
/etc/system files. It will also invoke the mkboot command and place the
module object in the boot directory. The driver uninstall program reverses
these actions.

4-7

DRIVER CONFIGURATION

DRIVER DEVELOPMENT

This section discusses some of the administrative details involved in driver
development. The most important of these is the drvinstall which is the
developer interface for providing the information needed for self-configuration.
A brief discussion on driver debugging is also included. At the end of this
section, a driver development "checklist" is provided. This checklist briefly
summarizes the rules and recommendations that driver developers must
consider.

Driver Addition

The drvinstall program handles many of the steps needed to add a driver to a
system. It is particularly well suited for use by driver developers during the
debugging and testing phases of development. The drvinstall program provides
the interface for updating the /etc/master.d and /etc/system files. On the
3B2 Computer, drvinstall also supplies the needed EDT information. It also
invokes the mkboot command and places the driver object in the boot directory.

The normal syntax of the drvinstall command is:

drvinstall -n -b -d driver -m master -v version

The command arguments to drvinstall have the following meanings:

-n

-b

-d driver

-m master

-v version

Do not edit the system file.

Do not run mkboot on the driver object.

This is the path name of the driver or module. The last
component of the path name must be the official name
assigned to the module by AT&T Technologies. The names of
hardware drivers must match the name placed in the EDT.
See the section on the master file later in this document.

This is the path name of the master file entry. drvinstall
uses this file to update /etc/master.d.

This is the release number of 3B2 or 3B5 Computer UNIX
System used in generating the driver.

In addition to the normal parameters used with drvinstall, a number of
debugging options are also provided.

4-8

DRIVER CONFIGURATION

-o bootdir This option stores the driver objects in the directory specified
by bootdir instead of in the normal boot directory.

-s sysfile This option uses the file specified by sysfile as the system
specification file instead of the normal /etc/system file.

A zero is returned if drvin~tall completes successfully; a nonzero value is
returned otherwise. For software drivers, drvinstall outputs the major device
number assigned to the driver to the standard output device. For hardware
drivers, the getmajor command is used to determine the assigned major
number(s) as follows.

getmajor name

where name is the official device driver name in the 3B5 Computer or the
official device identification code in the 3B2 Computer. There is a one-to-one
correspondence between 3B2 Computer device identification codes and official
device driver names; both are assigned by AT&T Technologies.

The getmajor command outputs (to the standard output device) the major
numbers assigned to the specified device as a list of numbers separated by
spaces. A zero is returned for success; nonzero for failure.

Note: The getmajor command must be used after the new hardware is
installed.

Included as part of each driver add-on package is an INSTALL script which
simplifies installation of the driver in a system. Typically, the INSTALL script
will use drvinstall to install the driver object in the /boot directory and to
update the appropriate configuration files as described above. The INSTALL
script must also create the necessary special 9-evice files by calling the mknod
command using the major numbers obtained from drvinstall or yetmajor.

On the 3B2 Computer it is also necessary to supply the information needed for
the EDT via the edittbl command. Appendix G contains details on the use of
the edittbl command.

Drivers are organized as "add-on" packages, and they are distributed on floppy
diskettes for 3B2 Computer systems and either magnetic tape or removable disk
cartridge for 3B5 Computer systems. The distribution media includes the
driver object and other required files as well as installation procedures. This
information is in the form of a mountable file system for disk or in cpio format
for tape [see UNIX Manual CPIO(l)]. The cpio -icBdu command must be used

4-9

DRIVER CONFIGURATION

to read the tape. The files m a driver package are organized m two mam
directories, install and adm.

The install directory contains subdirectories root and usr. Files in the package
which must be moved to the system / or /usr file systems are placed in the
corresponding subdirectories under install. The adm directory contains the
files associated with installation of the driver. The INSTALL file is the actual
script to be executed to install the package. The adm directory also contains
any other scripts or commands needed that are involved in the installation
process.

Different interfaces are used for installing drivers on 3B2 and 3B5 Computer
systems. The 3B2 Computer uses the menu driven sysadm facility which
includes an install procedure. The 3B5 Computer uses the periphconfig
command. Although different interfaces are used, the functions and underlying
structures are similar. Both copy files from the distribution medium, both
execute the INSTALL script, etc. Thus, from the developers viewpoint, the
INSTALL script and its associated use of the drvinstall is the focal point of the
installation activity.

A separate document will be published which will describe the installation
procedure as well as provides guidelines for developing INSTALL scripts.

Driver Debugging

An additional debugging mode (magic mode) is available. This mode allows a
developer to gain control after the boot process has completed, but before
transfer is made to the UNIX System kernel. It also produces a memory map
which shows the location in memory of the UNIX System kernel and all
modules loaded. The "Installer's Perspective" section described the manual
boot procedure. This procedure is also used to initiate the debugging mode. In
response to the prompt for the system file, a two-or three-word response is
given. The first two words must be "magic mode." The third word is optional
but, if present, it is used as the name of the directory containing the driver
objects. The boot program again prompts for the file to boot. At this point,
operation of the boot program proceeds, with two exceptions, as in the manual
boot mode. A load map is printed which shows each object file loaded and the
associated physical and virtual addresses. If an unconfigured kernel object file
is being loaded, then the program prompts for all the information usually found
in the /etc/system file. The response must be either a carriage return or the
normal syntax expected for an entry in the system file. When the boot is
complete, a return is made to firmware rather than transferring control to the
booted object. On systems equipped with DEMON, the developer can enter the
DEMON debug facility or transfer control to the UNIX Operating System.

4-10

DRIVER CONF GURATION

The load map generated during boot may be used along with a disassembly
listing of the driver for planting breakpoints and tracing execution flow
through the driver. To use the crash debugger, it is necessary to generate a
combined symbol table for the booted system using the mkunix command. The
combined symbol table is also needed for determining the actual address of
driver bss symbols. (A namelist generated from an unlinked driver does not
contain the relative addresses for bss symbols). Of course, if a nonworking,
driver prevents the system from booting then it is not possible to generate a
namelist.

Normally, this is not a problem; but if it occurs, the developer should look
carefully at the driver initialization code as the most likely problem area. It
may even be necessary to temporarily remove the initialization calls in order to
enable the system to boot successfully.

Another situation that may arise during debugging concerns the use of code
optimizers on device drivers. Certain devices may require that hardware
accesses be performed only in particular sequences. An optimizer can
rearrange code sequences and can even eliminate unneeded instructions. These
"unneeded" instructions may in fact be necessary because of hardware
requirements. Thus, it is possible that optimized driver codes may not function
properly. If this happens, then either the driver must be left unoptimized or
the problem area must be moved into a separate, unoptimized file.

Crash is available when the UNIX System is running and will show you the
data structures for the drivers.

OPERATIONAL OVERVIEW

A successful boot process requires close cooperation between the operational
firmware, the bootstrap program (mboot), the main boot program (lboot), and
the UNIX System kernel itself. The firmware locates mboot on the boot
device, reads it into memory, and transfers control. It is the responsibility of
mboot to locate and load lboot. Lboot will locate and load the UNIX System
kernel. Finally, control is passed to the initialization routine located in the
kernel.

Firmware Operation

The operational firmware loads the mboot program from a selected boot device
into a fixed location in the lower portion of memory.

4-11

DRIVER CONFIGURATION

Note: The C Language compiler does not generate position-independent
code; consequently, all addresses within a program are fixed at the time
the program is processed by the loader ld(l).

This location must be agreed upon by both the firmware and mboot. The
firmware must provide mboot with the identity (and location if necessary) of
the boot device. Finally, control is passed to the mboot program with a call
instruction.

Mboot Operation

The mboot program occupies 1 disk block or 512 bytes. The lboot program is
located on the boot device provided by the firmware. Lboot is then loaded at
an origin of 64K below the top of the first half-megabyte of memory.

Lboot Operation

Lboot is the final boot program. It is responsible for loading the UNIX
System kernel. The lboot program will perform the steps necessary to
implement the hardware self-configuration feature. This step involves loading
the object files of the kernel and any drivers or modules, resolving all
references, building machine dependent structures such as process control
blocks and interrupt routine linkages, and generating data structures that (in
systems without self-configuring the UNIX System) were hard-coded in the .
kernel source.

Mkboot Command

The mkboot(lM) command is used to prepare object files for use by lboot.
Each object file to be loaded by lboot must contain an optional header having .
the correct format. Mkboot will build an optional header using information in
a master file, insert this header into an object file, and write the modified
object file into the directory required by lboot. Only one a.out file should be
supplied to mkboot at a time.

Mkunix Command

The self-configuration process results in a completely configured UNIX System
kernel in memory. The mkunix program takes the memory resident kernel

4-12

DRIVER CONFIGURATION

and creates a complete object file. This object file can then be booted directly
(bypassing the self-configuration step) or may be used as the namelist file for
commands such as ps(l), crash(lM), etc.

Newboot Command

The newboot command copies the boot programs to a disk. It is responsible
for writing the boot programs in the format expected by the firmware.

DATA STRUCTURES

This section will describe various structures which are necessary for the self­
configuration feature. Some existing structures were modified and others were
added. The major and minor device · numbers for special device files and the
master file format were modified. Data structures include the equipped device
table, the system file, and the directory structure expected to exist.

Major and Minor Numbers

The major and minor numbers are the means by which the UNIX Operating
System associates a peripheral device with a file name. Each is an 8-bit
quantity, and both together are termed the device number. In systems not
supporting a self-configuring UNIX Operating System, the major number
identifies a specific device driver and is assigned in the master file. Further,
the minor number is essentially a sequential number which identifies the
logical device number andfor all devices controlled by a driver. is determined
by the order in which the devices are specified in the configuration file used as
input by the config(lM) program. If the minor number was not changed, self­
configuration would result in a complete remapping of minor device numbers
whenever a new peripheral is installed. This remapping would critically affect
the system device minor number assignments; it would open the possibility of
using the wrong device for swapping, for instance, if the /etc/system file were
not changed before the system was booted.

4-13

DRIVER CONFIGURATION

The encoding imposed by self-configuration for major and minor numbers
insures that the special files in the /dev directory will, without change, refer to
the same physical device regardless of any configuration changes. To support
this, decoding of the device number into the major and minor numbers is
always performed by macros defined in sysmacros.h. Therefore, there will be
relatively little impact on most existing code. The macros are given below.

#define major(x) (int)(MAJOR[(unsigned)((x)>>8)&0x7F])

#define minor(x) (int)(MINOR[(unsigned)((x)> >8)&0x7F] +((x)&Ox FF))

For drivers associated with hardware devices, the major number is the
hardware board address. For software drivers, the major number is assigned
by the master file. Integral device drivers, those drivers supporting devices
that are part of the System Board, are treated as though they are software
drivers. This implies that there must be some means of assigning the major
number for software drivers at the time the driver is installed, and that this
number will be unique for a particular machine. Since 127 is the largest major
number, there can be no more than 128 different drivers configured within the
UNIX System kernel at any given time. Likewise, since 255 is the largest minor
number, there can be no more than 256 subdevices per controller.

3B2 Computer Conventions

For hardware devices, the major number is the board slot. Thus, only major
numbers 1 through 15 can refer to hardware devices. Software drivers will be
assigned (by the master file) major numbers 16 through 127. This number is
called the external major number because it is visible in the special files for the
device. In addition, an internal major number for the device is assigned by the
boot program.

The external minor number will only identify the logical device on the
individual board identified by the external major number. The major number
will be used to index into a table, built by the boot program, to obtain a base
number which is added to the external minor number to create the actual
logical device number now used by device drivers.

3B5 Computer Conventions

For hardware devices, the external major number is the board code assigned by
the physical setting of the DIP switch located on the backplane. This value is
assigned at the time the peripheral is installed. The following diagram
illustrates the bit assignments for bus addresses.

4-14

DRIVER CONFIGURATION

IO I LL BBBB

7 7 54 3210

Bit 7: always zero to prevent sign extension
Bit 6: no specific meaning
Bit 5-4: if 00, then BBBB is the local bus address

if 01, then BBBB is the ELB address on the
LBE at local bus address 14

if 10, then BBBB is the ELB address on the
LBE at local bus address 15

Bit 3-0: the local or extended bus address of a device

Devices located on the local bus extender (LBE) are identified by both the
board code of the LBE and the address on the extended local bus (ELB), as
described previously. The domain of major numbers is O through 127. External
major numbers occur in the following ranges:

0-2:
3-15:

16:
17-31:

32:
33-47:

48-127:

Available for software drivers
Devices on the local bus (not an LBE)
Available for software drivers
LBE 14 devices 1-15
Available for software drivers
LBE 15 devices 1-15
Available for software drivers

External major numbers for software drivers are handled in the same manner
as for the 3B2 Computer.

Equipped Device Table

The equipped device table (EDT) is a data structure built and maintained by
the resident firmware. The EDT contains information for each peripheral
installed on the system. This information is primarily for the use of diagnostic
routines; however, lboot also makes use of the information. Two pieces of data
are required by lboot: the identity and hardware address of each peripheral.
The exact format of the EDT is machine dependent. -

The 3B2 Computer firmware presently uses the same basic technique as the 3B5
Computer firmware; however, there are significant differences in the details of
the implementation. The location of the EDT is specified by an address word

4-15

DRIVER CONFIGURATION

which is at a fixed location in memory. The system header file defining the
format of each element is also named sys/edt.h, but an additional header file
(sys/firmware.h) is required to gain access to the EDT.

Master File

The /etc/master file has historically been a databa:;e of the device hardware
characteristics required by the UNIX Operating System. This concept remains
unchanged. Additional entries are supported for nondevice related configurable
modules. The lboot program provides the services of a linking loader. This
feature is used to support the inclusion of arbitrary software modules in
addition to device drivers. Throughout the remainder of this chapter, the terms
module and driver will be used interchangeably.

The master file is used by the mkboot(lM) program to obtain device
information when generating the device driver files and by the sysdef(lM)
program to obtain the names of supported devices. It also contains
specifications for the generation and optional initialization of all memory
resident data structures required by a module. The new format of the master
file is shown on the manual page in Appendix E.

System File

The /etc/system file contains configuration information that cannot be
obtained from the equipped device table (EDT) at system boot time. This file
generally contains a list of software drivers to include in the load and the
assignment of the system devices dumpdev, rootdev, pipedev, and
swapdev (with swplo and nswap); as well as instructions for manually
overriding the drivers selected by the lboot program.

The syntax of the system file is given below. This is essentially the format
used on release 1.2 of the 3B5 Computer; however, changes were made to the
precise meaning of the INCLUDE and EXCLUDE directives, and the IGNORE
directive was removed. Lines may appear in any order. Comment lines must
begin with an asterisk. Blank lines or comment lines may be inserted at any
point. Entries for INCLUDE and EXCLUDE are cumulative. For all other
entries, the last line to appear in the file is used-any earlier entries are
ignored. The parser is case sensitive; therefore, all upper-case strings must be
entered exactly as shown.

4-16

BOOT:

DRIVER CONFIGURATION

path name

The path name specifies the object file to be booted; if the
object file is fully resolved (such as that produced by the
mkunix(lM) program), then no other line in the system file
has any effect.

INCLUDE: name [(number)] ...

This line is used to identify software drivers or loadable
modules from the /boot directory which are to be included in
the load. It has no effect for hardware drivers. The optional
"(number)" specifies the number (default of 1) of "devices" to
be controlled by the driver. This number corresponds to the
built-in variable #C which may be referred to by expressions in
part one of the master file. The STUBS driver should never
be included since it will cause the machine to panic when
booted.

DUMPDEV: special-device-path name
DUMPDEV: DEV(major, minor)
ROOTDEV: special-device-path name
ROOTDEV: DEV(major, minor)
PIPEDEV:special-device-path name
PIPEDEV:DEV(major, minor)
SW APDEV: special-device-path name swplo nswap
SW APDEV: DEV(major, minor) swplo nswap

These lines are mandatory. They are used to identify the
system device to be used for writing a crash dump, the device
containing the root file system, the device to be used for pipe
space, and the device to be used for swap space (with the
beginning block number for swap space :,wplo and the number
of swap blocks available n:,wap). The device may be specified
in either of two ways. A path name of a special device file may
be provided-the major and minor numbers are obtained from
the inode . An alternative form is allowed in which the major
and minor numbers are specified explicitly.

EXCLUDE: name ...

Identifies names in the EDT that are to be ignored. You may
want to exclude a driver because no driver exists for the
specific EDT entry, or the driver is simply not to be loaded.

4-17

DRIVER CONFIGURATION

File and Directory Structure

The lboot program must make some assumptions for the locations of various
files and directories. This section describes those structures.

The file system accessed by lboot must contain the object files to be loaded
and the system file. This file system is termed the boot file system. It must
be located on the disk from which the lboot program was loaded. Presently, it
is at a fixed location (the constant is compiled into the lboot program) on the
disk. For the 3B2 Computer, the location of the boot file system is obtained
from the VTOC. This file system contains everything necessary to complete the
boot process. The following files must be present:

Note: The term must is used with the understanding that a normal
boot is to occur. It is possible to do a manual boot (for example, in a
recovery situation) as long as either /unix is present or /KERNEL and
the essential drivers in the /boot directory are present.

/etc/system

/boot

/KERNEL

/unix

The system file.

The directory containing the individual, configurable
object files created as a result of executing the
mkboot(lM) program.

An object file containing the unconfigured UNIX System
kernel. This name is the default chosen by the
mkboot(lM) program; however, it can be thought of as a
generic name since the actual name used is obtained from
the BOOT line in the system file.

A fully configured UNIX System kernel object file. This
file is the output of the mkunix(lM) program which is
run following a self-configuring boot.

A boot may be done as long as either one of the /KERNEL or /unix files are
present. The normal operation of lboot assumes both are present and,
normally, will proceed by booting the /unix file unless there has been a
configuration change. In that case, the /etc/system file is accessed (which will
usually reference /KERNEL), and a full self-configuration is initiated.

The lboot program does not require anything further. However, additional
files and directories are described here to document a standard location.

4-18

DRIVER CONFIGURATION

/etc/master.d A directory containing the collection of individual files
which have the format described by the previous section
for the master file.

/etc/mkunix The mkunix command resides in the /etc directory.

/etc/mkboot The mkboot command resides in the /etc directory.

/etc/newboot The newboot command resides in the /etc directory.

/etc/sysdef The sysdef command resides in the /etc directory.

Driver Naming Convention

The names of drivers in the /boot directory are assigned by AT&T
Technologies and will be unique. The names (for hardware device drivers) must
correspond to entries in the EDT. A driver name can be up to 8 characters in
length on the 3B5 Computer and 10 characters on the 3B2 Computer. All
names must be in uppercase. Each driver also has an associated two- to four­
character prefix that is used to identify driver functions such as open and close.
Prefixes are also controlled by AT&T Technologies. To maintain consistency
and to prevent duplicate names, the names of master files in the
/etc/master.d directory must be equivalent to the driver name (lowercase).

DRIVER INTERFACES IN A SELF-CONFIGURING
SYSTEM

This section discusses the aspects of kernel/driver interfaces in regard to the
self-configuring the UNIX System on the 3B2 and 3B5 Computers.

Device Switch Tables

The device switch tables are generated dynamically at boot time. As driver
modules are loaded appropriate device switch table entries are created and
filled in with the standard entry points into the driver. Special names must be
used for driver entry points. The names are composed of a prefix unique to a ·
given driver and specified in the master file and one of the special suffixes.

Appropriate "stubs" are provided for unneeded entry points using information
obtained from the master file (see Appendix E).

4-19

DRIVER CONFIGURATION

Driver Initialization and Power Fail Tables

Some drivers need additional entries for initialization and power fail recovery.
These are provided by separate kernel to driver interface tables built
dynamically in a manner similar to the device switch tables. The entry names
must be the driver prefix concatenated with one of the special suffixes.

Interrupt Vectors

Interrupt vector assignment is performed dynamically by the boot process.
Driver interrupt handlers are identified by naming convention. Normally, this
is the driver prefix followed by "int". For devices which require paired
transmit and receive interrupts, the suffixes "xint" and "rint", respectively, are
used. The actual number of interrupt vectors needed for a particular hardware
device is specified in the master file. Included in the interrupt vector
assignment is the generation of appropriate assembly language code to
interface to the driver C Language interrupt handlers.

Device Address Table

As part of the self-configuring boot, an array of controller addresses may be
built for each hardware device type. This array must be used by the driver in
order to access physical hardware locations. Each array is named by the driver
prefix followed by "_addr". The contents of the device address tables differs
between the 3B2 and 3B5 Computers. In the 3B2 Computer these tables contain
actual addresses and may be used directly to access the hardware. A typical
declaration used would be:

#include <sys/types.h>
extern paddr_t xx_addrll;

where "xx" is the appropriate driver prefix. The value of xx_addr[i] would be
the base or starting virtual address of the "ith" controller of type "xx".

In the 3B5 Computer the tables contain address translation information which
must be loaded into the memory management unit before the hardware may be
accessed. A typical declaration used would be:

4-20

#include <sys/types.h>
#include <sys/mmu.h>
#include <sys/sysmacros.h>
extern struct mmuseg xx_addrl j;

DRIVER CONFIGURATION

where "xx" is the driver prefix as above. The value of xx_addr[i] would be the
address translation needed to access the base or starting address of the "ith"
controller of type "xx". Macros must be used by drivers to load this
information into the memory management unit and to reference the controller
base address. When the driver is entered on base level from a system call, the
baseio macro is used to load the memory management unit, and the BIOADDR
gives the controller base address:

baseio(xx_addr[i]);
BIOADDR;

Corresponding macros are provided for use by drivers when entered on
interrupt level:

intio(ipl, xx_addr[i]);
IIOADDR(ipl);

where ipl is the appropriate interrupt priority or execution level.

In both the 3B2 and 3B5 Computers, the controller address table is indexed by
the logical controller number. This must be derived from either the interrupt
number passed to the driver interrupt handler or the external device number
passed to a driver function via the switch table. The translation of interrupt
number to address table index depends on the number of interrupt vectors per
controller. Typically, there is only one interrupt vector per controller, and the
interrupt number passed to the driver is the logical controller number. When
passed an external device number, the driver must convert this to (internal)
minor device number via the minor macro. The loyical controller number is
derived from this based on the number of subdevices per controller. As an
example, suppose that each controller supports eight minor devices. For a
given device number, dev, the corresponding device table entry would be:

xx_addr[minor(dev) >> 3]

Data Structure Allocation

Most of the normal data storage needed by a driver is included in the driver
data and bss sections. However, a driver often needs to associate some data
structures with physical hardware devices. Since the number of equipped
devices, and hence the amount of memory required, is not known until boot
time, the self-configuration boot program provides a method for generating
such hardware dependent structures. As mentioned in a previous section, the
master file specifies the boot time generated symbols needed by the driver.
Typically, arrays of structures are generated based on the number of device
controllers equipped and the number of devices per controller as specified in

4-21

DRIVER CONFIGURATION

the master file. Similar to the device address table, the logical controller
number is used to index into this array in order to locate the structure
associated with a particular hardware unit. Arrangements can also be made to
initialize the boot time generated data structures. (Refer to Appendix E for
details). It should be noted that there are two independent declarations of
these data structures: one in the master file and one in the driver source or a
system header file. It is important that consistency between these two
declarations be maintained.

Driver Coding Restrictions Imposed by Self-Configuration

The self-configuring boot process imposes some restrictions on the coding
techniques that are used in drivers. The device number passed to a driver is
the external device number and must be converted to internal major and minor
numbers via the major/minor macros.

Interdriver dependencies require special attention. If one driver depends on
another (that is, requires the other driver to also be loaded), then that
dependency must be specified in the master file. · External symbols defined by a
driver should begin with the driver unique prefix to avoid conflicts with other
driver external symbols.

The need to produce an absolute boot file after a self-configuring boot operation
requires that the use of initialized data be restricted. Initialized data should
only be used for constants. The code should be included to explicitly initialize
variables. (Uninitialized variables in the bss section are guaranteed to be
initialized to zero.)

Driver Development Checklist

This section summarizes the various things that a developer must do to add a
driver to a 3B2 or a 3B5 Computer system.

4-22

• Have a driver name and prefix assigned by the AT&T Technologies
coordinator.

• Define the necessary driver entry points as per standards for the
device switch tables and driver initialization tables.

• Use only the kernel services explicitly included in the kernel/driver
interface specification.

• Use only the fields of system data structures explicitly included in the
kernel/driver interface.

DRIVER CONFIGURATION

• External symbols defined by the driver should begin with the driver
unique prefix.

• Use initialized data only for constants. Explicitly assign initial values
to variables that are not initially zero.

• Define the driver data needed for the master file. (See Appendix E.)

• Check that data definitions in the master file entry are consistent
with corresponding data declarations in the driver source or system
header files. (See Appendix E.)

• Pay special attention to interrupt handling code - do not lower the
execution level, do not try to sleep, do not access the user data
structure, and do not assume that local variables are preserved for a
subsequent entry (either another interrupt or timeout).

• Design an appropriate install script.

• Use drvinstall to install the master file information, update the
system file, and create special device files.

The kernel/driver interface specifications of kernel services and system data
structures are designed to insure object code compatibility with future releases
of the system software. Failure to follow these guidelines may require driver
recompilation and/ or source code changes.

SUPPORT PROGRAMS

mkboot(lM)

The mkboot(lM) command prepares an object file for use by lboot. The
object file is either a configurable module or an unresolved UNIX System
kernel. Each module object file named must correspond to an entry in the
master file. Correspondence is established by matching the object file name
stripped of any optional path prefix or .o suffix. The resulting name is
converted to lowercase before matching against the master file. A UNIX
System kernel object file is identified with a command line option, and the
master file entry is always kernel.

The master file is read and the configuration information associated with each
object file is extracted. For each object file, a new file is created containing
this configuration information. The new object files are written to the /boot
directory (default) and are given the name (in capital letters) of the
corresponding master file entry.

4-23

DRIVER CONFIGURATION

mkunix(lM)

The mkunix command creates a bootable kernel namelist file (also termed the
absolute boot file) from the current contents of memory; this file will be named
a.out and will be written to the current directory by default. This file contains
the UNIX System kernel object file and all drivers and modules which were
loaded by lboot. The mkunix program would be run following an auto­
configuring boot with a new system configuration.

The resulting absolute boot file must be used as the namelist file for ps, crash,
etc. In addition, this file may be booted directly, bypassing the self­
configuration feature of lboot. This will probably save 30 to 90 seconds at boot
time.

The unresolved kernel object file used by lboot must be available at the time
mkunix is run. This is the path name specified as the BOOT program in the
/etc/system file. This file is read to obtain the section names and the symbol
table for the basic kernel.

sysdef(lM)

Historically, sysdef was the mirror image of config. You would prepare a
configuration file to be used by the config program and build a new UNIX
System kernel reflecting the contents of this configuration file. The sysdef
program would recreate the configuration file given a kernel object file. The
self-configuration feature breaks this circular chain.

The sysdef program will examine a kernel object file and extract configuration
information. If the object file, is an unresolved kernel object file then there is
no information available-it only makes sense to run sysdef on an absolute
boot file. If the object file is an absolute boot file, then all hardware devices,
their board slots and unit count as well as pseudo devices and system devices
are listed. The values of all standard tunable parameters are also listed. It
should be noted that the sysdef program requires the master file in order to
determine the names of the devices that may be configured. Sysdef will
indicate modules loaded in the UNIX System kernel to allow user programs to
determine modules installed but not configured in the system.

4-24

DRIVER CONFIGURATION

newboot(lM)

The newboot program will write the mboot and lboot object files to the boot
partition of a disk. The object files are written in the format expected by the
firmware and the mboot program. This format is:

block 0:

block 1:

block 2-99:

The mboot object code

A block containing the length and location at which to load
the lboot object code

The lboot object code.

On the 3B2 Computer system, block 1 will contain a volume table of contents
which will contain the location of the lboot program.

EXTERNAL REQUIREMENTS

Unless otherwise indicated, all requirements apply equally to the 3B2 and 3B5
Computers.

Hardware

The minimum memory supported by lboot is 512K (one half megabyte). This
requirement is based on:

• The C Language compiler not generating position-independent code;
thus, lboot ~ust be loaded at a fixed position

• There must be sufficient room remaining in memory to load the
UNIX System kernel and support the temporary memory
requirements necessary for symbol tables, relocation lists, etc.

3B2 Computer Requirements

The electrical design of the backplane of the 3B2 Computer requires that board
slots be occupied sequentially; that is, there can be no unoccupied slots whose
slot number is less than that of an occupied slot. The board slot is used as the
major number for hardware devices. If a faulty board is removed, the
remaining boards must be rearranged to satisfy the electrical design. However,
the special device names in the /dev directory are now in error and must be
changed.

4 -25

DRIVER CONFIGURATION

Peripherals

Peripherals must interface with the hardware in a standard, predictable way.
This insures that lboot can generate the proper linkages when the device
driver is loaded. Each peripheral must interface with the hardware in the
following ways:

• Each peripheral is allocated a group of 16 interrupt vectors due to the
architecture of the 3B2 and 3B5 Computers. A peripheral designer
may choose how many of the 16 interrupt vectors will actually be
used. Regardless of the actual number of vectors used, they must be
allocated sequentially beginning with the first vector.

• If the interrupt vectors assigned consist of paired receive-transmit
vectors, then they must be allocated with all transmit vectors
preceding all receive vectors. Furthermore, the pairing is be
sequential; transmit vector one is paired with receive vector one, etc.

• The low-level interrupt routine is defined by the UNIX System kernel,
and is the same for each peripheral.

The requirement that a driver be loaded is established by the presence of its
name in the EDT. Therefore, each peripheral may be controlled by one and
only one device driver. Another way to state this is that there can be one and
only one device driver associated with a name in the EDT.

LBOOT-UNIX System Interface

To prevent the unnecessary creation of a /unix file on every boot, the lboot
program passes the UNIX System an argument indicating a power-up boot or a
manual boot. This allows the invocation of the mkunix delete - that is nothing
program which will create /unix only on automatic or power-up boot if a
configuration change occurred.

Drivers

The self-configuration feature imposes coding restrictions for the device drivers
and configurable modules. These restrictions arise as a result of the dynamic
linking of the kernel and configurable modules at boot time. These restrictions
and requirements are:

4-26

• There may be no static variables whose initial contents are depended
upon by code fragments. Such items as "first-time" switches, lock
words, and initial pointers for linked lists are not allowed. The only

DRIVER CONFIGURATION

initial value that may be assumed is zero for variables allocated in
the bss section. Note that this restriction does not apply to statically
allocated and initialized identifiers used as constants (that is, not a
variable).

• There may be no references to routines or identifiers defined within
other modules unless there is a strict dependency chain established by
the dependency list in the master file. The single exception is a
reference to a routine in another module which is defined in the
routine definition lines of that module master file entry.

• Any necessary data areas must be definable using the capabilities of
the variable definition lines in the master file. Furthermore, the
sizes of all such data structures must be adjusted based upon the
configuration that exists at configuration time using the capabilities
allowed by the master file.

• Drivers must be written to expect the entire device number passed in
their argument lists rather than just the minor number. This is a
change to drivers written for non-self-configuration systems. A
device number must, in general, be processed in three steps. First,
the minor number must be inspected to determine that it refers only
to devices on an individual controller. Second, the minor macro must
be invoked to convert the device number into an internal minor
number-a sequential number in the range zero to n, where n is total
number of devices supported by the driver. Finally, this internal
minor number must be verified to make sure that it only refers to an
existing device.

• There may be one and only one driver controlling any peripheral
device. Note that this applies only to drivers that control their
hardware directly. Drivers that interface to hardware indirectly
(such as those controlling devices through the JOA on the 3B5
Computer) do not violate this requirement. The justification for this
requirement is due to the method used to associate a driver with a
peripheral-the EDT entry for the peripheral is used to identify the
single driver to be loaded. In addition, any interrupt routines
required for a peripheral must interface to one and only one driver.

• Drivers for integral devices (such as the console or, on the 3B2
Computer, the integral hard/floppy disk) are treated as special cases
of software drivers. The master file entry flags these drivers as
required and software, but the number of interrupt vectors is not
zero. The vector number is assigned by the master file rather than
being computed by the peripherals hardware address. All other
requirements for hardware drivers must be met.

• There are certain names which have special meaning to lhoot when
they are encountered within a module. Each such name is composed

4-27

DRIVER CONFIGURATION

VTOC

of the module prefix assigned by the master file and one of the
following names.

init An initialization routine called prior to kernel initialization

start An initialization routine called immediately after kernel
initialization

clr A routine to be called at the time of a power fail interrupt

Hardware and software drivers have an additional list of special
names. These are:

open
close
read
write
ioctl
strategy
print
[xr]int

The device open routine
The device close routine
The UNIX System character device read routine
The UNIX System character device write routine
The UNIX System character device ioctl routine
The UNIX System block device strategy routine
The UNIX System block device error message routine
The interrupt routines(s); the [xr] prefix used for paired
transmit/receive interrupts

The volume table of contents (VTOC) feature on the 3B2 Computer adds a data
structure to each physical disk volume which identifies and describes the
contents of the volume. The VTOC contains device information for firmware
and device drivers. It also contains the partition mapping for the UNIX System
kernel which previously was tabulated in the header file sys/io.h. The ability
to describe the disk partitioning on the disk itself rather than compiled into the
kernel or the boot program can be used to the advantage of lboot. Additional
fields exist in the VTOC for the use of lboot and the self-configuration process.
These fields are:

lboot address

lboot length

Root file system flag

Swap partition flag

4-28

The memory address at which to load the lboot
program.

The size of the lboot program in bytes.

A pointer to the partition containing the root
file system.

A pointer to the partition to be used for the
swap area.

DRIVER CONFIGURATION

This additional information is used to allow lboot to make reasonable
assumptions for the device information that is presently specified by the
/etc/system file. In thoses cases where the assumptions would not be
appropriate, the defaults can be overridden by the system file.

The following i terns are provided by VTOC.

• The boot file system is no longer hard-coded into the lboot program.

• There is no longer a size constraint on lboot. This is important since
lboot is now very close to exceeding the 100 block boot partition.

• If the device information is omitted from the system file, the following
assumptions are made.

rootdev is the boot device, partition is flagged

pipedev is rootdev

dumpdev is not supported since the crash dump code always prompts
anyway

swapdev is rootdev and the VTOC identifies the swap partition from
which swplo and nswap can be determined.

Relatively minor software changes are needed to accommodate the VTOC
feature during the boot process. Mboot will assume that the VTOC occupies
the second block on the disk device. Mboot presumes that lboot immediately
follows the VTOC. The load address and the length of lboot are determined by
reading the VTOC. The VTOC would again be read by lboot to determine the
root file system.

TUNING SYSTEM PARAMETERS

One of the main impacts of this feature is the elimination of the config
program. This program was used to change the values of system parameters.
System parameters are now changed by modifying their values in the master
file for the kernel. The mkboot program is then used to create a modified
kernel. When the system is reconfigured with this kernel, the new parameter
values will take effect.

4-29

DRIVER CONFIGURATION

Driver Development Checklist

This section summarizes the various things that a developer must do to add a
driver to a 3B2 or a 3B5 Computer.

• Have a driver name and prefix assigned by the AT&T Technologies
coordinator.

• Define the necessary driver entry points as per standards for the
device switch tables and driver initialization tables.

• Use only the kernel services explicitly included in the kernel/driver
interface specification.

• Use only the fields of system data structures explicitly included in the
kernel/driver interface.

• External symbols defined by the driver should begin with the driver
unique prefix.

• Use initialized data only for constants. Explicitly assign initial values
to variables that are not initially zero.

• Define the driver data needed for the master file. (See Appendix E.)

• Check that data definitions in the master file entry are consistent
with corresponding data declarations in the driver source or system
header files. (See Appendix E.)

• Pay special attention to interrupt handling code - do not lower the
execution level, do not try to sleep, do not access the user data
structure, and do not assume that local variables are preserved for a
subsequent entry (either another interrupt or time-out).

• Design an appropriate install script.

• Use drvinstall to install the master file information, update the
system file, and create special device files.

The kernel/driver interface specifications of kernel services and system data
structures are designed to insure object code compatibility with future releases
of the system software. Failure to follow these guidelines may require driver
recompilation and/ or source code changes.

4-30

DRIVER CONFIGURATION

EXAMPLE DRIVERS

Appendix I contains the character driver for the ports card and a 3B2
Computer. Appendix J contains the block device disk driver for the 3B2
Computer.

Appendix K contains the character driver for the adli on a 3B5 Computer.
Appendix L contains the block device disk driver for the 3B5 Computer.

4-31

Chapter 5

3B2 COMPUTER DEPENDENT INFORMATION

PAGE

INTRODUCTION... 5-1

3B2 COMPUTER FLOPPY RESTORE PROCEDURE... 5-1

FIRMWARE (CHAPTER 2).. 5-1

KERNEL/DRIVER INTERFACE (CHAPTER 3) .. 5-2
Driver Conventions... 5-2

Major/Minor Device Numbers and Translations................................ 5-2
Kernel Interface to Driver Services.. 5-2

Device Access Other Than Read/Write... 5-2
Driver Interfaces to Kernel Services.. 5-2

Translating Virtual Addresses to Physical Addresses....................... 5-2
System Error Messages and Hal ting the System:
cmn_err I panic/ prin tf ... 5-3

DRIVER CONFIG URA TI ON (CHAPTER 4)... 5-3
Performance and Resource Requirements... 5-3
Interface Requirements... 5-4

Installer's Perspective... 5-4
Reconfiguring a UNIX System Kernel .. 5-4
Manual Boot Procedure... 5-4

Driver Development... 5-5
Driver Addition.. 5-5

Data Structures... 5-6
3B2 Computer Conventions.. 5-6
Equipped Device Table.. 5-6
File and Directory Structure... 5-6
Driver Naming Convention.. 5-7

Driver Interfaces in a Self-Configuring System.. 5-7
Device Address Table.. 5-7

Support Programs.. 5-7
new boot•... 5-7

External Requirements... 5-7
3B2 Computer Requirements ... 5-7

Sam pie Drivers.. 5-8

Chapter 5

3B2 COMPUTER DEPENDENT INFORMATION

INTRODUCTION

This chapter contains 3B2 Computer specific information. The chapters
indicated in parentheses are the chapters that contain more information on the
subject mentioned in this chapter. The headings in Chapter 5 are the same as
the heads in the referenced chapters. So, more detailed information should be
easy to find.

3B2 COMPUTER FLOPPY RESTORE PROCEDURE

The 3B2 Computer floppy restore procedure changes · slightly with self­
configuration; however, this is transparent to the user. To boot the system
from the floppy disk, an lboot not supporting self-configuration is maintained.
This lboot is the same boot program existing in the 1.0 Release of the 3B2
Computer. Support of two lboots is needed because of the limited size of the
floppy.

FIRMWARE (CHAPTER 2)

Firmware to device driver communication is different for 3B2 and 3B5
Computers. For this reason, the firmware chapter, Chapter 2, has been
separated into 3B2 and 3B5 Computer information. See Chapter 2 for firmware
information.

5-1

3B2 COMPUTER DEPENDENT INFORMATION

KERNEL/DRIVER INTERFACE (CHAPTER 3)

Driver Conventions

Major /Minor Device Numbers and Translations

For actual hardware devices, the major number is the board hardware address
code or board slot. Software drivers are assigned (by the drvinstall command)
major numbers that do not conflict with the major numbers assigned to
hardware devices. Major numbers for software drivers range from 16 to 127 for
the 3B2 Computers.

Kernel Interface to Driver Services

Device Access Other Than Read/Write

The ioctl function is. traditionally and most commonly provided by drivers for
terminal interface devices. It controls device hardware parameters and
establishes the protocol used by the driver in the semantic processing of data.
The ioctl function has become the catch-all function for facilitating all device
access that is not normal read/write access.

The use of the ioctl function by nonterminal drivers is open ended. On the 3B2
Computer, the ioctl function is used to format diskettes and implement bad
block handling.

Driver Interfaces to Kernel Services

Translating Virtual Addresses to Physical Addresses

The memory address a driver receives from the kernel is a virtual address. The
use of the virtual address by the driver itself works correctly when memory
management is done by the CPU. Some devices that access memory directly
deal only with the physical memory addresses. In these cases, the driver must
provide the device with physical memory addresses. To translate virtual
addresses to physical addresses, the kernel provides the vtop function. The 3B2
and 3B5 Computers provide slightly different vtop functions.

5-2

3B2 COMPUTER DEPENDENT INFORMATION

For the 3B2 Computer:

paddr_t
vtop(vaddr, p)
char *vaddr;
struct proc *p;

The vtop function accesses as arguments a virtual address and a pointer to a
proc structure. (paddr _t is the type for a physical memory address. It is
defined in the system header file /usr/include/sys/types.h.) The virtual
address is the memory address being translated. The pointer to the proc
structure is used by vtop to locate the information (tables) used for memory
management. To indicate that the address is in kernel virtual space or in the
driver itself, the second argument should be NULL. Block device drivers that
can transfer data directly in and out of user memory must use the b_proc
element of the buffer header data structure as the second argument. The vtop
function returns the translated address. If, for some reason, the virtual
address cannot be translated correctly, vtop returns zero.

System Error Messages and Halting the System: cmn_err/panic/printf

On the 3B2 Computer, drivers do not call panic and kernel printf directly.
Instead, the UNIX System kernel provides the function cmn_err, which, in turn,
calls printf or panic. The cmn_err function is passed two arguments. The first
argument is a defined constant, indicating the severity level of the error
condition. The second argument to cmn_err is basically the set of arguments
that would be passed to printf (3B5 Computer). The cmn_err function with the
CE_NOTE argument can be used by driver developers as a tool for debugging
driver code, but this is likely to change system timing characteristics.

DRIVER CONFIGURATION (CHAPTER 4)

Performance and Resource Requirements

To reconfigure the UNIX System kernel, minimal memory must be used during
normal system operation. Normal user level operations will not be disrupted
because the reconfiguration is done during the boot sequence. The
reconfiguration procedure requires that a system have a minimum of 512
kilobytes of memory.

5-3

3B2 COMPUTER DEPENDENT INFORMATION

The space required on disk for files needed for configuring a minimal UNIX
System includes space needed for two copies of the UNIX System kernel (one
configured and one nonconfigured), two system description files, and required
drivers.

A minimal UNIX System is a UNIX System generated by the source in all
directories except those in the io directory but includes the driver supporting
the boot and root devices, console driver, and the system interface to the block
and character I/0 subsystems.

The maximum disk allocation for a minimal system will not exceed 700
kilobytes.

Interface Requirements

Installer's Perspective

Hardware and software drivers can be added to a system, removed from the
system, or be replaced by a new version. Facilities that let users make changes
to the number of drivers in a system are provided through a simple
administration interface on the 3B2 Computer.

Reconfiguring a UNIX System Kernel

During the configuration of the UNIX System, the position of hardware
peripherals is embedded within the UNIX System. Subsequent booting of the
UNIX System assumes that these positions remain unchanged. Rearranging
peripherals may cause undesirable results and may result in system panics or
failures to boot. This is a problem on the 3B2 Computer because it requires
that no slots be empty between boards. This implies that removing one driver
may require a complete rearranging of other boards.

Manual Boot Procedure

To boot the system manually, enter boot from the firmware level. On the 3B2
Computer, the user is prompted for the name of the boot device, which is the
integral disk or the integral floppy. The boot program prompts for the name of
the system file.

When /KERNEL or /boot/KERNEL is used on the 3B2 Computer to boot the
UNIX System, the user will be prompted for software drivers to include and
exclude. Hardware drivers are automatically included when the boot program
detects that the hardware exists. The boot program prints:

5-4

3B2 COMPUTER DEPENDENT INFORMATION

INCLUDE?

The response may be a carriage return (meaning no additional modules are to
be loaded), or the response may be a comma or blank separated list of drivers
to be included in the system. Next,

EXCLUDE?

is printed. Again, the installer may enter a carriage return (meaning no
drivers are to be excluded), or the response may be a comma or blank separated
list of drivers to exclude from the system.

Driver Development

Driver Addition

The drvinstall program handles many of the steps needed to add a driver to a
system. It is particularly well suited for use by driver developers during the
debugging and testing phases of development. The drvinstall program provides
the interface for updating the /etc/master.cl and /etc/system files. On the 3B2
Computer, drvinstall also supplies the needed Equipped Device Table (EDT)
information. It also invokes the mkboot command and places the driver object
in the boot directory.

For hardware drivers, the getmajor command is used to determine the assigned
major numbers. The format is:

getmajor name

Name is the official device identification code in the 3B2 Computer. There is a
one-to-one correspondence between 3B2 Computer device identification codes
and office device driver names. Both are assigned by AT&T Technologies.

On the 3B2 Computer, the information needed for the EDT is supplied through
the edittble command. Appendix G contains details on the use of this
command.

Drivers are organized as add-on packages and are distributed on floppy
diskettes for the 3B2 Computers.

5-5

3B2 COMPUTER DEPENDENT INFORMATION

Different interfaces are used to install drivers on the 3B2 and 3B5 Computers.
The 3B2 Computer uses the menu-driven sysadm facility, which includes an
install procedure. Although different interfaces are used, the functions and
underlying structures are similar. For example, both copy files from the
distribution medium, and both execute the INSTALL script.

Data Structures

3B2 Computer Conventions

For hardware devices, the major number is the board slot. So, only major
numbers 1 through 15 can refer to hardware devices. Software drivers will be
assigned (by the master file) major numbers 16 through 127. This number .is
called the external major number because it is visible in the special files for the
device. An internal major number for the device is assigned by the boot
program.

The external minor number only identifies the logical device on the individual
board identified by the external major number. The major number is used to
index into a table, built by the boot program, to obtain a base number that is
added to the external minor number to create the actual logical device number
now used by device drivers.

Equipped Device Table

The 3B2 Computer firmware uses the same basic technique as the 3B5
Computer firmware; however, there are significant differents in the details of
the implementation. The location of the EDT is specified by an address word,
which is at a fixed location in memory. The system header file defining the
format of each element is also named sys/ edt.h, but an additional header file
(sys/firmware.h) is needed to access the EDT.

File and Directory Structure

For the 3B2 Computer, the location of the boot file system is obtained from the
Volume Table Of Contents (VTOC). This file system contains everything
needed to complete the boot process.

5-6

3B2 COMPUTER DEPENDENT INFORMATION

Driver Naming Convention

A driver name can be up to 10 characters long on the 3B2 Computer. All names
must be in uppercase. Each driver also has an associated two- to four­
character prefix that is used to identify driver functions such as open and close.

Driver Interfaces in a Self-Configuring System

Device Address Table

In the 3B2 Computer, device address tables contain actual addresses and may
be used directly to access the hardware.

Support Programs

newboot

On the 3B2 Computer, block 1 of the object files written by the newboot
program contains the VTOC, which contains the location of the lboot program.

External Requirements

3B2 Computer Requirements

The electrical design of the backplane of the 3B2 Computer requires that the
board slots be occupied sequentially. That is, there can be no unoccupied slots
whose slot number is less than that of an occupied slot. The board slot is used
as the major number for hardware devices. If a faulty board is removed, the
remaining boards must be rearranged to satisfy the electrical design. However,
the special device names in the / dev directory are now in error and must be
changed.

5-7

3B2 COMPUTER DEPENDENT INFORMATION

Peripherals must interface with the hardware in a standard, predictable way.
This ensures that lboot can generate the proper linkages when the device driver
is loaded. Each peripheral must interface with the hardware in the following
ways.

• Each peripheral is allocated a group of 16 interrupt vectors due to the
architecture of the computers. A peripheral designer may choose how
many of the 16 interrupt vectors will actually be used. Regardless of
the actual number of vectors used, they must be allocated
sequentially, beginning with the first vector.

• If the interrupt vectors assigned consist of paired receive-transmit
vectors, then they must be allocated with all transmit vectors
preceding all receive vectors. Furthermore, the pairing is sequential:
transmit vector one is paired with receive vector one, and etc.

• The low-level interrupt routine is defined by the UNIX System kernel,
and is the same for each peripheral.

Sample Drivers

Appendix I contains the character driver for the ports card and a 3B2
Computer. Appendix J contains the block device disk driver for the 3B2
Computer.

5-8

Chapter 6

3B5 COMPUTER DEPENDENT INFORMATION

PAGE

INTRODUCTION... 6-1

FIRMWARE (CHAPTER 2).. 6-1

KERNEL/DRIVER INTERFACE (CHAPTER 3) .. 6-1
Driver Conventions... 6-1

Major/Minor Device Numbers and Translations................................ 6-1
Kernel Interface to Driver Services.. 6-2

Device Access Other Than Read/Write... 6-2
Power Failure Functions.. 6-2

Driver Interfaces to Kernel Services.. 6-2
Translating Virtual Addresses to Physical Addresses....................... 6-2
Driver Execution Control... 6-3
System Error Messages and Halting the System................................ 6-3

DRIVER CONFIG URA TI ON (CHAPTER 4)... 6-3
Interface Requirements... 6-3

Installer's Perspective... 6-3
Manual Boot Procedure ... o................................ 6-3

Driver Development... 6-4
Driver Additions.. 6-4

Data Structures... 6-4
3B5 Computer Conventions.. 6-4
Driver Naming Conventions.. 6-5
Device Address Table.. 6-5
Sample Drivers... 6-5

Chapter 6

3B5 COMPUTER DEPENDENT INFORMATION

INTRODUCTION

This chapter contains 3B5 Computer specific information. The chapters
indicated in parentheses are the chapters that contain more information on
the subject mentioned in this chapter. The heads in Chapter 6 are the same as
the heads in the referenced chapters. So, more detailed information should be
easy to find.

FIRMWARE (CHAPTER 2)

Firmware to device driver communication is different for the 3B2 and 3B5
Computers. For this reason, the firmware chapter, Chapter 2, has been
separated into 3B2 and 3B5 Computer information. See Chapter 2 for firmware
information.

KERNEL/DRIVER INTERFACE (CHAPTER 3)

Driver Conventions

Major /Minor Device Numbers and Translations

For actual hardware devices, the major number is the board hardware address
code or board slot. Software drivers are assigned (by the drvinstall command)
major numbers that do not confict with the major numbers assigned to
hardware devices. Major numbers for software drivers range from 64 to 127 for
the 3B5 Computer.

6-1

3B5 COMPUTER DEPENDENT INFORMATION

Kernel Interface to Driver Services

Device Access Other Than Read/Write

The ioctl function is traditionally and most commonly provided by drivers for
terminal interface devices. It controls device hardware parameters and
establishes the protocol used by the driver in the semantic processing of data.
The ioctl function has become the catch-all function for facilitating all device
access that is not normal read/write access.

The use of the ioctl function by nonterminal drivers is open ended. For
example, on 3B5 Computers, the ioctl function is used to rewind tapes.

Power Failure Functions

The 3B5 Computer supports an optional power holdover feature that lets the
system shutdown gracefully when the power fails. Each driver may provide a
function, driverclr, to facilitate this.

The driverclr function sets a flag prohibiting the initiation of any further I/0
activity and notifies user processes awaiting 1/0 that the 1/0 has failed.
Another function of driveclr is to purge all outstanding 1/0 requests that may
be pending. The driverclr function accepts no arguments and returns no values.

Driver Interfaces to Kernel Services

Translating Virtual Addresses to Physical Addresses

The memory address a driver receives from the kernel is a virtual address. The
use of the virtual address by the driver itself works correctly when memory
management is performed by the CPU. Some devices that access memory
directly deal only with physical memory addresses. In such cases, the driver
must provide the device with physical memory addresses. To translate virtual
addresses to physical addresses, the kernel provides the vtop function.

For the 3B5 Computer:

6-2

paddr_t
vtop(vaddr)
char *vaddr;

3B5 COMPUTER DEPENDENT INFORMATION

The vtop function accepts the virtual address to be translated as its argument.
This can be an address in the current user virtual address space, in the kernel,
or in the driver itself. The vtop function returns the translated address or a -1
(if the virtual address cannot be translated correctly). Note that vtop can only
be used to translate a user address in the currently active process. As a result,
it cannot be used in an interrupt handler or a time-out entry.

Driver Execution Control

For regions of code that must be protected from all interrupts, the splhi
function should be called. It should be noted, however, the splhi locks out
everything including the close and should be used sparingly. The sp16 on the
3B5 Computer also inhibits clock interrupts and should be used very carefully.

System Error Messages and Halting the System

On the 3B5 Computer, the kernel function printf provides driver access to the
system console. The kernel function panic is called to halt the computer. The
kernel print function is a scaled down version of the C-library printf. Only the
% s, % u, % d, % o, % x, and % D option arguments are recognized. Kernel printf
is used to print diagnostic information directly on the system console.

DRIVER CONFIGURATION (CHAPTER 4)

Interface Requirements

Installer's Perspective

Hardware and software drivers can be added to a system, removed from the
system, or be replaced by a new version. Facilities that let users make changes
to the number of drivers in a system are provided through a driver install
interface on the 3B5 Computer. The interface serves as a buffer between the
user and the system to reduce the number of errors that may occur when
making changes to system files.

Manual Boot Procedure

On the 3B5 Computer, you are prompted for the root, swap, pipe and dump
devices. The response to these prompts must be that of the appropriate system
file entry.

6-3

3B5 COMPUTER DEPENDENT INFORMATION

Driver Development

Driver Additions

The drvinstall program handles many of the steps needed to add a driver to a
system. It is particularly well suited for use by driver developers during the
debugging and testing phases of development. The drvinstall program provides
the interface for updating the /etc/master.cl and /etc/system files.

For hardware drivers, the getmajor command is used to determine the assigned
major numbers:

getmajor name

Name is the office device driver on the 3B5 Computer.

Drivers are organized as either magnetic tape or removable disk cartridges for
the 3B5 Computer.

Different interfaces are used for installing drivers on the 3B2 and 3B5
Computer systems. While the 3B2 Computer uses the menu-driven sysadm
facility, the 3B5 Computer uses the periphconfig command. Although different
interfaces are used, the functions and underlying structures are similar. For
example, both copy files from the distribution medium and both execute the
INSTALL scripts. So, from the viewpoin~ of the developer, the INST ALL script
and its associated use of the drvinstall is the focal point of the installation
activity.

Data Structures

3B5 Computer Conventions

For hardware devices, the external major number is the board code assigned by
the physical setting of the DIP switch, on the backplane. This value is assigned
when the peripheral is installed. A diagram in Chapter 4 illustrates the bit
assignments for bus addresses.

Devices located on the Local Bus Extender (LBE) are identified by both the
board code of the LBE and the address on the Extended Local Bus (ELB). The
major number can be from O through 127.

6-4

3B5 COMPUTER DEPENDENT INFORMATION

Driver Naming Conventions

A device driver name can be up to eight characters long on the 3B5 Computer.
All names must be in uppercase. Each driver also has an associated 2- to 4-
character prefix that is used to identify driver functions such as open and close.

Device Address Table

In the 3B5 Computer, the device address tables contain address translation
information that must be loaded into the memory management unit before the
hardware may be accessed.

Sample Drivers

Appendix K contains the character driver for the ADLI on a 3B5 Computer.
Appendix C contains the block device disk driver for the 3B5 Computer.

6-5

Chapter 7

DIAGNOSTICS

PAGE

DEVI CE NUMBERS... 7-1
DISK PARTITIONING.. 7-1

Chapter 7

DIAGNOSTICS
This chapter describes how to structure diagnostics. There are two other
documents that also discuss diagnostics which are:

• 3B2 Computer Model 300 FeCltu ,·e Card Interface Desiyn Manual -
discusses the hardware and firmware required to design and setup a
new feature card.

• 3B2 Computer Off-Line Diagnostics Manual - discusses the diagnostics
that are executable on the System Board and feature cards.

DEVICE NUMBERS

Major, minor, and subdevice device numbers are assigned by AT&T
Technologies. However, these numbers will not be assigned until the feature
card is almost ready for production. In the meantime, these numbers may be
chosen by using the next highest number not in the EDT. For example, if the
highest number in the EDT is seven, you can use eight. However, if the highest
number is three you cannot use four since it is already reserved. To find out
what is available in the EDT, use the command

edittbl -I -d /edt_data

For initial setup and testing device numbers with FFXX and XXFF,
hexadecimal (hex) should be avoided. This means any device number starting
with FF or ending with FF hex.

DISK PARTITIONING

If you are working on block devices, the figure on the next page should help you
restore the filesystem.

7-1

DIAGNOSTICS

fixed location ~

VTOC

C mboot
lboot

not used

UNIX file part.
system

part. 0

UNIX file
system part. 2

swap l space

nswap

!
UNIX file part. 4

system

Figure 7-1. Disk Layout

7-2

APPENDIX A: TTY SUBSYSTEM

PAGE

OVERVIEW OF THE TTY SUBSYSTEM.. A-1
Clists and Cblocks ... A-1
Clist Routines... A-5
The tty Data Structure... A-6
Opening a tty Device: ttinit and ttopen .. A-10
Reading a Character from a Terminal: ttread and ttin A-10
Writing a Character to a Terminal: ttwrite and ttout A-13
Changing Device Parameters: ttiocom .. A-14
Closing a Device: ttclose ... A-15
The Driver proc Function.. A-15
Accessing the tty Functions: The Line Discipline Switch
Table.. A-16

APPENDIX A: TTY SUBSYSTEM
The UNIX System kernel provides common functions and data structures which
can be used by drivers for low-speed character devices like printers and
terminals: drivers which are required to perform semantic processing of data.
The tty subsystem and the clist and tty data structures provide both buffering
and semantic processing of data. Special interface requirements are placed on
device drivers which use the tty subsystem. The services and data structures
provided by the tty subsystem and requirements placed on drivers interfacing
to the tty subsystem are defined in this appendix.

OVERVIEW OF THE TTY SUBSYSTEM

A tty structure exists for every possible terminal device in the system. This
structure contains all the information needed to perform Input/Output (1/0) to
a terminal. Each tty structure contains three clist structures. Therefore, there
are three queues of cblocks associated with every terminal. A tty structure also
contains a receive and a transmit control block; flags for input, output, and
control modes. All storage for a tty structure must be declared in the device
driver.

Clists and Cblocks

The tty subsystem processes characters by manipulating various queues and
buffers. The data structures which are used to form these queues and buffers
are found in the system header file tty.hand are described below.

The tty subsystem maintains character 1/0 queues with the clist data
structure. The clist data structure is composed of a list head structure, clist,
and member structures (cblocks). These structures are listed.

A-1

TTY SUBSYSTEM

struct clist {
int C CC;

};

struct cblock *c cf;
struct cblock *c cl;

struct cblock {
struct cblock *c next;
char c first;
char c last;
char c data[CLSIZE]; /* CLSIZE = 64 */

t. J ,

The diagram below illustrates how the clist queue 1s formed with these data
structures.

CLIST

C CC (172)

.--------+- c cf c cl ---------

CBLOCKS

c first

2

c data

Figure A-1. Clist Queue

A-2

TTY SUBSYSTEM

The clist head maintains a record of the number of characters in the clist (c_cc)
with pointers to the first (c_cf) and last (c_cl) members of the clist. The
cblocks form a singly linked list (c_next). Each cblock contains a buffer of up
to 64 characters (c_data) and maintains indexes which point to the first
(c_first) and last (c_last) character in the buffer.

The pool from which cblocks are drawn is the cfreelist. The cfreelist is headed
by the chead data structure shown below.

CHEAD

c next -
c_size (64)

c_flag

struct chead {
struct cblock *c next;
int c size;
int c _flag;

l.
J,

CBLOCK

c next -
c _first I

c data

c last

CBLOCK

-- c next -
c_first I

c data

--
c last

Figure A-2. Chead Data Structure

CBLOCK

c next

c_first I c last

c data

A-3

TTY SUBSYSTEM

The cfreelist is a singly linked list (c_next). The c_size variable in the list head
structure indicates the size of the cblock character buffer. Since the cfreelist is
limited in size and shared by all tty devices, it is quite possible for the cfreelist
to be empty when a cblock is needed by a tty device. When this occurs, the
process that needs a cblock must sleep on the cfreelist. The c_flay variable is
used to indicate that a process is waiting for a cblock.

Another data structure used by the character I/O subsystem is the character
control block (ccblock). The character control block data structure is shown
below.

struct ccblock
caddr t
ushort
ushort

};

CCBLOCK

{
C _ptr;
c count;
c size;

c_ptr---­

c_count (60)

/* buffer address
/* character count */

/* buffer size

CBLOCK

c next

c first c last

c size (64) '----+--9'4 0 1 2 63

Figure A-3. Character Control Block

A-4

TTY SUBSYSTEM

The ccblock structure is used as a temporary buffer for characters not in a
queue. The ccblock c_ptr variable points to the character buffer (c_data) of a
cblock. The c_count and c_size variables are initialized to the size of the cblock
character array (64 characters). The c_count variable is then decreased by the
number of characters in the cblock character buffer. The difference between
the two variables is used to indicate the number of characters in the buffer.

Clist Routines

The tty subsystem provides several functions for manipulating clists and the
cfreelist. These functions are described below.

getc(p)
struct clist *p;

The getc function receives as an argument a pointer to a clist. It retrieves the
first character from the clist, decrements the clist character count, and returns
the character to the calling function. If the character taken was the last in the
cblock, the cblock is returned to the cfreelist. If processes were sleeping on the
cfreelist (waiting for a free cblock), they are awakened after the cblock is
returned.

putc(c, p)
struct clist *p;

The putc function is called to place the character pointed to by the first
argument onto the clist pointed to by the second argument. If a new cblock is
needed because there are none allocated for the clist or because the last one on
the clist is full, putc retrieves a new cblock from the cfreelist. If the cfreelist is
empty, putc returns a -1; this indicates to the calling process that it must sleep
on the cfreelist. Otherwise, putc links the cblock to the clist, places the
character in the cblock, and increments the clist character count.

struct cblock *
getcf()

The getcf function unlinks a cblock from the cfreelist and returns it to the
calling function. getcf sets the cblock forward pointer to null and sets the
c_first and c_last indexes to the front and back of the c_data array,
respectively. If the cfreelist is empty, getcf returns null.

putcf(bp)
struct cblock *hp;

A-5

TTY SUBSYSTEM

The '{YUtcf function is passed a pointer to a cblock. The putc function returns
the cblock to the cfreelist and awakens any processes sleeping on the cfreelist.

struct cblock *
getcb(p)
struct clist *p;

The getcb function returns the first cblock on the clist specified by the
argument p. It decrements the clist character count by the number of
characters in the cblock and unlinks the cblock from the clist. If the specified
clist is empty, a null is returned.

putcb(bp, p)
struct cblock *hp;
struct clist *p;

The '[YUtcb function is passed as arguments of a pointer to a cblock and a
pointer to a clist. It links the cblock to the clist and increments the character
count in the clist head.

The tty Data Structure

Character queues and buffers are associated with a given tty device through the
tty data structure. The tty data structure follows.

A-6

TTY SUBSYSTEM

#define NCC 8
struct tty {

struct clist t_rawq;
struct clist t_canq;
struct clist t_outq;
struct ccblock t tbuf;
struct ccblock t rbuf;
int (* t_proc) ();
ushort t _iflag;
ushort t_oflag;
ushort t_cflag;
ushort t_lflag;
shortt state;
short t _pgrp;
char t line; -
char t delct;

-
char t term; -
char t tmflag;

-
char t col; -
char t row;

-
char t vrow;

-
char t lrow; -
char t hqcnt;

-
char t dstat;

-
unsigned char t cc [NCC] ;

-
} ;

A character device driver using the tty subsystem must declare an instance of
the tty data structure for each subdevice under its control. The tty data
structure maintains all information relevant to the tty device. The elements of
the tty data structure significant to driver developers are explained below.

• t_rawq - This field is the head for the devices raw input queue, a
clist.

• t_canq - This field 1s the head for the devices canonical queue, a
clist.

• t_outq - This field is the head for the devices output queue, a clist.

• t_tbuf and t_rbuf - These two fields are the devices transmit and
receive buffers, respectively.

• t_proc - Each device driver for a tty device must provide a special
hardware-specific access or proc function. This field holds the
address of that driver function.

A-7

TTY SUBSYSTEM

A-8

• modes - The next four fields of the tty structure specify modes
defined in the UNIX Operating System Administrator Manual under
TERM/0(7). The t_iflag element holds the input modes specified in
the c_iflag element of the termio structure. The t_oflag, t_cflag, and
c_lflag elements hold output modes, control modes, and local modes as
specified in the c_oflag, c_cflag, and c_lflag elements of the termio
structure, respectively.

• t_state - This field maintains the internal state of the device and
the driver. Each of the 16 bits of this field is assigned to one of the
items in the following list. Thus, the state is a composite of one or
more of the items below. Note that the t_state field is fully utilized
and cannot be extended for additional state information that a
particular driver may need.

TIMEOUT

WOPEN

ISOPEN

TBLOCK

CARR_ON

BUSY

OASLP

IASLP

TTSTOP

EXTPROC

TACT

Indicates that a delay timeout is in progress.

Indicates that the driver is waiting for an open
to complete.

Indicates that the device is open.

Indicates that the driver has sent a control
character to the terminal to block transmission
from the terminal.

This is a software image of the carrier-present
signal.

Indicates that output is in progress.

Indicates that the processes associated with the
device should be awakened when output
completes.

Indicates that the processes associated with the
device should be awakened when input
completes.

Indicates that output has been stopped by a
control-s character received from the terminal.

Indicates that a peripheral device is performing
semantic processing of data.

Indicates that a timeout is in progress for the
device.

CLESC

RTO

TTIOW

TTXOFF

TTXON

TTY SUBSYSTEM

Indicates that the last character processed was
an escape character (\).

Indicates that a timeout is in progress for a
device operating in raw mode; that is, no
canonical processing is taking place.

Indicates that the process associated with the
device is sleeping, awaiting the completion of
output to the terminal.

Indicates that transmission to the terminal is
suspended; that is, a control-s character was
received from the terminal.

Indicates that transmission to the terminal is
enabled; that is, a control-q character was
received from the terminal.

• t_pgrp - This field identifies the process group associated with the
device. It is needed to send signals to the process group.

• t_line - This field holds the line discipline type specified m the
c_line element of the termio structure.

• t_delct - This field is used by the tty subsystem to keep track of
the number of delimiters found while performing semantic processing
of data.

• t_col - This field is used to record the current column position of
the cursor on the terminal.

• t_row - This field is used to record the current row position of the
cursor on the terminal.

• t_ vrow - This field is reserved for system use.

• t_Irow - This field is reserved for system use.

• t_dstat - This field may be used by the driver to record driver
defined states.

• t_cc[NCC] - This array holds the control characters specified in the
c_cc member of the termio structure.

A-9

TTY SUBSYSTEM

Opening a tty Device: ttinit and ttopen

The tty subsystem provides two functions for the driver open function: ttinit
and ttopen. The ttinit function is called by the driver the first time a device is
opened; that is, if the device was previously closed.

ttinit(tp)
struct tty *tp;

The tty subsystem accepts as an argument a pointer to the tty structure
associated with the device being opened. It zeroes the t_line, t_ifiag, t_ofiag,
and t_lfiag elements of the tty data structure. It also sets default control
modes (t_cflag) and control characters (t_cc).

The ttopen function is called each time the driver open function is called.

ttopen(tp)
struct tty *tp;

It accepts as an argument a pointer to a tty structure. It establishes the
connection between the process opening the device and the device (t_pgrp). It
also allocates and initializes a cblock for the receive buffer (t_rbuf) of tty
structure. To take care of any initialization peculiar to the device hardware,
ttopen calls the driver proc function specified in the t_proc element of the tty
structure. This function is discussed later.

Reading a Character from a Terminal: ttread and ttin

The activity required to read a character from device hardware to user memory
space through the tty subsystem is rather complex. It involves both operations
initiated by the user at base level and operations initiated by the hardware at
interrupt level. In the figure below, the large open arrows illustrate data flow
and the small arrows illustrate control flow.

A-10

user
data
space

tty

tty
canon
queue

read
function

driver
read
function

tty
raw
queue

read
system
call

tty
transmit
buffer

tty
receive
buffer

tty
input
function

TTY SUBSYSTEM

tty
receiver
hardware

driver
interrupt
function

terminal

Figure A-4. Read Character

When the device hardware receives a character from a terminal, it interrupts
the CPU, causing the device driver interrupt function to be entered. The
interrupt function services the device hardware and transfers characters from
the device to the receive buffer (t_rbuf) of the devices tty structure. It then
calls the tty input function, ttin, which transfers characters from the receive
buffer to the raw queue (t_rawq). ttin also copies characters from the receive
buffer into the transmit buffer (t_tbuf) and echos them to the terminal.

A read of the device (initiated at base level by the user) causes the driver read
function to be entered. The driver read function calls the tty read function,
ttread. ttread transfers characters from the raw queue to the canon queue, and
from the canon queue to user data space.

A-11

TTY SUBSYSTEM

As seen in this very basic description, the tty subsystem functions needed by
the driver to complete a read operation are ttin and ttread. A more detailed
description of the operations performed by these two functions is provided
below.

ttin(tp)
struct tty *tp;

ttin takes as an argument a pointer to the devices tty structure. It works
through the tty receive buffer performing the conversion of newline, carriage
return, and uppercase characters as specified in the mode fields of the tty
structure, and places them in the raw queue.

If the number of characters in the raw queue exceeds a level called the high
water mark, ttin calls the device driver proc function to send a stop character
to the device. When the raw queue character count exceeds the tty hog level of
256 characters, ttin flushes the tty input queues. If the interrupt character
(typically DEL) or the quit character (typically) is found, ttin sends the
appropriate signal to the process group associated with the device. If processes
associated with the device are sleeping (sleeping during a call to ttread) and ttin
finds a delimiter character, ttin a wakens the sleeping processes. The ttin
function also takes care of echoing characters to the terminal.

When the terminal is operating in raw mode, the fifth and sixth elements of
the tty structure control character array indicate the number of characters
needed and the amount of time waited before processes associated with the
device should be awakened. If the minimum character count has been met, ttin
awakens processes associated with the terminal. If the character count has not
been met and a time has been specified, ttin calls timeout to awaken the
sleeping processes after the time period specified.

The device driver read function receives as an argument a device number. It
uses this device number to determine the tty structure for the device being
read. It then uses the address of the tty structure as an argument to ttread.

ttread(tp)
struct tty *tp;

ttread does all the work of read. It performs canonical (erase, kill, and escape)
processing of data as it transfers characters from the raw queue to the canon
queue. If no characters are available, it sleeps (on the address of the raw
queue) until characters become available. After canonical processing has been
performed, ttread transfers data from the canon queue to user data space.
Finally, if transmission from the terminal had been blocked (t_state&TBLOCK)
because the number of characters in the raw input queue was above the high

A-12

TTY SUBSYSTEM

water mark and if the read has caused that number to go below a safe level,
ttread calls the device driver proc function to resume transmission from the
terminal.

Writing a Character to a Terminal: ttwrite and ttout

The activity required to output, or write, a character to terminal parallels in
many ways the character read functions. However, it is somewhat simpler
than input since only one queue, the output queue (t_outq), is involved. Still,
activities at both base and interrupt levels are involved. A transmit buffer
provides for the buffering of characters between the base and interrupt
portions.

A write to the device (initiated at base level by the user) causes the driver
write function to be entered. This in turn calls the tty write function, ttwrite.
ttwrite moves the characters to be output from the user data space to the
output queue. It also calls the drivers access function (described later) to
initiate actual output.

Once initiated, output is sustained by interrupts from the device. A transmit
complete interrupt causes control to be passed to the driver transmit interrupt
handler. The driver outputs the next character in the transmit buffer to the
device. If the output buffer is empty, ttout is called to move characters from
the output queue to the buffer. More detailed descriptions of ttwrite and ttout
are provided in the following.

The device driver write function receives the device number as an argument. It
uses this to determine the tty structure for the device being written. This is
then passed to ttwrite.

ttwrite(tp)
struct tty *tp;

The ttwrite routine transfers characters from user data space to the output
queue as long as the output queue high water mark has not been exceeded.
Processing is performed on the characters as they are put on the output queue
to expand tabs and to add appropriate delays for newline, carriage return, and
backspace characters. When the high water mark is reached, ttwrite sleeps (on
the output queue). The ttwrite routine calls the driver proc function to initiate
or resume output to the device.

The ttout routine is called by the driver transmit interrupt handler. It 1s
passed the address of the tty structure associated with the device.

A-13

TTY SUBSYSTEM

ttout(tp)
struct tty *tp;

The ttout routine moves characters from the output queue to the transmit
buffer in preparation for output by the device driver. The ttout routine
implements the actual timing delays needed during output. When it detects a
delay in the output queue, it uses the kernel timeout function to arrange for an
entry after the appropriate amount of time has elapsed. This delayed entry
invokes the driver proc function to resume output. The ttout routine is also
responsible for awakening ttwrite when a sufficient number of characters have
been transmitted; that is, when the number of characters in the output queue
becomes less than the low water mark.

Changing Device Parameters: ttiocom

Changing the many parameters associated with terminal devices requires close
cooperation between the driver and the tty subsystem. The ttiocom and ttioctl
routines provide access to reading and changing the various tty parameters
contained in the tty structure. Changing such parameters usually requires that
device registers also be altered; the device driver is responsible for this.

A request to read or change terminal parameters is initiated by an ioctl system
call from a user process. This causes the driver driverioctl function to be
called. The driver locates the tty structure associated with the device and calls
the common ioctl function ttiocom. It can be called in one of two ways:

ttiocom(tp, cmd, arg, mode)
struct tty *tp;
int cmd, arg, mode;

ttiocom(tp, cmd, arg, mode)
struct tty *tp;
int *arg;
int cmd, mode;

cmd and arg are defined in the UNIX System Administrator Manual under
TERM/0(7). mode contains the value of the f __fiag field of the associated
special device file (see /usr/include/sys/file.h).

Internally, ttiocom calls ttioctl. These two functions together affect the
appropriate parameter settings and return to the driver. A nonzero value
returned to the driver indicates that device registers must also be changed.
Although ttiocom and ttioctl are together involved in parameter access, each
has a different purpose. ttiocom is a general purpose routine that provides
common parameter handling function. ttioctl is specialized in that it deal with

A-14

TTY SUBSYSTEM

parameters related to buffering and character processing. That Is, it Is
associated with the terminal protocol or line discipline.

Closing a Device: ttclose

The line discipline close function, ttclose, Is called by the device driver close
function.

ttclose(tp)
struct tty *tp;

It accepts one argument, the address of the tty structure associated with the
device being closed. The ttclose function dissociates the device from the process
which opened it and resets the !SOP EN flag in the devices internal state
register (t_state). It calls the driver proc function to transmit any characters
in the devices transmit buffer (t_tbuf) out to the terminal, clears out all the tty
buffers and queues, and returns to the cfreelist all cblocks allocated to the
device.

After calling ttclose, the driver close function disconnects the link to the
terminal and returns.

The Driver proc Function

The device driver must provide a function which can be called by the tty
subsystem to process various device dependent operations, the proc function.

driverproc(tp, cmd)
struct tty *tp;
int cmd;

The cmd specifies the desired operation and can be one of the following:

T_OUTPUT Initiates output to the device (unless the device is busy
or output has been suspended).

T_TIME Notifies the driver that delay timing for a break,
carriage return, etc. has completed.

T_SUSPEND Indicates that output to the terminal should be
suspended; that is, a control-q character has been
received. The TTSTOP bit in t_state should be set.

A-15

TTY SUBSYSTEM

T_RESUME Indicates that output to the terminal should be
resumed; that is, a control-s character has been
received. The TTSTOP bit in t_state should be cleared.

T_BLOCK Blocks further input; that is, the input queue has
reached the high water mark. Turn off TTXON and
turn on TTXOFF and TBLOCK in t_state.

T_UNBLOCK Allows further input; that is, the input queue has gone
below the high water mark. Resets TTXOFF and
TBLOCK in t_state.

T_RFLUSH Same as T_UNBLOCK if TBLOCK is set; otherwise,
does nothing.

T_ WFLUSH Clears all characters from the transmit buffer.

T_BREAK Sends a break to the device. Sets TIMEOUT in t_state
and initiates delay timing.

T_INPUT Prepares device to receive input.

The commands above are defined in /usr/include/sys/tty.h

Accessing the tty Functions: The Line Discipline Switch Table

The protocols for processing and buffering characters are referred to as a line
discipline. The tty functions described above comprise the default, system
supplied line discipline, line discipline 0. In order to allow for other protocols,
drivers must access the tty routines indirectly through the line discipline
switch table. The t_line field of the tty structure contains the line discipline
and is used to index into the line discipline switch table. The declaration of an
entry in the line discipline switch table (from /usr/include/sys/conf.h) 1s
shown below along with the line discipline O values included as comments:

struct linesw J
l

int (*l open) () ; /* ttopen *I -
int (*l close)(); /* ttclose */ -
int (*l read)(); /* ttread *I -
int (*l write}(); /* ttwrite *I -
int (*l ioctl)(}; I* ttioctl */ -
int (*l input) (} ; I* ttin *I -
int (*l output) () ; I• ttout */
int (*l mdmi n t) () ; I• nulldev •I

}

A-16

TTY SUBSYSTEM

The l_mdmint field provides for a modem interrupt handler. It is presently not
used and is " stubbed off'' to the nulldev function.

A-17

APPENDIX B: BLOCK 1/0 SUBSYSTEM

PAGE

BUFFER HEADERS: BUF .H .. B-1

MANIPULATING BUFFERS WITH BUFFER ROUTINES............................. B-4
Allocating, Clearing, and Releasing Buffers: geteblk, clrbuf, and
brelse .. B-4
Waiting on I/0: iowait and iodone... B-6
Unbuffered I/0: physck and physio ... B-6

APPENDIX B: BLOCK 1/0 SUBSYSTEM
The UNIX System kernel provides system buffers to be used as an intermediate
holding area for data transfer between user data space and 1/0 devices. These
buffers (1024 or 2048 bytes each on 3B2 and 3B5 Computers, respectively) are
collectively referred to as the buffer cache. The buffer cache improves system
performance and provides the user with single-byte access to block devices.
System performance is improved because data which is in the cache can be
reused; that is, the same block does not need to be read from a peripheral
device multiple times when needed multiple times. Single-byte access is
necessary because the user does not always need or want a full block of data
from a block device; the buffer cache allows the system to read in a full block
of data from a block device, and then, transfer only that data requested by the
user to user data space. The use of the buffer cache and related data
structures is elementary to the UNIX System block 1/0 and is described in this
appendix . .

BUFFER HEADERS: BUF.H

The basic data structure used in working with the buffer cache is the buffer
header, buf This structure 1s defined m the system header file
/usr/include/sys/buf.h.

Each buffer in the buffer cache has an associated buffer header. The buffer
header contains all the control/status information about the buffer. Most
importantly to driver developers, the buffer header is the sole argument to a
block device driver strategy function. It contains all the information needed to
perform the data transfer. The buffer header data structure follows.

B-1

BLOCK 1/0 SUBSYSTEM

struct buf
{

l .
J,

int b_flags;
struct buf *b forw;
struct buf *b back;
struct buf *av forw;
struct buf *av back;
dev tb dev;
unsigned b_bcount;
union {

caddr t b addr;
- -

int *b words;
struct filsys *b filsys; -
struct dinode *b dine;
daddr t *b daddr;

J· b un;

daddr t b blkno;
char b error;
unsigned int b_resid;
time t b start; - -
struct proc *b _proc;

The fields of the buffer header which are available to the driver are:

B-2

• b_flags - This field maintains the status of the buffer and indicates
to the driver whether the device is to be read or written. Valid flags
are:

B_WRITE

B_READ

B_DONE

B_ERROR

B_BUSY

Indicates that the data is to be transferred from
main memory to the peripheral device.

Indicates that data is to be read from the
peripheral device into main memory.

Indicates that the transfer has completed.

Indicates that an error occurred during the I/O
transfer.

Indicates that the buffer is in use.

B_ WANTED Indicates that the buffer is sought for allocation.

B_PHYS Indicates that the buffer is being used for
physical I/O.

B_STALE

B_AGE

BLOCK 1/0 SUBSYSTEM

Indicates that the buff er no longer contains
valid information. This flag should be set when
an error occurs during the 1/0 transfer.

Indicates that the buffer should be returned to
the front of the buffer free list when released.
This flag should be set when an error occurs
during the 1/0 transfer.

• av_forw and av_back - These fields can be used by the driver to
link the buffer into driver worklists.

• b_forw and b_back - These fields are also used to link the buffer
header into lists. However, they should never be used by the device
driver.

• b_dev - The major and minor device numbers of the device being
accessed are contained in this field. The minor device number is
contained in the low order eight bits and the major number in the
high order eight bi ts.

• b_bcount - This field specifies the number of bytes to be
transferred.

• b_un.b_addr - This field is the virtual address of the buffer
controlled by the buffer header. Data is read (written) from (to) this
address to (from) the device.

• b_blkno - This field identifies which block on the device (the device
defined by the minor device number) is to be accessed.

• b_error - This field holds the error code which is eventually
assigned by the kernel to the u_error field of the user data structure.
It is set in conjunction with the B_ERR0R flag:

• b_resid - This field indicates the number of bytes not transferred
because of an error.

• b_start - This field holds the start time of the 1/0; it is used to
measure device response time.

• b_proc - This is the process table entry for the process requesting
data transfer when the transfer is unbuffered (set to O when the
transfer is buffered).

It is important to note that a buffer header may be linked in multiple lists
simultaneously. Because of this, most of the fields in the buffer header cannot
be changed by the driver, even when the buffer header is in one of the drivers

B-3

BLOCK 1/0 SUBSYSTEM

worklists. The only fields that a driver can change are: b_flays, av_Jorw,
av_back, b_error, b_resid, and b_start.

Buffer headers are also used by the system for unbuffered or physical I/O. In
this case, the buffer describes a portion of user data space.

MANIPULATING BUFFERS WITH BUFFER
ROUTINES

The UNIX System kernel provides the driver with several functions that can be
used to manipulate the buffer cache. These functions are defined below.

Allocating, Clearing, and Releasing Buffers: geteblk, clrbuf,
and brelse

Typically, block device drivers do not allocate buffers; the buffer is allocated by
the kernel, and the associated buff er header is used as an argument to the
driver strategy function. However, in order to implement some driver
programs or ioctl functions, the driver may need its own buffer space. The
driver developer has two choices:

1. Declare data space in the driver which can be used as a buffer

2. Borrow buffers from the buffer cache.

If the buffer space is not needed frequently, the declaration of buffer space in
the driver (especially for large buffers) can be quite wasteful. Additionally,
since block device drivers are intimately tied to the buffer cache and buffer
header data structure, the use of another buffering scheme may require the
addition of special case driver code, again growing the driver unnecessarily.
Therefore, in many instances it is advantageous to borrow a buffer from the
buffer cache and use the existing driver code to implement special case utilities.

The function geteblk is used to allocate buffers.

struct buf*
geteblk()

The geteblk function accepts no arguments. It retrieves a buffer from the
buffer cache and returns to the calling function the address of the buffer
header. If no buffer headers are available, yeteblk will sleep until one becomes
available. Thus, geteblk should not be called at interrupt time.

B-4

BLOCK 1/0 SUBSYSTEM

When the device driver strategy function receives a buffer header from the
kernel (that is, when the driver is entered through its strategy, read, or write
functions), all the necessary fields are already initialized. However, when a
device driver function allocates buffers for its own use, the function must set
up some of the fields before calling the driver strategy function. The following
list explains the state of these fields when the buffer header is received from
geteblk and what must be done with them.

• h_flags - In this field B_BUSY flag is set to indicate that the
buffer is in use. The driver must set the B_READ or B_ WRITE flag,
depending on the type of transfer.

• h_dev - This field is set to NULL and must be initialized by the
driver.

• h_hcount - This field is set to the number of bytes in the buffer.

• h_un.h_addr - This field is set to the virtual address of the buffer.

• h_hlkno - This field is not initialized by geteblk and, thus, must be
initialized by the driver.

• h_proc - Since the buffers are m kernel data . space, the driver
should initialize this field to 0.

The remaining fields in the buffer header can be used as they are when the
buffer header is received as an argument from the kernel.

The clrbuf function can be called to zero the buffer and set the b_resid field of
the driver to 0.

clrhuf(hp)
struct huf *hp;

The clrbuf function accepts as an argument the address of a buffer header. It
returns no error/status values.

After the driver function is finished with the buffer, the brelse function 1s
called to return the buffer to the kernel.

hrelse(hp)
struct huf *hp;

B-5

BLOCK I/0 SUBSYSTEM

The brelse function accepts as an argument the address of the buffer header
being returned to the kernel. It returns the buffer header to a list of free
buffers and awakens any processes which might be sleeping on that list. The
brelse function returns no error/status value.

Waiting on 1/0: iowait and iodone

The kernel provides two functions used to suspend and continue execution
during block I/0: iowait and iodone. The iowait function is called by driver
functions which have allocated their own buffers and are awaiting data
transfer completion.

iowait(hp)
struct huf *hp;

iowait accepts a single argument: a pointer to a buffer header where the
awaited data transfer is to take place. It sleeps on the address of the buffer
header and is awakened by a corresponding call to iodone when the transfer
completes.

iodone(hp)
struct huf *hp;

iodone is called by the driver interrupt function, on the completion of any
transfer. The only argument passed to iodone is the address of the buffer
header associated with the buffer in which the 1/0 occurred. iodone awakens
the process(es) sleeping on the buffer header.

Both iowait and iodone return no error/status values.

Unbuffered 1/0: physck and physio

The block device driver read and write functions are called via the character
device switch table to perform unbuffered I/0; that is, data is transferred
directly to (from) the device from (to) user data space. The kernel provided
functions physck and physio aid the driver in performing unbuffered I/0 while
maintaining the buffer header as the interface structure. These two functions
are called by both the driver read function and the driver write function.
Together they perform almost all the work to be done by a block device driver
read and write functions.

B-6

physck(nhlocks, rw)
daddr_t nhlocks;
int rw;

BLOCK 1/0 SUBSYSTEM

The physck function accepts two arguments: the number of physical blocks on
the device being accessed (the device determined by the minor device number)
and a flag indicating whether the access is a read from (B_READ) or a write to
(B_ WRITE) the peripheral device. physck verifies that the user requested block
exists on the requested device. If so, physck returns a 1. Otherwise, physck
sets an error flag in the u_error field of the user structure and returns a 0.

The physio function is called by the driver if the physck function passes. It
accepts four arguments.

physio(strat, hp, dev, rw)
int (*strat)();
struct huf hp*;
int dev;
int rw;

The first argument is the address of the driver strategy function. The second is
the address of a buffer header. When called from a driver read or write
function, this argument is always 0. The third argument is a device number.
The external device number received as an argument to the driver read or write
function should be used here. The translation to an internal device number via
the minor macro should be taken care of by the strategy routine when it is
called later. The fourth argument to physio is a flag indicating whether the
access 1s a read from (B_READ) or a write to (B_ WRITE) the peripheral
device.

The physio function sets up a buffer header describing the user data space. It
then locks the user process in memory, calls the driver strategy function, and
sleeps on the address of the buff er header. When the transfer completes,
physio is awakened by the driver interrupt function via iodone. It then updates
information on the user data structure and returns to the driver read or write
function. physio returns no error/status value.

B-7

APPENDIX C: SLEEP AND WAKEUP EXAMPLE
The example sketches the use. of sleep and wakeup in a driver that employs a
limited pool of buffers for data transfer.

C-1

SLEEP AND WAKEUP EXAMPLE

struct driverbuffer {
int buf[256];
unsigned int flag;

struct driverbufpool {
struct driverbuffer pool[40];
unsigned char empty;
unsigned int flag;

} dr i verbufpool;

driverread{dev)
int dev;

}

while {spln(), driverbufpool.empty == TRUE)
driverbufpool.flag I= SLEEPING;
sleep(&driverbufpool, PRIORITY);

}
spl0{);

driverint{dev)
int dev;
{

}

driverbufpool.empty = FALSE;
if {{driverbufpool.flag & SLEEPING) -- SLEEPING)

driverbufpool.flag &= ~LEEPING;
wakeup{&driverbufpool)

If the driver read function needed a buffer from the pool but the pool was
temporarily empty, the read function would call sleep with the address of the
pool as its first argument. The driver might also set a flag in one of its data
structures to indicate to other driver functions that it is sleeping, waiting for a
buffer. While the process is sleeping, other data transfer for other processes

C-2

SLEEP AND WAKEUP EXAMPLE

would take place. When the data transfer for one of the other processes
completed, a buffer would become available and be returned to the pool:
perhaps by the driver interrupt function. The interrupt function, after
returning the buffer to the pool, would test the flag to see if processes were
sleeping on the buffer pool. If so, the interrupt function would call wakeup
with the address of the buffer pool as an argument and the process waiting for
the buffer would be able to continue.

C-3

APPENDIX D: SELF-CONFIGURATION
COMMANDS

PAGE

MKBOOT .. D-1

MKUNIX .. D-1

APPENDIX D: SELF-CONFIGURATION
COMMANDS
This appendix provides additional information on some of the self-configuration
administrative commands useful during driver development. These commands
should not be called directly as part of a driver installation procedure.
Nevertheless, they are useful during development and the driver developer
should understand their functions.

MKBOOT

The mkboot command prepares an object file for use by the hoot program. The
object file is either a configurable module or an unresolved UNIX System
kernel. No more than one a.out file should be passed to mkboot at a time.
Each module object file named must correspond to an entry in the master file.
Correspondence is established by matching the object file name stripped of any
optional path prefix or " .o" suffix. The alphabetic case of the resulting name
is immaterial. A UNIX System kernel object file is identified with a command
line option, and the master file entry is always kernel.

The master file is read and the configuration information associated with each
object file is extracted. For each object file, a new file is created containing
this configuration information. The new object files are written to the /boot
directory and are given the name (in capital letters) of the corresponding
master file entry.

MKUNIX

The mkunix command will create a bootable kernel namelist file (also termed
the absolute boot file) from the current contents of memory; this file will be
named a.out and will be written to the current directory by default. This file
contains the UNIX System kernel object file and all drivers· and modules which
were loaded. Typically, mkunix would be run following an auto-configuring
boot with a new system configuration.

The resulting absolute boot file must be used as the namelist file for ps, crash,
etc. In addition, this file may be booted directly, bypassing the self­
configuration feature process.

D-1

SELF-CONFIGURATION COMMANDS

The unresolved kernel object file used in the boot operation must be available
at the time mkunix is run. This is the path name specified as the BOOT
program in the /etc/system file. This file is read to obtain the section names
and the symbol table for the basic kernel.

D-2

APPENDIX E: MASTER FILE
The master configuration database is a collection of files. Each file contains
configuration information for a device or module that may be included in the
system. A file is named with the module name to which it applies. This
collection of files is maintained in a directory called /etc/master.d. Each
individual file has an identical format. For convenience, this collection of files
will be referred to as the master file, as though it were a single file. This will
allow a reference to the master file to be understood to mean the individual file
in the master.d directory that corresponds to the name Qf a devic<: or module.
This file is used by the mkboot(lM) program to obtain device information to
generate the device driver and configurable module files. It is also used by the
sysdef(lM) program to obtain the names of supported devices. Master consists
of two parts; they are separated by a line with a dollar sign ($) in column 1.
Part 1 contains device information for both hardware and software devices and
loadable modules. Part 2 contains parameter declarations used in Part 1. Any
line with an asterisk (*) in column 1 is treated as a comment.

Hardware devices, software drivers, and loadable modules are defined with a
line containing the following information. Field 1 must begin in the left most
position on the line. Fields are separated by white space (tab or blank).

Field 1: Element characteristics:

o Specify only once

r Required device

b Block device

c Character device

a Generate segment descriptor array

t Initialize cdevsw[].d_ttys

E- 1

MASTER FILE

Field 2:

Field 3:

Field 4:

Field 5:

Field 6:

Field 7:

s Software driver

x Not a driver; a loadable module

number The first interrupt vector for an integral device

Number of interrupt vectors required by a hardware device;
if none, "-"

Handler prefix (4 characters maximum)

Software driver external major number; " -" if not a software
driver

Number of subdevices per device; "-" if none

Interrupt priority level of the device; " -" if none

Dependency list (optional); this is a comma separated list of
other drivers or modules that must be present in the
configuration if this module is to be included.

For each module, two classes of information are required by mkboot (IM):
external routine references and variable definitions. Routine and variable
definition lines begin with white space and immediately follow the initial
module specification line. These lines are free form; thus, they may be
continued arbitrarily between nonblank tokens as long as the first character of
a line is white space. No more than one a.out file should be given to mkboot at
a time.

If the UNIX System kernel or other dependent module contains external
references to a module, but the module is not configured, then these external
references would be undefined. Therefore, the routine reference lines are used
to provide the information necessary to generate appropriate dummy functions
at boot time when the driver is not loaded.

E-2

Routine references are defined as follows:

Field 1: Routine_name ()

Field 2: The routine type; one of

{ } routine_name () { }

{ no sys } routi ne_name () -(return nosys () ; l

{ nodev} routine_name () -(return nodev (); l

{ false } routine_n_ame () { return O; l

{true} routine_name() { return 1; l

MASTER FILE

Variable definition line::; are used to generate all variables required by the
module. The variable generated may be of arbitrary size, be initialized or not,
or be arrays containing an arbitrary number of elements.

Variable references are defined as follows:

Field 1: Variable_name

Field 2: [expr] - Optional field used to indicate array size

Field 3: (length) - Required field indicating the size of the variable

Field 4: = { expr,... l· - Optional field used to initialize individual
elements of a variable

The length field is mandatory. It is an arbitrary sequence of length specifiers,
each of which may be one of the following:

%i

%1

%s

An integer

A long integer

A short integer

E-3

MASTER FILE

%c A single character

%number A field which is number bytes long

%number c A character string which is number bytes long

For example, the length field

(% 8c % 1 % 0x58 r,c) 1 % c % c

could be used to identify a variable consisting of a character string 8 bytes
long, a long integer, a 0x58 byte structure of any type, another long integer, and
two characters. Appropriate alignment of each % specification is performed
(%number is word aligned) and the variable length is rounded up to the next
word boundary during processing.

The expressions for the optional array size and initialization are infix
expressions consisting of the usual operators for addition, subtraction,
multiplication and division: +, -, *, and /. Multiplication and division have the
higher precedence, but parentheses may be used to override the default order.
The built-in functions min and max accept a pair of expressions and return the
appropriate value. The operands of the expression may be any mixture of the
following:

&name

#name

#C

#C(name)

E-4

Address of name where name is any symbol defined by the
kernel, any module loaded, or any variable definition line of
any module loaded

Size of name where nam<' is any variable name defined by a
variable definition for any module loaded; the size is that of
the individual variable-not the size of an entire array

Number of controllers present; this number is determined
by the EDT for hardware devices or by the number provided
in the system file for non-hardware drivers or modules

Number of controllers present for the module name; this
number is determined by the EDT for hardware devices, or
by the number provided in the system file for nonhardware
drivers or modules

#D

#D(name)

#M

#M(name)

name

number

string

MASTER FILE

Number of devices per controller taken directly from the
current master file entry

Number of devices per controller taken directly from the
master file entry for the module name

The internal major number assigned to the current module
if it is a device driver; zero, if this module is not a device
driver

The internal major number assigned to the module name if
it is a device driver; zero, if that module is not a device
driver

Value of a parameter as defined m the second part of
master

Arbitrary number (octal, decimal, or hex allowed)

A character string enclosed within double quotes (all of the
character string conventions supported by the C Language
are allowed); this operand has a value which is the address
of a character array containing the specified string.

When initializing a variable, one initialization expression should be provided
for each % i, % 1, % s, or % c of the length field. The only initializers allowed for
a '% number c' are either a character string (the string may not be longer than
number) or an explicit zero. Initialization expressions must be separated by
commas, and variable initialization will proceed element by element. Note that
% number specifications cannot be initialized-they are set to zero. Only the
first element of an array can be initialized, the other elements are set to zero.
If there are more initializers than size specifications, it is an error and
execution of the mkboot(IM) program will be aborted. If there are fewer
initializations than size specifications, zeros will be used to pad the variable.
For example,

= { " V2.Ll" , #C*#D, max (10, #D), #C (OTHER), #M (OTHER) }

would be a possible initialization of the variable whose length field was given in
the preceding example.

E-5

MASTER FILE

Parameter declarations may be used to refer to a value symbolically. Values
can be associated with identifiers and these identifiers may be used in the
variable definition lines.

Parameters are defined as follows:

E-6

Field 1: Identifier (8 characters maximum)

Field 2:

Field 3: The value may be a number (decimal, octal or hex allowed) or a
string.

APPENDIX F: SYSTEM FILE
This Appendix includes a detailed description of the entries that make up the
/etc/system file.

Lines may appear in any order. Comment lines must begin with an asterisk.
Blank lines or comment lines may be inserted at any point. Entries for
EXCLUDE and INCLUDE are cumulative. For all other entries, the last line to
appear in the file is used-any earlier entries are ignored. Since the parser is
case sensitive, all uppercase strings must be entered exactly as shown.

BOOT: path name

The path name specifies the object file to be booted; if the
object file is fully resolved (such as that produced by the
mkunix (lM) program), then no other lines in the system file
have any effect.

EXCLUDE: name ...

This identifies names in the EDT that are to be ignored-this
may either be because no driver exists for the specific EDT
entry, or because the driver is not to be loaded for some
other reason.

INCLUDE: name [(number)] ...

DUMPDEV:
ROOTDEV:
PIPEDEV:
SWAPDEV:

This line is necessary to identify software drivers or loadable
modules from the /boot directory which are to be included in
the load. It has no effect for hardware drivers. The optional
"(number)" specifies the number (default of 1) of" devices"
to be controlled by the driver. This number corresponds to
the built-in variable #C which may be referred to by
expressions in part one of the master file.

{ spec-dev-path name l DEV(major, minor) l
{ spec-dev-path name l DEV(major, minor) l
{ spec-dev-path name l DEV(major, minor) J

{ spec-dev-path name l DEV(major, minor) l swplo nswap

On the 3B2 Computer these items are taken care of by VTOC
unless the system is booted manually and you are using
system entries. However, these can be specified and put into
the system file anytime.

SYSTEM FILE

F-2

These lines identify the system device to be used for writing
a crash dump, the device containing the root file system, the
device to be used for pipe space, and the device to be used for
swap space (with the beginning block number for swap space
swplo and the number of swap blocks available nswap).
These are normally used only in the 3B5 Computer; on the
3B2 Computer, this information is derived from the disk
volume table of contents (VTOC). The device may be
specified in either of two ways. A path name of a special
device file may be provided-the major and minor numbers
are obtained from the inode. An alternative form is allowed
in which the major and minor numbers are specified
explicitly.

APPENDIX G: 3B2 COMPUTER EDITTBL
COMMAND

PAGE

NAME... G-1
SYNOPSIS... G-1
DESCRIPTION... G-1
INPUT FORMAT.. G-2
EXAMPLES... G-4

APPENDIX G: 3B2 COMPUTER EDITTBL
COMMAND

NAME

edittbl - edit edt_data file

SYNOPSIS

edittbl [-d] [-s] [-g] [-i] [-1] [-r] [-t] [file]

DESCRIPTION

Edittbl is a user-level command that permits changes to edt_data, the file in the
root file system that the diagnostic monitor DGMON reads during self­
configuration to get the device and subdevice look-up tables. This command
permits independent selection of device or subdevice tables, generation of eith~r
base table, new entry installation for either table, entry removal for the device
table, and entry listings for either or both tables.

Edittbl prints the option list if the command has no arguments. The
arguments are:

-d This option selects the device look-up table for the utility operation(s).

- s This option selects the subdevice look-up table for the utility
operation(s).

-g This option will generate the base look-up table entries for the selected
look-up table(s). For the device table, these base entries are NULL,
SBD, NI, and PORTS. For the subdevice table, they are NULL, IF,
HDlO, and HD30.

-i This option specifies that new entries are to be added to the selected
table. The ID codes for table entries anq the input are compared; only
new codes are installed. The formats for entries are described below.
An EOF or " ." end the data input.

G-1

3B2 COMPUTER EDITTBL COMMAND

-1 This option specifies that the selected table(s) are listed.

-r This option specifies that entries are to be removed from the device
look-up table. When removing subdevice look-up table entries from
init/dgn/edt_data conjunction with removing a device entry, this
command will check the Equipped Device Table (EDT) to verify that no
subdevices specified for removal are present. The ID codes of the table
are compared to the input and entries are removed for matches. The
format is identical to that for the -i option and is listed below. An EOF
or 11

•
11 end the data input.

-t This option suppresses the program headings and user prompts;
warnings and errors are not affected. This option is primarily useful in
installation and removal scripts.

file The user may specify a target path name for the utilities. If none is
specified, ./edt_data is the default.

INPUT FORMAT

Data for installation/removal are entered as hex format numbers or character
strings, one line for each table entry. The data fields must be supplied in the
sequence described.

Devices

ID code

name

rq_size

cq_size

boot device

G-2

This field is a number between 0x0 and 0xffff that a
device uses to identify itself. ID codes are
administered by AT&T Technologies.

This field is a character string (maximum of 9
characters) that holds the user-recognizable name
for a device. Device names are administered by
AT&T Technologies. This string is also the file
name that DGMON loads to diagnose a device.

This is a number between 0x0 and 0xff for the count
of entries in a device job request queue.

This is a number between 0x0 and 0xff for the count
of en t ries in a device job completion queue.

This field determines whether a device may be used
to boot programs. A II l" means that it is bootable; a
"O" means that it is not.

3B2 COMPUTER ED ITTBL COMMAND

word size This field shows the word size of a device 1/0 bus.
A II ltl is used for devices with a 16 bit bus word; a
ti 0" is used for devices with an 8 bit bus word.

brd size This field specifies the 1/0 connector slots that a
device requires. A ti ltl indicates that two slots are
needed; while a" 0" means that one is required.

Subdevices

smart board

cons_cap

cons_file

This field determines whether a device is intelligent,
that is, requires downloaded code for normal
operation or supports subdevices. A II l" indicates
an intelligent device, while a ti 0tl specifies a ti dumb"
device.

This field shows whether a device can support the
system console terminal. A ti l" is used for devices
that can; a II 0" for those that cannot.

This field shows whether a device requires pump
code to provide a system console interface. A " l" in
this field means that the board cannot support the
console interface without extra code. This field may
have the II l" value only when the cons_cap field
does also. A ti 0tl in this field means that the device
can support a system console terminal with PROM­
based code when con:,_cap has the value II l" . This
field must have a II 0" value when con:,_cap is ti 011

•

ID code This is a number between 0x0 and 0xffff for the code
that identifies a subdevice. Subdevice ID codes are
administered by AT&T Technologies.

subdev name This field is a string (maximum of 9 characters) for
a subdevice name. Subdevice names are uppercase
and are administered by AT&T Technologies.

dev name This field is a string (maximum of 9 characters) for
the device name to which a subdevice is associated.
If a device table entry is to be removed, associated
subdevice table entries may al so be removed in a
separate program call. The device name is necessary
for an Equipped Device Table (EDT) check that will
verify that a subdevice table entry is needed only for
a device entry that is to be removed.

G-3

3B2 COMPUTER EDITTBL COMMAND

EXAMPLES

Generate and list the base entries for both the device and subdevice tables,
saving the results in ./edt_data.

edittbl -g -1 -s -d

Install subdevice entries with new ID codes from the file subdev.in into the
existing file ./ edt_data.

edittbl -i -s < subdev.in

List the device table entries found in an existing copy of the file that DGMON
loads, the ROOT file system edt_data file.

edittbl -1 -d /dgn/edt_data

G-4

APPENDIX H: REGISTERS
The WE 32000 Series has sixteen accessible 32-bit registers. Two additional
registers, tempa and tempb, are reserved for the operating system and high­
level support instructions. The accessible registers may be accessed in any
addressing mode.

Registers r0 through r8 are general-purpose registers which may be used as
accumulators or for addressing or temporary data storage. In assembly
language, they are referenced as % rn, where n is the register number.

The first three of these registers, r0 through r2, are sometimes called scratch
registers. In C Language, these three registers are used to return specific
values during function calls. Registers r0 through r2 are also used by the data
transfer instructions MOVBLW, STRCPY, and STREND.

Registers r3 through r8 may be used at any time by any program. These
registers are saved whenever a new function or process is installed. They are
most commonly used as register variables.

The remaining processor registers are special-purpose registers and are
referenced by name. Three of these registers are pointers to data stored on an
execution stack. The Frame Pointer (FP) register, register 9, is referenced as
% fp; the Argument Pointer (AP), register 10, . is called '¼, ap; and the Stack
Pointer (SP), register 12, is '½-> sp. Function calls and returns affect the AP, FP,
and SP implicitly. The FP identifies the starting location of local variables for
the function. The AP identifies the beginning of the set of arguments passed to
the function, while the SP always accesses the top of the execution stack.

The last set of registers have restrictions on how and when they may be used
by instructions. Registers 11, 13, and 14 are privileged, which means that they
may be read at any time but may be written only when the processor is in
system mode; that is, when the operating system is in control. The other
registers may be read or written in any execution level.

H-1

REGISTERS

The Process Status Word (PSW) register, register 11, contains status
information about the current instruction and process. Register 13, the Process
Control Block Pointer (PCBP), identifies a block of status information and
pointers for a process. The Interrupt Stack Pointer (ISP) is held in register 14.

Register 15 contains the Program Counter. It is referenced as % pc. It may not
be referenced in some address modes. In most cases, it is implicitly referenced
by all program control instructions and is used by function c~lls and returns.

H-2

APPENDIX I: 3B2 COMPUTER BLOCK DEVICE
DRIVER
The disk driver used on the 3B2 Computer consists of three parts:

• Internal hard disk driver

• Internal floppy disk driver

• Common file to check system board registers and contains the strategy
routine.

I•

* Copyright 1984 AT&T

*
* Bell Laboratories

* 3B2 UNIX Integral Winchester Disk Driver

•I

#include "sys/types.h"

#include "sys/param.h"

#include "sys/sbd.h"

#include "sys/id.h"

#include "sys/if.h"

#include "sys/dma.h"

#include "sys/immu.h"

#include "sys/dir . h"

#include "sys/sysmacros.h"

#include "sys/signal.h"

#include "sys/user.h"

#include "sys/errno.h"

#include "sys/buf.h"

#include "sys/elog.h"

#include "sys/iobuf.h"

#include "sys/systm.h"

#include "sys/firmware.h"

#include "sys/cmn err.h" -
#include "sys/vtoc.h"

#include "sys/hdelog.h"

#include "sys/open.h"

I• pointer to disk controller •I

extern int idisk;

#define ID ((struct iddev •> &idisk)

1-1

3B2 COMPUTER BLOCK DEVICE DRIVER

extern int dmac;

#define DMAC ((struct dma •> &dmac)

struct vtoc idvtoc(IDNDRV);

struct idsave idsvaddr(IDNDRV);

I• defect maps •I

extern struct defstruct iddefectl I;

/• bad block stuff •I

struct hdedata idelog(IDNDRVI;

extern hdelog ();

extern int idiskmaj;/• defined in master.d file for idisk •/

/• physical description table •I

struct pdsector idsectO(IDNDRV);

I• seek parameter structure•/

struct idseekstruct idseekparam(IDNDRVI;

I• controller initialization•/

struct idspecparam idspec _s;

struct idspecparam idspec _f;

I• transfer parameter sturcture •I

struct idxferstruct idxferparam(IDNDRVI;

struct {

unsigned char noparam;

idnoparam;

I• drive status byte •I

struct idstatstruct idstatus(IDNDRV);

I• temporary buffer for jobs which cross 64-Kbyte boundaries •I

struct -:

unsigned int buf(128l;

idcache(IDNDRV+ll;

unsigned int idpcacheaddr(IDNDRV);

struct iobuf idtab(IDNDRV);

struct iotime idtime(IDNDRV);

I• drive information •I

/• drive status information •I

int idspurintr; /• spurious interrupt counter •I

extern paddr _t id addr(I; /• local bus base address of disk controller •I

extern unsigned ifstate;/• floppy driver state register •I

1-2

3B2 COMPUTER BLOCK DEVICE DRIVER

/* rename buf structure variables*/

#define actsio s1

#define cylin b resid

#define ccyljrqsleep

idcopy (faddr, taddr, count)

unsigned int *faddr;

unsigned int *taddr;

unsigned int count;

unsigned int *fptr;

unsigned int *tptr;

inti;

tptr

fptr

taddr;

faddr;

for (i=0; i <(count/4); i++)

*tptr++ = *fptr++;

unsigned char idscanflag;

unsigned char idnoscan;

idscan ()

int s;

s = spl6();

if ((id tab (0 I. b actf ! = IDNULL) I I (id tab [1). b actf ! = IDNULL))

if (idscanflag == IDNULL)

idrecal (IDNOUNIT);

else

idscanflag IDNULL;

splx (s);

timeout (idscan, 0, (1 0*HZ));

idsetblk (bufhead, cmd, blkno, dev)

struct buf *bufhead;

unsigned char cmd;

daddr _ t blkno;

dev t dev;

clrbuf (bufhead);

bufhead- >b_flags I= cmd;

bufhead->b blkno = blkno;

bufhead->b dev = (dev IIDNODEV);

bufhead->b_proc = 0x00;

bufhead->b_flags &= B _DONE;

if (cmd == B WRITE)

1-3

3B2 COMPUTER BLOCK DEVICE DRIVER

bufhead- >b bcount • idsect0(iddn(minor(dev))).pdinfo.bytes;

/•Setup the initial values for pdsector and clear defect map•/

idsetdef(unit)

int unit;

register int j;

I• initialize sector 0 •I

idsect0(unit).pdinfo.driveid • 0x02;

idsect0(unit).pdinfo.sanity c 0x00;

idsect0(unit).pdinfo.version • 0x0l;

idsect0(unit).pdinfo.cyls • 1;

idsect0(unit).pdinfo.tracks • 1;

idsect0(unit).pdinfo.sectors = 18;

idsect0(unit).pdinfo.bytes • 512;

/• initialize mach defect management tables•/

for (j-=0; j <(IDDEFSIZ/8); j++)

iddefect(unitl.map(j).bad.full • Oxffffffff;

iddefect(unitl.map(jl.good.full • Oxffffffff;

I• idopen - on first call reads in physical description, vtoc,

and defect info •I

idopen(dev,flag,otyp)

1-4

struct buf •geteblk();

struct buf •bufhead;

register int unit, i, j;

int defcnt, defaddr;

if (idnoscan == IDSET)

idnoscan - IDNULL;

idscan () ;

unit= iddn(minor(dev));

if (idstatus(unit).equipped •= IDNULL)

I• no disk out there•/

u.u error• ENXIO;

cmn_err(CE_NOTE,"\phard disk: drive "d not equipped\p",unit);

return;

while (idstatus(unitl . open == IDOPENING)

sleep(&idstatus(unitl,PZERO);

if (idstatuslunitl.open -~ IDNOTOPEN)

3B2 COMPUTER BLOCK DEVICE DRIVER

idstatus[unit).open IDOPENING ;

I• set up default values in the pdsector •I

idsetdef(unitl;

/• read physical description sector •I

bufhead = geteblk();

idsetblk (bufhead, B _READ, IDPDBLKNO, dev);

idstrategy(bufhead);

iowait(bufhead);

if (bufhead- >b _flags & B ERROR)

cmn_err(CE _WARN,"\nhard disk: cannot read sector 0 on drive %d \n" ,unit l;

goto badopen;

idcopy (bufhead- >b _un.b _addr, &idsect0[unitl, sizeof(struct pdsectorl l ;

if (i dsect0[unit).pdinfo.sanity

idsetdef(unitl;

VALIDINFO)

cmn_err(CE _WARN,"\nhard d i sk : Drive %dis in the 1.0 layout.

It can not be used until the conversion is made to the

current layout. \n" ,unit);

goto opendone;

}else if (idsect0[unitl.pdinfo.sanity != VALID PD)

cmn_err(CE _WARN, "\nhard disk: Bad sanity word on drive %d. \n" ,unit) ;

goto badopen;

I• read the defect map •I

if (idsect0(unitl.pdinfo.defectsz > IDDEFSIZ)

cmn err (CE _WARN, "\nhard disk: too little space allocated in dr i ver

for defect table on drive %d\n", unit);

goto badopen;

for (defcnt = 0; defcnt <

(idsect0[unit).pdinfo.defectsz/idsect0[unit).pdinfo.bytesl ; defcnt++l

idsetblk (bufhead, B _READ, idsect0[unit).pdinfo.defectst +defcnt, dev) ;

idstrategy(bufheadl;

iowa i t(bufheadl;

if (bufhead - >b flags & B ERROR)

cmn _err(CE _WARN, "\nhard disk: Cannot read defect map on drive

%d\n" ,unit);

goto badopen;

defaddr = ((intl&iddefect (unitll+(defcnt•idsect0[unit) .pd i nfo.bytesl ;

idcopy (bufhead- >b _un.b _addr, defaddr, idsect0[unit) . pdinfo . bytesl;

/• read in the vtoc •I

1-5

3B2 COMPUTER BLOCK DEVICE DRIVER

idsetblk (bufhead,B _READ, idsect0(unit].pdinfo.logicalst+IDVTOCBLK, dev);

idstrategy(bufhead);

iowait(bufhead);

if (bufhead- >b_flags & B ERROR)

cmn_err(CE _WARN,"\nhard disk: Cannot read the VTOC on drive

"d\n" ,unit);

goto badopen;

idcopy (bufhead- >b _un . b _addr, &idvtoc(unit], sizeof(struct vtoc));

if (idvtoc[unitl.v sanity!• VTOC SANE)

cmn_err(CE _WARN, "\nhard disk: Bad sanity word in VTOC on drive "d. \n " ,unit) ;

goto opendone;

I• open is complete - wakeup sleeping processes and return buffer •I

idstatus[unitl.open • IDISOPEN;

goto opendone;

badopen:

u.u error• ENXIO;

opendone:

if(idstatus[unit).open !• IDISOPEN)

idstatus (unitl.open s IDNOTOPEN;

wakeup(&idstatus[unit));

brelse(bufhead);

/• idclose is provided as a null function•/

i dclose(dev)

I• reset and initialize controller, initialize controller table•/

I• check for drive ready and recalibrate drives •I

idinit()

1-6

register inti, j;

int iplsave;

dev _t ddev;

extern int hdeeduc, hdeedct;

/• ENTER CRITICAL REGION •I

iplsave a spl6();

I• controller initialization - specify parameter structure •I

idspec_s.mode s 0x18;

3B2 COMPUTER BLOCK DEVICE DRIVER

idspec s.dtlh = 0xe2;

idspec s. dtll 0x00; -
idspec s.etn - Oxef; -
idspec s.esn = Ox 11;

idspec s.gpl2 = 0xOd; -
idspec s.rwch = 0x00;

idspec s.rwcl .. 0x80;

idspec f .mode 0x1f;

idspec f. dtlh 0xe2;

idspec f .dtll = 0x00;

idspec f.etn = Oxef;

idspec f.esn ... Ox 11;

idspec f.gpl2 0xOd;

idspec f.rwch 0x0O;

idspec f.rwcl .. 0x80;

for(i=0, j=-0; i < IDNDRV; i++, j++)

I• initialize drive state •I

idstatus[i).open = IDNOTOPEN;

idstatus[il.state = IDIDLE;

idstatus[i).equipped = IDNULL;

idpcacheaddr[il = (unsigned int) vtop(&idcache[j),IDNULL);

if(((idpcacheaddr[il & MSK64K)+0x200) >BND64K) :

j++;

idpcacheaddr[il=(unsigned int)vtop(&idcache(j] ,IDNULL);

idrecal (IDNOUNIT);

idnoscan = IDSET;

idscanflag = IDSET;

/• EXIT CRITICAL REGION•/

splx (iplsave);

for (j == O; j < 128; j++)

if (MAJOR[jl == idiskmaj) break;

for (i = 0; i < IDNDRV; i++)

if (idstatuslil.equipped != IDNULL)

ddev = makedev(j, idmkmin(i));

hdeeqd(ddev, IDPDBLKNO, EQD _ID);

I• end idinit •I

idstrategy (bufhead)

register struct buf •bufhead;

register struct iobuf •drvtab; I• drive status pointer •I

daddr _t lastblk; I• last block in partition •I

register int unit; /• drive unit id•/

int partition; I• drive partition number •I

1-7

3B2 COMPUTER BLOCK DEVICE DRIVER

1-8

int iplsave;

int sectoff;

/• saved i nterrupt level •I

/• start sector of this partition•/

I• initialize local variables •I

partition• idslice (minor (bufhead- >b _dev));

unit• iddn (minor (bufhead- >b _dev));

if(idstatus[unitl . equipped =z IDNULL)

goto diskerr;

if (idnodev (minor (bufhead- >b dev)))

lastblk • (idsect0lunit). pdinfo.sectors • idsect0[unit).pdinfo . tracks •

idsect0[unit).pdinfo.cyls);

sectoff • 0x00;

}else

I• check for invalid VTOC •I

if (idvtoclunit) . v sanity!• VTOC SANE)

goto diskerr;

/• check for read only partit i on•/

if (((idvtoc[unitl . v _part[part i t i onl .p flag & V _RONLY)••V _RONLY)

&&((bufhead - >b flags & B READ)!•B READ))

u.u _error • ENXIO;

cmn err (CE _WARN, "\nhard disk: partition %don drive %dis marked

read only \n " , partition, unit);

goto diskerr;

lastblk idvtoclunitl . v _part[partitionl.p size;

sectoff • (idvtoc(unitl . v _part[partition).p start

+ idsect0(unit).pdinfo.logicalst);

drvtab • &idtab[unitl;

/• if the requested block does not exist within requested partition•/

if ((bufhead- >b _blkno >= lastblk) I I

(bufhead- >b blkno < IDFRSTBLK) I I

(bufhead- >b blkno+((bufhead- >b _bcount-1)/idsect0(unit).pdinfo.bytes) >•

lastblk))

if ((bufhead- >b blkno == lastblk) && (bufhead- >b _flags&B _READ)) {

/• this case i s here to help read ahead •I

bufhead- >b resid = bufhead- >b _bcount;

iodone(bufhead);

return;

goto diskerr;

/• ENTER CRITICAL REGION •I

iplsave • spl6();

3B2 COMPUTER BLOCK DEVICE DRIVER

bufhead->cylin =- {{bufhead- >b blkno+sectoff)

/{idsect0[unit).pd info.sectors

*idsect0[unit).pdinfo.tracks));

bufhead- >b_start = lbol t; I• time stamp request •I

idtime[unit).io_cnt++; I• inc operati on s count •I

i dtime[unitl.io bent+= (bu fhead- >b bcount + BSIZE-1) >> BSHIFT; I• inc disk

block count •I

drvtab- >qcnt++; I• inc drive current request count•/

I• link buffer header to drive worklist •I

bufhead- >av forw = IDNULL;

if {drvtab->b actf == IDNULL)

idscanflag • IDSET ;

drvtab- >b actf

drvtab- >b actl

bufhead ;

bufhead;

drvtab- >acts = (int)bufhead;

i dsetup {unit);

idseek {unit);

else :

register struct buf •ap, •cp;

if ({(int)idtime[unitl.io cnt&0x0f) == 0)

drvtab- >acts = (int)drvtab- >b _actl;

for {ap ~ {struct buf •)drvtab- >acts; cp

int s 1, s2 ;

ap- >av forw; ap

if { { s 1 = ap- >cyl in - bufhead- >cyl in) <0)

s1 • -s1;

if {{s2 =- ap- >cylin - cp- >cylin) <0)

s2 -s2;

if {s1 < s2)

break;

ap- >av forw = bufhead;

if {{bufhead- >av forw = cpl == NULL)

drvtab->b actl = bufhead;

bufhead- >av back= ap;

I• EXIT CRITICAL REGION• /

splx (iplsave);

return;

diskerr:

buf head- >b flags I• B _ERROR;

bufhead- >b error= ENXIO;

iodone {bufhead);

return;

cpl

i dsetup {unit) I• This routine fills the drive command buff from buff head•/

1-9

3B2 COMPUTER BLOCK DEVICE DRIVER

unsigned int unit;

register intblkcnt; I• number of blocks this job •I

register struct buf •bufhead; I• buffer header •I

register struct iobuf •drvtab; /• head of drive worklist •/

register unsigned char •user , •driver;

union diskaddr daddress;/• disk address for current job •I

int vaddress; /• virtual memory address •I

int paddress; I• physical memory address •I

int sectoff; I• sector offset into drive •I

int sectno;

int partition;

/• sector number on cylinder •I

I• drive partition number •I

struct defect •de f tab; /• pointer to the defect table•/

union diskaddr lastsect;/• last sector for this job•/

int lsectoff;

inti;

i nt defcnt, bytes;

unsigned char partial;

I• offset of the last sector in job •I

/• initialize local variables•/

drvtab • &idtab(unitl;

bufhead z drvtab- >b _actf;

deftab • iddefect(unitl.map;

partition= idslice (minor (bufhead- >b _dev));

if (idnodev (minor (bufhead- >b dev)))

sectoff = OxOO;

else

sectoff • (idvtoclunitl . v _partlpartition).p start+

idsectO(unit) . pdinfo.logicalst);

/• if no work on worklist •/

i f (bufhead == IDNULL)

return(IDFAIL);

/• if this is the first time this job has come through, time stamp it

and save buffer header information•/

if (drvtab- >b active•= O)

idsvaddr(unit).b addr ~ bufhead- >b_un.b _addr;

idsvaddrlunit).b _blkno = bufhead- >b_blkno;

idsvaddrlunitl.b bcount = bufhead- >b_bcount;

drvtab- >io start• lbolt;

I• increase activity count •I

drvtab- >b _active++;

I• clear result information•/

idstatuslunitl.retries = IDRETRY;

idstatus(unitl.reseeks • IDRESEEK;

1-10

3B2 COMPUTER BLOCK DEVICE DRIVER

I• compute disk address •I

bufhead- >cylin = ((idsvaddr(unitl.b blkno+sectoff)/

(idsect0(unit).pdinfo.sectors•idsect0[unit).pdinfo.tracks));

/• start cylinder •I

sectno = (idsvaddr(unit).b_blkno+sectoff)%(idsect0(unit).pdinfo.sectors•

idsect0(unit).pdinfo.tracks);

I• offset into start cylinder •I

I• load disk address •I

daddress.part.pcnh = (bufhead- >cylin >>S)&0xff;

daddress.part.pcnl = bufhead- >cylin&0xff;

daddress.part.phn sectno/idsect0(unitl .pdinfo.sectors;

daddress.part.psn = sectno%idsect0(unit] .pdinfo.sectors;

I• get physical address from buffer header•/

vaddress = (int) idsvaddr(unit).b addr;

paddress = vtop(vaddress, bufhead- >b_proc);

if(paddress==IDNULL)

cmn _err (CE _PANIC, 11 \phard disk: Bad address returned by VTOP \p 11
);

I• blocks to do this job •I

blkcnt = ((idsvaddr(unit).b_bcount-1)/idsect0(unit).pdinfo.bytes) + 1;

I• chop the job up •I

I• make sure we don't overrun track boundary •I

if((daddress.part.psn+blkcnt) > idsect0[unit].pdinfo.sectors)

blkcnt = idsect0[unit).pdinfo.sectors - daddress.part.psn;

I• check for 64K-byte boundary overrun or partial sector r/w •/

partial• 0;

if (idsvaddr(unit].b bcount < idsect0(unit).pdinfo.bytesl

partial= 1;

if ((((paddress & MSK64K)+(blkcnt•idsect0(unit).pdinfo.bytes))

I I (partial))

BND64K)

blkcnt = (BND64K - (paddress & MSK64K)) / idsect0[unitl .pdinfo.bytes;

/• if sector r/w crosses 64-Kbyte boundary or partial sector •I

if((blkcnt == 0) II partial>

blkcnt = 1;

/• if its a write to disk, copy form user to driver •I

if((bufhead- >b flags&B_READ) !=BREAD)

bytes= idsect0[unitl.pdinfo.bytes;

if (partial)

register unsigned int •zp;

bytes= idsvaddr(unitl.b_bcount;

zp = (unsigned int •)idpcacheaddr(unitl;

for (i=0; i <128; i++)

•zp++ = 0x00000000;

user= (unsigned char•> paddress;

driver= (unsigned char•) idpcacheaddr(unitl;

1-11

3B2 COMPUTER BLOCK DEVICE DRIVER

for (i=O; i <bytes; i++)

•driver++= •user++;

paddress idpcacheaddrlunitl;

I• look for any defective sectors in this job•/

for (defcnt•O;(defcnt <(IDDEFSIZ/8))&&(daddress.full >deftab- >bad.full);

defcnt++)

deftab++;

I• determine the address of the last sector for this job •I

lastsect.part.pcnh daddress.part.pcnh;

lastsect.part.pcnl = daddress.part.pcnl;

lastsect.part.phn (sectno+blkcnt-1)/(idsectO(unitl.pdinfo.sectors);

lastsect.part.psn (sectno+blkcnt-1)%(idsectO[unit).pdinfo.sectors);

if(lastsect.full >= deftab- >bad.full)

if(daddress.full == deftab- >bad.full)

daddress.full = deftab- >good.full;

blkcnt=1;

else {

lsectoff (deftab- >bad.part.phn*

(idsectO[unit).pdinfo.sectors))+deftab- >bad.part.psn;

blkcnt = lsectoff-sectno;

/• load seek parameters•/

idseekparamlunitl.pcnh daddress.part.pcnh;

idseekparamlunitl.pcnl daddress.part.pcnl;

I• load transfer parameters •I

idxferparamlunitl.phn = daddress.part.phn;

idxferparamlunit).lcnh = aaddress.part.pcnh;

idxferparam[unitl.lcnl daddress.part.pcnl;

idxferparam[unit).lhn = daddress.part.phn;

idxferparam(unitl.lsn = daddress.part.psn;

idxferparam[unitl.scnt = blkcnt;

idxferparamlunitl.bcnt = blkcnt•idsectO[unitl.pdinfo.bytes;

idxferparam[unitl.necop = (bufhead- >b_flags&B_READ)? IDREAD:IDWRITE;

idxferparamlunit).dmacop (bufhead- >b flags&B_READ)? WDMA:RDMA;

idxferparamlunit).b_addr paddress;

idxferparam(unitl.unitno unit;

/• if the head number is greater than 7 •/

if (idxferparam[unit).phn >• IDMAXHD)

idxferparam(unit).unitno += IDADDEV;

1-12

3B2 COMPUTER BLOCK DEVICE DRIVER

I• adjust remaining byte count and start address •I

if(idxferparamlunitl.b_addr != idpcacheaddr[unitl)

idsvaddr[unit).b bcount (blkcnt•idsect0[unit).pdinfo.bytes);

idsvaddr[unit).b addr += (blkcnt•idsect0[unit) . pdinfo.bytes);

idsvaddr[unitl.b blkno

return(IDPASS);

I• end idsetup •/

idrecal (unit)

register int unit;

unsigned inti, j;

unsigned char retval[2);

idsvaddr[unit).b blkno + blkcnt;

register struct buf •bufhead;

register struct iobuf •drvtab;

register struct idstatstruct •stat;

unsigned short cyl;

int sects, tracks;

if (unit != IDNOUNIT)

idstatus[unitl.reseeks--;

idldcmd(IDRESET, &idnoparam, IDNOPARAMCNT, IDINTON);

/• wait for controller to reset •I

for(i=0; i < 1000; i++)

/• re-specify controller characteristics•/

idldcmd(IDSPECIFY, &idspec_s, IDSPECCNT, IDINTOFF);

I• clear out not-ready interrupts from nonexisting drives •I

for(i=0; i <10000; i++)

if (ID- >statcmd & IDSINTRQ)

idldcmd(IDSENSEINT, &idnoparam, IDNOPARAMCNT, IDINTOFF);

while ((ID- >statcmd & IDSINTRQ) != IDSINTRQ)

idldcmd(IDSENSEINT, &idnoparam, IDNOPARAMCNT, IDINTOFF);

I• init each drive attached to controller •I

for (i=0; i < IDNDRV; i++)

stat= &idstatus[il;

I• check for drive ready•/

if (idldcmd(IDSENSEUS Ii, &idnoparam, IDNOPARAMCNT,IDINTOFF)==IDFAIL)

if (stat- >equipped == IDSET)

stat- >equipped = IDNULL;

idflush (i);

continue;

1-13

3B2 COMPUTER BLOCK DEVICE DRIVER

stat- >ustbyte = ID- >fifo;

if((stat- >ustbyte & IDREADY) != IDREADY)

if (stat- >equipped == IDSET)

stat- >equipped = IDNULL;

idflush (i);

continue ;

stat- >equipped = IDSET;

retval[i) = IDFAIL;

for (j•0; ((retvalli) == IDFAIL) && (j <4)); j++)

if (idldcmd (IDRECAL Ii I IDBUFFERED, & idnoparam,

IDNOPARAMCNT , IDINTOFF) == IDFAIL)

continue;

while((ID- >statcmd & IDSINTRQ) != IDSINTRQ)

if(idldcmd(IDSENSEINT,&idnoparam,IDNOPARAMCNT,IDINTOFF)==IDFAIL)

continue;

stat- >istbyte = ID- >fifo;

if((stat- >istbyte & (IDSEEKEND IIDSEEKERR)) != IDSEEKEND)

continue;

idtab[il.ccyl = 0;

stat- >state = IDIDLE;

retval[i) = IDPASS;

if (retval[i) == IDFAIL)

stat- >equ i pped = IDNULL;

cmn_err(CE _WARN,"\nhard disk: cannot recal drive %d\n", i);

idflush Ci);

idldcmd(IDSPECIFY, &idspec _f, IDSPECCNT, IDINTOFF);

if (unit != IDNOUNIT)

1-14

stat= &idstatus[unitl;

drvtab a &idtab[unitl;

if ((stat- >reseeks =a 0) && (drvtab- >b actf != IDNULL))

bufhead = drvtab- >b actf;

drvtab- >b active= IDNULL;

drvtab- >b actf = bufhead- >av forw;

bufhead- >b_flags I= B ERROR;

bufhead- >b error I= EIO;

bufhead- >b resid = 0;

drvtab- >qcnt--;

if (bufhead == (struct buf •)drvtab- >acts)

drvtab- >acts = (int)drvtab- >b_actf;

/• update status information •I

idtimelunitl.io _resp += lbolt - bufhead- >b _start;

idtime[unitl . io act+• lbolt - drvtab- >io start;

3B2 COMPUTER BLOCK DEVICE DRIVER

stat- >state = IDIDLE;

cyl•((idseekparam[unitl .pcnh <<8) lidseekparamlunitl . pcnl);

ideloglunit).diskdev • bufhead- >b_dev & -(IDNODEV lidslice((-1)));

sects= idsect0[unitl.pdinfo.sectors;

tracks= idsect0lunit).pdinfo.tracks;

ideloglunit).blkaddr =

(cyl*sects•tracks)

+ (stat- >lhn*sects)

+ stat- >lsn;

ideloglunitl.readtype = HDECRC;

ideloglunit).severity

idelog[unit).bitwidth

HDEUNRD;

0;

idelog[unitl.timestmp = lbolt;

hdelog (&ideloglunitl);

cmn_err (CE_WARN,"\nhard disk: cannot access sector %d, head %d,

cylinder %d, on drive %d\n", stat- >lsn, stat- >lhn, cyl, unit);

I• return buffer header to UNIX•/

iodone (bufhead);

if (drvtab- >b actf != IDNULL)

idsetup (unit);

for(i=0; i < IDNDRV; i++)

if (idtab[i).b actf != IDNULL)

idseek (i);

I• start seek for drive specified•/

idseek (unit)

register int unit;

unsigned int other;

other= (unit A1);

idstatuslunitl.state • IDSEEK0;

if ((idstatuslotherl.state & IDBUSY) == IDBUSY)

idstatuslunitl.state I= IDWAITING; return;

idstatus[unit).state I= IDBUSY;

if (idtablunitl.ccyl

((idseekparaml unit I. pcnh < <8) I (idseekparaml unit I. pcnl)))

idxfer (unit);

return;

I• set drive current cylinder •I

idtab[unit).ccyl=((idseekparam[unitl.pcnh <<S) l(idseekparam[unitl.pcnl));

idldcmd (IDSEEKlunit IIDBUFFERED, &idseekparam[unit), IDSEEKCNT, IDINTON);

1-15

3B2 COMPUTER BLOCK DEVICE DRIVER

idtimeout (unit)

register int unit;

int iplsave;

iplsave = spl6 ();

dma access (CH0IHD, idxferparam[unit).b _addr, idxferparam[unit) .bent,

DMNDMOD, idxferparamlunitl.dmacopl;

idldcmd(idxferparam[unitl.necoplidxferparam[unit).unitno,&idxferparamlunitl,

IDXFERCNT , IDINTON);

splx (iplsave);

idxfer (unit)

register int unit;

' {

unsigned int other;

int iplsave;

unsigned ifcount;

other = (unit ~1);

idstatus[unitl.state = IDXFER;

if ((idstatuslotherl.state & IDBUSY)

idstatus[unit).state I= IDWAITING;

return;

idstatus[unit).state I= IDBUSY;

idstatus[unitl.retries--;

if (idstatus[unitl.retries == 0)

idstatus[unitl.retries = IDRETRY;

idrecal (unit);

return;

if ((ifstate & IFFMAT1) == IFFMAT1)

timeout (idtimeout, unit, (2•HZ)/5);

return (IDPASS);

if ((ifstate&IFBUSYF) == IFBUSYF)

iplsave = spltty ();

DMAC- >CBPFF = IDNULL;

ifcount = 0;

ifcount DMAC- >ClWC;

ifcount I= (DMAC- >C1WC <<8);

if (ifcount !s IFDMACNT)

IDBUSY)

timeout (idtimeout, unit, HZ/22);

splx (iplsave);

return (IDPASS);

splx (iplsave);

1-16

3B2 COMPUTER BLOCK DEVICE DRIVER

I• load the DMAC •/

dma access (CH0IHD, idxferparam[unitl.b _addr, idxferparam[unit).bcnt,

DMNDMOD, idxferparam[unitl.dmacop);

if (idldcmd(idxferparam[unit).necop lidxferparam[unitl .unitno, &idxferparam [unit),

IDXFERCNT,IDINTON) •• IDFAIL)

return (IDFAIL);

return (IDPASS);

/• end idxfer •/

idint (dev)

register struct buf •bufhead;

register unsigned char statreg;

register unsigned int unit;

register unsigned char •driver, •user;

struct iobuf •drvtab;

int vaddress; /• virtual memory address of user space •I

int istbyte;

unsigned int other;

inti, bytes;

statreg = ID- >statcmd;

idscanflag = IDSET;

I• check spurious interrupt•/

if ((statreg & (IDSINTRQ IIDENDMASK)) == 0)

I• increment spurious interrupt count •I

idspurintr++; return;

I• establish unit for command end interrupt •I

if ((statreg & IDENDMASK) != 0)

if ((idstatus[0).state & IDBUSY) •= IDBUSY)

unit= 0;

else if ((idstatus[1).state & IDBUSY) == IDBUSY)

unit= 1;

else {

idspurintr++;

ID- >statcmd - IDCLCMNDEND;

return;

if ((statreg & IDSINTRQ) IDSINTRQ)

I• if the controller is busy, mask the interrupt•/

if ((statreg & IDCBUSY) == IDCBUSY)

if ((ID- >statcmd & IDCBUSY) •• IDCBUSY)

ID- >statcmd = IDMASKSRQ;

return;

1-17

3B2 COMPUTER BLOCK DEVICE DRIVER

if ((idstatus[0).state & IDBUSY) && (idstatus[1).state & IDSEEK1))

idstatus[1).state I= IDWAITING;

if ((statreg & IDENDMASK) == 0)

ID- >statcmd = IDMASKSRQ; return;

else if ((idstatus[1).state & IDBUSY) && (idstatus[0) .state & IDSEEK1))

idstatus[0).state I= IDWAITING;

if ((statreg & IDENDMASK) == 0)

ID- >statcmd = IDMASKSRQ; return;

else if ((idstatus[0l.state & IDBUSY) I I (idstatus[1).state & IDBUSY))

else

if ((statreg & IDENDMASK) 0)

ID- >statcmd = IDMASKSRQ; return;

if(idldcmd(IDSENSEINT,&idnoparam,IDNOPARAMCNT,

IDINTOFF)==IDFAIL)

idrecal(IDNOUNIT); return;

istbyte = ID- >fifo;

unit= istbyte & IDUNITADD;

if (unit >= IDNDRV)

idspurintr++; return;

idstatus[unitl.istbyte = istbyte;

if ((idstatus[unit) .istbyte & IDSEEKMSK) != IDSEEKEND)

idrecal (unit); return;

if ((idstatus[unit) .state & IDSEEK1) != IDSEEK1)

idspurintr++; return;

switch (idstatus [unit) . state & (IDSEEK0 I IDS EEK 1 I IDXFER))

I• Driver expected seek complete? •I

case IDSEEK0:

1-18

ID- >statcmd = IDCLCMNDEND;

other= (unit ~1);

if ((statreg & IDENDMASK) != IDCMDNRT)

idrecal (unit); return;

idstatus[unitl.state = IDSEEK1;

if ((idstatus[other).state & IDWAITING) =• IDWAITING)

if ((idstatus[other).state & IDSEEK0) == IDSEEK0)

idseek (other); return;

3B2 COMPUTER BLOCK DEVICE DRIVER

if ((idstatus[other).state & IDSEEK1) •= IDSEEK1)

if (idldcmd(IDSENSEINT,&idnoparam,IDNOPARAMCNT,

IDINTOFF)==IDFAIL) {

idrecal(other); return;

istbyte = ID- >fifo;

if ((istbyte & IDUNITADD) !• other)

idspurintr++; return;

idstatus[other).istbyte = istbyte;

if ((idstatus[other).istbyte & IDSEEKMSK) != IDSEEKEND)

idrecal (other); return;

idxfer (other); return;

if ((idstatus[other).state & IDXFER) == IDXFER)

idxfer (other); return;

return;

case IDSEEK 1:

if ((idstatus[unit).istbyte & IDSEEKMSK) != IDSEEKEND)

idrecal (unit); return;

idxfer (unit); return;

case IDXFER:

I• access extended access information •I

idstatus[unit).statreg = statreg;

idstatus[unitl.estbyte = ID- >fifo;

idstatus[unitl.phn • ID- >fifo;

idstatus[unit).lcnh ID- >fifo;

idstatus[unitl.lcnl = ID- >fifo;

idstatus[unitl.lhn = ID- >fifo;

idstatus[unitl.lsn ID- >fifo;

idstatus[unitl.scnt = ID- >fifo;

ID- >statcmd • IDCLCMNDEND;

idstatus[unitl.state &• ~DBUSY;

other• (unit ~1);

I• format controller has lost control of drive?•/

if ((statreg & IDRESETRQ) 11 (statreg & IDERROR))

idrecal (unit); return;

I• command terminated abnormally? •I

if (statreg&IDCMDABT)

1-19

3B2 COMPUTER BLOCK DEVICE DRIVER

wrapup:

if (idstatus(unit).estbyte & (IDDMAOVR IIDEQUIPTC IIDDATAERR))

idxfer (unit); return;

idrecal (unit); return;

if ((idstatus(other).state & IDWAITING) == IDWAITING)

if ((idstatus(other).state & IDSEEK0) •= IDSEEK0)

idseek (other); goto wrapup;

if ((idstatus(otherl .state & IDSEEK1) == IDSEEK1)

if (idldcmd(IDSENSEINT,&idnoparam,IDNOPARAMCNT,IDINTOFF)==IDFAIL)

idrecal(other); return;

istbyte = ID- >fifo;

if ((istbyte & IDUNITADD) != other)

idspurintr++; goto wrapup;

idstatuslother).istbyte = istbyte;

if ((idstatus[other).istbyte & IDSEEKMSK) != IDSEEKEND)

idrecal (other); return;

idxfer (other);

goto wrapup;

idxfer (other);

drvtab = &idtab(unit);

bufhead = drvtab- >b_actf;

/• if buffering for 64K-byte boundary crossing or partial sector r/w •I

if(idxferparamlunit).b_addr==idpcacheaddrlunitl)

bytes= idsect0(unitl.pdinfo.bytes;

if (idsvaddr(unit).b _bcount < bytes)

bytes= idsvaddr[unit) . b _bcount ;

/• if reading disk, copy out to user space •I

if(idxferparamlunitl.necop==IDREAD) :

vaddress = (int) idsvaddr[unitl .b addr;

user= (unsigned char •)vtop(vaddress, bufhead- >b proc);

driver= (unsigned char •)idpcacheaddr[unitl;

for (i=O; i <bytes; i++l

•user++= •driver++;

idsvaddr(unit).b addr += bytes;

idsvaddr(unit).b bcount -= bytes;

/• if not done with multi-sector job•/

1-20

3B2 COMPUTER BLOCK DEVICE DRIVER

if(idsvaddr[unit).b bcount != 0x00l

idsetup (unit);

idseek(unitl;

return;

I• re-initialize drive worklist header information and unlink buffer header •I

idstatus[unitl.state = IDIDLE;

drvtab- >b active= IDNULL;

drvtab- >b actf s bufhead- >av forw;

bufhead- >b resid = 0;

drvtab- >qcnt--;

if (bufhead == (struct buf *)drvtab- >actsl

drvtab- >acts = (intldrvtab- >b _actf;

I• update status information•/

idtime[unit).io _resp += !bolt - bufhead- >b_start;

idtime[unit).io act+= lbolt - drvtab- >io_start;

/• return buffer header to UNIX •I

iodone (bufheadl;

/• if no active jobs for drive •I

if (drvtab- >b actf != IDNULL)

idsetup (unit); I• load job parameters in command buffer•/

idseek(unitl;

idflush (unit)

register unsigned unit;

register struct buf *bufhead;

register struct iobuf *drvtab;

drvtab = &idtab(unitl;

while (drvtab- >b actf != IDNULL)

bufhead = drvtab- >b actf;

drvtab- >b active= IDNULL;

drvtab- >b actf = bufhead- >av forw;

bufhead- >b resid = bufhead- >b_bcount;

bufhead- >b_flags I= B _ERROR;

bufhead- >b error I= EIO;

drvtab- >qcnt--;

if (bufhead == (struct buf *)drvtab- >actsl

drvtab- >acts = (intldrvtab- >b _actf;

idstatus[unitl.state = IDIDLE;

I• return buffer header to UNIX •I

iodone (bufheadl;

cmn_err(CE_WARN, "\nhard disk: drive %d out of service\n", unit);

1-21

3B2 COMPUTER BLOCK DEVICE DRIVER

idread(dev)

if (physck(idvtoc[iddn(minor (dev))].v _part[idslice(minor (dev))].p_size,

B READ))

physio(idstrategy, 0, dev, B _READ);

idwrite(dev)

if (physck(idvtoc[iddn(minor (dev))).v _part[idslice(minor (dev)) I .p size,

B WRITE))

physio(idstrategy, 0, dev, B _WRITE);

idprint (dev,str)

char •str;

cmn _err(CE_NOTE,"%s on winchester drive, slice %d\n", str, dev&7);

I• routine to load hard disk controller•/

idldcmd(command, params, paramcnt, intopt)

unsigned char command; I• command opcode •I

unsigned char *params; /• pointer to first parameter in parameter list•/

unsigned char intopt; /• interrupt option •I

short paramcnt; I• number of parameters for this comman~ •/

while (ID- >statcmd & IDCBUSY) I• wait for controller not busy •I

ID- >statcmd = IDCLFIFO;

while (paramcnt > O)

ID- >fifo = *params++;

paramcnt--;

I• clear parameter fifo •I

/• load parameters into controller •I

ID- >statcmd

if (intopt)

command; I• load command opcode into controller •I

return (IDPASS);

/• wait for command end from controller •I

while (ID- >statcmd & IDCBUSY)

if ((ID- >statcmd & IDENDMASK) !• IDCMDNRT)

ID- >statcmd = IDCLCMNDEND;

return (IDFAIL);

ID- >statcmd = IDCLCMNDEND;

return (IDPASS);

1-22

3B2 COMPUTER BLOCK DEVICE DRIVER

ididle ()

register inti;

for(i•0;i<IDNDRV;i++)

if(idtab[i).b actf !• IDNULL)

return(1);

return(0);

idioctl(dev,cmd,args,flag)

struct io_arg •args;

struct buf •geteblk();

struct buf •bufhead;

int errno, i, xfersz;

register int unit;

unsigned int block, mem, count, numbytes, defblock;

unit• iddn (minor (dev));

switch(cmd) {

case V PREAD:

bufhead • geteblk();

block• args- >sectst;

mem • args- >memaddr;

count= args- >datasz;

while count)

idsetblk (bufhead, B_READ, block, dev);

idstrategy(bufhead);

iowait(bufhead);

if (bufhead- >b flags & B ERROR)

errno • V_BADREAD;

suword (&args- >retval,errno);

goto ioctldone;

xfersz • min (count, bufhead- >b_bcount);

if (copyout(bufhead- >b_un.b_addr, mem, xfersz) != 0)

errno • V_BADREAD;

suword (&args- >retval,errno);

goto ioctldone;

block+•2;

count-= xfersz;

mem +• xfersz;

break;

1-23

3B2 COMPUTER BLOCK DEVICE DRIVER

case V PWRITE:

bufhead • geteblk();

block• args- >sectst;

mem • args- >memaddr;

count= args- >datasz;

defblock

numbytes

idsect0[unit).pdinfo.defectst;

0;

while (count)

idsetblk (bufhead, B _WRITE, block, dev);

xfersz = min (count, bufhead - >b _bcount);

if (copyin (mem, bufhead- >b _un.b addr, xfersz) != 0)

errno • V BADWRITE;

suword(&args- >retval, errno);

goto ioctldone;

idstrategy(bufhead);

iowait(bufhead);

if (bufhead- >b _flags & B ERROR)

errno = V BADWRITE;

suword(&args- >retval, errno);

goto ioctldone;

/• update memory image if special data •I

if (bufhead- >b blkno == IDPDBLKNO)

},

idcopy (bufhead- >b _un.b _addr, &idsect0[unitl, xfersz);

defblock = idsect0[unit).pdinfo.defectst;

if (bufhead- >b blkno •= defblock)

defblock++;

idcopy (bufhead- >b un . b _addr, (((unsigned int)

&iddefect[unit) l + numbytesl, xferszl;

numbytes += xfersz;

if (bufhead- >b _blkno==(idsect0[unit).pdinfo.logicalst+IDVTOCBLK))

idcopy (bufhead- >b_un.b _addr, &idvtoc(unitl, xferszl;

block+=1;

count-= xfersz;

mem += xfersz;

break;

case V PDREAD:

1-24

bufhead = geteblk(l;

idsetblk (bufhead, B _READ, IDPDBLKNO, dev);

idstrategy(bufhead);

iowait(bufheadl;

if (bufhead- >b flags & B ERROR)

3B2 COMPUTER BLOCK DEVICE DRIVER

errno = V _BADREAD;

suword (&args- >retval,errno);

goto ioctldone;

if (copyout(bufhead- >b _un.b _addr, args- >memaddr,

idsect0(unit).pdinfo.bytes) != 0)

errno = V BADREAD;

suword (&args- >retval,errno);

goto ioctldone;

break;

case V PDWRITE:

bufhead = geteblk();

idsetblk (bufhead, B _WRITE, IDPDBLKNO, dev);

if (copyin (args- >memaddr, bufhead- >b _un.b _addr,

idsect0(unit).pdinfo.bytes) != 0)

errno = V BADWRITE;

suword(&args- >retval, errno);

goto ioctldone;

idstrategy(bufhead);

iowait(bufhead);

if (bufhead- >b flags & B ERROR)

errno = V _BADWRITE;

suword(&args- >retval, errno);

goto ioctldone;

break;

case V GETSSZ:

suword(args- >memaddr, idsect0(unit).pdinfo.bytes);

return;

default:

return;

ioctldone:

bufhead- >b bcount = SBUFSIZE;

brelse(bufhead);

1-25

3B2 COMPUTER BLOCK DEVICE DRIVER

• 3B2 Computer UNIX Integral Floppy Disk Driver

•

#include "sys/types.h"

#include "sys/param.h"

#include "sys/sbd.h"

#include "sys/dma.h"

#include "sys/csr.h"

#include "sys/iu.h"

#include "sys/immu.h"

#include "sys/dir.h"

#include "sys/sysmacros.h"

#include "sys/conf.h"

#include "sys/signal.h"

#include "sys/user.h"

#include "sys/proc.h"

#include "sys/errno.h"

#include "sys/buf.h"

#include "sys/elog.h"

#include "sys/iobuf.h"

#include "sys/systm.h"

#include "sys/if.h"

#include "sys/cmn err.h" -
#include "sys/vtoc.h"

#include "sys/open.h"

#define PASS 0

#define FAIL

struct

daddr t nblocks;/• number of blocks in disk partition •I -
int cyloff; I• starting cylinder # of partition •I

if sizes(S) =

990, 2q, I• partition 0 -cyl 21J-78 (root) •I
810, 3q, I• partition -cyl JIJ-78 •I
612, q5, I• partition 2 -cyl IJ5 - 78 •I
q 1 q , 56, I• partition 3 -cyl 56-78 •I
216, 67, I• partition q -cyl 67-78 •I
1404, 1, I• partition 5 -cyl 1-78 Cinit) •I
1 IJ22, 0, I• partition 6 -cyl 0-78 (full disk) •I
18, 0 I• partition 7 -cyl 0 (boot) •I

struct ifccmd ifccmd;

struct iobuf iftab; /• drive and controller info •I

1-26

3B2 COMPUTER BLOCK DEVICE DRIVER

struct iotime ifstat;

int ifcsrset;

extern int sbdwcsr;

I• drive status info •I

int ifspurint; I• counter for spurious interrupts•/

extern paddr_t if_addr(I; I• local bus addr of disk controller •I

#define acts io s1

#define cylin b _resid

#define ccyl jrqsleep

#define ifslice(x) (x&7)

/• space for driver save info •I

I• bytes not transferred on error •I

I• process sleep counter on jrq full•/

#define ifformatdev(x) ((x >> 3)&1)

#define ifnodev(x) ((x >>4)&1)

#define IFNODEV Ox10

#define IFPDBLKNO 1422

#define IF PREAD4
-

#define IF PWRITE 5 -
#define IF PDREAD 6 -
#define IF PDWRITE 7 -

#define NULL 0

#define SET

extern int ifloppy;

#define IF ((struct ifdev •> &ifloppy)

extern int duart;

#define CONS ((struct duart •> &duart)

int iftoflag;

int iflag;

int ifisopen;

/• flag set when timeout() has been called •I

/• FLAG FOR COMMAND INTERRUPT INTERPRETATION•/

I• flag set by ifopen routine •I

int ifotyp(OTYPCNT);

int ifisroot; /• is this floppy the root device •I

unsigned int ifstate; I• used for formatting-I/a contention •I

int ifskcnt;

int ifxfercnt;

int iflstdcnt;

/• JOB RETRY COUNTERS•/

T _ Ql"'1

3B2 COMPUTER BLOCK DEVICE DRIVER

int ifwrtflag;

int ifside;

int ifcpside;

struct ifsave {

caddr t b _ addr;

/• FLAG FOR DELAY AFTER WRITE•/

daddr t b_blkno;

unsigned int b_bcount;

}ifsvaddr;

unsigned char ifcache(512);

unsigned int ifcacheaddr;

ifcopy(faddr, taddr, count)

unsigned int •faddr;

unsigned int •taddr;

unsigned int count;

unsigned int *fptr;

unsigned int •tptr;

inti;

tptr = taddr;

fptr faddr;

for (i•O; i <(count/4); i++)

•tptr++ = *fptr++;

unsigned char ifscanflag;

unsigned char ifnoscan;

ifscan ()

int s;

s = spl6();

if (iftab.b actf != NULL)

if (ifscanflag =• NULL)

ifflush ();

else

ifscanflag • NULL;

splx (s);

timeout (ifscan, 0, (10•HZ));

ifsetblk(bufhead, cmd, blkno, dev)

struct buf •bufhead;

unsigned char cmd;

daddr t blkno;

1-2 8

3B2 COMPUTER BLOCK DEVICE DRIVER

dev t dev;

clrbuf(bufhead);

bufhead->b _flags I= cmd;

bufhead- >b blkno = blkno;

bufhead- >b dev = (dev IIFNODEV);

bufhead- >b_proc = 0x00;

bufhead- >b _flags &= ""£3 _DONE;

if(cmd -- B WRITE)

bufhead- >b bcount = 512;

/• FLOPPY - UNIX COMPATIBLE OPEN ROUTINE•/

ifopen(dev, flag, otyp)

if (((minor(dev)) & 0x7f) >• 8)

u.u error= ENXIO;

return;

if (ifnoscan =• SET)

ifnoscan

ifscan ();

NULL;

CONS- >scc sopbc F _LOCK; /• DOOR LOCK•/

CONS- >scc_sopbc = F SEL;/• DRIVE SELECT•/

if (otyp < 0 I I otyp >= OTYPCNT)

else if (otyp == OTYP LYR)

ifotyp[OTYP LYR)++;

else ifotyp[otypl I= 1 « (dev & 0x7f);

ifisopen = SET;

/• FLOPPY - UNIX COMPATIBLE CLOSE ROUTINE•/

ifclose(dev, flag, otyp)

register inti, osum;

if (otyp < 0 I I otyp >= OTYPCNT)

} else if (otyp •= OTYP LYR)

ifotyp[OTYP _LYR)--;

else ifotyp[otyp) &• -c, « (dev & 0x7f));

for (osum = i = 0; i < OTYPCNT; osum I• ifotypli++l);

if (osum) return;

ifisopen • NULL;

i fdeselect () ;

/• FLOPPY INITIALIZATION OF POINTERS UPON KERNEL REQUEST•/

ifinit()

1-29

3B2 COMPUTER BLOCK DEVICE DRIVER

ifcpside=NULL;

iftoflag=NULL;

ifstate=IFIDLEF;

iftab.io_addr • (paddr _t)&ifloppy;

iftab.io start• NULL;

iftab.b actf NULL;

iftab.b actl = NULL;

iftab.qcnt = NULL;

iftab.b forw = NULL;

iftab.b forw = NULL;

ifisopen = NULL;

ifnoscan • SET;

ifscanflag = SET;

I• assign physical address of temporary cache •I

ifcacheaddr = (unsigned int) vtop(ifcache, O);

ifstrategy(bp)

register struct buf *bp;

register struct iobuf *dp;

daddr t lastblk; /• last block in partition •I

int part; /• partition number•/

int iplsave; /• save interrupt priority•/

int ifbytecnt;

part,.. ifslice(minor(bp- >b _dev));

lastblk = if_sizes(part).nblocks;

bp- >cylin = bp- >b _blkno/(IFNUMSECT*IFNTRAC)+if sizes(part).cyloff;

ifbytecnt = bp- >b_bcount;

if{(ifformatdev(minor(bp- >b dev)) == SET) 11 (ifnodev(minor(bp- >b _dev)) == SET))

lastblk = (IFNUMSECT * IFTRACKS);

ifbytecnt = (IFBYTESCT*IFNUMSECT);

dp,.. &iftab;

/• CHECK FOR PARTITION OVERRUN I.E. BLOCK OUT OF BOUNDS•/

if ((bp- >b _blkno <O) I I

(bp- >b _blkno)slastblk) I I

(bp- >b _blkno+(ifbytecnt/IFBYTESCT)) >lastblk) {

if ((bp- >b _blkno ="' lastblk) & & (bp- >b _ flags & B READ))

1-30

3B2 COMPUTER BLOCK DEVICE DRIVER

bp->b resid = bp - >b _bcount;

else {

bp- >b flags I= B ERROR;

bp- >b _error = ENXIO;

iodone(bp) ; / • JOB TERMINATION• /

return;

iplsave • spl6();

bp- >b_start = lbolt;

i fstat. io _cnt++;

/• save previous IPL •I

if stat. io bent +=- (bp- >b _bcount + BSIZE-1) » BSHIFT; I• inc disk block count •I

dp- >qcnt++;

bp- >av _forw = NULL ; I• mark request as last on list•/

if (dp- >b _actf == NULL) { /• if no request for drive •I

dp- >b _actf = bp;/• link to front of worklist •I

dp- >b _actl = bp;

dp- >acts = (int)bp;

ifscanflag = SET;

if (ifcsrset) :

else

if(i ftoflag!=NULL)

untimeout(iftoflag);

iftoflag=-NULL;

if setup(l;

ifseek();

ifspinup() ;

else /• link to end of list•/

register struct buf •ap, •cp;

if (((int)ifstat.io cnt&0x0f) 0)

dp- >acts = (int) dp- >b _actl;

for (ap = (struct buf•)dp- >acts; cp

int s1, s2;

ap- >av forw; ap

if ((s1 = ap - >cylin - bp- >cylin) < 0)

s1 = -s1;

if ((s2=ap- >cylin - cp- >cylin) < 0)

s2 • -s2;

if (s1 < s2)

break;

ap- >av forw = bp;

if ((bp- >av forw • cp) =• NULL)

dp- >b _actl • bp;

cp)

1-31

3B2 COMPUTER BLOCK DEVICE DRIVER

bp- >av _back = ap;

/• RETURN TO ORIGINAL IPL•/

splx(iplsave);

/• ROUTINE FOR FIRST JOB AFTER MOTOR ON•/

iffirstjob()

int iplsave;

iplsave = spl6();

ifsetup();

if seek();

splx(iplsave);

/• FLOPPY MOTOR ON ROUTINE•/

ifspinup()

ifcsrset = SET;

Wcsr- >s_flop = SET;

timeout(iffirstjob , 0,HZ*2);

/• FLOPPY MOTOR OFF ROUTINE•/

if spindn ()

register struct iobuf *dp;

dp = &iftab;

if (dp- >b_actf != NULL) /• VERIFY THAT THERE IS NO NEW JOB •I

return;

ifdeselect();

ifcsrset = NULL;

Wcsr- >c_flop = NULL;/* MOTOR OFF CONTROL•/

ifflush ()

register struct buf *bp;

register struct iobuf *dp;

dp = &iftab;

while (dp- >b actf != NULL)

1-32

3B2 COMPUTER BLOCK DEVICE DRIVER

bp .. dp- >b _actf;

dp- >b _active

dp- >b _errcnt

NULL;

NULL;

dp- >b_actf = bp- >av_forw;

bp- >b _res id = bp- >b _bcount;

bp- >b_flags I= B _ERROR;

bp- >b_error I= EIO;

dp- >gent--;

if (bp == (struct buf •) dp- >acts)

dp- >acts = (int) dp- >b _ actf;

if(dp- >b_actl == bp)

dp- >b_actl = NULL;

/• return buffer header to UNIX •I

iodone (bp);

cmn_err(CE_WARN,"\nfloppy disk: cannot access disk, worklist flushed\n");

ifwrtflag=NULL;

iftoflag=(timeout(ifspindn,0,HZ•2l);

ifdeselect()

if((ifisopen==NULL) && (iftab.b actf==NULL) && (ifisroot==NULL))

CONS- >sec _ropbc

CONS- >sec_ ropbc

FLOCK;

F SEL;

/• FILL COMMAND BUFFER WITH INFORMATION FROM THE BUFFER HEADER•/

/• AND COMPUTE DISK ACCESS ADDRESS•/

if setup()

register struct ifccmd •cp;

register struct buf •bp;

register struct iobuf •dp;

register unsigned char *if _dmem, *if_umem;

int bytes;

int blkcnt;

int side;

int partit,lstblk;

int cyl;

inti;

dp = &iftab;

bp • dp->b_actf;

cp = &ifccmd;

ifskcnt = NULL; /• RESET FLAGS FOR RETRIES•/

ifxfercnt = NULL;

1-33

3B2 COMPUTER BLOCK DEVICE DRIVER

iflstdcnt = NULL;

if(bp •• NULL) /• VERIFY THERE IS A JOB TO DO•/

return;

if (dp- >b _active NULL):

dp- >io_start = lbolt; /• TIME STAMP JOB•/

ifsvaddr.b_bcount = bp- >b_bcount;

ifsvaddr.b _blkno = bp- >b_blkno;

ifsvaddr.b addr = bp- >b_un.b_addr;

/• SAVE ADDRESS FOR 64K •/

BOUNDS

dp- >b _active • SET; /• MARK DRIVE AS ACTIVE•/

if(ifformatdev(minor(bp- >b _dev)) •• SET) j /•FORMAT/ VERIFY?•/

cp- >trknum = ifsvaddr.b_blkno/(IFNUMSECT*IFNTRAC);

1-34

side• ((ifsvaddr.b _blkno%(IFNUMSECT•2))/IFNUMSECT)*2;

cp- >baddr = vtop(ifsvaddr.b_addr,bp- >b_proc);

if(cp- >baddr •= NULL)

cmn _ err (CE _PANIC," \pf loppy disk Bad address returned from VTOP \p") ;

if ((bp- >b flags & B _READ) •• B _READ)

else

else

cp- >c _ope = (IFRDS IIFSLENGRP1 IIFMSDELAY I side);

cp- >sectnum = (ifsvaddr.b blkno%IFNUMSECT)+1;

cp- >bcnt = IFBYTESCT;

ifsvaddr.b bcount -= IFBYTESCT;

ifsvaddr.b blkno++;

ifsvaddr.b addr += IFBYTESCT;

cp- >c_opc = (IFWRTRK IIFMSDELAY !side);

ifsvaddr.b_bcount -• bp- >b_bcount;

cp- >bcnt • bp- >b _bcount;

partit = ifslice(minor(bp- >b _dev));

lstblk if sizes(partitl.nblocks;

/• find start cylinder in partition •I

if(ifnodev(minor(bp- >b_dev)))

cyl., OxOO;

else

cyl = if_sizes(partitl.cyloff;

/• find cylinder offset in partition • I

bp->cylin • ifsvaddr.b_blkno/(IFNUMSECT*IFNTRAC)+cyl;

I• compute sector offset into cylinder •/

cp- >sectnum • (ifsvaddr.b_blkno%IFNUMSECT)+1;

I• compute side•/

side• ((ifsvaddr.b _blkno%(IFNUMSECT*2))/IFNUMSECT)*2;

3B2 COMPUTER BLOCK DEVICE DRIVER

I• load command buffer •I

cp- >trknum a bp- >cylin;

cp- >c_bkcnt = blkcnt = 1;

cp- >bcnt =bytes= IFBYTESCT;

cp- >c_opc = ((bp- >b flags & BREAD) ? IFRDS

cp- >c_opc I= side; I• FOR HEAD SWITCH•/

cp- >baddr a vtop(ifsvaddr.b_addr,bp- >b _proc)i

if(cp- >baddr==NULL)

IFWTS) IIF SLENGRP1 IIFMSDELAY;

cmn _err (CE _PANIC, 11 \n f loppy disk: Bad address returned by VTOP \n 11
) ;

I• crossing 64K- byte boundary or partial sector transfer •I

if ((((cp- >baddr&MSK64K) + (blkcnt•IFBYTESCT))

> BND64K) I I (if svaddr. b bcount < IFBYTESCT))

if ((bp- >b flags&B _READ) !• B _READ)

if (ifsvaddr.b bcount <IFBYTESCT)

register unsigned int •zp;

bytes= ifsvaddr.b_bcount;

zp = (unsigned int•) ifcache;

for(i=0; i <IFBYTESCT/4; i++)

•zp++ = 0x00000000;

if dmem (unsigned char•) ifcache;

if umem = (unsigned char•) cp- >baddr;

for(i=0; i <bytes; i++)

*if dmem++ = *if _umem++;

cp- >baddr = ifcacheaddr;

/• keep track of byte count, and blk and mem addresses •I

ifsvaddr.b blkno += blkcnt;

if(cp- >baddr !s ifcacheaddr)

ifsvaddr.b _addr += bytes;

ifsvaddr.b bcount -= bytes;

/• ROUTINE FOR SEEKING TO DESIRED TRACK•/

ifseek()

register struct ifccmd •cp;

inti;

cp = &ifccmd;

ifskcnt++;

if(IF- >track

ifxfer();

return;

cp- >trknum) (/• CHECK FOR BEING ON TRACK •I

3B2 COMPUTER BLOCK DEVICE DRIVER

if{ifwrtflag •• SET)

ifwrtflag•NULL;

for(i•0;i <S0;i++);

iflag • IFSEEKATT; /• INTERRUPT ON SEEK FLAG•/

IF- >data = cp- >trknum; I• LOAD DESTINATION TRACK•/

if((cp- >c_opc & IFWRTRK) IFWRTRK) : /• USED FOR FORMAT •I

IF- >statcmd • (IFSEEKIIFSTEPRATE) ;

else {

IF- >statcmd = (IFSEEKIIFSTEPRATE IIFLDHEAD IIFVERIFY);/• LOAD SEEK CMD •I

ifrest()/• THIS FUNCTION IS SIGNIFICANT ONLY TO SEEK ERRORS•/

iflag • IFRESTORE; /• INTERRUPT ON RESTORE FLAG•/

IF- >statcmd = (IFRESTIIFLDHEADIIFVERIFY IIFSTEPRATE);

/• RESTORE HEADS TO TRACK 00 •/

return;

ifxfer()/• DATA TRANSFER IS IMPLEMENTED•/

register struct ifccmd •cp;

unsigned char cmd;

inti;

ifxfercnt++;

cp • &ifccmd;

iflag = IFXFER;

ifstate I= IFBUSYF;

/• INTERRUPT ON TRANSFER FLAG•/

if ((ifstate & IFFMAT0) == IFFMAT0)

ifstate I= IFFMAT1;

if({cp- >c _opc & IFWTS)=•IFWTS 11 (cp- >c_opc & IFWRTRK)

/• IS CMD A WRITE•/

cmd • ROMA; /• SET DIRECTION FOR OMA•/

else

cmd = WDMA;

if(ifwrtflag=•SET && (ifcpside !• ifside))

ifwrtflag=NULL;

ifcpside=ifside;

for(i•0;i <S0;i++);

/• INITIALIZE OMA FOR TRANSFER•/

T-~R

IFWRTRK)

3B2 COMPUTER BLOCK DEVICE DRIVER

dma_access(CH1IFL,cp- >baddr,cp- >bcnt,SNGLMOD,cmd);

if((cp- >c_opc & IFWRTRK) != IFWRTRK)

IF- >sector = cp- >sectnum; /• LOAD CONTROLLER REGS•/

IF- >statcmd = cp- >c_opc;/• WITH SECTOR NO. AND CMD •/

/• INTERRUPT HANDLER - STATUS - COMMAND INFORMATION INTERPRETER•/

ifint(dev)

register struct buf *bp;

register struct iobuf *dp;

register struct ifccmd •cp;

unsigned char dstat;

register unsigned char *if _dmem, *if _umem;

unsigned inti;

int bytes;

ifscanflag = SET;

dp &iftab;

bp = dp- >b _actf;

cp"" &ifccmd;

dstat = IF- >statcmd;

if(dp- >b_actf == NULL) { /•IF NO JOB ON LIST LOG SPURIOUS•/

ifspurint++;

return;

if((dstat & IFNRDY) == IFNRDY) {

cmn _ err (CE _NOTE," \nFloppy Access Error:

Consult the Error Message section");

cmn _err(CE _CONT, "of the System Administration Utilities Guide");

cmn _err(CE _CONT," \n");

goto diskerr;

switch(if lag) { I• SWITCH FOR EXTRENUOUSLY USED COMMANDS•/

case IFRESTORE:

iflag a IFNONACTIVE;

if(((dstat & IFSKERR)==IFSKERR) I l(ifskcnt==IFMAXSEEK))

cmn _err (CE _NOTE," \nFloppy Access Error:

Consult the Error Message Section");

cmn ~ err (CE _CONT, "of the system Administration Uti 1 i ties Guide");

cmn _err(CE _CONT," \n");

goto diskerr;

1-37

3B2 COMPUTER BLOCK DEVICE DRIVER

1-38

/• KICKING OFF SEEK AFTER RESTORE•/

if (ifskcnt <= IFMAXSEEK) :

ifseek();

return;

goto diskerr;

case IFSEEKATT:

iflag = IFNONACTIVE;

if((dstat & IFSKERR)==IFSKERR)

ifrest();

return;

ifxfer();

return;

case IFXFER:

iflag = IFNONACTIVE;

ifstate &• -(IFBUSYF II FFMAT1);

if((cp- >c _opc & IFWTS) =• IFWTS)

ifwrtflag•SET;

if((dstat & IFWRPT) == IFWRPT)

cmn _err (CE _NOTE," \nFloppy Access Error:

Consult the Error Message Section");

cmn _err(CE~ONT ," of the System Administration Utilities Guide");

cmn _ err (CE _CONT, " \n") ;

goto diskerr;

if(dstat & (IFCRCERR IIFRECNF))

if(ifxfercnt <= IFMAXXFER)

ifxfer();

return;

ifxfercnt•NULL;

ifrest();

return;

if((dstat & IFLSTDATA) =• IFLSTDATA)

ifls t dcnt++;

if(iflstdcnt <• IFMAXLSTD)

ifxfer();

return;

iflstdcnt = NULL;

cmn _err (CE _NOTE," \nFloppy Access Error:

Consult the Error Message Section");

cmn _err(CE _CONT, "of the System Administration Utilities Guide");

cmn _err(CE _CONT," \n");

3B2 COMPUTER BLOCK DEVICE DRIVER

goto d i skerr;

goto goodend ;

/• end of switch •I

diskerr:

bp- >b flags I= B ERROR;

bp- >b _error I= ENXIO;

goodend:

/• if the data is in the temporary cache•/

if(cp- >baddr == ifcacheaddr)

bytes= IFBYTESCT;

if (ifsvaddr.b bcount < IFBYTESCT)

bytes= ifsvaddr.b_bcount;

/• if read, copy out to user •I

if ((bp- >b_flags&B _READ) == B _READ)

if dmem

if umem

(unsigned char•> ifcache;

(unsigned char•> vtop(ifsvaddr.b addr,bp- >b_proc);

for(i=0;i <bytes;i++)

*if umem++ *if dmem++;

I• update pointer to user address space •I

ifsvaddr.b_addr += bytes;

ifsvaddr.b bcount -= bytes;

/• if no errors and more to do, then go again•/

if(((bp- >b flags & B ERROR)=aQ) && (ifsvaddr.b bcount != 0))

ifsetup();

if seek();

return;

dp- >b _active

dp- >b _errcnt

NULL;

NULL;

dp- >b_actf = bp- >av_forw;

bp- >b_resid = NULL;

dp- >qcnt--;

if (bp =• (struct buf •> dp- >acts)

~p- >acts • (int) dp- >b_actf;

if(dp- >b _actl •• bp)

dp- >b_actl z NULL;

ifstat.io_resp += lbolt - bp- >b_start;

ifstat.io act+• lbolt - dp- >io_start;

iodone(bp);

1-39

3B2 COMPUTER BLOCK DEVICE DRIVER

if< dp- >b _actf 1 = NULL> 1
if setup();

if seek();

return;

ifwrtflag=NULL;

iftoflag=(timeout(ifspindn,0,HZ*2));

/• READ DEVICE ROUTINE•/

ifread(dev)

if (physck(if_sizes[minor(dev)&07).nblocks, BREAD))

physio(ifstrategy, 0, dev, B _READ);

/• WRITE DEVICE ROUTINE•/

ifwrite(dev)

if (physck(if_sizes[minor(dev)&07).nblocks, B WRITE))

physio(ifstrategy, 0, dev, B_WRITE);

I• LOCAL PRINT ROUTINE•/

lfprint(dev,str)

char •str;

cmn_err(CE_NOTE,"%s on floppy drive, slice %d\n", str, dev&7);

ifidle()

if(iftab.b actf != NULL)

return(1);

return(0);

ifioctl(dev,cmd,arg,mode)

unsigned int dev, cmd, arg, mode;

switch (cmd) {

1-40

case IFBCHECK: {

struct ifformat •ifmat;

paddr _ t i fbaddr;

3B2 COMPUTER BLOCK DEVICE DRIVER

ifmat • (struct i fformat •) arg;

ifbaddr • vtop(ifmat- >data , u . u _procp);

if(ifbaddr == 0) {

cmn _err(CE _WARN," \nfloppy disk: Bad address returned from VTOP\n");

u.u error= EFAULT;

return;

if(((ifbaddr & MSK64K)+ifmat- >size) > BND64K)

ifmat->retval = FAIL;

else

ifmat- >retval PASS;

break;

case IF FORMAT : {

register struct buf *bp;

struct iftrkfmat •trkpt;

struct ifformat *ifmat;

int bpbcount;

caddr t bpbaddr;

trkpt • (struct iftrkfmat •)arg;

if(useracc(trkpt,sizeof(struct iftrkfmat),B _READ)==NULL)

u.u error= EFAULT;

return;

bp = geteblk();

bp- >b _error = 0;

bp- >b _dev = (dev I IFPTN);

bpbcount = bp->b _bcount;

bpbaddr• bp- >b _un.b _addr;

bp- >b_bcount • sizeof(struct iftrkfmat);

bp- >b _proc = u. u _procp;

bp- >b _un.b _addr = ((caddr t)trkpt);

bp- >b flags • (B _BUSY I B_WRITE);

bp- >b _blkno = ((trkpt- >dsksct[0).TRACK*(IFNUMSECT*2))+(trkpt- >dsksct[0).

SIDE*IFNUMSECT));

u . u _procp- >p _flag I • SLOCK;

ifstate I= IFFMAT0 ;

ifstrategy(bp);

iowai t (bp);

bp- >b _bcount • bpbcount;

bp- >b _ un. b _ addr • bpbaddr;

brelse (bp);

ifstate &= "lFFMAT0;

u.u_procp- >p _flag &• -SLOCK;

break;

1-41

3B2 COMPUTER BLOCK DEVICE DRIVER

case IFCONFIRM: {

register struct buf *bp;

struct iftrkfmat •trkpt;

struct ifformat *ifmat;

int bpbcount;

paddr _t ifbaddr;

caddr t bpbaddr;

ifmat • (struct ifformat •larg;

trkpt = (struct iftrkfmat *)ifmat- >data;

if(useracc(trkpt,(IFNUMSECT*IFBYTESCT),B READ)==NULL)

u.u error= EFAULT;

return;

bp = geteblk();

bp- >b _error

bp- >b flags

0;

(B _BUSY I B _READ);

bp- >b _dev = (dev I IFPTN);

bpbcount = bp- >b_bcount;

bpbaddr = bp- >b _un.b _addr;

bp- >b_bcount = (IFNUMSECT*IFBYTESCT);

bp- >b _proc = u. u _procp;

bp- >b _un.b _addr = ((caddr _t) trkpt);

bp- >b _blkno = ((ifmat- >iftrack*(IFNUMSECT*2))+(ifmat- >ifside*IFNUMSECT));

u.u_procp- >p_flag I= SLOCK;

ifstrategy(bp);

iowait(bpl;

bp- >b _bcount = bpbcount;

bp- >b_un.b_addr = bpbaddr;

brelse(bp);

u.u_procp- >p flag&= -SLOCK;

break;

case V _PREAD·: :

1-42

struct io_arg *ifargs;

struct buf *geteblk();

struct buf *bufhead;

int errno, xfersz;

unsigned int block, mem, count;

ifargs = (struct io _arg •larg;

bufhead = geteblk();

block• ifargs- >sectst;

mem • ifargs- >memaddr;

count= ifargs- >datasz;

3B2 COMPUTER BLOCK DEVICE DRIVER

while (count)

preaddone:

ifsetblk (bufhead, B _READ, block, dev);

ifstrategy(bufhead);

iowait(bufhead);

if (bufhead- >b _flags & B ERROR)

errno = V BADREAD;

suword(ifargs ->retval,errno);

goto preaddone;

xfersz = min(count,bufhead- >b _bcount);

if (copyout(bufhead- >b _un.b addr, mem, xfersz) != O)

errno = V BADREAD;

suword(ifargs ->retval , errno);

goto preaddone;

block+•2;

count-= xfersz;

mem += xfersz;

bufhead- >b bcount = BSIZE;

brelse(bufhead);

break;

case V _PWRITE: {

struct io_arg •ifargs;

struct buf •geteblk();

struct buf •bufhead;

int errno, xfersz;

unsigned int block, mem, count;

ifargs • Cstruct io _arg •)arg;

bufhead = geteblk();

block• ifargs- >sectst;

mem • ifargs- >memaddr;

count= ifargs- >datasz ;

while (count)

ifsetblk(bufhead,B _WRITE,block,dev);

xfersz = min(count,bufhead- >b_bcount);

if (copyin(mem,bufhead- >b _un.b_addr,xfersz) != O)

errno = V_BADWRITE;

suword(ifargs- >retval,errno);

goto pwritedone;

ifstrategy(bufhead);

iowait(bufhead);

if(bufhead- >b flags & B ERROR)

errno - V _BADWRITE;

suword(ifargs- >retval,errno);

1-43

3B2 COMPUTER BLOCK DEVICE DRIVER

goto pwritedone;

block +•1;

count -z xfersz;

mem += xfersz;

pwritedone:

bufhead- >b bcount z BSIZE;

brelse(bufhead);

break;

case V _PDREAD: {

struct io_arg *ifargs;

struct buf *geteblk();

struct buf *bufhead;

int errno, xfersz;

unsigned int block, mem, count;

ifargs = (struct io _arg •larg;

bufhead = geteblk(l;

ifsetblk (bufhead, B_READ, IFPDBLKNO, dev);

ifstrategy(bufhead);

iowait(bufhead);

if (bufhead- >b_flags & B ERROR)

errno = V BADREAD;

suword(ifargs- >retval,errnol;

goto pdrddone;

if (copyout(bufhead- >b_un.b addr, ifargs- >memaddr, IFBYTESCT) != O)

errno = V_BADREAD;

suword(ifargs- >retval,errnol;

goto pdrddone;

pdrddone:

bufhead- >b bcount

brelse(bufhead);

break;

BSIZE;

case V _PDWRITE: {

1-44

struct io_arg *ifargs;

struct buf •geteblk();

struct buf •bufhead;

int errno;

ifargs = (struct io_arg •larg;

bufhead = geteblk(l;

ifsetblk(bufhead,B_WRITE,IFPDBLKNO,dev);

if (copyin(ifargs- >memaddr,bufhead- >b_un.b_addr,IFBYTESCT) != O)

errno = V BADWRITE;

3B2 COMPUTER BLOCK DEVICE DRIVER

suword(ifargs- >retval,errno);

goto pdwrtdone;

ifstrategy(bufhead);

iowait(bufhead);

if(bufhead- >b flags & B ERROR)

errno • V BADWRITE;

suword(ifargs- >retval,errno);

goto pdwrtdone;

pdwrtdone:

bufhead- >b bcount

brelse(bufhead);

break;

default:

u.u error= EIO;

return;

BSIZE;

1-45

3B2 COMPUTER BLOCK DEVICE DRIVER

I• This is the common part •/

I•

* Copyright 1984 AT&T

•I

#include "sys/types.h"

#include "sys/param.h"

#include "sys/sysmacros.h"

#include "sys/buf.h"

#include "sys/sbd.h"

#include "sys/csr.h"

extern struct r16 sbdrcsr;

sdini t ()

idinit();

ifinit();

sdopen(dev,flag,otyp)

if(dev & Ox80)

ifopen(dev,flag,otyp);

else

idopen(dev,flag,otyp);

sdclose(dev,flag,otyp)

if(dev & Ox80)

ifclose(dev,flag,otyp);

else

idclose(dev,flag,otyp);

sdioctl(dev,cmd,arg,flag)

if(dev & Ox80)

ifioctl(dev,cmd,arg,flag);

else

idioctl(dev,cmd,arg,flag);

sdstrategy(bp)

struct buf *bp;

if (bp- >b _dev & Ox80

ifstrategy(bp);

else

idstrategy(bp);

sdprint(dev,str)

char •str;

1-46

3B2 COMPUTER BLOCK DEVICE DRIVER

if(dev & Ox80)

ifprint(dev, str);

else

idprint(dev, str);

sdread(dev)

if(dev & Ox80)

ifread(dev);

else

idread(dev);

sdwrite(dev)

if (dev & Ox80)

ifwrite(dev);

else

idwrite(dev);

extern void ifint();

extern idint();

sdint(dev)

idint(dev);

if(sbdrcsr.data & CSRDISK)

ifint(dev);

1-47

APPENDIX J: 3B2 COMPUTER CHARACTER
DRIVER
This is the character driver used on the ports card for the 3B2 Computer.

I•

• Copyright 1984 AT&T

•
• secs id:

•
•

"@ (#)ppc. C 1.1.1.4 10/22/83 13:53:34"

• PPC Peripheral (3B2) PORTS Controller Driver

•I

#include "sys/param.h"

#include "sys/types.h"

#include "sys/dir.h"

#include "sys/signal.h"

#include "sys/sbd.h"

#include "sys/immu.h"

#include "sys/user.h"

#include "sys/iu.h"

#include "errno.h"

#include "sys/file.h"

#include "sys/tty.h"

#include "sys/termio .h"

#include "sys/conf.h"

#include "sys/sysinfo.h"

#include "sys/firmware.h"

#include "sys/devcode.h"

#include "sys/cmn_err.h"

#include "sys/pump.h"

#include "sys/sysmacros.h"

include "sys/ cio _def s. h"

#include "sys/pp _dep.h"

#include "sys/queue.h"

#include "sys/ppc.h"

#include "sys/lla_ppc.h"

#include "sys/ppc_lla.h"

int pp _bnbr;

• Xflag modes

•I

J-1

3B2 COMPUTER CHARACTER DRIVER

#define X ITIME 0x004 /• enable ITIME and IFS •I

• raw mode parameters (1200-19200 baud)

•I

#define ITIME 2 /• intercharacter timer: 25-50 msec •I

#define IFS 64 /• input field size: 64 bytes •I

ldefine SYSG TIME 1500 /• timeout for sysgen change•/

#define CIO TIME 1500

#define CL TIME 50000

I•

I• timeout for LLC(CIO) commands to complete•/

/• Time to compelete output drain on port close•/

• intercharacter timer values

• for low baud rates

char pptime I I s

o, I• o •I

t .
J I

18,

12,

9,

7,

6,

5,

3,

I•
I•
I•
I•
I•
I•
I•

50 •I
75 •I
11 0 •I
134.5

150 •I
200 •I
300 •I

•I

#define PU BLOCK256 I• size of kernel scratch memory for pump•/

#define PU LBLOCK PU BLOCK/4

long

char

t . ,,

scratch(PU _LBLOCK); /• scratch area for ppc download used by the pump

routines•/

ppc _speeds(16l =

0, 0, B75BPS, B110BPS, B134BPS, B150BPS,

0, B300BPS, B600BPS, B1200BPS, B1800BPS,

B2400BPS, B4800BPS, B9600BPS, B19200BPS, 0

SG DBLK sg _dblk;

int pumpflag;

* Minor device definition

•I

#define TP(b,p) £pp _ttylb•5+pl I• tp from board and port•/

#define CB PER PPC 4

#define INIT CB 3

J-2

I• desired number of cblock per port•/

/• Additional cblocks given when first port a

board is opened •I

3B2 COMPUTER CHARACTER DRIVER

ppopen(dev, flag)

register dev t dev;

register struct tty •tp;

register struct ppcboard •pb;

register char •cptr;

register dev t device;

device m minor1dev);

I• check if this board is to be pumped •I

if (flag&O _PUMP

if(u.u uid !'"' 0)

u.u error= EPERM;

return;

pumpflag 1;

return;

if (pb- >b_state&SYSGFAIL)

u.u error

return;

ENXIO;

pb &pp_board[ppcbid[devicell;

tp &pp_tty[devicel; /• get tty structure •I

/• if this port is not open initialize its parameters•/

if(!(tp- >t state&ISOPEN))

splpp();

I• get entry for device enable•/

while ((! (lla _xfree (ppcbid [device I, ppcpid [device I))) I I (tp- >t _dstat&CLDRAIN))

tp- >t dstat la WENTRY;

tp- >t _dstat I= OPDRAIN;

sl~ep(&tp- >t_cc[1),TTOPRI);

if (! (tp- >t _dstat& OPDRAIN))

u.u error• ENXIO;

spl0 ();

return;

tp- >t dstat &= bPDRAIN;

J-3

3B2 COMPUTER CHARACTER DRIVER

spl0 ();

if (!(tp- >t _state&ISOPEN))

splpp() ;

splpp();

ttin i t(tp);

ppc _conn(ppcbid(device),ppcpid(devicel);

spl0 ();

ppparm(dev);

if(u.u error)

return;

/• If delay on open is set wait unit carrier is on •I

if(! (flag&FNDELAY) && !(tp- >t _state&CARR _ON))

while(! (tp- >t _state&CARR _ON)) I
tp- >t_state I= WOPEN; I• waiting for open to

complete •I

sleep((caddr _t) &tp- >t _canq, TTIPRI);

if((!(tp->t dstat&SUPBUF)) && (ppcpid(device) !• CENTRONICS))

if (pb- >dcb <= INIT CB)

pb- >dcb INIT _CB; I• give more cblocks for the

first port opened on a board •I

pb- >dcb += CB_PER_PPC; I• get more cblocks for the new port•/

tp- >t _dstat I= SUPBUF;

I• call line discipline open •I

(•linesw! tp- >t _line I .1 _open) (tp);

spl0 ();

ppstart()

J-4

int i, j;

char •ptr;

pp _bnbr • devcheck(D _PORTS, pp addr);

pumpflag .. 0;

for(i .. 0; i pp _bnbr; i++)

csbit!il = 1;

for(ptr = (char •l&pp _board(il; ptr < ((char •l&pp _board(il +

sizeof(pp _board[i))); ptr++)

3B2 COMPUTER CHARACTER DRIVER

*ptr = 0;

for(j = 0; j < 5; j++)

nodrain(tp)

ppcbid[(i*S)+j) i;

ppcpid[(i*S)+jl = j;

register struct tty *tp;

tp->t_dstat &,.. -CLDRAIN;

wakeup((caddr _t)&tp- >t _of lag);

ppclose(dev)

register dev t dev;

register struct tty •tp;

int tout; /•time out parameter •I

extern nodrain();

register dev t device;

device• minor(dev);

I• check to see if this device was pump •I

if (pumpflag)

pumpflag = 0;

return;

tp • &pp_tty[devicel;

I• decrement counters for RECEIVE entry queue •I

splpp();

if (ppcpid[device) !• CENTRONICS)

if (tp- >t _rbuf. c _ptr ! =NULL)

pp_board[ppcbid[device)l.qcb--;

if (pp_board[ppcbid[device)).qcb < 0)

pp_board[ppcbid[devicell.qcb•0;

J-5

3B2 COMPUTER CHARACTER DRIVER

J-6

if(tp- >t dstat&SUPBUF)

pp_board[ppcbid[devicel I.deb-= CB _PER_PPC; I• reduce cblocks •I

if (pp_board[ppcbid[devicel I.deb <• INIT CB)

pp_board[ppcbid[device) I.deb INIT_CB;

if (pp_board[ppcbid[devicell.dcb <0)

pp_board[ppcbid[devicel I .deb= 0;

tp- >t _dstat &= -SUPBUF;

if ((tp- >t_outq.c_cc) II (tp- >t state&BUSY))

if(tp- >t state&CARR ON)

else

while ((tp- >t _outq.c _cc) I I (tp- >t _stat e&BUSY))

tp- >t _state I= TTIOW;

tp- >t_dstat I= CLDRAIN;

tout=timeout(nodrain,tp,CL_TIME);

sleep((caddr _t)&tp- >t _oflag , PZERO);

if (!(tp- >t_dstat&CLDRAIN))

else

tp- >t _dstat I= CLDRAIN;

break;

untimeout(tout);

tp- >t _dstat &= -CLDRAIN;

if (tp- >t dstat&OPDRAIN)

tp- >t_dstat &= -OPDRAIN;

wakeup((caddr _t) &tp- >t _cc [1 I);

if(tp- >t_state&eusil

tp- >t_state &= "'BUSY;

lla_ldeuld(ppcbid[device), ppcpid[devicel);

3B2 COMPUTER CHARACTER DRIVER

spl0 ();

C•linesw[tp- >t_linel .1 _close) (tp);

ppdis(tp,dev);

ppread(dev)

register struct tty •tp;

register dev t device;

device a minor(dev);

tp • &pp_tty[devicel;

C•linesw[tp- >t_linel.l read)(tp);

ppwrite(dev)

register struct tty •tp;

register dev t device;

device= minor(dev);

tp = &pp_tty[devicel;

C•linesw[tp- >t_linel .1 _write) (tp);

send_brk(tp,bid,pid,arg)

register struct tty •tp;

register short bid,pid;

register sx;

t t yw a it (t p) ;

sx=splpp();

while (!(lla xfree(bid,pid)))

tp- >t dstat I= WENTRY;

sleep ((caddr _ t) & tp- >t _ cc [1) , TTOPRI) ;

tp- >t _dstat I= WBREAK;

ppc_break(bid,pid,arg); I• This does not send a break

to peripheral, it only drains the output •I

while (tp- >t_dstat&WBREAK)

sleep((caddr _t) &tp- >t _cc [2 I, TTOPRI);

splx (sx);

J-7

3B2 COMPUTER CHARACTER DRIVER

ppioctl(dev, cmd, arg, model

{

register struct tty •tp;

register dev t device;

device= minor(devl;

switch (cmd)

case TCSBRK:

tp = &pp _tty[device); /• get tty structure •I

send _brk(tp,ppcbid[device),ppcpid[devicel,argl;

break;

case PUMP:

if(pumpflag != 1)

u.u error

return;

EPERM;

pmctl(dev, cmd, arg, model;

break;

default:

if(ttiocom(&pp _tty[devicel, cmd, arg, model)

ppparm(dev l;

break;

I• device interrupt handler•/

ppint(bidl

register short bid;

J-8

register struct tty •tp;

register short pid;

CENTRY cqe;

register char •cc _ptr;

register struct ppcboard •pb;

/•get completion queue entry •I

pb = &pp _board[bid);

while (lla _cqueue(bid,&cqe) =•PASS):

if ((bid >= pp _bnbr) II (pb- >b_state&SYSGFAIL))

return;

tp = TP(bid, cqe.common.codes.bits.subdevl;

I• determine the interrupt opcode •I

switch(cqe.common.codes . bytes.opcode)

case PPC RECV:

sysinfo.rcvint++;

3B2 COMPUTER CHARACTER DRIVER

I• give returned cblock tot buff •I

if

((tp- >t _ rbuf. c _ptr = (caddr _ t) cqe. common. addr)

NULL)

break;

if (cqe.appl.pc(0)&(RC_FLU IRC _DSR))

l•c count denotes number of unfilled characters

in cblock •I

I• send an empty buffer to ttin •I

tp- >t_rbuf.c_count • tp- >t rbuf.c size;

else

tp- >t _rbuf.c_count • tp- >t rbuf.c size -

cqe.common.codes.bytes.bytcnt

- 1;

pb- >qcb--; I• return cblock •I

if (cqe.appl.pc(0)&RC_BRK)

C•linesw(tp- >t line).l input)(tp, L_BREAK);

if (tp- >t _state&CARR _ON)

tp- >t _state I• BUSY;

ppc_device(bid, cqe.common.codes.bytes.subdev, DR_ABX);

•tp- >t _ rbuf. c _ptr • 0;

tp- >t_rbuf.c_count tp- >t rbuf.c size - 1;

C•linesw(tp- >t linel.l_input)(tp, L_BUF);

I• supply buffers•/

ppproc(tp,T_INPUT);

break;

case PPC XMIT:

sysinfo.xmtint++;

if ((cc_ptr= (char •lcqe.common.addr)!•NULL)

putcf(CMATCH((struct cblock •lcc _ptr));

if (tp- >t_dstat&WENTRY)

tp- >t_dstat &= -(SETOPTIWENTRY);

wakeup ((caddr _ t) & tp- >t _ cc (1 I) ;

tp- >t _state &= 'l3USY;

ppproc(tp,T_OUTPUT);

break;

case PPC ASYNC:

switch(cqe.appl.pc(0))

case AC BRK:

J-9

3B2 COMPUTER CHARACTER DRIVER

J-10

sysinfo.rcvint++;

(*linesw[tp- >t_linel.l input)(tp, L_BREAK);

if (tp- >t_state&CARR_ON)

tp- >t_state I= BUSY;

ppc_device(bid, cqe.common.codes.bytes.subdev, DR_ABX);

break;

case AC DIS:

sysinfo.mdmint++;

tp- >t _state &= -CARR _ON;

signal (tp- >t _pgrp, SIGHUP);

ttyflush(tp, (FREAD IFWRITE));

break;

case AC CON:

sysinfo.mdmint++;

tp- >t _state I= CARR ON;

if(tp- >t_state&WOPEN) {

tp- >t_state &= °WOPEN;

wakeup ((caddr _ t) & tp- >t _ canq) ;

break;

case AC FLU:

/• all output cblocks given to

request queue have been taken

by the ppc have been flushed •I

if (tp- >t_dstat&WENTRY)

tp- >t_dstat &= -(SETOPT IWENTRY);

wakeup((caddr _t) &tp- >t _cc I 1 I);

tp- >t state &= -SUSY;

ppproc(tp,T_OUTPUT); I• resume output

processing •I

break;

break;

case PPC OPTIONS:

I• return cblock to free list •I

if ((cc_ptr=(char •lcqe.common.addr) !• NULL)

putcf(CMATCH((struct cblock •lcc_ptr));

if (tp- >t_dstat&WENTRY)

tp- >t_dstat &= -(SETOPT IWENTRY);

wakeup((caddr _t) &tp- >t _cc I 1 I);

tp->t_state &= -SUSY;

ppproc(tp,T_OUTPUT);

3B2 COMPUTER CHARACTER DRIVER

break;

case PPC DISC:

case PPC CONN:

if (tp- >t_dstat&WENTRY)

tp- >t _dstat &= -(SETOPT IWENTRY);

wakeup((caddr _t) &tp- >t _eel 1 J);

tp- >t _state &= ~USY;

ppproc(tp,T_OUTPUT);

break;

case PPC DEVICE:

break;

case PPC BRK:

tp- >t _dstat &= Y'lBREAK;

wakeup((caddr _t)&tp- >t cc(2]);

break;

case SYSGEN:

pb- >b_state I=- ISSYSGEN;

wakeup((caddr _t)pb);

break;

case NORMAL:

case FAULT:

case QFAULT:

if (E_OPCODE(cqe)=mQFAULT)

cmn_err(CE _WARN, "PORTS: QFAULT - opcode= %d, board = %d, \p,

subdev ,. %d, bytecnt • %d, buff address = %x, \p \p",

E_APPL(cqe,0), bid, cqe.common.codes.bytes.subdev,

E_BYTCNT(cqe),E_ADDR(cqe));

if (E_OPCODE(cqe)==FAULT)

cmn_err(CE_WARN, "PORTS: FAULT - opcode• %d, board = %d, \p,

subdev = %d, bytecnt • %d, buff address = %x, \p \p",

E_APPL(cqe,0), bid, cqe.common.codes.bytes.subdev,

E _BYTCNT(cqe),E_ADDR(cqe));

if (!(pb- >b state&CIOTYPE))

break;

pb- >b_state &• ~IOTYPE;

pb- >retcode • cqe.common.codes.bytes.opcode;

wakeup((caddr_t)&pb- >qcb);

break;

default:

cmn err(CE_WARN, "PORTS: unknown completion code: %d\p",

cqe.common.codes.bytes.opcode);

break;

J-11

3B2 COMPUTER CHARACTER DRIVER

ppproc(tp, cmd)

register struct tty •tp;

register short bid,pid;

register sx;

_register struct cblock •cb _ptr;

sx• tp - pp_tty; I• find index of pp _tty[l •/

bid• sx/5;

pid = sx - bid*S;

switch(cmd) {

case T WFLUSH:

if (!(tp- >t state&CARR ON))

else

SX = splpp();

ppc_device(bid,pid,DR _ABX);

splx(sx);

break;

case T RESUME:

ppc_device(bid,pid,DR RES);

case T OUTPUT:

J-12

SX • splpp();

if(tp- >t_state&BUSY)

splx(sx);

break;

if(! (lla_xfree(bid,pid)))

splx(sx);

break;

if(!(CPRES&(*linesw[tp- >t linel.l_output)(tp)))

splx(sx);

else

break;

ppc_xmit(bid,pid,tp- >t _tbuf.c _ptr, tp- >t_tbuf.c_count - 1);

tp- >t - tbuf. C _ptr - NULL;

3B2 COMPUTER CHARACTER DRIVER

tp- >t _state I= BUSY;

splx(sx);

break;

case T RFLUSH:

ppc _device(bid,pid,DR_ABR);

if(! (tp- >t _state&TBLOCK))

break;

case T UNBLOCK:

tp- >t_state &= ~BLOCK;

ppc_device(bid,pid,DR _UNB);

break;

case T INPUT:

if (pid == CENTRONICS)

break;

sx-splpp () ;

if(tp- >t_rbuf.c _ptr != NULL)

register struct ppcboard •pb;

register char •cptr;

pb • &pp _board [bid I ;

pb- >qcb++; I• get cblock from ttopen or ttin•/

if (pb- >dcb >= pb- >qcb)

ppc _recv (bid, tp- >t _ rbuf. c _ptr);

tp- >t _rbuf.c_ptr•NULL;

/• add more cblocks if you can get from

the free list •I

while (pb- >dcb > pb- >qcb)

if ((cptr • getcf()- >c _data)

((struct cblock •)NULL)- >c data)

break;

ppc_recv(bid,cptr);

pb- >qcb++;

else I• too many cblocks •/

I• return cblock to free list •I

putcf(CMATCH((struct cblock •)tp- >t_rbuf.c_ptr));

tp- >t _ rbuf. c _ptr•NULL;

lla _attn(bid);

pb- >qcb--;

.T _ 1 !l

3B2 COMPUTER CHARACTER DRIVER

splx(sx);

break;

case T SUSPEND:

ppc _device(bid,pid,DR SUS);

break;

case T BREAK:

/•send_brk(tp,bid,pid,0);•/

break;

case T BLOCK:

tp- >t_state I• TBLOCK;

ppc_device(bid,pid,DR_BLK);

break;

case T PARM:

ppparm((((bid <<4) lpid)&0xFF));

break;

ppparm(dev)

register dev;

register struct tty •tp;

register xflag;

register Options •opt;

struct cblock •cp;

register short bid,pid;

register dev t device;

device• minor(dev);

* THIS IS a test to exclude the driver from setting the

* ppc parameters, these parameters are set by the ppc

•I

return;

tp • TP(ppcbid(device),ppcpid(devicel);

if((tp- >t_cflag&CBAUD) •• 0)

ppc_device(ppcbid(device),ppcpid(device),DR_DIS);

return;

splpp();

while (!(lla_xfree(ppcbid(devicel,ppcpid(device))))

J-14

3B2 COMPUTER CHARACTER DRIVER

tp- >t_dstat I• (SETOPT IWENTRY);

sleep ((caddr _t) &tp- >t _cc[1 J, TTOPRI);

if((cp = getcf()) == NULL)

u.u error= E!O;

spl0 ();

return;

opt= (Options •l cp- >c_data;

opt->line = O; I• line discipline 0 •/

opt->ld.zero.iflag = tp- >t iflag;

opt->ld.zero.oflag = tp- >t_oflag;

opt->ld.zero.cflag = tp- >t _cflag;

I• convert baud rate to duart register specification •I

opt->ld.zero.cflag &= ~BAUD; I• zero baud bits •I

opt->ld.zero.cflag I= ppc_speeds(tp- >t_cflag&CBAUD)&0xF;

if (((opt- >ld.zero.cflag)&0xF) == 0)

putcf(cp);

u.u error EIO;

spl0 ();

return;

if (ppcpid[device) == CENTRONICS)

opt- >ld.zero.cflag &= -CREAD;

xflag = 0;

xflag la X_ITIME;

if((tp->t_cflag&CBAUD) <= B300)

opt->ld.zero.itime = pptime[tp- >t_cflag&CBAUD);

else

opt->ld.zero.itime = ITIME;

opt->ld.zero.lflag • xflag;

I• send options to the ppc •I

ppc_option(ppcbid(device),ppcpid(device),(char •lopt,sizeof(Optionsll;

spl0();

badboard(bid)

register bid; /• board number•/

I• sysgen did not work•/

wakeup ((caddr _ t) &pp _board [bid J);

J-15

3B2 COMPUTER CHARACTER DRIVER

/• pprst is called by the pump routine to reset and sysgen the

dumb firmware on the ports board •I

int pprst(bid)

register int bid;

register int errors;

if((pp_bnbr :a devcheck(D_PORTS, pp _addr)) <• 0)

if (bid < pp _bnbr)

pp_board[bid).b state= SYSGFAIL;

return(PU _DEVCH);

if ((bid + 1) > pp_ bnbr)

return(PU DEVCH);

errors= 0;

lla _reset(bidl;

splpp(l;

pp_board[bid).b state&• -(SYSGFAIL IISSYSGEN);

spl0 ();

if(ppsysgen(bid) !• PASS l

cmn_err(CE_WARN, "PORTS: SYSGEN failure on board %d\n", bid);

errors++;

return((errors== 0) ? PASS FAIL);

int ppsysgen(bidl

register short bid; I• board number •I

extern badboard();

register struct tty •tp;

register struct ppcboard •brd_ptr; I• ptr to board structure •I

register tid; /• timer id•/

register short pid; I• port id number •I

/• initialize gentries ! ! ! ! ! ! •/

brd_ptr = &pp_board[bidl;

splpp();

brd_ptr- >b state = 0;

sg _dblk.request = (long)&R _QUEUE(bid);

sg_dblk.complt • (longl&C _QUEUE(bid);

J-16

3B2 COMPUTER CHARACTER DRIVER

sg_dblk.req size RQSIZE;

sg _dblk.comp_size • CQSIZE;

sg_dblk.no_rque • NUM_QUEUES;

I• try to sysgen the board •I

if (lla _sysgen(bid, &sg _dblk) PASS)

tid•timeout(badboard,bid,SYSG _TIME);

sleep(brd_ptr,PZERO);

else

if (brd _ptr- >b _state& ISSYSGEN)

untimeout(tid);

else

brd _ptr- >b _state = SYSGFAIL;

spl0();

return(FAIL);

brd _ptr- >b _state

spl0();

return(FAIL);

SYSGFAIL;

I• set ppc proc routine•/

for (pid•0; pid<•4 ;pid++)

tp • TP(bid,pid);

tp->t_proc•ppproc;

tp->t_state • EXTPROC;

spl0 ();

return(PASS);

/•wake up after timeout on disconnect •I

ppdis(tp,dev)

register struct tty •tp;

reg i ster int dev;

i nt eflush;

char dcode; /•disconnect code •I

register dev t device;

J-17

3B2 COMPUTER CHARACTER DRIVER

device= minor(dev);

splpp();

while(!(lla_xfree(ppcbid(device],ppcpid(device))))

tp- >t_dstat Im WENTRY;

sleep(&tp- >t _cc (1), TTOPRI);

/• calculate the number of CBLOCKS to be returned to thesystem •I

if ((eflush=pp_board(ppcbid(devicel l.qcb - pp_board(ppcbid(device]).dcb) < 0)

eflush=0;

tp- >t _state &= "'CARR _ON;

if(tp- >t _cflag&HUPCL) /•hangup (disconnect) if HUPCL is set •I

dcode .. (GR _DTR IGR _CREAD);

else

dcode=GR _CREAD;

ppc _disc(ppcbid(device],ppcpid(devicel,(char)eflush,dcode); I• disconnect and

flush ppc •/

spl0();

cio time(tb)

register struct ppcboard •tb;

wakeup((caddr _t)&tb->qcb);

ppdld(bid,mda,pda,mds)

short bid; /• board id•/

char •mda;

char *pda;

short mds;

I• mainstore data address•/

/• ppc ram address •I

I• mainstore byte count •I

extern cio_time();

register struct ppcboard •tb;

register tid; /• timeout id •I

tb = &pp_board(bidl;

if (tb- >b state&CIOTYPE)

return(PU _OTHER); /• there is a CIO type command already in process •I

splpp();

tb- >b state I= CIOTYPE;

if (lla _dlm(bid,mda,pda,mds) == FAIL)

tb- >b state&= - CIOTYPE;

spl0();

return (PU _OTHER);

tid= timeout(cio _time,tb,CIO _TIME);

sleep((caddr _t)&tb->qcb,PZERO);

J-18

3B2 COMPUTER CHARACTER DRIVER

if (!(tb->b state&CIOTYPE))

else

untimeout(tid);

spl0 ();

tb- >b state &• - CIOTYPE;

spl0 ();

return(PU_TIMEOUT);

return (tb->retcode);

ppfcf(bid,pda)

short bid;

char *pda;

I• board id•/

I• ppc ram address•/

extern cio_time();

register struct ppcboard •tb;

register tid; I• timeout id•/

tb = &pp board[bid);

if (tb->b state&CIOTYPE)

return(PU_OTHER); I• there is a CIO type command already in process•/

splpp();

tb- >b state I• CIOTYPE;

if (lla fcf(bid,pda) FAIL)

tb->b state&= - CIOTYPE;

spl0 ();

return (PU_OTHER);

tid= timeout(cio _time,tb,CIO _TIME);

sleep((caddr_t)&tb- >qcb,PZERO);

if (!(tb- >b state&CIOTYPE))

else

untimeout(tid);

spl0 ();

tb- >b state &= - CIOTYPE;

spl0();

return(PU_TIMEOUT);

return (tb->retcode);

ppdos(bid)

short bid; I• board id •I

J-19

3B2 COMPUTER CHARACTER DRIVER

register struct ppcboard •tb;

tb = &pp _board [bid);

if (tb->b state&CIOTYPE)

return(-1); I• there is a CIO type command already in process •I

splpp();

tb-)b state I= CIOTYPE;

if (lla dos(bid) == FAIL)

tb- >b state &= - CIOTYPE;

spl0 ();

return (-2);

while (tb- >b state&CIOTYPE)

sleep((caddr _t)&tb- >qcb,PZERO);

spl0();

return (tb- >retcode);

ppdsd(bid,mda)

short bid; I• board id•/

char •mda; I• mainstore data address•/

register struct ppcboard •tb;

tb = &pp_board[bidl;

if (tb- >b state&CIOTYPE)

return(-1); I• there is a CIO type command already in process •I

splpp();

tb- >b state I= CIOTYPE;

i f (11 a _ d s d (bid , md a) FAIL)

tb- >b state &= - CIOTYPE;

spl0 ();

return (-2);

/• wait for completion report •I

while (tb- >b state&CIOTYPE)

sleep((caddr _t) &tb- >qcb,PZERO);

spl0 ();

return (tb- >retcode);

pppump(pmpr)

register struct pump _st *pmpr;

register slices; I• number of of 256 (PU_BLOCK) byte memory slices •I

register char •usr _addr; I• user address pointer pointing to the

user memort to be moved to kernel space•/

register i;

register char *ppc _addr; I• ports address for download•/

long bsize; I• block size to be given to the PPC •I

J-20

3B2 COMPUTER CHARACTER DRIVER

long rem_size; I• (buffer size)% 256 •/

long rtcod;

register dev t device;

device• minor(pmpr- >devl;

switch(pmpr->cmdcode)

case PU OLD: I• download case•/

slices= pmpr- >size/PU _BLOCK;

if ((rem size

slices++;

pmpr ->size%PU BLOCK) != O)

if (ppcbid[devicel >= pp _bnbrl

u.u _error = ENXIO;

pmpr- >retcode PU OTHER;

return;

ppc addr (char •lpmpr- >to _addr;

usr addr (char •lpmpr- >bufaddr;

for Ci= 1; i <= slices; i++l

if ((i == slices) && (rem size!= O))

bsize rem size;

else

bsize = PU _BLOCK;

if (copyin(usr_addr,scratch,bsize))

u.u_error = EFAULT;

pmpr- >retcode

return;

PU _OTHER;

if ((pmpr- >retcode =

ppdld(ppcbid(device],scratch,ppc _addr,bsize))

!= NORMAL)

return

usr addr += PU _BLOCK;

ppc_addr += PU _BLOCK;

break;

case PU RST:

if ((rtcod = pprst(ppcbid[devicell)

break;

else

PASS)

J-21

3B2 COMPUTER CHARACTER DRIVER

if (rtcod == PU DEVCH)

pmpr- >retcode = PU_DEVCH;

else

pmpr ->retcode = PU_OTHER;

return;

case PU FCF:

if ((pmpr- >retcode

I• NORMAL)

return;

break;

ppfcf(ppcbid[device),pmpr- >to_addr))

case PU SYSGEN:

splpp();

pp _board[ppcbid[device)).b state&= -(SYSGFAIL IISSYSGEN);

spl0 ();

for (i = 1; i <= 4000; i++);

if (ppsysgen(ppcbid[device)) == PASS)

else

pmpr- >retcode = SYSGEN;

return;

pmpr- >retcode

return;

PU _OTHER;

default:

pmpr- >retcode = PU OTHER;

cmn _e rr(CE _WARN, "PORTS: Unknown pump command: %d\n", pmpr- >cmdcode);

return;

pmpr- >retcode = NORMAL;

return;

ppclr()

register int bid, pid;

register struct tty •tp;

• The systm has detected a power failure, and is about to go down:

•
• 1. Send a special notice to the firmware

• 2. Mark all boards as down, so as to fail any further attempts

J-22

3B2 COMPUTER CHARACTER DRIVER

* to reference them

* 3. Wake up any processes sleeping very deeply

•I

for(bid= O; bid < pp_bnbr; bid++)

ppc _clr(bid);

pp board[bid).b state SYSGFAIL;

wakeup(&pp _board[bidl);

for(pid = O; pid < 5; pid++

tp = TP(bid,pid);

wakeup((caddr _t)&tp- >t_dstat);

wakeup((caddr _t)&pp _board[bidl.qcb);

return;

pmctl(dev, cmd, val, mode)

struct pump_st pump;

if(copyin((char *) val, (char*) &pump, sizeof(struct pump _st)))

u.u error

return;

pppump (& pump) ;

EFAULT;

if(copyout((char *) &pump, (char*) val, sizeof(struct pump _st)))

u.u error

return;

return;

EFAULT;

J-23

APPENDIX K: 3B5 COMPUTER BLOCK DEVICE
DRIVER
This is the disk driver used on the 3B5 Computer.

static char Sccsid()="@(#)idfc.c3.1.1.5";

I•

* The 3B-5 IDFC disk driver will control up to 8 IDFC controllers

*simultaneously.The driver will maintain status on each controller

* and the disk drives interfaced to the controller.

#define GENERIC10 Ox100

#include "sys/param.h"

#include "sys/types.h"

#include "sys/proc.h"

#include "sys/sysmacros.h"

#include "sys/dir.h"

#include "sys/signal.h"

#include "sys/user.h"

#include "sys/errno.h"

#include "sys/buf.h"

#include "sys/elog.h"

#include "sys/iobuf.h"

#include "sys/systm.h"

#include "sys/cc.h"

#include "sys/sysgdb.h"

#include "sys/idfc.h"

#include "sys/dfdrv.h"

#include "sys/firmware.h"

#include "sys/io.h"

#include "sys/edt.h"

I• value in edt table for GENERIC 1.0 •I

extern struct mmutabccmmudesc; I• MMU descriptor RAM•/

extern struct edts ccedts; /• Equipped Device Table •I

extern struct mmusegkmmudescl); /• Descriptors for kernel virtual address space•/

extern paddr_t vtop(); I• convert virtual address to physical •I

long gcksum(); I• gcksum to return a long value •I

K-1

3B5 COMPUTER BLOCK DEVICE DRIVER

* Convert a virtual address WITHIN THE DF DFC STRUCTURE to a physical address

•I

#define df_vtop(x) ((long)x + df offset)

* TEST

•I

1 for debugging printf's

#define TEST 0

* PERFON

•I

1 for minimum requirements of 5.0

#define PERFON

* FULLPERF

•I

1 for full performance monitoring

#define FULLPERF0

#define SET I• bit set state = 1 •I
#define FAIL -1 I• Error return code •I
#define NJRQ 2 I• Number of Job Request Queues •I
#define NJCQ I• Number of Job Completion Queues

#define DELAYMAX1000/• IDFC operation delay count •I
#define DFC IPL 10 I• Interrupt priority level of the -

•I

disk •I
#define ioipio s 1 I• IO in progress flag for stray interrupt - check •I

extern int df cnt; /• number of IDFC controllers in system•/

extern struct mmusegdf_addr[I; I• seg. descriptors for address xlate •/

extern struct dfc df_dfcl]; I• controller data area jrq,status etc•/

static long df_offset; /• place to keep the difference between virt and phys

for df dfc[l •/

static paddr _t pkmmudesc; I• physical address of kmmudesc[I array •I

#if TEST

int initpr, perfpr, intpr, stratpr; I• print flags •I

#endif

I• SYSGEN data block for driver/controller communication protocol•/

struct sgdb

struct sgcom

struct sgjqd

K-2

sdbc; /• sysgen db header •I

jrqd0; I• first request Q descriptor •I

3B5 COMPUTER BLOCK DEVICE DRIVER

t.
J•

struct sgjqd

struct sgjqd

jrqd1 ; /* second request Q descriptor*/

jcqd0; /* job completion queue desc. */

l ong i nt sgcksum;/* sysgen db checksum*/

struct sgdbsdb;/• a lloc for sysgen data block*/

union sa cmd lsacb; /• LOCAL STAND ALONE COMMAND BLOCK FIX!! */

* The df i nit routine is called during OS initialization and is responsible

* for pe rforming SYSGEN operations on all IDFC controllers configured

* on the system. Th is routine will also invoke periodic performance data

* report ing from each of the initialized IDFC controllers.

•I

dfinit ()

regi s t er struct dfc *dfcp; /* IDFC controller pointer*/

regi ster union sa_cmd *lsacbp; /* IDFC SA cmd buf pointer*/

regi ster union jrqe *jrq0ldp; I* load pointer to job request Q of SMD0 *I
reg i ster struct sgdb *sgdbp;/* sysgen data block pointer*/

unsi gned short • tsacbp;

u ns i gned short • s acbp;

/* TEMP STAND ALONE COMMAND BUFFER•/

/* TEMP IDFC SACBP •/

struct idfc wcsr *wcsrp;/* write access pointer to IDFC CSR *I
struct idfc rcsr *rcsrp;/* read access pointer to IDFC CSR*/

s truct pir16*p i rp ;

stru c t buf jidb;

I• write access pointer to IDFC PIR */

/* sysgen jid address •I

int delay;

int delcnt;

int i ; I•
int cnt ; I•
int j , k;

longequ i p ;

long l b _baddr;

I• operation delay counter *I
I • intermediate delay counter •I

c ontroller initialization counter */

transfer counter */

I• loop counters •I
/* unit_equip from edt */

/• unit local bus base address*/

/* c ompute offse t between virtual and physical address for df dfcl] •I

df off set• (long)vtop(df _dfc) - (long)df _dfc

I• get physica l address of kmmudescl l array *I
pkmmudesc • vtop(kmmudesc);

I• controller initialization*/

K-3

3B5 COMPUTER BLOCK DEVICE DRIVER

sgdbp &sdb;

for(i•0; i<df_cnt; i++) /• init all controllers spec'd in config •/

I• controller initialization per IDFC •I

wcsrp = (struct idfc wcsr •) (BIOADDR IOCSR);

rcsrp • (struct idfc rcsr •> wcsrp;

lsacbp • (union sa cmd •l &lsacb;

tsacbp • (unsigned short•> &lsacb;

sacbp - (unsigned short•> (BIOADDR IOSACB);

pirp • (struct pir16 •> (BIOADDR IOPIR);

/• Init IDFC register pointers •I

baseio(df_addr[il);

lb baddr = (long)ctob(df addr[il.base); /• compute local bus address•/

/• Initialize unit Queue and misc pointers •I

dfcp

#if PERFON

&df dfc[il ; /• init IDFC contro ller pointer •I

#endif

K-4

for(k = 0;k < NDRV;k++) :

dfcp- >df stat[k) .pttrack &dfcp- >df stat[k) .ptrackq[0);

dfcp->df _stat[k).endptrack &dfcp- >df stat[k).ptrackq[NTRACK);

/• Initialize pointer to sub unit equippage, •I

I• number of drives and list of drive numbers for

performance gathering •/

for(k • 0,j = 0;j < ccedts.number;j++)

if(strcmp(ccedts.edtx[jl.dev_name,"IDFC") != 0) continue;

if(ccedts.edtx[j).lb _baddr ! 2 lb_baddr) continue;

equip= ccedts.edtx[j).unit_equ ip;

if(ccedts.edtx[j).version == GENERIC 10):

I• This if is a temporary change for driver to work with

1.0 hardware•/

equip= D DRV00 + D DRV01 + D DRV10 + D DRV11 + D SMD0 + D SMD1;

if((equip & D SMD0~ && (equip & D DRV00))

dfcp- >df _pa rt [0] = dskptbl I (equip > >4) & D _TYPE I;

dfcp- >df _perf(k].smdnum = 0;

df cp- >df _per f [k++ l • dsknum = 0;

dfcp- >numdrv++;

else dfcp- >df _partl0I = NULL;

if((equip & D SMD0) && (equip & D DRV01))

dfcp- >df _part [1] dskptbl [(equip > >6) & D _TYPE I;

dfcp- >df _perf[k) .smdnum = 0;

3B5 COMPUTER BLOCK DEVICE DRIVER

df cp- >df _per f [k++ I • dsknum 1;

dfcp- >numdrv++;

else dfcp- >df _part[1] = NULL ;

if((equip & D SMD1) && (equ i p & D DRV10))

dfcp- >df _part[2) = dskptbl[(equip >> 12) & D TYPE];

dfcp- >df _perf(k].smdnum = 1;

df cp- >df _per f [k++ I. dsknum = 0;

dfcp- >numdrv++;

else dfcp- >df _part(2] = NULL;

if((equip & D SMD1) && (equip & D DRV11))

dfcp- >df _part[3) = dskptbl[(equip >> 14) & D TYPE);

dfcp- >df _perf[k).smdnum = 1;

dfcp- >df _perf [k++ I. dsknum = 1;

dfcp- >numdrv++;

else dfcp- >df _part (31

break;

NULL;

I• initialize the dfc structure for this idfc •I

dfcp- >smd jrqa[0l . vrqldp

dfcp->smd jrqa[1].vrqldp

dfcp- >smd jrqa[0].df jrq;

dfcp- >smd jrqa[1).df jrq;

dfcp- >vcquldp = dfcp- >df jcq;

dfcp->smd jrqa(0].jrqldp = (union jrqe •ldf vtop(dfcp- >smd jrqa[0].df jrq);

dfcp->smd_jrqa[0l.jrquldp = (union jrqe •ldf_vtop(dfcp- >smd _jrqa[0).df _jrq);

dfcp- >smd_jrqa[11.jrqldp = (union jrqe •ldf _vtop(dfcp - >smd _jrqa[11.df_jrq);

dfcp->smd _jrqa[1).jrquldp z (union jrqe *)df _vtop(dfcp- >smd _jrqa[1].df _jrq);

dfcp->jcqldp = (struct df _jcqe *)df _vtop(dfcp- >df _jcql;

dfcp- >jcquldp = (struct df _jcqe •ldf _vtop(dfcp- ;df _jcq);

dfcp->dfutab.io _nreg = 0; /• number of regs to log on error •I

dfcp->dfutab.jrqsleep = 0; I• init sleep counter on JRQ •/

dfcp- >dfutab.io _addr = vtop(BIOADDR); /• local bus address •I

dfcp->dfutab.io _start = lbolt; I• time IDFC initialized •I

dfcp->dfutab.b _actf

dfcp->dfutab.b _actl

NULL;

NULL;

dfcp->dfutab.qcnt = NULL;

l•******dfcp->dfutab.io stp- >io_misc += 1; /• inc operations counter •I

I• initialize the content of the IDFC sysgen data block •I

sgdbp - > sdbc.sgjid = (longl&jidb;

sgdbp - > sdbc.njcq = NJCQ;

K-5

3B5 COMPUTER BLOCK DEVICE DRIVER

sgdbp -> sdbc.njrq = NJRQ;

sgdbp -> sdbc.sgopc = D _VSY SG;

sgdbp - > sdbc.sdbsize = (sizeof(sdb)/4);

sgdbp - > jrqd0.jqsa = (paddr _t •) df _vtop(dfcp- >smd jrqa[0l.df_jrq);

sgdbp - > jrqd0.jqldp = (paddr _t •> df _vtop(&dfcp- >smd _jrqa[0].jrqldp);

sgdbp - > jrqd0.jquldp (paddr t •> df_vtop(&dfcp- >smd jrqa[0).jrquldp);

sgdbp - > jrqd0.jqsize (sizeof(dfcp- >smd jrqa(0].df jrq)/4);

sgdbp - > jrqd1.jqsa = (paddr _t •> df_vtop(dfcp- >smd_jrqa[11.df jrq);

sgdbp - > jrqd1.jqldp = (paddr_t •> df _vt op(&dfcp- >smd _jrqa[1].jrqldp);

sgdbp - > jrqd1.jquldp (paddr t •> df vtop(&dfcp- >smd jrqa[1).jrquldp);

sgdbp -> jrqd1.jqsize = (sizeof(dfcp- >smd jrqa[1).df jrq)/4);

sgdbp - > jcqd0.jqsa = (paddr _t •> df_vtop(dfcp- >df _jcq);

sgdbp - > jcqd0.jqldp = (paddr _t •> df _vtop(&dfcp- >jcqldp);

sgdbp - > jcqd0.jquldp = (paddr _t •) df _vt op(&dfcp- >jcquldp);

sgdbp - > jcqd0.jqsize (sizeof(dfcp- >df jcq)/4);

sgdbp - > sgcksum = gcksum((long •) &sdb,sizeof(sdb)/sizeof(long));

#if TEST

#endif

K-6

if(initpr)

/• print content of sysgen data block •I

pr intf ("IDFC %x SYSGEN data block \p", i);

printf("jid = %x\p" ,sgdbp- >sdbc.sgjid);

printf("njcq= %x\p", sgdbp- >sdbc.njcq);

pr intf ("njrq= %x \p", sgdbp- >sdbc. njrq);

printf("sgopc

printf("sdbsize

printf("jrq0sa

printf("jrq0ldp

%x \p" , sgdbp- >sdbc . sgopc) ;

%x \p", sgdbp- >sdbc. sdbs i ze) ;

%x \p", sgdbp- >jrqd0. jqsa);

%x \p" , sgdbp- >j rqd0. jqldp) ;

pr intf ("jrqOuldp= %x \p" , sgdbp- >jrqd0 . jquldp);

printf("jrq0size= %x\p",sgdbp- >jrqd0.jqsize);

pr intf ("jrq 1 sa %x \p", sgdbp- >jrqd 1. jqsa);

pr intf ("jrq 1 ldp %x \p", sgdbp- >jrqd 1. jqldp);

pr intf ("jrq 1 uldp= %x \p" , sgdbp- >jrqd 1. jquldp);

printf("jrq1size= %x\p", sgdbp- >jrqd1. jqsize);

pr intf ("jcqOsa %x \p", sgdbp- >jcqd0. jqsa);

pr intf ("jcqOldp %x \p", sgdbp- >jcqd0. jqldp);

pr intf ("jcqOuldp= %x \p", sgdbp- >jcqd0. jquldp);

pr intf ("jcqOsi ze= %x \p", sgdbp- >jcqd0. jqs i ze) ;

/• Start initialization of IDFC controller •I

wcsrp- >req_reset = SET; /• send reset request to IDFC •I

for(delay = 0; delay < 1000; delay++) I• allow CSR to be cleared •I

3B5 COMPUTER BLOCK DEVICE DRIVER

delay= O;

while ((rcsrp- >rcsr3 & RESET COMPL) != SET) I• wait for reset

complete in IDFC •I

if(delay < DELAYMAX)

else

for(delcnt = -512; delcnt != 0; delcnt++)

if((rcsrp- >rcsr3 & RESET COMPL) SET)

break;

delay++;

pr intf ("IDFC %d FAILS RESET TIMEOUT \n" , i) ;

dfcp- >dfutab.b _flags I= B _TIME; I• set timeout flag•/

break;

if(dfcp- >dfutab.b flags & B TIME) I• check for reset timeou t •I

dfcp- >dfutab.b _flags &=~TIME;/• clear flag •I

break;

I• send sysgen command to IDFC •I

lsacbp- >sysgen .sysgdp = (char •>vtop(&sdb); I• load sysgen db pointer

in IDFC •/

lsacbp- >sysgen.cmdcode = D _VSYSG; I• load sysgen opcode •I

for(cnt = O; cnt < 4; cnt++)/• copy command buffer to disk •I

•sacbp++ = •tsacbp++;

dfcp- >dfutab.sgreq = SET; I• set completion wa it flag •I

pirp- >pir01 ~ SET; /• set IDFC SYSGEN request pir •/

delay= 0; I• reset delay counter •I

while(dfcp- >dfutab.sgreq == SET)/• wait for sysgen to complete •I

if{delay < DELAYMAX)

for(delcnt = -5 12; delcnt != O; delcnt+ +)

if(dfcp- >dfutab.sgreq != SET)

break;

K-7

3B5 COMPUTER BLOCK DEVICE DRIVER

else

delay++;

dfcp- >dfutab.sgreq = FAIL; /• set SYSGEN fail flag•/

break;

if(dfcp->dfutab.sgreq FAIL) I• check for valid sysgen •I

pr intf (II IDFC %d FAILS SYSGEN ! \p", i) ;

break;

#if PERFON

#if TEST

#endif

K-8

/• Start performance reporting on current controller•/

/• init performance request in controller job request queue •I

jrq0ldp = dfcp- >smd _jrqa(0].vrqldp; I• init ' driver queue pointer •I

jrq0ldp->preq.jid = (struct buf •l&jidb;

jrq0ldp->preq.jcqid = 0;

jrq0ldp->preq.opc = D_PRFON;

jrq0ldp->preq.smdnum 0;

jrq0ldp->preq.dsknum 0;

jrq0ldp->preq.sp1 = 0;

jrq0ldp->preq.pmta = pkmmudesc;

jrq0ldp->preq.sma = (paddr _t)&dfcp- >df _perf[0);

jrq0ldp->preq.numdrv dfcp- >numdrv; I• number of drives•/

jrq0ldp->preq.rpt int = 0x00007530L; I• 30 second report interval•/

jrq0ldp->preq .cksum = gcksum((long •l jrq0ldp,

sizeof(struct df jrqe)/sizeof(long));

if(perfpr)

/• print content of performance request •I

printf("IDFC %x PERFORMANCE REQUEST ENTRY \n",i);

printf("jid = %x\p",jrq0ldp- >preq.jid);

printf{ "jcqid = %x\p", jrq0ldp- >preq. jcqid);

printf("ope = %x\p", jrq0ldp- >preq.opc);

printf("smdnum = %x\p",jrq0ldp- >preq .smdnum);

printf("dsknum %x\p", jrq0ldp- >preq.dsknum);

printf{"sp1 = %x\p",jrq0ldp- >preq .sp1);

pr intf ("pmta = %x \p", jrq0ldp- >preq. pmta);

printf("sma = %x\p", jrq0ldp- >preq .sma);

pr intf ("numdrv %x \p", jrq0 ldp- >preq. numdrv);

printf{"rptint = %x\p",jrq0ldp- >preq .rptint);

printf("cksum = %x\p",j rq0ldp- >preq.cksum);

3B5 COMPUTER BLOCK DEVICE DRIVER

jrq0ldp++; I• update request queue load pointer •I

dfcp->smd_jrqa[0l.vrqldp jrq0ldp; I• save update va l ue in unit area•/

dfcp->smd jrqa[0).jrqldp = (union jrqe •) df_vtop(jrq0ldp);

pirp->pir04 s SET; I• send job pending PIR to IDFC •/

#endif

clearbaseio;/• clear mmu •I

• This routine will be entered on receiving

• an operational interrupt from the I DFC. It will

• check for proper job complet i on of the SYSGEN,

• spurious interrups, failing job status, and copy

• performance data into the drive status structures .

•I

dfint(unit)

int unit; /• Unit ID of interrupting IDFC •/

register struct dfc •dfcp = &df _dfc[unitl; I• IDFC un i t po i nter •I

register struct df _jcqe •jcquldp;

register struct buf *bp; I• pointer to user buffer header •I
register int drv; I• drive number •I
register struct buf *fp; I• forward buffer pointer •I
register struct buf •rp; I• reverse buffer pointer •I
static struct mmuseg nullseg •{0,0,0,0,0,0 }; I• Null segment descriptor word •I

inti;

flif TEST

if(intpr) {'

I• loop counter •I

printf("ENTRY TO dfint() pointer values\n");

printf("jcqldp = %x jcquldp = %x\n" ,dfcp- >jcqldp,dfcp- >jcquldp);

#endif

if(dfcp->jcquldp == dfcp- >jcqldp)/• check for spurious completion interrupt •I

if(dfcp->dfutab.sgreq == SET)

dfcp->dfutab.sgreq •FAIL;/• fail SYSGEN flag•/

return;

else if(dfcp- >dfutab.ioip == SET) /• check previous comp report handled•/

return;

else

K-9

3B5 COMPUTER BLOCK DEVICE DRIVER

intio(DFC IPL,df addr(unitl); - -
logstray(IIOADDR(DFC _IPL)); I• log interrupting controller address •I

intio(DFC_IPL,nullseg);

return;

while(dfcp- >jcqldp != dfcp- >jcquldp) I• unload all reports in queue •I

jcquldp = (struct df jcqe •)dfcp- >vcquldp; I• set to current crop entry •I

bp = jcquldp- >jid; I• set bp to current comp•/

if(jcquldp- >opc D VSYSG) I• check for SYSGEN completion •I

if(jcquldp- >jstat != 0) I• check for failing completion •I

printf("SYSGEN ERROR: IDFC= %d \n ", (df _addr(unit] .base » 8)&0xff) ;

printf(" jid= %x jstat=0x %x erstat=0x %x xerstat=0x%x\n",

jcquldp- >jid, jcquldp- >jstat, jcquldp- >erstat, jcquldp- >xerstat);

dfcp- >dfutab.sgreq = FAIL ;

else

dfcp- >dfutab.sgreq NULL; I• reset required flag •I

if(dfcp- >dfutab.jrqsleep > 0) I• check for processes sleeping on JRQ •I

wakeup((caddr _t)dfcp- >smd _jrqa(jcquldp- >srndnum].df _jrq);

jcquldp++;

if (jcquldp &dfcp- >df jcq(DF _NJCQE]) /• check for bottom of queue •I

jcquldp = dfcp- >df _jcq; I• if yes - reset to top •I

dfcp- >vcquldp

dfcp- >jcquldp

return;

(struct df jcqe •)jcquldp; I• save updated pointer value•/

(struct df jcqe •)df _vtop(jcquldp); /• save updated

pointer value •I

#if PERFON

if(jcquldp- >opc D PRFON) /• is this perf report •I

I• copy performance data to UNIT status •I

#if TEST

if(perfpr)

printf("Copy per f ormance data to unit status!! \n");

#endif

K-10

3B5 COMPUTER BLOCK DEVICE DRIVER

for(i=0; i <dfcp- >numdrv; i++)

drv = ((dfcp- >df _perf[il.smdnum << 1) +

dfcp- >df _perf [i I. dsknum);

I• convert to HZ (x *HZ/ 1000. l from milliseconds•/

dfcp- >df _stat[drv).io act+= (dfcp - >df_perf[il.cumutil * HZ) / 1000;

#if FULLPERF

d f c p- >d f _stat [d r v I. i o 1 i act = d f c p- >d f _Per f [i I. cum u t i 1 ;

dfcp- >df _stat[drvl.prfrpt++;

dfcp- >df _stat[drv).io_intv = (time _t)dfcp- >df _perf[il . sampint;

dfcp- >df stat[drv).tnrreq += dfcp- >df _perf[il.tnrreq;

dfcp- >df stat[drv).tnwreq += dfcp- >df _perf[il.tnwreq;

dfcp- >df stat[drvl.cumseekd += dfcp- >df _pe r f[i).cumseekd;

#endif /• FULLPERF ~/

#endif

#if TEST

if(dfcp- >dfutab . jrqsleep > 0) /• check for processes sleeping on JRQ •I

wakeup((caddr _t)d f cp- >smd _jrqa[jcquldp- >smdnum).df _jrq);

jcquldp++;

if (jcquldp &dfcp- >df jcq[DF _NJCQE I) . /• check for bottom of queue •I

jcquldp = df c p- >df _jcq; I• if yes - reset to top •I

dfcp- >vcquldp

dfcp- >jcquldp

continue;

(st r uct df jcqe •)jcquldp; I• save updated pointer value •I

(struct df jcqe •ldf vtop(jcquldp); I• save updated

pointer value •I

drv = (bp- >b _dev & 030) » 3;

if(jcquldp- >jstat != 0) I• check for fail job status •I

else

if(jcquldp- >jstat != D _RETRY)

pr intf ("1/0 ERROR: IDFC=%d dsk=0 %o block= %d count= %d \n",

(bp- >b _dev » S)&0xff, bp- >b _dev&0xff, bp- >b _blkno, bp- >b bcount);

printf(" jid=%x jstat=0x %x erstat=0x %x xerstat=0x%x\n",

bp, jcquldp- >jstat, jcquldp- >erstat, jcquldp- >xerstat);

bp- >b _flags I= B_ERROR; I• set error flag in buffer header •I

dfcp- >dfutab.qcnt--; I• update jobs outstanding for controller •I

dfcp- >df _stat[drvl.io _qc--; I• update jobs outstanding for drive•/

logberr(bp,&dfcp- >df _stat[drv),jcquldp) ; /• log error record •I

I• normal completion received•/

if(intpr)

K-11

3B5 COMPUTER BLOCK DEVICE DRIVER

#endif

pr intf ("jcqj id %x \n 11
, jcquldp- >j id) ;

printf("jcqjstat= %x\n 11
, jcquldp- >jstat);

printf{"jcqopc = %x\n 11 ,jcquldp- >opc);

printf("jcqsmdnum= %x\n 11
, jcquldp- >smdnum);

pr int f (11 j cqdsknum= %x \n" , j cquldp- >dsknum) ;

pr int f ("j cqerstat= %x \n", j cquldp- >er stat) ;

printf{ "jcqxerstat= %x \n ", jcquldp- >xerstat);

I• end of output •I

dfcp- >dfutab.qcnt - -; I• update jobs outstanding for controller•/

dfcp- >df _stat(drvl.io_qc--; /• upda t e jobs outstanding for drive•/

dfcp- >df _stat(drvl.io _resp += (l bo l t - bp- >b _startl; I• update total block

response time•/

bp->b resid O; I• reset residual byte count •I

if PERFON

#endif

K-12

/• gather performance data for a dr i ve•/

/• wrap queue if needed•/

if(dfcp- >df stat[drvl . pttrack >= dfcp- >df stat[drvl .endptrack)

dfcp- >df_stat[drv).pttrack = &dfcp- >df _stat[drvl .ptrackq[O);

(dfcp- >df_stat[drv).pttrack)- >b _blkno = bp- >b_blkno;

(dfcp- >df _stat[drv).pttrack++l ->bp = bp;

I• unlink job from work list •I

fp = (struct buf *) bp- >av forw; I• forward buffer pointer•/

rp a (struct buf •> bp- >av _back; I• reverse buffer pointer •I

if(fp == NULL && rp == (struct buf •l&dfcp- >dfutab) /• check for last

job in list •/

dfcp- >dfutab.ioip = NULL; I• take down IO in progress flag•/

dfcp->dfutab.b actf NULL; I• mark list head as empty•/

dfcp- >dfutab.b _actl NULL; I• clear tail pointer •I

if(dfcp- >dfutab.qcnt !=NULL)/• verify last job in list •I

printf{ "ERROR - IDFC driver queue count wrong! \n 11
);

if(fp == NULL) I• check f or job at end of work list • I

rp- >av _forw =NULL; / • mark next to last as last on list•/

dfcp- >dfutab.b _actl = rp;

3B5 COMPUTER BLOCK DEVICE DRIVER

e lse

rp- >av _for w = fp; I• link previous fwd pointer to next buf •I

fp- >av _bac k = rp; I• link next buf back pntr to previous buf •I

i f(dfcp- >dfutab .jrqsleep > O) I• check for processes sleeping on J RQ •I

wakeup((cadd r _t)dfcp->smd _jrqaljcquldp- >smdnum).df _jrq);

j cquldp++;

if (jcquldp &dfcp- >df jcq[DF _NJCQE)) I• check for bottom of q ueue •I

jcquldp = d fcp- >df _jcq; I• if yes - reset to top •i
d f cp- >vcquldp

df cp- >jcquldp

(struct df jcqe •ljcquldp; /• save updated pointer v a l ue •I

(struct df jcqe •ldf _vtop(jcquldp); I• save updated p ointer

value •I

i odone(bp); /• report completion to user •I

#if TEST

if (intpr)

pr intf ("EXIT OF df int () queue pointers are \n");

printf (" jcqldp = %x jcquldp = %x\n" ,dfcp- >jcq l dp,dfcp- >jcquldp);

#endif

• Thi s routine will gen e rate a v e rtical XOR

• checksum over the s p e cified buffer f o r the

• size specified.

•I

long

gcksum(baddr,bsize)

registe r l ong •baddr ;

reg ister int bsize ;

regis ter long cks um

while(--bsize > 0)

O;I• checksum value•/

cks um A= * (b add r++);/• XOR next word•/

return(cksum);

* The d f s t rategy routine is responsible for validating job

* reque st s , placing the request in the proper request queue,

K-13

3B5 COMPUTER BLOCK DEVICE DRIVER

* updating the appropriate controller and drive status,

* and generating the work pending PIR for the correct IDFC.

* All information required to generate the job request is

* contained in a buffer header. The address of the buffer

* header is passed to the routine as an input argument.

•I

dfstrategy(bp)

register struct buf *bp;/• buffer header pointer •I

struct buf •dp;/• temp buffer pointer •I

register struct dfc *dfcp; I• IDFC controller data pointer•/

register union jrqe •vjrqldp; I• job request queue load pointer •I

register struct smd jrq •smd _jrpt; I• job request queue struct pt•/

register union jrqe *pjrquldp; I• job request queue unload pointer •I

register unit; I• IDFC controller ID •I

union jrqe *pjrqldp; I• job request queue load pointer •I

union jrqe •tpntr; I• temp job request queue load pointer

union jrqe •jrqmax; I• end of job request queue

union jrqe •jrqstart; I• start of job request

struct dskpart •partpt; I• pointer to partition

daddr t last; I• drive last block address -
paddr t map;/• process map address •I -
paddr t maddr; I• memory address of request

-
unsigned char smd; I• SMD subunit ID •I
unsigned char drv; /• IDFC drive ID •I

unsigned char part; /• drive partition•/

int sps;/• saved priority level•/

unit .. minor (bp- >b _dev);

maddr = paddr(bp);

part• unit&07;

smd .. (unit & 0 2 0) » 4 ;

drv = (unit & 030) » 3;

unit >):s 5;

dfcp • &df _dfc(unitl;

smd jrpt • &dfcp- >smd jrqa[smd);

jrqstart =- smd _jrpt- >df _jrq;

jrqmax • &smd_jrpt- >df jrq[DF _NJRQE);

vjrqldp • smd _jrpt- >vrqldp;

pjrquldp • smd _jrpt- >jrquldp;

I• Check if drive equipped•/

if ((partpt•dfcp- >df _part(drv)) =• NULL)

K-14

•I

•I

•I
queue •I
info •I

•I

3B5 COMPUTER BLOCK DEVICE DRIVER

bp- >b_flags la B ERROR;

bp- >b_error • ENXIO;

iodone(bp);

return;

I• verify job request f o r valid size •I

l ast= partpt(partl . nbl ocks;

if (bp- >b_blkno < 0 11 bp- >b blkno >= last)

#if TES T

if (bp- >b _blkno last && bp - >b fla g s&B_READ)

bp->b_resid = b p- >b _bcount;

else {

bp- >b flags I= B_ERROR;

bp- >b_error = ENXIO;

i odone(bp);

return;

if(stratpr)

#endif

I• output variab l e s•/

pjrqldp = smd _jrpt- >jrqldp ;

pr intf (" unit = %x maddr = %x \n", unit, maddr) ;

pr intf (11 smd = %x d rv = %x jrqstart = %x j rqmax %x \n" , smd, drv,

jrqstart, jrqmax);

pr i ntf ("jrqldp = %x j rquldp %x \n 11
, pjrqldp, pjrqu ldp) ;

I• make entry in job r e quest queue •I

for(;;)

tpntr = vjrqldp ; I• setup temp load pointe r •I

i f(++tpntr =• jrqmax) I• check for end of queue• /

tpntr = jrqstart; I• reset to top •I

i f ((union jrqe *) df v top(tpntr) == pjrquldp) I• check for queue full •I

dfcp- >dfutab. jrqsleep++; I• inc proce ss sleep count •I

sleep((caddr _t)smd_jrpt,PZERO); I• put process to sleep •I

dfcp- >dfutab .jrqsleep--; I• deer process sleep count •I

pjrquldp = smd _jrpt- >jrquldp;

vjrqldp = s md _jrpt- >vrqldp;

e lse break;

/• link buffer header in t o device work list •I

K-15

3B5 COMPUTER BLOCK DEVICE DRIVER

baseio(df_addr[unitl); I• set up mrnu •/

sps-= spl6(); I• raise priority for critical code region•/

if (dfcp- >dfutab.b _actf NULL) I• check for first job on list •I

else

dfcp->dfutab.b_actf bp; I• link buf to fwd list pointer •I

dfcp->dfutab.b _actl = bp; I• link buf to back list pointer •I

bp- >av_back = (struct buf •)&dfcp- >dfutab; I• point buf back to list head•/

dp = dfcp- >dfutab.b _actl ; I• get addr of last buf in list•/

dfcp- >dfutab.b _actl = bp; /• link buf to dev back list pointer•/

dp- >av forw bp; /• link buf in next to last buf fwd pntr •I

bp- >av _back dp; I• point to previous last buffer •I

bp- >av forw = NULL; I• mark as last buf in device work list•/

/• update job request, controller and drive status data •I

dfcp- >df_stat[drvl.io_cnt++;/• inc operations count •I

dfcp- >df_statldrvl.io_bcnt += btoc(bp- >b_bcountl; I• inc click count •I

dfcp- >dfutab.qcnt++; /• update jobs outstanding for controller •I

dfcp- >df_stat[drv).io_qc++i I• update jobs outstanding for drive•/

bp- >b_start = lbolt; I• time stamp start of request process •I

#if TEST

if(stratpr)

#endif

I• print drive-controller status •I

printf("IDFC = %x SMD = %x DRIVE= %x\p",unit,smd,drv&1);

printf("io_cnt = %x io _bcnt = %x\p",

dfcp- >df _stat[drvl.io _cnt,dfcp- >df stat[drvl.io bent);

pr intf ("cntlqcnt = %x drvqcnt = %x \n",

dfcp- >dfutab.qcnt,dfcp- >df _stat[drvl.io _qc);

pr intf ("start time = %x \n", bp- >b _start) ;

I• end of status •I

* is request kernel or user

•I

if(maddr & VUSER)

I• user map pointer •I

map= (paddr _t) &(((struct user •l

ctob ((int) bp- >b _proc- >p _ addr)) - >u _ segdata) ;

K-16

3B5 COMPUTER BLOCK DEVICE DRIVER

else

I• kernel map pointer •I

map• pkmmudesc;

/• enter job request in controller request queue •I

vjrqldp- >req.jid • bp; I• buffer header addr used as job id•/

vjrqldp->req.jcqid • O; I• always O for single queue •I

vjrqldp- >req.opc s (bp- >b flags & BREAD) ? DREAD D _WRITE;

vjrqldp- >req.dsknum • (unsigned)(char) drv&Ox01;

vjrqldp- >re9.smdnum • smd;

vjrqldp- >req.sp1 • O;

vjrqldp- >req.pmta s map;

vjrqldp- >req.sma • paddr(bp);

vjrqldp- >req.sdba • (bp- >b_blkno+partpt[part).sblock) << 9;

vjrqldp- >req.bcnt • (unsigned)bp->b_bcount;

vjrqldp- >req.cksum = gcksum((long •> vjrqldp, sizeof(union jrqe)/sizeof(long));

#if TEST

if(stratpr)

#endif

printf(11 jid = %x\p 11 ,vjrqldp- >req.jid);

pr intf ("jcqid ,.. %x \p 11
, vjrqldp- >req. jcqid);

pr intf ("ope • %x \p", vjrqldp- >req. ope);

printf("smdnum

printf("dsknum

• %x\p" ,vjrqldp- >req.smdnum);

• %x\p 11 ,vjrqldp- >req.dsknum);

printf("sp1 • %x\p" ,vjrqldp- >req.sp1);

printf("pmta • %x\p" ,vjrqldp- >req.pmta);

printf("sma • %x\p" ,vjrqldp- >req.sma);

printf(11 sdba

printf("bcnt

printf("cksum

• %x\p" ,vjrqldp- >req.sdba);

• %x\p" ,vjrqldp- >reg.bent);

• %x \p 11
, vjrqldp- >req. cksum);

/• update controller request queue pointer •I

smd jrpt- >vrqldp • tpntr;

smd jrpt- >jrqldp (union jrqe •)df _vtop(tpntr);

#if FULLPERF

I• Calculate the queue length after it is added to the queue •I

int qsize;

I• In the following if ... else ... , the shift is to divide by •/

I• the sizeof(union jrqe) and thus will vary if this union •I

I• changes. Currently this size is 32. •I

pjrqldp • smd jrpt- >jrqldp;

K-17

3B5 COMPUTER BLOCK DEVICE DRIVER

if ((unsigned)pjrquldp < (unsigned)pjrqldp) I• check for wrap around•/

qsize • ((unsigned)pjrqldp - (unsigned)pjrquldp) >> 5;

else

qsize • 1 + (((unsigned)vtop(jrqmax) - (unsigned)pjrquldp) +

((unsigned)pjrqldp - (unsigned)df _vtop(jrqstart))) >> 5;

dfcp- >df _stat[drv].cumqlen +• qsize;

if (dfcp- >df _stat[drv].maxqlen < qsize)

dfcp- >df _stat[drv].maxqlen • qsize;

if (dfcp- >df_stat[drv].minqlen > qsize)

dfcp- >df _stat[drv].minqlen • qsize;

#endif /• FULLPERF •/

dfcp- >dfutab.ioip ~ SET; I• set IO in progress flag•/

((struct pir16 •)(BIOADDR IOPIR))- >pir04 •SET;/• send job pending pir

to IDFC •/

splx(sps); /• lower priority level•/

clearbaseio;/• clear mmu •I

• The dfopen routine is called each time a raw disk is opened, or when

• a file system is mounted

•I

dfopen(dev)

dev t dev;

if(dev & 0xE0) {

I• minor number must be < 31 •I

u.u error• ENXIO;

return;

dev • minor(dev);

if((dev » 5) >• df _cnt) {

u.u error• ENXIO;

return;

dfread(dev)

register dev t dev;

register unit; I• IDFC controller ID •I

register unsigned char drv; I• IDFC drive ID •I

K-18

3B5 COMPUTER BLOCK DEVICE DRIVER

register struct dfc *dfcp; I• IDFC controller pointer •I

register struct dskpart •partpt; /• pointer to partition info •I

register unsigned char part; I• drive partition •I

unit• minor(dev);

dfcp • &df _dfclunit » SI;

part• unit&07;

drv .. (dev &030) » 3;

if ((partpt•dfcp- >df_part[drvl) •• NULL)

u.u_error • ENXIO;

else if (physck(partpt[part).nblocks, BREAD))

physio(dfstrategy, 0, dev, B_READ);

dfwrite(dev)

register dev t dev;

register unit; I• IDFC controller ID •I

register unsigned char drv; I• IDFC drive ID•/

register struct dfc •dfcp; I• IDFC controller pointer •I

register struct dskpart •partpt; I• pointer to partition info •I

register unsigned char part;/• drive partition•/

unit= minor(dev);

dfcp = &df_dfc[unit >>SI;

part= unit&07;

drv '"' (dev &030) » 3;

if ((partpt•dfcp- >df _part[drvl) •• NULL)

u.u_error • ENXIO;

else if (physck(partpt[part).nblocks, B WRITE))

physio(dfstrategy, 0, dev, B_WRITE);

dfprint(dev, str)

register dev _t dev;

char •str;

printf("%s on IDFC(%d) drive O%o\n", str, (dev >>8) & 0x7f, dev&0xff);

• return 1 if all disk work queue are empty, 0 otherwise

•I

K-19

3B5 COMPUTER BLOCK DEVICE DRIVER

df idle ()

register i; I• idfc index •I

for (i•O; i <df _cnt; i++)

if (df dfc[i].dfutab.b actf !• NULL) return O;

return 1;

K-20

APPENDIX L: 3B5 COMPUTER CHARACTER
DRIVER
This is the character driver for the 3B5 Computer.

static char Sccsid[)•"~(#)adli.c3.1.2.5";

I•

* ADLI driver

#include <sys/param.h >

#include <sys/types. h >

#include <sys/dir. h >

#include <sys/signal .h >

#include <sys/user. h >

#include <sys/ errno. h >

#include <sys/file.h >

#include <sys/tty. h >

#include <sys/termio. h >

#include <sys/ conf. h >

#include <sys/ sys info. h >

#include <sys/sysmacros.h>

#include <sys/adli .h >

extern struct mmutab ccmmudesc;

#define INTERUPTOx80000000

#define AD ACU OxSOI• determine if adli or acu •I

extern struct mmuseg ad _addr(I;

extern int ad_cnt;

extern struct tty ad_ttyll;

char

I .
I'

ad_speeds(16) • :

0,B50BPS,B75BPS,B110BPS,B134BPS,B150BPS,0,BJOOBPS,B600BPS,B1200BPS,

B1800BPS,B2400BPS,B4800BPS,B9600BPS,0,0

#define ON

#define OFF O

#define ADLI IPL6 I• Interrupt Priority Level of the ADLI •I

L-1

3B5 COMPUTER CHARACTER DRIVER

* Minor number allocation for the ADLI. This is the format

* of the minor number that the kernel passes to adopen(), adclose(),

* adread(), adwrite() and adioctl(). Before the minor number

* is used, the minor() macro should be invoked to translate the

* minor number to an index to a tty structure (however, the

* ACU bit must be checked first).

*
• 1 XACU device; Xis 0 or 1

*
* 0 XXXUART port; XXX is Oto 7

*
* After translation by the minor macro, the minor number has the

* values:

*
• ACU device -0, 1,8,9, 16, 17, ...

* UART port - 0,1,2, ...

•I

adopen(dev, flag)

register dev t dev;

register struct tty •tp;

extern adproc();

* determine if adli or acu

•I

if (dev & AD ACU)

acuopen (dev & -AD ACU) ;

return;

* extract minor number

•I

if dev & 0xF8)

I• minor number must be 0-7 only •I

u.u error= ENXIO;

return;

dev a minor(dev);

baseio(ad_addr((dev » 3)));

if (dev >• ad cnt) l

L-2

u.u error• ENXIO;

clearbaseio;

return;

3B5 COMPUTER CHARACTER DRIVER

tp • &ad_tty(devl;

if ((tp->t_state&(ISOPENIWOPEN)) •• 0) {

ttinit(tp);

tp- >t _proc • adproc;

adparam(BIOADDR,dev);

spl5();

if (tp->t _cflag&CLOCAL I I admodem(BIOADDR,dev, ON))

tp->t _state I• CARR_ON;

else

tp- >t _state &• -CARR _ON;

if (!(flag&FNDELAY))

while ((tp- >t_state&CARR_ON)••0)

tp- >t_state I• WOPEN;

clearbaseio;

sleep ((caddr _ t) & tp- >t _ canq, TTIPRI) ;

spl5 ();

(•linesw [tp- >t line I .1 _open) (tp);

spl0 ();

clearbaseio;

adclose(dev)

register dev t dev;

register struct tty •tp;

• determine if adli or acu

if (dev & AD ACU)

acuclose(dev & "°AD ACU);

return;

• extract minor number

dev • minor(dev);

tp • &ad_tty(dev);

(•l inesw I tp- >t _ line I .1 _close) (tp);

if (tp- >t _cflag&HUPCL) {

baseio (ad_ addr((dev »3) I);

spl5 ();

L-3

3B5 COMPUTER CHARACTER DRIVER

admodem(BIOADDR,dev, OFF);

spl0 ();

clearbaseio;

adread(dev)

register dev t dev;

register struct tty •tp;

I•

• determine if adli or acu

•I

if (dev & AD ACU)

nodev();

return;

I•

• extract minor number

dev • minor(dev);

tp = &ad_tty[dev);

(•linesw[tp- >t_linel .1 _read) (tp);

adwrite(dev)

register dev t dev;

register struct tty •tp;

• determine if adli or acu

•I

if (dev & AD ACU)

I•

acuwr i te (dev & -AD ACU) ;

return;

• extract minor number

dev • minor(dev);

tp • &ad_tty[devl;

L-4

3B5 COMPUTER CHARACTER DRIVER

(* 1 in es w [t p- >t _ 1 in e] . 1 _ w r it e) (t p) ;

adioctl(dev, cmd, arg, mode)

register dev t dev;

int ttytype;

• determine if adli or acu

•I

if (dev & AD ACU)

nodev();

return;

* extract minor number

dev = minor(dev);

baseio(ad addr[(dev >>J)]);

if (cmd •• TTYTYPE) {

ttytype = SATTY;

else

if (copyout(&ttytype, arg, sizeof{int)))

u.u error• EFAULT;

if (ttiocom(&ad_tty[devl, cmd, arg, mode))

baseio(ad addr[(dev >>J)]);

adparam(BIOADDR,dev);

clearbaseio;

adparam(baddr ,dev)

registerchar •baddr;

register struct tty •tp;

register flags, mr1,mr2,cr;

register struct uart •adaddr;

tp • &ad_tty[dev]; /• get address of tty data structure •I

I• find uart address •I

adaddr = &(((struct adli_uart •)(baddr+OADLIUART))- >port[dev&0x7).uart);

((struct adli wcsr •)(baddr+OCSR))- >inh int= 0; I• clear int inhibit•/

L-5

3B5 COMPUTER CHARACTER DRIVER

flags • tp- >t _cf lag;

if ((flags&CBAUD) •• 0)

/•hangup modem•/

admodem(BIOADDR,dev,OFF);

return;

• construct mode register 1 from content of tty structure.

•I

mr1 • ASYNCH1;

if (flags & CS6)

mr 1 I• BITS6;

if (flags & CS7)

mr 1 I• BITS7;

if (flags & PARENB)

mr 1 I• PENABLE;

if ((flags & PARODD) •• O)

mr 1 I• EPAR;

if (flags & CSTOPB)

mr 1 Is TWOSB;

else

mr 1 I• ONESB;

• construct mode register 2

•I

mr2 • ad _speeds(flags & CBAUD);

mr2 I• XMITINT I RCVINT;

• read the command register, thus setting the mode register

• pointer to mr1. Then, set up the command register.

•I

er• adaddr- >command;

er I• (XMITENB IRESET);

if (flags & CREAD)

er I• RCVENB;

else

er & • ~CVENB;

adaddr- >mode • mr1;

adaddr- >mode • mr2;

adaddr- >command • er;

adaddr- >command &• ~ESET;

adrint(dev)

L-6

3B5 COMPUTER CHARACTER DRIVER

register struct tty •tp;

register char c;

register char sr;

register struct uart •adaddr;

register char •baddr;

sysinfo.rcvint++;

if ((dev»3) >• ad cnt)

return;

int i o (ADL I _IPL , ad _add r [(de v > > 3))) ;

baddr • (char *)IIOADDR(ADLI_IPL);

/• find uart address •I

adaddr • &(((struct adli_uart •)(baddr+OADLIUART))- >port[dev&0x7).uart);

tp z &ad_tty[dev); I• get address of tty data structure for dev •/

while ((sr = adaddr ->status) & RCVRDY)

c • adaddr- >data;

if (!(tp- >t_state&(ISOPENIWOPEN)))

continue;

if (tp- >t_cflag & CLOCAL 11 sr & DCD)

if ((tp->t state&CARR_ON) 0)

else

wakeup (& tp- >t _ canq) ;

tp- >t_state I• CARR_ON;

if (tp- >t state&CARR_ON) l
signal(tp- >t_pgrp, SIGHUP);

tp- >t _pgrp • 0;

adaddr- >command &• 'bTR;

tp- >t _state &• 1:ARR _ON;

ttyflush(tp, (FREADIFWRITE));

continue;

if (tp- >t _ if lag& IXON) l
register char ctmp;

ctmp • c & 0177;

if (tp- >t state&TTSTOP)

if (ctmp -- CSTART I I tp->t_iflag&IXANY)

(*tp- >t_proc)(tp, INTERUPT I T_RESUME);

else

if (ctmp •a CSTOP)

(•tp- >t _proc) (tp, INTERUPT I T _SUSPEND) ;

if (ctmp •• CSTART I I ctmp •• CSTOP)

continue;

I• Check for errors•/

L-7

3B5 COMPUTER CHARACTER DRIVER

L-R

register int flg;

char lbuf(3); /• local character buffer •I

I• count of chars in lbuf •I short lent;

lent• 1;

flg • tp- >t iflag;

if (sr&(FE IPARERR IOVRRUN))

adaddr- >command I• RESET;

adaddr- >command & • ~ESET;

if (sr&PARERR && !(flg&INPCK))

sr &• "l>ARERR;

if (sr&(FE IPARERR IOVRRUN))

if ((c&0377) •• 0) {

if (flg&IGNBRK)

continue;

if (flg&BRKINT)

C•linesw(tp- >t _line) .1 input) (tp , L_BREAK);

continue;

else

if (flg&IGNPAR)

continue;

if (flg&PARMRK) {

lbuf(2) • 0377;

lbuf(1) • 0;

else

lent• 3;

sysinfo.rawch +• 2;

else

C • 0;

if (flg& I STRIP)

C &• 0177;

else l
C &• 0377;

if (c •• 0377 && flg&PARMRK)

1 bu f I 1 I • o 3 7 7 ;

lent• 2;

I• stash character in r buf •I

lbuf(0) • c;

if (tp- >t _rbuf. C _ptr -- NULL)

return;

while (lent)

3B5 COMPUTER CHARACTER DRIVER

•tp- >t _rbuf . c _ptr++ • lbuf (--lent J;

tp- >t _rbuf . c _ptr -• tp- >t_rbuf . c _size - (--tp- >t _rbuf.c _count);

(• linesw [tp- >t _ line J • 1 _input) (tp , L _ BUF) ;

I• turn off interrupt•/

((struct adli wcsr •)(baddr+OCSR))- >req int• 0;

adxint(dev)

register dev ;

register struct tty •tp ;

register struct uart •adaddr;

register char •baddr;

sysinfo.xmtint++;

intio (ADLI _IPL, ad _ addr ((dev > >3)]);

baddr • (char •)IIOADDR(ADLI_IPL); /• get address of adli board •I

I• find uart address •I

adaddr • &(((struct adli_uart •)(baddr+OADLIUART))- >port(dev&0x7].uart);

tp • &ad _tty(devl; I• get address of tty data structure for dev •I

if (tp- >t_cflag&CLOCAL I I adaddr- >status & DCD)

if ((tp- >t _state & CARR ON)•• 0)

wakeup(&tp->t _canq);

tp- >t _state I• CARR _ON;

else

if (tp- >t _state & CARR _ON) {

if (tp- >t _state & ISOPEN)

signal(tp- >t _pgrp, SIGHUP) ;

adaddr- >command & • 11TR;

ttyflush(tp,(FREADIFWRITE));

tp- >t state&• -CARR_ON;

while(adaddr ->status & XMTRDY) {/• TX rdy •I

adaddr- >command &• -XMITENB; /• disable uart transmit, it will

be re-enabled if necessary •I

if (tp- >t_state & TTXON) {

adaddr- >command I• XMITENB;

adaddr- >data • CSTART;

tp- >t _state &• "'rTXON;

continue;

if (tp- >t _state & TTXOFF) {

adaddr- >command I• XMITENB;

L-9

3B5 COMPUTER CHARACTER DRIVER

adaddr- >data • CSTOP;

tp- >t _state &• "'rTXOFF;

continue;

if (tp- >t _state & BUSY) {

tp- >t _state &• "'BUSY;

adproc(tp, INTERUPT I T_OUTPUT);

continue;

break;

I• turn off interrupt•/

((struct adli wcsr •)(baddr+OCSR))- >req int• 0;

adproc(tp, cmd)

register struct tty •tp;

struct uart •adaddr;

int dev;

extern ttrstrt();

int s;

struct mmuseg save;

s = spl5 ();

save• savebasei6;

dev • tp - ad_tty;

/• find uart address •I

if(cmd & INTERUPT)

adaddr a &(((struct adli uart •)(IIOADDR(ADLI IPL)+

OADLIUART))- >port[dev&0x7).uart);

else {

baseio(ad addr[(dev >>J)l);

adaddr • &(((struct adli uart •)(BIOADDR+OADLIUART))- >port[dev&0x7).uart);

switch(cmd & (~NTERUPT))

case T TIME:

tp- >t _state &• "'rIMEOUT;

adaddr- >command &• "'BREAK;

adaddr- >command &• "'XMITENB;

goto start;

case T WFLUSH:

tp- >t_tbuf.c size tp- >t_tbuf.c_count;

tp- >t_tbuf.c_count • 0;

case T RESUME:

L-10

3B5 COMPUTER CHARACTER DRIVER

tp->t_state &• ~TSTOP;

goto start;

case T OUTPUT:

start:

register struct ccblock •tbuf;

if (tp- >t_state & (BUSY ITTSTOP ITIMEOUT))

break;

tbuf • &tp- >t _tbuf;

if (tbuf- >c_ptr •• NULL 11 tbuf- >c count•• O) {

if (tbuf- >c _ptr)

tbuf- >c_ptr -• tbuf- >c size - tbuf- >c_count;

if (! (CPRES & (•linesw(tp- >t linel.l _output)(tp)))

if (adaddr->status & XMTEMT)

adaddr->command &• "'XMITENB;

break;

tp- >t_state I• BUSY;

adaddr- >command I• XMITENB;

adaddr- >data • •tbuf- >c_ptr++;

tbuf- >c _count--;

break;

case T SUSPEND:

tp- >t_state I= TTSTOP;

break;

case T BLOCK:

tp- >t _state &• ~TXON;

tp- >t_state I• TBLOCK;

if (tp- >t_state & BUSY)

tp->t_state I• TTXOFF;

else {

tp- >t_state I• BUSY;

adaddr- >command I• XMITENB;

adaddr->data • CSTOP;

break;

case T RFLUSH:

if (!(tp- >t state&TBLOCK))

break;

case T UNBLOCK:

tp- >t _state &• -(TTXOFF ITBLOCK);

if (tp->t_state & BUSY)

L-11

3B5 COMPUTER CHARACTER DRIVER

tp- >t_state I• TTXON;

else {

tp- >t _state I• BUSY;

adaddr- >command I• XMITENB;

adaddr- >data • CSTART;

break ;

case T BREAK:

adaddr- >command I• BREAKIXMITENB;

tp- >t _state I• TIMEOUT;

timeout(ttrstrt, tp, HZ/4);

break;

case T PARM:

adparam(BIOADDR , dev);

break;

baseio(save);

splx(s);

admodem(baddr, dev, flag)

register char •baddr;

register struct uart •adaddr ;

/• get uart address•/

adaddr • &(((struct adli uart •)(baddr+OADLIUART))- >port(dev&0x7).uart);

if (flag••OFF)

adaddr- >command &• 1lTR ;

else

adaddr- >command I• DTR;

return(adaddr- >status & DCD);

* ACU driver

*
* Minor number allocation for the ACU. This is the format

* of the minor number that the ADLI driver passes to acuopen(),

* acuclose() and acuwrite().

*
* XACU device; Xis 0 or 1

*
* After translation by the minor macro, the minor number has the

* values:

*

L-12

3B5 COMPUTER CHARACTER DRIVER

• ACU device -0,1,8,9,16,17, ..•

•
• This sequence must be converted to the sequence 0,1,2, ...

•I

#define ACUPRI (PZERO + 5) /• sleep priority while polling •I

#define ACUDELAY 3 I• wait 3 ticks while polling •I

#define ACUTIME (300 • HZ) /• software timer 5 minutes•/

extern int acu_~ime[); /• software timer•/

I•

• adstart()

•
• ADLis require no initialization, but the ACUs do . This routine is

• called from main() during kernel initialization

•I

adstart()

register i, maxacu;

maxacu • ad cnt / 8;

for (i•0; i < maxacu; ++i)

baseio(ad_addr[il);

/• init control, leave off •I

((struct adli acui •) (BIOADDR + OADLIACUI))->acui[0).ppi.control • A_AMODE;

((struct adli acui •> (BIOADDR +

OADLIACUI))->acui[0).ppi . command • A_CRQ A _DPR;

((struct adli acui •) (BIOADDR + OADLIACUI))->acui[1).ppi.control • A _AMODE;

((struct adli acui •> (BIOADDR +

OADLIACUI))- >acui[1) . ppi.command • A_CRQ

clearbaseio;

• acuopen

• if illegal device or if acu is not on, set a device error flag

• if the acu is busy, set a busy error flag

• if everything is ok, then start a call

•I

acuopen(dev)

register dev t dev;

A _DPR;

L-13

3B5 COMPUTER CHARACTER DRIVER

register struct adppi •acuaddr;

* extract minor number

•I

if dev & OxFE)

I• minor number must be 0-1 only •I

u.u error• ENXIO;

return;

dev • minor(dev);

if (dev >• ad_cnt) {

u.u error• ENXIO;

return;

/• convert sequence 0,1,8,9, ... to 0,1,2,3, . .. •I

dev = CCdev » 3) « 1) + (dev & 1);

I• find address of acu(dev) •/

baseio(ad _addr [(dev > >1) I);

acuaddr • &(((struct adli acui •) (BIOADDR + OADLIACUI))- >acui[dev&0x1).ppi);

I• check for power on •I

if (acuaddr- >status & A PWI)

u.u error• ENXIO;

I• check if device is busy •I

else if (! (acuaddr->status & A DLO)

u.u error• EBUSY;

I I

else { /• everything ok, start the call•/

(acuaddr- >command & A_CRQ))

acuaddr- >command • A_DPR; I• turn on CRQ, leave DPR off •I

acu time[dev) • 0; /• init timer•/

clearbaseio;

* acuclose

* all that has to be done is turn off CRQ and DPR

•I

L-14

3B5 COMPUTER CHARACTER DRIVER

acuclose(dev)

r~gister dev t dev;

• extract minor number

•I

dev • minor(dev);

I• convert sequence 0,1,8,9, ... to 0 ,1,2,3, . . . •I

dev = ((dev > >3) < <1) + (dev & 1);

I• find address of acu(dev) •/

baseio(ad addr((dev >>1)));

I• turn off CRQ and DPR •I

((struct adli acui •> (BIOADDR+

OADLIACUI))- >acui(dev&0x1].ppi.command = A DPR

clearbaseio;

• acuwrite

• takes characters one at a time from users i/o space and dials them

• quits when characters run out or call can't be completed

•I

acuwrite(dev)

register dev t dev;

register char ch, acustatus;

register struct adppi •acuaddr;

register quit;

register struct mmuseg •segp;

• extract minor number

•I

dev • minor(dev);

I• convert sequence 0,1 ,8, 9, ... to 0,1,2,3, ... •I

dev • ((dev » 3) « 1) + (dev & 1);

I• find address of acu(dev) •I

segp • &ad _addr I dev > >1 1;

baseio(•segp);

A_CRQ;

L-15

3B5 COMPUTER CHARACTER DRIVER

I• calculate address of acu(dev) •I

acuaddr = &(((struct adli acui •> (BIOADDR + OADLIACUI))- >acui(dev&0x1).ppi);

/• dial character from user's i/o space •I

((acustatus • acuaddr- >status) & A PWI)

quit= 0;

while (

&& acustatus & A ACR

L-16

&& acu time(devl < ACUTIME

&& ! quit

&& (ch = cpass()) > 0)

switch (ch) I• dial next character •I

case '-': I• delay for second dial tone •I

clearbaseio;

delay(4 • HZ);

baseio(•segp) ;

break;

case 'f': /• flash off hook for 1 second •I

acuaddr- >control • A SCRQ; /•turnoff CRQ•/

clearbaseio;

delay(HZ);

baseio(•segp);

/•wait•/

acuaddr- >control a A _RCRQ; I• turn on CRQ •I

break;

case '•' :

case I• dial a••/

acudial(segp,acuaddr,0xA,dev);

break;

case '#':

case I• dial a#•/

acudial(segp,acuaddr,0xB,dev);

break;

case 'e' :

case ' <' : /• end of number•/

quit• 1;

break;

case 'w' :

case •': /• wait for second dial tone•/

acudial(segp,acuaddr,0xD,dev);

break;

3B5 COMPUTER CHARACTER DRIVER

I•

default:/• dial a digit, ignore if non digit•/

if (ch >-= '0' & & ch <• '9')

acudial(segp,acuaddr,ch - '0' ,dev);

else

quit• 1;

• if everything is still ok, send an end of number signal

•I

if ((acustatus = acuaddr- >status) & A PWI)

I•

&& acustatus & A ACR

&& acu timeldevl < ACUTIME

&& acustatus & A COS)

acudial(segp,acuaddr,0xC,dev);

• wait for call to be connected or terminated

•I

while (! ((acustatus = acuaddr- >status) & A PWI)

&& acustatus & A ACR

&& acu time(devl < ACUTIME

&& acustatus & A COS)

timeout(wakeup,acuaddr,ACUDELAY);

acu time(dev) += ACUDELAY;

clearbaseio;

sleep(acuaddr,ACUPRI);

baseio(•segp);

* set error if call was not completed

•I

if (acustatus & A PWI

u.u error• ENXIO;

clearbaseio;

1 1 (acustatus & A ACR) I I acu time(dev) >= ACUTIME)

* acudial

* sends a digit to the ACU for dialing

L-17

3B5 COMPUTER CHARACTER DRIVER

* follows RS-366 protocol

* wait for PND to turn on

* put out the digit

* turn on DPR

* wait for PND to turn off

* turn off DPR

* the sequence is terminated if the ACU loses power or if the call times out

* since the ACU does not generate interrupts, the ACU has to be polled

•
* NOTE: This function can only be called from code executing at BASE Level

*

*

Immediately following the call to sleep the macro to reload the DMAP

register with the segment descriptor for kernel 1/0 will be called.

acudial(basegp, acuaddr, digit, dev)

register struct mmuseg *basegp;

register struct adppi *acuaddr;

register dev;

register char acustatus;

/*

* wait for PND to turn on

*/

while (! ((acustatus = acuaddr- >status) & A PWI)

&& acustatus & A ACR

/*

&& acu timeldevl < ACUTIME

&& acustatus & A PND)

timeout(wakeup,acuaddr,ACUDELAY);

acu time[dev) += ACUDELAY;

clearbaseio;

sleep(acuaddr,ACUPRI);

baseio(*basegp);

*putout the digit and turn on DPR

*/

if (! (acustatus & A PWI) && acustatus & A ACR && acu time[devl < ACUTIME)

acuaddr- >command a digit A _DPR;

acuaddr- >control A _RDPR;

I•

* wait for PND to turn off, then turn off DPR

L-18

3B5 COMPUTER CHARACTER DRIVER

while (! ((acustatus s acuaddr- >status) & A PWI)

&& acustatus & A ACR

&& acu time(devl < ACUTIME

&& ! (acustatus & A_PND)) {

timeout(wakeup,acuaddr,ACUDELAY);

acu time(dev) +• ACUDELAY;

clearbaseio;

sleep(acuaddr,ACUPRI);

baseio(•basegp);

acuaddr- >control A _SDPR;

L-19

EDT

edt_data

config

/dev

I etc/ master

mkboot

mkunix

newboot

sysdef

/etc/system

GLOSSARY

The Equipped Device Table contains the characteristics of
all peripherals currently in the system.

A 3B2 Computer UNIX System file used to fill in the
entries in the EDT. This file contains data for any driver
that may be in the system.

Config is a command that has historically generated the
kernel data structure from a configuration file.

The directory on UNIX Systems containing special device
files controlled by hardware and software drivers.

A file describing all drivers that can be in the system.

A command that updates object files to be used by the
boot program.

A command that creates a bootable UNIX System kernel
from the current contents of memory.

A command that places the 2 boot programs on the boot
partition to be accessible by the firmware.

The command that lists the current system configuration,
that is, the drivers in the system and system parameters.

A file containing the details on what drivers to configure
in the system. This file is read by the boot program to
determine how the system is to be configured.

G-1

INDEX

3BNET . 2-22
3B2 Computer Feature Card Design Manual . 1-2
3B2 Computer firmware. 2-1
3B2 Computer requirements . 4-25
3B5 Computer Conventions . 6-4
3B5 Computer firmware . 2-19
3B5 Computer I/0 Board Design Manual . 1-2

A

access tty functions . A-16
adding drivers . 4-5
adm directory. 4-10
administration interface . 5-4

B

Backup Battery . 2-2
basic control unit . 2-19
block device data transfer . 3-5
block device, error message . 3-7
block I/0 subsystem. 3-15

B-1
blocked execution . 3-17
blocking execution . 3-20
board complexes . 2-22
boot manually . 4-6
boot time initialization . 3-7
boot UNIX System . 4-11
BRU. 2-3
buffer headers. B-1
bytcn t . 2-12
Byte Rotation Unit . 2-3

C

cache . 2-19
cblocks . A-1
cc . 2-21

1-1

INDEX

Central Control . 2-19
2-21

change device parameters . A-14
character control block . A-5
character subsystem. 3-15
chead structure . A-4
checklist . 4-22

4-30
CIC . 2-22
clist queue . A-3
clist routines. A-5
clists . A-1
close a device. A-15
close function . 3-3
cmd_stat . 2-13
common error . 3-22
Common Interface Circuit . 2-22
configuration time . 4-4
Control and Status Register. 2-2

2-21
copyin function . 3-6

3-14
copyout function . 3-6

3-12
CPU execution level . 3-15
CPU registers . H-1

D

data block 2-5
data structures . 4-21
data transfer, block device . 3-5
DEMON . 4-10
device access, ioctl function . 3-5
device address table . 5-7

6-5
device numbers . 3-1

4-13
/ dgn . 2-4
diagnostics . 2-4

7-1
diagnostics for the 3B5 Computer. 2-22
Direct Memory Access Subsystem . 2-1
disk partitioning . 7-1
disk usage . 4-3
DMA Controller .. 2-1
DPDRAM . 2-6
driver additions . 6-4

1-2

INDEX

driver checklist . 4-22
4-30

driver close function . 3-3
driver configuration . 4-1
driver conventions . 3-1

5-2
6-1

driver de bugging . 4-10
driver exam pies . 4-31
driver execution control . 3-15
driver interface . 3-2

3-9
4-4

driver names . 4-19
5-7

driver naming conventions . 6-5
driver open function . 3-3
driver services . 3-2
dri verclr function . 3-7
driverint function . 3-8
driverscan function . 3-20
drvinstall . 5-5
drvinstall command . 4-8
Dynamic RAM Con troll er . 2-1

E

ECD . 2-22
2-23

edi ttbl . • 2-4
G-1

EDT . 2-3
2-23
5-5
5-6

Equipment Configuration Database . 2-22
2-23

Equipped Device Table. 2-3
5-5
5-6

error handling . 2-16
error reporting . 3-9
exam pie drivers . 4-31
express work . 2-16
extended local bus unit . 2-19
external requirements . 5-8

T-~

INDEX

F

Feature Card . 2-1
firm ware (3B2) . 5-1
firm ware . 6-1
Firm ware Im plemen ta tion . 2-1
firmware operation . 4-11
Floppy Disk Con troll er . 2-1
floppy restore procedure (3B2) . 5-1

G

gete blk . B-4
getmaj or . 4-9
growth control unit . 2-19

H

Hard Disk Controller . 2-1
hardware . 4-25

I

IAU 2-23
ID/vector register . 2-7
IDFC . 2-19
#include . 2-10
INIT file system . 2-4
initialization . 3-7
Input/Output Controller Boards . 2-22
Input/Output Expansion Board . 2-1
INST ALL . 6-4
install directory . 4-10
Integrated Disk File Controller . 2-19
Interactive Access Utility. 2-23
interface boards . 2-22
interface, kernel. 3-2
interrupt handling . 3-8
interrupt handling hardware . 2-21
Interrupt Structure . 2-2
int_vect . 2-8
ioctl . 5-2

6-2
ioctl function . • 3-5
iodone . B-6

l-4.

INDEX

iomove function · 3-14
iowai t . B-6

K

kernel reconfiguration . 4-6
kernel services . 3-9
kernel/ driver interface . 3-2

L

lbolt function .. .
1 boot

line discipline switch table
load and unload pointers
local bus arbiter .. .
longjump function

M

3-21
4-11
4-12
4-26

A-16
2-29
2-21
3-19

main store array . 2-19
main store controller . 2-19
Maintenance and Control Program . 2-3
major and minor device numbers . 4-13
major macro . 4-14
major/ minor device n um hers . 3-1
major/minor device numbers and translations . 5-2

6-1
malloc function . 3-23
managing driver memory . 3-23
manipulate buffers . B-4
manual boot . 4-6
manual boot procedure (3B2) • . • . . 5-4
manual boot procedure . 6-3
map structures . 3-23
mapinit function . 3-23
master file . 4-16

E-1
maximum disk allocation . 5-4
m boot . 4-11

4-12
M CP . 2-3
memory boards . 2-1
memory management hardware . 2-21

T _ ~

INDEX

memory usage . 4-3
minimal UNIX System . 5-4
minor macro . 4-14
mkboot . 4-12

D-1
mkunix . 4-12

D-1

N

Network Interface Controller ... : . 2-22
newboot . 4-13

5-7
NIC . 2-22
Nonvolatile RAM . 2-2

0

ODIT . 2-23
On-Board Device Information Table. 2-23
open function . 3-3
output characters ·. A-13

p

physck . B-6
physio · . B-6
power failure . 3-7
power failure functions . 6-2
proc structure . 3-11
PROM . 2-2
psignal function . 3-23

Q

queue.h . 2-11
queues, request and completion . 2-7
que_set ~ . 2-16

R

RAM . 2-21
read character . A-11
read function . 3-4

1-6

INDEX

reconfiguring, kernel . 4-6
registers . H-1
removing drivers . 4-5
requirements . 4-25
restrictions, coding . 4-22
ROM . 2-21

s

sample drivers . 5-8
6-5

sanity and interval timer . 2-21
scheduling jobs. 2-29
self-configuration . 2-3

D-1
self-configuration restrictions . 4-22
self-configuration, description . 4-2
seq bit . 2-16
signals . 3-22
sleep . C-1
sleep function . 3-17
sleep priority . 3-18
spl function . 3-15
support programs . 4-23
sysadm . 5-6
sysdef . 2-18
sysgen . 2-5

2-28
System Board _ . 2-1
system cons tan ts . 3-9
system error messages . 3-21
system file . 4-16

F-1

T

timeout function. 3-20
Timers . 2-2
transfer vector table . 2-4
ttclose . A-15
ttin . A-10

A-11
ttinit. A-10
ttiocom . A-14
ttopen . A-10
ttout . A-13

1-7

INDEX

ttread . A-10
A-11

ttwri te . A-13
tty structure . A-6
tty subsystem . 3-15

A-1
tuning system parameters . 4-29

u
DARTS 2-2
ublock . 3-10
unbuffered 1/0 . B-6
Universal Asynchronous Receiver Transmitter . 2-2
UNIX System Administrator's Guide. 1-1
UNIX System Programmer's Manual. 1-2
UNIX System User's Guide . 1-1
user access functions . 3-14
user data access . 3-9

V

virtual to physical address translation. 6-2
virtual/physical addresses . 3-11
volume table of contents . 5-6
VTOC . 5-6
vtop . 3-11

w

5-2
6-3

waiting on 1/0 . B-6
wakeup C-1
wakeup function . 3-17
WE 32000 Series Processor Module . 2-1
write function . 3-4

1-8

