

NOTICE

The information in this document is subject to change without notice. AT&T assumes no
responsibility for any errors that may appear in this document.

Copyright© 1985 AT&T
All Rights Reserved

Printed in U.S.A

TRADEMARKS

The following is a listing of the trademarks that are used in this manual:

• UNIX - Trademark of AT&T

o DOCUMENTER'S WORKBENCH - Trademark of AT&T

• DIABLO - Registered trademark of Xerox Corporation

, HP - Trademark of Hewlett-Packard, Inc .

• Versatec - Trademark of Versatec Corporation

• TELETYPE - Registered trademark of AT&T

• DEC, PDP, and VAX - Trademarks of Digital Equipment Corporation

• TEKTRONIX - Registered trademark of Tektronic, Inc.

ORDERING INFORMATION

Additional copies of this document can be ordered by calling

1-800-432-6600 Inside the U.S.A.

OR

1-317-352-8557 Outside the U.S.A.

OR by writing to:

AT&T Customer Information Center (CIC)
Attn: Customer Service Representative
P.O. Box 19901
Indianapolis, IN 46219

Replace this

page with the

Introduction

tab separator"

INTRODUCTION

This manual describes the features of the UNIX system. It provides neither a general
overview of the UNIX system nor details of the implementation of the system.

This manual contains pages that describe all the commands that are in the utilities pro­
vided with the 3B2/400 Computer. The heading that is on each page identifies the util­
ities to which the command belongs. Only the Essential Utilities is installed on the
3B2/400 Computer when it is delivered; therefore the only commands that are available
at the time of delivery are the Essential Utilities commands. The other utilities are
delivered on floppy disks. To make the commands in these utilities available, the utili­
ties must be installed on the computer.

One of the utilities, Security Administration, is only available in the United States.

Section 1 describes programs intended to be invoked directly by the user or by com­
mand lang.uage procedures, as opposed to subroutines, which are intended to be called
by the user's programs. Commands generally reside in the directory /bin (for binary
programs). Some programs also reside in /usr /bin, to save space in /bin. These direc­
tories are searched automatically by the command interpreter called the shell. Some
UNIX systems may have a directory called /usr/lbin, containing local commands.

The numbers following the command are intended for easy cross reference. A com­
mand with a (1) usually means that the command is contained in this manual. A com­
mand with a (lC) usually means that the command is a communications utility. A
command with a (1G) usually means that the command is a graphics utility. A com­
mand with a (IM), (7), or (8) following it means that the command is in the appropri­
ate section of the AT&T 3B2 Computer System Administration Reference Manual. A
command with a (2), (3), (4), or (5) following it means that the command is in the
appropriate section of the AT&T 3B2 Computer Programmer Reference Manual.

Section l consists of a number of independent entries of a page or so each. The name
of the entry appears in the upper corners of its pages. Entries are alphabetized, with
the exception of the introductory entry that begins Section 1. Some entries may
describe several routines, commands, etc. In such cases, the entry appears only once,
alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 1;

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program
names found elsewhere in the manual (they are underlined in the typed ver­
sion of the entries).

Square brackets ! I around an argument prototype indicate that the argument
is optional. When an argument prototype is given as' "name" or "file", it
always refers to a file name.

Ellipses ... are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument begin­
ning with a minus-, plus +,or an equal sign - is often taken to be some sort
of flag argument, even if it appears in a position where a file name could
appear. Therefore, it is unwise to have files whose names begin with -, +, or

- 3 -

Introduction

The DESCJlUPTION part discusses the subject at hand.

The EXAMPJLE(S) part gives example(s) of usage, where appropriate.

The FIJLES part gives the file names that are built into the program.

The SEE Al.SO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The W ARNl!NGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the
suggested fix is also described.

A table of contents and a permuted index derived from that table precede Section l.
On each index line, the title of the entry to which that line refers is followed by the
appropriate section number in parentheses. The Permuted Index is used by searching
the middle column for a key word or phrase. The right column will then contain the
name of the manual page that contains the command. The left column contains addi­
tional useful information about the command.

An Index to Utilities Documentation is found at the back of this manual. This index
has two sections. The first section is an alphabetical listing of commands that refer­
ences the utilities to which a command belongs. The other section groups commands on
a utilities basis.

- 4 -

HOW TO GET STARTED

This discussion provides the basic information you need to get started on the UNIX sys·
tern: how to log in and log out, how to communicate through your terminal, and how to
nm a program. (See the UNIX System V User Guide for a more complete introduction
to the system)

Logging in. You must dial up the UNIX operating system from an appropriate termi·
naL The UNIX system supports full-duplex ASCH terminals. You must also have a
valid user name, which may be obtained (together with the telephone number(s) of
your UNIX system) from the administrator of your system. Common terminal speeds
are 10, 15, 30, and 120 characters per second (HO, 150, 300, and 1200 baud); occa·
sionally, speeds of 240, 480, and 960 characters per second (2400, 4800, and 9600
baud) are also available. On some UNIX systems, there are separate telephone numbers
for each available terminal speed, while on other systems several speeds may be served
by a single telephone number. hi the latter case, there is one "preferred" speed; if you
dial in from a terminal set to a different speed, you will be greeted by a string of mean·
ingless characters (the lognn: message at the wrong speed). Keep hitting the "break" or
"attention" key until the fognn: message appears. Hard·wired terminals usually are set
to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and a
half0 /full·duplex switch that should be set to full 0 duplex. When a connection (at the
speed of the terminal) has been established, the system types Rogin: and you then type
your user name followed by the "return" key. If you have a password (and you
should!), the system asks for it, but does not print ("echo") it on the terminal. After
you have logged in, the "return", "new·line", and "line·feedl" keys will give exactly the
same result.

It is important that you type your login name in lowercase if possible; if you type
uppercase letters, the UNIX system will assume that your terminal cannot generate
lowercase letters and that you mean all subsequent uppercase input to be treated as
lowercase. When you have logged in successfully, the shell will type a $ to you. (The
shell is described below under How to ru11 a program.)

For more information, consult logi11(l), which discusses the login sequence in more
detail, and stty (1), which tells you how to describe the characteristics of your terminal
to the system. The command (pro:fi.le(4) in the AT&T 3B2 Computer Programmer
Reference Manual explains how to accomplish this last task automatically every time
you log in).

Logging 0111t •. There are two ways to log out:

l. You can simply hang up the phone.
2. You can log out by typing an end·of-file indication (ASCH EOT character, usu·

ally typed as "control0 d") to the shell. The shell will terminate and the login:
message will appear aga.in.

Ht\lw tj)I communicate through your terminat When you type to the UNIX system, a
gnome deep in the system is gathering your characters and saving them. These charac"
ters will not be given to a program until you type a "return" (or "new·line"), as
described above ili11 Logging in.

UNIX system terminal input/output is foll·duplex. It has full read 0 ahead, which means
that you can type at any time, even while a program is typing at you. Of course, if you
type during output, the output win have interspersed in it the input characters. How·
ever, whatever you type will be saved and interpreted in the correct sequence. There is
a limit to the amount of read·ahead, but it is generous and not likely to be exceeded
unless the system is in trouble. When the read·ahead limit is exceeded, the system
silently throws away all the saved characters.

" 5 "

How To Get Started

On an input line from a terminal, the character @ cancels all the characters typed
before it on that line. The character # erases the last character typed. Successive uses
of # will erase characters back to, but not beyond, the beginning of the line; @ and #
can be typed as themselves by preceding them with \ (thus, to erase a \, you need two
#s). These default erase and kill characters can be changed; see stty (1).

The ASCII OC3 (control-s) character can be used to temporarily stop output. It is use­
ful with CRT terminals to prevent output from disappearing before it can be read. Out­
put is resumed when a OCl (control-q) or a second DC3 (or any other character, for
that matter) is typed. The DCl and DC3 characters are not passed to any other pro­
gram when used in this manner.

The ASCII DEL (a.k.a. "rubout") character is not passed to programs, but instead gen­
erates an interrupt signal, just like the "break", "interrupt", or "attention" signal. This
signal generally causes whatever program you are running to terminate. It is typically
used to stop a long printout that you do not want. However, programs can arrange
either to ignore this signal altogether, or to be notified when it happens (instead of
being terminated). The editor ed(l), for example, catches interrupts and stops what it
is doing, instead of terminating, so that an interrupt can be used to halt an editor print­
out without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a
running program to terminate, but also, if possible, generates a file with the "core
image" of the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, the UNIX system tries to be intelligent as
to whether you have a terminal with the "new-line" function, or whether it must be
simulated with a "carriage-return" and "line-feed" pair. In the latter case, all input
"carriage-return" characters are changed to "line-feed" characters (the standard line
delimiter), and a "carriage-return" and "line-feed" pair is echoed to the terminal. If
you get into the wrong mode, the stty (1) command will rescue you.

Tab characters are used freely in UNIX system source programs. If your terminal does
not have the tab function, you can arrange to have tab characters changed into spaces
during output, and echoed as spaces during input. Again, the stty (l) command will set
or reset this mode. The system assumes that tabs are set every eight character posi­
tions. The tabs (I) command will set tab stops on your terminal, if that is possible.

How to run a program. When you have successfully logged into the UNIX system, a
program called the shell is listening to your terminal. The shell reads the lines you
type, splits them into a command name and its arguments, and executes the command.
A command is simply an executable program. Normally, the shell looks first in your
current directory (see The current directory below) for a program with the given name,
and if none is there, then in system directories. There is nothing special about system­
provided commands except that they are kept in directories where the shell can find
them. You can also keep commands in your own directories and arrange for the shell
to find them there.

The command name is the first word on an input line to the shell; the command and its
arguments are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you
to indicate that it is ready for another command. The shell has many other capabilities,
which are described in detail in sh(l).

The current directory .. The UNIX system has a file system arranged in a hierarchy of
directories. When the system administrator gave you a user name, he or she also
created a directory for you (ordinarily with the same name as your user name, and
known as your login or home directory). When you log in, that directory becomes your
current or working directory, and any file name you type is, by default, assumed to be
in that directory. Because you are the owner of this directory, you have full permissions

- 6 -

How To Get Started

to read, write, alter, or destroy its contents. Permissions to access and/or modify other
directories and files will have been granted or denied to you by their respective owners,
or by the system administrator. 1'o change the current directory use cd(l).

Path names. To refer to files not in the current directory, you must use a path name.
Full path names begin with /, which is the name of the root ,directory of the whole file
system. After the slash comes the name of each directory containing the next sub­
directory (followed by a /), until finally the file name is reached (e.g., /usr/ae/filex
refers to file filex in directory ae, while ae is itself a subdirectory of usr; usr springs
directly from the root directory). See intro(2) for a formal definition of path name.

If your current directory contains subdirectories, the path names of files therein begin
with the name of the corresponding subdirectory (without a prefixed /). Without
important exception, a path name may be used anywhere a file name is required.

Important commands that modify the contents of files are cp(l), mv, and rm(l), which
respectively copy, move (i.e., rename), and remove files. 'fo find out the status of files
or directories, use ls(l). Use mkdir(l) for making directories and rmdir(l) for des·
troying them.

For a fuller discussion of the file system, see the references cited at the beginning of the
INTRODUCTION above.

Writing a program. To enter the text of a source program into a UNIX system file, use
ed (0. After the program text has been entered with the editor and written into a file
(whose name has the appropriate suffix), you can give the name of that file to the
appropriate language processor as an argument. Normally, the output of the language
processor will be left in a file in the current directory named a.out (if that output is
valuable, use mv(l) to give it a less vulnerable name). If the program is written in
assembly language, you will probably need to load with it library subroutines (see
!d(I)).

When you have finally gone through this entire process without provoking any diagnos­
tics, the resulting program can be run by giving its name to the shell in response to the
$prompt.

Your programs can receive arguments from the command line just as system programs
do; see exec (2).

Text processing. Almost all text is entered through the editor ed(l). The commands
most often used to write text on a terminal are cat (1) or pr(l). The cat (1) command
simply dumps ASCII text on the terminal, with no processing at all. The pr(l) com·
mand paginates the text, supplies headings, and has a facility for multi-column output.

Surprises. Certain commands provide inter-user communication. Even if you do not
plan to use them, it would be well to learn something about them, because someone else
may aim them at you. To communicate with another user currently logged in, write (1)
is used; mail(l) will leave a message whose presence will be announced to another user
when he or she next logs in. The corresponding entries in this manual also suggest how
to respond to these two commands if you are their target.

When you log in, a message-of-the-day may greet you before the first $.

" 7 -

Rep~ace this

page with the

Table of Contents

tab separatorn

TABLE OF CONTENTS

L Commands and Application Programs

intro • • introduction to commands and application programs
300 handle special functions of DASI 300 and 300s terminals
4014•..... paginator for the TEKTRONIX 4014 terminal
450 . • • han<lle special functions of the DASI 450 terminal
admin • create and administer secs files
ar . archive and library maintainer for portable archives
as common assembler
asa interpret ASA carriage control characters
at execute commands at a later time
awk pattern scanning and processing language
banner . make posters
basename deliver portions of path names
basic . BASIC Language Interpreter
be . . . • arbitrary-precision arithmetic language
bdiff . big diff
bfs . big file scanner
cal . print calendar
calendar . . • • reminder service
cat . . . • . concatenate and print files
cb • C program beautifier
cc C compiler
cd . change working directory
cdc . change the delta commentary of an secs delta
cflow • cflow- generate C flowgraph
chmod . change mode
chown • change owner or group
cmp compare two files
comb combine secs deltas
comm . select or reject lines common to two sorted files
conv common object file converter
cp . • • copy, link or move files
cpio . . copy file archives in and out
cpp the C language preprocessor
cprs • . . compress a common object file
crontab . • user crontab file
crypt encode/decode
csplit context split
ct spawn getty to a remote terminal
ctcinfo . display information about cartridge tape
ctrace . C program debugger
cu call another UNIX system
cut . cut out selected fields of each line of a file
cxref . generate C program cross-reference
date print and set the date
de desk calculator
delta • • . . make a delta (change) to an secs file
deroff remove nroff/troff, tbl, and eqn constructs
diff . • . differential file comparator
diff3 • 3-way differential file comparison
dircmp • • • directory comparison

- 1 -

Table of Contents

dis object code disassembler
dump . . dump selected parts of an object file
echo • . • . echo arguments
ed • . text editor
edit . . text editor (variant of ex for casual users)
efl • . . . • Extended Fortran Language
egrep • search a file for a pattern
enable enable/disable LP printers
env . . . • • . . . set environment for command execution
ex . • text editor
expr . evaluate arguments as an expression
f77 • • Fortran 77 compiler
factor factor a number
fgrep • . . • . • • • . search a file for a pattern
file • • . . determine file type
find . • • find files
fsplit•...... split f77, ratfor, or efl files
gdev • graphical device routines and filters
ged • • • graphical editor
get • get a version of an secs file
getopt • • . . • parse command options
glossary • definitions of common UNIX system terms and symbols
graph • • • . . draw a graph
graphics • . . • access graphical and numerical commands
greek • • . . . select terminal filter
grep • • • . . . search a file for a pattern
gutil • . • • . . . graphical utilities
help • UNIX System help facility
help.secs . . . • ask for help with message numbers or SCCS commands
helpadm • • • . make changes to the lhelpR database
hp handle special functions of Hewlett-Packard 2640 and 2621-series terminals
hpio Hewlett-Packard 2645A terminal tape file archiver
ipcrm • remove a message queue, semaphore set or shared memory id
ipcs • . . . report inter-process communication facilities status
join . relational database operator
kill • . . • terminate a process
Id • link editor for common object files
lex • . . • generate programs for simple lexical tasks
line • . . • . . . • read one line
lint . • . a C program checker
list • . . . produce C source listing from a common object files
locate • identify a UNIX system command using keywords
login • • • • . . . • . . . • . • . sign on
logname get login name
!order . find ordering relation for an object library
Ip send/cancel requests to an LP line printer
lpstat print LP status information
Is • . . • . . • • . • • list contents of directory
m4 • . . . • • • • . • . . macro processor
machid . . • • • • provide truth value about your processor type
mail • . • . • . . . • . . . send mail to users or read mail
mailx . . • . . . • . • • . . • • . interactive message processing system
make • . maintain, update, and regenerate groups of programs

- 2 -

Table of Contents

makekey • generate encryption key
mesg • . . permit or deny messages
mkdir make a directory
newform change the format of a text file
news . print news items
nice • run a command at low priority
nl • line numbering filter
nm print name list of common object file
nohup . run a command immune to hangups and quits
od • . . octal dump
pack • compress and expand files
passwd . • change login password
paste • . . . merge same lines of several files or subsequent lines of one file
pg • file perusal filter for CR 'fs
pr print files
prof • display profile data
prs . print an secs file
ps • • . report process status
pwd . • . . . working directory name
ratfor • rational Fortran dialect
regcmp • • regular expression compile
rm . remove files or directories
rmdel . remove a delta from an SCCS file
sact . print current SCCS file editing activity
sag system activity graph
sar system activity reporter
sccsdiff . compare two versions of an SCCS file
sdb • symbolic debugger
sdiff . side,by"side difference program
sed • • stream editor
setup . . • . initialize system for first user
sh shell, the standard/restricted command programming language
sh! . shell layer manager
size print section sizes of common object files
sleep . suspend execution for an interval
sort . sort and/or merge files
spell . find spelling errors
spline . interpolate smooth curve
split • split a file into pieces
starter . . . • . . • information about the UNIX system for beginning users
stat • statistical network useful with graphical commands
strip . strip symbol and line number information from a common object file
stty set the options for a terminal
sum print checksum and block count of a file
sysadm . menu interface to do system administration
tabs set tabs on a terminal
tail • deliver the last part of a file
tar • . tape file archiver
tee • • pipe fitting
test • condition evaluation command
time • • • time a command
timex time a command; report process data and system activity
toe • graphical table of contents routines

- 3 -

Table of Contents

touch . update access and modification times of a file
tplot • graphics filters
tput • query terminfo database
tr . translate characters
true . . . provide truth values
tsort topological sort
tty . . get the name of the terminal
umask set file-creation mode mask
uname . print name of current UNIX system
unget . undo a previous get of an secs file
uniq report repeated lines in a file
units • . . conversion program
usage . retrieve a command description and usage examples
uucp UNIX-to-UNIX system copy
uustat . uucp status inquiry and job control
uuto public UNIX system to UNIX system file copy
uux . UNIX-to-UNIX system command execution
val . . • . • validate secs file
vc • . . . • version control
vi • screen-oriented (visual) display editor based on ex
wait . await completion of process
wall . . • . write to all users
we . • . . . word count
what • • . . identify secs files
who who is on the system
write write to another user
xargs . construct argument list(s) and execute command
yacc yet another compiler-compiler

- 4 -

Replace this

page with the

Permuted Index

tab separator.

PERMUTED INDEX

/of Hewlett-Packard 2640 and 2621-series terminals.
functions of Hewlett-Packard 2640 and 2621-series/ /special

hpio: Hewlett-Packard 2645A terminal tape file/
functions of DASI 300 and/ 300, 300s: handle special . .
/special functions of DASI 300 and 300s terminals.

of DASI 300 and 300s/ 300, 300s: handle special functions
functions of DASI 300 and 300s terminals. /special

comparison. diff3: 3-way differential file
TEKTRONIX 4014 terminal. 4014: paginator for the

paginator for the TEKTRONIX 4014 terminal. 4014:
of the DASI 450 terminal. 450: handle special functions

special functions of the DASI 450 terminal. 450: handle
f77: Fortran 77 compiler.•

of a file. touch: update access and modification times
commands. graphics: access graphical and numerical

sag: system activity graph.
sar: system activity reporter.

current secs file editing activity. sact: print
report process data and system activity. /time a command;

SCCS files. admin: create and administer
admin: create and administer secs files. .

menu interface to do system administration. sysadm:
sort: sort and/or merge files.

introduction to commands and application programs. intro:
maintainer for portable/ ar: archive and library . .

language. be: arbitrary-precision arithmetic
for portable archives. ar: archive and library maintainer
2645A terminal tape file archiver. /Hewlett-Packard

tar: tape file archiver. . •
maintainer for portable archives. I archive and library

cpio: copy file archives in and out.
command. xargs: construct argument list (s) and execute

expr: evaluate arguments as an expression.
echo: echo arguments.

be: arbitrary-precision arithmetic language.
expr: evaluate arguments as an expression.

as: common assembler.
characters. asa: interpret ASA carriage control

control characters. asa: interpret ASA carriage
numbers or SCCS/ help: ask for help with message

as: common assembler.
a later time. at, batch: execute commands at

wait: await completion of process.
processing language. awk: pattern scanning and

banner: make posters.
(visual) display editor based on ex. /screen-oriented

portions of path names. basename, dirname: deliver .
Interpreter. basic: BASIC Language . .

basic: BASIC Language Interpreter.
later time. at, batch: execute commands at a

arithmetic language. be: arbitrary-precision
bdiff: big diff.

ch: C program beautifier.
about the UNIX system for beginning users. /information

bfs: big file scanner.
sum: print checksum and block count of a file.

cc: C compiler.

- 1 -

hp(I)
hp(!)
hpio(t)
300(1)
300(1)
300(1)
300(1)
diff3 (I)
4014(1)
4014(1)
450(1)
450(1)
f77(1)
touch(!)
graphics(IG)
sag(IG)
sar(t)
sact(t)
timex(I)
admin(I)
admin(I)
sysadm(t)
sort(!)
intro(!)
ar(I)
be(t)
ar(t)
hpio(t)
tar(!)
ar(I)
cpio(t)
xargs(t)
expr(t)
echo(!)
be(t)
expr(t)
as(t)
asa(l)
asa(t)
help.secs(!)
as(!)
at(!)
wait(!)
awk(t)
banner(!)
vi(I)
basename(t)
basic(!)
basic(!)
at(I)
bc(I)
bdiff(t)
cb(I)
starter(!)
bfs(I)
sum(I)
cc(I)

Permuted Index

ell ow- generate
cpp: the

cb:
lint: a

cxref: generate
ctrace:

object files. list: produce

de: desk
cal: print

cu:
to an LP line printer. Ip,

asa: interpret ASA
display information about

text editor (variant of ex for
files.

commentary of an secs delta.

delta: make a delta
interpret ASA carriage control

tr: translate
lint: a C program

file. sum: print
chown,

group.

dis: object

comb:
common to two sorted files.

nice: run a
examples. usage: retrieve a

env: set environment for
uux: UN!X-to-UNIX system

quits. nohup: run a
getopt: parse

/shell, the standard/restricted
and system/ timex: time a

test: condition evaluation
time: time a

locate: identify a UNIX system
argument list(s) and execute

intro: introduction to
at, batch: execute

access graphical and numerical
with message numbers or secs

network useful with graphical
cdc: change the delta

C ftowgraph.
C language preprocessor.
C program beautifier.
C program checker.
C program cross-reference.
C program debugger.
C source listing from a common
cal: print calendar.
calculator.
calendar.
calendar: reminder service.
call another UNIX system.
cancel: send/cancel requests
carriage control characters.
cartridge tape. /etc/ctcinfo:
casual users). edit:
cat: concatenate and print
cb: C program beautifier.
cc: C compiler.
cd: change working directory.
cdc: change the delta
cftow- generate C ftowgraph.
(change) to an SCCS file.
characters. asa:
characters.
checker.
checksum and block count of a
chgrp: change owner or group.
chmod: change mode.
chown, chgrp: change owner or
cmp: compare two files.
code disassembler.
comb: combine secs deltas.
combine secs deltas. . .
comm: select or reject lines .
command at low priority.
command description and usage
command execution.
command execution.

command immune to hangups and
command options. • •
command programming language.
command; report process data
command
command.
command using keywords.
command. xargs: construct
commands and application/
commands at a later time.
commands. graphics:
commands. help: ask for help
commands. stat: statistical
commentary of an secs delta.

as: common assembler.
conv: common object file converter.

cprs: compress a common object file.
nm: print name list of common object file.

line number information from a common object file. I and
Id: link editor for common object files.

e source listing from a common object files. /produce

- 2 -

cftow(l)
cpp(l)
cb(I)
lint(!)
cxref(l)
ctrace(l)
list(\)
cal(\)
de(\)
cal(!)
calendar(\)
cu(Je)
lp(l)
asa(l)
ctcinfo(l)
edit (I)
cat(\)
cb(l)
cc(!)

cd(i)
cdc(l)
cftow(l)
delta(!)
asa(l)
tr(l)
lint(\)
sum(!)
chown(l)
chmod(l)
chown(l)
cmp(l)
dis(\)
comb(!)
comb(\)
comm(\)
nice(\)
usage(!)
env(l)
uux(JC)

nohup(l)
getopt(I)
sh(\)
timex(l)
test(\)
time(!)
locate(\)
xargs(l)
intro(!)
at(!)
graphics(!G)
help.secs(!)
stat(!G)
cdc(I)
as(!)
conv(\)
cprs(l)
nm(\)
strip(\)
ld(l)
list(!)

size: print section sizes of common object files.
comm: select or reject lines common to two sorted files. . . .

glossary: definitions of common UNIX system terms and/
ipcs: report inter-process communication facilities/

diff: differential file comparator.
cmp: compare two files. . . .

SCCS file. sccsdiff: compare two versions of an
diff3: 3-way differential file comparison.

dircmp: directory comparison.
regcmp: regular expression compile.

cc: C compiler.
f77: Fortran 77 compiler.

yacc: yet another compiler-compiler.
wait: await completion of process.

cprs: compress a common object file.
pack, peat, unpack: compress and expand files.

cat: concatenate and print files.
test: condition evaluation command.

execute command. xargs: construct argument list (s) and
nroff/troff, tbl, and eqn constructs. deroff: remove

ls: list contents of directory.
toe: graphical table of contents routines.

csplit: context split.
asa: interpret ASA carriage control characters.
uucp status inquiry and job control. uustat: .

vc: version control.
converter. conv: common object file

units: conversion program.
conv: common object file converter.

cpio: copy file archives in and out.
cp, In, mv: copy, link or move files.

uuname: UNIX-to-UNIX system copy. uucp, uulog,
system to UNIX system file copy. /unpick: public UNIX

sum: print checksum and block count of a file.
we: word count. • . . • •

files. cp, In, mv: copy, link or move
and out. cpio: copy file archives in

preprocessor. cpp: the C language . • . .
file. cprs: compress a common object

files. admin: create and administer SCCS
crontab: user crontab file.

crontab: user crontab file.
cxref: generate C program cross-reference. . . .

pg: file perusal filter for CR Ts.
crypt: encode/decode.
csplit: context split.

terminal. ct: spawn getty to a remote
ctrace: C program debugger.
cu: call another UNIX system.

activity. sact: print current secs file editing
uname: print name of current UNIX system. . .

spline: interpolate smooth curve.
of each line of a file. cut: cut out selected fields

each line of a file. cut: cut out selected fields of .
cross-reference. cxref: generate C program

/handle special functions of DASI 300 and 300s terminals.
special functions of the DASI 450 terminal. /handle

/time a command; report process data and system activity.
prof: display profile data.

make changes to the IhelpR database. helpadm:

- 3 -

Permuted Index

size(l)
comm(!)
glossary(!)
ipcs(l)
diff(l)
cmp(l)
sccsdiff(1)
diff3(!)
dircmp(l)
regcmp(l)
cc(!)
f77(1)
yacc(l)
wait(J)
cprs(J)
pack(l)
cat(!)
test(l)
xargs(l)
deroff(I)
Is(!)
toc(lG)
csplit(l)
asa(l)
uustat(lC)
vc(I)
conv(l)
units(!)
conv(l)
cpio(l)
cp(l)
uucp(lC)
uuto(JC)
sum(!)
wr,(I)
cp(l)
cpio(l)
cpp(l)
cprs(l)
admin(l)
crontab(I)
crontab(l)
cxref(J)
pg(l)
crypt(!)
csplit(l)
ct(lC)
ctrace(l)
cu(lC)
sact(l)
uname(l)
spline(!G)
cut(!)
cut(!)
cxref(l)
300(1)
450(1)
timex(l)
prof(!)
helpadm(l)

Permuted Index

join: relational database operator.
!put: query terminfo data base.

date: print and set the date.
date: print and set the date.
de: desk calculator.

ctrace: C program debugger.
sdb: symbolic debugger.

system terms and/ glossary: definitions of common UNIX
names. basename, dirname: deliver portions of path

file. tail: deliver the last part of a
delta commentary of an SCCS delta. cdc: change the .

file. delta: make a delta (change) to an SCCS
delta. cdc: change the delta commentary of an SCCS

rmdel: remove a delta from an SCCS file. . .
to an SCCS file. delta: make a delta (change)

comb: combine SCCS deltas.
mesg: permit or deny messages.

tbl, and eqn constructs. derotf: remove nroff/troff,
usage: retrieve a command description and usage/

de: desk calculator.
file: determine file type.

/tekset, td: graphical device routines and filters.
ratfor: rational Fortran dialect.

bdiff: big diff. •
comparator. diff: differential file
comparison. diff3: 3-way differential file

sdiff: side-by-side difference program.
diff: differential file comparator.

diff3: 3-way differential file comparison.
dircmp: directory comparison.

rm, rmdir: remove files or directories.
cd: change working directory.

dircmp: directory comparison.
ls: list contents of directory.

mkdir: make a directory.
pwd: working directory name.

path names. basename, dirname: deliver portions of
dis: object code disassembler.

printers. enable, disable: enable/disable LP
dis: object code disassem bier.

vi: screen-oriented (visual) display editor based on ex.
cartridge tape. /etc/ctcinfo: display information about

prof: display profile data. . . .
graph: draw a graph.

an object file. dump: dump selected parts of
od: octal dump.

object file. dump: dump selected parts of an
echo: echo arguments.

echo: echo arguments. . .
ed, red: text editor.

ex for casual users). edit: text editor (variant of
sact: print current SCCS file editing activity. . .

I (visual) display editor based on ex.
ed, red: text editor.

ex: text editor. . . . • . .
files. Id: link editor for common object

ged: graphical editor. . •
sed: stream editor.

casual users). edit: text editor (variant of ex for
Language. efl: Extended Fortran

- 4 "

join(!)
tput(l)
date(!)
date(!)
dc(l)
ctrace(l)
sdb(l)
glossary(!)
basename(l)
tail(!)
cdc(l)
delta(\)
cdc(l)
rmdel(!)
delta(!)
comb(!)
mesg(l)
deroff(l)
usage(!)
de(\)
file(!)
gdev(IG)
ratfor(l)
bditf(l)
diff(l)
diff3(1)
sdiff(l)
diff(l)
diff3(1)
dircmp(l)
rm(!)
cd(l)
dircmp(l)
Is(\)
mkdir(l)
pwd(l)
basename(l)
dis(!)
enable(\)
dis(\)
vi(!)
ctcinfo(l)
prof(!)
graph(IG)
dump(\)
od(l)
dump(!)
echo(!)

, echo(!)
ed(l)
edit(\)
sact(l)
vi(\)
ed(l)
ex(\)
ld(l)
ged(!G)
sed(l)
edit(!)
eft(l)

fsplit: split f/7, ratfor, or efl files.
pattern. egrep: search a file for a

enable/disable LP printers. enable, disable:
enable, disable: enable/disable LP printers.

crypt: encode/ decode.
makekey: generate encryption key.

command execution. env: set environment for
execution. env: set environment for command

remove nroff/troff, tbl, and eqn constructs. deroff: . .
graphical device/ hpd, erase, hardcopy, tekset, td:

hashcheck: find spelling errors. /hashmake, spellin,
information about cartridge/ /etc/ctcinfo: display ..

expression. expr: evaluate arguments as an
test: condition evaluation command.

edit: text editor (variant of ex for casual users).
ex: text editor.

display editor based on ex. /screen-oriented (visual)
construct argument list (s) and execute command. xargs:

time. at, batch: execute commands at a later
set environment for command execution. env:

sleep: suspend execution for an interval.
UNIX-to-UNIX system command execution. uux:

peat, unpack: compress and expand files. pack,
expression. expr: evaluate arguments as an

regcmp: regular expression compile.
expr: evaluate arguments as an expression.

efl: Extended Fortran Language.
f/7: Fortran 77 compiler.

fsplit: split f/7, ratfor, or efl files. .
factor: factor a number.

factor: factor a number.
true, false: provide truth values.

pattern. fgrep: search a file for a
/2645A terminal tape file archiver.

tar: tape file archiver.
cpio: copy file archives in and out.

diff: differential file comparator.
diff3: 3-way differential file comparison.

conv: common object file converter.
UNIX system to UNIX system file copy. /unpick: public

cprs: compress a common object file.
crontab: user crontab file.

fields of each line of a file. cut: cut out selected
a delta (change) to an SCCS file. delta: make

file: determine file type.
selected parts of an object file. dump: dump

sac!: print current SCCS file editing activity.
egrep: search a file for a pattern.
fgrep: search a file for a pattern.
grep: search a file for a pattern.

get: get a version of an SCCS file.
split: split a file into pieces.

change the format of a text file. newform:
name list of common object file. nm: print

or subsequent lines of one file. /lines of several files
pg: file perusal filter for CR Ts.

prs: print an SCCS file.
remove a delta from an SCCS file. rmdel:

bfs: big file scanner.
two versions of an SCCS file. sccsdiff: compare

- 5 -

Permuted Index

fsplit(l)
egrep(I)
enable(!)
enable(!)
crypt(l)
makekey(l)
env(l)
env(l)
deroff(l)
gdev(\G)
spell(l)
ctcinfo(l)
expr(l)
test(!)
edit(!)
ex(J)
vi(l)
xargs(l)
at(!)
env(I)
sleep(l)
uux(IC)
pack(!)
expr(l)
regcmp(I)
expr(l)
eft(l)
f77(1)
fsplit(I)
factor(!)
factor(])
true(l)
fgrep(l)
hpio(I)
tar(!)
cpio(l)
diff(l)
diff3(1)
conv(l)
uuto(IC)
cprs(l)
crontab(I)
cut(!)
delta(!)
file(l)
dump(!)
sact(l)
egrep(J)
fgrep(l)
grep(I)
get(l)
split(l)
newform(l)
nm(l)
paste(!)
pg(!)
prs(l)
rmdel(I)
bfs(I)
sccsdiff(l)

Permuted Index

from a common object file. /line number information
checksum and block count of a file. sum: print

deliver the last part of a file. tail:
and modification times of a file. touch: update access

file: determine file type. .
undo a previous get of an SCCS file. unget:

report repeated lines in a file. uniq:
val: validate SCCS file. . . .

umask: set file-creation mode mask.
create and administer SCCS files. admin:

cat: concatenate and print files.
cmp: compare two files.

lines common to two sorted files. comm: select or reject
cp, In, mv: copy, link or move files.

find: find files.
split f/7, ratfor, or efl files. fsplit:

link editor for common object files. Id: .
listing from a common object files. list: produce C source

rm, rmdir: remove files or directories.
/merge same lines of several files or subsequent lines of/

unpack: compress and expand files. pack, peat,
pr: print files.

section sizes of common object files. size: print
sort: sort and/ or merge files.

what: identify SCCS files.
pg: file perusal filter for CRTs.

greek: select terminal filter.
nl: line numbering filter.

graphical device routines and filters. /tekset, td:
tplot: graphics filters.

find: find files.
find: find files.

object library. lorder: find ordering relation for an
hashmake, spellin, hashcheck: find spelling errors. spell,

tee: pipe fitting.
cflow- generate C flowgraph.

newfonn: change the format of a text file.
f/7: Fortran 77 compiler.

ratfor: rational Fortran dialect. . .
efl: Extended Fortran Language.

I and line number information from a common object file.
list: produce C source listing from a common object files.

rmdel: remove a delta from an SCCS file.
efl files. fsplit: split f/7, ratfor, or .

300, 300s: handle special functions of DASI 300 and 300s/
2640 and/ hp: handle special functions of Hewlett-Packard
terminal. 450: handle special functions of the DASI 450

ged: graphical editor.
cflow- generate C flowgraph. .

cross-reference. cxref: generate C program . .
makekey: generate encryption key.

lexical tasks. lex: generate programs for simple
get: get a version of an secs file.
file. get: get a version of an secs

logname: get login name.
unget: undo a previous get of an secs file.

tty: get the name of the terminal.
getopt: parse command options.

ct: spawn getty to a remote terminal.
common UNIX system terms and/ glossary: definitions of

- 6 -

strip(!)
sum(!)
tail(!)
touch(!)
file(\)
unget(\)
uniq(J)
val(!)
umask(l)
admin(l)
cat(\)
cmp(J)
comm(!)
cp(l)
find(!)
fsplit(l)
Id(!)
list(!)
rm(!)
paste(!)
pack(!)
pr(l)
size(!)
sort(\)
what(!)
pg(!)
greek(\)
nl(l)
gdev(IG)
tplot(\G)
find(!)
find(!)
!order(!)
spell(!)
tee(!)
cflow(I)
newform(I)
f77 (I)
ratfor(l)
efl(l)
strip(!)
list(!)
rmdel(l)
fsplit(l)
300(1)
hp(!)
450(1)
ged(!G)
cflow(J)
cxref(l)
makekey(l)
lex(!)
get(!)
get(!)
logname(l)
unget(J)
tty (I)
getopt(I)
ct(IC)
glossary (I)

graph: draw a graph.
graph: draw a graph.

sag: system activity graph.
commands. graphics: access graphical and numerical

/network useful with graphical commands.
/erase, hardcopy, tekset, td: graphical device routines and/

ged: graphical editor.
routines. toe: graphical table of contents

gutil: graphical utilities.
numerical commands. graphics: access graphical and

tplot: graphics filters.
greek: select terminal filter.

pattern. grep: search a file for a
chown, chgrp: change owner or group.

update, and regenerate groups of programs. /maintain,
gutil: graphical utilities.

DASI 300 and 300s/ 300, 300s: handle special functions of
Hewlett-Packard 2640 and/ hp: handle special functions of

the DASI 450 terminal. 450: handle special functions of
nohup: run a command immune to hangups and quits.

graphical device/ hpd, erase, hardcopy, tekset, td: . . .
spell, hashmake, spellin, hashcheck: find spelling/ .

find spelling errors. spell, hashmake, spellin, hashcheck:
message numbers or SCCS/ help: ask for help with .

help: UNIX System help facility.
facility. help: UNIX System help

SCCS commands. help: ask for help with message numbers or
IhelpR database. helpadm: make changes to the

handle special functions of Hewlett-Packard 2640 and/ hp:
tape file archiver. hpio: Hewlett-Packard 2645A terminal

of Hewlett-Packard 2640 and/ hp: handle special functions
td: graphical device routines/ hpd, erase, hardcopy, tekset,

terminal tape file archiver. hpio: Hewlett-Packard 2645A
semaphore set or shared memory id. /remove a message queue,

using keywords. locate: identify a UNIX system command
what: identify SCCS files.

helpadm: make changes to the JhelpR database.
nohup: run a command immune to hangups and quits.

user. setup: initialize system for first . .
uustat: uucp status inquiry and job control.

system. mailx: interactive message processing
administration. sysadm: menu interface to do system

spline: interpolate smooth curve.
characters. asa: interpret ASA carriage control

basic: BASIC Language Interpreter.
facilities/ ipcs: report inter-process communication

suspend execution for an interval. sleep:
commands and application/ intro: introduction to
application programs. intro: introduction to commands and

semaphore set or shared/ ipcrm: remove a message queue,
communication facilities/ ipcs: report inter~process

news: print news items. . •
operator. join: relational database

makekey: generate encryption key.
a UNIX system command using keywords. locate: identify

kill: terminate a process.
scanning and processing language. awk: pattern

arbitrary-precision arithmetic language. be:
efl: Extended Fortran Language. •

basic: BASIC Language Interpreter.

- 7 -

Permuted Index

graph(lG)
graph(lG)
sag(!G)
graphics(lG)
stat(IG)
gdev(lG)
ged(lG)
toc(lG)
gutil(IG)
graphics(JG)
tplot(!G)
greek(l)
grep(l)
chown(J)
make(!)
gutil(IG)
300(1)
hp(!)
450(1)
nohup(l)
gdev(IG)
spell(\)
spell(!)
help.secs(!)
help(!)
help(!)
help.secs(!)
helpadm(l)
hp(!)
hpio(l)
hp(!)
gdev(JG)
hpio(l)
ipcrm(l)
locate(!)
what(!)
helpadm(l)
nohup(l)
setup(!)
uustat(lC)
mailx(l)
sysadm(l)
spline(lG)
asa(l)
basic(!)
ipcs(l)
sleep(!)
intro(!)
intro(!)
ipcrm(l)
ipcs(l)
news(!)
join(!)
makekey(l)
locate(!)
kill(!)
awk(l)
be(!)
efi(l)
basic(!)

Permuted Index

cpp: the C language preprocessor.
command programming language. /standard/restricted

shl: shell layer manager.
object files. Id: link editor for common

simple lexical tasks. lex: generate programs for
generate programs for simple lexical tasks. lex:

relation for an object library. /find ordering
portable/ ar: archive and library maintainer for

line: read one line.
strip: strip symbol and line number information from a/

nl: line numbering filter.
out selected fields of each line of a file. cut: cut

send/cancel requests to an LP line printer. Ip, cancel:
line: read one line.

files. comm: select or reject lines common to two sorted
uniq: report repeated lines in a file.

of several files or subsequent line.• of one file. /same lines
subsequent/ paste: merge same lines of several files or . . .

files. Id: link editor for common object
cp, In, mv: copy, link or move files.

lint: a C program checker.
ls: list contents of directory. .

nm: print name list of common object file.
from a common object files. list: produce C source listing
files. list: produce C source listing from a common object

xargs: construct argument list(s) and execute command.
files. cp, In, mv: copy, link or move

command using keywords. locate: identify a UNIX system
logname: get login name.

passwd: change login password.
login: sign on.
logname: get login name.

for an object library. lorder: find ordering relation
nice: run a command at low priority.
requests to an LP line/ Ip, cancel: send/cancel . .

send/cancel requests to an LP line printer. Ip, cancel:
disable: enable/disable LP printers. enable, .

lpstat: print LP status information.
information. lpstat: print LP status

directory. ls: list contents of . .
m4: macro processor.

m4: macro processor.
send mail to users or read mail. mail, rmail: . .

users or read mail. mail, rmail: send mail to
mail, rmail: send mail to users or read mail.

processing system. mailx: interactive message
regenerate groups of/ make: maintain, update, and

ar: archive and library maintainer for portable/ .
secs file. delta: make a delta (change) to an

mkdir: make a directory.
database. helpadm: make changes to the IhelpR

regenerate groups of/ make: maintain, update, and
banner: make posters.

key. makekey: generate encryption
shl: shell layer manager.

umask: set file-creation mode mask.
queue, semaphore set or shared memory id. /remove a message

administration. sysadm: menu interface to do system
sort: sort and/or merge files.

files or subsequent/ paste: merge same lines of several

" 8 "

cpp(J)
sh(!)
sht(J)
Id(!)
lex(!)
lex(l)
lorder(l)
ar(l)
line(!)
strip(!)
n!(i)
cut(!)
Ip(!)
line(!)
comm(!)
uniq(J)
paste(!)
paste(!)
Id(!)
cp(l)
lint(!)
ls(l)
nm(!)
list(!)
list(l)
xargs(l)
cp(l)
locate(!)
logname(l)
passwd(l)
login(!)
logname(J)
lorder(i)
nice(!)
Ip(!)
lp(I)
enable(!)
lpstat(I)
lpstat(l)
ls(!)
m4(J)
m4(1)
mail(!)
mail(!)
mail(!)
mailx(l)
make(!)
ar(l)
delta(!)
mkdir(l)
helpadm(l)
make(\)
banner(!)
makekey(l)
sbl(I)
umask(l)
ipcrm(l)
sysadm(J)
sort(!)
paste(!)

mesg: permit or deny messages.
help: ask for help with message numbers or SCCS/

mailx: interactive
or shared/ ipcrm: remove a

mesg: permit or deny

cbmod: change
umask: set file"creation

touch: update access and
cp, In, mv: copy, link or

cp, In,
commands. stat: statistical

a text file.

message processing system.
message queue, semaphore set
messages. , , , , , ,
mkdir: make a directory.
mode. , , , , , , , ,
mode mask.
modification times of a file.
move files.
mv: copy, link or move files.
network useful with graphical
newform: change the format of

news: print news items.
news: print news items.

priority. nice: run a command at low
nl: line numbering filter.

object file. nm: print name list of common
hangups and quits. nohup: run a command immune to

constructs. deroff: remove nroff/troff, tbl, and eqn
nl: line numbering filter.

graphics: access graphical and numerical commands.
dis: object code disassembler.

conv: common object file converter.
cprs: compress a oommon object file.
dump selected parts of an object file. dump: ,

nm: print name list of common object file.
information from a common object file. /and line number

Id: link editor for common object files.
C source listing from a common object files. list: produce

print section sizes of common object files. size:
find ordering relation for an object library. !order:

od· octal dump.

join: relational database
stty: set the

getopt: parse command
object library. lorder: find

chown, chgrp: change
and expand files.

4014 terminal. 4014:
getopt:

passwd: change login
several files or subsequent/
dirname: deliver portions of

egrep: search a file for a
fgrep: search a file for a
grep: search a file for a

processing language. awk:
expand files. pack,

provide truth value about/
mesg:

pg: file
CRTs.

split: split a file into
tee:

and library maintainer for
basename, dirname: deliver

banner: make

od: octal dump. , , ,
operator. , , , , , ,
options for a terminal.
options. , , , , , ,
ordering relation for an
owner or group. , , , ,
pack, peat, unpack: compress
paginator for the TEKTRONIX
parse command options.
passwd: change login password.
password. , , , , , , ,
paste: merge same lines of
path names. basename,
pattern.
pattern.
pattern.
pattern scanning and
peat, unpack: compress and
pdpll, u3b, u3b2, u3b5, vax:
permit or deny messages.
perusal filter for CR Ts.
pg: file perusal filter for
pieces.
pipe fitting.
portable archives. /archive
portions of path names.
posters.

" 9 •

Permuted Index

mesg(J)
help.secs (I)
mailx(J)
ipcrm(l)
mesg(l)
mkdir(l)
chmod(J)
umask(l)
touch(!)
cp(l)
cp(l)
stat(IG)
newform(l)
news(!)
news(!)
nice(!)
nl(l)
nm(!)
nohup(l)
deroff(I)
nl(l)
graphics{IG)
dis(!)
conv(J)
cprs(I)
dump(!)
nm(I)
strip(!)
ld(I)
list(!)
size(!)
lorder(I)
od(l)
od(J)
join(I)
stty(l)
getopt(l)
!order(!)
chown(l)
pack(!)
4014(1)
getopt(l)
passwd(l)
passwd(i)
paste(!)
basename(l)
egrep(l)
fgrep(l)
grep(J)
awk(I)
pack(!)
machid(I)
mesg(I)
pg(!)
pg(!)
split(!)
tee(!)
ar(l)
basename(l)
banner(!)

Permuted Index

pr: print files.
cpp: the C language preprocessor,

unget: undo a previous get of an SCCS file.
prs: print an SCCS file.

date: print and set the date. . . .
cal: print calendar.

of a file. sum: print checksum and block count
editing activity. sact: print current SCCS file
cat: concatenate and print files.

pr: print files.
lpstat: print LP status information.

object file. nm: print name list of common
system. uname: print name of current UNIX

news: print news items.
object files. size: print section sizes of common

requests to an LP line printer. I cancel: send/ cancel
disable: enable/disable LP printers. enable,

nice: run a command at low priority,
timex: time a command; report process data and system/

kill: terminate a process.
ps: report process status.

wait: await completion of process.
awk: pattern scanning and processing language.
mailx: interactive message processing system.

m4: macro processor.
provide truth value about your processor type. /u3b5, vax:

a common object files. list: produce C source listing from
prof: display profile data. . .

prof: display profile data.
standard/restricted command programming lansuage. /the
pdpl l, u3b, u3b2, u3b5, vax: provide truth value about your/

true, false: provide truth vaiues. . .
prs: print an secs file.
ps: report process status.
pwd: working directory name.

tput: query terminfo database. . .
ipcrm: remove a message queue, semaphore set or shared/

command immune to hangups and quits. nohup: run a
fsplit: split f77, ratfor, or efl files. .

dialect. ratfor: rational Fortran
ratfor: rational Fortran dialect.

rmail: send mail to users or read mail. mail,
line: read one line.

ed, red: text editor.
compile, regcmp: regular expression

make: maintain, update, and regenerate groups of programs.
regcmp: regular expression compile.

sorted files. comm: select or reject lines common to two .
lorder: find ordering relation for an object/ . . .

join: relational database operator.
calendar: reminder service.

ct: spawn getty to a remote terminal.
file. rmdel: remove a delta from an SCCS

semaphore set or I ipcrm: remove a message queue,
rm, rmdir: remove files or directories.

eqn constructs. deroff: remove nroff/troff, tbl, and
uniq: report repeated lines in a file. . .

communication/ ipcs: report inter-process
timex: time a command; report process data and system/

ps: report process status.

- 10 -

pr(!)
cpp(l)
unget(l)
prs(l)
date(!)
cal(!)
sum(!)
sact(J)
cat(!)
pr(l)
lpstat(l)
nm(!)
uname(l)
news(!)
size(\)
lp(J)
enable(!)
nice(!)
timex(l)
kill(!)
ps(l)
wait(!)
awk(J)
mailx(l)
m4(!)
machid(l)
list(!)
prof(!)
prof(I)
sh(!)
machid(l)
true(!)
prs(l)
ps(l)
pwd(J)
tput(l)
ipcrm(l)
nohup(l)
fsplitCl)
ratfor(l)
ratfor(I)
mail(!)
line(!)
ed(I)
regcmp(I)
make(!)
regcmp(l)
comm(!)
lorder(l)
join(I)
calendar(!)
ct(!C)
rmdel(l)
ipcrm(l)
rm(!)
deroff(l)
uniq(l)
ipcs(l)
timex(I)
ps(i)

file. uniq: report repeated lines in a
sar: system activity reporter.

Ip, cancel: send/cancel requests to an LP line/
and usage examples. usage: retrieve a command description

directories. rm, rmdir: remove files or
read mail. mail, rmail: send mail to users or .

secs file. rmdel: remove a delta from an
directories. rm, rmdir: remove files or

/tekset, td: graphical device routines and filters.
graphical table of contents routines. toe:

standard/restricted/ sh, rsh: shell, the
nice: run a command at low priority.

hangups and quits. nohup: run a command immune to .
editing activity. sact: print current SCCS file

sag: system activity graph.
sar: system activity reporter.

bfs: big file scanner. . . . •
language. awk: pattern scanning and processing

help with message numbers or SCCS commands. help: ask for
the delta commentary of an secs delta. cdc: change

comb: combine secs deltas.
make a delta (change) to an secs file. delta:

sact: print current secs file editing activity.
get: get a version of an secs file.

prs: print an secs file.
rmdel: remove a delta from an secs file.

compare two versions of an secs file. sccsdiff:
undo a previous get of an secs file. unget:

val: validate secs file.
admin: create and administer secs files.

what: identify SCCS files.
of an secs file. sccsdiff: compare two versions

display editor based on/ vi: screen-oriented (visual)
sdb: symbolic debugger.

program. sdiff: side-by-side difference
egrep: search a file for a pattern.
fgrep: search a file for a pattern.
grep: search a file for a pattern.

files. size: print section sizes of common object
sed: stream editor.

to two sorted files. comm: select or reject lines common
greek: select terminal filter.

of a file. cut: cut out selected fields of each line
file. dump: dump selected parts of an object

ipcrm: remove a message queue, semaphore set or shared memory I
mail. mail, rmail: send mail to users or read

line printer. Ip, cancel: send/cancel requests to an LP
first user. setup: initialize system for

standard/restricted command/ sh, rsh: shell, the
queue, semaphore set or shared memory id. /a message

sh!: shell layer manager.
command programming/ sh, rsh: shell, the standard/restricted

sh!: shell layer manager.
program. sdiff: side-by-side difference

login: sign on. • , . . , .
lex: generate programs for simple lexical tasks. .

common object files. size: print section sizes of
size: print section sizes of common object files.

an interval. sleep: suspend execution for
spline: interpolate smooth curve.

- 11 -

Permuted Index

uniq(l)
sar(l)
lp(l)
usage(])
rm(!)
mail(J)
rmdel(I)
rm(!)
gdev(IG)
toe(JG)
sh (I)
nice(!)
nohup(l)
sact(l)
sag(IG)
sar(I)
bfs(J)
awk(l)
help.secs (!)
cdc(I)
comb(!)
delta(l)
sact(l)
get(!)
prs(l)
rmdel(l)
sccsdiff(1)
unget(l)
val(!)
admin(l)
what(])
sccsdiff(I)
vi(!)
sdb(i)
sdiff(l)
egrep(l)
fgrep(l)
grep(i)
size(!)
sed(I)
comm(l)
greek(l)
cut(!)
dump(!)
ipcrm(l)
mail(!)
Ip(!)
setup(!)
sh(!)
ipcrm(l)
sht(I)
sh(l)
sh!(!)
sdiff(l)
login(!)
lex(!)
size(])
size(!)
sleep(])
spline(JG)

Permuted Index

sort: sort and/or merge files.
sort: sort and/or merge files.

tsort: topological sort.
or reject lines common to two sorted files. comm: select

object files. list: produce C source listing from a common
terminal. ct: spawn getty to a remote

hashcheck: find spelling/ spell, hashmake, spellin,
spelling/ spell, hashmake, spellin, hashcheck: find

spellin, hashcheck: find spelling errors. /hashmake,
curve. spline: interpolate smooth
split: split a file into pieces.

csplit: context split.
files. fsplit: split !17, ratfor, or efl

pieces. split: split a file into .
sh, rsh: shell, the standard/restricted command/

UNIX system for beginning/ starter: information about the
useful with graphical/ stat: statistical network

with graphical/ stat: statistical network useful
lpstat: print LP status information.

control. uustat: uucp status inquiry and job
communication facilities status. /report inter-process

ps: report process status.
sed: stream editor.

number information from a/ strip: strip symbol and line
information from a/ strip: strip symbol and line number

terminal. stty: set the options for a . .
/same lines of several files or subsequent lines of one file. .

count of a file. sum: print checksum and block
interval. sleep: suspend execution for an

information from/ strip: strip symbol and line number
sdb: symbolic debugger.

common UNIX system terms and symbols. /definitions of
system administration. sysadm: menu interface to do

toe: graphical table of contents routines.
tabs: set tabs on a terminal.

tabs: set tabs on a terminal.
a file. tail: deliver the last part of

information about cartridge tape. /etc/ctcinfo: display
Hewlett-Packard 2645A terminal tape file archiver. hpio:

tar: tape file archiver. . .
tar: tape file archiver.

programs for simple lexical tasks. lex: generate
deroff: remove nroff /troff, tbl, and eqn constructs.

hpd, erase, hardcopy, tekset, td: graphical device routines/
tee: pipe fitting.

hpd, erase, hardcopy, tekset, td: graphical device/
4014: paginator for the TEKTRONIX 4014 terminal.

for the TEKTRONIX 4014 terminal. 4014: paginator
functions of the DASI 450 terminal. 450: handle special

ct: spawn getty to a remote terminal.
greek: select terminal filter.

stty: set the options for a terminal.
tabs: set tabs on a terminal.

hpio: Hewlett-Packard 2645A terminal tape file archiver.
tty: get the name of the terminal.

functions of DASI 300 and 300s terminals. /handle special
2640 and 2621-series terminals. /of Hewlett-Packard

kill: terminate a process.
tput: query terminfo database.

/of common UNIX system terms and symbols.

- 12 -

sort(l)
sort(l)
tsort(l)
comm(l)
list(!)
ct(lC)
spell(!)
spell(!)
spell(l)
spline(!G)
split(l)
csplit(l)
fsplit(l)
split(!)
sh(l)
starter(!)
stat(lG)
stat(lG)
lpstat(l)
uustat(lC)
ipcs(l)
ps(l)
sed(l)
strip(!)
strip(!)
stty(l)
paste(!)
sum(l)
sleep(l)
strip(l)
sdb(l)
glossary (1)
sysadm(l)
toc(lG)
tabs(l)
tabs(l)
tail(!)
ctcinfo(l)
hpio(l)
tar(l)
tar(l)
lex(l)
deroff(l)
gdev(lG)
tee(!)
gdev(lG)
4014(1)
4014(1)
450(1)
ct(\C)
greek(l)
stty(l)
tabs(l)
hpio(l)
tty(l)
300(1)
hp(!)
kill(l)
tput(l)
glossary (1)

command.
ed, red:

test: condition evaluation
text editor.

ex: text editor. . •
casual users). edit: text editor (variant of ex for

change the format of a text file. newform:
data and system/ timex: time a command; report process

time: time a command.
execute commands at a later time. at, batch:

time: time a command.
update access and modification times of a file. touch:

process data and system/ timex: time a command; report
contents routines. toe: graphical table of .

tsort: topological sort.
modification times of a file. touch: update access and

tplot: graphics filters.
tput: query terminfo database.
tr: translate characters.

tr: translate characters.
values. true, false: provide truth

u3b, u3b2, u3b5, va;r: provide truth value about your/ pdpl I,
true, false: provide truth values.

tsort: topological sort.
terminal. tty: get the name of the

file: determine file type. •
value about your processor type. Ivax: provide truth

truth value about your/ pdpll, u3b, u3b2, u3b5, vax: provide
value about your/ pd pl J, u3b, u3b2, u3b5, vax: provide truth
about your/ pdp 11, 113b, u3b2, u3b5, vax: provide truth value

mask. umask: set file-creation mode
UNIX system. uname: print name of current

file. unget: undo a previous get of an secs
an SCCS file. 1mget: undo a previous get of

a file. uniq: report repeated lines in
unit..:::: conversion program.

execution. uux: UNIX-to-UNIX system command
uucp, uulog, uuname: UNIX-to-UNIX system copy.

files. pack, peat, unpack: compress and expand
times of a file. touch: update access and modification

of programs. make: maintain, update, and regenerate groups
a command description and usage examples. I retrieve

description and usage/ usage: retrieve a command
stat: statistical network useful with graphical/

crontab: user crontab file.
initialize system for first user. setup:

write: write to another user.
(variant of ex for casual users). edit: text editor
mail, rmail: send mail to users or read mail.

the UNIX system for beginning users. /information about
wall: write to all users.

identify a UNIX system command using keywords. locate:
gutil: graphical utilities. •
control. uustat: uucp status inquiry and job

UNIX-to-UNIX system copy. uucp, uulog, uuname:
system copy. uucp, uulog, uuname: UNIX-to-UNIX
copy. uucp, uulog, uuname: UNIX-to-UNIX system

UNIX system file copy. unto, uupick: public UNIX system to
and joh control. uustat: uucp status inquiry

system to UNJX system file/ uuto, unpick: public UNIX .
command execution. uux: UNIX-to-UNIX system

val: validate SCCS file.

- 13 -

Permuted Index

test(!)
ed(l)
ex(\)
edit(!)
newform(l)
timex(J)
time(])
at(!)
time(!)
touch(\)
timex(J)
toc(IG)
tsort(l)
touch(!)
tplot(lG)
tput(l)
tr(!)
tr(!)
true(!)
machid(J)
true(!)
tsort(J)
tty(!)
file(!)
machid(i)
machid(I)
machid(I)
machid(I)
umask(l)
uname(l)
unget(l)
unget(l)
uniq(l)
units(!)
uux(lC)
uucp(IC)
pack(!)
touch(!)
make(!)
usage(!)
usage(!)
stat(IG)
crontab(l)
setup(!)
write(!)
edit(!)
mail(!)
starter(!)
wall(!)
locate(!)
gutil(IG)
uustat(JC)
uucp(lC)
uucp(JC)
uucp(JC)
uuto(lC)
uustat(JC)
uuto(!C)
uux(IC)
val(!)

Permuted Index

val: validate SCCS file.
/u3b2, u3b5, vax: provide truth value about your processor/

true, false: provide truth values.
users). edit: text editor (variant of ex for casual

your/ pdpl I, u3b, u3b2, u3b5, vax: provide truth value about
vc: version control.

vc: version control.
get: get a version of an secs file.

sccsdiff: compare two versions of an SCCS file.
display editor based on ex. vi: screen-oriented (visual)

on ex. vi: screen-oriented (visual) display editor based
process. wait: await completion of

wall: write to all users.
we: word count.
what: identify secs files.

who: who is on the system.
who: who is on the system.

cd: change working directory.
pwd: working directory name.
wall: write to all users.

write: write to another user.
write: write to another user.

list (s) and execute command. xargs: construct argument
compiler-compiler. yacc: yet another

- 14 -

val(!)
machid(I)
true(!)
edit(!)
machid(l)
vc(I)
vc(l)
get(!)
sccsdiff (l)
vi(!)
vi(!)
wait(!)
wall(!)
we(!)
what(!)
who(!)
who(!)
cd(l)
pwd(l)
wall(!)
write(!)
write(!)
xargs(l)
yacc(!)

Replace this

page with the

Section 1

tab separator.

INTRO(l) INTRO(l)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, commands delivered with the AT&T
3B2 Computer. The headings on each page identify the utilities to which the com­
mand belongs. Only the Essential Utilities is installed on the computer at the time
of delivery; the other utilities must be installed from floppy disks.

COMMAND SYNTAX
Unless otherwise noted, commands described accept options and other arguments
according to the following syntax:

name [option (s)] !cmdarg (s) l
where:

name

option

noargletter

argletter

optarg

cmdarg

The name of an executable file.

- noargletter(s) or,
- argletter < > optarg
where < > is optional white space.

A single letter representing an option without an argument.

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding argletter.

Path name (or other command argument) not beginning with - or,
- by itself indicating the standard input.

SEE ALSO
getopt(l).
exit(2), getopt(3C), wait(2) in the AT&T 3B2 Computer Programmer Reference
Manual.
How to Get Started, at the front of this volume.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied by the
system and giving the cause for termination, and (in the case of "normal" termina­
tion) one supplied by the program (see wait (2) and exit (2)). The former byte is 0
for normal termination; the latter is customarily 0 for successful execution and non­
zero to indicate troubles such as erroneous parameters, bad or inaccessible data, or
other inability to cope with the task at hand. It is called variously "exit code", "exit
status", or "return code", and is described only where special conventions are
involved.

WARNINGS

7/85

Some commands produce unexpected results when processing files containing null
characters. These commands often treat text input lines as strings and therefore
become confused upon encountering a null character (the string terminator) within
a line.

- 1 - 7/85

300(1) (Terminal Filters Utilities) 300(1)

NAME
300, 300s - handle special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+12] [-n] [-dt,l,c]

300s [+12] [-n] [-dt,l,c]

DESCRIPTION

7/85

The 300 command supports special functions and optimizes the use of the DASI 300
(GSI 300 or DTC 300) terminal; 300s performs the same functions for the DASI
300s (GSI 300s or DTC 300s) terminal. It converts half-line forward, half-line
reverse, and full-line reverse motions to the correct vertical motions. In the follow­
ing discussion of the 300 command, it should be noted that unless your system con­
tains the DOCUMENTER'S WORKBENCH Software System references to certain
commands (e.g., nroff, neqn, eqn, etc.) will not work. It also attempts to draw
Greek letters and other special symbols. It permits convenient use of 12-pitch text.
It also reduces printing time 5 to 70%. The 300 command can be used to print
equations neatly, in the sequence:

neqn file . . . I nroff I 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on before
300 is used.

The behavior of 300 can be modified by the optional flag arguments to handle 12-
pitch text, fractional line spacings, messages, and delays.

+ 12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals normally
allow only two combinations: 10-pitch, 6 lines/inch, or 12-pitch, 8
lines/inch. To obtain the 12-pitch, 6 lines per inch combination, the user
should turn the PITCH switch to 12, and use the + 12 option.

-n controls the size of half-line spacing. A half-line is, by default, equal to 4
vertical plot increments. Because each increment equals 1/48 of an inch,
a 10-pitch line-feed requires 8 increments, while a 12-pitch line-feed
needs only 6. The first digit of n overrides the default value, thus allow­
ing for individual taste in the appearance of subscripts and superscripts.
For example, nroff half-lines could be made to act as quarter-lines by
using -2. The user could also obtain appropriate half-lines for 12-pitch,
8 lines/inch mode by using the option - 3 alone, having set the PITCH
switch to 12-pitch.

-dt,l,c controls delay factors. The default setting is -d3,90,30. DASI 300 ter­
minals sometimes produce peculiar output when faced with very long
lines, too many tab characters, or long strings of blankless, non-identical
characters. One null (delay) character is inserted in a line for every set
of t tabs, and for every contiguous string of c non-blank, non-tab charac­
ters. If a line is longer than l bytes, 1 +(total length) /20 nulls are
inserted at the end of that line. Items can be omitted from the end of the
list, implying use of the default values. Also, a value of zero for t (c)
results in two null bytes per tab (character). The former may be needed
for C programs, the latter for files like /etc/passwd. Because terminal
behavior varies according to the specific characters printed and the load
on a system, the user may have to experiment with these values to get
correct output. The -d option exists only as a last resort for those few
cases that do not otherwise print properly. For example, the file
/etc/passwd may be printed using -d3,30,5. The value -d0,1 is a good

- l - 7/85

300 (J) (Terminal Filters Utilities) 300(1)

one to use for C programs that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing carriage
return and line-feed delays. The stty (1) modes nlO cr2 or nlO cr3 are
recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests, when it is
necessary to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed key to
get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files .. • and nroff files ... \ 300
nroff -T300-12 files . .. and nroff files . . . I 300 + 12

The use of 300 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 300 may
produce better-aligned output.

SEE ALSO

BUGS

,., Jo,i;;::

450(1), mesg(l), stty(l), tabs(l), tplot(lG).
eqn(l), graph(lG), nroff(l), tbl(l) in the UNIX System V DOCUMENTER'S WORK­
BENCH Software Introduction and Reference Aianual.

Some special characters cannot be correctly printed in column 1 because the print
head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed platen
instead of a forms tractor; although good enough for drafts, the latter has a ten­
dency to slip when reversing direction, distorting Greek characters and misaligning
the first line of text after one or more reverse line-feeds.

- 2 - 7/85

4014(1) (Terminal Filters Utilities) 4014 (l)

NAME
4014 - paginator for the TEKTRONIX 4014 terminal

SYNOPSIS
4014 [-t] [-n I [-cN] [-pL] [file]

DESCRIPTION
The output of 4014 is intended for a TEKTRONIX 4014 terminal; 4014 arranges for
66 lines to fit on the screen, divides the screen into N columns, and contributes an
eight-space page offset in the (default) single-column case. Tabs, spaces, and back­
spaces are collected and plotted when necessary. TELETYPE® Model 37 half- and
reverse-line sequences are interpreted and plotted. At the end of each page, 4014
waits for a new-line (empty line) from the keyboard before continuing on to the
next page. In this wait state, the command !cmd will send the cmd to the shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the screen.

-cN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and I Oines);
default is lines.

SEE ALSO
pr(l).

7/85

troff(l) in the UNIX System V DOCUMENTER'S WORKBENCH Software Introduc­
tion and Reference Manual.

- 1 - 7/85

450 (l) (Terminal Filters Utilities) 450 (l)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
The 450 command supports special functions of, and optimizes the use of, the DASI
450 terminal, or any terminal that is functionally identical, such as the DIABLO
1620 or XEROX 1700. It converts half-line forward, half-line reverse, and full-line
reverse motions to the correct vertical motions. It also attempts to draw Greek
letters and other special symbols in the satne manner as 300 (1). It should be noted
that unless your system contains the DOCUMENTER'S WORKBENCH Software Sys­
tem that certain commands (e.g., eqn, nroff, tbl, etc.) will not work. Use 450 to
print equations neatly, in the sequence:

neqn file . . . I nroff I 450

WARNING: make sure that the PLOT switch on your terminal is ON before 450 is
used. The SPACING switch should be put in the desired position (either 10- or 12-
pitch). In either case, vertical spacing is 6 lines/inch, unless dynamically changed
to 8 lines per inch by an appropriate escape sequence.

Use 450 with the nroff -s flag or .rd requests when it is necessary to insert paper
manually or change fonts in the middle of a document. Instead of hitting the return
key in these cases, you must use the line-feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of the
following:

nroff -T450 files ...
or

nroff -T450-12 files

The use of 450 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 450 may
produce better-aligned output.

SEE ALSO

BUGS

7/85

300(1), graph(IG), mesg(l), stty(l), tabs(!), tplot(lG).
eqn(l), nroff(l), tbl(l) in the UNIX System V DOCUMENTER'S WORKBENCH
Software Introduction and Reference Manual.

Some special characters cannot be correctly printed in column 1 because the print
head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed platen
instead of a forms tractor; although good enough for drafts, the latter has a ten­
dency to slip when reversing direction, distorting Greek characters and misaligning
the first line of text after one or more reverse line-feeds.

- 1 - 7/85

ADMIN(I) (Source Code Control System Utilities) ADMIN(l)

NAME
admin - create and administer secs files

SYNOPSIS
admin [-n] [-HnameH [-nell [-dnamell [-fflag[flag-valll i -dflag[flag-valll
I -alogin] 1-elogin] 1-m[mrlistl] [-y[commentll [-hi [-zl files

DESCRIPTION

7/85

Admin is used to create new SCCS files and change parameters of existing ones.
Arguments to admin, which may appear in any order, consist of keyletter argu­
ments, which begin with - , and named files (note that SCCS file names must begin
with the characters sJ. If a named file does not exist, it is created, and its parame­
ters are initialized according to the specified keyletter arguments. Parameters not
initialized by a keyletter argument are assigned a default value. If a named file
does exist, parameters corresponding to specified keyletter arguments are changed,
and other parameters are left as is.

If a directory is named, admi11 behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a name
of - is given, the standard input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed. Again, non-SCCS files and unreadable
files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply independently
to each named file.

-n

-i[name]

-rrel

-dnamel

This keyletter indicates that a new SCCS file is to be created.

The name of a file from which the text for a new SCCS file is
to be taken. The text constitutes the first delta of the file
(see -ir keyletter for delta numbering scheme). If the i
keyletter is used, but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file is
encountered. If this keyletter is omitted, then the SCCS file
is created empty. Only one SCCS file may be created by an
o.dmin command on which the i. keyletter is supplied. Using
a single admin to create two or more SCCS files requires that
they be created empty (no -i key letter). Note that the -ft
keyletter implies the -1111 keyletter.

The release into which the initial delta is inserted. This
keyletter may be used only if the -i key\etter is also used.
If the -r keyletter is not used, the initial delta is inserted
into release 1. The level of the initial delta is always l (by
default initial deltas are named 1.1).

The name of a file from which descriptive text for the secs
file is to be taken. U the -t keyletter is used and admin is
creating a new SCCS file (the -n and/or -i keyletters also
used), the descriptive text file name must also be supplied.
In the case of existing SCCS files: (1) a -t keyletter
without a file name causes removal of descriptive text (if
any) currently in the SCCS file, and (2) a -t keyletter with
a file name causes text (if any) in the named file to replace
the descriptive text (if any) currently in the SCCS file.

- 1 - 7/85

ADMIN(l)

7/85

(Source Code Control System Utilities) ADMIN(l)

-fjl.ag This keyletter specifies a flag, and, possibly, a value for the
flag, to be placed in the SCCS file. Several f keyletters may
be supplied on a single admin command line. The allowable
flags and their values are:

b Allows use of the -b keyletter on a get (1) command to
create branch deltas.

cceil The highest release (i.e., "ceiling"), a number greater than 0
but less than or equal to 9999, which may be retrieved by a
get(l) command for editing. The default value for an
unspecified c flag is 9999.

fjl.oor The lowest release G.e., "floor"), a number greater than 0
but less than 9999, which may be retrieved by a get (1) com­
mand for editing. The default value for an unspecified f flag
is 1.

dSID The default delta number (SID) to be used by a get (1) com­
mand.

ilstrl Causes the "No id keywords (ge6)" message issued by get (1)
or delta (1) to be treated as a fatal error. In the absence of
this flag, the message is only a warning. The message is
issued if no secs identification keywords (see get (1)) are
found in the text retrieved or stored in the secs file. If a
value is supplied, the keywords must exactly match the given
string, however the string must contain a keyword, and no
embedded newlines.

Allows concurrent get(l) commands for editing on the same
SID of an secs file. This allows multiple concurrent updates
to the same version of the secs file.

llist A list of releases to which deltas can no longer be made (get
-e against one of these "locked" releases fails). The list has
the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= RELEASE NUMBER I a

The character a in the list is equivalent to specifying all
releases for the named SCCS file.

n Causes delta (1) to create a "null" delta in each of those
releases (if any) being skipped when a delta is made in a
new release (e.g., in making delta 5.1 after delta 2.7, releases
3 and 4 are skipped). These null deltas serve as "anchor
points" so that branch deltas may later be created from
them. The absence of this flag causes skipped releases to be
non-existent in the SCCS file, preventing branch deltas from
being created from them in the future.

qtext User definable text substituted for all occurrences of the
%Q% keyword in SCCS file text retrieved by get(l).

mmod Module name of the SCCS file substituted for all occurrences
of the %M% keyword in secs file text retrieved by get (1).
If the m flag is not specified, the value assigned is the name
of the SCCS file with the leading s. removed.

- 2 - 7/85

ADMIN(l)

7/85

(Source Code Control System Utilities) ADMIN(l)

ttype Type of module in the SCCS file substituted for all
occurrences of % Y% keyword in SCCS file text retrieved by
get (1).

v[pgm] Causes delta(I) to prompt for Modification Request (MR)
numbers as the reason for creating a delta. The optional
value specifies the name of an MR number validity checking
program (see delta(l)). (If this flag is set when creating an
SCCS file, the m keyletter must also be used even if its value
is null).

-dflag (/7.ag-vall
Causes removal (deletion) of the specified flag from an secs
file. The -d keyletter may be specified only when process­
ing existing SCCS files. Several -d keyletters may be sup­
plied on a single admin command. See the -f keyletter for
allowable flag names.

llist A list of releases to be "unlocked". See the -f keyletter for
a description of the I flag and the syntax of a list.

-alogin A login name, or numerical UNIX system group ID, to be
added to the list of users which may make deltas (changes)
to the SCCS file. A group m is equivalent to specifying all
login names common to that group ID. Several a keyletters
may be used on a single admin command line. As many
logins, or numerical group IDs, as desired may be on the list
simultaneously. If the list of users is empty, then anyone
may add deltas. If login or group ID is preceded by a ! they
are to be denied permission to make deltas.

-elogin A login name, or numerical group ID, to be erased from the
list of users allowed to make deltas (changes) to the secs
file. Specifying a group ID is equivalent to specifying all
login names common to that group ID. Several e keyletters
may be used on a single admin command line.

-m[mrlistl The list of Modification Requests (MR) numbers is inserted
into the secs file as the reason for creating the initial delta
in a manner identical to delta (1). The v flag must be set
and the MR numbers are validated if the v flag has a value
(the name of an MR number validation program). Diagnos­
tics will occur if the v flag is not set or MR validation fails.

-y[comment] The comment text is inserted into the SCCS file as a com­
ment for the initial delta in a manner identical to that of
delta (1). Omission of the -y keyletter results in a default
comment line being inserted in the form:

date and time created YYIMM/DD HH:MM:SS by login

The -y keyletter is valid only if the -i and/or -n
keyletters are specified (i.e., a new secs file is being
created).

-h Causes admin to check the structure of the SCCS file (see
sccsfile(5)), and to compare a newly computed check-sum
(the sum of all the characters in the secs file except those
in the first line) with the check-sum that is stored in the first

- 3 - 7/85

ADMIN(l) (Source Code Control System Utilities) ADMIN(l)

FILES

7/85

-;i:

line of the secs file. Appropriate error diagnostics are pro­
duced.

This keyletter inhibits writing on the file, so that it nullifies
the effect of any other keyletters supplied, and is, therefore,
only meaningful when processing existing files.

The SCCS file check-sum is recomputed and stored in the
first line of the SCCS file (see -h, above).

Note that use of this keyletter on a truly corrupted file may
prevent future detection of the corruption.

The last component of all SCCS file names must be of the form s.file-name.
New secs files are given mode 444 (see chmod(l)). Write permission in the
pertinent directory is, of course, required to create a file. All writing done by
admin is to a temporary x-file, called x.file-name, (see get(l)), created with
mode 444 if the admin command is creating a new SCCS file, or with the
same mode as the SCCS file if it exists. After successful execution of admin,
the SCCS file is removed (if it exists), and the x-file is renamed with the name
of the secs file. This ensures that changes are made to the secs file only if
no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that
SCCS files themselves be mode 444. The mode of the directories allows only
the owner to modify SCCS files contained in the directories. The mode of the
SCCS files prevents any modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may
be changed to 644 by the owner allowing use of ed(l). Care must be taken!
The edited file should always be processed by an admin -h to check for corr­
uption followed by an admin -z to generate a proper check-sum. Another
admin -his recommended to ensure the secs file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is
used to prevent simultaneous updates to the secs file by different users. See
get (1) for further information.

g-file Existed before the execution of delta; removed after completion of
delta.

p-file Existed before the execution of delta; may exist after completion of
delta.

q-file Created during the execution of delta; removed after completion of
delta.

x-file Created during the execution of delta; renamed to SCCS file after
completion of delta.

z-file Created during the execution of delta; removed during the execu­
tion of delta.

d-file Created during the execution of delta; removed after completion of
delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file and the
g-file.

- 4 - 7/85

ADMIN(l) (Source Code Control System Utilities) ADMIN(l)

SEE ALSO
delta(l), ed(l), get(l), help(l), prs(l), what(l).
sccsfile(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS
Use help(l) for explanations.

7/85 - 5 - 7/85

AR(l) (Directory and File Management Utilities) AR(l)

NAME
ar - archive and library maintainer for portable archives

SYNOPSIS
ar key [posname l afile [name] ...

DESCRIPTION

7/85

The Ar command maintains groups of files combined into a single archive file. Its
main use is to create and update library files as used by the link editor. It can be
used, though, for any similar purpose. The magic string and the file headers used
by ar consist of printable ASCH characters. H an archive is composed of printable
files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that is portable across all
machines. The portable archive format and structure is described in detail in ar (4).
The archive symbol table [described in ar(4)] is used by the link editor [/d(l)] to
effect multiple passes over libraries of object files in an efficient manner. An archive
symbol table is only created and maintained by ar when there is at least one object
file in the archive. The archive symbol table is in a specially named file which is
always the first file in the archive. This file is never mentioned or accessible to the
user. Whenever the ar(l) command is used to create or update the contents of
such an archive, the symbol table is rebuilt. The s option described below will force
the symbol table to be rebuilt.

Key is an optional - , followed by one character from the set drqtpmx, optionally
concatenated with one or more of vuaibcls. A.file is the archive file. The names are
constituent files in the archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is
used with r, then only those files with dates of modification later than the
archive files are replaced. If an optional positioning character from the set
abi is used, then the posname argument must be present and specifies that
new files are to be placed after (a) or before (b or i) posname. Otherwise
new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether
the added members are already in the archive. Useful only to avoid qua­
dratic behavior when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files
in the archive are tabled. If names are given, only those files are tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character
is present, then the posname argument must be present and, as in r,
specifies where the files are to be moved.

x Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

v Give a verbose file-by-file description of the making of a new archive file
from the old archive and the constituent files. When used with t, give a
long listing of all information about the files. When used with x, precede
each file with a name.

c Suppress the message that is produced by default when afile is created.

- 1 - 7/85

AR(l)

FILES

(Directory and File Management Utilities) AR(l)

Place temporary files in the local current working directory, rather than in
the directory specified by the environment variable TMPDIR or in the
default directory /tmp.

s Force the regeneration of the archive symbol table even if ar(I) is not
invoked with a command which will modify the archive contents. This com­
mand is useful to restore the archive symbol table after the strip (1) com­
mand has been used on the archive.

/tmp/ar• temporaries

SEE ALSO

BUGS

7/85

ld(l), lorder(l), strip(!).
tmpnam(3S), a.out(4), ar(4) in the 3B2 Computer System Programmer Reference
Manual.

If the same file is mentioned twice in an argument list, it may be put in the archive
twice.

- 2 - 7/85

AS(l) (Software Generation System Utilities) AS(l)

NAME
as - common assembler

SYNOPSIS
as [-o objfile] [-n] [-j] [-ml [-Rl [-r] [-[bwl)] [-Vl file-name

DESCRIPTION

FILES

The as command assembles the named file. The following flags may be specified in
any order:

-o objfile Put the output of the assembly in obj.file. By default, the output file
name is formed by removing the .s suffix, if there is one, from the input
file name and appending a .o suffix.

-n

-j

-m

-R
-r

-lbwll

-v

Turn off long/short address optimization. By default, address optimiza­
tion takes place.

Invoke the long-jump assembler (for the VAX version of the common
assembler only). The address optimization algorithm chooses between
long and short address lengths, with short lengths chosen when possible.
Often, three distinct lengths are allowed by the machine architecture; a
choice must be made between two of those lengths. When the two
choices given to the assembler exclude the largest length allowed, then
some addresses might be unrepresentable. The long-jump assembler
will always have the largest length as one of its allowable choices. If
the assembler is invoked without this option, and the case arises where
an address is unrepresentable by either of the two allowed choices, then
the user will be informed of the error, and advised to try again using
the -j option.

Run the m4 macro pre-processor on the input to the assembler.

Remove (unlink) the input file after assembly is completed.

Place all assembled data (normally placed in the .data section) into the
.text section (for the VAX version of the common assembler only). This
option effectively disables the .data pseudo operation. This option is off
by default.

Create byte (b), halfword (w) or long (I) displacements for undefined
symbols (for the VAX version of the common assembler only). (An
undefined symbol is a reference to a symbol whose definition is external
to the input file or a forward reference.) The default value for this
option is long (I) displacements.

Write the version number of the assembler being run on the standard
error output.

/usrltmp/as[I-6]XXXXXX temporary files

SEE ALSO
ld(l), m4(1), nm(l), strip(l).
a.out(4) in the AT&T 3B2 Computer Programmer Reference Manual.

WARNING

7/85

If the -m (m4 macro pre-processor invocation) option is used, keywords for m4
(see m4(1)) cannot be used as symbols (variables, functions, labels) in the input file
since m4 cannot determine which are assembler symbols and which are real m4
macros.

- 1 - 7/85

AS(l)

BUGS

7/85

(Software Generation System Utilities) AS(l)

Use the -b or -w option only when undefined symbols are known to refer to loca­
tions representable by the specified default displacement. Use of either option when
assembling a file containing a reference to a symbol that is to be resolved by the
loader can lead to unpredictable results, since the loader may be unable to place the
address of the symbol into the space provided.

The .align assembler directive is not guaranteed to work in the .text section when
optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per expres­
sion.

- 2 - 7/85

ASA(l) (FORTRAN Programming Language Utilities) ASA(l)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage control
characters. It processes either the files whose names are given as arguments or the
standard input if no file names are supplied. The first character of each line is
assumed to be a control character; their meanings are:

(blank) single new line before printing

0 double new line before printing

1 new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they began
with ' '. The first character of a line is not printed. If any such lines appear, an
appropriate diagnostic will appear on standard error. This program forces the first
line of each input file to start on a new page.

To view correctly the output of FORTRAN programs which use ASA carriage control
characters, asa could be used as a filter thus:

a.out I asa I Ip

and the output, properly formatted and paginated, would be directed to the line
printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO
efl(l), f77(1), fsplit(l), ratfor(l).

7/85 - l - 7/85

AT(l) (User Environment Utilities) AT(l)

NAME
at, batch - execute commands at a later time

SYNOPSIS
at time [date] [+ increment I
at -r job ...
at -Hjob .. .l
batch

DESCRIPTION

7/Rt:.,

At and batch read commands from standard input to be executed at a later time.
The sh (1) utility provides different way of specifying standard input. At allows you
to specify when the commands should be executed, while jobs queued with batch
will execute when system load level permits. At may be used with the following
options:

-r Removes jobs previously schedul.ed with at.

-I Reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they are
redirected elsewhere. The shell environment variables, current directory, umask,
and ulimit are retained when the commands are executed. Open file descriptors,
traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file /usr/lib/cron/at.deny is
checked to determine if the user should be denied access to at. If neither file exists,
only root is allowed to submit a job. If at.deny is empty, global usage is permitted.
The allow/deny files consist of one user name per line.

The time may be specified as 1, 2, or 4 digits. One and two digit numbers are taken
to be hours, four digits to be hours and minutes. The time may alternately be
specified as two numbers separated by a colon, meaning hour:minute. A suffix am
or pm may be appended; otherwise a 24-hour clock time is understood. The suffix
zulu may be used to indicate GMT. The special names noon, midnight, now, and
next are also recognized.

An optional date may be specified as either a month name followed by a day
number (and possibly year number preceded by an optional comma) or a day of the
week (fully spelled or abbreviated to three characters). Two special "days", today
and tomorrow are recognized. If no date is given, today is assumed if the given
hour is greater than the current hour and tomorrow is assumed if it is less. If the
given month is less than the current month (and no year is given), next year is
assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now+ 1 day
at 5 pm Friday

At and batch write the job number and schedule time to standard error.

Batch submits a batch job. It is almost equivalent to "at now", but not quite. For
one, it goes into a different queue. For another, "at now" will respond with the

- l - 7/85

AT(l) (User Environment Utilities) AT(l)

error message too late.

At -r removes jobs previously scheduled by at or batch. The job number is the
number given to you previously by the at or batch command. You can also get job
numbers by typing at -1. You can only remove your own jobs unless you are the
super-user.

EXAMPLES

FILES

The at and batch commands read from standard input the commands to be exe­
cuted at a later time. Sh (1) provides different ways of specifying standard input.
Within your commands, it may be useful to redirect standard output.

This sequence can be used at a terminal:
batch
sort filename >out.file
<control-D> (hold down 'control' and depress 'D')

This sequence, which demonstrates redirecting standard error to a pipe, is useful in
a shell procedure (the sequence of output redirection specifications is significant):

batch<<!
sort filename 2 > & 1 > outfile I mail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by includ­
ing code similar to the following within the shell file:

echo "sh shell.file" I at 1900 thursday next week

/usr/lib/cron
/usr/lib/cron/at.allow
/usr/iib/cron/at.deny
/usr /lib/ cron/ queue
/usr I spool/ cron/ atjobs

main cron directory
list of allowed users
list of denied users
scheduling information
spool area

SEE ALSO
kill(l), mail(!), nice(l), ps(l), sh(l), sort(!).
cron(lM) in the AT&T 3B2 Computer System Administration Reference Manual.

DIAGNOSTICS
Complains about various syntax errors and times out of range.

7/85 - 2 - 7/85

AWK(l) (Directory and File Management Utilities) AWK(l)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [- Fe] [prog] [parameters] [files]

DESCRIPTION

7/85

Awk scans each input file for lines that match any of a set of patterns specified in
prog. With each pattern in prog there can be an associated action that will be per­
formed when a line of a file matches the pattern. The set of patterns may appear
literally as prog, or in a file specified as -f file. The prog string should be enclosed
in single quotes (') to protect it from the shell.

Parameters, in the form x= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file
name - means the standard input. Each line is matched against the pattern por­
tion of every pattern-action statement; the associated action is performed for each
matched pattern.

An input line is made up of fields separated by white space. (This default can be
changed by using FS; see below). The fields are denoted $1, $2, ... ; $0 refers to the
entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An action
is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression conditional ; expression) statement
break
continue
([statement] . . . }
variable = expression
print [expression-list] >expression
printf format [, expression-list] [>expression
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, •, /, %, and concate­
nation (indicated by a blank). The C operators + +, - - , + =, - =, • =, I=, and
% = are also available in expressions. Variables may be scalars, array elements
(denoted x[i]) or fields. Variables are initialized to the null string. Array subscripts
may be any string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted (").

The print statement prints its arguments on the standard output (or on a file if
>expr is present), separated by the current output field separator, and terminated
by the output record separator. The print! statement formats its expression list
according to the format [see printf(3S)inthe3B2Computer

The built-in function length returns the length of its argument taken as a string, or
of the whole line if no argument. There are also built-in functions exp, log, sqrt,
and int. The last truncates its argument to an integer; substr (s, m, n) returns the

- l - 7/85

AWK(l) (Directory and File Management Utilities) AWK(l)

n-character substring of s that begins at pos1t10n m. The function
sprintf(fmt, expr, expr, .. .) formats the expressions according to the printf(3S) for­
mat given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, 11, & & , and parentheses) of regu­
lar expressions and relational expressions. Regular expressions must be surrounded
by slashes and are as in egrep (see grep (1)). Isolated regular expressions in a pat­
tern apply to the entire line. Regular expressions may also occur in relational
expressions. A pattern may consist of two patterns separated by a comma; in this
case, the action is performed for all lines between an occurrence of the first pattern
and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either
(for contains) or ! (for does not contain). A conditional is an arithmetic expres­
sion, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the
first input line is read and after the last. BEGIN must be the first pattern, END the
last.

A single character c may be used to separate the fields by starting the program
with:

BEGIN { FS = c }

or by using the - Fe option.

Other variable names with special meanings include NF, the number of fields in the
current record; NR, the ordinal number of the current record; FILENAME, the name
of the current input file; OFS, the output field separator (default blank); ORS, the
output record separator (default new-line); and OFMT, the output format for
numbers (default % "6g).

EXAMPLES

7/85

Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > O; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

- 2 - 7/85

AWK(l) (Directory and File Management Utilities) AWK(l)

/Page/ { $2 = n++; }
{ print }

command line: awk -f program n=5 input

SEE ALSO

BUGS

7/R'i

grep(l), lex(l), sed(l).
malloc(3X), printf(3S) in the AT&T 3B2 Computer Programmer Reference
Manual.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expres­
sion to be treated as a number add 0 to it; to force it to be treated as a string con·
catenate the null string ("") to it.

- 3 - 7/85

BANNER(l)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION

(User Environment Utilities) BANNER(l)

Banner prints its arguments (each up to l 0 characters long) in large letters on the
standard output.

SEE ALSO
echo(!).

7/85 - 1 - 7/85

BASENAME (l) (Essential Utilities)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION

BASENAME(l)

Basename deletes any prefix ending in I and the suffix (if present in string) from
string, and prints the result on the standard output. It is normally used inside sub­
stitution marks (" ') within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c, compiles the
named file and moves the output to a file named cat in the current directory:

cc $1
mv a.out 'basename $1 '\.c"

The following example will set the shell variable NAME to /usr/src/cmd:

SEE ALSO
sh(l).

BUGS

NAME='dirname /usr/src/cmd/cat.c'

The basename of I is null and is considered an error.

7/85 - l - 7/85

BASIC(!) (BASIC Programming Language Utilities) BASIC(l)

NAME
basic - BASIC Language Interpreter

SYNOPSIS
basic [-s size] [-n] [file]

DESCRIPTION

FILES

7/85

Basic is a BASIC language interpreter with some additions to the language and
environment. The -s option sets the size, in bytes, of the user workspace (the
space for program and strings), rounded up to the next lK byte boundary. The
default is 8K bytes. The inclusion of the -n option along with a BASIC program
name will cause basic to start and then load the BASIC program without running
it. Otherwise, the given file name will be loaded and run. Basic may also be
invoked by a shell script, in which case the BASIC program should be terminated
with a quit or system statement.

Basic requires all user program files to end with .b.

/usr /tmp/ oldaout.XXXXXX

/usr/tmp/newaout.XXXXXX

/usr/tmp/b.ifile.XXXXXX

/usr /tmp/b.ldout.XXXXXX

- 1 -

BLOAD temporary file

BLOAD temporary file

BLOAD temporary file

BLOAD temporary file

Two other temporary files for MOVE and
UNDO

7/85

BC(l) (User Environment Utilities) BC(l)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [-c] [-I] [file ...]

DESCRIPTION

7/85

Be is an interactive processor for a language that resembles C but provides unlim­
ited precision arithmetic. It takes input from any files given, then reads the stan­
dard input. The be(l) utility is acutally a preprocessor for dc(l), which it invokes
automatically unless the -c option is present. In this case the de input is sent to
the standard output instead. The options are as follows:

-c Compile only. The output is send to the standard output.

-I Argument stands for the name of an arbitrary precision math library.

The syntax for be programs is as follows; L means letter a-z, E means expression, S
means statement.

Comments

Names

are enclosed in /•and•/.

simple variables: L
array elements: L [E]
The words "ibase", "obase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L(E, ... ,E)

number of significant decimal digits
number of digits right of decimal point

Operators
+ - • I % A (% is remainder; A is power)
+ + - - (prefix and postfix; apply to names)
==<=>=!-<>
= == + - - -· -1 - % _

Statements
E
{ s; ... ; s}
if (E) S
while (E) S
for(E;E;E)S
null statement
break
quit

Function definitions
define L (L , ... , L) {

auto L, ... , L
S; ... S
return (E)

- 1 - 7/85

BC(l)

Functions in
s(x)
c(x)
e(x)
l(x)
a(x)
j(n,x)

(User Environment Utilities)

-I math library
sine
cosine
exponential
log
arctangent
Bessel function

All function arguments are passed by value.

BC(l)

The value of a statement that is an expression is printed unless the main operator is
an assignment. Either semicolons or new-lines may separate statements. Assign­
ment to scale influences the number of digits to be retained on arithmetic operations
in the manner of de (1). Assignments to ibase or obase set the input and output
number radix respectively.

The same letter may be used as an array, a function, and a simple variable simul­
taneously. All variables are global to the program. "Auto" variables are pushed
down during function calls. When using arrays as function arguments or defining
them as automatic variables, empty square brackets must follow the array name.

EXAMPLE

FILES

scale= 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=l; l==l; i++){

a = a•x
b = b•i
c = a/b
if(c == 0) return (s)
s = s+c

defines a function to compute an approximate value of the exponential function and

for(i=l; i<=lO; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

/usr /lib/lib. b
/usr/bin/dc

mathematical library
desk calculator proper

SEE ALSO

BUGS

dc(l).

No & & , I I yet.
For statement must have all three expressions (E's).
Quit is interpreted when read, not when executed.

- 2 - 7/85

BDIFF(l) (Directory and File Management Utilities) BDIFF(i)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [-s]

DESCRIPTION

FILES

Bdiff is used in a manner analogous to dijf(l) to find which lines must be changed
in two files to bring them into agreement. Its purpose is to allow processing of files
which are too large for dUf.

The parameters to bdi.ff are:

filel (file2)
The name of a file to be used. If .filel (file2) is -, the standard input is
read.

11 The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value for
n. This is useful in those cases in which 3500-line segments are too large
for di.ff, causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent option).
Note, however, that this does not suppress possible exclamations by diff.

Bdiff ignores lines common to the beginning of both files, splits the remainder of
each file into n-line segments, and invokes diff upon corresponding segments. If
both optional arguments are specified, they must appear in the order indicated
above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account for
the segmenting of the files (that is, to make it look as if the files had been processed
whole). Note that because of the segmenting of the files, bdiff does not necessarily
find a smallest sufficient set of file differences.

/tmp/bd?????

SEE ALSO
diff(l), help(l).

DIAGNOSTICS
Use help (1) for explanations.

7 /'ii.". - 1 - 7/85

BFS(l)

NAME

(Directory and File Management Utilities)
I

BFS(l)

bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION

7 /fl,5

The Bfs command is (almost) like ed(l) except that it is read-only and processes
much larger files. Files can be up to 1024K bytes (the maximum possible size) and
32K lines, with up to 512 characters, including new-line, per line (255 for 16-bit
machines). Bfs is usually more efficient than ed for scanning a file, since the file is
not copied to a buffer. It is most useful for identifying sections of a large file where
esp/it (1) can be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file writ­
ten with the w command. The optional - suppresses printing of sizes. Input is
prompted with • if P and a carriage return are typed as in ed. Prompting can be
turned off again by inputting another P and carriage return. Note that messages
are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular
expressions may be surrounded with two symbols besides I and ?: > indicates
downward search without wrap-around, and < indicates upward search without
wrap-around. There is a slight difference in mark names: only the letters a through
z may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described under ed.
Commands such as---,+++-,+++=, -12, and +4p are accepted. Note
that 1,lOp and 1,10 will both print the first ten lines. The f command only prints
the name of the file being scanned; there is no remembered file name. The w com­
mand is independent of output diversion, truncation, or crunching (see the
xo, xt and xc commands, below). The following additional commands are available:

xf file
Further commands are taken from the named file. When an end-of-file
is reached, an interrupt signal is received or an error occurs, reading
resumes with the file containing the xf. The xf commands may be
nested to a depth of 10.

xn List the marks currently in use (marks are set by the k command).

XO (file)
Further output from the p and null commands is diverted to the named
file, which, if necessary, is created mode 666. If file is missing, output
is diverted to the standard output. Note that each diversion causes trun­
cation or creation of the file.

: label
This positions a label in a command file. The label is terminated by
new-line, and blanks between the : and the start of the label are ignored.
This command may also be used to insert comments into a command
file, since labels need not be referenced.

(• , •)xb/regular expression/label
A jump (either upward or downward) is made to label if the command
succeeds. It fails under any of the following conditions:

- l - 7/85

BFS (1)

7/85

(Directory and File Management Utilities) BFS{l)

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in
the specified range, including the first and last lines.

On success, • is set to the line matched and a jump is made to label.
This command is the only one that does not issue an error message on
bad addresses, so it may be used to test whether addresses are bad
before other commands are executed. Note that the command

xbrl label

is an unconditional jump.
The xb command is allowed only if it is read from someplace other than
a terminal. If it is read from a pipe only a downward jump is possible.

xt number
Output from the p and null commands is truncated to at most number
characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. The com­
mands xv5100 or xv5 100 both assign the value 100 to the variable 5.
The command Xv61,100p assigns the value 1,100p to the variable 6. To
reference a variable, put a % in front of the variable name. For exam­
ple, using the above assignments for variables 5 and 6:

l,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line contain­
ing a match. To escape the special meaning of % , a \ must precede it.

g/". *\%[cds]/p

could be used to match and list Jines containing printf of characters,
decimal integers, or strings.

Another feature of the xv command is that the first line of output from
a UNIX system command can be stored into a variable. The only
requirement is that the first character of value be an !. For example:

.w junk
xvS!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

would put the current line into variable 5, print it, and increment the
variable 6 by one. To escape the special meaning of ! as the first char­
acter of value, precede it with a\.

- 2 - 7/85

BFS(l) (Directory and File Management Utilities)

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label

BFS(l)

These two commands will test the last saved return code from the exe­
cution of a UNIX system command (!command) or nonzero value,
respectively, to the specified label. The two examples below both search
for the next five lines containing the string size.

xc [switch]

xv55
: l
/size/
xv5!expr %5 - 1
!if 0%5 != 0 exit 2
xbn I
xv45
: 1
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz I

If switch is 1, output from the p and null commands is crunched; if
switch is 0 it is not. Without an argument, xc reverses switch. Initially
switch is set for no crunching. Crunched output has strings of tabs and
blanks reduced to one blank and blank lines suppressed.

SEE ALSO
csplitO), ed(l).

DIAGNOSTICS

7/85

? for errors in commands, if prompting is turned off. Self-explanatory error mes­
sages when prompting is on.

- 3 - 7/85

CAL(l) (User Environment Utilities) CAL(l)

NAME
cal - print calendar

SYNOPSIS
cal [[month I year]

DESCRIPTION

BUGS

7/85

Cal prints a calendar for the specified year. If a month is also specified, a calendar
just for that month is printed. If neither is specified, a calendar for the present
month is printed. Year can be between 1 and 9999. The month is a number
between 1 and 12. The calendar produced is that for England and her colonies.

Try September 1752.

The year is always considered to start in January even though this is historically
naive.
Beware that "cal 83" refers to the early Christian era, not the 20th century.

- l - 7/85

CALENDAR (l) (User Environment Utilities) CALENDAR (1)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION

FILES

Calendar consults the file calendar in the current directory and prints out lines that
contain today's or tomorrow's date anywhere in the line. Most reasonable month­
day dates such as "Aug. 24," "august 24," "8/24," etc., are recognized, but not "24
August" or "24/8". On weekends "tomorrow" extends through Monday.

When an argument is present, calendar does its job for every user who has a file
calendar in the login directory and sends them any positive results by mail(I). Nor­
mally this is done daily by facilities in the UNIX operating system.

/usr /lib/ calprog

/etc/passwd

/tmp/cal•

to figure out today's and tomorrow's dates

SEE ALSO
mail(l).

BUGS

7/85

Your calendar must be public information for you to get reminder service.
Calendar's extended idea of "tomorrow" does not account for holidays.

- 1 - 7/85

CAT(l) (Essential Utilities) CAT(i)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [-s] [-v [-t] [-e]] file

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the file, and:

cat file 1 file2 > file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument - is encountered, cat reads from the
standard input file.

The following options apply to cat.

-u The output is not buffered. (The default is buffered output.)

-s Cat is silent about non-existent files.

-v Causes non-printing characters (with the exception of tabs, new-lines and
form-feeds) to be printed visibly. Control characters are printed AX
foontrol-x); the DEL character (octal 0177) is printed A?. Non-ASCH
characters (with the high bit set) are printed as M-x, where x is the char­
acter specified by the seven low order bits.

When used with the -v option, the following options may be used.

-t Causes tabs to be printed as Ts.

-e Causes a $ character to be printed at the end of each line (prior to the
new-line).

The -t and -e options are ignored if the -v option is not specified.

WARNING
Command formats such as

cat filel file2 >filel
will cause the original data in ft.lei to be lost; therefore, take care when using shell
special characters.

SEE ALSO
cp(l), pg(l), pr(l).

7/85 - l - 7/85

CB(l) (C Programming Language Utilities) CB(l)

NAME
cb - C program beautifier

SYNOPSIS
ch [-s] [-j] [-I Ieng] [file ...]

DESCRlPTION
Cb reads C programs either from its arguments or from the standard input and
writes them on the standard output with spacing and indentation that displays the
structure of the code. Under default options, ch preserves all user new-lines. Under
the -s flag ch canonicalizes the code to the style of Kernighan and Ritchie ilil The
C Programming Language. The -j flag causes split lines to be put back together.
The -I flag causes cb to split lines that are longer than Ieng.

SEE ALSO
cc(l).

BUGS
Punctuation that is hidden in preprocessor statements will cause indentation errors.

7/85 - 1 - 7/85

CC(l) (C Programming Language Utilities) CC(l)

NAME
cc - C compiler

SYNOPSIS
cc [option] ... file

DESCRIPTION

7/85

Cc is the UNIX system C compiler. Pee is the portable version for a PDP-11
machine. They accept several types of arguments.

Arguments whose names end with .c are taken to be C source programs. They are
compiled, and each object program is left on the file whose name is that of the
source with .o substituted for .c. The .o file is normally deleted, however, if a single
C program is compiled and loaded all at one go.

In the same way, arguments whose names end with .s are taken to be assembly
source programs and are assembled, producing a .o file.

The following options are interpreted by cc. See /d(l) for link editor options and
cpp (1) for more preprocessor options.

-c Suppress the link edit phase of the compilation and force an object file to
be produced even if only one program is compiled.

-p Arrange for the compiler to produce code that counts the number of times
each routine is called; also, if link editing takes place, replace the standard
startoff routine by one that automatically calls monitor(3C) at the start
and arranges to write out a moo.out file at normal termination of execution
of the object program. An execution profile can then be generated by use
of prof(l). For the PDP-II only, the libraries /lib/libp/libm.a (if the -Im
option is used) and /lib/libp/libc.a must be specified explicitly if the ver­
sions reporting function call counts are to be loaded.

-f Link the object program with the floating-point interpreter for systems
without hardware floating-point.

-g Cause the compiler to generate additional information needed for the use
of sdb (1).

-0 Invoke an object-code optimizer.

-y limit
Change the text size increase limit for in-line procedure expansion in the
assembly-code optimizer. The limit field may contain the character 'u' to
allow unlimited growth, an integer, to allow the indicated percent growth
per file, or the character 's' to suppress in-line procedure expansion.

-S Compile the named C programs and leave the assembler-language output
on corresponding file.s suffixed .s.

-E Run only cpp(l) on the named C programs and send the result to the
standard output.

-P Run only cpp(l) on the named C programs and leave the result on
corresponding files suffixed .i.

-Bstring
Construct path names for substitute preprocessor, compiler, assembler and
link editor passes by concatenating string with the suffixes cpp, cO for
ccom or comp, see under FILES below), cl, c2 (or optim), as and Id. If
string is empty it is taken to be /lib/o.

- 1 - 7/85

CC(l)

FILES

(C Programming Language Utilities) CC(l)

-t[p012al]
Find only the designated preprocessor, compiler, assembler and link editor
passes in the files whose names are constructed by a - B option. In the
absence of a -B option, the string is taken to be /lib/n. The value -t ""
is equivalent to -tp012.

-Wc,argl larg2 .. .l
Hand off the argument[s] argi to pass c where c is one of [p012al1 indicat­
ing preprocessor, compiler first pass, compiler second pass, optimizer,
assembler, or link editor, respectively.

Other arguments are taken to be either link editor option arguments, C preprocessor
option arguments, or C-compatible object programs, typically produced by an earlier
cc run, or perhaps libraries of C-compatible routines. These programs, together
with the results of any compilations specified, are linked (in the order given) to pro­
duce an executable program with the name a.out.

The C language standard was extended to include arbitrary length variable names.
This standard has been implemented on the VAX and the 3B20 computer, but not on
the PDP-11. The option pair "-Wp,-T -WO,-XT" will cause the current com­
piler (on the 3B20 computer and the VAX) to behave the same as previous compilers
with respect to the length of variable names.

file.c
file.a
a.out
/tmp/ctm•
/usr/tmp/ctm•
/lib/cpp
/lib/c[Ol]
/lib/ccom
/lib/comp
/lib/c2
/lib/optim
/usr/lib/Oc•
/bin/as
/bin/Id
/lib/crtO.o
/lib/mcrtO.o
/lib/fcrtO.o
/lib/fmcrtO.o

/lib/libc.a
/lib/libp/lib• .a

input file
object file
linked output
temporary
temporary
C preprocessor cpp (1)
PDP-11 compiler, cc
VAX compiler, cc
3B20 computer compiler cc
VAX and PDP-I I optional optimizer
3820 computer optional optimizer
backup compiler, Occ
assembler, as (1)
link editor, Id (1)
runtime startoff
profiling startoff
floating-point interpretation startoff (PDP-11)
floating-point interpretation and profiling startoff
(PDP-11)
standard C library
profiled versions of libraries

SEE ALSO

NOTES

7/85

as(l), cpp(l), ld(l), prof(l), sdb(l).
exit(2), monitor(3C) in the AT&T 3B2 Computer Programmer Reference Manual.

By default, the return value from a C program is completely random. The only two
guaranteed ways to return a specific value are to explicitly call exit (2) or to leave
the function main 0 with a "return expression;" construct.

- 2 - 7/85

CC(l) (C Programming Language Utilities) CCU)

DIAGNOSTICS

7/85

The diagnostics produced by C itself are intended to be self-explanatory. Occa­
sional messages may be produced by the assembler or the link editor.

- 3 - 7/85

CD(l) (Essential Utilities) CD(l)

NAME
cd - change working directory

SYNOPSIS
cd [directory l

DESCRIPTION
If directory is not specified, the val11e of shell parameter $HOME is used as the new
working directory. If directory specifies a complete path starting with /, ., .. , direc­
tory becomes the new working directory. If neither case applies, cd tries to find the
designated directory relative to one of the paths specified by the $CDPATH shell
variable. $CDPATH has the same syntax as, and similar semantics to, the $PATH
shell variable. Cd must have execute (search) permission in directory.

Because a new process is created to execute each command, cd would be ineffective
if it were written as a normal command; therefore, it is recognized and is internal to
the shell.

SEE ALSO
pwd(l), sh(l).
chdir(2) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - 1 - 7/85

CDC(l) (Source Code Control System Utilities) CDC(l)

NAME
cdc - change the delta commentary of an SCCS delta

SYNOPSIS
cdc -rSID [-m[mrlist11 [-y[commentlJ files

DESCRIPTION

7/85

Cdc changes the delta commentary, for the SID (SCCS IDentification string)ecified
by the -r keyletter, of each named secs file.

Delta commentary is defined to be the Modification Request (MR) and comment
information normally specified via the delta (1) command (-m and -y keyletters).

If a directory is named, cdc behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a name
of - is given, the standard input is read (see WARNINGS); each line of the stan­
dard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter arguments
and file names.

All the described keyletter arguments apply independently to each named file:

-rSlD Used to specify the SCCS /Dentification (SID) string of a
delta for which the delta commentary is to be changed.

-m[mrlist1 If the secs file has the v flag set (see admin(l)) then a list
of MR numbers to be added and/or deleted in the delta com­
mentary of the SID specified by the -r keyletter may be
supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner
as that of delta (1). In order to delete an MR, precede the
MR number with the character ! (see EXAMPLES). If the
MR to be deleted is currently in the list of MRs, it is removed
and changed into a "comment" line. A list of all deleted
MRs is placed in the comment section of the delta commen­
tary and preceded by a comment line stating that they were
deleted.

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the
standard input is read; if the standard input is not a termi­
nal, no prompt is issued. The MRs? prompt always precedes
the comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters.
An unescaped new-line character terminates the MR list.

Note that if the v flag has a value (see admin(I)), it is taken
to be the name of a program (or shell procedure) which vali­
dates the correctness of the MR numbers. If a non-zero exit
status is returned from the MR number validation program,
cdc terminates and the delta commentary remains
unchanged.

- l - 7/85

CDC(l) (Source Code Control System Utilities) CDC(l)

-y[commentl Arbitrary text used to replace the comment (s) already exist­
ing for the delta specified by the -r keyletter. The previous
comments are kept and preceded by a comment line stating
that they were changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal,
the prompt comments? is issued on the standard output
before the standard input is read; if the standard input is not
a terminal, no prompt is issued. An unescaped new-line
character terminates the comment text.

Simply stated, the keyletter arguments are either (1) if you made the delta,
you can change its delta commentary; or (2) if you own the file and directory
you can modify the delta commentary.

EXAMPLES
cdc -rL6 -m"bl78-12345 !bl77-54321 bl79-00001" -ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from the MR
list, and adds the comment trouble to delta L6 of s.file.

cdc -r 1.6 s.file
MRs? !bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

WARNINGS

FILES

If SCCS file names are supplied to the cdc command via the standard input (- on
the command line), then the -m and -y keyletters must also be used.

x-file (see delta(l))
z-file (see delta (1))

SEE ALSO
admin(l), delta(I), get(l), help(l), prs(l).
sccsfile(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS
Use help (1) for explanations.

7/85 - 2 - 7/85

CFLOW(l) (C Programming Language Utilities) CFLOW(I)

NAME
cftow- generate C flowgraph

SYNOPSIS
cflow [-r] [-ix] [-i_] [-clnum] files

DESCRIPTION

7/85

Cffow analyzes a collection of C, YACC, LEX, assembler, and object files and
attempts to build a graph charting the external references. Files suffixed in .y, .I, .c,
and .i are Y ACC'd, LEX'd, and C-preprocessed (bypassed for .i files) as appropriate
and then run through the first pass of lint (1). (The - I, - D, and - U options of
the C-preprocessor are also understood.) Files suffixed with .s are assembled and
information is extracted (as in .o files) from the symbol table. The output of all this
non-trivial processing is collected and turned into a graph of external references
which is displayed upon the standard output.

Each line of output begins with a reference G.e., line) number, followed by a suit­
able number of tabs indicating the level. Then the name of the global (normally
only a function not defined as an external or beginning with an underscore; see
below for the -i inclusion option) a colon and its definition. For information
extracted from C source, the definition consists of an abstract type declaration (e.g.,
char ..), and, delimited by angle brackets, the name of the source file and the line
number where the definition was found. Definitions extracted from object files indi­
cate the file name and location counter under which the symbol appeared (e.g.,
text). Leading underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that name
contain only the reference number of the line where the definition may be found.
For undefined references, only < > is printed.

As an example, given the following in file.c:

int

mainO
{

fO
{

the command

j·
'

fO;
gO;
fO;

i = hO;

cflow -ix file.c

produces the output

1 main: intO, <file.c 4>
2 f: int(), <file.c 11>
3 h: <>
4 i: int, <file.c 1 >

- I - 7/85

CFLOW(l) (C Programming Language Utilities) CFLOW(l)

5 g: <>

When the nesting level becomes too deep, the -e option of pr (1) can be used to
compress the tab expansion to something less than every eight spaces.

The following options are interpreted by cffow:

-r Reverse the "caller:callee" relationship producing an inverted listing show­
ing the callers of each function. The listing is also sorted in lexicographi­
cal order by callee.

-ix Include external and static data symbols. The default is to include only
functions in the flowgraph.

-i Include names that begin with an underscore. The default is to exclude
these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the flowgraph is cut
off. By default this is a very large number. Attempts to set the cutoff
depth to a nonpositive integer will be met with contempt.

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and only
believes the first. Other messages may come from the various programs used (e.g.,
the C-preprocessor).

SEE All.SO

BUGS

7/R'l

as(l), cc(l), cpp(l), lex(l), lint(l), nm(l), pr(l), yacc(l).

Files produced by lex (1) and yacc(l) cause the reordering of line number declara­
tions which can confuse cff.ow. To get proper results, feed cfiow the yacc or lex
input.

- 2 - 7/85

CHMOD(l) (Essential Utilities) CHMOD(l)

NAME
chmod - change mode

SYNOPSIS
cbmod mode files

DESCRIPTION
The permissions of the named files are changed according to mode, which may be
absolute or symbolic. An absolute mode is an octal number constructed from the
OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod (2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission]

The who part is a combination of the letters u (for user's permissions), g (group)
and o (other). The letter a stands for ugo, the default if who is omitted.

Op can be + to add permission to the file's mode, - to take away permission, or
= to assign permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set
owner or group ID) and t (save text, or sticky); u, g, or o indicate that permission is
to be taken from the current mode. Omitting permission is only useful with = to
take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are per­
formed in the order specified. The letter s is only useful with u or g and t only
works with u.

Only the owner of a file (or the super-user) may change its mode. Only the super­
user may set the sticky bit. In order to set the group ID, the group of the file must
correspond to your current group ID.

EXAMPLES
The first example denies write permission to others, the second makes a file execut­
able:

chmod o-w file

chmod +x file

SEE ALSO
ls(l).
chmod(2) in the AT&T 3B2 Computer Programmer Reference Manual.

7/R'i - 1 - 7/85

CHOWN(l) (Essential Utilities) CHOWN(l)

NAME
chown, chgrp - change owner or group

SYNOPSIS
cbown owner file .. .

chgrp group file .. .

DESCRIPTION

FILES

Chown changes the owner of the files to owner. The owner may be either a
decimal user ID or a login name found in the password file.

Chgrp changes the group ID of the files to group. The group may be either a
decimal group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-ID and set­
group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

/etc/passwd
/etc/group

SEE ALSO
chmod(l).

7/85

chown(2), group(4), passwd(4) in the AT&T 3B2 Computer Programmer Refer­
ence Manual.

- 1 - 7/85

CMP(l) (Essential Utilities) CMP(l)

NAME
cmp - compare two files

SYNOPSIS
cmp [-I] [-s] filel file2

DESCRIPTION
The two files are compared. (If .filel is -, the standard input is used.) Under
default options, cmp makes no comment if the files are the same; if they differ, it
announces the byte and line number at which the difference occurred. If one file is
an initial subsequence of the other, that fact is noted.

Options:

-I Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-s Print nothing for differing files; return codes only.

SEE ALSO
comm(l), diff(l).

DIAGNOSTICS

7/85

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessi­
ble or missing argument.

- 1 - 7/85

COMB(l) (Source Code Control System Utilities) COMB(l)

NAME
comb - combine SCCS deltas

SYNOPSIS
comb [-ol [-s] [-psid] [-clistl files

DESCRIPTION

FILES

Comb generates a shell procedure (see sh(l)) which, when run, will reconstruct the
given SCCS files. The reconstructed files will, hopefully, be smaller than the original
files. The arguments may be specified in any order, but all keyletter arguments
apply to all named SCCS files. If a directory is named, comb behaves as though
each file in the directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each line of
the input is taken to be the name of an SCCS file to be processed; non-SCCS files
and unreadable files are silently ignored. The generated shell procedure is written
on the standard output.

The keyletter arguments are as follows. Each is explained as though only one
named file is to be processed, but the effects of any keyletter argument apply
independently to each named file.

-o For each get -e generated, this argument causes the reconstructed file to
be accessed at the release of the delta to be created, otherwise the recon­
structed file would be accessed at the most recent ancestor. Use of the -o
keyletter may decrease the size of the reconstructed SCCS file. It may also
alter the shape of the delta tree of the original file.

-s This argument causes comb to generate a shell procedure which, when run,
will produce a report giving, for each file: the file name, size (in blocks)
after combining, original size (also in blocks), and percentage change com­
puted by:

100 • (original - combined) I original
It is recommended that before any SCCS files are actually combined, one
should use this option to determine exactly how much space is saved by the
combining process.

-pSID The SCCS /Dentification string (SID) of the oldest delta to be preserved.
All older deltas are discarded in the reconstructed file.

-clist A list (see get (1) for the syntax of a list) of deltas to be preserved. All
other deltas are discarded.

If no keyletter arguments are specified, comb will preserve only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

s.COMB
comb?????

The name of the reconstructed secs file.
Temporary.

SEE ALSO
admin(l), delta(!), get(l), help(!), prs(l), sh(l).
sccsfile(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS

BUGS

7 /P.".

Use help (1) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not save any space; in
fact, it is possible for the reconstructed file to actually be larger than the original.

- 1 - 7/85

COMM(!) (Directory and File Management Utilities) COMM(l)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] file! file2

DESCRIPTION
Comm reads filel and file2, which should be ordered in ASCII collating sequence
(see sort(l)), and produces a three-column output: lines only infilel; lines only in

.file2; and lines in both files. The file name - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12
prints only the lines common to the two files; comm -23 prints only lines in the first
file but not in the second; comm -123 is a prints nothing.

SEE ALSO
cmp(l), diff(l), sort(l), uniq(l).

,., Jo~ - 1 - 7/R~

CONV(l) (Software Generation System Utilities) CONV(I)

NAME
conv - common object file converter

SYNOPSIS
conv [-] [-a] [-ol [-p] [-sl -t target files

DESCRIPTION
The conv command converts object files in the common object file format from their
current· byte ordering to the byte ordering of the target machine. The converted file
is written to file. v. The conv command can be used on either the source (sending)
or target (receiving) machine.

Command line options are:

-a

-o

-p

-s

-t target

indicates files should be read from the standard input.

If the input file is an archive, produce the output file in the UNIX Sys­
tem V Release 2.0 portable archive format.

If the input file is an archive, produce the output file in the old (pre­
UNIX System V) archive format.

If the input file is an archive, produce the output file in the UNIX Sys­
tem V Release 1.0 random access archive format.

"Preswab" all characters in the object file. This is useful only for
3B20 computer object files which are to be "swab-dumped" from a
DEC machine to a 3B20 computer.

Convert the object file to the byte ordering of the machine (target) to
which the object file is being shipped. This may be another host or a
target machine. Legal values for target are: pdp, vax, ibm, i80, x86,
bl6, n3b, mc68 and m32.

The conv command is meant to ease the problems created by a multi-host cross­
compilation development environment. The conv command is best used within a pro­
cedure for shipping object files from one machine to another.

The conv command will recognize and produce archive files in three formats: the
pre- UNIX System V format, the UNIX System V Release 1.0 random access for­
mat, and the UNIX System V Release 2.0 portable ASCII format. By default, conv
will create the output archive file in the same format as the input file. To produce
an output file in a different format than the input file, use the -a, -o, or -p
option. If the output archive format is the same as the input format, the archive
symbol will be converted, otherwise the symbol table will be stripped from the
archive. The ar(l) command with its -t and -s options must be used on the tar­
get machine to recreate the archive symbol table.

EXAMPLE
To ship object files from a PDP-11 to an IBM, execute the following commands:

conv -t ibm *.out

uucp *.out.v my370i-/rje/

DIAGNOSTICS
The diagnostics are self-explanatory. Fatal diagnostics on the command lines cause
termination. Fatal diagnostics on an input file cause the program to continue to the
next input file.

CAVEATS
Special applications must compile conv differently if it is to convert special object

7/85 - 1 - 7/85

CONV(l) (Software Generation System Utilities) CONV(l)

files correctly.

The conv command will not convert archives from one format to another if both the
source and target machines have the same byte ordering. The UNIX system tool
convert (1) should be used for this purpose.

SEE ALSO
ar(l), convert(!), ar(4), a.out(4).

"'l/Ot: - ') - 7/85

CP(l) (Essential Utilities) CP(l)

NAME
cp, ln, mv - copy, link or move files

SYNOPSIS
cp file 1 [file2 .. .l target
In [-f] file 1 [file2 .. .1 target
mv [-f] filel [file2 .. .] target

DESCRIPTION
Fi/el is copied Oinked, moved) to target. Under no circumstance can file I and tar­
get be the same (take care when using sh (1) metacharacters). If target is a direc­
tory, then one or more files are copied Oinked, moved) to that directory. If target is
a file, its contents are destroyed.

If mv or In determines that the mode of target forbids writing, it will print the
mode (see chmod (2)), ask for a response, and read the standard input for one line;
if the line begins with y, the mv or In occurs, if permissable; if not, the command
exits. No questions are asked and the mv or In is done when the -f option is used
or if the standard input is not a terminal.

Only mv will allow filel to be a directory, in which case the directory rename will
occur only if the two directories have the same parent; file] is renamed target. If
filel is a file and target is a link to another file with links, the other links remain
and target becomes a new file.

When using cp, if target is not a file, a new file is created which has the same mode
as filel except that the sticky bit is not set unless you are super-user; the owner and
group of target are those of the user. If target is a file, copying a file into target
does not change its mode, owner, nor group. The last modification time of target
(and last access time, if target did not exist) and the last access time of filel are set
to the time the copy was made. If target is a link to a file, all links remain and the
file is changed.

SEE ALSO

BUGS

7/85

chmod(l), cpio(l), rm(l).

If file I and target lie on different file systems, mv must copy the file and delete the
original. In this case any linking relationship with other files is lost.

Ln will not link across file systems.

- 1 - 7/85

CPIO(l) (Essential Utilities) CPIO(l)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o [acBv]

cpio -i [BcdmrtuvfsSb] [patterns

cpio - p [adlmruv l directory

DESCRIPTION

7/85

Cpio -o (copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status infor­
mation. Output is padded to a 512-byte boundary.

Cpio -i (copy in) extracts files from the standard input, which is assumed to be the
product of a previous cpio -o. Only files with names that match patterns are
selected. Patterns are given in the name-generating notation of sh(l). In patterns,
meta-characters ? , •, and [.. .I match the slash I character. Multiple patterns may
be specified and if no patterns are specified, the default for patterns is • (i.e., select
all files). The extracted files are conditionally created and copied into the current
directory tree based upon the options described below. The permissions of the files
will be those of the previous cpio -o. The owner and group of the files will be that
of the current user unless the user is super-user, which causes cpio to retain the
owner and group of the files of the previous cpio -o.

Cpio -p (pass) reads the standard input to obtain a list of path names of files that
are conditionally created and copied into the destination directory tree based upon
the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5,120 bytes to the record (does not apply to

the pass option; meaningful only with data directed to or from
/dev/rmt/??).

d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
II" Interactively rename files. If the user types a null line, the file is skipped.
t Print a table of contents of the input. No files are created.
1ll Copy unconditionally (normally, an older file will not replace a newer file

with the same name).
v Verbose: causes a list of file names to be printed. When used with the t

option, the table of contents looks like the output of an Is -I command (see
ls (1)).
Whenever possible, link files rather than copying them. Usable only with
the -p option.

m Retain previous file modification time. This option is ineffective on direc-
tories that are being copied.

f Copy in all files except those in patterns.
s Swap bytes. Use only with the -i option.
S Swap halfwords. Use only with the -i option.
b Swap both bytes and halfwords. Use only with the -i option.

- 1 - 7/85

CPIO(l) (Essential Utilities) CPIO(l)

EXAMPLES
The first example below copies the contents of a directory into an archive; the
second duplicates a directory hierarchy:

ls I cpio -o > /dev/mt/Om

cd olddir
find . -depth -print I cpio -pd! newdir

The trivial case "find . -depth -print I cpio -oB >I dev /rmt/Om" can be han­
dled more efficiently by:

find . -cpio /dev/rmt/Om

SEE ALSO

BUGS

7/85

ar(l), find(l), ls(l).
cpio(4) in the AT&T 3B2 Computer Programmer Reference Manual.

Path names are restricted to 128 characters. If there are too many unique linked
files, the program runs out of memory to keep track of them and, thereafter, linking
information is lost. Only the super-user can copy special files.

- 2 - 7/85

CPP(l) (C Programming Language Utilities) CPP(l)

NAME
cpp - the C language preprocessor

SYNOPSIS
/lib/cpp [option ... I [ifile I ofile I I

DESCRIPTION

7/85

Cpp is the C language preprocessor which is invoked as the first pass of any C com­
pilation using the cc(l) command. Thus the output of cpp is designed to be in a
form acceptable as input to the next pass of the C compiler. As the C language
evolves, cpp and the rest of the C compilation package will be modified to follow
these changes. Therefore, the use of cpp other than in this framework is not sug­
gested. The preferred way to invoke cpp is through the cc(l) command, since the
functionality of cpp may someday be moved elsewhere. See m4(1) for a general
macro processor.

Cpp optionally accepts two file names as arguments. !file and ofile are respectively
the input and output for the preprocessor. They default to standard input and stan­
dard output if not supplied.

The following options to cpp are recognized:

- P Preprocess the input without producing the line control information used by
the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is specified, all
comments (except those found on cpp directive lines) are passed along.

-Vname
Remove any initial definition of name, where name is a reserved symbol
that is predefined by the particular preprocessor. The current list of these
possibly reserved symbols includes:

operating system: ibm, gcos, os, tss, unix
hardware: interdata, pdpl 1, u370, u3b, u3b5, ueb2, vax
UNIX system variant: RES, RT
lint(l): lint

-Dname
-Dname=def

Define name as if by a #define directive. If no =def is given, name is
defined as 1. The - D option has lower precedence than the - U option.
That is, if the same name is used in both a - U option and a - D option,
the name will be undefined regardless of the order of the options.

-T Except on the PDP-11, preprocessor symbols are no longer restricted to
eight characters. The -T option forces cpp to use only the first eight char­
acters for distinguishing different preprocessor names. This behavior is the
same as previous preprocessors with respect to the length of names and is
included for backward compatability.

-ldir Change the algorithm for searching for #include files whose names do not
begin with I to look in dir before looking in the directories on the standard
list. Thus, #include files whose names are enclosed in •" will be searched
for first in the directory of the file with the #include line, then in directories
named in -I options, and last in directories on a standard list. For
#include files whose names are enclosed in < >, the directory of the file
with the #include line is not searched.

- 1 - 7/85

CPP(l)

7/85

(C Programming Language Utilities) CPP(l)

-H Print, one perline on standard error, the full path names of included files.

Two special names are understood by cpp. The name _ _LINE __ is defined as the
current line number (as a decimal integer) as known by cpp, and _ _FILE __ is
defined as the current file name (as a C string) as known by cpp. They can be used
anywhere (including in macros) just as any other defined name.

All cpp directives start with lines begun by #. Any number of blanks and tabs are
allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, •.. , arg) token-string
Notice that there can be no space between name and the (. Replace subse­
quent instances of name followed by a (, a list of comma-separated set of
tokens, and a) by token-string, where each occurrence of an arg in the
token-string is replaced by the corresponding set of tokens in the comma­
separated list. When a macro with arguments is expanded, the arguments
are placed into the expanded token-string unchanged. After the entire
token-string has been expanded, cpp re-starts its scan for names to expand
at the beginning of newly created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#include "filename"
#include <filename>

Include at this point the contents of filename (which will then be run
through cpp). When the <filename> notation is used, filename is only
searched for in the standard places. See the -I option above for more
detail.

#line integer-constant "filename"

#endif

Causes cpp to generate line control information for the next pass of the C
compiler. Integer-constant is the line number of the next line and filename
is the file where it comes from. If "filename" is not given, the current file
name is unchanged.

Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef).
Each test directive must have a matching #endif.

#ifdef name
The lines following will appear in the output if and only if name has been
the subject of a previous #define without being the subject of an intervening
#undef.

#ifndef name
The lines following will not appear in the output if and only if name has
been the subject of a previous #define without being the subject of an inter­
vening #undef.

#if constant-expression
Lines following will appear in the output if and only if the constant­
expression evaluates to non-zero. All binary non-assignment C operators,
the ?: operator, the unary -, !, and - operators are all legal in constant­
expression. The precedence of the operators is the same as defined by the
C language. There is also a unary operator defined, which can be used in
constant-expression in these two forms: defined (name) or defined name.

- 2 - 7/85

CPP(l)

FILES

(C Programming Language Utilities) CPP(l)

This allows the utility of #ifdef and #ifndef in a #if directive. Only these
operators, integer constants, and names which are known by cpp should be
used in constant-expression. In particular, the sizeof operator is not avail­
able.

#elif constatn-expression
An arbitrary number of #elif directives are allowed a #if, #ifdef, or
#infndef directive and a #else or #endif directive. The lines following the
#elif directive will appear in the output if and only if the preceeding test
directive is evaluated to zero, all intervening #elif directives evaluated to
zero, and if the constant-expression evaluates to non-zero. If constant­
expression allowed in a #if directive is allowed in a #elif directive.

#else The lines following will appear in the output if and only if all of the previ­
ous test directives evaluated to zero.

The test directives and the possible #else directives can be nested.

/usr/include standard directory for #include files

SEE ALSO
cc(l).
m4(1) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS

NOTES

7/85

The error messages produced by cpp are intended to be self-explanatory. The line
number and file-name where the error occurred are printed along with the diagnos­
tic.

When new-line characters were found in argument lists for macros to be expanded,
previous versions of cpp put out the new-lines as they were found and expanded.
The current version of cpp replaces these new-lines with blanks to alleviate problems
that the previous versions had when this occurred.

- 3 - 7/85

CPRS(l) (Software Generation System Utilities)

NAME
cprs - compress a common object file

SYNOPSIS
cprs [-pv] file 1 file2

DESCRIPTION

CPRS(I)

The cprs command reduces the size of a common object file, file I, by removing
duplicate structure and union descriptors. The reduced file, file2, is produced as
output.

The options are:

-p Print statistical messages including: total number of tags, total duplicate tags,
and total reduction of filel.

-v Print verbose error messages if error condition occurs.

SEE ALSO
strip(I).
a.out(4) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - 1 - 7/85

CRONTAB(l) (User Environment Utilities) CRONTAB(l)

NAME
crontab - user crontab file

SYNOPSIS
crontab [file]
crontab -r
crontab -1

DESCRIPTION

7/85

Crontab copies the specified file, or standard input if no file is specified, into a direc­
tory that holds all users' crontabs. The -r option removes a user's crontab from the
crontab directory. Crontab -I will list the crontab file for the invoking user.

Users are permitted to use crontab if their names appear in the file
/usr/lib/cron/cron.allow. If that file does not exist, the file /usr/lib/cron/cron.deny
is checked to determine if the user should be denied access to crontab. If neither file
exists, only root is allowed to submit a job. If either file is at cron.deny, global
usage is permitted. The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces
or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (I -31),
month of the year (1-12),
day of the week (0-6 with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list
of elements separated by commas. An element is either a number or two numbers
separated by a minus sign (meaning an inclusive range). Note that the specification
of days may be made by two fields (day of the month and day of the week). If
both are specified as a list of elements, both are adhered to. For example, 0 0 1, 15
• 1 would run a command on the first and fifteenth of each month, as well as on
every Monday. To specify days by only one field, the other field should be set to •
(for example, 0 0 • • l would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at
the specified times. A percent character in this field (unless escaped by \) is
translated to a new-line character. Only the first line (up to a % or end of line) of
the command field is executed by the shell. The other lines are made available to
the command as standard input.

The shell is invoked from your $HOME directory with an argO of sh. Users who
desire to have their .profile executed must explicitly do so in the crontab file. Cron
supplies a default environment for every shell, defining HOME, LOGNAME,
SHELL(=/bin/sh), and PATH(=:/bin:/usr/bin:/usr/lbin).

NOTE: Users should remember to redirect the standard output and standard error
of their commands! If this is not done, any generated output or errors will be
mailed to the user.

- l - 7/85

CRONTAB(l)

FILES

SEE ALSO
sh(l).

(User Environment Utilities)

/usr/lib/cron
/usr/spool/cron/crontabs
/usr /lib/ cron/log
/usr /lib/ cron/ cron.allow
/usr /lib/cron/cron.deny

main cron directory
spool area
accounting information
list of allowed users
list of denied users

CRONTAB(l)

cron(lM) in the AT&T 3B2 Computer System Administration Referene Manual.

7/85 - 2 - 7/85

CRYPT(l) (Security Administration Utilities) CRYPT(l)

NAME
crypt - encode/decode

SYNOPSIS

NOTE

crypt [password I

This command is provided with the Security Administration Utilities, which is only
available in the United States.

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The pass­
word is a key that selects a particular transformation. If no password is given,
crypt demands a key from the terminal and turns off printing while the key is being
typed in. Crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher I pr

Files encrypted by crypt are compatible with those treated by the editor ed in
encryption mode.

/dev/tty for typed key

SEE ALSO

BUGS

7/85

ed(l), makekey(l).
stty(l) in the AT&T 3B2 Computer User Reference Manual.

If output is piped to nroff and the encryption key is not given on the command line,
crypt can leave terminal modes in a strange state (see stty(I)).
If two or more files encrypted with the same key are concatenated and an attempt is
made to decrypt the result, only the contents of the first of the original files will be
decrypted correctly.

- 1 - 7/85

CSPLIT(l) (Directory and File Management Utilities) CSPLIT(l)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-kl [-f prefix! file argl [. .. argn]

DESCRIPTION
Csplit reads file and separates it into n+ 1 sections, defined by the arguments
argl. . . argn. By default the sections are placed in xxOO . . . xxn (n may not be
greater than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line referenced by
argl.

01: From the line referenced by argl up to the line referenced by arg2.

n+ 1: From the line referenced by argn to the end of file.

If the file argument is a - then standard input is used.

The options to esp/it are:

-s Csplit normally prints the character counts for each file created.
If the -s option is present, esp/it suppresses the printing of all
character counts.

-k Csplit normally removes created files if an error occurs. If the
-k option is present, esp/it leaves previously created files intact.

-f prefix If the -f option is used, the created files are named prefixOO ...
prefixn. The default is xxOO . . . xxn.

The arguments (argl . . . argn) to esp/it can be a combination of the following:

/rexpl A file is to be created for the section from the current line up to
(but not including) the line containing the regular expression rexp.
The current line becomes the line containing rexp. This argument
may be followed by an optional + or - some number of lines (e.g.,
/Page/-5).

%rexp% This argument is the same as lrexp/, except that no file is created
for the section.

lnno A file is to be created from the current line up to (but not includ­
ing) lnno. The current line becomes lnno.

{num} Repeat argument. This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument is
applied num more times. If it follows lnno, the file will be split
every lnno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters meaningful
to the shell in the appropriate quotes. Regular expressions may not contain embed­
ded new-lines. Csplit does not affect the original file; it is the users responsibility to
remove it.

EXAMPLES

7/85

csplit -f coho! file '/procedure division/' /par5./ /par16./

This example creates four files, cobolOO ... cobol03. After editing the "split" files,
they can be recombined as follows:

- 1 - 7/85

CSPLIT(l) (Directory and File Management Utilities) CSPLIT(l)

cat cobol0[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The -k
option causes the created files to be retained if there are less than 10,000 lines; how­
ever, an error message would still be printed.

csplit -k prog.c '%main(%' 'rll+l' {20}

Assuming that prog.c follows the normal C coding convention of ending routines
with a } at the beginning of the line, this example will create a file containing each
separate C routine (up to 21) in prog.c.

SEE ALSO
ed(l), sh(l).
regexp(5) in the AT&T 3B2 Computer Programmer Reference Manual. regexp(5).

DIAGNOSTICS

7/85

Self-explanatory except for:
arg - out of range

which means that the given argument did not reference a line between the current
position and the end of the file.

- 2 - 7/85

CT(IC) (Basic Networking Utilities) CT(lC)

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [-wn I [-xn] [-h] [-v] [-sspeed I telno ...

DESCRIPTION

FILES

Ct dials the telephone number of a modem that is attached to a terminal, and
spawns a getty process to that terminal. Te/no is a telephone number, with equal
signs for secondary dial tones and minus signs for delays at appropriate places.
(The set of legal characters for telno is 0 thru 9, -, =, *, and #. The maximum
length tel no is 31 characters). If more than one telephone number is specified, ct
will try each in succession until one answers; this is useful for specifying alternate
dialing paths.

Ct will try each line listed in the file /usr/lib/uucp/Devices until it finds an available
line with appropriate attributes or runs out of entries. If there are no free lines, ct
will ask if it should wait for one, and if so, for how many minutes it should wait
before it gives up. Ct will continue to try to open the dialers at one-minute intervals
until the specified limit is exceeded. The dialogue may be overridden by specifying
the -wn option, where n is the maximum number of minutes that ct is to wait for a
line.

The -xn option is used for debugging; it produces a detailed output of the program
execution on stderr. The debugging level, n, is a single digit; -x9 is the most use­
ful value. If, howver, the program is compiled with the -DSMALL option, there
will be little debugging output provided.

Normally, ct will hang up the current line, so the line can answer the incoming call.
The -h option will prevent this action. The -h option will also wait for the termi­
nation of the specified ct process before returning control to the user's terminal. If
the -v option is used, ct will send a running narrative to the standard error output
stream.

The data rate may be set with the -s option, where speed is expressed in baud.
The default rate is 1200.

After the user on the destination terminal logs out, there are two things that could
occur depending on what type of getty is on the line (getty or uugetty). For the
first case, ct prompts, Reconnect? If the response begins with the letter n, the line
will be dropped; otherwise, getty will be started again and the login: prompt will be
printed. In the second case, there is already a getty (uugetty) on the line, so the
login: message will appear.

To log out properly, the user must type control D.

Of course, the destination terminal must be attached to a modem that can answer
the telephone.

/usr/lib/uucp/Devices
/usr /adm/ctlog

SEE ALSO

BUGS

7 /9.<;

cu(IC), login(!), uucp(lC),
getty(IM), uugetty(lM) in the AT&T 3B2 Computer System Administration
Reference Manual.

For a shared port, one used for both dial-in and dial-out, the uugetty program

- 1 - 7/85

CT(IC) (Basic Networking Utilities) CT(lC)

running on the line must have the -r option specified (see uugetty(IM)).

7/85 - 2 - 7/85

CTCINFO(l) (Cartridge Tape Utilities) CTCINFO(l)

NAME
/etc/ctcinfo - display information about cartridge tape

SYNOPSIS
/etc/ctcinfo [options] rawdevice

DESCRIPTION
Ctcinfo displays certain subdevice information for the Cartridge Tape Controller
(CTC). It also can be used to reset the usage count for a tape drive after it has
been cleaned. The drive to be used is specified as the raw device rawdevice.

The display options and the information printed by the program are the following:

-v Volume Table of Contents (vtoc)

-d Device Type

-t Tape Pass Count

-m Maximum Tape Pass Count

-u Tape Drive Usage Count

-c Number of Cylinders

-x Number of Tracks per Cyclinder

-s Number of Sectors per Track

-b Number of Bytes per Sector

-a Total Number of Bytes on Tape

-B Total Number of Blocks on Tape As a special case, the option -r resets the
tape drive usage count. It should only be used to inform the system that the
tape drive has been cleaned so that the system will cease issuing warning mes­
sages about the danger of running with a dirty tape drive. Using this option
to turn off the warnings without cleaning the tape drive is extremely hazar­
dous to the health of the data stored on all of the tapes passing through the
drive and simply should not be done.

EXAMPLES
The following example asks for a display of the Volume Table of Contents for a
tape:

/etc/ctcinfo -v /dev/rSA/ctapel

The following example illustrates a request to display several items of information
about a tape:

/etc/ctcinfo -d -t -c -a /dev/rSA/ctapel

The following example shows how to reset the usage count after cleaning the tape
drive, then see how much time is left until the next cleaning:

/etc/ctcinfo -u -r /dev/rSA/ctapel

Note that the usage count is reset before any of the other options are acted upon.

DIAGNOSTICS
The diagnostic messages are intended to be self explanatory.

...., Jot::. - 1 - 7 /R<;,

CTCINFO(l) (Cartridge Tape Utilities) CTCINFO(l)

WARNINGS
Again, it should be reiterated that the -r option should never be used unless the
tape drive has just been cleaned. You can fool the system with this command, but
you can also thusly destroy irreplaceable data.

'7 /Q".

CTRACE(l) (C Programming Language Utilities) CTRACE(l)

NAME
ctrace - C program debugger

SYNOPSIS
ctrace [options I [file I

DESCRIPTION
Ctrace allows you to follow the execution of a C program, statement-by-statement.
The effect is similar to executing a shell procedure with the -x option. Ctrace reads
the C program in file (or from standard input if you do not specify file), inserts
statements to print the text of each executable statement and the values of all vari­
ables referenced or modified, and writes the modified program to the standard out­
put. You must put the output of ctrace into a temporary file because the cc(l)
command does not allow the use of a pipe. You then compile and execute this file.
As each statement in the program executes it will be listed at the terminal, followed
by the name and value of any variables referenced or modified in the statement, fol­
lowed by any output from the statement. Loops in the trace output are detected
and tracing is stopped until the loop is exited or a different sequence of statements
within the loop is executed. A warning message is printed every 1000 times through
the loop to help you detect infinite loops. The trace output goes to the standard out­
put so you can put it into a file for examination with an editor or the bfs(l) or
tail(l) commands. The only options you will commonly use are:
-f functions Trace only these functions.
-v functions Trace all but these functions. You may want to add to the default

-o
-x
-u
-e
-In

-s

-tn

-P

-b

-p's'

Octal

formats for printing variables. Long and pointer variables are
always printed as signed integers. Pointers to character arrays are
also printed as strings if appropriate. Char, short, and int variables
are also printed as signed integers and, if appropriate, as characters.
Double variables are printed as floating point numbers in scientific
notation. You can request that variables be printed in additional
formats, if appropriate, with these options:

Hexadecimal
Unsigned
Floating point These options are used only in special circumstances:
Check n consecutively executed statements for looping trace output, instead
of the default of 20. Use 0 to get all the trace output from loops.
Suppress redundant trace output from simple assignment statements and
string copy function calls. This option can hide a bug caused by use of the
= operator in place of the == operator.
Trace n variables per statement instead of the default of 10 (the maximum
number is 20). The Diagnostics section explains when to use this option.
Run the C preprocessor on the input before tracing it. You can also use the
-D, -I, and -U cc(l) preprocessor options. These options are used to tailor
the run-time trace package when the traced program will run in a non­
UNIX system environment:
Use only basic functions in the trace code, that is, those in ctype(3C),
printf(3S), and string(3C). These are usually available even in cross­
compilers for microprocessors. In particular, this option is needed when the
traced program runs under an operating system that does not have sig­
nal (2), ffiush (3S), longjmp (3C), or setjmp (3C).
Change the trace print function from the default of 'printf('. For example,
'fprintf(stderr,' would send the trace to the standard error output.

- 1 - 7/85

CTRACE(l) (C Programming Language Utilities) CTRACE(l)

-r f Use file f in place of the runtime.c trace function package. This lets you
change the entire print function, instead of just the name and leading argu­
ments (see the -p option).

EXAMPLE

'i JO t:..

If the file lc.c contains this C program:
1 #include <stdio.h>
2 main() /*count lines in input*/
3 {
4 int c, nl;
5
6 nl = O;
7 while ((c = getchar()) != EOF)
8 if (c = '\n')
9 ++nl; 10 printf("%d\n", nl); 11 }

and you enter these commands and test data:
cc lc.c a.out 1 (cntl-d),
the program will be compiled and executed. The output of the program will be the
number 2, which is not correct because there is only one line in the test data. The
error in this program is common, but subtle. If you invoke ctrace with these com­
mands:
ctrace lc.c >temp.c cc temp.ca.out
the output will be:
2 main()
6 nl = O;

/* nl == 0 */
7 while ((c = getcharO) != EOF)

The program is now waiting for input. If you enter the same test data as before,
the output will be:

/* c == 49 or 'l' */
8 if (c = '\n')

I* c == 10 or '\n' */
9 ++nl;

I* nl == l */
7 while ((c = getcharO) != EOF)

/* c == 10 or '\n' */
8 if (c = '\n')

I* c == 10 or '\n' *I
9 ++nl;

I* nl == 2 */
7 while ((c = getcharO) != EOF)
If you now enter an end of file character (cntl-d) the final output will be:

/*c==-1*/
10 printf("%d\n", nl);

I* nl == 2 */2
return

Note that the program output printed at the end of the trace line for the nl variable.
Also note the return comment added by ctrace at the end of the trace output. This
shows the implicit return at the terminating brace in the function. The trace output
shows that variable c is assigned the value 'l' in line 7, but in line 8 it has the value
'\n'. Once your attention is drawn to this if statement, you will probably realize
that you used the assignment operator (=) in place of the equal operator (==).
You can easily miss this error during code reading.

- ?. - 7/85

CTRACE(l) (C Programming Language Utilities) CTRACE(l)

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless you use
the -f or -v options to trace specific functions. This does not give you statement-by­
statement control of the tracing, nor does it let you turn the tracing off and on when
executing the traced program. You can do both of these by adding ctrojJO and
ctron () function calls to your program to turn the tracing off and on, respectively, at
execution time. Thus, you can code arbitrarily complex criteria for trace control
with if statements, and you can even conditionally include this code because ctrace
defines the CTRACE preprocessor variable. For example:

#ifdef CTRACE

#endif

if (c == '!' && i > 1000)
ctronO;

You can also call these functions from sdb(I) if you compile with the -g option.
For example, to trace all but lines 7 to 10 in the main function, enter:

sdb a.out
main:7b ctroffO
main: 11 b ctron 0
r

You can also turn the trace off and on by setting static variable tr ct to 0 and 1,
respectively. This is useful if you are using a debugger that cannot-call these func­
tions directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(l), since the
traced code often gets some cc warning messages. You can get cc error messages in
some rare cases, all of which can be avoided.

Ctrace Diagnostics
warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to prevent the C compiler "out
of tree space; simplify expression" error. Use the -t option to increase this
number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are using
tabs to indent your code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdef/#endif preprocessor statements in the mid­
dle of a C statement, or by a semicolon at the end of a #define preprocessor
statement.

'if ... else i.f sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any appropriate
-D, -I, and -U preprocessor options. If you still get the error message,
check the Warnings section below.

Cc Diagnostics

7/85

warning: floating point not implemented
warning: illegal combination of pointer and integer
warning: statement not reached

- 3 - 7/85

CTRACE(l) (C Programming Language Utilities) CTRACE(I)

warning: sizeof returns 0
Ignore these messages.

compiler takes size of function
See the ctrace "possible syntax error" message above.

yacc stack overflow
See the ctrace '"if ... else if sequence too long" message above.

out of tree space; simplify expression
Use the -t option to reduce the number of traced variables per statement
from the default of 10. Ignore the "ctrace: too many variables to trace"
warnings you will now get

redeclaration of signal
Either correct this declaration of signal(2), or remove it and #include
<signaLh>.

unimplemented structure assignment
This is caused by a missing feature in the C compiler for the PDP-1 L Use
pcc(l) instead of cc(l).

expression causes compiler loop: try simplifying
This is caused by a bug in the UNIX/370 C compiler. Unfortunately, the
only way to avoid it is to use the ctrace -v option to not trace the function
containing this line.

SEE ALSO
signal(2), ctype(3C), fclose(3S), gets(3S), printf(3S), setjmp(3C), string(3C) in
the AT&T 3B2 Computer Programmer Reference Manual.

WARNINGS

BUGS

FILES

You will get a ctrace syntax error if you omit the semicolon at the end of the last
element declaration in a structure or union, just before the right brace (}). This is
optional in some C compilers. Defining a function with the same name as a system
function may cause a syntax error if the number of arguments is changed. Just use
a different name. Ctrace assumes that BADMAG is a preprocessor macro, and that
EOF and NULL are #defined constants. Declaring any of these to be variables,
e.g., "int EOF;", will cause a syntax error.

Ctrace does not know about the components of aggregates like structures, unions,
and arrays. It cannot choose a format to print all the components of an aggregate
when an assignment is made to the entire aggregate. Ctrace may choose to print
the address of an aggregate or use the wrong format (e.g., %e for a structure with
two integer members) when printing the value of an aggregate. Pointer values are
always treated as pointers to character strings. The loop trace output elimination is
done separately for each file of a multi-file program. This can result in functions
called from a loop still being traced, or the elimination of trace output from one
function in a file until another in the same file is called.

runtime.c run-time trace package

- 4 - 7/85

CU(IC) (Basic Networking Utilities) CU(lC)

NAME
cu - call another UNIX system

SYNOPSIS
cu [-sspeed] [-Hine] [-hi [-tl [-d] [-o I -e] [-nl telno

or cu [-s speed] [-h] [-d] [-o J -e l -I line

or

cu [-bl [-d] [-o I -e] systemname

DESCRIPTION

7/85

Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It
manages an interactive conversation with possible transfers of ASCII files.

Cu accepts the following options and arguments:

-sspeed Specifies the transmission speed (300, 1200, 2400, 4800, 9600); The
default value is "Any" speed which will depend on the order of the
lines in the /usr/lib/uucp/Devices file. Most modems are either 300
or 1200 baud. Directly connected lines may be set to a speed higher
than 1200 baud.

-1/ine

-h

-t

-d

-o

-n

-e

tel no

Specifies a device name to use as the communication line. This can be
used to override the search that would otherwise take place for the
first available line having the right speed. When the -I option is used
without the -s option, the speed of a line is taken from the Devices
file. When the -I and -s options are both used together, cu will
search the Devices file to check if the requested speed for the
requested line is available. If so, the connection will be made at the
requested speed; otherwise an error message will be printed and the
call will not be made. The specified device is generally a directly con­
nected asynchronous line (e.g., /dev/ttyab) in which case a telephone
number (telno) is not required. If the specified device is associated
with an auto dialer, a telephone number must be provided. Use of this
option with systemname rather than telno will not give the desired
result (see systemname below).

Emulates local echo, supporting calls to other computer systems which
expect terminals to be set to half-duplex mode.

Used to dial an ASCII terminal which has been set to auto answer.
Appropriate mapping of carriage-return to carriage-return-line-feed
pairs is set.

Causes diagnostic traces to be printed.

Designates that odd parity is to be generated for data sent to the
remote system.

For added security, will prompt the user to provide the telephone
number to be dialed rather than taking it from the command line.

Designates that even parity is to be generated for data sent to the
remote system.

When using an automatic dialer, the argument is the telephone
number with equal signs for secondary dial tone or minus signs placed
appropriately for delays of 4 seconds.

- 1 - 7/85

CU(lC)

7/85

(Basic Networking Utilities) CU(lC)

systemname A uucp system name may be used rather than a telephone number; in
this case, cu will obtain an appropriate direct line or telephone
number from /usr/lib/uucp/Systems. Note: the systemname option
should not be used in conjunction with the -I and -s options as cu
will connect to the first available line for the system name specified,
ignoring the requested line and speed. After making the connection,
cu runs as two processes: the transmit process reads data from the
standard input and, except for lines beginning with , passes it to the
remote system; the receive process accepts data from the remote sys­
tem and, except for lines beginning with , passes it to the standard
output. Normally, an automatic DC3/DC1 protocol is used to control
input from the remote so the buffer is not overrun. Lines beginning
with have special meanings.

The transmit process interprets the following user initiated commands:

terminate the conversation.

!cmd ...

$cmd ...

%cd

% take from [to]

% put from [to]

line

%break

%debug

t

%nostop

escape to an interactive shell on the local system.

run cmd on the local system (via sb -c).

run cmd locally and send its output to the remote system.

change the directory on the local system. Note: led will
cause the command to be run by a sub-shell, probably not
what was intended.

copy file from (on the remote system) to file to on the local
system. If to is omitted, the from argument is used in both
places.

copy file from (on local system) to file to on remote system.
If to is omitted, the from argument is used in both places.

For both % take and put commands, as each block of the file
is transferred, consecutive single digits are printed to the ter­
minal.

send the line line to the remote system.

transmit a BREAK to the remote system (which can also be
specified as % b).

toggles the -d debugging option on or off (which can also be
specified as % d) .

prints the values of the termio structure variables for the
user's terminal (useful for debugging).

prints the values of the termio structure variables for the
remote communication line (useful for debugging).

toggles between DC3/DC1 input control protocol and no
input control. This is useful in case the remote system is one
which does not respond properly to the DC3 and DCl charac­
ters.

The receive process normally copies data from the remote system to its standard
output. Internally the program accomplishes this by initiating an output diversion
to a file when a line from the remote begins with .

- 2 - 7/85

CU(lC) (Basic Networking Utilities) CU(lC)

Data from the remote is diverted (or appended, if > > is used) to file on the local
system. The trailing > marks the end of the diversion.

The use of % put requires stty (1) and cat (1) on the remote side. It also requires
that the current erase and kill characters on the remote system be identical to these
current control characters on the local system. Backslashes are inserted at appropri­
ate places.

The use of %take requires the existence of echo(!) and cat(l) on the remote sys­
tem. Also, tabs mode (See stty(J)) should be set on the remote system if tabs are
to be copied without expansion to spaces.

When cu is used on system X to connect to system Y and subsequently used on sys­
tem Y to connect to system Z, commands on system Y can be executed by using
Executing a tilda command reminds the user of the local system uname. For exam­
ple, uname can be executed on Z, X, and Y as follows:

uname
z
[X]!uname
x

[Y]!uname
y

In general, causes the command to be executed on the original machine, causes
the command to be executed on the next machine in the chain.

EXAMPLES

FILES

To dial a system whose telephone number is 9 201 555 1212 using 1200 baud
(where dialtone is expected after the 9):

cu -s1200 9=12015551212

If the speed is not specified, "Any" is the default value.

To login to a system connected by a direct line:
cu -1 /dev/ttyXX

or
cu -1 ttyXX

To dial a system with the specific line and a specific speed:
cu -s1200 -1 ttyXX

To dial a system using a specific line associated with an auto dialer:
cu -! cu!XX 9=12015551212

To use a system name:
cu systemname

/usr /lib/uucp/Systems
/usr /lib/uucp/Devices
/usr /spool/locks/LCK.. (tty-device)

SEE ALSO
cat(l), ct(lC), echo(!), stty(l), uname(l), uucp(lC).

DIAGNOSTICS
Exit code is zero for normal exit, otherwise, -1.

7/85 - 3 - 7/85

ClU(lC) (Basic Networki11g Utilities) CU(lC)

WARNINGS

BUGS

7/85

Cu does not do any integrity checking on data it transfers.
Data fields with special cu characters may not be transmitted properly. Depending
on the interconnection hardware, it may be necessary to use a . to terminate the
conversion even if stty 0 has been used.

There is an artificial slowing of transmission by cu during the % put operation so
that loss of data is unlikely.

- 4 - 7/85

CUT(l) (Directory and File Management. Utilities) CUT(l)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [filel file2 ...]
cut -flist [-dchar] [-s] [file! file2 .. .]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in data
base parlance, it implements the projection of a relation. The fields as specified by
list can be fixed length, i.e., character positions as on a punched card (-c option)
or the length can vary from line to line and be marked with a field delimiter charac­
ter like tab (-f option). Cut can be used as a filter; if no files are given, the stan­
dard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order),
with optional - to indicate ranges [e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field)].

-clist The list following -c (no space) specifies character positions (e.g.,
-cl -72 would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in the file
by a delimiter character (see -d); e.g., -fl,7 copies the first and seventh
field only. Lines with no field delimiters will be passed through intact
(useful for table subheadings), unless -sis specified.

-dchar The character following -d is the field delimiter (-f option only).
Default is tab. Space or other characters with special meaning to the
shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -f option. Unless
· specified, lines with no delimiters will be passed through untouched.

Either the -c or -f option must be specified.

Use grep(l) to make horizontal "cuts" (by context) through a file, or paste(!) to
put files together column-wise (i.e., horizontally). To reorder columns in a table,
use cut and paste.

EXAMPLES
cut -d: -fl,5 /etc/passwd

name='who am i I cut -fl -d" "'

DIAGNOSTICS

mapping of user IDs to names

to set name to current login name.

line too long A line can have no more than 1023 characters or fields.

bad list for c If option Missing -c or -f option or incorrectly specified list. No
error occurs if a line has fewer fields than the list calls for.

no fields

SEE ALSO
grep(l), paste(!).

7/85

The list is empty.

- 1 - 7/85

CXREF(l) (C Programming Language Utilities) CXREF(l)

NAME
cxref - generate C program cross-reference

SYNOPSIS
cxref [options] files

DESCRIPTION

FILES

Cxref analyzes a collection of C files and attempts to build a cross-reference table.
Cxref utilizes a special version of cpp to include #define'd information in its symbol
table. It produces a listing on standard output of all symbols (auto, static, and glo­
bal) in each file separately, or with the -c option, in combination. Each symbol
contains an asterisk (•) before the declaring reference.

In addition to the -D, -I and -U options (which are identical to their interpreta­
tion by cc(l)), the following options are interpreted by cxref:

-c Print a combined cross-reference of all input files.

-w<num>
Width option which formats output no wider than <num> (decimal)
columns. This option will default to 80 if <num> is not specified or is
less than 51.

-o file Direct output to named file.

-s Operate silently; does not print input file names.

-t Format listing for 80-column width.

/usr/lib/xcpp special version of C-preprocessor.

SEE ALSO
cc(l).

DIAGNOSTICS

BUGS

7/85

Error messages are unusually cryptic, but usually mean that you cannot compile
these files, anyway.

Cxref considers a formal argument in a #de.fine macro definition to be a declaration
of that symbol. For example, a program that #includes ctype.h, will contain many
declarations of the variable c.

- 1 - 7/85

DATE(l) (Essential Utilities) DATE(l)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm[yy] I I +format]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date and
time are printed. Otherwise, the current date is set. The first mm is the month
number; dd is the day number in the month; hh is the hour number (24 hour sys­
tem); the second mm is the minute number; yy is the last 2 digits of the year
number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is men­
tioned. The system operates in GMT. Date takes care of the conversion to and
from local standard and daylight time.

If the argument begins with +, the output of date is under the control of the user.
All output fields are of fixed size (zero padded if necessary). Each field descriptor
is preceded by % and will be replaced in the output by its corresponding value. A
single % is encoded by % % . All other characters are copied to the output without
change. The string is always terminated with a new-line character.

Field Descriptors:
n insert a new-line character
t insert a tab character
m month of year - 01 to 12
d day of month - Ol to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS

day of year - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

would have generated as output:

DIAGNOSTICS

DATE: 08/01/76
TIME: 14:45:05

No permission if you are not the super-user and you try to change the date;
bad conversion if the date set is syntactically incorrect;
bad format character if the field descriptor is not recognizable.

FILES
/dev/kmem

WARNING
It is a bad practice to change the date while the system is running multi-user.

7/85 - l - 7/85

DC(l) (User Environment Utilities) DC(l)

NAME
de - desk calculator

SYNOPSIS
de [file]

DESCRIPTION

7/85

De is an arbitrary precision arithmetic package. Ordinarily it operates on decimal
integers, but one may specify an input base, output base, and a number of fractional
digits to be maintained. (See be(l), a preprocessor for de that provides infix nota­
tion and a C-like syntax that implements functions. Be also provides reasonable
control structures for programs) The overall structure of de is a stacking (reverse
Polish) calculator. If an argument is given, input is taken from that file until its
end, then from the standard input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken
string of the digits 0-9. It may be preceded by an underscore () to input a
negative number. Numbers may contain decimal points.

+-/•%"
The top two values on the stack are added (+), subtracted (-) , multiplied
(.·), divided (/), remaindered (%) , or exponentiated ("). The two entries are
popped off the stack; the result is pushed on the stack in their place. Any
fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x
may be any character. If the s is capitalized, x is treated as a stack and the
value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not altered.
All registers start with zero value. If the I is capitalized, register x is treated
as a stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged. P
interprets the top of the stack as an ASCII string, removes it, and prints it.

f All values on the stack are printed.

q exits the program. If executing a string, the recursion level is popped by two.
If q is capitalized, the top value on the stack is popped and the string execu­
tion level is popped by that value.

x treats the top element of the stack as a character string and executes it as a
string of de commands.

X replaces the number on the top of the stack with its scale factor.

I ... I puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x is
evaluated if they obey the stated relation.

v replaces the top element on the stack by its square root. Any existing frac­
tional part of the argument is taken into account, but otherwise the scale fac­
tor is ignored.

interprets the rest of the line as a UNIX system command.

- 1 - 7/85

DC(l) (User Environment Utilities) DC(l)

c All values on the stack are popped.

The top value on the stack is popped and used as the number radix for
further input. I pushes the input base on the top of the stack.

o The top value on the stack is popped and used as the number radix for
further output.

O pushes the output base on the top of the stack.

k

, .

the top of the stack is popped, and that value is used as a non-negative scale
factor: the appropriate number of places are printed on output, and main­
tained during multiplication, division, and exponentiation. The interaction of
scale factor, input base, and output base will be reasonable if all are changed
together.

The stack level is pushed onto the stack.

replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and exe­
cuted.

are used by be for array operations.

EXAMPLE
This example prints the first ten values of nl:

Hal +dsa*plalO>y]sy
Osal
lyx

SEE ALSO
bc(l).

DIAGNOSUCS
x is unimplemented

where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

7/85 - 2 - 7/85

DELTA(!) (Source Code Control System Utilities) DELTA(l)

NAME
delta - make a delta (change) to an SCCS file

SYNOPSIS
delta [-rSID] [-sl [-n] [-glist] [-m[mrlistll [-y[commentll [-pl files

DESCRIPTION

7/85

Delta is used to permanently introduce into the named SCCS file changes that were
made to the file retrieved by get (1) (called the g-file, or generated file).

Delta makes a delta to each named SCCS file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file, except
that non-SCCS files (last component of the path name does not begin with sJ and
unreadable files are silently ignored. If a name of - is given, the standard input is
read (see WARNINGS); each line of the standard input is taken to be the name of
an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon certain keyletters
specified and flags (see admin(I)) that may be present in the SCCS file (see -m
and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the SCCS
file. The use of this keyletter is necessary only if two or
more outstanding gets for editing (get -e) on the same
SCCS file were done by the same person (login name). The
SID value specified with the -r keyletter can be either the
SID specified on the get command line or the SID to be made
as reported by the get command (see get (1)). A diagnostic
results if the specified SID is ambiguous, or, if necessary and
omitted on the command line.

-s

-n

-glist

-m[mrlistl

Suppresses the issue, on the standard output, of the created
delta's SID, as well as the number of lines inserted, deleted
and unchanged in the secs file.

Specifies retention of the edited g-file (normally removed at
completion of delta processing).

Specifies a list (see get (1) for the definition of list) of deltas
which are to be ignored when the file is accessed at the
change level (SID) created by this delta.

If the SCCS file has the v flag set (see admin(I)) then a
Modification Request (MR) number must be supplied as the
reason for creating the new delta.

If -m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the
standard input is read; if the standard input is not a termi­
nal, no prompt is issued. The MRs? prompt always precedes
the comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters.
An unescaped new-line character terminates the MR list.

Note that if the 11 flag has a value (see admin(I)), it is taken
to be the name of a program (or shell procedure) which will
validate the correctness of the MJR numbers. If a non-zero
exit status is returned from the MR number validation

- 1 - 7/85

DELTA(!) (Source Code Control System Utilities) DELTA(!)

FILES
g-file

p-file

q-file

x-file

z-file

d-file

program, delta terminates. (It is assumed that the MR
numbers were not all valid.)

-y[commentl Arbitrary text used to describe the reason for making the
delta. A null string is considered a valid comment.

-p

If -y is not specified and the standard input is a terminal,
the prompt comments? is issued on the standard output
before the standard input is read; if the standard input is not
a terminal, no prompt is issued. An unescaped new-line
character terminates the comment text.

Causes delta to print (on the standard output) the SCCS file
differences before and after the delta is applied in a dijf(l)
format.

Existed before the execution of delta; removed after completion of
delta.
Existed before the execution of delta; may exist after completion of
delta.
Created during the execution of delta; removed after completion of
delta.
Created during the execution of delta; renamed to SCCS file after
completion of delta.
Created during the execution of delta; removed during the execu­
tion of delta.
Created during the execution of delta; removed after completion of
delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file and the
g-file.

WARNINGS
Lines beginning with an SOH ASCII character (binary 00 I) cannot be placed in the
SCCS file unless the SOH is escaped. This character has special meaning to SCCS
(see sccsfile(4) (5)) and will cause an error.

A get of many secs files, followed by a delta of those files, should be avoided when
the get generates a large amount of data. Instead, multiple get/delta sequences
should be used.

If the standard input (-) is specified on the delta command line, the -m (if neces­
sary) and -y keyletters must also be present. Omission of these keyletters causes
an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(l), bdiff(l), cdc(l), get(l), help(l), prs(l), rmdel(l).
sccsfile(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS
Use help (1) for explanations.

- 2 - 7/85

DEROFF(l) (Spell Utilities) DEROFF(l)

NAME
deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [-mm] [-mil [-w] [-i] [files]

DESCRIPTION
Deroff reads each of the files in sequence and removes all troff(l) requests, macro
calls, backslash constructs, eqn(l) constructs (between .EQ and .EN lines, and
between delimiters), and tbl(l) descriptions, perhaps replacing them with white
space (blanks and blank lines), and writes the remainder of the file on the standard
output. The user would not invoke deroff when using spell but rather spell uses
derojf in checking files produced using the DOCUMENTER'S WORKBENCH
Software system. Deroff follows chains of included files (.so and .nx troff com­
mands); if a file has already been included, a .so naming that file is ignored and a
.nx naming that file terminates execution. If no input file is given, deroff reads the
standard input.

The -m option must be followed by an m or I. The -mm option causes the macros
to be interpreted so that only running text is output (i.e., no text from macro lines.)
The -ml option forces the -mm option and also causes deletion of lists associated
with the mm macros.

If the -w option is given, the output is a word list, one "word" per line, with all
other characters deleted. Otherwise, the output follows the original, with the dele­
tions mentioned above. In text, a "word" is any string that contains at least two
letters and is composed of letters, digits, ampersands (&) , and apostrophes ('); in a
macro call, however, a "word" is a string that begins with at least two letters and
contains a total of at least three letters. Delimiters are any characters other than
letters, digits, apostrophes, and ampersands. Trailing apostrophes and ampersands
are removed from "words."

The -i option removes all .so and .nx troff commands instead of looking for the
included files.

SEE ALSO
spell(!).

BUGS

7/85

eqn(l), nroff(!), tbl(l), troff(l) in the UNIX System V DOCUMENTER'S WORK­
BENCH Software Introduction and Reference Manual.

Deroff is not a complete troff interpreter, so it can be confused by subtle constructs.
Most such errors result in too much rather than too little output.
The -ml option does not handle nested lists correctly.

- 1 • 7/85

DIFF(I) (Essential Utilities) DIFF(l)

NAME
diff - differential file comparator

SYNOPSIS
diff [-efbh] filel file2

DESCRIPTION

FILES

Di.ff tells what lines must be changed in two files to bring them into agreement. If
filel (file2) is - , the standard input is used. If .filel (file2) is a directory, then a
file in that directory with the name file2 (file I) is used. The normal output con­
tains lines of these forms:

nl a n3,n4
nl,n2dn3
nl ,n2 c n3,n4

These lines resemble ed commands to convert .filel into .file2. The numbers after
the letters pertain to file2. In fact, by exchanging a for d and reading backward
one may ascertain equally how to convert file2 into filel. As in ed, identical pairs,
where nl = n2 or n3 = n4, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by <, then all the lines that are affected in the second file flagged by >.
The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed, which
will recreate file2 from .filel. The -f option produces a similar script, not useful
with ed, in the opposite order. In connection with -e, the following shell program
may help maintain multiple versions of a file. Only an ancestral file ($1) and a
chain of version-to-version ed scripts ($2,$3, .. .) made by di.ff need be on hand. A
"latest version" appears on the standard output.

(shift; cat$•; echo 'l,$p') I ed - $1

Except in rare circumstances, di.ff finds a smallest sufficient set of file differences.

Option -h does a fast, half-hearted job. It works only when changed stretches are
short and well separated, but does work on files of unlimited length. Options -e
and -fare unavailable with -b.

/tmp/d?????
/usr/lib/diffh for -b

SEE ALSO
cmp(l), comm(!), ed(l).

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Editing scripts produced under the -e or -f option are naive about creating lines
consisting of a single period (.).

WARNINGS

7/85

Missing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines are
different, they will be flagged and output; although the output will seem to
indicate they are the same.

- 1 - 7/85

DIFF3 (l) (Directory and File Management Utilities) DIFF3(1)

NAME
diff'J - 3-way differential file comparison

SYNOPSIS
diff3 [-ex3] filel file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

====1

====2

====3

all three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to some other
is indicated in one of these ways:

f: nl a Text is to be appended after line number nl in file f,
where f = 1, 2, or 3.

f: nl , n2 c Text is to be changed in the range line nl to line n2. If
nl = n2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication. When
the contents of two files are identical, the contents of the lower-numbered file is
suppressed.

Under the -e option, dijf3 publishes a script for the editor ed that will incorporate
into filel all changes between file2 and file3, i.e., the changes that normally would
be flagged ==== and ====3. Option -x (-3) produces a script to incorporate
only changes flagged ==== (====3). The following command will apply the
resulting script to file].

(cat script; echo '1,$p') I ed - filel

/tmp/d3•
/usr/lib/ diff3prog

SEE ALSO

BUGS

7/85

diff(l).

Text lines that consist of a single . will defeat -e.
Files longer than 64K bytes will not work.

- l - 7/85

DIRCMP(l) (Directory and File Management Utilities) DIRCMP(l)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d I [-s] [-wn] dirl dir2

DESCRIPTION
Dircmp examines dirl and dir2 and generates various tabulated information about
the contents of the directories. Listings of files that are unique to each directory are
generated for all the options. If no option is entered, a list is output indicating
whether the file names common to both directories have the same contents.

-d Compare the contents of files with the same name in both directories and
output a list telling what must be changed in the two files to bring them
into agreement. The list format is described in di.ff(1).

-s Suppress messages about identical files.

-wn Change the width of the output line to n characters. The default width is
72.

SEE ALSO
cmp(l), diff(l).

7/85 - 1 - 7/85

DIS(l) (Software Generation System Utilities) DIS (1)

NAME
dis - object code disassembler

SYNOPSIS
dis [-o] [-V] [-L] [-d secl [-da sec] [-Fl [-t sec] [-I string] files

DESCRIPTION
The dis command produces an assembly language listing of .file, which may be an
object file or and archive of object files. The listing includes assembly statements
and an octal or hexadecimal representation of the binary that produced those state­
ments.

The following options are interpreted by the disassembler and may be specified in
any order.

-o

-v

-L

-d sec

-da sec

Print numbers in octal. The default is hexadecimal.

Print, on standard error, the version number of the disassembler being
executed.

Invokes a lookup of C source labels in the symbol table for subsequent
printing. This option works only if the file was compiled with the -g
option of cc (1) .

Disassemble the named section as data, printing the offset of the data
from the beginning of the section.

Disassemble the named section as data, printing the actual address of
the data.

- F function Disassemble only the named functions in each object file specified on
the command line. The - F option may be specified multiple times on
the command line.

-t sec

-I string

Disassemble the named section as text.

Disassemble the library file specified as string. For example, one
would issue the command dis -I x -I z to disassemble libx.a and
libz.a. All libraries are assumed to be in /usr/Jib.

If the -d, -da or -t options are specified, only those named sections from each
user-supplied file name will be disassembled. Otherwise, all sections containing text
will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as 151,
represents that the C break-pointable line number, starts with the following instruc­
tion. These line numbers will be printed only if the file was compiled with the -g
option of cc(l). An expression such as <40> in the operand field, following a rela­
tive displacement for control transfer instructions, is the computed address within
the section to which control will be transferred. A C function name will appear in
the first column, followed by ().

SEE ALSO
as(l), cc(l), ld(l).
a.out(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS

7/85

The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

- 1 - 7/85

DUMP(l) (Software Generation System Utilities) DUMP(l)

NAME
dump - dump selected parts of an object file

SYNOPSIS
dump [-acfgblorst] [-z name] files

DESCRIPTION

7/R<:,

The dump command dumps selected parts of each of its object file arguments.

This command will accept both object files and archives of object files. It processes
each file argument according to one or more of the following options:

-a Dump the archive header of each member of each archive file argu-
ment.

-g Dump the global symbols in the symbol table of an archive.

-f Dump each file header.

-o Dump each optional header.

-h Dump section headers.

-s Dump section contents.

-r Dump relocation information.

-I Dump line number information.

-t Dump symbol table entries.

-z name Dump line number entries for the named function.

-c Dump the string table.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

-d number Dump the section number or range of sections starting at number and
ending either at the last section number or number specified by +d.

+d number Dump sections in the range either beginning with first section or begin­
ning with section specified by -d.

-n name Dump information pertaining only to the named entity. This modifier
applies to -h, -s, -r, -1, and -t.

-p Supress printing of the headers.

-t index Dump only the indexed symbol table entry. The -t used in conjunc-
tion with +t, specifies a range of symbol table entries.

+t index Dump the symbol table entries in the range ending with the indexed
entry. The range begins at the first symbol table entry or at the entry
specified by the -t option.

-u Underline the name of the file for emphasis.

-v Dump information in symbolic representation rather than numeric
(e.g., C_STATIC instead of OX02). This modifier can be used with all
the above options except -s and -o options of dump.

-z name,number
Dump line number entry or range of line numbers starting at number
for the named function.

+z number Dump line numbers starting at either function name or number
specified by -z, up to number specified by +z.

- 1 - 7/85

DUMP(l) (Software Generation System Utilities) DUMP(l)

Blanks separating an option and its modifier are optional. The comma separating
the name from the number modifying the -:i option may be replaced by a blank.

The dump command attempts to format the information it dumps in a meaningful
way, printing certain information in character, hex, octal or decimal representation
as appropriate.

SEE ALSO
a.out(4), ar(4) in the AT&T 3B2 Computer Programmer Reference Manual.

7/R'i - 2 - 7/85

ECHO(l) (Essential Utilities) ECHO(l)

NAME
echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a new-line on the
standard output. It also understands C-like escape conventions; beware of conflicts
with the shell's use of\:

\b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\ v vertical tab
\\ backslash
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal

number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending known
data into a pipe.

SEE ALSO
sh (1).

7/85 - 1 - 7/85

ED(l) (Essential Utilities) ED(l)

NAME
ed, red - text editor

SYNOPSIS

NOTE

ed [-] [-p string I [-x I [file I
red [- I [-p string I [-x] [file]

The -x option (encryption option) is provided by the Security Administation Utili­
ties, which is only available in the United States.

DESCRIPTION

7/85

Ed is the standard text editor. If the file argument is given, ed simulates an e com­
mand (see below) on the named file; that is to say, the file is read into ed's buffer so
that it can be edited. The optional - suppresses the printing of character counts by
e, r, and w commands, of diagnostics from e and q commands, and of the ! prompt
after a !shell command. The -p option allows the user to specify a prompt string.
If -x is present, an x command is simulated first to handle an encrypted file. Ed
operates on a copy of the file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The copy of the text being edited
resides in a temporary file called the buffer. There is only one buffer.

Red is a restricted version of ed. It will only allow editing of files in the current
directory. It prohibits executing shell commands via !shell command. Attempts to
bypass these restrictions result in an error message (restricted shell).

Both ed and red support the fspec(4) formatting capability. After including a for­
mat specification as the first line of file and invoking ed with your terminal in
stty -tabs or stty tab3 mode (see stty(l), the specified tab stops will automatically
be used when scanning file. For example, if the first line of a file contained:

<:t5,10,15 s72:>
tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72
would be imposed. NOTE: while inputting text, tab characters when typed are
expanded to every eighth column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two addresses
followed by a single-character command, possibly followed by parameters to that
command. These addresses specify one or more lines in the buffer. Every command
that requires addresses has default addresses, so that the addresses can very often be
omitted.

In general, only one command may appear on a line. Certain commands allow the
input of text. This text is placed in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Input mode is left by typing a period (.)
alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions are
used in addresses to specify lines and in some commands (e.g., s) to specify portions
of a line that are to be substituted. A regular expression (RE) specifies a set of
character strings. A member of this set of strings is said to be matched by the RE.
The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one­
character RE that matches itself.

- 1 - 7/85

ED(l)

7/85

(Essential Utilities) ED(l)

1.2 A backslash (\) followed by any special character is a one-character RE that
matches the special character itself. The special characters are:

a. ., •, I, and \ (period, asterisk, left square bracket, and backslash, respec­
tively), which are always special, except when they appear within square
brackets OJ; see 1.4 below) .

b. " (caret or circumflex), which is special at the beginning of an entire RE
(see 3.1 and 3.2 below), or when it immediately follows the left of a pair
of square brackets ([J) (see 1.4 below).

c. $ (currency symbol), which is special at the end of an entire RE (see 3.2
below).

d. The character used to bound (i.e., delimit) an entire RE, which is special
for that RE (for example, see how slash (/) is used in the g command,
below.)

1.3 A period (.) is a one-character RE that matches any character except new­
line.

1.4 A non-empty string of characters enclosed in square brackets ((I) is a one­
character RE that matches any one character in that string. If, however, the
first character of the string is a circumflex ("), the one-character RE matches
any character except new-line and the remaining characters in the string.
The " has this special meaning only if it occurs first in the string. The minus
(-) may be used to indicate a range of consecutive ASCII characters; for
example, (0-91 is equivalent to 101234567891. The - loses this special
meaning if it occurs first (after an initial ", if any) or last in the string. The
right square bracket (I) does not terminate such a string when it is the first
character within it (after an initial ", if any); e.g., Ila -fl matches either a
right square bracket (I) or one of the letters a through f inclusive. The four
characters listed in 1.2.a above stand for themselves within such a string of
characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE
matches.

2.2 A one-character RE followed by an asterisk (•) is a RE that matches zero or
more occurrences of the one-character RE. If there is any choice, the longest
leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that
matches a range of occurrences of the one-character RE. The values of m
and n must be non-negative integers less than 256; \{m\} matches exactly m
occurrences; \{m,\} matches at least m occurrences; \{m,n\} matches any
number of occurrences between m and n inclusive. Whenever a choice exists,
the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was matched by
an expression enclosed between \(and \) earlier in the same RE. Here n is a
digit; the sub-expression specified is that beginning with the n-th occurrence
of\(counting from the left. For example, the expression "\(A)\1$ matches

- 2 - 7/85

ED(l)

7/85

(Essential Utilities) ED(l)

a line consisting of two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment or final
segment of a line (or both).

3.1 A circumflex (") at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to
match a final segment of a line.

The construction "entire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., I/) is equivalent to the last RE encountered. See also the last
paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a com­
mand; the exact effect on the current line is discussed under the description of each
command. Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which must be
a lower-case letter. Lines are marked with the k command described below.

5. A RE enclosed by slashes (/) addresses the first line found by searching for­
ward from the line fallowing the current line toward the end of the buffer
and stopping at the first line containing a string matching the RE. If neces­
sary, the search wraps around to the beginning of the buffer and continues up
to and including the current line, so that the entire buffer is searched. See
also the last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by search­
ing backward from the line preceding the current line toward the beginning
of the buffer and stopping at the first line containing a string matching the
RE. If necessary, the search wraps around to the end of the buffer and con­
tinues up to and including the current line. See also the last paragraph before
FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by a
decimal number specifies that address plus (respectively minus) the indicated
number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken with
respect to the current line; e.g, -5 is understood to mean . -5.

9. If an address ends with + or -, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of rule 8 immediately
above, the address - refers to the line preceding the current line. (To main­
tain compatibility with earlier versions of the editor, the character " in
addresses is entirely equivalent to - .) Moreover, trailing + and - charac­
ters have a cumulative effect, so - - refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semi­
colon (;) stands for the pair .,$.

- 3 - 7/85

ED(l)

7/8')

(Essential Utilities) ED(l)

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept one
or two addresses assume default addresses when an insufficient number of addresses
is given; if more addresses are given than such a command requires, the last one(s)
are used.

Typically, addresses are separated from each other by a comma (,). They may also
be separated by a semicolon (;). In the latter case, the current line (.) is set to the
first address, and only then is the second address calculated. This feature can be
used to determine the starting line for forward and backward searches (see rules 5.
and 6. above). The second address of any two-address sequence must correspond to
a line that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the given
addresses are the default.

It is generally illegal for more than one command to appear on a line. However,
any command (except e, f, r, or w) may be suffixed by I, n, or p in which case the
current line is either listed, numbered or printed, respectively, as discussed below
under the l, n, and p commands.

Ua
<text>

Uc
<text>

t,Jd

e file

Efile

The append command reads the given text and appends it after the
addressed line; . is left at the last inserted line, or, if there were none, at the
addressed line. Address 0 is legal for this command: it causes the
"appended" text to be placed at the beginning of the buffer. The maximum
number of characters that may be entered from a terminal is 256 per line
(including the new-line character).

The change command deletes the addressed lines, then accepts input text
that replaces these lines; " is left at the last line input, or, if there were
none, at the first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The line
after the last line deleted becomes the current line; if the lines deleted were
originally at the end of the buffer, the new last line becomes the current
line.

The edit command causes the entire contents of the buffer to be deleted,
and then the named file to be read in; . is set to the last line of the buffer.
If no file name is given, the currently-remembered file name, if any, is used
(see the f command). The number of characters read is typed; file is
remembered for possible use as a default file name in subsequent e, r, and
w commands. If file is replaced by !, the rest of the line is taken to be a
shell (sh (1)) command whose output is to be read. Such a shell command
is not remembered as the current file name. See also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to see if
any changes have been made to the buffer since the last w command.

• 4 . 7/85

ED(I)

7/85

f file

(Essential Utilities) ED(l)

If file is given, the file-name command changes the currently-remembered
file name to file; otherwise, it prints the currently-remembered file name.

(1,$)g/RE/command list
In the global command, the first step is to mark every line that matches the
given RE. Then, for every such line, the given command list is executed
with . initially set to that line. A single command or the first of a list of
commands appears on the same line as the global command. All lines of a
multi-line list except the last line must be ended with a \; a, i, and c com­
mands and associated input are permitted. The . terminating input mode
may be omitted if it would be the last line of the command list. An empty
command list is equivalent to the p command. The g, G, v, and V com­
mands are not permitted in the command list. See also BUGS and the last
paragraph before FILES below.

(l,$)G/RE/

h

H

(.)j
<text>

In the interactive Global command, the first step is to mark every line that
matches the given RE. Then, for every such line, that line is printed, . is
changed to that line, and any one command Cother than one of the a, c, i,
g, G, v, and V commands) may be input and is executed. After the execu­
tion of that command, the next marked line is printed, and so on; a new-line
acts as a null command; an & causes the re-execution of the most recent
command executed within the current invocation of G. Note that the com­
mands input as part of the execution of the G command may address and
affect any lines in the buffer. The G command can be terminated by an
interrupt signal (ASCII DEL or BREAK).

The help command gives a short error message that explains the reason for
the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error messages are
printed for all subsequent ? diagnostics. It will also explain the previous ?
if there was one. The H command alternately turns this mode on and off;
it is initially off.

The insert command inserts the given text before the addressed line; • is left
at the last inserted line, or, if there were none, at the addressed line. This
command differs from the a command only in the placement of the input
text. Address 0 is not legal for this command. The maximum number of
characters that may be entered from a terminal is 256 per line (including
the new-line character).

(.,. +Oj

(.)kx

(.,.)I

The join command joins contiguous lines by removing the appropriate new­
line characters. If exactly one address is given, this command does nothing.

The mark command marks the addressed line with name x, which must be
a lower-case letter. The address 'x then addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous way: a few

- 5 - 7/85

ED(l)

c,.)ma

t,.)n

c,.>p

p

Q

(Essential Utilities) ED(I)

non-printing characters (e.g., tab, backspace) are represented by (hope­
fully) mnemonic overstrikes. All other non-printing characters are printed
in octal, and long lines are folded. An l command may be appended to any
other command other than e, f, r, or w.

The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed line(s) to
be moved to the beginning of the file. It is an error if address a falls within
the range of moved lines; . is left at the last line moved.

The number command prints the addressed lines, preceding each line by its
line number and a tab character; . is left at the last line printed. The n
command may be appended to any other command other than e,f, r, or w.

The print command prints the addressed lines; . is left at the last line
printed. The p command may be appended to any other command other
than e, f, r, or w. For example, dp deletes the current line and prints the
new current line.

The editor will prompt with a • for all subsequent commands. The P com­
mand alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is done
(but see DIAGNOSTICS below).

The editor exits without checking if changes have been made in the buffer
since the last w command.

($)r file
The read command reads in the given file after the addressed line. If no
file name is given, the currently-remembered file name, if any, is used (see
e and f commands). The currently-remembered file name is not changed
unless file is the very first file name mentioned since ed was invoked.
Address 0 is legal for r and causes the file to be read at the beginning of
the buffer. If the read is successful, the number of characters read is typed;
. is set to the last line read in. If file is replaced by !, the rest of the line is
taken to be a shell (sh (1)) command whose output is to be read. For
example, "$r !ls" appends current directory to the end of the file being
edited. Such a shell command is not remembered as the current file name.

(.,JslRElreplacementl or
(.,.) s/ RE I replacement I g or
(.,.)s/RE/replacement/n. n ... 1-512

The substitute command searches each addressed line for an occurrence of
the specified RE. In each line in which a match is found, all (non­
overlapped) matched strings are replaced by the replacement if the global
replacement indicator g appears after the command. If the global indicator
does not appear, only the first occurrence of the matched string is replaced.
If a number n appears after the command, only the n th occurrence of the
matched string on each addressed line is replaced. It is an error for the
substitution to fail on all addressed lines. Any character other than space
or new-line may be used instead of I to delimit the RE and the

- 6 - 7/85

ED(l)

7 /fi.t:;,

<.,.>ta

u

(Essential Utilities) ED(l)

replacement; . is left at the last line on which a substitution occurred. See
also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string
matching the RE on the current line. The special meaning of & in this
context may be suppressed by preceding it by \. As a more general feature,
the characters \n, where n is a digit, are replaced by the text matched by
the n-th regular subexpression of the specified RE enclosed between \(and
\). When nested parenthesized subexpressions are present, n is determined
by counting occurrences of \ (starting from the left. When the character
% is the only character in the replacement, the replacement used in the
most recent substitute command is used as the replacement in the current
substitute command. The % loses its special meaning when it is in a
replacement string of more than one character or is preceded by a \.

A line may be split by substituting a new-line character into it. The new­
line in the replacement must be escaped by preceding it by \. Such substi­
tution cannot be done as part of a g or v command list.

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); . is left at the
last line of the copy.

The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, c, d, g, i, j, m,
r, s, t, v, G, or V command.

(1, $)v I RE I command list
This command is the same as the global command g except that the com­
mand list is executed with . initially set to every line that does not match
the RE.

(1,$)V/RE/
This command is the same as the interactive global command G except that
the lines that are marked during the first step are those that do not match
the RE.

(1,$)w file

x

The write command writes the addressed lines into the named file. If the
file does not exist, it is created with mode 666 (readable and writable by
everyone), unless your umask setting (see sh (1)) dictates otherwise. The
currently-remembered file name is not changed unless file is the very first
file name mentioned since ed was invoked. If no file name is given, the
currently-remembered file name, if any, is used (see e and f commands); .
is unchanged. If the command is successful, the number of characters writ­
ten is typed. If file is replaced by !, the rest of the line is taken to be a
shell (sh (1)) command whose standard input is the addressed lines. Such a
shell command is not remembered as the current file name.

A key string is demanded from the standard input. Subsequent e, r, and w
commands will encrypt and decrypt the text with this key by the algorithm
of crypt (1). An explicitly empty key turns off encryption.

- 7 - 7/fl.t:;,

JED (l)

fl LES

($) =

(Essential Utilities) ED(l)

The line number of the addressed line is typed; " is unchanged by this com­
mand.

!shell command
The remainder of the line after the ! is sent to the UNIX system shell
(sh (1)) to be interpreted as a command. Within the text of that command,
the unescaped character % is replaced with the remembered file name; if a
! appears as the first character of the shell command, it is replaced with the
text of the previous shell command. Thus, !! will repeat the last shell com­
mand. If any expansion is performed, the expanded line is echoed; " is
unchanged.

t +1) <new-line>
An address alone on a line causes the addressed line to be printed. A new­
line alone is equivalent to "+lp;i; it is useful for stepping forward through
the buffer.

If an interrupt signal (ASCH DEL or BREAK) is sent, ed prints a ? and returns to
its command level.

Some size Hmitations: 512 characters per line, 256 characters per global command
list, 64 characters per file name, and 128K characters in the buffer. The limit on
the number of lines depends on the amount of user memory: each line takes 1
word.

When reading a file, ed discards ASCH NUL characters and all characters after the
last new-line. Files (e.g., 11.,oll\~) that contain characters not in the ASCII set (bit 8
on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the last
character before a new-line, that delimiter may be omitted, in which case the
addressed line is printed. The following pairs of commands are equivalent:

s/sl/s2 s/sl/s2/p
g/sl g/sl/p
?sl ?sl?

/tmp/e#
ed,hup

DIAGNOSUCS

temporary; # is the process number.
work is saved here if the terminal is hung up.

T for command errors.
for an inaccessible file.
(use the help and Help commands for detailed explanations).

H changes have been made in the buffer since the last w command that wrote the
entire buffer, ed warns the user if an attempt is made to destroy ed's buffer via the
e or q commands. H prints '! and allows one to continue editing. A second e or q
command at this point will take effect. The - command-line option inhibits this
feature.

SEE ALSO
crypt(l).

"7 JO t:;,_

grep(l), sed(l), sh(l), stty(l) in the 3B2 Computer System User Reference
Manual.
fspec(4), regexp(5) in the 3B2 Computer System Programmer Reference Manual.

7/85

ED(l)

BUGS

7/85

(Essential Utilities) ED(l)

A ! command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, r, and w commands cannot be used if
the the editor is invoked from a restricted shell (see sh(l)).
The sequence \n in a RE does not match a new-line character.
The I command mishandles DEL.
Files encrypted directly with the crypt (1) command with the null key cannot be
edited.
Characters are masked to 7 bits on input.
If the editor input is coming from a command file (i.e., ed file < ed-cmd-file), the
editor will exit at the first failure of a command that is in the command file.

7/85

EDIT(l) (Editing Utilities) EDIT(l)

NAME
edit - text editor (variant of ex for casual users)

SYNOPSIS
edit [-r] name ...

DESCRIPTION

7/85

Edit is a variant of the text editor ex recommended for new or casual users who
wish to use a command-oriented editor.

-r Recover file after an editor or system crash.

The following brief introduction should help you get started with edit. If you are
using a CRT terminal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command "edit name" to
the shell. Edit makes a copy of the file which you can then edit, and tells you how
many lines and characters are in the file. To create a new file, just make up a name
for the file and try to run edit on it; you will cause an error diagnostic, but do not
worry.

Edit prompts for commands with the character ':', which you should see after start­
ing the editor. If you are editing an existing file, then you will have some lines in
edit's buffer Gts name for the copy of the file you are editing). Most commands to
edit use its "current line" if you do not tell them which line to use. Thus if you say
print (which can be abbreviated p) and hit carriage return (as you should after all
edit commands) this current line will be printed. If you delete (d) the current line,
edit will print the new current line. When you start editing, edit makes the last line
of the file the current line. If you delete this last line, then the new last line
becomes the current one. In general, after a delete, the next line in the file becomes
the current line. (Deleting the last line is a special case.)

If you start with an empty file or wish to add some new lines, then the append (a)
command can be used. After you give this command (typing a carriage return after
the word append) edit will read lines from your terminal until you give a line con­
sisting of just a ".'', placing these lines after the current line. The last line you type
then becomes the current line. The command insert (i) is like append but places the
lines you give before, rather than after, the current line.

Edit numbers the lines in the buffer, with the first line having number 1. If you
give the command "I" then edit will type this first line. If you then give the com­
mand delete edit will delete the first line, line 2 will become line 1, and edit will
print the current line (the new line 1) so you can see where you are. In general, the
current line will always be the last line affected by a command.

You can make a change to some text within the current line by using the substitute
(s) command. You say "s/o/d/new/" where old is replaced by the old characters
you want to get rid of and new is the new characters you want to replace it with.

The command file (f) will tell you how many lines there are in the buffer you are
editing and will say "[Modified]" if you have changed it. After modifying a file you
can put the buffer text back to replace the file by giving a write (w) command.
You can then leave the editor by issuing a quit (q) command. If you run edit on a
file, but do not change it, it is not necessary (but does no harm) to write the file
back. If you try to quit from edit after modifying the buffer without writing it out,
you will be warned that there has been "No write since last change" and edit will
await another command. If you wish not to write the buffer out then you can issue
another quit command. The buffer is then irretrievably discarded, and you return to
the shell.

- 1 - 7/85

EDIT (l) (Editing Utilities) EDIT(l)

By using the delete and append commands, and giving line numbers to see lines in
the file you can make any changes you desire. You should learn at least a few more
things, however, if you are to use edit more than a few times.

The change (c) command will change the current line to a sequence of lines you
supply (as in append you give lines up to a line consisting of only a "."). You can
tell change to change more than one line by giving the line numbers of the lines you
want to change, i.e., "3,5change". You can print lines this way too. Thus "l,23p"
prints the first 23 lines of the file.

The undo (u) command will reverse the effect of the last command you gave which
changed the buffer. Thus if you give a substitute command which does not do what
you want, you can say undo and the old contents of the line will be restored. You
can also undo an undo command so that you can continue to change your mind.
Edit will give you a warning message when commands you do affect more than one
line of the buffer. If the amount of change seems unreasonable, you should consider
doing an undo and looking to see what happened. If you decide that the change is
ok, then you can undo again to get it back. Note that commands such as write and
quit cannot be undone.

To look at the next line in the buffer you can just hit carriage return. To look at a
number of lines hit 'D (control key and, while it is held down D key, then let up
both) rather than carriage return. This will show you a half screen of lines on a
CRT or 12 Jines on a hardcopy terminal. You can look at the text around where
you are by giving the command "z.". The current line will then be the last line
printed; you can get back to the line where you were before the "z." command by
saying """. The z command can also be given other following characters "z-"
prints a screen of text (or 24 lines) ending where you are; "z+" prints the next
screenfuL If you want less than a screenful of lines, type in "z.12" to get 12 lines
total. This method of giving counts works in general; thus you can delete 5 lines
starting with the current line with the command "delete 5".

To find things in the file, you can use line numbers if you happen to know them;
since the line numbers change when you insert and delete lines this is somewhat
unreliable. You can search backwards and forwards in the file for strings by giving
commands of the form /text/ to search forward for text or ?text? to search back­
ward for text. If a search reaches the end of the file without finding the text it
wraps, end around, and continues to search back to the line where you are. A use­
ful feature here is a search of the form rtext/ which searches for text at the begin­
ning of a line. Similarly /text$/ searches for text at the end of a line. You can
leave off the trailing I or ? in these commands.

The current line has a symbolic name "."; this is most useful in a range of lines as
in ".,$print" which prints the rest of the lines in the file. To get to the last line in
the file you can refer to it by its symbolic name"$". Thus the command "$delete"
or "$d" deletes the last line in the file, no matter which line was the current line
before. Arithmetic with line references is also possible. Thus the line "$-5" is the
fifth before the last, and ".+20" is 20 lines after the present.

You can find out which line you are at by doing ".=". This is useful if you wish to
move or copy a section of text within a file or between files. Find out the first and
last line numbers you wish to copy or move (say 10 to 20). For a move you can
then say "10,20delete a" which deletes these lines from the file and places them in a
buffer named a. Edit has 26 such buffers named a through z. You can later get
these lines back by doing "put a" to put the contents of buffer a after the current
line. If you want to move or copy these lines between files you can give an edit (e)
command after copying the lines, following it with the name of the other file you

7/85

EDIT(l) (Editing Utilities) EDIT(l)

wish to edit, i.e., "edit chapter2". By changing delete to yank above you can get a
pattern for copying lines. If the text you wish to move or copy is all within one file
then you can just say "10,20move $" for example. It is not necessary to use named
buffers in this case (but you can if you wish).

SEE ALSO
ex(l), vi(l).

7/85 - 3 - 7/85

EFL(l) (FORTRAN Programming Language Utilities) EFL(l)

NAME
efl - Extended Fortran Language

SYNOPSIS
efl [options] [files]

DESCRIPTION

7/85

Efl compiles a program written in the EFL language into clean Fortran on the stan­
dard output. Efl provides the C-like control constructs of ratfor(l):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-case);
while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-like data structures, e.g.:

struct
{
integer fiags(3)
character(8) name
long real coords(2)
} table(lOO)

The language offers generic functions, assignment operators
sequentially evaluated logical operators (& & and 11).
input/output syntax:

write(6,x,y:f(7,2), do i=l,10 { a(i,j),z.b(i) })

EFL also provides some syntactic "sugar":

free-form input:

(+ =, & = , etc.), and
There is a uniform

multiple statements per line; automatic continuation; statement
label names (not just numbers).

comments:
this is a comment.

translation of relational and logical operators:
>, > =, &, etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
include file

Efi understands several option arguments: -w suppresses warning messages, -#
suppresses comments in the generated program, and the default option -C causes
comments to be included in the generated program.

An argument with an embedded = (equal sign) sets an EFL option as if it had
appeared in an option statement at the start of the program. Many options are
described in the reference manual. A set of defaults for a particular target machine
may be selected by one of the choices: system=unix, system=gcos, or
system= cray. The default setting of the system option is the same as the machine
the compiler is running on.

- 1 - 7/85

EFL(l) (FORTRAN Programming Language Utilities) EFL(l)

Other specific options determine the style of input/output, error handling, continua­
tion conventions, the number of characters packed per word, and default formats.

Efl is best used withj77(1).

SJEE ALSO
cc(l), f77(1), ratfor(l).

7/85 - 2 - 7/85

EGREP(l) (Directory and File Management Utilities) EGREP(l)

NAME
egrep - search a file for a pattern

SYNOPSIS
egrep [options] [expression] [files]

DESCRIPTION
The egrep command searches the input .files (standard input default) for lines
matching a pattern. Normally, each line found is copied to the standard output.
Egrep patterns are full regular expressions; it uses a fast deterministic algorithm
that sometimes needs exponential space. The following options are recognized:

-v All lines but those matching are printed.
Same as a simple expression argument, but useful when the expression
begins with a -

-f file
The regular expression is taken from the .file.

In all cases, the file name is output if there is more than one input file. Care should
be taken when using the characters $, *, [, A, I , (,) , and \ in expression, because
they are also meaningful to the shell. It is safest to enclose the entire expression
argument in single quotes ' ... '.

Egrep accepts regular expressions as in ed(l), except for\(and\), with the addi­
tion of:

1. A regular expression followed by + matches one or more occurrences of the
regular expression.

2. A regular expression followed by ? matches 0 or l occurrences of the regular
expression.

3. Two regular expressions separated by I or by a new-line match strings that
are matched by either.

4. A regular expression may be enclosed in parentheses 0 for grouping.

The order of precedence of operators is 11, then .. ? +, then concatenation, then I
and new-line.

SEE ALSO
ed(l), fgrep(l), grep(l), sed(l), sh(l).

DIAGNOSTICS

BUGS

7/85

Exit status is 0 if any matches are found, l if none, 2 for syntax errors or inaccessi­
ble files (even if matches were found).

Lines are limited to 256 characters; longer lines are truncated.
Egrep does not recognize ranges, such as la -:d, in character classes.

- 1 - 7/85

ENABLE(l) (Line Printer Spooling Utilities) ENABLE(l)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [-c] [-r[reason 11 printers

DESCRIPTION

FILES

Enable activates the named printers, enabling them to print requests taken by
lp(l). Use lpstat(l) to find the status of printers.

Disable deactivates the named printers, disabling them from printing requests taken
by Ip (1). By default, any requests that are currently printing on the designated
printers will be reprinted in their entirety either on the same printer or on another
member of the same class. Use lpstat (1) to find the status of printers. Options
useful with disable are:

-c Cancel any requests that are currently printing on any of the desig­
nated printers.

-r[reason] Associates a reason with the deactivation of the printers. This reason
applies to all printers mentioned up to the next -r option. If the -r
option is not present or the -r option is given without a reason, then
a default reason will be used. Reason is reported by lpstat (1).

/usr/spool/lp/*

SEE ALSO
lp(l), lpstat(l).

7/85 - 1 - 7/85

ENV(l) (User Environment Utilities) ENV(l)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name=value] ... [command args

DESCRIPTION
Env obtains the current environment, modifies it according to its arguments, then
executes the command with the modified environment. Arguments of the form
name =value are merged into the inherited environment before the command is exe­
cuted. The - flag causes the inherited environment to be ignored completely, so
that the command is executed with exactly the environment specified by the argu­
ments.

If no command is specified, the resulting environment is printed, one name-value
pair per line.

SEE ALSO
sh(!).

7/85

exec(2), environ(5), profile(4) in the AT&T 3B2 Computer Programmer Reference
Manual.

- 1 - 7/85

EX(l) (Editing Utilities) EX(l)

NAME
ex - text editor

SYNOPSIS

NOTE

ex [-] [-v] [-t tag] [-r] [- R I [+command l [-x] name ...

The -x option (encryption option) is provided by the Security Administration Utili­
ties, which is only available in the United States.

DESCRIPTION
Ex is the root of a family of editors: ex and vi. Ex is a superset of ed, with the
most notable extension being a display editing facility. Display based editing is the
focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this case
see vi(l), which is a command which focuses on the display editing portion of ex.

FOR ED USERS

7/85

If you have used ed you will find that ex has a number of new features useful on
CRT terminals. Intelligent terminals and high speed terminals are very pleasant to
use with vi. Generally, the editor uses far more of the capabilities of terminals than
ed does, and uses the terminal capability data base terminfo(4) and the type of the
terminal you are using from the variable TERM in the environment to determine
how to drive your terminal efficiently. The editor makes use of features such as
insert and delete character and line in its visual command (which can be abbrevi­
ated vi) and which is the central mode of editing when using vi (I).

Ex contains a number of new features for easily viewing the text of the file. The z
command gives easy access to windows of text. Hitting 'D causes the editor to
scroll a half-window of text and is more useful for quickly stepping through a file
than just hitting return. Of course, the screen-oriented visual mode gives constant
access to editing context.

Ex gives you more help when you make mistakes. The undo (u) command allows
you to reverse any single change which goes astray. Ex gives you a lot of feedback,
normally printing changed lines, and indicates when more than a few lines are
affected by a command so that it is easy to detect when a command has affected
more lines than it should have.

The editor also normally prevents overwriting existing files unless you edited them so
that you do not accidentally clobber with a write a file other than the one you are
editing. If the system for editor) crashes, or you accidentally hang up the tele­
phone, you can use the editor recover command to retrieve your work. This will get
you back to within a few lines of where you left off.

Ex has several features for dealing with more than one file at a time. You can give
it a list of files on the command line and use the next (n) command to deal with
each in turn. The next command can also be given a list of file names, or a pattern
as used by the shell to specify a new set of files to be dealt with. In general, file
names in the editor may be formed with full shell metasyntax. The metacharacter
'%' is also available in forming file names and is replaced by the name of the
current file.

For moving text between files and within a file the editor has a group of buffers,
named a through z. You can place text in these named buffers and carry it over
when you edit another file.

- 1 - 7/85

EX(l) (Editing Utilities) EX(l)

There is a command & in ex which repeats the last substitute command. In addi­
tion there is a confirmed substitute command. You give a range of substitutions to
be done and the editor interactively asks whether each substitution is desired.

It is possible to ignore case of letters in searches and substitutions. Ex also allows
regular expressions which match words to be constructed. This is convenient, for
example, in searching for the word "edit" if your document also contains the word
"editor."

Ex has a set of options which you can set to tailor it to your liking. One option
which is very useful is the autoindent option which allows the editor to automati­
cally supply leading white space to align text. You can then use the AD key as a
backtab and space and tab forward to align new code easily.

Miscellaneous new useful features include an intelligent join (j) command which
supplies white space between joined lines automatically, commands < and > which
shift groups of lines, and the ability to filter portions of the buffer through com­
mands such as sort.

INVOCATION OPTIONS
The following invocation options are interpreted by ex:

-v
-t tagfR

-r file

-R
+command

-x

Suppress all interactive-user feedback. This is useful in processing
editor scripts.

Invokes vi

Edit the file containing the tag and position the editor at its
definition.

Recover file after an editor or system crash. If file is not specified
a list of all saved files will be printed.

Readonly mode set, prevents accidentally overwriting the file.

Begin editing by executing the specified editor search or position­
ing command.

Encryption mode; a key is prompted for allowing creation or edit­
ing of an encrypted file.

The name argument indicates files to be edited.

Ex States
Command

Insert

Visual

7/85

Normal and initial state. Input prompted for by:. Your kill char­
acter cancels partial command.

Entered by a i and c. Arbitrary text may be entered. Insert is
normally terminated by line having only . on it, or abnormally
with an interrupt.

Entered by vi, terminates with Q or A\.

- 2 - 7/85

EX(l) (Editing Utilities) EX(l)

Ex command names and abbreviations
abbrev ab next n unabbrev una
append a number nu undo u
args ar unmap unm
change c preserve pre version ve
copy co print p visual vi
delete d put pu write w
edit e quit q xit x
file f read re yank ya
global g recover rec window z
insert rewind rew escape
join set se !shift <
list shell sh print next CR
map source so resubst &
mark ma stop st rshift >
move m substitute s scroll "D

Ex Command Addresses
n linen /pat next with pat

current ?pat previous with pat
$ last x-n n before x
+ next x,y x through y

previous "x marked with x
+n n forward previous context
% 1,$

Initializing options
EXINIT place set's here in environment var.
$HOME/.exrc editor initialization file
J.exrc editor initialization file
set x enable option
set nox disable option
set x=val give value val
set show changed options
set all show all options
set x? show value of option x

Most useful options
auto indent ai supply indent
auto write aw write before changing files
ignorecase ic in scanning
list print "I for tab, $ at end
magic . I * special in patterns
number nu number lines
paragraphs para macro names which start ...
redraw simulate smart terminal
scroll command mode lines
sections sect macro names ...
shiftwidth SW for < >, and input 'D
sbowmatch sm to) and } as typed
sbowmode smd show insert mode in vi
slow open slow stop updates during insert
window visual mode lines
wrapscan ws around end of buffer?
wrapmargin wm automatic line splitting

7/85 - 3 - 7/85

EX(l) (Editing Utilities) EX(l)

Scanl!lling pattern formation
' beginning of line
$ end of line

\<
\>
lstrl
ltstrl
lx-yl
*

any character
beginning of word
end of word
any char in str
... not instr
... between x and y
any number of preceding

AUTHOR

FILES

Vi and ex are based on software developed by The University of California, Berke­
ley California, Computer Science Division, Department of Electrical Engineering
and Computer Science.

/usr /lib/ ex?. ?strings
/usr/lib/ex?. ?recover
I usr /Ii bl ex?.? preserve
/usr/lib/*/*
$HOME/.exrc
./.exrc
ltmp/Exnnnnn
ltmp/Rxnnnnn
I usr I preserve

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory

SEE ALSO

BUGS

7/85

ed(l), vi(l).
awk(l), ecHt(l), grep(l), sed(l) in the 3B2 Computer System User Reference
Manual.
curses(3X), term(4), terminfo(4) in the 3B2 Computer System Programmer Refer­
ence Manual.

The undo command causes all marks to be lost on lines changed and then restored
if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a
screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line'-' option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exit­
ing the editor.

Null characters are discarded in input files and cannot appear in resultant files.

- 4 - 7/85

EXPR(l) (Essential Utilities) EXPR(l)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on
the standard output. Terms of the expression must be separated by blanks. Char­
acters special to the shell must be escaped. Note that 0 is returned to indicate a
zero value, rather than the null string. Strings containing blanks or other special
characters should be quoted. Integer-valued arguments may be preceded by a
unary minus sign. Internally, integers are treated as 32-bit, 2s complement
numbers.

The operators and keywords are listed below. Characters that need to be escaped
are preceded by \. The list is in order of increasing precedence, with equal pre­
cedence operators grouped within (} symbols.

expr \I expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns 0.

expr (=, \>, \> =, \<, \< =, !=} expr
returns the result of an integer comparison if both arguments are integers,
otherwise returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { \•, /, % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr: expr
The matching operator : compares the first argument with the second
argument which must be a regular expression. Regular expression syntax
is the same as that of ed(l), except that all patterns are "anchored" (i.e.,
begin with A) and, therefore, A is not a special character, in that context.
Normally, the matching operator returns the number of characters
matched (0 on failure). Alternatively, the\(...\) pattern symbols can be
used to return a portion of the first argument.

EXAMPLES
l. a='expr $a + 1'

2.

7/85

adds l to the shell variable a.

'For $a equal to either "/usr/abc/file" or just "file"•
expr $a : '.•!\(.-\)' \I $a

returns the last segment of a path name (i.e., file). Watch out for
I alone as an argument: expr will take it as the division operator
(see BUGS below).

- 1 - 7/85

EXPR(l) (Essential Utilities) EXPR(l)

3. # A better representation of example 2.
expr //$a : '"*!\(A)'

The addition of the // characters eliminates any ambiguity about
the division operator and simplifies the whole expression.

4. expr $VAR : '"•'

returns the number of characters in $VAR.

SEE ALSO
ed(i), sh(l).

DIAGNOSTICS

BUGS

7/85

As a side effect of expression evaluation, expr returns the following exit values:
0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

syntax error for operator/operand errors
non-numeric argument if arithmetic is attempted on such a string

After argument processing by the shell, expr cannot tell the difference between an
operator and an operand except by the value. If $a is an =,the command:

expr $a = '='

looks like:

expr = = =

as the arguments are passed to expr (and they will all be taken as the = operator).
The following works:

expr X$a = X=

- 2 - 7/85

F77(1) (FORTRAN Programming Language Utilities) F77(1)

NAME
f77 - Fortran 77 compiler

SYNOPSIS
f77 [options] files

DESCRIPTION

7/85

F77 is the UNIX System Fortran 77 compiler; it accepts several types of file argu­
ments:

Arguments whose names end with .f are taken to be Fortran 77 source pro­
grams; they are compiled and each object program is left in the current
directory in a file whose name is that of the source, with .o substituted for
.f.

Arguments whose names end with .r or .e are taken to be RATFOR or EFL
source programs, respectively. These are first transformed by the appropri­
ate preprocessor, then compiled by j77, producing .o files.

In the same way, arguments whose names end with .c or .s are taken to be
C or assembly source programs and are compiled or assembled, producing
.o files.

The following options have the same meaning as in cc(l) (see /d(l) for link editor
options):

-c
-p
-o
-s

-ooutput
-f

-g

Suppress link editing and produce .o files for each source file.
Prepare object files for profiling (see prof(1)).
Invoke an object-code optimizer.
Compile the named programs and leave the assembler-language out­
put in corresponding files whose names are suffixed with .s. (No .o
files are created.)
Name the final output file output, instead of a.out.
In systems without floating-point hardware, use a version of j77 that
handles floating-point constants and links the object program with the
floating-point interpreter.
Generate additional information needed for the use of sdb (1).

The following options are peculiar to j77:

-onetrip

-1
-66
-c
-u

-u

-v

-w

-F

Compile DO loops that are performed at least once if reached. (For­
tran 77 DO loops are not performed at all if the upper limit is smaller
than the lower limit)
Same as -onetrip.
Suppress extensions which enhance Fortran 66 compatibility.
Generate code for run-time subscript range-checking.
Do not "fold" cases. F77 is normally a no-case language (i.e., a is
equal to A). The - U option causes j77 to treat upper and lower
cases to be separate.
Make the default type of a variable unde.fined, rather than using the
default Fortran rules.
Verbose mode. Provide diagnostics for each process during compila­
tion.
Suppress all warning messages. If the option is -w66, only Fortran
66 compatibility warnings are suppressed.
Apply EFL and RATFOR preprocessor to relevant files, put the result
in files whose names have their suffix changed to .f. (No .o files are
created.)

- 1 - 7/85

F77 (I)

FILES

(FORTRAN Programming Language Utilities) F770)

-m Apply the M4 preprocessor to each EFL or RATFOR source file before
transforming with the ratfor(l) or ejl(I) processors.

- E The remaining characters in the argument are used as an EFL flag
argument whenever processing a .e file.

- R The remaining characters in the argument are used as a RATFOR flag
argument whenever processing a .r file.

- N[qxscnl] nnn
Change size of table [qxscnl] to nnn. The compiler will provide a
diagnostic when a table overflows. The tables are:

'q' equivalences
'x' external symblos
's' statement numbers
'c' loops or if-then-elses
'n' names
'I' labels for computers and assigned gotos

and the number of alternate returns

Other arguments are taken to be either link-editor option arguments or .f77-
compilable object programs (typically produced by an earlier run), or libraries of
j77-compilable routines. These programs, together with the results of any compila­
tions specified, are linked (in the order given) to produce an executable program
with the default name a.out .

file.lfresc] input file
file.o object file
a.out linked output
/usr/temp/F77 AAAa[pid].?

/usr/lib/f77passl
/usr/lib/f77pass2
/lib/c2
/usr/lib/f77optim
/usr /lib/libF77 .a
/usr /lib/libl77 .a
/lib/Jibe.a

temporary
compiler
pass 2
optional optimizer (VAX computers)
optional optimizer (3B20, 3B5, 3B2 computers)
intrinsic function library
Fortran I/O library
C library; see Section 3 of this Manual.

SEE ALSO
asa(l), cc(l), efl(I), fsplit(l), ld(l), m4(1), prof(l), ratfor(l), sdb(I).

DIAGNOSTICS

7/85

The diagnostics produced by .f77 itself are intended to be self-explanatory. Occa­
sional messages may be produced by the link editor ld(l).

7/85

FACTOR(l) (User Environment Utilities) FACTOR(!)

NAME
factor - factor a number

SYNOPSIS
factor [number]

DESCRIPTION
When factor is invoked without an argument

5
it waits for a number to be typed in.

If you type in a positive number less than 2 6 (about I.Ox 1014
) it will factor the

number and print its prime factors; each one is printed the proper number of times.
Then it waits for another number. It exits if it encounters a zero or any non­
numeric character.

If factor is invoked with an argument, it factors the number as above and then
exits.

Maximum time to factor is proportional to ..jii. and occurs when n is prime or the
square of a prime.

DIAGNOSTICS
"Ouch" for input out of range or for garbage input.

7/R". - l - 7/85

FGREP(l) (Directory and File Management Utilities) FGREP(l)

NAME
fgrep - search a file for a pattern

SYNOPSIS
fgrep [options] [strings] [files

DESCRIPTION
Commands of the frep family search the input files (standard input default) for
lines matching a pattern. Normally, each line found is copied to the standard out­
put. Fgrep patterns are fixed strings; it is fast and compact. The following options
are recognized:

-v All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed
-c Only a count of matching lines is printed.
-I Only the names of files with matching lines are listed (once), separated by

new-lines.
-n Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found. This is

sometimes useful in locating disk block numbers by context.
-e expression

Same as a simple expression argument, but useful when the expression
begins with a -.

-f file
The regular strings list is taken from the file.

In all cases, the file name is output if there is more than one input file. Care should
be taken when using the characters$, *, !, ~, !, (,), and\ in expression, because
they are also meaningful to the shell. It is safest to enclose the entire expression
argument in single quotes ' ... '.

Fgrep searches for lines that contain one of the strings separated by new-lines.

The order of precedence of operators is II, then •? +, then concatenation, then
and new-line.

SEE ALSO
ed(l), sed(l), sh(l).

DIAGNOSTICS

BUGS

7/85

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessi­
ble files (even if matches were found).

Ideally there should be only one fgrep, but we don't know a single algorithm that
spans a wide enough range of space-time tradeoffs. Lines are limited to 256 charac­
ters; longer lines are truncated.

. l . 7/85

FILE(l) (Directory and File Management Utilities) FILE(l)

NAME
file - determine file type

SYNOPSIS
file [-c] [-f ffile] [-m mfile] arg ...

DESCRIPTION

7/85

File performs a series of tests on each argument in an attempt to classify it. If an
argument appears to be ASCII, file examines the first 512 bytes and tries to guess
its language. If an argument is an executable a.out, file will print the version
stamp, provided it is greater than 0.

-c The -c option causes file to check the magic file for format errors. This
validation is not normally carried out for reasons of efficiency. No file typ­
ing is done under -c.

-f If the -f option is given, the next argument is taken to be a file containing
the names of the files to be examined.

-m The -m option instructs file to use an alternate magic file.

File uses the file /etc/magic to identify files that have some sort of magic number,
that is, any file containing a numeric or string constant that indicates its type.
Commentary at the beginning of /etc/magic explains its format.

- 1 - 7/85

HND(l) (Directory and File Management Utilities) FIND(l)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION

7/85

Find recursively descends the directory hierarchy for each path name in the path­
name-list (i.e., one or more path names) seeking files that match a boolean expres­
sion written in the primaries given below. In the descriptions, the argument n is
used as a decimal integer where +n means more than n, -n means less than n and
n means exactly n. Valid expressions are:

-name file True if file matches the current file name. Normal shell argu­
ment syntax may be used if escaped (watch out for I, ? and •).

-perm onum Trne if the file permission flags exactly match the octal number
onum (see chmod(l)). If onum is prefixed by a minus sign,
more flag bits [017777, see stat (2) inthe3B2Computer become
significant and the flags are compared.

-type c True if the type of the file is c, where c is b, c, d, p, or f for block
special file, character special file, directory, fifo (a.k.a named
pipe), or plain file respectively.

-links n True if the file has n links.

-user uname True if the file belongs to the user uname. If uname is numeric
and does not appear as a login name in the /etc/passwd file, it is
taken as a user ID.

-group gname True if the file belongs to the group gname. If gname is numeric
and does not appear in the /etc/group file, it is taken as a group
m.

-size n[c] True if the file is n blocks long (512 bytes per block). If n is fol­
lowed by a c, the size is in characters.

-atime n True if the file has been accessed in n days. The access time of
directories in path-name-list is changed by .find itself.

-mtime n True if the file has been modified in n days.

-ctime n True if the file has been changed in n days.

-exec cmd True if the executed cmd returns a zero value as exit status. The
end of cmd must be punctuated by an escaped semicolon. A
command argument {} is replaced by the current path name.

-ok cmd Like -exec except that the generated command line is printed
with a question mark first, and is executed only if the user
responds by typing y.

-print Always true; causes the current path name to be printed.

-cpio device Always true; write the current file on device in cpio (1) format
(5120-byte records).

-newer file True if the current file has been modified more recently than the
argument file.

- 1 - 7/85

FIND(l) (Directory and File Management Utilities) JFXND (I)

-depth

(expression)

Always true; cat1ses descent of the directory hierarchy to be done
so that all entries in a directory are acted on before the directory
itself. l'his can be t1seful when .find is used with cpio(l) to
transfer files that are contained in directories without write per­
mission.

l'rue if the parenthesized expression is true (parentheses are spe­
cial to the shell and must be escaped).

The primaries may be combined using the following operators
ing precedence) :

(in order of decreas-

I) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposition
of two primaries).

3) Alternation of primaries (-o is the or operator).

EXAMPLE
To remove all files named a.<0>1d or $.<I) that have not been accessed for a week:

find I \(-name a.out -o -name ·~.o' \) -atime +7 -exec rm {} \;

FILES
/etc/passwd, /etc/group

SEE ALSO
chmod(l), cpio(l), shO), test(l).
fs(4), stat(2) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - 2 - 7/85

FSPLIT(l) (FORTRAN Programming Language Utilities) FSPUT(l)

NAME
fsplit - split f77, ratfor, or efl files

SYNOPSIS
fsplit options files

DESCRIPTION
Fsplit splits the named file(s) into separate files, with one procedure per file. A pro­
cedure includes blockdata, function, main, program, and subroutine program seg­
ments. Procedure Xis put in file X.f, X.r, or X.e depending on the language option
chosen, with the following exceptions: main is put in the file MAIN.lefrl and
unnamed blockdata segments in the files blockdataN.!efrl where N is a unique
integer value for each file.

The following options pertain:

-f (default) Input files are .f17.

-r Input files are ratfor.

-e Input files are Efl.

-s Strip .f17 input lines to 72 or fewer characters with trailing blanks
removed.

SEE ALSO
csplit(l), efl(l), f77(1), ratfor(l), split(l).

7/85 - l - 7/85

GDEV(lG) (Graphics Utilities) GDEV(lG)

NAME
hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [-options] [GPS file ...]
erase
hardcopy
tekset
td [-emn] [GPS file .. .]

DESCRIPTION
All of the commands described below reside in /usr/bin/graf (see graphics(IG)).

hpd Hpd translates a GPS (see gps (4)), to instructions for the Hewlett­
Packard 7221A Graphics Plotter. A viewing window is computed from
the maximum and minimum points in file unless the -u or -r option is
provided. If no .file is given, the standard input is assumed. Options
are:

en Select character set n, n between 0 and 5 (see the HP7221A
Plotter Operating and Programming Manual, Appendix A).

pn Select pen numbered n, n between l and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left corner to n inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left corner to n inches.

yvn Set height of viewport to n inches.

erase Erase sends characters to a TEKTRONIX 40 l 0 series storage terminal to
erase the screen.

hardcopy When issued at a TEKTRONIX display terminal with a hard copy unit,
hardcopy generates a screen copy on the unit.

tekset Tekset sends characters to a TEKTRONIX terminal to clear the display
screen, set the display mode to alpha, and set characters to the smallest
font.

td Td translates a GPS to scope code for a TEKTRONIX 4010 series storage
terminal. A viewing window is computed from the maximum and
minimum points in file unless the -u or -r option is provided. If no
file is given, the standard input is assumed. Options are:

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

SEE ALSO
ged(lG), graphics(lG).
gps(4) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - l - 7/85

GED(lG) (Graphics Utilities) GED(IG)

NAME
ged - graphical editor

SYNOPSIS
ged [-eruRlnl [GPS file •••]

DESCRIPTION
Ged is an interactive graphical editor used to display, construct, and edit GPS files
on TEKTRONIX 4010 series display terminals. If GPS file(s) are given, ged reads
them into an internal display buffer and displays the buffer. The GPS in the buffer
can then be edited. If - is given as a file name, ged reads a GPS from the standard
input.

Ged accepts the following command line options:

e Do not erase the screen before the initial display.

rn Display region number n.

u Display the entire GPS universe.

R Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical objects: lines, arc, and text.
Arc and lines objects have a start point, or object-handle, followed by zero or more
points, or point-handles. Text has only an object-handle. The objects are posi­
tioned within a Cartesian plane, or universe, having 64K (-32K to +32K) points, or
universe-units, on each axis. The universe is divided into 25 equal sized areas
called regions. Regions are arranged in five rows of five squares each, numbered 1
to 25 from the lower left of the universe to the upper right.

Ged maps rectangular areas, called windows, from the universe onto the display
screen. Windows allow the user to view pictures from different locations and at
different magnifications. The universe-window is the window with minimum
magnification, i.e., the window that views the entire universe. The home-window is
the window that completely displays the contents of the display buffer.

COMMANDS

7/85

Ged commands are entered in stages. Typically each stage ends with a <er>
(return). Prior to the final <er> the command may be aborted by typing rubout.
The input of a stage may be edited during the stage using the erase and kill charac­
ters of the calling shell. The prompt • indicates that ged is waiting at stage 1.

Each command consists of a subset of the following stages:

1. Command line
A command line consists of a command name followed by
argument (s) followed by a <er>. A command name is a single char­
acter. Command arguments are either option(s) or a file-name.
Options are indicated by a leading - .

2. Text Text is a sequence of characters terminated by an unescaped <er>
(120 lines of text maximum).

3. Points Points is a sequence of one or more screen locations (maximum of 30)
indicated either by the terminal crosshairs or by name. The prompt
for entering points is the appearance of the crosshairs. When the
crosshairs are visible, typing:

sp (space) enters the current location as a point. The point is
identified with a number.

" 1 " 7/85

GED(lG) (Graphics Utilities) GED(lG)

4. Pivot

$n enters the previous point numbered n.

>x labels the last point entered with the upper case letter x.

$x enters the point labeled x.

establishes the previous points as the current points. At the
start of a command the previous points are those locations given
with the previous command.

echoes the current points.

$"n enters the point numbered n from the previous points.

erases the last point entered.

@ erases all of the points entered.

The pivot is a single location, entered by typing <er> or by using the
$ operator, and indicated with a -.

5. Destination
The destination is a single location entered by typing <er> or by
using$.

COMMAND SUMMARY
In the summary, characters typed by the user are printed in bold. Command stages
are printed in italics. Arguments surrounded by brackets "[I" are optional.
Parentheses "O" surrounding arguments separated by "or" means that exactly one
of the arguments must be given.

Construct commands:
Arc [-echo,style,weight] points

Box [-echo,sty!e,weight] points

Circle [-echo,style,weightl points

Hardware [-echo] text points

Lines [-echo,style,weightl points

Text

Edit commands:
Delete

[-angle,echo,height,mid-point,right-point,text,weightl
points

(- (universe or view) or points)

text

Edit [-angle,echo,beight,style,weight] (- (universe or view) or
points)

Kopy

Move

Rotate

Scale

View commands:
coordinates

7/85

[-echo,points,x] points pivot destination

[-echo,points,x] points pivot destination

[-angle,echo,kopy,x] points pivot destination

[-echo,factor,kopy,x] points pivot destination

points

- 2 - 7/85

GED(lG) (Graphics Utilities) GED(IG)

erase

new-display

object-handles

point-handles

view

x

zoom

((universe or view) or points)

((labelled-points or universe or view) or points)

(- (home or universe or region) or [-x] pivot destination
)

[-view] points

[-out] points

Other commands:
quit or Quit

read [-angle,echo,height,mid-point,right-point,text,weight
file-name [destination]

set [-angle,echo,factor,height,kopy,mid-point,points,
right-poin t,style,text, weight,x]

write file-name

!command

?

Options:

7/85

Options specify parameters used to construct, edit, and view graphical objects. If a
parameter used by a command is not specifed as an option, the default value for the
parameter will be used (see set below). The format of command options is:

-option [,option]
where option is keyletter[valuel Flags take on the values of true or false indicated
by + and - respectively. If no value is given with a flag, true is assumed.

Object options:

an glen

echo

factorn

heightn

kopy

mid-point

points

right-point

styletype

Angle of n degrees.

When true, echo additions to the display buffer.

Scale factor is n percent.

Height of text is n universe-units (0 ~ n < 1280).

When true, copy rather than move.

When true, mid-point is used to locate text string.

When true, operate on points; otherwise operate on objects.

When true, right-point is used to locate text string.

Line style set to one of following types:
so solid
da dashed
dd dot-dashed
do dotted
Id long-dashed

- 3 - 7/85

GED(lG) (Graphics Utilities) GED(lG)

text When false, text strings are outlined rather than drawn.

weighttype Sets line weight to one of following types:

Area options:

home

out

regionn

universe

view

n narrow
m medium
b bold

Reference the home-window.

Reduce magnification.

Reference region n.

Reference the universe-window.

Reference those objects currently in view.

Indicate the center of the referenced area.

COMMAND DESCRIPTIONS
Construct commands:

Arc and Lines
behave similarly. Each consists of a command line followed by points. The
first point entered is the object-handle. Successive points are point-handles.
Lines connect the handles in numerical order. Arc fits a curve to the handles
(currently a maximum of 3 points will be fit with a circular arc; splines will be
added in a later version).

Box and Circle
are special cases of Lines and Arc, respectively. Box generates a rectangle
with sides parallel to the universe axes. A diagonal of the rectangle would
connect the first point entered with the last point. The first point is the
object-handle. Point-handles are created at each of the vertices. Circle gen­
erates a circular arc centered about the point numbered zero and passing
through the last point. The circle's object-handle coincides with the last point.
A point-handle is generated 180 degrees around the circle from the object­
handle.

Text and Hardware
generate text objects. Each consists of a command line, text and points.
Text is a sequence of characters delimited by <er>. Multiple lines of text
may be entered by preceding a er with a backslash (i.e., \er). The Text com­
mand creates software-generated characters. Each line of software text is
treated as a separate text object. The first point entered is the object-handle
for the first line of text. The Hardware command sends the characters in text
uninterpreted to the terminal.

Edit commands:

7/85

Edit commands operate on portions of the display buffer called defined areas. A
defined area is referenced either with an area option or interactively. If an area
option is not given, the perimeter of the defined area is indicated by points. If no
point is entered, a small defined area is built around the location of the <er>.
This is useful to reference a single point. If only one point is entered, the location
of the <er> is taken in conjunction with the point to indicate a diagonal of a rec­
tangle. A defined area referenced by points will be outlined with dotted lines.

- 4 - 7/85

GED(lG) (Graphics Utilities) GED(IG)

Delete
removes all objects whose object-handle lies within a defined area. The
universe option removes all objects and erases the screen.

Edit modifies the parameters of the objects within a defined area. Parameters that
can be edited are:

angle angle of text
height height of text
style style of lines and arc
weight weight of lines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a defined area by the
displacement from the pivot to the destination.

Rotate

Scale

rotates objects within a defined area around the pivot. If the kopy flag is true
then the objects are copied rather than moved.

For objects whose object handles are within a defined area, point displace­
ments from the pivot are scaled by factor percent. If the kopy flag is true
then the objects are copied rather than moved.

View commands:
coordinates

prints the location of point(s) in universe- and screen-units.

erase
clears the screen (but not the display buffer).

new-display
erases the screen then displays the display buffer.

object-handles (or point-handles)
labels object-handles (and/or point-handles) that lie within the defined area
with 0 (or P). Point-handles identifies labeled points when the labelled-points
flag is true.

view moves the window so that the universe point corresponding to the pivot coin­
cides with the screen point corresponding to the destination. Options for
home, universe, and region display particular windows in the universe.

x indicates the center of a defined area. Option view indicates the center of the
screen.

zoom
decreases (zoom out) or increases the magnification of the viewing window
based on the defined area. For increased magnification, the window is set to
circumscribe the defined area. For a decrease in magnification the current
window is inscribed within the defined area.

Other commands:
quit or Quit

7/85

exit from ged. Quit responds with '!: if the display buffer has not been written
since the last modification.

read inputs the contents of a file. If the file contains a GPS it is read directly. If
the file cor~ains text it is converted into text object(s). The first line of a text

7/85

GED(lG) (Graphics Utilities) GED(lG)

file begins at destination.

set when given option(s) resets default parameters, otherwise it prints current
default values.

write outputs the contents of the display buffer to a file.

escapes ged to execute a UNIX system command.

? lists ged commands.

SEE ALSO
gdev(lG), graphics(lG), sh(l).
gps(4) in the AT&T 3B2 Computer Programmer Reference Manual.

An Introduction to the Graphical Editor in the UNIX System V Graphics Guide.

WARNING

7/85

See Appendix A of the TEKTRONIX 4014 Computer Display Terminal User's
Manual for the proper terminal strap options.

- 6 - 7/85

GET(l) (Scmrce Co<ille Contrnl System Utilities) GET(l)

NAME
get - get a version of an secs file

SYNOPSIS
get [-rSID] [-ecutoffl [[--xlistl [-~~rstring] [-aseq-no.l [-kl [-el
[-1[1~] [-1!11 [-ml [-1m] [-s:] [-lb>] [-gl [-It] file .. ,

DESCRIPTION

7/85

Get generates an ASCH text file from each named SCCS file according to the
specifications given by its keyleUer arguments, which begin with -. The arguments
may be specified in any order, but all key!etter arguments apply to all named SCCS
files. If a directory is named, get behaves as though each file in the directory were
specified as a named file, except that non-SCCS files Oast component of the path
name does not begin with and unreadable files are silently ignored. If a name
of - is given, the standard input is read; each line of the standard input is taken to
be the name of an secs file to be processed. Again, non-SCCS files and unreadable
files are silently ignored.

The generated text is normally written into a file called the g-file whose name is
derived from the SCCS file name by removing the leading s.; (see also FILES,
below).

Each of the keyleHer arguments is explained below as though only one SCCS file is
to be processed, but the effects of any keyletter argument applies independently to
each named file.

-rSID The SCCS JDentification string (Sm) of the version (delta) of an SCCS
file to be retrieved. Table 1 below shows, for the most useful cases,
what version of an SCCS file is retrieved (as well as the SID of the ver­
sion to be eventually created by delta (I) if the -e keyletter is also
used), as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:

-ilist

-xlist

YY[MM[DD[HH[MMISS]]]]]

No changes (deltas) to the SCCS file which were created after the
specified cutoff date-time are included in the generated ASCH text file.
Units omitted from the date-time default to their maximum possible
values; that is, -c7502 is equivalent to -c750228235959. Any number
of non-numeric characters may separate the various 2-digit pieces of the
cutoff date-time. This feature allows one to specify a cutoff date in the
form: "-c77 /212 9:22:25". Note that this implies that one may use
the %E% and %U% identification keywords (see below) for nested gets
within, say the input to a send(lC) command:

-!get "-c%E% %U%" s.file

A list of deltas to be included (forced to be applied) in the creation of
the generated file. The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::=SID I SID - SID

SID, the SCCS Identification of a delta, may be in any form shown in
the "SID Specified" column of Table l.

A list of deltas to be excluded in the creation of the generated file. See
the -i keyletter for the list format.

- 1 - 7/85

GET(l)

7/85

(Source Code Control System Utilities) GET(l)

-e Indicates that the get is for the purpose of editing or making a change
(delta) to the SCCS file via a subsequent use of delta (1). The -e
keyletter used in a get for a particular version (SID) of the SCCS file
prevents further gets for editing on the same SID until delta is executed
or the j (joint edit) flag is set in the SCCS file (see admin(l)). Con­
current use of get -e for different SIDs is always allowed.

If the g-file generated by get with an -e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re­
executing the get command with the -k keyletter in place of the -e
key letter.

SCCS file protection specified via the ceiling, floor, and authorized user
list stored in the SCCS file (see admin(l)) are enforced when the -e
keyletter is used.

-b Used with the -e keyletter to indicate that the new delta should have
an SID in a new branch as shown in Table 1. This keyletter is ignored
if the b flag is not present in the file (see admin(l)) or if the retrieved
delta is not a leaf delta. (A leaf delta is one that has no successors on
the secs file tree)
Note: A branch delta may always be created from a non-leaf delta.
Partial SIDs are interpreted as shown in the "SID Retrieved" column of
Table 1.

-k Suppresses replacement of identification keywords (see below) in the
retrieved text by their value. The -k keyletter is implied by the -e
key letter.

-l[p] Causes a delta summary to be written into an I-file. If -Ip is used
then an I-file is not created; the delta summary is written on the stan­
dard output instead. See FILES for the format of the /-file.

-p Causes the text retrieved from the SCCS file to be written on the stan­
dard output. No g-file is created. All output which normally goes to
the standard output goes to file descriptor 2 instead, unless the -s
keyletter is used, in which case it disappears.

-s Suppresses all output normally written on the standard output. How­
ever, fatal error messages (which always go to file descriptor 2) remain
unaffected.

-m Causes each text line retrieved from the SCCS file to be preceded by the
SID of the delta that inserted the text line in the SCCS file. The format
is: SID, followed by a horizontal tab, followed by the text line.

-n Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M% value,
followed by a horizontal tab, followed by the text line. When both the
-m and -n keyletters are used, the format is: %M% value, followed
by a horizontal tab, followed by the -m keyletter generated format.

-g Suppresses the actual retrieval of text from the SCCS file. It is pri­
marily used to generate an I-file, or to verify the existence of a particu­
lar SID.

-t Used to access the most recently created delta in a given release (e.g.,
-rl), or release and level (e.g., -rl.2).

- 2 - 7/85

GET(l)

SID*

(Source Code Control System Utilities) GET(l)

-w string Substitute string for all occurrences of %W% when getting the file.

-aseq-no. The delta sequence number of the SCCS file delta (version) to be
retrieved (see sccsfile(5)). This keyletter is used by the comb(l) com­
mand; it is not a generally useful keyletter. If both the -r and -a
keyletters are specified, only the -a keyletter is used. Care should be
taken when using the -a keyletter in conjunction with the -e
keyletter, as the SID of the delta to be created may not be what one
expects. 'fhe -Ii" keyletter can be used with the -a and -e keyletters
to control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the SCCS file.

If the -e keyletter is used, the SID of the delta to be made appears after the SID
accessed and before the number of lines generated. If there is more than one
named file or if a directory or standard input is named, each file name is printed
(preceded by a new-line) before it is processed. If the -i keyletter is used included
deltas are listed following the notation "Included"; if the -x keyletter is used,
excluded deltas are listed following the notation "Excluded".

TABLE l. Determination of SCCS Identification String

-b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

none*
non et

R
R
R
R

R

R

R.L
R.L

R.L

R.L.B
R.L.B

R.L.B.S
R.L.B.S
R.L.B.S

*

7/85

110 R defaults to mR mR.mL mR.(mL+l)
yes R defaults to mR mR.mL mR.mL.(mB+l).l

no R > mR mR.mL R.1 ***
no R=mR mR.mL mR.(mL+l)
yes R > mR mR.mL mR.mL.(mB+l).l
yes R=mR mR.mL mR.mL. (mB+ 1) .1

R < mR and
hR.mL** hR.mL.(mB+l).l

R does not exist
Trunk succ.#
in release > R R.mL R.mL.(mB+l).l
and R exists

no No trunk succ. R.L R.(L+l)
yes No trunk succ. R.L R.L.(mB+l).l

Trunk succ. R.L R.L. (mB+ 1) .1
in release ~ R

no No branch succ. R.L.B.mS R.L.B. (ms+ 1)
yes No branch succ. R.L.B.mS R.L.(mB+l).l

no No branch succ. R.L.B.S R.L.B.(S+l)
yes No branch succ. R.L.B.S R.L.(mB+l).l

Branch succ. R.L.B.S R.L.(mB+l).1

""R", .-.1.;L", ".<;B", and us" are the "'"release", ""'level", ""branch", and '(;sequence"
components of the SID, respectively; "m" means "maximum". Thus, for
example, "R.mL" means "the maximum level number within release R";
"R.L.(mIHl).l" means "the first sequence number on the new branch (i.e.,
maximum branch number plus one) of level L within release R". Note that if
the SID specified is of the form "R.L", "R.L.B", or "R.L.B.S", each of the
specified components must exist.

" 3 - 7/85

GET(l) (Source Code Control System Utilities) GET(!)

** "hR" is the highest existing release that is lower than the specified, nonex-
istent, release R.

*** 'fhis is used to force creation of the.first delta in a new release.
Successor.
t The -b keyletter is effective only if the b flag (see admin (1)) is present in

the file. An entry of - means "irrelevant".
t This case applies if the d (default SID) flag is not present in the file. If the d

flag is present in the file, then the SID obtained from the d flag is interpreted
as if it had been specified on the command line. Thus, one of the other cases
in this table applies.

IDENTIFICATION KEYWORDS

7/85

Identifying information is inserted into the text retrieved from the SCCS file by
replacing identification keywords with their value wherever they occur. The follow­
ing keywords may be used in the text stored in an secs file:

Keyword
%M%

%1%
%R%
%L%
%B%
%S%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

Value
Module name: either the value of them flag in the file (see admin(I)),
or if absent, the name of the secs file with the leading s. removed.
SCCS identification (Sm) (%R%.%L%.%B%.%S%) of the retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (yy /MM/DD).
Current date (MM/DD/YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY /MM/DD).
Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the SCCS file (see admin(I)).
secs file name.
Fully qualified SCCS file name.
The value of the q flag in the file (see admin(l)).
Current line number. This keyword is intended for identifying messages
output by the program such as "this should not have happened" type
errors. It is not intended to be used on every line to provide sequence
numbers.
The 4-character string @(#) recog11izable by what (1).
A shorthand notation for constructing what (l) strings for UNIX system
program files. %W% = %Z%%M%<horizontal-tab>%I%
Another shorthand notation for constructing what (1) strings for non­
UNIX system program files.
%A%= %Z%%Y% %M% %I%%Z%

Several auxiliary files may be created by get. These files are known generically as
the g-file, I-file, p-file, and z-file. The letter before the hyphen is called the tag.
An auxiliary file name is formed from the SCCS file name: the last component of
all SCCS file names must be of the form s.module-name, the auxiliary files are
named by replacing the leading s with the tag. The g-fi/e is an exception to this
scheme: the g-file is named by removing the s. prefix. For example, s.xyz.c, the
auxiliary file names would be xyz.c, 1.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-fi/e, which contains the generated text, is created in the current directory
(unless the -p key!etter is used). A g-file is created in all cases, whether or not

- 4 - 7/85

GET(!)

FILES

7/85

(Source Code Control System Utilities) GET(l)

any lines of text were generated by the get. It is owned by the real user. If the -k
keyletter is used or implied its mode is 644; otherwise its mode is 444. Only the
real user need have write permission in the current directory.

The !-file contains a table showing which deltas were applied in generating the
retrieved text. The I-file is created in the current directory if the -I keyletter is
used; its mode is 444 and it is owned by the real user. Only the real user need have
write permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
• otherwise.

b. A blank character if the delta was applied or was not applied and
ignored;
• if the delta was not applied and was not ignored.

c. A code indicating a "special" reason why the delta was or was not
applied:

"I": Included.
"X": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. SCCS identification (SID).
L Tab character.
g. Date and time (in the form YY/MM/DD HH:MM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one hor­
izontal tab character. A blank line terminates each entry.

The p~file is used to pass information resulting from a get with an -e keyletter
along to delta. Its contents are also used to prevent a subsequent execution of get
with an -e keyletter for the same SID until delta is executed or the joint edit flag,
j, (see admin(l)) is set in the SCCS file. The p-file is created in the directory con­
taining the SCCS file and the effective user must have write permission in that direc­
tory. Its mode is 644 and it is owned by the effective user. The format of the p-file
is: the gotten SID, followed by a blank, followed by the SID that the new delta will
have when it is made, followed by a blank, followed by the login name of the real
user, followed by a blank, followed by the date-time the get was executed, followed
by a blank and the -i keyletter argument if it was present, followed by a blank and
the -x keyletter argument if it was present, followed by a new-line. There can be
an arbitrary number of lines in the p~file at any time; no two lines can have the
same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its con­
tents are the binary (2 bytes) process ID of the command (i.e., get) that created iL
The z-file is created in the directory containing the SCCS file for the duration of
get. The same protection restrictions as those for the p-file apply for the z-file.
The z-file is created mode 444.

g-file

p-file

Existed before the execution of delta; removed after completion of
delta.
Existed before the execution of delta; may exist after completion of
delta.

- 5 - 7/85

GET(l)

q-file

x-file

z-file

d-file

(Source Code Control System Utilities) GET(l)

Created during the execution of delta; removed after completion of
delta.
Created during the execution of delta; renamed to SCCS file after
completion of delta.
Created during the execution of delta; removed during the execu­
tion of delta.
Created during the execution of delta; removed after completion of
delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file and the
g-file.

SEE ALSO
admin(l), delta(l), help(!), prs(l), what(l).
sccsfile(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS

BUGS

7/85

Use help(I) for explanations.

If the effective user has write perm1ss1on (either explicitly or implicitly) in the
directory containing the SCCS files, but the real user does not, then only one file
may be named when the -e keyletter is used.

- 6 - 7/85

GETOPT(l) (Essential Utilities) GETOPT(l)

NAME
getopt - parse command options

SYNOPSIS
set - - 'getopt optstring $•'

DESCRIPTION
Getopt is used to break up options in command lines for easy parsing by shell pro­
cedures and to check for legal options. Optstring is a string of recognized option
letters (see getopt(3C)); if a letter is followed by a colon, the option is expected to
have an argument which may or may not be separated from it by white space. The
special option - - is used to delimit the end of the options. If it is used explicitly,
getopt will recognize it; otherwise, getopt will generate it; in either case, getopt will
place it at the end of the options. The positional parameters ($1 $2 ...) of the shell
are reset so that each option is preceded by a - and is in its own positional parame­
ter; each option argument is also parsed into its own positional parameter.

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the options a or b, as well as the option o, which requires an
argument:

set -- •getopt abo: $•'
if [$? != o I
then

fi
for in
do

done

echo $USAGE
exit 2

$•

case $i in
-a I -b)
-o)
--)
esac

FLAG=$i; shift;;
OARG=$2; shift 2;;
shift; break;;

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -o arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO
sh(l).
getopt(3C) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS

7/85

Getopt prints an error message on the standard error when it encounters an option
letter not included in optstring.

- 1 - 7/85

GLOSSARY(!) (Help Utilities) GLOSSARY(!)

NAME
glossary - definitions of common UNIX system terms and symbols

SYNOPSIS
[help] glossary [term]

DESCRIPTION
The UNIX System help Facility command glossary provides definitions of common
technical terms and symbols.

Without an argument, glossary displays a menu screen listing the terms and sym­
bols that are currently included in glossmJ1. A user may choose one of the terms or
may exit to the shell by typing q (for "quit"). When a term is selected, its definition
is retrieved and displayed. By selecting the appropriate menu choice, the list of
terms and symbols can be redisplayed.

A term's definition may also be requested directly from shell level (as shown above),
causing a definition to be retrieved and the list of terms and symbols not to be
displayed. Some of the symbols must be escaped if requested at shell level in order
for the facility to understand the symbol. The following is a table which list the
symbols and their escape sequence.

SYMBOL

[]

&

*
\
I

ESCAPE SEQUENCE
\"\"
\'\'

\\[\\]
\'\'
\#
\&
*
\\\\
~

From any screen in the facility, a user may execute a command via the shell
(sh(l)) by typing a! and the command to be executed. The screen will be redrawn
if the command that was executed was entered at a first level prompt. If entered at
any other prompt level, only the prompt will be redrawn.

By default, the help facility scrolls the data that is presented to the user. If a user
prefers to have the screen clear before printing the data (non-scrolling), a variable
must be defined in the user's .profile file called SCROLL. The variable SCROLL
must be set to no and exported for non-scrolling to occur. If the user later decides
that scrolling is desired, the variable SCROLL must be set to yes or deleted form
the user's .profile file.

Further information on the UNIX System help Facility can be found on the help(!),
usage(l), starter(!), and locate(l) manual pages.

SEE ALSO
help(!), locateCl), sh(l), starter(!), usage(l).
term(5) in the AT&T 3B2 Computer Programmer Reference Manual.

WARNINGS

7/85

If the TERM variable is not set in the user's .profile file, then terminal type will
default to the terminal value type 450 (a hard-copy terminal) . For a list of valid
terminal types, refer to term(5) in the AT&T 3B2 Computer Programmer Refer­
ence Manual. The help facility assumes that tabs are set on the user's terminal.

- 1 - 7/85

GRAPH(lG) (Graphics Utilities) GRAPH(lG)

NAME
graph - draw a graph

SYNOPSIS
graph [options I

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as abscissas
and ordinates of a graph. Successive points are connected by straight lines. The
graph is encoded on the standard output for display by the tplot(lG) filters.

If the coordinates of a point are followed by a non-numeric string, that string is
printed as a label beginning on the point. Labels may be surrounded with quotes ",
in which case they may be empty or contain blanks and numbers; labels never con­
tain new-lines.

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input); spac­
ing is given by the next argument (default 1). A second optional argu­
ment is the starting point for automatic abscissas (default 0 or lower
limit given by -x).

-b Break (disconnect) the graph after each label in the input.
-c Character string given by next argument is default label for each point.
-g Next argument is grid style, 0 no grid, l frame with ticks, 2 full grid

(default).
-I Next argument is label for graph.
-m Next argument is mode (style) of connecting lines: 0 disconnected, l

connected (default). Some devices give distinguishable line styles for
other small integers (e.g., the TEKTRONIX 4014: 2=dotted. 3=dash-dot,
4=short-dash, 5=1ong-dash).

-s Save screen, do not erase before plotting.
-x [I] If I is present, x axis is logarithmic. Next 1 (or 2) arguments are lower

(and upper) x limits. Third argument, if present, is grid spacing on x
axis. Normally these quantities are determined automatically.

-y [I] Similarly for y.
-h Next argument is fraction of space for height.
-w Similarly for width.
-r Next argument is fraction of space to move right before plotting.
-u Similarly to move up before plotting.
-t Transpose horizontal and vertical axes. (Option -x now applies to the

vertical axis.)
A legend indicating grid range is produced with a grid unless the -s option is
present. If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO

BUGS

7/85

graphics(lG), spline(lG), tplot(lG).

Graph stores all points internally and drops those for which there is no room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

- 1 - 7/85

GRAPHICS(IG) (Graphics Utilities) GRAPHICS (l G)

NAME
graphics - access graphical and numerical commands

SYNOPSIS
graphics [-r]

DESCRIPTION
Graphics prefixes the path name /usr/bin/graf to the current $PATH value, changes
the primary shell prompt to ", and executes a new shell. The directory
/usr/bin/graf contains all of the Graphics subsystem commands. If the -r option is
given, access to the graphical commands is created in a restricted environment; that
is, $PA TH is set to

:/usr/bin/graf:/rbin:/usr/rbin
and the restricted shell, rsh, is invoked. To restore the environment that existed
prior to issuing the graphics command, type EOT (control-don most terminals). To
logoff from the graphics environment, type quit.

The command line format for a command in graphics is command name followed
by argument(s). An argument may be a file name or an option string. A file name
is the name of any UNIX system file except those beginning with - . The file name
- is the name for the standard input. An option string consists of - followed by
one or more option(s). An option consists of a keyletter possibly followed by a
value. Options may be separated by commas.

The graphical commands have been partitioned into four groups.

Commands that manipulate and plot numerical data; see stat(IG).

Commands that generate tables of contents; see toc(lG).

Commands that interact with graphical devices; see gdev(IG) and ged(lG).

A collection of graphical utility commands; see gutil(IG).

A list of the graphics commands can be generated by typing whatis in the graphics
environment.

SEE ALSO
gdev(lG), ged(lG), gutil(lG), stat(lG), toc(lG).
gps(4) in the AT&T 382 Computer Programmer Reference Manual.

7/85 - 1 - 7/85

GREEK(l) (Terminal Filters Utilities) GREEK(l)

NAME
greek - select terminal filter

SYNOPSIS
greek [-Tterminal]

DESCRIPTION

FILES

Greek is a filter that reinterprets the extended character set, as well as the reverse
and half-line motions, of a 128-character TELETYPE® Model 37 terminal for certain
other terminals. Special characters are simulated by overstriking, if necessary and
possible. If the argument is omitted, greek attempts to use the environment vari­
able $TERM (see environ(5)). The following terminals are recognized currently:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 TEKTRONIX 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek TEKTRONIX 4014.

I usr /bin/ 300
/usr/bin/300s
I usr /bin/ 4014
/usr /bin/ 450
/usr/bin/hp

SEE ALSO

7/85

300(1), 4014(1), 450(1), hp(l), tplot(lG).
eqn(l), mm(l), nroff(l) in the UNIX System V DOCUMENTER'S WORKBENCH
Software Introduction and Reference Manual.
environ(5), term(5) in the AT&T 3B2 Computer Programmer Reference Manual.

- 1 - 7/85

GREP(l) (Essential Utilities) GREP(l)

NAME
grep - search a file for a pattern

SYNOPSIS
grep [options] expression [files l

DESCRIPTION
The fgrep command searches the input .files (standard input default) for lines
matching a pattern. Normally, each line found is copied to the standard output.
Grep patterns are limited regular expressions in the style of ed(l); it uses a com­
pact non-deterministic algorithm. The following options are recognized:

-v All lines but those matching are printed.
-x. (Exact) only lines matched in their entirety are printed (fgrep only).
-c Only a count of matching lines is printed.
-i Ignore upper/lower case distinction during comparisons.
-I Only the names of files with matching lines are listed (once), separated by

new-lines.
-n Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found. This is

sometimes useful in locating disk block numbers by context.
-s The error messages produced for nonexistent or unreadable files are

suppressed (grep only).

In all cases, the file name is output if there is more than one input file. Care should
be taken when using the characters $, *, [, ', I, (,) , and \ in expression, because
they are also meaningful to the shell. It is safest to enclose the entire expression
argument in single quotes ' ... '.

SEE ALSO
ed(l), egrep(l), fgrep(l), egrep(l), grep(l), sed(l), sh(l).

DIAGNOSTICS

BUGS

7/85

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessi­
ble files (even if matches were found).

Lines are limited to BUFSIZ characters; longer lines are truncated. (BUFSIZ is
defined in /usr/include/stdio.b.)
If there is a line with embedded nulls, grep will only match up to the first null; if it
matches, it will print the entire line.

- 1 - 7/85

GUTIL(lG) (Graphics Utilities) GUTIL(lG)

NAME
gutil - graphical utilities

SYNOPSIS
command-name [options] [files]

DESCRIPTION

7/85

Below is a list of miscellaneous device independent utility commands found in
/usr/bin/graf. If no files are given, input is from the standard input. All output is
to the standard output. Graphical data is stored in GPS format; see gps(4).

bel

cvrtopt

- send be! character to terminal

[=sstring fstring istring tstring] [args] - options converter
Cvrtopt reformats args (usually the command line arguments of a cal­
ling shell procedure) to facilitate processing by shell procedures. An arg
is either a file name (a string not beginning with a - , or a - by itself)
or an option string (a string of options beginning with a -) . Output is
of the form:

-option -option ... file name(s)
All options appear singularly and preceding any file names. Options
that take values (e.g., -rl. l) or are two letters long must be described
through options to cvrtopt.

Cvrtopt is usually used with set in the following manner as the first line
of a shell procedure:

set - ~cvrtopt =!options! $@~
Options to cvrtopt are:

sstring

fstring

istring

tstring

String accepts string values.

String accepts floating point numbers as values.

String accepts integers as values.

String is a two-letter option name that takes no value.

String is a one- or two-letter option name.

gd [GPS files] - GPS dump
Gd prints a human readable listing of GPS.

gtop [-rn u I [GPS files] - GPS to plot (4) filter
Gtop transforms a GPS into plot (4) commands displayable by plot
filters. GPS objects are translated if they fall within the window that cir­
cumscribes the first .file unless an option is given.
Options:

rn translate objects in GPS region n.

u translate all objects in the GPS universe.

pd [plot (5) files l - plot (4) dump
Pd prints a human readable listing of plot (4) format graphical com­
mands.

ptog [plot (5) files] - plot (4) to GPS filter
Ptog transforms plot (4) commands into a GPS.

quit - terminate session

- l - 7/85

GUnL(IG) (Graphics Utilities) GUTIL(lG)

Jl'emcom [files] - remove comments
Remcom copies its input to its output with comments removed. Com­
ments are as defined in C (i.e., I• comment */).

wbatis [-o] [names] - brief on-line documentation
Whatis prints a brief description of each name given. If no name is
given, then the current list of description names is printed. The com­
mand whatis \"' prints out every description.
Option:

o just print command options

yM file - pipe fitting
Yoo is a piping primitive that deposits the output of a pipeline into a file
used in the pipeline. Note that, without yoo, this is not usually success­
ful as it causes a read and write on the same file simultaneously.

SEE ALSO
graphics(lG).
gps(4), plot(4) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - 2 - 7/85

HELP(l) (Help Utilities) HELP(l)

NAME
help - UNIX System help facility

SYNOPSIS
help

[help] starter
[help] usage [-d I [-e l [-o] [command name
[help] locate [keyword! [keyword2] ...] -
[help] glossary [term]

help arg 1 [arg2 . . .]

DESCRIPTION

7/85

The UNIX System help facility provides on-line assistance for UNIX system users.

Without arguments, help prints a menu of available on-line assistance commands
with a short description of their functions. The commands and their descriptions
are:

COMMAND

starter

usage

locate

glossary

DESCRIPTION

information about the UNIX system for the beginning user

UNIX system command usage information

locate UNIX system commands using function-related key­
words

definitions of UNIX system techrnical terms

The user may choose one of the above commands by entering its corresponding
letter (given in the menu), or may exit to the shell by typing q (for "quit").

With arguments, help directly invokes the named on-line assistance command,
bypassing the initial help menu. The commands starter, locate, usage, and glos­
sary, optionally preceded by the word help, may also be specified at shell level.
When executing glossary from shell level some of the symbols listed in the glossary
must be escaped to be understood by the facility. For a list of symbols refer to the
glossary (1) manual page.

From any screen in the facility, a user may execute a command via the shell
(sh(l)) by typing a! and the command to be executed. The screen will be redrawn
if the command that was executed was entered at a first level prompt. If entered at
any other prompt level, only the prompt will be redrawn.

By default, the help facility scrolls the data that is presented to the user. If a user
prefers to have the screen clear before printing the data (non-scrolling), a variable
must be defined in the user's "profile file called SCROLL. The variable SCROLL
must be set to no and exported for non-scrolling to occur. IF the user later decides
that scrolling is desired, the variable SCROLL must be set to yes or deleted from
the user's "profile file.

If the first argument to help is different from the four mentioned above, help
assumes information is being requested in the form of the previous help command
(often referred to as the SCCS help command, and now obsolete). The arguments
may be either message numbers (which normally appear in parentheses following
messages) or command names, of one of the following types:

type! Begins with non-numerics, ends in numerics. The non-numeric prefix is
usually an abbreviation for the program or set of routines which produced
the message (e.g., ge3 for message 3 from the get command).

- 1 - 7/85

HELP(l) (Help Utilities) HELP(l)

type2

type3

Does not contain numerics (as a command, such as get).

Xs all numeric (e.g., 212).

Further information on the starter, locate, usage, and glossary commands may be
found on the starter(!), locate(l), usage(l), and glossary(l) manual pages, respec­
tively.

SEE Al.SO
get(l), glossary(!), locate(l), sh(l), starter(!), usage(l).
tenn(5) in the AT&T 3B2 Computer Programmer Reference Manual.

WARNINGS

7/85

If the TERM variable is not set in the user's .profile file, then TERM will default to
the terminal value type 450 (a hard-copy terminal) . For a list of valid terminal
types, refer to term (5). The help facility assumes that tabs are set on the user's
terminal.

- 2 - 7/85

HELP(l) (Source Code Control System Utilities) HELP(!)

NAME
help - ask for help with message numbers or SCCS commands

SYNOPSIS
help [args]

DESCRIPTION

FILES

Help finds information to explain a message from a command or explain the use of
a SCCS command. Zero or more arguments may be supplied. If no arguments are
given, help will prompt for one.

The arguments may be either message numbers (which normally appear in
parentheses following messages) or SCCS command names, of one of the following
types:

type l

type 2

type 3

Begins with non-numerics, ends in numerics. The non­
numeric prefix is usually an abbreviation for the program or
set of routines which produced the message (e.g., ge6, for
message 6 from the get command).

Does not contain numerics (as a command, such as get)

Is all numeric (e.g., 212)

The response of the program will be the explanatory information related to the
argument, if there is any.

When all else fails, try "help stuck".

/usr/lib/help

/usr/lib/help/helploc

directory containing files of message text.

file containing locations of help files not in
/usr /lib/help.

DIAGNOSTICS
Use help(!) for explanations.

7/85 - l - 7/8"i

HELPADM(l) (Help Utilities) HELPADM(l)

NAME
helpadm - make changes to the help database

SYNOPSIS
belpadm

DESCRIPTION
The UNIX System help Facility Administration command helpadm allows UNIX
system administrators and command developers to define the content of help for
their specific commands and to monitor use of the help facility. The helpadm com­
mand can only be executed by login root, login bin, or a login that is a member of
group bin.

The helpadm command prints a menu of 3 types of help data which can be
modified, and 2 choices relating to monitoring use of the help facility. The five
choices are:

- modify startup data

- add, modify, or delete a glossary term

add, modify, or delete command data (description, options, examples, and key­
words)

- prevent monitoring use of the help facility (login root and login bin only)

- permit monitoring use of the help facility (login root and login bin only)

The user may make one of the above choices by entering its corresponding letter
(given in the menu), or may exit to the shell by typing q (for "quit").

If one of the first three choices is chosen, then the user is prompted for additional
information; specifically, which startup screen, glossary term definition, or command
is to be modified. The user may also be prompted for information to identify
whether the changes to the database are additions, modifications, or deletions. If
the user is modifying existing data or adding new data, then they are prompted to
make the appropriate modifications/additions. ff the user is deleting a glossary
term or a command from the database, then they must respond affirmatively to the
next query in order for the deletion to be done. In any case, before the user's
changes are final, they must respond affirmatively when asked whether they are sure
they want their requested database changes to be done.

By default, helpadm will put the user into ed to make additions/modifications to
database information. If the user wishes to be put into a different editor, then they
should set the EDITOR variable in their environment to the desired editor, and then
export EDITOR.

If the user chooses to monitor/prevent monitoring use of the help facility, no further
interaction occurs between the user and the help administration utilities.

SEE ALSO
ed(l), help(l).

WARNINGS

7/R'i

When the UNIX System is delivered to a customer, /etc/profile exports the LOG­
NAME variable. If /etc/profile has been changed so that LOGNAME is not
exported, then the options to monitor/prevent monitoring use of the help facility
may not work properly.

- 1 - 7/85

HP(l) (Terminal filters Utilities) HP(l)

NAME
hp - handle special functions of Hewlett-Packard 2640 and 2621-series terminals

SYNOPSIS
hp [-e] [-m]

DESCRIPTION
Hp supports special functions of the Hewlett-JP'ackard 2640 series of terminals, with
the primary purpose of producing accurate representations of most nroff output. A
typical use is (using s-lRKBENCH Software):

nroff -h files . . . I hp

Regardless of the hardware options on your terminal, hp tries to do sensible things
with underlining and reverse line-feeds. ff the terminal has the "display enhance­
ments" feature, subscripts and superscripts can be indicated in distinct ways. If it
has the "mathematical-symbol" feature, Greek and other special characters can be
displayed.

The flags are as follows:
-e H is assumed that your terminal has the "display enhancements" feature,

and so maximal use is made of the added display modes. Overstruck char­
acters are presented in the Underline mode. Superscripts are shown in
Half-bright mode, and subscripts in Half-bright, Underlined mode. If this
flag is omitted, hp assumes that your terminal lacks the "display enhance­
ments" feature. In this case, all overstruck characters, subscripts, and
superscripts are displayed in Inverse Video mode, i.e., dark-on-light, rather
than the usual light-on-dark.

-m Requests minimization of output by removal of new-lines. Any contiguous
sequence of 3 or more new-lines is converted into a sequence of only 2
new-lines; i.e., any number of successive blank lines produces only a single
blank output line. This allows you to retain more actual text on the screen.

With regard to Greek and other special characters, hp provides the same set as does
300(1), except that "not" is approximated by a right arrow, and only the top half of
the integral sign is shown.

DIAGNOSTICS
"line too long" if the representation of a line exceeds 1,024 characters.
The exit codes are (JI for normal termination, 2 for all errors.

SEE ALSO

BUGS

7/85

300(1), greek(l).
co!(l), eqn(l), nroff(!), tbl(l) in the UNIX System V DOCUMENTER'S WORK­
BENCH Software Introduction and Reference Manual.

An "overstriking sequence" is defined as a printing character followed by a back­
space followed by another printing character. In such sequences, if either printing
character is an underscore, the other printing character is shown underlined or in
Inverse Video; otherwise, only the first printing character is shown (again, under­
lined or in Inverse Video). Nothing special is done if a backspace is adjacent to an
ASCII control character. Sequences of control characters (e.g., reverse line-feeds,
backspaces) can make text "disappear"; in particular, tables generated by tbl(I)
that contain vertical lines will often be missing the lines of text that contain the
"foot" of a vertical line, unless the input to hp is piped through col(l).
Although some terminals do provide numerical superscript characters, no attempt is
made to display them.

- I - 7/85

HPIO(l) (Terminal Filters Utilities) HPIO(l)

NAME
hpio - Hewlett-Packard 2645A terminal tape file archiver

SYNOPSIS
hpio -o[rc] file ...

hpio -i[rtal [-n count]

DESCRIPTION

7/85

Hpio is designed to take advantage of the tape drives on Hewlett-Packard 2645A
terminals. Up to 255 UNIX system files can be archived onto a tape cartridge for
off-line storage or for transfer to another UNIX system. The actual number of files
depends on the sizes of the files. One file of about 115,000 bytes will almost fill a
tape cartridge. Almost 300 1-byte files will fit on a tape, but the terminal will not
be able to retrieve files after the first 255. This manual page is not intended to be a
guide for using tapes on Hewlett-Packard 2645A terminals, but tries to give enough
information to be able to create and read tape archives and to position a tape for
access to a desired file in an archive.

Hpio -o (copy out) copies the specified file (s), together with path name and status
information to a tape drive on your terminal (which is assumed to be positioned at
the beginning of a tape or immediately after a tape mark). The left tape drive is
used by default. Each file is written to a separate tape file and terminated with a
tape mark. When hpio finishes, the tape is positioned following the last tape mark
written.

Hpio -i (copy in) extracts a file(s) from a tape drive (which is assumed to be posi­
tioned at the beginning of a file that was previously written by a hpio -o). The
default action extracts the next file from the left tape drive.

Hpio always leaves the tape positioned after the last file read from or written to the
tape. Tapes should always be rewound before the terminal is turned off. To rewind
a tape depress the green function button, then function key 5, and then select the
appropriate tape drive by depressing either function key 5 for the left tape drive or
function key 6 for the right. If several files have been archived onto a tape, the tape
may be positioned at the beginning of a specific file by depressing the green function
button, then function key 8, followed by typing the desired file number (1-255)
with no RETURN, and finally function key 5 for the left tape or function key 6 for
the right. The desired file number may also be specified by a signed number rela­
tive to the current file number.

The meanings of the available options are:

r Use the right tape drive.
c Include a checksum at the end of each file. The checksum is always

checked by hpio -i for each file written with this option by hpio -o.
n count The number of input files to be extracted is set to count. If this option is

not given, count defaults to 1. An arbitrarily large count may be specified
to extract all files from the tape. Hpio will stop at the end of data mark
on the tape.

t Print a table of contents only. No files are created. Printed information
gives the file size in bytes, the file name, the file access modes, and whether
or not a checksum is included for the file.

a Ask before creating a file. Hpio -i normally prints the file size and name,
creates and reads in the file, and prints a status message when the file has
been read in. If a checksum is included with the file, it reports whether
the checksum matched its computed value. With this option, the file size
and name are printed followed by a ? . Any response beginning with y or Y

- 1 - 7/85

HPIO(l) (Terminal Filters Utilities) HPIO(l)

FILES

will cause the file to be copied in as above. Any other response will cause
the file to be skipped.

/dev/tty?? to block messages while accessing a tape

SEE ALSO
cu(lC).

DIAGNOSTICS
BREAK

An interrupt signal terminated processing.
Can't create 'file'.

File system access permissions did not allow file to be created.
Can't get tty options on stdout.

Hpio was unable to get the input-output control settings associated with the
terminal.

Can't open 'file'.
File could not be accessed to copy it to tape.

End of Tape.
No tape record was available when a read from a tape was requested. An
end of data mark is the usual reason for this, but it may also occur if the
wrong tape drive is being accessed and no tape is present.

'file' not a regular file.
File is a directory or other special file. Only regular files will be copied to
tape.

Readcnt = re, termcnt = tc.
Hpio expected to read re bytes from the next block on the tape, but the
block contained tc bytes. This is caused by having the tape improperly
positioned or by a tape block being mangled by interference from other ter­
minal I/O.

Skip to next file failed.
An attempt to skip over a tape mark failed.

Tape mark write failed.
An attempt to write a tape mark at the end of a file failed.

Write failed.
A tape write failed. This is most frequently caused by specifying the wrong
tape drive, running off the end of the tape, or trying to write on a tape that
is write protected.

WARNINGS

BUGS

7/85

'fape I/O operations may copy bad data if any other I/O involving the terminal
occurs. Do not attempt any type ahead while hpio is running. Hpio turns off write
permissions for other users while it is running, but processes started asynchronously
from your terminal can still interfere. The most common indication of this problem,
while a tape is being written, is the appearance of characters on the display screen
that should have been copied to tape.

The keyboard, including the terminal BREAK key, is locked during tape write opera­
tions; the BREAK key is only functional between writes.

Hpio must have complete control of the attributes of the terminal to communicate
with the tape drives. Interaction with commands such as cu (1 C) may interfere and
prevent successful operation.

Some binary files contain sequences that will confuse the terminal.

. 2 . 7/85

HPIO(l) (Terminal Filters Utilities) HPIO(l)

7/85

An hpio -i that encounters the end of data mark on the tape (e.g., scanning the
entire tape with hpio -itn 300), leaves the tape positioned after the end of data
mark. If a subsequent hpio -o is done at this point, the data will not be retriev­
able. The tape must be repositioned manually using the terminal FIND FILE -1
operation (depress the green function button, function key 8, and then function key
5 for the left tape or function key 6 for the right tape) before the hpio -o is
started.

If an interrupt is received by hpio while a tape is being written, the terminal may
be left with the keyboard locked. If this happens, the terminal's RESET TERMINAL
key will unlock the keyboard.

- 3 - 7/85

IPCRM(l) Onterprocess Communication Utilities) IPCRM(l)

NAME
ipcrm - remove a message queue, semaphore set or shared memory id

SYNOPSIS
ipcrm [options]

DESCRIPTION
!perm will remove one or more specified messages, semaphore or shared memory
identifiers. The identifiers are specified by the following options:

-q msqid removes the message queue identifier msqid from the system and des­
troys the message queue and data structure associated with it.

-m shmid removes the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are des­
troyed after the last detach.

-s semid removes the semaphore identifier semid from the system and destroys
the set of semaphores and data structure associated with it.

-Q msgkey removes the message queue identifier, created with key msgkey, from
the system and destroys the message queue and data structure associ­
ated with it.

-M shmkey removes the shared memory identifier, created with key shmkey, from
the system. The shared memory segment and data structure associ­
ated with it are destroyed after the last detach.

-S semkey removes the semaphore identifier, created with key semkey, from the
system and destroys the set of semaphores and data structure associ­
ated with it.

The details of the removes are described in msgct/(2), shmct/(2), and semct/(2).
The identifiers and keys may be found by using ipcs(l).

SEE ALSO
ipcs(l).

7/85

msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmct1(2),
shmget(2), shmop(2) in the AT&T 3B2 Computer Programmer Reference Manual.

- l - 7/85

IPCS(l) {Interprocess Communication Utilities) IPCS(l)

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options]

DESCRIPTION

7/85

lpcs prints certain information about active inter-process communication facilities.
Without options, information is printed in short format for message queues, shared
memory, and semaphores that are currently active in the system. Otherwise, the
information that is displayed is controlled by the following options:

380.sp40u
-q Print information about active message queues.

-m Print information about active shared memory segments.

-s Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information about only those
indicated will be printed. If none of these three are specified, information about all
three will be printed subject to these options:

-b Print biggest allowable size information. (Maximum number of bytes in
messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores.) See
below for meaning of columns in a listing.

-c Print creator's login name and group name. See below.

-o Print information on outstanding usage. (Number of messages on queue
and total number of bytes in messages on queue for message queues and
number of processes attached to shared memory segments)

-p Print process number information. (Process ID of last process to send a
message and process ID of last process to receive a message on message
queues and process ID of creating process and process ID of last process to
attach or detach on shared memory segments) See below.

-t Print time information. (Time of the last control operation that changed
the access permissions for all facilities. Time of last msgsnd and last
msgrcv on message queues, last shmat and last shmdt on shared memory,
last semop(2) on semaphores) See below.

-a Use all print options. (This is a shorthand notation for -b, -c, -o, -p,
and -t.)

-C corefile
Use the file core.file in place of /dev/kmem.

-N namelist
The argument will be taken as the name of an alternate namelist (/1J111ix is
the default).

The column headings and the meaning of the columns in an ipcs listing are given
below; the letters in parentheses indicate the options that cause the corresponding
heading to appear; an means that the heading always appears. Note that these
options only determine what information is provided for each facility; they do not

- 1 - 7/85

IPCS(l) (Interprocess Communication Utilities) IPCS(l)

determine which facilities will be listed.

T

ID

KEY

MODE

OWNER

GROUP

CREATOR

CG ROUP

CBYTES

QNUM

7/85

(all)

(all)

(all)

(all)

(all)

Type of the facility:
q message queue;
m shared memory segment;
s semaphore.

The identifier for the facility entry.

The key used as an argument to msgget, semget, or shmget to
create the facility entry. (Note: The key of a shared memory
segment is changed to IPC_PRIVATE when the segment has been
removed until all processes attached to the segment detach it.)

The facility access modes and flags: The mode consists of 11
characters that are interpreted as follows:
The first two characters are:

R if a process is waiting on a msgrcv;
S if a process is waiting on a msgsnd;
D if the associated shared memory segment has been

removed. It will disappear when the last process
attached to the segment detaches it;

C if the associated shared memory segment is to be
cleared when the first attach is executed;
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three bits
each. The first set refers to the owner's permissions; the next to
permissions of others in the user-group of the facility entry; and
the last to all others. Within each set, the first character indi­
cates permission to read, the second character indicates permis­
sion to write or alter the facility entry, and the last character is
currently unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.

The login name of the owner of the facility entry.
(a IO

The group name of the group of the owner of the facility entry.
(a,c)

The login name of the creator of the facility entry.
(a,c)

The group name of the group of the creator of the facility entry.
(a,o)

The number of bytes in messages currently outstanding on the
associated message queue.

(a,o)
The number of messages currently outstanding on the associated
message queue.

- 2 - 7/85

IPCS(l)

FILES

QBYTES

LSPID

LRPID

STIME

RTIME

CTIME

NATTCH

SEGSZ

CPID

LPID

ATIME

DTIME

NSEMS

OTIME

(Interprocess Communication Utilities) IPCS (1)

(a,b)
The maximum number of bytes allowed in messages outstanding
on the associated message queue.

(a,p)
The process ID of the last process to send a message to the associ­
ated queue.

(a,p)

(a,t)

The process ID of the last process to receive a message from the
associated queue.

The time the last message was sent to the associated queue.
(a,t)

(a,t)

The time the last message was received from the associated
queue.

The time when the associated entry was created or changed.
(a,o)

The number of processes attached to the associated shared
memory segment.

(a,b)
The size of the associated shared memory segment.

(a,p)
The process ID of the creator of the shared memory entry.

(a,p)

(a,t)

(a,t)

The process ID of the last process to attach or detach the shared
memory segment.

The time the last attach was completed to the associated shared
memory segment.

The time the last detach was completed on the associated shared
memory segment.

(a,b)

(a,t)

The number of semaphores in the set associated with the sema­
phore entry.

The time the last semaphore operation was completed on the set
associated with the semaphore entry.

/unix system namelist
/dev/kmem memory
/etc/passwd user names
/etc/group group names

SEE ALSO

BUGS

7/85

msgop(2), semop(2), shmop(2) in the AT&T 3B2 Computer Programmer Refer­
ence Manual.

Things can change while ipcs is running; the picture it gives is only a close approxi­
mation to reality.

- 3 - 7/85

JOIN(l) (Directory and File Management Utilities) JOIN(l)

NAME
join - relational database operator

SYNOPSIS
join [options] file 1 file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines
of filel and file2. If file! is - , the standard input is used.

Fi/el and file2 must be sorted in increasing ASCII collating sequence on the fields
on which they are to be joined, normally the first in each line [see sort(l)].

There is one line in the output for each pair of lines in filel and file2 that have
identical join fields. The output line normally consists of the common field, then the
rest of the line from file I, then the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In this case, multiple
separators count as one field separator, and leading separators are ignored. The
default output field separator is a blank.

Some of the below options use the argument n. This argument should be a 1 or a 2
referring to either filel or file2, respectively. The following options are recognized:

-an In addition to the normal output, produce a line for each unpairable line in
file n, where n is l or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in each
file. Fields are numbered starting with 1.

-o list Each output line comprises the fields specified in list, each element of
which has the form n.m, where n is a file number and m is a field number.
The common field is not printed unless specifically requested.

-tc Use character c as a separator (tab character). Every appearance of c in a
line is significant. The character c is used as the field separator for both
input and output.

EXAMPLE
The following command line will join the password file and the group file, matching
on the numeric group ID, and outputting the login name, the group name and the
login directory. It is assumed that the files have been sorted in ASCII collating
sequence on the group ID fields.

join -jl 4 -j2 3 -o 1.1 2.1 1.6 -t: /etc/passwd /etc/group

SEE ALSO

BUGS

7/85

awk(l), comm(!), sort(l), uniq(l).

With default field separation, the collating sequence is that of sort -b; with -t, the
sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and awk(l) are wildly incongruous.

Filenames that are numeric may cause conflict when the -o option is used right
before listing filenames.

- 1 - 7/85

KULL (l) (Essential Utilities) KILL(l)

NAME
kill - terminate a process

SYNOPSIS
kill [-signo] PID ...

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. This will normally kill
processes that do not catch or ignore the signal. The process number of each asyn­
chronous process started with & is reported by the shell (unless more than one pro­
cess is started in a pipeline, in which case the number of the last process in the
pipeline is reported). Process numbers can also be found by using ps (1).

The details of the kill are described in kill (2). For example, if process number 0 is
specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by - is given as first argument, that signal is sena
instead of terminate (see signal(2)). In particular "kill -9 ... "is a sure kill.

SEE ALSO
ps(l), sh(l).
kill(2), signal(2) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - l - 7/85

LD(l) (Software Generation System Utilities) LD(l)

NAME
Id - link editor for common object files

SYNOPSIS
Id loptionsl filename

DESCRIPTION

7/85

The Id command combines several object files into one, performs relocation, resolves
external symbols, and supports symbol table information for symbolic debugging. In
the simplest case, the names of several object programs are given, and Id combines
them, producing an object module that can either be executed or used as input for a
subsequent Id run. The output of ld is left in a"out. By default this file is execut­
able if no errors occurred during the load. If any input file, file-name, is not an
object file, id assumes it is either an archive library or a text file containing link edi­
tor directives. (See the Link Editor User Guide in the UNIX System V Support
Tools Guide for a discussion of input directives.)

If any argument is a library, it is searched exactly once at the point it is encoun­
tered in the argument list. Only those routines defining an unresolved external
reference are loaded. The library (archive) symbol table (see ar(4)) is searched
sequentially with as many passes as are necessary to resolve external references
which can be satisfied by library members. Thus, the ordering of library members
is unimportant.

The following options are recognized by ld.

-a Produce an absolute, executable file; give warnings for undefined references.
This option is available only on the 3B2 computers. Relocation information
is stripped from the output file unless the -r option is given. The -r
option is needed only when an absolute file should retain its relocation infor­
mation (not the normal case). If neither -a nor -r is given, -a is
assumed.

-e epsym
Set the default entry point address for the output file to be that of the sym­
bol epsym.

-f fill Set the default fill pattern for "holes" within an output section as well as
initialized bss sections. The argument fill is a two-byte constant.

-Ix Search a library libx"a, where x is up to seven characters. A library is
searched when its name is encountered, so the placement of a -I is
significant. By default, libraries are located in /lib and /usr/lib/.

-m Produce a map or listing of the input/output sections on the standard out­
put.

-o outfile
Produce an output object file by the name out.file. The name of the default
object file is a.out.

-r Retain relocation entries in the output object file. Relocation entries must
be saved if the output file is to become an input file in a subsequent Id run.
The link editor will not complain about unresolved references, and the out­
put file will not be executable.

-s Strip line number entries and symbol table information from the output
object file.

-t Turn off the warning about multiply-defined symbols that are not the same
size.

- l - 7/85

LD(l)

FILES

(Software Generation System Utilities) LD(l)

-u symname
Enter symname as an undefined symbol in the symbol table. This is useful
for loading entirely from a library, since initially the symbol table is empty
and an unresolved reference is needed to force the loading of the first rou­
tine.

-x Do not preserve local (non-.globO symbols in the output symbol table; enter
external and static symbols only. This option saves some space in the out­
put file.

-z Do not bind anything to address zero. This option will allow runtime detec­
tion of null pointers.

-L dir Change the algorithm of searching for libx.a to look in dir before looking in
/lib and /usr/lib. This option is effective only if it precedes the -I option
on the command line.

-M Output a message for each multiply-defined external definition. However, if
the objects being loaded include debugging information, extraneous output
is produced (see the -g option in cc(l)).

- N Put the data section immediately following the text in the output file.

-V Output a message giving information about the version of Id being used.

-VS num
Use num as a decimal version stamp identifying the a.out file that is pro­
duced. The version stamp is stored in the optional header.

/lib/libx.a
/usr/lib/libx.a
a.out

libraries
libraries
output file

SEE ALSO
as(l), cc(l).
exit(2), end(3C), a.out(4), ar(4) in the AT&T 3B2 Computer Programmer Refer­
ence Manual.

CAVEATS

7/85

Through its options and input directives, the common link editor gives users great
flexibility; however, those who use the input directives must assume some added
responsibilities. Input directives and options should insure the following properties
for programs:

C defines a zero pointer as null. A pointer to which zero has been assigned
must not point to any object. To satisfy this, users must not place any object
at virtual address zero in the data space.

When the link editor is called through cc(l), a startup routine is linked with
the user's program. This routine calls exit() (see exit(2)) after execution of
the main program. If the user calls the link editor directly, then the user must
insure that the program always calls exit() rather than falling through the
end of the entry routine.

The symbols etext, edata, and end (see end(3C)) are reserved and are defined by
the link editor. It is erroneous for a user program to redefine them.

If the link editorr does not recognize an input file as an object file or an archive file,
it will assume that it contains link editor directives and will attempt to parse it.
This will occasionally produce an error message complaining about "syntax errors".

- 2 - 7/85

LEX(l) (Extended Software Generation System Utilities) LEX(l)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-rctvn] [file] ...

DESCRIPTION

7/85

Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the input to
the output except when a string specified in the file is found; then the corresponding
program text is executed. The actual string matched is left in yytext, an external
character array. Matching is done in order of the strings in the file. The strings
may contain square brackets to indicate character classes, as in labx -zl to indicate
a, b, x, y, and z; and the operators •, +,and ? mean respectively any non-negative
number of, any positive number of, and either zero or one occurrence of, the previ­
ous character or character class. The character . is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation are also
supported. The notation r(d,e} in a rule indicates between d and e instances of reg­
ular expression r. It has higher precedence than I, but lower than •, ? , +, and con­
catenation. The character ~ at the beginning of an expression permits a successful
match only immediately after a new-line, and the character $ at the end of an
expression requires a trailing new-line. The character I in an expression indicates
trailing context; only the part of the expression up to the slash is returned in yytext,
but the remainder of the expression must follow in the input stream. An operator
character may be used as an ordinary symbol if it is within " symbols or preceded
by\. Thus la -zA-ZI + matches a string of letters.

Three subroutines defined as macros are expected: input() to read a character;
unput(c) to replace a character read; and output(c) to place an output character.
They are defined in terms of the standard streams, but you can override them. The
program generated is named yylexO, and the library contains a mainO which calls
it. The action REJECT on the right side of the rule causes this match to be rejected
and the next suitable match executed; the function yymoreO accumulates additional
characters into the same yytext; and the function yyless(p) pushes back the portion
of the string matched beginning at p, which should be between yytext and
yytext+yyleng. The macros input and output use files yyin and yyout to read from
and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied; if
it precedes % % it is copied into the external definition area of the lex.yy.c file. All
rules should follow a % % , as in YACC. Lines preceding % % which begin with a
non-blank character define the string on the left to be the remainder of the line; it
can be called out later by surrounding it with {}. Note that curly brackets do not
imply parentheses; only string substitution is done.

- 1 - 7/85

LEX(l) (Extended Software Generation System Utilities) LEX(l)

EXAMPLE
D
%%
if
[a-z]+
O{D}+
{D}+
"++"
"+"
"/•"

[0-9]

printf("IF statement\n ");
printf("tag, value %s\n",yytext);
printf("octal number %s\n",yytext);
printf("decimal number %s\n",yytext);
printf("unary op\n ");
printf("binary op\n ");
{ loop:

while (input() != '•');
switch (input())

{
case '/': break;
case'•': unput('•');
default: go to loop;
}

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The flag -r indicates RA 'fFOR actions, -c
indicates C actions and is the default, -t causes the lex.yy.c program to be written
instead to standard output, -v provides a one-line summary of statistics of the
machine generated, -n will not print out the - summary. Multiple files are
treated as a single file. If no files are specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in the definitions
section:

% p n number of positions is n (default 2000)

% n n number of states is n (500)

%t n number of parse tree nodes is n (1000)

% a n number of transitions is n (3000)

The use of one or more of the above automatically implies the -v option, unless the
-n option is used.

SEE ALSO
yacc(!).
malloc(3X) in the AT&T 3B2 Computer Programmer Reference Manual.

BUGS
The -r option is not yet folly operational.

7/85 - 2 - 7/85

UNE(l)

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION

(Essential Utilities) LINE(l)

Line copies one line (up to a new-line) from the standard input and writes it on the
standard output. It returns an exit code of 1 on EOF and always prints at least a
new-line. It is often used within shell files to read from the user's terminal.

SEE ALSO
sh(l).
read(2) in the AT&T 3B2 Computer Programmer Reference Manual.

rr lot:: - 1 - 7/85

LINT(l) (C Programming Language Utilities) LINT(l)

NAME
lint - a C program checker

SYNOPSIS
lint [option 1 . . . file ...

DESCRIPTION

7151."

Lint attempts to detect features of the C program files that are likely to be bugs,
non-portable, or wasteful. !t also checks type usage more strictly than the com­
pilers. Among the things that are currently detected are unreachable statements,
loops not entered at the top, automatic variables declared and not used, and logical
expressions whose value is constant. Moreover, the usage of functions is checked to
find functions that return values in some places and not in others, functions called
with varying numbers or types of arguments, and functions whose values are not
used or whose values are used but none returned.

Arguments whose names end with .c are taken to be C source files. Arguments
whose names end with .In are taken to be the result of an earlier invocation of lint
with either the -c or the -o option used. The .In files are analogous to .o (object)
files that are produced by the cc(l) command when given a .c file as input. Files
with other suffixes are warned about and ignored.

Lint will take all the .c,.ln, and llib-lx.ln (specified by -Ix) files and process them in
their command line order. By default, lint appends the standard C lint library
(llib-lc.ln) to the end of the list of files. However, if the -p option is used, the port­
able C lint library (llib-port.ln) is appended instead. When the -c option is not
used, the second pass of lint checks this list of files for mutual compatibility. When
the -c option is used, the .In and the llib-lx.ln files are ignored.

Any number of lint options may be used, in any order, intermixed with file-name
arguments. The following options are used to suppress certain kinds of complaints:

-a Suppress complaints about assignments of long values to variables that are
not long.

-b Suppress complaints about break statements that cannot be reached. (Pro­
grams produced by lex or yacc will often result in many such complaints).

-b Do not apply heuristic tests that attempt to intuit bugs, improve style, and
reduce waste.

-u Suppress complaints about functions and external variables used and not
defined, or defined and not used. (This option is suitable for running lint
on a subset of files of a larger program).

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but never used.

The following arguments alter lint's behavior:

-Ix Include additional lint library llib-lx.ln. For example, you can include a lint
version of the Math Library llib-lm.ln by inserting -Im on the command
line. This argument does not suppress the default use of llib-lc.ln. These
lint libraries must be in the assumed directory. This option can be used to
reference local lint libraries and is useful in the development of multi-file
projects.

-n Do not check compatibility against either the standard or the portable lint
library.

- l - 7/85

UNT(l) (C Programming Language Utilities) LINT(!)

7/R"i

-p Attempt to check portability to other dialects (IBM and GCOS) of C.
Along with stricter checking, this option causes all non-external names to be
truncated to eight characters and all external names to be truncated to six
characters and one case.

-c Cause lint to produce a .In file for every .c file on the command line. These
.In files are the product of lint's first pass only, and are not checked for
inter-function compatibility.

-o lib Cause lint to create a lint library with the name llib-1/ib.ln. The -c option
nullifies any use of the -o option. The lint library produced is the input
that is given to lint's second pass. The -o option simply causes this file to
be saved in the named lint library. To produce a llib-1/ib.ln without
extraneous messages, use of the -x option is suggested. The -v option is
useful if the source file(s) for the lint library are just external interfaces
(for example, the way the file llib-lc is written). These option settings are
also available through the use of "lint comments" (see below).

The -D, -U, and -I options of cpp(l) and the -g and -0 options of cc(l) are
also recognized as separate arguments. The -g and -0 options are ignored, but,
by recognizing these options, lint's behavior is closer to that of the cc(l) command.
Other options are warned about and ignored. The pre-processor symbol "lint" is
defined to allow certain questionable code to be altered or removed for lint. There­
fore, the symbol "lint" should be thought of as a reserved word for all code that is
planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of lint:

/•NOTREACHED•/
at appropriate points stops comments about unreachable code.
(This comment is typically placed just after calls to functions like
exit (2)).

/•V ARARGSn•/
suppresses the usual checking for variable numbers of arguments in
the following function declaration. The data types of the first n
arguments are checked; a missing n is taken to be 0.

/•ARGSUSED•/
turns on the -v option for the next function.

/•LINTLIBRARY•/
at the beginning of a file shuts off complaints about unused func­
tions and function arguments in this file. This is equivalent to
using the -v and -x options.

Lint produces its first output on a per-source-file basis. Complaints regarding
included files are collected and printed after all source files have been processed.
Finally, if the -c option is not used, information gathered from all input files is col­
lected and checked for consistency. At this point, if it is not clear whether a com­
plaint stems from a given source file or from one of its included files, the source file
name will be printed followed by a question mark.

The behavior of the -c and the -o options allows for incremental use of lint on a
set of C source files. Generally, one invokes lint once for each source file with the
-c option. Each of these invocations produces a .In file which corresponds to the .c
file, and prints all messages that are about just that source file. After all the source
files have been separately run through lint, it is invoked once more (without the -c
option), listing all the .In files with the needed - Ix options. This will print all the

- 2 - 7/85

LINT(!) (C Programming Language Utilities) LINT(I)

FILES

inter-file inconsistencies. This scheme works well with make(!); it allows make to
be used to lint only the source files that have been modified since the last time the
set of source files were linted.

/usr/lib

/usr/lib/lint[12]
/usr /lib/llib-lc.ln

/usr/lib/llib-port.ln

/usr/lib/Hib-lm.ln

the directory where the lint libraries specified by the -Ix
option must exist
first and second passes
declarations for C Library functions (binary format; source is
in /usr /lib/llib-lc)
declarations for portable functions (binary format; source is in
/usr /lib/llib-port)
declarations for Math Library functions (binary format; source
is in /usr /lib/llib-lm)

/usr/tmp/•lint• temporaries

SEE ALSO

BUGS

7/85

cc(l), cpp(l), make(l).

exit (2), longjmp (3C), and other functions that do not return are not understood;
this causes various lies.

- 3 - 7/85

LIST(l) (C Programming Language Utilities) UST(l)

NAME
list - produce C source listing from a common object files

SYNOPSIS
list I -V I [-h] [- F funtion] source-file . . . [object-file]

DESCRIPTION
The list command produces a C source listing with line number information
attached. If multiple C source files were used to create the object file, list will
accept multiple file names. The object file is taken to be the last non-C source file
argument. If no object file is specified, the default object file, a.out, will be used.

Line numbers will be printed for each line marked as breakpoint inserted by the
compiler (generally, each executable C statement that begins a new line of source).
Line numbering begins anew for each function. Line number 1 is always the line
containing the left curly brace ({) that begins the function body. Line numbers
will also be supplied for inner block redeclarations of local variables so that they can
be distinguished by the symbolic debugger.

The following options are interpreted by list and may be given in any order:

-V Print, on standard error, the version number of the list command executing.

-b Suppress heading output.

-F function
List only the named function. The - F option may be specified multiple
times on the command line.

SEE ALSO

BUGS

as(l), cc(l), ld(l).

Object files given to list must have been compiled with the -g option of cc(l).

Since list does not use the C preprocessor, it may be unable to recognize function
definitions whose syntax has been distorted by the use of C preprocessor macro sub­
stitutions.

DIAGNOSTICS
List will produce the error message "list: name: cannot open" if name cannot be
read. If the source file names do not end in .c , the message is "list: name: invalid
C source name". An invalid object file will cause the message "list: name: bad
magic" to be produced. If some or all of the symbolic debugging information is
missing, one of the following messages will be printed: "list: name: symbols have
been stripped, cannot proceed", "list: name: cannot read line numbers", and "list:
name: not in symbol table". The following messages are produced when list has
become confused by #ifdefs in the source file: "list: name: cannot find function in
symbol table", "list: name: out of sync: too many }", and "list: name: unexpected
end-of-file". The error message "list: name: missing or inappropriate line numbers"
means that either symbol debugging information is missing, or list has been con­
fused by C preprocessor statements.

7/R<;,

LOCATE(!) (Help Utilities) LOCATE(l)

NAME
locate - identify a UNIX system command using keywords

SYNOPSIS
[help] locate
[help] locate [keyword! [keyword2] ...]

DESCRIPTION
The locate command is part of the UNIX system help Facility, and provides on-line
assistance with identifying UNIX system commands.

Without arguments, the initial locate screen is displayed from which the user may
enter keywords functionally related to the action of the desired UNIX system com­
mands they wish to have identified. A user may enter keywords and receive a list of
UNIX system commands whose functional attributes match those in the keyword
list, or may exit to the shell by typing q (for "quit"). For example, if you wish to
print the contents of a file, enter the keywords "print" and "file". The locate com­
mand would then print the names of all commands related to these keywords.

Keywords may also be entered directly from the shell, as shown above. In this case,
the initial screen is not displayed, and the resulting command list is printed.

More detailed information on a command in the list produced by locate can be
obtained by accessing the usage module of the UNIX System help Facility. Access
is made by entering the appropriate menu choice after the command list is
displayed.

From any screen in the facility, a user may execute a command via the shell
(sh(l)) by typing a! and the command to be executed. The screen will be redrawn
if the command that was executed was entered at a first level prompt. If entered at
any other prompt level, only the prompt will be redrawn.

By default, the help facility scrolls the data that is presented to the user. If a user
prefers to have the screen dear before printing the data (non-scrolling), a variable
must be defined in the user's .profile file called SCROLL. The variable SCROLL
must be set to no and exported for non-scrolling to occur. If the user later decides
that scrolling is desired, the variable SCROLL must be set to yes or deleted from
the user's .profile file.

Further information on the UNIX System help Facility can be found on the help (1),
usage(l), starter(l), and glossary(!) manual pages.

SEE ALSO
glossary(!), help(l), sh(l), starter(!), usage(l).
term(5) in the AT&T 3B2 Computer Programmer Reference Manual.

WARNINGS
If the TERM variable is not set in the user's .profile file, then TERM will default to
the terminal value type 450 (a hard-copy terminal) . For a list of valid terminal
types, refer to term (5). The help facility assumes that tabs are set on the user's
terminal.

'7 IOt::.

LOGIN(l) (Essential Utilities) LOGIN(l)

NAME
login - sign on

SYNOPSIS
login [name [env-var . . .]]

DESCRIPTION
The login command is used at the beginning of each terminal session and allows you
to identify yourself to the system. It may be invoked as a command or by the sys­
tem when a connection is first established. Also, it is invoked by the system when a
previous user has terminated the initial shell by typing a cntrl-d to indicate an
"end-of-file." (See How to Get Started at the beginning of this volume for instruc­
tions on how to dial up initially.)

If login is invoked as a command it must replace the initial command interpreter.
This is accomplished by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an argument), and, if appropriate,
your password. Echoing is turned off (where possible) during the typing of your
password, so it will not appear on the written record of the session.

At some installations, an option may be invoked that will require you to enter a
second "dialup" password. This will occur only for dial-up connections, and will be
prompted by the message "dialup password:". Both passwords are required for a
successful login.

If you do not complete the login successfully within a certain period of time (e.g.,
one minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, the procedure /etc/profile is
performed, the message-of-the-day, if any, is printed, the user-ID, the group-ID, the
working directory, and the command interpreter (usually sh (1)) is initialized, and
the file "profile in the working directory is executed, if it exists. These specifications
are found in the /etc/passwd file entry for the user. The name of the command
interpreter is - followed by the last component of the interpreter's path name (i.e.,
-sh). If this field in the password file is empty, then the default command inter­
preter, /bin/sh is used. If this field is "*", then the named directory becomes the
root directory, the starting point for path searches for path names beginning with a
/. At that point login is re-executed at the new level which must have its own root
structure, including /etc/login and /etc/passwd.

The basic environment is initialized to:

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MAIL=lusrlmail/your-login-name
TZ=timezone-specification

The environment may be expanded or modified by supplying additional arguments
to login, either at execution time or when login requests your login name. The
arguments may take either the form xxx or xxx =yyy. Arguments without an equal
sign are placed in the environment as

Ln=xxx
where n is a number starting at 0 and is incremented each time a new variable
name is required. Variables containing an = are placed into the environment

7 /Q<:,

LOGIN(l) (Essential Utilities) LOGIN(l)

FILES

without modification. If they already appear in the environment, then they replace
the older value. There are two exceptions. The variables PATH and SHELL cannot
be changed. This prevents people, logging into restricted shell environments, from
spawning secondary shells which are not restricted. Both login and getty under­
stand simple single-character quoting conventions. Typing a backslash in front of a
character quotes it and allows the inclusion of such things as spaces and tabs.

/etc/utmp
/etc/wtmp
/usr/mail/your-name
/etc/motd
/etc/passwd
/etc/profile
.profile

accounting
accounting
mailbox for user your-name
message-of-the-day
password file
system profile
user's login profile

SEE ALSO
mail(l), sh(l).
passwd(4), profile(4), environ(5) in the AT&T 3B2 Computer Programmer Refer­
ence Manual.
newgrp(lM), su(lM) in the AT&T 3B2 Computer System Administration Refer­
ence Manual.

DIAGNOSTICS
Login incorrect if the user name or the password cannot be matched.
No shell, cannot open password file, or no directory: consult a UNIX system pro­
gramming counselor.
No utmp entry. You must exec "login" from the lowest level "sh". if you attempted
to execute login as a command without using the shell's exec internal command or
from other than the initial shell.

LOGNAME(l) (User Environment Utilities)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION

LOGNAME(l)

Logname returns the contents of the environment variable $LOGNAME, which is set
when a user logs into the system.

FILES
I etc/ profile

SEE ALSO

'7 IOt:.

env(l), login(!).
environ(5), logname(3X) in the AT&T 3B2 Computer Programmer Reference
Manual.

- 1 - 7/85

LORDER(l) (Software Generation System Utilities) LORDER(l)

NAME
!order - find ordering relation for an object library

SYNOPSIS
I order file ...

DESCRIPTION

FILES

The input is one or more object or library archive files (see ar (1)). The standard
output is a list of pairs of object file names, meaning that the first file of the pair
refers to external identifiers defined in the second. The output may be processed by
tsort(l) to find an ordering of a library suitable for one-pass access by /d(l). Note
that the link editor (except on the PDP-11) /d(l) is capable of multiple passes over
an archive in the portable archive format (see ar(4)) and does not require that
lorder(l) be used when building an archive. The usage of the lorder(I) command
may, however, allow for a slightly more efficient access of the archive during the
link edit process.

The following example builds a new library from existing .o files.

ar er library •!order •.o I tsort'

•symref, •symdef temporary files

SEE ALSO

BUGS

7/85

ar(l), Id (1), tsort(l).
ar(4) in the AT&T 3B2 Computer Programmer Reference Manual.

Object files whose names do not end with .o, even when contained in library
archives, are overlooked. Their global symbols and references are attributed to some
other file.

- l - 7/85

LP(l) (Line Printer Spooling Utilities) LP(l)

NAME
Ip, cancel - send/cancel requests to an LP line printer

SYNOPSIS
Ip [-c] [-ddestl [-ml [-nnumberl [-ooption] [-s] [-ttitle] [-w] files
cancel [ids] [printers]

DESCRIPTION

7/85

Lp arranges for the named files and associated information (collectively called a
request) to be printed by a line printer. If no file names are mentioned, the stan­
dard input is assumed. The file name - stands for the standard input and may be
supplied on the command line in conjunction with named files. The order in which
files appear is the same order in which they will be printed.

Lp associates a unique id with each request and prints it on the standard output.
This id can be used later to cancel (see cancel) or find the status (see lpstat(I)) of
the request.

The following options to Ip may appear in any order and may be intermixed with
file names:

-c

-ddest

Make copies of the files to be printed immediately when Ip is invoked.
Normally, files will not be copied, but will be linked whenever possible.
If the -c option is not given, then the user should be careful not to
remove any of the files before the request has been printed in its
entirety. It should also be noted that in the absence of the -c option,
any changes made to the named files after the request is made but
before it is printed will be reflected in the printed output.

Choose dest as the printer or class of printers that is to do the printing.
If dest is a printer, then the request will be printed only on that specific
printer. If dest is a class of printers, then the request will be printed on
the first available printer that is a member of the class. Under certain
conditions (printer unavailability, file space limitation, etc.), requests
for specific destinations may not be accepted (see accept(!M) and
lpstat(l)). By default, dest is taken from the environment variable
LPDEST (if it is set). Otherwise, a default destination (if one exists)
for the computer system is used. Destination names vary between sys­
tems (see lpstat(I)).

-m Send mail (see mai/(J)) after the files have been printed. By default,
no mail is sent upon normal completion of the print request.

-nnumber Print number copies (default of 1) of the output.

-ooption Specify printer-dependent or class-dependent options. Several such
options may be collected by specifying the -o keyletter more than
once. For more information about what is valid for options, see Models
in lpadmin(IM).

-s Suppress messages from lp(l) such as "request id is ... ".

-ttitle Print title on the banner page of the output.

-w Write a message on the user's terminal after the files have been
printed. If the user is not logged in, then mail will be sent instead.

Cancel cancels line printer requests that were made by the lp(l) command. The
command line arguments may be either request ids (as returned by /p(l)) or
printer names (for a complete list, use lpstat(l)). Specifying a request id cancels
the associated request even if it is currently printing. Specifying a printer cancels

- l - 7/85

LP(l)

FILES

(Line Printer Spooling Utilities) LP(l)

the request which is currently printing on that printer. In either case, the cancella­
tion of a request that is currently printing frees the printer to print its next available
request.

/usr/spool/lp/*

SE.E ALSO

7/85

enable(l), lpstat(l), mail(l).
accept(lM), lpadmin(lM), lpsched(lM), AT&T 3B2 Computer System Adminis­
tration Reference Manual.

- 2 - 7/85

LPSTAT(l) (Line Printer Spooling Utilities) LPSTAT(l)

NAME
lpstat - print LP status information

SYNOPSIS
lpstat [options l

DESCRIPTION

FILES

Lpstat prints information about the current status of the LP spooling system.

If no options are given, then lpstat prints the status of all requests made to lp(l) by
the user. Any arguments that are not options are assumed to be request ids (as
returned by Ip). Lpstat prints the status of such requests. Options may appear in
any order and may be repeated and intermixed with other arguments. Some of the
keyletters below may be followed by an optional list that can be in one of two
forms: a list of items separated from one another by a comma, or a list of items
enclosed in double quotes and separated from one another by a comma and/or one
or more spaces. For example:

-u"userl, user2, user3"

The omission of a list following such keyletters causes all information relevant to
the keyletter to be printed, for example:

lpstat -o

prints the status of all output requests.

-a[list] Print acceptance status (with respect to Ip) of destinations for requests.
List is a list of intermixed printer names and class names.

-c[list] Print class names and their members. List is a list of class names.

-d Print the system default destination for lp.

-o[list] Print the status of output requests. List is a list of intermixed printer
names, class names, and request ids.

-p[list] Print the status of printers. List is a list of printer names.

-r Print the status of the LP request scheduler

-s Print a status summary, including the status of the line printer
scheduler, the system default destination, a list of class names and their
members, and a list of printers and their associated devices.

-t Print all status information.

-u[list] Print status of output requests for users. List is a list of login names.

-v[list] Print the names of printers and the path names of the devices associated
with them. List is a list of printer names.

/usr/spool/lp/•

SEE ALSO
enable(l), lp(l).

7/85 - 1 - 7/85

LS (I) (Essential Utilities) LS(l)

NAME
ls - list contents of directory

SYNOPSIS
Is [-RadCxmlnogrtucpFbqisf] [names]

DESCRIPTION

7/85

For each directory argument, ls lists the contents of the directory; for each file
argument, ls repeats its name and any other information requested. The output is
sorted alphabetically by default. When no argument is given, the current directory
is listed. When several arguments are given, the arguments are first sorted
appropriately, but file arguments appear before directories and their contents.

There are three major listing formats. The default format is to list one entry per
line, the -C and -x options enable multi-column formats, and the -m option
enables stream output format in which files are listed across the page, separated by
commas. In order to determine output formats for the -C, -x, and -m options, ls
uses an environment variable, COLUMNS, to determine the number of character
positions available on one output line. If this variable is not set, the terminfo data­
base is used to determine the number of columns, based on the environment variable
TERM. If this information cannot be obtained, 80 columns are assumed.

There are an many options:

-R Recursively list subdirectories encountered.

-a List all entries; usually entries whose names begin with a period (.) are not
listed.

-d If an argument is a directory, list only its name (not its contents); often
used with -I to get the status of a directory.

-C Multi-column output with entries sorted down the columns.

-x Multi-column output with entries sorted across rather than down the page.

-m Stream output format.

-I List in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file (see below). If the file is a
special file, the size field will instead contain the major and minor device
numbers rather than a size.

-n The same as -1, except that the owner's UID and group's GID numbers are
printed, rather than the associated character strings.

-o The same as -1, except that the group is not printed.

-g The same as -1, except that the owner is not printed.

-r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

-t Sort by time modified (latest first) instead of by name.

-u Use time of last access instead of last modification for sorting (with the -t
option) or printing (with the -l option).

-c Use time of last modification of the i-node (file created, mode changed,
etc.) for sorting (-t) or printing (-1).

-p

-F
Put a slash (/) after each filename if that file is a directory.

Put a slash (/) after each filename if that file is a directory and put an
asterisk (*) after each filename if that file is executable.

- 1 - 7 /85

LS (l)

FILES

(Essential Utilities) LS(l)

-b Force printing of non-graphic characters to be in the octal \ddd notation.

-q Force printing of non-graphic characters in file names as the character (?).

-i For each file, print the i-number in the first column of the report.

-s Give size in blocks, including indirect blocks, for each entry.

-f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -1, -t, -s, and -r, and turns on
-a; the order is the order in which entries appear in the directory.

The mode printed under the -I option consists of 10 characters that are interpreted
as follows:

The first character is:

d if the entry is a directory;
b if the entry is a block special file;
c if the entry is a character special file;
p if the entry is a fifo (a.k.a. "named pipe") special file;

if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The
first set refers to the owner's permissions; the next to permissions of others
in the user-group of the file; and the last to all others. Within each set, the
three characters indicate permission to read, to write, and to execute the file
as a program, respectively. For a directory, "execute" permission is inter­
preted to mean permission to search the directory for a specified file.

The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set­
group-ID mode; likewise, the user-execute permission character is given as s
if the file has set-user-ID mode. The last character of the mode (normally
x or -) is t if the 1000 (octal) bit of the mode is on; see chmod (1) for the
meaning of this mode. The indications of set-ID and 1000 bits of the mode
are capitalized (S and T respectively) if the corresponding execute permis­
sion is not set.

When the sizes of the files in a directory are listed, a total count of blocks, including
indirect blocks, is printed.

/etc/passwd
/etc/group
/usr/lib/terminfo/*

to get user IDs for Is -I and Is -o.
to get group IDs for Is -I and Is -g.
to get terminal information.

SEE ALSO
chmod(l), find(l).

BUGS
Unprintable characters in file names may confuse the columnar output options.

7/85 - 2 - 7/85

M4(l) (Software Generation System Utilities) M4(1)

NAME
m4 - macro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION

7/85

M4 is a macro processor intended as a front end for Ratfor, C, and other languages.
Each of the argument files is processed in order; if there are no files, or if a file
name is - , the standard input is read. The processed text is written on the stan­
dard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is unbuffered.

-s Enable line sync output for the C preprocessor (#line ...)

- Bint Change the size of the push-back and argument collection buffers from the
default of 4,096.

-Hint Change the size of the symbol table hash array from the default of 199.
The size should be prime.

-Sint Change the size of the call stack from the default of 100 slots. Macros
take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before any - D or
-U flags:

-Dname[=vall
Defines name to val or to null in val's absence.

-Uname
undefines name.

Macro calls have the form:

name(argl,arg2, ... , argn)

The (must immediately follow the name of the macro. If the name of a defined
macro is not followed by a (, it is deemed to be a call of that macro with no argu­
ments. Potential macro names consist of alphabetic letters, digits, and underscore _,
where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting argu­
ments. Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the macro
definition, the trailing arguments are taken to be null. Macro evaluation proceeds
normally during the collection of the arguments, and any commas or right
parentheses which happen to turn up within the value of a nested call are as
effective as those in the original input text. After argument collection, the value of
the macro is pushed back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once
this is done the original meaning is lost. Their values are null unless otherwise
stated.

- 1 - 7/85

M4(l)

7/85

define

undefine

defn

pushdef

popdef

if def

shift

changequote

changecom

divert

undivert

divnum

dnl

ifelse

incr

(Software Generation System Utilities) M4(l)

the second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of $n in the replacement
text, where n is a digit, is replaced by the n-th argument. Argument
0 is the name of the macro; missing arguments are replaced by the
null string; $# is replaced by the number of arguments; $• is replaced
by a list of all the arguments separated by commas; $@ is like $•, but
each argument is quoted (with the current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful for
renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the previous
one, if any.

if the first argument is defined, the value is the second argument, oth­
erwise the third. If there is no third argument, the value is null. The
word unix is predefined on UNIX system versions of m4.

returns all but its first argument. The other arguments are quoted
and pushed back with commas in between. The quoting nullifies the
effect of the extra scan that will subsequently be performed.

change quote symbols to the first and second arguments. The symbols
may be up to five characters long. Changequote without arguments
restores the original values (i.e., '').

change left and right comment markers from the default # and new­
line. With no arguments, the comment mechanism is effectively dis­
abled. With one argument, the left marker becomes the argument
and the right marker becomes new-line. With two arguments, both
markers are affected. Comment markers may be up to five characters
long.

m4 maintains 10 output streams, numbered 0-9. The final output is
the concatenation of the streams in numerical order; initially stream 0
is the current stream. The divert macro changes the current output
stream to its (digit-string) argument. Output diverted to a stream
other than 0 through 9 is discarded.

causes immediate output of text from diversions named as arguments,
or all diversions if no argument. Text may be undiverted into another
diversion. Undiverting discards the diverted text.

returns the value of the current output stream.

reads and discards characters up to and including the next new-line.

has three or more arguments. If the first argument is the same string
as the second, then the value is the third argument. If not, and if
there are more than four arguments, the process is repeated with
arguments 4, 5, 6 and 7. Otherwise, the value is either the fourth
string, or, if it is not present, null.

returns the value of its argument incremented by 1. The value of the
argument is calculated by interpreting an initial digit-string as a
decimal number.

- 2 - 7/85

M4(1) (Software Generation System Utilities) M4(1)

deer returns the value of its argument decremented by 1.

eval evaluates its argument as an arithmetic expression, using 32-bit arith­
metic. Operators include +, -, •, /, %, ~ (exponentiation), bitwise
& , I, ~, and -; relationals; parentheses. Octal and hex numbers may
be specified as in C. The second argument specifies the radix for the
result; the default is 10. The third argument may be used to specify
the minimum number of digits in the result.

Jen returns the number of characters in its argument.

index returns the position in its first argument where the second argument
begins (zero origin), or -1 if the second argument does not occur.

substr returns a substring of its first argument. The second argument is a
zero origin number selecting the first character; the third argument
indicates the length of the substring. A missing third argument is
taken to be large enough to extend to the end of the first string.

translit transliterates the characters in its first argument from the set given by
the second argument to the set given by the third. No abbreviations
are permitted.

include returns the contents of the file named in the argument.

sinclude is identical to include, except that it says nothing if the file is inacces­
sible.

syscmd executes the UNIX system command given in the first argument. No
value is returned.

sysval is the return code from the last call to syscmd.

maketemp fills in a string of XXXXX in its argument with the current process ID.

m4exit

m4wrap

errprint

dumpdef

traceon

traceoff

causes immediate exit from m4. Argument 1, if given, is the exit
code; the default is 0.

argument 1 will be pushed back at final EOF; example:
m4wrap('cleanup0 •)

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or fpr all if
no arguments are given.

with no arguments, turns on tracing for all macros (including built­
ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific calls to
traceojf.

SEE ALSO
cc(l), cpp(l).

The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie.

7/85 - 3 - 7/85

MACHID(l) (Essential/User Environment Utilities) MACHID(l)

NAME
pdpl 1, u3b, u3b2, u3b5, vax - provide truth value about your processor type

SYNOPSIS
pdpll

u3b

u3b2

u3b5

vax

DESCRIPTION
The following commands will return a true value (exit code of 0) if you are on a
processor that the command name indicates.

pdpll True if you are on a PDP-11/45 or PDP-11/70.

u3b True if you are on a 3B20 computer.

u3b2 True if you are on a 3B2 computer.

u3b5 True if you are on a 3B5 computer.

vax True if you are on a VAX-11/750 or VAX-11/780.

The commands that do not apply will return a false (non-zero) value. These com­
mands are often used within make (1) makefiles and shell procedures to increase
portability.

SEE ALSO
make(l), sh(l), test(l), true(l).

7/85 - 1 - 7/85

MAIL(l) (Essential Utilities) MAIL(l)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
mail [-epqr] [-jf file]

mail [- t] persons

rmail [- t] persons

DESCRIPTION

7/85

Mail without arguments prints a user's mail, message-by-message, in last-in, first­
out order. For each message, the user is prompted with a ? , and a line is read from
the standard input to determine the disposition of the message:

<new-line>
+
d
p

s [files 1
w [files]

m [persons]

Go on to next message.
Same as <new-line>.
Delete message and go on to next message.
Print message again.
Go back to previous message.
Save message in the named files (mbox is default).
Save message, without its header, in the named files
(mbox is default).
Mail the message to the named persons (yourself is
default).

q Put undeleted mail back in the mail.file and stop.
EOT (control-d) Same as q.
x Put all mail back in the mail.file unchanged and stop.
!command Escape to the shell to do command.
• Print a command summary.

The optional arguments alter the printing of the mail:

-e

-p
-q

-r
-ffile
-t

causes mail not to be printed. An exit value of 0 is returned if the user has
mail; otherwise, an exit value of 1 is returned.
causes all mail to be printed without prompting for disposition.
causes mail to terminate after interrupts. Normally an interrupt only
causes the termination of the message being printed.
causes messages to be printed in first-in, first-out order.
causes mail to use file (e.g., mbox) instead of the default mail.file.
causes the message to be preceded by all persons the mail is sent to.

When persons are named, mail takes the standard input up to an end-of-file (or up
to a line consisting of just a .) and adds it to each person's mail.file. The message
is preceded by the sender's name and a postmark. Lines that look like postmarks in
the message, (i.e., "From ... ") are preceded with a >. A person is usually a user
name recognized by login (1). If a person being sent mail is not recognized, or if
mail is interrupted during input, the file dead.letter will be saved to allow editing
and resending. Note that this is regarded as a temporary file in that it is recreated
every time needed, erasing the previous contents of dead.letter.

The mail.file may be manipulated in two ways to alter the function of mail. The
other permissions of the file may be read-write, read-only, or neither read nor write
to allow different levels of privacy. If changed to other than the default, the file will
be preserved even when empty to perpetuate the desired permissions. The file may
also contain the first line:

Forward to person

- 1 - 7/85

MAIL(l) (Essential Utilities) MAIL(l)

FILES

which will cause all mail sent to the owner of the mailfile to be forwarded to per­
son. This is especially useful to forward all of a person's mail to one machine in a
multiple machine environment. In order for forwarding to work properly the
mailfile should have "mail" as group ID, and the group permission should be read­
write.

Rmail only permits the sending of mail; uucp(lC) uses rmail as a security precau­
tion.

When a user logs in, the presence of mail, if any, is indicated. Also, notification is
made if new mail arrives while using mail.

Mail may be set to a recipient on a remote system if you have the Basic Networking
Utilities installed. Prefix person by the system name and exclamation mark. Every­
thing after the first exclamation mark in persons is interpreted by the remote sys­
tem. In particular, if persons contains additional exclamation marks, it can denote
a sequence of machines through which the message is to be sent on the way to its
ultimate destination. For example, specifying a!b!cde as a recipient's name causes
the message to be sent to user b!cde on system a. System a will interpret that desti­
nation as a request to send the message to user cde on system b. This might be use­
ful, for instance, if the sending system can access system a but not system b, and
system a has access to system b. Mail will not use uucp if the remote system is the
local system name (i.e., localsystem!user).

/etc/passwd
/usr/mail/user
$HOME/mbox
$MAIL
/tmp/ma•
/usr/mail/•Jock
dead.letter

to identify sender and locate persons
incoming mail for user; i.e., the mai(file
saved mail
variable containing path name of mail.file
temporary file
lock for mail directory
unmailable text

SEE ALSO

BUGS

7/85

login(!), mailx(l), write(!).

Conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be forced by
typing a p.

- 2 - 7/85

MAILX(l) (Essential Utilities) MAXLX(l)

NAME
mailx - interactive message processing system

SYNOPSIS
mailx !options! lname .. .I

DESCRIPTION
The command mailx provides a comfortable, flexible environment for sending and
receiving messages electronically. When reading mail, mailx provides commands to
facilitate saving, deleting, and responding to messages. When sending mail, mailx
allows editing, reviewing and other modification of the message as it is entered.

Many of the remote features of mailx will only work if the Basic Networking Utili­
ties are installed on your system.

Incoming mail is stored in a standard file for each user, called the system mailbox
for that user. When mailx is called to read messages, the mailbox is the default
place to find them. As messages are read, they are marked to be moved to a secon­
dary file for storage, unless specific action is taken, so that the messages need not be
seen again. This secondary file is called the mbox and is normally located in the
user's HOME directory (see "MBOX" (ENVIRONMENT VARIABLES) for a descrip­
tion of this file). Messages remain in this file until forcibly removed.

On the command line, options start with a dash (-) and any other arguments are
taken to be destinations (recipients). If no recipients are specified, mailx will
attempt to read messages from the mailbox. Command line options are:

-e Test for presence of mail. Mailx prints nothing and exits
with a successful return code if there is mail to read.

-f [filename] Read messages from filename instead of mailbox. If no
filename is specified, the mbox is used.

- F Record the message in a file named after the first recipient.
Overrides the "record" variable, if set (see ENVIRONMENT
V ARIABLIES).

-h number The number of network "hops" made so far. This is pro­
vided for network software to avoid infinite delivery loops.

-H Print header summary only.
-i Ignore interrupts. See also "ignore" (ENVIRONMENT

VARIABLES).
-n Do not initialize from the system default Mailx.rc file.
-N Do not print initial header summary.
-r address Pass address to network delivery software. All tilde com-

mands are disabled.
-s subject Set the Subject header field to subject.
-u user Read user's mailbox. This is only effective if user's mail-

box is not read protected.
- U Convert uucp style addresses to internet standards. Over­

rides the "conv" environment variable.

When reading mail, mailx is in command mode. A header summary of the first
several messages is displayed, followed by a prompt indicating mailx can accept reg­
ular commands (see COMMANDS below). When sending mail, mailx is in input
mode. If no subject is specified on the command line, a prompt for the subject is
printed. As the message is typed, mailx will read the message and store it in a tem­
porary file. Commands may be entered by beginning a line with the tilde (-) escape

7 /R"-

MAILX(l) (Essential Utilities) MAILX(l)

7/85

character followed by a single command letter and optional arguments. See TILDE
ESCAPES for a summary of these commands.

At any time, the behavior of mailx is governed by a set of environment variables.
These are flags and valued parameters which are set and cleared via the set and
unset commands. See ENVIRONMENT VARIABLES below for a summary of these
parameters.

Recipients listed on the command line may be of three types: login names, shell
commands, or alias groups. Login names may be any network address, including
mixed network addressing. If the recipient name begins with a pipe symbol (I),
the rest of the name is taken to be a shell command to pipe the message through.
This provides an automatic interface with any program that reads the standard
input, such as Ip (1) for recording outgoing mail on paper. Alias groups are set by
the alias command (see COMMANDS below) and are lists of recipients of any type.

Regular commands are of the form

[command] [msglist l [arguments l

If no command is specified in command mode, print is assumed. In input mode,
commands are recognized by the escape character, and lines not treated as com­
mands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the notion
of a 'current' message, marked by a '>' in the header summary. Many commands
take an optional list of messages (msglist) to operate on, which defaults to the
current message. A msglist is a list of message specifications separated by spaces,
which may include:

n

$

*
n-m
user
/string
:c

Message number n.
The current message.
The first undeleted message.
The last message.
All messages.
An inclusive range of message numbers.
All messages from user.
All messages with string in the subject line (case ignored).
All messages of type c, where c is one of:

d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this type
of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command
involved. File names, where expected, are expanded via the normal shell conven­
tions (see sh(!)). Special characters are recognized by certain commands and are
documented with the commands below.

At start-up time, mailx reads commands from a system-wide file
(/usr/lib/mailx/mailx.rc) to initialize certain parameters, then from a private start­
up file ($HOME/.mailrc) for personalized variables. Most regular commands are
legal inside start-up files, the most common use being to set up initial display
options and alias lists. The following commands are not legal in the start-up file: !,

- 2 -

MAILX(l) (Essential Utilities) MAILX(l)

Copy, edit, followup, Followup, hold, mail, preserve, reply, Reply, shell, and visual.
Any errors in the start-up file cause the remaining lines in the file to be ignored.

COMMANDS
The following is a complete list of mailx commands:

!shell-command
Escape to the shell. See "SHELL" (ENVIRONMENT VARIABLES).

#comment
Null command (comment). This may be useful in .mailrc files.

Print the current message number.

?
Prints a summary of commands.

alias alias name .. .
group alias name .. .

Declare an alias for the given names. The names will be substituted when
alias is used as a recipient. Useful in the .mailrc file.

alternates name ...
Declares a list of alternate names for your login. When responding to a
message, these names are removed from the list of recipients for the
response. With no arguments, alternates prints the current list of alternate
names. See also "allnet" (ENVIRONMENT VARIABLES).

cd [directory]
chdir [directory]

Change directory. If directory is not specified, $HOME is used.

copy [filename]
copy [msglistl filename

Copy messages to the file without marking the messages as saved. Other­
wise equivalent to the save command.

Copy [msglist1
Save the specified messages in a file whose name is derived from the author
of the message to be saved, without marking the messages as saved. Other­
wise equivalent to the Save command.

delete [msglist]
Delete messages from the mailbox. If "autoprint" is set, the next message
after the last one deleted is printed (see ENVIRONMENT VARIABLES).

discard [header-field .. .]
ignore [header-field .. .l

Suppresses printing of the specified header fields when displaying messages
on the screen. Examples of header fields to ignore are "status" and "cc."
The fields are included when the message is saved. The Print and Type
commands override this command.

"1 JO~

MAILX(l) {Essential Utilities) MAILX(l)

dp [msglistl
dt [msglist]

Delete the specified messages from the mailbox and print the next message
after the last one deleted. Roughly equivalent to a delete command fol­
lowed by a print command.

echo string ...
Echo the given strings Oike echo (I)).

edit [msglist]

exit
xit

Edit the given messages. The messages are placed in a temporary file and
the "EDITOR" variable is used to get the name of the editor (see
ENVIRONMENT VARIABLES). Default editor is ed(l).

Exit from mailx, without changing the mailbox. No messages are saved in
the mbox (see also quit).

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names, with the
following substitutions:

% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the "folder" variable (see
ENVIRONMENT VARIABLES).

followup [message]
Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the "record" variable, if
set. See also the Followup, Save, and Copy commands and "outfolder"
(ENVIRONMENT VARIABLES).

Followup [msglistl
Respond to the first message in the msglist, sending the message to the
author of each message in the msglist. The subject line is taken from the
first message and the response is recorded in a file whose name is derived
from the author of the first message. See also the followup, Save, and Copy
commands and "outfolder" (ENVIRONMENT VARIABLES).

from [msglist]
Prints the header summary for the specified messages.

MAILX(l) (Essential Utilities) MAILX(I)

group alias name .. .
alias alias name .. .

Declare an alias for the given names. The names will be substituted when
alias is used as a recipient. Useful in the .mailrc file.

headers [message]

help

Prints the page of headers which includes the message specified. The
"screen" variable sets the number of headers per page (see ENVIRONMENT
VARIABLES). See also the z command.

Prints a summary of commands.

bold [msglist]
preserve [msglist]

Holds the specified messages in the mailbox.

if ~r
mail-commands
else
mai I -commands
end if

Conditional execution, where s will execute following mail-commands, up
to an else or endif, if the program is in send mode, and r causes the mail­
commands to be executed only in receive mode. Useful in the .mailrc file.

ignore header-field .. .
discard header-field .. .

list

Suppresses printing of the specified header fields when displaying messages
on the screen. Examples of header fields to ignore are "status" and "cc."
All fields are included when the message is saved. The Print and Type
commands override this command.

Prints all commands available. No explanation is given.

mail name ...
Mail a message to the specified users.

mbox [msg/ist]
Arrange for the given messages to end up in the standard mbox save file
when mailx terminates normally. See "MBOX" (ENVIRONMENT VARI­
ABLES) for a description of this file. See also the exit and quit commands.

next [message]
Go to next message matching message. A msglist may be specified, but in
this case the first valid message in the list is the only one used. This is use­
ful for jumping to the next message from a specific user, since the name
would be taken as a command in the absence of a real command. See the
discussion of msglists above for a description of possible message
specifications.

'7 /Qt:.

MAILX(l) (Essential Utilities) MAILX(l)

7/R'\

pipe [msglistl [shell-command]
I [msglistl [shell-command]

Pipe the message through the given shell-command. The message is
treated as if it were read. If no arguments are given, the current message
is piped through the command specified by the value of the "cmd" variable.
If the "page" variable is set, a form feed character is inserted after each
message (see ENVIRONMENT VARIABLES).

preserve [msglistl
hold [msg/ist]

Preserve the specified messages in the mailbox.

Print [msglist]
Type [msglistl

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

print [msglistl
type [msglistl

quit

Print the specified messages. If "crt" is set, the messages longer than the
number of lines specified by the "crt" variable are paged through the com­
mand specified by the "PAGER" variable. The default command is pg(I)
(see ENVIRONMENT VARIABLES).

Exit from mailx, storing messages that were read in mbox and unread mes­
sages in the mailbox. Messages that have been explicitly saved in a file are
deleted.

Reply [msglistl
Respond [msglistl

Send a response to the author of each message in the msglist. The subject
line is taken from the first message. If "record" is set to a file name, the
response is saved at the end of that file (see ENVIRONMENT VARIABLES).

reply [message]
respond [message]

Reply to the specified message, including all other recipients of the message.
If "record" is set to a file name, the response is saved at the end of that file
(see ENVIRONMENT VARIABLES).

Save [msglist1
Save the specified messages in a file whose name is derived from the author
of the first message. The name of the file is taken to be the author's name
with all network addressing stripped off. See also the Copy, followup, and
Fol!owup commands and "outfolder" (ENVIRONMENT VARIABLES).

save [filename]
save [msglistl filename

Save the specified messages in the given file. The file is created if it does
not exist. The message is deleted from the mailbox when mailx terminates
unless "keepsave" is set (see also ENVIRONMENT VARIABLES and the exit
and quit commands).

- ;; - '"7 /0~

MAILX(l) (Essential Utilities) MAILX(l)

'1 IQ"'

set
set name
set name=string
set name=number

shell

Define a variable called name. The variable may be given a null, string, or
numeric value. Set by itself prints all defined variables and their values.
See ENVIRONMENT VARIABLES for detailed descriptions of the mailx
variables.

Invoke an interactive shell (see also "SHELL" (ENVIRONMENT VARI­
ABLES)).

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to command mode.

top [msglist1
Print the top few lines of the specified messages. If the "toplines" variable
is set, it is taken as the number of lines to print (see ENVIRONMENT
VARIABLES). The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not specifically
saved in a file, it will be placed in the mbox upon normal termination. See
exit and quit.

Type [msglist]
Print [msglist]

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

type [msglistl
print [msglistl

Print the specified messages. If "crt" is set, the messages longer than the
number of lines specified by the "crt" variable are paged through the com­
mand specified by the "PAGER" variable. The default command is pg(I)
(see ENVIRONMENT VARIABLES).

undelete [msglistl
Restore the specified deleted messages. Will only restore messages deleted
in the current mail session. If "autoprint" is set, the last message of those
restored is printed (see ENVIRONMENT VARIABLES).

unset name ...
Causes the specified variables to be erased. If the variable was imported
from the execution environment (i.e., a shell variable) then it cannot be
erased.

- 7 - 7/85

MAILX(l) (Essential Utilities) MAILX(l)

version
Prints the current version and release date.

visual [msglistl
Edit the given messages with a screen editor. The messages are placed in a
temporary file and the "VISUAL" variable is used to get the name of the
editor (see ENVIRONMENT VARIABLES).

write [msglist] filename

xit
exit

z[+l-l

Write the given messages on the specified file, minus the header and trailing
blank line. Otherwise equivalent to the save command.

Exit from mailx, without changing the mailbox. No messages are saved in
the mbox (see also quit).

Scroll the header display forward or backward one screen-full. The
number of headers displayed is set by the "screen" variable (see ENVIRON­
MENT VARIABLES).

TILDE ESCAPES

7/R"i

The following commands may be entered only from input mode, by beginning a line
with the tilde escape character c-). See "escape" (ENVIRONMENT VARIABLES)
for changing this special character.

-i shell-command
Escape to the shell.

Simulate end of file (terminate message input).

-: mail-command
- mail-command

Perform the command-level request. Valid only when sending a message
while reading mail.

Print a summary of tilde escapes.

Insert the autograph string "Sign" into the message (see ENVIRONMENT
VARI ABLES).

Insert the autograph string "sign" into the message (see ENVIRONMENT
VARIABLES).

o name ...
Add the names to the blind carbon copy (Bee) list.

- ll - '7 /0r::

MAILX(l) (Essential Utilities) MAILX(l)

7/85

-c name ...
Add the names to the carbon copy (Cc) list.

Read in the dead.letter file. See "DEAD" (ENVIRONMENT VARIABLES)
for a description of this file.

Invoke the editor on the partial message. See also "EDITOR" (ENVIRON­
MENT VARIABLES).

-r [msglistl

-i string

Forward the specified messages. The messages are inserted into the mes­
sage, without alteration.

Prompt for Subject line and To, Cc, and Bee lists. If the field is displayed
with an initial value, it may be edited as if you had just typed it.

Insert the value of the named variable into the text of the message. For
example, -A is equivalent to '-i Sign.'

-m [msglistl
Insert the specified messages into the letter, shifting the new text to the
right one tab stop. Valid only when sending a message while reading mail.

Print the message being entered.

Quit from input mode by simulating an interrupt. If the body of the mes­
sage is not null, the partial message is saved in dead.letter. See "DEAD"
(ENVIRONMENT VARIABLES) for a description of this file.

-r filename
-<filename
-< !shell-command

Read in the specified file. If the argument begins with an exclamation
point (!), the rest of the string is taken as an arbitrary shell command and
is executed, with the standard output inserted into the message.

-s string ...
Set the subject line to string.

-t name ...
Add the given names to the To list.

Invoke a preferred screen editor on the partial message. See also
"VISUAL" (ENVIRONMENT VARIABLES).

- 9 - 7/85

MAILX(l) (Essential Utilities) MAILX(l)

-w filename
Write the partial message onto the given file, without the header.

Exit as with -q except the message is not saved in dead.letter.

I shell-command
Pipe the body of the message through the given shell-command. If the
shell-command returns a successful exit status, the output of the command
replaces the message.

ENVIRONMENT VARIABLES

7/85

The following are environment variables taken from the execution environment and
are not alterable within mailx.

HOME=directory
The user's base of operations.

MAILRC=filename
The name of the start-up file. Default is $HOME/.mailrc.

The following variables are internal mailx variables. They may be imported from
the execution environment or set via the set command at any time. The unset com­
mand may be used to erase variables.

allnet

append

ask cc

asksub

All network names whose last component (login name) match are treated as
identical. This causes the msglist message specifications to behave simi­
larly. Default is noallnet. See also the alternates command and the
"metoo" variable.

Upon termination, append messages to the end of the mbox file instead of
prepending them. Default is noappend.

Prompt for the Cc list after message is entered. Default is noaskcc.

Prompt for subject if it is not specified on the command line with the -s
option. Enabled by default.

autoprint

bang

Enable automatic printing of messages after delete and undelete commands.
Default is noautoprint.

Enable the special-casing of exclamation points (!) in shell escape command
lines as in vi (1). Default is nobang.

cmd=shell-command
Set the default command for the pipe command. No default value.

- 10 - 7/85

MAILX(l) (Essential Utilities) MAILX(l)

7/85

conv=conversion
Convert uucp addresses to the specified address style. The only valid
conversion now is internet, which requires a mail delivery program conform­
ing to the RFC822 standard for electronic mail addressing. Conversion is
disabled by default. See also "sendmail" and the -U command line option.

crt=number
Pipe messages having more than number lines through the command
specified by the value of the "PAGER" variable (pg(l) by default). Dis­
abled by default.

DEAD= filename

debug

dot

The name of the file in which to save partial letters in case of untimely
interrupt or delivery errors. Default is $HOME/dead.letter.

Enable verbose diagnostics for debugging. Messages are not delivered.
Default is nodebug.

Take a period on a line by itself during input from a terminal as end-of-file.
Default is nodot.

EDITOR=shell-command
The command to run when the edit or -e command is used. Default is
ed(l).

escape=c
Substitute c for the - escape character.

folder=directory

header

hold

ignore

The directory for saving standard mail files. User-specified file names
beginning with a plus (+) are expanded by preceding the file name with
this directory name to obtain the real file name. If directory does not start
with a slash (/), $HOME is prepended to it. In order to use the plus (+)
construct on a mailx command line, "folder" must be an exported sh
environment variable. There is no default for the "folder" variable. See
also "outfolder" below.

Enable printing of the header summary when entering mailx. Enabled by
default.

Preserve all messages that are read in the mailbox instead of putting them
in the standard mbox save file. Default is nohold.

Ignore interrupts while entering messages. Handy for noisy dial-up lines.
Default is noignore.

- 11 - 7/85

MAILX(l) (Essential Utilities) MAILX(l)

7/85

igl!l()Jreeof
Ignore end-of-file during message input. Input must be terminated by a
period (.) on a line by itself or by the -. command. Default is noignoreeof.
See also "dot" above.

When the mailbox is empty, truncate it to zero length instead of removing
it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox instead of
deleting them. Default is 1111okeeps1n11e.

MBOX=filename

metoo

The name of the file to save messages which have been read. The xit com­
mand overrides this function, as does saving the message explicitly in
another file. Default is $HOME/rnbox.

If your login appears as a recipient, do not delete it from the list. Default
is nometoo.

USTER=shell-command

onehop

The command (and options) to use when listing the contents of the "folder"
directory. The default is ls(l).

When responding to a message that was originally sent to several recipients,
the other recipient addresses are normally forced to be relative to the ori­
ginating author's machine for the response. This flag disables alteration of
the recipients' addresses, improving efficiency in a network where all
machines can send directly to all other machines (i.e., one hop away).

outfolder

page

Causes the files used to record outgoing messages to be located in the direc­
tory specified by the "folder" variable unless the path name is absolute.
Default is nooutfolder. See "folder" above and the Save, Copy, followup,
and Followup commands.

Used with the pipe command to insert a form feed after each message sent
through the pipe. Default is nopage.

PAGER=shell-command
The command to use as a filter for paginating output. 'fhis can also be
used to specify the options to be used. Default is pg (1).

prompt= string

quiet

Set the command mode prompt to string. Default is "? ".

Refrain from pnntmg the opening message and version when entering
mailx. Default is noquiet.

- 12 - 7/85

MAILX(l) (Essential Utilities) MAILX(l)

FILES

record= filename

save

Record all outgoing mail in .filename. Disabled by default. See also "out­
folder" above.

Enable saving of messages in dead.letter on interrupt or delivery error. See
"DEAD" for a description of this file. Enabled by default.

screen=number
Sets the number of lines in a screen-full of headers for the headers com­
mand.

sendmail=shell-command
Alternate command for delivering messages. Default is mail(l).

sendwait
Wait for background mailer to finish before returning. Default is
nosendwait.

SHELL=shell-command
The name of a preferred command interpreter. Default is sh (1).

showto
When displaying the header summary and the message is from you, print
the recipient's name instead of the author's name.

sign= string
The variable inserted into the text of a message when the -a (autograph)
command is given. No default (see also -i (TILDE ESCAPES)).

Sign=string
The variable inserted into the text of a message when the -A command is
given. No default (see also-~ (TILDE ESCAPES)).

toplines=number
The number of lines of header to print with the top command. Default is 5.

VISUAL=shell-command
The name of a preferred screen editor. Default is vi(l).

$HOME/.mailrc
$HOME/mbox
/usr/mail/*
I usr /lib/ mailx/ mailx.hel p*
/usr/lib/mailx/mailx.rc
/tmp/R[emqsxl *

personal start-up file
secondary storage file
post office directory
help message files
global start-up file
temporary files

SEE ALSO
mail(l), pg(l), ls(l).

7/85 - 13 - 7/85

MAILX(l) (Essential Utilities) MAILX(l)

BUGS

7/85

Where shell-command is shown as valid, arguments are not always allowed. Exper­
imentation is recommended.

Internal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by mailx. The new standards
need some time to settle down.

Attempts to send a message having a line consisting only of a "." are treated as the
end of the message by mail(l) (the standard mail delivery program).

- 14 - 7/85

MAKE(l) (Extended Software Generation System Utilties) MAKE(!)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] [-pl [-ii [-k] [-s] 1-r] [-n] [-bl [-e] [-ml [-t]
[-di [-q] [names]

DESCRIPTION

7/85

The following is a brief description of all options and some special names:

-f makefile Description file name. Makefile is assumed to be the name of a
description file. A file name of - denotes the standard input. The
contents of makefile override the built-in rules if they are present.

-p

-i

-k

-s

-r

-n

-b

Print out the complete set of macro definitions and target descriptions.

Ignore error codes returned by invoked commands. This mode is
entered if the fake target name .IGNORE appears in the description
file.

Abandon work on the current entry, but continue on other branches
that do not depend on that entry.

Silent mode. Do not print command lines before executing. This
mode is also entered if the fake target name .SILENT appears in the
description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute them. Even
lines beginning with an @ are printed.

Compatibility mode for old makefiles.

-e Environment variables override assignments within makefiles.

-m Print a memory map showing text, data, and stack. This option is a
no-operation on systems without the getu system call.

-t Touch the target files (causing them to be up-to-date) rather than
issue the usual commands.

-d Debug mode. Print out detailed information on files and times exam­
ined.

-q Question. The make command returns a zero or non-zero status code
depending on whether the target file is or is not up-to-date .

. DEFAULT If a file must be made but there are no explicit commands or relevant
built-in rules, the commands associated with the name .DEFAULT are
used if it exists .

• PRECIOUS Dependents of this target will not be removed when quit or interrupt
are hit.

.SILENT Same effect as the -s option .

• IGNORE Same effect as the -i option.

Make executes commands in makefile to update one or more target names. Name
is typically a program. If no -f option is present, makefile, Makefile, s.makefile,
and s.Makefile are tried in order. If makefile is - , the standard input is taken.
More than one - makefile argument pair may appear.

- 1 - 7/85

MAJKE(l) (Exte11ded Software Generation System Utilties) MAKE(l)

7/85

Make updates a target only if its dependents are newer than the target. All prere­
quisite files of a target are added recursively to the list of targets. Missing files are
deemed to be out-of-date.

Make.file contains a sequence of entries that specify dependencies. The first line of
an entry is a blank-separated, non-null list of targets, then a :, then a (possibly null)
list of prerequisite files or dependencies. Text following a ; and all following lines
that begin with a tab are shell commands to be executed to update the target. The
first line that does not begin with a tab or # begins a new dependency or macro
definition. Shell commands may be continued across lines with the
<backslash> <new-line> sequence. Everything printed by make (except the ini­
tial tab) is passed directly to the shell as is. Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files a.o and b.o, and that
they in tum depend on their corresponding source files (a.c and b.c) and a common
file ind.h:

pgm: a.o b.o
cc a.o b.o -o pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The first one or
two characters in a command can be the following: -, @, -@, or @-. If @ is
present, printing of the command is suppressed. ff - is present, make ignores an
error. A line is printed when it is executed unless the -s option is present, or the
entry .SlLENT: is in makefile, or unless the initial character sequence contains a @.
The -n option specifies printing without execution; however, if the command line
has the string $(MAKE) in it, the line is always executed (see discussion of the
MAKEFLAGS macro under Environment). The -t (touch) option updates the
modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is
present, or the entry .IGNO~E: appears in makefile, or the initial character sequence
of the command contains -. the error is ignored. If the -k option is present, work
is abandoned on the current entry, but continues on other branches that do not
depend on that entry.

The -b option allows old makefiles (those written for the old version of make) to
run without errors. The difference between the old version of make and this version
is that this version requires all dependency lines to have a (possibly null or implicit)
command associated with them. The previous version of make assumed, if no com­
mand was specified explicitly, that the command was null.

Interrupt and quit cause the target to be deleted unless the target is a dependent of
the special name .PRECIOUS.

- 2 - 7/85

MAKE(l) (Extended Software Generation System Utilties) MAKE(l)

Environment
The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environment variables are processed before
any makefile and after the internal rules; thus, macro assignments in a makefile
override environment variables. The -e option causes the environment to override
the macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as containing any legal
input option (except -f, -p, and -d) defined for the command line. Further,
upon invocation, make "invents" the variable if it is not in the environment, puts the
current options into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves very useful for
"super-makes". In fact, as noted above, when the -n option is used, the command
$(MAKE) is executed anyway; hence, one can perform a make -n recursively on a
whole software system to see what would have been executed. This is because the
-n is put in MAKEFLAGS and passed to further invocations of $(MAKE). This is
one way of debugging all of the makefiles for a software project without actually
doing anything.

Macros
Entries of the form string] = string2 are macro definitions. String2 is defined as
all characters up to a comment character or an unescaped new-line. Subsequent
appearances of $(stringl[:substl=[subst2]]) are replaced by string2. The
parentheses are optional if a single character macro name is used and there is no
substitute sequence. The optional :substl =subst2 is a substitute sequence. H it is
specified, all non-overlapping occurrences of substl in the named macro are
replaced by subst2. Strings (for the purposes of this type of substitution) are delim­
ited by blanks, tabs, new-line characters, and beginnings of lines. An example of
the use of the substitute sequence is shown under Libraries.

Internal Macros

7/R"i

There are five internally maintained macros which are useful for writing rules for
building targets.

$• The macro $• stands for the file name part of the current dependent with the
suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It
is the module which is out-of-date with respect to the target (i.e., the
"manufactured" dependent file name). Thus, in the .c.o rule, the $< macro
would evaluate to the .c file. An example for making optimized .o files from .c
files is:

.c.o:
CC -c -Q $*.C

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out-of-date with respect to
the target; essentially, those modules which must be rebuilt.

- 1 - 7/R'i

MAKE(l) (Extended Software Generation System Utilties) MAKE(l)

$% The$% macro is only evaluated when the target is an archive library member
of the form lib(file.o). In this case, $@ evaluates to lib and $% evaluates to
the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to "directory part" for
D and "file part" for F. Thus, $(@D) refers to the directory part of the string$@.
If there is no directory part, ./ is generated. The only macro excluded from this
alternative form is$?. The reasons for this are debatable.

Suffixes
Certain names (for instance, those ending with .o) have inferable prerequisites such
as .c, .s, etc. If no update commands for such a file appear in makefile, and if an
inferable prerequisite exists, that prerequisite is compiled to make the target. In
this case, make has inference rules which allow building files from other files by
examining the suffixes and determining an appropriate inference rule to use. The
current default inference rules are:

.c .c- .sh .sh- .c.o .c-.o .c-.c .s.o .s-.o .y.o .y-.o .l.o r.o

.y.c .y-.c .Le .c.a .c-.a .s-.a .h-.h

The internal rules for make are contained in the source file rules.c for the make
program. These rules can be locally modified. To print out the rules compiled into
the make on any machine in a form suitable for recompilation, the following com­
mand is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which printf(3S) prints when
handed a null string.

A tilde in the above rules refers to an SCCS file (see secs.file (4)). Thus, the rule
.c-.o would transform an SCCS C source file into an object file (.o). Because the s.
of the SCCS files is a prefix, it is incompatible with make's suffix point of view.
Hence, the tilde is a way of changing any file reference into an SCCS file reference.

A rule with only one suffix (i.e., .c:) is the definition of how to build x from x.c. In
effect, the other suffix is null. This is useful for building targets from only one
source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is inferred
as a prerequisite. The default list is:

.SUFFIXES: .o .c .y .I .s

Here again, the above command for printing the internal rules will display the list
of suffixes implemented on the current machine. Multiple suffix lists accumulate;
.SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules

7/85

The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -o pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user may
add rules to this list by simply putting them in the makefUe.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and

- 4 - 7/R'i

MAKE(l) (Extended Software Generation System Utilties) MAKE(l)

YFLAGS are used for compiler options to cc (1), lex (1), and yacc (1), respectively.
Again, the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix
.o from a file with suffix .c is specified as an entry with .c.o: as the target and no
dependents. Shell commands associated with the target define the rule for making a
.o file from a .c file. Any target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

Libraries

FILES

If a target or dependency name contains parentheses, it is assumed to be an archive
library, the string within parentheses referring to a member within the library.
Thus lib(file.o) and $(UB) (file.o) both refer to an archive library which contains
file.o. (This assumes the LIB macro has been previously defined.) The expression
$(UB) (filel.o filel.o) is not legal. Rules pertaining to archive libraries have the
form .xx.a where the XX is the suffix from which the archive member is to be
made. An unfortunate byproduct of the current implementation requires the XX to
be different from the suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of the archive interface follows.
Here, we assume the source files are all C type source:

lib: lib(filel.o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

In fact, the .c.a rule listed above is built into make and is unnecessary in this exam­
ple. A more interesting, but more limited example of an archive library mainte­
nance construction follows:

lib: lib(filel.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $? @echo Jib is now up-to-date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is defined
to be the set of object file names (inside lib) whose C source files are out-of-date.
The substitution mode translates the .o to .c. (Unfortunately, one cannot as yet
transform to .c-; however, this may become possible in the future.) Note also, the
disabling of the .c.a: rule, which would have created each object file, one by one.
This particular construct speeds up archive library maintenance considerably. This
type of construct becomes very cumbersome if the archive library contains a mix of
assembly programs and C programs.

[Mm]akefile and s.[Mmlakefile

SEE ALSO

BUGS

7/85

cc(l), cd(l), lex(l), sh(l), yacc(l).
printf(3S), sccsfile(4) in the AT&T 3B2 Computer Programmer Reference Manual.

Some commands return non-zero status inappropriately; use -i to overcome the
difficulty. File names with the characters = : @ will not work. Commands that
are directly executed by the shell, notably cd(l), are ineffectual across new-lines in

- 5 - 7/85

MAKE(l) (Extended Software Generation System Utilties) MAKE(l)

7/85

make. The syntax Oib(filel.o file2.o file3.o) is illegal. You cannot build lib(file.o)
from file.o. The macro $(a:.o=.c-) does not work.

- 6 - 7/85

MAKEKEY(l) (Security Administration Utilities) MAKEKEY(l)

NAME
makekey - generate encryption key

SYNOPSIS

NOTE

/usr /lib/makekey

This command is provided with the Security Administration Utilities, which is only
available in the United States.

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by
increasing the amount of time required to search the key space.

Makekey is intended for programs that perform encryption (e.g., ed(l) and
crypt(l)). Usually, its input and output will be pipes.

SIEE ALSO
crypt(l), ed(l).
passwd(4) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - 1 - 7/85

MESG(l) (Essential Utilities)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg[n][y]

DESCRIPTION

MESG(l)

Mesg with argument n forbids messages via write(l) by revoking non-user write
permission on the user's terminal. Mesg with argument y reinstates permission. All
by itself, mesg reports the current state without changing it.

FILES
/dev/tty*

SEE ALSO
write(l).

DIAGNOSTICS
Exit status is 0 if messages are receivable, l if not, 2 on error.

- I - 7/85

MKDIR(l)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION

(Essential Utilities) MKDIR(l)

Mkdir creates specified directories in mode 777 (possibly altered by umask(l)).
Standard entries, ., for the directory itself, and .. , for its parent, are made automati­
cally.

Mkdir requires write permission in the parent directory.

SEE ALSO
sh (I), rm(l), umask(l).

DIAGNOSTICS

7/85

Mkdir returns exit code 0 if all directories were successfully made; otherwise, it
prints a diagnostic and returns non-zero.

- l - 7/85

NEWFORM(l) (Directory and File Management Utilities) NEWFORM(l)

NAME
newform - change the format of a text file

SYNOPSIS
newform [-s] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-fl
[-cchar1 [-In] [files]

DESCRIPTION

7/85

Newform reads lines from the named files, or the standard input if no input file is
named, and reproduces the lines on the standard output. Lines are reformatted in
accordance with command line options in effect,

Except for -s, command line options may appear in any order, may be repeated,
and may be intermingled with the optional .files. Command line options are pro­
cessed in the order specified. This means that option sequences like "-el 5 -160"
will yield results different from "-160 -e15". Options are applied to all files on
the command line.

-s Shears off leading characters on each line up to the first tab and places
up to 8 of the sheared characters at the end of the line. If more than 8
characters (not counting the first tab) are sheared, the eighth character
is replaced by a • and any characters to the right of it are discarded.
The first tab is always discarded.

An error message and program exit will occur if this option is used on a
file without a tab on each line. The characters sheared off are saved
internally until all other options specified are applied to that line. The
characters are then added at the end of the processed line.

For example, to convert a file with leading digits, one or more tabs, and
text on each line, to a file beginning with the text, all tabs after the first
expanded to spaces, padded with spaces out to column 72 (or truncated
to column 72), and the leading digits placed starting at column 73, the
command would be:

newform -s -i -I -a -e file-name

-itabspec Input tab specification: expands tabs to spaces,
according to the tab specifications given.
Tabspec recognizes all tab specification forms
described in tabs (1). In addition, tabspec may
be - - , in which newform assumes that the tab
specification is to be found in the first line read
from the standard input (see fspec(4)). If no
tabspec is given, tabspec defaults to -8. A
tabspec of -0 expects no tabs; if any are found,
they are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs,
according to the tab specifications given. The tab
specifications are the same as for -itabspec. U
no tabspec is given, tabspec defaults to -8. A
tabspec of -0 means that no spaces will be con­
verted to tabs on output.

-bn Truncate n characters from the beginning of the
line when the line length is greater than the
effective line length (see -In). Default is to
truncate the number of characters necessary to

- l - 7/85

NEWFORM(l) (Directory and File Management Utilities) NEWFORM(l)

DIAGNOSTICS

7/85

All diagnostics are fatal.
usage: ...
not - sf ormat
can't open file
internal line too long

tabspec in error

tabspec indirection illegal

0 - normal execution
1 - for any error

obtain the effective line length. The default
value is used when -b with no n is used. This
option can be used to delete the sequence
numbers from a COBOL program as follows:
newform -11 -b7 file-name

-en Same as -bn except that characters are
truncated from the end of the line.

-pn Prefix n characters (see -ck) to the begin­
ning of a line when the line length is less
than the effective line length. Default is to
prefix the number of characters necessary
to obtain the effective line length.

-an Same as -pn except characters are
appended to the end of a line.

-f Write the tab specification format line on
the standard output before any other lines
are output. The tab specification format
line which is printed will correspond to the
format specified in the last -o option. If
no -o option is specified, the line which is
printed will contain the default specification
of -8.

-ck Change the prefix/append character to k.
Default character for k is a space.

-In Set the effective line length to n characters.
If n is not entered, -I defaults to 72. The
default line length without the -I option is
80 characters. Note that tabs and back­
spaces are considered to be one character
(use -i to expand tabs to spaces).

The -11 must be used to set the effective line
length shorter than any existing line in the file so
that the -b option is activated.

Newform was called with a bad option.
There was no tab on one line.
Self-explanatory.
A line exceeds 512 characters after being expanded in
the internal work buffer.
A tab specification is incorrectly formatted, or specified
tab stops are not ascending.
A tabspec read from a file (or standard input) may not
contain a tabspec referencing another file (or standard
input).

- 2 - 7/85

NEWFORM(l) (Directory and File Management Utilities) NEWFORM(l)

SEE ALSO

BUGS

7/85

csplit(l), tabs(l).
fspec(4) in the AT&T 3B2 Computer Programmer Reference Manual.

Newform normally only keeps track of physical characters; however, for the -i and
-o options, newform will keep track of backspaces in order to line up tabs in the
appropriate logical columns.

Newform will not prompt the user if a tabspec is to be read from the standard input
(by use of -i - - or -o - -) .

If the -f option is used, and the last -o option specified was -o - - , and was pre­
ceded by either a -o - - or a -i - - , the tab specification format line will be
incorrect.

- 3 - 7/85

NEWS(l) (Essential Utilities) NEWS(l)

NAME
news - print news items

SYNOPSIS
news I -a] [-n] [-s] [items

DESCRIPTION

FILES

News is used to keep the user informed of current events. By convention, these
events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current files in
/usr/news, most recent first, with each preceded by an appropriate header. News
stores the "currency" time as the modification date of a file named .news_time in
the user's home directory (the identity of this directory is determined by the
environment variable $HOME); only files more recent than this currency time are
considered "current."

-a option causes news to print all items, regardless of currency. In this case,
the stored time is not changed.

-n option causes news to report the names of the current items without print­
ing their contents, and without changing the stored time.

-s option causes news to report how many current items exist, without printing
their names or contents, and without changing the stored time. It is useful
to include such an invocation of news in one's .profile file, or in the system's
I etc/profile.

All other arguments are assumed to be specific news items that are to be printed.

If a delete is typed during the printing of a news item, printing stops and the next
item is started. Another delete within one second of the first causes the program to
terminate.

I etc/ profile
/usr/news/•
$HOME/.news_time

SEE ALSO
profile(4), environ(5) in the AT&T 3B2 Computer Programmer Reference Manual.

7 /Q<:, - 1 -

NICE(l) (User Environment Utilities)

NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment] command [arguments

DESCRIPTION

NICE(!)

Nice executes command with a lower CPU scheduling priority. If the increment
argument (in the range 1-19) is given, it is used; if not, an increment of 10 is
assumed.

'fhe super-user may run commands with priority higher than normal by using a
negative increment, e.g., - -10.

SEE ALSO
nohup(l).
nice(2) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

7/85 - 1 - 7/85

NL(l) (Directory and File Management Utilities) NL(l)

NAME
nl - line numbering filter

SYNOPSIS
nl [-htype] [-htype] [-ftype] [-vstart#] [-iincr] [-pl [-lnum] [-ssep]
[-wwidth] [-nformatl [-ddelim] file

DESCRIPTION

7/85

NI reads lines from the named file or the standard input if no file is named and
reproduces the lines on the standard output. Lines are numbered on the left in
accordance with the command options in effect.

NI views the text it reads in terms of logical pages. Line numbering is reset at the
start of each logical page. A logical page consists of a header, a body, and a footer
section. Empty sections are valid. Different line numbering options are indepen­
dently available for header, body, and footer (e.g., no numbering of header and
footer lines while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines containing nothing but
the following delimiter character (s) :

Line contents Start of

\:\:\:
\:\:
\:

header

body

footer

Unless optioned otherwise, nl assumes the text being read is in a single logical page
body.

Command options may appear in any order and may be intermingled with an
optional file name. Only one file may be named. The options are:

-btype Specifies which logical page body lines are to be numbered. Recognized
types and their meaning are:

-htype Same as -btype except for header. Default type for logical page

-ftype

header is n (no lines numbered).
a number all lines
t number lines with printable text only
n no line numbering
pstring number only lines that contain the regular expression

specified in string.
TILDE ESCAPES.if O=O .nr c. 3084-0-8

Default type for logical page body is t (text lines numbered).

Same as -btype except for footer. Default for logical page footer is n
(no lines numbered).

-vstart# Start# is the initial value used to number logical page lines. Default is
1.

-iincr

-p

-lnum

Iner is the increment value used to number logical page lines. Default is
1.

Do not restart numbering at logical page delimiters.

Num is the number of blank lines to be considered as one. For example,
-12 results in only the second adjacent blank being numbered (if the
appropriate -ha, -ha, and/or -fa option is set). Default is 1.

- 1 - 7/85

NL(l) (Directory and File Management Utilities) NL(l)

-ssep Sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a tab.

-wwidth Width is the number of characters to be used for the line number.
Default width is 6.

-nformat Format is the line numbering format. Recognized values are: In, left
justified, leading zeroes suppressed; m, right justified, leading zeroes
supressed; rz, right justified, leading zeroes kept. Default format is rn
(right justified).

-dxx The delimiter characters specifying the start of a logical page section
may be changed from the default characters (\:) to two user-specified
characters. If only one character is entered, the second character
remains the default character (:). No space should appear between the
-d and the delimiter characters. To enter a backslash, use two
backslashes.

EXAMPLE
The command:

nl -vlO -ilO -d!+ filel

will number filel starting at line number 10 with an increment of ten. The logical
page delimiters are !+.

SEE ALSO
pr(l).

7/85 - 2 - 7/85

NM(l) (Software Generation System Utilities) NM(l)

NAME
nm - print name list of common object file

SYNOPSIS
nm [-oxhvnefurpVT] file-names

DESCRIPTION

7/85

The nm command displays the symbol table of each common object file file-name.
File-name may be a relocatable or absolute common object file; or it may be an
archive of relocatable or absolute common object files. For each symbol, the follow­
ing information will be printed:

Name The name of the symbol.

Value

Class

Type

Size

Line

Section

Its value expressed as an offset or an address depending on its storage
class.

Its storage class.

Its type and derived type. If the symbol is an instance of a structure or
of a union then the structure or union tag will be given following the type
(e.g., struct-tag). If the symbol is an array, then the array dimensions
will be given following the type (e.g., cbarlnllml). Note that the object
file must have been compiled with the -g option of the cc(l) command
for this information to appear.

Its size in bytes, if available. Note that the object file must have been
compiled with the -g option of the cc(l) command for this information
to appear.

The source line number at which it is defined, if available. Note that the
object file must have been compiled with the -g option of the cc(l) com-
mand for this information to appear.

For storage classes static and external, the object file section containing
the symbol (e.g., text, data or bss).

The output of nm may be controlled using the following options:

-o Print the value and size of a symbol in octal instead of decimal.

-x Print the value and size of a symbol in hexadecimal instead of decimal.

-h Do not display the output header data.

-v Sort external symbols by value before they are printed.

-111 Sort external symbols by name before they are printed.

-e Print only external and static symbols.

-f Produce full output. Print redundant symbols (.text, .data and .bss), nor-
mally suppressed.

-u Print undefined symbols only.

-r Prepend the name of the object file to each output line.

-p Produce easily parsable, terse output. Each symbol name is preceded by
its value (blanks if undefined) and one of the letters U (undefined), A
(absolute), T (text segment symbol), D (data segment symbol), S (user
defined segment symbol), R (register symbol), F (file symbol), or C (com­
mon symbol). If the symbol is local (non-external), the type letter is in
lower case.

- 1 - 7/85

NM(l)

FILES

BUGS

(Software Generation System Utilities) NM(l)

-V Print the version of the nm command executing on the standard error
output.

-T By default, nm prints the entire name of the symbols listed. Since object
files can have symbols names with an arbitrary number of characters, a
name that is longer than the width of the column set aside for names will
overflow its column, forcing every column after the name to be
misaligned. The -T option causes nm to truncate every name which
would otherwise overflow its column and place an asterisk as the last
character in the displayed name to mark it as truncated.

Options may be used in any order, either singly or in combination, and may appear
anywhere in the command line. Therefore, both nm name -e -v and nm -ve
name print the static and external symbols in name, with external symbols sorted by
value.

/usr/tmp/nm??????

When all the symbols are printed, they must be printed in the order they appear in
the symbol table in order to preserve scoping information. Therefore, the -v and
-n options should be used only in conjunction with the -e option.

SEE ALSO
as(l), cc(l), Jd(l).
a.out(4), ar(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS
"nm: name: cannot open"

if name cannot be read.

"nm: name: bad magic"
if name is not an appropriate common object file.

"nm: name: no symbols"
if the symbols have been stripped from name.

7/85 - 2 - 7/85

NOHUP(l) (User Environment Utilities) NOHUP(l)

NAME
nohup - run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION
Nohup executes command with hangups and quits ignored. If output is not re­
directed by the user, both standard output and standard error are sent to nobup.out.
If nobup.out is not writable in the current directory, output is redirected to
$HOME/nobup.out.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of commands. This can
be done only by placing pipelines and command lists in a single file, called a shell
procedure. One can then issue:

nohup sh file

and the nohup applies to everything in file. If the shell procedure file is to be exe­
cuted often, then the need to type sh can be eliminated by giving file execute per­
mission. Add an ampersand and the contents of file are run in the background with
interrupts also ignored (see sh(l)):

nohup file &

An example of what the contents of file could be is:

sort ofile > nfile

SEE ALSO
chmod(l), nice(l), sh(l).
signal(2) in the AT&T 3B2 Computer Programmer Reference Manual.

WARNINGS

7/85

nohup commandl; command2 nohup applies only to command]
nohup (commandl; command2) is syntactically incorrect.

Be careful of where standard error is redirected. The following command may put
error messages on tape, making it unreadable:

nohup cpio -o <list >/dev/rmt/lm&
while

nohup cpio -o <list >ldev/rmt/lm 2>errors&

puts the error messages into file errors.

- 1 - 7/85

OD(l) (Directory and File Management Utilities) OD(I)

NAME
od - octal dump

SYNOPSIS
od [-bcdosx] [file] [[+]offset[.][b] l

DESCRIPTION

7/85

Od dumps .file in one or more formats as selected by the first argument. If the first
argument is missing, -o is default. The meanings of the format options are:

-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null=\O, backspace=\b, form·feed=\f, new-line=\n, return=\r,
tab=\t; others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-o Interpret words in octal.

-s Interpret 16-bit words in signed decimal.

-x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument is
specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to commence.
This argument is normally interpreted as octal bytes. If . is appended, the offset is
interpreted in decimal. If b is appended, the offset is interpreted in blocks of 512
bytes. If the file argument is omitted, the offset argument must be preceded by +.
Dumping continues until end-of-file.

" 1 " 7/85

PACK(I) (Directory and File Management Utilities) PACK(l)

NAME
pack, peat, unpack - compress and expand files

SYNOPSIS
pack [- I [-f] name ...

peat name ...

unpack name ...

DESCRIPTION

7/85

Pack attempts to store the specified files in a compressed form. Wherever possible
(and useful), each input file name is replaced by a packed file name.z with the same
access modes, access and modified dates, and owner as those of name. The -f option
will force packing of name. This is useful for causing an entire directory to be
packed even if some of the files will not benefit. If pack is successful, name will be
removed. Packed files can be restored to their original form using unpack or peat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If the
- argument is used, an internal flag is set that causes the number of times each
byte is used, its relative frequency, and the code for the byte to be printed on the
standard output. Additional occurrences of - in place of name will cause the inter­
nal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and the
character frequency distribution. Because a decoding tree forms the first part of
each .z file, it is usually not worthwhile to pack files smaller than three blocks,
unless the character frequency distribution is very skewed, which may occur with
printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules,
which use a larger character set and have a more uniform distribution of characters,
show little compression, the packed versions being about 90% of the original size.

Pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;
an 110 error occurred during processing.

The last segment of the file name must contain no more than 12 characters to allow
space for the appended .z extension. Directories cannot be compressed.

Peat does for packed files what cat (1) does for ordinary files, except that peat can­
not be used as a filter. The specified files are unpacked and written to the standard
output. Thus to view a packed file named name.z use:

peat name.z
or just:

peat name

- 1 - 7/85

PACK(!) (Directory and File Management Utilities) PACK(l)

To make an unpacked copy, say mm, of a packed file named name.z (without des­
troying name.z) use the command:

peat name >nnn

Peat returns the number of files it was unable to unpack. Failure may occur if:

the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the com­
mand, a search is made for a file called name .z (or just name, if name ends in .z).
If this file appears to be a packed file, it is replaced by its expanded version. The
new file has the .z suffix stripped from its name, and has the same access modes,
access and modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack. Failure
may occur for the same reasons that it may in peat, as well as for the following:

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

SEE ALSO
cat(l).

7/85 7/85

PASSWD(l) (Essential Utilities) PASSWD(l)

NAME
passwd - change login password

SYNOPSIS
passwd [name]

DESCRIPTION

FILES

This command changes or installs a password associated with the login name.

Ordinary users may change only the password which corresponds to their login
name.

Passwd prompts ordinary users for their old password, if any. It then prompts for
the new password twice. The first time the new password is entered passwd checks
to see if the old password has "aged" sufficiently. Password "aging" is the amount of
time (usually a certain number of days) that must elapse between password
changes. If "aging" is insufficient the new password is rejected and passwd ter­
minates; see passwd(4).

Assuming "aging" is sufficient, a check is made to insure that the new password
meets construction requirements. When the new password is entered a second time,
the two copies of the new password are compared. If the two copies are not identi­
cal the cycle of prompting for the new password is repeated for at most two more
times.

Passwords must be constructed to meet the following requirements:

Each password must have at least six characters. Only the first eight char­
acters are significant.

Each password must contain at least two alphabetic characters and at least
one numeric or special character. In this case, "alphabetic" means upper
and lower case letters.

Each password must differ from the user's login name and any reverse or
circular shift of that login name. For comparison purposes, an upper case
letter and its corresponding lower case letter are equivalent.

New passwords must differ from the old by at least three characters. For
comparison purposes, an upper case letter and its corresponding lower case
letter are equivalent.

One whose effective user ID is zero is called a super-user; see id(l), and su(l).
Super-users may change any password; hence, passwd does not prompt super-users
for the old password. Super-users are not forced to comply with password aging and
password construction requirements. A super-user can create a null password by
entering a carriage return in response to the prompt for a new password.

/etc/passwd

SEE ALSO

7/85

login (1).
crypt(3C), passwd(4) in the AT&T 3B2 Computer Programmer Reference Manual.
id(IM), su(lM) in the AT&T 3B2 Computer System Administration Reference
Manual.

- 1 - 7/85

PASTE(l) (Directory and File Management Utilities) PASTE(l)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste file 1 file2 ...
paste -d list file 1 file2
paste -s [-d list! file 1 file2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input files
file I, .file2, etc. It treats each file as a column or columns of a table and pastes
them together horizontally (parallel merging). If you will, it is the counterpart of
cat (1) which concatenates vertically, i.e., one file after the other. In the last form
above, paste replaces the function of an older command with the same name by
combining subsequent lines of the input file (serial merging). In all cases, lines are
glued together with the tab character, or with characters from an optionally
specified list. Output is to the standard output, so it can be used as the start of a
pipe, or as a filter, if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file (or last
line in case of the -s option) are replaced by a tab character. This option
allows replacing the tab character by one or more alternate characters (see
below).

list One or more characters immediately following -d replace the default tab
as the line concatenation character. The list is used circularly, i.e., when
exhausted, it is reused. In parallel merging (i.e., no -s option), the lines
from the last file are always terminated with a new-line character, not from
the list. The list may contain the special escape sequences: \n (new-line),
\t (tab),\\ (backslash), and \0 (empty string, not a null character). Quot­
ing may be necessary, if characters have special meaning to the shell (e.g.,
to get one backslash, use -d"\\\\").

-s Merge subsequent lines rather than one from each input file. Use tab for
concatenation, unless a list is specified with -d option. Regardless of the
list, the very last character of the file is forced to be a new-line.

May be used in place of any file name, to read a line from the standard
input. (There is no prompting).

EXAMPLES
ls I paste -d" " -

ls I paste - - - -

paste -s -d''\t\n" file

SEE ALSO
cut(l), grep(l), pr(l).

DIAGNOSTICS
line too long

too many files

7/RC:..

list directory in one column

list directory in four columns

combine pairs of lines into lines

Output lines are restricted to 511 characters.

Except for -s option, no more than 12 input
files may be specified.

- 1 - 7/85

PG(l) (Directory and File Management Utilities) PG(l)

NAME
pg - file perusal filter for CR Ts

SYNOPSIS
pg I-number) 1-p string] 1-cefnsl I +linenumberl I +/pattern/I !files ...]

DESCRIPTION

7/85

The pg command is a filter which allows the examination of .files one screenful at a
time on a CRT. (The file name - and/or NULL arguments indicate that pg should
read from the standard input.) Each screenful is followed by a prompt. If the user
types a carriage return, another page is displayed; other possibilities are enumerated
below.

This command is different from previous paginators in that it allows you to back up
and review something that has already passed. The method for doing this is
explained below.

In order to determine terminal attributes, pg scans the terminfo (see the AT&T
3B2 Computer Terminal Information Utilities Guide) data base for the terminal
type specified by the environment variable TERM. If TERM is not defined, the ter­
minal type dumb is assumed.

The command line options are:

-number
An integer specifying the size (in lines) of the window that pg is to use
instead of the default. (On a terminal containing 24 lines, the default win­
dow size is 23).

-p string
Causes pg to use string as the prompt. If the prompt string contains a
"%d", the first occurrence of "%d" in the prompt will be replaced by the
current page number when the prompt is issued. The default prompt string
is'':".

-c Home the cursor and clear the screen before displaying each page. This
option is ignored if clear _screen is not defined for this terminal type in the
terminfo (see the AT&T 3B2 Computer Terminal Information Utilities
Guide) data base.

-e Causes pg not to pause at the end of each file.

-f Normally, pg splits lines longer than the screen width, but some sequences
of characters in the text being displayed (e.g., escape sequences for under­
lining) generate undesirable results. The -f option inhibits pg from split­
ting lines.

-n Normally, commands must be terminated by a <newline> character. This
option causes an automatic end of command as soon as a command letter is
entered.

-s Causes pg to print all messages and prompts in standout mode (usually
inverse video).

+linenumber
Start up at line number.

+/pattern/
Start up at the first line containing the regular expression pattern.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that modify

- 1 - 7/85

PG(l)

7/85

(Directory and File Management Utilities) PG(l)

the perusal environment.

Commands which cause further perusal normally take a preceding address, an
optionally signed number indicating the point from which further text should be
displayed. This address is interpreted in either pages or lines depending on the
command. A signed address specifies a point relative to the current page or line,
and an unsigned address specifies an address relative to the beginning of the file.
Each command has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+1) <newline> or <blank>
This causes one page to be displayed. The address is specified in pages.

(+ 1) I With a relative address this causes pg to simulate scrolling the screen, for­
ward or backward, the number of lines specified. With an absolute address
this command prints a screenful beginning at the specified line.

(+1) d or "D
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address.

" or "L Typing a single period causes the current page of text to be redisplayed.

$ Displays the last windowful in the file. Use with caution when the input is
a pipe.

The following commands are available for searching for text patterns in the text.
The regular expressions described in ed(l) are available. They must always be ter­
minated by a <newline>, even if the -n option is specified.

if pattern/
Search forward for the ith (default i=l) occurrence of pattern. Searching
begins immediately after the current page and continues to the end of the
current file, without wrap-around.

i"patternA
i?pattern?

Search backwards for the ith (default i=l) occurrence of pattern. Search­
ing begins immediately before the current page and continues to the begin­
ning of the current file, without wrap-around. The - notation is useful for
Adds 100 terminals which will not properly handle the ? .

After searching, pg will normally display the line found at the top of the screen.
This can be modified by appending m or b to the search command to leave the line
found in the middle or at the bottom of the window from now on. The suffix t can
be used to restore the original situation.

The user of pg can modify the environment of perusal with the following commands:

in Begin perusing the ith next file in the command line. The i is an unsigned
number, default value is I.

ip Begin perusing the ith previous file in the command line. i is an unsigned
number, default is 1.

iw Display another window of text. If i is present, set the window size to i.

sfilename
Save the input in the named file. Only the current file being perused is
saved. The white space between the s and filename is optional. This com­
mand must always be terminated by a <newline>, even if the -n option is

- 2 - 7/85

PG(l) (Directory and File Management Utilities) PG(l)

specified.

h Help by displaying an abbreviated summary of available commands.

q or Q Quit pg.

!command
Command is passed to the shell, whose name is taken from the SHELL
environment variable. If this is not available, the default shell is used. This
command must always be terminated by a <newline>, even if the -n
option is specified.

At any time when output is being sent to the terminal, the user can hit the quit key
(normally control-\) or the interrupt (break) key. This causes pg to stop sending
output, and display the prompt. The user may then enter one of the above com­
mands in the normal manner. Unfortunately, some output is lost when this is done,
due to the fact that any characters waiting in the terminal's output queue are
flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat(l), except that a
header is printed before each file (if there is more than one).

EXAMPLE
A sample usage of pg in reading system news would be

news\ pg -p "(Page %d):"

NOTES

FILES

While waiting for terminal input, pg responds to BREAK, DEL, and " by terminating
execution. Between prompts, however, these signals interrupt pg's current task and
place the user in prompt mode. These should be used with caution when input is
being read from a pipe, since an interrupt is likely to terminate the other commands
in the pipeline.

Users of Berkeley's more will find that the z and f commands are available, and
that the terminal/, ",or ? may be omitted from the searching commands.

1027.sp40u
I usr /Ii bl terminfo/*

Terminal information data base

/tmp/pg*
Temporary file when input is from a pipe

SEE ALSO

BUGS

7/85

ed(l), grep(l).

If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal 110
options terminal settings may not be restored correctly.

- 3 - 7/85

PR(l) (Essential Utilities) PR(l)

NAME
pr - print files

SYNOPSIS
pr [options] [files

DESCRIPTION

7/85

Pr prints the named files on the standard output. If .file is - , or if no files are
specified, the standard input is assumed. By default, the listing is separated into
pages, each headed by the page number, a date and time, and the name of the file.

By default, columns are of equal width, separated by at least one space; lines which
do not fit are truncated. If the -s option is used, lines are not truncated and
columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are withheld
until pr has completed printing.

The below options may appear singly or be combined in any order:

+k Begin printing with page k (default is 1).

-k Produce k-column output (default is 1). The options -e and -i are
assumed for multi-column output.

-a Print multi-column output across the page.

-m Merge and print all files simultaneously, one per column (overrides the -k,
and -a options).

-d Double-space the output.

-eek Expand input tabs to character positions k+l, 2•k+l, 3*k+l, etc. If k is
0 or is omitted, default tab settings at every eighth position are assumed.
Tab characters in the input are expanded into the appropriate number of
spaces. If c (any non-digit character) is given, it is treated as the input tab
character (default for c is the tab character).

-ick In output, replace white space wherever possible by inserting tabs to char­
acter positions k+ 1, 2•k+ l, 3•k+ 1, etc. ff k is 0 or is omitted, default tab
settings at every eighth position are assumed. If c (any non-digit charac­
ter) is given, it is treated as the output tab character (default for c is the
tab character).

-nck Provide k-digit line numbering (default for k is 5). The number occupies
the first k+ 1 character positions of each column of normal output or each
line of -m output. If c (any non-digit character) is given, it is appended to
the line number to separate it from whatever follows (default for c is a
tab).

-wk Set the width of a line to k character positions (default is 72 for equal­
width multi-column output, no limit otherwise).

-ok Offset each line by k character positions (default is 0). The number of
character positions per line is the sum of the width and offset.

-lk Set the length of a page to k lines (default is 66).

-b Use the next argument as the header to be printed instead of the file name.

-p Pause before beginning each page if the output is directed to a terminal (pr
will ring the bell at the terminal and wait for a carriage return).

- 1 - 7/85

PR(l) (Essential Utilities) PR(l)

-f Use form-feed character for new pages (default is to use a sequence of
line-feeds). Pause before beginning the first page if the standard output is
associated with a terminal.

-r Print no diagnostic reports on failure to open files.

-t Print neither the five-line identifying header nor the five-line trailer nor-
mally supplied for each page. Quit printing after the last line of each file
without spacing to the end of the page.

-sc Separate columns by the single character c instead of by the appropriate
number of spaces (default for c is a tab).

EXAMPLES
Print filel and file2 as a double-spaced, three-column listing headed by "file list":

pr -3dh "file list" file! file2

Write filel on file2, expanding tabs to columns 10, 19, 28, 37, ... :

pr -e9 -t < filel > file2

FILES
/dev/tty­

SEE ALSO
cat(l).

7/85

to suspend messages

- 2 - 7/85

PROF(!) (Extended Software Generation Utilities) PROF(l)

NAME
prof - display profile data

SYNOPSIS
prof [-tcao] [-ox] [-g] [-z] [-h] [-s] [-m mdatal [prog]

DESCRIPTION

7/85

Prof interprets a profile file produced by the monitor(3C) function. The symbol
table in the object file prog (a.out by default) is read and correlated with a profile
file (moo.out by default). For each external text symbol the percentage of time
spent executing between the address of that symbol and the address of the next is
printed, together with the number of times that function was called and the average
number of milliseconds per call.

The mutually exclusive options t, c, a, and o determine the type of sorting of the
output lines:

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-o Sort lexically by symbol name.

The mutually exclusive options o and x specify the printing of the address of each
symbol monitored:

-o Print each symbol address (in octal) along with the symbol name.

-x Print each symbol address (in hexadecimal) along with the symbol name.

The following options may be used in any combination:

-g Include non-global symbols (static functions).

-z Include all symbols in the profile range (see monitor(3C)), even if associ-
ated with zero number of calls and zero time.

-h Suppress the heading normally printed on the report. (This is useful if the
report is to be processed further.)

-s Print a summary of several of the monitoring parameters and statistics on
the standard error output.

-m mdata
Use file mdata instead of moo.out as the input profile file.

A program creates a profile file if it has been loaded with the -p option of cc(l).
This option to the cc command arranges for calls to monitor(3C) at the beginning
and end of execution. It is the call to monitor at the end of execution that causes a
profile file to be written. The number of calls to a function is tallied if the -p
option was used when the file containing the function was compiled.

The name of the file created by a profiled program is controlled by the environment
variable PROFDIR. If PROFDIR does not exist, "mon.out" is produced in the direc­
tory current when the program terminates. If PROFDIR string,
"string/pid.progname" is produced, where progname consists of argv[O] with any
path prefix removed, and pid is the program's process id. If PROFDIR = nothing,
no profiling output is produced.

A single function may be split into subfunctions for profiling by means of the MARK
macro (see prof(5)).

- 1 - 7/85

PROF(!) (Extended Software Generation Utilities) PROf(l)

FILES
mon.out
a.out

for profile
for namelist

SEE ALSO
cc(l).
exit(2), profil(2), monitor(3C), prof(5) in the AT&T 3B2 Computer Programmer
Reference Manual.

WARNING

BUGS

7/85

The times reported in successive identical runs may show variances of 20% or more,
because of varying cache-hit ratios due to sharing of the cache with other processes.
Even if a program seems to be the only one using the machine, hidden background
or asynchronous processes may blur the data. In rare cases, the clock ticks initiat­
ing recording of the program counter may "beat" with loops in a program, grossly
distorting measurements.

Call counts are always recorded precisely, however.

Only programs that call exit (2) or return from main will cause a profile file to be
produced, unless a final call to monitor is explicitly coded.

The use of the -p option cc(l) to invoke profiling imposes a limit of 600 (300 on
the PDP-I I) functions that may have call counters established during program exe­
cution. For more counters you must call monitor(3C) directly. If this limit is
exceeded, other data will be overwritten and the mon.out file will be corrupted. The
number of call counters used will be reported automatically by the prof command
whenever the number exceeds 5/6 of the maximum.

- 2 - 7/85

PRS(l) (Source Code Control System Utilities) PRS(i)

NAME
prs - print an SCCS file

SYNOPSIS
prs [-d[dataspecl] [-r[SID]] [-e] [-l] [-ddate-time]] [-al files

DESCRIPTION
Prs prints, on the standard output, parts or all of an SCCS file (see sccsfile (4)) in a
user-supplied format. If a directory is named, prs behaves as though each file in
the directory were specified as a named file, except that non-SCCS files (last com­
ponent of the path name does not begin with s.), and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the stan­
dard input is taken to be the name of an SCCS file or directory to be processed;
non-SCCS files and unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter arguments,
and file names.

All the described keyletter arguments apply independently to each named file:

-d[dataspec) Used to specify the output data specification. The dataspec
is a string consisting of secs file data keywords (see DATA
KEYWORDS) interspersed with optional user supplied text.

-r[SJD] Used to specify the SCCS /Dentification (SID) string of a
delta for which information is desired. If no SID is specified,
the SID of the most recently created delta is assumed.

-e Requests information for all deltas created earlier than and
including the delta designated via the -r keyletter or the
date given by the -c option.

-I Requests information for all deltas created later than and
including the delta designated via the -r keyletter or the
date given by the -c option.

-ddate-time] The cutoff date-time -dcutoffl1 is in the form:

-a

YY[MM[DD[HH[MM[SS]]]]]

Units omitted from the date-time default to their maximum
possible values; that is, -c7502 is equivalent to
-c750228235959. Any number of non-numeric characters
may separate the various 2-digit pieces of the cutoff date in
the form: "-c77 /2/2 9:22:25".

Requests printing of information for both removed, i.e., delta
type = R, (see rmdel(l)) and existing, i.e., delta type = D,
deltas. If the -a keyletter is not specified, information for
existing deltas only is provided.

DATA KEYWORDS

7/85

Data keywords specify which parts of an SCCS file are to be retrieved and output.
All parts of an SCCS file (see sccsfile(4)) have an associated data keyword. There
is no limit on the number of times a data keyword may appear in a dataspec.

The information printed by prs consists of: (1) the user-supplied text; and (2)
appropriate values (extracted from the secs file) substituted for the recognized
data keywords in the order of appearance in the dataspec. The format of a data
keyword value is either Simple (S), in which keyword substitution is direct, or
Multi-line (M), in which keyword substitution is followed by a carriage return.

- l - 7/85

PRS(l)

Keyword
:Dt:
:DL:
:Li:
:LI:
:Lu:
:DT:

:I:
:R:
:L:
:B:
:S:
:D:

:Dy:
:Dm:
:Dd:
:T:

:Th:
:Tm:
:Ts:
:P:

:DS:
:DP:
:DI:
:Dn:
:Dx:
:Dg:
:MR:
:C:

:UN:
:FL:
:Y:

:MF:
:MP:
:KF:
:KV:
:BF:
:J:

:LK:
:Q:
:M:
:FB:
:CB:
:Ds:
:ND:
:FD:
:BD:
:GB:
:W:
:A:

7/85

(Source Code Control System Utilities) PRS(l)

User-supplied text is any text other than recognized data keywords.
A tab is specified by \t and carriage return/new-line is specified by \n. The default
data keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"

TABLE 1. SCCS Files Data Keywords
Data Item File Section Value Format
Delta information Delta Table See below* s
Delta line statistics :Li:/:Ld:/:Lu: s
Lines inserted by Delta nnnnn s
Lines deleted by Delta nnnnn s
Lines unchanged by Delta nnnnn s
Delta type Dor R s
SCCS ID string (SID) :R:.:L:.:B:.:S: s
Release number nnnn s
Level number nnnn s
Branch number nnnn s
Sequence number nnnn s
Date Delta created :Dy:/:Dm:/:Dd: s
Year Delta created nn s
Month Delta created nn s
Day Delta created nn s
Time Delta created :Th:::Tm:::Ts: s
Hour Delta created nn s
Minutes Delta created nn s
Seconds Delta created nn s
Programmer who created Delta logname s
Delta sequence number nnnn s
Predecessor Delta seq-no. nnnn s
Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: s
Deltas included (seq #) :DS: :DS: ... s
Deltas excluded (seq #) :DS: :DS: ... s
Deltas ignored (seq#) :DS::DS: ... s
MR numbers for delta text M
Comments for delta text M
User names User Names text M
Flag list Flags text M
Module type flag text s
MR validation flag yes or no s
MR validation pgm name text s
Keyword error /warning flag yes or no s
Keyword validation string text s
Branch flag yes or no s
Joint edit flag yes or no s
Locked releases :R: ... s
User-defined keyword text s
Module name text s
Floor boundary :R: s
Ceiling boundary :R: s
Default SID :I: s
Null delta flag yes or no s
File descriptive text Comments text M
Body Body text M
Gotten body text M
A form of what(O string NIA :Z::M:\t:I: s
A form of what(O string NIA :Z::Y: :M: :I::Z: s

- 2 - 7/85

PRS(l)

:Z:
:F:

:PN:

(Source Code Control System Utilities)

what(O string delimiter
secs file name
secs file path name

* :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:

NIA
NIA
NIA

@(#)
text
text

TILDE ESCAPES.if 0=0 .nr c. 6414-0-110

EXAMPLES
prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs -d"Newest delta for pgm :M:: :I: Created :D: By :P:" -rs.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/l By cas

As a special case:

prs s.file

may produce on the standard output:

D 1.1 77/1211 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this is the comment line for s.file initial delta

PRS(l)

s
s
s

for each delta table entry of the "D" type. The only keyletter argument allowed to
be used with the special case is the -a keyletter.

FILES
/tmp/pr?????

SEE ALSO
admin(l), delta(l), get(l), help(l).
sccsfile(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS
Use help (1) for explanations.

7/R"i - 3 - 7/85

PS(l) (Essential Utilities) PS(l)

NAME
ps - report process status

SYNOPSIS
ps [options I

DESCRIPTION

7/85

Ps prints certain information about active processes. Without options, information
is printed about processes associated with the current terminal. The output consists
of a short listing containing only the process ID, terminal identifier, cumulative exe­
cution time, and the command name. Otherwise, the information that is displayed
is controlled by the selection of options.

Options using lists as arguments can have the list specified in one of two forms: a
list of identifiers separated from one another by a comma, or a list of identifiers
enclosed in double quotes and separated from one another by a comma and/or one
or more spaces.

The options are:

-e
-d
-a

-f

-I
-c corefile
-s swapdev

-n namelist

-t termlist

-p proclist

-u uidlist

-g grplist

Print information about all processes.
Print information about all processes, except process group leaders.
Print information about all processes, except process group leaders and
processes not associated with a terminal.
Generate a full listing. (See below for meaning of columns in a full
listing).
Generate a long listing. See below.
Use the file core.file in place of /dev/mem.
Use the file swapdev in place of /dev/swap. This is useful when exa­
mining a core.file; a swapdev of /dev/null will cause the user block to
be zeroed out.
The argument will be taken as the name of an alternate system
namelist file in place of /unix.
Restrict listing to data about the processes associated with the termi­
nals given in termlist. Terminal identifiers may be specified in one of
two forms: the device's file name (e.g., tty04) or if the device's file
name starts with tty, just the digit identifier (e.g., 04).
Restrict listing to data about processes whose process ID numbers are
given in proclist.
Restrict listing to data about processes whose user ID numbers or
login names are given in uidlist. In the listing, the numerical user ID
will be printed unless the -f option is used, in which case the login
name will be printed.
Restrict listing to data about processes whose process group leaders
are given in grplist.

The column headings and the meaning of the columns in a ps listing are given
below; the letters f and I indicate the option (full or long) that causes the
corresponding heading to appear; all means that the heading always appears. Note
that these two options determine only what information is provided for a process;
they do not determine which processes will be listed.

- 1 " 7/85

PS(l)

7/85

F (I)

s (I)

um (f,I)

PID (all)

PPID (f,l)
c (f,l)
PRI (I)
Nl (l)
ADDR (I)

sz (I)
WCHAN (I)

STIME (f)
TTY (all)
TIME (all)
CMD (all)

(Essential Utilities)

Flags (octal and additive) associated with the process:
0 swapped;
1 in core;
2 system process;
4 locked-in core (e.g., for physical I/O);

10 being swapped;
20 being traced by another process;
40 another tracing flag;

100 3820 computer: swapin segment expansion;
VAX-111780: text pointer valid;

PS(l)

200 3820 computer: process is child (during fork swap);
VAX-111780: process is partially swapped.

The state of the process:
0 non-existent;
S sleeping;
W waiting;
R running;
I intermediate;
Z terminated;
T stopped;
X growing.

The user ID number of the process owner; the login name is
printed under the -f option.
The process ID of the process; it is possible to kill a process if you
know this datum.
The process ID of the parent process.
Processor utilization for scheduling.
The priority of the process; higher numbers mean lower priority.
Nice value; used in priority computation.
The memory address of the process (a pointer to the segment
table array on the 3820 computer), if resident; otherwise, the disk
address.
The size in blocks of the core image of the process.
The event for which the process is waiting or sleeping; if blank,
the process is running.
Starting time of the process.
The controlling terminal for the process.
The cumulative execution time for the process.
The command name; the full command name and its arguments
are printed under the -f option.

A process that has exited and has a parent, but has not yet been waited for by the
parent, is marked <defunct>.

Under the -f option, ps tries to determine the command name and arguments
given when the process was created by examining memory or the swap area. Fail­
ing this, the command name, as it would appear without the -f option, is printed in
square brackets.

- 2 - 7/85

PS (l)

FILES
/unix
/dev/mem
/dev/swap
/etc/passwd
/etc/ps_data
/dev

(Essential Utilities)

system namelist
memory
the default swap device
supplies UID information
internal data structure
searched to find terminal ("tty") names

PS(l)

SEE ALSO

BUGS

7/85

kil!(l), nice(l).

Things can change while ps is running; the picture it gives is only a close approxi­
mation to reality. Some data printed for defunct processes are irrelevant.

- 3 - 7/85

PWD(l) (Essential Utilities)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the path name of the working (current) directory.

SEE ALSO
cd(l).

DIAGNOSTICS

PWD(l)

"Cannot open .. " and "Read error in .. " indicate possible file system trouble and
should be referred to a UNIX system programming counselor.

7/85 - 1 - 7/85

RATFOR(l) (FORTRAN Programming Language Utilities) RATFOR(!)

NAME
ratfor - rational Fortran dialect

SYNOPSIS
ratfor [options l [files l

DESCRIPTION
Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran. Rat­
! or provides control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement }

decision-making:

loops:

if (condition) statement [else statement]
switch (integer value) {

case integer: statement

[default:] statement

while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment.

translation of relationals:
>, >=,etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

define:
define name replacement

include:
include file

The option -h causes quoted strings to be turned into 27H constructs. The -C
option copies comments to the output and attempts to format it neatly. Normally,
continuation lines are marked with a & in column l; the option -6x makes the
continuation character x and places it in column 6.

Ratfor is best used withj77(1).

SEE ALSO
efl(l), f77(1).

7/85 - 1 - 7/85

REGCMP(l) (C Programming Language Utilities) REGCMP(l)

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
Regcmp, in most cases, precludes the need for calling regcmp(3X) from C pro­
grams. This saves on both execution time and program size. The command regcmp
compiles the regular expressions in file and places the output in file.i. If the -
option is used, the output will be placed in file.c. The format of entries in file is a
name (C variable) followed by one or more blanks followed by a regular expression
enclosed in double quotes. The output of regcmp is C source code. Compiled regu­
lar expressions are represented as extern char vectors. File.i files may thus be
included in C programs, or file.c files may be compiled and later loaded. In the C
program which uses the regcmp output, regex (abc,line) will apply the regular
expression named abc to line. Diagnostics are self-explanatory.

EXAMPLES
name "([A-Za-zHA-Za-z0-9_1•)$0"

telno "\({o,1}([2-9][01][1-9))$0\){0,l} •"
"([2-9][0-9]{2})$1[-]{O,l}"
"([0-91{4})$2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - 1 - 7/85

RM(l) (Essential Utilities) RM(l)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-fri I file

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry was the
last link to the file, the file is destroyed. Removal of a file requires write permission
in its directory, but neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions
are printed and a line is read from the standard input. If that line begins with y the
file is deleted, otherwise the file remains. No questions are asked when the -f
option is given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless the optional
argument -r has been used. In that case, rm recursively deletes the entire contents
of the specified directory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each file, and,
under -r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO
unlink(2) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS

7/85

Generally self-explanatory. It is forbidden to remove the file "" merely to avoid the
antisocial consequences of inadvertently doing something like:

:rm -r .•

- 1 - 7/85

RMDEL(l) (Source Code Control System Utilities) RMDEL(l)

NAME
rmdel - remove a delta from an SCCS file

SYNOPSIS
rmdel -rSID files

DESCRIPTION

FILES

Rmdel removes the delta specified by the SID from each named SCCS file. The
delta to be removed must be the newest (most recent) delta in its branch in the
delta chain of each named secs file. In addition, the specified must not be that of
a version being edited for the purpose of making a delta (i. e., if a p-file (see
get(I)) exists for the named SCCS file, the specified must not appear in any entry
of the p-file).

The -r option is used for specifying the SID (SCCS IDentification) level of the
delta to be removed.

H a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. ff a name
of - is given, the standard input is read; each line of the standard input is taken to
be the name of an secs file to be processed; non-SCCS files and unreadable files are
silently ignored.

Simply stated, they are either (1) if you make a delta you can remove it; or (2) if
you own the file and directory you can remove a delta.

x.file (see delta (1))
z.file (see delta (1))

SEE ALSO
delta(l), get(l), help(!), prs(l).
sccsfile(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS
Use help (1) for explanations.

7/85 - 1 - 7/85

SACT(J) (Source Code Control System Utilities) SACT(J)

NAME
sact - print current SCCS file editing activity

SYNOPSIS
sact files

DESCRIPTION
Sact informs the user of any impending deltas to a named SCCS file. This situation
occurs when get (1) with the -e option has been previously executed without a sub­
sequent execution of delta (1). If a directory is named on the command line, sact
behaves as though each file in the directory were specified as a named file, except
that non-SCCS files and unreadable files are silently ignored. If a name of - is
given, the standard input is read with each line being taken as the name of an SCCS
file to be processed.

The output for each named file consists of five fields separated by spaces.

Field I specifies the SID of a delta that currently exists in the SCCS file
to which changes will be made to make the new delta.

Field 2

Field 3

Field 4

Field 5

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta (i.e.,
executed a get for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

SEE ALSO
delta(l), get(!), unget(i).

DIAGNOSTICS
Use help (1) for explanations.

7/85 - l - 7/85

SAG(lG) (Performance Measurement Utilities) SAG(lG)

NAME
sag - system activity graph

SYNOPSIS
sag [options]

DESCRIPTION
Sag graphically displays the system activity data stored in a binary data file by a
previous sar(l) run. Any of the sar data items may be plotted singly, or in combi­
nation; as cross plots, or versus time. Simple arithmetic combinations of data may
be specified. Sag invokes sar and finds the desired data by string-matching the data
column header (run sar to see what is available). These options are passed through
to sar:

-s time Select data later than time in the form hh [:mm]. Default is 08:00.

-e time Select data up to time. Default is 18:00.

-i sec Select data at intervals as close as possible to sec seconds.

-f file Use .file as the data source for sar. Default is the current daily data file
/usr /adm/sa/sadd.

Other options:

-T term Produce output suitable for terminal term. See tplot(lG) for known ter­
minals. If term is vpr, output is processed by vpr -p and queued to a
Versatec printer. Default for term is $TERM.

-x spec x axis specification with spec in the form:
"name [op namel... [lo hi]"

-y spec y axis specification with spec in the same form as above.

Name is either a string that will match a column header in the sar report, with an
optional device name in square brackets, e.g., Ii" +w /siilsk - J!I, or an integer value.
Op is + - ,. or I surrounded by blanks. Up to five names may be specified.
Parentheses are not recognized. Contrary to custom, + and - have precedence
over • and /. Evaluation is left to right. Thus A I A + B ~ 100 is evaluated
(A/(A+JB))•IOO, and A + B I C + Dis (A+B)/(C+D). Lo and hi are optional
numeric scale limits. If unspecified, they are deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is used. Up to 5
spec's separated by ; may be given for -y. Enclose the -x and -y arguments in
•" if blanks or\ <CR> are included. The -y default is:

-y "%111sr (JI 100; %usr + %sys I{) HJI(); %1l!Sf + %sys + %wfo 0 l(]l(l"

EXAMPLES

FILES

To see today's CPU utilization:
sag

To see activity over 15 minutes of all disk drives:
TS='date +%H:%M'
sar -o tempfile 60 15
TE='date +%H:%M'
sag -f tempfile -s $TS -e $TE -y "r+w/s[dsk]"

I usr I adm/ sa/ sadd

SEE ALSO

daily data file for day dd.

sar(l), tplot(IG).

7/85 - l - 7/85

SAR(!) (Performance Measurement Utilities) SAR(l)

NAME
sar - system activity reporter

SYNOPSIS
sar [-ubdycwaqvmA I [-o file] t [n l
sar [-ubdycwaqvmA] [-s time] [-e time] [-i sec] [-f file]

DESCRIPTION

7/85

Sar, in the first instance, samples cumulative activity counters in the operating sys­
tem at n intervals of t seconds. If the -o option is specified, it saves the samples in
file in binary format. The default value of n is 1. In the second instance, with no
sampling interval specified, sar extracts data from a previously recorded file, either
the one specified by -f option or, by default, the standard system activity daily data
file /usr/adm/sa/sadd for the current day dd. The starting and ending times of the
report can be bounded via the -s and -e time arguments of the form
hh[:mm[:ssJl. The -i option selects records at sec second intervals. Otherwise, all
intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode, running in
system mode, idle with some process waiting for block 1/0, and otherwise idle.

-b Report buffer activity:
bread/s, bwrit/s - transfers per second of data between system buffers and
disk or other block devices;
lread/s, lwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, e. g., 1 - bread/lread;
pread/s, pwrit/s - transfers via raw (physical) device mechanism.

-d Report activity for each block device, e. g., disk or tape drive. When data is
displayed, the device specification dsk- is generally used to represent a disk
drive. The device specification used to represent a tape drive is machine
dependent. The activity data reported is:
%busy, avque - portion of time device was busy servicing a transfer request,
average number of requests outstanding during that time;
r+w/s, blks/s - number of data transfers from or to device, number of bytes
transferred in 512-byte units;
avwait, avserv - average time in ms. that transfer requests wait idly on queue,
and average time to be serviced (which for disks includes seek, rotational
latency and data transfer times).

-y Report TTY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate pro­
cessed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt rates.

-c Report system calls:
scall/s - system calls of all types;
sread/s, swrit/s, fork/s, exec/s - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system calls.

-w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and number of 512-
byte units transferred for swapins and swapouts (including initial loading of
some programs);
pswch/s - process switches.

-a Report use of file access system routines:
iget/s, namei/s, dirblk/s.

- l - 7/85

SAR(!) (Performance Measurement Utilities) SAR(l)

-q Report average queue length while occupied, and% of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready to run.

-v Report status of process, i-node, file, record lock and file header tables:
proc-sz, inod-sz, file-sz, lock-sz, fhdr-sz - entries/size for each table, evaluated
once at sampling point;
ov - overflows that occur between sampling points for each table.

-m Report message and semaphore activities:
msg/s, sema/s - primitives per second.

-A Report all data. Equivalent to -udqbwcayvm.
EXAMPLES

FILES

To see today's CPU activity so far:
sar

To watch CPU activity evolve for 10 minutes and save data:
sar -o temp 60 l 0

To later review disk and tape activity from that period:
sar -d -f temp

/usr/adm/sa/sadd daily data file, where dd are digits representing the day of the
month.

SEE ALSO
sag(lG).
sar(lM) in the AT&T 3B2 Computer System Administration Reference Manual.

7/85 - 2 - 7/85

SCCSDIFF (I) (Source Code Control System Utilities) SCCSDIFFO)

NAME
sccsdiff - compare two versions of an secs file

SYNOPSIS
sccsdiff -rSIDl -rsm2 [-p] [-sn] files

DESCRIPTION

FILES

Sccsdif.f compares two versions of an SCCS file and generates the differences
between the two versions. Any number of SCCS files may be specified, but argu­
ments apply to all files.

-rS!D?

-p
-sn

SIDI and SID2 specify the deltas of an secs file that are to be
compared. Versions are passed to bdijf(l) in the order given.

pipe output for each file through pr (I).

n is the file segment size that bdif.f will pass to dif.f(l). This is
useful when dif.f fails due to a high system load.

/tmp/get????? Temporary files

SEE ALSO
bdiff(l), get(l), help(!), pr(l).

DIAGNOSTICS
"file: No differences" If the two versions are the same.
Use help (l) for explanations.

7/85 - 1 - 7/85

SDB(l) (Extended Software Generation System Utilities) SDB (l)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-w] [-W] [objfil [corfil [directory-list]]]

DESCRIPTION

7/85

Sdb is a symbolic debugger that can be used with C and F77 programs. It may be
used to examine their object files and core files and to provide a controlled environ­
ment for their execution.

Objfil is normally an executable program file which has been compiled with the -g
(debug) option; if it has not been compiled with the -g option, or if it is not an
executable file, the symbolic capabilities of sdb will be limited, but the file can still
be examined and the program debugged. The default for objfil is a.out. Corfil is
assumed to be a core image file produced after executing objfil; the default for
corfil is core. The core file need not be present. A - in place of corfil will force
sdb to ignore any core image file. The colon separated list of directories
(directory-list) is used to locate the source files used to build objfil.

It is useful to know that at any time there is a current line and current file. If
corfil exists then they are initially set to the line and file containing the source
statement at which the process terminated. Otherwise, they are set to the first line
in main(). The current line and file may be changed with the source file examina­
tion commands.

By default, warnings are provided if the source files used in producing objfil cannot
be found, or are newer than objfil. This checking feature and the accompanying
warnings may be disabled by the use of the -W flag.

Names of variables are written just as they are in C or F77. Note that names in C
are now of arbitrary length, sdb will no longer truncate names. Variables local to a
procedure may be accessed using the form procedure:variable. If no procedure
name is given, the procedure containing the current line is used by default.

It is also possible to refer to structure members as variable.member, pointers to
structure members as variable->member and array elements as variablelnumberl.
Pointers may be dereferenced by using the form pointer[OI. Combinations of these
forms may also be used. F77 common variables may be referenced by using the
name of the common block instead of the structure name. Blank common variables
may be named by the form .variable. A number may be used in place of a struc­
ture variable name, in which case the number is viewed as the address of the struc­
ture, and the template used for the structure is that of the last structure referenced
by sdb. An unqualified structure variable may also be used with various commands.
Generally, sdb will interpret a structure as a set of variables. Thus, sdb will display
the values of all the elements of a structure when it is requested to display a struc­
ture. An exception to this interpretation occurs when displaying variable addresses.
An entire structure does have an address, and it is this value sdb displays, not the
addresses of individual elements.

Elements of a multidimensional array may be referenced as
variablelnumberllnumberl. •. , or as variablelnumber,number, ... I. In place of
number, the form number;number may be used to indicate a range of values, • may
be used to indicate all legitimate values for that subscript, or subscripts may be
omitted entirely if they are the last subscripts and the full range of values is desired.
As with structures, sdb displays all the values of an array or of the section of an
array if trailing subscripts are omitted. It displays only the address of the array
itself or of the section specified by the user if subscripts are omitted. A

- l - 7/85

SDB(U (Extended Software Generation System Utilities) SDBO)

multidimensional parameter in an F77 program cannot be displayed as an array, but
it is actually a pointer, whose value is the location of the array. The array itself can
be accessed symbolically from the calling function.

A particular instance of a variable on the stack may be referenced by using the
form procedure:variable,number. All the variations mentioned in naming variables
may be used. Number is the occurrence of the specified procedure on the stack,
counting the top, or most current, as the first. If no procedure is specified, the pro­
cedure currently executing is used by default.

H is also possible to specify a variable by its address. All forms of integer constants
which are valid in C may be used, so that addresses may be input in decimal, octal
or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of the file.
If no procedure or Irle name is given, the current file is used by default. If no
number is given, the first line of the named procedure or file is used.

While a process is rnnning under sdb, all addresses refer to the executing program;
otherwise they refer to objfil or corfil. An initial argument of -w permits overwrit­
ing locations in objfil.

Addresses
The address in a file associated with a written address is determined by a mapping
associated with that file. Each mapping is represented by two triples (bl, el, fl)
and (b2, e2, f2) and the file address corresponding to a written address is calcu­
lated as follows:

b Jaddress < el

.file address=address+fl -bl
otherwise

b 2 address< e2

file address=address+f2-b2,

otherwise, the requested address is not legal. In some cases (e.g., for programs with
separated I and D space) the two segments for a file may overlap.

The initial setting of both mappings is suitable for normal a.out and core files. If
either file is not of the kind expected then, for that file, bl is set to 0, el is set to
the maximum file size, and fl is set to O; in this way the whole file can be examined
with no address translation.

In order for sdb to be used on large files, all appropriate values are kept as signed
32-bit integers.

Commands

7/85

The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.

T Print the top line of the stack trace.

variable I cl m
Print the value of variable according to length l and format m. A numeric
count c indicates that a region of memory, beginning at the address implied by
variable, is to be displayed. The length specifiers are:

7/85

SDB(l)

7/85

(Extended Software Generation System Utilities) SDB(l)

b one byte
b two bytes (half word)
I four bytes Oong word)

Legal values for m are:
c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
f 32-bit single precision floating point
g 64-bit double precision floating point
s Assume variable is a string pointer and print characters start­

ing at the address pointed to by the variable.
a Print characters starting at the variable's address. This for­

mat may not be used with register variables.
p pointer to procedure

disassemble machine-language instruction with addresses
printed numerically and symbolically.

I disassemble machine-language instruction with addresses just
printed numerically.

The length specifiers are only effective with the formats c, d, u, o and x. Any
of the specifiers, c, l, and m, may be omitted. If all are omitted, sdb choses a
length and a format suitable for the variable's type as declared in the pro­
gram. If m is specified, then this format is used for displaying the variable.
A length specifier determines the output length of the value to be displayed,
sometimes resulting in truncation. A count specifier c tells sdb to display that
many units of memory, beginning at the address of variable. The number of
bytes in one such unit of memory is determined by the length specifier /, or if
no length is given, by the size associated with the variable. If a count
specifier is used for the s or a command, then that many characters are
printed. Otherwise successive characters are printed until either a null byte is
reached or 128 characters are printed. The last variable may be redisplayed
with the command J.
The sh (l) metacharacters "' and ? may be used within procedure and variable
names, providing a limited form of pattern matching. If no procedure name is
given, variables local to the current procedure and global variables are
matched; if a procedure name is specified then only variables local to that pro­
cedure are matched. To match only global variables, the form :pattern is
used.

linenumber?lm
variable:? Im

Print the value at the address from :urnd or I space given by linenumber or
variable (procedure name), according to the format lm. The default format is
~i'.

variable =Im
line number= lm
number=lm

Print the address of variable or linenumber, or the value of number, in the
format specified by Im. If no format is given, then Ix is used. The last vari­
ant of this command provides a convenient way to convert between decimal,
octal and hexadecimal.

- 3 - 7/85

SOB (1)

7/85

(Extended Software Generation System Utilities) SDB{l)

variable!value
Set variable to the given value. The value may be a number, a character con­
stant or a variable. The value must be well defined; expressions which pro­
duce more than one value, such as structures, are not allowed. Character con­
stants are denoted 'character. Numbers are viewed as integers unless a
decimal point or exponent is used. In this case, they are treated as having the
type double. Registers are viewed as integers. The variable may be an
expression which indicates more than one variable, such as an array or struc­
ture name. If the address of a variable is given, it is regarded as the address
of a variable of type int. C conventions are used in any type conversions
necessary to perform the indicated assignment.

x. Print the machine registers and the current machine-language instruction.

X Print the current machine-language instruction.

The commands for examining source files are:

e procedure
efile-name
e directory/
e directory file-name

The first two forms set the current file to the file containing procedure or to
file-name. The current line is set to the first line in the named procedure or
file. Source files are assumed to be in directory. The default is the current
working directory. The latter two forms change the value of directory. If no
procedure, file name, or directory is given, the current procedure name and file
name are reported.

/regular expression/
Search forward from the current line for a line containing a string matching
regular expression as in ed (l). The trailing I may be deleted.

? regular expression?
Search backward from the current line for a line containing a string matching
regular expression as in ed(l). The trailing ? may be deleted.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the current line to the
last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current line.

count+
Advance the current line by count lines. Print the new current line.

count-
Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command with no argu­
ments reuses the previous arguments to the program while the R command
runs the program with no arguments. An argument beginning with < or >
causes redirection for the standard input or output, respectively. If count is

- 4 - 7/85

SDB(l)

7/85

(Extended Software Generation System Utilities) SDB(l)

given, it specifies the number of breakpoints to be ignored.

linenumber c count
linenumber C count

Continue after a breakpoint or interrupt. If count is given, it specifies the
breakpoint at which to stop after ignoring count - 1 breakpoints. C continues
with the signal which caused the program to stop reactivated and c ignores it.
If a line number is specified then a temporary breakpoint is placed at the line
and execution is continued. The breakpoint is deleted when the command
finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line. If
count is given, it specifies the number of breakpoints to be ignored.

s count
S count

i

Single step the program through count lines. If no count is given then the
program is run for one line. S is equivalent to s except it steps through pro­
cedure calls.

I Single step by one machine-language instruction. I steps with the signal
which caused the program to stop reactivated and i ignores it.

variable$m count
address:m count

Single step (as with s) until the specified location is modified with a new
value. If count is omitted, it is effectively infinity. Variable must be accessi­
ble from the current procedure. Since this command is done by software, it
can be very slow.

level v
Toggle verbose mode, for use when single stepping with S, s or m. If level is
omitted, then just the current source file and/or subroutine name is printed
when either changes. If level is 1 or greater, each C source line is printed
before it is executed; if level is 2 or greater, each assembler statement is also
printed. A v turns verbose mode off if it is on for any level.

k Kill the program being debugged.

procedure(arg l ,arg2,..J
procedure (arg l ,arg2,. . .) Im

Execute the named procedure with the given arguments. Arguments can be
integer, character or string constants or names of variables accessible from the
current procedure. The second form causes the value returned by the pro­
cedure to be printed according to format m. If no format is given, it defaults
to d.

linenumber b commands
Set a breakpoint at the given line. If a procedure name without a line number
is given (e.g., "proc:"), a breakpoint is placed at the first line in the procedure
even if it was not compiled with the -g option. If no linenumber is given, a
breakpoint is placed at the current line. If no commands are given, execution
stops just before the breakpoint and control is returned to sdb. Otherwise the
commands are executed when the breakpoint is encountered and execution
continues. Multiple commands are specified by separating them with semi­
colons. If k is used as a command to execute at a breakpoint, control returns

- 5 - 7/85

SDB(l)

7/85

(Extended Software Generation System Utilities) SDB(l)

to sdb, instead of continuing execution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is given then the
breakpoints are deleted interactively. Each breakpoint location is printed and
a line is read from the standard input. If the line begins with a y or d then
the breakpoint is deleted.

D Delete all breakpoints.

Print the last executed line.

linenumber a
Announce. If linenumber is of the form proc:number, the command
effectively does a linenumber b I. If linenumber is of the form proc:, the com­
mand effectively does a proc: b T.

Miscellaneous commands:

!command
The command is interpreted by sh (I).

new-line
If the previous command printed a source line, then advance the current line
by one line and print the new current line. If the previous command displayed
a memory location, then display the next memory location.

control-D
Scroll. Print the next 10 lines of instructions, source or data depending on
which was printed last.

<filename
Read commands from .filename until the end of file is reached, and then con­
tinue to accept commands from standard input. When sdb is told to display a
variable by a command in such a file, the variable name is displayed along
with the value. This command may not be nested; < may not appear as a
command in a file.

M Print the address maps.

M l?/IH be f
Record new values for the address map. The arguments ? and I specify the
text and data maps, respectively. The first segment (bl, el, fl) is changed
unless * is specified, in which case the second segment (bl, el, fl) of the map­
ping is changed. If fewer than three values are given, the remaining map
parameters are left unchanged.

" string
Print the given string. The C escape sequences of the form \character are
recognized, where character is a nonnumeric character.

q Exit the debugger.

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

- 6 - 7/85

SDB(l)

HLES
a.out
core

(Extended! Software Generation System Utilities) SDB(l)

SEE ALSO
cc(l), f(77), sh(l).
a.out(4), core(4) in the AT&T 3B2 Computer Programmer Reference Manual.

WARNINGS

BUGS

7/85

On the V AX-11, C variables are identified internally with an underscore prepended.
User variables which differ by only an initial underscore cannot be distinguished, as
sdb recognizes both internal and external names.

When sdb prints the value of an external variable for which there is no debugging
information, a warning is printed before the value. The value is assumed to be i111t
(integer).

Data which are stored in text sections are indistinguishable from functions.

Line number information in optimized functions is unreliable, and some information
may be missing.

If a procedure is called when the program is not stopped at a breakpoint (such as
when a core image is being debugged), all variables are initialized before the pro­
cedure is started. This makes it impossible to use a procedure which formats data
from a core image.

Sdb cannot print the value of an f77 parameter. H will erroneously print the
address.

Tracebacks containing f77 subprograms with multiple entry points may print too
many arguments in the wrong order, but their values are correct.

The range of an f77 array subscript is assumed to be 1 to n, where n is the dimen­
sion corresponding to that subscript. This is only significant when the user omits a
subscript, or uses "' to indicate the full range. There is no problem in general with
arrays having subscripts whose lower bounds are not l.

On the 3B20 computer there is no hardware trace mode and single-stepping is
implemented by setting pseudo breakpoints where possible. This is slow.

The entry point to an optimized function cannot be found on the 3B20 computer.
Setting a breakpoint at the beginning of an optimized function may cause the mid­
dle of some instruction within the function to be overwritten. This problem can be
circumvented by disassembling the first few instructions of the function, and manu­
ally setting a breakpoint at the first instruction after the stack pointer is adjusted.

7/85

SDIFF(1) (Directory and File Management Utilities) SDIFF(l)

NAME
sdiff - side-by-side difference program

SYNOPSIS
sdiff [options .. . I file 1 file2

DESCRIPTION
Sdiff uses the output of di.ff(!) to produce a side-by-side listing of two files indicat­
ing those lines that are different. Each line of the two files is printed with a blank
gutter between them if the lines are identical, a < in the gutter if the line only
exists in .filel, a > in the gutter if the line only exists in file2, and a I for lines that
are different.

For example:

x
a
b
c
d

The following options exist:

<
<

y
a

d
> c

-w n Use the next argument, n, as the width of the output line. The default
line length is 130 characters.

-I Only print the left side of any lines that are identical.

-s Do not print identical lines.

-o output Use the next argument, output, as the name of a third file that is
created as a user-controlled merging of ft/el and .file2. Identical lines
of file] and .file2 are copied to output. Sets of differences, as produced
by di.ff(l), are printed; where a set of differences share a common
gutter character. After printing each set of differences, sdiff prompts
the user with a % and waits for one of the following user-typed com­
mands:

append the left column to the output file

r append the right column to the output file

s turn on silent mode; do not print identical lines

v turn off silent mode

e l call the editor with the left column

e r call the editor with the right column

e b call the editor with the concatenation of left and right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on the end of
the output file.

SEE ALSO
diff(I), ed(l).

7/85 - l - 7/85

SJED (1) (Essential Utilities) SED(l)

NAME
sed - stream editor

SYNOPSIS
selll [-n] [-e script] [-f stile] [files]

DESCRIPTION

7/85

Sed copies the named files (standard input default) to the standard output, edited
according to a script of commands. The -f option causes the script to be taken
from file sfile; these options accumulate. If there is just one -e option and no -f
options, the flag -e may be omitted. The -n option suppresses the default output.
A script consists of editing commands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all com­
mands whose addresses select that pattern space, and at the end of the script copies
the pattern space to the standard output (except under -n) and deletes the pattern
space.

Some of the commands use a hold space to save all or part of the pattern space for
subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively across
files, a $ that addresses the last line of input, or a context address, i.e., a /regular
expression/ in the style of ed(l) modified thus:

In a context address, the construction \?regular expression?, where ? is any
character, is identical to /regular expression/. Note that in the
context address \xabc\xdefx, the second x stands for itself, so that
the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern space.
A period . matches any character except the terminal new-line of the pat­

tern space.
A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that matches

the address.
A command line with two addresses selects the inclusive range from the

first pattern space that matches the first address through the next
pattern space that matches the second. (If the second address is a
number less than or equal to the line number first selected, only
one line is selected.) Thereafter the process is repeated, looking
again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the
negation function ! (below).

In the following list of functions the maximum number of permissible addresses for
each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which end with \
to hide the new-line. Backslashes in text are treated like backslashes in the replace­
ment string of an s command, and may be used to protect initial blanks and tabs
against the stripping that is done on every script line. The rfile or wfile argument
must terminate the command line and must be preceded by exactly one blank.
Each wfile is created before processing begins. There can be at most 10 distinct
wfile arguments.

- 1 - 7/85

SED(l)

7/85

(Essential Utilities) SED(l)

(1) a\
text Append. Place text on the output before reading the next input line.
(2) b label Branch to the: command bearing the label. If label is empty, branch to

the end of the script.
(2) c\
text

(2) d
(2) D

(2) g

(2) G
(2) h

(2) H
(1) i\
text
(2) I

(2) n

(2) N

(2) p
(2) p

Change. Delete the pattern space. With 0 or 1 address or at the end of
a 2-address range, place text on the output. Start the next cycle.
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the first new-line.
Start the next cycle.
Replace the contents of the pattern space by the contents of the hold
space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the pattern
space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambiguous form.
Non-printing characters are spelled in two-digit ASCII and long lines are
folded.
Copy the pattern space to the standard output. Replace the pattern
space with the next line of input.
Append the next line of input to the pattern space with an embedded
new-line. (The current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first new-line
to the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before reading the

next input line.
(2) sf regular expression/replacement/flags

Substitute the replacement string for instances of the regular expression
in the pattern space. Any character may be used instead of /. For a
fuller description see ed (1). Flags is zero or more of:

n n= 1 - 512. Substitute for just the n th occurrence of

g
the regular expression.
Global. Substitute for all nonoverlapping instances of
the regular expression rather than just the first one.

p Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wjile if a replace­

ment was made.
(2) t label Test. Branch to the : command bearing the label if any substitutions

have been made since the most recent reading of an input line or execu­
tion of a t. If label is empty, branch to the end of the script.

(2) w wfile Write. Append the pattern space tow.file.
(2) x Exchange the contents of the pattern and hold spaces.
(2) ylstringl lstring2/

Transform. Replace all occurrences of characters in string] with the
corresponding character in string2. The lengths of string] and string2
must be equal.

(2) ! function
Don't. Apply the function (or group, if function is 0 only to lines not

- 2 - 7/85

SED(l)

(O): label

(1) =
(2) {

(0)
(O)#

SEE ALSO

(Essential Utilities) SED(l)

selected by the address(es).
This command does nothing; it bears a label for b and t commands to
branch to.
Place the current line number on the standard output as a line.
Execute the following commands through a matching } only when the
pattern space is selected.
An empty command is ignored.
If a # appears as the first character on the first line of a script file, then
that entire line is treated as a comment, with one exception. If the
character after the # is an 'n', then the default output will be
suppressed. The rest of the line after #n is also ignored. A script file
must contain at least one non-comment line.

awk(l), ed(l), grep(l).

7/85 - 3 - 7/85

SETUP(l) (Essential Utilities) SETUP(l)

NAME
setup - initialize system for first user

SYNOPSIS
setup

DESCRIPTION
The setup command, which is also accessible as a login by the same name, allows
the first user to be established as the "owner" of the machine.

The user is permitted to add the first logins to the system, usually starting with their
own.

The user can then protect the system from unauthorized modification of the
machine configuration and software by giving passwords to the administrative and
maintenance functions. Normally, the first user of the machine enters this com­
mand through the setup login, which initially has no password, and then gives pass­
words to the various functions in the system. Any that the user leaves without pass­
word protection can be exercised by anyone.

The user can then give passwords to system logins such as "root", "bin", etc. (pro­
vided they do not already have passwords). Once given a password, each login can
only be changed by that login or "root".

The user can then set the date, time and time zone of the machine.

The user can then set the node name of the machine.

SEE ALSO
passwd(l).

DIAGNOSTICS
The passwd(l) command complains if the password provided does not meet its stan­
dards.

WARNING

7/85

If the setup login is not under password control, anyone can put passwords on the
other functions.

- l - 7/85

SH(l) (Essential Utilities) SH(!)

NAME
sh, rsh - shell, the standard/restricted command programming language

SYNOPSIS
sh [-acefhiknrstuvx] [args]
rsb [-acefhiknrstuvx I [args]

DESCRIPTION
Sh is a command programming language that executes commands read from a ter­
minal or a file. Rsh is a restricted version of the standard command interpreter sh;
it is used to set up login names and execution environments whose capabilities are
more controlled than those of the standard shell. See Invocation below for the
meaning of arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or underscores
beginning with a letter or underscore. A parameter is a name, a digit, or any of the
characters•, @, #, ?, -, $,and!.

Commands

7/85

A simple-command is a sequence of non-blank words separated by blanks. The
first word specifies the name of the command to be executed. Except as specified
below, the remaining words are passed as arguments to the invoked command. The
command name is passed as argument 0 (see exec (2)). The value of a simple­
command is its exit status if it terminates normally, or (octal) 200+status if it ter­
minates abnormally (see signal (2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I (or, for historical
compatibility, by ~). The standard output of each command but the last is con­
nected by a pipe (2) to the standard input of the next command. Each command is
run as a separate process; the shell waits for the last command to terminate. The
exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, & , & & , or I I, and
optionally terminated by ; or & . Of these four symbols, ; and & have equal pre­
cedence, which is lower than that of & & and I I. The symbols & & and I I also
have equal precedence. A semicolon (;) causes sequential execution of the preced­
ing pipeline; an ampersand (&) causes asynchronous execution of the preceding
pipeline (i.e., the shell does not wait for that pipeline to finish). The symbol & &
(I I) causes the list following it to be executed only if the preceding pipeline
returns a zero (non-zero) exit status. An arbitrary number of new-lines may appear
in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise
stated, the value returned by a command is that of the last smple-command exe­
cuted in the command.

for name [in word . . .] do list done
Each time a for command is executed, name is set to the next word taken
from the in word list. If in word . . . is omitted, then the for command exe­
cutes the do list once for each positional parameter that is set (see Parame­
ter Substitution below). Execution ends when there are no more words in
the list.

case word in [pattern [I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file­
name generation (see File Name Generation) except that a slash, a leading
dot, or a dot immediately following a slash need not be matched explicitly.

- 1 - 7/85

SH(l) (Essential Utilities) SH(l)

fif list then list [elif list then list I ... [else list] fR
The list following if is executed and, if it returns a zero exit status, the list
following the first then is executed. Otherwise, the list following elif is exe­
cuted and, if its value is zero, the list following the next then is executed.
Failing that, the else list is executed. If no else list or then list is executed,
then the if command returns a zero exit status.

while list do list done

(list)

(list;}

A while command repeatedly executes the while list and, if the exit status
of the last command in the list is zero, executes the do list; otherwise the
loop terminates. If no commands in the do list are executed, then the while
command returns a zero exit status; until may be used in place of while to
negate the loop termination test.

Execute list in a sub-shell.

list is simply executed.
name 0 {list;}

Define a function which is referenced by name. The body of the function is
the list of commands between (and } . Execution of functions is described
below (see Execution).

The following words are only recognized as the first word of a command and when
not quoted:

if then else elif fi case esac for while until do done { }

Comments
A word beginning with # causes that word and all the following characters up to a
new-line to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave accents (' ') may
be used as part or all of a word; trailing new-lines are removed.

Parameter Substitution

7/85

The character $ is used to introduce substitutable parameters. There are two types
of parameters, positional and keyword. If parameter is a digit, it is a positional
parameter. Positional parameters may be assigned values by set. Keyword parame­
ters (also known as variables) may be assigned values by writing:

name =value [name =value] ...

Pattern-matching is not performed on value. There cannot be a function and a
variable with the same name.

${parameter}
The value, if any, of the parameter is substituted. The braces are required
only when parameter is followed by a letter, digit, or underscore that is not
to be interpreted as part of its name. If parameter is "' or @, all the posi­
tional parameters, starting with $1, are substituted (separated by spaces).
Parameter $0 is set from argument zero when the shell is invoked.

${parameter: -word}
If parameter is set and is non-null, substitute its value; otherwise substitute
word.

${parameter: =word}
If parameter is not set or is null set it to word; the value of the parameter
is substituted. Positional parameters may not be assigned to in this way.

- 2 - 7/85

SH(l)

7/85

(Essential Utilities) SH(l)

$ (parameter:?word}
If parameter is set and is non-null, substitute its value; otherwise, print
word and exit from the shell. If word is omitted, the message "parameter
null or not set" is printed.

${parameter: +word}
If parameter is set and is non-null, substitute word; otherwise substitute
nothing.

In the above, word is not evaluated unless it is to be used as the substituted string,
so that, in the following example, pwd is executed only if d is not set or is null:

echo $ {d:- 'pwd •}

If the colon (:) is omitted from the above expressions, the shell only checks whether
parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed

command.
$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below). The user

may not change PATH if executing under rsh.
CDP A TH

The search path for the cd command.
MAIL If this parameter is set to the name of a mail file and the MAIL­

PATH parameter is not set, the shell informs the user of the arrival
of mail in the specified file.

MAILCHECK
This parameter specifies how often (in seconds) the shell will check
for the arrival of mail in the files specified by the MAILPATH or
MAIL parameters. The default value is 600 seconds (I 0 minutes).
If set to 0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set,
the shell informs the user of the arrival of mail in any of the
specified files. Each file name can be followed by % and a message
that will be printed when the modification time changes. The
default message is you have mail.

PSI Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default "> "
IFS Internal field separators, normally space, tab, and new-line.
SHACCT

If this parameter is set to the name of a file writable by the user,
the shell will write an accounting record in the file for each shell
procedure executed.

SHELL When the shell is invoked, it scans the environment (see Environ­
ment below) for this name. If it is found and there is an 'r' in the
file name part of its value, the shell becomes a restricted shell.

- 3 - 7/85

SH(l) (Essential Utilities) SH(l)

The shell gives default values to PATH, PS1, PS2, MAILCHECK and IFS. HOME and
MAIL are set by login(l).

Blank Interpretation
After parameter and command substitution, the results of substitution are scanned
for internal field separator characters (those found in IFS) and split into distinct
arguments where such characters are found. Explicit null arguments ("" or ") are
retained. Implicit null arguments (those resulting from parameters that have no
values) are removed.

File Name Generation
Following substitution, each command word is scanned for the characters *, ? , and
I. If one of these characters appears the word is regarded as a pattern. The word
is replaced with alphabetically sorted file names that match the pattern. If no file
name is found that matches the pattern, the word is left unchanged. The character
. at the start of a file name or immediately following a /, as well as the character I
itself, must be matched explicitly.

• Matches any string, including the null string.
? Matches any single character.
I ... I Matches any one of the enclosed characters. A pair of characters

separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening "[" is a "!"
any character not enclosed is matched.

Quoting
'fhe following characters have a special meaning to the shell and cause termination
of a word unless quoted:

; & () I ~ < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with a \.
The pair \new-line is ignored. All characters enclosed between a pair of single quote
marks ("), except a single quote, are quoted. Inside double quote marks (""),
parameter and command substitution occurs and\ quotes the characters\, ~, ", and
$. "$•" is equivalent to "$1 $2 ... ", whereas "$@" is equivalent to "$1" "$2"

Prompting
When used interactively, the shell prompts with the value of PSI before reading a
command. If at any time a new-line is typed and further input is needed to com­
plete a command, the secondary prompt (i.e., the value of PS2) is issued.

Input/Output

7/85

Before a command is executed, its input and output may be redirected using a spe­
cial notation interpreted by the shell. The following may appear anywhere in a
simple-command or may precede or follow a command and are not passed on to the
invoked command; substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor O).
>word Use file word as standard output (file descriptor 1). If the file does

not exist it is created; otherwise, it is truncated to zero length.
>>word Use file word as standard output. If the file exists output is

appended to it (by first seeking to the end-of-file); otherwise, the file
is created.

<<[-]word The shell input is read up to a line that is the same as word, or to
an end-of-file. The resulting document becomes the standard input.
If any character of word is quoted, no interpretation is placed upon
the characters of the document; otherwise, parameter and command

- 4 - 7/85

SH(l)

<&digit

<&-

(Essential Utilities) SH(l)

substitution occurs, (unescaped) \new-line is ignored, and \ must be
used to quote the characters \, $, ', and the first character of word.
If - is appended to <<, all leading tabs are stripped from word
and from the document.
Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using > & digit.
The standard input is closed. Similarly for the standard output
using>&-.

H any of the above is preceded by a digit, the file descriptor which will be associ­
ated with the file is that specified by the digit (instead of the default 0 or 1). For
example:

""" 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates
redirections left-to-right. For example:

" "" 1 > xxx 2 > & l

first associates file descriptor l with file xxx. It associates file descriptor 2 with the
file associated with file descriptor 1 (i.e., xxx). If the order of redirections were
reversed, file descriptor 2 would be associated with the terminal (assuming file
descriptor 1 had been) and file descriptor 1 would be associated with file xxx.

If a command is followed by & the default standard input for the command is the
empty file /dev/null Otherwise, the environment for the execution of a command
contains the file descriptors of the invoking shell as modified by input/output
specifications.

Redirection of output is not allowed in the restricted shell.

Environment

7/85

The environment (see environ (5)) is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list The shell interacts
with the environment in several ways. On invocation, the shell scans the environ­
ment and creates a parameter for each name found, giving it the corresponding
value. If the user modifies the value of any of these parameters or creates new
parameters, none of these affects the environment unless the export command is
used to bind the shell's parameter to the environment (see also set -a). A parame­
ter may be removed from the environment with the unset command. The environ­
ment seen by any executed command is thus composed of any unmodified name­
value pairs originally inherited by the shell, minus any pairs removed by unset, plus
any modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with
one or more assignments to parameters. Thus:

TERM=450 cmd and
(export TERM; TERM=450; cmd)

are equivalent (as far as the execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even if
they occur after the command name. The following first prints a= b c and c:

echo a=b c
set -k
echo a=b c

- 5 - 7/85

SH (1) (Essential Utilities) SH(l)

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the com­
mand is followed by & ; otherwise signals have the values inherited by the shell from
its parent, with the exception of signal 11 (but see also the trap command below).

Execution
Each time a command is executed, the above substitutions are carried out. If the
command name matches one of the Special Commands listed below, it is executed
in the shell process. H the command name does not match a Special Command,
but matches the name of a defined function, the function is executed in the shell
process (note how this differs from the execution of shell procedures). The posi­
tional parameters $1, $2, are set to the arguments of the function. If the com­
mand name matches neither a Special Command nor the name of a defined func­
tion, a new process is created and an attempt is made to execute the command via
exec(2).

The she!! parameter PATH defines the search path for the directory containing the
command. Alternative directory names are separated by a colon (:). The default
path is :/Mn:/usr/lbin (specifying the current directory, /bin, and /usr/bin, in that
order). Note that the current directory is specified by a null path name, which can
appear immediately after the equal sign or between the colon delimiters anywhere
else in the path list. If the command name contains a I the search path is not used;
such commands will not be executed by the restricted shell. Otherwise, each direc­
tory in the path is searched for an executable file. ff the file has execute permission
but is not an :a.oft.lit file, it is assumed to be a file containing shell commands. A
sub-shell is spawned to read it. A parenthesized command is also executed in a
sub-shell.

The location in the search path where a command was found is remembered by the
shell (to help avoid unnecessary execs later). If the command was found in a rela­
tive directory, its location must be re-determined whenever the current directory
changes. The shell forgets all remembered locations whenever the PATH variable is
changed or the hash -r command is executed (see below).

Special Commands

7/85

Input/output redirection is now permitted for these commands. File descriptor 1s
the default output location.

No effect; the command does nothing. A zero exit code is returned .
. file Read and execute commands from file and return. The search path

specified by PATH is used to find the directory containing.file.
break [n]

Exit from the enclosing for or while loop, if any. If n is specified break n
levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is
specified resume at the n-th enclosing loop.

cdl [arg]
Change the current directory to arg. The shell parameter HOME is the
default arg. The shell parameter CDPATJJ! defines the search path for the
directory containing arg. Alternative directory names are separated by a
colon (:). The default path is <null> (specifying the current directory).
Note that the current directory is specified by a null path name, which can
appear immediately after the equal sign or between the colon delimiters
anywhere else in the path list. H arg begins with a I the search path is not
used. Otherwise, each directory in the path is searched for arg. The cd

- 6 - 7/85

SH(l)

7/85

(Essential Utilities)

command may not be executed by rsh.
echo [arg ... l

Echo arguments. See echo (1) for usage and description.
eval [arg ...]

SH(l)

The arguments are read as input to the shell and the resulting command(s)
executed.

exec [arg ... I
The command specified by the arguments is executed in place of this shell
without creating a new process. Input/output arguments may appear and,
if no other arguments are given, cause the shell input/output to be modified.

exit [n l
Causes a shell to exit with the exit status specified by n. If n is omitted the
exit status is that of the last command executed (an end-of-file will also
cause the shell to exit.)

export [name . . .]
The given names are marked for automatic export to the environment of
subsequently-executed commands. If no arguments are given, a list of all
names that are exported in this shell is printed. Function names may not
be exported.

hash [-r] [name ... I
For each name, the location in the search path of the command specified by
name is determined and remembered by the shell. The -r option causes the
shell to forget all remembered locations. If no arguments are given, infor­
mation about remembered commands is presented. Hits is the number of
times a command has been invoked by the shell process. Cost is a measure
of the work required to locate a command in the search path. There are
certain situations which require that the stored location of a command be
recalculated. Commands for which this will be done are indicated by an
asterisk (*) adjacent to the hits information. Cost will be incremented
when the recalculation is done.

newgrp [arg . . .]
Equivalent to exec newgrp arg See newgrp(IM) for usage and descrip­
tion.

pwd Print the current working directory. See pwd(l) for usage and description.
read [name . . .]

One line is read from the standard input and the first word is assigned to
the first name, the second word to the second name, etc., with leftover
words assigned to the last name. The return code is 0 unless an end-of-file
is encountered.

readonly [name . . .]
The given names are marked readonly and the values of the these names
may not be changed by subsequent assignment. If no arguments are given,
a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is omit­
ted, the return status is that of the last command executed.

- 7 - 7/85

SH(!)

7/85

(Essential Utilities) SH(I)

set [- -aefhkntuvx [arg ...]]
-a Mark variables which are modified or created for export.
-e Exit immediately if a command exits with a non-zero exit status.
-f Disable file name generation
- b Locate and remember function commands as functions are defined

(function commands are normally located when the function is exe­
cuted).

-k All keyword arguments are placed in the environment for a com-
mand, not just those that precede the command name.

-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to - .
Using + rather than - causes these flags to be turned off. These flags can
also be used upon invocation of the shell. The current set of flags may be
found in $ - . The remaining arguments are positional parameters and are
assigned, in order, to $1, $2, If no arguments are given the values of all
names are printed.

shift [n l

test

times

The positional parameters from $n +1 ... are renamed $1 If n is not
given, it is assumed to be 1.

Evaluate conditional expressions. See test (1) for usage and description.

Print the accumulated user and system times for processes run from the
shell.

trap [arg] [n I ...
The command arg is to be read and executed when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set and once
when the trap is taken.) Trap commands are executed in order of signal
number. Any attempt to set a trap on a signal that was ignored on entry to
the current shell is ineffective. An attempt to trap on signal 11 (memory
fault) produces an error. If arg is absent all trap(s) n are reset to their ori­
ginal values. If arg is the null string this signal is ignored by the shell and
by the commands it invokes. If n is 0 the command arg is executed on exit
from the shell. The trap command with no arguments prints a list of com­
mands associated with each signal number.

type [name . . .]
For each name, indicate how it would be interpreted if used as a command
name.

ulimit [-fp] [n]
imposes a size limit of n
-f imposes a size limit of n blocks on files written by child processes

(files of any size may be read). With no argument, the current
limit is printed.

-p changes the pipe size ton (UNIX system/RT only).
If no option is given, -f is assumed.

umask [nnn]
The user file-creation mask is set to nnn (see umask(2)). If nnn is omitted,
the current value of the mask is printed.

- 8 - 7/85

SH(l) (Essential Utilities) SH(l)

unset [name . . . l
For each name, remove the corresponding variable or function. The vari­
ables PATH, PSI, PS2, MAILCHECK and IFS cannot be unset.

wait [n]
Wait for the specified process and report its termination status. If n is not
given all currently active child processes are waited for and the return code
1s zero.

Invocation
If the shell is invoked through exec (2) and the first character of argument zero is
-, commands are initially read from /etc/profile and from $HOME/.profile, if such
files exist. Thereafter, commands are read as described below, which is also the
case when the shell is invoked as /bin/sh. The flags below are interpreted by the
shell on invocation only; Note that unless the -c or -s flag is specified, the first
argument is assumed to be the name of a file containing commands, and the
remaining arguments are passed as positional parameters to that command file:

-c string If the -c flag is present commands are read from string.
-s If the -s flag is present or if no arguments remain commands are read

from the standard input. Any remaining arguments specify the posi­
tional parameters. Shell output (except for Special Commands) is writ­
ten to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to
a terminal, this shell is interactive. In this case TERMINATE is ignored
(so that kill 0 does not kill an interactive shell) and INTERRUPT is
caught and ignored (so that wait is interruptible). In all cases, QUIT is
ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

Rsh Only

7/85

Rsh is used to set up login names and execution environments whose capabilities are
more controlled than those of the standard shell. The actions of rsh are identical to
those of sh, except that the following are disallowed:

changing directory (see cd(l)),
setting the value of $PATH,
specifying path or command names containing /,
redirecting output (> and > >).

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes sh to
execute it. Thus, it is possible to provide to the end-user shell procedures that have
access to the full power of the standard shell, while imposing a limited menu of
commands; this scheme assumes that the end-user does not have write and execute
permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control
over user actions, by performing guaranteed setup actions and leaving the user in an
appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (i.e., /usr/rbin)
that can be safely invoked by rsh. Some systems also provide a restricted editor
red.

- 9 - 7/RC.

SH(l) (Essential Utilities) SH(l)

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return a non­
zero exit status. If the shell is being used non-interactively execution of the shell
file is abandoned. Otherwise, the shell returns the exit status of the last command
executed (see also the exit command above).

I etc/ profile
$HOME/.profile
/tmp/sh•
/dev/null

SEE ALSO

BUGS

cd(l), echo(l), env(l), login(l), pwd(l), test(l), umask(l).
dup(2), exec(2), fork(2), pipe(2), signal(2), ulimit(2) in the AT&T 3B2 Computer
Programmer Reference Manual. newgrp(lM) in the AT&T 3B2 Computer System
Administration User Manual.

If a command is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command was
found, the shell will continue to exec the original command. Use the hash com­
mand to correct this situation.

If you move the current directory or one above it, pwd may not give the correct
response. Use the cd command with a full path name to correct this situation.

11\ ,.., Jo~

SHL(l) (User Environment Utilities) SHL(l)

NAME
sh! - shell layer manager

SYNOPSIS
shl

DESCRIPTION
Shi allows a user to interact with more than one shell from a single terminal. The
user controls these shells, known as layers, using the commands described below.

The current layer is the layer which can receive input from the keyboard. Other
layers attempting to read from the keyboard are blocked. Output from multiple
layers is multiplexed onto the terminal. To have the output of a layer blocked when
it is not current, the stty option loblk may be set within the layer.

The stty character swtcb (set to 'Z if NUL) is used to switch control to shl from a
layer. Shi has its own prompt, >>>,to help distinguish it from a layer.

A layer is a shell which has been bound to a virtual tty device (/dev/sxt???). The
virtual device can be manipulated like a real tty device using stty (1) and ioctl (2).
Each layer has its own process group id.

Definitions
A name is a sequence of characters delimited by a blank, tab or new-line. Only the
first eight characters are significant. The names (1) through (7) cannot be used
when creating a layer. They are used by sh! when no name is supplied. They may
be abbreviated to just the digit.

Commands

7 /'il.'i

The following commands may be issued from the sh! prompt level. Any unique
prefix is accepted.

create [name]
Create a layer called name and make it the current layer. If no argument
is given, a layer will be created with a name of the form (#)where# is the
last digit of the virtual device bound to the layer. The shell prompt variable
PSl is set to the name of the layer followed by a space. A maximum of
seven layers can be created.

block name [name . . .]
For each name, block the output of the corresponding layer when it is not
the current layer. This is equivalent to setting the stty option -loblk
within the layer.

delete name [name . . .]
For each name, delete the corresponding layer. All processes in the process
group of the layer are sent the SIGHUP signal (see signa/(2)).

help (or ?)
Print the syntax of the sh/ commands.

layers [-I] [name ...]
For each name, list the layer name and its process group. The -I option
produces a ps(l)-like listing. If no arguments are given, information is
presented for all existing layers.

resume [name]
Make the layer referenced by name the current layer. If no argument is
given, the last existing current layer will be resumed.

toggle Resume the layer that was current before the last current layer.
unblock name [name . ..]

For each name, do not block the output of the corresponding layer when it
is not the current layer. This is equivalent to setting the stty option loblk

- 1 - '7 /0t:.

SHL(l)

FILES

(User Environment Utilities) SHL(l)

within the layer.
quit Exit sh!. All layers are sent the SIGHUP signal.
name Make the layer referenced by name the current layer.

Virtual tty devices /dev/sxt???
$SHELL Variable containing path name of the shell to use (default is

/bin/sh).

SEE ALSO

7 /Q"'

sh(l), stty(l).
ioctl(2), signal(2) in the 3B2 Computer System Programmer Reference Manual.
sxt(7) in the AT&T 3B2 Computer System Administration Reference Manual.

- ') - 7/Rt;

SIZE(l) (Software Generation System Utilities) SIZE(!)

NAME
size - print section sizes of common object files

SYNOPSIS
size [-o] [-x] [- V] files

DESCRIPTION
The size command produces section size information for each section in the common
object files. The size of the text, data and bss (uninitialized data) sections are
printed along with the total size of the object file. If an archive file is input to the
size command the information for all archive members is displayed.

Numbers will be printed in decimal unless either the -o or the -x option is used,
in which case they will be printed in octal or in hexadecimal, respectively.

The -V flag will supply the version information on the size command.

SEE ALSO
as(l), cc(l), ld(l).
a.out(4), ar(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS
size: name: cannot open

if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

7/85 • 1 - 7/8".

SLEEP(!) (Essential Utilities)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP(l)

Sleep suspends execution for time seconds. It is used to execute a command after a
certain amount of time, as in:

(sleep 105; command) &

or to execute a command every so often, as in:

while true
do

done

SEE ALSO

command
sleep 37

alarm(2), sleep(3C) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - l - 7/85

SORT(l) (Essential Utilities) SORT(l)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnrl [-btxl [+posl
[-pos2ll [files]

DESCRIPTION

7/85

Sort sorts lines of all the named files together and writes the result on the standard
output. The standard input is read if - is used as a file name or no input files are
named.

Comparisons are based on one or more sort keys extracted from each line of input.
By default, there is one sort key, the entire input line, and ordering is lexicographic
by bytes in machine collating sequence.

The following options alter the default behavior:

-c Check that the input file is sorted according to the ordering rules; give no out-
put unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal keys.

-ooutput
The argument given is the name of an output file to use instead of the stan­
dard output. This file may be the same as one of the inputs. There may be
optional blanks between -o and output.

-ykmem
The amount of main memory used by the sort has a large impact on its per­
formance. Sorting a small file in a large amount of memory is a waste. If
this option is omitted, sort begins using a system default memory size, and
continues to use more space as needed. If this option is presented with a
value, kmem, sort will start using that number of kilobytes of memory, unless
the administrative minimum or maximum is violated, in which case the
corresponding extremum will be used. Thus, -yO is guaranteed to start with
minimum memory. By convention, -y (with no argument) starts with max­
imum memory.

-zrecsz
The size of the longest line read is recorded in the sort phase so buffers can be
allocated during the merge phase. U the sort phase is omitted via the -c or
-m options, a popular system default size will be used. Lines longer than the
buffer size will cause sort to terminate abnormally. Supplying the actual
number of bytes in the longest line to be merged (or some larger value) will
prevent abnormal termination.

The following options override the default ordering rules.

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons.

-f Fold lower case letters into upper case.

-i Ignore characters outside the ASCII range 040-0176 in non-numeric comparis-
ons.

-M Compare as months. The first three non-blank characters of the field are
folded to upper case and compared so that "JAN" < "FEB" < ... < "DEC".
Invalid fields compare low to "JAN". The -M option implies the -b option

- 1 - 7/85

SORT(l) (Essential Utilities) SORT(I)

(see below).

-n An initial numeric string, consisting of optional blanks, optional minus sign,
and zero or more digits with optional decimal point, is sorted by arithmetic
value. The -n option implies the -b option (see below). Note that the -b
option is only effective when restricted sort key specifications are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the requested
ordering rules are applied globally to all sort keys. When attached to a specific sort
key (described below), the specified ordering options override all global ordering
options for that key.

The notation +posl -pos2 restricts a sort key to one beginning at posl and ending
at pos2. The characters at positions posl and pos2 are included in the sort key
(provided that pos2 does not precede posl). A missing -pos2 means the end of
the line.

Specifying posl and pos2 involves the notion of a field, a minimal sequence of char­
acters followed by a field separator or a new-line. By default, the first blank (space
or tab) of a sequence of blanks acts as the field separator. All blanks in a sequence
of blanks are considered to be part of the next field; for example, all blanks at the
beginning of a line are considered to be part of the first field. The treatment of field
separators can be altered using the options:

-b Ignore leading blanks when determining the starting and ending positions of a
restricted sort key. If the -b option is specified before the first +posl argu­
ment, it will be applied to all +posl arguments. Otherwise, the b flag may be
attached independently to each +posl or -pos2 argument (see below).

-tx Use x as the field separator character; x is not considered to be part of a field
(although it may be included in a sort key). Each occurrence of x is
significant (e.g., xx delimits an empty field).

Posl and pos2 each have the form m.n optionally followed by one or more of the
flags bdfinr. A starting position specified by +m.n is interpreted to mean the n+ 1st
character in the m+lst field. A missing .n means .0, indicating the first character
of the m+lst field. If the b flag is in effect n is counted from the first non-blank in
the m+lst field; +m.Ob refers to the first non-blank character in the m+lst field.

A last position specified by -m.n is interpreted to mean the nth character (includ­
ing separators) after the last character of the m th field. A missing .n means .0,
indicating the last character of the mth field. If the b flag is in effect n is counted
from the last leading blank in the m+lst field; -m.lb refers to the first non-blank
in the m +1st field.

When there are multiple sort keys, later keys are compared only after all earlier
keys compare equal. Lines that otherwise compare equal are ordered with all bytes
significant.

EXAMPLES

7/85

Sort the contents of in.file with the second field as the sort key:

sort +1 -2 infile

Sort, in reverse order, the contents of infi.lel and infile2, placing the output in
out.file and using the first character of the second field as the sort key:

sort -r -o outfile + 1.0 -1.2 infilel infile2

- 2 - 7/85

SORT(l) (Essential Utilities) SORT(l)

FILES

Sort, in reverse order, the contents of in.file/ and infile2 using the first non-blank
character of the second field as the sort key:

sort -r + l.Ob -1.l b infilel infile2

Print the password file (passwd(4)) sorted by the numeric user ID (the third colon­
separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infi.le, suppressing all but the first
occurrence of lines having the same third field (the options -um with just one input
file make the choice of a unique representative from a set of equal lines predict­
able):

sort -um +2 -3 infile

/usr/tmp/stm???

SEE ALSO
comm(!), join(l), uniq(l).

DIAGNOSTICS

7/85

Comments and exits with non-zero status for various trouble conditions (e.g., when
input lines are too long), and for disorder discovered under the -c option. When
the last line of an input file is missing a new-line character, sort appends one, prints
a warning message, and continues.

- 3 - 7/85

SPELL(!) (Spell Utilities) SPELL(!)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-v] [-b] [-x] [-I] [-i] [+local file] [files]

/usr /lib/spell/hasbmake

/usr /lib/spell/spellin n

/usr /lib/spell/hasbcheck spelling_list

/usr /lib/spell/compress

DESCRIPTION

7/85

Spell collects words from the named files and looks them up in a spelling list.
Words that neither occur among nor are derivable (by applying certain inflections,
prefixes, and/or suffixes) from words in the spelling list are printed on the standard
output. If no files are named, words are collected from the standard input.

Spell ignores most troff(!), tbl(l), and eqn(l) constructions by silently invoking
deroff(l) when it encounters files created using DOCUMENTER'S WORKBENCH
Software.

-v all words not literally in the spelling list are printed, and plausible deriva­
tions from the words in the spelling list are indicated.

-b British spelling is checked. Besides preferring centre, colour, programme,
speciality, travelled, etc., this option insists upon -ise in words like standar­
dise, Fowler and the OED to the contrary notwithstanding.

-x every plausible stem is printed with = for each word.

-1 spell will follow the chains of all included files. By default, spell Oike
deroff(l)) follows chains of included files (.so and .nx trojJ(I) requests),
unless the names of such included files begin with /usr/lib.

-i spell will ignore all chains of included files.

+localJile
words found in local _file are removed from spell's output. Local _file is the
name of a user-provided file that contains a sorted list of words, one per
line. With this option, the user can specify a set of words that are correct
spellings (in addition to spe/l's own spelling list) for each job.

The spelling list is based on many sources, and while more haphazard than an ordi­
nary dictionary, is also more effective with respect to proper names and popular
technical words. Coverage of the specialized vocabularies of biology, medicine, and
chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below with
their default settings (see FILES). Copies of all output are accumulated in the his­
tory file. The stop list filters out misspellings (e.g., thier=thy-y+ier) that would
otherwise pass.

When spell detects a misspelled word, that word is added to the history file spellhist.
The routine compress should be run periodically to remove blank lines and duplicate
words in spellhist

Three routines help maintain and check the hash lists used by spell:

hash make Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output.

- 1 - 7/85

SPELL(l) (Spell Utilities) SPELL(l)

spellin n Reads n hash codes from the standard input and writes a compressed
spelling list on the standard output. Information about the hash cod­
ing is printed on standard error.

basbcbeck Reads a compressed spelling_list and recreates the nine-digit hash
codes for all the words in it; it writes these codes on the standard out­
put.

EXAMPLES

FILES

The following example creates the hashed spell list hlist and checks the result by
comparing the two temporary files; they should be equal.

cat goodwds I /usr/lib/spell/hashmake I sort -u >tmpl
cat tmpl I /usr/lib/spell/spellin 'cat tmpl I wc -I' > hlist
cat hlist I /usr/lib/spell/hashcheck >tmp2
diff tmpl tmp2

D _SPELL=/usr/lib/spell/hlist[ab]
S _SPELL=/usr /lib/spell/hstop
H _SPELL= /usr /lib/ spell/ spellhist
/usr /Ii bl spell/ spell prog

hashed spelling lists, American & British
hashed stop list
history file
program

SEE ALSO

BUGS

7/85

deroff(l), sed(l), sort(!), tee(l).
eqn(l), tbl(l), troff(l) in the UNIX System
Software Introduction and Reference Manual.

V DOCUMENTER'S WORKBENCH

The spelling list's coverage is uneven; new installations will probably wish to monitor
the output for several months to gather local additions; typically, these are kept in a
separate local file that is added to the hashed spelling_list via spellin.

- 2 - 7/85

SPUNE(IG) (Graphics Utilities) SPLINE(IG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [options]

DESCRIPTION
Spline takes pairs of numbers from the standard input as abscissas and ordinates of
a function. It produces a similar set, which is approximately equally spaced and
includes the input set, on the standard output. The cubic spline output has two con­
tinuous derivatives, and sufficiently many points to look smooth when plotted, for
example by graph(IG).

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input); spacing
is given by the next argument, or is assumed to be 1 if next argument is
not a number.

-k The constl!pt k us~d in t~e boun,~ary value computation:
Yo = ky" Yn = ky~-1

is set by the next argument (default k = 0).

-n Space output points so that approximately n intervals occur between the
lower and upper x limits (default n = 100).

-p Make output periodic, i.e., match derivatives at ends. First and last input
values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally, these
limits are calculated from the data. Automatic abscissas start at lower
limit (default O).

SEE ALSO
graph(lG).

DIAGNOSTICS

BUGS

7/85

When data is not strictly monotone in x, spline reproduces the input without inter­
polating extra points.

A limit of 1,000 input points is enforced silently.

- l - 7/85

SPLIT(l) (Directory and File Management Utilities) SPLIT(l)

NAME
split - split a file into pieces

SYNOPSIS
split [-n] [file [name]

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1000 lines) onto a set of out­
put files. The name of the first output file is name with aa appended, and so on lex­
icographically, up to zz (a maximum of 676 files). Name cannot be longer than 12
characters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is
used.

SEE ALSO
bfs(l), csplit(l).

7/85 - 1 - 7/85

STARTER(l) (Help Utilities) STARTER(l)

NAME
starter - information about the UNIX system for beginning users

SYNOPSIS
[help] starter

DESCRIPTION
The UNIX System help Facility command starter provides five categories of infor­
mation about the UNIX system to assist new users.

The five categories are:

- commands a new user should learn first

- UNIX system documents important for beginners

- education centers offering UNIX system courses

- locai environment information

- on-line teaching aids installed on the UNIX system

The user may choose one of the above categories by entering its corresponding letter
(given in the menu), or may exit to the shell by typing q (for "quit"). When a
category is chosen, the user will receive one or more pages of information pertaining
to it.

From any screen in the facility, a user may execute a command via the shell
(sh(l)) by typing a! and the command to be executed. The screen will be redrawn
if the command that was executed was entered at a first level prompt. If entered at
any other prompt level, only the prompt will be redrawn.

By default, the help facility scrolls the data that is presented to the user. If a user
prefers to have the screen cleared before printing the data (non-scrolling), a variable
must be defined in the user's .profile file called SCROLL The variable SCROLL
must be set to no and exported for non-scrolling to occur. If the user later decides
that scrolling is desired, the variable SCROLL must be set to yes or deleted from
the user's .profile file.

Further information on the UNIX System help Facility can be found on the help(!),
usage(!), locate(!), and glossary(!) manual pages.

SEE ALSO
glossary(!), help(l), locate(!), sh(l), usage(!).
term(5) in the AT&T 3B2 Computer Programmer Reference Manual.

WARNINGS

7/85

If the TERM variable is not set in the user's .profile file, then TERM will default to
the terminal value type 450 (a hard-copy terminal) . For a list of valid terminal
types, refer to term (5). The help facility assumes that tabs are set on the user's
terminal.

- 1 - 7/85

STAT(lG) (Graphics Utilities) STAT(lG)

NAME
stat - statistical network useful with graphical commands

SYNOPSIS
node-name [options] [files]

DESCRIPTION

7/85

Stat is a collection of command level functions (nodes) that can be interconnected
using sh (1) to form a statistical network. The nodes reside in /usr/bin/graf (see
graphics(lG)). Data is passed through the network as sequences of numbers (vec­
tors), where a number is of the form:

[sign] (digits) (.digits) [e[sign]digits]

evaluated in the usual way. Brackets and parentheses surround fields. All fields are
optional, but at least one of the fields surrounded by parentheses must be present.
Any character input to a node that is not part of a number is taken as a delimiter.

Stat nodes are divided into four classes.

Transformers, which map input vector elements into output vector
elements;

Summarizers,

Translators,

Generators,

which calculate statistics of a vector;

which convert among formats; and

which are sources of definable vectors.

Below is a list of synopses for stat nodes. Most nodes accept options indicated by a
leading minus (-) . In general, an option is specified by a character followed by a
value, such as c5. This is interpreted as c := 5 (c is assigned 5). The following
keys are used to designate the expected type of the value:

c characters,

integer,

f floating point or integer,

file file name, and

string string of characters, surrounded by quotes to include a shell argu-
ment delimiter.

Options without keys are flags. All nodes except generators accept files as input,
hence it is not indicated in the synopses.

Transformers:

abs

af

ceil

cusum

exp

floor

gamma

list

[-ci] - absolute value
columns (similarly for -c options that follow)

[-ci t v] - arithmetic function
titled output, verbose

[-cd - round up to next integer

[-ci] - cumulative sum

[-ci] - exponential

[-ci] - round down to next integer

[-ci] - gamma

[-ci dstring I - list vector elements
delimiter(s)

- l - 7/85

STAT(lG) (Graphics Utilities) STAT(lG)

7/85

log

mod

pair

power

root

round

siline

sin

subset

[-ci bf I - logarithm
base

[-ci mf] - modulus
modulus

[-d Ffile xi] - pair elements
File containing base vector, x group size

[-d pf] - raise to a power
power

[-d rf] - take a root
root

[-cipisi] - round to nearest integer, .5 rounds to 1
places after decimal point, significant digits

[-ciifnisf] - generate a line given slope and intercept
intercept, number of positive integers, slope

[-ci] - sine

[-af bf ci Ffile ii lf nl np pf si ti] - generate a subset
above, below, File with master vector, interval, leave, master con­
tains element numbers to leave, master contains element numbers
to pick, pick, start, terminate

Summarizers:

bucket [-ai ci Ffile lif ii if nil - break into buckets
average size, File containing bucket boundaries, high, interval, low,
number
Input data should be sorted

cor [- Ffile] - correlation coefficient
File containing base vector

hilo [- h I o ox oy]- find high and low values
high only, low only, option form, option form with x prepended,
option form with y prepended

lreg [- F.file i o s] - linear regression
File containing base vector, intercept only, option form for siline,
slope only

mean [-ff ni pf] - (trimmed) arithmetic mean
fraction, number, percent

point [-ff ni pf s] - point from empirical cumulative density function
fraction, number, percent, sorted input

prod - internal product

qsort I -d] - quick sort

rank - vector rank

total - sum total

var - variance

Translators:

bar [-a b f g ri wi xf xa yf ya ylf yhf l - build a bar chart
suppress axes, bold, suppress frame, suppress grid, region, width in

- 2 - 7/85

STAT(lG) (Graphics Utilities) STAT(lG)

percent, x origin, suppress x-axis label, y ongm, suppress y-axis
label, y-axis lower bound, y-axis high bound
Data is rounded off to integers.

hist [-a b f g ri xf xa yf ya ylf yhf] - build a histogram
suppress axes, hold, suppress frame, suppress grid, region, x origin,
suppress x-axis label, y origin, suppress y-axis label, y-axis lower
bound, y-axis high bound

label [-b c F.file h p ri x xu y yr] - label the axis of a GPS file
bar chart input, retain case, label File, histogram input, plot input,
rotation, x-axis, upper x-axis, y-axis, right y-axis

pie [-b o p pni ppi ri v xi yi] - build a pie chart
bold, values outside pie, value as percentage(:=lOO), value as
percentage(:=i), draw percent of pie, region, no values, x origin, y
origin
Unlike other nodes, input is lines of the form

[< i e f cc >] value [label]
ignore (do not draw) slice, explode slice, fill slice, color slice
c= (black, red, green, blue)

plot [-ab cstring d f Ffile gm ri xf xa xifxhf xlfxnixt yfya yifyhf
ylfyniyt l - plot a graph
suppress axes, bold, plotting characters, disconnected, suppress
frame, File containing x vector, suppress grid, mark points, region,
x origin, suppress x-axis label, x interval, x high bound, x low
bound, number of ticks on x-axis, suppress x-axis title, y origin,
suppress y-axis label, y interval, y high bound, y low bound,
number of ticks on y-axis, suppress y-axis title

title [-b c lstring vstring ustring] - title a vector or a GPS
title bold, retain case, lower title, upper title, vector title

Generators:

gas

prime

rand

[-ci ifni sf if] - generate additive sequence
interval, number, start, terminate

[-ci hi Ii ni I - generate prime numbers
high, low, number

[-ci hf lf mf ni si l - generate random sequence
high, low, multiplier, number, seed

RESTRICTIONS
Some nodes have a limit on the size of the input vector.

SEE ALSO
graphics(lG).
gps(4) in the AT&T 382 Computer Programmer Reference Manual.

7/85 - 3 - 7/85

STRIP(l) (Software Generation System Utilities) STRIP(l)

NAME
strip - strip symbol and line number information from a common object file

SYNOPSIS
strip [-I] [-xl [-b] [-rl [-VI file-name

DESCRIPTION

FILES

The strip command strips the symbol table and line number information from com­
mon object files, including archives. Once this has been done, no symbolic debug­
ging access will be available for that file; therefore, this command is normally run
only on production modules that have been debugged and tested.

The amount of information stripped from the symbol table can be controlled by
using any of the following options:

-I Strip line number information only; do not strip any symbol table infor­
mation.

-x Do not strip static or external symbol information.

-b Same as the -x option, but also do not strip scoping information (i.e.,
beginning and end of block delimiters).

-r Do not strip static or external symbol information, or relocation informa­
tion.

- V Print the version of the strip command executing on the standard error
output.

If there are any relocation entries in the object file and any symbol table informa­
tion is to be stripped, strip will complain and terminate without stripping file-name
unless the -r flag is used.

If the strip command is executed on a common archive file (see ar(4)) the archive
symbol table will be removed. The archive symbol table must be restored by exe­
cuting the ar(l) command with the s option before the archive can be link-edited
by the /d(l) command. Strip will instruct the user with appropriate warning mes­
sages when this situation arises.

The purpose of this command is to reduce the file storage overhead taken by the
object file.

/usr/tmp/strp? ?? ?? ?

SEE ALSO
ar(l), as(l), cc(l), ld(l).
a.out(4), ar(4) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS

7/8S

strip: name: cannot open
if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object file.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r flag is

not used, the symbol table information cannot be stripped.

- I - 7/85

STTY(I) (Essential Utilities) STTY(l)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a] [-g] [options]

DESCRIPTION
Stty sets certain terminal I/O options for the device that is the current standard
input; without arguments, it reports the settings of certain options;

-a reports all of the option settings;

-g reports current settings in a form that can be used as an argument to
another stty command.

Options in the last group are implemented using options in the previous groups.
Note that many combinations of options make no sense, but no sanity checking is
performed. The options are selected from the following:

Control Modes
parenb (-parenb) enable (disable) parity generation and detection.
parodd (-parodd) select odd (even) parity.
csS cs6 cs7 cs8 select character size (see termio (7)).
0 hang up phone line immediately.
110 300 600 1200 1800 2400 4800 9600 exta extb

bupcl (- bupcl)

bop (-bop)
cstopb (-cstopb)
cread (-cread)
clocal (-clocal)
loblk (-loblk)

Set terminal baud rate to the number given, if possible. (All
speeds are not supported by all hardware interfaces.)
hang up (do not hang up) DATA-PHONE® connection on last
close.
same as bupcl (- bupcl).
use two (one) stop bits per character.
enable (disable) the receiver.
n assume a line without (with) modem control.
block (do not block) output from a non-current layer.

Input Modes
ignbrk (-ignbrk)
brkint (- brkint)
ignpar (-ignpar)
parmrk (-parmrk)
inpck (-inpck)
istrip (-istrip)
inlcr (-inlcr)
igncr (-igncr)
icrnl (-icrnl)
iuclc (-iuclc)

ixon (-ixon)

ixany (-ixany)
ixoff (-ixoff)

Output Modes
opost (-opost)

olcuc (-olcuc)

7/85

ignore (do not ignore) break on input.
signal (do not signal) INTR on break.
ignore (do not ignore) parity errors.
mark (do not mark) parity errors (see termio (7)).
enable (disable) input parity checking.
strip (do not strip) input characters to seven bits.
map (do not map) NL to CR on input.
ignore (do not ignore) CR on input.
map (do not map) CR to NL on input.
map (do not map) upper-case alphabetics to lower case on
input.
enable (disable) START/STOP output control. Output is
stopped by sending an ASCII DC3 and started by sending an
ASCII DC!.
allow any character (only DCI) to restart output.
request that the system send (not send) START/STOP char­
acters when the input queue is nearly empty/full.

post-process output (do not post-process output; ignore all
other output modes).
map (do not map) lower-case alphabetics to upper case on
output.

- 1 - 7/85

STTY(l)

onlcr (-onlcr)
ocrnl (-ocrnO
onocr (-onocr)
onlret (-onlret)

ofill (-ofill)
ofdel (-ofdel)
crO crl cr2 cr3
nlO nil
tabO tabl tab2 tab3
bsO bsl
ffOffl
vtO vtl

Local Modes
isig (-isig)

icanon (-icanon)

xcase (-xcase)
echo (-echo)
echoe (-echoe)

echok (-echok)
lfkc (-lfkc)
echonl (-echonl)
noflsh (-noflsh)
stwrap (-stwrap)

stflush (-stflush)

stappl (-stappl)
Control Assignments

control-character c

line i
Combination Modes

evenp or parity
oddp
-parity, -evenp, or

(Essential Utilities)

map (do not map) NL to CR-NL on output.
map (do not map) CR to NL on output.
do not (do) output CRs at column zero.

STTY(l)

on the terminal NL performs (does not perform) the CR
function.
use fill characters (use timing) for delays.
fill characters are DELs (NULs).
select style of delay for carriage returns (see termio (7)).
select style of delay for line-feeds (see termio(7)).
select style of delay for horizontal tabs (see termio (7)).
select style of delay for backspaces (see termio (7)).
select style of delay for form-feeds (see termio (7)).
select style of delay for vertical tabs (see termio (7)).

enable (disable) the checking of characters against the spe­
cial control characters INTR, QUIT, and SWTCH.
enable (disable) canonical input (ERASE and KILL process­
ing).
canonical (unprocessed) upper/lower-case presentation.
echo back (do not echo back) every character typed.
echo (do not echo) ERASE character as a backspace-space­
backspace string. Note: this mode will erase the ERASEed
character on many CRT terminals; however, it does not keep
track of column position and, as a result, may be confusing
on escaped characters, tabs, and backspaces.
echo (do not echo) NL after KILL character.
the same as ecbok (-echok); obsolete.
echo (do not echo) NL.
disable (enable) flush after JNTR, QUIT, or SWTCH.
disable (enable) truncation of lines longer than 79 characters
on a synchronous line.
enable (disable) flush on a synchronous line after every
write(2).
use application mode (use line mode) on a synchronous line.

set control-character to c, where control-character is erase,
kill, intr, quit, swtcb, eof, ctab, min, or time (ctab is used
with -stappl; (min and time are used with -icanon; see ter­
mio (7)). If c is preceded by an (escaped from the shell)
caret C), then the value used is the corresponding CTRL
character (e.g., "'d" is a CTRL-d); "'?" is interpreted as
DEL and "' -" is interpreted as undefined.
set line discipline to i (0 < i < 127) .

enable parenb and cs7.
enable parenb, cs7, and parodd.

-oddp
disable parenb, and set cs8.

raw (-raw or cooked)

nl (-nl)

7/85

enable (disable) raw input and output (no ERASE, KILL,
INTR, QUIT, SWTCH, EOT, or output post processing).
unset (set) icrnl, onlcr. In addition -nl unsets inlcr, igncr,
ocrnl, and onlret.

- 2 - 7/85

STTY(l)

lease (- lease)
LCASE (- LCASE)
tabs (-tabs or tab3)
ek
sane
term

SEE ALSO
tabs(l).

(Essential Utilities)

set (unset) xcase, iuclc, and oleuc.
same as lease (- lease).
preserve (expand to spaces) tabs when printing.

STTY(I)

reset ERASE and KILL characters back to normal # and @.

resets all modes to some reasonable values.
set all modes suitable for the terminal type term, where term
is one of tty33, tty37, vt05, tn300, ti700, or tek.

ioctl(2) in the AT&T 3B2 Computer Programmer Reference Manual.
termio(7) in the AT&T 3B2 Computer System Administration Reference Manual.

7/85 - 3 - 7/85

SUM(l) (Directory and File Management Utilities)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [-r] file

DESCRIPTION

SUM(l)

Sum calculates and prints a 16-bit checksum for the named file, and also prints the
number of blocks in the file. It is typically used to look for bad spots, or to validate
a file communicated over some transmission line. The option -r causes an alternate
algorithm to be used in computing the checksum.

SEE ALSO
wc(l).

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check the block
count.

7/85 - 1 - 7/85

SYSADM(I) (Essential Utilities) SYSADM(I)

NAME
sysadm - menu interface to do system administration

SYNOPSIS
sysadm [subcommand l

DESCRIPTION
This command, when invoked without an argument, presents a menu of system
administration subcommands, from which the user selects. If the optional argument
is presented, the named subcommand is run or the named sub-menu is presented.

The sysadm command may be given a password. See admpasswd in the SUBCOM­
MANDS section.

SUBCOMMANDS

7/85

The following menus of subcommands are available. (The number of bullets (•) in
front of each item indicates the level of the menu or subcommand.)

• diagnostics
system diagnostics menu

These subcommands look for and sometimes repair problems in the system.
Those subcommands that issue reports allow you to determine if there are
detectable problems. Commands that attempt repair are for repair people
only. You must know what you are doing!

• • diskrepair
advice on repair of built-in disk errors

This subcommand advises you on how to go about repairing errors that
occur on built-in disks.

WARNING: Because this is a repair function, it should only be performed
by qualified service personnel.

NOTE: Reports of disk errors most probably result in the loss of files
and/or damage to data. It will be necessary to restore the repaired disk
from backup copies.

• • diskreport
report on built-in disk errors

This subcommand shows you if the system has collected any information
indicating that there have been errors while reading the built-in disks. You
can request either summary or full reports. The summary report provides
sufficient information about disk errors to determine if repair should be
attempted. If the message "no errors logged" is part of the report, then
there is no damage. If a number of errors is reported, there is damage and
you should call for service. The full report gives additional detail for the
expert repair person trouble shooting complicated problems.
NOTE: Reports of disk errors most probably result in the loss of files
and/or damage to data. It will be necessary to restore the repaired disk
from backup copies.

• diskmgmt
disk management menu

The subcommands in this menu provide functions for using removable disks.

- 1 - 7/85

SYSADM(l) (Essential Utilities) SYSADM(l)

7/85

The subcommands include the ability to format disks, copy disks, and to use
disks as mountable file systems. It also contains a menu of subcommands
for handling built-in disks.

•• checkfsys
check a removable disk file system for errors

Checkfsys checks a file system on a removable disk for errors. If there are
errors, this procedure attempts to repair them.

•• cpdisk
make exact copies of a removable disk

This procedure copies the contents of a removable disk into the built-in disk
and then allows the user to make exact copies of it. These copies are ident­
ical to the original in every way. The copies are made by first reading the
original removable disk entirely into the machine and then writing it out
onto duplicate disks. The procedure will fail if there is not enough space in
the system to hold the contents of the removable disk.

•• erase
erase data from removable disk

This procedure erases a removable disk by overwntmg it with null bytes.
The main purpose is to remove data that the user does not want seen. Once
performed, this operation is irreversible.

•• format
format new removable disks

Format prepares new removable disks for use. Once formatted, programs
and data can be written on the disks.

•• harddisk
hard disk management menu

The subcommands in this menu provide functions for using hard disks. For
each hard disk, the disk can be partitioned with default partitioning or the
current disk partitioning can be displayed, or the disk can be removed from
the system.

••• display
display hard disk partitioning

Display will allow the user to display the hard disk partitioning. This will
inform the user of current disk partitioning information.

•• • partitioning
partition a hard disk

Partitioning configures hard disks. This will allow you to partition a hard
disk according to the default partitioning or to specify a particular parti­
tioning.

••• rmdisk
makes the built-in disk unknown to the system

Rmdisk makes the specified built-in disk unknown to the system by

7/85

SYSADM(l) (Essential Utilities) SYSADM(l)

7/85

removing the /dev entries and the mount directories for the disk. This com­
mand must be run before a previously partitioned disk can be repartitioned.
Also /etc/disks must be run to restore /dev entries.

•• makefsys
create a new file system on a removable disk

Makefsys creates a new file system on a removable disk which can then
store data which the user does not wish to keep on the hard disk. When
"mounted", the files in the file system have all the properties of files kept on
the hard disk.

•• mountfsys
mount a removable disk file system

Mountfsys mounts a file system, found on a removable disk, making it avail­
able to the user. The file system is unmounted with the "unmountfsys"
command. THE DISK MUST NOT BE REMOVED WHILE THE FILE SYS­
TEM IS STILL MOUNTED.

• • unmountfsys
unmount a removable disk file system

Umountfsys unmounts a file system, allowing the user to remove the disk.
THE DISK MUST NOT BE REMOVED UNTIL THE FILE SYSTEM IS
UNMOUNTED.

• filemgmt
file management menu

The subcommands in this menu allow the user to protect files on the hard
disk file systems by copying them onto diskettes and later restoring them to
the hard disk by copying them back. Subcommands are also provided to
determine which files might be best kept on diskette based on age or size.

••backup
backup files from integral hard disk to removable disk or tape

Backup saves copies of files from the built-in disk file systems to removable
disk or tape. There are two kinds of backups:

COMPLETE - copies all files (useful in case of serious file system damage)

INCREMENTAL - copies files changed since the last backup

The normal usage is to do a complete backup of each file system and then
periodically do incremental backups; 2 cycles is recommended (one set of
complete backups and several incrementals to each cycle). Files backed up
with "backup" are restored using "restore".

•• bupsched
backup reminder scheduling menu

The subcommands in this menu are used to schedule backup reminder mes­
sages that are printed to the console when the machine is shutdown or at
specified times.

- 1 - 7/R'.

SYSADM(l) (Essential Utilities) SYSADM(I)

7/85

• • • schedcheck
schedules a time to check for reminder messages

Schedcheck schedules a time when the system checks to see if any backup
reminder messages need to be printed. Messages are scheduled with
schedmsg.

••• schedmsg
schedules times when messages are to be printed.

Schedmsg schedules a time range during which if the machine is shutdown
or a check has been run, a message is printed to the console stating that the
specified file systems need to be backed up. If "shutdown -y ... " is used,
no checks will be made.

•• diskuse
display how much of the hard disk is being used

Diskuse lets the user know what percentage of the hard disk is currently
occupied by files. The list is organizaed by file system names.

•• fileage
list files older that a particular date

Fileage prints the names of all files older that the date specified by the user.
If no date is entered, all files older that 90 days will be listed. If no direc­
tory is specified to look in, the user HOME directory will be user.

• • filesize
list the largest files in a particular directory

Filesize prints the names of the largest files in a specific directory. If no
directory is specified, the users HOME directory will be used. If the user
does not specify how many large files to list, l 0 files will be listed.

• • restore
restore files from "backup" and "store" media to integral hard disk

Restore copies files from disks and cartridge tapes made by "backup" and
"store" back onto the hard disk. You can restore individual files, directories
of files, or the entire contents of a removable disk or cartridge tape. The
user can restore from both "incremental" and "complete" media. The user
can also list the names of files stored on the removable disk or cartridge
tape.

•• store
store files and directories of files onto disk or tape

Store copies files from the integral hard disk to removable disk or cartridge
tape and allows the user to optionally verify that they worked and to option­
ally remove them when done. Typically, these would be files that the user
wants to archive or restrict access to. The user can store single files and
directories of files. Use the "restore" command to put stored files back on
the integral hard disk and to list the files stored.

• machinemgmt
machine management menu

- 4 - 7/85

SYSADM(l) (Essential Utilities) SYSADM(l)

7/85

Machine management functions are tools used to operate the machine, e.g.,
turn it off, reboot, or go to the firmware monitor.

••firmware
stop all running programs then enter firmware mode

This procedure will stop all running programs, close any open files, write
out information to the disk (such as directory information), then enter the
firmware mode. (Machine diagnostics and other special functions that are
not available on the UNIX system.)

•• floppykey
create a "floppy key" removable disk

The "floppy key" removable disk allows the user to enter firmware mode if
the firmware password has been changed and then forgotten. Thus the
"floppy key" is just that, the "key" to the system and should be protected as
such.

• powerdown
stop all running programs, then turn off the machine

Powerdown will stop all running programs, close any open files, write out
information to disk (such as directory information), then turn the machine
power off.

•• reboot
stop all running programs then reboot the machine

Reboot will stop all running programs, close any open files, write out infor­
mation to disk (such as directory information), then reboot the machine.
This can be used to get out of some types of system trouble, such as when a
process cannot be killed.

•• whoson
print list of users currently logged onto the system

Whoson prints the login ID, terminal device number, and sign-on time of all
users who are currently using the computer.

• packagemgmt
package management

These submenus and subcommands manage various software and hardware
packages that you install on your machine. Not all optional packages add
subcommands here.

• softwaremgmt
software management menu

These subcommands permit the user to install new software, remove
software, and run software directly from the removable disk it is delivered
on. The "remove" and "run" capabilities are dependent on the particular
software packages. See the instructions delivered with each package.

• • installpkg
install new software package onto integral hard disk

- 5 - 7/85

SYSADM(l) (Essential Utilities) SYSADM(l)

7/85

Install copies files from removable disk onto the integral hard disk and per­
forms additional work if necessary so that the software can be run. From
then on, the user will have access to those commands.

•• removepkg
remove previously installed package from integral hard disk

This subcommand displays a list of currently installed optional software
packages. Actions necessary to remove the software packages specified by
the user will then be performed. The removable disk used to "installpkg"
the software is needed to remove it.

•• runpkg
run software package without installing it

This package allows the user to run software from a removable disk without
installing it permanently on the system. This is useful if the user does not
use the software often or does not have enough room on the system.
WARNING: Not all software packages have the ability to run their con­
tents this way. See the instructions that come with the software package.

• syssetup
system setup menu

System setup routines allow the user to tell the computer what its environ­
ment looks like: what the date, time, and time zone is, what administration
and system capabilities are to be under password control, what the
machine's name is, etc. The first-time setup sequence is also here.

•• admpasswd
assign or change administrative passwords

Admpasswd lets you set or make changes to passwords for administrative
commands and logins such as setup and sysadm.

•• datetime
set the date, time, time zone, and daylight savings time

Datetime tells the computer the date, time, time zone, and whether you
observe Daylight Savings Time (DST). It is normally run once when the
machine is first set up. If you observe DST, the computer will automati­
cally start to observe it in the spring and return to Standard Time in the
fall. The machine has to be turned off and turned back on again to guaran­
tee that ALL times will be reported correctly. Most are correct the next
time the user logs in.

•• nodename
set the node name of this machine

This allows you to change the "node name" of this machine. The "node
name" used by various communications networks to identify this machine.

•• setup
set up your machine the very first time

Setup allows the user to define the first login, to set the passwords on the
user-definable administration logins and to set the time zone for your

- 6 - 7/85

SYSADM(l) (Essential Utilities) SYSADM(l)

7/85

location.

•• syspasswd
assign system passwords

Syspasswd lets the user set system passwords normally reserved for the very
knowledgeable user. For this reason, this procedure may assign those pass­
words, but may not change or clear them. Once set, they may only be
changed by the specific login or the "root" login.

• usermgmt
user management menu

These subcommands allow you to add, modify and delete the list of users
that have access to your machine. You can also place them in separate
groups so that they can share access to files within the group but protect
themselves from other groups.

•• addgroup
add a group to the system

Addgroup adds a new group name or ID to the computer. Group names
and IDs are used to identify groups of users who desire common access to a
set of files and directories.

•• adduser
add a user to the system

Adduser installs a new login ID on the machine. You are asked a series of
questions about the user and then the new entry is made. You can enter
more than one user at a time. Once this procedure is finished, the new
login ID is available.

•• delgroup
delete a group from the system

Delgroup allows you to remove groups from the computer. The deleted
group is no longer identified by name. However, files may still be identified
with the group ID number.

•• deluser
delete a user from the system

Deluser allows you to remove users from the computer. The deleted user's
files are removed from the hard disk and their logins are removed from the
/etc/passwd file.

•• lsgroup
list groups in the system

Lsgroup will list all the groups that have been entered into the computer
using the "addgroup" command. This list is updated automatically by "add­
group" and "delgroup"

•• lsuser
list users in the system

Lsuser will list all the users that have been entered into the computer using

- 7 - 7/85

SYSADM(l) (Essential Utilities) SYSADM(l)

7/85

the "adduser" command. This list is updated automatically by "adduser"
and "deluser".

• • modadduser
modify defaults used by adduser

Modadduser allows the user to change some of the defaults used when
adduser creates a new login. Changing the defaults does not effect any
existing logins, only logins made form this point on.

•• modgroup
make changes to a group on the system <not available>

Modgroup allows the user to change all the information about a group that
the user enters when "addgroup" is run to set up new groups.

•• moduser
menu of commands to modify a user's login

This menu contains commands that modify the various aspects of a user's
login.

• • • chgloginid
change a user's login ID

This procedure allows the user to change a user's login ID. Administrative
and system logins cannot be changed.

••• chgpasswd
change a user's passwd

This proceudure allows removal or change of a suer's password. Adminis­
trative and system login passwords channot be changed. To change admin­
istrative and system login passwords, see the system setup menu: sysadm
syssetup.

••• chgshell
change a user's login shell

This procedure allows the user to change the command run when a user
logs in. The login shell of the administrative and system logins cannot be
changed by this procedure.

• ttymgmt
terminal management

This procedure allows the user to manage the computer's terminal func­
tions.

••baud
change the baud rate on a tty line

Baud allows a user to change the baud rate for a tty line and turn on a
getty(lM) for that line thereby enabling its login(!) use. Baud displays a
list of acceptable values and prompts the user to enter a tty line and the
baud rate desired.

- 8 - 7/85

SYSADM(l) (Essential Utilities) SYSADM(l)

•• disable
turn off a tty line

Disable allows a user to turn off a getty(lM) for a tty line thereby disa­
bling its login(!) use. Disable displays a list of acceptable values and
prompts the user to enter the tty line desired.

•• enable
turn on a tty line

Enable allows a user to spawn a getty(IM) for a tty line thereby enabling
that line for login (1) use. Enable displays a list of acceptable values and
prompts the user to enter the tty line desired.

EXAMPLES

FILES

sysadm adduser

/usr/admin

/usr/admin/menu

files that support sysadm

start of menu

/usr/spool/cron/crontabs/sysadm check scheduling file

/etc/bupsched message scheduling file

SEE ALSO
login (1).
getty(IM) in the AT&T 3B2 Computer System Administration Reference Manual.

7/85 - 9 - 7/85

TABS(l) (User Environment Utilities) TABS(l)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec] [+mn] [-Ttype]

DESCRIPTION

7/85

Tabs sets the tab stops on the user's terminal according to the tab specification
tabs pee, after clearing any previous settings. The user's terminal must have
remotely-settable hardware tabs.

Users of GE TermiNet terminals should be aware that they behave in a different
way than most other terminals for some tab settings. The first number in a list of
tab settings becomes the left margin on a TermiNet terminal. Thus, any list of tab
numbers whose first element is other than 1 causes a margin to be left on a Ter­
miNet, but not on other terminals. A tab list beginning with 1 causes the same
effect regardless of terminal type. It is possible to set a left margin on some other
terminals, although in a different way (see below).

Four types of tab specification are accepted for tabspec: "canned," repetitive, arbi­
trary, and file. If no tabspec is given, the default value is -8, i.e., UNIX system
"standard" tabs. The lowest column number is 1. Note that for tabs, column 1
always refers to the leftmost column on a terminal, even one whose column markers
begin at 0, e.g., the DASI 300, DASI 300s, and DASI 450.

-code Gives the name of one of a set of "canned" tabs. The legal codes and
their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code, the first
typed character corresponds to card column 7, one space gets you to
column 8, and a tab reaches column 12. Files using this tab setup should
include a format specification as follows:

<:t-c2 m6 s66 d:>
-c3 1,6, 10, 14, 18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted), with more tabs than -c2.
This is the recommended format for COBOL. The appropriate format
specification is:

<:t-c3 m6 s66 d:>
-f 1,7,ll,15,19,23

FORTRAN
-p 1,5,9,13,17,21,25,29,33,37 ,41,45,49,53,57,61

PL/I
-s 1,10,55

SNOBOL
-u 1,12,20,44

UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n A repetitive specification requests tabs at columns 1 +n, 1 +2•n, etc. Note
that such a setting leaves a left margin of n columns on TermiNet

- 1 - 7/85

TABS(l) (User Environment Utilities) TABS(l)

terminals only. Of particular importance is the value -8: this represents
the UNIX system "standard" tab setting, and is the most likely tab setting
to be found at a terminal. Another special case is the value -0, implying
no tabs at all.

nl ,n2, ... The arbitrary format permits the user to type any chosen set of numbers,
separated by commas, in ascending order. Up to 40 numbers are allowed.
If any number (except the first one) is preceded by a plus sign, it is taken
as an increment to be added to the previous value. Thus, the tab lists
1,10,20,30 and 1,10,+10,+10 are considered identical.

- - file If the name of a file is given, tabs reads the first line of the file, searching
for a format specification. If it finds one there, it sets the tab stops accord­
ing to it, otherwise it sets them as -8. This type of specification may be
used to make sure that a tabbed file is printed with correct tab settings,
and would be used with the pr(l) command:

tabs -- file; pr file

Any of the following may be used also; if a given flag occurs more than once, the
last value given takes effect:

-Ttype Tabs usually needs to know the type of terminal in order to set tabs and
always needs to know the type to set margins. Type is a name listed in
term (5). If no -T flag is supplied, tabs searches for the $TERM value in
the environment (see environ (5)). If no type can be found, tabs tries a
sequence that will work for many terminals.

+mn The margin argument may be used for some terminals. It causes all tabs
to be moved over n columns by making column n + 1 the left margin. If
+m is given without a value of n, the value assumed is 10. For a Ter­
miNet, the first value in the tab list should be 1, or the margin will move
even further to the right. The normal (leftmost) margin on most terminals
is obtained by +mO. The margin for most terminals is reset only when the
+m flag is given explicitly.

Tab and margin setting is performed via the standard output.

DIAGNOSTICS
illegal tabs
illegal increment

unknown tab code
can't open
file indirection

when arbitrary tabs are ordered incorrectly.
when a zero or missing increment is found in an arbitrary
specification.
when a "canned" code cannot be found.
if - -.file option used, and file can't be opened.
if - -file option used and the specification in that file points
to yet another file. Indirection of this form is not permitted.

SEE ALSO
pr(l).

BUGS

7/85

environ(5), term(5) in the AT&T 3B2 Computer Programmer Reference Manual.

There is no consistency among different terminals regarding ways of clearing tabs
and setting the left margin.
It is generally impossible to usefully change the left margin without also setting
tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing to
set 64.

- 2 - 7/85

TAIL(l) (Directory and File Management Utilities) TAIL(l)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [± [number][lbc[f]] I [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place.
If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the
end of the input (if number is null, the value 10 is assumed). Number is counted in
units of lines, blocks, or characters, according to the appended option I, b, or c.
When no units are specified, counting is by lines.

With the -f ("follow") option, if the input file is not a pipe, the program will not
terminate after the line of the input file has been copied, but will enter an endless
loop, wherein it sleeps for a second and then attempts to read and copy further
records from the input file. Thus it may be used to monitor the growth of a file that
is being written by some other process. For example, the command:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are appended
to fred between the time tail is initiated and killed. As another example, the com­
mand:

tail - I 5cf fred

will print the last 15 characters of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed.

SEE ALSO

BUGS

7/85

dd(lM) in the AT&T 3B2 Computer System Administration Reference Manual.

Tails relative to the end of the file are stored in a buffer, and thus are limited in
length. Various kinds of anomalous behavior may happen with character special
files.

- 1 - 7/85

TAR(l) (Cartridge Tape Utilities) TAR(l)

NAME
tar - tape file archiver

SYNOPSIS
tar [key] [files]

DESCRIPTION

7/85

Tar saves and restores files on magnetic tape. Its actions are controlled by the key
argument. The key is a string of characters containing at most one function letter
and possibly one or more function modifiers. Other arguments to the command are
files (or directory names) specifying which files are to be dumped or restored. In
all cases, appearance of a directory name refers to the files and (recursively) sub­
directories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c function implies
this function.

x The named files are extracted from the tape. If a named file matches a
directory whose contents had been written onto the tape, this directory is
(recursively) extracted. The owner, modification time, and mode are
restored (if possible). If no files argument is given, the entire content of
the tape is extracted. Note that if several files with the same name are on
the tape, the last one overwrites all earlier ones.
The names of the specified files are listed each time that they occur on the
tape. If no files argument is given, all the names on the tape are listed.

u The named files are added to the tape if they are not already there, or
have been modified since last written on that tape.

c Create a new tape; writing begins at the beginning of the tape, instead of
after the last file. This command implies the r function.

The following characters may be used in addition to the letter that selects the
desired function:

0, ... ,7 This modifier selects the drive on which the tape is mounted. The default
is 1.

v Normally, tar does its work silently. The v (verbose) option causes it to
type the name of each file it treats, preceded by the function letter. With
the t function, v gives more information about the tape entries than just
the name.

w causes tar to print the action to be taken, followed by the name of the file,
and then wait for the user's confirmation. If a word beginning with y is
given, the action is performed. Any other input means "no".

f causes tar to use the next argument as the name of the archive instead of
/dev /mt/?. If the name of the file is - , tar writes to the standard output
or reads from the standard input, whichever is appropriate. Thus, tar can
be used as the head or tail of a pipeline. Tar can also be used to move
hierarchies with the command:

cd fromdir; tar cf - . I (cd todir; tar xf -)

b causes tar to use the next argument as the blocking factor for tape records.
The default is 1, the maximum is 20. This option should only be used with
raw magnetic tape archives (see f above). The block size is determined
automatically when reading tapes (key letters x and t).
tells tar to complain if it cannot resolve all of the links to the files being
dumped. If I is not specified, no error messages are printed.

- l - 7/85

TAR(l)

FILES

(Cartridge Tape Utilities) TAR(l)

m tells tar to not restore the modification times. The modification time of
the file will be the time of extraction.

/dev/mt/?
/tmp/tar•

DIAGNOSTICS

BUGS

7/85

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated. The
current magnetic tape driver cannot backspace raw magnetic tape. If the archive is
on a disk file, the b option should not be used at all, because updating an archive
stored on disk can destroy it.
The current limit on file name length is 100 characters.

- 2 - 7/85

TEE(l)

NAME
tee - pipe fitting

SYNOPSIS

(Essential Utilities)

tee [-i] [-a] [file] ...

DESCRIPTION

TEE(l)

Tee transcribes the standard input to the standard output and makes copies in the
.files. The

-i ignore interrupts;

-a causes the output to be appended to the files rather than overwriting them.

7/85 - 1 - 7/85

TEST(l) (Essential Utilities) TEST(l)

NAME
test - condition evaluation command

SYNOPSIS
test expr
I expr I

DESCRIPTION

7/85

Test evaluates the expression expr and, if its value is true, returns a zero (true) exit
status; otherwise, a non-zero (false) exit status is returned; test also returns a non­
zero exit status if there are no arguments. The following primitives are used to con­
struct expr:

-r file

-w file

-xfile

-f file

-dfile

-cfile

-b file

-pfile

-ufile

-gfile

-kfi/e

-sfile

-t [fildes I

-z sl

-n sl

sl = s2

sl != s2

sl

nl -eq n2

true if file exists and is readable.

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and is a named pipe (fifo).

true if file exists and its set-user-ID bit is set.

true if.file exists and its set-group-ID bit is set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is ft/des (1 by
default) is associated with a terminal device.

true if the length of string sl is zero.

true if the length of the string sl is non-zero.

true if strings sl and s2 are identical.

true if strings sl and s2 are not identical.

true if sl is not the null string.

true if the integers nl and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, and -le may be used in place of
-eq.

These primaries may be combined with the following operators:

-a

-o

(expr)

unary negation operator.

binary and operator.

binary or operator (-a has higher precedence than -o).

parentheses for grouping.

Notice that all the operators and flags are separate arguments to test. Notice also
that parentheses are meaningful to the shell and, therefore, must be escaped.

- 1 - 7/85

TEST(l) (Essential Utilities) TEST(l)

SEE ALSO
find(l), sh(l).

WARNING
In the second form of the command (i.e., the one that uses [I, rather than the word
test), the square brackets must be delimited by blanks.

7/85 - 2 - 7/85

TIME(I) (Essential Utilities) TIME(l)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time during
the command, the time spent in the system, and the time spent in execution of the
command. Times are reported in seconds.

The times are printed on standard error.

SEE ALSO
times(2) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - 1 - 7/85

TIMEX(l) (Performance Measurement Utilities) TIMEX(l)

NAME
timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time spent
in execution are reported in seconds. Optionally, process accounting data for the
command and all its children can be listed or summarized, and total system activity
during the execution interval can be reported.

The output of timex is written on standard error.

Options are:

-p List process accounting records for command and all its children. Subop­
tions f, h, k, m, r, and t modify the data items reported. The options are as
follows:

-f Print the fork/exec flag and system exit status columns in
the output.

- b Instead of mean memory size, show the fraction of total
available CPU time consumed by the process during its exe­
cution. This "hog factor" is computed as:

(total CPU time)/(elapsed time).

- k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user time/(system-time +user-time).

-t Show separate system and user CPU times. The number of
blocks read or written and the number of characters
transferred are always reported.

-o Report the total number of blocks read or written and total characters
transferred by command and all its children.

-s Report total system activity (not just that due to command) that occurred
during the execution interval of command. All the data items listed in
sar(I) are reported.

SEE ALSO
sar(l).

WARNING
Process records associated with command are selected from the accounting file
/usr/adm/pacct by inference, since process genealogy is not available. Background
processes having the same user-id, terminal-id, and execution time window will be
spuriously included.

EXAMPLES
A simple example:

timex -ops sleep 60

7/85 - 1 - 7/85

TIMEX(l) (Performance Measurement Utilities) TIMEX(l)

7/85

A terminal session of arbitrary complexity can be measured by timing a sub-shell:

timex -opskmt sh

session commands
EOT

- 2 - 7/85

TOC(lG) (Graphics Utilities) TOC(lG)

NAME
toe - graphical table of contents routines

SYNOPSIS
dtoc [directory]
ttoc mm-file
vtoc [-cdhnimsvn] [TTOC file]

DESCRIPTION

7/85

All of the commands listed below reside in /usr/bin/graf (see graphics(lG)).

dtoc Dtoc makes a textual table of contents, TTOC, of all subdirectories
beginning at directory (directory defaults to .) . The list has one entry
per directory. The entry fields from left to right are level number, direc­
tory name, and the number of ordinary readable files in the directory.
Dtoc is useful in making a visual display of all or parts of a file system.
The following will make a visual display of all the readable directories
under/:

dtoc I I vtoc I td

ttoc Output is the table of contents generated by the .TC macro of mm(l)
translated to TTOC format. The input is assumed to be an mm file that
uses the .H family of macros for section headers (see the
DOCUMENTER'S WORKBENCH Software System). If no file is given,
the standard input is assumed.

vtoc Vtoc produces a GPS describing a hierarchy chart from a TTOC. The
output drawing consists of boxes containing text connected in a tree
structure. If no file is given, the standard input is assumed. Each TTOC
entry describes one box and has the form:

id [line-weight,line-style] "text" [mark]
where:

id is an alternating sequence of numbers and dots. The id
specifies the position of the entry in the hierarchy. The id
0. is the root of the tree.

line-weight is either:

line-style

text

mark

is either:

n, normal-weight; or
m, medium-weight; or
b, bold-weight.

so, solid-line;
do, dotted-line;
dd, dot-dash line;
da, dashed-line; or
Id, long-dashed

is a character string surrounded by quotes. The characters
between the quotes become the contents of the box. To
include a quote within a box it must be escaped (\ ").

is a character string (surrounded by quotes if it contains
spaces), with included dots being escaped. The string is
put above the top right corner of the box. To include
either a quote or a dot within a mark it must be escaped.

Entry example: 1.1 b,da "ABC" DEF

- 1 - 7/85

TOC(lG) (Graphics Utilities) TOC(lG)

Entries may span more than one line by escaping the new-line (\new­
line).

Comments are surrounded by the /•,•/ pair. They may appear any­
where in a TTOC.

Options:

c Use text as entered (default is all upper case).

d Connect the boxes with diagonal lines.

hn Horizontal interbox space is n% of box width.

Suppress the box id.

m Suppress the box mark.

s Do not compact boxes horizontally.

vn Vertical interbox space is n% of box height.

SEE ALSO
graphics(IG).

7/85

gps(4) in the AT&T 3B2 Computer Programmer Reference Manual.
mm(l) in the UNIX System V DOCUMENTER'S WORKBENCH Software Introduc­
tion and Reference Manual.

- 2 - 7/85

TOUCH(l) (Essential Utilities) TOUCH(l)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-amc] [mmddhhmm[yy]] files

DESCRIPTION
Touch causes the access and modification times of each argument to be updated.
The file name is created if it does not exist. If no time is specified (see date(l)) the
current time is used. The -a and -m options cause touch to update only the
access or modification times respectively (default is -am). The -c option silently
prevents touch from creating the file if it did not previously exist.

The return code from touch is the number of files for which the times could not be
successfully modified (including files that did not exist and were not created).

SEE ALSO
date(l).
utime(2) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - 1 - 7/85

TPLOT(IG) (Graphics Utilities) TPLOT(IG)

NAME
tplot - graphics filters

SYNOPSIS
tplot [-Tterminal I -e raster]]

DESCRIPTION

FILES

These commands read plotting instructions (see plot (4)) from the standard input
and in general produce, on the standard output, plotting instructions suitable for a
particular terminal. If no terminal is specified, the environment parameter $TERM
(see environ (5)) is used. Known terminals are:

300 DASI 300.
300S DASI 300s.
450 DASI 450.
4014 TEKTRONIX 4014.
ver Versatec Dl200A. This version of plot places a scan-converted image in

/usr/tmp/raster$$ and sends the result directly to the plotter device, rather
than to the standard output. The -e option causes a previously scan­
converted file raster to be sent to the plotter.

/usr /lib/t300
/usr /lib/t300s
/usr/lib/t450
/usr/lib/t4014
/usr /lib/vplot
/usr/tmp/raster$$

SEE ALSO

7/85

plot(3X), plot(4), term(5) in the AT&T 3B2 Computer Programmer Reference
Manual.

- l - 7/85

TPUT(l) (Terminal Information Utilities) TPUT(l)

NAME
tput - query terminfo database

SYNOPSIS
tput I -Ttype I capname

DESCRIPTION
Tput uses the terminfo database to make terminal-dependent capabilities and infor­
mation available to the shell. Tput outputs a string if the attribute (capability
name) is of type string, or an integer if the attribute is of type integer. If the attri­
bute is of type boolean, tput simply sets the exit code (0 for TRUE, l for FALSE),
and does no output.

-Ttype indicates the type of terminal. Normally this flag is unnecessary, as
the default is taken from the environment variable $TERM.

Capname indicates the attribute from the terminfo database. See 3B2 Computer
System Terminal Information Guide.

EXAMPLES

FILES

tput clear
tput cols
tput -T450 cols
bold = 'tput smso'

tput he

/etc/term/?/*

Echo clear-screen sequence for the current terminal.
Print the number of columns for the current terminal.
Print the number of columns for the 450 terminal.
Set shell variable "bold" to stand-out mode sequence for current
terminal. This might be followed by a prompt:
echo "${bold} Please type in your name: \c"
Set exit code to indicate if current terminal is a hardcopy ter­
minal.

/usr /include/term.h
/usr /include/ curses.h

Terminal descriptor files
Definition files

SEE ALSO
stty(l).
3B2 Computer System Terminal Information Utilities Guide.
3B2 Computer System Programmer Reference Manual.

DIAGNOSTICS

7/85

Tput prints error messages and returns the following error codes on error:
-1 Usage error.
-2 Bad terminal type.
-3 Bad capname.

In addition, if a capname is requested for a terminal that has no value for that cap­
name (e.g., tput -T450 lines), -1 is printed.

- 1 - 7/85

TR(l) (Directory and File Management Utilities) TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-eds] [string l [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of
selected characters. Input characters found in string] are mapped into the
corresponding characters of string2. Any combination of the options -eds may be
used:

-e Complements the set of characters in string] with respect to the universe
of characters whose ASCII codes are 001 through 377 octal.

-d Deletes all input characters in string].

-s Squeezes all strings of repeated output characters that are in string2 to
single characters.

The following abbreviation conventions may be used to introduce ranges of charac­
ters or repeated characters into the strings:

[a -zl Stands for the string of characters whose ASCII codes run from character a
to character z, inclusive.

la•nl Stands for n repetitions of a. If the first digit of n is 0, n is considered
octal; otherwise, n is taken to be decimal. A zero or missing n is taken to
be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special meaning from
any character in a string. In addition,\ followed by 1, 2, or 3 octal digits stands for
the character whose ASCII code is given by those digits.

EXAMPLE
The following example creates a list of all the words in file] one per line in file2,
where a word is taken to be a maximal string of alphabetics. The strings are quoted
to protect the special characters from interpretation by the shell; 012 is the ASCII
code for newline.

tr -cs "[A-Z][a-z]" "[\012•]" <filel >file2

SEE ALSO
ed(l), sh(l).
ascii(5) in the AT&T 3B2 Computer Programmer Reference Manual.

BUGS
Will not handle ASCII NUL in string] or string2; always deletes NUL from input.

7/85 - 1 - 7/85

TRUE(l) (Essential Utilities)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE(l)

True does nothing, successfully. False does nothing, unsuccessfully. They are typi­
cally used in input to sh (1) such as:

while true
do

command
done

SEE ALSO
sh (1).

DIAGNOSTICS
True has exit status zero, false nonzero.

7/85 - 1 - 7/85

TSORT(l) (Software Generation System Utiltities) TSORT(l)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items consistent with
a partial ordering of items mentioned in the input file. If no file is specified, the
standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs
of different items indicate ordering. Pairs of identical items indicate presence, but
not ordering.

SEE ALSO
lorder(l).

DIAGNOSTICS

BUGS

7/85

Odd data: there is an odd number of fields in the input file.

Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library
archive file.

- 1 - 7/P."i

TTY(l) (User Environment Utilities) TTY(I)

NAME
tty - get the name of the terminal

SYNOPSIS
tty [-I] [-s]

DESCRIPTION
Tty prints the path name of the user's terminal.

-I prints the synchronous line number to which the user's terminal is con­
nected, if it is on an active synchronous line.

-s inhibits printing of the terminal path name, allowing one to test just the
exit code.

EXIT CODES
2 if invalid options were specified,
0 if standard input is a terminal,
1 otherwise.

DIAGNOSTICS

7/85

"not on an active synchronous line" if the standard input is not a synchronous ter­
minal and -I is specified.
"not a tty" if the standard input is not a terminal and -s is not specified.

- 1 - 7/85

UMASK(l) (Essential Utilities) UMASK(l)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [ooo I

DESCRIPTION
The user file-creation mode mask is set to ooo. The three octal digits refer to
read/write/execute permissions for owner, group, and others, respectively (see
chmod (2) and umask (2)). The value of each specified digit is subtracted from the
corresponding "digit" specified by the system for the creation of a file (see
creat (2)). For example, umask 022 removes group and others write permission
(files normally created with mode 777 become mode 755; files created with mode
666 become mode 644).

If ooo is omitted, the current value of the mask is printed.

Umask is recognized and executed by the shell.

Umask can be included in the user's .profile and invoked at login to automatically
set the user's permissions on files or directories created.

SEE ALSO

7/85

chmod(l), sh(l).
chmod(2), creat(2), umask(2) in the AT&T 3B2 Computer Programmer Reference
Manual.

- 1 - 7/85

UNAME(l) (Essential Utilities) UNAME(l)

NAME
uname - print name of current UNIX system

SYNOPSIS
uname [-snrvma]
uname [-S system name]

DESCRIPTION
Uname prints the current system name of the UNIX system on the standard output
file. It is mainly useful to determine which system one is using. The options cause
selected information returned by uname(2) to be printed:

-s print the system name (default).

-n print the nodename (the nodename may be a name that the system is
known by to a communications network).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

On the 3B2 computer, the system name and the nodename may be changed by
specifying a system name argument to the -S option. The system name argument
is restricted to 8 characters. One executed, the system name and the nodename will
be changed to the argument specified by the user. Only the super-user is allowed
this capacity.

SEE ALSO
uname(2) in the AT&T 3B2 Computer Programmer Reference Manual.

7/85 - 1 - 7/85

UNGET(l) (Source Code Control System Utilities) UNGET(l)

NAME
unget - undo a previous get of an secs file

SYNOPSIS
unget [-rSID] [-sl [-nl files

DESCRIPTION
Unget undoes the effect of a get -e done prior to creating the intended new delta.
If a directory is named, unget behaves as though each file in the directory were
specified as a named file, except that non-SCCS files and unreadable files are silently
ignored. If a name of - is given, the standard input is read with each line being
taken as the name of an SCCS file to be processed.

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is no longer intended. (This
would have been specified by get as the "new delta"). The use
of this keyletter is necessary only if two or more outstanding
gets for editing on the same SCCS file were done by the same
person (login name). A diagnostic results if the specified SID is
ambiguous, or if it is necessary and omitted on the command
line.

-s

-n

Suppresses the printout, on the standard output, of the intended
delta's SID.

Causes the retention of the gotten file which would normally be
removed from the current directory.

SEE ALSO
delta(l), get(l), help(l), sact(l).

DIAGNOSTICS
Use help (1) for explanations.

7/85 - l - 7/85

UNIQ(l) (Directory and File Management Utilities) UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+n] [-n] I [input [output] I

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second
and succeeding copies of repeated lines are removed; the remainder is written on the
output file. Input and output should always be different. Note that repeated lines
must be adjacent in order to be found; see sort (1). If the -u flag is used, just the
lines that are not repeated in the original file are output. The -d option specifies
that one copy of just the repeated lines is to be written. The normal mode output is
the union of the -u and -d mode outputs.

The -c option supersedes -u and -d and generates an output report in default
style but with each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

- n The first n fields together with any blanks before each are ignored. A field
is defined as a string of non-space, non-tab characters separated by tabs
and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
comm(l), sort(l).

7/85 - 1 - 7/85

UNITS(l) (User Environment Utilities) UNITS(l)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

7/85

Units converts quantities expressed in various standard scales to their equivalents in
other scales. It works interactively in this fashion:

You have: inch
You want: cm

* 2.540000e+OO
I 3.937008e-Ol

A quantity is specified as a multiplicative combination of units optionally preceded
by a numeric multiplier. Powers are indicated by suffixed positive integers, division
by the usual sign:

You have: 15 lbs force/in2
You want: atm

• l.020689e+OO
I 9.797299e-Ol

Units only does multiplicative scale changes; thus it can convert Kelvin to Rankine,
but not Celsius to Fahrenheit. Most familiar units, abbreviations, and metric
prefixes are recognized, together with a generous leavening of exotica and a few
constants of nature including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro's number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run together,
(e.g., lightyear). British units that differ from their U.S. counterparts are prefixed
thus: brgallon. For a complete list of units, type:

cat /usr/lib/unittab

/usr/lib/unittab

- 1 - 7185

USAGE(l) (Help Utilities) USAGE(l)

NAME
usage - retrieve a command description and usage examples

SYNOPSIS
[help] lllsage [-d] [-e I [-o] I command _name I

DESCRIPTION
The UNIX System help Facility command usage retrieves information about UNIX
system commands. With no argument, usage displays a menu screen prompting the
user for the name of a command, or allows the user to retrieve a list of commands
supported by usage. The user may also exit to the shell by typing q (for "quit).

After a command is selected, the user is asked to choose among a description of the
command, examples of typical usage of the command, or descriptions of the
command's options. Then, based on the user's request, the appropriate information
will be printed.

A command name may also be entered at shell level as an argument to usage. To
receive information on the command's description, examples, or options, the user
may use the -d, -e, or -o options respectively. (The default option is -d.)

From any screen in the facility, a user may execute a command via the shell
(sh(l)) by typing a! and the command to be executed. The screen will be redrawn
if the command that was executed was entered at a first level prompt. If entered at
any other prompt level, only the prompt will be redrawn.

By default, the help facility scrolls the data that is presented to the user. If a user
prefers to have the screen cleared before printing the data (non-scrolling), a variable
must be defined in the user's .profile file called SCROLL. The variable SCROLL
must be set to no and exported for non-scrolling to occur. If the user later decides
that scrolling is desired, the variable SCROLL must be set to yes or deleted from
the user's .profile file.

Further information on the UNIX System help Facility can be found on the help(l),
locate(l), starter(!), and glossary(!) manual pages.

SEE ALSO
glossary(!), help(l), locate(l), sh(l), starter(l).
term(5) in the AT&T 3B2 Computer Programmer Reference Manual.

WARNINGS

7/85

If the TERM variable is not set in the user's .profile file, then TERM will default to
the terminal value type 450 (a hard-copy terminal) . For a list of valid terminal
types, refer to term (5). The help facility assumes that tabs are set on the user's
terminal.

- 1 - 7/85

UUCP(lC) (Basic Networking Utilities) UUCP(IC)

NAME
uucp, uulog, uuname - UNIX-to-UNIX system copy

SYNOPSIS
uucp [options] source-files destination-file
uulog [options I -ssystem
uulog [options] system
uulog [options] -fsystem
uuname [-I]

DESCRIPTION
Uucp

7/85

Uucp copies files named by the source-file arguments to the destination-file argu­
ment. A file name may be a path name on your machine, or may have the form:

system-name!path-name

where system-name is taken from a list of system names that uucp knows about.
The system-name may also be a list of names such as

system-name!system-name! ... !system-name!path-name

in which case an attempt is made to send the file via the specified route, to the des­
tination. See WARNINGS and BUGS below for restrictions. Care should be taken
to ensure that intermediate nodes in the route are willing to foward information (see
WARNINGS below for restrictions).

The shell metacharacters ?, • and 1...1 appearing in path-name will be expanded on
the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by -user where user is a login name on the
specified system and is replaced by that user's login directory;

(3) a path name preceded by - /destination where destination is appended
to /usr/spool/uucppublic; (NOTE: This destination will be treated as
a file name unless more than one file is being transfered by this
request or the destination is already a directory. To ensure that it is a
directory, follow the destination with a'/'. For example -/dan/ as the
destination will make the directory /usr/spool/uucppublic/dan if it
does not exist and put the requested file (s) in that directory).

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will fail. If
the destination-file is a directory, the last part of the source-file name is used.

Uucp preserves execute permissions across the transmission and gives 0666 read and
write permissions (see chmod (2)).

The following options are interpreted by uucp:

-c Do not copy local file to the spool directory for transfer to the remote
machine (default).

-C Force the copy of local files to the spool directory for transfer.

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

- 1 - 7/85

UUCP(lC) (Basic Networking Utilities) UUCP(IC)

-ggrade Grade is a single letter/number; lower ascii sequence characters will
cause the job to be transmitted earlier during a particular conversation.

-j Output the job identification ASCII string on the standard output. This
job identification can be used by uustat to obtain the status or terminate
a job.

-m Send mail to the requester when the copy is completed.

-sflle Report status of the transfer to file. Note that the file must be a full
path name.

-nuser Notify user on the remote system that a file was sent.

-r Do not start the file transfer, just queue the job.

-xdebug_Jevel
Produce debugging output on standard output. The debug_level is a
number between 0 and 9; higher numbers give more detailed informa­
tion. Note, however, that if the program is compiled with the
-DSMALL option, there will be little debugging output.

Uulog
Uulog queries a log file of uucp or uuxqt transactions in a file
/usr /spool/uucp/.Log/uucico/ system, or /usr /spool/uucp/ .Log/uuxqt/ system.

The options cause uulog to print logging information:

-ssys Print information about file transfer work involving system sys.

-fsystem Does a "tail -f' of the file transfer log for system. Other options used
in conjunction with the above:

-x Look in the uuxqt log file for the given system.

-number Indicates that a "tail" command of number lines should be executed.

Uuname

FILES

Uuname lists the uucp names of known systems. The -I option returns the local
system name.

/usr/spool/uucp
/usr/spool/uucppublic/•

/usr/lib/uucp/•

spool directories
public directory for receiving and
sending (/usr/spool/uucppublic)
other data and program files

SEE ALSO
mail(I), uustat(l C), uux(l C).
chmod(2) in the 3B2 Computer System Programmer Reference Manual.
uuxqt(lM) in the AT&T 3B2 Computer System Administration Reference Manual.

WARNINGS

7/85

The domain of remotely accessible files can (and for obvious security reasons, usu­
ally should) be severely restricted. You will very likely not be able to fetch files by
path name; ask a responsible person on the remote system to send them to you. For
the same reasons you will probably not be able to send files to arbitrary path names.
As distributed, the remotely accessible files are those whose names begin
/usr/spool/uucppublic (equivalent to -1).

All files received by uucp will be owned by uucp.
The -m option will only work sending files or rece1V1ng a single file. Receiving
multiple files specified by special shell characters ? • [. .. J will not activate the -m

7/85

UUCP(IC) (Basic Networking Utilities) UUCP(IC)

BUGS

7/'fl.')

option.

The forwarding of files through other systems may not be compatible with the previ­
ous version of uucp. If forwarding is used, all systems in the route must have the
same version of uucp.

Protected files and files that are in protected directories that are owned by the
requestor can be sent by uucp. However, if the requestor is root, and the directory
is not searchable by "other" or the file is not readable by "other", the request will
fail.

- '.\ - 7/85

UUSTAT(lC) (Basic Networking Utilities) UUSTAT(lC)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [-al
uustat [-m]
uustat [-p]
uustat [-q]
uustat [- kjobid]
uustat [-rjobid]
uustat [-ssystem] [-uuser]

DESCRIPTION

7/85

Uustat will display the status of, or cancel, previously specified uucp commands, or
provide general status on uucp connections to other systems. Only one of the fol­
lowing options can be specified with uustat per command execution:

-a Output all jobs in queue.
-m Report the status of accessibility of all machines.
-p Execute a "ps -ftp" for all the process-ids that are in the lock files.
-q List the jobs queued for each machine. If a status file exists for the

machine, its date, time and status information are reported. In addition,
if a number appears in 0 next to the number of C or X files, it is the
age in days of the oldest C./X. file for that system. The Retry field
represents the number of hours until the next possible call. The Count
is the number of failure attempts. NOTE: for systems with a moderate
number of outstanding jobs, this could take 30 seconds or more of real­
time to execute. As an example of the output produced by the -q
option:
eagle 3C
mh3bs3 2C

04/07-11:07 NO DEVICES AVAILABLE
07/07-10:42 SUCCESSFUL

The above output tells how many command files are waiting for each system. Each
command file may have zero or more files to be sent (zero means to call the system
and see if work is to be done). The date and time refer to the previous interaction
with the system followed by the status of the interaction.
-kjobid Kill the uucp request whose job identification is jobid. The killed uucp

request must belong to the person issuing the uustat command unless
one is the super-user.

-rjobid Rejuvenate jobid. The files associated with jobid are touched so that
their modification time is set to the current time. This prevents the
cleanup daemon from deleting the job until the jobs modification time
reaches the limit imposed by the deamon.

Either or both of the following options can be specified with uustat:

-ssys
-uuser

Report the status of all uucp requests for remote system sys.
Report the status of all uucp requests issued by user.

Output for both the -sand -u options has the following format:
eaglenOOOO 4/07-11:01:03 (POLL)
eagleNlbd7 4/07-11:07 S eagle dan 522 /usr/dan/A
eagleClbd8 4/07-11:07 S eagle dan 59 D.3b2al2ce4924

4/07-11:07 S eagle dan rmail mike
With the above two options, the first field is the jobid of the job. This is followed
by the date/time. The next field is either an 'S' or 'R' depen~ing on whether the

- 1 - 7/85

UUSTAT(IC) (Basic Networking Utilities) UUSTAT(IC)

FILES

job is to send or request a file. This is followed by the user-id of the user who
queued the job. The next field contains the size of the file, or in the case of a
remote execution (rmail - the command used for remote mail), the name of the
command. When the size appears in this field, the file name is also given. This can
either be the name given by the user or an internal name (e.g., D.3b2alce4924) that
is created for data files associated with remote executions (rmail in this example).
When no options are given, uustat outputs the status of all uucp requests issued by
the current user.

/usr/spool/uucp/*
SEE ALSO

spool directories

uucp(lC).

7/85 - 2 - 7/85

UUTO(lC) (Basic Networking Utilities) UUTO(IC)

NAME
uuto, unpick - public UNIX system to UNIX system file copy

SYNOPSIS
uuto [options] source-files destination
uupick [-s system]

DESCRIPTION

FILES

7/85

Uuto sends source-files to destination. Uuto uses the uucp(IC) facility to send
files, while it allows the local system to control the file access. A source-file name is
a path name on your machine. Destination has the form:

system!user

where system is taken from a list of system names that uucp knows about (see
uuname). User is the login name of someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory before transmission.
-m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system,
where PUBDIR is a public directory defined in the uucp source. Specifically the files
are sent to

PUBDIR/receive/user/mysystem/files.

The destined recipient is notified by mail(!) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUBDIR for files destined for the user. For each entry (file or directory)
found, the following message is printed on the standard output:

from system: [file file-name] [dir dirname] ?

Uupick then reads a line from the standard input to determine the disposition of the
file:

<new-line> Go on to next entry.

d Delete the entry.

m [dir] Move the entry to named directory dir. If dir is not specified as a
complete path name (in which $HOME is legitimate), a destina­
tion relative to the current directory is assumed. If no destination
is given, the default is the current directory.

a [dir] Same as m except moving all the files sent from system.

p Print the content of the file.

q Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

* Print a command summary.

Uupick invoked with the -ssystem option will only search the PUBDIR for files sent
from system.

PUBDIR/usr/spool/uucppublic public directory

- 1 - 7/85

UUTO(IC) (Basic Networking Utilities) UUTO(IC)

SEE ALSO
mail(l), uucp(IC), uustat(IC), uux(IC).
uucleanup(IM) in the AT&T 3B2 Computer System Administration Reference
Manual.

WARNINGS

7/85

In order to send files that begin with a dot (e.g., .profile) the files must by qualified
with a dot. For example: .profile, .prof*, .profil? are correct; whereas *prof*,
?profile are incorrect.

- 2 - 7/85

UUX(lC) (Basic Networking Utilities) UUX(IC)

NAME
uux - UNIX-to-UNIX system command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION

7/RS

Uux will gather zero or more files from various systems, execute a command on a
specified system and then send standard output to a file on a specified system. Note
that, for security reasons, many installations will limit the list of commands execut­
able on behalf of an incoming request from uux. Many sites will permit little more
than the receipt of mail (see mail(I)) via uux.

The command-string is made up of one or more arguments that look like a shell
command line, except that the command and file names may be prefixed by
system-name!. A null system-name is interpreted as the local system.

File names may be one of

(1) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on the
specified system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

As an example, the command

uux "!diff usg!/usr/dan/filel pwba!/a4/dan/file2 > !-/dan/file.diff"

will get the filel and file2 files from the "usg" and "pwba" machines, execute a
dijf(l) command and put the results in .file.di.If in the local PUBDIR/dan/ direc­
tory.

Any special shell characters such as < >;I should be quoted either by quoting the
entire command-string, or quoting the special characters as individual arguments.

Uux will attempt to get all files to the execution system. For files that are output
files, the file name must be escaped using parentheses. For example, the command

uux a!cut -fl b!/usr /file \ (c!/usr /file\)

get /usr/.fi/e from system "b" and send it to system "a", perform a cut command on
that file and send the result of the cut command to system "c".

Uux will notify you if the requested command on the remote system was disallowed.
This notification can be turned off by the -n option. The response comes by
remote mail from the remote machine.

The following options are interpreted by uux:

The standard input to uux is made the standard input to the command­
string.

-aname Use name as the user identification replacing the initiator user-id.
(Notification will be returned to the user.)

-b Return whatever standard input was provided to the uux command if
the exit status is non-zero.

-c Do not copy local file to the spool directory for transfer to the remote
machine (default).

-C Force the copy of local files to the spool directory for transfer.

- 1 - 7/85

UUX(IC) (Basic Networking Utilities) UUX(lC)

FILES

-ggrade Grade is a single letter/number; lower ASCII sequence characters will
cause the job to be transmitted earlier during a particular conversation.

-j Output the jobid ASCII string on the standard output which is the job
identification. This job identification can be used by uustat to obtain
the status or terminate a job.

-n Do not notify the user if the command fails.

-p Same as -: The standard input to uux is made the standard input to
the command-string.

-r Do not start the file transfer, just queue the job.

-sflle Report status of the transfer in file.

-xdebug)evel
Produce debugging output on the standard output. The debugjevel is a
number between 0 and 9; higher numbers give more detailed informa­
tion. Note, however, that compiling uucp with the -DSMALL option
will result in little debugging output.

-z Send success notification to the user.

/usr/lib/uucp/spool
/usr/lib/uucp/•

spool directories
other data and programs

SEE ALSO
cut(l), mail(!), uucp(lC), uustat(IC).

WARNINGS

BUGS

7/85

Only the first command of a shell pipeline may have a system-name!. All other
commands are executed on the system of the first command.
The use of the shell metacharacter • will probably not do what you want it to do.
The shell tokens < < and > > are not implemented.

The execution of commands on remote systems takes place in an execution directory
known to the uucp system. All files required for the execution will be put into this
directory unless they already reside on that machine. Therefore, the simple file
name (without path or machine reference) must be unique within the uux request.
The following command will NOT work:

uux "a!diff b!/usr/dan/xyz c!/usr/dan/xyz > !xyz.diff''

but the command

uux "a!diff a!/usr/dan/xyz c!/usr/dan/xyz > !xyz.diff"

will work. (If diff is a permitted command.)

Protected files and files that are in protected directories that are owned by the
requestor can be sent in commands using uux. However, if the requestor is root,
and the directory is not searchable by "other", the request will fail.

- 2 - 7/85

VAL(l) (Source Code Control System Utilities) VAL(l)

NAME
val - validate SCCS file

SYNOPSIS
val -
val [-s] [-rSID] [-mname] [-ytype] files

DESCRIPTION

7/85

Val determines if the specified file is an SCCS file meeting the characteristics
specified by the optional argument list. Arguments to val may appear in any order.
The arguments consist of keyletter arguments, which begin with a -, and named
files.

Val has a special argument, - , which causes reading of the standard input until an
end-of-file condition is detected. Each line read is independently processed as if it
were a command line argument list.

Val generates diagnostic messages on the standard output for each command line
and file processed, and also returns a single 8-bit code upon exit as described below.

The keyletter arguments are defined as follows. The effects of any keyletter argu­
ment apply independently to each named file on the command line.

-s

-rSJD

-mname

-ytype

The presence of this argument silences the diagnostic mes­
sage normally generated on the standard output for any error
that is detected while processing each named file on a given
command line.

The argument value SID (SCCS /Dentification String) is an
SCCS delta number. A check is made to determine if the
SID is ambiguous (e. g., rl is ambiguous because it physi­
cally does not exist but implies 1.1, 1.2, etc., which may
exist) or invalid (e. g., rl.O or rl.1.0 are invalid because nei­
ther case can exist as a valid delta number). If the SID is
valid and not ambiguous, a check is made to determine if it
actually exists.

The argument value name is compared with the SCCS %M%
keyword in file.

The argument value type is compared with the SCCS % Y%
keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i. e., can be
interpreted as a bit string where (moving from left to right) set bits are interpreted
as follows:

bit 0 = missing file argument;
bit l = unknown or duplicate keyletter argument;
bit 2 = corrupted secs file;
bit 3 = cannot open file or file not SCCS;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = %Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

Note that val can process two or more files on a given command line and in turn
can process multiple command lines (when reading the standard input). In these
cases an aggregate code is returned - a logical OR of the codes generated for each
command line and file processed.

- 1 - 7/85

VAL(l) (Source Code Control System Utilities) VAL(l)

SEE ALSO
admin(l), delta(!), get(I), help(l), prs(I).

DIAGNOSTICS

BUGS

7/85

Use help (I) for explanations.

Val can process up to 50 files on a single command line. Any number above 50 will
produce a core dump.

- 2 - 7/85

VC(l) (Source Code Control System Utilities) VC(I)

NAME
vc - version control

SYNOPSIS
vc [-al [-t] [-cchar] [-s] [keyword=value ... keyword=value]

DESCRIPTION

7/85

The vc command copies lines from the standard input to the standard output under
control of its arguments and control statements encountered in the standard input.
In the process of performing the copy operation, user declared keywords may be
replaced by their string value when they appear in plain text and/or control state­
ments.

The copying of lines from the standard input to the standard output is conditional,
based on tests (in control statements) of keyword values specified in control state­
ments or as vc command arguments.

A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon (:),
except as modified by the -c key letter (see below). Input lines beginning with a
backslash (\) followed by a control character are not control lines and are copied to
the standard output with the backslash removed. Lines beginning with a backslash
followed by a non-control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic. A
value is any ASCII string that can be created with ed(l); a numeric value is an
unsigned string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by con­
trol characters is encountered on a version control statement. The -a keyletter (see
below) forces replacement of keywords in all lines of text. An uninterpreted control
character may be included in a value by preceding it with \. If a literal \ is desired,
then it too must be preceded by \.

Keyletter Arguments

-a

-t

-cchar

-s

Forces replacement of keywords surrounded by control char­
acters with their assigned value in all text lines and not just
in vc statements.

AU characters from the beginning of a line up to and includ­
ing the first tab character are ignored for the purpose of
detecting a control statement. If one is found, all characters
up to and including the tab are discarded.

Specifies a control character to be used in place of :.

Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements

:dcl keyword[, ... , keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword=value
Used to assign values to keywords. An asg statement overrides the assignment
for the corresponding keyword on the vc command line and all previous asg's
for that keyword. Keywords declared, but not assigned values have null
values.

- 1 - 7/85

VC(l)

7/85

(Source Code Control System Utilities) VC(l)

:if condition

:end

::text

:on

:off

Used to skip lines of the standard input. If the condition is true all lines
between the if statement and the matching end statement are copied to the
standard output. If the condition is false, all intervening lines are discarded,
including control statements. Note that intervening if statements and match­
ing end statements are recognized solely for the purpose of maintaining the
proper if-end matching.
The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

::= ["not"] <or>
::= <and> I <and> "I" <or>
::=<exp> I <exp> "&"<and>
::= "(" <or> ")" I <value> <op> <value>
::= 11=11 I"!=" I 11<

11 I 11>
11

:;= <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

!=
&
I
>
<
()
not

equal
not equal
and
or
greater than
less than
used for logical groupings
may only occur immediately after the if, and
when present, inverts the value of the
entire condition

The > and < operate only on unsigned integer values (e.g., ; 012 > 12 is
false). All other operators take strings as arguments (e.g., : 012 != 12 is
true). The precedence of the operators (from highest to lowest) is:

= != > < all of equal precedence
&
I

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least one blank
or tab.

Used for keyword replacement on lines that are copied to the standard output.
The two leading control characters are removed, and keywords surrounded by
control characters in text are replaced by their value before the line is copied
to the output file. This action is independent of the -a keyletter.

Turn on or off keyword replacement on all lines.

:ct! char
Change the control character to char.

- 2 - 7/85

VC(l) (Source Code Control System Utilities) VC(l)

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line .•. (915)
on the diagnostic output. Ve halts execution, and returns an exit code of l.

SEE ALSO
ed(l), help(l).

DIAGNOSTICS
Use help(l) for explanations.

EXIT CODES
0 - normal
l - any error

7/85 - 3 - 7/85

VI(l) (Editing Utilities) VI(l)

NAME
vi - screen-oriented (visual) display editor based on ex

SYNOPSIS

NOTE

vi [-t tag] [-r file] [-wn] [-x l [-R I [+command I name .. .
view [-t tag] [-r file] [-wn] [-x] [-R] [+command] name .. .
vedit [-t tag] [-r file] [-wn] [-x I [- R] [+command] name

The -x option (encryption option) is provided by the Security Administration Utili­
ties, which is only available in the United States.

DESCRIPTION
Vi (visual) is a display-oriented text editor based on an underlying line editor ex(l).
It is possible to use the command mode of ex from within vi and vice-versa.

When using vi, changes you make to the file are reflected in what you see on your
terminal screen. The position of the cursor on the screen indicates the position
within the file.

INVOCATION
The following invocation options are interpreted by vi:

-t tag Edit the file containing the tag and position the editor at its
definition.

-rfile

-wn

-x

-R

+command

Recover file after an editor or system crash. If file is not specified
a list of all saved files will be printed.

Set the default window size to n. This is useful when using the edi­
tor over a slow speed line.

Encryption mode; a key is prompted for allowing creation or edit­
ing of an encrypted file.

Read only mode; the readonly flag is set, preventing accidental
overwriting of the file.

The specified ex command is interpreted before editing begins.

The name argument indicates files to be edited.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. The report flag is set to 1, and the
showmode and novice flags are set. These defaults make it easier to get started
learning the editor.

"VI MODES"
Command Normal and initial mode. Other modes return to command mode

upon completion. ESC (escape) is used to cancel a partial com­
mand.

Input

Last line

Entered by the following options: a i A I o 0 c C s S R. Arbitrary
text may then be entered. Input mode is normally terminated with
ESC character, or abnormally with interrupt.

Reading input for : I ? or !; terminate with CR to execute, inter­
rupt to cancel.

COMMAND SUMMARY
Sample commands

-1 t- arrow keys move the cursor

7/85 - 1 - 7/85

Vl(l)

h j k I
itextESC
cwnewESC
easESC
x
dw
dd
3dd
u
zz
:q!CR
ltextCR
'U 'D
:ex cmdCR

(Editing Utilities)

same as arrow keys
insert text abc
change word to new
pluralize word
delete a character
delete a word
delete a line
... 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text
scroll up or down
any ex or ed command

Vl(I)

Counts before vi commands
Numbers may be typed as a prefix to some commands. They are interpreted in one
of these ways.
line/column number z G I
scroll amount 'D 'U
repeat effect most of the rest

Interrupting, canceling
ESC end insert or incomplete cmd
'? (delete or rubout) interrupts
'L reprint screen if '? scrambles it
'R reprint screen if 'L is - key

File manipulation

7/85

:wCR write back changes
:qCR quit
:q!CR quit, discard changes
:e nameCR edit file name
:e!CR reedit, discard changes
:e + nameCR edit, starting at end
:e +nCR edit starting at linen
:e #CR edit alternate file

synonym for :e #
:w nameCR write file name
:w! nameCR overwrite file name
:shCR run shell, then return
:!cmdCR run cmd, then return
:nCR edit next file in arglist
:n argsCR specify new arglist
'G show current file and line
:ta tagCR to tag file entry tag
'I :ta, following word is tag

In general, any ex or ed command (such as substitute or global) may be typed,
preceded by a colon and followed by a CR.

- 2 - 7/85

VI(l) (Editing Utilities)

Positioning within file
AF
AB
AD
Au
G
/pat
?pat
n
N
lpatl+n
?pat? -n
II
II
(
)
(
}
%

forward screen
backward screen
scroll down half screen
scroll up half screen
go to specified line (end default)
next line matching pat
prev line matching pat
repeat last I or ?
reverse last I or ?
nth line after pat
nth line before pat
next section/function
previous section/function
beginning of sentence
end of sentence
beginning of paragraph
end of paragraph
find matching () { or)

Adjusting the screen
AL clear and redraw
AR
zCR
z-CR
z.CR
lpatlz-CR
zn.CR
AE
Ay

retype, eliminate @ lines
redraw, current at window top
... at bottom
... at center
pat line at bottom
use n line window
scroll window down l line
scroll window up l line

Marking and returning
" move cursor to previous context

... at first non-white in line
mx mark current position with letter x
'x move cursor to mark x
'x ... at first non-white in line

Line positioning
H top line on screen

last line on screen
middle line on screen

7/85

L
M
+

CR
! or j
tor k

next line, at first non-white
previous line, at first non-white
return, same as +
next line, same column
previous line, same column

- 3 -

VI(l)

7/85

VI(l) (Editing Utilities)

Character positioning
" first non white
0 beginning of line
$ end of line
h or-+
I or .,_
"H
space
fx
Fx
tx
Tx

%

forward
backwards
same as+­
same as->
find x forward
f backward
upto x forward
back upto x
repeat last f F t or T
inverse of;
to specified column
find matching ({) or}

Words, sentences, paragraphs
w word forward
b back word
e end of word
) to next sentence
} to next paragraph
(back sentence
{ back paragraph
W blank delimited word
B back W
E to end of W

Corrections during insert
"H erase last character
"W erase last word
erase your erase, same as "H
kill your kill, erase input this line
\ quotes "H, your erase and kill
ESC ends insertion, back to command
"? interrupt, terminates insert
"D backtab over autoindent ro kill autoindent, save for next
O"D ... but at margin next also
"V quote non-printing character

Insert and replace

7/85

a
i
A
I
0

0
rx
RtextESC

append after cursor
insert before cursor
append at end of line
insert before first non-blank
open line below
open above
replace single char with x
replace characters

- 4 -

VI(l)

7/85

VI(l) (Editing Utilities) VI(I)

Operators
Operators are followed by a cursor motion, and affect all text that would have been
moved over. For example, since w moves over a word, dw deletes the word that
would be moved over. Double the operator, e.g., dd to affect whole lines.
d delete
c change
y yank lines to buffer
< left shift
> right shift

filter through command

Miscellaneous Operations
C change rest of line (c$)
D delete rest of line (d$)
s substitute chars (cl)
S substitute lines (cc)
J join lines
x delete characters (di)
X ... before cursor (db)
Y yank lines (yy)

Yank and Put
Put inserts the text most recently deleted or yanked. However, if a buffer is named,
the text in that buffer is put instead.
p put back text after cursor
P put before cursor
"xp put from buffer x
"xy yank to buffer x
"xd delete into buffer x

Undo, Redo, Retrieve
u undo last change
U restore current line

repeat last change
"dp retrieve d'th last delete

AUTHOR
Vi and ex were developed by The University of California, Berkeley California,
Computer Science Division, Department of Electrical Engineering and Computer
Science.

SEE ALSO

BUGS

'I Jo.::

ex (1).
3B2 Computer System Editing Utilities Guide.

Software tabs using AT work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete
character operations in the terminal.

WAIT(l) (Essential Utilities)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION

WAIT(I)

Wait until all processes started with & have completed, and report on abnormal ter­
minations.

The shell itself executes wait, without creating a new process.

SEE ALSO

BUGS

7/85

sh (I).

Not all the processes of a 3- or more-stage pipeline are children of the shell, and
thus cannot be waited for.

- 1 - 719.t:.

WALL(!)

NAME
wall - write to all users

SYNOPSIS
/etc/wall

DESCRIPTION

(Essential Utilities) WALL(l)

Wall reads its standard input until an end-of-file. It then sends this message to all
currently logged-in users preceded by:

Broadcast Message from ...

It is used to warn all users, typically prior to shutting down the system.

The sender must be super-user to override any protections the users may have
invoked (see mesg(l)).

FILES
/dev/tty•

SEE ALSO
mesg(l), write(l).

DIAGNOSTICS
"Cannot send to ... " when the open on a user's tty file fails.

7/85 - 1 - 7/85

WC(l) (Essential Utilities) WC(l)

NAME
wc - word count

:SYNOPSIS
we [-lwc] [names

DESCRIPTION

7/85

We counts lines, words, and characters in the named files, or in the standard input if
no names appear. It also keeps a total count for all named files. A word is a maxi­
mal string of characters delimited by spaces, tabs, or new-lines.

The options l, w, and c may be used in any combination to specify that a subset of
lines, words, and characters are to be reported. The default is -lwc.

When names are specified on the command line, they will be printed along with the
counts.

- l - 7/85

WHAT(l) (Source Code Control System Utilities) WHAT(!)

NAME
what - identify secs files

SYNOPSIS
what [-sl files

DESCRIPTION
What searches the given files for all occurrences of the pattern that get (l) substi­
tutes for %Z% (this is @(#) at this printing) and prints out what follows until the
first ", >, new-line, \, or null character. For example, if the C program in file f.c
contains

char ident[] = "@(#)identification information";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the SCCS command get(l), which
automatically inserts identifying information, but it can also be used where the
information is inserted manually. Only one option exists:

-s Quit after finding the first occurrence of pattern in each file.

SEE ALSO
get(l), help(l).

DIAGNOSTICS

BUGS

7 /Q<:,

Exit status is 0 if any matches are found, otherwise 1. Use help (1) for explana­
tions.

It is possible that an unintended occurrence of the pattern @(#) could be found
just by chance, but this causes no harm in nearly all cases.

- 1 -

WHO(l) (Essential Utilities) WHO(l)

NAME
who - who is on the system

SYNOPSIS
who [-111TIHqpdbrtas] [file]

who am

who am I

DESCRIPTION

7/Rt::,

Who can list the user's name, terminal line, login time, elapsed time since activity
occurred on the line, and the process-ID of the command interpreter (shell) for each
current UNIX system user. It examines the /etc/utmp file to obtain its information.
If file is given, that file is examined. Usually, .file will be /etc/wtmp, which contains
a history of all the logins since the file was last created.

Who with the am i or am I option identifies the invoking user.

Except for the default -s option, the general format for output entries is:

name [state] line time activity pid [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to the system clock,
as well as other processes spawned by the init process. These options are:

-u This option lists only those users who are currently logged in. The name is
the user's login name. The line is the name of the line as found in the direc­
tory /dev. The time is the time that the user logged in. The activity is the
number of hours and minutes since activity last occurred on that particular
line. A dot C) indicates that the terminal has seen activity in the last
minute and is therefore "current". If more than twenty-four hours have
elapsed or the line has not been used since boot time, the entry is marked
old. This field is useful when trying to determine whether a person is work­
ing at the terminal or not. The pid is the process-ID of the user's shell. The
comment is the comment field associated with this line as found in
/etc/inittab (see inittab (4)). This can contain information about where the
terminal is located, the telephone number of the dataset, type of terminal if
hard-wired, etc.

-T This option is the same as the -u option, except that the state of the termi­
nal line is printed. The state describes whether someone else can write to
that terminal. A + appears if the terminal is writable by anyone; a -
appears if it is not. Root can write to all lines having a + or a - in the
state field. If a bad line is encountered, a ? is printed.

-l This option lists only those lines on which the system is waiting for someone
to login. The name field is LOGIN in such cases. Other fields are the same
as for user entries except that the state field does not exist.

-H This option will print column headings above the regular output.

-q This is a quick who, displaying only the names and the number of users
currently logged on. When this option is used, all other options are ignored.

-p This option lists any other process which is currently active and has been pre­
viously spawned by init. The name field is the name of the program exe­
cuted by init as found in /etc/inittab. The state, line, and activity fields
have no meaning. The comment field shows the id field of the line from
/etc/inittab that spawned this process. See inittab (4).

- 1 - 7/85

WHO(I) (Essential Utilities) WHO(l)

FILES

-d This option displays all processes that have expired and not been respawned
by init. The exit field appears for dead processes and contains the termina­
tion and exit values (as returned by wait(2)), of the dead process. This can
be useful in determining why a process terminated.

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the init process.

-t This option indicates the last change to the system clock (via the date (I)
command) by root. See su (I) .

-a This option processes /etc/utmp or the named file with all options turned on.

-s This option is the default and lists only the name, line, and time fields.

/etc/utmp
/etc/wtmp
/etc/inittab

SEE ALSO

7/85

date(!), login(!), mesg(l).
init(IM), su(IM) in the AT&T 3B2 Computer System Administration Reference
Manual.
wait(2), inittab(4), utmp(4) in the AT&T 3B2 Computer Programmer Reference
Manual.

- 2 - 7/85

WRITE(l) (Essential Utilities) WRITE(l)

NAME
write - write to another user

SYNOPSIS
write user [line]

DESCRIPTION

FILES

Write copies lines from your terminal to that of another user. When first called, it
sends the message:

Message from youmame (tty??) [date]..,

to the person you want to talk to. When it has successfully completed the connec­
tion, it also sends two bells to your own terminal to indicate that what you are typ­
ing is being sent.

The recipient of the message should write back at this point. Communication con­
tinues until an end of file is read from the terminal, an interrupt is sent, or the reci­
pient has executed "mesg n". At that point write writes EOT on the other terminal
and exits.

If you want to write to a user who is logged in more than once, the line argument
may be used to indicate which line or terminal to send to (e.g., ttyOO); otherwise,
the first writable instance of the user found in /etc/utmp is assumed and the follow­
ing message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg(l) command.
Writing to others is normally allowed by default. Certain commands, such as pr(l)
disallow messages in order to prevent interference with their output. However, if
the user has super-user permissions, messages can be forced onto a write-inhibited
terminal.

If the character ! is found at the beginning of a line, write calls the shell to execute
the rest of the line as a command.

The following protocol is suggested for using write: when you first write to another
user, wait for them to write back before starting to send. Each person should end a
message with a distinctive signal (i.e., fo) for "over") so that the other person
knows when to reply. The signal foo) (for "over and out") is suggested when
conversation is to be terminated.

/etc/utmp to find user
/bin/sh to execute !

SEE ALSO
mail(l), mesg(l), pr(l), sh(l), who(l).

DIAGNOSTICS

7/85

"user is not logged on" if the person you are trying to write to is not logged on.
"Permission denied" if the person you are trying to write to denies that permission

(with mesg).
"Warning: cannot respond, set mesg -y" if your terminal is set to mesg n and the

recipient cannot respond to you.
"Can no longer write to user" if the recipient has denied permission (mesg n) after

you had started writing.

- 1 - 7/85

XARGS(l) (User Environment Utilities) XARGS(l)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION

7/85

Xargs combines the fixed initial-arguments with arguments read from standard
input to execute the specified command one or more times. The number of argu­
ments read for each command invocation and the manner in which they are com­
bined are determined by the flags specified.

Command, which may be a shell file, is searched for, using one's $PATH. H com­
mand is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous strings of char­
acters delimited by one or more blanks, tabs, or new-lines; empty lines are always
discarded. Blanks and tabs may be embedded as part of an argument if escaped or
quoted. Characters enclosed in quotes (single or double) are taken literally, and the
delimiting quotes are removed. Outside of quoted strings a backslash (\) will escape
the next character.

Each argument list is constructed starting with the initial-arguments, followed by
some number of arguments read from standard input (Exception: see -i flag).
Flags -i, -1, and -n determine how arguments are selected for each command
invocation. When none of these flags are coded, the initial-arguments are followed
by arguments read continuously from standard input until an internal buffer is full,
and then command is executed with the accumulated args. This process is repeated
until there are no more args. When there are flag conflicts (e.g., -l vs. -n), the
last flag has precedence. Flag values are:

-(number

-ireplstr

-nnumber

Command is executed for each non-empty number lines of
arguments from standard input. The last invocation of com­
mand will be with fewer lines of arguments if fewer than
number remain. A line is considered to end with the first
new-line unless the last character of the line is a blank or a
tab; a trailing blank/tab signals continuation through the
next non-empty line. If number is omitted, 1 is assumed.
Option -x is forced.

Insert mode: command is executed for each line from stan­
dard input, taking the entire line as a single arg, inserting it
in initial-arguments for each occurrence of replstr. A max­
imum of 5 arguments in initial-arguments may each contain
one or more instances of replstr. Blanks and tabs at the
beginning of each line are thrown away. Constructed argu­
ments may not grow larger than 255 characters, and option
-x is also forced. 0 is assumed for replstr if not specified.

Execute command using as many standard input arguments
as possible, up to number arguments maximum. Fewer
arguments will be used if their total size is greater than size
characters, and for the last invocation if there are fewer than
number arguments remaining. If option -x is also coded,
each number arguments must fit in the size limitation, else
xargs terminates execution.

- l - 7/85

XARGS(J) (User Envnronment Utilities) XARGS(l)

-t

-p

-x

-ssize

-eeofstr

Trace mode: The command and each constructed argument
list are echoed to file descriptor 2 just prior to their execu­
tion.

Prompt mode: The user is asked whether to execute com­
mand each invocation. Trace mode (-t) is turned on to
print the command instance to be executed, followed by a
? ... prompt. A reply of y (optionally followed by anything)
will execute the command; anything else, including just a
carriage return, skips that particular invocation of command.

Causes xargs to terminate if any argument list would be
greater than size characters; -x is forced by the options -i
and -1. When neither of the options -i, -I, or -n are
coded, the total length of all arguments must be within the
size limit.

The maximum total size of each argument list is set to size
characters; size must be a positive integer less than or equal
to 470. If -s is not coded, 470 is taken as the default. Note
that the character count for size includes one extra character
for each argument and the count of characters in the com­
mand name.

Eofstr is taken as the logical end-of-file string. Underbar
(_) is assumed for the logical EOF string if -e is not coded.
The value -e with no eofstr coded turns off the logical EOF
string capability (underbar is taken literally). Xargs reads
standard input until either end-of-file or the logical EOF
string is encountered.

Xargs will terminate if either it receives a return code of -1 from, or if it cannot
execute, command. When command is a shell program, it should explicitly exit
(see sh(I)) with an appropriate value to avoid accidentally returning with -l.

EXAMPLES
The following will move all files from directory $ J to directory $2, and echo each
move command just before doing it:

Is $1 I xargs -i -t mv $1/{} $2/{}

The following will combine the output of the parenthesized commands onto one line,
which is then echoed to the end of file log:

Oogname; date; echo $0 $•) I xargs >>log

The user is asked which files in the current directory are to be archived and archives
them into arch (1.) one at a time, or (2.) many at a time.

L Is I xargs -p -I ar r arch
2. ls xargs -p -I I xargs ar r arch

The following will execute dif.f(l) with successive pairs of arguments originally
typed as shell arguments:

echo $• I xargs -n2 diff

SEE ALSO
sh(l).

7/8':, - 2 - 7/85

YACC(l) (Extended Software Generation System Utilities) YACC(l)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vdlt] grammar

DESCRIPTION

FILES

Yacc converts a context-free grammar into a set of tables for a simple automaton
which executes an LR(l) parsing algorithm. The grammar may be ambiguous;
specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program
yyparse. This program must be loaded with the lexical analyzer program, yylex, as
well as main and yyerror, an error handling routine. These routines must be sup­
plied by the user; lex (1) is useful for creating lexical analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a description of
the parsing tables and a report on conflicts generated by ambiguities in the gram­
mar.

If the -d flag is used, the file y.tab.b is generated with the #define statements that
associate the yacc-assigned "token codes" with the user-declared "token names".
This allows source files other than y.tab.c to access the token codes.

If the -I flag is given, the code produced in y.tab.c will not contain any #line con­
structs. This should only be used after the grammar and the associated actions are
fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional compila­
tion control. By default, this code is not included when y.tab.c is compiled. How­
ever, when yacc's -t option is used, this debugging code will be compiled by
default. Independent of whether the -t option was used, the runtime debugging
code is under the control of YYDEBUG, a pre-processor symbol. If YYDEBUG has a
non-zero value, then the debugging code is included. If its value is zero, then the
code will not be included. The size and execution time of a program produced
without the runtime debugging code will be smaller and slightly faster.

y.output
y.tab.c
y.tab.h
yacc.tmp,

defines for token names

yacc.debug, yacc.acts temporary files
/usr/lib/yaccparparser prototype for C programs

SEE ALSO
lex (1).
malloc(3X) in the AT&T 3B2 Computer Programmer Reference Manual.

DIAGNOSTICS

BUGS

7/85

The number of reduce-reduce and shift-reduce conflicts is reported on the standard
error output; a more detailed report is found in the y.output file. Similarly, if some
rules are not reachable from the start symbol, this is also reported.

Because file names are fixed, at most one yacc process can be active in a given
directory at a time.

- l - 7/85

Replace this

page with the

Index to Utilities Doc.

tab separator.

Index

INDEX TO UTILITIES DOCUMENTATION

INTRODUCTION
Utilities Guides provide tutorial type information for the UNIX'~ System
commands included with the 382/ 400 Computer. A Utilities Guide is
provided for each utilities except the Essential Utilities. The primary
purpose of this index is to help you access the Utilities Guide that contains
the information for the command in which you are interested. A
secondary purpose of the index is to help you access the appropriate
manual page for a command.

Although they are not considered utilities, the FORTRAN, BASIC, and C
Programming Language commands are included in this index. This index
also includes commands from the Security Administration Utilities. This
utilities is only available in the United States.

* Trademark of AT&T

1-1

INDEX TO UTILITIES

This index contains two sections: an Alphabetical Command Listing and an
Alphabetical Utilities Listing. The Alphabetical Command Listing relates
commands to utilities; the Alphabetical Utilities Listing is a grouping of
commands on a utilities basis.

Most of the references to utilities in the Alphabetical Command Listing are
straight forward. However, there are several conventions that need to be
explained.

As was mentioned earlier there is no Essential Utilities Guide. Essential
Utilities commands are described in either the UNIX System V User Guide
or the AT&T 382 Computer System Administration Utilities Guide. If the
reference is to " Essential," check the UNIX System V User Guide for
information on the command. If the reference is to" Essential" followed
by "System Admin" in parentheses, the command is described in the
AT&T 382 Computer System Administration Utilities Guide.

Installing the Simple Administration Utilities adds encryption capabilities to
the editors (ed, edit, vi, and ex). Tutorial information pertaining to the use
of the editors is found in either the UNIX System V User Guide or the
Editing Utilities Guide. Information describing the encryption feature is
described in the Security Administration Utilities Guide. If information
pertaining to a command is found in more than one document, the
referenced documents are separated by a slash (/). For example:

Editing/Security Admin

Since some manual pages describe more than one command, it is
sometimes difficult to locate those commands that do not have the same
name as the manual page. For example, the reject command in the Line
Printer Spooling Utilities is found on the accept manual page. To help you
locate those commands that are on a manual page of a different name,
the name of the manual page is placed in brackets after the command.
The reject commmand appears in the index as follows:

reject [accept(l M)]

1-2

INDEX TO UTILITIES

ALPHABETICAL COMMAND LISTING

300(1) . Terminal Filters
300s [300(1)] . Terminal Filters
4014(1) . Terminal Filters
450(1) .. Terminal Filters

A

abs [stat(lG)] .. Graphics
accept(l M) . Line Printer Spooling
admin(l) Source Code Control System
af [stat(lG)] ... Graphics
ar(l) . Directory and File Management
as(l) . Software Generation System
asa(l) FORTRAN Programming Language
at(l) .. User Environment
awk(l) . Directory and File Management

B

banner(l) . User Environment
bar [stat(lG)] .. Graphics
basename(l). Essential
basic(l)............................ BASIC Programming Language
batch [at(l)] User Environment
bc(l) . User Environment
bcheckrc [brc(l M)] Essential (System Admin)
bdiff(l) . Directory and File Management
bel [gutil(lG)] .. Graphics
bfs(l) . Directory and File Management
brc(l M) . Essential (System Admin)
bucket [stat(lG)] Graphics

1-3

INDEX TO UTILITIES

c
cal(l) User Environment
calendar(!)............ User Environment
cancel [lp(l)] Line Printer Spooling
cat(l) . Essential
cb(l) C Programming Language
cc(l) . C Programming Language
cd(1) . Essential
cdc(l) Source Code Control System
ceil [stat(lG)]•......... Graphics
cflow(l) C Programming Language
checkall(l M) . System Administration
checkfsys(l M) . Essential
chgrp(l) . Essential
chmod(l) . Essential
chown(l) . Essential
chroot(l M) . System Administration
ckauto(l M) . Essential (System Admin)
ckbupscd(l M) . Essential
clri(l M). Essential (System Admin)
cmp(l) . Essential
cmpress(l M) . Cartridge Tape
comb(l) Source Code Control System
comm(l) Directory and File Management
compress [spell(l)] Spell
conv(l) . Software Generation System
cor [stat(lG)] .. Graphics
cp(l)... Essential
cpio(1) . Essential
cpp(l) . C Programming Language
cprs(l) Software Generation System
crash(l M) . System Administration
cron(l M). Essential (System Admin)
crontab(l) . User Environment
crypt(l) . Security Administration

1-4

INDEX TO UTILITIES

csplit(l) . Directory and File Management
ct(lC)•......................... Basic Networking
ctccpio(1 M). • • • • . • Cartridge Tape
ct cf mt(1 M) • . • • • • Cartridge Tape
ctcinfo(l) • • . • • Cartridge Tape
ctrace(l) • C Programming Language
cu(lC)•..........•.......... Basic Networking
curses(3X) . • . • • • . Terminal Information
cusum [stat(lG)]•............................... Graphics
cut(l) • . • . . . • • . • Directory and File Management
cvrtopt [gutil(lG)]••............................... Graphics
cxref(l) • • . • • C Programming Language

D

date(l) . • . • Essential
dc(l) . User Environment
dcopy(l M). • • • . System Administration
dd(l M) . Essential (System Admin)
delta(l). • • • Source Code Control System
deroff(l) ... Spell
devnm(l M) . Essential (System Admin)
df(1 M). • . • • • Essential (System Admin)
dfsck [fsck(l M)] . System Administration
diff(l) . • . . • . . • Essential
diff3(1) . Directory and File Management
dircmp(l)••....... Directory and File Management
dirname [basename(l)] . • • . Essential
dis(l).. • • . • . Software Generation System
disable [enable(l)] •.......................... Line Printer Spooling
disks(l M) . • Essential
drvinstall(l M) • Essential (System Admin)
dtoc [toc(lG)]•............•.........• Graphics
du(l M) • • • • . • • Essential (System Admin)
dump(l) • Software Generation System

1-5

INDEX TO UTILITIES

E

echo(l). • • . Essential
ed(l) Essential/Security Admin
edit(l) Editing/Security Admin
efl(l) FORTRAN Programming Language
egrep(l) • Directory and File Management
enable(l) . Line Printer Spooling
env(l) User Environment
erase [gdev(lG)] Graphics
errdump(l M) . Essential (System Ad min)
ex(l)•......................... Editing/Security Admin
exp [stat(lG)] .. Graphics
expr(l) • • • . Essential

F

f77(1)•.............. FORTRAN Programming Language
factor(l)..................................... User Environment
false(1) . Essential
ff(l M) • . System Administration
fgrep(l) . Directory and File Management
file(1). Directory and File Management
finc(l M). • . Cartridge Tape
find(l). Essential
floor [stat(lG)]•......... Graphics
fmtflop(l M) • Essential (System Admin)
fmthard(l M) . Essential (System Admin)
frec(l M) • . Cartridge Tape
fsck(l M) . Essential (System Admin)
fsdb(l M) . System Administration
fsplit(l). • FORTRAN Pogramming Language
fsstat(l M). Essential (System Ad min)
fuser(l M) . System Administration

1-6

INDEX TO UTILITIES

G

gamma [stat(lG)] Graphics
gas [stat(lG)] .. Graphics
gd [gutil(lG)] .. Graphics
gdev(l G) . Graphics
ged(lG) ... Graphics
get(l) . Source Code Control System
getmajor(l M) . Essential (System Admin)
getopt(1) . Essential
getty(l M) . Essential (System Adm in)
glossary(l) . Help
graph(lG) ... Graphics
graphics(lG) ... Graphics
greek(l) Terminal Filters
grep(l) . Essential
grpck [pwck(l M)] . System Administration
gtop [gutil(lG)] Graphics
gutil(lG) .. Graphics

H

hardcopy [gdev(lG)] Graphics
hashcheck [spell(l)] Spell
hashmake [spell(l)] Spell
hdeadd(l M) . Essential (System Admin)
hdefix(l M) . Essential (System Admin)
hdelogger(l M) . Essential (System Ad min)
help(l) ... Help
help(l) . Source Code Control System
helpadm(l) ... Help
hilo [stat(lG)] .. Graphics
hist [stat(lG)] .. Graphics
hp(l) ... Terminal Filters
hpd [gdev(lG)] Graphics
hpio(l) . Terminal Filters

1-7

INDEX TO UTILITIES

I

id(1) . Essential
init(l M). Essential (System Admin)
ipcrm(l) Inter-Process Communication
ipcs(l)•............. Inter-Process Communication

J

join(l) . Directory and File Management

K

kill(l) . Essential
killall(l M) . Essential (System Admin)

L

label [stat(lG)] Graphics
labelit(l M) . Essential (System Admin)
ld(l). Software Generation System
ldsysdump(l) System Administration
led(lM) ... Essential
lex(l) . Extended Software Generation System
line(l) . Essential
link(lM) System Administration
lint(l) C Programming Language
list [stat(lG)] .. Graphics
list(l) . C Programming Language
In(1) . Essential
locate(l) . Help
log [stat(lG)]•........ Graphics
login(l) ... Essential

1-8

INDEX TO UTILITIES

logname(l)................................ . . . User Environment
lorder(l) • Software Generation System
lp(l) Line Printer Spooling
lpadmin(l M) . Line Printer Spooling
lpmove [lpsched(l M)] . Line Printer Spooling
lpsched(l M) . Line Printer Spooling
lpshut [lpsched(l M)] . Line Printer Spooling
lpstat(l). Line Printer Spooling
lreg [stat(lG)] .. Graphics
Is(1) . Essential

M

m4(1) . Software Generation System
machid(1) . Essential
mail(1) . Essential
mailx(l) . Essential
make(l) . Extended Software Generation System
makefsys(l M) . Essential
makekey(l) . Security Administration
mean [stat(lG)] Graphics
mesg(l) . Essential
mkboot(l M) • . Essential (System Ad min)
mkdir(l) . Essential
mkfs(l M) . Essential (System Ad min)
mknod(l M) . Essential (System Admin)
mkunix(l M) . Essential (System Admin)
mod [stat(lG)] Graphics
mount(l M) . Essential (System Ad min)
mountall(l M) . Essential (System Admin)
mountfsys(l M) . Essential
mv(1) . Essential
mvdir(l M) . System Administration

1-9

ll\IDEX TO UTILITIES

N

ncheck(l M). • System Administration
newboot(l M) . Essential (System Admin)
newform(l) . Directory and File Management
newgrp(l M) . Essential (System Adm in)
news(l)... Essential
nice(l) . User Environment
nl(l) . Directory and File Management
nm(l) Software Generation System
nohup(l) User Environment

0

od(l) . Directory and File Management

p

pack(l) . Directory and File Management
pair [stat(lG)]•............................. Graphics
passwd(l) . Essential
paste(l). Directory and File Management
pcat[pack(l)]....................... Directory and File Management
pd [gutil(lG)] .. Graphics
pdpl 1 [machid(l)] Essential
pg(l) . Directory and File Management
pie [stat(lG)] .. Graphics
plot [stat(lG)] .. Graphics
point [stat(lG)] .•..................................... Graphics
power [stat(lG)] Graphics
powerdown(1 M) . Essential
pr(l) . Essential
prfdc [profiler(IM)] . Performance Measurements
prfld [profiler(l M)] . Performance Measurements
prfpr [profiler(l M)] . Performance Measurements
prfsnap [profiler(l M)] Performance Measurements
prfstat [profiler(l M)] Performance Measurements

1-10

INDEX TO UTILITIES

prime [stat(lG)] Graphics
prod [stat(lG)] Graphics
prof(l) . Extended Software Generation System
profiler(1 M) . Performance Measurements
prs(1) . Source Code Control System
prtconf(l M) . Essential
prtvtoc(lM) Essential (System Admin)
ps(1) . Essential
ptog [gutil(lG)] Graphics
pump(l M). Essential
pwck(l M) . System Administration
pwd(l) . Essential

Q

qsort [stat(lG)] Graphics
quit [gutil(lG)] Graphics

R

rand [stat(lG)] Graphics
rank [stat(lG)] Graphics
ratfor(l) . FORTRAN Programming Language
re [brc(l M)] . Essential
rcO(l M) . Essential (System Ad min)
rc2(1 M) • . Essential (System Ad min)
red(1) . Essential
regcmp(l) . C Programming Language
reject [accept(lM)] Line Printer Spooling
remcom [gutil(lG)] Graphics
rm(l) . Essential
rmail(l). Essential
rmdel(l) Source Code Control System
rmdir(l) .. Essential
root [stat(lG)] Graphics
round [stat(lG)] Graphics
rsh(1) . Essential

1-11

INDEX TO UTILITIES

s
sal [sar(l M)] . Performance Measurements
sa2 [sar(l M)] . Performance Measurements
sact(l) Source Code Control System
sadc [sar(l M)] . Performance Measurements
sadp(1 M) . Performance Measurements
sag(lG) . Performance Measurements
sar(l)............................... Performance Measurements
sar(l M) . Performance Measurements
sccsdiff(l) . Source Code Control System
sdb(l) . Extended Software Generation System
sdiff(l). Directroy and File Management
sed(l) . Essential
setclk(l M) . Essential (System Admin)
setmnt(l M). Essential (System Admin)
setup(1) . Essential
sh(1) . Essential
shl(l) . User Environment
shutdown(! M) . Essential (System Adm in)
siline [stat(lG)] Graphics
sin [stat(lG)] .. Graphics
size(l) . Software Generation System
sleep(l). Essential
sort(l) . Essential
spell(l) .. Spell
spellin [spell(l)] .. Spell
spline(lG) ... Graphics
split(!)............................ Directory and File Management
starter(1). Help
stat(lG) .. Graphics
strip(l) . Software Generation System
stty(1). Essential
su(l M) . Essential (System Admin)
subset [stat(lG)] Graphics
sum(l)............................ Directory and File Management
sync(l M) . Essential (System Admin)
sysadm(l) ... Essential
sysdef(l M) . System Administration

1-12

INDEX TO UTILITIES

T

tabs(1) . User Environment
tail(l) Directory and File Management
tar(l) .. Cartridge Tape
td [gdev(lG)] .. Graphics
tee(1) . • Essential
tekset [gdev(1 G)] . Graphics
telinit [init(lM)] Essential (System Admin)
terminfo(4) Terminal Information
test(1). Essential
tic(l M). Terminal Information
time(1) . Essential
timex(l) . Performance Measurements
title [stat(lG)] .. Graphics
toe(1 G) . Graphics
total [stat(lG)] Graphics
touch(l) . Essential
tplot(lG) .. Graphics
tput(l). Terminal Information
tr(1) . Directory and File Management
true(1) . Essential
tsort(l) . Software Generation System
ttoc [toc(l G)] . Graphics
tty(l) . User Environment

u

u370 [machid(l)] Essential
u3b [machid(l)] . Essential
u3b2 [machid(l)] . Essential
u3b5 [machid(l)] . Essential
uadmin(l M) . Essential
umask(1) . Essential
umount [mount(lM)] Essential (System Admin)

1-13

INDEX TO UTILITIES

umountall(l M) . Essential (System Admin)
umountfsys [mountfys(lM)] Essential
uname(l) . Essential
unget(l) Source Code Control System
uniq(l)............................ Directory and File Management
units(l)•...................... User Environment
unlink [link(l M)] . System Administration
unpack [pack(l)] . Directory and File Management
usage(l) ... Help
uucheck(l M) . Basic Networking
uucico(l M) . Basic Networking
uucleanup(l M) . Basic Networking
uucp(lC) Basic Networking
uugetty(l M). Basic Networking
uulog [uucp(lC)] Basic Networking
uuname [uucp(lC)] Basic Networking
uupick [uuto(lC)] Basic Networking
uusched(l M) . Basic Networking
uustat(l C) . Basic Networking
uuto(lC) Basic Networking
U utry(l M) . Basic Networking
uux(lC) Basic Networking
uuxqt(l M) . Basic Networking

v
val(l) Source Code Control System
var [stat(lG)] .. Graphics
vax [machid(l)] . Essential
vc(l) . Source Code Control System
vi(l) . Editing/Security Admin
volcopy(l M) . System Administration
vtoc [toc(lG)] .. Graphics

1-14

INDEX TO UTILITIES

w

wait(l) . Essential
wall(l). Essential
we(1) . Essential
what(l) . Source Code Control System
whatis [gutil(lG)]•.............. Graphics
who(1) . Essential
whodo(l M) . System Administration
write(1) . • Essential

x
xargs(l) User Environment

y

yacc(l) . Extended Software Generation System
yoo [gutil(lG)]•.......... Graphics

1-15

INDEX TO UTILITIES

ALPHABETICAL UTILITIES LISTING

BASIC Programming language

basic(l)

Basic Networking Utilities

ct(l C)
uucico(lM)
uugetty(lM)
uupick [uuto(lC)]
uuto(lC)
uuxqt(lM)

cu(lC)
uucleanup(1 M)
uulog [uucp(lC)]
uusched(l M)
Uutry(lM)

C Programming language

cb(l)
ctrace(l)
regcmp(l)

cc(l)
cxref(l)

Cartridge Tape Utilities

empress(IM)
finc(lM)

1-16

ctccpio(1 M)
frec(lM)

uucheck(1 M)
uucp(lC)
uuname [uucp(l C)]
uustat(lM)
uux(lC)

cflow(l)
lint(l)

ctcfmt(lM)
tar(l)

cpp(l)
list(l)

ctcinfo(1)

INDEX TO UTILITIES

Directory and File Management Utilities

bdiff(l)
cut(1)
fgrep(l)
nl(l)

ar(l)
comm(l)
dircmp(l)
join(1)
pack(l)
sdiff(l)
tr(l)

awk(l)
csplit(l)
egrep(l)
newform(l)
paste(l)
split(l)
uniq(l)

peat [pack(l)]
sum(l)

bfs(l)
diff3(1)
file(1)
od(l)
pg(l)
tail(l)

Editing Utilities

edit(l) ex(l)

Essential Utilities

basename(1)
cat(l)
chgrp(l)
ckauto(l M)
cmp(l)
cron(l M)
devnm(lM)
dirname [basename(l)]
du(lM)
errdump(l M)
find(1)
fsck(l M)
getopt(l)
hdeadd(lM)
id(l)
killall(l M)
line(l)
ls(l)

unpack [pack(l)]

vi(l)

bcheckrc [brc(l M)]
cd(l)
chmod(l)
ckbupscd(1 M)
cp(l)
date(l)
df(l M)
disks(lM)
echo(l)
expr(1)
fmtflop(lM)
fsstat(l M)
getty(lM)
hdefix(lM)
init(l M)
labelit(l M)
ln(l)
machid(l)

brc(l M)
checkfsys(1 M)
chown(l)
clri(lM)
cpio(l)
dd(l M)
diff(l)
drvinstall(l M)
ed(l)
false(l)
fmthard(lM)
getmajor(1 M)
grep(l)
hdelogger(l M)
kill(l)
led(l M)
login(l)
mail(l)

1-17

INDEX TO UTILITIES

Essential Utilities (cont)

mailx(l)
mkboot(lM)
mknod(lM)
mountall(1 M)
newboot(1 M)
passwd(l)
pr(l)
ps(l)
rc(lM)
red(l)
rmdir(l)
setclk(lM)
sh(l)
sort(l)
sync(IM)
telinit(l M)
touch(l)
u3b2
uadmin(l M)
umountall(1 M)
vax(l)
wc(l)

makefsys(l M)
mkdir(l)
mkunix(lM)
mountfsys(l M)
newgrp(l M)
pdpl 1(1)
prtconf(lM)
pump(lM)
rcO(lM)
rm(l)
rsh(l)
setmnt(l M)
shutdown(! M)
stty(1)
sysadm(l)
test(l)
true(l)
[machid(l)]
umask(l)
umountfsys(l M)
wait(l)
who(l)

mesg(l)
mkfs(l M)
mount(lM)
mv(l)
news(l)
powerdown(1 M)
prtvtoc(1 M)
pwd(l)
rc2(1 M)
rmail(l)
sed(l)
setup(l)
sleep(l)
su(l M)
tee(l)
time(l)
u370 [machid(l)]
u3b5 [machid(l)]
umount(l M)
uname(l)
wall(l)
write(l)

Extended Software Generation System Utilities

lex(l)
yacc(l)

1-18

make(l) prof(l) sdb(l)

FORTRAN Programming Language

asa(l)
ratfor(l)

efl(1) f77(1)

Graphics Utilities

abs [stat(lG)]
bel [gutil(lG)]
cor [stat(lG)]
dtoc [toc(lG)]
floor [stat(lG)]
gd [gutil(lG)]
graph(lG)
gutil(lG)
hist [stat(lG)]
list [stat(lG)]
mean [stat(lG)]
pd [gutil(1 G)]
point [stat(l G)]
prod [stat(lG)]
quit [gutil(lG)]
remcom [gutil(lG)]
siline [stat(lG)]
stat(lG)
tekset [gdev(1 G)]
total [stat(lG)]
var [stat(lG)]
yoo [gutil(lG)]

Help Utilities

af [stat(lG)]
bucket [stat(lG)]
cusum [stat(lG)]
erase [gdev(lG)]
gamma [stat(lG)]
gdev(lG)
graphics(1 G)
hardcopy [gdev(lG)]
hpd [gdev(lG)]
log [stat(lG)]
mod [stat(l G)]
pie [stat(lG)]
power [stat(lG)]
ptog [gutil(lG)]
rand [stat(lG)]
root [stat(lG)]
sin [stat(lG)]
subset [stat(lG)]
title [stat(lG)]
tplot(lG)
vtoc [toc(lG)]

INDEX TO UTILITIES

fsplit(l)

bar [stat(lG)]
ceil [stat(lG)]
cvrtopt [gutil(lG)]
exp [stat(lG)]
gas [stat(lG)]
ged(lG)
gtop [gutil(lG)]
hilo [stat(lG)]
label [stat(l G)]
lreg [stat(lG)]
pair [stat(lG)]
plot [stat(lG)]
prime [stat(lG)]
qsort [stat(lG)]
rank [stat(lG)]
round [stat(lG)]
spline(lG)
td [gdev(lG)]
toc(lG)
ttoc [toc(lG)]
whatis [gutil(lG)]

glossary(l)
starter(1)

help(l)
usage(l)

helpadm(l) locate(l)

1-19

INDEX TO UTILITIES

lnter~Process Communication Utilities

ipcs(l) ipcrm(l)

Line Printer Spooling Utilities

accept(l M)
enable(l)
Ip move [lpsched(1 M)]
lpstat(l)

cancel [lp(l)]
lp(l)
lpsched(l M)
reject [accept(! M)]

Performance Measurements Utilities

prfdc [profiler(lM)]
prfsnap [profiler(l M)]
sal [sar(lM)]
sadp(l M)
sar(1 M)

prfld [profiler(l M)]
prfstat [profiler(1 M)]
sa2 [sar(lM)]
sag(lM)
timex(l)

Security Administration Utilities

disable [enable(l)]
lpadmin(l M)
lpshut [lpsched(l M)]

prfpr [profiler(! M)]
profiler(IM)
sadc [sar(IM)]
sar(I)

Note: This utilities is only available within the United States.

crypt(I)
makekey(l)

1-20

ed -x(l)
vi -x(l)

edit -x(l) ex -x(l)

Software Generation System Utilities

as(l)
dump(l)
nm(l)

conv(l)
ld(l)
size(l)

cprs(1)
lorder(l)
strip(l)

Source Code Control System Utilities

admin(l) cdc(l) comb(l)
get(l) help(l) prs(l)
sact(l) sccsdiff(1) unget(l)
vc(l) what(l)

Spell Utilities

compress [spell(l)] deroff(l) hashcheck [spell(l)]
hashmake [spell(l)] spell(l) spellin [spell(l)]

System Administration Utilities

checkall(lM) chroot(lM) crash(l M)
dcopy(lM) dfsck(l M) ff(lM)
fsdb(lM) fuser(lM) grpck(l M)
ldsysdump(l) link(lM) mvdir(l M)
ncheck(lM) pwck(lM) sysdef(l M)
unlink(lM) volcopy(1 M) whodo(lM)

Terminal Filters Utilities

300(1) 300s [300(1)] 4014(1)
greek(l) hp(l) hpio(l)

INDEX TO UTILITIES

dis(l)
m4(1)
tsort(1)

delta(l)
rmdel(l)
val(l)

450(1)

1-21

INDEX TO UTILITIES

Terminal Information Utilities

curses(3X) term info(4)

User Environment Utilities

at(l)
cal(l)
env(l)
nohup(l)
units(l)

1-22

banner(l)
calendar(1)
factor(l)
shl(l)
xargs(l)

tic(lM)

batch [at(l)]
crontab(l)
logname(l)
tabs(l)

tput(l)

bc(l)
dc(l)
nice(l)
tty(l)

