

ACKNOWLEDGEMENTS

Prepared and published by
Document Development Organization - Microelectronics Projects Group
AT&T Network Systems, Morristown

for the

Microsystems Product Management
AT&T Technologies, Inc.

and the

AT&T Computer Systems Center
Lisle, Illinois ·

A WORD ABOUT TRADEMARKS

The following AT&T registered trademarks are mentioned in this manual:

WE® 32001 Processor Module

WE® 32100 Microprocessor

WE® 32101 Memory Management Unit

WE® 32106 Math Acceleration Unit

WE® 321AP Microprocessor Analysis Pod

WE® 32IDS Microprocessor Development System

WE® 32ISD Development Software Programs

WE® 321SG Software Generation Programs

AT&T 3B2/3B5/3B15 Computers are trademarks of AT&T.

UNIX™ Operating System is a trademark of AT&T.

AT & T reserves the right to make changes to the product(s), including any hardware, software, and/ or firmware

contained therein, described herein without notice. No liability is assumed as a result of the use or application of
this product(s). No rights under any patent accompany the sale of any such product(s).

Copyright© 1986 AT&T. AU Rights Reserved.
Printed in United States of America Select Code 305-000

-- -=ATs.T March 1986 ·

AT&T 382/385/3815 Computers
Assembly Language Programming Manual

The information contained herein is subject to change.

ACKNOWLEDGEMENTS

Prepared and published by
Document Development Organization - Microelectronics Projects Group
AT&T Network Systems, Morristown

for the

Microsystems Product Management
AT&T Technologies, Inc.

and the

AT&T Computer Systems Center
Lisle, Illinois

A WORD ABOUT TRADEMARKS

The following AT&T registered trademarks are mentioned in this manual:

WE® 32001 Processor Module

WE® 32100 Microprocessor

WE® 32101 Memory Management Unit

WE® 32106 Math Acceleration Unit

WE® 321AP Microprocessor Analysis Pod

WE® 321DS Microprocessor Development System

WE® 321SD Development Software Programs

WE® 321SG Software Generation Programs

AT&T 3B2/3B5/3Bl5 Computers are trademarks of AT&T.

UNIX™ Operating System is a trademark of AT&T.

AT & T reserves the right to make changes to the product(s), including any hardware, software, and/ or firmware

contained therein, described herein without notice. No liiability is assumed as a result of the use or application of
this product(s). No rights under any patent accompany the sale of any such product(s).

Copyright © 1986 AT & T. All Rights Reserved.
Printed in United States of America Select Code 305-000

FOREWORD

This manual is intended for 3B Computer users with a need to program in assembly
language. Emphasis is on the WE 32100 Microprocessor and its floating point support.
The more general IS25 instructions are referenced in an appendix.

Data organization and storage, and WE 32100 Microprocessor (CPU) addressing modes are
discussed prior to the instruction set. The instructions are grouped functionally into data
transfer arithmetic, logical, program control, coprocessor, stack, and miscellaneous types.
Mnemonics, op-codes, bytes, cycles counts, and effect on flag bits are tabulated for each
instruction. Detailed descriptions of each instruction are given in the appendix. The
CPU's operating system instructions are also referenced.

Assembler and disassembler options, along with a description of assembler directives and
macro processing facilities, are presented. The WE 32106 Math Acceleration Unit
assembly language instructions are detailed along with the alternative floating point
emulation library of functions.

To obtain additional copies of this manual, Select Code 305-000, call:
D 1-800-432 '886.

/pft>(JO

m

ASSEMBLY LANGUAGE PROGRAMMING MANUAL

FOR THE AT&T 3B2/3B5/3B15 COMPUTERS

CONTENTS

CHAPTER 1. INTRODUCTION

1. INTRO DU CT ION .. :............................... 1-1
1.1 OVERVIEW... 1-1
1.2 DEVELOPMENT .. 1-2

CHAPTER 2. ARCHITECTURE

2. ARCHITECTURE OF THE WE 32100 MICROPROCESSOR 2-1
2.1 ASSEMBLY LEVEL SUPPORT GROUP... 2-3
2.2 HIGH-LEVEL LANGUAGE SUPPORT GROUP ... 2-4
2.3 OPERATING SYSTEM SUPPORT GROUP... 2-5

CHAPTER 3. ASSEMBLY LANGUAGE STRUCTURE

3. ASSEMBLY LANGUAGE STRUCTURE ... 3-1
3. l STATEMENTS.. 3-1
3.2 EXECUTABLE INSTRUCTIONS .. 3-2
3.3 SYMBOLS.. 3-3
3. 3. 1 Values and Types... 3-4
3.3.2 Assigning Values and Types to Symbols ... 3-4
3.4 EXPRESSIONS... 3-5
3.4. l Constants.. 3-6
3 .4.2 Registers 3-6

CHAPTER 4. DATA ORGANIZATION

4. DATA ORGANIZATION.. 4-1
4. 1 DA TA TYPES.. 4-1
4.2 DATA STORAGE IN MEMORY-................................. 4-3
4.3 REGISTER DATA STORAGE.. 4-3
4.4 INSTRUCTION STORAGE IN MEMORY .. 4-4

CHAPTER 5. ADDRESSING MODES

5. ADDRESSING MODES... 5-1
5. 1 REGISTER MODE... 5-4
5.2 REGISTER DEFERRED MODE.. 5-5
5.3 DISPLACEMENT MODE.. 5-6
5.4 DEFERRED DISPLACEMENT MODE... 5-8
5.5 IMMEDIATE MODE... 5-9

v

vi

5.6 ABSOLUTE MODE.. 5-10
5.7 ABSOLUTE DEFERRED MODE... 5-10
5.8 EXPANDED OPERAND MODE .. 5-11
5.9 SUMMARY ... 5-13

CHAPTER 6. INSTRUCTION SET

6. INSTRUCTION SET.. 6-1
6.1 WE 32100 MICROPROCESSOR INSTRUCTION SET 6-1
6.1.l Condition Flags ... ~ .. 6-2
6.2 FUNCTIONAL GROUPS .. 6-3
6.2.l Data Transfer Instructions.. 6-4
6.2.2 Arithmetic Instructions.. 6-5
6.2.3 Logical Instructions.. 6-7
6.2.4 Program Control Instructions.. 6-9
6.2.5 Coprocessor Instructions.. 6-14
6.2.6 Stack and Miscellaneous Instructions ... 6-15

CHAPTER 7. USING THE as ASSEMBLER

7. USING THE as ASSEMBLER .. 7-1
7.1 OVERVIEW OF ASSEMBLY PROCESS .. 7-1
7.2 as ASSEMBLER.. 7-1
7 .2.1 Assembled Files.. 7-3
7.2.2 Diagnostics... 7-3
7.3 ASSEMBLER DIRECTIVES... 7-3

Location Counter.. 7-4
7.3. l Section Control Pseudo-Operations... 7-5
7.3.2 Pseudo-Operations Dealing With Symbols ... 7-7
7.3.3 Assignment Pseudo-Operations.. 7-8
7.3.4 Assignment to Dot... 7-9
7.3.5 Alignment Pseudo-Operations ... 7-9
7.3.6 Data Generation Pseudo-Operations ... 7-9
7.3.7 Symbolic Debugging Pseudo-Operations ... 7-10
7.3.8 File Name Pseudo-Operations ... 7-12
7.3.9 Line Number Pseudo-Operations .. 7-12
7.4 MACRO PROCESSING FACILITIES ... 7-12
7 .4.1 Interface Macros•. ,.. 7-13

Function Interface Macros.. 7-13
Scratch Register Macros... 7-14
Stack Frame Macros.. 7-14
Restrictions... 7-15

7.4.2 Using Predefined Macros... 7-15
Examples .. 7-15

7.4.3 M4 Reserved Words.. 7-17

CHAPTER 8. THE dis DISASSEMBLER

8. THE dis DISASSEMBLER... 8-1
8.1 INVOKING THE DISASSEMBLER .. 8-1

8.2 DISASSEMBLY LISTING... 8-2
8.2. l Using the Disassembly Listing .. 8-3
8.3 ERROR MESSAGES.. 8-3

CHAPTER 9. OPERATING SYSTEM INTERFACE

9. OPERATING SYSTEM INTERFACE ... 9-1
9.1 FEATURES OF THE OPERATING SYSTEM ... 9-1
9.1.l Memory Management Considerations for Virtual Memory Systems 9-4

CHAPTER 10. FLOATING POINT SUPPORT

10. FLOATING POINT SUPPORT . .'... 10-1
10.l WE 32106 MATH ACCELERATION UNIT ASSEMBLY

LANGUAGE INSTRUCTION SET ... 10-1
10.1.1 Programmer's Overview of WE 32106 Math Acceleration Unit 10-1

MAU Register S111pport... 10-1
Conditional Jump Instructions.. 10-2
MAU Control Bits... 10-2
Immediate Operands... 10-3

10.1.2 Data Types... 10-3
10.1.3 MIS Instruction Listings .. 10-5

Notation... 10-5
MIS Instruction Set Descriptions I 0-7
MIS Instructions Summary by Function.. 10-56
MIS Instructions Summary by Mnemonic... 10-60

10.2 FLOATING POINT EMULATION LIBRARY .. 10-63
10.2.1 Assembly Language Support... 10-63
10.2.2 Data Type... 10-63
10.2.3 Floating Point Environment and Exception Handling.. 10-63
10.2.4 Library Listings... 10-67

Notation... 10-67
FPE Function Call Descriptions ,................................... 10-68
FPE Function Call Summary By Function .. 10-83
FPE Function Call Summary By Mnemonic ... 10-84

APPENDIX A. WE 32100 MICROPROCESSOR INSTRUCTION SET

A. WE 32100 MICROPROCESSOR INSTRUCTION SET LISTINGS A-1
A.l. NOTATION.. A-1
A.2. INSTRUCTION SET DESCRIPTIONS ... A-1
A.3. INSTRUC'I;ION SET SUMMARY BY FUNCTION A-93
A.4. INSTRUCTION SET SUMMARY BY MNEMONIC A-99
A.5. INSTRUCTION SET SUMMARY BY OPCODE ... A-104

APPENDIX B. IS25 INSTRUCTION SET

B. IS25 INSTRUCTION SET.. B-1
B. l. ADDRESSING MClDES ... B-1

vii

viii

B.1.1 Absolute Mode... B-2
B.1 .2 Absolute Deferred Mode... B-2
B.1.3 Displacement Mode ... B-2
B.1.4 Displacement Deferred Mode... B-2
B. 1.5 External Address Mode... B-3
B.1.6 External Address Deferred Mode... B-3
B. l .7 Immediate Mode... B-3
B.1.8 Register Mode... B-3
B.2 IS25 INSTRUCTION SET LISTINGS .. B-4
B.2.1 Notation... B-4
B.2.2 IS25 Instruction Set Descriptions... B-4
B.2.3 IS25 Instruction Set Summary by Function... B-59
B.2.4 IS25 Instruction Set Summary by Mnemonic.. B-63

APPENDIX C. SAMPLE PROGRAMS

C. SAMPLE PROGRAMS.. C-1

GLOSSARY AND ACRONYMS

INDEX

LIST OF FIGURES

Figure 2-1. WE 32100 Microprocessor Block Diagram ... 2-1
Figure 2-2. The WE 32100 Microprocessor Register Set.. .. 2-2
Figure 2-3. Assembly Level Support Group .. 2-3
Figure 2-4. The WE 32100 Microprocessor Stack ... 2-4
?igure 2-5. High-Level Language Register Support Group .. 2-4
Figure 2-6. Operating System Register Support Group.. 2-5
Figure 4-1. Byte Data... 4-1
Figure 4-2. Halfword Data... 4-1
Figure 4-3. Word Data... 4-2
Figure 4-4. Floating Point Data Types... 4-2
Figure 4-5. Extraction of a Bit Field.. 4-3
Figure 4-6. Word Storage in Memory.. 4-3
Figure 4-7. Instruction Storage in Memory... 4-4
Figure 4-8. Operand Format... 4-4
Figure 4-9. Word Storage Within an Instruction .. 4-5
Figure 5-1. Instruction Format... 5-1
Figure 5-2. Operand Format... 5-2
Figure 5-3. Descriptor Byte Format... 5-2
Figure 5-4. Register Mode Example .. 5-4
Figure 5-5. Deferred Addressing Using a Pointer... 5-5
Figure 5-6. Register Deferred Mode Example... 5-6
Figure 5-7. Example of MOVW Ox30(% r2),% r3 .. 5-6
Figure 5-8. A Displacement Mode Source Operand .. 5-7
Figure 5-9. Deferred Displacement Addressing... 5-8
Figure 5-10. A Deferred Displacement Mode Source Operand.................................... 5-8
Figure 5-11. A 32-bit Immediate Source Operand.. 5-9

Figure 5-12. An Absolute Mode Source Operand... 5-10
Figure 5-13. An Absolute Deferred Mode Source Operand .. 5-11
Figure 5-14. Expanded Operand Mode Descriptor Bytes .. 5-11
Figure 5-15. Expanded Operand Mode Example ... 5-12
Figure 6-1. Condition Flags.. 6-2
Figure 6-2. Stack After CALL-SAVE Sequence······.·· 6-11
Figure 7-1. Assembly Process... 7-2
Figure 7-2. Mapping Program Sections... 7-4
Figure 10-1. Bit Order of Data .. 10-4

LIST OF TABLES

Table 5-1. Basic Addressing Modes... 5-1
Table 5-2. The WE 32100 Microprocessor Addressing Modes 5-2
Table 5-3. Options for type in Expanded Operand Mode ... 5-12
Table 5-4. Addressing Modes... 5-14
Table 6-1. Data Transfer Instruction Group.. 6-5
Table 6-2. Arithmetic Instruction Group... 6-6
Table 6-3. Logical Instruction Group... 6-8
Table 6-4. Program Control Instructions ... 6-10
Table 6-5. Coprocessor Instructions ... 6-15
Table 6-6. Stack and Miscellaneous Instructions .. 6-16
Table 6-7. Condition Flag Code Assignments .. 6-16
Table 7-l. as Command Line Options... 7-1
Table 7-2. Alphabetical List of Pseudo-Operations... 7-6
Table 8-1. m32dis Command Line Options.. 8-1
Table 9-1. Operating System Instructions .. 9-2
Table l 0- L Assembly Language Operators and Symbols... l 0-6
Table 10-2. Floating Point Result Types... 10-7
Table 10-3. MIS Instructions Summary by Function.. 10-56
Table 10-4. MIS Instructions Summary by Mnemonic... 10-60
Table 10-5. FPE Function Call Summary by Function... 10-83
Table 10-6. FPE Function Call Summary by Mnemonic.. 10-84
Table A-1. Assembly Language Operators and Symbols.. A-2
Table A-2. Register Set ... :.. A-3
Table A-3. Data Transfer Instruction Group... A-93
Table A-4. Arithmetic Instruction Group.. A-93
Table A-5. Logical Instruction Group.. A-95
Table A-6. Program Control Instruction Group.. A-96
Table A-7. Coprocessor Instructions .. A-98
Table A-8. Stack and Miscellaneous Instructions.. A-98
Table A-9. Instruction Set Summary by Mnemonic ... A-99
Table A-10. Instruction Set Summary by Opcode .. A-104
Table B-1. Addressing Modes for IS25 Instructions ... B-1
Table B-2. Assembly Language Operators and Symbols .. B-5
Table B-3. Data Transfer Instructions... B-59
Table B-4. Arithmetic Instructions... B-60
Table B-5. Logical Instructions.. B-61
Table B-6. Program Control Instructions... B-62
Table B-7. Stack Instructions... B-62
Table B-8. IS25 Instruction Set Summary by Mnemonic ... B-63

ix

Chapter l

lntroductiou

·coNTENTS

L INTRODUCTiO:N>.•... , .. ,., .. ~ ~ ... ·.~· ;~.:.>: .• , ~··'····--·· .. ·'·········· 1-1
.1.1· OVERVIEW :···~·\:··'.·········''··.·:···:.····•···········~··'·····'· .. ·:: ... ······~':·: .. ···y~·:·'.····: l-1
1.2 .DEVELOPM~NT ~ •. , ~ · ,.:,,.,:., ,.,., ,•.. , · I.-2.

INTRODUCTION
Overview

1. INTRODUCTION

This chapter discusses the importance of assembly language programming, introduces the
WE 32100 Microprocessor (CPU), and traces its development. An overview of the WE
32100 Microprocessor features is given along with a description of its development from
the 8-bit 212 Series Microprocessor to the present 32-bit microprocessors.

1.1 OVERVIEW

Most programs for-AT&T 3B Computers are written in C, a popular high-level
programming language which was developed at AT&T Bell Laboratories . .fPfogram~ hGtlf G­
written in C can be highly portable between different computersJATthough, in some cases,
the C language does not provide easy access to inherently machine dependent operations
such as accessing external hardware registers. Often, a piece of software is so frequently
used that it is crucial to obtain optimal performance from it These situations are
examples where a programmer should consider writing a program (or subroutine) in WE
32100 Microprocessor (CPU) assembly language for AT&T 3B2/3B5/3B15 Computers.

AT&T has developed a variety of computer products and is constantly enhancing both
hardware and software. Each new generation brings with it additional capabilities that
users may wish to take advantage of. For example, support of a math coprocessor (WE
32106 Math Acceleration Unit, MAU) was added to the WE 32100 CPU. In a few cases,
it will be necessary for the assembly language programmer to know which generation of
microprocessor (i.e., WE 32001 Processor Module or WE 32100 CPU) is being used on a
particular machine. All software that works on the WE 32001 Processor Module will work
on the WE 32100 MicroprocessorP. As indicated by the math coprocessor example, the
converse is sometimes not true; rfogrammers can determine which microprocessor and
support chips are used on their AT&T computer from their owners' manual or system
administrator.

This manual describes the assembly language for the WE 32100 Microprocessor. A short
description of earlier version 3B computer assembly language, IS25, which is source
compatible with the WE 32100 Microprocessor, is included as a reference. Most
programmers should, however, write in native WE 32100 Microprocessor assembly
language.

Two methods of performing floating point operations (e.g., add, multiply) are described.
One of them, the MAU Instruction Set (MIS), provides optimal floating point
performance when it is known that a MAU will always be present in the system. The
other method, which performs the operations via function calls, works whether or not a
MAU is present.

The WE 32100 Microprocessor is a second-generation device with more speed and
processing power than most minicomputers. Using complementary metal oxide
semiconductor (CMOS) twin-tub technology, over 180,000 transistors have been placed
onto the one-quarter inch silicon square comprising the device.

1-1

INTRODUCTION
Development

1-2

The CPU's design was based on its immediate predecessor, the 32-bit WE 32001 Processor
Module. Both microprocessors have 32-bit data and address buses. The 32-bit data bus
allows fetching 32-bits of data in one memory fetch cycle. This significantly reduces
memory retrieval time, which is the limiting factor in most microprocessors. The 32-bit
address bus allows for a directly addressable 4.3 billion byte address space. Since all on­
chip registers are also 32-bits wide, 32-bits of data can also be processed in one execution
cycle.

Although the WE 32100 Microprocessor is a faster and smaller version of the WE 32001
Processor Module, it is a true second generation 32-bit machine. The WE 32100
Microprocessor has a 64-word, 32-bit high-speed cache memory not available on the earlier
processor, improved pipelining capability, and a new 1/0 controller that supports both
distributed processing and coprocessor interfaces. The on-chip instruction cache represents
a technological first for any 32-bit processor.

Additionally, both 32-bit processors were designed to be an efficient execution vehicle for
the UNIX Operating System and the C programming language. The C compiler and
associated software tools make it relatively easy to write optimum code for any application.

1.2 DEVELOPMENT

The AT&T family of 32-bit processors are direct descendants of the 8-bit 212 Series
Microprocessor developed at AT&T Bell Laboratories in the mid-1970s. The 212 Series
Microprocessor consisted of 10,000 transistors and performed approximately 200,000
instructions per second using a 3 MHz clock. This 8-bit microprocessor was unique in its
use of sixteen general-purpose memory-addressed accumulators and its fabrication in
CMOS technology. CMOS, which has since has become the technology of choice for
current state-of-the-art microprocessors, was developed early in the 1970s at Bell
Laboratories for use in all AT&T microprocessors. CMOS devices use significantly less
power than equivalent devices designed in n-channel mos (NMOS), are highly immune to
signal interference, and can operate over wide ranges of voltage and temperature. These
characteristics are especially important for designing the higher density devices typified by
32-bit microprocessors.

The 212 Series Microprocessor was followed by the single-chip, 4-bit 30 I Series
Microcomputer. This latter device used 30,000 transistors. The significance of the 301
Series, however, was the introduction and use of AT&T Bell Laboratories internally
developed, computer-aided, design technologies in its design and development. The design,
development, testing, and introduction of a new microprocessor typically requires two to
three years; the computer-aided design and testing cycle developed for the 301 Series
would enable the WE 32001 Processor Module to be developed and operational in less than
half of that time.

The WE 32001 Processor Module required significantly higher levels of software design,
development, and hardware technology than the 301 Series. The design of this first 32-bit
microprocessor involved the sophisticated innovations and refinements, in both the CMOS
technology and the computer-aided design (CAD) techniques, that were previously used on
the 301 Series. As a result, the WE 32001 Processor Module was developed and became
successfully operational in thirteen months.

INTRODUCTION
Development

The computer-aided design and development tools used on the WE 32001 Processor
Module had an equally significant impact on the introduction of the WE 32100
Microprocessor. The WE 32100 Microprocessor was developed and fabricated in eleven
months, with the first device containing only one minor layout error in over 180,000
transistors.

The chapters that follow describe the architecture of the WE 32100 Microprocessor and
the assembly language instruction set of the processor as it is used within the 3B family of
AT&T computers.

1-3

1-4

Chapter l

Architecture

CHAPTER 2. ARCHITECTURE

CONTENTS

2. ARCHITECTURE OF THE WE 32100 MICROPROCESSOR ; 2-1
2.1 ASSEMBLY.LEVEL SUPPORT GROUP···········"··· 2-3
2.2 HIGH-LEVEL LANGUAGE SUPPORT GROUP... 2-4
2.3 OPERATING SYSTEM SUPPORT GROUP ... 2-5

ARCHITECTURE
Architecture of the WE 32100 Microprocessor

ADDRESS

DATA

INTERFACE
a

CONTROL

BUS
INTERFACE
CONTROL

32

FROM
INSTRUCTION

QUEUE

FETCH CONTROLLER

TO MAIN
CONTROLLER

64-WORD 8- BYTE
INSTRUCTION 1--9-!Xl-'"""l INSTRUCTION

CACHE QUEUE

32 32

IMMEDIATE
8

DISPLACEMENT
EXTRACTOR

MAIN CONTROLLER

32

EXECUTE CONTROLLER

32- BIT
REGISTERS

rO
r1
r2
r3
r4
r5
r6
r7
rB
FP
AP

PSW
SP

PCBP
ISP
PC

32

CBUS

WORKING
REGISTERS

32 32

t-e------- FETCH UNIT -------<>-+----- EXECUTE UNIT -----<""'

Figure 2-1. WE 32100 Microprocessor Block Diagram

2. ARCHITECTURE OF THE WE 32100 MICROPROCESSOR

In .this chapter we will look at the architecture of the WE 32100 Microprocessor and its
internal register set. A block diagram of the WE 32100 Microprocessor illustrating its four
major sections: main controller, fetch unit, execute unit, and bus interface control, is
shown on Figure 2-1.

The Main Controller is responsible for directing the actions of the Fetch and Execute
Controllers as instructions are executed.

The Fetch Unit is responsible for fetching all instructions and data. Although the
operation of this unit is transparent to the microprocessor user, it contains unique features
which significantly enhance the performance of the WE 32100 Microprocessor. One of
these features is a 64-word instruction cache, which stores prefetched instructions from
memory. The prefetched instructions are retrieved from memory simultaneous with

2-1

ARCHITECTURE
Architecture of the WE 32100 Microprocessor

2-2

instruction execution (a technique known as pipelining). Thus, the normal suspension of
execution, while the processor waits for an instruction to be read from memory, is avoided
when the next instruction is available in the cache.

The Execution Unit provides all of the features of the microprocessor which are directly
user accessible. This unit performs all arithmetic, logical, data-movement, and program
control instructions. Contained in the Execution Unit are the sixteen 32-bit user accessible
registers, consisting of nine general-purpose registers (r0-r8), and seven special-purpose
registers (r9-rl 5).

In addition to supporting an extremely powerful assembly language, the registers in the
WE 32100 Microprocessor were also designed for the efficient support of procedure­
oriented high level languages, such as C, and process-oriented operating systems, such as
the UNIX Operating System.

Although all of the sixteen registers are available to assembly language programmers, it is
useful to separate the register set into three groups: the Assembly Level support group, the
High-Level Language support group, and the Operating System support group. These
groups are illustrated on Figure 2-2.

l rO

• • •
r8

STACK POINTER (r12}

PROGRAM COUNTER (r 15)

ARGUMENT POINTER ~D

FRAME POINTER

INTERRUPT STACK
POINTER (r 14)

PROCESS CONTROL
BLOCK POINTER

PROCESSOR STA
WORD (r11)

1
ASSEMBLY LEVEL
LANGUAGE SUPPORT

}

HIGH- LEVEL
LANGUAGE SUPPORT

OPERATING SYSTEM
··SUPPORT

Figure 2-2. The WE 32100 Microprocessor Register Set

ARCHITECTURE
Assembly Level Support Group

ro
GENERAL PURPOSE

REGISTER

•
~~ • ~ ~

•
GENERAL PURPOSE

REGISTER re

STACK POINTER

r15 PROGRAM COUNTER

Figure 2-3. Assembly Level Support Group

2.1 ASSEMBLY LEVEL SUPPORT GROUP

The assembly level support registers consist of nine general-purpose registers, a stack
pointer, and a program counter. This set of registers, including condition flags, is typically
associated with an assembly language programming model of a microprocessor. In the WE
32100 Microprocessor the condition flags, which are indicators of the processor's current
status, are contained within the processor status word register.

The nine general-purpose registers are referred to as rO through r8, respectively. These
registers can be used with all arithmetic, data transfer, logical, and program control
assembly instructions. Additionally, registers rO, r l, and r2 are used in both string
manipulation and transfer instructions and, by convention, for returning values from a
called C language program. The string manipulation and transfer instructions that use
registers rO, rl, and r2 include the block move (MOVBLW), string copy (STRCPY), and
string end (STREND) instructions (see 6. Instruction Set).

The Stack Pointer (SP), r12, contains the current 32-bit address of the top of the current
execution stack. As illustrated on Figure 2-4, the stack pointer points to the next available
memory location that can be used. A PUSH instruction immediately stores its operand at
the current memory address contained in the stack pointer. The stack pointer is then
incremented by the site of the PUSHed operand. Thus, the stack "grows" into increasing
memory address space. A POP instruction first decrements the stack pointer by the site of
the POPed operand (to point to the last pushed operand) and then fetches the data from
the top of the stack.

The P~ogr~m Co~nter (PC), rl5, contains the 32-bit memory address of the currently
executmg mstruction or, upon completion, the starting address of the next instruction to be
executed. The PC is referenced by all program control instructions and all function calls
and returns.

l-3

ARCHITECTURE
High-Level Language Support Group

I
SP

MEMORY
ADDRESS

I
-- TOP OF STACK

INCREASING
MEMORY

ADDRESSES

2-4

LAST PUSHED
OPERAND

Figure 2-4. The WE 32100 Microprocessor Stack

2.2 HIGH-LEVEL LANGUAGE SUPPORT GROUP

The Frame Pointer and Argument Pointer constitute the high-level language support group
register set. Although these two registers may be accessed and used as general-purpose
assembler registers, they are typically used in association with registers rO, rl, and r2 for
passing, holding, and returning high-level language variables and arguments.

These registers perform the following functions:

The Frame Pointer (FP), r9, points to the beginning location in the stack where the local
variables of the currently running program, procedure, or function are stored. The frame
pointer is implicitly changed by the save registers (SA VE) and restore registers
(RESTORE) assembly instructions.

The Argument Pointer (AP), r 10, points to the beginning location in the stack where
arguments passed into the currently running program, procedure, or function have been
pushed. The ap is implicitly affected by procedure call (CALL) and return (RET)
assembly instructions.

~ FRAME POINTER

rt{J ARGUMENT POINTER

Figure 2-5. High-Level Language Register Support Group

2.3 OPERATING SYSTEM SUPPORT GROUP

ARCHITECTURE
Operating System Support Group

The Processor Status Word, Process Control Block Pointer, and Interrupt Stack Pointer
were designed to facilitate an efficient operating system interface. These three registers,
therefore, are referred to as the operating system support group.

The three registers forming this group perform the following functions:

The Processor Status Word (PSW), rl 1, contains status information about the
· ·microprocessor and the current process. Additionally, the PSW contains four condition

code flags used by assembly language transfer-of-control instructions. In general, the PSW
changes as a whole only when a process switch occurs and can only be written in an
operating system mode.

The Process Control Block Pointer (PCBP), r13, points to the starting address of the
process control block for the current process. The process control block is a data structure
in external memory that contains the hardware context of a process when the process is not
running. This context consists of the initial and current contents of the processor status
word, program counter, and stack pointer; the last contents of registers rO through rlO;
boundaries for an execution stack; and block move specifications (and possibly memory
specifications) for the process. The PCBP may only be written when the microprocessor is
in an operating system mode.

The Interrupt Stack Pointer (ISP), rl4, contains the 32-bit memory address of the top of
the interrupt stack. This stack is used when an interrupt request is received and also by
the call process (CALLPS) and return to process (RETPS) instructions. The ISP may
only be written when the microprocessor is in an operating system mode.

r11 PROCESSOR STATUS WORD

r13 PROCESS CONTROL BLOCK POINTER

r14 INTERRUPT STACK POINTER

Figure 2-6. Operating System Register Support Group

2-6

Chapter 3

Assembly
Language
Structure

CHAPTER 3. ASSEMBLY LANGUAGE STRUCTURE

CONTENTS

3. ASSEMBLY LANGUAGE STRUCTURE ; .. 3-l
1:1 STATEMENTS .. ,;_,,,....... 3~1
3~2 EXECUTABLE INSTRUCTIONS : •................ L 3.,.2

··3.3 SYMBOLS .. ; ... ,, , .. ,.. 3-3
. 3.3.l \{ables.and Types .. :···'··············· .. ··"'·'·· 3-4

3,3:2 Assigning Values and Types to Symbols .. ,...... 3-4
3.4 EX:PRESSIONS ..• , : •.. , ... »,... 3;.5.

3.4J Constants .. ~.................................... 3-6
3.:4·.2 Registers .. : ... ,.............. J-6

ASSEMBLY LANGUAGE STRUCTURE
Statements

3. ASSEMBLY LANGUAGE STRUCTURE

This chapter describes the assembly language, syntax, and semantics supported by the
assembler (as) provided for the 3B2/3B5/3B15 Computers. All 3B2/3B5/3B15 Computers
have the same basic instruction set. But, some models have additional instructions due to
the advanced features of the WE 32100 Microprocessor architecture. Therefore, the
discussion on the microprocessor instruction set will be based on the WE 32100
Microprocessor instruction set. Contained in Appendix C are some assembly language
programming examples which conform to the syntax and semantics described in this
chapter.

The basic actions of evaluation, assignment, and control of evaluation order are specified
by statements. Statements are either microprocessor instructions, assembler directives, or
IS25 instructions.

The data types supported by the assembly language are byte, halfword, word, single,
double, double extended, and bit field. A byte is an 8-bit quantity; a halfword is a 16-bit
quantity; a word is a 32-bit quantity; a single is a 32-bit floating point quantity; a double is
a 64-bit floating point quantity; a double extended is a 96-bit floating point quantity; and a
bit field is a sequence of 1 to 32 bits. Detailed information on the data types can be found
in 4. Data Organizatio111.

The instruction set provides that bytes, halfwords, words, singles, doubles, and double
extendeds can be interpreted as either signed or unsigned quantities for arithmetic or
logical operations.

3.1 STATEMENTS

An assembly language program consists of a sequence of lines of code. Each line consists
of a sequence of characters terminated by the new-line character (\n), which is equivalent
to control -J (line-feed). Each line may contain one or more statements. If several
statements appear on a line, they must be separated by semicolons (;). Each statement
must be one of the following:

• Assembler Directive - a statement that. is a command to the assembler. It consists of a
pseudo-operation code followed by zero or more operands. Assembler Directives are
discussed in detail in 7.3 Assembler Directives.

• WE 32100 Microprocessor Instruction - a mnemonic representation of an executable
machine instruction~ It consists of an operation code followed by zero or more operands.
WE 32100 Microprocessor instructions are discussed in detail in Appendix A.

• IS25 Instruction - a statement that maps into one or more executable microprocessor
instructions. IS25 instructions are discussed in detail in Appendix B.

• Empty - a statement that contains only spaces, tabs, or a comment. It signifies nothing
to the assembler, but is often used to enhance program readability.

Operation codes (or mnemonics) are separated from their operands by at least one space or
tab. Operands and arguments are separated by commas. Unless otherwise stated, any
other use of space and tab characters is optional.. White space characters may be used
freely to improve readability.

3-1

ASSEMBLY LANGUAGE STRUCTURE
Executable Instructions

In the order shown, each nonempty line of code is made up by one or more of the
following:

• A label may be placed on any statement. The label consists of a symbol that begins in
the first character position of a statement (i.e., it must begin IMMEDIATELY after a
new-line character or semicolon) and is followed by a colon. Symbols are described in
detail in 3.3 Symbols. An unlabeled statement MUST have a space, tab, or pound sign
(#) in the first character position.

• A mnemonic may be placed on any statement. The mnemonic consists of a symbol that
begins after any white space at the beginning of a statement or after a label. The
mnemonic defines an assembler directive or a machine operation (either processor or
IS25 instruction).

• One or more operands may be placed on a statement containing a mnemonic. An
operand, in the case of a machine instruction, defines tlie addressing modes of source and
destination operands. These type of operands are further discussed in 4.1 Data Types
and 5. Addressing Modes. Operands supplied with an assembler directive are used by
the assembler to execute the command issued by the assembler directive. These
operands are discussed in 7.3 Assembler Directives.

• A comment may be inserted at the end of any statement by preceding the comment with
a pound sign (#) or may be on a line by itself by inserting a pound sign in the first
character position. The assembler will ignore the pound sign and all characters following
it up to the first new-line character. A new statement begins with the first character
after the new-line character.

There are no limits on the number of characters in a statement or on the number of
statements on a line. Multiline comments are made by inserting a pound sign as the first
nonwhite-space character of each line.

An example showing the four parts of assembly language line follows. The first statement
shows an assembler directive. The second statement is empty and was inserted to provide a
visual break between directive and machine-instruction sections. The last two statements
are an IS25 and processor instruction. respectively.

Label Mnemonic Operand(s) Comment

NfXi) i>u\ prefix #Assembler Directive

3-2

main: ·.save &l #IS25 Instruction
ADDW2 %rl,%sp #Processor instruction

3.2 EXECUTABLE INSTRUCTIONS

Mnemonics for processcyc instructions use uppercase letters and IS25 instruction mnemonics
use lowercase letters; ~hen cod!ng in assembly language, this distinction must be
maintained. Therefore, all machine-specific mnemonics must be coded in uppercase, while
mnemonics common to the IS25 instructions must be coded in lowercase.

ASSEMBLY LANGUAGE STRUCTURE
Symbols

Be careful when switching between processor and 1S25 instructions. Although the
mnemonics are identical in many cases, the operations are not. For example, the IS25
instruction cmpw & l ,&2 will set the less-than flag, while the processor instruction CMPW
& l ,&2 would, under the same conditions, set the greater-than flag, because the operand
order is reversed.

The processor instruction set is more complete and often faster than the IS25 instruction
set. IS25 instructions can be portable to earlier version 3B computers, while processor
instructions can not.

3.3 SYMBOLS

Symbols are names recognized by the assembler. They always have a value and type,
either specified explicitly by an assignment statement (see 7.3 Assembler Directives) or
determined from the context. Value and type are described in detail in this section. A
symbol name consists of a string of the characters a-z, A-Z, 0-9, underscore (J, and
period (.). Names may not begin with a digit. Because embedded blanks are not
permitted in symbols, the underscore is generally used in place of a blank to make an
identifier more readable.

Symbols are used as labels, mnemonics, or operands (in some cases). Four examples of
symbols are:

Rtn Nam5 abc . DEF xyz.QQQ.

The assembler does not put symbols beginning with . (read as 'dot') into the object file
symbol table. Exceptions to this rule are .text, .data, and .bss; these symbols are used for
relocation.

The following symbols are reserved for use by the assembler:

1. This symbol (read as dot) is used as the location counter while assembling a
program. Whenever actual code is generated by the assembler, the value of this
symbol is increased by the size of the generated code. Hence, this symbol effectively
represents the address of the code being generated. Depending on the section for
which code is being generated, dot may be of type TEXT, DATA, or BSS. Null data
can be generated by pseudo-op assignment to this symbol.

2. .text This symbol has type TEXT and is used to label the beginning of the .text
section for the program being assembled. The .text section contains executable
instructions.

3. .data This symbol has type DA TA and is used to label the beginning of the .data
section for the program being assembled. The .data: section contains initialized
variables.

4. .bss This symbol has type BSS and is used to label the beginning of the .bss section
for the program being assembled. The .bss section contains uninitialized variables.

3-3

ASSEMBLY LANGUAGE STRUCTURE
Values and Types

3-4

3.3.1 Values and Types

Values are represented in the assembler by signed 32-bit 2's complement numbers. Every
value is an instance of one of the following types:

TEXT A TEXT value is one that is defined relative to the beginning of the .text
section. Whenever the .text section is relocated forward (backward) by N
bytes, the number N will be added to (subtracted from) every value of
type TEXT. The most common example of a TEXT value is a label
appearing in the .text section.

DATA A DATA value is one that is defined relative to the beginning of the .data
section. Whenever the .data section is relocated forward (backward) by N
bytes, the number N will be added to (subtracted from) every value of
type DAT A. The m~st common example of a DATA value is a label
appearing in the .data section.

BSS A BSS value is one that is defined relative to the beginning of the .bss
section. Whenever the .bss section is relocated forward (backward) by N
bytes, the number N will be added to (subtracted from) every value of
type BSS.

UNDEFINED An UNDEFINED value is one whose type has not yet been determined.
The UNDEFINED value may be a reference to a symbol whose definition
has not been encountered yet (i.e., a forward reference) or a reference to a
symbol that is assumed to be defined in a file or module other than the one
currently being assembled (i.e., an external reference).

ABSOLUTE An ABSOLUTE value is one that will not change as a result of relocating
any section of the program being assembled. Constants described in the
following section have absolute type.

In addition, any of the above types may be given the attribute EXTERNAL. For values of
the types ABSOLUTE, TEXT, DATA, and BSS, the attribute EXTERNAL indicates that
a value defined in the program currently being assembled will be made available to other
programs. For values of type UNDEFINED, EXTERNAL means that the value is
referenced in the file or module currently being assembled, but is defined in some other
program.

3.3.2 Assigning Values and Types to Symbols

There are two ways to assign a value and a type to a symbol. The first is to write the
symbol as a label. The label will be assigned the current value and type of the location
counter. The second is through the use of the .set assembler directive (see 7.3.3
Assignment Pseudo Operations). An arbitrary value and type can be assigned with this
directive.

ASSEMBLY LANGUAGE STRUCTURE
Expressions

3.4 EXPRESSIONS

An expression is a sequence of operands separated by operators. An operand is either a
constant, a symbol, or an expression enclosed in parentheses.

Expressions can be used as operands either to assembler directives or to machine
instructions, as maybe appropriate. All operators are fundamentally binary in nature. The
operator "-" may be used as a unary operator with the interpretation 0-. For example,
-x is interpreted as (0-x).

All operators are assumed to be of EQUAL precedence. If anything other than left-to­
right evaluation is desired, parentheses must be used for grouping.

If, in the process of evaluating an expression, an intermediate result will not fit in 32 bits,
the final value of that expression will be undefined.

The following operators are available:

+ Produces the 2's complement sum of its operands. One operand must be type
ABSOLUTE - the other can be any type. The sum has the type of the other operand.
All other combinations of operands are illegal.

- Produces the 2's complement result of subtracting the right operand from the left
operand. If the right operand is ABSOLUTE, the difference has the type of the left
operand. Otherwise, both operands must be of the same type (which cannot be
UNDEFINED) and the result has type ABSOLUTE. All other combinations of
operands are illegal.

The result of the subtraction can be erroneous when taking the difference between two
relocatable symbols. For example, the value of labl-lab2, where labl and lab2 are
labels that are both of type TEXT, DAT A, or BSS, may change due to various
optimizations of the code between lab I and lab2 that are made after the assignment of
values and types to lab! and lab2. In such cases, the value of labl-lab2 will not
correctly indicate the difference in address between iabl and lab2.

* Produces the 2's complement product of its operands. It requires both operands to be of
ABSOLUTE type and produces an ABSOLUTE result.

I Produces the 2's complement quotient of the left operand divided by the right operand.
Uneven divisions result in the integer that is the result of truncating the quotient toward
zero; for example, 5/-2 = -2. The quotient operator requires both operands to be of
ABSOLUTE type and produces an ABSOLUTE result.

3-5

ASSEMBLY LANGUAGE STRUCTURE
Constants

3-6

3.4.1 Constants

A constant is an object of ABSOLUTE type and fixed value. The size and appropriate
number of digits are controlled by the generation of pseudo-ops .byte, .half, and .word. A
constant may be one of the following:

• A decimal constant is represented by a contiguous string of the digits 0-9, beginning
with a nonzero digit. Examples of decimal constants are:

123 75 1943 2

• An octal constant is represented by a contiguous string of the digits 0-7 beginning with
a zero digit. Examples of octal constants are:

077 0123 06 037777777777

• A hexadecimal constant is represented by a contiguous string of the digits 0-9 and the
letters a-for A-F, prefixed by Ox or OX. Examples of hexadecimal constants are:

Ox3f OX9aC Oxabcd OXFE

In order to be recognized as floating point, a constant must contain either a decimal point
or one of the exponential characters (e or E). Floating point constants that cannot be
encoded exactly in the specified form are rounded off.

Examples of floating point data types are:

31.0500 -16. 0.1024e4 500e-3

Floating point data specifications are to conform to the IEEE standard for binary floating­
point arithmetic.

3.4.2 Registers

Registers 3 through 8, which are referred to by the assembly language syntax %r3, %r4,
%r5, ... , %r8, are the general-purpose registers that are always available to the
programmer. Registers 0, 1, and 2 are considered general-purpose, but have implicit
definitions because of certain conventions of the C language. For example, rO should
always be used to return the value of a function. If a floating point double value is
returned from a function, it is stored in rO and rl. If a function returns a structure, then
the pointer to that structure should be returned to r2. In general, rO, rl, and r2 are scratch
registers.

Registers 9 (frame pointer), 10 (argument pointer), and 12 (stack pointer) are also
implicitly used, in this case by call and return instructions. These registers can be referred
to by the assembly language syntax %fp, %ap, and %sp, respectively.

ASSEMBLY LANGUAGE STRUCTURE
Registers

Registers 0, 1, 2, 9, 10, and 12 may be used in any addressing mode, privileged or
nonprivileged. The use of rO, rl, and r2 for function calls and returns is described in
5.2.2 Function Calling Sequence.

The program counter, PC, (r15) is a special register that does not work in all addressing
modes. The three registers not yet discussed are privileged and any attempt to write them
when the processor is not at kernel execution level results in a privileged register exception.
These three registers are the interrupt stack pointer (ISP), the process control block
pointer (PCBP), and the process status word (PSW).

The PSW (rl 1) contains four condition bits - N, Z,V, and C. Because of the pipelining
architecture of the processor, the condition codes in the PSW may not be valid immediately
after the execution of an instruction. This inherent delay is not problematic for any
conditional branch instructions; the instructions wait until the condition codes are valid
before they are then tested.

3-7

3-8

·chapter4

Data·. Or.ganizati6n

CII.t\titER. 4. DATA. ORGANIZATION

CONTENTS.

4. DATj\..(JRGf\NIZATION ''..:;.; ... ; , .. ; ; h .. '. ;.;,., •• ; ••••• •• 4-.J.
4.1 .f)ATA·TYPES: ... ,;.,.~;,.,;_ .. ~ .. , .. '. .. :········ 4;..1·
4:2 DATASTORAGEINMEMORY , :···········: ~.;".:·'·; 4~3
4.3 lUiGISTER_ .DAJ'A STOR.AGE ... ; : ; .. ;.,., 4:.3 .
4.4 INSTRtlCTJ()NSTORf\(}Eil''l MEMORY,. :, ~.~;~ ... :, 4 .. 4.

DATA ORGANIZATION
Data Types

4. DATA ORGANIZATION

This chapter describes the data types, data organization, and data storage supported by the
WE 32100 Microprocessor.

4.1 DATA TYPES

The data types supported by the WE 32100 Microprocessor are byte, halfword, word,
floating point (word, double word, and double extended word), and bit field data. The
instruction set provides that bytes, halfwords, and words can be interpreted as either signed
or unsigned quantities.

A byte is an 8-bit quantity that may appear at any address. Bits are numbered from right
to left within a byte, starting with zero, the least significant bit (LSB), and ending with 7,
the most significant bit (MSB), as illustrated on figure 4- L

A halfword is a 16-bit quantity that may appear at any address divisible by two. Bits are
numbered from right to left starting with zero, the LSB, as illustrated on Figure 4-2.

A word is a 32-bit quantity. Data words may appear at any address divisible by four. Bits
are numbered right to left starting with zero, the LSB, as illustrated on Figure 4-3.

Floating Point data types may appear at any address in memory divisible by four. Figure
4-4 illustrates the floating point data types supported by the assembler.

BITS 7 0

Fl
MSB LSB

Figure 4-L Byte Data

BITS 15

I
+

N N + 1

MSB LSB

Figure 4-2. Halfword Data

4-1

DATA ORGANIZATION
Data Types

4-2

BITS 31 0

I N N +3 I
+ • MSB LSB

Figure 4-3. Word Data

Each of these four data types may be interpreted as either a signed or unsigned quantity,
with signed data represented in 2's complement form.

A bit field is a sequence of l to 32 bits extracted from a byte, halfword, or a word. The
bit field is determined from the address of the word containing the field, an offset, and a
width. The offset, from 0 to 31, identifies the starting bit in the word containing the bit
field. This bit becomes the least significant bit of the selected field. The width, a number
from 0 to 31 specifies the size of the field. The number of bits in the extracted field is one
more than the width value. Figure 4-5 illustrates a bit field extracted from a word using
an offset of six and a width of nine. Notice that the extracted field contains ten bits, one
more than the width.

Bit fields do not extend across word boundaries. If the selected width requires bits beyond
the most significant bit of the word being used, the extraction of bits continues by
wrapping around to the least significant word bits.

Bit 31 30 23 22 0
Field Sign Exponent Fraction

~~~~~~~~~~~~ 

A. Single Precision Floating Point Data Type 

Bit 63 62 52 51 0 
Field Sign Exponent Fraction 

B. Double Precision Floating Point Data Type 

85 80 79 78 64 63 62 0 Bit 

Field Unused Sign Exponent J Fraction 

C. Double Extended Floating Point Data Type 

Figure 4-4. Floating Point Data Types 



DATA ORGANIZATION 
Register Data Storage 

MSB 

+ 31 24 23 

OFFSET :: 6 

WIDTH= 9 

16 15 8 7 

WIDTH 

0111101101 

9 0 

t t 
MSB LSB 

Figure 4-5. Extraction of a Bit Field 

4.2 DATA STORAGE IN MEMORY 

LSB 

+ 0 

Figure 4-6 illustrates the storage of word data in memory. As illustrated, the word 
Ox 12345678 is stored with the lower-order bytes at higher-order addresses. AU data stored 
in memory follows this format. For example, the halfword data OxEEFF would be stored 
in memory with the lower-order byte, OxFF, at the next higher-byte address than the 
location containing the byte OxEE. 

4.3 REGISTER DATA STORAGE 

All data stored in a register is a full 32 bits, regardless of the instruction or data type. For 
all CPU operations, including register storage, the WE 32100 Microprocessor reads in the 
correct number of bits for the operand and extends the data automatically to 32 bits. 
Halfword operands and signed data are sign extended to 32 bits. In sign extension, the 
value of the most significant bit is replicated to fill the high-order bits. When storing byte 
operands or unsigned data into a register, zero extension is used. In zero extension, the 
high-order bits are filled with zeros. 

INCREASING MEMORY ADDRESSES 

I Ox12 i Ox34 Ox56 i Ox78 I 
Figure 4-6. Word Storage in Memory 

4-3 



uA t A UKGANIZATION 
Instruction Storage in Memory 

4-4 

Intermediate results of all operations in the CPU are always 32 bits. If the results of an 
operation are stored in a register, the processor writes all 32 bits to the register. 

When a register is specified as the source of a byte operand, the low-order 8 bits (bits 
0-7) of the register are fetched and zero extended to 32 bits. The zero extension may be 

changed to a sign extension using an expanded operand type addressing mode (this 
addressing mode is described in 5. Addressing Mode). When a register is used as the 
source of a halfword operand, the low-order 16 bits (bits 0-15) of the register are fetched 
.and sign extended to 32 bits. Again, the type of extension may be changed to zero 
extension using an expanded operand type addressing mode. 

4.4 INSTRUCTION STORAGE IN MEMORY 

Instructions may appear at any byte address in memory, and are stored as a one- or two­
byte opcode followed by up to four operands. Figure 4-7 iIJustrates the general format of 
an assembly instruction as it is stored in memory. Each individual operand shown on 
Figure 4-7 consists of a descriptor byte, followed by up to four bytes of data (see Figure 
4-8). 

The descriptor byte defines an operand's addressing mode and register fields, which are 
covered in the next chapter. Immediate data stored within an instruction is stored with 
lower-order bytes located at lower-order addresses. For example, the value Oxl2345678 
would be stored within an instruction as illustrated on Figure 4-9. 

INCREASING MEMORY ADDRESSES 

OPCODE 
1 (1-2 BYTES) I UP TO 4 OPERANDS 1 

'El ~I.a i::-1 
I I I 

l.______.__I OP-ERAND___._1 ----(::,_____.__I OP-ERAN___.D 4 I 
Figure 4~ 7. Instruction Storage in Memory 

INCREASING MEMORY ADDRESSES 

I I 
l<I PjE 

1 DESCRIPTOR 1 
BYTE 

BYTE 0 :: BYTE 2 

UP TO 4 DATA BYTES 

Figure 4-8. Operand Format 

""I 
I 



DATA ORGANIZATION 
Instruction Storage in Memory 

INCREASING MEMORY ADDRESSES 

IMMEDIATE DATA WORD 

I I Ox7B Ox 56 Ox34 Ox 12 

Figure 4-9. Word Storage Within an Instruction 

Notice that the storage of data within an instruction, as shown on Figure 4-9, is the reverse 
of the storage of data within a memory location as illustrated on Figure 4-6. 

4-5 



4-6 



Chapter 5 

Addtessirig .Modes 



CHAPTER 5. ADDRESSING MODES 

CONTENTS 

5" ADPRESSING·MODES ............................... , ................................... , ..... L:., ....... ,,: ..• 5"'1 
5.1 REGISTER··MODE ................................. : ........................................ , ......................... ·5.,4 
5.2 REGISTER DEFERRED MODE ... , ........................................... :····· ... -~ •. , ... :···,····'· 5-5 
5.3 · DISJ:>LA.CEi~AENT MODE ...• , ............................ ,:, ....................... : .. , .... , .... \ ..... ,;~ .... ~ ·.5-.6 
5.4 DE.FERREDDISPLACEMENT MODE .... "i, ...................... , ...........•..... ; .. ,., .• , ... , ...... 52.8 
55 IMMEDIATE MODE·'···················· ............. , .... :., ........................ , .... ~ ..... , ....... ,: .... ~ 5-9. 
5.6 ABSOLJ]TE .MODE ................ :•:······ .. ····•····•·······•··················· ........... : ....... :~···.·"'•'.""' .·55:1100·· 
5..7 ABSOLUTE DEFERRED MODE·'·'.·············································""············· .. ,,,: ... 
5.8 EXPANDED OPERAND MODE ............. ; .......................................... , ............ ,.... 5-11 
5.9· SUMMARY· ........................... · ......... : ...... , ............. : ................................... :::., ....... ~: ...... : 5-13 



ADDRESSING MODES 
Addressing Modes 

5. ADDRESSING MODES 

In this chapter, we will look at addressing modes for the WE 32100 Microprocessor, their 
assembly language coding, and their storage in memory. 

An assembly language instruction for the WE 32100 Microprocessor consists of a 
mnemonic, such as ADDW, MOVH, INCB, followed by up to four operands. Each 
operand is physically located as immediate data in either one of the microprocessor's 
registers, a memory location, an input-output port, or directly within the instruction. The 
operand written in the assembly language instruction must provide sufficient information 
for the actual operand to be located by the microprocessor. The information provided by 
the assembly language instruction to specify an operand's address is called addressing mode 
data. 

Table 5-1 provides a partial listing of the microprocessor's basic addressing modes. A 
complete description of addressing modes is presented in Table 5-2. 

Table 5-1. Basic Addressing Modes 

Mode Syntax Example 

Register %reg %r2 
Register Deferred (%reg) (%r2) 

Register Displacement expr(%reg) 6(%r2) 

Register Displacement Deferred *expr(%reg) *6(%r2) 

Immediate &expr &Oxl234 
Absolute $expr $0x2E54 
Absolute Deferred *$expr *$0x2E54 

Notes: 
1. reg represents one of the microprocessor's registers (rO-rl 5). 
2. expr is an expression that evaluates to either a byte, halfword, 

or word value. 

An assembly language instruction is stored in memory as a one- or two-byte opcode 
followed by up to four operands. Figure 5-1 illustrates the memory storage format of an 
assembly instruction previously described in Chapter 4. Recall that each operand shown in 
Figure 5~ 1 consists of a descriptor byte, followed by up to four bytes of data (see Figure 
5-2). 

INCREASING MEMORY ADDRESSES 

1
1_.. OPCODE ._l_. .._

1
1 

..,._ .... a-----~.,....i.-E....,1----- UP TO 4 OPERANDS -----s.,.. ..... 
I (1-2 BYTES) I I 

!._____.___I o_PERAN---'--D 1 1---/::t------'1_0PERA____.ND 4 I 
Figure 5-1. Instruction Format 

5-1 



ADDRESSING MODES 
Addressing Modes 

5-2 

The descriptor byte defines an operand's addressing mode and register field. Figure 5-3 
illustrates the format of the descriptor byte, which consists of two 4-bit fields. 

The register field, denoted as rrrr, consists of bits 0 through 3 of the descriptor byte, and 
contains the number of a register, 0 through 15. The mode field, denoted as mmmm, 
consists of the four higher-order bits of the descriptor byte, bits 4 through 7. This field 
contains an address mode number, 0 through 15. Table 5-2 lists all mode field values 
(0-15) and their corresponding addressing modes. 

Mode 
Field 
Value 

0-3 

4 

5 

6 

INCREASING MEMORY ADDRESSES 

BYTE 3 

I DESCRIPTOR I 
i-oa,-- BYTE -ea. .... 1""'.ar---- UP TO 4 DATA BYTES 

I 
!>I 

I I 
I I 

Figure 5-2. 

MODE 
FIELD 

Operand Format 

0 

r r r 

I REGISTER I 
FIELD 

Figure 5-3. Descriptor Byte Format 

Table 5-2. The WE 32100 Microprocessor Addressing Modes 

Addressing 
Mode Description 

Literal The register field bits are concatenated with 
the two low-order mode field bits to form an 
unsigned 6-bit immediate data. 

Register The operand is contained in one of the 16 
registers. If register 15 is specified in the 
register field, this becomes the word 
immediate mode. 

Register The register specified in the register field 
Deferred contains the operand's address. If register 15 

is specified in the register field, this becomes 
the halfword immediate mode. 

FP Short Offset The FP (register 9) is implicitly referred to 
by this mode. Register field bits are used as 
an off set and are added to the FP to form the 
operand's address. This addressing mode is 
an optimized case of the register deferred 
mode, produced by the assembler. 



ADDRESSING MODES 
Addressing Modes 

Table 5-2. The WE 32100 Microprocessor Addressing Modes (Continued) 

Mode Addressing 
Field Mode Description 
Value 

7 AP Short Offset The AP (register 10) is implicitly referred to by this 
mode. Register field bits are used as an offset and 
are added to the AP to form the operand's address. 
If r~gister 15 is specified by the register field, this 
mode becomes the absolute mode. The four bytes 
following the descriptor byte contain the operand's 
address. This addressing mode is an optimized case 
of the register deferred mode, produced by the 
assembler. 

8 Word The four bytes following the descriptor byte are 
Displacement added to the contents of the register specified in the 

register field. The sum forms the address of the 
operand. 

9 Word The four bytes following the descriptor byte are 
Displacement added to the contents of the register specified in the 
Deferred register field. The sum forms the address of a 

pointer. The operand's address is contained within 
the pointer. 

A Halfword The two bytes following the descriptor byte are 
Displacement added to the contents of the register specified in the 

register field to form the operand's address. 

B Halfword The two bytes following the descriptor byte are 
Displacement added to the contents of the register specified in the 
Deferred register field. The sum forms the address of a 

pointer. The operand's address is contained within 
the pointer. 

c Byte The byte following the descriptor byte is added to 
Displacement the contents of the register specified in the register 

field to form the operand's address. 
D Byte The byte following the descriptor byte is added to 

Displacement the contents of the register specified in the register 
Deferred field. The sum forms the address of a pointer. The 

operand's address is contained within the pointer. 
E Expanded This mode is used to modify the data type of an 

Operand operand. If register 15 is specified in the register 
field, this becomes the absolute deferred mode. 

F Negative Literal The register field bits are concatenated with the 
mode field bits to form a negative literal, in the 
range -1 to -16. 

5-3 



ADDRESSING MODES 
Register Mode 

5-4 

We will now consider each of the microprocessor's addressing modes and see how they are 
coded within an operand's descriptor byte. It should be noted that certain branch 
instructions, and all coprocessor words do not require addressing mode information and 
therefore do not use a descriptor byte. 

5.1 REGISTER MODE 

Any operand directly located in one of the microprocessor's registers is accessed using the 
register address mode. This mode is indicated in assembly language with the percent 
symbol (%). 

For example, the instruction INCW % r2 causes the 32-bit contents of register r2 to be 
incremented by one. 

The general syntax, mode, and register fields used to signify the register addressing mode 
are: 

syntax: % rn where n is a register number 
mmmm: 4 
rrrr: 0 to 14 

Thus, the instruction INCW % r2 is stored in memory as illustrated on Figure 5-4. 

OPCODE 

Ox90 

DESCRIPTOR I 

i w REGISTER FIELD ~---=--MODE FIELD 

Figure 5-4. Register Mode Example 



5.2 REGISTER DEFERRED MODE 

ADDRESSING MODES 
Register Def erred Mode 

Deferred addressing mode involves indirect addressing using pointers. A pointer is either a 
register or memory location containing an address. Figure 5-5 illustrates the relationship 
between the address contained in a pointer and the operand ultimately obtained. The term 
deferred is used to describe this procedure because the operand finally obtained is deferred, 
or delayed, by first going to the pointer for an address. The address contained in the 
pointer is then used to access the desired operand. 

When deferred addressing is used and the pointer is one of the microprocessor's registers, 
the addressing mode is referred to as a register deferred mode. This addressing mode is 
designated in assembly language by using parentheses around the pointer register. 

For example, the instruction MOVW (% r2),% r3 causes the CPU to regard the data in 
register r2 as an address. The contents of the memory location having this address will be 
copied into register r3. Notice that this instruction uses two operands and each operand 
has its own addressing mode. Although a register def erred mode was used for the source 
operand and a register mode was used for the destination operand, any other valid 
addressing modes could have been used. 

The general syntax, mode, and register fields for a register deferred mode operand are: 

syntax: (% rn) where n is a register number 
mmmm:5 
rrrr: 0 to 10, 12 to 14 

Using this information, the instruction MOVW (% r2),% r3 is stored in memory as shown 
on Figure 5-6. 

A POINTER LOCATION 
(MEMORY OR REGISTER) 

'-
___ o_P_E_R_A_N_o_'_s ____ >:.=------~~~l _____ o_P_E_R_A_N_o ____ ---l ADDRESS . 

Figure 5-5. Deferred Addressing Using a Pointer 



auuKJi.:S:SlNG MODES 
Displacement Mode 

5-6 

INCREASING MEMORY ADDRESSES 

MOVW 
OPCODE 

SOURCE I DESTINATION I 
DESCRIPTOR DESCRIPTOR 

Ox84 5 2 4 3 

MODE FIELD REGISTER FIELD 

REGISTER FIELD MOOE FIELD 

Figure 5-6. Register Def erred Mode Example 

5.3 DISPLACEMENT MODE 

The displacement mode forms an operand's address by adding an offset to the contents of a 
WE 32100 Microprocessor register. For example, the instruction MOVW Ox30(% r2),% r3 
copies the contents of a memory location into register r3. The source operand's memory 
address is calculated as the contents of register r2 plus an offset of Ox30. Figure 5-7 
illustrates the result of this MOVW instruction. 

'--B_A_s_E_A_o_o_R_E_ss_~ 
OFFSET 
( Ox30) 

~~; ~1._____0PER____,AND 

Figure 5-7. ExampJe of MOVW Ox30(% r2),% r3 



ADDRESSING MODES 
Displacement Mode 

The general syntax, and valid register fields for a displacement mode operand are: 

syntax: offset(% rn) 
mmmm: 8, 10, or 12 
rrrr: 0 to 10, 12 to 15 

where n is a register number 
(word, halfword, or byte offset) 

Using the appropriate mode and register fields, the instruction MOVB Ox30(% r2),% r3 is 
stored in memory as shown on Figure 5-8. 

The offset used in the displacement mode may be either a byte (8-bits), halfword (16-bits), 
or word 02-bits), or an expression yielding such a value. 2's complement, negative offsets 
are also valid. Negative byte and halfword offsets are first sign-extended to 32 bits before 
being used to obtain the operand's final address. This sign extension converts a negative 
byte or halfword into its equivalent 32-bit counterpart. 

When the displacement mode is used with registers FP (frame pointer) and AP (argument 
pointer), only a short offset between 0 and 14 may be used. This facilitates storage of a 
shortened instruction format in memory. The mode fields, when the frame and argument 
registers are used in the displacement mode, are 6 and 7, respectively. The short offset 
(0-14) is stored in the register field and extra bytes for an offset are not included in the 
stored instruction. 

INCREASING MEMORY ADDRESS 

MOVB SOURCE OFFSET DESTINATION 
OPCODE DESCRIPTOR DESCRIPTOR 

Ox87 c 2 ~30 4 3 

f f t f 
MODE REG MODE REG 
FIELD FIELD FIELD FIELD 

DISPLACEMEi\IT MODE REGISTER MODE 

Figure 5-8. A Displacement Mode Source Operand 



AUUKJi:SSING MODES 
Def erred Displacement Mode 

5-8 

r 2 .._I _s_A_s_E_A_oo_R_E_ss_7T- '°'""' AOOAE'5 ----1~_0_:_~-~~-~-~-~s __ >_~~ ~1 ~ __ or_E_R_A_No _ _, 

OFFSET 

Figure 5-9. Deferred Displacement Addressing 

5.4 DEFERRED DISPLACEMENT MODE 

The deferred displacement mode uses the contents of the address calculated in the 
displacement mode as a pointer to the desired operand. Consider the example shown on 
Figure 5-9. For a typical displacement mode, the operand would be located in the first 
memory address calculated. In deferred displacement mode, the contents of this location 
are used as the address of the desired operand. 

The deferred displacement mode is indicated to the assembler by the use of an asterisk 
before the off set. 

For example, the instruction INCW *Ox30(% r2) adds one to the contents of a memory 
location whose address is contained within a pointer. The address of the pointer is the 
contents of register r2 plus Ox30. 

The general syntax, mode field, and register field for a def erred displacement mode 
operand is: 

syntax: *expr(% rn) 
mmmm: 9, 11, or 13 (word, halfword, or byte offset) 
rrrr: 0-10, or 12-15 

Using this information, the instruction MOVB *Ox30(% r2),% r3 is stored in memory as 
illustrated on Figure 5-10. 

INCREASING MEMORY ADDRESSES 

I MOV B SOURCE 
OFFSET 

I DESTINATION 
OPCODE DESCRIPTOR DESCRIPTOR 

. ·I Ox87 D : 2 Ox30 I 4 : 3 

t t t f 
MODE REG. MODE REG. 
FIELD FIELD FIELD FIELD 

" / 

DEFERRED DISPLACEMENT MODE REGISTER MODE 

Figure 5-10. A Deferred Displacement Mode Source Operand 



ADDRESSING MODES 
Immediate Mode 

5.5 IMMEDIATE MODE 

In the immediate addressing mode, the operand is contained within the instruction. The 
ampersand symbol is used to indicate this addressing mode to the assembler. 

For example, the instruction MOVB &Ox50,% r6 copies the immediate data, Ox50, into 
register r6. The & symbol signifies that the data immediately following is to be treated as 
immediate data. The % symbol, as should now be familiar, indicates that the register 
mode is being used for the destination operand. 

The general syntax, valid mode and register fields for the immediate addressing mode are: 

syntax: &data (data = 8-, 16-, or 32-bits) 
mmmm: 4, 5, or 6 
rrrr: 15 

A mode field of 4 indicates that the immediate data is 32-bits long, while mode fields of 5 
and 6 are used for 16-bit and 8-bit immediate data, respectively. Figure 5-11 illustrates 
the storage of the instruction MOVW &Oxl2345678,% r2 in memory. This instruction 
causes the immediate data, Ox12345678, to be placed into register r2. 

Notice on Figure 5-11 that the immediate data is stored in memory with lower order bytes 
stored at lower order addresses. This is true for all immediate data; for example, the 16-
bit immediate data OxABCD would be stored as CDAB, with the byte containing CD 
stored at the immediately lower address than the byte containing AB. 

The immediate mode also has a short storage form for positive immediate data between 0 
and 63, and negative data between -1 and -16. In these two cases, the immediate data is 
stored directly within the descriptor byte. 

MOVW 
OPCODE 

Ox84 

I 
SOURCE 

DESCRIPTOR 

I 4 F 

t t 
MODE REG. 
FIELD FIELD 

INCREASING MEMORY ADDRESSES 

32-BIT 

l<l IMMEDIATE DATA I DESTINATION 
1-<l----------------------S>-IS> DESCRIPTOR 

I Ox78 I Ox56 Ox34 Ox12 4 2 

t t 
MODE REG. 
FIELD FIELD 

IMMEDIATE MODE REGISTER MODE 

Figure 5-11. A 32-bit Immediate Source Operand 

5-9 



ADDRESSING MODES 
Absolute Mode 

5.6 ABSOLUTE MODE 

In this mode, the address of the desired operand is contained directly within the instruction. 
The dollar symbol is used to indicate this addressing mode to the assembler. 

For example, the instruction MOVB $0x2E04,% rO moves the byte starting at location 
Ox2E04 into register rO. The general syntax, mode, and register fields for the absolute 
address mode are: 

· syntax: $expr (expr must yield to a byte, halfword, or word) 
mmmm: 7 
rrrr: 15 

Thus, the instruction MOVB $0x2E04,% rO is stored in memory as shown on Figure 5-12. 

As illustrated on Figure 5-12, the memory address is stored as a 32-bit address with 
lower-order bytes stored in lower order memory addresses. 

5. 7 ABSOLUTE DEFERRED MODE 

In the absolute deferred mode, the address contained within the instruction is used as a 
pointer to a word containing the address of the operand. As in all deferred modes, an 
asterisk is used to indicate deferred addressing to the assembler. 

For example, the instruction MOVB *$0x2E04,% rO uses the data contained within 
memory location Ox2E04 as the address of the source operand. The general syntax, mode, 
and register fields for this def erred mode is: 

syntax: *$expr (expr must yield to a byte, halfword, or word) 
mmmm: 14 
rrrr: 15 

Thus, the instruction MOVB *$0x2E04,% rO is stored in memory as illustrated on Figure 
5-13. 

MOVB 
OPCODE 

Ox87 

5-10 

I SOURCE 
DESCRIPTOR 

I 7 : F 

t t 
MODE REG. 
FIELD FIELD 

ABSOLUTE MODE 

INCREASING MEMORY ADDRESSES 

I~ 32-BIT ADDRESS 

I Ox04 Ox2E OxOO OxOO 

Figure 5-12. An Absolute Mode Source Operand 

E»I DESTINATION 
DESCRIPTOR 

I 4 : 0 

t t 
MODE REG. 
FIELD FIELD 

REGISTER MODE 



ADDRESSING MODES 
Expanded Operand Mode 

MOVB 
OPCODE 

Ox87 

INCREASING MEMORY ADDRESSES 

SOURCE ~~---- 32 -BIT POINTER ADDRESS -----El>;>!I DESTINATION I 
DESCRIPTOR<l DESCRIPTOR 

I Ox04 Ox2E OxOO OxOO I 4 I 0 I 
i l I I 

MODE REG. MODE REG. 
FIELD FIELD FIELD FIELD 

ABSOLUTE DEFERRED MODE REGISTER MODE 

Figure 5-13. An Absolute Deferred Mode Source Operand 

5.8 EXPANDED OPERAND MODE 

The expanded operand mode changes the type of an operand. For example, using this 
mode a signed byte located in a register could be converted to an unsigned halfword stored 
into memory. 

The expanded operand mode does not affect the length of immediate operands, but does 
affect whether they are treated as signed or unsigned. The expanded operand mode does 
not affect the treatment of literals. 

In assembly language, the syntax of this mode is 

{type}operand 

where operand is an operand having any address mode except an expanded operand mode. 
When the expanded operand mode is used, type overrides the operand's normal data type, 
except as noted above. The new type remains in effect for the operands that follow in the 
instruction unless another expanded operand mode overrides it. Table 5-3 lists the syntax 
for type. 

The expanded operand mode requires two descriptor bytes as shown on Figure 5-14. The 
first byte identifies the expanded operand mode and the new type, while the second is the 
descriptor byte for the address mode. The type field contains the value of the new type 
(see Table 5-3). The second byte contains the mode field (mmmm) and the register field 
(rrrr) for the address mode. This byte is the descriptor byte for the new address mode. 
For example, the following instruction converts a signed byte into an unsigned halfword: 

MOVB {sbyte}% r0,{uhalf}4(% rl) 

OxE TYPE MODE REG. 
FIELD FIELD FIELD 

Figure 5-14. Expanded Operand Mode Descriptor Bytes 

5-11 



ADDRESSING MODES 
Expanded Operand Mode 

The first operand's real mode is register, the second operand is byte displacement. The 
instruction reads bits 0 through 7 from register 0, extends the sign bit (7) through 32 bits, 
and writes an unsigned halfword. The bytes are stored in memory as illustrated on Figure 
5-15. 

The expanded operand mode is illegal with coprocessor instructions and CALL, SA VE, 
RESTORE, SW AP INTERLOCKED, PUSHW, PUSHAW, POPW, and JSB instructions 
and will generate an illegal operand fault. 

5-12 

MOVB 
OPCODE 

Ox87 

Table 5-3. Options for type in Expanded Operand Mode 

Type Syntax Type Field 
(See Note) 

Signed byte sbyte E7 
Signed half word half or shalf E6 
Signed word word or sword E4 
Unsigned byte byte or ubyte E3 
Unsigned halfword ubalf E2 
Unsigned word uword EO 

Note: Type fields El, ES, E8-El4 are reserved data types. 
Type field EF is an absolute deferred data type. 

INCREASING MEMORY ADDRESS <;)Y 

SOURCE 
TYPE 

SOURCE I DESTINATlcMl\DESTINATION I 
DESCRIPTOR TYPE QDESCRIPTOR 

E 7 4 0 

TYPE MODE REG. 
FIELD FIELD FIELD 

REGISTER MODE 

E 2 c 

TYPE MODE REG. 
FIELD FIELD FIELD 

BYTE DISPLACEMENT 
MODE 

Figure 5-15. Expanded Operand Mode Example 

OFFSET 

04 



ADDRESSING MODES 
Summary 

5.9 SUMMARY 

In machine language, the first byte of the operand, the descriptor byte, defines the 
operand's addressing mode. This byte consists of a mode and register field, which together 
define an addressing mode (the expanded operand type mode uses two descriptor bytes). 
Bytes following the descriptor byte contain additional data required by the addressing 
mode. Table 5-4 provides a summary of the addressing modes and their syntax. The 
descriptions within the table use the folluwing notation: 

Oxnnn Hexadecimal number nnn, where n is a hexadecimal digit 0 to 9 or a to f (or A to 
F); may also be written OXnnn 

%ap Argument pointer (AP); contains the starting location on the stack of a list of 
arguments for a function 

expr User-supplied expression that yields a byte, halfword, or word 

%fp Frame pointer (FP); contains the starting location on the stack of local variables 
for a function 

imm8 Signed integer in the range -128 to +127 (i.e., -27 to +27-1) 

imml6 Signed integer in the range -32768 to +32767; i.e., -215 to (+2 15-1) 

imm32 Signed integer in the range -231 to (+231-1) 

lit Signed integer in the range -16 to +63 

opnd An operand that uses a mode other than the expanded operand type 

% References a processor register; use the syntax shown in Table 5-4 for the desired 
register 

so Short offset; an integer in the range 0 to 14 

type Data type: sbyte (for signed byte), byte or ubyte (for unsigned byte), half or shalf 
(for signed halfword), uhalf (for unsigned halfword), word or swprd (for signed 
word), uword (for unsigned word). 

5-13 



ADDRESSING MODES 
Summary 

Table 5-4. Addressing Modes 

Mode Register Total 
Mode Syntax Field Field Bytes Notes 

5-14 

Absolute 

Absolute $ex pr 7 15 5 
Absolute deferred *$expr 14 15 5 

Displacement (from a register) 

Byte displacement expr(% rn) 12 0-10,12-15 2 
Byte displacement 

deferred *expr(% rn) 13 0-10,12-15 2 
Halfword displacement expr(% rn) 10 0-10,12-15 3 
Halfword displacement 

deferred *expr(% rn) 11 0-10,12-15 3 
Word displacement expr(% rn) 8 0-10,12-15 5 
Word displacement 

deferred *expr(% rn) 9 0-10,12-15 5 
AP short off set so(%ap) 7 0-14 1 
FP short off set so(%fp) 6 0-14 l 

Immediate 

Byte immediate &imm8 6 15 2 
Halfword immediate &imm16 5 15 3 
Word immediate &imm32 4 15 5 
Positive literal &lit 0-3 0-15 1 
Negative literal &lit 15 0-15 1 

Register 

Register %rn 4 0-14 l 
Register deferred (% rn) 5 0-10,12-14 1 

Special Mode 

Expanded operand {type}opnd 14 0-14 2-6 

Notes: 
1. Mode field has special meaning if register field is 15; see absolute or 

immediate mode. 
2. Mode may not be used for a destination operand. 
3. Mode may not be used if the instruction takes effective address of the 

operand. 
4. type overrides instruction type; type determines the operand type, except 

that it does not determine the length for immediates or literals or 
whether literals are signed or unsigned. opnd determines actual address 
mode. For total bytes, add 1 to byte count for address mode determined 
by opnd. 

-
-

-

-
-

-
-

-
1 
1 

2,3 
2,3 
2,3 
2,3 
2,3 

1,3 
1 

4 



Chapter6 

Instruction Set 



CHAPTER 6. INSTRJJCTIONSET 

CONTENTS 

6 ... INSTRDCTICJN $ET~ .. : ............ :··········'··'.·:············':, ................ :................................. 6-l 
'6J WE321QO J>..UCROPROCESSOR INSTRUCTION SET., .. ; ....... , ....................... 6-1 
~.LJ Condition. Flags ... '.··'·········; ... , ... ; .... ,., ...... , ......... :,;; .. ; ... : ...... ; ........ ,........................... 6-2 
6:,2FUNCTIONAL GROUPS'.'." .... •.:···················': ..... , .. , .......................... , ...................... 6-3 
6 .. 2.l Data Transfer Instructions .,.,, ......•........ , ....... , ...... : ....... ~ .................•......... ,............. 6-4 

· 6.2.2 Arithtn.etic · Instrqctions ......................................... ;................................................. 6-5 
.6 .. 2.3 Logkal Instructi.d11s .. ; .......... '.······················:: .............. ; ................... ~........................ 6-7 
6.2A Program Control Instructions ........................ ; .. , ............. ; ... " .. : ................................ 6-9 
6;2.5 Coprocessor Instructions.'. ................................ ; •..... , ........... ,.................................. 6-14 
6.2.6 Stack and Miscellaneous Instructions ................................................................... 6-15 



INSTRUCTION SET 
WE 32100 Microprocessor 

6. INSTRUCTION SET 

The instruction set for the assembler used by the AT&T 3B2/3B5/3Bl5 Computers 
consists of the WE 32100 Microprocessor instruction set, the IS25 instructions, and the 
Math Acceleration Unit Instruction Set (MIS). The IS25 instruction set, discussed in 
more detail in Appendix B. IS25 Instruction Set, was designed to be machine independent 
and therefore it allows programs to be written for all 3B computers including earlier 
version 3B computers. IS25 instructions may be used in place of the WE 32100 
Microprocessor instruction set for some applications. Since 3B2/3B5/3Bl5 Computers use 
the WE 32100 Microprocessoi: as the CPU, the discussion in this chapter is limited to the 
microprocessor instruction set. The remainder of this chapter will discuss the use of the 
microprocessor instructions and give a listing of the instructions by functional group. For a 
detailed listing of each instruction refer to Appendix A. WE 32100 Microprocessor 
Instruction Set. The MIS instructions, which are used to provide floating point support, 
are discussed in 10. Floating Point Support 

6.1 WE 32100 MICROPROCESSOR INSTRUCTION SET 

The WE 32100 Microprocessor has a powerful instruction set that includes the standard 
data transfer, arithmetic, and logical operations for microprocessors, plus some unique 
operating system operations. Its many program control instructions (branch, jump, return) 
provide flexibility for altering the sequence in which instructions are executed. Some of 
these instructions check the setting of the processor's condition flags before execution. For 
operation systems, the processor has instructions to establish an environment that permits 
other processes to take control of the processor. The special instructions dedicated to 
operating system use are discussed in 9. Operating System Interface. 

The microprocessor instructions are mnemonic-based assembly language statements. A 
mnemonic defines the operation an instruction performs. For most arithmetic or logical 
operations, the mnemonic also defines one of the data types: 

•byte - 8-bit data 

• halfword - 16-bit data 

•word - 32-bit data 

Some instructions perform operations on a bit field, a sequence of 1 to 32 bits contained in 
a word, or on a block (or string) of data locations. Data types are discussed in 4.1 Data 
Types. 

Instructions may appear at any byte address. An instruction consists of a one- or two-byte 
opcode followed by zero or up to four operands. In assembly language, the mnemonic 
replaces the opcode and is followed by its operands. This is represented as: 

mnemonic opndl ,opnd2,opnd3,opnd4 

6-1 



INSTRUCTION SET 
Condition Flags 

where the mnemonic is separated from the operands by a white space (tab or space) and 
commas are used to separate operands. The different addressing modes and formats of the 
operands are discussed in 5. Addressing Modes. 

6.1.1 Condition Flags 

Bits 21 to 18 of the processor status word (PSW) contain four condition flags (N, Z, V, 
and C) that are affected by most instructions. The order is shown on Figure 6-1. The 
conditional program-control instructions check one or more of these flags before executing 
the branch, jump, or return. In general, these flags reflect the result of the most recent 
instruction that which affected them. Most instructions set the flags according to standard 
criteria. Before defining that criteria, the following terms are defined: 

• Result refers to the internal result of the operation as if it were performed in an 
infinite-precision machine. The microprocessor operates on 32-bit data internally and 
uses a 33-bit space for the internal result. Bytes and halfwords read in are extended to 
32 bits before the operation. The destination operand determines the type (i.e., signed or 
unsigned, and size: byte, halfword, or word) of this result. 

• Output value refers to the data written to the destination location. The size of this data, 
8-, 16-, or 32-bits, corresponds to the data type of the destination operand: byte, 
halfword, or word, respectively. 

The following conditions cause the appropriate flag bit to be altered: 

N Negative (PSW bit 21) - Logical instructions change N to the setting of the output 
value of the MSB: bit 31 for words, bit 15 for halfwords, and bit 7 for bytes. For all 
other instructions, N is set if the sign of the result is negative. If truncation occurs, 
the N flag may be set even though the sign bit of the output value is zero. Zero is 
considered positive. 

Z Zero (PSW bit 20) - Logical instructions set Zif the output value is zero. For all 
other instructions Z is set if the result is equal to zero. If truncation occurs, the Z 
flag may not be set even though all bits of the output value are zero. 

V Overflow (PSW bit 19) - For instructions with a signed destination, Vis set if the 
sign bit of the output value is different from any truncated bit of the result. For 
instructions with an unsigned destination, V is set if any truncated bit is a one. The 
arithmetic left shift operation sets the V bit only if a truncation error occurs. Bit, 
compare, and test instructions always reset V. 

PSW 

Figure 6-1. Condition Flags 



INSTRUCTION SET 
Functional Groups 

C Carry/Borrow (PSW bit 18) - Logical instructions clear this bit. For all other 
instructions, the type of the result determines the state of the C bit. C is set if a carry 
occurs into the 33rd bit for word operations, into the 17th bit for halfword operations, 
or into the 9th bit for byte operations. The C bit is set if a borrow occurs from these 
bits for subtract, negate, and decrement. For example, consider A minus B where A 
and B are unsigned. If A ~ B after both are extended to 32 bits, then C is cleared. 
Otherwise, the C flag is set. 

Note: If a memory-write fault occurs, the flags are set as if the instruction was completed 
normally. 

The instruction descriptions later in this chapter include the effect that each instruction has 
on the condition flags. 

6.2 FUNCTIONAL GROUPS 

The WE 32100 Microprocessor instruction set may be separated into six functional groups: 
data transfer instructions, arithmetic instructions, logical instructions, program control 
instructions, coprocessor instructions, and stack and miscellaneous instructions. This 
section contains a description of each group, along with an instruction listing of each group 
(Tables 6-1 to 6-6). Byte and cycle counts are included for the various addressing modes 
for each instruction. The conditions column in the instruction listing refers to the condition 
flag code assignment cases listed in Table 6-7. 

Instruction Timing 

The architecture of the WE 32100 CPU makes exact instruction timing calculations 
difficult due to the following effects: 

• Addressing modes of operands 

• On-chip instruction cache 

• Instruction pipelining 

• Instruction and data alignment 

• Data dependencies 

The entries in the cycle count column in Tables 9 through 15 contain the ranges, from 
practical best to worst case, derived from tests taking all of the above effects into 
consideration. It is recommended that actual benchmarks be run to more accurately 
measure performance. The following discussion describes the timing differences due to the 
above effects. 

6-3 



INSTRUCTION SET 
Data Transfer Instructions 

6-4 

Addressing Modes of Operands. Since the instruction set is orthogonal to the addressing 
modes of its operands, tests were done on each applicable combination of the five basic 
addressing mode classes (register, absolute address, register deferred, immediate, and 
absolute deferred) for each instruction. Due to the nature of the addressing modes, 
register operations take the least time, while the absolute deferred operations take the most 
time to execute. 

On-Chip Instruction Cache. Timing differences caused by this effect were determined by 
ensuring that the test instruction was in the cache prior to execution (best case) and by 
first flushing the cache and then executing the test instruction (worst case). By flushing 
the cache a pref etch had to be performed to load the cache with the instruction. 
Performance improvements averaged 20-60% for ALU instructions, depending on the 
length of the instruction, by eliminating instruction pref etches. 

Instruction Pipelining. Tests to determine the timing differences due to pipelining were 
selected by inserting a test instruction that had potential for overlapping with two 
surrounding instructions and by inserting a test instruction between two branch taken 
instructions (using the branch instructions eliminate pipeline overlap). These tests showed 
on the average that pipelining saved between 2 to 6 cycles for instruction execution times. 

Instruction and Data Alignment. In test runs taking this effect into account, performance 
increases of an average of 2 to 6 cycles were encountered for optimal alignment. Optimal 
alignment was obtained by placing as many of the test instruction's opcode and associated 
operands as possible on word boundaries. Worst case alignment minimizes alignment of 
the opcode and operands. 

Data Dependencies. This effect was found only in four instructions: MUL W2, DIVW2, 
STRCPY, and STREND. In the test involving the MULW2 and DIVW2 instructions 
timing is improved if at least one operand is zero. For the string instructions, the length of 
the string has a large impact on the instruction execution time. Since string lengths are 
not limited, test runs were done on strings of one byte (best case) and four bytes (worst 
case) to determine best and worst case timings. 

6.2.1 Data Transfer Instructions 

These instructions Oisted in Table 6-1) transfer data to and from registers and memory. 
Most of them have three types (indicated by the last character of the mnemonic): byte 
(B), halfword (H), and word (W). A mnemonic's type determines the type of each 
operand in the instruction, unless the expanded-operand type mode changes an operand's 
type. The type of the destination operand (dst) determines how the condition flags are set 
(see 6.1.1 Condition Flags). 



INSTRUCTION SET 
Arithmetic Instructions 

Table 6-1. Data Transfer Instruction Group 

Instruction Mnemonic Opcode Bytes 

Move: 
Move byte MOVB Ox87 3-11 
Move half word MOVH Ox86 3-11 
Move word MOVW Ox84 3-11 
Move address (word) MOVAW Ox04 3-11 
Move complemented byte MCOMB Ox8B 3-11 
Move complemented half word MCOMH Ox8A 3-11 
Move complemented word MCOMW Ox88 3-11 

Move negated byte MNEGB Ox8F 3-11 
Move negated halfword MNEGH Ox8E 3-11 
Move negated word MNEGW Ox8C 3-11 

Move version number MVERNO Ox3009 2 
Swap (Interlocked): 
Swap byte interlocked SWAPBI OxlF 2-6 
Swap halfword interlocked SWAPHI OxlE 2-6 
Swap word interlocked SWAPWI OxlC 2-6 
Block Operations: 
Move block of words MOVBLW Ox3019 2 
Field Operations: 
Extract field byte EXTFB Ox CF 5-21 
Extract field ·halfword EXTFH Ox CE 5-21 
Extract field word EXTFW Ox CC 5-21 
Insert field byte INSFB Ox CB 5-21 
Insert field halfword INSFH Ox CA 5-21 
Insert field word INSFW OxC8 5-21 
String Operations: 
String copy STRCPY Ox3035 2 
String end STREND Ox301F 2 

*Refer to Table 6-7 for condition flag code assignments. 
**Cycle count per word access. 
Note: Information Unavailable 

6.2.2 Arithmetic Instructions 

Cycles 

2-31 
2-31 
1-27 
2-22 
2-31 
2-31 
1-27 
2-31 
2-31 
1-27 
See Note 

22-33 
22-33 
18-28 

See Note 

7-55 
7-55 
4-54 
18-72 
18-72 
14-71 

83-182** 
54-120** 

Conditions* 

Case 1 

Case 2 

Unchanged 

Case 1 

Unchanged 

Case l 

Unchanged 

Arithmetic instructions Oisted in Table 6-2) perform arithmetic operations on data in 
registers and memory. Most of these instructions have three types (specified by the last 
alphabetic character of the mnemonic): byte (B), halfword (H), and word (W). This type 
specification applies to each operand in the instruction, unless the expanded-operand type 
mode changes an operand's type. The type of the destination operand (dst) determines 
how the condition flags are set (see 6.1.1 Condition Flags). 

6-5 



INSTRUCTION SET 
Arithmetic Instructions 

6-6 

Many arithmetic operations are available as two- or three-address instructions. A two­
address instruction has a source operand (src) and a destination operand. Three-address 
instructions have two source operands (srcl, src2) and a destination operand. A few 
instructions also have a count operand (count). 

If the result of an arithmetic operation is too large to be represented in 32 bits, the high­
order bits are truncated and the processor issues an integer-overflow exception. 

Table 6-2. Arithmetic Instruction Group 

Instruction Mnemonic Opcode Bytes Cycles Conditions* 

Add: 
Add byte ADDB2 Ox9F 3-11 4-33 
Add half word ADDH2 Ox9E 3-11 4-33 
Add word ADDW2 Ox9C 3-11 2-31 
Add byte, 3-address ADDB3 OxDF 4-16 4-44 
Add halfword, 3-address ADDH3 OxDE 4-16 4-44 
Add word, 3-address ADDW3 Ox DC 4-16 4-43 
Subtract: 
Subtract byte SUBB2 OxBF 3-11 4-33 
Subtract halfword SUBH2 Ox BE 3-11 4-33 Case 2 
Subtract word SUBW2 Ox BC 3-11 2-31 
Subtract byte, 3-address SUBB3 Ox FF 4-16 4-44 
Subtract halfword, 3-address SUBH3 Ox FE 4-16 4-43 
Subtract word, 3-address SUBW3 OxFC 4-16 4-43 
Increment: 
Increment byte INCB Ox93 2-6 2-24 
Increment halfword INCH Ox92 2-6 2-24 
Increment word INCW Ox90 2-6 1-22 
Decrement: 
Decrement byte DECB Ox97 2-6 2-24 
Decrement halfword DECH Ox96 2~6 2-24 
Decrement word DECW Ox94 2-6 1-22 

*Refer to Table 6-7 for condition flag code assignments. 



INSTRUCTION SET 
Logical Instructions 

Table 6-2, Arithmetic Instruction Group (Continued) 

Instruction Mnemonic Opcode Bytes Cy des Conditions* 

Multiply: 
Multiply byte MULB2 OxAB 3-11 20-91 
Multiply halfword MULH2 OxAA 3-11 20-130 Case 3 
Multiply word MULW2 OxA8 3-11 18-210 
Multiply byte, 3-address MULB3 OxEB4-16 22-204 
Multiply halfword, 3-address MULH3 OxEA 4-16 22-200 Case 4 
Multiply word, 3-address MULW3 OxE8 4-16 20-205 
Divide: 
Divide byte DIVB2 OxAF 3-11 21-154 
Divide halfword DlVH2 OxAE 3-11 21-194 Case 3 
Divide word DIVW2 OxAC 3-11 19-275 
Divide byte, 3-addres& DIVB3 OxEF 4-16 23-270 
Divide halfword, 3-address DlVH3 Ox EE 4-16 23-263 Case 4 
Divide word, 3-address DIVW3 Ox EC 4-16 21-275 

-
Modulo: 
Modulo byte MODB2 OxA7 3-11 21-154 
Modulo halfword MODH2 OxA6 3-11 21-194 Case 3 
Modulo word MODW2 OxA4 3-11 19-275 
Modulo byte, 3-address MODB3 OxE7 4-16 23-270 
Modulo halfword, 3-address MODH3 OxE6 4-16 23-263 Case 4 
Modulo word, 3-address MODW3 OxE4 21-275 
Arithmetic Shift: 
Arithmetic left shift word ALSW3 Ox CO 4-16 5-43 Case 5 
Arithmetic right shift byte ARSB3 OxC7 4-16 5-44 
Arithmetic right shift halfword ARSH3 OxC6 4-16 5-44 Case 3 
Arithmetic right shift word ARSW3 OxC4 4-16 5-43 

*Refer to Table 6· 7 for condition flag code assignments. 

6.2.3 Logical Instructions 

Logical instructions Oisted in Table 6-3) perform logical operations on data in registers 
and memory. Most of these instructions have three types (specified by the last character 
of the mnemonic): byte (B), halfword (H), and word (W). A mnemonic's type 
determines the type of each operand in the instruction, unless the expanded-operand type 
mode changes an operand's type. The type of the destination operand (dst) determines 
how the condition flags are set (see 6.Ll Condition Flags). 

Many logical operations are available as two- or three-address instructions. A two-address 
instruction has a source operand (src) and a destination operand (dst). Three-address 
instructions have two source operands (srcl, src2) and a destination operand. A few 
instructions have a read-only count operand (count). 

6-7 



INSTRUCTION SET 
Logical Instructions 

Instruction 
AND: 
AND byte 
AND halfword 
AND word 
AND byte, 3-address 

Table 6-3. 

AND halfword, 3-address 
AND word, 3-address 
Exclusive OR (XOR): 
Exclusive OR byte 
Exclusive OR halfword 
Exclusive OR word 
Exclusive OR byte, 3-address 
Exclusive OR halfword, 3-address 
Exclusive OR word, 3-address 
OR: 
OR byte 
OR halfword 
OR word 
OR byte, 3-address 
OR halfword, 3-address 
OR word, 3-address 
Compare or Test: 
Compare byte 
Compare halfword 
Compare word 
Test byte 
Test halfword 
Test word 
Bit test byte 
Bit test halfword 
Bit test word 
Clear: 
Clear byte 
Clear half word 
Clear word 
Rotate or Logical Shift: 
Rotate word 
Logical left shift byte 
Logical left shift halfword 
Logical left shift word 
Logical right shift word 

Logical Instruction Group 
Mnemonic Opcode Bytes 

ANDB2 Ox BB 3-11 
ANDH2 Ox BA 3-11 
ANDW2 OxB8 3-11 

ANDB3 OxFB 4-16 
ANDH3 OxFA 4-16 
ANDW3 OxF8 4-16 

XORB2 OxB7 3-11 
XORH2 OxB6 3-11 
XORW2 OxB4 3-11 
XORB3 OxF7 4-16 
XORH3 OxF6 4-16 
XORW3 OxF4 4-16 

ORB2 OxB3 3-11 
ORH2 OxB2 3-11 
ORW2 Ox BO 3-11 

ORB3 OxF3 4-16 
ORH2 OxF2 4-16 
ORW3 OxFO 4-16 

CMPB Ox3F 3-11 
CMPH Ox3E 3-11 
CMPW Ox3C 3-11 
TSTB Ox2B 2-6 
TSTH Ox2A 2-6 
TSTW Ox28 2-6 
BITB Ox3B 3-11 
BITH Ox3A 3-11 
BITW Ox38 3-11 

CLRB Ox83 2-6 
CLRH Ox82 2-6 
CLRW Ox80 2-6 

ROTW OxD8 4-16 

LLSB3 OxD3 4-16 
LLSH3 OxD2 4-16 
LLSW3 Ox DO 4-16 
LRSW3 OxD4 4-16 

*Refer to Table 6-7 for condition flag code assignments. 

6-8 

Cycles Conditions* 

4-33 
4-33 
2-31 
4-44 
4-44 
4~43 

4-33 
4-33 Case 1 
2-31 
4-44 
4-44 
4-43 

4-33 
4-33 
2-31 
4-44 
4-44 
4-43 

4-33 
4-33 Case 2 
2-31 
2-24 
2-24 Case 6 
1-18 
4-31 
4-31 Case 1 
2-30 

.2-21 
2-21 Case 2 
1-19 

5-43 
5-44 
5-44 Case l 
5-43 
5-43 



INSTRUCTION SET 
Program Control Instructions 

6.2.4 Program Control Instructions 

Program control instructions (listed in Table 6-4) change the program sequence, but 
generally do not alter the condition flags. 

Branch instructions have two types specified by the last character of the mnemonic: byte 
displacement (B) and halfword displacement (H). A mnemonic's type determines if an 8-
or a 16-bit displacement is embedded in the instruction. This displacement (disp8, displ 6) 
is read, its sign is extended through 32 bits, and the result is added to the program counter 
(PC) to compute the target address. Jump instructions have a read-only, 32-bit destination 
(dst) operand that replaces the contents of the PC. 

Jump instructions are always unconditional, but both conditional and unconditional branch 
and return instructions are provided. Unconditional transfers change the contents of the 
PC to the value specified. Conditional transfers first examine the status of the processor's 
condition flags to determine if the transfer should be executed. 

Subroutine and procedure-call (function) transfer instructions save or restore registers so 
execution can transfer to the subroutine or function and then return to the original 
program sequence. 

Subroutine Transfer. A subroutine transfer is different from a normal transfer. Before 
transferring to a subroutine, it saves the address of the next instruction. 

Call and return instructions for subroutines always implicitly affect the stack pointer (SP). 
For subroutines, call saves the address of the next instruction on the stack at the location 
identified by the SP, increment the SP by 4, and then alter the PC. Return from 
subroutine decrements the SP by 4, retrieves the saved address from the stack, and writes 
it to the PC. 

Procedure Transfer. For procedure transfers it is necessary to save other registers. These 
instructions establish the environment for a function in a high-level language. Call and 
save instructions automatically save the calling function's pointers, set up pointers to the 
new function's environment, call the function, and save registers for local variables. 
Restore and return instructions remove that environment and return to the calling function. 

A stack frame provides reserved space, including a register-save area, for each function. 
The register-save area stores the calling function's FP, AP, return PC, and registers 3 
through 8 (r3 - r8), if requested. Saving r3 through r8 gives the new function space for 
up to six register variables. The SP is not saved because its value is always implicit. 

All function calls have a fixed-size register-save area, even though some of it may not be 
used. Save and restore control the number of the six user registers r3 through r8 that will 
be saved and restored. A return from a function retrieves the saved pointers and registers 
to restore the original function's environment. 

6-9 



INSTRUCTION SET 
Program Control Instructions 

Table 6-4. 

Instruction 
Unconditional Transfer: 
Branch with byte (8-bit) 
displacement 

Branch with halfword (16-bit) 
displacement 

Jump 
Conditional Transfers: 
Branch on carry clear byte 
Branch on carry clear halfword 

Branch on carry set byte 
Branch on carry set halfword 
Branch on overflow clear, 

byte displacement 
Branch on overflow clear, 

halfword displacement 

Branch on overflow set, 
byte displacement 

Branch on overflow set, 
halfword displacement 

Branch on equal byte 
(duplicate) 

Branch on equal byte 
Branch on equal half word 

(duplicate) 
Branch on equal halfword 
Branch on not equal byte 

(duplicate) 
Branch on not equal byte 
Branch on not equal halfword 

(duplicate) 
Branch on not equal halfword 
Branch on less than byte 

(signed) 
Branch on less than half word 

(signed) 

Program Control Instruction Group 

Mnemonic Opcode Bytes Cycles 

BRB Ox7B 2 5-16 

BRH Ox7A 3 5-14 

JMP Ox24 2-6 7-17 

BCCB Ox53* 2 See Note 1 
BCCH Ox52* 3 See Note 2 

BCSB Ox5B* 2 See Note 1 
BCSH Ox5A* 3 See Note 2 
BVCB Ox63 2 Note 1 

BVCH Ox62 3 See Note 2 

BVSB Ox6B 2 See Note 1 

BVSH Ox6A 3 See Note 2 

BEB Ox6F 2 See Note 1 

BEB Ox7F 2 See Note l 

BEH Ox6E 3 See Note 2 

BEH Ox7E 3 See Note 2 

BNEB Ox67 2 See Note 1 

BNEB Ox77 2 See Note I 
BNEH Ox66 3 See Note 2 

BNEH Ox76 3 See Note 2 
BLB Ox4B 2 See Note 1 

BLH Ox4A 3 See Note 2 

*Refer to Table 6-7 for condition flag code assignments. 

Conditions 

Unchanged 

**Indicates that opcode matches another instruction but operation is the same. 
***Dependent on number of registers saved/restored. 
l. 5-10 cycles during a branch not taken; 7-14 cycles during a branch taken. 
2. 5 -10 cycles during a branch not taken; 7 -12 cycles during a branch taken. 
3. 4-5 cycles during a return not taken; 13-14 cycles during a return taken. 

6-10 



INSTRUCTION SET 
Program Control Instructions 

Table 6-4. Program Control Instruction Group (Continued) 

Instruction Mnemonic Opcode Bytes Cycles 

Branch on less than byte BLUB Ox5B** 2 See Note 1 
(unsigned) 

Branch on less than halfword BLUH Ox5A** 3 See Note 2 
(unsigned) 

Unconditional Transfer: (Continued) 
Branch on less than or equal BLEB Ox4F 2 See Note 1 
byte (signed) 

Branch on less than or equal BLEH Ox4E 3 See Note 2 
half word (signed) 

Branch on less than or equal BLEUB Ox5F 2 See Note 1 
byte (unsigned) 

Branch on less than or equal BLEUH Ox5E 3 See Note 2 
half word (unsigned) 

Branch on greater than byte BGB Ox47 2 See Note 1 
(signed) 

Branch on greater than BGH Ox46 3 See Note 2 
halfword (signed) 

Branch on greater than byte BGUB Ox57 2 See Note 1 
(unsigned) 

Branch on greater than BGUH Ox56 3 See Note 2 
halfword (unsigned) 

Branch on greater than or BGEB Ox43 2 See Note 1 
equal byte (signed) 

Branch on greater than or BGEH Ox42 3 See Note 2 
equal halfword (signed) 

Branch on greater than or BGEUB Ox53** 2 See Note l 
equal byte (unsigned) 

Branch on greater than or BGEUH Ox52** 3 See Note 2 
equal halfword (unsigned) 

Return on carry clear RCC Ox50** 1 See Note 3 
Return on carry set RCS Ox58** 1 See Note 3 
Return on overflow clear RVC Ox60 1 See Note 3 
Return on overflow set RVS Ox68 1 See Note 3 
Return on equal (unsigned) REQLU Ox6C** 1 See Note 3 
Return on equal REQL Ox7C** 1 See Note 3 

*Refer to Table 6-7 for condition flag code assignments. 
**Indicates that opcode matches another instruction but operation is the same. 

***Dependent on number of registers saved/restored. 
1. 5 - 10 cycles during a branch not taken; 7 - 14 cycles during a branch taken. 
2. 5-10 cycles during a branch not taken; 7 -12 cycles during a branch taken. 
3. 4-5 cycles during a return not taken; 13-14 cycles during a return taken. 

Conditions 

Unchanged 

6-11 



INSTRUCTION SET 
Program Control Instructions 

6-12 

Table 6-4. Program Control Instruction Group (Continued) 

Instruction Mnemonic Opcode Bytes Cycles Conditions 

Return on not equal RNEQU Ox64** 1 See Note 3 
(unsigned) 

Return on not equal RNEQ Ox74** 1 See Note 3 

Return on less than (signed) RLSS Ox48 1 See Note 3 
Return on less than RLSSU Ox58** 1 See Note 3 

(unsigned) 

Return on less than or equal RLEQ Ox4C 1 See Note 3 
(signed) 

Return on less than or equal RLEQU Ox5C l See Note 3 Unchanged 
(unsigned) 

Return on greater than RGTR Ox44 ! See Note 3 
(signed) 

Return on greater than RGTRU Ox54 1 See Note 3 
(unsigned) 

Return on greater than or RGEQ Ox40 1 See Note 3 
equal (signed) 

Return on greater than or RGEQU Ox50** 1 See Note 3 
equal (unsigned) 

Subroutine Transfer: 
Branch to subroutine, BSBB Ox37 2 See Note 2 

byte displacement 
Branch to subroutine, BSBH Ox36 3 See Note 2 
halfword displacement 

Jump to subroutine JSB Ox34 2-6 7-17 
Return from subroutine RSB Ox78 I 13-14 
Procedure Transfer: 
Save registers SAVE OxlO 2 11-36*** 
Restore registers RESTORE Ox18 2 12-38*** 
Call procedure CALL Ox2C 7 25-36 
Return from procedure RET Ox08 1 21-23 

*Refer to Table 6-7 for condition flag code assignments. 
**Indicates that opcode matches another ·instruction but operation is the same. 

***Dependent on number of registers saved/restored. 
l. 5 -10 cycles during a branch not taken; 7 -14 cycles during a branch taken. 
2. 5 -10 cycles during a branch not taken; 7-12 cycles during a branch taken. 
3. 4-5 cycles during a return not taken; 13-14 cycles during a return taken. 



INSTRUCTION SET 
Program Control Instructions 

Procedure-call instructions explicitly manipulate four registers: 

1. PC - The call instruction saves the old PC as the return address (RA) and sets PC to 
the first executable instruction of the function being called. The return instruction 
restores PC to the RA (the next executable instruction of the calling function). 

2. SP - These instructions adjust SP automatically to point to the top of the stack 
whenever they store or retrieve items. 

3. FP - The save instruction sets FP to the address just above the saved registers. The 
FP accesses a region on the stack that stores temporary (or automatic) variables for 
the function. 

4. AP - The call instruction adjusts AP to the beginning of a list of arguments for the 
function. 

On a function call, the calling function contains a call instruction; the save instruction 
should be the first statement of the called function. For a return, a restore and a return 
appear in the function being exited. 

Figure 6-2 shows the stack after the CALL-SA VE sequence: 

PUSHW argl 
PUSHW arg2 
PUSHW arg3 

/*push three arguments*/ 

CALL -(3*4)(%sp),funcl /*call function*/ 

/*other instructions* I 

funcl: SA VE %r3 /*save r3 through r8 *I 

First, three arguments are pushed onto the stack; each push increments SP. Then CALL 
automatically saves the old pointers. It uses its first operand to set AP to the beginning of 
the three arguments and its second operand to call the function. Next, SA VE, the first 
statement in the function, is executed, automatically saving registers r3 through r8 by 
pushing them on the stack. It also adjusts SP and FP for each push. 

To return to the original sequence, the function fund contains the following instructions: 

funcl: SA VE %r3 

RESTORE %r3 
RET 

/*save r3 through r8*/ 

/*other instructions* I 

/*restore r3 through r8*/ 
/*return to main function* I 

6-13 



INSTRUCTION SET 
Coprocessor Instructions 

SP, FP--ao­

( FP- 4) 

(FP- 8) 

(FP-12) 

(FP-16) 

(FP-20) 

(FP-24) 

(FP-28) 

( FP- 32) 

(FP-36) 

AP-P. 

r8 

r7 

r6 

r5 

r4 

r3 

OLD FP 

OLD AP 

RA {OLD PC) 

arg3 

org2. 

arg 1 

REGISTER 
SAVE AREA 

l 
f 

INCREASING 
ADDRESS 

Figure 6-2. Stack After CALL-SA VE Sequence 

The restore instruction retrieves registers r8 through r3 from the stack. It must have the 
same operand as the original SA VE; otherwise, the return (RET) cannot restore the 
correct AP and PC. Both instructions decrement SP as they pop the register contents from 
the stack. 

6.2.5 Coprocessor Instructions 

These instructions which at present can only be used with the 3B2 Model 310 and 400 and 
the 3Bl5 Computers which contain the Math Acceleration Unit (MAU) (listed in 
Table 6-5), implement the interface with coprocessors. Most programmers will find it 
convenient to access the MAU using the MIS instruction set. All coprocessor instructions 
have an 8-bit opcode followed by one word. This word is transmitted on the data bus and 
interpreted by the coprocessor. The word is not used by the CPU. If no coprocessor 
responds to the transmitted word, an external memory fault occurs. 

After the word following the opcode is transmitted, the source operands, if any, are fetched 
from memory. The CPU then waits until the "coprocessor done" signal is asserted, after 
which the CPU attempts to read a word. If this access is faulted, an external memory 
fault occurs. If this access is not faulted, bits 18 through 21 of the word are copied into 
bits 18 through 21 (condition flags) of the PSW. The resulting operand, if any, is then 
written to memory. 

6-14 



INSTRUCTION SET 
Stack and Miscellaneous Instructions 

Coprocessor instructions can have from zero to two operands. The operands may be of 
three data types (specified by the last character of the mnemonic): single-word (S), 
double-word (D), and triple-word (T). All operands must start on an address evenly 
divisible by four (a word boundary). 

6.2.6 Stack and Miscellaneous Instructions 

The stack instructions (listed in Table 6-6) are used to manipulate the stack. The push 
and pop instructions always process a word and alter the SP. They have a so'!-rce operand 
src or a destination operand dst. · 

Miscellaneous instructions include those that alter the machine state or have an effect on 
the cache memory. The breakpoint instruction causes a breakpoint-trap exception. 
Control transfers to the operating system for the appropriate exception handler. The NOP 
instructions come in three lengths: l, 2, or 3 bytes. If an instruction, other than a 
conditional transfer, reads the PSW, the assembler as inserts a NOP before that 
instruction. This allows time for the PSW codes to settle before the new instruction tries 
to access them. Cache flush makes the instruction cache invalid. 

Table 6-5. Coprocessor Instructions* 

Instruction Mnemonic Opcode Byte Cycles Conditions** 

Coprocessor operation SPOP Ox32 5 N.A. 

Coprocessor operation read single SPOPRS Ox22 6-10 N.A. 

Coprocessor operation double SPOPRD Ox02 6-10 N.A. 

Coprocessor operation triple SPOPRT Ox06 6-10 N.A. 
Coprocessor operation single 2-address SPOPS2 Ox23 7-15 N.A. 
Coprocessor operation double 2-address SPOPD2 Ox03 7-15 N.A. 
Coprocessor operation triple 2-address SPOPT2 Ox07 7-15 N.A. 
Coprocessor operation write single SPOPWS Ox33 6-10 N.A. 
Coprocessor operation write double SPOPWD Ox13 6-10 N.A. 
Coprocessor operation write triple SPOPWT Oxl7 6-10 N.A. 

*Can only be used with 3B2 (Model 310 and 400) and 3Bl5 Computers. 
**Refer to Table 6-7 for condition flag code assignments. 
N.A. - Not available at time of production. 

Case 10 

6-15 



INSTRUCTION SET 
Stack and Miscellaneous Instructions 

Table 6-6. Stack and Miscellaneous Instruction Groups 

6-16 

Instruction Mnemonic Opcode Bytes Cycles 

Stack Operations: 
Push address word PUSHAW OxEO 2-6 9-20 
Push word PUSHW OxAO 2-6 8-23 
Pop word POPW Ox20 2-6 9-23 
Miscellaneous: 
No operation, 1 byte NOP Ox70 1 4-11 
No operation, 2 byte NOP2 Ox73 2 4-10 
No operation, 3 byte NOP3 Ox72 3 4-10 
Breakpoint trap BPT Ox2E 1 See Note 
Cache flush CFLUSH Ox27 1 See Note 
Extended opcode EX TOP Ox14 1-2 See Note 

*Refer to Table 6-7 for condition flag code assignments. 
Note: Information Unavailable 

Table 6-7. Condition Flag Code Assignments 
Condition Flags 

Case 
N(Negative) Z(Zero) C(Carry) V(Overflow) 

l MSB of dst 1 if dst = 0 0 0 

2 1 if result < 0 1 if result = 0 1 on carry 1 on integer 
or borrow overflow 

3 1 if dst < 0 l if .dst = 0 0 1 on integer 
overflow 

4 1 if dst < 0 1 if dst = 0 0 1 on integer 
overflow 

Conditions* 

Case 1 

Unchanged 

Special Conditions* 

V flag is set when 
expanded operand 
type mode is used, 
and the result is 
truncated when 
represented in 
destination. 

-

-

V flag may not set 
when dst is signed 
word type, bit 31 of 
absolute value of the 
result is 1, and while 
bits 32-63 of the 
absolute value of the 
result are Os. 



INSTRUCTION SET 
Stack and Miscellaneous Instructions 

Table 6-7. Condition Flag Code Assignments (Continued) 

Condition Flags 
Case 

N (Negative) Z(Zero) 

5 l if dst < 0 l if dst = 0 

6 l if src < 0 1 if src = 0 

7 MSB of word 1 if word 
returned returned= 0 

8 - -

9 - -

10 - -

Notes: 
MSB - Most Significant Bit 
dst - destination 
src - source 

C(Carry) 

0 

0 

0 

-

-

-

Special Conditions* 
V (Overflow) 

0 V flag is set if 
expanded-operand type 
mode changes the type 
of dst and integer 
overflow occurs. 

0 N flag is affected if src 
is signed integer. 

0 -

- All flags determined by 
new PSW. 

- All flags determined by 
restored PSW. 

- When coprocessor 
status word is accepted, 
bits 18-21 of the word 
read are put into bits 
18-21 of the PSW, 
respectively. 

*For cases 1 through 6, when the PSW is used as a source the condition flags 
are unaffected; when the PSW is usd:l as a destination, the condition flags 
assume the value of bits 18-21 of the result of the ope.ration performed. 

6-17 



6-18 



Chapter 7 

Using tlte 
as 

Assembler 



CHAPTER 7. USING THE as ASSEMBLER 

CONTENTS 

7. USINGTHE as ASSEMBLER................................................................................ 7-1 
7.l OVERVIEW OF ASSEMBLY PROCESS ............................................................ 7-1 
7.2 asASSl~.MBLER ................................................................ : ..................................... 7-1 
7.2 .. 1 Assembled Files'····'·······......................................................................................... 7-3 
7.2.2 Diagnostics ......................................................... ;................................................... 7-3 
7.3 ASSEMBLER DIRECTIVES ................................................................................. 7-3 

Location Counter...................................................................................................... 7-4 
7.3.1 Section Control Pseudo.-Operations ....................................................................... 7-5 
7.3.2 Pseudo-Operations Dealing With Symbols........................................................... 7-7 
}.3.3 Assignment Pseudo-Operations.............................................................................. 7-7 
7:3.4.Assignment·to Dot:.................................................................................................. 7-·8 
7.35 ·Alignment Pseudo-Operations............................................................................... 7-9 
7.3.6 Data Generation Pseudo-Operations ..................................................................... 7-9 
7 .. 3.7 Symbolic Debugging Pseudo-Operations ............................................................... 7-10 
7 .3 .8 .File Name Pseudo-Operations . . . . . .. . . . . . . . . . . . .. . . . .. . . . .. . . . . . . . .. . . . .. .. . . . . . . . . ... . . . . . ... . . .. . . . . .. .. . . 7-11 
7.3.9 Line Number Pseudo-Operations .......................................................................... 7-12 
7.4 MACRO PROCESSING FACILITIES ................................................................. 7·12 
7.4~1 Interface Macros .................................................................. ; .................... ;............ 7-12 

Function Interface Macros.................................................................................... 7-13 
Scratch· Register Macros .......................................................... , ............................ 7-14 
Stack ·Frame Macros . ....... ...... ........ ... .. . ..... ...... ....... ....... ........................................ · 7-14 
Restrictions............................................................................................................ 7~15 

7.4.2 Using Predefined Macros....................................................................................... 7-15 
Examples ........................... : .......•.............................................. ,............................. 7-15 . 

7.4.3 M4 Reserved Words .............................................................................................. 7-1·7 



USING THE as ASSEMBLER 
as Assembler 

7. USING THE as ASSEMBLER 

This chapter describes the assembler (as). The assembler constructs an object file from an 
assembly language source file. The object file is relocatable and may include an extensive 
symbol table for symbolic debugging. This relocatable object file is in common object file 
format (coff). 

The assembler translates operation code mnemonics and operands into the target machine 
bit pattern representing the particular instruction_s. The as assembler attempts to optimize 
the size of branch instructions, thus reducing the riumber of machine cycles required for a 
given task and improving program speed. 

The assembler resolves local text labels, identifies global text symbols defined in the input 
files, and identifies symbols referenced but not defined. 

7.1 OVERVIEW OF ASSEMBLY PROCESS 

Figure 7-1 shows an overview of the assembly process. In this process the assembler source 
(i.e., assembly language program) is passed to the as assembler to create relocatable object 
modules. The object modules are passed to the link editor (Id) along with any necessary 
run time libraries to create an executable object module. The Id link editor command is 
described in the C Programming Language Utilities for the 3B2/3B5/3Bl5 Computers. 

7.2 as ASSEMBLER 

The assembler is called with the command line 

as options filename 

where filename ends with .sand options are chosen from Table 7-1. 

Table 7-1. as Command Line Options 

Option Argument Description 

-G None Compares floating point numbers 
disregarding unorderedness. 

-m None Invokes the m4 macro processor. 
-n None Turns off long/short address optimization. 
-o objfile Places the assembled output in objfile. 
-R None Removes input when done. 

-u None Removes unreferred symbols. 

-v None Prints the version of the assembler being 
run on standard error. 

-Y Directory Specifies alternative directory 
Name to find m4. 

7-1 



USING THE as ASSEMBLER 
as Assembler 

RELOCATABLE 
OBJECT 

MODULES 

LINK 
EDITOR 

(Id) 

ASSEMBLER 
SOURCE 

ASSEMBLER 
(as) 

Figure 7-1. Assembly Process 

RUN 
TIME 
LIBRARY 

The input assembly language program is read from filename and the output is written to 
an output object file. Unlike cc, only one file at a time may be input to as. If the output 

7-2 

file name is not specified by the -o option, the outpuame is created fromfilename using 
the following algorithm: 

• If filename ends with the two characters .s, the output name is created by replacing 
these last two characters with .o. 

• If filename does not end in .s and is no more than twelve characters in length, the output 
name is created by appending .o to filename. 

• If filename does not end with .sand has moire than twelve characters, the output name is 
created by appending .o to the first twelve characters of filename. (File names on the 
UNIX Operating System can be no longer than fourteen characters). 

Usage of the assembler options entails a few potential pitfalls. If the -n option is not used, 
address optimization is invoked. The .align assembler directive is not guaranteed to work 
in a .text section when optimization is performed. Therefore, aligned constants should not 
be defined in the .text section. See 7.3 Assembler Directives for a more detailed description 
of .align. 



USING THE as ASSEMBLER 
Assembler Directives 

7.2.1 Assembled Files 

The output of the assembler is an object file. Each assembled file contains three 
sections: .text, along with optimal .data, and .bss sections. Each section begins at an 
address that is a multiple of four and consists of a contiguous sequence of bytes. The .text 
section is used for executable statements, the .data section is used for initialized variables, 
and the .bss section is used for uninitialized variables. Every statement in the input 
assembly language that produces code or data generates it into one of these sections. 

The assembler maintains three location counters: for each assembled file, one for each of 
the program sections. The initial value of each counter is set to zero. When an assignment 
is made to the corresponding program section, the assembler increments the appropriate 
location counter. On its final pass, the assembler concatenates the three sections for each 
file in the order .text, .data, and .bss and sets each location counter to the correct starting 
address. That is, the text origin is set to zero, the data origin is set to the location that 
follows the .text section, and the .bss origin is se:t to the iocation that follows the data 
entry. Figure 7-2 shows these starting memory locations. Relocation of these sections is 
later done by the link editor (LD). 

Because the assembler produces relocatable code, modular program development is possible 
and is encouraged. 

7.2.2 Diagnostics 

Errors may occur when using the assembler. The assembler outputs an error message 
when an error occurs. The error messages are intended to be self-explanatory. 

The most common error occurs when the input file cannot be read. The assembly then 
terminates with the message "Can't open filename". If assembly errors are detected in the 
input file, the following information is written to standard error: the input file name, the 
line number where the error occurred in the assembly code, and possibly a descriptive 
message for the problem. 

7.3 ASSEMBLER DIRECTIVES 

An assembler directive is a command to the assembler that does not necessarily generate 
any code. Directives are distinct from executable instructions, which contain mnemonics 

· for machine operations. Every assembler directive is coded as a pseudo-operation (pseudo~ 
op) code followed by zero or more operands. All assembler directives begin with a period 
(.). Table 7-2 lists all pseudo-ops alphabetically. 

7-3 



USING THE as ASSEMBLER 
Assembler Directives 

7-4 

Location Counter 

...-----------. ---- . text 

. text 
SECTION 

ORIGIN 

---------- ----.data 

.data 
SECTION 

UNASSIGNED 

ORIGIN 
(A 512-KBYTE 
BOUNDARY) 

Figure 7-2. Mapping Program Sections 

The symbol . (read as dot) is the location counter used during the assembly of a program 
and is reserved for use by the assembler. The type of this symbol is either TEXT, if code 
is currently being generated for the .text section, or DATA, if code is currently being 
generated for the .data section. The initial type of the location counter is TEXT and the 
initial value is zero. 

The iocation counter represents the address of the ii1ext available byte for the placement of 
assembled code or data, and can change in the following ways: 

• as a result of the .text, .data, .set, .zero, .align, .byte, .half, .word, .flt, or .double pseudo­
ops 

• as a result of the generation of code for a machine instruction. 

In the first case, the change is explained in the description associated with each pseudo-op. 
In the second case, the location counter is incremented by the size of the assembled code 
after the statement is completely assembled. 

For each section Ctext, .data, or .bss), there exists a saved location counter value. Initially 
each saved location counter value is zero. When the programmer issues a section change 
pseudo-op, the current location counter (i.e., the section being changed from) is saved. 
The current location counter is then assigned the value of the location counter for the 
destination section. 



USING THE as ASSEMBLER 
Section Control Pseudo-Operations 

7.3.1 Section Control Pseudo-Operations 

These pseudo-ops provide a method of changing the section in which code is generated and 
the section in which labels are defined. They work as follows: each of the sections .text, 
.data, and .bss has its own hidden dot or location counter that indicates where the next 
code is to be generated for that section. The actual symbol "." starts out with a type of 
TEXT and a value of zero. Whenever a section control pseudo-operation is encountered, 
the value of dot is stored away into whichever hidden dot is indicated by its type. The 
value of some other hidden dot is then retrieved and stored as the value of the symbol ". ", 
and the type of dot is set depending on which hidden dot is used. 

The following section control pseudo-operations are recognized: 

where: 

.text 

.data 

.bss symbol,size,align 

.ident string 

.text causes the current location counter to be saved and then assigned the value of the 
location counter for the text section. The type of the current location counter is set 
to TEXT . 

. data causes the current location counter to be saved and then assigned the value of the 
saved value of the location counter for the data section. The type of the current 
location counter is set to DATA . 

. bss causes the bss location counter to be advanced to a multiple of align (which must 
be an ABSOLUTE expression with a value of 2 or 4), and assigns to symbol the 
type BSS and the current value of the bss location counter. The .bss section then 
advances its dot by the value of size. The symbol size refers to the number of 
bytes; it must be greater than or equal to 0 and have type ABSOLUTE. The type 
and value of the current location counter remain unchanged. 

Jdent causes the string argument to be placed into the .comment section in the object 
file. The object file is a nonloaded type information section. 

7-5 



USING THE as ASSEMBLER 
Section Control Pseudo-Operations 

Table 7-2. Alphabetical List of Pseudo-Operations 

Name Operation 

.align expr Increments the current location counter to a multiple of 
expr; expr must evaluate to an ABSOLUTE of 2 or 4 . 

. bss sym, size, align Defines the symbol name sym in the .bss section, and add 
size to the value of dot and .bss after aligning it to a 
multiple of align. This does NOT change the current 
section to .bss; size must be an ABSOLUTE value and align 
must be an ABSOLUTE value of 2 or 4 . 

. byte val[, vall... Generates initialized bytes containing the 8-bit value val in 
the current section. 

.common name,expr Reserves expr bytes of uninitialized storage for symbol 
name. 

. data Changes the current section to .data . 

. def name Start of the symbolic description for the symbol name . 

.dim expr[, exprJ... If the name in .def is an array, then the expression gives the 
dimensions. Up to five dimensions are accepted. The type 
of each expression should be ABSOLUTE. 

. double val Generates the 64-bit floating point representation of val . 

. endef Ending bracket for .def . 

.file "name" Passes the UNIX System source file name to the assembler. 
Only one .file is allowed per assembly file. 

. float val Generates the 32-bit floating point representation of val . 

.global name Treats name as a global symbol, equivalent to storage class 
extern in the C language . 

. half val[, valJ ... Generates initialized half words containing val in the current 
section. Each val must be a 16-bit value. 

.ident "string" Places the null terminated string "string" in the .comment 
section of the output file. 

. ii Indicates that a procedure has been expanded in line . 

.line expr · Defines the source line number of the definition of block 
symbol "name" in .def. expr should yield an ABSOLUTE 
value . 

. In !ind, addr] Creates an entry in the line number table for a section. The 
current dot becomes the default for addr. The type of addr 
tells which section owns the line number. The operand line 
should be an ABSOLUTE value of the source line number. 

.previous Changes the current section to the previous section. Only 
one level of previous section is possible . 

. sci expr Within .def give name the storage class of expr. The type of 
expr should be ABSOLUTE. 

7-6 



USING THE as ASSEMBLER 
Assignment Pseudo-Operation 

Table 7-2. Alphabetical List of Pseudo-Operations (Continued) 

Name Operation 

.section sect _name, "sect _type" Creates a section sect _name in the output file, of types 
sect _Jype, and change the current section to sect_ name. A 
section type may be one or more of the following: 

b - bss section 
c - copy section 
I - info section 
d - dummy section 
x - executable (text) section 
n - noload section 
0 - overlay section 
1 - lib section 
w - data section 

.set name ,ex pr Sets the value of the symbol name to expr; name must be a 
symbol. 

.size expr If name of .def is an object such as a structure or an array, 
assign it size expr. The type of expr should be 
ABSOLUTE. 

.tag str If name of .def is a structure or union, str should be the 
name of that structure or union tag as defined in the 
previous .def-.endef pair. The operand str must be a symbol. 

.text Changes the current section to .text. 

.type expr Within a .def, give name the C compiler type representation 
ex pr. The type of expr should be ABSOLUTE. 

.val expr Within .def, give name the value expr. The type of expr 
should be ABSOLUTE. 

.version "string" Identifies the minimum version of the assembler necessary to 
assemble the input file . 

. word val[, vall.. Generates initialized words containing val in the current 
section. Each val must be a 32-bit value. 

.zero size Advances the location counter by size and put zeros in the 
area skipped. The type of size should be ABSOLUTE. 
This pseudo-op is legal only in a .data section. 

7.3.2 Pseudo-Operations Dealing With Symbols 

The pseudo-op .globl is used to declare that a symbol is to be accessed by more than one 
object module of a single program (i.e., given the EXTERN AL attribute). The format is: 

.globl symbol 

This statement has one of two effects: 

• If symbol is defined in the program in which the .globl statement appears, a symbol 
table entry will appear in the object file that will allow other programs to access symbol. 

7-7 



USING THE as ASSEMBLER 
Assignment Pseudo-Operation 

7-8 

• If symbol is not defined in the program in which the .globl statement appears, then 
references to symbol will be treated as references to something defined externally. This 
use of .globl is entirely optional since any symbol that is undefined in a program will be 
assumed to be external. 

It is important to note that .globl does not define the symbol. This pseudo-operation is 
similar to the "extern" declaration in the C language. A symbol is defined either when it is 
used as a label, when it is used in one of the data generating operations, or when it is given 
a value in an assignment statement. 

7 .3.3 Assignment Pseudo-Operations 

A symbol may be given an arbitrary value and type through the use of the .set pseudo-op. 
It has the form: 

.set symbol, expression 

The expression (see 3.4 Expressions) is evaluated and its value and type are assigned to 
symbol. Every symbol that appears in expression must either be defined or have the 
EXTERNAL attribute. 

Assignments are performed during the assembler's first pass over the input program. This 
procedure has several important consequences: 

• The .set pseudo-op does not allow forward referencing, i.e., every symbol that appears in 
expression must be defined prior to the assignment statement. Forward references are 
allowed in other contexts because all other expressions are not evaluated until later 
passes. 

• The result of the assignment may be different from the expected result. For example, 
consider the assignment 

.set abc,labl -lab2 

where labl and lab2 are labels appearing in the .text section. An ABSOLUTE value is 
assigned to abc, which is the distance from lab2 to lab], during the first pass. This 
distance may change during subsequent passes if there are offsets between lab2 and labl 
that need to be altered. For example, the jmp instruction can assemble into a short form 
(2 bytes) or a long form (3 bytes) depending on the value of the offset. The first pass of 
the assembler assumes that the 2-byte form can be used. This will be expanded to the 3-
byte form if a subsequent pass determines that the label is out of the range for a short 
jump. This expansion will not be reflected in the value of abc if the jmp occurs between 
lab] and lab2. 

Other assignments may have no problem at all. For example, expressions containing only 
ABSOLUTE operands always yield the correct result. Assignments such as 

.set xyz,labl 

where labl is a label in the .text section, also behave as desired. When code is modified, 
the assembler changes the values of labels to point to the correct locations. If the value of 



USING THE as ASSEMBLER 
Assignment to Dot 

labl changes, so will the value of xyz, because both are TEXT symbols with the same 
value. 

7 .3.4 Assignment to Dot 

Null data may be generated by assignment to the location counter. The location counter is 
represented by the dot. symbol (.). Assignment to dot may be performed under the 
following conditions: 

• The result type of the expression to be assigned to dot has the same type as dot. 

• The value of the expression to be assigned is not less than the value of dot. 

If the assignment increases the value of dot by N, then N bytes of null data are generated. 
Assignment to dot is most often used to provide holes or spaces in code. For example, the 

.set .,.+10 

generates 10 bytes of null data. The assembler defines null data in the .text section as 
NOPs (Ox70); null data in the data section is zero. 

7.3.5 Alignment Pseudo-Operations 

The alignment pseudo-op .align causes the next data item or instruction to be assembled at 
an address that is a multiple of 2 or 4. It has the form 

.align expression 

where expression must evaluate to an ABSOLUTE 2 or 4. A .align 2 causes the value of 
current location counter to be incremented by one if its current value is not a multiple of 2. 
A .align 4 causes the value of the current location counter to be incremented by one, two, 
or three, if its current value is not a multiple of four. The appropriate increment (one, 
two, or three) needed to bring the location counter to a multiple of four is chosen. If this 
directive is used in the .text section, any space skipped will be filled with NOP instructions. 
If it is used in the .data section, any space skipped will be filled with zeros. 

7.3.6 Data Generation Pseudo-Operations 

Data generation pseudo-ops are used for declaring variables. The data generation pseudo­
operations - .byte,.half, and .word generate 8-, 16-, and 32-bit integer constants, 
respectively, while the pseudo-ops - .flt. and .double generate 32- and 64-bit floating point 
constants, respectively. The forms are: 

.byte ex pr, .. . 

. half expr, .. . 

. word expr, .. . 

.flt expr, ... 

.double ex pr, ... 

7-9 



USING THE as ASSEMBLER 
Data Generation Pseudo-Operations 

Each expression will be converted into its respective data type. The location counter must 
be properly aligned with .align before each use of one of these pseudo-ops. Dot is then 
incremented by one, two, or four (depending on the pseudo-op) after the generation of each 
data item in the list of expressions for that statement. For example, .word .,.,. generates 
three words of data and each word contains the address of the first byte of that word. 
Therefore, each word contains a different value. 

Each expression may be given a bit width by prefacing it with an integer constant followed 
by a colon. This format for bit width is 

n:expr 

where n ranges from 0 to 8 for .byte, 0 to 16 for .half, and 0 to 32 for .word. Nonprefaced 
expressions have an assumed bit width of 8, 16, or 32, depending on whether the .byte, 
.half, or .word pseudo-op is used. The expression, which must be ABSOLUTE, is 
converted into the proper representation and placed in a field of the indicated width. 

For example, 

mode: .byte 5:x+y, 3:0 

initializes an 8-bit variable, mode, by setting the upper five bits of mode to the result of 
the expression x + y, and the lower three bits to zero. 

Fields are assigned from high order bit positions (i.e., bit 7 of a byte) to low-order bit 
positions. Each successive expression is placed into a field that begins with the next lower 
bit position. The location counter is adjusted after the generation of each data item; it 
always indicates the address of the first byte into which the current data item is to be 
placed. 

A field is not allowed to cross the implied boundary indicated by one of the above pseudo­
ops. If too few fields are encountered to fill the indicated unit of memory, enough zeros 
are supplied to fill the low order bits. 

The data generation pseudo-op .zero allocates an area of memory and fills it with zeros. It 
has the form 

.zero size 

where size is the number of bytes to allocate and fill with zeros. The .zero pseudo-op 
advances the location counter by size and puts zeros in each byte of memory that is 
skipped. It is legal only in the .data section. Variables declared static in a C source 
program are assembled through this pseudo-op. 

7.3.7 Symbolic Debugging Pseudo-Operations 

Symbolic debugging pseudo-ops are provided for making entries in the symbol and lirfe 
number tables in the object file. The presence of symbolic debugging pseudo-operations in 
an assembly language program has no effect on program execution. These statements 
merely serve to transparently pass information from the user code to the symbolic 
debugger. 

7-10 



USING THE as ASSEMBLER 
Symbolic Debugging Pseudo-Operations 

The basic symbolic debugging pseudo-operations are .def and .endef. These are used as a 
pair to surround a list of pseudo-operations that assign attributes to a symbol. The format 
used is: 

.def name 

{Attribute-assigning pseudo-operations} 

.endef 

The attribute-assigning pseudo-operations between .def and .endef assign attributes to the 
symbol name. These attribute-assigning pseudo-operations are available: 

.val expr 

.sci expr 

.type expr 

.tag str 

.line expr 

.size expr 

.dim exprl,expr2, ... 

. ii 

Giv-es the value expr to the symbol name. In general, the type of 
expr (TEXT, DA TA, etc.) is used to determine the section with 
which the symbol name is associated. 

Declares a storage class for the symbol name. expr must yield a 
value of ABSOLUTE type that corresponds to one of the values in 
the C leader file storeclass, h. 

Declares a data type for the symbol name. expr must yield a value 
of ABSOLUTE type that corresponds to the value of type and 
derived type in the header file syms,h. 

Used when name is a C level structure or a union. str is a structure 
or union tag that is defined by some other .def-.endef pair. 

Used when name is a block symbol. expr yields a value of 
ABSOLUTE type that gives the line number of the declaration for 
name. 

Used when name is a C level structure or an array that does not 
have a predetermined size. expr should yield a value of 
ABSOLUTE type that gives the size of name, usually in bytes, or in 
bits if name is a bit field. · 

Used when name is an array. Each expression yields a value of 
ABSOLUTE type that gives the corresponding dimension of the 
array. Since the UNIX System implementation of the C language 
supports up to five dimensions for an array, there may be up to five 
arguments to the .dim pseudo-op. 

Used to indicate that a procedure has been expanded in-line . 

For symbolic debugging purposes, the order of symbols is very important. The assembler 
has no knowledge of this ordering; it just passes the symbols through from the C compiler 
so they may be accessed by the symbolic debugger. 

As with .globl, the .def pseudo-op does not define the symbol. A symbol table entry is 
created but no definition occurs. 

7-11 



USING THE as ASSEMBLER 
File Name Pseudo-Operation 

7.3.8 File Name Pseudo-Operation 

Associated with each assembly file can be at most one .file pseudo-op. It has the form 

.file "name" 

where "name" is a double-quoted string of 1 to 14 characters. This pseudo-op is normally 
used to pass the name of the C source file from which the assembly program originated. 
name then becomes part of the symbol table and can be accessed at run time. 

7.3.9 Line Number Pseudo-Operations 

Each section in the object file has a line-number table associated with it that maps line 
numbers in the source code to addresses within the section. A line-number entry may be 
made using the .In pseudo-operation as: 

.In line[,value] 

The operand line must have a value of ABSOLUTE type that gives a line number in the 
source code. The optional operand value, if present, must have a value of type TEXT, 
DAT A, or BSS that gives the address within the section where the line number occurs. If 
the value operand is missing, the value of the current location counter will be used as the 
address of the line number. 

7.4 MACRO PROCESSING FACILITIES 

Macro processors enhance programming languages by making them more readable or by 
tailoring them to specific applications. The basic facility provided by any macro processor 
is replacement of text by other text. 

When the -m option of as is specified, the M4 processor is invoked. The M4 macro 
processor provides a collection of about thirty-two built-in (default) macros; in addition, 
the user can define new macros using the M4 define function. As part of the programming 
en.vironment provided by the Software Generation Utilities, many interfacing macros have 
been predefined. That is, the define function of M4 has already been used to establish 
several macros that interface assembly language routines with C code. 

The M4 processor operates by copying its input to its output. As the input is read, each 
alphanumeric token (i.e., string of letters and digits) is checked. If the token matches the 
name of a macro, the name of the macro is replaced by the defining text and the resulting 
string is pushed back onto the input and rescanned. In M4, built-ins and user-defined 
macros work exactly the same way, except that some of the built-in macros have side 
effects on the state of the process. Macros may be called with arguments, in which case 
the arguments are collected and substituted into the right places in the defining text before 
that text is rescanned. 

Use of the M4 helps facilitate symbolic debugging when assembly code is used by tailoring 
the input file to look as though it came from the compiler. When an assembly language 
program uses the provided M4 macros, symbol table information can be generated, as well 
as the prologue and epilogue pseudo-code sequences that the compiler normally provides. 

7-12 



USING THE as ASSEMBLER 
Line Number Pseudo-Operation 

The assembly language programming example demonstrates the prologue and epilogue 
sequences. 

7.4.1 Interface Macros 

A set of predefined macros is provided to enable assembly language function linkages to C 
code to be specified independently from the details of the calling sequence. The macros, 
therefore, not only make programming easier; they also provide some insulation from any 
changes ~o the calling sequence that may occur. 

When the -m option is used, M4 preprocesses all input assembly language source files. 
The macros described below are made available as part of this preprocessing step. The M4 
processor operates on both assembly language source files and on intermediate assembly 
language files generated by the compiler for C source files G.e., .c files) that contain asm 
assembler escapes. 

Note: When using as, the -m option can be specified on the command line. When using 
cc, the -Wa,-m option must be specified to access the macro package. 

Function Interface Macros 

The M4 macro package uses a functional notation for macros with arguments. Function 
interface macros should appear alone on a line with the arguments enclosed in parentheses 
and separated by commas. Additional white space (blanks and tabs) is ignored. Macros 
without arguments should appear in the assembly text just as if they were normal assembly 
language expressions. 

C _PROLOGUE (name[.nregs]) 

This macro generates the standard C function prologue that finishes saving the caller's 
environment on the stack and sets up a new stack frame for use by the called routine. The 
name must be a valid C language identifier. 

The optional argument nregs gives the number of C language register variables that are 
saved by C _PROLOGUE (default is six registers). The assembly language function may 
use the saved registers for any purpose. Register variable arguments and stack arguments 
are not available to C_PROLOGUE. Another predefined macro, _RESULT, names the 
register that must be loaded with any value to be returned to the calling function. 

C _RETURN (nregs) 

This macro generates the standard function return sequence. It restores the caller's 
environment and executes a branch to the return address that was saved with the 
environment on the stack at the time of the call. The number of registers to be restored is 
given by nregs and should be the same as that specified in C_PROLOGUE. The default is 
SIX. 

C _ CALL(fune[.argl , ... ,arg5]) 

This macro generates a call to the C language function June. The operand June must be a 

7-13 



USING THE as ASSEMBLER 
Scratch Register Macros 

valid function name for either another normal assembly routine or a C source function that 
has become known by link editing. Up to five arguments can be passed with C_CALL. 
The arguments can be any valid operands to the assembler pusbw instruction. Note that 
the function arguments are passed through without change (except for macro expansion). 
In the assembler language syntax, a variable name or constant operand is normally treated 
as if addressing a word in memory. The ampersand (&) can be used to show that the 
address itself is wanted. Thus, to use a specific value as an argument, an ampersand is 
used with the value. For example, the value 3 would be designated by &3. An argument 
that is to be the value stored at some address is indicated by giving the address with no 
ampersand. For instance, to obtain the contents at address x, designate the letter x. If the 
address itself is to be used as the value, write the value as an ampersand address; e.g., 
designate address x by &x. 

A PROLOGUE(name) 

This macro operates the same as C_PROLOGUE, but does not allow any registers to be 
saved. 

A EPILOGUE(name) 

This macro generates the symbolic code indicating the end of a function. Programmers 
must still write the actual return instructions before the A_EPILOGUE macro call; e.g., 
RESTORE and RET. 

The macros that begin with C were written to connect assembly language segments to C 
language programs. However, they can also be used to connect two assembly language 
segments. In this use, the macros provide symbol table definitions, beginning and ending 
statements, and a save instruction for the new segment. 

If only the symbol table definition and the beginning and end statements are needed, the 
A_PROLOGUE A_EPILOGUE pair should be used. The pair does not contain a save 
command, and its use requires explicit coding of save and return instructions. 

Scratch Register Macros 

The C compiler uses three scratch registers to store temporary results of expression 
computations. When the compiler processes a function call, it guarantees that no current 
values in the scratch registers will be needed after the call (by storing the values in 
temporary locations on the stack if necessary). Therefore, each function is free to use the 
scratch registers in any way and does not have to save or restore them. The macros 
_SCRl, _SCR2, and _SCR3 expand to the register numbers of the scratch registers and 
may be used freely inside a normal assembly language routine. Note that SRCl names 
the same register as _RESULT. Register _SCRl has special meaning duri;;-g the call and 
return sequence, but is available for general use inside the called function. 

Stack Frame Macros 

Stack frame macros start with an underscore () and provide access to the current stack 
frame environment. The argument macros lSTARG, 2NDARG, 3RDARG 4THARG 
and _STHARG reference the first through fifth argume;ts to the fu-;ction (vi~ ~emory ' 

7-14 



USING THE as ASSEMBLER 
Scratch Register Macros 

address), respectively. The macros _ISTREG, _2NDREG, _3RDREG, _4THREG, 
_STHREG, and _ 6THREG reference the six general-purpose registers, r8 through r3, 
respectively. The macro _RESULT references the register (typically rO) used by the C 
compiler to contain the value returned from a function. 

If these macros are used in a normal assembly language routine (for example, one that 
uses C PROLOGUE and C RETURN), they refer to the stack frame set up by - -
C_PROLOGUE. Note that C_PROLOGUE does not allocate any automatic storage. 

The C stack frame can also be accessed directly by the stack pointer register (SP, r 12), the 
frame pointer register (FP, r9), and the argument pointer register (AP, rIO). The function 
interface and stack frame macros track any changes in the calling sequence. If the SP, 
FP, or AP registers are used to get closer to the stack frame layout, code will no longer be 
insulated from the details of the stack frame, and may have to be rewritten later. 

Restrictions 

In effect, the argument and register macros independently follow the same algorithm used 
by the C compiler to allocate storage. Because there is no way for the macro processor to 
know about the real environment of the assembly function or calling function, the following 
restrictions must be considered when using these macros: 

• The use of argument and register macros is inherently machine-dependent; the macros 
cannot be recognized by processors not based on the assembler. 

• All arguments, up to and including the last argument referenced by the macros, must be 
ints or pointers. These macros do not deal with char, short, or struct arguments. 
Functions that return structures require a more complicated calling sequence that is not 
handled by this macro package. 

• For assembly language routines, any copying of arguments into registers must be done 
explicitly by the assembly code. 

• Macro usage is not checked during the compiling and assembling of programs. 
Therefore, an assembly language routine that incorrectly changes the value of FP will 
cause run-time errors rather than compile-time errors. 

7.4.2 Using Predefined Macros 

A normal assembly language routine is called from a C source program just like any other 
function. The routine can have arguments passed to it and it establishes its own 
environment on the stack. The file containing the assembly language source must have a 
name ending in .s. The .s tells the compiler (cc) to skip compilation and send the source 
directly to the assembler. 

Examples 

In the following example, a function named bump adds one to its argument and returns 
that result. 

C_PROLOGUE(bump) 

7-15 



USING THE as ASSEMBLER 
Examples 

movw _1STARG,%_RESULT 
addw2 &1,%_RESULT 

C RETURN 

If bump were called by the following C language routine 

mainO 
{ 

int i = 3; 
int j; 
j = bump(i); 

then j would have the value 4, while i remains unchanged. 

The next example gets two pointers as arguments and swaps the values pointed to: 

C_PROLOGUE(swap) 
movw _ISTARG,%_1STREG 
movw 0(%_1STREG),%_SCRI 
movw _2NDARG,%_2NDREG 
movw 0(% 2NDREG),% SCR2 
movw %_sCR2,0(%_1STREG) 
movw %_SCRI,0(%_2NDREG) 

C RETURN 

#1st arg is a pointer 
#get value pointed to 
#2nd arg is also a pointer 
#get its value 
#store 2nd args value 
#store 1st args value 

Suppose swap was called by the following program 

main() 
{ 

int i = 3; 
int j = -4; 
swap(&i,&j); 

then i would get the value -4 and j would get the value 3. A C language function to 
accomplish the same task is 

7-16 

swap(i,j) 
int *i, *j; 
{ 

register int temp; 
temp= *i; 



USING THE as ASSEMBLER 
M4 Reserved Words 

*i = *j; 
*j =temp; 

In the final example, assembly function chkster checks to see whether, after skipping the 
first character, a text string has a common prefix with the string "abcdef," using the 
function prefix. This is a contrived example that has no place in real code, but is 
presented to demonstrate how a C language function is called with the C _CALL macro. 

C _PROLOGUE (chkstr) 

addw3 &l,_1STARG,%_SCR1 #skip first character 
C_CALL(prefix, & string, %_SCRl) 

C RETURN 

.data 
string: 

.byte Ox61,0x62,0x63,0x64,0x65,0x66,0x0 

Note: The address of the format string must be passed to prefix and that the null byte 
terminating the string must be explicitly coded. Also, unlike some implementations, the cc 
compiler does not prepend an underscore before global names. Thus, prefix is used in 
assembly code, not _prefix. 

7.4.3 M4 Reserved Words 

Detailed discussion of the M4 processor can be found in the UNIX System User's Manual. 
A list of the M4 reserved words is: 

changecom if def shift 
changequote ifelse sin elude 
deer include subs tr 
define incr syscmd 
defn index sys val 
divert len traceoff 
divnum m4exit traceon 
dnl m4wrap translit 
dumpdef maketemp undefine 
errprint popdef undivert 
eval pushdef 

7-17 



7-18 



Chapter 8 

The 
dis 

Disassembler 



CHAPTER 8. THE dis DISASSEMBLER 

CONTENTS 

8. THE dis DISASSEMBLER ........... ,........................................................................... 8-1 
8.1 INVOKING THF;,DISASSEMBLER ..................... ; .............................................. 8-1 
8.2 DISASSEMBLY·: LISTING .................................................................................... ;· 8-2 
8.2.l Using th~. Disas~~inOiy Listing ............................ , .. ,, ............ , ............................ ;, ... 8-3 
8.3 ER.ROR ··MESS.AGES .... <~......................................................................................... 8~3 



THE dis DISASSEMBLER 
Invoking the Disassembler 

8. THE dis DISASSEMBLER 

The dis disassembler utility produces an assembly language listing for each object file 
specified as input. The listing has a two-column format; assembly language statements are 
in the right column and the corresponding hexadecimal object code and machine address of 
the code are in the left column. 

The disassembler produces a facsimile of the assembly language file that was assembled to 
produce a given object file. The dis provides a convenient method of obtaining a processor 
assembly language listing of C language source programs and for assembly language 
programs written in assembler code. 

8.1 INVOKING THE DISASSEMBLER 

To invoke the disassembler, enter the command line 

dis options files 

where options are chosen from Table 8-1 and files represents a list of object files. If no 
options are specified, all sections containing text are disassembled. 

Table 8-1. m32dis Command Line Options 

Option Argument Description 

-d section Disassembles the named section as data and prints 
the offset of the data from the beginning of the 
section. 

-da section Disassembles the named section as data and prints 
the actual address of the data. 

-F function Disassembles single named functions in each object 
file that is specified on the command line. 

-L None Invokes a lookup of C source labels in the symbol 
table for subsequent printing. 

-I string Disassembles the library file specified by string. 
For example, one would issue the command line 
dis -I x -l z to disassemble the libraries libx.a 
and libz.a. The libraries are assumed to be in the 
SGP lib directory. 

-o None Prints numbers in octal; without this option, default 
is hexadecimal. 

-s None Disassembler in symbolic format. 
-t section Disassembles the named section as text. 

-v None Prints the version number of the disassembler being 
executed. 

Note: Arguments are appended to options with no embedded blanks, except 
for the -I option. 

8-1 



THE dis DISASSEMBLER 
Disassembly Listing 

The -d option causes the named section of the object file to be disassembled as a data 
section. The object code and its address relative to the beginning of the section are listed. 
The dis makes no attempt to determine the corresponding assembly language statement. 
Addresses relative to the beginning of the named section are printed on the left side; object 
code bytes are printed on the right side, eight bytes per line. 

The -da option causes disassembly of the named section of the object file as a data section. 
The object code and its absolute addresses are listed. No attempt is made to determine the 
corresponding assembly language statement. 

If the -F option is used, only those named functions from each file will be disassembled. 

The -t option causes the named section of the object file to be disassembled as a text 
section. The listing consists of the object code, its machine address, and the assembly 
language statements that produced the code. For example, if the command line is 

dis -t section files 

then the bytes of that section of object code are assumed to be opcode and operand 
encodings. The opcodes are looked up in the opcode disassembly table and the operands 
are disassembled and printed. 

8.2 DISASSEMBLY LISTING 

This section gives an sample disassembly listing and describes how it is interpreted. Three 
features of the dis listing are: 

l. The disassembler prints line numbers for each C source line where a breakpoint can be 
set in square bracket (e.g., [5] shows the fifth source line where execution can be 
halted for debugging). The line numbers appear in the first column, on left hand side 
of the instruction corresponding to the line where a breakpoint can be inserted. 

2. The disassembler, if the -s option is specified, prints C function names followed by 
parentheses (e.g., printf() for the function printf). The function names appear in the 
first column, one line above the instruction that begins the function. 

3. The disassembler prints computed addresses within a section when control is to be 
transferred to those addresses. They are printed within triangular brackets (e.g., 
<40> is computed address 40). These addresses appear in the operand field of 
control transfer instructions following a relative displacement. The computed address 
is the sum of the relative displacement and the address of the instruction currently 
being disassembled. 

Note that items l and 2 occur only if the information exists in the object file (e.g., the 
code was compiled by cc with the -g option and the information was not removed by a 
utility or link editor option). 



8.2.l Using the Disassembly Listing 

(Information to be supplied.) 

8.3 ERROR MESSAGES 

THE dis DISASSEMBLER 
Error Messages 

Error messages are output when the disassembler encounters any misuse. The messages 
are intended to be self-explanatory. 

8-3 



8-4 



Chapter 9 

Op~rating 
, System 

Interface 



CHAPTER 9. OPERATING SYSTEM INTERFACE 

CONTENTS 

9. OPERA TING SYSTEM. INTERFACE ....... , ...................... : ... , .................................. 9-1 
9.1 F:EATURES OFTHE OPERATING SYSTEM ..................... : ............................. 9'-1 
9.1.l Memory Management Considerations for Virtual Memory Systems······'··········· 9-4 



OPERATING SYSTEM INTERFACE 
Features of the Operating System 

9. OPERATING SYSTEM INTERFACE 

The WE 32100 Microprocessor allows cost-effective design of operating systems by 
providing the system designer with special-:purpose operating system instructions and an 
architecture that supports process-oriented operating system design. In general, a process 
is a separately scheduled, independently executed unit of activity. It generally consists of 
routines (functions) that perform a major task (such as a program manager, a file 
manager, or a memory manager). To make full use of the power of the WE 32100 
Microprocessor as an execution vehicle for today's efficient process-oriented operating 
systems, this chapter presents the operating system considerations important to the system 
designer. 

The typical operating system for the WE 32100 Microprocessor schedules and initiates all 
processes, handles error conditions (exceptions to normal processing), provides system 
security, and resets the micr-0processor when appropriate. Processes are scheduled through 
common scheduling algorithms and are initiated through a process switch. A process 
switch is an explicit or implicit request that changes the process controlling the 
microprocessor. An explicit process switch is invoked by execution of one of the special 
operating system instructions. An implicit process switch occurs as a result of a reset 
request, some interrupt requests, or certain exception conditions. In theory, the 
microprocessor can handle an unlimited number of processes, but real limits are imposed 
by the operating system design (i.e., limiting the size of the interrupt stack). System 
security is enforced by the microprocessor and by the WE 32101 Memory Management 
Unit (MMU), an integral part of a virtual memory-based operating system using the 
WE 32100 Microprocessor. The microprocessor is reset by the operating system through a 
reset exception handler process. This handler should initialize the system hardware and 
reload the operating system. 

9.1 FEATURES OF THE OPERATING SYSTEM 

As part of its architecture, the microprocessor provides four execution or access levels for 
processes. This allows each process to have functions that operate at different levels to 
provide the proper levels of system protection. These levels range from the most privileged 
(level 0) to the least privileged (level 3). Through built-in microprocessor safeguards, the 
privilege level serves as a protection level. One of the functions of the MMU is to ensure 
that code and data in any particular level are accessed only by code or processes that have 
the right permissions. The four execution levels are defined as: 

• Kernel (level 0) - The most privileged level; it contains the operating system's most 
privileged services (e.g., device drivers and interrupt handlers). 

• Executive (level 1) - This level is provided for greater flexibility in the operating system 
design. 

• Supervisor (level 2) - Common library routines can operate at this level and be safe 
from corruption by the level 3 activities. 

• User (level 3) - The least privileged level; most user programs can run in this level. 

9-1 



OPERATING SYSTEM INTERFACE 
Features of the Operating System 

9-2 

Table 9-1 lists the powerful WE 32100 Microprocessor instructions provided for operating 
systems. These instruct10ns have two levels of hierarchy: privileged and nonprivileged. 
Privileged instructions may be executed only if the processor is in kernel level and they are 
used to perform process switches, to enable or disable the MMU, or to suspend fetching of 
instructions. Nonprivileged instructions do not depend on the execution level (i.e., they can 
be executed at any level) and are used to switch between execution levels (in ways 
restricted by the operating system) or to convert a virtual address to a physical address. 

The processor automatically executes the appropriate microsequence (a built-in sequence of 
actions), when an interrupt is requested or an exception occurs. These microsequences and 
many operating system instructions can call functions (also microsequences) that do the 
context switching (changing the hardware context for the new process to be executed). 
This feature takes the requirements of context switching out of the operating system, 
allowing for quicker and more efficient operating system design and execution. The 
operating system instructions and microsequences are described in the WE 32100 
Microprocessor Information Manuat 

Table 9-1. Operating System Instructions 

Privileged Instructions 

Instruction Assembly Hex Description 
Syntax Opcode 

Enable virtual ENBVJMP 300D Enables the MMU to translate addresses. 
pin and jump The virtual address of the first instruction to 

be executed after the MMU is enabled must 
be stored in register rO before this instruction 
is executed. 

Disable virtual DISVJMP 3013 Disables the MMU from translating 
pin and jump addresses. The physical address of the first 

instruction to be executed after the MMU is 
disabled must be stored in register rO before 
this instruction is executed. 

Call Process CALLPS 30AC Performs an explicit process switch. 
Return to process RETPS 30C8 Restores a process from an interrupted state. 
Wait for interrupt WAIT 2F Stops the CPU from fetching instructions. 

Fetching resumes after an interrupt is 
encountered. 

Interrupt INT ACK 302F Stores interrupt id in rO. 
Acknowledge 

Move translated MOVTR W src,dst oc The MMU converts the virtual address 
word specified by src to a physical address. The 

result is stored in dst. Can be used to obtain 
physical address to send to an 1/0 device. 



OPERATING SYSTEM INTERFACE 
Features of the Operating System 

Table 9-1. Operating System Instructions (Continued) 

Nonprivileged Instructions 

Instruction Assembly Hex Description 
Syntax Opcode 

Gate GATE 3061 Mechanism used to transfer control between 
different execution levels. 

Return from RETG 3045 Returns control to the function which called 
Gate the gate. Linear ordering of execution levels 

is enforced by RETG (i.e., new execution · · 
level may not be more privileged than the 
current level). 

Other features of the microprocessor's architecture that are provided for operating system 
design are summarized as follows: 

• The microprocessor supports different levels of execution privilege and enforces linear 
ordering of these levels only on a return-from-gate (RETG) instruction. 

• The microprocessor provides flexibility in transferring execution control between 
privilege levels. Control is transferred through the gate mechanism. 

• A scheduler may explicitly switch processes (CALLPS or RETPS instructions), but part 
of the interrupt structure and certain exception conditions involve implicit switching of 
processes. This provides some of the interrupt structure and some of the exception 
handler advantages of a process switch. 

• The processor supports a layered exception-handling structure that uses different 
mechanisms (process switching or gate mechanism), depending on the severity of t.he 
exception. 

• The processor supports full and quick interrupt handlers that use different mechanisms 
(process switching or gate mechanism). A full interrupt is handled as an implicit 
process switch, while a quick interrupt is handled as an implicit gate. · 

• Address space of each process may include the space that contains the operating system; 
i.e., the user may pass and address arguments across system calls efficiently, but need 
not switch memory map information across such calls. 

• The processor supports memory management, permitting users to believe the system has 
4 Gbytes of memory. However, the operating system must provide the information 
required by a memory management unit (MMU) to translate virtual addresses (i.e., 
memory descriptors) or disable the MMU for physical addressing. Systems without an 
MMU use only physical addressing. 

9-3 



j 

OPERATING SYSTEM INTERFACE 
Memory Management Considerations for Virtual Memory Systems 

l}-4 

9.1.1 Memory Management Considerations for Virtual Memory Systems 

A memory management unit (MMU) is required for virtual memory (storage) systems. 
The primary function of an MMU is to translate virtual address into physical addresses 
and implement the protection of each process' data. The features that support a virtual 
memory operating system are: 

.fO( ? 
• Support ffl contiguous segments and paged segments. Segments, or blocks of memory, 

are defined by memory descriptors. The WE 32101 Memory Management Unit uses 
segment descriptors to define contiguous segments (i.e., a block of memory defined up to 
128 Kbytes in length) and segment and page descriptors to define paged segments (i.e., a 
block of memory defined to contain up to sixty-four 2 Kbyte pages). 

• Present bits to indicate whether or not a segment is currently in main memory. 

• Referenced and modified bits to aid implementation of a least recently used (LRU) 
algorithm in the operating system. 

• An indirection feature that allows segments to be given different access permissions 
(e.g., read or write), yet still be shared by different routines running at the same 
execution level. 

• Access fields contained in segment descriptors are used to provide protection so that 
segments are accessed in the appropriate way by the appropriate execution level. An 
access exception is generated if access is disallowed. 

• An object-trap feature provides a mechanism where I/O devices or external processors 
appear as normal segments from the user-software point of view. 

• Segment marking as cacheable or not cacheable using a cacheable bit. This can be used 
to aid the use of an external data cache in the system main memory. 

• A unique exception~pa e-write) that can be issued on any attempt to write a given page. 
!!)~ e.. 

Detailed information perating System interface can be found in the WE 32100 
Microprocessor Information ManuaL 



Chapter 10 

Floating 
Point 

Support 



CHAPTER 10. FLOATING POINT SUPPORT 

CONTENTS 

10. FLOATING POINT SUPPORT ......................................................... , ................... 10~1 

10.l WE 32106 MATH ACCELERATION UNIT ASSEMBLY 
LANGUAGE INSTRUCTION SET ........................... ,.• ............................. ~...... 10-1 

10.1.1 Programmer's Overview of WE 32106 Math Acceleration Unit ................ , ..... . 
· MAU Register Support ......................................................... ; ... '. ......................... . 

Conditional Jump Instructions ........................................................................... . 
MAU Control Bits .................................................... · ... ~ ......... ; ............................. . 
Immediate Operands ........................................................................................... . 

10.1.2 Data Types ....................................................................... , ........ ; .... , ........ , .... ,.: .... . 
l 0. 1.3 MIS Instruction Listings ................................................. : ................................... . 

Notation ............................................................................ :; ........... :········ ...... , ........ . 
MIS Instruction Set Descriptions ................................................... , ...... , ........... . 
MIS Instructions Summary by Function ............................................ ., ............. . 
MIS Instructions Summary by Mnemonic ........................................................ . 

10.2 FLOATING POINT EMULATION LIBRARY ....................................... : ...... .. 
10.2.1 Assembly Language Support .................................................. : ........................... . 
10.2~2 Data Type ............•....... .-................................. , .............. , .. , .......... ,i .. •.·••••••••·•••••••••••• 

10.2.3 Floating Point Environment and Exception Handling., .. " .... ; ... ,.'. .. , .................... . 

10:2.4 ~~~=;:;~~~-i·~-~.~::: :: : : : :: ::: : : ::: :: : : ::: : : : : :::::: :: : : : : : : :: : : ::: : : : : ::: :: : :::::~: ::::;:::,::::::;:::: ::::: ::::::: ::. 
FPE Function Call Descriptions ......................................... , ............................... . 
FPE Function Call Summary By Function .. , ..................................................... . 
FPE Function Call Summary By Mnemonic ............... , .••.. : ....... ~~--~···· ................ . 

10-1 
10-1 
10-2 
10-2 
10-3 
10-3 
10-5 
10-5 
10-7 
10-56 
10-60 
10-63 
10-63 
10-63 
10-63 
10-67 
10-67 
10-67 
10-83 
10-84 



CHAPTER 10. FLOATING POINT SUPPORT 

CONTENTS 

10. FLOATING POINT SUPPORT ............................................................................. 10-1 
IO.I WE 32106 MATH ACCELERATION UNIT ASSEMBLY 

LANGUAGE INSTRUCTION SET ................................................................. 10-1 
10.1.l Programmer's Overview of WE 32106 Math Acceleration Unit ....................... 10-1 

MAU Register Support ............................................................................... ,........ 10-1 
Conditional Jump Instructions............................................................................ 10-2 
MAU Control Bits............................................................................................... 10-2 
Immediate Operands........................................................................................... 10-3 

10.1.2 Data Types........................................................................................................... 10-3 
10.1.3 MIS Instruction Listings...................................................................................... 10-5 

Notation............................................................................................................... l 0-5 
MIS Instruction Set Descriptions .. ... . . .... . .. .. .... . . .. ... ..... .. . ..... ..... .. ... .. .. ... . ...... .... ... l 0-7 
MIS Instructions Summary by Function ............................................. ,.............. 10-56 
MIS Instructions Summary by Mnemonic......................................................... 10-60 

10.2 FLOATING POINT EMULATION LIBRARY ................................................ 10-63 
10.2.1 Assembly Language Support............................................................................... 10-63 
10.2.2 Data Type............................................................................................................. 10-63 
l 0.2.3 Floating Point Environment and Exception Handling........................................ 10-63 
10.2.4 Library Listings.................................................................................................... 10-67 

Notation............................................................................................................... 10-67 
FPE Function Call Descriptions......................................................................... 10-67 
FPE Function Call Summary By Function........................................................ 10-83 
FPE Function Call Summary By Mnemonic ..................................................... 10-84 



10. FLOATING POINT SUPPORT 

FLOATING POINT SUPPORT 
MAU Register Support 

Support for floating point operations is provided by either the WE 32106 Math 
Acceleration Unit (MAU) Assembly Language Instruction Se~IS) or the Floating 
Point Emulation (FPE) Li~rary. Programmers using 3~2/3B I d 3Bl5 Computers that 
contain an MAU can use either the MIS or the FPE Library to allow programs to be 
compatible with all 3B2/3B5/and 3Bl5 Computers) when coding in assembly language, 
while programmers using computers which do not contain an MAU must use the FPE 
library. 10.1 describes the MIS and 10.2 describes the FPE library. 

10.1 WE 32106 MATH ACCELERATION UNIT ASSEMBLY LANGUAGE 
INSTRUCTION SET 

The following describes the WE 32106 Math Acceleration Unit assembly language 
instruction set that can be used with the 3B2/3B5/3Bl5 Computers. The MIS instruction 
set is an addition to the WE 32100 Microprocessor assembly language instruction set that 
frees the programmer from the task of generating the proper sequence of coprocessor 
instructions for the MAU to perform floating point operations. This section also discusses 
the data types used by the MIS instructions and contains an alphabetical one-page 
description of each MIS instruction. 

10.1.1 Programmer's Overview Of WE 32106 Math Acceleration Unit (MAU) 

This section describes the programming conventions used to support the MAU. Included 
in the discussion are: register usage, the immediate addressing mode notation, solutions for 
the problems of conditional jumps, a · od · etic. Floating point decimal 

-d~~'J)e,.-JH-ffiettSll~r:i"rettiJV1~ IEEE standard draft 1 is not supported by the 
assembler but library functions are pr support this data type. All of the data 
types which are supported by the MAU (i.e., all the floating point types, words, and 
decimal integer) are accessible through all of the addressing modes described in 
5. Addressing Modes, except the immediate (discussed later in this section). 

For a more detailed description of the MAU refer to the WE 32106 Math Acceleration 
Unit Data Sheet. 

MAU Register Support 

The MAU registers can contain only floating point data types (i.e., single, double, and 
double extended formats). Three out of the four MAU operand registers (numbers FO, Fl, 
and F2) are available to the programmer. The fourth operand register (F3) is reserved for 
the assembler to perform substitutions for operations that use two source operands in 
memory. In these cases, the assembler generates two coprocessor operations, one to store 
one of the operands in register F3 and the second to execute the operation. The assembler 
does not restrict the use of F3; but since this register is reserved, the programmer is 



FLOATING POINT SUPPORT 
Conditional Jump Instructions 

responsible for the consequences. Each MAU operand register has three names, one for 
each data type format: 

• % sO, % s l, % s2, and % s3 for single precision 

• %d0, %dl, %d2, and %d3 for double precision 

• % xO, % x 1, % x2, and % x3 for double extended precision. 

The 0, l, 2, and 3 correspond to the MAU operand registers FO, Fl, F2, and F3, 
respectively. 

The role of this notation is to indicate to the assembler what precision to round the register 
in case it is a destination and to supply type information in case it is a source operand. 
The assembler checks if the destination is narrower than the sources. If it is narrower, 
which is a violation of the IEEE standard draft 10, the instruction is replaced by an 
operation with the correct destination followed by conversion to the narrower destination as 
required by the IEEE standard. The fourth register is used for the intermediate result in 
this substitution. A default name for each register (%f0, %fl, %f2, and %f3) is also 
provided. The purpose of this notation is to eliminate the substitution. If i.t is used as a 
source operand, this operand does not participate in data type matching. If it is used as a 
destination, no substitution is done. The type for the rounding in this case is taken from 
the MIS instruction's opcode . 

. Conditional Jump Instructions 

The assembler supports a set of floating point conditional jump instructions that, together 
with the compare instructions, supplies the predicates required by the IEEE standard draft 
l 0. The assembler uses this set of jumps, based on the Auxiliary Status Register (ASR) 
flags in the MAU instead of the Processor Status Word (PSW) flags. For this purpose, 
the assembler reads the ASR into a word which is allocated on the stack. Although stack 
manipulations alter the PSW flags, corrupting the PSW flags does not affect the next 
floating point jump since this set uses only the ASR. The option -G used in the assembler 
command line substitutes the MIS jump instructions with the set of jump instructions 
which jump according to the contents of the PSW. This mode of operation of the 
assembler is referred to as PSW mode. If this option is taken, performance is improved 
and size is decreased since the access of the ASR is eliminated. However, the unordered 
condition is not detectable since the unordered bit of the ASR is not available in the PSW. 
Programmers who are willing to gain this performance, and relax the IEEE standard draft 
10 requirements for jumps, can use this option. 

MAU Control Bits 

The MAU contains control bits in the ASR (i.e., rounding control, trap masks, and context 
switch control). No special instructions are implemented for these bits and the bits are 
controlled by reading from the ASR and writing to it. The programmer, however, must be 
careful to change only the desired bits in the ASR. 



FLOATING POINT SUPPORT 
Data Types 

Immediate Operands 

Although immediate operands are not supported by the MAU/CPU, the assembler 
provides the immediate notation for all of the supported data types. This is done by storing 
these operands as constants in the data section at assembly time. This static storage 
allocation does not involve any penalty in execution speed. 

10.1.2 Data Types 

The floating point data types supported by the assembler are illustrated on Figure 10-1 and 
are defined as: 

single 

double 

A 32-bit quantity that may appear at any address in memory divisible by 
four. Its bits are numbered from right to left starting with 0, the least 
significant bit (LSB), and ending with 31, the most significant bit 
(MSB). Bit 31 is the sign bit (s), bits 23 through 30 represent the 
exponential component (e) biased by 127, and bits 0 through 22 represent 
the fractional component (f). The value (v) of a single precision floating 
point number is calculated as: 

a. If 0 < e < 255 then v = (-l)**s x 2**(e-127) x l.f 

b. If e = 0 and f;: 0 then v = (-l)**s x 2**(e-126) x O.f 

c. If e = 0 and f = 0 then v = 0 

d. If e = 255 and f = 0 then v = (-1) **s x infinity 

e. If e = 255 and f;: 0 then v =NaN 

Note that NaN means "Not-a-Number" (see 10.2.3). 

A 64-bit quantity that may appear at any address in memory divisible by 
four. Its bits are numbered from right to left starting with 0, the LSB, 
and ending with 63, the MSB. Bit 63 is the sign bit (s), bits 52 through 
62 represent the exponential component (e) biased by 1023, and bits 0 
through 51 represent the fractional component (f). The value ( v) of a 
double precision floating point number is calculated as: 

a. If 0 < e < 2047 then v = (-l)**s x 2**(e-1023) x 1.f 

b. If e = 0 and f;: 0 then v = (-l)**s x 2**(e-1022) x OJ 

c. If e = 0 and f = 0 then v = 0 

d. If e = 2047 and f = 0 then v = (-l)**s x infinity 

e. If e = 2047 and f;: 0 then v =NaN 

double extended An 96-bit quantity that may appear at any address in memory divisible 
by four. Its bits are numbered from right to left starting with 0, the 
LSB, and ending with 95, the MSB. Bit 80 through 95 are ignored when 
read, and zeros are written during a write. Bit 79 is the sign bit (s), bits 
64 through 78 represent the exponential component (e) biased by 16383, 



FLOATING POINT SUPPORT 
Data Types 

bit 63 represents the explicit bit (j), and bits 0 through 62 represent the 
fractional component (f). The value (v) of a double precision floating 
point number is calculated as: 

a. If 0 < e < 32767 then v = (-l)**s x 2**(e-16383) x j.f 

b. If e = 0 and f ;:C 0 then v = (-l)**s x 2**(e-16382) x j.f 

c. If e = 0 and f = 0 then v = 0 

d. If e = 32767 and f = 0 then v = (-l)**s x infinity 

e. If e = 32767 and f ¢ 0 then v = NaN 

Bit 

Field 

Bit 

Field 

Bit 

Field 

95 80 

31 30 23 

Sign Exponent 

A. Single Data 

63 62 52 

Sign Exponent 

B. J)ouble Data 

79 78 64 

22 0 

Fraction 

51 0 

Fraction 

63 

Unused Sign Exponent J 

C. Double Extended Data 

Figure 10~1. Bit Order of Data 

62 0 

Fraction 



FLOATING POINT SUPPORT 
Notation 

10.1.3 MIS Instruction Listings 

The following presents descriptions of each floating point instruction. The descriptions are 
in alphabetical order and any instruction that operates on more than one type of operand, 
single, double, or double extended, are listed on the same page (for quick reference to the 
instructions by function or mnemonic see MIS Instructions Summary By Function and MIS 
Instructions Summary By Mnemonic in this section). The notation used in the listings is 
described following. 

Notation 

Each instruction description contains four parts: format, operation, description, and 
condition indicators. 

Format. Presents the assembly language syntax for the instruction, including any required 
spacing and punctuation. The user-specified elements appear in italics. All operands must 
appear in the order shown. If an instruction has single, double, and double extended forms, 
all three forms are presented. 

The syntax uses the dst and src symbols to denote operands that may be written in the 
address modes described in Chapter 3 of the WE 32100 Microprocessor Information 
Manual. 

Operation. Describes the operation performed, generally, using C language syntax and the 
operators and symbols shown in Table 10-1. 

Description. Describes the operation performed. Also, any additional explanation is 
included where necessary. 

Result Types. Identifies the type of result that each can have upon completion of the 
performed operation. Table 10-2 lists the result types and their associated meanings. 

10-5 



FLOATING POINT SUPPORT 
Notation 

Table 10-1. Assembly Language Operators and Symbols 

Symbol Description 

lxl Absolute value of x 
-x Negate x; form two's complement of x 
x+y Addy to x 
x-y Subtract y from x 
x*y Multiply x by y 
x/y Divide y into x 
x%y Modulo x and y (remainder of x/y) 
x<y x less than y 
x<=y x less than or equal to y 
x>y x greater than y 
x>=y x greater than or equal to y 
x==y Equality; x equal to y 
x!=y x not equal to y 
= Assigns the value on the right to the location identified on the left 
address Address of memory location 
dst Destihation operand 
src Source operand 
CO MP ARE (x,y) Compare the contents of x and y 
CONVERT(x) Convert data type of x operation 
ROUND(x) Rounding of x operation 
PC Program counter 
SQR(x) Find square root of x operation 

10-6 



Table 10-2. 
Result Types 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 

FLOATING-NEGATIVE-NONZERO 

FLOATING-EQUAL 

FLOATING-LESS 
FLOATING-GREATER 
FLOATING-UNORDERED 

NEGATIVE 

POSITIVE 

ZERO 

MIS Instruction Set Descriptions 

FLOATING POINT SUPPORT 
MIS Instruction Set Descriptions 

Floating Point Result Types 
Description 

The result of an operation is +O. 

The result of an operation is -0. 
The result of an operation has a positive sign bit 
and is not zero. 
The result of an operation has a negative sign bit 
and is not zero. 
In a compare operation the two operands are 
equal. 
In a compare operation srcl is less than src2. 
In a compare operation srcl is greater than src2. 
In a compare operation srcl or src2 is a symbolic 
entity encoded in floating-point format and srcl 
and src2 are not equal. 
The result of an operation has a negative sign bit 
and is not a floating-point value. 
The result of an operation has a positive sign bit 
and is not a floating-point value. 
The result of an operation is zero and is not a 
floating-point value. 

The instruction_set is described in detail on the following pages. 



mfabssl 
mfabsdl 
mfabsxl 

mfabssl 
mfabsdl 
mfabsxl 

Floating Absolute Value One Operand 

Format 

Operation 

Description 

Result 
Types 

mfabssl dst 

~~t 
~·t 

dst = ldstl 

Single 
Double 
Double extended 

The absolute value of the contents of dst is taken and the floating point 
result is copied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-POSITIVE-NONZERO 



mfabss2 
mfabsd2 
mfabsx2 

mfabss2 
mfabsd2 
mfabsx2 

Floating Absolute Value Two Operands 

Format 

Operation 

Description 

Result 
Types 

mfabss2 src,dst 
mfabsd2 src,dst 
mfabsx2 s.rc,dst 

dst = lsrcl 

Single 
Double 
Double extended 

The absolute value of the contents of src is taken and the floating point 
result is copied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-POSITIVE-NONZERO 



mfadds2 
mfaddd2 
mfaddx2 

mfadds2 
mfaddd2 
mfaddx2 

Floating Add Two Operands 

Format 

Operation 

Description 

Result 
Types 

rnfadds2 src,dst 
rnfaddd2 src,dst 
rnfaddx2 src,dst 

dst = dst + src 

Single 
Double 
Double extended 

The contents of src are added to the contents of dst. The floating point 
result is copied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mfadds3 
mfaddd3 
mfaddx3 

mfadds3 
mfaddd3 
mfaddx3 

Floating Add Three Operands 

Format 

Operation 

Description 

Result 
Types 

mfadds3 srcl ,src2,dst 
mfaddd3 srcl ,src2,dst 
mfaddx3 srcl ,src2,dst 

dst = srcl + src2 

Single 
Double 
Double extended 

The contents of src2 are added to the contents of srcl. The floating 
point result is copied into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 

10-11 



mfcmps 

~ 
Floating Compare 

Format 

Operation 

Description 

Result 
Types 

10-12 

mfcmps srcl ,src2 Single 
~~1,src2 Double 
~cl ,src2 Double extended 

CO MP ARE (src l ,src2) 

mfcmps 

~ 

The contents of srcl and src2 are compared and appropriate condition 
indicators are set. This instruction is used prior to a branch or jump 
instruction. 

FLOATING-EQUAL 
FLOATING-LESS 
FLOATING-GREATER 
FLOATING-UNORDERED 



mfcmpts 
mfcmptd 
mfcmptx 

mfcmpts 
mfcmptd 
mfcmptx 

Floating Compare With Trap Operation 

Format 

Operation 

Description 

Result 
Types 

mf empts srcl ,src2 
mfcmptd srcl ,src2 
mfcmptx srcl ,src2 

Single 
Double 
Double extended 

CO MP ARE (src l ,src2) 

The contents of srcl and src2 are compared and appropriate condition 
indicators are set. This instruction is used prior to a branch or jump 
instruction. 

When an unordered condition is detected, and the invalid operation 
exception is enabled, an invalid operation trap occurs. 

FLOATING-EQUAL 
FLOATING-LESS 
FLOATING-GREATER 
FLOATING-UNORDERED 

10-13 



mfdivs2 
mfdivd2 
mfdivx2 

mfdivs2 
mfdivd2 
mfdivx2 

Floating Divide Two Operands 

Format 

Operation 

Description 

Result 
Types 

10-14 

mfdivs2 src,dst 
mfdivd2 src,dst 
mfdivx2 src,dst 

dst = dst I src 

Single 
Double 
Double extended 

The contents of dst are divided by the contents of src. The floating 
point result is copied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mfdivs3 
mfdivd3 
mfdivx3 

mfdivs3 
mfdivd3 
mfdivx3 

Floating Divide Three Operands 

Format 

Operation 

Description 

Result 
Types 

tnfdivs3 srcl,src2,dst 
tnfdivd3 srcl ,src2,dst 
tnf divx3 srcl ,src2,dst 

dst = src2 I src 1 

Single 
Double 
Double extended 

The contents of src2 are divided by the contents of srcl. The floating 
point result is copied into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 

10~15 



mfmuls2 
mfmuld2 
mfmulx2 

mfmuls2 
mfmuld2 
mfmulx2 

Floating Multiply Two Operands 

Format 

Operation 

Description 

Result 
Types 

10-16 

mfmuls2 src,dst 
mfmuld2 src,dst 
mfmulx2 src,dst 

dst = dst * src 

Single 
Double 
Double extended 

The contents of dst are multiplied by the contents of src. The floating 
point result is copied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mfmuls3 
mfmuld3 
mfmulx3 

mfmuls3 
mfmuld3 
mfmulx3 

Floating Multiply Three Operands 

Format 

Operation 

Description 

Result 
Types 

mfmuls3 srcl ,src2,dst 
mfmuld3 srcl ,src2,dst 
mfmulx3 srcl ,src2,dst 

dst = src 1 * src2 

Single 
Double 
Double extended 

The contents of srcl are multiplied by the contents of src2. The 
floating point result is copied into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIV~-NONZERO 

FLOATING-NEGATIVE-NONZERO 

10-17 



mfnegsl 
mfnegdl 
mfnegxl 

mfnegsl 
mfnegdl 
mfnegxl 

Floating Negate One Operand 

Format 

Operation 

Description 

Result 
Types 

mfnegsl dst 
mfnegdl dst 
mfnegxl dst 

dst = -dst 

Single 
Double 
Double extended 

T e two's complement valu of the contents of dst is taken and the 
oint result · ied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mfnegs2 
mfnegd2 
mfnegx2 

mfnegs2 
mfnegd2 
mfnegx2 

Floating Negate Two Operands 

Format 

Operation 

Description 

Result 
Types 

mfnegs2 src,dst 
mfnegd2 src,dst 
mfnegx2 src,dst 

dst = -src 

Single 
Double 
Double extended 

e of the contents of src is taken and the floating point 
back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mf rems2 
mfremd2 
mfremx2 

mfrems2 
mfremd2 
mfremx2 

Floating Remainder Divide Two Operands 

Format 

Operation 

Description 

Result 
Types 

10-20 

mfrems2 src,dst 
mfremd2 src,dst 
mfremx2 src,dst 

dst = dst % src 

Single 
Double 
Double extended 

The contents of dst are divided by the contents of src. The floating 
point remainder result is copied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mfrems3 
mfremd3 
mfr.emx3 

mfrems3 
mfremd3 
mfremx3 

Floating Remainder Divide Three Operands 

Format 

Operation 

Description 

Result 
Types 

mfrems3 srcl ,src2,dst 
mfremd3 srcl ,src2,dst 
mfremx3 srcl ,src2,dst 

dst = src2 % src 1 

Single 
Double 
Double extended 

The contents of src2 are divided by the contents of srcl. The floating 
point remainder result is copied into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 

10-21 



mfrndsl 
mfrnddl 
mfrndxl 

mfrndsl 
mfrnddl 
mfrndx1 

Floating Round to Integral Value One Operand 

Format 

Operation 

Description 

Result 
Types 

10-22 

mfrndsl dst 
mfrnddl dst 

Single 
Double 

mfrndxl dst Double extended 

dst = ROUND(dst) 

The contents of dst are rounded to an integral value in floating-point 
format and the result is copied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mfrnds2 
mfrndd2 
mfrndx2 

mfrnds2 
mfrnddl 
mfrndx2 

Floating Round to Integral Value Two Operands 

Format 

Operation 

Description 

Result 
Types 

mfrnds2 src,dst 
mfrndd2 src,dst 
mfrndx2 src,dst 

Single 
Double 
Double extended 

dst = ROUND(src) 

The contents of src are rounded to ;in integral value and the result is 
copied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 

10-23 



mfsqrsl 
mfsqrdl 
mfsqrxl 

mfsqrsl 
mfsqrdl 
mfsqrxl 

Floating Square Root One Operand 

Format 

Operation 

Description 

Result 
Types 

10-24 

mfsqrsl dst 
mfsqrdl dst 
mfsqrxl dst 

Single 
Double 
Double extended 

dst = SQR(dst) 

The square root of the contents of dst is taken and the floating point 
result is copied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mfsqrs2 
mfsqrd2 
mfsqrx2 

mfsqrs2 
mfsqrd2 
mfsqrx2 

Floating Square Root Two Operands 

Format 

Operation 

Description 

Result 
Types 

mfsqrs2 src,dst 
mfsqrd2 src,dst 
mfsqrx2 src,dst 

dst = SQR(src) 

Single 
Double 
Double extended 

The square root of the contents of src is taken and the floating point 
result is copied into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-NEGATIVE-NONZERO 

10-25 



mfsubs2 
mfsubd2 
mfsubx2 

mfsubs2 
mfsubd2 
mfsubx2 

Floating Subtract Two Operands 

Format 

Operation 

Description 

Result 
Types 

10-26 

mfsubs2 src,dst 
mfsubd.2 src,dst 
mfsubx2 src,dst 

dst = dst - src 

Single 
Double 
Double extended 

The contents of src are subtracted from the contents of dst. The 
floating point result is copied back into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mfsubs3 
mfsubd3 
mfsubx3 

mfsubs3 
mfsubd3 
mfsubx3 

Floating Subtract Three Operands 

Format 

Operation 

Description 

Result 
Types 

mfsubs3 srcl ,src2,dst 
mfsubd3 srcl ,src2,dst 
mfsubx3 srcl ,src2,dst 

dst = src2 - srcl 

Single 
Double 
Double extended 

The contents of srcl are subtracted from the contents of src2. The 
floating point result is copied into the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 

10-27 



mjfcc 

Floating Conditional Jumps 

Format 

Operation 

10-28 

Arithmetic Jump Operations 

mjfneg dst Negative 
mjfnz dst Not Zero 
mjfpos dst Positive 
mjf z dst Zero 

Comparison Jump Operations 

mjfe dst Equal 
mjfg dst Greater Than 
mjfge dst Greater Than or Equal 
mjfl dst Less Than 
mjfle dst Less Than or Equal 
mjfne dst Not Equal 
mjfng dst Not Greater Than 
mjfnge dst Not Greater Than or Equal 
mjfnl ,dst Not Less Than 
mjfnle dst Not Less Than or Equal 
mjfo dst Ordered 
mjfu dst Unordered 

Floating Point Exceptions 

mjfde dst Divide-by-zero Exception 
mjfexc dst Exception 
mjfimp dst Imprecise 
mjfio dst Integer Overflow 
mjfioe dst Invalid Operation Exception 
mjfoe dst Overflow Exception 
mjfue dst Underflow Exception 

if (condition) PC = dst 

mjfcc 



mjfcc 

Description 

mjfcc 

When the PSW mode is not used, all jump instructions use the ASR to 
test the associated condition. If the condition tested is met, then the PC 
is replaced with the value specified by dst. In the PSW mode, the jump 
instructions use the PSW to check conditions. Also, some jump 
instructions are interpreted differently when assemblying in the PSW 
mode. These differences are noted in the following description. 

Arithmetic jump operations. ·These operations are executed only after a 
floating point arithmetic operation or after one of the move or 
conversion operations. The conditions for these instructions are related 
to the result as stored. in the destination. If the result is a NaN, as the 
result of an invalid 6peration, the jump is arbitrary. 

Comparison jump operations. These operations are executed only after 
a floating point compare operation. Greater/less than means the first 
operand appearing in the compare instruction is greater/less than the 
second operand in the compare instruction. 

In the PSW mode, the conditions NL, NLE, NG, and NGE are 
interpreted as GE, G, LE, and L respectively. The instruction, mjfu, is 
executed as a NOP, and mjfo is executed as an unconditional jump 
instruction. The rest of these instructions jump correctly if the operands 
are ordered but jump arbitrarily if the operands are unordered. 

Floating point exceptions. When assembling a program in PSW mode, 
only the mjfio and mjfimp conditions are interpreted correctly, jump 
instructions with the other conditions are executed as NOPs. 



mmovlOd mmovlOd 

Move Decimal Integer to Double 

Format 

Operation 

Description 

Result 
Types 

10-30 

mmovlOd src,dst 

dst = CONVERT(src) 

The contents of src are converted to a double floating point data type 
and that result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mmovlOs mmovlOs 

Move Decimal Integer to Single 

Format 

Operation 

Description 

Result 
Types 

mmovlOs src,dst 

dst = CONVERT(src) 

The contents of src are converted to single floating point type and that 
result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mmovlOx mmovlOx 

Move Decimal Integer to Double Extended 

Format 

Operation 

Description 

Result 
Types 

10-32 

mmovlOx src,dst 

dst = CONVERT(src) 

The contents of src are converted to a double extended floating point 
data type and that result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mmovdlO mmovdlO 

Move Double to Decimal Integer 

Format 

Operation 

Description 

Result 
Types 

mmovd 10 src,dst 

. dst = CONVERT(src) 

The contents of src are converted to decimal integer type and that result 
is stored in the location specified by dst. dst cannot be a MAU 
register. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 

10~33 



mmovds 

Move Double to Single 

Format 

Operation 

Description 

Result 
Types 

10-34 

mmovds 

mmovds src,dst 

dst = CONVERT(src) 

The contents of src are converted to a single floating point data type 
and that result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mmovdu mmovdu 

Move Double to Binary Unsigned Word Integer 

Format 

Operation 

Description 

Result 
Types 

mmovdu src,dst 

dst = CONVERT(src) 

The contents of src are converted to a unsigned word integer data type 
and that result is stored in the location specified by dst. dst cannot be a 
MAU register. This instruction cannot be used with floating-point 
conditional jumps. 

ZERO 
POSITIVE 



mmovdw mmovdw 

Move Double to Binary Signed Word Integer 

Format 

Operation 

Description 

Result 
Types 

10-36 

mmovdw src,dst 

dst = CONVERT(src) 

The contents of src are converted to a signed word integer data type and 
that result is stored in the location specified by dst. dst cannot be a 
MAU register. 

ZERO 
POSITIVE 
NEGATIVE 



mmovdx mmovdx 

Move Double to Double Extended 

Format 

Operation 

Description 

Result 
Types 

mmovdx src,dst 

dst = CONVERT(src) 

The contents of src are converted to a double extended floating point 
data type and that result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 

10-37 



mmovfa 
mmovfd 

mmovfa 
mmovfd 

Move MAU Register to Memory 

Format 

Operation 

Description 

10-38 

mmovfa address Move to ASR register 
mmovfd address Move to data register 

address = register 

The contents of the specified MAU register are copied into the memory 
location specified by address. The memory operand is always a word 
data type. 



mmovslO mmovslO 

Move Single to Decimal Integer 

Format 

Operation 

Description 

Result 
Types 

mmovslO src,dst 

dst = CONVERT(src) 

The contents of src are converted to decimal integer type and that result 
is stored in the location specified by dst. dst cannot be a MAU 
register. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 

10-39 



mmovsu mmovsu 

Move Single to Binary Unsigned Word Integer 

Format 

Operation 

Description 

Result 
Types 

mmovsu src,dst 

dst = CONVERT(src) 

The contents of src are converted to a unsigned word integer data type 
and that result is stored in the location specified by dst. dst cannot be a 
MAU register. 

ZERO 
POSITIVE 



mmovsw mmovsw 

Move Single to Binary Signed Word Integer 

Format 

Operation 

Description 

Result 
Types 

10-42 

mmovsw src,dst 

dst = CONVERT(src) 

The contents of src are converted to a signed word integer data type and 
that result is stored in the location specified by dst. dst cannot be an 
MAU register. 

ZERO 
POSITIVE 
NEGATIVE 



mmovsx mmovsx 

Move Single to Double Extended 

Format 

Operation 

Description 

Result 
Types 

mmovsx src,dst 

dst = CONVERT(src) 

The contents of src are converted to a double extended floating point 
data type and that result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mmovta 
mmovtd 

mmovta 
mmovtd 

Move Memory to MAU Register 

Format 

Operation 

Description 

mmovta address Move to ASR register 
mmovtd address Move to data register 

register = address 

The contents of the memory location specified by address are copied 
into the specified MAU register. The memory operand is always a 
word data type. 



mmovud mmovud 

Move Binary Unsigned Word Integer to Double 

Format 

Operation 

Description 

Result 
Types 

mmovud src,dst 

dst = CONVERT(src) 

The contents of src are converted to a double floating point data type 
and that result is stored in the location specified by dst. src cannot be a 
MAU register. 

FLOATING-POSITIVE-ZERO 
FLOATING-POSITIVE-NONZERO 



mmovus mmovus 

Move Binary Unsigned Word Integer to Single 

Format 

Operation 

Description 

Result 
Types 

10-46 

mmovus src,dst 

dst = CONVERT(src) 

The contents of src are converted to a floating single data type and that 
result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-POSITIVE-NONZERO 



mmovux mmovux 

Move Binary Unsigned Word Integer to Double Extended 

Format 

Operation 

Description 

Result 
Types 

mmovux src,dst 

dst = CONVERT(src) 

The contents of src are converted to a double extended floating point 
data type and that result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mmovwd mmovwd 

Move Binary Signed Word Integer to Double 

Format 

Operation 

Description 

Result 
Types 

mmovwd src,dst 

dst = CONVERT(src) 

The contents of src are converted to a double floating point data type 
and that result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mmovws mmovws 

Move Binary Signed Word Integer to Single 

Format 

Operation 

Description 

Result 
Types 

mmovws src,dst 

dst = CONVERT(src) 

The contents of src are converted to a single floating point data type 
and that result is stored in the location specified by dst. 

ZERO 
POSITIVE 
NEGATIVE 



mmovwx mmovwx 

Move Binary Signed Word Integer to Double Extended 

Format 

Operation 

Description 

Result 
Types 

10-50 

mmovwx src,dst 

dst = CONVERT(src) 

The contents of src are converted to a double extended floating point 
data type and that result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mmovxlO mmovxlO 

Move Double Extended to Decimal Integer 

Format 

Operation 

Description 

Result 
Types 

mmovxlO src,dst 

dst = CONVERT(src) 

The contents of src are converted to decimal integer type and that result 
is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mmovxd mmovxd 

Move Double Extended to Double 

Format 

Operation 

Description 

Result 
Types 

10-52 

mmovxd src,dst 

dst = CONVERT(src) 

The contents of src are converted to a double floating point data type 
and that result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 



mmovxs mmovxs 

Move Double Extended to Single 

Format 

Operation 

Description 

Result 
Types 

mmovxs src,dst 

dst = CONVERT(src) 

The contents of src are converted to a single floating point data type 
and that result is stored in the location specified by dst. 

FLOATING-POSITIVE-ZERO 
FLOATING-NEGATIVE-ZERO 
FLOATING-POSITIVE-NONZERO 
FLOATING-NEGATIVE-NONZERO 

10-53 



mmovxu mmovxu 

Move Double Extended to Binary Unsigned Word Integer 

Format 

Operation 

Description 

Result 
Types 

10-54 

mmovxu src,dst 

dst = CONVERT (src) 

The contents of src are converted to a unsigned word integer data type 
and that result is stored in the location specified by dst. 

ZERO 
POSITIVE 



mmovxw mmovxw 

Move Double Extended to Binary Signed Word Integer 

Format 

Operation 

Description 

Result 
Types 

mmovxw src,dst 

dst = CONVERT(src) 

The contents of src are converted to a signed word integer data type and 
that result is stored in the location specified by dst. 

ZERO 
POSITIVE 
NEGATIVE 



~'LUATlNfJ PUlNT :SlJPPUKl 
MIS Instructions Summary by Function 

MIS Instructions Summary by Function 

Table 10-3. MIS Instructions Summary by Function 

Mnemonic Name 

Data Transfer Instructions 

Move: 
mmovlOd Move decimal to double 
mmovlOs Move decimal to single 
mmovlOx Move decimal to double extended 

mmovdlO Move double to decimal 
mmovds Move double to single 
mmovdu Move double to unsigned word 
mmovdw Move double to signed word 
mmovdx Move double to double extended 

mmovslO Move single to decimal 
mmovsd Move single to double 
mmovsu Move single to unsigned word 
mmovsw Move single to signed word 
mmovsx Move single to double extended 
mmovud Move unsigned word to double 
mmovus Move unsigned word to single 
mmovux Move unsigned word to double extended 
mmovwd Move signed word to double 
mmovws Move signed word to single 
mmovwx Move signed word to double extended 
mmovxlO Move double extended to decimal 
mmovxd Move double extended to double 
mmovxs Move double extended to single 
mmovxu Move double extended to unsigned word 
mmovxw Move double extended to signed word 
mmovfa Move MAU's ASR register to memory 
mmovfd Move MAU's Data register to memory 
mmovta Move memory to MAU's ASR register 
mmovtd Move memory to MAU's Data register 

10-56 



FLOATING POINT SUPPORT 
MIS Instructions Summary by Function 

Table 10-3. MIS Instructions Summary by Function (Continued) 

Mnemonic Name 
Arithmetic Instructions 

Add: 
mfaddd2 Add double, two operands 
mfadds2 Add single, two operands 
mfaddx2 Add double extended, two operands 

mfaddd3 Add double, three operands 
mfadds3 Add single, three operands 
mfaddx3 Add double extended, three operands 
Subtract: 
mfsubd2 Subtract double, two operands 
mfsubs2 Subtract single, two operands 
mfsubx2 Subtract double extended, two operands 

mfsubd3 Subtract double, three operands 
mfsubs3 Subtract single, three operands 
mfsubx3 Subtract double extended, three operands 
Multiply: 
mfmuld2 Multiply double, two operands 
mfmuls2 Multiply single, two operands 
mfmulx2 Multiply double extended, two operands 
mfmuld3 Multiply double, three operands 
mfmuls3 Multiply single, three operands 
mfmulx3 Multiply double extended, three operands 
Divide: 
mfdivd2 Divide double, two operands 
mfdivs2 Divide single, two operands 
mfdivx2 Divide double extended, two operands 
mfdivd3 Divide double, three operands 
mfdivs3 Divide single, three operands 
mfdivx3 Divide double extended, three operands 
Remainder Divide: 
mfremd2 Remainder divide double, two operands 
mfrems2 Remainder divide single, two operands 
mfremx2 Remainder divide double extended, two operands 
mfremd3 Remainder divide double, three operands 
mfrems3 Remainder divide single, three operands 
mfremx3 Remainder divide double extended, three operands 



FLOATING POINT SUPPORT 
MIS Instructions Summary by Function 

Table 10-3. MIS Instructions Summary by Function (Continued) 

Mnemonic Name 

Negate: 
mfnegdl Negate double, one operand 
mfnegsl Negate single, one operand 
mfnegxl Negate double extended, one operand 

mfnegd2 Negate double, two operands 
mfnegs2 Negate single, two operands 
mfnegx2 Negate double extended, two operands 

Round: 
mfrnddl Round double, one operand 
mfrndsl Round single, one operand 
mfrndxl Round double extended, one operand 
mfrndd2 Round double, two operands 
mfrnds2 Round single, two operands 
mfrndx2 Round double extended, two operands 
Square Root: 
mfsqrdl Square root double, one operand 
mfsqrsl Square root single, one operand 
mfsqrxl Square root double extended, one operand 
mfsqrd2 Square root double, two operands 
mf sqrs2 Square root single, two operands 
mfsqrx2 Square root double extended, two operands 

Logical Instructions 
Compare: 
mfcmpd Compare double 
mfcmps Compare single 
mfcmpx Compare double extended 
mfcmptd Compare double with trap operation 
mfcmpts Compare single with trap operation 
mfcmptx Compare double extended with trap operation 

10-58 



FLOATING POINT SUPPORT 
MIS Instructions Summary by Function 

Table 10-3. MIS Instructions Summary by Function (Continued) 

Mnemonic Name 
Control Transfer Instructions 

mjfde Jump if divide-by-zero exception 
mjfe Jump if equal 
mjfexp Jump if exception 
mjfg Jump if greater than 
mjfge Jump if greater than or equal 
mjimp Jump if imprecise 
mjfio Jump if integer overflow 
mjfioe Jump if invalid operation exception 
mjfl Jump if less than 
mjfle Jump if less than or equal 
mjfne Jump if not equal 
mjfneg Jump if negative 
mjfng Jump if not greater than 
mjfnge Jump if not greater than or equal 
mjfnl Jump if not less than 
mjfnle Jump if not less than or equal 
mjfnz Jump if not zero 
mjfo Jump if ordered 
mjfoe Jump if overflow exception 
mjfpos Jump if positive 
mjfu Jump if unordered 
mjfue Jump if underflow exception 
mjfz Jump if zero 

10-59 



FLOA flNG POINT SUPPORT 
MIS Instmctions Summary by Mnemonic 

MIS fostructions Summary lhy Mnemonic 

Table 10~4. MIS Instrnctions Summary 'by Mnemonic 

Mnemonk Name 

mfabsdl Absolute value double, one operand 
mfabsd2 Absolute value doubk, two operands 
mfabssl Absolute value single, one operand 
mfabss2 Absolute value singk, two operands 
mfabsxl Absolute value double extended, one operand 
mfabsx2 Absolute value double extended, two operands 

mfaddd2 Add double, two operands 
mfaddd3 Add double, three operands 
mfadds2 Add single, two operands 
mfadds3 Add single, three operands 
mfaddx2 Add double extended, two operands 
mfaddx3 Add double extended, three operands 

mfcmpd Compare double 
mfcmps Compare single 
mfcmptd Compare double with trap operation 
mfcmpts Compare single with trap operation 
mfcmptx Compare double extended with trap operation 
mfcmpx Compare double extended 

mfdivd2 Divide double, two operands 
mfdivd3 Divide double, three operands 
mfdivs2 Divide single, two operands 
mfdivs3 Divide single, three operands 
mfdivx2 Divide double extended, two operands 
mfdivx3 Divide double extended, three operands 
mfmuJd2 Multiply double, two operands 
mf muld3 Multiply double, three operands 
mfmuls2 Multiply single, two operands 
mfmuls3 Multiply single, three operands 
mfmulx2 Multiply double extended, two operands 
mfmulx3 Multiply double extended, three operands 
mfnegdl Negate double, one operand 
mfnegd2 Negate double, two operands 
mfnegsl Negate single, one operand 
mfnegs2 Negate single, two operands 
mfnegxl Negate double extended, one operand 
mfnegx2 Negate double extended, two operands 



FWATING POINT SUPPORT 
MIS Instructions Summary by Mnemonic 

Table 10-4. MIS Instructions Summary by Mnemonic (Continued) 
Mnemonic Name 

mfremd2 Remainder divide double, two operands 
mfremd3 Remainder divide double, three operands 
mfrems2 Remainder divide single, two operands 
mfrems3 Remainder divide single, three operands 
mfremx2 Remainder divide double extended, two operands 
mfremx3 Remainder divide double extended, three operands 
mfrnddl Round double, one operand 
mfrndd2 Round double, two operands 
mfrndsl Round single, one operand 
mfrnds2 Round single, two operands 
mfrndxl Round double extended, one operand 
mfrndx2 Round double extended, two operands 

mfsqrdl Square root double, one operand 
mfsqrd2 Square root double, two operands 
mfsqrsl Square root single, one operand 
mfsqrs2 Square root single, two operands 
mfsqrxl Square root double extended, one operand 
mfsqrx2 Square root double extended, two operands 
mfsubd2 Subtract double, two operands 
mfsubd3 Subtract double, three operands 
mfsubs2 Subtract single, two operands 
mfsubs3 Subtract single, three operands 
mfsubx2 Subtract double extended, two operands 
mfsubx3 Subtract double extended, three operands 
mjfde Jump if divide-by-zero exception 
mjfe Jump if equal 
mjfexp Jump if exception 
mjf g Jump if greater than 
mjfge Jump if greater than or equal 
mjfimp Jump if imprecise 
mjfio Jump if integer overflow 
mjfioe Jump if invalid operation exception 
mjfl Jump if less than 
mjfle Jump if less than or equal 
mjfne Jump if not equal 
mjfneg Jump if negative 
mjfng Jump if not greater than 
mjfnge Jump if not greater than or equal 
mjfnl Jump if not less than 



FLOATING POINT SUPPORT 
MIS Instructions Summary by Mnemonic 

Table 10-4. MIS Instructions Summary by Mnemonic (Continued) 

Mnemonic Name 

mjfnle Jump if not less than or equal 
mjfnz Jump if not zero 
mjfo Jump if ordered 
mjfoe Jump if overflow exception 

mjfpos Jump if positive 
mjfu Jump if unordered 
mjfue Jump if underflow exception 
mjf z Jump if zero 

mmovlOd Move decimal to double 
mmovlOs Move decimal to single 
mmovlOx Move decimal to double extended 

mmovdlO Move double to decimal 
mmovds Move double to single 
mmovdu Move double to unsigned word 
mmovdw Move double to signed word 
mmovdx Move double to double extended 

mmovfa Move MAU's ASR register to memory 
mmovfd Move MAU's Data register to memory 
mmovslO Move single to decimal 
mmovsd Move single to double 
mmovsu Move single to unsigned word 
mmovsw Move single to signed word 
mmovsx Move single to double extended 
mmovta Move memory to MAU's ASR register 
mmovtd Move memory to MAU's Data register 
mmovud Move unsigned word to double 
mmovus Move unsigned word to single 
mmovux Move unsigned word to double extended 
mmovwd Move signed word to double 
mmovws Move signed word to single 
mmovwx Move signed word to double extended 
mmovxlO Move double extended to decimal 
mmovxd Move double extended to double 
mmovxs Move double extended to single 
mmovxu Move double extended to unsigned word 
mmovxw Move double extended to signed word 

10-62 



FLOATING POINT SUPPORT 
Floating Point Environment and Exception Handling 

10.2 FLOATING POINT EMULATION LIBRARY 

The following describes the available floating point emulation (FPE) library that can be 
used with the assembler (as). The library must be used with 3B Computers which do not 
contain a WE 32106 Math Acceleration Unit. The FPE library can be used with 
computers containing a MAU, but for improved performance, the MIS instructions should 
be used. 

The library contains a collection of functions accessible to the compiler (cc) or the 
assembler (as) and provides floating point primitives (e.g., addition, multiplication) and 
conversion between different data formats as defined by the IEEE standards. In addition, 
routines are provided to examine and set the rounding mode, to provide information in case 
of floating point exceptions, and to change the behavior of floating point exceptions. 

In addition, this section discusses the data types used by the FPE library and provides 
descriptions of each FPE library routine in alphabetical order. 

10.2.1 Assembly Language Support 

Support of floating point operations for assembly language is also provided by the library 
libc.a. To gain access to the floating point library from an assembly language program, 
the programmer must first assemble the program into an object module (i.e., a .o file). 
Next, the prog~a mer uses the compiler (cc) to automatically link the required floating 
point function ff "be.a as follows: 

? 11[' I) 

f.l -tvV\ "f (t> M cc l e.o · J 

where file.o is the relot:atable .o file which defines the integral valued function main 0 as 
the entry point of user code. This links in the required c~floating point startup, 
emulation routines, and if needed, the fault handling rffirti~e0 P 1 rl. ? 

-1'" c ( "C'f-'. () ' 

10.2.2 Data Type 

The floating point data types supported by the FPE library are single and double as 
described in 10.1.2 Data Types. ' 

10.2.3 Floating Point Environment and Exception Handling 

The floating point subsystem is based on the IEEE floating point standard. In this format, 
the largest and the smallest representable magnitudes are (as defined in the header file 
values.b): 

#define MAXDOUBLE 
#define MAXFLOA T 
#define MINDOUBLE 
#define MINFLOA T 

l.79769313486231470e+308 
((float) 3.40282345538538860e+38) 
4.9406564584 l 2465544e-324 
((float) 1.40129846432481707e-45) 

10-63 



FLOATING POINT SUPPORT 
Floating Point Environment and Exception Handling 

Most programmers of the C language need not be concerned with the details of the floating 
point environment. If programmers do nothing special to handle floating point exceptions 
everything will work fine and if floating point traps occur (e.g., if the program tries to do a 
divide by zero), the program will core dump with a SIGFP~The rest of this section 
discusses more details of the floating point environment and x;eption handling. 

') IGIJAL." 

A new header file ieeefp.h has been added which defines the interface for the floating point 
exception and environment control. This header defines three interfaces: 

• Rounding control 

• Exception control 

• Exception handling 

The floating point arithmetic provides four rounding modes, which affect the result of most 
floating point operations. These modes are also defined in the header ieeefp.h. 

typedef enum 
FP_RN = 0, 
FP_RP = 1, 
FP_RM = 2, 
FP RZ = 3 

} fp_r~d; 

fp_rnd { 
I* round to nearest representable number, tie - > even *I 
!* round toward plus infinity *I 
I* round toward minus infinity *I 
I* round toward zero (truncate) *I 

Programmers can check the current rounding mode with the function: 

fp_rnd fpgetroundO; /*return current rounding mode*/ 

Programmers can change the rounding mode for floating point operations by the function: 

f p _rnd f psetround (round); I* set rounding mode, return previous *I 
f p _rnd round; 

The default rounding mode is round-to-nearest. Note that in C, floating point to integer 
conversions are always done by truncation and the current rounding mode has no effect on 
these operations. 

The floating point provides two kinds of special representation: 

1. Infinity. Positive infinity in a format compares greater than all at.her representable 
numbers in the same format. Arithmetic operations on infinities are quite intuitive, 
e.g., adding any representable number to infinity is a valid operation, the result is 
positive infinity. Subtracting positive infinity from itself is invalid. If some arithmetic 
operation overflows and the overflow trap is disabled, in some rounding modes the 
delivered result is infinity. 

2. Not-a-Number (NaN). These floating point representations are not numbers, they 
may be used to carry diagnostic informations. There are two kinds of NaNs, signaling 
NaNs and quiet NaNs. Signaling NaNs raise the invalid operation exception 
whenever they are used as operands in floating point operations. Quiet N2.Ns 



FLOATING POINT SUPPORT 
Floating Point Environment and Exception Handling 

propagate through most operations without raising any exception, the result of these 
operation is the same quiet NaN. NaNs are sometimes produced by the arithmetic 
operations themselves, e.g., 0.0 divided by 0.0 when the invalid operation trap is 
disabled produces a quiet NaN. 

Floating point operations can lead to certain exception conditions, divide by zero is a 
common example. There are five types of floating point exceptions: 

1. Divide by zero exception. This exception happens when a nonzero number is divided 
by floating point zero. 

2. Invalid operation exception. Operations on signaling NaNs; zero divided by zero; 
infinity subtracted from infinity; infinity divided by infinity; and when a quiet NaN is 
compared with the greater or lesser predicates, all raise invalid exceptions. 

3. Overflow exception. This exception occurs when the result of any floating point 
operation is too large in magnitude to fit in the intended destination. 

4. Underflow exception. When the underflow trap is enabled, underflow exception is 
signaled when a result of some operation is a tiny nonzero number smaller than the 
smallest representable number. When the underflow trap is disabled, underflow 
exception occurs only when both tinyness and loss of accuracy are detected. 

5. Inexact or imprecise exception. This exception is signaled if the rounded result of an 
operation is not identical to the infinitely precise result. Inexact exceptions are quite 
common (e.g., 1.0/3.0 is an inexact operation). Inexact exception also occurs when 
the operation overflows without an overflow trap. 

Note: The above examples are not an exhaustive list of the conditions when an exception 
can occur. 

There is a sticky bit associated with each of these exceptions. Whenever any of these 
exceptions occur, the car.responding sticky bit is set (=l). The sticky bits are all cleared at 
the start of a process. After that, they are never cleared by the floating point system, just 
set to remember that an exception occurred. 

Programmers can check the status of the sticky bits by using the function: 

fp_except fpgetstickyO; /*return logged exceptions*/ 

fp _except can have the following (not exclusive) values: 

#define fp _except int 
#define FP _x_INV OxlO /* invalid operation exception */ 
#define FP _X_OFL Ox08 /*overflow exception */ 
#define FP _X _ UFL Ox04 /* underflow exception *I 
#define FP _X_DZ Ox02 /* divide-by-zero exception */ 
#define FP _X_IMP OxOl /* imprecise (loss of precision) exception *I 

Programmers can change the sticky bits by using the function: 

f p _except f psetsticky (sticky); I* change logged exceptions *I 
fp_except sticky; 

10-65 



FLOATING POINT SUPPORT 
Floating Point Environment and Exception Handling 

There is also a trap-enable bit (mask bit) associated with each exception. When an 
exception occurs, if the corresponding trap bit is enabled (=l), a trap takes place. 
Programmers can check the status of these mask bits by using the function: 

fp_except fpgetmaskO; /*current exception mask*/ 

Programmers can also selectively enable or disable any of the exceptions by calling the 
function: 

fp_except fpsetmask(mask); /*set mask, return previous mask*/ 
fp _except mask; 

with appropriate mask values. 

The default setting of the mask bits are: divide-by-zero, invalid operation, and overflow 
traps enabled. 

The only cases where two floating point exceptions can occur together are inexact with 
underflow and inexact with overflow. In these cases, the trap for the inexact is taken only 
if the other trap is disabled. 

When the trap is enabled, floating point exceptions are signaled through the standard 
UNIX System mechanism: a SIGFPE is sent to the user process. If the programmer 
intends to handle the trap and proceed with the program, the programmer must include the 
file ieeefp.b in at least one module of the program. The programmer can attach a handler 
to SIGFPE by calling the UNIX System signal(2) routine. 

When a floating-point exception handler is entered, the global variables: 

_fpftype -- floating-point fault type, and 
_fpfault -- pointer to floating-point exception structure 

are established. _fpftype identifies the primary exception type. Possible values for 
_fpftype are FP _UFLW, FP _DIVZ, INT_DIVZ etc. (see ieeefp.b). 

_fpfault points to a structure which provides all other information about the floating point 
operation. The information pointed to by _fpfault includes: 

l. the type of operation being performed 

2. the types and values of the operands 

3. the type of a trapped value (if any) 

4. the desired type of the result. 

The structure has the form: 

struct fp_fault 
fp_op 
fp_dunion 
fp_dunion 
fp_dunion 

{ 
operation; 
operand[2]; 
t_value; 
result; 



}; 
extern struct 

FLOATING POINT SUPPORT 
FPE Function Call Descriptions 

fp _fault * _f pfault; 

The operation field identifies the floating point operation which raised the exception. The 
possible values are included in ieeefp.h. fp _ dunion is a discriminated union which contains 
information about the type/format of the operands (or result) (e.g., whether the operand is 
in single precision or double precision). It also contains the actual values. See ieeefp.h for 
exact definitions of the different members of the union. 

A user handler has the information about the floating point operation, the operands, the 
computed result, and the format in which the result is to be returned. The user handler 
can supply a result in the right format and when the handler returns, this result is used to 
complete the floating point operation. 

10.2.4 Library Listings 

The following presents descriptions of each floating point emulation function call. The 
descriptions are in alphabetical order and any function that operates on more than one type 
of operand, single or double, are listed on the same page. (For quick reference to the 
function calls by function or mnemonic see the following: FPE Function Call Summary By 
Function and FPE Function Call Summary By Mnemonic.) The notation used in the 
listings is described. 

Notation 

Each function call description contains four parts: name, synopsis, description, and 
exceptions. 

Name. Gives the name of the function call. 

Synopsis. Presents the syntax for the function call, including any required spacing and 
punctuation. If the function has single or double forms, both forms are presented. 

Description. Describes the function performed. Also, any additional explanation is included 
where necessary. 

Exceptions. Lists the possible exceptions which may happen. If an exception happens the 
associated flags in the _ asr word are set. 

FPE Function Call Descriptions 

The FPE function calls are described in detail on the following pages. Before using these 
routines, the programmer must be aware of the following special cases: 

1. Only the comparison calls affect the Process Status Word (PSW) bits in the 
WE 32100 Microprocessor (CPU). Other floating point calls (e.g., _fadd() ) do not 



FLOATING POINT SUPPORT 
FPE Function Call Descriptions 

set any condition codes. For the code 

if (float_ expression) statement; 

generates a specific comparison with 0.0; i.e., the above test is treated as: 

if(float_expression != 0.0) statement; 

In general, for floating point operands, jump on zero/positive may not account for 
possible negative zeros; jump on equality does not have this problem. 

2. When an exception occurs, the corresponding sticky bit is set. Additional behavior is 
dependent on the corresponding trap bit being set/enabled (=I) or masked/disabled 
(=O). A trap takes place if the mask is enabled. Note the distinction between 
exceptions and traps. If the trap is disabled, additional behavior depends on the 
operation being performed, as well as the rounding mode in effect. 

3. The only cases where two exceptions can occur simultaneously are inexact with 
overflow and inexact with underflow. In these cases, the trap for inexact (if enabled) 
occurs only if the trap for overflow/underflow is disabled. 

4. Signaling and quiet NaNs (Not a Number) are distinguished by the most significant 
bit in the explicit fraction part of the format. If this bit is zero, then the NaN is a 
signaling NaN, or else it is a quiet NaN. 

5. When a quiet NaN has to be generated, it has a positive sign. All the fraction bits 
are set to one ( 1). 

6. For format conversion of quiet NaNs (e.g., in _fdtosO ), the least significant part of 
the fraction of the quiet NaN that fits in the fraction of the destination (less the quiet 
NaN bit) is placed left justified in the result. 

7. If both operands are quiet NaNs, and a result is to be delivered, the resulting quiet 
NaN is the first argument to the function. 

8. Quiet NaNs propagate through function calls without raising exceptions (except 
_fcmptd() and _fcmptsO ). 

9. The arithmetic routines never change the exception mask bits, nor clear the exception 
sticky bits. The programmer is provided with a set of routines to set the required 
masks and clear the sticky bits. 

l 0. The float arguments to the functions and the functions returning float values are 
treated specially in the sense that they are not converted to double arguments/results. 
Normally, single precision compares and conversions are used, all other operations are 
performed in double precision. 

10-68 



fadddO 
-faddsO 

NAME 
_faddd - Floating Add Double 
_fadds - Floating Add Single 

SYNOPSIS 
_faddd (srcl ,src2) 

_fadds (src l ,src2) 

DIESCRIPTION 

faddd() 
-faddsO 

Performs double/single precision addition of the double/single precision operands and 
returns a result in the same format. 

EXCEPTIONS 
Invalid-operation: 

• Operations involving signaling NaN(s) 

• Magnitude subtraction of infinities (e.g., +/-infinity). 

Overflow 

Underflow 

Inexact 

10-69 



_fcmpdO 
_fcmpsO 

NAME 
_fcmpd - Floating Compare Operands Double 
_fcmps - Floating Compare Operands Single 

SYNOPSIS 
_fcmpd(srcl ,src2) 

_f cmps (src l ,src2) 

DESCRIPTION 

JcmpdO 
_fcmpsO 

Compare the source operands. These functions are used for compariso.n predicates 
involving == and != (as well as comparison predicates like >?, if the languages are 
extended to include these). 

The only difference between _fcmpd() and _fcmptdO is that: for _fcmpd(), quiet 
NaNs do not raise invalid operation exceptions ,Only signaling NaNs raise invalid 
exceptionS . 

These functions return with the PSW flags in the CPU set as: 

• N = 1 if srcl < src2, else 0 

• Z = 1 if srcl == src2, else 0 

Comparisons are always exact and never underflow or overflow. 

-infinity < all finite numbers < +infinity 

(+0.0 == -0.0) and (+infinity== +infinity) compare equal 

Every NaN compares unordered with everything including itself. 

Unordered condition raises the invalid operation exception. 

EXCEPTIONS 
For comparisons involving signaling NaN(s). 



fcmptdO 
)cmptsO 

NAME 
_fcmptd - Floating Compare With Exceptions Double 
_fcmpts - Floating Compare With Exceptions Single 

SYNOPSIS 
Jcmptd (src 1,src2) 

_fcmpts (src 1,src2) 

DESCRIPTION 

_fcmptdO 
_fcmptsO 

Compare with exceptions. This is the CMPE instruction of the MAU hardware. 
Compilers generate this call for the comparison predicates involving > and <. 

These functions return with the PSW flags in the CPU set as: 

• N = 1 if srcl < src2, else 0 

• Z = l if srcl == src2, else 0 

Comparisons are always exact and never underflow or overflow. 

-infinity < all finite numbers < +infinity 

( +0.0 == -0.0) and (+infinity == +infinity) compare equal 

Every NaN compares unordered with everything including itself. 

Unordered condition raises the invalid operation exception. 

EXCEPTIONS 
Invalid~operation: Comparison involving a signaling or quie~ NaN (s) where at least 
one operand is a NaN. 



fdivdO 
-fdivsO 

NAME 
_f divd - Floating Divide Double 
_f divs - Floating Divide Single 

SYNOPSIS 
_f divd (src 1,src2) 

_f divs (src 1,src2) 

DESCRIPTION 

fdivdO 
-fdivsO 

Performs double/single precision division of the double/single precision operands and 
returns a result in the same format. 

EXCEPTIONS 
Divide by zero: when a nonzero number is divided by zero. If no trap occurs, the 
result is correctly signed infinity. 

Invali 



fdtosO 

NAME 
_fdtos - Convert Double to Single 

SYNOPSIS 
_fdtos(src) 

DESCRIPTION 
Convert double precision operand src to single precision format. 

_fdtosO 

When a double precision quiet NaN is converted to single precision, the result 
contains the 22 least significant fraction bits of the source. 

EXCEPTIONS 
Invalid-operation: for signaling NaNs. 

Overflow 

Underflow 

Inexact 



fltodO 
-fltosO 

NAME 
_fltod - Convert Integer to Double 
_Jltos - Convert Integer to Single 

SYNOPSIS 
_fltod (src) 

_fltos(src) 

DESCRIPTION 
Convert integer operand src to double/single precision floating point format. 

EXCEPTIONS 
Inexact for _fltosO. 

10-74 

fltodO 
-fltosO 



fmuldO 
-fmulsO 

NAME 
_fmuld - Floating Multiply Double 
_fmuls - Floating Multiply Single 

SYNOPSIS 
_fmuld (srcl,src2) 

_f muls (src l ,src2) 

DESCRIPTION 

fmuldO 
-fmulsO 

Performs double/single precision multiplication of the double/single precision operands 
and returns a result in the same format. 

EXCEPTIONS 
Invalid-operation: 

• Operations involving signaling NaN(s) 

• 0.0 x Infinity 

Overflow 

Underflow 

Inexact 

10-75 



_fnegdO 
JnegsO 

NAME 
_fnegd - Negate Double 
_fnegs - Negate Single 

SYNOPSIS 
_fnegd (src) 

_fnegs (src) 

DESCRIPTION 
Negate the double/single precision operand. 

_fnegdO 
_fnegsO 

_fnegd 0 is just src with the sign reversed, not (0.0 - src). It is treated as a non­
arithmetic operation and is not checked for any exceptions. 

EXCEPTIONS 
None 

10-76 



_fstodO fstodO 

NAME 
_fstod - Convert Single to Double 

SYNOPSIS 
_f stod (src) 

DESCRIPTION 
Convert single precision operand src to double precision format. 

This is one instance of the MAU operation MOVE. 

When a single precision quiet NaN is converted to double precision, it contains the 22 
diagnostic bits of the float source placed left justified. 

EXCEPTIONS 
Invalid~operation: for signaling NaNs. 

10~77 



fsubdO 
-fsubsO 

NAME 
Jsubd - Floating Subtract Double 
_fsubs - Floating Subtract Single 

SYNOPSIS 
_fsubd (src l ,src2) 

_fsubs (src l ,src2) 

DESCRIPTION 

fsubdO 
-fsubsO 

Performs double/single precision subtraction of the double/single precision operands 
and returns a result in the same format. 

EXCEPTIONS 
Invalid-operation: 

• Operations involving signaling NaN(s) 

• Magnitude subtraction of infinities (e.g., +infinity - +infinity). 

Overflow 

Underflow 

Inexact 

10-78 



ftdtolO 
-ftstolO 

NAME 
_ftdtol - Convert Double to Integer 
_ftstol - Convert Single to Integer 

SYNOPSIS 
_ftdtol (src) 

_ftstol (src) 

DESCRIPTION 

ftdtolO 
-ftstolO 

Convert double/single precision operand src to integer format with rounding mode set 
to to zero (truncation). 

Negative zero is converted to integer zero. 

If integer overflow occurs, with traps disabled, the result is undefined. 

If invalid operation exception occurs, and the trap is disabled, the result is undefined. 

Conversion of negative floating point values to unsigned integer returns integer zero. 

EXCEPTIONS 
Invalid-operation: if the source operand is NaN or infinity. 

Integer overflow. 

10~79 



ftdtouO 
-ftstouO 

NAME 
_ftdtou - Convert Double to Unsigned Integer 
_ftstou - Convert Single to Unsigned Integer 

SYNOPSIS 
_ftdtou (src) 

_ftstou (src) 

DESCRIPTION 

ftdtouO 
-ftstouO 

Convert double/single precision operand src to unsigned integer format with rounding 
mode set to to zero (truncation). · 

Negative zero is converted to integer zero. 

If integer overflow occurs, with traps disabled, the result is undefined. 

If invalid operation exception occurs, and the trap is disabled, the result is undefined. 

Conversion of negative floating point values to unsigned integer returns integer zero. 

Truncation is used to convert floating point numbers to integers. 

EXCEPTIONS 
Invalid-operation: if the source operand is NaN or infinity. 

Integer overflow. 

10-80 



futodO 
-futosO 

NAME 
_futod - Convert Unsigned Integer to Double 
_futos - Convert Unsigned Integer to Single 

SYNOPSIS 
_futod(src) 

_futos(src) 

DESCRIPTION 

futodO 
-futosO 

Convert unsigned integer operand src to double/single precision floating point format. 

EXCEPTIONS 
Inexact for _futosO. 



FPE Function Call Summary by Function 

isnandO 
isnanfO 

NAME 
isnand - Check for NaN Double 
isnanf - Check for NaN Single 

SYNOPSIS 
isnand (src) 

isnanf (src) 

DESCRIPTION 

isnandO 
isnanfO 

Returns true (l) if src is a NaN, or else returns false (0). Does not generate any 
exception, even for signaling NaN s. 

EXCEPTIONS 
None 

10-82 



FLOATING POINT SUPPORT 
FPE Function Call Summary by Function 

FPE Function Call Summary by Function 

Table 10-5. FPE Function Call Summary by Function 

Mnemonic Name 
Data Conversion Function Calls 

f dtos Convert double to single 
fstod Convert single to double 

fltod Convert integer to double 
fltos Convert integer to single 

ftdtol Convert double to integer 
ftstol Convert singel to integer 
ftdtou Convert double to unsigned integer 
ftstou Convert single to unsigned integer 

Arithmetic Function Calls 

Add: 
faddd Add double 
fadds Add single 

Subtract: 
fsubd Subtract double 
fsubs Subtract single 

Multiply: 
fmuld Multiply double 
fmuls Multiply single 

Divide: 
fdivd Divide double 
f divs Divide single 

Negate: 
_fnegd Negate double 
_f negs Negate single 

Logical Function Calls 
Compare: 
_fem pd Compare double 
_fcmps Compare single 
_fcmptd Compare with exception double 
fcmpts Compare with exception single 

Check for NaNs: 
isnand Check for NaN double 
isnans Check for NaN single 

10-83 



FLOATING POINT SUPPORT 
FPE Function Call Summary by Mnemonic 

FPE Function Call Summary by Mnemonic 

Table 10-6. FPE Function Call Summary by Mnemonic 

Mnemonic Name 

faddd Add double 
fadds Add single 

_fcmpd Compare double 
fcmps Compare single 

_fcmptd Compare with exceptions double 
_fcmpts Compare with exceptions single 
fdivd Divide double 
f divs Divide single 
f dtos Convert double to single 
fltod Convert integer to double 
fltos Convert integer to single 

fmuld Multiply double 
fmuls Multiply single 

_fnegd Negate double 
_fnegs Negate single 
fstod Convert single to double 
fsubd Subtract double 
fsubs Subtract single 
ftdtol Convert double to integer 
ftstol Convert single to integer 
ftdtou Convert double to unsigned integer 
ftstou Convert single to unsigned integer 
futod Convert unsigned integer to double 
futos Convert unsigned integer to single 

isnand Check for NaN double 
isnans Check for NaN single 

10-84 







WE 32100 MICROPROCESSOR INSTRUCTION SET 
Notation 

A. WE 32100 MICROPROCESSOR INSTRUCTION SET LISTINGS 

A.l Instruction Set Descriptions presents descriptions of each member of the instruction set 
for the WE 32100 Microprocessor. The descriptions are in alphabetical order and any 
instructions that operate on more than one type of operand, byte, halfword, or word are 
listed on the same page (for quick reference to the instructions by function, mnemonic, or 
opcode see A-3 Instruction Set Summary by Function, A.4 Instruction Set Summary by 
Mnemonic, and A.5 Instruction Set Summary by Opcode). 

A.1 NOTATION 

Each instruction description contains several parts: assembler syntax, opcode operation, 
address modes, condition flags, exceptions, examples, and notes (optional). 

Assembler Syntax. Presents the assembly language syntax for the instruction, including 
any required spacing and punctuation. The user-specified elements appear in italics. All 
operands must appear in the order shown. If an instruction has byte, halfword, and word 
forms, all three forms are presented. 

The syntax uses the following symbols to denote operands that may be written in the 
address modes shown in Table 5-2: count, dst, offset, src, width. Program control 
instructions use disp8 or disp16 as a displacement operand. This operand does not use an 
address mode, but is written as an 8- or 16-bit literal. 

Opcodes - Lists each opcode with the appropriate mnemonic and function. 

Operation - Describes the operation performed. The description generally uses C language 
syntax and the operators and symbols shown in Table A-1. 

Address Modes - Identifies the valid address modes for each operand. Refer to Table 5-4 
for address mode syntax and to Table A-2 for the syntax for referencing registers. 

Condition Flags - Identifies the effect of the instruction on each of the condition flags. 

Exceptions - Identifies any error conditions that may result in illegal operands, opcodes, or 
operations. 

Examples - Presents examples of the instruction written in assembly language. In some 
cases, it will give the contents of registers before and after execution. Register bytes are 
read from right to left and their contents are given as hexadecimal values. 

Notes (Optional) - Explains other parts of the description when necessary. 

A.2 INSTRUCTION SET DESCRIPTIONS 

The instruction set is described in detail on the following pages. 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Notation 

Table A-1. Assembly Language Operators and Symbols 

Symbol Description 

*x Indirection; value pointed to by x 
&x Address of x 
!x Not x 
++x Increment x 
--x Decrement x 

"-'X Complement x 
-x Negate x; form two's complement of x 

x+y Addy to x 
x-y Subtract y from x 
x*y Multiply x by y 
x/y Divide y into x 
x%y Modulo x and y (remainder of x/y) 
x&y Bitwise AND x and y 
xly Bitwise inclusive OR x and y 
x/\y Bitwise exclusive OR (XOR) x and y 

x<<y Shift x to the left y bits 
x>>y Shift x to the right y bits 
x<y x less than y 
x>y x greater than y 
x==y Equality; x equal to y 
x!=y x not equal to y 
= Assigns the value on the right to the location identified on the left 
AP Argument pointer; register 10 (rl O) 
count Count operand 
dst Destination operand 
FP Frame pointer; register 9 (r9) 
PC Program counter; register 15 (rl 5) 
PSW Processor status word; register 11 (rll) 
SEXT(x) Function that returns x, sign extended through 32 bits 
SP Stack pointer; register 12 (r 12) 
*(--SP) A pop from the stack; decrement SP by 4 before removing data ( ) 

from the stack 
*(SP++) A push onto the stack; store data and increment SP by 4 
src Source operand 
Oxn Hexadecimal value where n is the digits 0 through 9 and a through 

f (or A through F); may also be written OXn 
/*comment*/ A comment, not an operation 
{operation} An operation other than an instruction 

A-2 



Register Name 

0 rO 

1 rl 
2 r2 
3 r3 
4 r4 
5 r5 
6 r6 
7 r7 
8 r8 
9 FP 

10 AP 
11 PSW 
12 SP 

13 PCBP 

14 ISP 

15 PC 

Notes: 

WE 32100 MICROPROCESSOR INSTRUCTION SET 
Notation 

Table A-2. Register Set 

Assembler 
Syntax Assigned Function 

%r0 General-purpose (Note 1) 

%rl General-purpose (Note 1) 

%r2 General-purpose (Note 1) 
%r3 General-purpose 

%r4 General-purpose 

%r5 General-purpose 
%r6 General-purpose 
%r7 General-purpose 
%r8 General-purpose 
%fp or %r9 Frame pointer 
%ap or %r10 Argument pointer 
%psw or %rl 1 Processor status word (Note 2) 

%sp or %rl2 Stack pointer 
%pcbp or %r 13 Processor control block 

pointer (Note 2) 
%isp or %r14 Interrupt stack pointer (Note 2) 
%pc or %rl5 Program counter (Note 3) 

1. Block or string instructions may use this register as an implied argument 
for indexing or addressing. Operating system instructions also use these 
registers. 

2. Privileged register. Writing to this register when the processor is not in 
kernel execution level causes a privileged-register exception. 

3. Registers 11 and 15 may not be used in some address modes. 



ADDB2 
ADDH2 
ADDW2 

ADD 

Assembler 
Sy~ll:ax 

Condition 
Flags 

Examples 

ADDB2 src,dst 
ADDH2 src,dst 
ADDW2 src,dst 

Ox9F ADDB2 
Ox9E ADDH2 
Ox9C ADDW2 

dst = dst + src 

src an modes 

Add byte 
Add halfword 
Add word 

dst an modes except literal or immediate 

N = 1, if (dst + src) < 0 

Z = 1, if (dst + src) == 0 

C = l, if carry 0111t of sign bit of dst 

V = l, if overflow 

ADDB2 
ADDH2 
ADDW2 

IHegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer overflow exception occurs if there is tmncation. 

ADDB2 $0xl00,%r0 
ADDH2 %r0,%r3 
ADDW2 4(%r3),*$0x110 



ADDB3 
ADDH3 
ADDW3 

ADDB3 
ADDH3 
ADDW3 

ADD, 3 Address 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

ADDB3 srcl,src2,dst 
ADDH3 srcl ,src2,dst 
ADDW3 srcl ,src2,dst 

OxDF ADDB3 
OxDE ADDH3 
OxDC ADDW3 

dst = srcl + src2 

srcl all modes 

src2 all modes 

Add byte, 3 address 
Add half word, 3 address 
Add word, 3 address 

dst all modes except literal or immediate 

N = 1, if (srcl + src2) < 0 

Z = l, if (srcl + src2) == 0 

C = 1, if carry out of sign bit of dst 

V = 1, if overflow 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer overflow exception occurs if there is truncation. 

ADDB3 %r0,%r3,%r5 
ADDH3 4(%r2),*$0xl 10,%r3 
ADDW3 *$0xlF0,4(%rl),%rO 

A-5 



ALSW3 ALSW3 

ARITHMETIC LEFT SHIFT 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

A-6 

ALSW3 count,src,dst Arithmetic left shift word 

OxCO ALSW3 

dst = src < < (count & OxlF) bits 

count all mod·es 

src all modes 

dst all modes except literal or immediate 

N = 1, if dst < 0 

Z 1, if dst == 0 

c 0 

V 0 (see Note) 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Before: rO I 8F I OF I DF I FD j 

=increasing bits 

ALSW3 &2,%r0,%r0 

After: rO j 3C I 3F I 7F I F4 j 

All operands are of type word. However, only the five low-order bits of 
count are used; the upper bits are ignored. No bits are shifted past the 
sign bit, so integer overflow cannot occur. However, the V bit can be 
set if an expanded-operand type mode changes the type of dst. Zeros 
replace bits that are shifted out. The sign bit is not changed. 



ANDB2 
ANDH2 
ANDW2 

AND 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

ANDB2 src,dst AND byte 
ANDH2 src,dst AND halfword 
ANDW2 src,dst AND word 

OxBB ANDB2 
OxBA ANDH2 
OxB8 ANDW2 

dst = dst & src 

src all modes 

dst all modes except literal or immediate 

N = MSB of dst 

Z = 1, if dst == 0 

c = 0 

V = l, if result must be truncated to fit dst size 

ANDB2 
ANDH2 
ANDW2 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

ANDB2 &7,6(%rl) 
ANDH2 %r0, *$result 
ANDW2 (%r0,%r4 



ANDB3 
ANDH3 
ANDW3 

ANDB3 
ANDH3 
ANDW3 

AND, 3 ADDRESS 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

ANDB3 srcl ,src2,dst AND byte, 3 address 
ANDH3 srcl,src2,dst AND halfword, 3 address 
ANDW3 srcl ,src2,dst AND word, 3 address 

OxFB ANDB3 
OxFA ANDH3 
OxF8 ANDW3 

dst = src2 & srcl 

src 1 all modes 

src2 all modes 

dst all modes except literal or immediate 

N = MSB of dst 

Z = 1, if dst == 0 

C=O 

V = 1, if result must be truncated to fit dst size 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

ANDB3 &Ox27,*$0x300,%r6 
ANDH3 Ox31(%r5),%r0,%rl 
ANDW3 %r2,%rl,%r0 



ARSB3 
ARSH3 
ARSW3 

ARSB3 
ARSH3 
ARSW3 

ARITHMETIC RIGHT SHIFT 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

ARSB3 count,src,dst Arithmetic right shift byte 
ARSH3 count,src,dst Arithmetic right shift halfword 
ARSW3 count,src,dst Arithmetic right shift word 

OxC7 ARSB3 
OxC6 ARSH3 
OxC4 ARSW3 

dst = src > > (count & Oxlf) bits 

count all modes 

src all modes 

dst all modes except literal or immediate 

N = 1, if dst < O 

Z = 1, if dst == 0 

C=O 

V=O 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Before: rO I OF I OF I 77 I AF I 
=increasing bits 

ARSH3 &2,%r0,%r0 

After: rO I 00 I 00 j 1 D I EB I 

All operands are of type word. However, only the five low-order bits of 
count are used; the upper bits are ignored. The sign bit (MSB) of src is 
copied as bits are shifted out. The type of src does not affect sign 
extension. 

A-9 



BCCB 
BCCH 

BCCB 
BCCH 

BRANCH ON CARRY CLEAR 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-10 

BCCB disp8 Branch on carry clear, byte displacement 
BCCH disp16 Branch on carry clear, halfword displacement 

Ox53 BCCB 
Ox52 BCCH 

if (C == O) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

displ 6 = signed 16-bit value 

Unchanged 

None 

BCCB Ox9 
BCCH OxFF23 



BCSB 
BCSH 

BRANCH ON CARRY SET 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

BCSB dispB Branch on carry set, byte displacement 
BCSH disp16 Branch on carry set, halfword displacement 

Ox5B BCSB 
Ox5A BCSH 

if (C ==1) 
PC = PC + SEXT(disp) 

None valid 
dispB = signed 8-bit value 

disp16 = signed 16-bit value 

Unchanged 

None 

BCSB OxFF 
BCSH Ox1234 

BCSB 
BCSH 



BEB 
BEH 

BRANCH ON EQUAL 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-12 

BEB disp8 Branch on equal, byte displacement 
BEH displ6 Branch on equal, byte displacement 

Ox7F BEB 
Ox6F BEB 
Ox7E BEH 
Ox6E BEH 

if (Z == 1) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

displ6 = signed 16-bit value 

Unchanged 

None 

BEB OxFl 
BEH Ox4221 

BEB 
BEH 



BGB 
BGH 

BRANCH ON GREATER THAN (SIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

BGB disp8 Branch on greater than, byte displacement 
(signed) 

BGH displ6 Branch on greater than, halfword displacement 
(signed) 

Ox47 BGB 
Ox46 BGH 

if ((N & Z) == 0) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

disp 16 = signed 16-bit value 

Unchanged 

None 

BGB more 
BGH less 

BGB 
BGH 

A-13 



BGEB 
BGEH 

BRANCH ON GREATER THAN OR EQUAL (SIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-14 

BGEB disp8 Branch on greater than or equal, byte 
displacement (signed) 

BGEH disp16 Branch on greater than or equal, halfword 
displacement (signed) 

Ox43 BGEB 
Ox42 BGEH 

if ((N == O)i(Z == 1)) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

disp16 = signed 16-bit value 

Unchanged 

None 

BGEB again 
BGEH OxF102 

BGEB 
BGEH 



BGEUB 
BGEUH 

BGEUB 
BGEUH 

BRANCH ON GREATER THAN OR EQUAL (UNSIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

BGEUB disp8 Branch on greater than or equal, byte 
displacement (unsigned) 

BGEUH disp16 Branch on greater than or equal, halfword 
displacement (unsigned) 

Ox53 BGEUB 
Ox52 BGEUH 

if (C == 0) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

displ6 =signed 16-bit value 

Unchanged 

None 

BGEUB OxAl 
BGEUH ahead 



BGUB 
BGUH 

BGUB 
BGUH 

BRANCH ON GREATER THAN (UNSIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-16 

BGUB disp8 Branch on greater than, byte displacement 
(unsigned) 

BGUH displ 6 Branch on greater than, halfword displacement 
(unsigned) 

Ox57 BGUB 
Ox56 BGUH 

if ((C & Z) == 0) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

disp16 = signed 16-bit value 

Unchanged 

None 

BGUB OxDE 
BGUH OxF123 



BITB 
BITH 
BITW 

BIT TEST 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Not~ 

BITB srcl ,src2 Bit test byte 
BITH srcl ,src2 Bit test halfword 
BITW srcl ,src2 Bit test word 

Ox3B BITB 
Ox3A BITH 
Ox38 BITW 

temp = src2 & srcl 

src 1 all modes 

src2 all modes 

N = MSB of temp 

Z = 1, if temp == 0 

C=O 

V=O 

None 

BITB %r0,{uhalf}%rl 
BITH *$0xFF,%r3 
BITW hit (%r3),(%r0) 

BITB 
BITH 
BITW 

The final value of temp, a temporary register, determines the setting of 
the condition codes. Temp is discarded upon completion of the 
instruction. 

A-17 



BLB 
BLH 

\ 

BRANCH ON LESS THAN (SIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-18 

BLB disp8 Branch on less than, byte displacement 
(signed) 

BLH displ 6 Branch on less than, halfword displacement 
(signed) 

Ox4B BLB 
Ox4A BLH 

if ((N == 1) & (Z == 0)) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

disp16 =signed 16-bit value 

Unchanged 

None 

BLB OxlF 
BLH back 

BLB 
BLH 



BLED 
BLEH 

BLED 
BLEH 

BRANCH ON LESS THAN OR EQUAL (SIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

BLEB disp8 Branch on less than or equal, byte displacement 
(signed) 

BLEH displ6 Branch on less than or equal, halfword 
displacement (signed) 

Ox4F BLEB 
Ox4E BLEH 

if ((N!Z) == 1) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

displ6 =signed 16-bit value 

Unchanged 

None 

BLEB Ox6 
BLEH OxFFF 

A-19 



BLEUB 
BLEUH 

BRANCH ON LESS THAN OR EQUAL (UNSIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-20 

BLEUB disp8 Branch on less than or equal, byte 
displacement (unsigned) 

BLEUH disp16 Branch on less than or equal, halfword 
displacement (unsigned) 

Ox5F BLEUB 
Ox5E BLEUH 

if ((C!Z) == 1) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

disp16 =signed 16-bit value 

Unchanged 

None 

/ BLEUB Ox14 
BLEUH back 

BLEUB 
BLEUH 



BLUB 
BLUH 

BRANCH ON LESS THAN (UNSIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

BLUB disp8 Branch on less than byte displacement 
(unsigned) 

BLUH disp16 Branch on less than halfword displacement 
(unsigned) 

Ox5B BLUB 
Ox5A BLUH 

if (C == 1) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

displ 6 = signed 16-bit value 

Unchanged 

None 

BLUB Oxl2 
BLUH OxFF12 

BLUB 
BLUH 



BNEB 
BNEH 

BRANCH ON NOT EQUAL 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

BNEB disp8 Branch on less than, byte displacement 
BNEH displ6 Branch on less than, halfword displacement 

Ox77 BNEB 
Ox67 BNEB 
Ox76 BNEH 
Ox66 BNEH 

if (Z == 0) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

disp16 = signed 16-bit value 

Unchanged 

None 

BNEB OxFE 
BNEH OxFF13 

BNEB 
BNEH 



BPT 

BREAKPOINT TRAP 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

BPT Breakpoint trap 

Ox2E BPT 

/*BPT executes the following processor operation* I 
{breakpoint trap} 

None 

Unchanged 

Generates breakpoint trap exception. 

BPT 

BPT 



BRB 
BRH 

BRANCH 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

BRB dispB Branch with byte displacement 
BRH disp16 Branch with halfword displacement 

Ox7B BRB 
Ox7A BRH 

PC = PC + SEXT(disp) 

None valid 
dispB = signed 8-bit value 

disp16 =signed 16-bit value 

Unchanged 

None 

BRB OxA 
BRH OxFAA 

BRB 
BRH 



BSBB 
BSBH 

BRANCH TO SUBROUTINE 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

BSBB disp8 Branch to subroutine, byte displacement 
BSBH disp 16 Branch to subroutine, halfword displacement 

Ox37 BSBB 
Ox36 BSBH 

*(SP++) = address of next instruction 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

disp16 =signed 16-bit value 

Unchanged 

None 

BSBB sub2 
BSBH subl 

BSBB 
BSBH 



BVCB 
BVCH 

BRANCH ON OVERFLOW CLEAR 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-26 

BVCB disp8 Branch to subroutine, byte displacement 
BVCH displ 6 Branch to subroutine, halfword displacement 

Ox63 BVCB 
Ox62 BVCH 

if (V == 0) 
PC = PC + SEXT(disp) 

None valid 
disp8 =signed 8-bit value 

displ6 =signed 16-bit value 

Unchanged 

None 

BVCB Ox7E 
BVCH Ox8F21 

BVCB 
BVCH 



BVSB 
BVSH 

BVSB 
BVSH 

BRANCH ON OVERFLOW SET 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

BVSB disp8 Branch on overflow set, byte displacement 
BVSH disp16 Branch on overflow set, halfword displacement 

Ox6B BVSB 
Ox6A BVSH 

if (V == 1) 
PC = PC + SEXT(disp) 

None valid 
disp8 = signed 8-bit value 

disp16 =signed 16-bit value 

Unchanged 

None 

BVS OxFl 
BVSB OxFF77 

A-27 



CALL CALL 

CALL PROCEDURE 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

A-28 

CALL src,dst Call procedure 

Ox2C CALL 

tempa = &src 
tempb = &dst 
*(SP+4) = AP 
*SP = address of next instruction 
SP = SP+8 
PC = tempb 
AP = tempa 

src all modes except literal, register, or immediate 

dst all modes except literal, register, or immediate 

Unchanged 
I 

Illegal operand exception occurs if literal, register, expanded-operand 
type, or immediate mode is used for src or dst. 

CALL -(3*4)(%sp),funcl (see Figure 3-9) 

Both operands are effective addresses. Temp is a temporary registc;;r. 
CALL sets up the protocol for a C language function call. (Also see 
Return from procedure.) CALL sets AP to first of the word arguments 
that the calling function pushed on the stack before executing the call. 



CFLUSH CFLUSH 

CACHE FLUSH 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Notes 

CFLUSH Cache flush 

Ox27 CFLUSH 

/*CFLUSH executes the following processor operation*/ 
{all entries in instruction cache are marked invalid} 

None 

Unchanged 

None 

CFLUSH 

CFLUSH is a nonprivileged instruction. 

This instruction operates identically whether the instruction cache is 
enabled (PSW <CD>==O) or disabled (PWS<CD>==l). 



CLRB 
CLRH 
CLRW 

CLEAR 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-30 

CLRB dst Clear byte 
CLRH dst Clear halfword 
CLR W dst Clear word 

Ox83 CLRB 
Ox82 CLRH 
Ox80 CLRW 

dst = 0 

dst all modes except literal or immediate 

N = 0 

Z=l 

C=O 

V=O 

CLRB 
CLRH 
CLRW 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

CLRB * &Ox300 
CLRH %rl 
CLRW (%r0) 



CMPB 
CMPH 
CMPW 

COMPARE 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

CMPB srcl ,src2 
CMPH srcl ,src2 
CMPW srcl ,src2 

Ox3F CMPB 
Ox3E CMPH 
Ox3C CMPW 

temp = src2 - srcl 

srcl all modes 

src2 all modes 

Compare byte 
Compare halfword 
Compare word 

N = 1, if src2 < srcl (signed) 

Z = 1, if src2 == srcl 

C = 1, if src2 < srcl (unsigned) 

v = 0 

None 

CMPB & l 0, %r0 
CMPH (%rO),(%rl) 
CMPW *$0xl2F7,%r2 

CMPB 
CMPH 
CMPW 

This instruction sets the condition flags N, Z, and C as if a subtract had 
been executed. Neither operand is altered (also see Test). 

A-31 



DECH 
DECH 
DECW 

DECH 
DECH 
DECW 

DECREMENT 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-32 

DECB dst Decrement byte 
DECH dst Decrement halfword 
DECW dst Decrement word 

Ox97 DECB 
Ox96 DECH 
Ox94 DECW 

dst = dst - 1 

dst all modes except literal or immediate 

N = 1, if (dst - 1) < 0 

Z = 1, if (dst - 1) == 0 

C = I, if borrow into sign bit of dst 

V = 1, if overflow 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer overflow exception occurs if there is truncation. 

DECB 4(%fp) 
DECH $result 
DECW *$last 



DIVB2 
DIVH2 
DIVW2 

DIVIDE 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

DIVB2 src,dst Divide byte 
DIVH2 src,dst Divide halfword 
DIVW2 src,dst Divide word 

OxAF DIVB2 
OxAE DIVH2 
OxAC DIVW2 

dst = dst I src 

src all modes 

dst all modes except literal or immediate 

N = l, if (dst I src) < 0 

Z = l, if (dst I src) == 0 

c = 0 

V = 1, if overflow 

DIVB2 
DIVH2 
DIVW2 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer zero~divide exception occurs if src is equal to 0. 

Integer overflow exception occurs if there is truncation. 

DIVB2 &40,%r6 
DIVH2 4(%r3),(%r4) 
DIVW2 $first,$last 



DIVB3 
DIVH3 
DIVW3 

DIVB3 
DIVH3 
DIVW3 

DIVIDE, 3 ADDRESS 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-34 

DIVB3 srcl ,src2,dst Divide byte, 3 address 
DIVH3 srcl ,src2,dst Divide halfword, 3 address 
DIVW3 srcl ,src2,dst Divide word, 3 address 

OxEF DIVB3 
OxEE DIVH3 
OxEC DIVW3 

dst = src2 I srcl 

src 1 all modes 

src2 all modes 

dst all modes except literal or immediate 

N = l, if (src2 I srcl) < 0 

Z = l, if (src2 I srcl) == 0 

C=O 

V = l, if overflow 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer zero-divide exception occurs if srcl is equal to 0. 

Integer overflow exception occurs if there is truncation. 

DIVB3 &Ox30,%r3,12(%ap) 
DIVH3 &Ox3030, (%r2) ,5 (%r2) 
DIVW3 &Ox304050,(%rl),4(%rl) 



EXTFB 
EXTFH 
EXTFW 

EXTFB 
EXTFH 
EXTFW 

EXTRACT FIELD 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

EXTFB width,offset,src,dst Extract field from byte 
EXTFH width,offset,src,dst Extract field from halfword 
EXTFW width,offset,src,dst Extract field from word 

OxCF EXTFB 
OxCE EXTFH 
OxCC EXTFW 

dst = FIELD(offset,width,src) 

width all modes offset all modes src 
modes except literal or immediate 

N = high~order bit of dst Z = 1, if dst 
V = 0 (see Note) 

all modes dst 

oc 0 

all 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Before: Location Ll = Ox01234567 

EXTFW &10,&4,Ll,%r0 

After: ro I oo I oo I 04 I s6 I 
= increasing bits 

The field extracted starts at bit 4 of location Ll, skips bits 0 through 3, 
and extends through bit 14 of Ll. These eleven bits are written to bits 
0 through 10 of rO; zeros fill the remaining bits of rO. 

Only the low-order five bits of width and offset are examined. If the 
sum width plus offset is greater than 32 (bits), then the field wraps 
around through bit 0 of the base word. The field specified by width, 
offset, and src is stored, right adjusted, in dst. The remaining bits of 
dst are set to 0. If the field is too large for the size of dst, the excess 
high-order bits are discarded and the V flag is set. 



EXTOP EXTOP 

EXTENDED OPCODE 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

A-36 

EXTOP byte Extended opcode 

Ox14 EXTOP 

/*EXTOP executes the following processor operation*/ 
{reserved-opcode exception} 

None valid 
byte = 8-bit value 

Unchanged 

Generates reserved opcode exception. See Note. 

EXTOP Ox2F 

The EXTOP opcode is an escape to form additional instructions. The 
processor does not access byte when executing this instruction. Instead, 
it generates a reserved-opcode exception after decoding the opcode. The 
operating system's exception handler should access byte. 



INCB 
INCH 
INCW 

INCREMENT 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

INCB dst Increment byte 
INCH dst Increment halfword 
INCW dst Increment word 

Ox93 INCB 
Ox92 INCH 
Ox90 INCW 

dst = dst + l 

dst all modes except literal or immediate 

N = l, if (dst + 1) < 0 

Z = 1, if (dst + 1)' == 0 

C = l, if carry into sign bit of dst 

V = 1, if overflow 

INCB 
INCH 
INCW 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer overflow exception occurs if truncation takes place. 

INCB 4(%r2) 
INCH %r0 
INCW (%rl) 

A~37 



INSFB 
INSFH 
INSFW 

INSFB 
INSFH 
INSFW 

INSERT FIELD 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 
Exceptions 

Examples 

Note 

A-38 

INSFB width,offset,src,dst Insert field from byte 
INSFH width,offset,src,dst Insert field from halfword 
INSFW width,offset,src,dst Insert field from word 

OxCB INSFB 
OxCA INSFH 
OxC8 INSFW 

FIELD(offset,width,dst) = src 

width all modes offset all modes src 
modes except literal or immediate 

all modes dst all 

N = bit 31 of dst Z = 1, if dst == 0 C = 0 V = 0 (see Note) 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Before: rO AB I CD I EF I 01 I 
ri oo I oo I os I 67 I 

= increasing bits 

INSFW &l l,&8,%rl,%r0 

After: rO j AB j CS I 67 I 01 I 
The field insertion starts at bit 8 of rO, skips bits 0 through 7, and 
extends through bit 19. Therefore, bits 8 through 19 of rO now contain 
the same value as bits 0 through 11 of r 1. 

Only the low-order five bits of width and offset are examined. If the 
sum width plus offset is greater than 32 (bits), the field wraps around 
to bit 0 of the destination. Starting with bit 0 of src, (width+l) bits are 
placed into dst beginning at the bit designated by offset. If dst is a 
byte or halfword and (width+offset) specifies a field that extends 
beyond dst, no bits beyond dst are altered but the V flag is set. 



JMP 

JUMP 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

;Examples 

Note 

JMP 

JMP dst Jump 

Ox24 JMP 

PC= &dst 

dst all modes except literal, register, or immediate 

Unchanged 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

JMP .Ll2 

The operand dst is an effective address; i.e., the 32-bit address of dst is 
used as the destination rather than the word stored at that address. 



JSB JSB 

JUMP TO SUBROUTINE 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

A-40 

JSB dst Jump to subroutine 

Ox34 JSB 

*(SP++) = address of next instruction 
PC = &dst 

dst all modes except literal, register, or immediate 

Unchanged 

Illegal operand exception occurs if literal, expanded-operand type, or 
immediate mode is used for dst. 

JSB error 

The operand dst is an effective address; i.e., the 32-bit address of dst is 
used as the destination rather than the word at that address. 



LLSB3 
LLSH3 
LLSW3 

LLSB3 
LLSH3 
LLSW3 

LOGICAL LEFT SHIFT 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

LLSB3 count,src,dst Logical left shift byte 
LLSH3 count,src,dst Logical left shift halfword 
LLSW3 count,src,dst Logical left shift word 

OxD3 LLSB3 
OxD2 LLSH3 
OxDO LLSW3 

dst = src < < (count & Ox 1 F) bits 

count all modes 

src all modes 

dst all modes except literal or immediate 

N = MSB of dst 

Z = 1, if dst == 0 

C=O 

V = 0, if result must be truncated to fit dst size 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Before: rO I OF j OF j DF I FD I 
= increasing bits 

LLSH3 &2, %r0, %r0 

After: rO I FF I FF I 7F I F4 I 

Only the five low-order bits of count are used; the high-order bits are 
ignored. Zeros replace the bits shifted out of the low-order bit position 
(bit 0). 



LRSW3 LRSW3 

LOGICAL RIGHT SHIFT 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

A-42 

LRSW3 count,src,dst Logical right shift word 

OxD4 LRSW3 

dst = src > > (count & Oxl F) bits 

count all modes 

src all modes 

dst all modes except literal or immediate 

N = MSB of dst 

z 1, if dst 0 

c 0 

V 1, if result must be truncated to fit dst size 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Before: rO I C3 I CO I 00 I 00 I 
= increasing bits 

LRSW3 &Oxl l,%r0,%r0 

After: rO [-Of I 00 I 61 I EO I 

All operands are type word. However, only the five low-order bits of 
count are used; the high-order bits are ignored. Zeros replace the bits 
shifted out of the high-order bit position (bit 31). 



MCOMB 
MCOMH 
MCOMW 

MCOMB 
MCOMH 
MCOMW 

MOVE COMPLEMENTED 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

MCOMB src,dst Move complemented byte 
MCOMH src,dst Move complemented halfword 
MCOMW src,dst Move complemented word 

Ox8B MCOMB 
Ox8A MCOMH 
Ox88 MCOMW 

dst = -src 

src all modes 

dst all modes except literal or immediate 

N = MSB of dst 

Z = 1, if dst == 0 

C=O 

V = 1, if result must be truncated to fit dst size 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Before: rO 12 I 34 I s6 1 n I 

= increasing bits 

MCOMW %r0,%rl 

After: rl I ED I CB I A9 I 87 j 

dst is the one's complement of src 

A-43 



MNEGB 
MNEGH 
MNEGW 

MNEGB 
MNEGH 
MNEGW 

MOVE NEGATED 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

A-44 

MNEGB src,dst Move negated byte 
MNEGH src,dst Move negated halfword 
MNEGW src,dst Move negated word 

Ox8F MNEGB 
Ox8E MNEGH 
Ox8C MNEGW 

dst = -src 

src all modes 

dst all modes except literal or immediate 

N = MSB of dst 

Z = 1, if dst == 0 

C=O 

V = 1, if integer overflow 

Illegal operand exception occurs if literal or immediate mode is used for 
· dst. 

Before: rO I 01 I 23 I 45 I 67 j 

= increasing bits 

MNEG B %r0, %r l 

After: rl I FF I FF I FF I 99 I 

dst is the two's complement of src. 



MODB2 
MODH2 
MODW2 

MODULO 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

MODB2 src,dst Modulo byte 
MODH2 src,dst Modulo halfword 
MODW2 src,dst Modulo word 

Ox:A7 MODB2 
Ox:A6 MODH2 
Ox:A4 MODW2 

dst = dst % src 

src all modes 

dst all modes except literal or immediate 

N = 1, if (dst % src) < 0 

Z = 1, if (dst % src) == 0 

c = 0 

V = 1, if overflow 

MODB2 
MODH2 
MODW2 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer zero-divide exception occurs if src is equal to 0. 

Integer overflow exception occurs if there is truncation. 

MODB2 &40,%r3 
MODH2 4(%r3),%r3 
MODW2 %r0, *$result 



MODB3 
MODH3 
MODW3 

MODB3 
MODH3 
MODW3 

MODULO, 3 ADDRESS 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-46 

MODB3 srcl ,src2,dst Modulo byte, 3 address 
MODH3 srcl ,src2,dst Modulo halfword, 3 address 
MODW3 srcl ,src2,dst Modulo word, 3 address 

OxE7 MODB3 
OxE6 MODH3 
OxE4 MODW3 

dst = src2 % srcl 

src 1 all modes 

src2 all modes 

dst all modes except literal or immediate 

N = l, if (src2 % srcl) < 0 

Z = 1, if (src2 % srcl) == 0 

C=O 

V = 1, if overflow 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer zero-divide exception occurs if srcl is equal to 0. 

Integer overflow exception occurs if there is truncation. 

MODB3 &40,%r3,0xl 101 (%r2) 
MODH3 %r3,$real,%r3 
MODW3 4(%r2),*$0x34,%r0 



MOVB 
MOVH 
MOVW 

MOVE 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 
Condition 
Flags 

Exceptions 

Examples 

MOVB src,dst Move byte 
MOVH src,dst Move halfword 
MOVW src,dst Move word 

Ox87 MOVB 
Ox86 MOVH 
Ox84 MOVW 

dst = src 

src all modes dst all modes except literal or immediate 

N = MSB of dst Z = 1, if dst == 0 C = O 
V = 1, if result must be truncated to fit dst size 

See Note 

MOVB 
MOVH 
MOVW 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Before: rO I 01 I 23 I 45 UC! 
r 1 I AB I AB I AB I AB I 

=increasing bits 

MOVW %rO,%rl 

After: rO 01 23 45 67 

rl 01 23 45 67 

NZCV = 0000 



MOVB 
MOVH 
MOVW 

NOTES 

A-48 

MOVB 
MOVH 
MOVW 

If the expanded-type mode is used for dst or for both operands, this 
instruction can convert data from one type to another. The src operand 
determines the type of extension performed: if src is signed byte or 
halfword, sign extension occurs; if src is byte or unsigned half word, zero 
extension occurs. 

Use the following instructions for conversions if the destination is not a 
register. 

Instruction 

MOVB {sbyte}src,{shalf}dst 
MOVB {sbyte}src,{sword}dst 
MOVH src,{sword}dst 
MOVB src,{shalf}dst 
MOVB src,{sword}dst 
MOVH {uhalf}src,{sword}dst 
MOVH src,{sbyte}dst 
MOVW src,{sbyte}dst 
MOVW src,{shalf}dst 

Conversion 

Signed byte to signed half word 
Signed byte to signed word 
Byte to signed word 
Byte to signed halfword 
Byte to signed word 
Unsigned halfword to signed word 
Halfword to signed byte 
Word to signed byte 
Word to signed halfword 

If the destination is a register, use the following instructions for 
conversions: 

Instruction 

ANDH3 &Oxff,src,{byte}dst 
ANDW3 &Oxff,src,{byte}dst 
MOVW src,dst; MOVH dst,dst 

Conversion 

Halfword to byte 
Word to byte 
Word to halfword 

The instructions 'MOVW -,%psw' and 'MOVW %psw,-' do not 
change the condition flags. 



MOVAW MOVAW 

MOVE ADDRESS (WORD) 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

MOVA W src,dst Move address (word) 

Ox04 MOVAW 

dst = &src 

src all modes except l~teral, register, or immediate 

dst all modes except literal or immediate 

N = MSB of dst 

Z 1, if dst == 0 

c 0 

v 0 

Illegal operand exception occurs if literal, register, or immediate mode 
is used for src, or if literal or immediate mode is used for dst. 

Before: rO I 00 I 00 j 10 I 10 j 

r l I AB I AB I AB I AB I 
= increasing bits 

MOVAW 4(%r0),%rl 

After: ri I oo I oo I io I 14 I 

Source operand type is effective address. 

A-49 



MOVBLW 

MOVE BLOCK 

MOVBLW 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-50 

MOVBL W Move block of words 

Ox3019 MOVBLW 

while (R2 > 0) { 
*Rl = *RO; 
{disable interrupts} 
--R2; 
RO=R0+4; 
Rl=Rl+4; 
{enable interrupts} 

None 

Unchanged 

External memory fault may occur in the middle of an iteration. 

Before: rO I 00 I 00 I 01 I 00 

rt I oo I oo I 02 I oo 

r2 I oo I oo I oo I 03 

=increasing bits 

Assume three word locations starting at OxlOO contain the word values 
Ox5, OxlO and Ox20, respectively. 

MOVBLW 

After: rO I 00 I 00 I 01 I OC I 

r1 I oo I oo I 02 I oc I 

r2 I oo I oo I oo I oo I 



MOVBLW 

Notes 

MOVBLW 

Three word locations starting at Ox200 now also contain Ox5, OxlO and 
Ox20, respectively. 

Opcode occupies 16 bits. All operands are implicitly defined in the 
registers (rO, rl, and r2) and are 32-bit words. These registers must be 
preset with the following information before executing MOVBLW: 

rO Address of source 
r1 Address of destination 
r2 Number of words to be moved. 

The instruction may be interrupted only at the end of an iteration. A 
memory fault may occur in the middle of an iteration. To restart the 
instruction after a fault, execute MOVBLW again; the registers are 
updated after the only memory access that could cause the fault. At 
each iteration, rO and r1 are incremented by 4, and r2 is decremented 
by 1. Execution of MOVBL W is finished when r2 is 0. 



MULB2 
MULH2 
MULW2 

MULTIPLY 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Example 

A-52 

MULB2 src,dst Multiply byte 
MULH2 src,dst Multiply halfword 
MUL W2 src,dst Multiply word 

OxAB MULB2 
OxAA MULH2 
OxA8 MULW2 

dst = dst * src 

src all modes 

dst all modes except literal or immediate 

N = 1, if (dst * src) < 0 

Z = 1, if (dst * src) == 0 

C=O 

V = l, if overflow 

MULB2 
MULH2 
MULW2 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer overflow exception occurs if there is truncation. 

MULBH2 %r2, {sbyte}4 (%r6) 



MULB3 
MULH3 
MULW3 

MULB3 
MULH3 
MULW3 

MULTIPLY, 3 ADDRESS 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

MULB3 srcl ,src2,dst Multiply byte, 3 address 
MULH3 srcl ,src2,dst Multiply halfword, 3 address 
MULW3 srcl,src2,dst Multiply word, 3 address 

OxEB MULB3 
OxEA MULH3 
OxE8 MULW3 

dst = srcl * src2 

srcl all modes 

src2 all modes 

dst all modes except literal or immediate 

N = 1, if (srcl * src2) < 0 

Z = 1, if (srcl * src2) == 0 

C=O 

V = 1, if overflow 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer overflow exception occurs if there is truncation. 

MULH3 %r3,*$0xl004,%r4 



MVERNO MVERNO 

MOVE VERSION NUMBER 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Example 

Note 

A-54 

MVERN 0 Move processor version number 

Ox3009 MVERNO 

rO = processor version number 

None 

Unchanged 

None 

MVERNO 

Opcode occupies 16 bits. Version number is the version of the processor 
and may range from -128 to +127. 



NOP 
NOP2 
NOP3 

NOP 
NOP2 
NOP3 

NO OPERATION 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Notes 

NOP No operation, 1 byte 
NOP2 No operation, 2 bytes 
NOP3 No operation, 3 bytes 

Ox70 NOP 
Ox73 NOP2 
Ox72 NOP3 

None 

None 

Unchanged 

None 

NOP 
NOP2 
NOP3 

The assembler inserts a NOP before instructions (other than branch) 
that read the PSW. This NOP allows the conditions bits to stabilize. 
The bytes following NOP2 and NOP3 are generated by the assembler 
and are ignored by the processor. They may be any value. 



ORB2 
ORH2 
ORW2 

OR 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-56 

ORB2 src,dst OR byte 
ORH2 src,dst OR halfword 
OR W2 src,dst OR word 

OxB3 ORB2 
OxB2 ORH2 
OxBO ORW2 

dst = dstlsrc 

src all modes 

dst all modes except literal or immediate 

N =c MSB of dst 

Z = I, if dst == 0 

c 0 

V 1, if result must be truncated to fit dst size 

ORB2 
ORH2 
ORW2 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

ORB2 & l 2,4(%fp) 
ORH2 %r0,4(%r0) 
OR W2 %r3,$result 



ORB3 
ORH3 
ORW3 

ORB3 
ORH3 
ORW3 

OR, 3 ADDRESS 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

ORB3 srcl ,src2,dst OR byte, 3 address 
ORH3 srcl ,src2,dst OR halfword, 3 address 
OR W3 srcl ,src2,dst OR word, 3 address 

OxF3 ORB3 
OxF2 ORH3 
OxFO ORW3 

dst = src2lsrcl 

srcl all modes 

src2 all modes 

dst all modes except literal or immediate 

N = MSB of dst 

Z = l, if dst == 0 

C=O 

V = 1, if result must be truncated to fit dst size 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

ORB3 &16,*$0x304,%r0 
ORH3 %rl,4(%rl),%rl 
ORW3 %r2,%r3,%rl 



POPW 

POP (WORD) 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Example 

Note 

A-58 

POPW dst Pop (word) 

Ox20 POPW 

dst = *(--SP) 

dst all modes except literal or immediate (see Note) 

N = MSB of dst 

Z = 1, if dst == 0 

c = 0 

V=O 

POPW 

Illegal operand exception occurs if literal, expanded-operand type, or 
immediate mode is used for dst. 

POPW (%r2) 

If dst is the stack pointer (%sp), the results are indeterminate. 



PUSHAW PUSHAW 

PUSH ADDRESS (WORD) 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Example 

Note 

PUSHAW src Push address (word) 

OxEO PUSHAW 

*(SP++) = &src 

src all modes except literal, register, or immediate 

N = MSB of address of src 

Z l, if src == 0 

c 0 

V=O 

Illegal operand exception occurs if literal, register, expanded-operand 
type, or immediate mode is used for src. 

PUSHAW Oxl4(%r6) 

Source operand type is effective address. This instruction is the same as 
a move address (MOVA W) instruction, except that the destination for 
PUSHAW is an implied stack push. 



PUSHW PUSHW 

PUSH (WORD) 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Example 

A-60 

PUSHW src Push (word) 

OxAO PUSHW 

*(SP++) = src 

src all modes 

N = MSB of src 

Z = 1, if src == 0 

C=O 

V=O 

Illegal operand exception occurs if expanded-operand type addressing 
mode is used. 

PUSHW (%r2) 



RCC RCC 

RETURN ON CARRY CLEAR 

Assembler RCC Return on carry clear 
Syntax 

Opcodes Ox50 RCC 

Operation if (C==O) 
PC = *(--SP) 

Address None 
Modes 

Condition Unchanged 
Flags 

Exceptions None 

Examples RCC 



RCS RCS 

RETURN ON CARRY SET 

Assembler RCS Return on carry set 
Syntax 

Opcodes Ox58 RCS 

Operation if (C==l) 
PC = *(--SP) 

Address None 
Modes 

Condition Unchanged 
Flags 

Exceptions None 

Examples RCS 

A-62 



REQL 
REQLU 

RETURN ON EQUAL 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

REQL Return on equal (signed) 
REQLU Return on equal (unsigned) 

Ox7C REQL 
Ox6C REQLU 

if (Z==l) 
PC = *(--SP) 

None 

Unchanged 

None 

REQL 

REQL 
REQLU 



RESTORE RESTORE 

RESTORE REGISTERS 

Assembler 
Syntax · 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Notes 

A-64 

RESTORE %rn Restore registers 

Oxl 8 RESTORE 

tempa = FP - 28; 
tempb = *(FP - 28); 
tempc = FP - 24; 
while (n != FP) { 
{ 

register[n] 
n+==l; 

FP = tempb; 
SP = tempa 

(tempc)+; 

Register mode, where n ranges from 0 through 9 

Unchanged 

See Notes. 

RESTORE %r3 

If the operand is not register mode or n is not in the range 0 through 9, 
the results are indeterminate. Although the results are determinate if n 
is 0, 1 or 2, the effect is not that of a register restore in a function­
calling sequence. 

RESTORE is the inverse of SAVE and should precede a return from 
procedure (RET). (Also see SA VE and CALL.) The operand %rn 
should be the same as in the corresponding SAVE, where n specifies the 
number of registers (9 - n) to be restored for the original function. 

RESTORE implements a stack frame for use in the C language 
function-calling sequence. The instruction can restore up to six registers 
(from register 8 through register 3) for use by the function. While 
restoring these registers, it also adjusts SP and FP. 

Illegal operand exception occurs if expanded-operand type address mode 
is used. 



RET RET 

RETURN FROM PROCEDURE 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

RET Return from procedure 

Ox18 RET 

tempa = AP; 
tempb = *(SP-4); 
tempc = *(SP-8); 
AP = tempb; 
PC = tempc; 
SP = tempa; 

None 

Unchanged 

None 

RET 

The return (RET) is the inverse of the call (CALL) instruction. A 
restore should precede a return (RET) inside the function being exited. 
RESTORE sets up the protocol for a C language return from function. 
RET restores AP, PC, and SP to the values saved on the stack with the 
corresponding CALL. 



RGEQ 

RETURN ON GREATER THAN OR EQUAL (SIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A~66 

RGEQ Return on greater than or equal (signed) 

Ox40 RGEQ 

if ((N==O)l(Z==l)) 
PC = *(--SP) 

None 

Unchanged 

None 

RGEQ 

RGEQ 



RGEQU 

RETURN ON GREATER THAN OR EQUAL (UNSIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

RGEQU Return on greater than or equal (unsigned) 

Ox50 REGEQU 

if (C==O) 
PC = *(--SP) 

None 

Unchanged 

None 

RGEQU 

RGEQU 



RGTR 

~ETURN ON GREATER THAN (SIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Addr~ss 
Modes 

Condition 
Flags 

Exceptions 

Examples 

RGTR Return on greater than (signed) 

Ox44 RGTR 

if ((N & Z)==O) 
PC = *(--SP) 

None 

Unchanged 

None 

RGTR 

RGTR 



RGTRU 

RETURN ON GREATER THAN (UNSIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

RGTRU Return on greater than 

Ox54 RGTRU 

if ((C & Z)==O) 
PC = *(--SP) 

None 

Unchanged 

None 

RGTRU 

RGTRU 

A-69 



RLEQ 

RETURN ON LESS THAN OR EQUAL (SIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-70 

RLEQ Return on less than or equal 

Ox4C RLEQ 

if ((NIZ)==l) 
PC = *(--SP) 

None 

Unchanged 

None 

RLEQ 

RLEQ 



RLEQU 

RETURN ON LESS THAN OR EQUAL (UNSIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

RLEQU Return on less than or equal (unsigned) 

Ox5C RLEQU 

if ((CIZ)==l) 
PC = *(--SP) 

None 

Unchanged 

None 

RLEQU 

RLEQU 



RLSS 

RETURN ON LESS THAN (SIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-72 

RLSS Return on less than (signed) 

Ox48 RLSS 

if ((N==l) &(Z==O)) 
PC = *(--SP) 

None 

Unchanged 

None 

RLSS 

RLSS 



RLSSU 

RETURN ON LESS THAN (UNSIGNED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

RLSSU Return on less than (unsigned) 

Ox58 RLSSU 

if (C==l) 
PC = *(--SP) 

None 

Unchanged 

None 

RLSSU 

RLSSU 

A-73 



RNEQ 
RNEQU 

RETURN ON NOT EQUAL 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-74 

RNEQ Return on not equal (signed) 
RNEQU Return on not equal (unsigned) 

Ox74 RNEQ 
Ox64 RNEQU 

if (Z==O) 
PC = *(--SP) 

None 

Unchanged 

None 

RNEQ 

RNEO 
RNEQlJ 



ROTW 

ROTATE 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

ROTW 

ROTW count,src,dst Rotate word 

OxD8 ROTW 

dst = src rotated right (count & Ox 1 F) bits 

count all modes 

src all modes 

dst all modes except literal or immediate 

N = MSB of dst 

Z = 1, if dst == 0 

c 0 

v 0 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Before: rO I OF I 00 I 00 I 7E I 
= increasing bits 

ROTW &Ox404,%r0,%r0 

After: rO I EO I FO I 00 I 07 I 

All operands are type word. However, only the five low-order bits of 
count are used; the high-order bits are ignored. 



RSB 

RETURN FROM SUBROUTINE 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-76 

RSB Return from subroutine (unconditional) 

Ox78 RSB 

PC = *(--SP) 

None 

Unchanged 

None 

RSB 

RSB 



RVC RVC 

RETURN ON OVERFLOW CLEAR 

Assembler RVC Return on overflow clear 
Syntax 

Opcodes Ox60 RVC 

Operation if (V==O) 
PC = *(--SP) 

Address None 
Modes 

Condition Unchanged 
Flags 

Exceptions None 

Examples RVC 



RVS 

RETURN ON OVERFLOW SET 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-78 

RVS Return on overflow set 

Ox68 RVS 

if (V==l) 
PC = *(--SP) 

None 

Unchanged 

None 

RVS 

RVS 



SAVE SAVE 

SA VE REGISTERS 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Notes 

SA VE %rn Save registers 

OxlO SAVE 

temp = SP 
*(SP++) = FP 
while (n !=FP){ 

*(SP++) registerln] 
n+=l; 

} 
SP =temp + 28; 
FP =SP; 

Register mode, where n ranges from 0 through 9 

Unchanged 

See Notes. 

SAVE %r3 (see Figure 3-9) 

If the operand is not register mode or· n is not in the range 0 to 9, the 
results are indeterminate. However, if n is 0, 1, or 2, the results are 
determinate, but SP and FP will not point beyond the register-save area. 

Temp is a temporary register, and n specifies the number of registers 
(9 - n) to be saved for the calling function. 

SAVE implements a stack frame for use in the C language function­
calling sequence. It should be the first statement in the called function. 
(Also see Restore and Return from Procedure instructions.) SA VE can 
save up to six registers, from register 8 (r8) through register 3 (r3), 
freeing them for the new function. After saving these registers, SA VE 
adjusts SP and FP to point beyond the end of a fixed-size register-save 
area. Figure 3-9 shows the stack after executing 'SAVE %r3'. 

Illegal operand exception occurs if expanded-operand type addressing 
mode is used. 



SPOP 

COPROCESSOR OPERATION (no operands) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note: 

A-80 

SPOP word Coprocessor operation 

Ox32 SPOP 

I* coprocessor operation executes the following 
processor operations *I 

"word" is written out with an access status of 
"coprocessor broadcast" } 
wait for "coprocessor done" } 
a word is written into PSW with an access status of 
"coprocessor status fetch" } 

None valid, word = 32-bit value 

Determined by the coprocessor status. 

External memory fault may occur. 

SPOP OXFFFFFFFF 

Can be used only with computers containing an MAU. 

SPOP 



SPOPRS 
SPOPRD 
SPOPRT 

COPROCESSOR OPERATION READ 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note; 

SPOPRS word,src Coprocessor operation read single 
SPOPRD word,src Coprocessor operation read double 
SPOPPT word,src Coprocessor operation read triple 

Ox22 SPOPRS 
Ox02 SPOPRD 
Ox06 SPOPRT 

/* coprocessor operation read executes the following 
processor operations *I 

"word" is written out with an access status of 
"coprocessor broadcast" } 
"src" is read with an access status of 
"coprocessor data fetch" } 

{ wait for "coprocessor done" } 
{ a word is written into PSW with an access status of 

"coprocessor status fetch" } 

word none valid, 32-bit value 
src all modes except register, literal, or immediate 

Determined by the coprocessor status 

External memory fault may occur. 

SPOPRS OxF379FFFF,*$0xFF37 
SPOPRD OxFFFFFFFF,%r3 
SPOPRT Ox00000000,(%r4) 

Can be used only with computers containing an MAU. 

SPOPRS 
SPOPRD 
SPOPRT 

A-81 



SPOPS2 
SPOPD2 
SPOPT2 

COPROCESSOR OPERATION, 2-ADDRESS 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note: 

A-82 

SPOPS2 word,src,dst Coprocessor operation single, 
2-address 

SPOPD2 word,src,dst Coprocessor operation double, 
2-address 

SPOPT2 word,src,dst Coprocessor operation triple, 
2-address 

Ox23 SPOPWS 
Ox03 SPOPWD 
Ox07 SPOPWT 

I* coprocessor operation executes the following 
processor operations *I 

"word" is written out with an access status of 
"coprocessor broadcast" } 
"src" is read with an access status of "coprocessor 
data fetch" } 

{ wait for "coprocessor done" } 
{ a word is written into PSW with an access status of 

"coprocessor status fetch" } 
{ "dst" is written with an access status of 
<•coprocessor data write" } 

word none valid, 32-bit value 
src all modes except register, literal, or immediate 
dst all modes except register, literal, or immediate 

Determined by the coprocessor status 

External memory fault may occur. 

SPOPS2 OxFF,4(%rO) 
SPOPD2 OxFFF,%r3 
SPOPT2 OxFE, (%r0) 

Can be used only with computers containing an MAU. 

SPOPS2 
SPOPD2 
SPOPT2 



SPOPWS 
SPOPWD 
SPOPWT 

COPROCESSOR OPERATION WRITE 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note: 

SPOPWS word,dst Coprocessor operation write single 
SPOPWD word,dst Coprocessor operation write double 
SPOPWT word,dst Coprocessor operation write triple 

Ox33 SPOPWS 
Oxl3 SPOPWD 
Oxl7 SPOPWT 

I* coprocessor operation write executes the following 
processor operations *I 

{ "word" is written out with an access status of 
"coprocessor broadcast" } 

{ wait for "coprocessor done" } 
{ a word is written into PSW with an access status of 

((coprocessor status fetch" } 
{ "dst" is written with an access status of 

"coprocessor data write" } 

word none valid, 32-bit value 
dst all modes except register, literal, or immediate 

Determined by the coprocessor status. 

External memory fault may occur. 

SPOPWS Ox00,%r0 
SPOPWD . OxOF,(%rl) 
SPOPWT Ox1000,4(%r2) 

Can be used only with computers containing an MAU. 

SPOPSW 
SPOPWD 
SPOPWT 



STRCPY STRCPY 

STRING COPY 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-84 

STRCPY String copy 

Ox3035 STRCPY 

while ( (*rl = *rO) !=O){ 
{disable interrupts} 
rO++; 
rl++; 
{enable interrupts} 

None 

Unchanged 

External memory fault may occur in the middle of an iteration. 

Before: rO I 00 I 00 I 01 I 00 I 

r 1 I oo I oo I 4o I oo I 
= increasing bits 

The byte locations starting at Ox 100 contain the values OxO 1, Ox24, 
OxE6, Ox7F, Oxl 1, and OxOO (location Ox105). 

STRCPY 

After: rO I 00 I 00 I 01 I 05 I 

rt I oo I oo I 4o I 05 I 

The byte locations from Ox4000 through Ox4005 now contain the same 
values as locations OxlOO through Ox105. 



STRCPY 

Notes 

STRCPY 

Opcode occupies 16 bits. All operands are defined implicitly in the 
registers, rO and r 1, that function as byte pointers. These registers must 
be preset with the following information before executing STRCPY: 

rO Address of source string 
rl Address of destination string 

STRCPY implements the string-copy function commonly used in C 
language. The instruction may be interrupted only at the end of an 
iteration. A memory fault may occur in the middle of an iteration. To 
restart the instruction after a fault, execute STRCPY again; the 
registers are updated after the only memory access that could cause the 
fault. The assignment is a byte move and both RO and Rl are 
incremented by 1 at each iteration. Execution of STRCPY is finished 
when a null (zero) byte is reached. The null byte is always copied. 



STREND 

STRING END 

Assembler 
Syntax 

Opcode 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Notes 

A-86 

STREND String end 

Ox301 F STREND 

while (*rO !=O) { 
rO++; 

None 

Unchanged 

STREND 

External memory fault may occur in the middle of an iteration. 

Before: rO I 00 I 00 I 04 I 00 I 
= increasing bits 

The byte locations Ox400 through Ox404 contain the values Ox44, Ox55, 
OxOl, Ox22, OxOO, respectively. 

STREND 

After: rO I 00 I 00 I 04 I 04 I 

Opcode occupies 16 bits. The operand is defined implicitly in the 
register rO, a byte pointer that must be preset with the starting address 
of the source C language string. STREND moves the pointer to the 
end of the string and could be used as part of a string-length or string­
concatenation function. The instruction may be interrupted at any time. 
A memory fault may occur in the middle of an iteration. To restart the 
instruction after a fault, execute STREND again; the register is 
updated after the only instruction that could cause the fault. Each 
iteration tests a byte and increments the pointer rO by l. Execution of 
STREND terminates when a null (zero) byte is found; rO will be left 
with the address of the null byte. 



SUBB2 
SUBH2 
SUBW2 

SUBTRACT 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

SUBB2 src,dst Subtract byte 
SUBH2 src,dst Subtract halfword 
SUBW2 src,dst Subtract word 

OxBF SUBB2 
OxBE SUBH2 
OxBC SUBW2 

dst = dst - src 

src all modes 

dst all modes except literal or immediate 

N = 1, if (dst - src) < 0 

Z = 1, if (dst - src) == 0 

C = 1, if borrow from sign bit of dst 

V = 1, if overflow 

SUBB2 
SUBH2 
SUBW2 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer overflow exception occurs if there is truncation. 

SUBB2 %r6,*$0x30(%r2) 
SUBH2 %r0,$resulth 
SUBW2 %r3,$resultw 

A-87 



SUBB3 
SUBH3 
SUBW3 

SUBB3 
SUBH3 
SUBW3 

SUBTRACT, 3 ADDRESS 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-88 

SUBB3 srcl ,src2,dst Subtract byte, 3 address 
SUBH3 srcl ,src2,dst Subtract halfword, 3 address 
SUBW3 srcl ,src2,dst Subtract word, 3 address 

OxFF SUBB3 
OxFE SUBH3· 
OxFC SUBW3 

dst = src2 - srcl 

srcl all modes 

src2 all modes 

dst all modes except literal or immediate 

N = I, if (src2 - srcl) < 0 

Z l, if (src2 - srcl) == 0 

C 1, if carry out of sign bit of dst 

V l, if overflow 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

Integer overflow exception occurs if there is truncation. 

SUBB3 %r3,*$0xl005,%r2 
SUBH3 %rl,%r3,%r0 
SUBW3 $Nl,$N2,$result 



SWAPBI 
SWAPHI 
SWAPWI 

SWAPBI 
SWAPHI 
SWAPWI 

SW AP (INTERLOCKED) 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

SW APBI dst Swap byte (interlocked) 
SW APHI dst Swap halfword (interlocked) 
SW APWI dst Swap word (interlocked) 

OxlF SWAPBI 
OxlE SWAPHI 
OxlC SWAPWI 

{set interlock} 
tempa = dst 
dst = rO 
rO = tempa 

dst all modes except register, literal, or immediate 

N = MSB of rO 

Z = 1, if rO == 0 

C=O 

V=O 

Illegal operand exception occurs if register, literal, expanded-operand 
type, or immediate mode is used for dst. 

The swap instruction can manipulate interlocks for multiprocessors. 
Suppose location A is the interlock for a critical section of code and a 
nonzero means the lock is busy. Then, the following instructions 
provide a busy-waiting loop: 

MOVW &l,%r0 
Ll: SWAPWI A 

BNEB Ll 

Final value of rO sets the condition codes. The SAS code is read 
interlocked (7) for both the read and write bus transactions. 



TSTB 
TSTH 
TSTW 

TEST 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

Note 

A-90 

TSTB src Test byte 
TSTH src Test halfword 
TSTW src Test word 

Ox2B TSTB 
Ox2A TSTH 
Ox28 TSTW 

temp= src-0 

src all modes 

N = l, if src < 0 (signed) 

Z 1, if src == 0 

c 0 

V=O 

None 

TSTH 14(%r2) 

TSTB 
TSTH 
TSTW 

This instruction only sets condition codes. Its action is the same as a 
compare instruction, where the first operand is zero, such as: 

CMPB &O,src2 

However, test is faster because it is one byte shorter. 



XORB2 
XORH2 
XORW2 

XORB2 
XORH2 
XORW2 

EXCLUSIVE OR 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

XORB2 src,dst Exclusive OR byte 
XORH2 src,dst Exclusive OR halfword 
XOR W2 src,dst Exclusive OR word 

OxB7 XORB2 
OxB6 XORH2 
OxB4 XORW2: 

dst = dst ~ src 

src all modes 

dst all modes except literal or immediate 

N = MSB of dst 

Z = 1, if dst == 0 

C=O 

V = 1, if result must be truncated to fit dst size 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

XORB2 &40,4(%r4) 
XORH2 %rl,$result 
XORW2 4(%rl),$result 



XORB3 
XORH3 
XORW3 

XORB3 
XORH3 
XORW3 

EXCLUSIVE OR, 3 ADDRESS 

Assembler 
Syntax 

Opcodes 

Operation 

Address 
Modes 

Condition 
Flags 

Exceptions 

Examples 

A-92 

XORB3 srcl ,src2,dst Exclusive OR byte, 3 address 
XORH3 srcl ,src2,dst Exclusive OR halfword, 3 address 
XOR W3 srcl ,src2,dst Exclusive OR word, 3 address 

OxF7 XORB3 
OxF6 XORH3 
OxF4 XORW3 

dst = src2 ~ srcl 

srcl all modes 

src2 all modes 

dst all modes except literal or immediate 

N = MSB of dst 

Z = l, if dst == 0 

C=O 

V = 1, if result must be truncated to fit dst size 

Illegal operand exception occurs if literal or immediate mode is used for 
dst. 

XORB3 &4,*12(%r3),*$0x400 
XORH3 %rl,4(%rl),%r0 
XORW3 %r0,%rl,%r3 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Function 

A.3 INSTRUCTION SET SUMMARY BY FUNCTION 

Table A-3. Data Transfer Instruction Group 

Instruction Mnemonic Opcode 

Move: 
Move byte MOVB Ox87 
Move half word MOVH Ox86 
Move word MOVW Ox84 
Move address (word) MOVAW Ox04 

Move complemented byte MCOMB Ox8B 
Move complemented halfword MCOMH Ox8A 
Move complemented word MCOMW Ox88 
Move negated byte MNEGB Ox8F 
Move negated halfword MNEGH Ox8E 
Move negated word MNEGW Ox SC 

Move version number MVERNO Ox3009 
Swap Onterlocked): 
Swap byte interlocked SWAPBI OxlF 
Swap halfword interlocked SWAPHI OxlE 
Swap word interlocked SWAPWI OxlC 
Block Operations: 
Move block of words MOVBLW Ox3019 
Field Operations: 
Extract field byte EXTFB Ox CF 
Extract field halfword EXTFH Ox CE 
Extract field word EXTFW Ox CC 
Insert field byte INSFB Ox CB 
Insert field halfword INSFH Ox CA 
Insert field word INSFW Ox CS 
String Operations: 
String copy STRCPY Ox3035 
String end STREND Ox301F 

Table A-4. Arithmetic Instruction Group 
Instruction Mnemonic Opcode 

Add: 
Add byte ADDB2 Ox9F 
Add halfword ADDH2 Ox9E 
Add word ADDW2 Ox9C 
Add byte, 3-address ADDB3 OxDF 
Add halfword, 3-address ADDH3 OxDE 
Add word, 3-address ADDW3 Ox DC 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Function 

Table A-4. Arithmetic Instruction Group (Continued) 
Instruction Mnemonic Opcode 

Subtract: 
Subtract byte SUBB2 OxBF 
Subtract halfword SUBH2 OxBE 
Subtract word SUBW2 Ox BC 

Subtract byte, 3-address SUBB3 Ox FF 
Subtract halfword, 3-address SUBH3 Ox FE 
Subtract word, 3-address SUBW3 OxFC 
Increment: 
Increment byte INCB Ox93 
Increment halfword INCH Ox92 
Increment word INCW Ox90 
Decrement: 
Decrement byte DECB Ox97 
Decrement half word DECH Ox96 
Decrement word DECW Ox94 
Multiply: 
Multiply byte MULB2 Ox AB 
Multiply halfword MULH2 OxAA 
Multiply word MULW2 OxA8 
Multiply byte, 3-address MULB3 Ox EB 
Multiply halfword, 3-address MULH3 Ox EA 
Multiply word, 3-address MULW3 OxE8 
Divide: 
Divide byte DIVB2 OxAF 
Divide half word DIVH2 OxAE 
Divide word DIVW2 OxAC 
Divide byte, 3-address DIVB3 OxEF 
Divide half word, 3-address DIVH3 Ox EE 
Divide word, 3-address DIVW3 OxEC 
Modulo: 
Modulo byte MODB2 OxA7 
Modulo half word MODH2 OxA6 
Modulo word MODW2 OxA4 
Modulo byte, 3-address MODB3 OxE7 
Modulo halfword, 3-address MODH3 OxE6 
Modulo word, 3-address MODW3 OxE4 
Arithmetic Shift: 
Arithmetic left shift word ALSW3 Ox CO 
Arithmetic right shift byte ARSB3 OxC7 
Arithmetic right shift halfword ARSH3 OxC6 
Arithmetic right shift word ARSW3 OxC4 

A-94 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Function 

Table A-5. Logical Instruction Group 

Instruction Mnemonic Opcode 

AND: 
AND byte ANDB2 OxBB 
AND halfword ANDH2 OxBA 
AND word ANDW2 OxB8 

AND byte, 3-address ANDB3 OxFB 
AND half word, 3-address ANDH3 OxFA 
AND word, 3-address ANDW3 OxF8 
Exclusive OR (XOR): 
Exclusive OR byte XORB2 OxB7 
Exclusive OR halfword XORH2 OxB6 
Exclusive OR word XORW2 OxB4 

Exclusive OR byte, 3-address XORB3 OxF7 
Exclusive OR halfword, 3-address XORH3 OxF6 
Exclusive OR word, 3-address XORW3 OxF4 

OR: 
OR byte ORB2 OxB3 
'OR halfword ORH2 OxB2 
OR word ORW2 Ox BO 

OR byte, 3-address ORB3 OxF3 
OR halfword, 3-address ORH2 OxF2 
OR word, 3-address ORW3 OxFO 
Compare or Test: 
Compare byte CMPB Ox3F 
Compare halfword CMPH Ox3E 
Compare word CMPW Ox3C 
Test byte TSTB Ox2B 
Test halfword TSTH Ox2A 
Test word TSTW Ox28 
Bit test byte BITB Ox3B 
Bit test halfword BITH Ox3A 
Bit test word BITW Ox38 
Clear: 
Clear byte CLRB Ox83 
Clear halfword CLRH Ox82 
Clear word CLRW Ox80 
Rotate or Logical Shift: 
Rotate word ROTW OxD8 
Logical left shift byte LLSB3 OxD3 
Logical left shift halfword LLSH3 OxD2 
Logical left shift word LLSW3 Ox DO 
Logical right shift word LRSW3 OxD4 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Function 

Table A-6. Program Control Instruction Group 

Instruction Mnemonic 

Unconditional Transfer: 
Branch with byte (8-bit) displacement BRB 
Branch with halfword (16-bit) displacement BRH 
Jump JMP 
Conditional Transfers: 
Branch on carry clear byte BCCB 
Branch on carry clear halfword BCCH 
Branch on carry set byte BCSB 
Branch on carry set halfword BCSH 
Branch on overflow clear, byte displacement BVCB 
Branch on overflow clear, halfword displacement BVCH 
Branch on overflow set, byte displacement BVSB 
Branch on overflow set, halfword displacement BVSH 
Branch on equal byte (duplicate) BEB 
Branch on equal byte BEB 
Branch on equal halfword (duplicate) BEH 
Branch on equal halfword BEH 
Branch on not equal byte (duplicate) BNEB 
Branch on not equal byte BNEB 
Branch on not equal halfword (duplicate) BNEH 
Branch on not equal halfword BNEH 
Branch on less than byte (signed) BLB 
Branch on less than halfword (signed) BLH 
Branch on less than byte (unsigned) BLUB 
Branch on less than halfword (unsigned) BLUH 
Branch on less than or equal byte (signed) BLEB 
Branch on less than or equal halfword (signed) BLEH 
Branch on less than or equal byte (unsigned) BLEUB 
Branch on less than or equal halfword (unsigned) BLEUH 
Branch on greater than byte (signed) BGB 
Branch on greater than halfword (signed) BGH 
Branch on greater than byte (unsigned) BGUB 
Branch on greater than halfword (unsigned) BGUH 
Branch on greater than or equal byte (signed) BGEB 
Branch on greater than or equal halfword (signed) BGEH 
Branch on greater than or equal byte (unsigned) BGEUB 
Branch on greater than or equal halfword (unsigned) BGEUH 

Opcode 

Ox7B 
Ox7A 
Ox24 

Ox53* 
Ox52* 
Ox5B 
Ox5A* 
Ox63 
Ox62 
Ox6B 
Ox6A 
Ox6F 
Ox7F 
Ox6E 
Ox7E 
Ox67 
Ox77 
Ox66 
Ox76 
Ox4B 
Ox4A 
Ox5B* 
Ox5A* 
Ox4F 
Ox4E 
Ox5F 
Ox5E 
Ox47 
Ox46 
Ox57 
Ox56 
Ox43 
Ox42 
Ox53* 
Ox52* 

* Indicates that opcode matches another instruction mnemonic with the same 
operation. 

A-96 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Function 

Table A-6. Program Control Instruction Group (Continued) 
Instruction Mnemonic Opcode 

Conditional Transfers (Continued): 
Return on carry clear RCC Ox50* 
Return on carry set RCS Ox58* 

Return on overflow clear RVC Ox60 
Return on overflow set RVS Ox68 

Return on equal (unsigned) REQLU Ox6C 
Return on equal (signed) REQL Ox7C 
Return on not equal (unsigned) RNEQU Ox64 
Return on not equal (signed) RNEQ Ox74 
Return on less than (signed) RLSS Ox48 
Return on less than (unsigned) RLSSU Ox58* 
Return on less than or equal (signed) RLEQ Ox4C 
Return on less than or equal (unsigned) RLEQU Ox5C 
Return on greater than (signed) RGTR Ox44 
Return on greater than (unsigned) RGTRU Ox54 
Return on greater than or equal (signed) RGEQ Ox40 
Return on greater than or equal (unsigned) RGEQU Ox SO* 
Subroutine Transfer: 
Branch to subroutine, byte displacement BSBB Ox37 
Branch to subroutine, halfword displacement BSBH Ox36 
Jump to subroutine JSB Ox34 
Return from subroutine RSB Ox78 
Procedure Transfer: 
Save registers SAVE OxlO 
Restore registers RESTORE Ox18 
Call procedure CALL Ox2C 
Return from procedure RET Ox08 

* Indicates that opcode matches another instruction mnemonic with the same 
operation. 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Function 

Table A-7. Coprocessor Instructions 
Instruction Mnemonic 

Coprocessor operation SPOP 
Coprocessor operation read single SPOPRS 
Coprocessor operation read double SPOPRD 
Coprocessor operation read triple SPOPRT 
Coprocessor operation single 2-address SPOPS2 
Coprocessor operation double 2-address SPOPD2 
Coprocessor operation triple 2-address SPOPT2 
Coprocessor operation write single SPOPWS 
Coprocessor operation write double SPOPWD 
Coprocessor operation write triple SPOPWT 

Opcode 
Ox32 
Ox22 
Ox02 
Ox06 
Ox23 
Ox03 
Ox07 
Ox33 
Ox13 
Ox17 

Note: Can be used only with computers containing a MAU. 

Table A-8. Stack and Miscellaneous Instructions 
Instruction Mnemonic Opcode 

Stack Operations: 
Push address word PUSHAW OxEO 
Push word PUSHW OxAO 
Pop word POPW Ox20 
Miscellaneous: 
No operation, 1 byte NOP Ox70 
No operation, 2 bytes NOP2 Ox73 
No operation, 3 bytes NOP3 Ox72 
Breakpoint trap BPT Ox2E 
Extended opcode EXTOP Ox14 
Cache flush CFLUSH Ox27 

A-98 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Mnemonic 

A.4 INSTRUCTION SET SUMMARY BY MNEMONIC 

Table A-9. Instruction Set Summary by Mnemonic 

Mnemonic Opcode Instruction 

ADDB2 Ox9F Add byte 
ADDB3 OxDF Add byte, 3-address 
ADDH2 Ox9E Add half word 
ADDH3 OxDE Add halfword, 3-address 
ADDW2 Ox9C Add word 
ADDW3 OxDC Add word, 3-address 

ALSW3 Ox CO Arithmetic left shift word 

ANDB2 OxBB AND byte 
ANDB3 OxFB AND byte, 3-address 
ANDH2 OxBA AND halfword 
ANDH3 OxFA AND halfword, 3-address 
ANDW2 OxB8 AND word 
ANDW3 OxF8 AND word, 3-address 
ARSB3 OxC7 Arithmetic right shift byte 
ARSH3 OxC6 Arithmetic right shift halfword 
ARSW3 OxC4 Arithmetic right shift word 
BCCB Ox53* Branch ·on carry clear byte 
BCCH Ox52* Branch on carry clear halfword 
BCSB Ox5B* Branch on carry set byte 
BCSH Ox5A* Branch on carry set halfword 
BEB Ox6F Branch on equal byte (duplicate) 
BEB Ox7F Branch on equal byte 
BEH Ox6E Branch on equal halfword (duplicate) 
BEH Ox7E Branch on equal halfword 
BGB Ox47 Branch on greater than byte (signed) 
BGEB Ox43 Branch on greater than or equal byte (signed) 
BGEH Ox42 Branch on greater than or equal halfword (signed) 
BGEUB Ox53* Branch on greater than or equal byte (unsigned) 
BGEUH Ox52* Branch on greater than or equal halfword (unsigned) 
BGH Ox46 Branch on greater than halfword (signed) 
BGUB Ox57 Branch on greater than byte (unsigned) 
BGUH Ox56 Branch on greater than halfword (unsigned) 
BITB Ox3B Bit test byte 
BITH Ox3A Bit test halfword 
BITW Ox38 Bit test word 
BLB Ox4B Branch on less than byte (signed) 
BLEB Ox4F Branch on less than or equal byte (signed) 
BLEH Ox4E Branch on less than or equal halfword (signed) 

* Indicates that opcode matches another instruction mnemonic with the same operation. 

A-99 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Mnemonic 

Table A-9. Instruction Set Summary by Mnemonic (Continued) 

Mnemonic Opcode Instruction 

BLEUB Ox5F Branch on less than or equal byte (unsigned) 
BLEUH Ox5E Branch on less than or equal halfword (unsigned) 
BLH Ox4A Branch on less than halfword (signed) 
BLUB Ox5B* Branch on less than byte (unsigned) 
BLUH Ox5A* Branch on less than halfword (unsigned) 

BNEB Ox67 Branch on not equal byte (duplicate) 
BNEB Ox77 Branch on not equal byte 
BNEH Ox66 Branch on not equal halfword (duplicate) 
BNEH Ox76 Branch on not equal halfword 

BPT Ox2E Breakpoint trap 

BRB Ox7B Branch with byte (8-bit) displacement 
BRH Ox7A Branch with halfword (16-bit) displacement 

BSBB Ox37 Branch to subroutine, byte displacement 
BSBH Ox36 Branch to subroutine, halfword displacement 

BVCB Ox63 Branch on overflow clear, byte displacement 
BVCH Ox62 Branch on overflow clear, halfword displacement 
BVSB Ox6B Branch on overflow set, byte displacement 
BVSH Ox6A Branch on overflow set, halfword displacement 

CALL Ox2C Call procedure 
CFLUSH Ox27 Cache flush 

CLRB Ox83 Clear byte 
CLRH Ox82 Clear halfword 
CLRW Ox80 Clear word 

CMPB Ox3F Compare byte 
CMPH Ox3E Compare halfword 
CMPW Ox3C Compare word 

DECB Ox97 Decrement byte 
DECH Ox96 Decrement halfword 
DECW Ox94 Decrement word 

DIVB2 OxAF Divide byte 
DIVB3 OxEF Divide byte 3-address 
DIVH2 OxAE Divide halfword 
DIVH3 Ox EE Divide halfword, 3-address 
DIVW2 OxAC Divide word 
DIVW3 Ox EC Divide word, 3-address 

EXTFB Ox CF Extract field byte 
EXTFH Ox CE Extract field halfword 
EXTFW Ox CC Extract field word 

EXTOP Ox14 Extended opcode 

* Indicates that opcode matches another instruction mnemonic with the same operation. 

A-100 



Table A-9. 
Mnemonic 
INCB 
INCH 
INCW 
INSFB 
INSFH 
INSFW 

JMP 
JSB 
LLSB3 
LLSH3 
LLSW3 
LRSW3 
MCOMB 
MCOMH 
MCOMW 
MNEGB 
MNEGH 
MNEGW 
MODB2 
MODB3 
MODH2 
MODH3 
MODW2 
MODW3 
MOVAW 
MOVB 
MOVBLW 
MOVH 
MOVW 
MULB2 
MULB3 
MULH2 
MULH3 
MULW2 
MULW3 
MVERNO 
NOP 
NOP2 
NOP3 
ORB2 
ORB3 
ORH2 
ORH3 
ORW2 
ORW3 

WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Mnemonic 

Instruction Set Summary by Mnemonic (Continued) 

Opcode Instruction 

Ox93 Increment byte 
Ox92 Increment halfword 
Ox90 Increment word 

Ox CB Insert field byte 
Ox CA Insert field halfword 
OxC8 Insert field word 

Ox24 Jump 
Ox34 Jump to subroutine 

OxD3 Logical left shift byte 
OxD2 Logical left shift half word 
Ox DO Logical left shift word 
OxD4 Logical right shift word 
Ox8B Move complemented byte 
Ox8A Move complemented halfword 
Ox88 Move complemented word 
Ox8F Move negated byte 
Ox8E Move negated halfword 
Ox8C Move negated word 
OxA7 Modulo byte 
OxE7 Modulo byte, 3-address 
OxA6 Modulo halfword 
OxE6 Modulo halfword, 3-address 
OxA4 Modulo word 
OxE4 Modulo word, 3-address 
Ox04 Move address (word) 
Ox87 Move byte 
Ox3019 Move block of words 
Ox86 Move half word 
Ox84 Move word 
OxAB Multiply byte 
OxEB Multiply byte, 3-address 
Ox AA Multiply halfword 
Ox EA Multiply halfword, 3-address 
OxA8 Multiply word 
OxE8 Multiply word, 3-address 
Ox3009 Move version number 
Ox70 No operation, l byte 
Ox73 No operation, 2 bytes 
Ox72 No operation, 3 bytes 
OxB3 OR byte 
OxF3 OR byte, 3-address 
OxB2 OR halfword 
OxF2 OR halfword, 3-address 
Ox BO OR word 
OxFO OR word, 3-address 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Mnemonic 

Table A-9. Instruction Set Summary by Mnemonic (Continued) 

Mnemonic Opcode Instruction 

POPW Ox20 Pop word 

PUSHAW OxEO Push address word 
PUSHW OxAO Push word 

RCC Ox50* Return on carry clear 
RCS Ox58* Return on carry set 

REQLU Ox6C Return on equal (unsigned) 
REQL Ox7C Return on equal (signed) 
RESTORE Ox18 Restore registers 
RET Ox08 Return from procedure 

RGEQ Ox40 Return on greater than or equal (signed) 
RGEQU Ox50* Return on greater than or equal (unsigned) 
RGTR Ox44 Return on greater than (signed) 
RGTRU Ox54 Return on greater than (unsigned) 

RLEQ Ox4C Return on less than or equal (signed) 
RLEQU Ox5C Return on less than or equal (unsigned) 
RLSS Ox48 Return on less than (signed) 
RLSSU Ox58* Return on less than (unsigned) 

RNEQU Ox64 Return on not equal (unsigned) 
RNEQ Ox74 Return on not equal (signed) 

ROTW OxD8 Rotate word 

RSB Ox78 Return from subroutine 
RVC Ox60 Return on overflow clear 
RVS Ox68 Return on overflow set 
SAVE OxlO Save registers 
SPOP Ox32 Coprocessor operation 
SPOPRS Ox22 Coprocessor operation read single 

SPOPRD Ox02 Coprocessor operation read double 
SPOPRT Ox06 Coprocessor operation read triple 
SPOPS2 Ox23 Coprocessor operation single 2-address 
SPOPD2 Ox03 Coprocessor operation double 2-address 
SPOPT2 Ox07 Coprocessor operation triple 2-address 
SPOPWS Ox33 Coprocessor operation write single 
SPOPWD Oxl3 Coprocessor operation write double 
SPOPWT Ox17 Coprocessor operation write triple 
STRCPY Ox3035 String copy 
STREND Ox301F String end 

* Indicates that opcode matches another instruction mnemonic with the same operation. 

A-102 



Table A~9. 
Mnemonic 
SUBB2 
SUBB3 
SUBH2 
SUBH3 
SUBW2 
SUBW3 
SWAPBI 
SWAPHI 
SWAPWI 
TSTB 
TSTH 
TSTW 
XORB2 
XORB3 
XORH2 
XORH3 
XORW2 
XORW3 

WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Mnemonic 

Instruction Set Summary by Mnemonic (Continued) 
Opcode Instruction 
OxBF Subtract byte 
Ox FF Subtract byte, 3-address 
OxBE Subtract half word 
Ox FE Subtract halfword, 3-address 
Ox BC Subtract word 
OxFC Subtract word, 3-address 
OxlF Swap byte interlocked 
OxlE Swap halfword interlocked 
OxlC Swap word interlocked 
Ox2B Test byte 
Ox2A Test halfword 
Ox28 Test word 
OxB7 Exclusive OR byte 
OxF7 Exclusive OR byte, 3-address 
OxB6 Exclusive OR halfword 
OxF6 Exclusive OR halfword, 3-address 
OxB4 Exclusive OR word 
OxF4 Exclusive OR word, 3-address 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Opcode 

A.5 Instruction Set Summary by Opcode 

Table A-10. Instruction Set Summary by Opcode 

Mnemonic Opcode Instruction 
SPOPRD Ox02 Coprocessor operation read double 
SPOPD2 Ox03 Coprocessor operation double, 2-address 
MOVAW Ox04 Move address (word) 
SPOPRT Ox06 Coprocessor operation read triple 
SPOPT2 Ox07 Coprocessor operation triple, 2-address 
RET Ox08 Return from procedure 
SAVE OxlO Save registers 
SPOPWD Ox13 Coprocessor operation write double 
EXTOP Ox14 Extended opcode 
SPOPWT Ox17 Coprocessor operation write triple 
RESTORE Ox18 Restore registers 
SWAPWI OxlC Swap word interlocked 
SWAPHI OxlE Swap halfword interlocked 
SWAPBI OxlF Swap byte interlocked 
POPW Ox20 Pop word 
SPOPRS Ox22 Coprocessor operation read single 
SPOPS2 Ox23 Coprocessor operation single, 2-address 
JMP Ox24 Jump 
CFLUSH Ox27 Cache flush 
TSTW Ox28 Test word 
TSTH Ox2A Test halfword 
TSTB Ox2B Test byte 
CALL Ox2C Call procedure 
BPT Ox2E Breakpoint trap 
MVERNO Ox3009 Move version number 
MOVBLW Ox3019 Move block of words 
STREND Ox301F String end 
STRCPY Ox3035 String copy 

A-104 



Table A-10. 
Mnemonic Opcode 

SPOP Ox32 
SPOPWS Ox33 
JSB Ox34 
BSBH Ox36 
BSBB Ox37 
BITW Ox38 
BITH Ox3A 
BITB Ox3B 
CMPW Ox3C 
CMPH 9x3E 
CMPB Ox3F 

RGEQ Ox40 
BGEH Ox42 
BGEB Ox43 
RGTR Ox44 
BGH Ox46 
BGB Ox47 
RLSS Ox48 
BLH Ox4A 
BLB Ox4B 
RLEQ Ox4C 
BLEH Ox4E 
BLEB Ox4F 
RCC Ox SO* 
RGEQU Ox SO* 
BCCH Ox52* 
BGEUH Ox52* 
BCCB Ox53* 
BGEUB Ox53* 
RGTRU Ox54 
BGUH Ox56 
BGUB Ox57 
RCS Ox58* 
RLSSU Ox58* 
BCSH OxSA* 
BLUH OxSA* 
BCSB OxSB* 
BLUB OxSB* 
RLEQU Ox SC 
BLEUH Ox SE 
BLEUB Ox SF 

WE 32100 MICROPROCFSSOR INSTRUCTION SET 
Instruction Set Summary by Opcode 

Instruction Set Summary by Opcode (Continued) 
Instruction 

Coprocessor operation 
Coprocessor operation write single 
Jump to subroutine 
Branch to subroutine, halfword displacement 
Branch to subroutine, byte displacement 
Bit test word 
Bit test halfword 
Bit test byte 
Compare word 
Compare halfword 
Compare byte 
Return on greater than or equal (signed) 
Branch on greater than or equal halfword (signed) 
Branch on greater than or equal byte (signed) 
Return on greater than (signed) 
Branch on greater than halfword (signed) 
Branch on greater than byte (signed) 
Return on less than (signed) 
Branch on less than half word (signed) 
Branch on less than byte (signed) 
Return on less than or equal (signed) 
Branch on less than or equal halfword (signed) 
Ranch on less than or equal byte (signed) 
Return on carry clear 
Return on greater than or equal (unsigned) 
Branch on carry clear halfword 
Branch on greater than or equal halfword (unsigned) 
Branch on carry clear byte 
Branch on greater than or equal byte (unsigned) 
Return on greater than (unsigned) 
Branch on greater than halfword (unsigned) 
Branch on greater than byte (unsigned) 
Return on carry set 
Return on less than (unsigned) 
Branch on carry set half word 
Branch on less than halfword (unsigned) 
Branch on carry set byte 
Branch on less than byte (unsigned) 
Return on less than or equal (unsigned) 
Branch on less than or equal halfword (unsigned) 
Branch on less than or equal byte (unsigned) 

* Indicates that opcode matches another instruction mnemonic with the same operation. 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Opcode 

Table A-10. Instruction Set Summary by Opcode (Continued) 
Mnemonic Opcode Instruction 
RVC Ox60 Return on overflow clear 
BVCH Ox62 Branch on overflow clear, halfword displacement 
BVCB Ox63 Branch on overflow clear, byte displacement 
RNEQU Ox64 Return on not equal (unsigned) 
BNEH Ox66 Branch on not equal halfword (duplicate) 
BNEB Ox67 Branch on not equal byte (duplicate) 
RVS Ox68 Return on overflow set 
BVSH Ox6A Branch on overflow set, halfword displacement 
BVSB Ox6B Branch on overflow set, byte displacement 
REQLU Ox6C Return on equal (unsigned) 
BEH Ox6E Branch on equal halfword (duplicate) 
BEB Ox6F Branch on equal byte (duplicate) 
NOP Ox70 No operation, 1 byte 
NOP3 Ox72 No operation, 3 bytes 
NOP2 Ox73 No operation, 2 bytes 
RNEQ Ox74 Return on not equal (signed) 
BNEH Ox76 Branch on not equal halfword 
BNEB Ox77 Branch on not equal 
RSB Ox78 Return from subroutine 
BRH Ox7A Branch with halfword (16-bit) displacement 
BRH Ox7B Branch with byte (8-bit) displacement 
REQL Ox7C Return on equal (signed) 
BEH Ox7E Branch on equal halfword 
BEB Ox7F Branch on equal byte 
CLRW Ox80 Clear word 
CLRH Ox82 Clear half word 
CLRB Ox83 Clear byte 
MOVW Ox84 Move word 
MOVH Ox86 Move halfword 
MOVB Ox87 Move byte 
MCOMW Ox88 Move complemented word 
MCOMH Ox8A Move complemented halfword 
MCOMB Ox8B Move complemented byte 
MNEGW Ox8C Move negated word 
MNEGH Ox8E Move negated halfword 
MNEGB Ox8F Move negated byte 
INCW Ox90 Increment word 
INCH Ox92 Increment halfword 
INCB Ox93 Increment byte 
DECW Ox94 Decrement word 
DECH Ox96 Decrement halfword 
DECB Ox97 Decrement byte 
ADDW2 Ox9C Add word 
ADDH2 Ox9E Add half word 
ADDB2 Ox9F Add byte 

A-106 



Table A-10. 
Mnemonic 
PUSHW 
MODW2 
MODH2 
MODB2 
MULW2 
MULH2 
MULB2 
DIVW2 
DIVH2 
DIVB2 

ORW2 
ORH2 
ORB2 
XORW2 
XORH2 
XORB2 
ANDW2 
ANDH2 
ANDB2 
SUBW2 
SUBH2 
SUBB2 
ALSW3 
ARSW3 
ARSH3 
ARSB3 
INSFW 
INSFH 
INSFB 
EXTFW 
EXTFH 
EXTFB 
LLSW3 
LLSH3 
LLSB3 
LRSW3 
ROTW 
ADDW3 
ADDH3 
ADDB3 

WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Opcode 

Instruction Set Summary by Opcode (Continued) 
Opcode Instruction 
OxAO Push word 
OxA4 Modulo word 
OxA6 Modulo halfword 
OxA7 Modulo byte 
OxA8 Multiply word 
OxAA Multiply halfword 
Ox AB Multiply byte 
OxAC Divide word 
OxAE Divide halfword 
Ox AF Divide byte 

Ox BO OR word 
OxB2 OR halfword 
OxB3 OR byte 
OxB4 Exclusive OR word 
OxB6 Exclusive OR halfword 
OxB7 Exclusive OR byte 
OxB8 AND word 
Ox BA AND halfword 
Ox BB AND byte 
Ox BC Subtract word 
OxBE Subtract halfword 
Ox BF Subtract byte 
Ox CO Arithmetic left shift word 
OxC4 Arithmetic right shift word 
OxC6 Arithmetic right shift halfword 
OxC7 Arithmetic right shift byte 
OxC8 Insert field word 
Ox CA Insert field half word 
Ox CB Insert field byte 
Ox CC Extract field word 
Ox CE Extract field halfword 
Ox CF Extract field byte 
Ox DO Logical left shift word 
OxD2 Logical left shift halfword 
OxD3 Logical left shift byte 
OxD4 Logical right shift word 
OxD8 Rotate word 
OxDC Add word, 3-address 
OxDE Add halfword, 3-address 
OxDF Add byte, 3-address 

A-107 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Opcode 

Table A-10. Instruction Set Summary by Opcode (Continued) 

Mnemonic Opcode Instruction 

PUSHAW OxEO Push address word 
MODW3 OxE4 Modulo word, 3-address 
MODH3 OxE6 Modulo halfword, 3-address 
MODB3 OxE7 Modulo byte, 3-address 
MULW3 OxE8 Multiply word, 3-address 
MULH3 OxEA Multiply halfword, 3-address 
MULB3 OxEB Multiply byte, 3-address 
DIVW3 Ox EC Divide word, 3-address 
DIVH3 OxEE Divide halfword, 3-address 
DIVB3 OxEF Divide byte, 3-address 
ORW3 OxFO OR word, 3-address 
ORH3 OxF2 OR halfword, 3-address 
ORB3 OxF3 OR byte, 3-address 
XORW3 OxF4 Exclusive OR word, 3-address 
XORH3 OxF6 Exclusive OR halfword, 3-address 
XORB3 OxF7 Exclusive OR byte, 3-address 
ANDW3 OxF8 AND word, 3-address 
ANDH3 OxFA AND halfword, 3-address 
ANDB3 OxFB AND byte, 3-address 
SUBW3 OxFC Subtract word, 3-address 
SUBH3 Ox FE Subtract halfword, 3-address 
SUBB3 Ox FF Subtract byte, 3-address 
RVC Ox60 Return on overflow clear 
BVCH Ox62 Branch on overflow clear, halfword displacement 
BVCB Ox63 Branch on overflow clear, byte displacement 
RNEQU Ox64 Return on not equal (unsigned) 
BNEH Ox66 Branch on not equal halfword (duplicate) 
BNEB Ox67 Branch on not equal byte (duplicate) 
RVS Ox68 Return on overflow set 
BVSH Ox6A Branch on overflow set, halfword displacement 
BVSB Ox6B Branch on overflow set, byte displacement 
REQLU Ox6C Return on equal (unsigned) 
BEH Ox6E Branch on equal halfword (duplicate) 
BBB Ox6F Branch on equal byte (duplicate) 

A-108 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Opcode 

Table A~lO. Instruction Set Summary by Opcode (Continued) 

Mnemonic Opcode Instruction 

NOP Ox70 No operation, l byte 
NOP3 Ox72 No operation, 3 bytes 
NOP2 Ox73 No operation, 2 bytes 
RNEQ Ox74 Return on not equal (signed) 
BNEH Ox76 Branch on not equal halfword 
BNEB Ox77 Branch on not equal 
RSB Ox78 Return from subroutine 
BRH Ox7A Branch with halfword (16-bit) displacement 
BRH Ox7B Branch with byte (8-bit) displacement 
REQL Ox7C Return on equal (signed) 
BEH Ox7E Branch on equal halfword 
BEB Ox7F Branch on equal byte 
CLRW Ox80 Clear word 
CLRH Ox82 Clear half word 
CLRB Ox83 Clear byte 
MOVW Ox84 Move word 
MOVH Ox86 Move halfword 
MOVB Ox87 Move byte 
MCOMW Ox88 Move complemented word 
MCOMH Ox8A Move complemented halfword 
MCOMB Ox8B Move complemented byte 
MNEGW Ox8C Move negated word 
MNEGH Ox8E Move negated halfword 
MNEGB Ox8F Move negated byte 
INCW Ox90 Increment word 
INCH Ox92 Increment halfword 
INCB Ox93 Increment byte 
DECW Ox94 Decrement word 
DECH Ox96 Decrement halfword 
DECB Ox97 Decrement byte 
ADDW2 Ox9C Add word 
ADDH2 Ox9E Add half word 
ADDB2 Ox9F Add byte 
PUSHW OxAO Push word 
MODW2 OxA4 Modulo word 
MODH2 OxA6 Modulo halfword 
MODB2 OxA7 Modulo byte 
MULW2 OxA8 Multiply word 
MULH2 OxAA Multiply halfword 
MULB2 OxAB Multiply byte 
DIVW2 OxAC Divide word 
DIVH2 OxAE Divide half word 
DIVB2 OxAF Divide byte 



WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Opcode 

Table A-10. Instruction Set Summary by Opcode (Continued) 
Mnemonic Opcode Instruction 
ORW2 Ox BO OR word 
ORH2 OxB2 OR halfword 
ORB2 OxB3 OR byte 
XORW2 OxB4 Exclusive OR word 
XORH2 OxB6 Exclusive OR halfword 
XORB2 . OxB7 Exclusive OR byte 
ANDW2 OxB8 AND word 
ANDH2 Ox BA AND halfword 
ANDB2 OxBB AND byte 
SUBW2 OxBC Subtract word 
SUBH2 Ox BE Subtract halfword 
SUBB2 OxBF Subtract byte 
ALSW3 Ox CO Arithmetic left shift word 
ARSW3 OxC4 Arithmetic right shift word 
ARSH3 OxC6 Arithmetic right shift halfword 
ARSB3 OxC7 Arithmetic right shift byte 
INSFW OxC8 Insert field word 
INSFH Ox CA Insert field halfword 
INSFB Ox CB Insert field byte 
EXTFW Ox CC Extract field word 
EXTFH Ox CE Extract field halfword 
EXTFB Ox CF Extract field byte 
LLSW3 Ox DO Logical left shift word 
LLSH3 OxD2 Logical left shift halfword 
LLSB3 OxD3 Logical left shift byte 
LRSW3 OxD4 Logical right shift word 
ROTW OxD8 Rotate word 
ADDW3 OxDC Add word, 3-address 
ADDH3 OxDE Add halfword, 3-address 
ADDB3 OxDF Add byte, 3-address 
PUSHAW OxEO Push address word 
MODW3 OxE4 Modulo word, 3-address 
MODH3 OxE6 Modulo halfword, 3-address 
MODB3 OxE7 Modulo byte, 3-address 
MULW3 OxE8 Multiply word, 3-address 
MULH3 Ox EA Multiply halfword, 3-address 
MULB3 OxEB Multiply byte, 3-address 
DIVW3 Ox EC Divide word, 3-address 
DIVH3 Ox EE Divide halfword, 3-address 
DIVB3 OxEF Divide byte, 3-address 

A-110 



Table A-10. 
Mnemonic 
ORW3 
ORH3 
ORB3 
XORW3 
XORH3 
XORB3 
ANDW3 
ANDH3 
ANDB3 
SUBW3 
SUBH3 
SUBB3 

WE 32100 MICROPROCESSOR INSTRUCTION SET 
Instruction Set Summary by Opcode 

Instruction Set Summary by Opcode (Continued) 
Opcode Instruction 
OxFO OR word, 3-address 
OxF2 OR halfword, 3-address 
OxF3 OR byte, 3-address 
OxF4 Exclusive OR word, 3-address 
OxF6 Exclusive OR halfword, 3-address 
OxF7 Exclusive OR byte, 3-address 
OxF8 AND word, 3-address 
OxFA AND halfword, 3-address 
OxFB AND byte, 3-address 
OxFC Subtract word, 3-address 
Ox FE Subtract halfword, 3-address 
Ox FF Subtract byte, 3-address 



A-112 







B. IS25 INSTRUCTION SET 

IS25 INSTRUCTION SET 
Addressing Modes 

This appendix describes the IS25 Instruction Set. The IS25 Instruction Set was designed to 
be machine independent so that it could be used with all of the members of the 3B line of 
computers. Although, this instruction set can be used when writing assembly language 
programs for the 3B2/3B5/3B15 Computers it is suggested that this set of instructions be 
used only when necessary. Otherwise, all coding should be done in WE 32100 
Microprocessor instructions. The remainder of this appendix describes the addressing 
modes available for IS25 instructions and lists each of the IS25 instructions. 

B.1 ADDRESSING MODES 

An addressing mode can be defined in terms of the size implied by the instruction in which 
it is used. The size implied by an instruction is derived either from the mnemonic 
operation code of the instruction (e.g., the implied size of movb is byte) or from the 
discussion of the semantics of the instruction (e.g., the implied size of the addressing mode 
for a shift count is byte). 

An expr is an expression which evaluates to a value with either absolute text, data, bss type 
or has the external attribute at assembly time. The notation expr denotes the result of 
evaluating expr. 

The remainder of this section discusses each of the addressing modes, summarized in Table 
B-1, that are used when writing code in IS25 instructions. 

Table B-1. Addressing Modes For IS25 Instructions 

Mode l Syntax 

Absolute 

Absolute 
I 

$ex pr 
Absolute deferred *$expr 

Displacement (from a register) 

Displacement I expr(%rn) 
Displacement deferred *expr(%rn) 

External Address 

External address 

I 
ex pr 

External address deferred *expr 

Immediate 

Immediate* I &expr 

Register 

Register I %rn 

* This mode may not be used for a destination operand. 



IS25 INSTRUCTION SET 
Absolute Mode 

B-2 

B.1.1 Absolute Mode 

Syntax: $expr 

Effective address: value of expr 

Operand value: data object at effective address 

The value of expr is used as the effective address of the operand. The assembler is forced 
to use an absolute address for expr. 

B.1.2 Absolute Deferred Mode 

Syntax: *$expr 

Effective address: contents of word at memory location specified by expr 

Operand value: data object at effective address 

The value of expr is used as the address of a word in memory that contains the effective 
address of the operand. The assembler is forced to use an absolute address for expr. 

B.1.3 Displacement Mode 

Syntax: expr(reg) 

Effective address: the value of the sum of the contents of expr and the contents of reg 

Operand value: data object at effective address 

The contents of expr and the contents of reg are added. The result is used as the effective 
address of the operand. 

B.1.4 Displacement Deferred Mode 

Syntax: *expr(reg) 

Effective address: the contents of the word at memory location specified by the sum of 
contents of expr and the contents of reg 

Operand value: data object at effective address 

The contents of expr and the contents of reg are added. The sum is used as the address of 
a word in memory that contains the effective address of the operand. 



1825 INSTRUCTION SET 
Register Mode 

B.1.5 External Address Mode 

Syntax: expr 

Effective address: the contents of expr 

Operand value: data object at effective address 

The contents of expr is used as the effective address of the operand. The assembler 
chooses an appropriate addressing mode for expr. 

B.1.6 External Address Deferred Mode 

Syntax: *expr 

Effective address: contents of word at memory location specified by expr 

Operand value: data object at effective address 

The contents of expr is used as the address of a word in memory which contains the 
effective address of the operand. The assembler chooses an appropriate addressing mode 
for expr. 

B.L7 Immediate Mode 

Syntax: &expr 

Effective address: none 

Operand value: contents of expr 

The contents of expr is the operand. There is no effective address associated with this 
mode; therefore, an assembly error occurs if this mode is used as a destination or if the 
address is requested by the instruction. The range of values of expr depends on the size 
implied by the instruction: for bytes, 0 through (2**8)-1, halfwords, -(2**16) through 
(2**16)-1, and words, -(2**32) through (2**32)-1. 

B.1.8 Register Mode 

Syntax: reg 

Effective address: none 

Operand value: contents of reg 

If reg is used as a source, the contents of reg are the operand. For bytes, only the lower 8 
bits of reg are relevant; for halfwords, only the lower 16 bits of reg are relevant; for words, 
the entire contents of reg is relevant. If reg is used as a destination, the final result of the 

B-3 



IS25 INSTRUCTION SET 
IS25 Instruction Set Listings 

B-4 

instruction is placed into reg. For bytes, the lower 8 bits are changed and the upper 24 bits 
are made zero; for halfwords, the lower 16 bits are changed and the upper 16 bits are 
made copies of the most significant bit of the lower 16 bits; for words, the entire 32 bits 
are changed. Since a register does not have an effective address, an assembly error occurs 
if an address is requested by the instruction. 

B.2 IS25 INSTRUCTION SET LISTINGS 

B.2.2 presents descriptions of each member of the IS2~ instruction set. 

The descriptions are in alphabetical order and any instruction that operates on more than 
one type of operand, byte, halfword, or word, are listed on the same page. (For quick 
reference to the instructions by function or mnemonic see B.2.3 Instruction Set Summary 
By Function and B.2.4 Instruction Set Summary By Mnemonic.) 

B.2.1 Notation 

Each instruction description contains four parts: assembler syntax, operation, description, 
and result types. 

Assembler Syntax. Presents the assembly language syntax for the instruction, including 
any required spacing and punctuation. The user-specified elements appear in italics. All 
operands must appear in the order shown. If an instruction has byte, halfword, and word 
forms, all three forms are presented. 

The syntax uses the following symbols to denote operands that may be written in the 
address modes shown in Table B-1: dst, src, count, offset, index, incr, limit, num, and 
width. 

Operation. Describes the operation performed, generally, using C language syntax and the 
operators and symbols shown in Table B-2. 

Description. Describes the operation performed in prose. Also, any additional explanation 
is included where necessary. 

Result Types. Identifies the type of result of the instruction that is executed. 

B.2.2 IS25 Instruction Set Descriptions 

The IS25 instruction set is described in detail on the following pages. 



IS25 INSTRUCTION SET 
IS2S Instruction Set Descriptions 

Table B-2. Assembly Language Operators and Symbols 

Symbol Description 

*x Indirection; value pointed to by x 
&x Address of x 
-x Complement x 
-x Negate x; form two's complement of x 

x+y Addy to x 
x-y Subtract y from x 
x*y Multiply x by y 
x/y Divide y into x 
x%y Modulo x and y (remainder of x/y) 
x&y Bitwise AND x and y 
xJy Bitwise inclusive OR x and y 
x ~y Bitwise exclusive OR XOR x and y 

x<<y Shift x to the left y bits 
x>>y Shift x to the right y bits 

x<y x less than y 
x<=y x less than or equal to y 
x>y x greater than y 
x>=y x greater than or equal to y 
x==y Equality; x equal to y 
x!=y x not equal to y 

= Assigns the value on the right to the location identified on 
the left 

ap Argument pointer; register 10 (rlO) 
BEXT(x) Function that returns x, sign extended through 32 bits 
count Count operand 
dst Destination operand 
f p Frame pointer; register 9 (r9) 
incr lncrementer operand 
index Index operand 
limit Limit operand 
num Bit number operand 
pc Program counter; register 15 (r 15) 
sp Stack pointer; register 12 (r 12) 
src Source operand 
tmp Temporary storage 
TRUNC(x) Function that returns x, truncated by 1 to 3 bytes 
ZEXT(x) Function that returns x, zero extended through 32 bits 



B-6 

addb2 
addh2 
addw2 

addb2 
addh2 
addw2 

Add Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

addb2 src,dst 
addh2 src,dst 
addw2 src,dst 

dst = dst + src 

Byte 
Halfword 
Word 

The contents of src are added to the contents of dst. The result is 
copied back into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst < = 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



addb3 
addh3 
addw3 

addb3 
addh3 
addw3 

Add Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

addb3 srcl,src2,dst 
addh3 srcl ,src2,dst 
addw3 srcl ,src2,dst 

dst = src 1 + src2 

Byte 
Halfword 
Word 

The contents of src2 are added to the contents of src I. The result is 
copied into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0-: Not-Negative 



B-8 

alsw2 alsw2 

Arithmetic Left Shift Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

alsw2 count,dst 

dst = dst < < count 

The contents of dst are shifted left the number of bits specified by 
count. The sign bit is not involved in an arithmetic left shift. Bits 
shifted to the left are lost before the sign bit. The result is stored in the 
location specified by dst. 

This shift instruction operates on word destinations. Count is a byte 
operand; only the lower five bits are used (unsigned). The sign bit does 
not change and zeros are supplied on the right. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0: Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



alsw3 alsw3 

Arithmetic Left Shift Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

alsw3 count,src,dst 

dst = src < < count 

The contents of src are shifted left the number of bits specified by 
count. The sign bit is not involved in an arithmetic left shift. Bits 
shifted to the left are lost before the sign bit. The result is stored in the 
location specified by dst. 

This shift instruction operates on word sources and destinations. Count 
is a byte operand; only the lower five bits are used (unsigned). The sign 
bit does not change and zeros are supplied on the right. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0: Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



andb2 
andh2 
andw2 

andb2 
andh2 
andw2 

AND Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-10 

andb2 src,dst 
andh2 src,dst 
andw2 src,dst 

dst = dst & src 

Byte 
Halfword 
Word 

A logical AND is performed on dst and src and the result is stored in 
the location specified by dst. The bits of each operand are ANDed on a 
one-to-one basis (i.e., dst(bit 7) & src(bit 7)). 

dst == 0 : Zero 
dst != 0 : Non-Zero 



andb3 
andh3 
andw3 

andb3 
andh3 
andw3 

AND Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

andb3 srcl ,src2,dst 
andh3 srcl ,src2,dst 
andw3 srcl ,src2,dst 

dst = srcl & src2 

Byte 
Halfword 
Word 

A logical AND is performed on srcl and src2 and the result is stored in 
the location specified by dst. The bits of each operand are ANDed on a 
one-to-one basis (i.e., srcJ(bit 7) & src2(bit 7)). 

dst == 0: Zero 
dst != 0 : Non-Zero 



arsw2 arsw2 

Arithmetic Right Shift Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-12 

arsw2 count,dst 

dst = dst > > count 

The contents of dst are shifted right the number of bits specified by 
count. The result is stored in the location specified by dst. The sign bit 
does not shift but is duplicated count bits to the right to make up for 
bits lost at the right end. 

This shift instruction operates on word destinations. Count is a byte 
operand; only the lower five bits are used (unsigned). 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0: Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



arsw3 arsw3 

Arithmetic Right Shift Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

arsw3 count,src,dst 

dst = src > > count 

The contents of src are shifted right the number of bits specified by 
count. The result is stored in the location specified by dst. The sign bit 
does not shift but is duplicated count bits to the right to make up for 
bits lost at the right end. 

This shift instruction operates on word sources and destinations. Count 
is a byte operand; only the lower five bits are used (unsigned). 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0: Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 

B-13 



bitb 
bi th 
bitw 

Bit Test 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-14 

bitb srcl ,src2 
bith srcl ,src2 
bitw srcl ,src2 

Byte 
Halfword 
Word 

tmp = srcl & src2 

bitb 
bi th 
bitw 

A logical AND is performed on the contents of srcl and src2, and the 
result is placed in temporary storage (tmp is not accessible by the 
programmer). This instruction is used to determine if the result of a 
logical AND is zero or non-zero. 

tmp == 0 : Zero 
tmp != 0 : Non-Zero 



call 

Call Function 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

call num,dst 

*sp = address_ of_ next_instruction 
*(sp + 4) = ap 
ap = sp - 4*num 
sp = sp + 8 
pc= dst 

call 

The address of the next instruction is pushed onto the stack followed by 
the contents of the ap. (The contents of the ap are placed on the stack 
using the address sp+4. Note that the sp is not incremented at this 
point.) The ap register receives the value determined by subtracting 
(4 *num) bytes from the sp. This causes the ap register to point to the 
first argument of the function (remember that the function arguments 
were pushed onto the stack prior to calling the function). The sp is then 
incremented by 8 (two words) to point to the next available word on the 
stack. The 2 word increment is necessary so that the previous contents 
of the ap (placed on the stack earlier) are not overwritten. Dst is then 
stored in the pc causing a jump to the function. 

Num is an immediate operand in the range 0 to 65535. It is the 
number of words of parameters to be passed to the called function. 

undefined 

B-15 



cmpb 
cmph 
cmpw 

Compare 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-16 

cmpb srcl ,src2 
cmph srcl ,src2 
cmpw srcl ,src2 

Byte 
Halfword 
Word 

compare srcl and src2 

cmpb 
cmph 
cmpw 

The contents of srcl and src2 are compared and appropriate condition 
indicators are set. This instruction is used prior to a branch or jump 
instruction. 

Since bytes are usually interpreted as unsigned quantities, the unsigned 
conditional jumps should be used after cmpb. If signed jumps are used, 
a byte value of 255 (which has a one in the upper bit position) is sensed 
as less than a byte value of 127 (which has a zero in the upper bit 
position). 

srcl == src2 : Equal 
srcl != src2 : Not-Equal 
src 1 < src2 : Less 

(signed comparison) 
srcl <= src2 : Less-or-Equal 

(signed comparison) 
srcl > src2 : Greater 

(singed comparison) 
srcl > = src2 : Greater-or-Equal 

(signed comparison) 
srcl < src2 : Less-Unsigned 

(unsigned comparison) 
srcl <= src2 : Less-or-Equal-Unsigned 

(unsigned comparison) 
srcl > src2 : Greater-Unsigned 

(unsigned comparison) 
srcl >= src2: Greater-or-Equal-Unsinged 

(unsigned comparison) 



divb2 
divh2 
divw2 

divb2 
divhl 
divw2 

Divide Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

divb2 src,dst 
divh2 src,dst 
divw2 src,dst 

dst = dst I src 

Byte 
Halfword 
Word 

The contents of dst are divided by the contents of src. The result is 
copied back into the location specified by dst. 

dst == 0 : Zero 
dst != 0: Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 

B-17 



divb3 
divh3 
divw3 

divb3 
divh3 
divw3 

Divide Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-18 

divb3 srcl ,src2,dst 
divh3 srcl ,src2 ,dst 
divw3 srcl ,src2,dst 

dst = src2 I srcl 

Byte 
Halfword 
Word 

The contents of src2 are divided by the contents of srcl. The result is 
copied into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



extzv 

Extract Field 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

extzv 

extzv src,offset, width,dst 

dst = ZEXT (FIELD (offset, width,src)) 

The field is extracted from src and copied into dst. The upper~bits of 
src are filled with zeros. 

Dst is a word operand. Offset and width are immediate operands. The 
field is extended to 32 bits by appending high order zeros. 

undefined 

B~19 



insv 

Insert Field 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-20 

insv 

insv src,offset,width,dst 

FIELD(offset,width,dst) = TRUNC(src) 

Src is truncated (high order bits are lost) to the same length as width. 
A copy of the truncated src is then inserted into dst with an offset of 
offset. 

Src is a word operand. Offset and width are immediate operands. The 
high order bits of src are truncated in order to fit into the field. 

undefined 



jcc jcc 

Conditional Jumps 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

jz dst 
jnz dst 
jpos dst 
jnpos dst 
jneg dst 
jnneg dst 
je dst 
jne dst 
jl dst 
jle dst 
jg dst 
jge dst 
jlu dst 
jleu dst 
jgu dst 
jgeu dst 

Zero 
Not Zero 
Positive 
Not Positive 
Negative 
Not Negative 

Equal 
Not Equal 

Less Than 
Less Than or Equal 
Greater Than 
Greater Than or Equal 
Less Than Unsigned 
Less Than or Equal Unsigned 
Greater Than Unsigned 
Greater Than or Equal Unsigned 

ifGndicator_yet) pc = dst 

If the condition indicator that a particular jump instruction tests is set, 
then the contents of the pc are replaced by contents of dst. Each 
conditional jump instruction has an optimized branch version. Branch 
instructions are used for displacements of 128 halfwords or less. The 
operation for the branch instructions are: 

if (indicator _set) pc = pc + offset 

unchanged 



jmp jmp 

Unconditional Jump 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-22 

jmp dst 

pc= dst 

The contents of the pc are replaced with the contents of th@perand. 
This is an unconditional jump. 

unchanged 



jsb jsb 

Jump to Subroutine 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

jsb dst 

*sp =pc 
sp = sp + 4 
pc= dst 

The contents of the pc are saved on the stack. The sp is then 
incremented by 4 bytes (equivalent to 1 word). Finally, dst replaces tht 
contents of the pc causing program control to continue at the subroutine 
at dst. 

unchanged 



llsw2 llsw2 

Logical Left Shift Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-24 

llsw2 count,dst 

dst = dst < < count 
;h 

o\v 

The entire contents of dst ~shifted left count bits. The result is 
stored in the location specified by dst. Count bits are lost at the~ 
and count zeros are filled in at the-left. 1 Jei+ 

Y11\1-r 
This shift instruction operates on word sources and destinations. Count 
is a byte operand; only the lower 5 bits are used (unsigned). 

dst == 0 : Zero 
dst != 0 : Non-Zero 



llsw3 Usw3 

Logical Left Shift Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

llsw3 count,src,dst 

dst = src < < count 

The entire contents of src are shifted left count bits. The result is 
stored in the location specified by dst. Count bits are lost at th~ 
and count zeros are filled in at th~ f;:f +-

-f~ li\T 
This shift instruction operates on word sources and destinations. Count 
is a byte operand; only the lower 5 bits are used (unsigned). 

dst == 0 : Zero 
dst != 0 : Non-Zero 



lrsw2 lrsw2 

Logical Right Shift Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-26 

lrsw3 count,dst 

dst = dst > > count 

The entire contents of dst are shifted right count bits. The result is 
stored in the location specified by dst. Count bits are lost at the~ 'fl\ 
and count zeros are filled in at the~- n~ 

XEJ"°ft-
This shift instruction operates on word destinations. Count is a byte 
operand; only the lower 5 bits are used (unsigned). 

dst == 0 : Zero 
dst != 0 : Non-Zero 



lrsw3 lrsw3 

Logical Right Shift Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

lrsw3 count,src,dst 

dst = src > > count 

The entire contents of src are shifted right count bits. The result is 
stored in the location specified by dst. Count bits are lost at the kft 
and count zeros are filled in at the J:.is.hl:. 'If ':1~1-

l ~ r 
This shift instruction operates on word destinations. Count is a byte 
operand; only the lower 5 bits are used (unsigned). 

dst == 0 : Zero 
dst != 0 : Non-Zero 



mcomb 
mcomh 
mcomw 

mcomb 
mcomh 
mcomw 

Move Complemented 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-28 

mcomb src,dst 
mcomh src,dst 
mcomw src,dst 

dst = - src 

Byte 
Halfword 
Word 

The contents of src are complemented G.e., 0 bits are changed to l bits 
and 1 bits are changed to 0 bits) and the result is stored in the location 
specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 



mnegh 
mnegw 

Move Negated 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

mnegh src,dst 
mnegw src,dst 

dst = -src 

Halfword 
Word 

mnegh 
mnegw 

The two's complement of the contents of src is copied into the location 
specified by dst. Taking the two's complement of a number negates iL 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



modb2 
modh2 
modwl 

modb2 
modh2 
modw2 

Modulo Divide Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

modb2 src,dst 
modh2 src,dst 
modw2 src,dst 

dst = dst % src 

Byte 
Halfword 
Word 

The contents of dst are divided by the contents of src. If the signed 
result has a remainder, it is copied back into the location specified by 
dst. 

Note: The percent sign (%) is the symbol for modular division. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



modb3 
modh3 
modw3 

modb3 
modh3 
modw3 

Modulo Divide Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

modb3 srcl ,src2,dst 
modh3 srcl ,src2,dst 
modw3 srcl ,src2,dst 

dst = src2 % src 1 

Byte 
Halfword 
Word 

The contents of src2 are divided by the contents of srcl. If the signed 
result has a remainder, it is copied into the location specified by dst. 

Note: The percent sign (%) is the symbol for modular division. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0: Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



movaw 

Move Address 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-32 

movaw 

movaw src,dst 

dst = & src 

The address of src is copied into the location specified by dst. 

Source and destination must be word addresses if specifying memory 
addresses. 

dst == 0 : Zero 
dst != 0 : Non-Zero 



mo vb 
movh 
movw 

Move 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

movb src,dst 
movb src,dst 
movb src,dst 

dst = src 

Byte 
Halfword 
Word 

mo vb 
movh 
movw 

The contents of src are copied into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



movbbh 
movbbw 
movbhw 

movbbh 
movbbw 
movbhw 

Move Bit Extended 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-34 

movbbh src,dst 
movbbw src,dst 
movbhw src,dst 

dst = BEXT(src) 

Byte to Halfword 
Byte to Word 
Half word to Word 

The sign bit of src is extended into the upper bits of dst by either one, 
two or three bytes depending on the instruction type (e.g., byte to 
halfword extends the sign bit one byte). The result is copied· into the 
location specified by dst. 

dst ==;= 0 : Zero 
dst != 0: Non-Zero 
dst > 0 : Positive 
dst < = 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



movblb 
movblh 
movblw 

Move Block 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

movblb Byte 
movblh Halfword 
movblw Word 

while(r2 > 0) 
*rl = *rO 
rO = rO + implied _size 
r l = r 1 + implied _size 
r2 = r2 - l 

movblb 
movblh 
movblw 

Register rO is the starting address of the source data, register r1 is the 
starting address of the destination, and register r2 is the number items 
of implied _size to be moved. The implied _size is dependent on the 
instruction type. Values for implied _size can be 1 (for byte), 2 (for 
half word), or 4 (for word). 

After execution of the instruction, r2 contains the value zero, rO 
contains the address of the first byte following the source of the moved 
data, and rt contains the address of the first byte following the 
destination of the moved data. 

This instruction will not function properly if the starting address of the 
source block is smaller than the starting address of the destination block 
and the source and destination blocks overlap. 

unchanged 



movthb 
movtwb 
movtwh 

Move Truncated 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-36 

movthb src,dst 
movtwb src,dst 
movtwh src,dst 

Halfword to Byte 
Word to Byte 
Word to Halfword 

dst = TRUNC(src) 

movthb 
movtwb 
movtwh 

The uppermost bits of the contents of src are truncated by the amount 
indicated by the instruction type (i.e., halfword to byte - high order byte 
is lost, word to byte - upper 3 bytes are lost, and word to halfword -
upper 2 bytes are lost). The result is copied into the location specified 
by dst. For condition indicator settings, the result of a halfword 
destination is interpreted as a· 16 bit signed 2's complement number; the 
result of a byte destination is interpreted as an 8 bit unsigned binary 
number. If dst is a register, a move truncated halfword to byte and a 
move truncated word to byte put the byte result into bits 7 -0 of the 
register and puts zeros into bits 31-8 (zero extension); a move 
truncated word to halfword puts the halfword result into bits 15-0 of 
the register and copies bit 15 into bits 31-16 (sign extension). 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



movzbh 
movzbw 
movzhw 

movzbh 
movzbw 
movzhw 

Move Zero Extended 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

movzbh src,dst 
movzbw src,dst 
movzhw src,dst 

Byte to Halfword 
Byte to Word 
Halfword to Word 

dst = ZEXT(src) upper bits made zero 

The contents of src are expanded to the same size as dst. Extended bits 
are set to zero. The result is copied into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non~Zero 

B-37 



mulb2 
mulh2 
mulw2 

mulb2 
mulh2 
mulw2 

Multiply Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-38 

mulb2 src,dst 
mulh2 src,dst 
mulw2 src,dst 

dst = dst * src 

Byte 
Halfword 
Word 

The contents of dst are multiplied by the contents of src. The result is 
copied back into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst < = 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



mulb3 
mulh3 
mulw3 

mulb3 
mulh3 
mulw3 

Multiply Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

mulb3 srcl ,src2,dst 
mulh3 srcl ,src2,dst 
mulw3 srcl ,src2,dst 

dst = srcl * src2 

Byte 
Halfword 
Word 

The contents of srcl are multiplied by the contents of src2. The result 
is copied into the location specified by dst. 

dst == 0 : Zero 
dst != 0: Non-Zero 
dst > 0 : Positive 
dst <= 0: Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



orb2 
orh2 
orw2 (2-

?' "~~~~({., 
@rwo Operands 

orb2 
orh2 
orw2 

Assembler orb2 src,dst Byte 
Halfword 
Word 

Syntax orh2 src,dst 
orw2 src,dst 

Operation 

Description 

Result 
Types 

B-40 

dst = dst I src 

A logical OR is performed on dst and src and the result is stored in the 
location specified by dst. The bits of each operand are ORed on a one­
to-one basis (i.e., dst(bit 7) I src(bit 7)). 

dst == 0 : Zero 
dst != 0 : Non-Zero 



orb3 
orh3 ~' 
orw3/0 (~</-

&.ee Operands 

Assembler orb3 srcl ,src2,dst 
Syntax orh3 srcl ,src2,dst 

orw3 srcl ,src2,dst 

Operation dst = src 1 I src2 

Byte 
Halfword 
Word 

orb3 
orh3 
orw3 

Description A logical OR is performed on srcl and src2 and the result is stored in 
the location specified by dst. The bits of each operand are ORed on a 
one-to-one basis (i.e., srcl (bit 7) I src2(bit 7)). 

Result 
Types 

dst == 0 : Zero 
dst != 0 : Non-Zero 



pushaw 

Push Address 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-42 

pushaw src 

tmp = src 
*sp = tmp 
sp = sp + 4 

pushaw 

The contents of src are placed in tmp (temporary storage). The 
contents of tmp are then placed on the stack and the sp is incremented. 

Source must be a word address if specifying a memory address. 

dst == 0 : Zero 
dst != 0 : Non-Zero 



pushbb 
pushbh 

pushbb 
pushbh 

Push Bit Extended 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

pushbb src 
pushbh src 

Byte 
Halfword 

tmp = BEXT(src) 
*sp = tmp 
sp = sp + 4 

The high order bit of src is extended into the high order two or three 
bytes of tmp (temporary storage) depending on the instruction type. 
The low order byte or halfword of src is copied into the low order byte 
or halfword of tmp. Tmp is pushed onto the stack and the sp is 
incremented. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 

B-43 



pushw 

Push 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-44 

pushw src 

tmp = src 
*sp = tmp 
sp = sp + 4 

pushw 

The contents of src are placed in tmp (temporary storage). The 
contents of tmp are then pushed onto the stack and the sp is 
incremented. 

dst == 0: Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



pushzb 
pushzh 

pushzb 
pushzh 

Push Zero Extended 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

pushzb src 
pushzh src 

Byte 
Halfword 

tmp = ZEXT(src) 
*sp = tmp 
sp = sp + 4 

The high order two or three bytes of the src are filled with zeros and 
then copied into tmp (temporary storage). Tmp is then pushed onto the 
stack and the sp is incremented. 

dst == 0 : Zero 
dst != 0: Non~Zero 



ret ret 

Return from Function 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-46 

ret num 

tmp = ap 
restore from save area num registers beginning with r8 and counting 
downward; adjust sp to contain address of saved pc 
fp = *(sp + 8) 
ap = *(sp + 4) 
pc = *sp 
sp = tmp 

After the contents of the ap are placed in tmp (temporary storage), all 
automatic variables and save area registers are popped off the stack. 

Num is an immediate operand in the range 0 to 6. It specifies which 
registers are to be restored (e.g., if num is &3, registers r8, r7, and r6 
will be restored). The effect of this instruction are undefined if either: 

• fp is not the same as it was after the execution of the save instruction 
that created the function activation on top of the stack. 

• num is not the same as it was after the execution of the save 
instruction that created the function activation on top of the stack. 

undefined 



rsb rsb 

Return from Subroutine 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

rsb 

sp = sp - 4 
pc = *sp 

This instruction is usually the last instruction in a subroutine. Before 
using this instruction any values placed on the stack by the subroutine 
must have been removed. When this instruction is executed, the top 
word on the stack is copied into the pc. This is the address of the 
instruction following the jsb instruction which called the subroutine. 

unchanged 

B-47 



save 

Save Registers 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

save 

save num 

*sp = fp 
store in save area num registers beginning with r8 and counting 
downward; adjust sp to contain address of first word above save area 
fp = sp 

This instruction should be the first instruction in a subroutine. The 
main purpose of this instruction is to save the contents of some general 
purpose registers before the subroutine changes any of their contents. 
The registers that can be saved are: r3 through r8. The save instruction 
can also be used to allocate up to 15 words on the stack. 

Num i:; an immediate operand in the range 0 to 6. It is the number of 
registers to save (e.g., if num is &2, registers r8 and r7 are saved). 
Note that registers rO, rl, and r2 cannot be saved. 

undefined 



subb2 
subh2 
subw2 

subb2 
subh2 
subw2 

Subtract Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

subb2 src,dst 
subh2 src,dst 
subw2 src,dst 

dst = dst - src 

Byte 
Halfword 
Word 

The contents of src are subtracted from the contents of dst. The result 
is copied back into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



subb3 
subh3 
subw3 

subb3 
subh3 
subw3 

Subtract Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-50 

subb3 srcl ,src2,dst 
subh3 srcl ,src2,dst 
subw3 srcl ,src2,dst 

dst = srcl - src2 

Byte 
Halfword 
Word 

The contents of srcl are subtracted from the contents of src2. The 
result is copied into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst < = 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



udivb2 

Unsigned Divide Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

udivb2 src,dst 
udivh2 src,dst 
udivw2 src,dst 

dst = dst I src 

Byte 
Halfword 
Word 

The contents of dst are divided by the contents of src. The unsigned 
result is copied back into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



udivb3 
udivh3 
udivw3 

udivb3 
udivh3 
udivw3 

Unsigned Divide Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-52 

udivb3 srcl ,src2,dst 
udivh3 srcl ,src2,dst 
udivw3 srcl ,src2,dst 

dst = src2 I srcl 

Byte 
Halfword 
Word 

The contents of src2 are divided by the contents of srcl. The unsigned 
result is copied into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



umodb2 
umodh2 
umodw2 

umodb2 
umodh2 
umodw2 

Unsigned Modulo Divide Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

umodb2 src,dst 
umodh2 src,dst 
umodw2 src,dst 

dst = dst % src 

Byte 
Halfword 
Word 

The contents of dst are divided by the contents of src. If the unsigned 
result has a remainder, it is copied back into the location specified by 
dst. 

Note: The percent sign (%) is the symbol for modular division. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0: Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



umodb3 
umodh3 
umodw3 

umodb3 
umodh3 
umodw3 

Unsigned Modulo Divide Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-54 

umodb3 srcl ,src2,dst 
umodh3 srcl ,src2,dst 
umodw3 srcl ,src2,dst 

dst = src2 % srcl 

Byte 
Halfword 
Word 

The contents of src2 are divided by the contents of srcl. If the 
unsigned result has a remainder, it is copied into the location specified 
by dst. 

Note: The percent sign (%) is the symbol for modular division. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0 : Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



umulb2 
umulh2 
umulw2 

umulb2 
umulh2 
umulw2 

Unsigned Multiply Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

umul2 src,dst Byte 
umulh2 src,dst Halfword 
umulw2 src,dst Word 

dst = dst * src 

The unsigned contents of dst and src are multiplied and the result is 
copied back into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0: Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



umulb3 
umulh3 
umulw3 

umulb3 
umulh3 
umulw3 

Unsigned Multiply Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-56 

umul3 srcl ,src2,dst Byte 
umulh3 srcl ,src2,dst Halfword 
umulw3 srcl,src2,dst Word 

dst = src 1 * src2 

The unsigned contents of srcl and src2 are multiplied and the result is 
copied into the location specified by dst. 

dst == 0 : Zero 
dst != 0 : Non-Zero 
dst > 0 : Positive 
dst <= 0: Not-Positive 
dst < 0 : Negative 
dst >= 0: Not-Negative 



xorb2 
xorh2 
xorw2 

xorb2 
xorh2 
xorw2 

Exclusive OR Two Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

xorb2 src,dst 
xorh2 src,dst 
xorw2 src,dst 

dst = dst Asrc 

Byte 
Halfword 
Word 

A logical XOR (exclusive OR) is performed on dst and src and the 
result is stored in the location specified by dst. The bits of each 
operand are XORed on a one-to-one basis G.e., dst(bit 7) XOR src(bit 
7)). 

dst == 0 : Zero 
dst != 0 : Non-Zero 



xorb3 
xorh3 
xorw3 

xorb3 
xorh3 
xorw3 

Exclusive OR Three Operands 

Assembler 
Syntax 

Operation 

Description 

Result 
Types 

B-58 

xorb3 srcl ,src2,dst 
xorh3 srcl ,src2,dst 
xorw3 srcl ,src2,dst 

dst = srcl ~src2 

Byte 
Halfword 
Word 

A logical XOR (exclusive OR) is performed on srcl and src2 and the 
result is stored in the location specified by dst. The bits of each 
operand are XO Red on a one-to-one basis (i.e., srcl (bit 7) XOR 
src2(bit 7)). 

dst == 0 : Zero 
dst != 0: Non-Zero 



IS25 INSTRUCTION SET 
IS25 Instruction Set Summary by Function 

B.2.3 IS25 Instruction Set Summary by Function 

Table B~3. Data Transfer Instructions 

Mnemonic Name 

Move: 
mcomb Move complemented byte 
mcomh Move complemented halfword 
mcomw Move complemented word 

mnegh Move negated halfword 
mnegw Move negated word 

movaw Move address (word) 

movb Move byte 
movh Move halfword 
movw Move word 

movbbh Move bit extended byte to halfword 
movbbw Move bit extended byte to word 
movbhw Move bit extended halfword to word 

movthb Move truncated halfword to byte 
movtwb Move truncated word to byte 
movtwh Move truncated word to halfword 
movzbh Move zero extended byte to halfword 
movzbw Move zero extended byte to word 
movzhw Move zero extended halfword to word 
Block 
Operations: 
movbl b Move block byte 
movblh Move block halfword 
movblw Move block word 

Field 
Operations: 
extzv Extract field 
insv Insert field 



IS25 INSTRUCTION SET 
1825 Instruction Set Summary by Function 

Table B-4. Arithmetic Instructions 

Mnemonic Name 

Add: 
addb2 Add byte, two operands 
addh2 Add halfword, two operands 
addw2 Add word, two operands 

addb3 Add byte, three operands 
addh3 Add halfword, three operands 
addw3 Add word, three operands 
Subtract: 
subb2 Subtract byte, two operands 
subh2 Subtract halfword, two operands 
subw2 Subtract word, two operands 

subb3 Subtract byte, three operands 
subh3 Subtract halfword, three operands 
subw3 Subtract word, three operands 
Multiply: 
mulw2 Multiply word, two operands 
mulw3 Multiply word, three operands 
umulw2 Unsigned multiply word, two operands 
umulw3 Unsigned multiply word, three operands 
Divide: 
divw2 Divide word, two operands 
divw3 Divide word, three operands 
udivw2 Unsigned Divide word, two operands 
udivw3 Unsigned Divide word, three operands 
Modulo: 
modw2 Modulo word, two operands 
modw3 Modulo word, three operands 
umodw2 Unsigned modulo word, two operands 
umodw3 Unsigned modulo word, three operands 
Arithmetic 
Shifts: 
alsw2 Arithmetic left shift word, two operands 
alw3 als-ui3 Arithmetic left shift word, three operands 
arsw2 Arithmetic right shift word, two operands 
arsw3 Arithmetic right shift word, three operands 

B-60 



Mnemonic 

AND: 
andb2 
andh2 
andw2 
andb3 
andh3 
andw3 
OR: 
orb2 
orh2 
orw2 
orb3 
orh3 
orw3 
Exclusive 
OR: 
xorb2 
xorh2 
xorw2 
xorb2 
xorh2 
xorw2 
Compare 
or Test: 
cmpb 
cmph 
cmpw 
bitb 
bi th 
bitw 
Logical 
Shifts: 
llsw2 
llsw3 
lrsw2 
lrsw3 

1825 INSTRUCTION SET 
IS25 Instruction Set Summary by Function 

Table B-5, Logical Instructions 

Name 

AND byte, two operands 
AND half word, two operands 
AND word, two operands 
AND byte, three operands 
AND halfword, three operands 
AND word, three operands 

OR byte, two operands 
OR halfword, two operands 
OR word, two operands 
OR byte, three operands 
OR halfword, three operands 
OR word, three operands 

Exclusive OR byte, two operands 
Exclusive OR halfword, two operands 
Exclusive OR word, two operands 
Exclusive OR byte, three operands 
Exclusive OR halfword, three operands 
Exclusive OR word, three operands 

Compare byte 
Compare halfword 
Compare word 
Bit test byte 
Bit test halfword 
Bit test word 

Logical left shift word, two operands 
Logical left shift word, three operands 
Logical right shift word, two operands 
Logical right shift word, three operands 



IS25 INSTRUCTION SET 
IS25 Instruction Set Summary by Function 

Table B-6. Program Control Instructions 

Mnemonic Name 

Unconditional 
Transfer: 
jmp Jump 

Conditional 
Transfers: 
je Jump equal 
jne Jump not equal 
jg Jump greater 
jge Jump greater or equal 
jgu Jump greater unsigned 
jgeu Jump greater or equal unsigned 
jl Jump less 
jiu Jump less unsigned 
jle Jump less or equal 
jleu Jump less or equal unsigned 
Jneg Jump negative 
jnneg Jump not negative 
jpos Jump positive 
jnpos Jump not positive 
jz Jump zero 
jnz Jump not zero 
Subroutine 
Transfer: 
jsb Jump to subroutine 
rsb Return from subroutine 
Procedure 
Transfer: 
call Call procedure 
ret Return from procedure 
save Save registers 

Table B-7. Stack Instructions 

Mnemonic Name 

pushaw Push address (word) 
pushbb Push extended byte 
pushbh Push extended halfword 
pushw Push word 
pushzb Push zero extended byte 
pushzh Push zero extended halfword 

B-62 



IS25 INSTRUCTION SET 
IS25 Instruction Set Summary by Mnemonic 

B.2.4 IS25 Instruction Set Summary by Mnemonic 

Table B~8. 1825 Instruction Set Summary by Mnemonic 

Mnemonic Name 

addb2 Add byte, two operands 
addb3 Add byte, three operands 
addh2 Add half word, two operands 
addh3 Add halfword, three operands 
addw2 Add word, two operands 
addw3 Add word, three operands 
alsw2 Arithmetic left shift word, two operands 
alw3 ,t~-iJJ Arithmetic left shift word, three operands 
andb2 AND byte, two operands 
andb3 AND byte, three operands 
andh2 AND halfword, two operands 
andh3 AND halfword, three operands 
andw2 AND word, two operands 
andw3 AND word, three operands 
arsw2 Arithmetic right shift word, two operands 
arsw3 Arithmetic right shift word, three operands 
bitb Bit test byte 
bith Bit test halfword 
bitw Bit test word 
call Call procedure 
cmpb Com pare byte 
cmph Compare halfword 
cmpw Compare word 
divw2 Divide word, two operands 
divw3 Divide word, three operands 
extzv Extract field 
insv . Insert field 
je Jump equal 
jg Jump greater 
jge Jump greater or equal 
jgeu Jump greater or equal unsigned 



IS25 INSTRUCTION SET 
1815 Instruction Set Summary by Mnemonic 

Table B-8. ISl5 Instruction Set Summary by Mnemonic (Continued) 

Mnemonic Name 

jgu Jump greater unsigned 
jl Jump less 
jle Jump less or equal 
jleu Jump less or equal unsigned 
jiu Jump less unsigned 
jmp Jump 
jne Jump not equal 
. 4 

Jump negative Jneg 
jnneg Jump not negative 
jnpos Jump not positive 
jnz Jump not zero 
Jpos Jump positive 
jsb Jump to subroutine 
jz Jump zero 
llsw2 Logical left shift word, two operands 
llsw3 Logical left shift word, three operands 
lrsw2 Logical right shift word, two operands 
lrsw3 Logical right shift word, three operands 
mcomb Move complemented byte 
mcomh Move complemented halfword 
mcomw Move complemented word 
mnegh Move negated halfword 
mnegw Move negated word 
modw2 Modulo word, two operands 
modw3 Modulo word, three operands 
movaw Move address (word) 
movb Move byte 
movbbh Move bit extended byte to halfword 
movbbw Move bit extended byte to word 
movbhw Move bit extended halfword to word 
movblb Move block byte 
movblh Move block half word 
movblw Move block word 
movh Move halfword 
movthb Move truncated halfword to byte 
movtwb Move truncated word to byte 
movtwh Move truncated word to halfword 
movw Move word 
movzbh Move zero extended byte to halfword 
movzbw Move zero extended byte to word 

B-64 



Table B~8. 

Mnemonic 

movzhw 
mulw2 
mulw3 
orb2 
orb3 
orh2 
orh3 
orw2 
orw3 
pushaw 
pushbb 
pushbh 
pushw 
pushzb 
pushzh 
ret 
rsb 
save 
subb2 
subb3 
subh2 
subh3 
subw2 
subw3 
udivw2 
udivw3 
umodw2 
umodw3 
umulw2 
umulw3 
xorb2 
xorb3 
xorh2 
xorh3 
xorw2 
xorw3 

1825 INSTRUCTION SET 
IS25 Instruction Set Summary by Mnemonic 

1825 Instruction Set Summary by Mnemonic (Continued) 

Name 

Move zero extended halfword to word 
Multiply word, two operands 
Multiply word, three operands 
OR byte, two operands 
OR byte, three operands 
OR halfword, two operands 
OR halfword, three operands 
OR word, two operands 
OR word, three operands 
Push address (word) 
Push extended byte 
Push extended halfword 
Push word 
Push zero extended byte 
Push zero extended halfword 
Return from procedure 
Return from subroutine 
Save registers 
Subtract byte, two operands 
Subtract byte, three operands 
Subtract halfword, two operands 
Subtract halfword, three operands 
Subtract word, two operands 
Subtract word, three operands 
Unsigned Divide word, two operands 
Unsigned Divide word, three operands 
Unsigned modulo word, two operands 
Unsigned modulo word, three operands 
Unsigned multiply word, two operands 
Unsigned multiply word, three operands 
Exclusive OR byte, two operands 
Exclusive OR byte, three operands 
Exclusive OR halfword, two operands 
Exclusive OR halfword, three operands 
Exclusive OR word, two operands 
Exclusive OR word, three operands 

B-65 



B-66 







C. SAMPLE PROGRAMS 

(Not Available at Time of Publication) 





Absolute deferred mode - An address 
mode that uses an address embedded in 
the operand to locate a pointer to data. 

Absolute mode - An address mode that 
uses an address embedded in the operand 
to locate data. 

Addressing mode - A method of forming 
the effective memory address of an 
operand (s) in an instruction. Examples of 
addressing modes include register, register 
displacement, immediate, and absolute 
deferred addressing. 

Alignment - The assignment of 
instructions and data to specific addresses, 
i.e., word boundaries, to increase system 
performance. 

Architecture - Breakdown of CPU 
structure into various units and registers. 

Argument pointer (AP) - User register 
that points to the beginning location in the 
stack where a set of arguments for a 
function has been pushed. 

Assembler directive - A special command 
to the assembier which is generally not 
translated into machine code. Directives 
allow the programmer to set starting 
addresses of instructions and data, and to 
initialize variables, for example. 
Assembler directives are also referred to 
as pseudo-operations. 

Assembly language - A programming 
language consisting primarily of 
mnemonics and symbolic addresses. 
Assembly language statements are 
translated by an assembler program to 
corresponding machine language 
instructions. 

Assert - To drive a signal to its active 
state. 

Bit field - A sequence of 1 to 32 bits 

GLOSSARY 

contained in a base word. The field is 
specified by the address of its base word, a 
bit offset, and a width. 

Byte- An 8-bit quantity that may appear 
at any address in memory. 

Cache - A high-speed memory filled at a 
lower speed from main memory; used to 
reduce memory access time. 

Central Processing Unit (CPU) - The 
portion of a computer which includes the 
logic to control the interpretation and 
execution of machine instructions, the 
arithmetic and logic unit, and various 
registers for data storage and addressing. 
A microcomputer's CPU is usually a single 
chip called a microprocessor. 

Comment - Statements inserted in a 
program for documentation purposes. 
Comments are ignored by the assembler or 
compiler. 

Complementary metal oxide semiconductor 
(CMOS) - a fabrication technology using 
complementary N-channel and P-channel 
MOS field effect transistors to provide low 
power dissipation and high noise 
immunity. 

Condition Code (NZVC) - The flags in 
this 4-bit field reflect the resulting status 
of the most recent instruction execution 
that affects them. The four flags are 
negative (N), zero (Z), overflow (V), and 
carry (C). 

Condition flags - Single bits denoting the 
result of an operation performed by the 
computer. Examples are negative, zero, 
and carry bits. 

Coprocessor - A support processor that 
operates synchronously with the CPU to 
provide greater throughput in arithmetic 
or I/O functions. 



GLOSSARY 

Descriptor byte - An 8-bit quantity 
defining an operand's addressing mode and 
register fields. 

Disassembler - A utility program which 
produces an assembly language listing 
from machine code. 

Displacement mode - An address mode 
that uses a register and an offset, both 
embedded in the operand, added together 
to form the address of data. 

Displacement deferred mode - An address 
mode that uses a register and an offset, 
both embedded in the operand, added 
together to form the address of a pointer 
to data. 

Execute unit - The elements in this unit 
perform all arithmetic and logic 
operations, perform all shift and all rotate 
operations, and compute the condition 
flags. 

Expression - A sequence of operands 
separated by operators. ' 

Getch Unit - The elements in this unit 
andle the instruction stream and perform 
emory-based operand accesses. 

Frame pointer (FP) - User register that 
points to the beginning location in the 
stack of a functions local variables. 

General-purpose registers - Nine registers 
(r0-r8) that may be used for high-speed 
accumulation, for addressing, or for 
temporary data storage. 

Halfword - 16-bit quantity that may 
appear at any address in memory that is 
divisible by 2. 

High level language - A programming 
language consisting of statements which 
represent procedures rather than individual 
machine instructions. High level language 

statements are usually translated by a 
compiler program into a series of machine 
language instructions. Examples of high 
level languages are FORTRAN, BASIC, 
PASCAL, and C-language. 

Interrupt - A means by which external 
devices may request service by the 
microprocessor. 

Interrupt stack pointer (ISP) - User 
register that contains the 32-bit memory 
address of the top of the interrupt stack. 

Label - A symbolic name used in a 
program to identify the location of an 
instruction or data. 

Machine language - A programming 
language in which each instruction is 
specified by numerical values. Machine 
language programs can be loaded directly 
into·memory and executed. 

Macro - A sequence of instructions 
referenced by a name. A macro processor 
replaces the name by the sequence. 
Macros enhance programming languages 
by making them readable or by tailoring 
them to specific applications. 

Main controller - The microprocessor's 
central control unit. It is responsible for 
acquiring and decoding instruction opcodes 
and directing the action of the fetch and 
execute instructions. 

Math Acceleration Unit (MAU) - A 
coprocessor providing floating point 
arithmetic capability for the WE 32100 
Microprocessor. 

Mnemonic - Symbolic names or 
abbreviations of assembly language 
instructions which denote the operation 
performed. 

Negate - To drive a signal to its inactive 
state. 



Operand - Data on which an operation is 
performed by an instruction. 

Operating system - Software controlling 
the overall operation of a computer. 
Controls memory allocation, input and 
output operations, and job scheduling. 

Pipelining - Overlapping the execution of 
instructions to increase the 
microprocessor's performance. 

Pointer - a register or memory location 
containing an address. 

Processor control block (PCB) - a process 
data structure in external memory that 
saves the context of a process when the 
process is not running. This context 
consists of the initial and current contents 
of control registers (PSW, PC, and SP), 
the last contents of registers rO through 
rlO, boundaries for an execution stack, and 
memory specifications for the process. 

Process control block pointer (PCBP) -
User register that points to the starting 
address of the process control block for the 
current process. 

Processor status work (PSW) - User 
register that contains status information 
about the microprocessor and the current 
process. 

Program counter (PC) - User register 
that contains the 32-bit memory address of 
the instruction being executed or, upon 
completion, contains the starting address 
of the next instruction to be executed. 

Pseudo operation - See Assembler 
directive. 

Register - A CPU storage unit holding 
bits or words. 

Register deferred mode - An address 
mode that uses a register name, embedded 

GLOSSARY 

in an operand, that contains a pointer to 
data to be used by the instruction. 

Register mode - An address mode that 
uses a register name, embedded in an 
operand, that contains data to be used by 
the instruction. 

Stack - A reserved area of memory where 
the CPU saves return· addresses and 
register data. The stack is a last-in-first­
out (LIFO) queue that supports efficient 
subroutine linkage and local variable 
storage. 

Stack pointer (SP) - User register that 
contains the current 32-bit address of the 
top of the execution stack; i.e., the 
memory address of the next item to be 
stored on (pushed on) the stack or the last 
item retrieved (popped) from the stack. 

Symbol - A name recognized by an 
assembler and used as a label, mnemonic, 
or operand. 

Wait-state - Idle periods that may be 
generated during a bus transaction to 
allow slow peripherals to handshake with 
the microprocessor. 

Word - A 32-bit quantity that may 
appear at any register divisibly by 4. 

3-state - To place an input in a high­
impedance state. 



as - Assembler 

ASR - Auxiliary status register 

AP - Argument pointer 

BSS - Bounded static storage 

C - Condition flag bit carry 

CAD - Computer-aided design 

CMOS - Com~entary metal-oxide 
se~Wnductor 

CPU - Central processing unit 

dis - Disassembler 

FP - Frame Pointer 

FPE - Floating point emulation library 

ISP - Interrup~ck@.nter 

Id - Link editor 

LSB - Least significant bit 

MAU - Math acceleration unit 

mmmm - Mode field 

MIS - MAU instruction set 

MSB - Most significant bit 

N - Condition flag bit negative 

NMOS - N-channel metal-oxide 
semiconductor 

ACRONYMS 

PC - Progran{)ounter 

PCBP - Process@pntrol~c1tP_9inter 

PSW - Processor@atu(i/;Ord 

RA - Returneddress 

rrrr - Register field 

SP - Stack(Pbinter 

V - Condition flag bit overflow 

Z - Condition flag bit zero 





A 

Absolute 
addressing modes, 5-10 

Absolute Deferred 
addressing modes, 5-10 

Addressing Modes, 5-1 
absolute, 5-10 
absolute deferred, 5-10 
deferred displacement, 5-8 
displacement, 5-6 
expanded operand, 5-11 
immediate, 5-9 
register, 5-4 
register deferred, 5-5 
register mode, 5-4 
summary, 5-2, 5-13 

Architecture 
cache, 2-1 
execution unit, 2-2 
fetch unit, 2-1 
main controller, 2-1 
pipelining, 2-2 
WE 32100 Microprocessor, 2-1 

Argument Pointer (ap) 
registers, 2-4 

Arithmetic Instructions 

as 

WE 32100 Microprocessor 
instruction set, 6-4 

assembler, 7-1 
Assembler 

as, 7-1 
directives, 7-3 
microprocessing facilities, 7-12 

Assembly Language 
bss, 3-3 
comment, 3-2 
constants, 3-6 
data, 3-3 
executable instructions, 3-2 
expressions, 3-5 
label, 3-2 
mnemonic, 3-2 
operand, 3-2 
statements, 3-1 
structure, 3-1 

symbols, 3-3 
text, 3-3 

Assembly Level Support Group, 2-3 

B 

Bit Field 
data types, 3-1 

bss 
assembly language, 3-3 

Byte 
data types, 3-1 

c 

C Language, 2-2 
cache 

architectures - WE 32100 
Microprocessor , 2-1 

Carry /Borrow 
flag bits, 6-3 

Comment 
assembly language, 3-2 

Constants 
assembly language, 3-6 

Coprocessor Instructions 

D 

WE 32100 Microprocessor 
instruction set, 6-12 

Data 
assembly language, 3-3 

Data Transfer Instructions 
WE 32100 Microprocessor 
instruction set, 6-3 

Data 
instruction storage, 4-4 
organization, 4-1 
register data storage, 4-3 
storage in memory, 4-3 
types, 4-1 

Data Types 
bit field, 3-1 
byte, 3-1 
double, 3-1 
halfword, 3-1 

INDEX 



INDEX 

single, 3-1 
word, 3-1 

Deferred Displacement 
addressing modes, 5-8 

dis 
disassembler, 8-1 

Disassembler 
dis, 8-1 
listing, 8-2 
options, 8-1 

Double 
data types, 3-1 

Double Extended 
data types, 3-1 

E 

Executable Instructions 
assembly language, 3-2 

Execution Unit 
architecture - WE 32100 

Microprocessor, 2-2 
Expanded Operand 

addressing modes, 5-11 
Expressions 

assembly language, 3-5 

F 

Fetch Unit 
architecture - WE 32100 

Microprocessor, 2-1 
Flag Bits 

carry/burrow, 6-3 
negative, 6-2 
overflow, 6-2 
zero, 6-2 

Floating Point Data, 4-1 
Floating Point Emulation 
Library 

function call listing, l 0-63 
summary by function, 10-83 
summary by mnemonic, 10-84 

Floating Point support, 10-1 
data types, 10-3 
MIS instruction listings, 10-5 
WE 32106 MAU instruction set, 10-1 

Frame Pointer (fp) 
registers, 2-4 

G 

General-Purpose (r0-r8) 
registers, 2-3 

H 

Halfword 
data types, 3-1 

High-Level Language Support Group, 2-4 

I 

Immediate 
addressing modes, 5-9 

Interrupt Stack Pointer Gsp) 
registers, 2-5 

Instruction Set, 6-1 
condition flags, 6-2 
functional groups, 6-3 
instructions, 6-4 
WE 32100 Microprocessor, 6-1, A-1 

IS25 Instruction Set 
addressing modes, B-1 
listings, B-4 
summary by function, B-59 

. summary by mnemonic, B-64 

L 

Logical Instructions 

M 

WE 32100 Microprocessor 
instruction set, 6-6 

Main Controller 
architecture - WE 32100 

Microprocessor, 2-1 
Math Acceleration Unit Instruction Set 

data types, 10-3 
listings, 10-5 
summary by function, 10-56 
summary by mnemonic, 10-60 

Mnemonic 



assembly language, 3-2 

N 

Negative 
flag bits, 6-2 

0 

Operand 
assembly language, 3-2 

Operating System Interface, 9-1 
Operating System Support Group, 2-5 
Overflow 

flag bits, 6-2 

p 

Pipelining 
architecture - WE 32100 

Microprocessor, 2-2 
Process Control Black Pointer (pcbp) 

registers, 2-5 
Processor Status Word (psw) 

registers, 2-5 
Program Control Instructions 

WE 32100 Microprocessor instruction 
set, 6-8 

Program Counter (pc) 
registers, 2-4 

R 

Register 
addressing modes, 5-4 

Register Def erred 
addressing modes, 5-5 

Registers 
a.rgument pointer (ap), 2-4 
frame pointer (fp), 2-4 
general-purpose (r0-r8), 2-3 
interrupt stack pointer Gsp), 2-5 
process control block pointer (pcbp), 2-5 
processor status word (psw), 2-5 
program counter (pc), 2-4 
stack pointer (sp), 2-3 

s 
Single 

data types, 3-1 
Stack and Miscellaneous Instructions 

summary by function, A-93 
summary by mnemonic, A-99 
summary by opcode, A-104 

Stack Pointer (sp) 
registers, 2-3 

Statements 
assembly language, 3-1 

Symbols 
assembly language, 3-3 

T 

Text 
assembly language, 3-3 

w 
WE 32100 Microprocessor 

Instruction Set 
arithmetic group, 6-4 
coprocessor group, 6-12 
data transfer group, 6-5 
listings, A-1 
logical group, 6-6 
program control group, 6-8 
stack and miscellaneous group, 6-12 
summary by function, A-93 
summary by mnemonic, A-99 
summary by opcode, A-104 

WE 32100 Microprocessor, 1-1 
Word 

data types, 3-1 

z 

Zero 
flag bits, 6-2 

INDEX 



NOTES 



NOTES 




