iy ‘ F 305-513
£ ATeT

ATeT 3B2 Computer
UNIX™ System V Release 2.0

Programmer Reference Manual

NOTICE

The information in this document is subject to change without notice. AT&T assumes no
responsibility for any errors that may appear in this document.

Copyright® 1985 AT&T
All Rights Reserved
Printed in U.5.A

TRADEMARKS

The following is a listing of the trademarks that are used in this manual:

o UNIX — Trademark of AT&T
DOCUMENTER'S WORKBENCH — Trademark of AT&T

3

» DIABLO — Registered trademark of Xerox Corporation
» HP — Trademark of Hewlett-Packard, Inc.
» Versatec — Trademark of Versatec Corporation

TELETYPE — Registered trademark of AT&T

2

« DEC, PDP, and VAX — Trademarks of Digital Equipment Corporation

)

TEKTRONIX — Registered trademark of Tektronic, Inc.
o WE — Registered trademark of AT&T

ORDERING INFORMATION

Additional copies of this document can be ordered by calling
1-800-432-6600 Inside the U.S.A.
OR
1-317-352-8557 Outside the U.S.A.
OR by writing to:
AT&T Customer Information Center (CIC)
Attn: Customer Service Representative

P.0. Box 19901
Indianapolis, IN 46219

Replace this
page with the
Introduction

tab separator.

INTRODUCTION

This manual describes the programming features of the UNIX system. It provides nei-
ther a general overview of the UNIX system nor details of the implementation of the
system.

Mot all commands, features, and facilities described in this manual are available in
every UNIX system. Some of the features require additional utilities which may not
exist on your system.

This manual is divided into four sections, some containing interfiled subclasses:

2. System Calls.
3. Subroutines:
3C. C Programming Language Libraries
35. Standard I/O Library Routines
3M. Mathematical Library Routines
3X. Specialized Libraries
3F. FORTRAN Programming Libraries
4. File Formats.
5. Miscellaneous Facilities.

Section 2 (System Calls) describes the entries into the UNIX system kernel, including
the C language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions
reside in various system libraries in the directories /lib and fwsr/Mb. See iniro(3) for
descriptions of these libraries and the files in which they are stored.

Section 4 (File Formats) documents the structure of particular kinds of files; for exam-
ple, the format of the output of the link editor is given in a.ouz(4). Excluded are files
used by only one command (for example, the assembler’s intermediate files). In gen-
eral, the C language struct declarations corresponding to these formats can be found in
the directories /usr/include and /usr/include/sys.

Section 5 (Miscellaneous Facilities) contains a variety of things. Included are descrip-
tions of character sets, macro packages, etc.

References with numbers. other than those above mean that the manual page is found in
another Reference Manual. References with (1) following the command generally
mean that the manual page is contained in the AT&T 3B2 Computer User Reference
Manual. Those followed by (1M), (7}, or (8) are contained in the AT&T 3B2 Com-
puter System Administration Reference Manual.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each section
are alphabetized, with the exception of the introductory entry that begins each section
(also Section 3 is in alphabetical order by suffixes). Some entries may describe several
routines, commands, etc. In such cases, the entry appears only once, alphabetized
under its “major’” name.

All entries are based on a common format, not all of whose parts always appear:
The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYMNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 2 {(System Calls):

Boldface strings are literals and are to be typed just as they appear.

Ttalic strings usually represent substitutable argument prototypes and program
names found elsewhere in the manual (they are underlined in the typed ver-
sion of the entries).

-3

Introduction

Square brackets [} around an argument prototype indicate that the argument
is optional. When an argument prototype is given as “name” or “file”, it
always refers to a file name.

Ellipses ... are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument begin-
ning with a minus —, plus +, or equal sign = is often taken to be some sort of
flag argument, even if it appears in a position where a file name could appear.
Therefore, it is unwise to have files whose names begin with —, +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.
The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the
suggested fix is also described.

A table of contents and a permutted index derived from that table precede Section 2.
On each index line, the title of the eniry to which that line refers is followed by the
appropriate section number in parentheses. This is important because there is consider-
able duplication of names among the sections, arising principally from commands that
exist only to exercise a particular system call.

A Permuted Index follows the Introduction and Table of Conients. The Permuted
Index is wsed by searching the middie column for a key word or phrase. The right
column will then contain the name of the manual page that contains that command.
The left column contains additional useful information about the command.

Replace this
page with the
Table of Contents

tab separator.

TABLE OF CONTENTS

2. System Calls

intro .« » » + « w 4« « 2 « o « - . . .introduction to system calls and error numbers

ACCESS » » « » a n n 4 a a n o a a4 s . o . «determine accessibility of a file
ACCL W « 4« 4 4 m e m e s s a4 . - « . . .cnable or disable process accounting
alarm . . e e e e e h e e e e e e e e e « « - . seta process alarm clock
Brk . o ¢ e e e e e e e e e e e e e change data segment space allocation
chdir,n.,HR,..,.,Q,...QAGANA.,changeworkmgdlrectory
chmod & « 4 4 4 s« 4 4 4 m e s a e n s . .« o »change mode of file
chown . - .~ « » ~ &« ~ « 4 « 4« » « » = « « « « .change owner and group of a file
chrootn...,...,...m.,.nn,..n,...changerootdlrectory
T s n o« « « . .close a file descriptor
CTEAL & v » & 4 w4 o a4 & 4 createanew file or rewrite an existing one
dup . . . - . . . s s s - 4 e e e eduplicate an open file descriptor
exec....ﬁ,n.......n.,.ﬂﬂh,.,...ﬂA.executeaﬁle
€Kit « v @ 4 4 4 e e e e m s e ama e aa e e s oterminate process
fentl « . . 4 o e e e e e e h e e e e e e a e e ma e« s o . . file control
fork . o h e e e e e e e e e e e e e ~ . . .Create a new process
getpid » . . get process, process group, and parent process IDs
getuid get real user, effective user, real group, and effective group IDs
ioctl.,......n"...n, w « s « . « .contro] device
Kill . . . o e e e senda51gnal toaprocess or a group of processes
HOK & v s i s e v n e e s e e e e e e e e a e e aa slinktoa file
Iseek » . v v e e e e e e e e . W e e e .moveread/wrlteﬁlepomter
mknod e e e . e . ,makeadlrectory, or a special or ordinary file
MOOUNE =« « & = « o & n & o s o o a a a o o a o a « « o » . mount a file system
msgetl . . . 4w e e 4 s e a e s s emessage control operations
MSEEEL » &« & w0 n o 4 4 e m e e s e s oa get essage queue
MSBODP + « o » « o & # n o n n n e n e a e a . s sINEsSSage operations
MICE & « 4 o o = o o n o s ~ « o o a « » a » » ~ . «change priority of a process
OPENM 2 o o« o = o a o o o = n s o « = o « « o o - «~open for reading or writing
PAUSE & & 4 4 4 « 4w 4w s s a4 w s a « - » . .suspend process until signal
PIP® - « = « 2 « o« « « 2 4 o a 4 a s 2 s « - . . .cCreate an interprocess channel
plock . .+ . .« o s s 4 a4 s« a « . . .lock process, text, or data in memory
profil e s e s e e e w4 e a e w e s execution time profile
PITACE .« ¢ & & o« x a4 s a e e aa e e e oaa e oa s s s . . . PTOCESS trace
. n,.readfromﬁle
semctl . . . a e e e e e ek e e e e e e e e semaphore control operations
SEMEEL & v« 4 4 e s aa e m s e e a s s o~ getset of semaphores
semop...ﬁ,..n.n.nn.,.anh.nnA,n.semaphoreoperations
SELPEIP « + = w4 o a4 4 s 4 a e n s 4 s o a s s a . . «Setprocess group ID
setiid . .« 4 4 4 4 e w4 4w s e e aa e e s o« » « . «setuser and group IDs
shmetl . . .« 4 o 4 v s 4 4w s« .« . »shared memory control operations
shmget . . . « « + « o & & o « « « » » . .get shared memory segment identifier
SHMOP = = = « o « « o o 4 o« s+ o« n « o » - « - .shared memory operations

signal « « « & 4 4 s~ s 4 4w s a w .« .specify what todoupon receipt of a signal
SIAL 4 . e e e h e h e e e e e e m o a e e e e a e e e s . . . get file statos

3 1. Y- .~ . set time
sync.ﬂ.,..,....n".n.,.,..n......updatesuperblock
sys3b ..,.,,,“..,.,,,«..ﬁﬂ,,"ﬁ«machmespemﬁcfunctlon
HME . o v h o e h e e e e a e e e e e e s ~ . . . get time
LMES & o o & o o n e m s e e e e s . . . get process and ch11d process times

Table of Contents

vadmin . . . 4 4 4 4 4 e 4 e s s s oaom s oa s o« o . - . .administrative control
Ulimit « « v &« 4 4 a h e m e e amaw a o oa s o . . . get and set user limits
UMASK « o o o o a o a o a a a a a2« » - . . .sctand get file creation mask
UMOUDE « « 4 o « & o & a o o o w a a a o o« o o « » - »unmount a file system
UNATNE « » o « o o « a o o a o n s o « » ~ «get name of current UNIX system

unlink .« & . . . v 4 e 4 s e 4 e s e w s s s s . . »remove directory entry
L] 7 1 « « - . . get file system statistics
UHIME & o v 4 a a6 o e n e aa e e e e s set file access and modification times

WAL « 0 o o a4 n n s s o~ oa s . o~ - o wait for child process to stop or terminate
WITEC o« v 4 4 4 4« a n a a4 n s a a s n e e s a4 s a . . .write on a file

3. Subroutines

intro . . . ~ » . «introduction to subroutines and libraries
CPROGRAMMING LANGUAGE UTILITIES e e e s .
a6dl « ~ « « o .convert between long integer and base 64 ASCII strlng

abort..r,.,..rn,a.,n......,.n, . generate an 10T fault
abs...n,.ra,.a...nh.,n..,Hrreturnintegerabsolutevalue
bsearch . . .+« + o 4 4 &« o s « » o o« « « » » « « »binary search a sorted table
clock + v 4 4 s 4 e e a e e a e e w e s s n e s s« . .report CPU time used
COMV '« o w s o « w o o n s n a o o o o n a a o o « o o o «translate characters

CIYPL w v v o« 4 a a n o o n a a a n 4« -generate hashing encryption
ctermid 4 4 4 4 4 4 4 4 e 4 s o~ o« « » . .generate file name for terminal
CHME « v « w o w4« w w s s a a a a s o . ~ »convert date and time to string
CLYPE « 0 v v o n a m m e mm e e e s + « «» . «classify characters

cuserid .+ v 4 h h e e e e e e e e e e get character logm name of the user
dial« . e . estabhsh an out-going terminal line connection
drand48 generate uniformly distributed pseudo-random numbers
€CVE . o 4w s e a s s s s a s« . . .convert floating-point number to string

end w4 4 e m s e m m e a4 e a s s o - .last locations in program
felose = v v v v 4 v e e e 4 e n e e aa aa . close or flush a stream
ferror . . v 4 4 s e e 4 e e e e s e s s a4 w . s . . .Stream status inquiries
fopen . . . 4 . 4 e a e e e e e 4 e e a e aa e e sOpEN astream
T« + « « . . binary input/output
fIEXD » v v 0 e h h m e e e a e e e s mampulate parts ofﬂoatmg point numbers

fseek o 4 4 . . 4 4 4 4.reposition a file pointer in a stream
ftW W o v s e h e e e e e e e e s e am e e aaw a . . .walka file tree
BEIC v 4 h h e e a e e e e e e e getcharacterorwordfromastream
getewdget path name of current working directory
BEENV . » 4 4 s 4 4 s a5 a e« e« « o «Teturn value for environment name
BELEIENt o W w4 4 4 4 4 4 s a4 e e a e e s e . . s . . . getgroup file entry
getlogin » . v 4 4 4 4 e e h w e aaa e aa e e s s o . . .getlogin name

getopt w4 4 4w s a s .~ . . . getoption letter from argument vecior
getpasstr..,..tﬂ,.,....ﬁ.n.,,,nn..readapassword
BEIPW -« « o 4 4 4 a4 e a e e n a e e e e aon o« o« . .get name from UID
getpwent 4w 4 4 4 4 s s s a o« » « o . .get password file eniry
S » .« . e s e a h e a e n e e e e a e . o . . . getastring from a stream
et i a s e s e e e e e e s e s oa s o o« . .access utmp file entry
hsearch+ .+« .+ .+manage hash search tables
1Btol .+« . . h e e e e . . convert between 3- byte integers and long integers
lockf .« v v v o 4w s s e e e e wwa s e oa s« . .record locking on files
Isearch » o v v 0 b e e e e e e e e h e e e e .linearsearchandupdate
malloc . . . = v v ¢ 4 4w 4« 4 4w e 4 e s s s s . . .main memory allocator
IMEMOLY « 4 & o o« o a o o o a s o o » « o o » » o o « « o . MEMOry operations

Table of Contenis

MKEEMP + « « « o w4 4 4 aaaa s a s ow o« a s Make a unique file name

IOMIEOT + o 2 « o n o o n « & n a a = « o a o « - « . .prepare execution profile
RSt - » & 4 v 4 4 a4 e mmn e a e e a a4 . - . . .getentries from name list
PEITOT « o o o s o n o s o s 2 a o « o o » « o » s = a » «System error messages
POPENl = + o o o a « « n « o = « 4 = a .«initiate pipe to/from a process
Printf .« v . v e e e e e e e e e e e e e s . » .~ print formatted output
PUEC 0 4 v v a h e m e e e e e e e e A putcharacterorwordonastream
PULEMY & v« v v a a n e a e e e e e s change or add value to environment
PULPWENE « o v« « o w a o a4 a o s« s s « 4 . . . Write password file entry
PULS & v v v w e e s m e e m e a aoa s e a a oDUiastring on a stream
GSOTL + v 4 4w a n e m m s e e m e e a e a e a s e s o o o« . quicker sort
and . . 4 . s e e e s e e a a e a o s .+~ .simple random-number generator
SCANf & v 4 w4 e m e e e s e e s m e s e e s -convert formatted input
setbuf +» » v o 4 4 4 e n e a e e a e e s . o» - . . .assign buffering to a stream
SELIMP » « o 4 4 a s A s n e 4 s a n 4 e aa s a oa . - - . o -non-local goto
sleep » » » w2 4 @ 4 4 4w m a a4« . . .~ ~ .suspend execution for interval
ssignal a n a e e e e e e e e « « « «software signals

Stdio .~ 0 . e e h e e e e e e e e e standard buffered 1npur/output package
Stdipc + . . e e e h e e e e s e s hstandard interprocess communication package

strirrgn,ﬂ,"....ﬂ,r.r...,,4,.,~.rstr1ngoperatrons
strtod . . 4 - 4 4 4 4 s s oa s o« . o« » . convert siring to double-precision number
SITEOl & v v v h s e e e a e e e e e e s s e s - o - . .cOnvert string to integer
swabﬂ,,r,..ﬁrn.,n...n.m,..,,n.,nnswapbytes
SYSEEIM » = » 4 % 4 n o m maa e m a4 4 e e e a n . - .issue a shell command
tmpfile 4 . . a s e s 4 s e e e s s oaCreate a temporary file
tmpnam . . .« s+ 4 s 4+ 4 . . -Create a name for a temporary file
tscarch.....ﬂ»n...ﬂ.rtr..,.n",managebinarvsearchtrees
thyname . . . 4 . 4 a4 e e e e s . ~ ~ « »find name of a terminal

tyslot v v h h e e e a e e s ﬁnd the slot in the utmp file of the current user
UNEELC o » o o 4 o » » a s a o ~ s« a - ~ opush character back into input stream

vprintf . . . « e e a . «print formatted output of a varargs argument list
MATHLIBRARIE@.,,.h..,m.".r.r,r..t -

bessel . . . C e e e e e e o h a e e e e Bessel functlons
eeferTOr functron and complementary error function
EXP . 4 a4 -~ « . . - . ~ «exponential, logarithm, power, square root functions
floor » = & » = & v 4w « » o . . floor, ceiling, remainder, absolute value functions
BAMMA « » » o o o o o o n o o » a2 o n a o n o s o - ~ .loggamma function
hypot « « « & 4 4w o v @ 4 & v a e a n w o~ o - . «EBuclidean distance function
MALHEIT + » @ & & « 4 s 4 n a a a o a a s s o~ o o« . . .error-handling function
SN & 4 4 v s s a4 4 n a4 e a s e s oaoa s s o« » - » . hyperbolic functions
TEE w s o n m n e aa s e e e na e e s oa e aoa trigonometric functions
ASSEIt » v b h e e a e e s " .verrfy program assertion

CUISES « o n n o n n o m n a s s CRT screen handlmg and optimization package
ldahreadread the archive header of a member of an archive file

Idclose .« & . 4 c v e e e e e e h e e e e ~ ~ . close a common object file
ldfhread s a o w o~ . » ~read the ﬁle header of a common object file
ldgetname retrleve symbol name for common object file symbol table entry
ldlreadmampulate line number entries of a common object file function

ldlseek seek to line number entries of a section of a common object file
ldohseekseek to the optional file header of a common object file

Idopen . » « + « & « « « « w w4oOpena common object file for reading
Idrseek seek to relocation entries of a section of a common object file
Idshread read an indexed/named section header of a common object file

Table of Contents

Idsseekseek to an indexed/named section of a common object file
ldtbindexcompute the index of a symbol table entry of a common object file
Idtbreadread an indexed symbol table entry of a common object file
Idtbseekseek to the symbol table of 2 common object file
logname . . = » o o + 4 o & s 4 » s « « « o » - . . .return login name of user

malloc .« . . « 4w « « 4 4« a s 4 a e a4« - - . .fast main memory allocator
plot~ . . 4 4 4 4 4w 4 4 4 s s s« « . ~ . .graphics interface subroutines
FEECMP « « » + « o« o « o+ = = » » ~ « » »compile and execute regular expression
sputlaccess long integer data in a machine-independent fashion.
vprintf . . . « « . print formatted output of a varargs argument list
FORTRAN PROGRAMMJ[NG LIBRARIES e e e e e e e e e e e e e e e
abort A . PN nterminate Fortran program
abs...rn.........,.,......,,,..Fortranabsolutevalue

ACOS » « o o o 2 ~ a s o n = « o » « « » . . Fortran arccosine intrinsic function
aimag . » « + « » 2 « o » « « » » . . Fortran imaginary part of complex argument
alnt » « « » 4 « 4 4 4+ s 4 a s s~ « » ~ . . Fortran integer part intrinsic function
BSIM + o o » o o n o o a o« a a a » o » » « « » . Fortran arcsine intrinsic function
AtAN . + 4 4 « - 4 « a4 s « » a o » - . . Fortran arctangent intrinsic function
atan? m w m s s s s s s « . » » . . Fortran arctangent intrinsic function

bool . . . +« « « « 4 4 o a 4 « a s« « - o Fortran Bitwise Boolean functions
CONJE « o » o n » » o « » » » » « - . Fortran complex conjugate intrinsic function
€08 - + « v n a 4 4 a a a a e s e s w s oFortran cosine intrinsic function
cosh 4«+. Fortran hyperbolic cosine intrinsic function
dim+« o+« .positive difference intrinsic functions
dprod+« . ..+doubleprecision product intrinsic function
BXP « o » o s o & s s n s = s » . » Fortran exponential intrinsic function
ftype « » « v 4 4 4w 4 w4 4 4w s« =« » « « » .explicit Fortran type conversion
getATE . . « .+ . o s - o o a o » » « « »return Fortran command-line argument
EeLeNV . . . 4 4 4 4 4« a « o« » = « o o .return Fortran environment variable
jarge . « « « -« 4« « 4 4« « » . . .return the number of command line arguments
index . .« v s 4 o 4 4o v 4 n e s s =« . .return location of Fortran substring
len . . . o & 4 4 4 s s s s 4 s e s w a aa . . .return length of Fortran string

log. . .+ -+ o« s o+ s+« . Fortran natural logarithm intrinsic function
logl0+« . .+ 4+« « . ~ .Fortran common logarithm intrinsic function

TMAK & 4+ 4 « o 2 ~ s « = a s = o » o « « » » » Fortran maximum-value functions
mclock ¢« « . 4 4« 4« s s s w ~ . . .return Fortran time accounting
mil 0. b1t field manipulation intrinsic functions and subroutines
MiN e = o 2 « o 2 » « a a a s o « » o « » o » . Fortran minimum-value functions
107 s Fortran remaindering intrinsic functions
rand 4 w4 s s e s e e w s oa . .« »random number generator
round 4 4 4 4« 4 s« nFortran nearest integer functions
SN . « . 4 4 o 4 s s s s w s«FPortran transfer-of-sign intrinsic function
signalspecify Fortran action on receipt of a system signal
SN o v 4 4 & 2 o o « a 5 2 o n o s » a ~ « » « » »Fortran sine intrinsic function
Sith & v o v v h e e e e e e e e e Fortran hyperbohc sine intrinsic function
STt - « 4« 4 4 4 - & 4 4 s a » - & - o . . . Fortran square root intrinsic function

SLICIP « 4 o » = « = » + s o = o = » ~ - - »String comparison intrinsic functions
SYStEM 4 « » 4 4 4 4 s s s 4 s a o « - » . .issue a shell command from Fortran
AN .« 4 4 « 4 4 4 4 s a w s o » « « « - . . Fortran tangent intrinsic function
tanh.Fortran hyperbolic tangent intrinsic function

Table of Conients

4. Tile Formats

IO+ 2w 4 w4 4 e e e a a e a s a s a s ~ « o - . «introduction to file formats
AOUL v s o s 0 n o a e e s e e .~ COMMON assembler and link editor output

ar . . W e e e e e naaaaaaa o . . ~common archive file format
checkhst e e e a e a e e e e e e lxst of file systems processed by fsck
core,,.h.n,.n...an...nn...nnformatofcorelmageﬁle
CPIO =« 4 4 4 e e n 4 e w o aa i a e s oaoaa o«format of cpio archive
dir . .« . h e h e e e e e e e e ma e aaa e s s . . .format of directories
filehdr - « 4 4w 4 . « « o « « . . .file header for common object files
fS & 4 e n a e s m e e nm e s s s s s s a s . . «format of system volume
fSpec « = 4 4 o 4 4 4 e s e a s m oa s s sformat specification in text files
gettydefsspeed and terminal settings used by getty
1 graphlcal primitive string, format of graphical files
BIOUDP v« n o n e e e e e . W e na e s e aa a e a . .group file
nittab . . . 4 4 4 e a e 4 4 s e s e a e a a n .« . . Script for the init process
inode . . & . . . s n e e n e e e a e e aa e e a e . . .formatof an i-node
BSSUE @ v v v e a e e e e e e e e e e e e e 1ssueldent1ﬁcat10nﬁle
Idfen . .« & v o e h e e e e a e e s COMMON object file access routines
linenum « » « « «line number entries in a common object file
MASLET & « o » 4 » 4 4 s e x4 e n s« o - - master configuration database

mnttab « . .« .« . . 4 4 s e 4 4 w4 s s on e« s« . -~ mounted file system table
Passwd v a a e e e h a aa s e a s s e oa a . o« « »password file

plot.,A..n.ﬂ..,~.,.,.ﬂﬂ.nh,.".graphlcsmterface
PNCH & 4w e 4 e e a h e a e a e e e s e a file format for card images
profile . « & ¢ . 0 e aa e e e . ~ - » .system-wide user profile
reloC « h w e e e e e e e e s s relocatlon mformatlon for a common object file
sccsﬁle,,.,n..,,.,,......,, « » . . format of SCCS file
senhdr 4 . ¢ 4 - . . .«section header for a common object file
SYINS o o w o« » a s = a o » s - o » » . common object file symbol table format
SYSIEM w4 w4 4 4 s a o n .~ » . ~ .8ystem configuration information table
eI v 4« 4 a h e an a e a e e a s e e oa oa . . . format of compiled term file

terminfo+« . 4 4 e . 4 4w s~terminal capability data base
tMEZONE « v « = & v 4 s 4 4w w e a w o« « = « ~ «setdefault system time zone
LMD + ¢ o« o a o o o a ~ s o o s » o » « » - »utmp and wtmp entry formats

5. Miscellaneous Facilities

METO « & v o v 4 4 4 4 e e e e m e aa e a oaintroduction to miscellany
ASCH « v w a w4 a a s m m e an i ow s s o . - mapof ASCII character set

ENVILONL + & o « o « » o n o n o & a o & s 4 s a4 a aUSEr environment
fentl o o v 0 4 4 e e e 4 a e s a e a e e aaa « a ~ o «filecontrol options
math . . . ~ « « = &« « &« w s s « a » » - » - - . . math functions and constants
Prof « -« 4w e e e e 4 s e 4 e a a o a on oo s~ « .profile within a function
TEEEXP + ~ o » s « « = o » » . « o .Tegular expression compile and match routines
StAt w4 4 s 4 4 4 s e a e e a a e = s a o o » «data returned by stat system call
LEFM » & 4 & &« & w « a = a « » s« o s » « - «conventional names for terminals
LYPES » & v o h e e a e e e e e e w . . . primitive system data types
values . . « 4 4 4 4 4 4w a e a s a s a s« s . - . . machine-dependent values
VATATES « o » » o o a o o a o o a » » o » 24 » » ~handle variable argument list

Replace this
page with the
Permuted Index

tab separator.

PERMUTED INDEX

13tol, ltol3: convert between
long integer and base-64/

program.

Fortran absolute value.
value.

abs: return integer

dabs, cabs, zabs: Fortran
/foor, ceiling, remainder,
utime: set file

accessibility of a file.

sputl, sgetl:

Idfen: common object file
/setutent, endutent, utmpname:
access: determine

enable or disable process
mclock: return Fortran time
process accounting.

sin, cos, tan, asin,

intrinsic function.

putenv: change or

uadmin:

imaginary part of complex/
part intrinsic function.
alarm: set a process

clock.

change data segment space
realloc, calloc: main memory
mallinfo: fast main memory
natural logarithm/ log,
logarithm intrinsic/ log10,
Fortran/ max, max0,

max, max0, amax0, max]1,
Fortran/ min, min0,

mif, min0, amin0, minl,
remaindering intrinsic/ mod,
rshift: Fortran Bitwise/
Fortran nearest integer/

link editor output.

format.

acos, dacos: Fortran

cpio: format of cpio

ar: common

header of a member of an
an archive/ ldahread: read the
asin, dasin: Fortran

atan2, datan2: Fortran

atan, datan: Fortran
imaginary part of complex
return Fortran command-line
varargs: handle variable
formatted output of a varargs
formatted output of a varargs
getopt: get option letter from
the number of command line
ascii: map of

set.

3-byte integers and long/ 13tol(3C)
a64l, 164a; convert between 2641(3C)
abort: generate an 10T fault. abort(3C)
abort: terminate Fortran abort(3F)
abs, iabs, dabs, cabs, zabs: abs(3F)
abs: return integer absolute abs(3C)
absolute value. abs(3C)
absolute value. abs,iabs, . +» +« . . . 4 abs(3F)
absolute value functions. floor(3M)
access and modification times. utime(2)
access: determine - o4 o4 . 44 . .. access(2)
access long integer dataina/ sputl(3X)
ACCESS TOULINGS. » o v« 0w v v n o n e e e . ldfcn{(4)
access utmp file entry. . « getut(3C)
accessibility of a file. access(2)
ACCOUDLING. ACCE + « « @ 4 v o 4 b e e e s acct(2)
ACCOUNEINE. v v v 4 v 0 v s n e e mclock(3F)
acct: enable or disable acct(2)
acos, atam, atan2:/ . . 4w . a e e e e e . s trig(3M)
acos, dacos: Fortran arccosine acos(3F)
add value to environment., putenv(3C)
administrative control. .~ 4 . . . uadmin(2)
aimag, dimag: Fortran aimag 3F)
aint, dint: Fortran integer aint(3F)
alarmelock. oL, alarm(2)
alarm: set a process alarm alarm(2)
allocation. brk, sbrk: brk(2)
allocator. malloc, free, - . . « « o 4 . W 4 . . malloc(3C)
allocator. /calloc, mallopt, . . - « . « malloc(3X)
alog, dlog, clog: Fortran log(3F)
alogl0, dloglQ: Fortran common logl0(3F)
amax0, max1, amaxl, dmaxl: max(3F)
amaxl, dmax1: Fortran/ max (3F)
amin0, minl, aminl, dminl: min(3F)
aminl, dminl: Fortran/ min(3F)
amod, dmod: Fortran . . . « « « 4 4 mod (3F)
and, or, xor, not, Ishift, bool (3F)
anint, dnint, nint, idnint: round (3F)
a.out: common assembler and a.out(4)
ar: common archive file ar(4)
arccosine intrinsic function. acos (3F)
archive. - . v v e e e e e e e e e e e cpio(4)
archive file format. ar(4)
archive file. /the archive Idahread (3X)
archive header of 2 memberof Idahread (3X)
arcsine intrinsic function. asin(3F)
arctangent intrinsic function. atan2(3F)
arctangent intrinsic function. atan(3F)
argument. /dimag: Fortran aimag (3F)
argument. SEtarg: + .« « 4 4 4 s o4 4 a4 4 oa s getarg (3F)
argument list. varargs(5)
argument list. /print vprintf(38)
argument list. /print vprintf(3X)
ArguUMEnt VECtOT. ~ - « « « o s+ = @ 4 4 o+ n . getopt (3C)
arguments. iarge: TELUIN = . .« o 4 4 iargc(3F)
ASCII character set. ascii(5)
ascii: map of ASCII character ascii(5)

-1 -

Permuted Index

long integer and base-64
and/ ctime, localtime, gmtime,
trigonometric/ sin, cos, tan,
intrinsic function,

output. a.out: common
assertion.

assert: verify program
setbuf, setvbuf:

sin, cos, tan, asin, acos,
arctangent intrinsic/
arctangent intrinsic/

cos, tan, asin, acos, atan,
double-precision/ strtod,
integer. strtol, atol,

integer. strtol,

ungetc: push character
terminal capability data
between long integer and
30, i1, jn, yO, y1, yn:

fread, fwrite:

bsearch:

tfind, tdelete, twalk: manage
btest, ibset, ibclr, mvbits:
/not, Ishift, rshift: Fortran
sync: npdate super

rshift: Fortran Bitwise
space allocation.

sorted table,

/ieor, ishft, ishftc, ibits,
stdio: standard

setbuf, setvbuf: assign
swab: swap

value. abs, iabs, dabs,

data returned by stat system
malloc, free, realloc,

fast/ malloc, free, realloc,
int introduction t system
terminfo: terminal

pnch: file format for
function. cos, dcos,

ceiling, remainder,/ floor,
/ceil, fmod, fabs: floor,
intrinsic/ exp, dexp,

pipe: create an interprocess
/dble, cmplx, demplx, ichar,
stream. ungetc: push

user. cuserid: get

/getchar, fgetc, getw: get
/putchar, fputc, putw: put
ascii: map of ASCH
_tolower, toascii: translate
iscntrl, isascii: classify
directory.

systems processed by fsck.
times: get process and
terminate. wait: wait for

of a file.

isgraph, iscntrl, isascii:

ASCII string. /convert between a641(3C)
asctime, tzset: convert date ctime (3C)
asin, acos, atan, atan2: e e e e s trig(3M)
asin, dasin: Fortran arcsine « « . asin(3F)
assembler and link editor a.out(4)
assert: verify program Ch e e assert(3X)
ASSETTION. o v 4 4 4 4 e a . e e assert(3X)
assign buffering to a stream. setbuf(3S)
atan, atan2: trigonometric/ 4 . . . trig(3M)
atan, datan: Fortran e e e s atan(3F)
atan?2, datan2: Fortran f e e e s atan2(3F)
atan2: trigonometric/ Sin, 4 . o0 .o trig(3M)
atof: convert string to [N strtod (3C)
atoi: convert string to C e e e strtol (3C)
atol, atoi: convert String 10 . . . 4 4 . .0 W . . strtol (3C)
back into input stream. e e e ungetc(38)
base. terminfo: e e e terminfo(4)
base-64 ASCII string. fconvert 2641(3C)
Bessel functions. e e e e e e bessel (3M)
binary input/output. e e e e fread(3S)
binary search a sorted table. bsearch(3C)
binary search trees. tsearch, tsearch(3C)
bit field manipulation/ /ibits, mil 3F)
Bitwise Boolean functions. bool (3F)
block. v o o . e e e e sync(2)
Boolean functions, /Ishift, bool (3F)
brk, sbrk: change data segment brk(2)
bsearch: binary searcha bsearch(3C)
btest, ibset, ibclr, mvbits:/ mil(3F)
buffered input/output package. stdio(38)
buffering to a stream. e e e e setbuf(3S)
BYEES. & v e e e e e e e e e e e e e . swab(3C)
cabs, zabs: Fortran absolute abs(3F)
call. stat: < . . . h e . e . . [stat(5)
calloc: main memory allocator. malloc(3C)
calloc, mallopt, mallinfo: e e e e malloc(3X)
calls and error numbers. e intro(2)
capability data base. e terminfo(4)
card images. . . . 4 o0 0. . . . e e e pnch(4)
ccos: Fortran cosine intrinsic . . . » cos(3F)
ceil, fmod, fabs: floor, 0 floor (3M)
ceiling, remainder, absolute/ floor (3M)
cexp: Fortran exponential exp(3F)
channel. C e e e pipe(2)
char: explicit Fortran type/ ftype 3F}
character back into input ungetc(35)
character login name of the cuserid (3S)
character or word froma/ getc(38)
character or word on a stream. putc(3S)
character set. e e e e ascii(5)
characters. /_toupper, C e e e conv(3C)
characters. /isprint, isgraph, ctype(3C)
chdir: change working chdir(2)
checklist: list of file checklist (4)
child process times. « .+ e e e times (2)
child process tostopor C e e s wait(2)
chmod: change mode of file. chmod(2)
chown: change owner and group chown(2)
chroot: change root directory. chroot(2)
classify characters. /isprint, ctype(3C)

-2 -

status/ ferror, feof,
alarm: set a process alarm

logarithm/ log, alog, dlog,
Idclose, ldaclose:

close:

descriptor.

fclose, flush:

/real, float, sngl, dble,
system: issue a shell

iarge: return the number of
sysiem: issue a shell

getarg: return Fortran

ar:

editor output. a.out:

log10, alogl0, dlog10: Fortran
routines. ldfen:

idopen, ldaopen: open a
/line number entries of a
ldclose, ldaclose: close a
read the file header of a
entries of a section of a

the optional file header of a
/entries of a section of a
/section header of a

an indexed/named section of a
of a symbol table entry of a
symbol table entry of a
seek to the symbol table of a
line number entries in a
relocation information for a
scnhdr: section header for a
/retrieve symbol name for
table format. syms:

filehdr: file header for

ftok: standard interprocess
ige, lgt, lle, 1it: string
expression. regemp, regex:
regexp: regular expression
term: format of

erf, erfe: error function and
Fortran imaginary part of
conjg, dconjg: Fortran
table entry of a/ Idtbindex:
master: master

table. system: system
conjugate intrinsic function.
conjg, dconjg: Fortran complex
an out-going terminal line
math: math functions and
ioctl:

fentl: file

msgctl: message

semctl: semaphore

shimectl: shared memory
fentl: file

uvadmin: administrative
terminals. term:

char: explicit Fortran type
integers and/ 13tol, liol3:

Permuted Index

clearerr, fileno: stream 4 . 4 ferror(38)
Clock. v v e e e e e e e e e e e e alarm(2)
clock: report CPU time used. clock (3C)
clog: Fortran natural & log(3F)
close a common object file. Idclose(3X)
close a file descriptor. . « . . 4 . 4 close(2)
close:closeafile . - . . . o 0 v a0 closz(2)
close or flush a stream. fclose(3S)
cmplx, demplx, ichar, char:/ ftype(3F)
command from Fortran, « « « . . . system{(3F)
command line arguments. iargc(3F)
command. .« e e e e e e e . system(3S)
command-line argument. getarg(3F)
common archive file format. ar(4)
common assembler and link a.out(4)
common logarithm intrinsic/ log10(3F)
common object file access Idfcn(4)
common object file for/ ldopen(3X)
common object file function. IdIread (3X)
common object file. Idclose(3X)
common object file. 1dfhread: 1dfhread (3X)
common object file. /number, . Idlseek (3X)
common object file. /seekto ldohseek (3X)
common object file. ldrseek (3X)
common object file. Idshread (3X)
common object file. /seekto ldsseek (3X)
common object file. /the index ldtbindex (3X)
common object file. findexed Idtbread (3X)
common object file. ldtbseek: ldtbseek(3X)
common object file. linenum: linenum (4)
common object file. reloc: reloc(4)
common object file. 4 .. 0 scnhdr(4)
common object file symbol/ ldgetname(3X)
common object file symbol L. syms (4)
common object files. filehdr(4)
communication package. stdipe(3C)
comparison intrinsic/ . .« 4. . . stremp(3F)
compile and execute regular regemp(3X)
compile and match routines. regexp(5)
compiled term file. term (4)
complementary error function. erf(3M)
complex argument. /dimag: aimag 3F)
complex conjugate intrinsic/ conjg(3F)
compute the index of a symbol Idtbindex (3X)
configuration database. master (4)
configuration information system(4)
conjg, deconjg: Fortran complex conjg (3F)
conjugate intrinsic function. conjg3F)
connection. dial: establish dial(3C)
COMSEAMES. o « 4w n 0 n e e e . - math(5)
control device. 4 4 4 4 44 e .. ioct1(2)
CONEIOL. & v o 4 o e e h e e e e e e e . fentl(2)
control Operations. . . .« 4 4 s 4 o4 4 . .. msgctl(2)
control Operations. . . . s 4 o o4 . 4w o4 . semetl(2)
control operations. . . .« . o4 0 4 4. . . shmetl(2)
control Options. . .« . . s s 4w e 0w e ow . . fenti(5)
COMIOL o v v w w0 s a n e e e e e . uadmin(2)
conventional names for term (5)
conversion. fdemplx, ichar, ftype(3F)
convert between 3-byte - 13t0l(3C)

-3

Permuted Index

and base-64 ASCII/ a64l, 164a:
/gmtime, asctime, tzset:

to string. ecvt, fevt, gevt:
scanf, fscanf, sscanf:
strtod, atof:

striol, atol, atoi:

file.

core: format of

cosine intrinsic function.
atan2: trigonometric/ sin,
hyperbolic cosine intrinsic/
functions. sinh,

cos, dcos, ccos: Fortran
/dcosh: Fortran hyperbolic
cpio: format of

clock: report

rewrite an existing one.

file. tmpnam, tempnam:

an existing one. creat:

fork:

tmpfile:

channel. pipe:

umask: set and get file
optimization package. curses:
generate hashing eneryption.
function. sin, dsin,
intrinsic/ sqrt, dsqrt,

for terminal.

asctime, tzset: convert date/
uname: get name of

slot in the utmp file of the
getcwd: get path-name of
and optimization package.
name of the user.

absolute value, abs, iabs,
intrinsic function. acos,
intrinsic function. asin,
terminfo: terminal capability
/sgetl: access long integer
plock: lock process, text, or
call. stat:

brk, sbrk: change

types: primitive system
master: master configuration
intrinsic function. atan,
intrinsic function. atan2,
/asctime, tzset: convert
/idint, real, float, sngl,
/float, sngl, dble, cmplx,
conjugate intrinsic/ conjg,
intrinsic function. cos,
cosine intrinsic/ cosh,
difference intrinsic/ dim,
timezone: set

close: close a file

dup: duplicate an open file
file. access:

ioctl: control

exponential intrinsic/ exp,

convert between long integer 2641(3C)
convert date and time to/ ctime(3C)
convert floating-point number ecvt(3C)
convert formatted input., scanf(3S)
convert String to/ . « « 4 4 4 4 4 0w s e . strtod (3C)
convert string to integer. strtol 3C)
core: format of core image core(4)
coreimage file. . . « o 4 4. 0.4 . e e .- core(4)
cos, dcos, ccos: Fortran cos(3F)
cos, tan, asin, aCoS, AtAN, » 4 4 trig(3M)
cosh, dcosh: Fortran & 4 4 4 . . . cosh(3F)
cosh, tanh: hyperbolic sinh(3M)
cosine intrinsic function. cos(3F)
cosine intrinsic function. cosh(3F)
cpioarchive. . « « v v v 0w h e e e s cpio(4)
cpio: format of cpio archive. cpio(4)
CPU timeused. - « « « v v 4 0 v v 0w clock (3C)
creat: create a new fileor creat(2)
create a name for a temporary tmpnam(3S)
create a new file or rewrite creat(2)
create a MEW PrOCeSS. » ~ o « » o 0 o o 4 . . fork(2)
create a temporary file. tmpfile(3S)
create an interprocess .« . . . 4 4 0 4 4 4 . . pipe(2)
creation mask. 4 4 440w e e e s umask(2)
CRT screen handlingand curses(3X)
Crypt, setkey, encrypt: . « « 4 . . . 4 o4 . . s crypt(3C)
csin: Fortran sine intrinsic sin(3F)
csqrt: Fortran square root + « + « . . 0 . . . sqrt(3F)
ctermid: generate file name ctermid (3S)
ctime, localtime, gmtime, ctime(3C)
current UNIX system. . « . o o o 2 « - . . . uname (2)
current wser. /findthe ttyslot(3C)
current working directory. getewd 3C)
curses: CRT screen bandling curses (3X)
cuserid: get character login cuserid(3S)
dabs, cabs, zabs: Fortran . . .« + . . « abs(3F)
dacos: Fortran arccosine acos(3F)
dasin: Fortran arcsine . « - . . asin(3F)
dataBase. . . . 4 0 4w e e e e e e e e . terminfo(4)
data in a machine-independent/ sputl (3X)
datainmemory. - i o4 e woa e .. plock(2)
data returned by stat system stat(5)
data segment space allocation. brk(2)
data types. 4 o4 . e e e e types(5)
database. . . . 4 4 4 e h e e e e e e master (4)
datan: Fortran arctangent atan(3F)
datan2: Fortran arctangent atan2(3F)
date and time to string. ctime(3C)
dble, cmplx, demplx, ichar,/ ftype(3F)
demplx, ichar, char: explicit/ ftype(3F)
dconjg: Fortran compleX . » » « v 4 a0 4 . . conjg(3F)
dcos, ccos: Fortran cosine . . + + & » « . . . cos(3F)
dcosh: Fortran hyperbolic cosh(3F)
ddim, idim: positive dim(3F)
default system time zone., timezone(4)
descriptor. w e e e e e e e close(2)
descriptor. » « 4 4 0 h e e e e e e e e e . dup(2)
determine accessibility of 2 access(2)
device. i e e e e e joctl(2)
dexp, cexp: Fortran« exp(3F)

-4 -

terminal line connection.
dim, ddim, idim: positive
difference intrinsic/

of complex argument. aimag,
intrinsic function. aint,

dir: format of

chdir: change working

chroot: change root

unlink: remove

path-name of current working
ordinary file. mknod: make a
acct: enable or

hypot: Euclidean

flcongA48: generate uniformly
logarithm/ log, alog,
logarithm/ log10, alogl0,
max, max0, amax0, maxl, amaxl,
min, min0, amin0, minl, aminl,
intrinsic/ mod, amod,
nearest integer/ anint,
intrinsic function. dprod:
/atof: convert string to
product intrinsic function.
nrand48, mrand48, jrand48,/
transfer-of-sign/ sign, isign,
intrinsic function. sin,
intrinsic function. sinh,

root intrinsie/ sqrt,

intrinsic function. tan,
tangent intrinsic/ tanh,
descriptor.

descriptor. dup:
floating-point number to/
program, end, etext,

common assembler and link
/user, real group, and

and/ /getegid: get real user,
accounting. acct:

encryption. crypt, setkey,
encrypt: generate hashing
locations in program.
/getgrgid, getgrnam, setgrent,
/getpwuid, getpwnam, setpwent,
utmp/ /pututline, setutent,
nlist: get

file. linenum: line number
file/ /manipulate line number
/ldniseek: seek to ling number
fldnrseek: seek to relocation
utmp, wtmp: utmp and wtmp
fgetgrent: get group file
fgetpwent: get password file
utmpname: access utmp file
object file symbol table

/the index of a symbol table
/read an indexed symbol table
putpwent: write password file
unlink: remove directory

Permuted Index

dial: establish an out-going . « + . « dial(3C)
difference intrinsic/40 dim(3F)
dim, ddim, idim: positive dim(3F)
dimag: Fortran imaginary part aimag(3F)
dint: Fortran integer part aint3F)

dir: format of directories. dir(4)
AirectOTies. + 2« « « v 4 4 4 e e e e dir(4)
directory. . . 0. 0 e e e e .. e e e e chdir(2)
directory. v 4 n e e h e e e e e e e e e chroot(2)
diTectory entry. . « + o v 4 4 0 4 a e e e unlink(2)
directory. getewd: get getewd (3C)
directory, or a special or mknod(2)
disable process accounting. acct(2)
distance function. ~ . - .+ . . 4 04 4. .. . hypot(3M)
distributed pseudo-random/ drand48(3C)
dlog, clog: Fortran natural log(3F)
dlog10: Fortran COmMmon « . « « « « « o « o o log10(3F)
dmaxl: Fortran maximum-value/ max{(3F)
dminl: Fortran minimum-value/ min(3F)
dmod: Fortran remaindering , mod(3F)
dnint, nint, idnint: Fortran round (3F)
double precision product dprod(3F)
double-precision number. strted (3C)
dprod: double precision dprod (3F)
drand48, erand48, lIrand48, drand48(3C)
dsign: Fortran . » « « « 4 4 v 4 a4 oa . .. sign(3F)
dsin, csin: FOrtran sine » « + » « « v 4 0 4 o . sin(3F)
dsinh: Fortran hyperbolic sine sinh(3F)
dsqrt, csqrt: Fortran square+ sqrt(3F)
dtan: Fortran tangent . « . . » tan(3F)
dtanh: Fortran hyperbolic tanh(3F)
dup: duplicate anopenfile dup(2)
duplicate anopen file dup(2)

ecvt, fcvt, BCVE: CONVErt « v v 2 4 & o 0w o . ecvt(3C)
edata: last locationsin end(3C)
editor output. a.0ut: 4 4 4 a.out(4)
effective group IDs. . . o . & 4 4 0 . 04w getnid (2)
effective user, real group, getuid (2)
enable or disable process acct(2)
encrypt: generate hashing crypt(30)
encryption. crypt, setkey, crypt(3C)
end, etext, edata: last 4 .. . o. . end(3C)
endgrent, fgetgrent: get group/ getgrent(3C)
endpwent, fgetpwent: get/ getpwent (3C)
endutent, utmpname: access . . 4 getut(3C)
entries from name list. nlist(3C)
entries in a common object linenum (4}
entries of a common object IdIread (3X)
entries of a sectionof a/ 1dlseek (3X)
entries of a sectionof a/ Idrseek(3X)
entry formats. 0 4 . 4 . e e e e utmp(4)
entry. /setgrent, endgrent, getgrent (3C)
entry. /setpwent, endpwent, getpwent (3C)
entry. /setutent, endutent, getut (3C)
entry. /symbol name for common ldgetname (3X)
entry of a common object file. Idibindex (3X)
entry of 2 common object file. Idtbread (3X)
EBETY. « 4 4 s n e a n s n a e a s .~ . . putpweni(3C)
EALTY. « o « 4w w4+ a s o a a . .« . unlink(2)

environ: user environment. environ(5)

-5 -

Permuted Index

environ: user

getenv: return value for
putenv: change or add value to
getenv: return Fortran
mrand48, jrand48,/ drand48,
complementary error function.
complementary error/ erf,
system error/ perror,
complementary/ erf, erfc:
function and complementary
sys_errlist, sys_nerr: system
to system calls and

matherr:

terminal line/ dial:

in program. end,

hypot:

execlp, execvp: execute a/
execvp: execute/ execl, execy,
execl, execv, execle, execve,
execve, execlp, execvp:
regemp, regex: compile and
sleep: suspend

monitor: prepare

profil:

execvp: execute af execl,
execute/ execl, execv, execle,
/execy, execle, execve, execlp,
a new file or rewrite an
process.

exit,

exponential intrinsic/
exponential, logarithm,/
emplx, demplx, ichar, char:
exp, dexp, cexp: Fortran

exp, log, loglQ, pow, sqrt:
routines. regexp: regular
compile and execute regular
remainder,/ floor, ceil, fmod,
data in a machine-independent
/calloc, mallopt, mallinfo:
abort: generate an 10T

a stream.

floating-point number/ ecvt,
fopen, freopen,

status inquiries. ferror,

fileno: stream status/

stream. fclose,

word from a/ getc, getchar,
/getgrnam, setgrent, endgrent,
/getpwnam, setpwent, endpwent,
stream. gets,

times. utime: set

ldfcn: common object.
determine accessibility of a
chmod: change mode of
change owner and group of a
fentl:

fenti:

ENVIOMMENL. « « o « « 0 0 o 0 2 0 o o o o & environ(5)
environment DaAME. o4 . o4 o« 4o . . . getenv(3C)
COVITODMIENL. = » n « =+ e 4 4 0 e e s putenv(3C)
environment variable. getenv(3F)
erand48, Irand48, nrand48, drand48 (3C)
erf, erfc: error functionand erf(3M)
erfc: error functionand erfGM)
errno, sys_errlist, sys nerr: 4 0 . . . perror(3C)
error functionand 4.4 . .. erf(3M)
error function. /erfc: error4 . . . erf(3M)
error messages. /ertno, . . . 4 . o4 o4 4 . . . perror (3C)
error numbers. fintroduction. intra(2)
error-handling function. matherr(3M)
establish an out-going dial(3C)
etext, edata: last locations end (3C)
Euclidean distance function. hypot(3M)
execl, execy, execle, GRECVE, « 4 . 4 4 4 o 4 . exec(2)
execle, execve, execlp, . . . 4 . o4 00w 0 . . exec(2)
execlp, execvp: exeente a/ exec(2)
execute a file. fexecle, . . « « . . w4 0.4 . . exec(2)
execite regular expression. s . regemp(3X)
execution for interval, sleep(3C)
execution profile. monitor (3C)
execution time profile. profil(2)
execv, execle, execve, execlp, 4 4 . . exec(2)
€XecVe, eXeClp, EXECVP « « 0 4 4 4 4 . a0 . . exec(2)
execvp: execute a file. exec(2)
existing one. creat: create creat(2)
exit, _exit: terminate e e e e e exit(2)
_exit: terminate process. . .+ o0 4 . . exit (2)

exp, dexp, cexp: Fortran exp(3F)
exp, log, logl0, pow, sqrt: < 4 . . . exp(3M)
explicit Fortran type/ /dble, ftype(3F)
exponential intrinsic/ exp(3F)
exponential, logarithm, power,/ exp(3M)
expression compile and match regexp(5)
EXPression. Tegemp, TeEeX: o« « » o « « o o . regemp(3X)
fabs: floor, ceiling, . . « - « 4 4 4 a4 .. floor (3M)
fashion.. /access long integer sputl(3X)
fast main memory allocator. « . . . malloc(3X)
fault. e e e e e e e e e e e abort(3C)
fclose, flush: close or flush fclose(38)
fentl: file control. fentl(2)
fentl: file control options. . « fentl(5)
fovt, gevticonvert . . . w v 4 4 4w e e . ecvt (3C)
fdopen: open a stream.o 4 . . . fopen(38)
feof, clearerr, fileno: stream - . . ferror (3S)
ferror, feof, clearerr, 4 4 . 44 . . ferror(38)
flush: close or flusha fclose(3S)
fgetc, getw: get characteror getc(3S)
fgetgrent: get group file/ getgrent(30)
fgeipwent: get password file/ getpwent (3C)
fgets: get astring froma . . » gets(35)

file access and modification utime(2)
file access routines. < . 4 ... 4. . ldfen(4)
file. ACCESS: # & 4 4w e n e e e e e e access(2)
file. © v s i e e e e e e e e e e e e chmod (2)
file. ChOWIE v 4 v v 0 e a e n e e e e chown(2)
filecontrol. N fentl(2)

file control options. . . .« 4 . 4 fentl(5)

-6 -

core: format of core image
umask: set and get

close: close a

dup: duplicate an open
endgrent, fgetgrent: get group
fgetpwent: get password
utmpname: access utmp
putpwent: write password
execlp, execvp: execute a
Idaopen: open a common object
ar: common archive

pnch:

intro: introduction to

entries of a common object
group: group

files. filehdr:

file. 1dfhread: read the
Idohseek: seek to the optional
issue: issue identification

of a member of an archive
close a common object

file header of 2 common object
a section of a common object
file header of a common object
a section of a common object
header of a common object
section of a common object
table entry of a common object
table entry of a commen object
table of a common object
entries in a common object
link: link to a

or a special or ordinary
ctermid: generate

mktemp: make a unigque

/find the slot in the utmp

one. creat: create a new
passwd: password

/rewind, ftell: reposition a
Iseek: move read/write

read: read from

for a common object

scesfile: format of SCCS
header for a common object
stat, fstat: get

/symbol name for common object
syms: common object

volume.

mouni: mount a

ustat: get

mnttab: mounted

umouni: unmount a

fsck. checklist: list of

term: format of compiled term
tmpfile: create a temporary
create a name for a temporary
ftw: walk a

write: write on a

common object files.

ferror, feof, clearerr,

Permuted Index

Ble. « v e e e e e e e e e e e e e core(4)

file creation mask. .+ « « 4 4 b o404 oa . . umask(2)
file dESCHPEOL. o o w4 » 2 2 & b e v m . close(2)

file desCriptor. . « « 4 0 4w e e e e e e . s dup(2)

file entry. /SELELENt, . « « « w o @ 0 4 4 o4 4 . getgrent(3C)
file entry. fendpwent, . . o « x4 s o o0 . n getpwent(3C)
file entry. Zendutent, . - 44 .. . getut (3C)
T S putpweni(3C)
file. /execy, execle, @RECVE, .« . + o o x 4 4 4 « exec(2)

file for reading. ldopen, .+ « . « 4 4 4 Idopen(3X)
file format. . . v v 4 h e h e e e e e e ar(4)

file format for card images. « « + « . < 4 . . & pnch(4)

file FOrMALS. « o = v v o 4w a e e e e e e intro(4)

file function. /line number ldlread (3X)
S group{4)

file header for common object filehdr (4)
file header of a common object jdfhread (3X)
file header of a common object/ Idohseek (3X)
Ble. @ n i n e e e e e e e e e e e e e issue(4)

file. /read the archive header ldahread (3X)
file. Idclose, Idaclose: 1dclose(3X)
file. 1dfhread: read the Idfhread{(3X)
file. /line number entries of ldiseek (3X)
file. /seek to the optional ldohseek (3X)
file. /relocation entries of Idrseek (3X)
file. /indexed/named section [dshread(3X)
file. /to an indexed/named Idsseek (3X)
file. /ihe index of 2 symbol Idtbindex (3X)
file. /read an indexed symbol Idtbread(3X)
file. /seek to thegymbol Idtbseek (3X)
file. linenum: line namber linenum (4}
fle. v v n e e e e e e e e e e e e e e e s link(2)

file. /make a directory, - « + o 4 4 4o . . - mknod(2)
file name for terminal. ctermid (38)
file NAE. « v v 4 n e h e ek n e e e e mktemp{(3C)
file of the current wser. - « & 4 4 0 4 4 . . » ityslot (3C)
file or rewrite an existing 4 creat(2)

fle. @ o v e e e e e e e e e e e e e e passwd (4)
file pointer in a stream. .~ . 0 0 . o4 4 o4 . s fseek (3S)
file POIMEEE. « = 4 4 4 e e e e e e s Iseek (2)

Ble. « v i e e e e e e e e e e e e read(2)

file. /relocation information reloc(4)

2 scesfile(4)
file. scnhdr: section . . . 4 . . . w4 .. . scnhdr(4)
file StATUS. .~ v 4 v w a e m e e e h e e s e . stat(2)

file symbol table entry. Idgetname(3X)
file symbol table format. « « . . < . . .4 . . . syms(4)

file system: format of system fs(4)

Ble SYSEEM. » o v x a h e e e a e e e e mount(2)

file system Statistics. . - « « 4 4 4 4 .. 4 . . ustat (2)

file system table. .« 0 0 0.4 4. mnttab(4)
fle SYStEM. » « » « 4 n e n e e e e e e e e umount(2)
file systems processed by checklist(4)
file. @ v h e e e e e e n e e e e e e e s term(4)

fle. @ o o e e e e e e e e e e e e e e tmpfile(3S)
file. toapnam, temMPNAM: « + = « 4 0 . 4 4 . » tmpnam(3S)
BIEIEE. w0 o n a h h e a e e e e . ftw(3C)

file, v n h h e e n e e e e e e e e write(2)
filehdr: file header for filehdr (4)
fileno: stream status/ . . .« s ferror (38)

-7 -

Permuted Index

file header for common object
format specification in text
string, format of graphical
locki: record locking on
ttyname, isatty:

of the current user. ttyslot:
int, ifix, idint, real,

ecvt, fevt, gevi: convert
/modf: manipulate parts of
floor, ceiling, remainder,/
floor, ceil, fmod, fabs:
fclose, fllush: close or
remainder,/ floor, ceil,
stream.

ar: common archive file
pnch: file

inode:

term:

core:

cpio:

dir:

/graphical primitive string,
sccsfile:

file system:

files. fspec:

object file symbol table
intro: introduction to file
wtmp: utmp and wtmp entry
scanf, fscanf, sscanf: convert
/vfprintf, vsprintf: print
Jvfprintf, vsprintf: print
fprintf, sprintf: print

abs, iabs, dabs, cabs, zabs:
system/ signal: specify
function. acos, dacos:
function. asin, dasin:
function. atan2, datan2:
function. atan, datan:

or, xor, not, Ishift, rshift:
getarg: return

log10, alog10, dlogl0:
intrinsic/ conjg, dconjg:
function. cos, dcos, ccos:
getenv: return

function. exp, dexp, cexp:
intrinsic/ cosh, dcosh:
intrinsic/ sinh, dsinh:
intrinsic/ tanh, dtanh:
complex/ aimag, dimag:
function. aint, dint:

amax0, maxl, amaxl, dmaxl:
/and subroutines from the
amin0, minl, aminl, dminl:
log, alog, dlog, clog:

anint, dnint, nint, idnint:
abort: terminate

functions. mod, amod, dmod:
function. sin, dsin, csin:
function. sqrt, dsqrt, csqrt:

files. filehdr: . . . « « . 4 . e w . e filehdr(4)
files. fspec: . o« v 4 v 4 v e i i e e e . fspec(4)
files. /graphical primitive gps(4)
Ales. .« i h e e e e e e e e e e e e e e lockf(3C)
find name of a terminal. ttyname (3C)
find the slot in the utmp file ttyslot(3C)
float, sngl, dble, cmplx,/ ftype(3F)
floating-point number to/ ecvt(3C)
floating-point numbers. frexp(3C)
floor, ceil, fmod, fabs: floor (3M)
floor, ceiling, remainder,/ floor (3M)
flushastream. v v 4w v ... fclose(3S)
fmod, fabs: floor, ceiling, » . « floor(3M)
fopen, freopen, fdopen: opena fopen(3S)
fork: create a new process. < fork(2)
format. 0. e e e e e e ar(4)
format for card images. . . « pnch(4)
format of ani-node. inode(4)
format of compiled term file. term(4)
format of core image file. core(4)
format of cpio archive. cpio{4)
format of directories. dir (4)
format of graphical files. gps(4)
format of SCCSfile. & o o 0 v v o scesfile(4)
format of system volume. fs(4)
format specification in text fspec(4)
format. syms: common s . . . syms (4)
FOrMAats. » v v v v v non e e e e e e e intro(4)
formats. utmp, . - . . 4 4 b 4. e e e s utmp(4)
formatted input. .+ .« . . o4 . ow a e n e e scanf(3S)
formatted output of a varargs/ vprintf(3S)
formatted output of a varargs/ vprintf(3X)
formatted output. printf, printf(3S)
Fortran absolute value. . . « « . . . abs(3F)
Fortran action on receiptof a2 signal 3F)
Fortran arccosine intrinsic acos(3F)
Fortran arcsine intrinsic . . .« asin(3F)
Fortran arctangent intrinsic « . . . atan2(3F)
Fortran arctangent intrinsic atan(3F)
Fortran Bitwise Boolean/ and, bool (3F)
Fortran command-line argument. getarg (3F)
Fortran common logarithm/ log10(3F)
Fortran complex conjugate conjg(3F)
Fortran cosine intrinsic . - cos(3F)
Fortran environment variable. getenv(3F)
Fortran exponential intrinsic exp(3F)
Fortran hyperbolic cosine cosh(3F)
Fortran hyperbolic sine sinth(3F)
Fortran hyperbolic tangent tanh (3F)
Fortran imaginary partof aimag (3F)
Fortran integer part intrinsic aint(3F)
Fortran maximum:value/ /max0, max(3F)
Fortran Military Standard/ mil(3F)
Fortran minimum-value/ /min0, min(3F)
Fortran natural logarithm/ log(3F)
Fortran nearest integer/ round (3F)
Fortran program. . . = o « « o 2 0 4 4 4 . . abort(3F)
Fortran remaindering intrinsic mod (3F)
Fortran sine intrinsic sin(3F)
Fortran square roof intrinsic . . « sqrt(3F)

-8 -

len: return length of

index: return location of
issue a shell command from
function. tan, dtan:
mclock: return

intrinsic/ sign, isign, dsign:
/demplx, ichar, char: explicit
formatted output. printf,
word on a/ putc, putchar,
stream. puts,

input/output.

memory allocator. malioc,
mallopt, mallinfo:/ malloc,
stream. fopen,

parts of floating-point/
getw: get character or word
gets, fgets: get a string
getopt: get option letter
read: read

system: issue a shell command
nlist: get entries

/functions and subroutines
getpw: get name

formatted input. scanf,

of file systems processed by
reposition a file pointer in/
text files.

stat,

pointer in a/ fseek, rewind,
communication package.

Fortran arccosine intrinsic
Fortran integer part intrinsic
error/ erf, erfc: error
Foriran arcsine intrinsic
Fortran arctangent intrinsic
Fortran arctangent intrinsic
complex conjugate intrinsic
ccos: Fortran cosine intrinsic
hyperbolic cosine intrinsic
precision product intrinsic
and complementary error
Fortran exponential intrinsic
gamma: log gamma

hypot: Euclidean distance
of a common object file
common logarithm intrinsic
natural logarithm intrinsic
matherr: error-handling
prof: profile within a
transfer-of-sign intrinsic
csin: Fortran sine intrinsic
hyperbolic sine intrinsic
Fortran square root intrinsic
sys3b: machine specific
Fortran tangent intrinsic
hyperbolic tangent intrinsic
math: math

/field manipulation intrinsic
0, i1, jn, yO, y1, yn: Bessel

Permuted Index

FOrtram strilZ. » « v « o o 4 o o o o 0 0 n . len(3F)
Fortran SubString. « - « « « o 4 4 4 4 4 4 . s index(3F)
Fortran, SYStem: » « « « = 4 o0 0 4 4 4 4 oo . system(3F)
Fortran tangent intrinsic - . « +~ « » « « .+ . . tan(3F)
Fortran time accounting. « . « » & « « « « « mclock (3F)
Fortran transfer-of-sign » « « « 2 0 = . - . . sign(3F)
Fortran type CONVErsion. « « + « « o « « o o & ftype(3F)
fprintf, sprintf: print printf(3S)
fputc, putw: put character or putc(3S)
fputs: put astringona 0. . .. puts(3S)
fread, fwrite: binary fread (3S)
free, realloc, calloc: main . . .« malloc(3C)
free, realloc, calloc, » « v 4 4 4 v 4 o4 .o . . malloc(3X)
freopen, fdopen:opena fopen(3S)
frexp, ldexp, modf: manipulate frexp(3C)
from a stream. /fEe1C, . » 4 4 » 4 4 4 4 . s . getc(3S)
froma stream. . . . « . om0 o4 0 o e e o0 e o - gets(3S)
from argument VeCtor. « o « .« 4 4 4 4 .o a . . getopt (3C)
fromfile. e h e e e e e e e e read(2)
from FOrtran. . . « « o a v v o 0 an e e s system (3F)
fromname list. « . « . 0 4 0 e e 0 e e e . nlist(3C)
from the Fortran Military/ mil3F)
fromUID. v v i e e e e e e e . getpw (3C)
fscanf, sscanf: convert .« . - . 4 4 o4 o4 .o o4 . scanf(3S)
fsck. checklist: list . . . & & v & 4 4 4 4. . checklist (4)
fseek, rewind, ftell: fseek (35)
fspec: format specification in fspec(4)
fstat: get file status. stat(2)
ftell: repositionafile fseek (3S)
ftok: standard interprocess stdipe(3C)
ftw: walk afiletree. ftw (30)
function. acos, dacos: .« . . 4 0 . 4. a a . acos(3F)
function. aint, dint: aint(3F)
function and complementary erf GM)
function. asin, dasin: asin(3F)
function. atan2, datan2: atan2(3F)
function. atan, datan: atan(3F)
function. /dconjg: Fortran conjg(3F)
function. cos, dcoS, - « 4 . 4 4 4w 4w oa s cos(3F)
function. /dcosh: Fortran cosh(3F)
function. dprod: double dprod (3F)
function. /error function 4 . 4 4 . . erf(3M)
function. exp, dexp, Cexp: . « exp(3F)
FONCHON. ~ v v v v v o h e a e e e . gamma (3M)
fUNCHON. + & & v 4 4 4w e e e e e e e e .. hypot (3M)
function. /line number entries Idlread (3X)
function. /dlogl0: Fortran » . .« .« . . log10(3F)
function. /dlog, clog: Fortran log(3F)
FURCHON. + + = v v 4 e v e e e e e e matherr(3M)
FURCHON. « 2 v 0 4« e o an e e e e prof(5)
function. /dsign: Fortran sign(3F)
function. sin, dsin, sin(3F)
function. /dsinh: Fortran sinh(3F)
function. sqrt, dsqrt, esqrt: sqrt(3F)
fURCLIOM. = o 4« = % 0 & e s e e e sys3b(2)
function. tan, dtan: tan(3F)
function. /dtanh: Fortran tanh(3F)
functions and constants. - . 4 . . . math(5)
functions and subroutines from/ mil(3F)
functions. . . . 0 4 4 e w e e e e e e . s bessel (3M)

-9 -

Permuted Index

Fortran Bitwise Boolean
positive difference intrinsic
logarithm, power, square root
remainder, absolute value
dmax1: Fortran maximum-value
dmint: Fortran minimum-value
Fortran remaindering intrinsic
Fortran nearest integer

sinh, cosh, tanh: hyperbolic
string comparison intrinsic
atan, atan2: trigonometric
fread,

gamma: log

number to string. ecvt, fcvt,
abort:

terminal. ctermid:

crypt, setkey, encrypt:
/srand48, seed48, lcong48:
srand: simple random-number
rand, srand: random number
gets, fgets:

ulimit:

the user. cuserid:

getc, getchar, fgete, getw:
nlist:

umask: set and

stat, fstat:

ustat:

/setgrent, endgrent, fgetgrent:
getlogin:

msgget:

getpw:

system. uname:

argument vecior. geiopi
/setpwent, endpwent, fgetpwent:
working directory. getewd:
times. times:

and/ getpid, getpgrp, getppid:
/getenid, getgid, getegid:
semget:

identifier. shmget:

time:

command-line argument.

get character or word from a/
character or word from/ gete,
current working directory.
getuid, geteuid, getgid,
environment variable.
environment name.

real user, effective/ getuid,
user,/ getuid, geteuid,
setgrent, endgrent,/
endgrent,/ getgrent,
getgrent, getgrgid,

argument vector.

process group, and/ getpid,
process, process group, and/

functions. /lIshift, rshift: e e e . . . bool(3F)
functions. dim, ddim, idim: dim(3F)
functions, /sqrt: exponential, exp(3M)
functions. /floor, ceiling, «~ « « + & 4 4 4 . .. floor 3M)
functions. /maxl, amaxl,+ . max(3F)
functions. /minl, aminl, min(3F)
functions. med, amod, dmod: mod 3F)
functions. /nint, idnint:« » round(3F)
functions. e e e e e e sinh(3M)
functions. /lgt, Ue, Ut: . . » « . o v stremp(3F)
functions. /tan, asin, aC08, @ trig(3M)
fwrite: binary input/output. fread(3S)
gamma function. . .« oa s . .« . gamma(3M)
gamma: Jog gamma function. gamma (3M)
gevi: convert floating-point ecvt(3C)
generate an IOT fault. abort(3C)
generate file name for 4 ctermid (3S)
generate hashing encryption. crypt(30)
generate uniformly distributed/ drand48(3C)
generator. tand, . . . 0 . 4 4 4 a a4 . s . rand(3C)
generator. irand, . . .« v 4 n o4 e e a4 . e rand (3F)
get a string from a stream. . « . . 0 4 . . s . gets(3S)

get and set user limits. ulimit(2)
get character login nameof cuserid (3S)
get character or word froma/ getc(35)

get entries from name list. nlist(3C)

get file creation mask.« .« » . umask(2)
getfile status. 0 . 40 e a .. - stat(2)

get file system statistics. ustat(2)
getgroup file entry. » « v v 4 . a b 44 o . . getgrent(3C)
get login name.44 4w a4 getlogin (3C)
2ot MeSSAE qUENE. « « v x n 4 0 a4 n . e msgget(2)
get pame from UID. getpw (3C)
get name of current UNIX uname(2)
get option letter from .« . . < getopt(3C)
get password fileentry. getpwent (3C)
get path-name of current . . « - getewd (3C)
get process and child process times(2)

get process, process ErouP, « » « » ~ » « + o getpid (2)
get real user, effective vser,/ getuid(2)
get set of semaphores. ~ + . . o . 4 semget(2)
get shared memory segment . - shmget(2)
BELHME. . & v 4 i i e w e e e e e e e e s time(2)
getarg: return Fortran getarg(3F)
getc, getchar, fgete, getw: getc(3S)
getchar, fgetc, getwiget . . . < getc(3S)
getewd: get path-name of getewd (3C)
getegid: get real user,/ - . . .« getuid(2)
getenv: return Fortran . . . « « . 4 4 getenv(3F)
getenv: return value for b e e e getenv(3C)
geteuid, getgid, getegid: get getuid (2)
getgid, getegid: getreal getuid(2)
getgrent, getgrgid, getgrnam, getgrent (3C)
getgrgid, getgrnam, setgrent, getgrent(3C)
getgrnam, setgrent, endgrent,/ getgrent (3C)
getlogin: get loginpame. getlogin(3C)
getopt: get option letter from getopt(3C)
getpass: read a password. getpass(3C)
getpgrp, getppid: get process, getpid(2)
getpid, getpgrp, getppid: get getpid(2)

- 10 -

group, and/ getpid, getpgrp,

setpwent, endpwent,/
getpwent, getpwuid,
endpwent,/ getpwent,

a stream.

and terminal settings used by
settings used by getty.
getegid: get real user,/
pututline, setutent,/

setutent, endutent,/ getutent,
setutent,/ getutent, getutid,
from a/ getc, getchar, fgetc,
convert/ ctime, localtime,
setjmp, longjmp: non-local
string, format of graphical/
primitive string, format of
format of graphical/ gps:
plot:

subroutines. plot:

fuser, effective user, real
/getppid: get process, process
endgrent, fgetgrent: get
group:

setpgrp: set process

real group, and effective
setuid, setgid: set user and
chown: change owner and

a signal to a process or a
ssignal,

varargs:

package. curses: CRT screen
hcreate, hdestroy: manage
setkey, encrypt: generate
search tables. hsearch,
tables. hsearch, hcreate,
file. scnhdr: section

files. filehdr: file

file. 1dfhread: read the file
/seek to the optional file
/read an indexed/named section
ldahread: read the axchive
manage hash search tables.
cosh, deosh: Fortran

sinh, cosh, tanh:

sinh, dsinh: Fortran

tanh, dtanh: Fortran
function.

Fortran absolute value. abs,
ishftc, ibits, btest,/ ior,
command line arguments.
/ishftc, ibits, btest, ibset,
/not, ieor, ishft, ishftc,
fishft, ishftc, ibits, btest,
/sng), dble, cmpix, demplx,
setpgrp: set process group
issue: issue

get shared memory segment
intrinsic/ dim, ddim,

Permuted Index

getppid: get process, Process . » . .« 4 . . & getpid (2)
getpw: get name from UID. getpw (3C)
getpwent, getpwuid, getpwnam, getpwent (3C)
getpwnam, setpwent, endpwent,/ getpwent (3C)
getpwuid, getpwnam, setpwent, getpwent(3C)
gets, fgets: get a string from gets(35)
geity. gettydefs:speed gettydefs(4)
gettydefs: speed and terminal gettydefs(4)
getnid, geteuid, getgid, getuid (2)
getutent, getutid, getutline, . . - getut(3C)
getutid, getutline, pututline, getut (3C)
getutline, pututline, getut (3C)
getw: get characterorword getc(3S)
gmtime, asctime, tzset: 4 4 . . . ctime(3C)
BOO, « v e e e e e e e e e . setjmp(3C)
gps: graphical primitive gps(4)
graphical files. /graphical gps(4)
graphical primitive string, gps(4)
graphics interface. 0 plot(4)
graphics interface plot (3X)
group, and effective group/ getuid(2)
group, and parent process IDs. getpid (2)
group file entry. /setgrent, getgrent (3C)
groupfile. group{4)
group: group file. group(4)
group ID. & . . o . a e e e e e e e setpgrp(2)
group IDs. /effective user, getuid (2)
group IDs. .+ e e e e e e setuid(2)
groupofafilee. . . . o v v v 00 ... chown(2)
group of processes. fsend kill(2)
gsignal: software signals. ssignal (3C)
handle variable argument list. varargs(5)
bandling and optimization curses(3X)
hash search tables. hsearch, hsearch(3C)
bashing encryption. erypt, - crypt(3C)
hereate, hdestroy: manage hash hsearch(3C)
hdestroy: manage hash search hsearch(3C)
header for a common object scnhdr(4)
beader for common object filehdr (4)
header of a common object Idfhread (3X)
header of a common object/ ldobseek (3X)
header of a common object/ ldshread (3X)
beader of a member of an/ idahread (3X)
hsearch, hcreate, hdestroy: hsearch(3C)
hyperbolic cosine intrinsic/ cosh(3F)
hyperbolic functions. . . .« sinh(3M)
hyperbolic sine intrinsic/ sinh(3F)
hyperbolic tangent intrinsic/ tanh (3F)
hypot: Euclidean distance hypot(3M)
iabs, dabs, cabs, zabs: abs(3F)
jand, not, ieor, ishft, » + . .+ 4 . 4 s . o4 o4 . . mil(3F)
iarge: return the numberof iargc(3F)
ibelr, mvbits: bit field/ mil(3F)
ibits, btest, ibset, ibclr,/ mil 3F)
ibset, ibelr, mvbits: bit/ mil(3F)
ichar, char: explicit Fortran/ . . « » +« &+ . & & ftype(3F)
ID. . e e e e e e e e e e e e e e setpgrp(2)
identification file. issue(4)
identifier. shmget: shmget(2)
idim: positive difference dim(3F)

~11 -

Permuted Index

dble, cmplx,/ int, ifix,
integer/ anint, dnint, nint,
group, and parent process
group, and effective group
setgid: set user and group
btest, ibset,/ ior, iand, not,
sngl, dble, cmplx,/ int,

core: format of core

pnch: file format for card
aimag, dimag: Fortran

of a/ ldtbindex: compute the
Fortran substring.

a common/ Idtbread: read an
Idshread, ldnshread: read an
ldsseck, ldnsseek: seck to an
inittab: script for the
process. popen, pclose:
process.

inode: format of an

sscanf: convert formatted
push character back into
fread, fwrite: binary

stdio: standard buffered
fileno: stream status

sngl, dble, cmplx, demplx,/
abs: return

/164a: convert between long
sputl, sgetl: access long
nint, idnint: Fortran nearest
function. aint, dint: Fortran
atol, atoi: convert string to
/1tol3: convert between 3-byte
3-byte integers and long
plot: graphics

plot: graphics

pipe: create an

package. ftok: standard
sleep: suspend execution for
acos, dacos: Fortran arccosine
dint: Fortran integer part
asin, dasin: Fortran arcsine
datan?2: Fortran arctangent
datan: Fortran arctangent
Fortran complex conjugate
dcos, ccos: Fortran cosine
Fortran hyperbolic cosine
double precision product
cexp: Fortran exponential
Fortran common logarithm
Fortran natural logarithm
Fortran transfer-of-sign

sin, dsin, csin: Fortran sine
dsinh: Fortran hyperbolic sine
csqrt: Fortran square root
tan, dtan: Fortran tangent
Fortran hyperbolic tangent
/muvbits: bit field manipulation
idim: positive difference
dmod: Fortran remaindering

idint, real, float, sngl, ftype(3F)

idnint: Fortran nearest « round (3F)
IDs. /get process, process . . « o 4w o » 4 . getpid (2)
IDs. /effective user, real .« . » o+ o « o 4 W« getuid (2)
IDs. setuid, » & « & 4 0 4 m e e e e aa setuid (2)
jeor, ishft, ishftc, ibits, mil (3F)
ifix, idint, real, float, ftype 3F)
image file. e e e e e e e core(4)
IAGES. - 4 v h e e e e e e e e . .« . . pach(4)
imaginary part of complex/ aimag(3F)
index of a symbol table entry« . . Idtbindex(3X)
index: return locationof index (3F)
indexed symbol table entry of« . . ldtbread(3X)
indexed/named section header/ 1dshread (3X)
indexed/named sectionof a/ Idsseek (3X)
NIt PrOCESS. « o v« 0 b 4 4 e e e e e e inittab(4)
initiate pipe to/froma popen(3S)
inittab: script for the init inittab(4)
inode: format of ani-node. inode(4)
T 1 inode(4)
input. scanf, fscanf, scanf(3S)
input stream. UNGEtC:+ 4w 4 b o4 4 . ungetc(3S)
input/output. fread(3S)
input/output package. . . .« 4 4 4 . . 0 . . stdio(38)
inquiries. /feof, clearerr, ferror (3S)
int, ifix, idint, real, float, fiype(3F)
integer absolute value, abs(3C)
integer and base-64 ASCIY/ a641(3C)
integer dataina/ sputl(3X)
integer functions. /dnint, round (3F)
integer part intrinsic . . - aint3F)
integer. strtol, . . . 4 . 4 4 e e e e . strtol (3C)
integers and long integers. 13tol(3C)
integers. /convert between 13to1 (3C)
interface. 4 e e e . plot{4)
interface subroutines. . «« . oplot(3X)
interprocess channel. e e e e pipe(2)
interprocess communication stdipe(3C)
interval. e e e e e e e e e s . sleep(3C)
intrinsic function. acos(3F)
intrinsic function. aint, aint(3F)
intrinsic function. asin(3F)
intrinsic function. atan2, < atan2(3F)
intrinsic function. atan, atan(3F)
intrinsic function. /dconjg: conjg(3F)
intrinsic function. €os, . « + 4 4 4 4 4 4 4 o4 . cos(3F)
intrinsic function. /dcosh: cosh(3F)
intrinsic function. dprod: dprod(3F)
intrinsic function. /dexp, e e e e e e .. exp(3P)
intrinsic function. /dlogi®: 10g10(3F)
intrinsic function. /clog: 1og(3F)
intrinsic function. /dsign: sign(3F)
intrinsic fupction. sin(3F)
intrinsic function. sinh, < sinh3F)
intrinsic function. /dsqrt, sqrt(3F)
intrinsic function. . . « . 4 . 4 4 4 44 .. . tan(3F)
intrinsic function. /dtanh: e e e e tanh3F)
intrinsic functions and/ mil(3F)
intrinsic functions. /ddim, dim(3F)
intrinsic functions, /amod, mod (3F)

-12 -

lle, 1lt: string comparison
formats.

miscellany.

subroutines and libraries.
calls and error numbers.
intro:
intro:
intro:
intro:

and libraries.
and error numbers.

ishftc, ibits, btest, ibset,/
abort: generate an

number generator.

/islower, isdigit, isxdigit,
isdigit, isxdigit, isalnum,/
/isprint, isgraph, iscntrl,
terminal. ttyname,
/ispunct, isprint, isgraph,
isalpha, isupper, islower,
/isspace, ispunct, isprint,
ibset,/ ior, iand, not, ieor,
ior, iand, not, ieor, ishft,
transfer-of-sign/ sign,
isalnum,/ isalpha, isupper,
/isalnum, isspace, ispunct,
/isxdigit, isalnum, isspace,
fisdigit, isxdigit, isalnum,
Fortran. system:

system:

issue:

file.

isxdigit, isalnum,/ isalpha,
/isupper, islower, isdigit,
functions.

functions. jO,

functions. j0, ji,

/Irand48, nrand48, mrand48,
process or a group of/
3-byte integers and long/
integer and base~64/ a64l,
/jrand48, srand48, seed48,
object file. ldclose,

header of a member of an/
file for reading. Idopen,
common object file.

of floating~point/ frexp,
access routines.

of a common object file.
name for common object file/
line number entries/ ldlread,
number/ ldlread, 1dlinit,
manipulate Jine number/
line number entries of a/
entries of a section/ ldlseek,
entries of a section/ ldrseek,
indexed/named/ ldshread,
indexed/named/ ldsseek,
file header of a common/
object file for reading.
relocation entries of a/

Permuted Index

intrinsic functions. /igt, stremp (3F)
intro: introduction to file intro(4)
intro; introduction t6 intro(5)
intro: introduetion t6 4 . 4 4 44 . . intro{(3)
intro: introduction fo system intro(2)
introduction to file formats. intro(4)
introduction to miscellany. intro(5)
introduction to subroutines intro(3)
introduction to systemcalls intro(2)
joctl: control device. . . « . 4 4 . 44 ioctl(2)

jor, iand, not, jeor, iShft, + o « 0 . 4 4 o4 4 . mil(3F)
IOTfault. - . v v v v h n n e e e e e e . abort(3C)
irand, rand, srand: random rand (3F)
isalnum, isspace, ispunct./ ctype(3C)
isalpha, isupper, islower, < ctype(3C)
isascii: classify characters. ctype(3C)
isatty: find nameof 2 ttyname (3C)
iscntrl, isascii: classify/ ctype(3C)
isdigit, isxdigit, isaloum,/ ctype(3C)
isgraph, iscntrl, isascii:/ ctype(3C)
ishft, ishftc, ibits, btest, mil(3F)
ishftc, ibits, btest, ibset,/ + . +» + v 4 4 4 4 . W mil(3F)
isign, dsign: Fortran sign(3F)
islower, isdigit, isxdigit, ctype(3C)
isprint, isgraph, isentrel,/ L4 . ctype(3C)
ispunct, isprint, isgraph,/ ctype(3C)
isspace, ispunct, isprint,/ ctype(3C)
issue a shell command from system (3F)
issue a shell command. system (38)
issue identification file. issue(4)
issue: issue identification issue(4)
isupper, islower, isdigit, .~ » « « « 4 ctype(3C)
isxdigit, isalnum, isspace,/ ctype(3C)
i0,§1,jn, yO, yi, yn: Bessel bessel (3M)
jl,jn, y0, y1, yn: Bessel bessel (3M)
jn, y0, yl, yn: Bessel00 .. bessel (3M)
jrand48, srand48, seed48./ drand48(3C)
kill: send asignal toa . . . v v 4 v 0 0 w4 . kill(2)

13tol, ltol3: convert between 13t01(3C)
164a: convert between Jong . . . - 2641(3C)
lcong48: generate uniformly/ drand48(3C)
Idaclose: close a common 4 4. . s . Idclose(3X)
Idabread: read the archive Idahread (3X)
ldaopen: open a common object ldopen(3X)
ldclose, ldaclose: closea Idclose (3X)
Idexp, modf: manipulate parts {Fexp(30)
idfcn: common object file 1dfcn(4)
ldfhread: read the file header Idfhread (3X)
Idgetname: retrieve symbol, idgetname(3X)
Idlinit, ldlitem: manipulate Idiread (3X)
Idlitemn: manipulate line ldlread (3%)
idlread, ldlinit, ldlitem: ldIread (3X)
Idiseek, Idnlseek: seek t0 4 . . . Idlseek (3X)
ldniseek: seek to line number 1dlseek (3%}
ldnrseek: seek to relocation Idrseek (3X)
Idnshread: readan 0w . 4 e s ldshread (3X)
Idnsseek: seek t0 AR 4 4 4 0 4o e . Idsseek (3X)
ldohseek: seek to the optional ldohseek (3X)
Idopen, ldaopen: open a common 1dopen(3X)
Idrseek, ldnrseek: seek 10 Idrseek (3X)

- 13 -

Permuied Index

indexed/named section header/
indexed/named section of a/
of a symbol table entry of a/
symbol table entry of a/
table of a common object/
string.

len: return

getopt: get option

update. Isearch,

comparison intrinsic/
comparison intrinsic/ lge,

to subrontines and

ulimit: get and set user
return the number of command
an out-going terminal
common object file. linenum:
/1dlinit, 1dlitem: manipulate
ldlseek, ldnlseek: seek to
Isearch, 1find:

in a common object file.
a.out: common assembler and

link:

nlist: get entries from name
by fsck. checklist:

handle variable argument
output of a varargs argument
output of a varargs argument
intrinsic/ ige, Igt,

intrinsic/ lge, lgt, lle,

tzset: convert date/ ctime,
index: return

end, etext, edata: last
memory. plock:

files.

lockf: record

natural logarithm intrinsic/
gamma:

exponential, logarithm,/ exp,
common logarithm intrinsic/
logarithm, power,/ exp, log,
/alog10, dlog10: Fortran common
/dlog, clog: Fortran natural
/log10, pow, sqrt: exponential,
getlogin: get

cuserid: get character
logname: return

user.

a64l, 164a: convert between
sputl, sgetl: access

between 3-byte integers and
setjmp,

jrand48,/ drand48, erand48,
and update.

pointer.

Bitwise/ and, or, Xor, not,
integers and long/ 13tol,
sys3b:

values:

/access long integer data in a

Idshread, Idnshread: read an ldshread (3X)
Idsseek, Idnsseek: seek toan Idsseek (3X)
ldtbindex: compute the index ldtbindex (3X)
ldtbread: read an indexed ldtbread(3%)
Idtbseek: seek to the symbol Idtbseek (3X)
len: return length of Fortran len(3F)
length of Fortran string. , 1en(3F)
letter from argument vector. getopt(3C)
Ifind: linear searchand Isearch(3C)
Ige, lgt, lle, Ut: steing . . .« o . o ... oo . stremp(3F)
lgt, lle, lt: string L. .. stremp (3F)
libraries. /introduction intro(3)
BOQtS. o v v v e e e e e e e e e e e e e ulimit(2)
line arguments. jarge:04 4 .. . iargc(3F)
line connection. /establish dial(3C)
line number entriesina linenum (4)
line number entriesof a/ ldIread (3X)
line number entries of 2/ idiseek(3X)
linear search and update. .~ Isearch(3C)
linenum: line number entries linenum (4)
link editor output. « + « . 4 4 44w . 0w . . a.out(4)
link: link toafile. » » » o v 0 4w 4 b 4w ... link (2)
linktoafile. « . . o v v 0 0 @ v 0w a s tink(2)

T nlist(3C)

list of file systems processed checklist (4)
Jist. varargs: . . . 2 4 4 4 4 nn w4 e . . varargs(5)
list. /print formatted vprintf(38)
list. /print formatted vprintf(3X)
lle, It string comparison . . + stremp{(3F)
1It: string comparison . . o 4 . . o4 stremp (3F)
localtime, gmtime, asctime, » « . . » ctime(3C)
location of Fortran substring, ~ . . « « . « . . index(3F)
locations in program. o4 4 end (3C)
lock process, text, ordatain plock(2)
lockf: record locking on lockf(3C)
locking on files. - 4 4 i e e 44 . lockf(3C)
log, alog, dlog, clog: Fortran « . . log(3F)

log gamma function. 4 gamma (3M)
log, 10g10, pow, Sqrt: .« . . . 4 4w s exp(3M)
log10, alogl0, dlog10: Fortran 1og10(3F)
logl0, pow, sqrt: exponential, exp(3M)
logarithm intrinsic function. log10(3F)
logarithm intrinsic function. log(3F)
logarithm, power, square root/ exp(3M)
login name.4 i . e getlogin(3C)
login name of thewser. cuserid (35)
login name of wser. logname(3X)
logname: return login name of logname(3X)
long integer and base-64 ASCII/ 2641(3C)
long integer dataina/ sputl(3X)
long integers. /Mol3: convert . . . - 13101 (3C)
iongjmp: non-local goto. setjmp(3C)
Irand48, nrand48, mrand48, drand48 (3C)
Isearch, Mfind: linear search Isearch(3C)
Iseek: move read/write file Iseek(2)
Ishift, rshift: Fortran . . .+ & « o « o 4 4 . bool (3F)
Itol3: convert between 3-byte 13t0l (3C)
machine specific function. sys3b(2)
machine-dependent values. values(5)
machine-independent fashion.. sputl(3X)

-14 -

malloc, free, realloe, calloc:
/mallopt, mallinfo: fast

or ordinary file. mknod:
mktemp:

/realloc, calloc, mallopt,

main memory allocator.
mallopt, mallinfo: fast main/
malloc, free, realloc, calloc,
/tfind, tdelete, twalk:

hsearch, hereate, hdestroy:
of/ ldlread, Idlinit, idlitem:
frexp, ldexp, modf:

ibelr, mvbits: bit field

ascii:

set and get file creation
master:

database.

regular expression compile and
math:

coenstants.

function.

dmax1: Fortran maximum-value/
dmax1: Fortran/ max,

max, max0, amax0,

/max1, amax1, dmax1: Fortran
accounting.

memcpy, memset: memory/
memset: memory/ memecpy,
operations. memccpy, memchr,
memeccpy, memchr, memcmp,
free, realloc, calloc: main
mallopt, mallinfo: fast main
shmetl: shared

memcmp, memepy, memset:
shmop: shared

lock process, text, or data in
shmget: get shared

/memchr, mememp, memcpy,
msgetl:

msgop:

msgget: get

SyS_nerr: system error
subroutines from the Fortran
the Fortran Military Standard
dminl: Fortran minimum-value/
dminl; Fortran/ min,

min, mind, aming,

/minl, aminl, dminl: Fortran
special or ordinary file.

name.

table.

remaindering intrinsic/
chmeod: change

floating-point/ frexp, ldexp,
utime: set file access and
profile.

mount:

mnttab;
Iseek:

main memory allocator. . .
main memory allocator.
make a directory, or a special
make a unique file pame. .
mallinfo: fast main memory/
mailoc, free, realloc, calloc:
malloc, free, realloc, calloc,
mallopt, mallinfo; fast main/
manage binary search trees.
manage hash search tables. .
manipulate line number entries
manipulate parts of/
manipulation intrinsic/ /ibset,
map of ASCII character set.
mask. umask:
master configuration database.
master: master configuration
match routines. regexp:
math functions and constants.
math: math functions and .
matherr: error-handling
max, max0, amax0, max1, ama;
max0, amax0, max1, amaxl,
maxl, amax1, dmax1: Fortran/
maximum-value functions. .
mclock: return Fortran time
memecpy, memchr, mememp,
memchr, memcmp, memepy,

memcmp, memcpy, memset: memory

memcpy, memset: memory/
memory allocator. malloc, .
memory allocator. /calloe, .
memory control operations. .
memory operations. /memchr,
memory operations.
memory. plock:
memory segment identifier. .
memset: memory operations.
message control operations. .
message operations.
message quene.
messages. ferrno, sys_errlist,
Military Standard/ /and
(MIL-STD-1753).. /from .
min, min0, amin0, minl, aminl
min0, aminC, minl, aminl, .
minl, aminl, dminl: Fortran/
minimum-value functions. .
mknod: make a directory, or a
mktemp: make a unique file
mnttab: mounted file system
mod, amod, dmed: Fortran .
mode of file:
modf: manipulate parts of .
modification times.
monitor: prepare execution .
mount a file system.
mount: mount a file system.
mounted file system table. .
move read/write file pointer,

- 15 -

Permuted Index
......... malloc(3C)
malloc(3X)
mknod(2)
mktemp (3C)
malloc(3X)
malloc(3C)
malloc(3X)
malloc(3X)
tsearch(3C)
hsearch(3C)
ldlread (3X)
frexp(3C)
mil(3F)
ascii(5)
umask(2)
master(4)
master (4)
regexp(5)
math(5)
math(5)
matherr 3M)
max(3F)
max(3F)
max(3F)
max(3F)
mclock(3F)
memory(3C)
memory(3C)
memory(3C)
memory{(3C)
malloc(3C)
malloc(3X)
shmetl(2)
memory(3C)
shmop(2)
plock(2)
shmget (2)
memory (3C)
msgeti (2)
msgop(2)
msgget (2)
perror(3C)
mil 3F)
mil(3F)
min(3F)
min(3F)
min(3F)
min(3F)
mknod(2)
mktemp (3C)
mnttab(4)
mod 3F)
chmod (2)
frexp(3C)
utime(2)
monitor(3C)
mount (2)
mount(2)
mnttab(4)
Iseek(2)

X1, o 0 o v s
N

Permuted Index

/erand48, Irand48, nrand48,
operations.

/ibits, btest, ibset, ibclr,

log, alog, dlog, clog: Fortran
/dnint, nint, idnint: Fortran
process.

integer/ anint, dnint,

list.

setjmp, longjmp:

ibits, btest,/ ior, iand,

Bitwise Boolean/ and, or, xor,
drand48, erand48, Irand48,
Idfen: common

Idopen, ldaopen: open a common
number entries of a common
Idaclose: close a common

the file header of a common

of a section of a common

file header of a common

of a section of a common
section header of a common
section of a common

symbol table entry of a common
symbol table entry of a2 common
the symbol table of a common
number entries in a common
information for a common
section header for a common
entry. /symbol name for common
format. syms: common

file header for common
reading. ldopen, ldaopen:
fopen, freopen, fdopen:

dup: duplicate an

open:

writing.

mememp, memepy, memset: memory
msgetl: message control
MSOP: message

semctl: semaphore control
semop: semaphore

shmctl: shared memory control
shmop: shared memory
strespn, strtok: string

CRT screen handling and
vector. getopt: get

common/ ldohseek: seek to the
fentl: file control

Fortran Bitwise Boolean/ and,
a directory, or a special or
dial: establish an

assembler and link editor
/vsprintf: print formaited
/vsprintf: print formatted
sprintf: print formatted

chown: change

handling and optimization
standard buffered input/output

mrand48, jrand48, srand48,/ drand48(3C)
msgetl: message control 4 msgetl(2)
msgget: get message queue. msgget (2)
SLOP: MESSAZE OPETAtioONS. + » » o & o « » » msgop(2)
mvbits: bit field manipulation/ mil(3F)
patural logarithm intrinsic/ log(3F)
nearest integer functions. round (3F)
nice: change prierity ofa nice(2)

nint, idnint: Fortran nearest round (3F)
nlist: get entries from name nlist(3C)
non-local goto. .+ » + v 4 4 4 i e 4 4w w0 setjmp(3C)
pot, ieor, ishft, ishfte, mil(3F)

not, Ishift, rshift: Fortran bool 3F)
nrand48, mrand48, jrand48,/ drand48(3C)
object file access routines. 1dfcn(4)
object file for reading. ldopen(3X)
object file function. /line IdIread (3X)
object file. Idclose, . . . 4 . 4 4 n . w s .. ldclose(3X)
object file. Idfhread: read ldfhread 3X)
object file. /number entries 4 . . ldlseek (3X)
object file. /to the optional, . .. 1dohseek(3X)
object file. /entries 0 4. ... ldrseek (3X)
object file. /indexed/named ldshread (3X)
object file. /indexed/named Idsseek(3X)
object file. /the indexofa 1dtbindex (3X)
object file. /read an indexed Idtbread (3X)
object file. /seek t0 4 44 4. .. ldtbseek (3X)
object file. linenum: line linenum (4)
object file. /relocation reloc(4)
object file. scohdr: scnhdr (4)
object file symbol table Idgetname (3X)
object file symbol table syms{4)
object files. filehdr: filehdr(4)
open a common object filefor Idopen(3X)
OPENM @ SIIEATL o « » « o » o 2 o o o o o . fopen(3S)
open file descriptor. 44 dup(2)

open for reading or writing. open(2)
open: open for reading or open(2)
operations. memccpy, memchr, memory (3C)
OPErations. . « . v v 4 e hw e e e e e . msgetl(2)
OPErations. .« « » . .\ 4 4 4 4 e e e e w e e msgop(2)
0perations. + . 4 . 4 4 w4 h w e e a e e semctl (2)
OPErations. « 4 h b h e e a e e e e s semop{2)
Operations. + « ¢ 4 4w how e a e e e e . shmet](2)
OPErations. « o« 4 a0 nm e e e e e e shmop(2)
operations. /strpbrk, strspn, string(3C)
optimization package. Curses:« . . . curses(3X)
option letter from argument getopt (3C)
optional file headerofa, ... Idohseek (3X)
OPHODS. « w4 v o e w e e a e e e e e e fentl(5)

or, xor, not, Ishift, rshift: bool(3F)
ordinary file. mknod: make mkned (2)
out-going terminal line/ dial(30)
Output, 2.0Ut: COMMON » « « o & o o » » o & &« a.out{4)
output of a varargs argument/ vprintf(3S)
ontput of a varargs argument/ vprintf(3X)
output. printf, fprintf, printf(3S)
owner and group of afile. chown(2)
package. curses: CRT screen curses (3X)
package. stdio: stdio(3S)

- 16 -

interprocess communication
process, process group, and

/endpwent, fgetpwent: get
putpwent: write
passwd:

getpass: read a
directory. getewd: get
signal.

a process. popen,
sys_nerr: system error/
channel.

popen, pclose: initiate
data in memory.

subroutines.

images.

ftell: reposition a file

Iseek: move read/write file
to/from a process.
functions. dim, ddim, idim:
logarithm,/ exp, log, logl0,
/sqrt: exponential, logarithm,
function. dprod: double
maonitor:

graphical/ gps: graphical
types:

vprintf, vfprintf, vsprintf:
vprintf, viprintf, vsprintf:
printf, fprintf, sprintf:

print formatted output.
nice: change

acct: enable or disable
alarm: set a

times. times: get

exit, _exit: terminate

fork: create a new
/getpgrp, getppid: get process,
setpgrp: set

process group, and parent
inittab: script for the init
nice: change priority of a
kill: send a signal to a
initiate pipe to/from a
getpid, getpgrp, getppid: get
memory. plock: lock

times: get process and child
waijt: wait for child

ptrace:

pause: suspend

list of file systems

to a process or a group of
dprod: double precision
function.

profile.

monitor: prepare execution
profil: executjon time
profile: system-wide user
profile.

prof:

Permuted Index

package. ftok: standard stdipc(3C)
parent process IDs. /get getpid(2)
passwd: password file. passwd (4)
password file entry. 44 0. getpwent (3C)
password fileentry., putpwent (3C)
password file. passwd (4)
PASSWOrd. © .« 4 s o e h e e e e e e e . getpass (3C)
path-name of current working getewd (3C)
pause: suspend process until pause(2)
pelose: initiate pipe to/from popen(35)
perror, errno, sys errlist, L perror(3C)
pipe: create an interprocess . - pipe (2)
pipe t0/from a Process. .« » . o« s o4 . 4 . . popen(3S)
plock: lock process, text, or plock(2)
plot: graphics interface. plot{4)
plot: graphics interface plot (3%)
pnch: file format for card pnch(4)
pointer in a stream. /rewind, fseek (35)
POINLET. + v v v i h e e e e e e e s Iseek(2)
popen, pclose: initiate pipe popen(38)
positive difference intrinsic dim (3F)
pow, sqrt: exponential, exp(3M)
power, square root functions. exp(3M)
precision product intrinsic dprod (3F)
prepare execution profile. monitor (3C)
primitive string, formatof gps(4)
primitive system data types. types{5)
print formatted outpuiof 2/ vprinif(3S)
print formatted output of 2/ vprinif 3X)
print formatted output. printf(33)
printf, fprintf, sprintf: printf(35)
priority of a precess. . . . 4 4 0 4w nice(2)
Process accounting. . + .+ w4 0 s o4 4 o0 4 acci(2)
process alarm clock. . 4 4 . w e w w4 0. alarm{2)
process and child process times(2)
PIOCESS. & « v e m h e a e e n e e e .. exit(2)
PIOCESS. v a4 n 4 e n e a e e e e fork(2)
process group, and parent/ getpid(2)
processgroup ID. setpgrp(2)
process IDs. /get process, . . . 2 2 . . 4 . . getpid (2)
PIOCESS. o v s n n s e n mm s n inittab(4)
PIOCESS. v« « n n e n m e e e e e e e nice(2)
process or 2 group of/ . . . 4 . 4 4 4. . .. kill(2)
process. popen, pelose: popen{(3S)
process, process group, and/ getpid (2}
process, text,or datain plock(2)
Process tes. . . s 4 m s a n e a a e . times{(2)
process to stop or terminate. wait(2)
PrOCESS ITACE. o v« o v v 0 0 b w0 n e pirace(2)
process until signal. pause(2)
processed by fsck. checklist: checklist(4)
processes. /send a signal ki)
product intrinsic function. dprod (3F)
prof: profile withina prof(5)
profil: execution time profil (2)
profile. o e e e e monitor (3C)
profile. . . . i e e e e e e e e profil(2)
profile. e e e e e e e e e . profile(4)
profile: system-wide user profile(4)
profile within a function. prof(5)

~17 -

Permuted Index
/generate upiformly distributed

stream. ungetc:

put character or word on a/
character or word on a/ putc,
environment.

entry.

stream.

getutent, getutid, getutline,
a/ putc, putchar, fputc,

msgget: get message

gsort:

generator. irand,
random-number generator.
irand, rand, srand:

rand, srand: simple

getpass:

entry of a common/ ldtbread:
header/ ldshread, ldnshread:
read:

member of an/ ldahread:
commen object file. ldfhread:
open a common object file for
open: open for

Iseek: move

cmplx,/ int, ifix, idint,
allocator. malloc, free,
mallinfo: fast/ malloc, free,
specify what to do upon
/specify Fortran action on
lockf:

execute regular expression.
regular expression. regemp,
compile and match routines.
match routines. regexp:
regex: compile and execute
for a common object file.
Idrseek, ldnrseek: seek to
common object file. reloc:
/fmod, fabs: floor, ceiling,
mod, amod, dmod: Fortran
unlink:

clock:

stream. fseek, rewind, ftell:
common object file/ ldgetname:
argument. getarg:

variable. getenv:
accounting. mclock:

abs:

string. len:

substring. index:

logname:

line arguments. jarge:
name. geteny:

stat: data

file pointer in a/ fseek,
creat: create a new file or
chroot: change

pscudo-random numbers. 4 . 4 4 . . . drand48(3C)
ptrace: process trace. . » o« o « o ¢ 4 o4 0 n . ptrace(2)
push character back into input ungetc(3S)
putc, putchar, fpute, putw: putc(35)
puichar, fputc, putw: put putc(3S)
putenv: change or add valueto putenv(3C)
puipwent: write password file putpwent (3C)
puts, fputs: put a stringona puts(3S)
pututline, setutent, endutent,/ getut(3C)
puiw: put character orwordon putc(3S)
qgsort: quicker SOTt. . & . . 4 4 4 a4 e e s . gsort(3C}
QUEME. - & 4 w0 e a n e e e e e e e msgget(2)
quicker s0rt. .« . . . 4 . e e s e e e e e e s gsort(3C)
rand, srand: random pumber rand(3F)
rand, srand: simple .« . . 4 0 . b h 4. . . rand (3C)
random number generator. o« & rand (3F)
random-number generator. rand 3C)
read a password. 4 4 . a ... getpass(3C)
read an indexed symbol table idtbread (3X)
read an indexed/named section ldshread (3X)
read fromfile. .« . 4 0 4 w0 e 4 e e e read(2)

read: read from file. o4 read(2)

read the archive headerofa idahread{3%)
read the file headerof 2 Idfhread (3X)
reading. ldopen, ldaopen: Idopen(3X)
reading or writing.4 . . open(2)
read/write file pointer. Iseek (2)
real, float, sngl, dble, ftype(3F)
realloc, calloc: main memory . .+« malloc(3C)
realloc, calloc, mallopt, « « o = » 2 4 4 . . . malloc(3X)
receipt of a signal. signal: signal (2)
receipt of a system signal. signal (3F)
record locking on files. 4 4 . 4 . . o lockf(3C)
regemp, regex: compile and regemp(3X)
regex: compile and execute regemp(3X)
TEgEXP: regular eXpression . . . 0 . 0 0 4 e o regexp(5)
regular expression compile and regexp(5)
regular expression. regemp, . . - regemp(3X)
reloc: relocation information reloc(4)
relocation entriesof a/ Idrseek (3X)
relocation information fora reloc(4)
remainder, absolute value/ floor (3M)
remaindering intrinsic/ mod (3F)
remove directory entry. - . . o« . 4 unlink (2)
report CPU time used. « « « o w4 0 0 0 o o . clock(3C)
reposition a file pointerina fseek (35)
retrieve symbol name for « 1dgetname(3X)
return Fortran command-line getarg(3F)
return Fortran environment getenv(3F)
return Fortran time . « « « » &+ 2 0 o4 o4 . . melock 3F)
return integer absolute value. abs(3C)
return length of Fortran . . . + « o « . . ' len(3F)
return location of Fortran index(3F)
return login name of user. logname (3X)
return the number of command jargc(3F)
return value for environment getenv(3C)
returned by stat systemcall. stat(5)
rewind, ftell; repositiona fseek(3S)
rewrite an existing one. 4 . . . creat(2)

100t directory. + « 4 0 n 4w w e e a . . chroot (2)

- 18 -

logarithm, power, square
/dsgrt, csqrt: Fortran square
common object file access
expression compile and match
and, or, xor, not, Ishift,

space allocation. brk,
formatted input.

scesfile: format of

common object file.
optimization/ curses: CRT
inittab:

bsearch: binary

Isearch, ifind: linear

hereate, hdestroy: manage hash
tdelete, twalk: manage binary
object file. scnhdr:

object/ /read an indexed/named
/to line number entries of a

/to relocation entries of a
/seek to an indexed/named
/mrand48, jrand48, srand48,
section of/ ldsseek, ldnsseek:

a section/ ldlseek, ldnlseek:

a section/ ldrseek, ldnrseek:
header of a common/ ldohseek:
common object file. idthseck:
shmget: get shared memory
brk, sbrk: change data

semetl:

semop:

semget: get set of

operations.

a group of processes. kill:
buffering to a stream.

IDs. setuid,

getgrent, getgrgid, getgrnam,
goto.

hashing encryption. crypt,

getpwent, getpwuid, getpwnam,
gettydefs: speed and terminal
group IDs.

/getutid, getutline, pututline,
stream. setbuf,

data in a/ sputl,

operations. shmectl:

shmop:

identifier. shmget: get
system: issue a

system: issue a

operations.

segment identifier.
operations.

transfer-of-sign intrinsic/
pause: suspend process until
what to do upon receipt of a
action on receipt of a system

root functions. /exponential,
root intrinsic function.
routines. ldfen:
routines. regexp: regular
rshift: Fortran Bitwise/
sbrk: change data segment .
scanf, fscanf, sscanf: convert
SCCS file.
scesfile: format of SCCS file.
scnhdr: section header for a
screen handling and
script for the init process. .
search a sorted table.
search and update.
search tables. hsearch,
search trees. tsearch, tfind, .
section header for a common
section header of a common
section of a common object/
section of a common object/
section of a common object/
seed48, lcongd8: generate/ .
seek to an indexed/named .
seek to line number entries of
seek to relocation entries of
seck to the optional file
seek to the symbol table of a
segment identifier.
segment space allocation. .
semaphore control operations.
semaphore operations.
semaphores.
semctl: semaphore control .
semget: get set of semaphores.
semop: semaphore operations.
send a signal to a process or
setbuf, setvbuf: assign . . .
setgid: set user and group .
setgrent, endgrent, fgetgrent:/
setjmp, longjmp: pon-local .
setkey, encrypt: generate
setpgrp: set process group ID.

setpwent, endpwent, fgetpwent:/

settings used by getty.
setuid, setgid: set user and .

setutent, endutent, ntmpname:/

setvbuf: assign buffering to a
sgetl: access long integer
shared memory control

shared memory operations. .
shared memory segment
shell command from Fortran.
shell command.

shmetl: shared memory control

shmget: get shared memory
shmop: shared memory
sign, isign, dsign: Fortran .

signal. signal: specify
signal. /specify Fortran

- 19 -

Permuted Index

exp(3M)
sqrt(3F)
idfcn(4)
regexp(5)
bool(3F)
brk(2)
scanf(38)
scesfile(4)
scesfile(4)
scnhdr(4)
curses(3X)
inittab(4)
bsearch(3C)
Isearch(3C)
hsearch(3C)
tsearch(3C)
scnhdr (4)
Idshread (3X)
Idiseek (3X)
Idrseek (3X)
Idsseek{(3X)
drand48(3C)
Idsseek (3X)
idlseek{(3X)
Idrseek (3X)
Idohseek (3X)
Idtbseek (3X)
shmget(2)
brk(2)
semctl(2)
semop(2)
semget(2)
semctl(2)
semget (2)
semop{(2)
kill(2)
setbuf(3S)
setuid (2)
getgrent(3C)
setjmp(3C)
crypt(3C)
setpgrp(2)
getpwent (3C)
gettydefs(4)
setuid(2)
getut(3C)
setbuf(38)
sputl(3X)
shmetl(2)
shmop(2)
shmget (2)
system{(3F)
system(38)
shmct](2)
shmget (2)
shmop(2)
sign(3F)
pause(2)
signal(2)
signal (3F)

Permuted Index

on receipt of a system/

upon receipt of a signal.

of processes. kill: send a
ssignal, gsignal: software
generator. rand, srand:

atan, atan2; trigonometric/
intrinsic function.

sin, dsin, csin: Fortran
/dsinh: Fortran hyperbolic
functions.

hyperbolic sine intrinsic/
interval.

current/ ttyslot: find the

int, ifix, idint, real, float,
ssignal, gsignal:

gsort: quicker

bsearch: binary search a
brk, sbrk: change data segment
sys3b: machine

fspec: format

receipt of a system/ signal:
receipt of a signal. signal:
used by getty. gettydefs:
output. printf, fprintf,
integer data in a/

square root intrinsic/
power,/ exp, log, logl0, pow,
exponential, logarithm, power,
sqrt, dsqrt, esqrt: Fortran
generator. irand, rand,
generator. rand,

/nrand48, mrand48, jrand48,
input. scanf, fscanf,

signals.

package. stdio:
communication package. fiok:
/from the Foriran Military
system call.

stat: data returned by
ustat: get file system

feof, clearerr, fileno: stream
stat, fstat: get file
input/output package.

wait for child process to
strncmp, strepy, stenepy,/
/strepy, strnepy, strlen,
strncpy,/ strcat, strncat,
/strncat, strcmp, strnemp,
/strrehr, strpbrk, strspn,
fllush: close or flush a

fopen, freopen, fdopen: open a
reposition a file pointer in a
get character or word from a
fgets: get a string from a
put character or word on a
puts, fputs: put a string on a
setvbuf: assign buffering to a
/feof, clearerr, fileno:

signal: specify Fortran action signal 3F)
signal: specify whattodo signal (2)
signal 10 @ Process Or a GrOUP .~ « « « . « » . - kill(2)
signals. e e e e e e e e e . ssignal (3C)
simple random~-number 4 4 . 4 . rand (3C)
sin, COS, tan, asin, ACOS, .« « « & 4 4 4 4 4 . . trig(3M)
sin, dsin, csin: Fortransine + » » « « o o . . . sin(3F)
sine intrinsic function. sin(3F)
sine intrinsic function. sinh(3F)
sinh, cosh, tanh: hyperbolic sinh(3M)
sinh, dsinh: Fortran . « . « « . . 4 4 sinh 3F)
sleep: suspend execution for 4 . . . sleep(3C)
slot in the utmp fileof the ttyslot (3C)
sngl, dble, cmplx, demplx,/ ftype(3F)
software signals. . .« . .« 0 0 4. aa ... ssignal(3C)
T gsort(3C)
sorted table. a4 . e ... bsearch(3C)
space allocation. .« « o . e 4 w4 w4 oa e . s brk(2)
specific function. 4 0 4w 0 . a e e s sys3b(2)
specification in text files. o« .o o4 . . fspec(4)
specify Fortran actionon . « « « « signal (3F)
specify what todoupon signal (2)
speed and terminal settings gettydefs(4)
sprintf: print formatted printf(38)
sputl, sgetl: accesslong sputl(3X)
sqrt, dsqrt, csqrt: Fortran « » .« sqrt 3F)
sqrt: exponential, logarithm, exp(3M)
square root functions. /sqrt: exp(3M)
square root intrinsic/40 . . sqrt(3F)
srand: random PUMbET . . . 4 rand (3F)
srand: simple random-number rand(3C)
srand48, seced48, lcongd8:/ 4 . . . drand48(3C)
sscanf: convert formatted scanf(3S)
ssignal, gsignal: software« ssignal (3C)
standard buffered input/output stdio(38)
standard interprocess . . . 4 . . . o4 4 o . . stdipe(3C)
Standard (MIL-STD-1753).. . . . « . + « . . mil(3F)
stat: data returned by stat stat(5)
stat, fstat: get filestatus, . « + . . 4 . o4 o4 . . stat(2)
statsystemcall. 4 . 4w s .. stat(5)
SEALISHCS. + 4 4 . h e e e e e e e e e e ustat (2)
status inquiries. ferror, ferror (38)
SEATUS. v 4 e e a e h e n e e e e e stat(2)
stdio: standard buffered stdio(38)
stime: Set . - « « .« . 4 4 4 4 a4 e . stime (2)
stop or terminate. wait: . . - 0. . . wait(2)
strcat, strncat, S’CMP, » « « « « 0 4 2 4 o . . string (3C)
strehr, sterchr, stepbrk,/ 0 0 string (3C)
SLTCIP, SLINCMP, SLICPY, ~ « = = » o o « + o & string (3C)
strepy, strnepy, strlen,/ L. . . . string(3C)
strespn, strtok: String/ . . . 4 . . 4 . oa o4 . s string (3C)
stream. fcloSe, « = v 0 W o on e e a e e s fclose(3S)
SITEAT. + o o v s 4 n e e e e e e e e fopen(33)
stream. fseek, rewind, ftell: fseek (38)
stream. /geichar, fgetc, getw: getc(38)
STEAM. GBS, ~ o « 2 o » = &+ 0 0 4 on s . - gets(35)
stream. /putchar, fpute, putew: putc(38)
SITEAML. &« v 4w e a e m e e e e e e e puts(3S)
stream. setbuf, 4 4 4 44 setbuf(3S)
stream status inquiries. . « ferror(3S)

- 20 -

Permuted Index

push character back into input stream. ungetc: . . .+ 4 4 4 4 4 4 a4 s oa e ungetc(3S)
long integer and base-64 ASCII string. /164a: convert between a641(3C)

Ige, Igt, lle, Nt: string comparison intrinsic/ . . « stremp(3F)
convert date and time to string. /asctime, tzset: ctime (3C)
floating-point number to string. /fovt, gevt: convert 4 . W ecvt(3C)

gps: graphical primitive string, format of graphical/ gps(4)
gets, fgets: get a string from a stream. .+ « + o 4 0 4 4 0 b . W gets(35)
len: return length of Fortran String. « - = « « =+« 4 0 4w n e e e e e len(3F)
puts, fputs: put a SIFiNg ON A BITEAM. .« « o 4 . 4 4 4 . 0 4 . . puts(35)
strspn, strespa, strtok: string operations. /strpbrk, string(3C)
number. strtod, atof: convert string to double-precision strtod(3C)
strtol, atol, atoi: convert string to integer. 4 4 4 strtol (3C)
/strnemp, strepy, stenepy, strlen, strchr, sterchr,/ . 0 . L . . 4 0 L L L string (3C)
strepy, strnepy,/ streat, strncat, stremp, SUNCHIP, « « o o~ 0 4 4 4 s . string (3C)
strcat, strncat, stremp, strnemp, sirepy, strnepy,/ . . . 4 . o 4 . . s string(3C)
/stremp, stencmp, strepy, stenepy, strlen, strehr,/ o . . 0 0 4 0 0 . W string 3C)
/strlen, sirchr, strrchr, strpbrk, sirspn, strespn,/ . . o string(3C)
/stencpy, strlen, strchr, strrehr, strpbrk, strspn,/ . . . L . . L . . 4 string(3C)
Istrchr, strrchr, strpbrk, strspn, strespn, strtok:/ 0 0 L . . . string (3C)
to double-precision pumber. strtod, atof: convert string strtod (3C)
/strpbrk, strspn, strespn, striok: string operations. string (3C)
string to integer. strtol, atol, atoi: convert strtol (3C)
intro: introduction to subroutines and libraries. intro{3)
/intrinsic functions and subroutines from the Fortran/ mil(3F)
plot: graphics interface subroutines. . « « < . . 4 4 4 4 440 4. plot(3X%)
return location of Fortran substring. index:« . . index (3F)
sync: update super block. . . . 4 v 0 b 4 s e w44 e . on sync(2)
interval. sleep: suspend execution for sleep(3C)
pause: suspend process until signal.+ pause(2)
swab: swap bytes. a4 0 4 e 4 e a swab(3C)
swab: swapbytes. 4 . e n e 4 a e s swab(3C)
file/ ldgetname: retrieve symbol name for common object Idgetname(3X)
name for common object file symbol table entry. /symbol ldgetname(3X)
object/ /compute the index of a symbol table entry of a common Idtbindex (3X)
Mdtbread: read an indexed symbol table entry of a common/ 1dtbread (3X)
syms: common object file symbol table format. syms{4)
object/ ldtbseek: seek to the symbol table of a common . - Idtbseek (3X)
symbol table format. syms: common object file syms (4)
sync: update super block. sync(2)
function. sys3b: machine specific sys3b(2)
error/ perror, errno, sys_errlist, sys_perr: system 4 4 . . 4 . perror (3C)
perror, exrno, sys_errlist, sys_nerr: system error/ . . 4 . 4 4 4 s s ow s perror (3C)
profile: system-wide user profile. profile(4)
binary search a sorted table. bsearch: bsearch(3C)
for common object file symbol table entry. /symbol pame Idgetname(3X)
/compute the index of a symbol table entry of a2 common object/ Idtbindex (3X)
file. /read an indexed symbol table entry of a common object Idtbread (3X)
common object file symbol table format. syms: 4 4 4 4 syms(4)
mnttab: mounted file system table. 0 4. . 4w 0. e . s mnttab(4)
ldtbseek: seek to the symbol table of a common object file. Idtbseek (3X)
configuration information table. system: system system (4)
hdestroy: manage hash search tables. hsearch, hereate, hsearch(3C)
trigonometric/ sin, cos, tan, asin, acos, atan, atan2: trig(3M)
intrinsic function. tan, dtan: Fortran tangent tan(3F)
tan, dtan: Fortran tangent intrinsic function. tan(3F)
/dtanh: Fortran hyperbolic tangent intripsic function. tanh(3F)
hyperbolic tangent intrinsic/ tanh, dtanh: Fortran « « < tanh (3F)
sinh, cosh, tanh: hyperbolic functions. sinh (3MD)
search trees. tsearch, tfind, tdelete, twalk: manage binary tsearch(3C)
temporary file. tmpnam, tempnam: create anamefora tmpnam (35)

-21 -

Permuted Index

tmpfile: create a

tempnam: create a name for a
terminals.

term: format of compiled
file.

terminfo:

generate file name for

dial: establish an out-going
getty. geitydefs: speed and
isatty: find name of a

term: conventional names for
abort;

exit, _exit:

for child process to stop or
data base.

fspec: format specification in
plock: lock process,

binary search trees. tsearch,
mclock: return Fortran

profil: execution

stime: set

time: get

tzset: conpvert date and
clock: report CPU

timezone: set defanlt system
process times.

get process and child process
file access and modification
time zone.

file.

for a temporary file.
/tolower, _toupper, _tolower,
popen, pclose: initiate pipe
toupper, tolower, _toupper,
toascii: translate/ toupper,
translate/ toupper, tolower,
_tolower, toascii: translate/
ptrace: process

sign, isign, dsign: Fortran
/_toupper, _tolower, toascii:
ftw: walk a file

twalk: manage binary search
tan, asin, acos, atan, atan2:
twalk: manage binary search/
a terminal.

utmp file of the current/
tsearch, tfind, tdelete,

ichar, char: explicit Fortran
types.

types: primitive system data
/localtime, gmtime, asctime,
control.

getpw: get name from
limits.

creation mask.

UNIX system.
into input stream.
/seed48, lcong48: generate

temporary file. tmpfile(38)
temporary file. tmpnam, tmpnam (35)
term: conventional names for term(5)
term file. term(4)
term: format of compiled term term(4)
terminal capability data base. terminfo(4)
terminal. ctermid: ctermid (35)
terminal line connection. dial(30)
terminal settings used by + . . . gettydefs(4)
terminal. ttyname, e e e e e . . ttyname(3C)
terminals. . . e 4 e e e e e e e e e e term (5)
terminate Fortran program.+ . . abort(3F)
terminate process. 4 . . . v e . exit(2)
terminate. wait: wait o0 . . wait(2)
terminfo: terminal capability terminfo(4)
text files. - . 0 e e 4w e h e e e e e e fspec(4)
text, or data in memory.« . plock(2)
tfind, tdelete, twalk: manage tsearch(3C)
time accounting. .+ .« .« . 4 4 4 e 4 4. o4 . . melock (3F)
time: get time. 4 time(2)
time profile. aa e . . profil(2)
BINE. v v e v e e e e e v e e .. stime(2)
e, « o 4 e e e e e e e e e e . . time(2)
time to string. /asctime, ctime(3C)
timeused. . . . 4 4 e 44 e e e e e e s clock (3C)
tIME ZONE. « 2 w4 4w e e e e e e e timezone(4)
times: get process and child times (2)
times. times:0 4 .o . . . v« . . times(2)
times. utime: set 0 4w . 4. .. . utime(2)
timezone: set default system timezone{4)
tmpfile: create a temporary tmpfile(3S)
tmpnam, tempnam: create a name tmpnam(3S)
toascii: translate characters. conv(3C)
to/from a process. « 4 4 popen(3S)
_tolower, toascii: translate/ conv(3C)
tolower, _toupper, _tolower, conv(3C)
_toupper, _tolower, t0asGil: conv(3C)
toupper, tolower, _toupper, conv(3C)
BFACE. & v v n n e m e h e e e e ptrace(2)
transfer-of-sign intrinsic/ sign(3F)
translate characters. . . « . . « conv(3C)
BT w e v v a e e e e e s e e ftw(3C)
trees. /thind, tdelete, tsearch(3C)
trigonometric functions. /cos, « + trig(3M)
tsearch, tfind, tdelete, tsearch(3C)
ttyname, isatty: find name of ttyname (3C)
ttyslot: find the slot inthe ttyslot(3C)
twalk: manage binary search/ tsearch(3C)
type conversion. /demplx, ftypeGE)
types: primitive system data types(5)
BYPES. « o v e m e e e e e e e e e e types(5)
tzset: convert date and time/ ctime(3C)
uvadmin: administrative nadmin{2)
UID. L . e e e e e e e e e e e e getpw (3C)
ulimit: get and set user ulimit(2)
umask: setandgetfile umask(?)
umount: unmount a file system. umount(2)
uname: get name of current uname(2)
ungetc: push character back ungetc(3S)
uniformly distributed/ drand48(3C)

-27 -

mktemp: make a

entry.

umount;

Ifind: linear search and
sync:

setuid, setgid: set

character login name of the
/getgid, getegid: get real
environ:

ulimit: get and set

logname: return login name of
profile: system-wide

/get real user, effective

the utmp file of the current
statistics.

modification times.

utmp, wimp:

endutent, utmpname: access
ttyslot: find the slot in the
entry formats.

/pututline, setutent, endutent,
abs: return integer absolute
cabs, zabs: Fortran absolute
geteny: return

ceiling, remainder, absolute
putenv: change or add
values,

values: machine-dependent
/print formatted output of a
fprint formatted output of a
argument list.

varargs: handle

return Foriran environment
option letter from argument
assert:

formatted ontput of/ vprintf,
formatted output of/ vprintf,
file system: format of system
print formatted ontput of a/
print formatted output of a/
output of/ vprintf, viprintf,
ontput of/ vprintf, viprintf,
or terminate. wait:

to stop or terminate,

ftw:

signal. signal: specify

chdir: change

get path-name of current
write:

putpwent:

open: open for reading or
utmp, wtmp: utmp and
formats. utmp,

Fortran Bitwise/ and, or,
30, j1, jn,

i0, j1, jn, y0,

6, 31, in, y0, y1,

abs, jabs, dabs, cabs,

set defaunlt system time

Permuted Index

wnique file mAmE. » . 4 o4 b n e . e 4 s mktemp(3C)
unlink: remove directory .« « o4 . . . unlink (2)
unmount 2 file system. . . « . 4 o4 umount(2)
update. Isearch, .~ . o v 4 0 . e w e e .. Isearch(3C)
update super block. 0 . .4 ... sync(2)
wserandgroup IDs, 4. setuid (2)
user. cuserid: et .+ . . 4 4 4 44 444 . s . cuserid (3S)
user, effective user, real/ getuid(2)
USEr eNVITONMEDL, ~ « « « w4 4 b 4 4 e e . environ(5)
user Hmits. - . v & v 0 0 e e e e e e . . ulimit(2)
T logname(3X)
wser profile. 4 4 e e e e e e a profile(4)
user, real group, and/ getuid (2)
vser. /find theslotin . . « . + « o ttyslot (3C)
ustat: get file system 4.4 ustat(2)
utime: set file accessand utime(2)
utmp and wtmp entry formats. utmp(4)
utmp file entry. /setutent, 4 . o . getut(3C)
utmp file of the current user. ttyslot (3C)
utmp, wimp: utmp 2nd WP utmp(4)
utmpname: access mtmp file/ getnt(3C)
VAIIE. . w e e e e e ek e e e e e e e abs(30)
value, abs, iabs, dabs, abs(3F)
value for environment name. getenv(3C)
value functions. /fabs: floor, floor (3M)
value to environment. o« o 0 o« 0 o0 o4 . putenv(3C)
values: machine-dependent values(5)
Y 1T values(5)
varargs argument list. vprintf(3S)
varargs argument list. vprintf(3X)
varargs: handle variable varargs(5)
variable argument list.« varargs(5)
variable. getenv: . . . 4 a4 0 a4 4 .. . getenv (3F)
vector. etOPt: et . 4 o . 4 s b 4 o+ 0 0 . - getopt(3C)
verify program assertion. assert(3X)
viprintf, vsprintf: print vprintf(3S)
vfprintf, vsprintf: print vprintf(3X)
VOIUIIE. « v 4w h e e e e a e e e e e s fs(4)
vprintf, vfprintf, vsprintf: vprintf(3S)
vprintf, viprintf, vsprintf: vprintf(3X)
vsprintf: print formatted vprintf (3S)
vsprintf: print formatted vprintf(3X)
wait for child process tostop wait(2)
wait: wait for child process wait(2)
walkafiletree. . - « . o a4 o4 oa 0 e e . ftw (3C)
what to do upon receiptofa signal(2)
working directory. chdir (2)
working directory. getewd: getewd (3C)
writtonafile.0 . 000 a .. write(2)
write password file entry. « . . 4 0 4 4 0 0 . . puipwent (3C)
write: writeonafile., write (2}
WOLDE. o v h v nn e e h e n e e open(2)
wtmp entry formats. . . « . 4 o4 . o4 2o . . - utmp(4)
wtmp: utmp and wtmp entry utmp(4)
xor, not, Ishift, rshift: bool(3F)
y0, y1, yn: Bessel functions. bessel (3IM)
y1, yn: Bessel functions. bessel (3M)
yn: Bessel functions. bessel GM)
zabs: Fortran absolute value. abs(3F)
zone, tMEZONE: - « « v « 4 4 4 4w n n o a timezone (4)

-~ 23 -

Replace this
page with the
Section 2 (System Calls)

tab separator.

INTRO(2) INTRO(2)

NAME

intro — introduction to system calls and error numbers

SYNOPSIS

#include <errno.h>

DESCRIPTION

7/85

This section describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value. This is almost always —1; the individual descriptions specify the details. An
error number is also made available in the external variable errno. FErrno is not
cleared on successful calls, so it should be tested only after an error has been indi-
cated.

Each system call description attempts to list all possible error numbers. The follow-
ing is a complete list of the error numbers and their names as defined in
<errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way for-
bidden except to its owner or super-user. Tt is also returned for attempts by
ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but
doesn’t, or when one of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in kill or
ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system call. If execuiion is resumed
after processing the signal, it will appear as if the interrupted system call
returned this error condition.

5 EIO I/O error
Some physical I/0 error has occurred. This error may in some cases occur
on a call following the one to which it actunally applies.

6 ENXIO No such device or address
I/0 on a speciai file refers to a subdevice which does not exist, or beyond
the limits of the device. [t may also occur when, for example, a tape drive
is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a2 member of the
exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate
permissions, does not start with a valid magic number (see a.ouz(4)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively, write)
request is made to a file which is open only for writing (respectively, read-
ing).

10 ECHILD No child processes
A wait was executed by a process that had no existing or unwaited-~for child

-1~ 7/85

INTRO(2)

11

12

13

14

15

16

17

18

19

20

21

22

23

24

7/85

INTRO(2)

processes.

EAGAIN Mo more processes
A fork failed because the system’s process table is full or the user is not
allowed to create any more processes.

ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more space than the sys-
tem is able to supply. This is not a temporary condition; the maximum
space size is a system parameter. The error may also occur if the arrange-
ment of text, data, and stack segments requires too many segmentation
registers, or if there is not enough swap space during a fork.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection
system.

EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument
of a system call.

ENOTBLK Block device required
A non-block file was mentioned where a block device was required, e.g., in
mount.

EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active file
(open file, current directory, mounted-on file, active text segment). It will
also occur if an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.
EXDEV Cross-device link
A link to a file on another device was attempted.
ENODEV No such device
An attempt was made to apply an inappropriate system call to a device;
e.g., read a write-only device.
ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in
a path prefix or as an argument to chdir(2).
EISDIR s a directory
An attempt was made to write on a directory.
EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device; mention-
ing an undefined signal in signal, or kill; reading or writing a file for which
Iseek has generated a negative pointer). Also set by the math functions
described in the (3M) entries of this manual.
ENFILE File table overflow
The system file table is full, and temporarily no more opens can be
accepted.
EMFILE Too many open files
Mo process may have more than 20 file descriptors open at a time. When a

-2~ 1/85

INTRO(2) INTRO(2)

record lock is being created with fentl, there are too many files with record
locks on them.

25 ENOTTY Not a character device
An attempt was made to ioctl{2) a file that is not a special character dev-
ice.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing a pure-
procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes) or
ULIMIT; see ulimit(2).

28 ENOSPC Mo space left on device
During a write to an ordinary file, there is no free space left on the device.
In fentl, the setting or removing of record locks on a file cannot be accom-
plished because there are no more record entries left on the system.

29 ESPIPE lllegal seek
An Iseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted
read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links (1000) to a
file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This con-
dition normally generates a signal; the error is returned if the signal is
ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain
of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not representable
within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on
the specified message queue; see msgop (2).

36 EIDRM Identifier Removed
This error is returned to processes that resume execution due to the removal
of an identifier from the file system’s name space (see msgct!(2), semcti(2),
and shmctl(2)).

45 EDEADLK Deadlock
A deadlock situation was detected and avoided.

Definitions

Process ID Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 1 to 30,000.

7/85 -~3- 7/85

INTRO(2) INTRO(2)

7/85

Parent Process ID A new process is created by a currently active process; see
fork(2). The parent process ID of a process is the process ID of its creator.

Process Group ID Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This ID is the process ID
of the group leader. This grouping permits the signaling of related processes; see
kill(2).

Tty Group ID Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping is used to ter-
minate a group of related processes upon termination of one of the processes in the
group; see exit (2) and signal(2).

Real User ID and Real Group ID Each user allowed on the system is identified by a
positive integer called a real user ID.

Each user is also a member of a group. The group is identified by a positive integer
called the real group ID.

An active process has a real user ID and real group ID that are set to the real user
1D and real group 1D, respectively, of the user responsible for the creation of the
process.

Effective User ID and Effective Group ID An active process has an effective user ID
and an effective group ID that are used to determine file access permissions (see
below). The effective user ID and effective group iD are equal to the process’s real
user ID and real group ID respectively, unless the process or one of its ancestors
evolved from a file that had the set-user-ID bit or set-group ID bit set; see exec(2).

Super-user A process is recognized as a super-user process and is granted special
privileges if its effective user ID is 0.

Special Processes The processes with a process ID of 0 and a process ID of 1 are
special processes and are referred to as procO and procl.

ProcO is the scheduler. Proc! is the initialization process (init). Procl is the
ancestor of every other process in the system and is used to control the process
structure.

File Descriptor A file descriptor is a small integer nsed to do 1/0 on a file. The
value of a file descriptor is from 0 to 19. A process may have no more than 20 file
descriptors (0-19) open simultaneously. A file descriptor is returned by system calls
such as open(2), or pipe(2). The file descriptor is used as an argument by calls
such as read(2), write(2), ioct!(2), and close(2).

File Name Names consisting of 1 to 14 characters may be used to name an ordi-
nary file, special file or directory.

These characters may be selected from the set of all character values excluding \0
(null) and the ASCII code for / (slash).

-4 - 7/85

INTRO(2) INTRO(2)

7/85

Note that it is generally unwise to use *, 2, I, or | as part of file names because of
the special meaning attached to these characters by the shell. See sA(1). Although
permitted, it is advisable to avoid the use of unprintable characters in file names.

Path Name and Path Prefix A path name is a null-terminated character string
starting with an optional slash (/), followed by zero or more directory names
separated by slashes, optionally followed by a file name.

More precisely, a path name is a null-terminated character string constructed as fol~
lows:

< path-name> = <file-name> | <path-prefix> <file-name>|/
<path-prefix > 1= <rtprefix > | / <rtprefix>
<rtprefix>::= <dirname>/| <rtprefix> <dirname>/

where <file-name> is a string of 1 to 14 characters other than the ASCII slash and
null, and <dirname> is a string of 1 to 14 characters {other than the ASCII slash
and nuld) that names a directory.

If a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null paih name is treated as if it named a
non-~existent file.

Directory

Directory entries are called links. By convention, a directory contains at least two
links, . and .., referred to as dot and doi-dot respectively. Dot refers to the direc-
tory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory Each process has associated with it
a concept of a root directory and a current working directory for the purpose of
resolving path mame searches. The root directory of a process need not be the root
directory of the root file system.

File Access Permissions

Read, write, and execute/search permissions on a file are granted to a process if one
or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of the
file and the appropriate access bit of the “owner” portion (0700) of the file
mode is set.

The effective user 1D of the process does not match the user ID of the owner
of the file, and the effective group ID of the process matches the group of
the file and the appropriate access bit of the “group” portion (070) of the
file mode is set.

The effective user 1D of the process does not match the user ID of the owner
of the file, and the effective group ID of the process does not match the
group ID of the file, and the appropriate access bit of the “other” portion
(07) of the file mode is set.

-5 7/85

INTRO(2) INTRO(2)

7/85

Otherwise, the corresponding permissions are denied.

Message Queue Identifier A message queue identifier (msqid) is a unique positive
integer created by a msgget (2) system call. Each msqid has a message queue and a
data structure associated with it. The data structure is referred to as msgid_ds and
contains the following members:

struct ipc_perm msg_perm; /= operation permission struct =/

ushort msg gnum; /* number of msgs on q */
ushort msg_gbytes; /* max number of bytes on q »/
ushort msg_lspid; /* pid of last msgsnd operation */
ushort msg_lrpid; /* pid of last msgrcv operation +/
time_t msg_stime; /» last msgsnd time */

time t msg_rtime; /* last msgrev time */

time t msg_ctime; /» last change time */

/» Times measured in secs since */
/+ 00:00:00 GMT, Jan. 1, 1970 »/

Msg perm is an ipc_perm structure that specifies the message operation permission
(see below). This structure includes the following members:

ushort cuid; /= creator user id */

ushort cgid; /* creator group id */

ushort uid; /* user id */

ushort gid; [+ group id =/

ushort mode; /# r/w permission »/
FIRSE_ QAN

is the number of messages currently on the queue.

msg_gbytes
is the maximum number of bytes allowed on the queue.

msg_lspid
is the process id of the last process that performed a msgsnd operation.

msg_lrpid
is the process id of the last process that performed a msgrev operation.

msg_stime
is the time of the last msgsnd operation.

msg_rtime
is the time of the last msgrcv operation

msg_ctime
is the time of the last msgctl(2) operation that changed a member of the
above structure.

Message Operation Permissions In the msgop(2) and msgetl (2) system call descrip-
tions, the permission required for an operation is given as "{token}", where "token" is
the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

-6 - 7/85

INTRO(2) INTRO(2)

7/85

Read and Write permissions on a msqid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msg perm.cluid in the data
structure associated with msgid and the appropriate bit of the “user” por-
tion (0600) of msg_perm.mode is set.

The effective user ID of the process does not match msg_perm.lcluid and the
effective group ID of the process matches msg_perm.lclgid and the appropri-
ate bit of the “group” portion (060) of msg_perm.mede is set.

The effective user ID of the process does not match msg_perm.[cluid and the
effective group ID of the process does not match msg perm.lclgid and the
appropriate bit of the “other” portion {06) of msg perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier A semaphore identifier {semid) is a unique positive integer
created by a semget (2) system call. Each semid has a set of semaphores and a data
structure associated with it. The data structure is referred to as semid_ds and con-
tains the following members:

struct ipc_perm sem_perm; /* operation permission struct */

ushort sem_nsems; /* number of sems in set */
time t sem_otime; /» last operation time */
time t sem_ctime; /= last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Sem_perm is an ipc_perm structure that specifies the semaphore operation permis-
sion (see below). This structure includes the following members:

ushort cuid; /* creator user id »/
ushort cgid; /= creator group id =/
ushort wuid; /> user id */

ushort gid; /* group id »/

ushort mode; /» v/a permission */

The value of sem_msems is equal to the pumber of semaphores in the set. Each
semaphore in the set is referenced by a positive integer referred to as a sem_num.
Sem_num values run sequentially from 0 to the value of sem nsems minus 1.
Sem_otime is the time of the last sermop(2) operation, and sem_ctime is the time of
the last semct!(2) operation that changed a member of the above structure.

A semaphore is a data structure that contains the following members:

ushort semval; /= semaphore value =/

short sempid; /* pid of last operation =/
ushort semncnt; /* # awaiting semval > cval +/
ushort semzcnt; /* # awaiting semval = 0 */

Semval is a non-negative integer. Sempid is equal to the process ID of the last pro-
cess that performed a semaphore operation on this semaphore. Semncnt is a count
of the number of processes that are currently suspended awaiting this semaphore’s
semval to become greater than its current value. Semzent is a count of the number
of processes that are currently suspended awaiting this semaphore’s semval to
become zero.

-7 - 7/85

INTRO(2) INTRO (2}

7/85

Semaphore Qperation Permissions In the semop(2) and semctl(2) system call
descriptions, the permission required for an operation is given as "{token}", where
"token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches sem_perm.lcluid in the data
structure associated with semid and the appropriate bit of the “user” por-
tion (0600) of sem_perm.mode is set.

The effective user ID of the process does not match sem_perm.lcluid and the
effective group ID of the process matches sem_perm.lelgid and the appropri-
ate bit of the “group” portion (060) of sem_perm.mode is set.

The effective user 1D of the process does not match sem_perm.Icluid and the
effective group ID of the process does not match sem perm.lcigid and the
appropriate bit of the “other” portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier A shared memory identifier (shmid) is a unique positive
integer created by a shmget (2) system call. Each shmid has a segment of memory
(referred to as a shared memory segment) and a data structure associated with it.
The data structure is referred to as shmid_ds and contains the following members:

strnct ipc_perm shm_perm; /= operation permission struct #/

int shm_segsz; /* size of segment */

ushort shm_cpid; /» creator pid */

ushort shm_lpid; /= pid of last operation */

short shm_nattch; /+ number of current attaches */
time_t shm_atime; /= last attach time */

time t shm_dtime; /= last detach time =/

time t shm_ctime; /= last change time =/

/= Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 »/

Shm_perm is an ipc_perm structure that specifies the shared memory operation per-
mission (see below). This structure includes the following members:

ushort cuid; /* creator user id =/
ushort cgid; /* creator group id +/
ushort uid; /+ user id */

ushort gid; /* group id =/

ushort mode; /* r/w permission */

Shm_segsz specifies the size of the shared memory segment. Shm_cpid is the pro-
cess id of the process that created the shared memory identifier. Shm_lpid is the
process id of the last process that performed a shmop(2) operation. Shm_natteh is
the number of processes that currently have this segment attached. Shm_atime is
the time of the last shmat operation, shm_dtime is the time of the last shmdt

-8- 7/85

INTRO(2) INTRO(2)

operation, and shm_ctime is the time of the last shmctl(2) operation that changed
one of the members of the above structure.

Shared Memory Operation Permissions In the shmop(2) and shmetl(2) system call
descriptions, the permission required for an operation is given as "(token}", where
"token” is the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or more of
the following are true:

The effective user 1D of the process is super-user.

The effective user ID of the process matches shm_perm.lcluid in the data
structure associated with shmid and the appropriate bit of the “user” por-
tion (0600) of shm_perm.mede is set.

The effective user ID of the process does not match shm_perm.lcluid and the
effective group ID of the process matches shm_perm.iclgid and the appropri-
ate bit of the “group” portion (060) of shm_perm.mode is set.

The effective user ID of the process does not match shm_perm.lcluid and the
effective group ID of the process does not match shm_perm.lcigid and the
appropriate bit of the “other” portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO

7/85

close(2), ioctl(2), open(2), pipe(2), read(2), write(2), intro(3).

-9 . 7/85

ACCESS(2)

NAME

ACCESS(2)

access — determine accessibility of a file

SYNOPSIS

int access (path, amode)

char =path;
int amode;

DESCRIPTION

Path points to a path name naming a file. Access checks the named file for accessi-
bility according to the bit pattern contained in amode, using the real user ID in
place of the effective user ID and the real group ID in place of the effective group
ID. The bit pattern contained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file
Access to the file is denied if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] Read, write, or execute (search) permission is
requested for a null path name.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a component of the
path prefix.
[EROFS] Write access is requested for a file on a read-only
file system.
[ETXTBSY] Write access is requested for a pure procedure
(shared text) file that is being executed.
[BACCESS] Permission bits of the file mode do not permit
the requested access.
[EFAULT] Path points outside the allocated address

space for the process.

The owner of a file has permission checked with respect to the “owner” read, write,
and execute mode bits Members of the file’s group other than the owner have per-
missions checked with respect to the “group” mode bits, and all others have permis-
sions checked with respect to the “other” mode bits.

SEE ALSO
chmod(2), stat(2).

DIAGNOSTICS

If the requested access is permitted, a value of 0 is returned. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

7/85

~1- 7/85

ACCT (2) ACCT(2)

NAME
acct — enable or disable process accounting

SYNOPSIS
int acet (path)
char =path;

DESCRIPTION
Acct is used to enable or disable the system process accounting routine. If the rou-
tine is enabled, an accounting record will be written on an accounting file for each
process that terminates. Termination can be caused by one of two things: an exit
call or a signal; see exit(2) and signal(2). The effective user ID of the calling pro-
cess must be super-user to use this call.

Path points to a path name naming the accounting file.

The accounting routine is enabled if path is non-zero and no errors occur during the
system call. Tt is disabled if path is zero and no errors occur during the system call.

Accet will fail if one or more of the following are true:

{EPERM] The effective user of the calling process is not super-user.
[EBUSY] An attempt is being made to enable accounting when it is already
enabled.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENTI One or more components of the accounting file path name do not
exist.
[EACCESI A component of the path prefix denies search permission.
[EACCES] The file named by patk is not an ordinary file.
[EACCES] Mode permission is denied for the named accounting file.
[EISDIR] The named file is a directory.
[EROFS] The named file resides on a read-only file system.
[EFAULT] Path points to an illegal address.
SEE ALSO
exit(2), signal(2).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -1- 7/85

ALARM(2) ALARM(2)

NAME
alarm — set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the signal SIGALRM
to the calling process after the number of real time seconds specified by sec have
elapsed; see signal (2).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling
process.

If sec is 0, any previously made alarm request is canceled.

SEE ALSO
pause(2), signal(2).

DIAGNOSTICS
Alarm returns the amount of time previously remaining in the alarm clock of the
calling process.

7/85 -1 - 7/85

BRK (2)

NAME

BRK (2)

brk, sbrk — change data segment space allocation

SYNOPSIS

int brk (emdds)
char *endds;

chax *sbrk (incr)
int incr;

DESCRIPTION

Brk and sbrk are used to change dynamically the amount of space allocated for the
calling process’s data segment; see exec(2). The change is made by resetting the
process’s break value and allocating the appropriate amount of space. The break
value is the address of the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases. The newly allo-
cated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space accord-
ingly. Inmcr can be negative, in which case the amount of allocated space is
decreased.

Brk and sbrk will fail without making any change in the allocated space if one or
more of the following are true:

[ENOMEM] Using brk(0) or brk(.textaddress).

[ENOMEM] Such a change would result in more space being allocated
than is allowed by a system-imposed maximum (see
wlimit (2)).

Such a change would result in the break value being greater than or equal
to the start address of any attached shared memory segment (see
shmop (2)).

SEE ALSO

exec(2), shmop(2), ulimit(2).

DIAGNOSTICS

TIRA

Upon successful completion, brk returns a value of 0 and shrk returns the old break
value. Otherwise, a value of —1 is returned and errno is set to indicate the error.

-1- 7/85

CHDIR (2) CHDIR.(2)

NAME
chdir — change working directory
SYNOPSIS
int chdir (path)
char »*path;
DESCRIPTION
Path points to the path name of a directory. Chdir causes the named directory to

become the current working directory, the starting point for path searches for path
names not beginning with /.

Chdir will fail and the current working directory will be unchanged if one or more
of the following are true:

[ENOTDIR] A component of the path name is not a directory.
[ENOENT] The named directory does not exist.
[EACCES] Search permission is denied for any component of the path name.
[EFAULTI Path points outside the allocated address space of the process.
SEE ALSO
chroot(2).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -1- 7/85

CHMOD (2) CHMOD(2)

NAME

chmod — change mode of file

SYNOPSIS

int chmod (path, mode)
char »path;
int mode;

DESCRIPTION

Path points to a path name naming a file. Chmod sets the access permission por-
tion of the named file’s mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.

02000 Set group ID on execution.

01000 Save text image after execution.

00400 Read by owner.

00200 Write by owner.

00100 Execute (search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be super-
user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000 (save text
image on execution) is cleared.

If the effective user ID of the process is not super-user and the effective group ID of
the process does not match the group ID of the file, mode bit 02000 (set group ID on
execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000 prevents the sys-
tem from abandoning the swap-space image of the program-text portion of the file
when its last user terminates. Thus, when the next user of the file executes it, the
text need not be read from the file system but can simply be swapped in, saving
time.

Chmod will fail and the file mode will be unchanged if one or more of the following
are true:

[ENOTDIR] A component of the path prefix is not a directory.
(ENOENTI The named file does not exist.
[EACCES] Search permission is denied on a component of the path prefix.
[EPERM] The effective nser ID does not match the owner of the file and the
effective user ID is not super-nser.
{EROFS] The named file resides on a read-only file system.
IEFAULT] Path points outside the allocated address space of the process.
SEE ALSO

chown(2), mknod(2).

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

-1- 7/85

CHOWN (2) CHOWN (2)

NAME
chown — change owner and group of a file

SYNOPSIS
int chown (path, owner, gromp)
char *path;
int owmer, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and group ID of the
named file are set to the numeric values contained in owner and group respectively.
Only processes with effective user ID equal to the file owner or super-user may
change the ownership of a file.
If chown is invoked by other than the super-user, the set-user-ID and set~group-I1D
bits of the file mode, 04000 and 02000 respectively, will be cleared.
Chown will fail and the owner and group of the named file will remain unchanged if
one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a component of the path prefix.
[EPERM] The effective user ID does not match the owner of the file and the

effective user ID is not super-user.

[EROFS] The named file resides on a read-only file system.
[EFAULT] Path points outside the allocated address space of the process.

SEE ALSO
chmod(2).
chown(1) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -1~ 7/85

CHROOT (2) CHROOT (2)

NAME
chroot — change root directory

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named directory
to become the root directory, the starting point for path searches for path names
beginning with /. The user’s working directory is unaffected by the chroot system
call.

The effective user ID of the process must be super-user to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the subtree rooted at the root direc-
tory.

Chroot will fail and the root directory will remain unchanged if one or more of the
following are true:

[ENOTDIR] Any component of the path name is not a directory.
[ENOENT] The named directory does not exist.
[EPERM] The effective user ID is not super-user.
[EFAULTI Path points outside the allocated address space of the process.
SEE ALSO
chdir(2).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of ~1 is
returned and errno is set to indicate the error.

7/85 -1- 7/85

CLOSE(2) CLOSE(2)

NAME
close — close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;
DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system
call. Close closes the file descriptor indicated by fildes. All outstanding record
locks owned by the process (on the file indicated by fildes) are removed.
Close will fail if fildes is not a valid open file descriptor.

SEE ALSO
creat(2), dup(2), exec(2), fentl(2}, open(2), pipe(2).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -1- 7/85

CREAT(2) CREAT(2)

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char »path;
int mode;

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite an existing file named by
the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file’s owner ID is set to the effective user 1D, of the pro-
cess the group ID of the process is set to the effective group ID, of the process and
the low-order 12 bits of the file mode are set to the value of mode modified as fol-

lows:
All bits set in the process’s file mode creation mask are cleared. See
umask(2).
The “save text image after execution bit” of the mode is cleared. See
chmod (2).

Upon successful completion, the file descriptor is returned and the file is open for
writing, even if the mode does not permit writing. The file pointer is set to the
beginning of the file. The file descriptor is set to remain open across exec system
calls. See fcntl(2). No process may have more than 20 files open simultaneously.
A new file may be created with a mode that forbids writing.

Creat will fail if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.

[ENOENTI A component of the path prefix does not exist.
[EACCES] Search permission is denied on a component of the path prefix.
[ENOENTI The path name is null.
[EACCESI The file does not exist and the directory in which the file is to be
created does not permit writing.
[EROFS] The named file resides or would reside on a read-only file system.
[ETXTBSY] The file is a pure procedure (shared text) file that is being exe-
cuted.
[EACCES] The file exists and write permission is denied.
[EISDIR] The named file is an existing directory.
[EMFILE] Twenty (20) file descriptors are currently open.
[EFAULT] Path points outside the allocated address space of the process.
[ENFILE] The system file table is full.
SEE ALSO
chmod(2), close(2), dup(2), fentl(2), Iseek(2), open(2), read(2), umask(2),
write(2).
DIAGNOSTICS

Upon successful completion, a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of —1 is returned and errno is set to indicate the
error.

7/85 -1~ 7/85

DUP(2) DUP(2)

NAME
dup — duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system
call. Dup returns a new file descriptor having the following in common with the ori-
ginal:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).
The new file descriptor is set to remain open across exec system calls. See fentl(2).
The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] Twenty (20) file descriptors are currently open.
SEE ALSO

creat(2), close(2), exec(2), fentl(2), open(2), pipe(2).
DIAGNOSTICS

Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of —1 is returned and errno is set to indicate the
error.

7/85 -1~ 7/85

EXEC(2) EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp — execute a file
SYNOPSIS
int execl (path, arg0, argl, ..., argn, 0)
char *path, »arg0, »argl, ..., *argn;
int execy (path, argv)
char =path, »argvl I;
int execle {(path, arg0, argl, ..., argn, 0, envp)
char »path, *arg, =argl, ..., =argn, =envpl |;
int execve (path, argy, envp)
char spath, *argvl 1, «envpl I;
int execlp (file, argh, argl, ..., argn, 0)
char »file, =arg0, =argl, ..., *argn;
int execvp (file, argv)
char »file, »argvl 1;
DESCRIPTION
Exec in all its forms transforms the calling process into a new process. The new
process is constructed from an ordinary, executable file called the new process file.
This file consists of a header (see a.out(4)), a text segment, and a data segment.
The data segment contains an initialized portion and an uninitialized portion (bss).
There can be no return from a successful exec because the calling process is over-
laid by the new process.
When a C program is executed, it is called as follows:
main (arge, argy, envp)
int arge;
char *=argv, **envp;
where argce is the argument count and argv is an array of character pointers to the
arguments themselves. As indicated, arge is conventionally at least one and the first
member of the array peints to a string containing the name of the file.
Path points to a path name that identifies the new process file.
File points to the new process file. The path prefix for this file is obtained by a
search of the directories passed as the environment line "PATH =" (see environ(5)).
The environment is supplied by the shell (see sh(1)).
Arg0, argl, ..., argn are pointers to null-terminated character strings. These strings
constitute the argument list available to the new process. By convention, at least
arg0 must be present and point to a string that is the same as path (or its last com-
ponent).
Argv is an array of character pointers to null-terminated strings. These strings con-
stitute the argument list available to the new process. By convention, argy must
have at least one member, and it must point to a string that is the same as path (or
its last component). Argv is terminated by a null pointer.
Envp is an array of character pointers to null-terminated strings. These strings con-
stitute the environment for the new process. Envp is terminated by a null pointer.
For execl and execv, the C run-time start-off routine places a pointer to the
environment of the calling process in the global cell:
extern char **environ;
and it is used to pass the environment of the calling process to the new process.
7/85 -1~ 7/85

EXEC(2) EXEC(2)

7/85

File descriptors open in the calling process remain open in the new process, except
for those whose close-on-exec flag is set; see fentl(2). For those file descriptors that
remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new process.
Signals set to be ignored by the calling process will be set to be ignored by the new
process. Signals set to be caught by the calling process will be set to terminate new
process; see signal (2).

If the set-user-ID mode bit of the new process file is set (see chmod(2)), exec sets
the effective user ID of the new process to the owner ID of the new process file.
Similarly, if the set-group-ID mode bit of the new process file is set, the effective
group ID of the new process is set to the group ID of the new process file. The real
user ID and real group ID of the new process remain the same as those of the calling
process.

The shared memory segments attached to the calling process will not be attached to
the new process (see shmop(2)).

Profiling is disabled for the new process; see profil (2).
The new process also inherits the following attributes from the calling process:

nice value (see rice(2))

process ID

parent process 1D

process group 1D

semadj values (see semop(2))

tty group ID (see exit(2) and signal(2))

trace flag (see prrace(2) request 0)

time left until an alarm clock signal (see alarm (2))
current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see ulimit(2))

utime, stime, cutime, and cstime (see times(2))

Exec will fail and return to the calling process if one or more of the following are
true:

[ENOENT] One or more components of the new process path name of the file
do not exist.

[ENOTDIR] A component of the new process path of the file prefix is not a
directory.

[EACCES] Search permission is denied for a directory listed in the new pro-
cess file’s path prefix.

[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execution permission.

[ENOEXEC] The exec is not an execlp or execvp, and the new process file has
the appropriate access permission but an invalid magic number in
its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is

currently open for writing by some process.

[ENOMEM] The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM.

-2- 7/85

EXEC(2) EXEC(2)

[E2BIG] The number of bytes in the new process’s argument list is greater
than the system-imposed limit of 5120 bytes.
[EFAULTI The new process file is not as long as indicated by the size values
in its header.
[EFAULTI Path, argv, or envp point to an illegal address.
SEE ALSO

alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2),
ulimit(2), umask(2), a.out(4), environ(5).
sh(1) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS
If exec returns to the calling process an error has occurred; the return value will be
—1 and errno will be set to indicate the error.

7/85 -3 - 7/85

EXIT (2)

MAME

EXIT(2)

exit, exit — terminate process

SYNOPSIS

void exit (status)
imt statms;
void _exit (status)
int status;

DESCRIPTION

Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified
of the calling process’s termination and the low order eight bits (i.e., bits
0377) of status are made available to it; see wait (2).

If the parent process of the calling process is not executing a wait, the cal-
ling process is transformed into a zombie process. A zombie process is a
process that only occupies a slot in the process table. It has no other space
allocated either in user or kernel space. The process table slot that it occu-
pies is partially overlaid with time accounting information (see
<sys/proc.h>) to be used by times.

The parent process ID of all of the calling process’s existing child processes
and zombie processes is set to 1. This means the initialization process (see
intro(2)) inherits each of these processes.

Each attached shared memory segment js detached and the value of
shm_pattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value
(see semop(2)), that semadj value is added to the semval of the specified
semaphore.

If the process has a process, text, or data lock, an unlock is performed (see
plock(2)).

An accounting record is written on the accounting file if the system’s
accounting routine is enabled; see acct {2).

If the process ID, tty group ID, and process group ID of the calling process
are equal, the SIGHUP signal is sent to each process that has a process
group ID equal to that of the calling process.

The C function exit may cause cleanup actions before the process exits. The func-
tion _exit circumvents all cleanup.

SEE ALSO

acct(2),

WARNING

intro(2), plock(2), semop(2), signal(2), wait(2).

See WARNING in signal (2).

7/85

-1 - 7/85

FCNTL (2)

NAME

7/85

FCNTL (2)

fentl — file control

SYNOPSIS
#include <fentlh>

int fentl (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION
Fentl provides for control over open files. Fildes is an open file descriptor obtained
from a creat, open, dup, fcntl, or pipe system call,

The commands available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL

F_GETLK

F_SETLK

F SETLKW

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or equal to
arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors
share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same
file status flags).

The close-on-exec flag associated with the new file descriptor is
set to remain open across exec(2) system calls.

Get the close-on-exec flag associated with the file descriptor
fildes. 1If the low-order bit is § the file will remain open across
exec, otherwise the file will be closed upon execution of exec.

Set the close-on-exec flag associated with fildes to the low-order
bit of arg (0 or 1 as above).

Get file status flags.
Set file status flags to arg. Only certain flags can be set; see

Sfentl (5).

Get the first lock which blocks the lock description given by the
variable of type siruct flock pointed to by arg. The information
retrieved overwrites the information passed to femtl in the flock
structure. If no lock is found that would prevent this lock from
being created, then the structure is passed back unchanged
except for the lock type which will be set to F_ UNLCK.

Set or clear a file segment lock according to the variable of type
struct flock pointed to by arg (see fentl(5)). The cmd F_SETLK
is used to establish read (F RDLCK) and write (F WRLCK) locks,
as well as remove either type of lock (F UNLCK). If a read or
write lock cannot be set fent! will return immediately with an
error value of —1.

This c¢md is the same as F_SETLK except that if a read or write
lock is blocked by other locks, the process will sleep until the seg-
ment is free to be locked.

-1~ 7/85

FCNTL(2) FCNTL(2)

A read lock prevents any process from write locking the protected area. More than
one read lock may exist for a given segment of a file at a given time. The file
descriptor on which a read lock is being placed must have been opened with read
access.

A write lock prevents any process from read locking or write locking the protected
area. Only one write lock may exist for a given segment of a file at a given time.
The file descriptor on which a write lock is being placed must have been opened
with write access.

The structure flock describes the type (I type), starting offset (I whence), relative
offset (I_start), size (I len), and process id (I _pid) of the segment of the file to be
affected. The process id field is only used with the F GETLK cmd to return the
value for a blocking lock. Locks may start and extend beyond the current end of a
file, but may not be negative relative to the beginning of the file. A lock may be set
to always extend to the end of file by setting / /en to zero (0). If such a lock also
has / start set to zero (0), the whole file will be locked. Changing or unlocking a
segment from the middle of a larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by the calling process causes
the old lock type to be removed and the new lock type to take affect. All locks asso-
ciated with a file for a given process are removed when a file descriptor for that file
is closed by that process or the process holding that file descriptor terminates.
Locks are not inherited by a child process in a fork(2) system call.

Fentl will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] Cmd is F_DUPFD and 20 file descriptors are currently open.

[EINFILE] Cmd is F_DUPFD and arg is negative or greater than 20.

[EINVALI] Cmd is F_GETLK, F_SETLK, or SETLKW and arg or the data it
points to is not valid.

[EACCESS] Cmd is F SETLK the type of lock (I iype) is a read (F_ RDLCK) or

write (F WRLCK lock and the segment of a file to be locked is
already write locked by ancther process or the type is a write lock
and the segment of a file to be locked is already read or write
locked by another process.

[EMFILE] Cmd is F_SETLK or F_SETLKW, the type of lock is a read or write
lock and there are no more file locking headers available (too
many files have segments locked).

[ENOSPC) Cmd is F_SETLK or F_SETLKW, the type of lock is a read or write
lock and there are no more file locking headers available (too
many files have segments locked) or there are no more record locks
available (too many file segments locked).

[EDEADLK] Cmd is F_SETLKW, the lock is blocked by some lock from another
process and sleeping (waiting) for that lock to become free. This
would cause a deadlock situation.

SEE ALSO
close(2), exec(2), open(2), fentl(5).

7/85 -2- 7/85

FCNTL(2) FCNTL (2)

DIAGNOSTICS

Upon successful completion, the value returned depends on emd as follows:
F_DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order bit is defined).
F SETFD Value other than —1.
F GETFL Value of file fiags.
F_SETFL Value other than —1.
F_GETLK Value other than —1.
F SETLK Value other than —1.
F_SETLKW Value other than —1.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

7/85 -3~ 7/85

FORK (2) FORK (2)

NAME
fork — create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact
copy of the calling process (parent process). This means the child process inherits
the following attributes from the parent process:

environment

close-on-exec flag (see exec(2))

signal handling settings (i.e., SIG_DFL, SIG_IGN, function address)
set-user-ID mode bit

set-group-ID mode bit

profiling on/off status

nice value (see nice(2))

all attached shared memory segments (see shmop (2))
process group ID

tty group ID (see exit(2) and signal(2))

trace flag (see ptrace(2) request 0)

current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see ulimir(2))

The child process differs from the parent process in the following ways:
The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of
the parent process).

The child process has its own copy of the parent’s file descriptors. Each of
the child’s file descriptors shares a common file pointer with the correspond-
ing file descriptor of the parent.

All semadj values are cleared (see semop (2)).

Process locks, text locks and data locks are not inherited by the child (see
plock (2)).

The child process’s utime, stime, cutime, and cstime are set to 0. The time
left until an alarm clock signal is reset to 0.

Fork will fail and no child process will be created if one or more of the following

are true:

[EAGAIN] The system-imposed limit on the total number of processes under
execution would be exceeded.

[EAGAIN] The system-imposed limit on the total number of processes under

execution by a single user would be exceeded.

7/85 -1~ 7/85

FORK (2) FORK (2)

SEE ALSO
exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2), times(2),
ulimit(2), umask(2), wait(2).

DIAGNOSTICS
Upon successful completion, fork returns a value of O to the child process and
returns the process ID of the child process to the parent process. Otherwise, a value
of —1 is returned to the parent process, no child process is created, and errno is set
to indicate the error.

7/85 -2~ 7/85

GETPID (2) GETPID(2)

NAME

getpid, getpgrp, getppid — get process, process group, and parent process IDs
SYNOPSIS

int getpid ()

int getpgrp ()

int getppid ()
DESCRIPTION

Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

7/85 -1~ 7/85

GETUID(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid — get real user, effective user, real group, and
effective group IDs

SYNOPSIS

unsigned short getuid ()
unsigned short getewid ()
unsigned short getgid ()
unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.
Getgid returns the real group ID of the calling process.
Getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

7/85 -1- 7/85

10CTL(2) 10CTL(2)

NAME
ioctl — control device

SYNOPSIS
joctl (fildes, request, arg)
int fildes, request;

DESCRIPTION
Ioctl performs a variety of functions on character special files (devices). The
write-ups of various devices in Section 7 of the AT&T 3B2 Computer System
Administration Reference Manual discuss how ioctl applies to them.

Ioct! will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.
[ENOTTY] Fildes is not associated with a character special device.

[EINVAL] Request or arg is not valid. See Section 7 of the AT&T 3B2 Sys-
tem Administration Reference Manual.

[EINTR] A signal was caught during the ioctl system call.

SEE ALSO
termio(7) in the AT&T 3B2 Computer System Administration Reference Manual.

DIAGNOSTICS

If an error has occurred, a value of —1 is returned and errno is set to indicate the
error.

7/85 -1- 7/85

KILL (2) KILL(2)

NAME

kill — send a signal to a process or a group of processes

SYNOPSIS

int kill (pid, sig)
int pid, sig;

DESCRIPTION

Kill sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pid. The signal that is to
be sent is specified by sig and is either one from the list given in signal(2), or 0. If
sig is O (the null signal), error checking is performed but no signal is actually sent.
This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or effective
user ID of the receiving process, unless the effective user ID of the sending process is
super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes (see
intro(2)) and will be referred to below as proc0 and procl, respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is equal
to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding proc0 and procl whose process
group ID is equal to the process group ID of the sender.

If pid is —1 and the effective user ID of the sender is not super-user, sig will be sent
to all processes excluding procO® and procl whose real user ID is equal to the
effective user ID of the sender.

If pid is —1 and the effective user ID of the sender is super-user, sig will be sent to
all processes excluding proc0 and procl.

If pid is negative but not —1, sig will be sent to all processes whose process group
ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are true:
[EINVAL] Sig is not a valid signal number.

(EINVALJ Sig is SIGKILL and pid is 1 (procl).

[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM] The user ID of the sending process is not super-user, and its real or
effective user ID does not match the real or effective user ID of the
receiving process.

SEE ALSO

getpid(2), setpgrp(2), signal(2).
kill(1) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

-1- 7/85

LINK (2)

NAME

LINK (2)

link — link to a file

SYNOPSIS

int link (pathl, path2)
char =pathl, *path2;

DESCRIPTION

Pathl points to a path name naming an existing file. Path2 points to a path name
naming the new directory entry to be created. Link creates a new link (directory
entry) for the existing file.

Link will fail and no link will be created if one or more of the following are true:

[ENOTDIR]
[ENOENT]
[EACCES]
[ENOENT]
{EEXIST]
[EPERM]

[EXDEV]

[ENOENT]I
[EACCES]

[EROFS]

[EFAULT]
[EMLINK]

SEE ALSO
unlink(2).

DIAGNOSTICS

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.
The file named by pathl does not exist.

The link named by path?2 exists.

The file named by pathl is a directory and the effective user ID is
not super-user.

The link mamed by path2 and the file named by pathl are on
different logical devices (file systems).

Path2 points to a pull path name.

The requested link requires writing in a directory with a mode that
denies write permission.

The requested link requires writing in a directory on a read-only
file system.

Path points outside the allocated address space of the process.
The maximum number of links to a file would be exceeded.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85

-1- 7/85

LSEEK (2) LSEEK(2)

NAME

lseek — move read/write file pointer

SYNOPSIS

long Iseek (fildes, offset, whence)
int fildes;

long offset;

int whence;

DESCRIPTION

Fildes is a file descriptor returned from a creat, open, dup, or fentl system call.
Lseek sets the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.
If whence is 1, the pointer is set to its current location plus offser.
If whence is 2, the pointer is set to the size of the file plus offser.

Upon successful completion, the resulting pointer location, as measured in bytes
from the beginning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the fol-
lowing are true:

[EBADF] Fildes is ot an open file descriptor.
IESPIPE] Fildes is associated with a pipe or fifo,

[EINVAL and SIGSYS signall
Whence is not 0, 1, or 2.

[EINVALI The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

SEE ALSO

creat(2), dup(2), fentl(2), open(2).

DIAGNOSTICS

7/85

Upon successful completion, a non-negative integer indicating the file pointer value
is returned. Otherwise, a value of —1 is returned and errno is set to indicate the
error.

-1- 7/85

MKNOD (2) MKNOD (2)

NAME

mknod — make a directory, or a special or ordinary file

SYNOPSIS

int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION

7/85

Mknod creates a new file named by the path name pointed to by path. The mode
of the new file is initialized from mode. Where the value of mode is interpreted as
follows:
0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file
0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following
0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner 1D of the file is set to the effective user ID of the process. The group ID
of the file is set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be used. The
low-order 9 bits of mode are modified by the process’s file mode creation mask: all
bits set in the process’s file mode creation mask are cleared. See umask(2). If
mode indicates a block or character special file, dev is a configuration-dependent
specification of a character or block I/O device. If mode does not indicate a block
special or character special device, dev is ignored.

Mknod may be invoked only by the super-user for file types other than FIFO special.

Mknod will fail and the new file will not be created if one or more of the following
are true:

[EPERM] The effective user ID of the process is not super-user.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT]) A component of the path prefix does not exist.
[EROFS] The directory in which the file is to be created is located on a
read-only file system.
[EEXIST}] The named file exists.
[EFAULTI Path points outside the allocated address space of the process.
-1~ 7/85

MKNOD (2} MKNOD (2)

SEE ALSO
chmod(2), exec(2), umask(2), fs(4).
mkdir(1) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -2 - 7/85

MOUNT (2)

NAME

MOUNT(2)

mount — mount a file system

SYNOPSIS

int mount (spec, dir, rwflag)

char *spec, *dir;

int rwflag;
DESCRIPTION

Mount requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. Spec and dir are
pointers to path names.

Upon successful completion, references to the file dir will refer to the root directory
on the mounted file system.

The low-order bit of rwflag is used to control write permission on the mounted file
system; if 1, writing is forbidden, otherwise writing is permitted according to indivi-
dual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

[EPERM]
[ENOENT]
[ENOTDIR]
[ENOTBLK]
[ENXIO]
[ENOTDIR]
[EFAULT]

[EBUSY]

[EBUSY]
[EBUSY]
[EROFS]
[ENOSPC]

[EINVAL]
SEE ALSO

The effective user ID is not super-user.

Any of the named files does not exist.

A component of a path prefix is not a directory.
Spec is not a block special device.

The device associated with spec does not exist.
Dir is not a directory.

Spec or dir points outside the allocated address space of the pro-
cess.

Dir is currently mounted on, is someone’s current working direc-
tory, or is otherwise busy.

The device associated with spec is currently mounted.
There are no more mount table entries.
Spec is write protected and rwflag requests write permission.

The file system state in the super-block is not FsOKAY and rwflag
requests write permission.

The file system magic is not FsSMAGIC.

umount (2), fs(4).

DIAGNOSTICS

Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85

~1- 7/85

MSGCTL (2)

NAME

MSGCTL(2)

msgctl — message control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgetl (msgid, cmod, buf)

int msqgid, emd;

struct msgid_ds »buf;

DESCRIPTION

Msgctl provides a variety of message control operations as specified by cmd. The
following cmds are available:

[PC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data structure asso-
ciated with msgid into the structure pointed to by buf. The con-
tents of this structure are defined in intro(2). {READ}

Set the value of the following members of the data structure asso-
ciated with msgid to the corresponding value found in the struc-
ture pointed to by buf:

msg_perm.[cluid

msg_perm.gid

msg_perm.mode /+ only low 9 bits */

msg_gbytes

This cmd can only be executed by a process that has an effective
user ID equal to either that of super user or to the value of
msg_perm.leluid in the data structure associated with msqid. Only
super user can raise the value of msg_gbytes.

Remove the message queue identifier specified by msqid from the
system and destroy the message queue and data structure associ-
ated with it. This cmd can only be executed by a process that has
an effective user ID equal to either that of super user or to the
value of msg perm.cluid in the data structure associated with
msqid.

Msgctl will fail if one or more of the following are true:

[EINVAL]
[EINVALI
[EACCES]

[EPERM)

[EPERM]

[EFAULTI]
SEE ALSO

Msqid is not a valid message queue identifier.
Cmd is not a valid command.

Cmd is equal to IPC_STAT and {READ] operation permission is
denied to the calling process (see intro(2)).

Cmd is equal to IPC_RMID or IPC_SET. The effective user ID of
the calling process is not equal to that of super user and it is not
equal to the value of msg perm.icluid in the data structure associ-
ated with msgid.

Cmd is equal to IPC_SET, an attempt is being made to increase to
the value of msg gbytes, and the effective user ID of the calling
process is not equal to that of super user.

Buf points to an illegal address.

intro(2), msgget(2), msgop(2).

7/85

-1~ 7/85

MSGCTL(2) MSGCTL (2)

DIAGMOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -2~ 7/85

MSGGET(2) MSGGET(2)

NAME
msgget — get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/msg.h>
int msgget (key, msgfig)
key t key;
int msgflg;
DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure (see
intro(2)) are created for key if one of the following are true:

10 Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated with it, and
(msgflg & IPC_CREAT) is “true”.

Upon creation, the data structure associated with the new message queue identifier
is initialized as follows:

Msg_perm.cuid, msg_perm.vid, msg_perm.cgid, and msg_perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the cal-
ling process.

The low-order 9 bits of msg_perm.meode are set equal to the low-order 9 bits
of msgflg.
Msg_gnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set equal to

Msg_ctime is set equal to the current time.
Msg_gbytes is set equal to the system limit.
Msgget will fail if one or more of the following are true:

[EACCES] A message queue identifier exists for key, but operation permission
(see intro(2)) as specified by the low-order 9 bits of msgflg would
pot be granted.

[ENOENTI A message queue identifier does not exist for key and (msgflg &
IPC_CREAT) is “false”.
[ENOSPC] A message queue identifier is to be created but the system-imposed

limit on the maximum number of allowed message queue
identifiers system wide would be exceeded.

[EEXISTI A message queue identifier exists for key but ((msgflg &
IPC_CREAT) & (msgflg & TPC_EXCL)) is “true”.
SEE ALSO
intro(2), msgetl(2), msgop(2).
DIAGNOSTICS

Upon successful completion, a non-negative integer, namely a message queue
identifier, is returned. Otherwise, a value of —1 is returned and errno is set to indi-
cate the error.

7/85 -1- 7/85

MSGOP(2) MSGOP(2)

NAME

msgop — message operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msgid, msgp, msgsz, msgfig)
int msqid;

struct msghuf *msgp;

int msgsz, msgflg;

int msgrev (msgid, msgp, msgsz, msgtyp, msgflg)
int msqid;

struct msghuf *msgp;

int msgsz;

long msgtyp;

int msgfig;

DESCRIPTION

7/85

Msgsnd is used to send a message to the queue associated with the message queue
identifier specified by msqid. {WRITE} Msgp points to a structure containing the
message. This structure is composed of the following members:

long mtype; /* message type »/
char mtextf]; /* message text »/

Mtype is a positive integer that can be used by the receiving process for message
selection (see msgrev below). Miext is any text of length msgsz bytes. Msgsz can
range from 0 to a system-imposed maximum.

Msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg gbytes (see
intro(2)).

The total number of messages on all queues system-wide is equal to the
system-imposed limit.
These actions are as follows:

If (msgflg & TPC_NOWAIT) is “true”, the message will not be sent and the
calling process will return immediately.

If (msgflg & TPC_ NOWAIT) is “false”, the calling process will suspend exe-
cution until one of the following occurs:

The condition responsible for the suspension no longer exists, in
which case the message is sent.

Msqid is removed from the system (see msgctl(2)). When this
occurs, errno is set equal to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught. In this
case the message is not sent and the calling process resumes exe-
cution in the manner prescribed in signal(2)).

Msgsnd will fail and no message will be sent if one or more of the following are
true:

[EINVALI] Msgid is not a valid message queue identifier.

-1 - 7/85

MSGOP(2) MSGOP (2)

[EACCES] Operation permission is denied to the calling process (see
intro(2)).

[EINVALI] Miype is less than 1.

[EAGAIN] The message cannot be sent for one of the reasons cited above and
(msgflg & IPC_NOWAIT) is “true”.

[EINVAL] Msgsz is less than zero or greater than the system-imposed limit.

[EFAULT] Msgp points to an illegal address,

Upon successful completion, the following actions are taken with respect to the data
structure associated with msgid (see intro (2)).

Msg_gnum is incremented by 1.
Msg_lspid is set equal to the process ID of the calling process.
Msg_stime is set equal to the current time.

Msgrev reads a message from the queue associated with the message queue
identifier specified by msgid and places it in the structure pointed to by msgp.
{READ] This structure is composed of the following members:

long mtype; /* message type */
char mitextl]; /* message text */

Miype is the received message’s type as specified by the sending process. Mtext is
the text of the message. Msgsz specifies the size in bytes of mtext. The received
message is truncated to msgsz bytes if it is larger than msgsz and (msgflg &
MSG_NOERROR) is “true”. The truncated part of the message is lost and no indica-
tion of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:
If msgtyp is equal to 0, the first message on the queue is received.
If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0O, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

If (msgflg & IPC_NOWAIT) is “true”, the calling process will return
immediately with a return value of —1 and errno set to ENOMSG.

If Gnsgflg & IPC_NOWAIT) is “false”, the calling process will suspend exe-
cution until one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs, errno is set
equal to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught. In this
case a message is not received and the calling process resumes exe-
cution in the manner prescribed in signal(2)).

Msgrev will fail and no message will be received if one or more of the following are
true:

[EINVAL] Msqid is not a valid message queue identifier.

7/85 -2~ 7/85

MSGOP(2) MSGOP(2)

[EACCES] Operation permission is denied to the calling process.

[EINVALI Msgsz is less than 0.

[E2BIG] Mitext is greater than msgsz and (msgflg & MSG_NOERROR) is
“false”.

[ENOMSG] The queue does not contain a message of the desired type and
(msgtyp & TPC_NOWAIT) is “true”.

[EFAULTI Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid (see intro (2)).

Msg gnum is decremented by 1.
Msg Irpid is set equal to the process ID of the calling process.
Msg rtime is set equal to the current time.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

DIAGNOSTICS
If msgsnd or msgrev return due to the receipt of a signal, a value of —1 is returned
to the calling process and errno is set to EINTR. If they return due to removal of
msqid from the system, a value of —1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:
Msgsnd returns a value of 0.

Msgrev returns a value equal to the number of bytes actually placed into
miext.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

7/85 -3- 7/85

NICE(2) NICE(2)

NAME
nice — change priority of a process
SYNOPSIS
int mice (imer)
int imcr;
DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A process’s nice
value is a positive number for which a more positive value results in lower CPU
priority.
A maximum nice value of 39 and a minimum nice value of 0 are imposed by the

system. Requests for values above or below these limits result in the nice value
being set to the corresponding limit.

[EPERM] Nice will fail and not change the nice value if incr is negative or
greater than 40 and the effective user ID of the calling process is
not super-user.

SEE ALSO
exec(2).
nice(1) in the AT& T 3B2 Computer User Reference Manual.
DIAGNOSTICS
Upon successful completion, nice returns the new nice value minus 20. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

7/85 -1 - 7/85

OPEN(2)

NAME

OPEN (2)

open — open for reading or writing

SYNOPSIS
#Hinclnde <fentl.h>
int open (path, ofiag [, mode])

char =path;

int oflag, mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a file descriptor for the
named file and sets the file status flags according to the value of oflag. Oflag values
are constructed by or-ing flags from the following list (only one of the first three
flags below may be used):

7/85

0_RDONLY
O_WRONLY
O_RDWR

O NDELAY

0O _APPEND

0 SYNC

O_CREAT

Open for reading only.
Open for writing only.
Open for reading and writing.

This flag may affect subsequent reads and writes. See read(2) and
write(2).

When opening a FIFO with O_RDONLY or O_WRONLY set:
If O NDELAY is set:

An open for reading-only will return without delay. An
open for writing-only will return an error if no process
currently has the file open for reading.

If O NDELAY is clear:

An open for reading-only will block until a process opens
the file for writing. An open for writing-only will block
until a process opens the file for reading.

When opening a file associated with a communication line:
If O NDELAY is set:

The open will return without waiting for carrier.
If O NDELAY is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file prior to each
write.

When opening a regular file, this flag affects subsequent writes. If
set, each write(2) will wait for both the file data and file status to
be physically updated.

If the file exists, this flag has no effect. Otherwise, the owner ID of
the file is set to the effective user ID of the process, the group ID of
the file is set to the effective group ID of the process, and the low-
order 12 bits of the file mode are set to the value of mode modified
as follows (see creat(2)):

All bits set in the file mode creation mask of the process
are cleared. See umask(2).

-1~ 7/85

OPEN (2) OPEN (2)

The “save text image after execution bit” of the mode is
cleared. See chmod(2).

O_TRUNC If the file exists, its length is truncated to O and the mode and
owner are unchanged.
0_EXCL If O_EXCL and O_CREAT are set, open will fail if the file exists.

The file pointer used to mark the current position within the file is set to the begin-
ning of the file.

The new file descriptor is set to remain open across exec system calls. See fentl(2).
The named file is opened unless one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENTI] O_CREAT is not set and the named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EACCES] Oflag permission is denied for the named file.

[EISDIR] The named file is a directory and oflag is write or read/write.

[EROFS] The named file resides on a read-only file system and oflag is write
or read/write.

[EMFILE] Twenty (20) file descriptors are currently open.

[ENXIO] The named file is a character special or block special file, and the
device associated with this special file does not exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is being exe-
cuted and oflag is write or read/write.

(EFAULTI] Path points outside the allocated address space of the process.

[EEXIST] O_CREAT and O_EXCL are set, and the named file exists.

[ENXIO] O NDELAY is set, the named file is a FIFQ, O WRONLY is set,
and no process has the file open for reading.

[EINTR] A signal was caught during the open system call.

[ENFILE] The system file table is full.

SEE ALSO
chmod(2), close(2), creat(2), dup(2), fentl(2), Iseek(2), read(2), umask(2),
write(2).
DIAGNOSTICS

Upon successful completion, the file descriptor is returned. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

7/85 -2~ 7/85

PAUSE(2) PAUSE (2)

NAME ’
pause — suspend process until signal
SYNOPSIS
pause ()
DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal must be one
that is not currently set to be ignored by the calling process.
If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function (see signal(2)), the calling process resumes execution from
the point of suspension; with a return value of —1 from pause and errno set to
EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

7/85 -1~ 7/85

PIPE(2) PIPE(2)

NAME

pipe — create an interprocess channel
SYNOPSIS

int pipe (fildes)

int fildes[2];
DESCRIPTION

Pipe creates an I/O mechanism called a pipe and returns two file descriptors,
fildes[0] and fildes[1). FildesIO] is opened for reading and fildes[1] is opened for

writing.
Up to 5120 bytes of data are buffered by the pipe before the writing process is

blocked. A read only file descriptor fildes[0] accesses the data written to fildes[1]
on a first-in~first~out (FIFO) basis.

[EMFILE] Pipe will fail if 19 or more file descriptors are currently open.
[ENFILE] The system file table is full.
SEE ALSO

read(2), write(2).
sh(1) in the AT&T 3B2 Computer User Reference Manual.
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -1- 7/85

PLOCK (2) PLOCK (2)

NAME
plock — lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text lock), its data segment
(data lock), or both its text and data segments (process lock) into memory. Locked
segments are immune to all routine swapping. Plock also allows these segments to
be unlocked. The effective user ID of the calling process must be super-user to use
this call. Op specifies the following:

PROCLOCK — lock text and data segments into memory (process lock)

TXTLOCK — lock text segment into memory (text lock)
DATLOCK — lock data segment into memory (data lock)
UNLOCK — remove locks

Plock will fail and not perform the requested operation if one or more of the foliow-
ing are true:

[EPERM] The effective user ID of the calling process is not super-user.
[EINVALI Op is equal to PROCLOCK and a process lock, a text lock, or a data
lock already exists on the calling process.
[EINVALI Op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process.
[EINVAL] Op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process.
[EINVALI] Op is equal to UNLOCK and no type of lock exists on the calling
process.
SEE ALSO
exec(2), exit(2), fork(2).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned to the calling process. Other-
wise, a value of —1 is returned and errno is set to indicate the error.

7/85 -1~ 1/85

PROFIL (2) PROFIL (2)

NAME

profil — execution time profile

SYNOPSIS

void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION

Buff points to an area of core whose length (in bytes) is given by bufsiz. After this
call, the user’s program counter (pc) is examined each clock tick (60th second);
offset is subtracted from it, and the result multiplied by scale. If the resulting
number corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the
left: 0177777 (octal) gives a 1-1 mapping of pc’s to words in buff; 077777 (octal)
maps each pair of instruction words together. 02(octal) maps all instructions onto
the beginning of buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. Tt is rendered ineffective by giv-
ing a bufsiz of 0. Profiling is turned off when an exec is executed, but remains on
in child and parent both after a fork. Profiling will be turned off if an update in
buff would cause a memory fault.

SEE ALSO
monitor (3C).
prof(1) in the AT&T 3B2 Computer User Reference Manual.
DIAGNOSTICS ‘
Not defined.
7/85 -1 - 7/85

PTRACE(2) PTRACE(2)

MNAME

ptrace — process trace

SYNOPSIS

int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION

7/85

Ptrace provides a means by which a parent process may control the execution of a
child process. Its primary use is for the implementation of breakpoint debugging;
see sdb(1). The child process behaves normally until it encounters a signal (see sig-
nal (2) for the list), at which time it enters a stopped state and its parent is notified
via wait(2). When the child is in the stopped state, its parent can examine and
modify its “core image” using ptrace. Also, the parent can cause the child either to
terminate or continue, with the possibility of ignoring the signal that caused it to
stop.

The request argument determines the precise action to be taken by ptrace and is
one of the following:

0 This request must be issued by the child process if it is to be traced
by its parent. It turns on the child’s trace flag that stipulates that the
child should be left in a stopped state upon receipt of a signal rather
than the state specified by func; see signal(2). The pid, addr, and
data arguments are ignored, and a return value is not defined for this
request. Peculiar results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent process. For each,
pid is the process ID of the child. The child must be in a stopped state before these
requests are made.

1, 2 With these requests, the word at location addr in the address space of
the child is returned to the parent process. If I and D space are
separated, request 1 returns a word from I space, and request 2
returns a word from D space. If T and D space are not separated,
either request 1 or request 2 may be used with equal results. The
data argument is ignored. These two requests will fail if addr is not
the start address of a word, in which case a value of —1 is returned to
the parent process and the parent’s errno is set to EIO.

3 With this request, the word at location addr in the child’s USER area
in the system’s address space (see <sys/user.h>) is returned to the
parent process. The data argument is ignored. This request will fail
if addr is not the start address of a word or is outside the USER area,
in which case a value of —1 is returned to the parent process and the
parent’s errno is set to E1O.

4,5 With these requests, the value given by the data argument is written
into the address space of the child at location addr. If I and D space
are separated, request 4 writes a word into I space, and request S
writes a word into D space. If I and D space are not separated, either
request 4 or request 5 may be used with equal results. Upon success-
ful completion, the value written into the address space of the child is
returned to the parent. These two requests will fail if addr is a loca-
tion in a pure procedure space and another process is executing in
that space, or addr is not the start address of a word. Upon failure a
value of ~1 is returned to the parent process and the parent’s errno is

-1~ 7/85

PTRACE (2)

PTRACE(2)

set to EIO.

With this request, a few entries in the child’s USER area can be writ-
ten. Data gives the value that is to be written and addr is the loca-
tion of the entry. The few entries that can be written are:

the general registers
the condition codes of the Processor Status Word.

This request causes the child to resume execution. If the data argu-
ment is 0, all pending signals including the one that caused the child
to stop are canceled before it resumes execution. If the data argu-
ment is a valid signal number, the child resumes execution as if it had
incurred that signal, and any other pending signals are canceled. The
addr argument must be equal to 1 for this request. Upon successful
completion, the value of data is returned to the parent. This request
will fail if data is not 0 or a valid signal number, in which case a
value of —1 is returned to the parent process and the parent’s errno is
set to EIO.

This request causes the child to terminate with the same consequences
as exit(2).

This request sets the trace bit in the Processor Status Word of the
child and then executes the same steps as listed above for request 7.
The trace bit causes an interrupt upon completion of one machine
instruction. This effectively allows single stepping of the child.

To forestall possible fraud, prrace inhibits the set-user-id facility on subsequent
exec(2) calls. If a traced process calls exec, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

General Errors

Ptrace will in general fail if one or more of the following are true:

[E10]
IESRCH]

SEE ALSO

Request is an illegal number.

Pid identifies a child that does not exist or has not executed a
ptrace with request 0.

exec(2), signal(2), wait(2).
sdb(1) in the AT&T 3B2 Computer User Reference Manual.

7/85

-2~ 7/85

- yed $romn Bl

Gt vend {bben, o, eyt

Yiram g
vkl ¢

e e

£

¥R
#ma%a;@a

e wmﬁa\ aw&
Y BRI
ey s |

e

By g

gy sepval B the sot of wemee

SEMCTL(2)

IPC_RMID

SEMCTL(2)

Remove the semaphore identifier specified by semid from the
system and destroy the set of semaphores and data structure
associated with it. This cmd can only be executed by a pro-
cess that has an effective user ID equal to either that of
super-user or to the value of sem perm.icluid in the data
structure associated with semid.

Semctl will fail if one or more of the following are true:

[EINVALI] Semid is not a valid semaphore identifier.

[EINVAL] Semnum is less than zero or greater than sem_nsems.

[EINVALI] Cmd is not a valid command.

[EACCES] Operation permission is denied to the calling process (see
intro(2)).

[ERANGE] Cmd is SETVAL or SETALL and the value to which semval
is to be set is greater than the system imposed maximum.

[EPERM] Cmd is equal to IPC_RMID or IPC_SET and the effective
user ID of the calling process is not equal to that of
super-user and it is not equal to the value of
sem_perm.cluid in the data structure associated with
semid.

[EFAULT] Arg.buf points to an illegal address.

SEE ALSO
intro(2), semget(2), semop(2).
DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

GETVAL The value of semval.

GETPID The value of sempid.

GETNCNT The value of semncnt.

GETZCNT The value of semzcent.

All others A value of 0.

7/85

Otherwise, a value of —1 is returned and errno is set to indicate the error.

-~2- 7/85

SEMOBRTIZ

tiinetade

Flnclade m)s! i

stnclede Coysfuem

mt semnged Shew, naims, eomiig

hey & he

Tt e, somdiy;
RPN

AREE 3

‘v':ze\" »zmsi ;3

:ms m?. s .‘zé %

Sem pevasanid, sem porwutd, som pessophl,
syend 40 i i ¥ proun 11, rospoctiy
B prew

The hweceder % bt of sem permanode ©
af nepfis.

Hom poms
Som wibme B et

"%‘wmf- %

iBalUEs]

SRR

i %m' FRR T

doss oot sxist for key ned fsemily &

is g0 be coested bat

sy of allowsd o

i‘&t{

A wemaghurs dewsier &
St an the oz ;

w e 1B

SEMGET (2) SEMGET (2)

SEE ALSO
intro(2), semct1(2), semop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a semaphore identifier,
is returned. Otherwise, a value of —1 is returned and errno is set to indicate the
er1or.

7/85 -~2- 7/85

SEMOR{} SRR

KABME

setsep - semephore operations

Simelude < nfeypends >
#imclade <uypnfigetie
#instude <oveleomil

fue semep Seemid, sops, meped
i T

stract sembinl Foops;

smsdpenead wespsy

DESCRIPTION

ihe wrrey

v i K'uiaui B seim
e 4 od by sesmid andd wvenn oy,

Bewm g spotfing
if e

s ihe abmodute
o from

R
KE ‘E’«i

{ soveil 343
. and 3 eatue s

¢ i *"turmsi

SEMOP(2)

7/85

SEMOP (2)

The calling process receives a signal that is to be caught. When
this occurs, the value of semnent associated with the specified
semaphore is decremented, and the calling process resumes execu-
tion in the manner prescribed in signal (2).

If sem_op is a positive integer, the value of sem_op is added to semval and,
if (sem flg & SEM_UNDO) is “true”, the value of sem _op is subtracted
from the calling process’s semadj value for the specified semaphore.
{ALTER)

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem flg & IPC_NOWAIT) is
“true”, sermop will return immediately.

If semval is not equal to zero and (sem flg & TPC_NOWAIT) is
“false”, semop will increment the semzcnt associated with the
specified semaphore and suspend execution of the calling process
until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt associ-
ated with the specified semaphore is decremented.

The semid for which the calling process is awaiting action is
removed from the system. When this occurs, errno is set equal to
EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught. When
this occurs, the value of semzent associated with the specified
semaphore is decremented, and the calling process resumes execu-
tion in the manner prescribed in signal (2).

Semop will fail if one or more of the following are true for any of the semaphore
operations specified by sops:

[EINVALI
[EFBIGI]

[E2BIG]
[EACCES]

[EAGAIN]

[ENOSPC]

[EINVAL]

[ERANGEI]

[ERANGE]

[EFAULT)

Semid is not a valid semaphore identifier.

Sem_num is less than zero or greater than or equal to the number
of semaphores in the set associated with semid.

Nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process (see
intra(2)).

The operation would result in suspension of the calling process but
(sem_flg & PC_NOWAIT) is “true”.

The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded.

The number of individual semaphores for which the calling process
requests a SEM_UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed
limit.

An operation would cause a semadj value to overflow the system-
imposed limit.

Sops points to an illegal address.

-2~ 7/85

SEMOPs] BEMOELS

L the vabue of soe
ot egqust B e

Z2H

13, wmmmpntdSE

virbae ¢
sras shue 0 the
i 38 wet 40 £

cale
oy

seemop vetyens due W the soogigs of |
swsomved s froset do
gidae ol]

ymesy RATRET Dhsrwise, & vabue of ~1 i selurmsd

areme 15w s indioate

GRTPORP(Y SETRGRPLL

TP sEd pEaREEs gronp iU

it setpgep 1)
DESURIPTION
Setogr
ling pro
GEE ALSD
eavcidd, fork (), pet
DEAGROETICR
Kefpeep vetupw the value of the mew process groug Bk

it procoes groug 95 of the welling 5% e 18 of the wals

5
o
S
=
3
2
=
=
=
2
o4
o
po
b3
&

2
2

Lo

<A

BEFLIEN (2}

AR
sataid, s
REMOERIE
int setwid uid)
T
it seighd igide
bt gl
GEBURIPTHON
Gorpind f;wf;;e;}’) i {mz“-‘ fir st the real weer
of the calling

= et wser and gresag W

i

{ the ev?fuﬁ’w user (5 nf’ téw ""‘inz?; PrOCRR 4
% sit b sbd "-.

‘-ftwc wser U of dhe calling procews

1 f gl G el (el the e‘isx

E"‘ thi effective wser 383 of the
fprompd I frao exardl

wid i,

g pre
¥ by eogual 1ot (pidd

3

FEpctive war {groun? EBI;

P oy o

Gutsoid Tsetpiadd wil] fadl @ the rod wser §

; i o fc,ww' waey 153

i puiiog grovess
sgmad do adsd {ghdt and

kA

Tiew wfed ts out of cange. PEIRY ALY
BBE ALBD

T

}’mv specessfal completion, a
sptarned and v i s

% of iF i retne {redie

o tndioy BT

S — 5
85 B

vabgg of

ﬂéi £3]

R

TR

HE MU

FAKE
shiene
BN O
;«‘ism wile <aymStepedie
ffﬁim fude sy zmﬁa e
< gysdhm b

‘.Kﬁ fuburid, oo, bl

- ghE b STTEIWRH X okt et

s i MTROIBES
3*»:3 te by Buf

LN - gings sirpeinre

¢ valiun found in the

ser B4R RS
b povrnichedd §

B 4]
o w the N
sigd weith sl

wan only be e
I aguial o saper weer

AU UNLOCK
Undook the

.k?

Pt]
i B ART WREE,

o o od thee Tollowing aee d

el e nod g wabid sovmanand,
3
Lonsd
z%-;:s;a;@&

SHMCTL(2) SHMCTL (2)

[EPERM]
Cmd is equal to IPC_RMID or IPC SET and the effective user ID of
the calling process is not equal to that of super user and it is not
equal to the value of shm_perm.lcluid in the data structure associ-
ated with shmid.

[EPERM]
Cmd is equal to SHM_LOCK or SHM_UNLOCK and the effective
user ID of the calling process is not equal to that of super user.
[BEINVALI
Cmd is equal to SHM_UNLOCK and the shared-memory segment
specified by shmid is not locked in memory.

[EFAULT]
Buf points to an illegal address.

SEE ALSO
shmget(2), shmop(2).

PIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -2~ 7/85

SHR AHSIGRTIZ:

RN

tifigr

,.7.

g ahmeod mormory segmont e

< wyndtrpes. b
si LR
ERE 1 Y

2,

i'éa;az'isxis~
int shewget Dow, sier, shenfip)

5

key %z%,
ed wien, wi\mrﬁ}z

DESUE %‘W“F §fbi“a

bvten Dsee fng

v bx vl 5P PRIVATE.
¥ ddous

W alresdy Baye g

24 {,(,163,':% 1o 8 f-'“ carrest e

§ 3 aave sy more of the £
,‘}

Shwigey will 5
2 LR

v 1% 3&@» thme b

Bt cporaiian perny
st % bits of sheafly w

2 abie of the s
3w gl i

B AYBLEin.
SRR ¥

PEMORIE VS 2 pory i 2
-*c} i?x wm 3] b?n ih
siend b £H) he eouiaest,
{EFR Tl & shured MEEOTY identifsey
E?‘ﬁ{&ﬁ\x ¥ioand é: “é’t?? 2

ysed ERES St s
able memeey B oot

hey dagt f Cehoply &

1483 1 1Y

SHMGET (2) SHMGET (2)

SEE ALSO
intro(2), shmetl(2), shmop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned. Otherwise, a value of —1 is returned and errno is set to indi-
cate the error.

7/85 -2- 7/85

KU {23

B A B

Y ML

HHMDEL

shopog = shnsed sremory operatisgs

cevshueby
asirhasbe
el

shae edonat Tddonid, dmaddy, shafiph

bR b

vhay »ﬁ»mxzéeﬁr
bt ey

am izi@'ss;é& (wkm&éxﬁs}

{EnFREL

PEENY ALY

PEENY &]

arg iR

i bow the &
ected by the cwstom.

3 x»kﬁ&i m #

ol ped atteed the sheeed yorsory segment B oo or muee of the

Khutdd is ned 8

Hinge prosgss

Thy dvs T
sharad s,ewm«}s;_, RegIIL.

wabue of ixhwaaddr

sehiboons,

i,s st s

i el

vd it
e shased memory
g1 ashebysa

/ é;wcsiz shena x;,«f,

SHMOP(2) SHMOP (2)

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl{2), shmget(2).

DIAGNOSTICS
Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the attached shared
memory segment.

Shmdr returns a value of 0.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

7/85 ~2- 7/85

St 48

#reehede < slpead b
v deghpmat Diig, Banedill

RN ey

ey 1y gy

FAEE

SIGNAL(2)

SIGNAL(2)

a mode of 0666 modified by the file creation mask
(see umask(2))

a file owner ID that is the same as the effective user
ID of the receiving process.

a file group ID that is the same as the effective group
ID of the receiving process

SIG_IGN — ignore signal

The signal sig is to be ignored.
Mote: the signal SIGKILL cannot be ignored.

Sfunction address — catch signal

Upon receipt of the signal sig, the receiving process is to execute the
signal-catching function pointed to by func. The signal number sig will be
passed as the only argument to the signal-catching function. Additional
arguments are passed to the signal-catching function for hardware-
generated signals. Before entering the signal-catching function, the value
of func for the caught signal will be set to SIG_DFL unless the signal is
SIGILL, SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the receiving process will
resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read, a write, an open,
or an ioctl system call on a slow device (like a terminal; but not a file),
during a pause system call, or during a waitf system call that does not
return immediately due to the existence of a previously stopped or zombie
process, the signal catching function will be executed and then the inter-
rupted system call may return a —1 to the calling process with errno set to
EINTR.

MNote: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL signal.
Signal will fail if sig is an illegal signal number, including SIGKILL. [EINVAL)

SEE ALSO

kill(2), pause(2), ptrace(2), wait(2), setimp(3C).
kill(1} in the AT& T 3B2 Computer User Reference Manual.

WARNING

Two other signals that behave differently than the signals described above exist in
this release of the system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of the UNIX sysiem, these signals will
continue to behave as described below; they are included only for compatibility with
other versions of the UNIX system. Their use in new programs is strongly
discouraged.

For these signals, func is assigned one of three values: SIG DFL, SIG_IGN, or a
Sfunction address. The actions prescribed by these values of are as follows:

SIG_DFL - ignore signal

7/85

The signal is to be ignored.

-2 - 7/85

SOMatin

o B

>
ey

5wt
it witl ik
i i the

&3

iz-e:‘c'{

35 the prew

o
8
A

%

4
>
i3
P
€5

STAT(2) STAT(2)

NAME

stat, fstat — get file status

SYNOPSIS

#include <sys/types.n>
#include <sys/stat.h>

int stat (path, buf)
char *path;
struct stat «buf;

int fstat (fildes, buf)
int fildes;
struet stat +buf;

DESCRIPTION

7/85

Path points to a path name naming a file. Read, write, or execnte permission of the
named file is not required, but all directories listed in the path name leading to the
file must be searchable. Stat obtains information about the named file.

Similarly, fstat obtains information about an open file known by the file descriptor
fildes, obtained from a successful open, creat, dup, fentl, or pipe system call.

Buf is a pointer to a staf structure into which information is placed concerning the
file.

The contents of the structure pointed to by buf include the following members:

ushort st_mode; /= File mode; see mknod (2) */
inot st ino; /* Inode number +/
dev t st dev; /» 1D of device containing */

/» a directory entry for this file */
dev t st rdev; /+ ID of device =/

/+ This entry is defined only for =/
/= character special or block special files #/

short st_nlink; /+ Number of links */

ushort st uid; /= User ID of the file’s owner */
ushort st_gid; /= Group ID of the file’s group */
off t st_size; /= File size in bytes =/

time t st atime; /= Time of last access */

time t st mtime; /» Time of last data modification »/
time t st_ctime; /= Time of last file status change */

/= Times measured in seconds since */
/= 00:00:00 GMT, Jan. 1, 1970 =/

st_atime Time when file data was last accessed. Changed by the following system
calls: creat(2), mknod(2), pipe(2), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following system
calls: creat(2), mknod(2), pipe(2), utime(2), and write(2).

st ctime Time when file status was last changed. Changed by the following sys-
tem calls: chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2),
unlink (2), utime(2), and write (2).

Stat will fail if one or more of the following are true:
[ENOTDIR} A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.

-1- 7/85

STAT(2) STAT (2}

[EACCESI Search permission is denied for a component of the path prefix.
[EFAULT] Buf or path points to an invalid address.
Fstat will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.
[EFAULT] Buf points to an invalid address.
SEE ALSO

chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2).

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is
returned and errne is set to indicate the error.

7/85 -2~ 7/85

STIME(2) STIME(2)

NAME

stime — set time
SYNOPSIS

int stime (tp)

long *tp;
DESCRIPTION

Stime sets the system’s idea of the time and date. Tp points to the value of time as
measured in seconds from 00:00:00 GMT January 1, 1970.

[EPERM] Stime will fail if the effective user ID of the calling process is not
super-user.

SEE ALSO
time(2).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -1- 7/85

SYNC(2) SYNC(2)

NAME
sync — update super block

SYNOPSIS
void sync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to be written out.
This includes modified super blocks, modified i-nodes, and delayed block 1/0.

It should be used by programs which examine a file system, for example fsck, df,
etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return from sync.

7/85 -1- 7/85

SYS3B(2) SYS3B(2)

NAME

sys3b — machine specific function

SYNOPSIS

#include <sys/sys3b.h>

int sys3b {cmd, argl, arg2, arg3)
int emd, argl, arg2, arg3;

DESCRIPTION

Sys3b implements machine specific functions. The c¢md argument determines the
function performed. The number of arguments expected is dependent on the func-
tion.

Command S3BSYM

When cmd is S3BSYM, the symbol table created during a self-config boot process
may be accessed. The symbols defined within the driver routines loaded and those
created from the /etc/master file variable specifications are available via this com-
mand. Two arguments are expected; the first must be a pointer to a buffer into
which the symbol table is copied, and the second must be an integer containing the
total size of the buffer. The format of the symbol table is:

imt size; /* symbol size in bytes */
int psyms; /* total number of symbols */

/* for each symbol ... */
char mamell; /* name of symbol, padded with */

/* > 7 to mext sizeof(long) */
/* boundary */
long value; /* value of symhol */

Typically, the symbol table would be retrieved with two calls to sys3b. First, the
size of the symbol table is obtained by calling sys3b with a buffer of one integer.
This integer is then used to obtain a buffer large enough to contain the entire sym-
bol table. The second invocation of sys3b with this newly obtained buffer retrieves
the entire symbol table.

#include <sys/sys3b.h>

int size; /* size of buffer meeded */
struct s3bsym *huffer; /* buffer pointer */

sys3b(S3BSYM, & size, sizeof(size));
buffer = {struct s3bsym *) malloc(size);
sys3b(S3IBSYM, buffer, size);

Command S3BCONF

7/85

When cmd is S3BCONF, the configuration table created during a self-config boot
process may be accessed. This table contains the names and locations of the devices
supported by the currently running UNIX system, the names of all software modules
included in the system, and the names of all devices in the EDT that were ignored.
Two arguments are expected; the first must be a pointer to a buffer into which the
configuration table is copied, and the second must be an integer containing the total
size of the buffer. The format of the configuration table is:

-1~ 7/85

SYS3B(2) SYS3B(2)

int ndev; /* total number of entries */

/* for each emtry ... */
long timestamp; /* f timdat from file header */
char mamelld]; /* name of device/module */

char flag; /% comfiguration information */

/* 0x80: device ignored */

/* 0x40: mamel] is a driver */

/* 0x20: namel] is 2 software module */
char board; /* local bus address of device */

Typically, the configuration table would be retrieved with two calls to sys3b. First,
the number of entries is obtained by calling sys3b with a buffer of one integer. This
integer is then used to calculate and obiain a buffer large enough to contain the
entire configuration table. The second invocation of sys3b with this newly obtained
buffer retrieves the configuration table.

#include <sys/sys3h.h>

int count; /* total mumber of devices */
int size; /* size of buffer needed */
struct s3bconf *baffer; /* buffer poimter */

sys3b(SIBCONF, & count, sizeof{coumt});
size = sizeof(imt);

size += count * sizeof{struct s3be);

buffer = (struet s3beonf *) malloc(size);
sys3b(SIBCONF, buffer, size);

Command S3BBOOT

When c¢md is S3IBBOOT, the timestamp and boot program path nmame used for a
self-config boot process may be accessed. The path name of the a.out format file
which was booted, and the timestamp from the file header {see a.ouz(4)) are saved.
One argument is expected; a pointer to a buffer into which the information is
copied. The format of this information is:

long timestamp; /* £ timdat from file header */
char path{100]; /* path name */

This information would be retrieved with a single call to sys3b.
#include <sys/sys3b.h>

struct s3bboot buffer; /* buffer */

sys3b{ S3BBOOT, & buffer };

Command S3BAUTO

7/85

When cmd is S3IBAUTO, no arguments are expected. This function returns a
boolean value in answer to the question "was the last boot an auto-config boot or
was a fully configured file booted?”. The value returned is zero if a fully configured
file (such as /umix) was booted. The integer value 1 is returned if the preceeding
boot was an auto-config boot.

-2 7/85

SYS3B(2) SYS3B(2)

Command S3IBBFPHW
When cmd is S3BFPHW, an indication of whether or not a MAU is present is
made. One argument, the adddress of a int, is expected. On return from the sys-
tem call, this int will contain a 1 if a MAU is present or a 0 if a MAU is not
present. If the address of the int is not valid (i.e. not word aligned, not user accessi-
ble, etc.) EFAULT will be returned.

To determine whether a MAU is present, the following should be done:
#include <sys/sys3b.n>

int mau_present;

sys3b(S3BFPHW, & mau_present);

SEE ALSO
sync(2), a.out(4).
DPIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:
S3BSYM A value of zero.
S3BCONF A value of zero.
S3BBOOT A value of zero.
S3BAUTO A value of zero if a fully-configured file (such as /umix)
was booted. A value of one if an auto-config boot was
performed.

Otherwise, a value of ~—1 is returned and errno is set to indicate the error. When
cmd is invalid, a SIGSYS signal is generated (and errno is set to EINVAL).

7/85 -~3- 7/85

TIME(2) TIME (2)

NAME

time — get time
SYNOPSIS

long time ((long *) 0}

long time (tloc)
long *tloc;

DESCRIPTIONM
Time returns the value of time in seconds since 00:00:00 GMT, January 1, 1970.

If tloc (taken as an integer) is non-zero, the return value is also stored in the loca-
tion to which tloc points.

[EFAULT] Time will fail if tloc poinis to an illegal address.

SEE ALSO
stime (2).

DIAGNOSTICS
Upon successful completion, time returns the value of time. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

7/85 -1 - 7/85

TIMES (2) TIMES (2)

NAME
times — get process and child process times
SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>
long times (buffer)
struct tms sbuffer;
DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting information.
The following are the contents of this structure:
struct tms {
time t tms_utime;
time t tms_stime;
time_t tms_cutime;
time t tms_cstime;

};

This information comes from the calling process and each of its terminated child
processes for which it has executed a wait. All times are in 60ths of a second on
DEC processors, 100ths of a second on AT&T processors.

Tms_utime is the CPU time used while executing instructions in the user space of
the calling process.

Tms_stime is the CPU time used by the system on behalf of the calling process.
Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes.
Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes.
[EFAULT] Times will fail if buffer points to an illegal address.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

DIAGNOSTICS
Upon successful completion, times returns the elapsed real time, in 60ths (100ths)
of a second, since an arbitrary point in the past (e.g., system start-up time). This

point does not change from one invocation of times to another. If times fails, a —1
is returned and errno is set to indicate the error.

7/85 -~1- 7/85

UADMIN (2)

NAME

UADMIN (2)

uadmin — administrative control

SYNOPSIS
#include <sys/uadmin.h>

int uadmin (cmd, fen, mdep)
int emd, fon, mdep;

DESCRIPTION
Uadmin provides control for basic administrative functions. This system call is
tightly coupled to the system administrative procedures and is not intended for gen-
eral use. The argument mdep is provided for machine-dependent use and is not

defined here.

The commands available as specified by cmd are:
A_SHUTDOWN The system is shutdown. All user processes are killed, the buffer

A_REBOOT

A_REMOUNT

cache is flushed, and the root file system is unmounted. The action
to be taken after the system is shutdown is specified by fen. The
functions are generic, on specific machines the hardware capabili-
ties will vary.

AD_HALT Halt the processor and turn off power.
AD BOOT Reboot the system, use /unix.
AD_JBOOT Interactive reboot, prompt for system name.

The system stops immediately without any further processing. The
actton io be taken next is specified by fen as above.

The root file system is mounted again after having been fixed.
This should only be used during the startup process.

Uadmin will fail if any of the following are true:

[EPERM]

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

A_SHUTDOWN Never returns.
A _REBOOT Never returns.
A_REMOUNT 0

Otherwise, a value of -1 is returned and errno is set to indicate the error.

7/85

mount(2).

The effective user ID is not super-user.

-1 - 7/85

ULIMIT (2} ULIMIT(2)

NAME
ulimit — get and set user limits
SYNMNOPSIS

long wlimit (cmd, newlimit)

int cmd;

long newlimit;

DESCRIPTION

This function provides for control over process limits. The cmd values available are:

1 Get the file size limit of the process. The limit is in units of 512-byte blocks
and is inherited by child processes. Files of any size can be read.

2 Set the file size limit of the process to the value of newlimit. Any process
may decrease this limit, but only a process with an effective user ID of super-
user may increase the limit. Ulimit will fail and the limit will be unchanged
if a process with an effective user ID other than super-user attempts to
increase its file size limit. [EPERMI

3 Get the maximum possible break value. See brk(2).

SEE ALSO
brk(2), write(2).
DIAGNOSTICS

Upon successful completion, a non-negative value is returned. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

7/85 -1- 7/85

UMASK (2) UMASK (2)

NAME
umask — set and get file creation mask

SYNOPSIS
int wmask (cmask)
int cmask;

DESCRIPTION
Umask sets the process’s file mode creation mask to cmask and returns the previous
value of the mask. Only the low-order 9 bits of cmask and the file mode creation
mask are used.

SEE ALSO
chmod(2), creat(2), mknod(2), open(2).
mkdir(1), sh(1) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS
The previous value of the file mode creation mask is returned.

1/85 -1~ 7/85

UMOUNT(2) UMOUNT (2)

NAME
umount — unmount a file system
SYNOPSIS

int umount (spec)
char *spec;

DESCRIPTION
Umount requests that a previously mounted file system contained on the block spe-
cial device identified by spec be unmounted. Spec is a pointer to a path name.
After unmounting the file system, the directory upon which the file system was
mounted reverts to its ordinary interpretation.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

[EPERM] The process’s effective user ID is not super-user.
[ENXIO] Spec does not exist.
[ENOTBLK]I Spec is not a block special device.
[EINVALI Spec is not mounted.
[EBUSY] A file on spec is busy.
[EFAULT] Spec points to an illegal address.
SEE ALSO
mount(2).
DIAGNOSTICS

Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -1- 7/85

UNAME(2)

NAME

UNAME(2)

uname — get name of current UNIX system

SYMNOPSIS

#include <sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION

Uname stores information identifying the current UNIX system in the structure
pointed to by name.

Uname uses the structure defined in <sys/utsmame.h> whose members are:

char
char
char
char
char

sysnamel9];
nodenamel9];
release[9];
version[9];
machinel9];

Uname returns a null-terminated character string naming the current UNIX system
in the character array sysmame. Similarly, nodename contains the name that the
system is known by on a communications network. Release and version further
identify the operating system. Machine contains a standard name that identifies the
hardware that the UNIX system is running on.

[EFAULT] Uname will fail if name points to an invalid address.

SEE ALSO

uname(1) in the AT&T 382 Computer User Reference Manual.

DIAGNOSTICS

Upon successful completion, a non-negative value is returned. Otherwise, —1 is
returned and errno is set to indicate the error.

7/85

-1 7/85

UNLINK (2)

NAME

UNLINK (2)

unlink — remove directory entry

SYNOPSIS

int unlink (path)

char #path;
DESCRIPTION

Unlink removes the directory entry named by the path name pointed to be path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIR]
[ENOENT]I
IEACCES]
[EACCES]

[EPERM]

[EBUSY]

[ETXTBSY]

[EROFS]

[EFAULTI

A component of the path prefix is not a directory.
The named file does not exist.
Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to
be removed.

The named file is a directory and the effective user ID of the pro-
cess is not super-user.

The entry to be unlinked is the mount point for a mounted file sys-
tem.

The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed.

The directory entry to be unlinked is part of a read-only file sys-
tem.

Path points outside the process’s allocated address space.

When all links to a file have been removed and no process has the file open, the
space occupied by the file is freed and the file ceases to exist. If one or more
processes have the file open when the last link is removed, the removal is postponed
until all references to the file have been closed.

SEE ALSO

close(2), link(2), open(2).
rm(1) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85

-1- 7/85

USTAT(2)

NAME
ustat — get file system statistics
SYNOPSIS

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
int dev;
struct ustat +buf;

DESCRIPTION

USTAT(2)

Ustat returps information about a mounted file system. Dev is a device number
identifying a device containing a mounted file system. Buf is a pointer to a ustat

structure that includes to following elements:

/= Total free blocks */

/= Number of free inodes »/
/= Filsys name */

/= Filsys pack name #/

daddr t f tfree;
ino_t f tinode;
char f fnamel6];
char f fpacklsl;

Ustat will fail if one or more of the following are true:

[EINVAL] Dev is not the device number of a device containing a mounted file
system.
[EFAULTI] Buf points outside the process’s allocated address space.
SEE ALSO
stat(2), fs(4).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is

returned and errno is set to indicate the error.

7/85

7/85

UTIME (2) UTIME(2)

NAME
utime — set file access and modification times

SYNOPSIS
#include <sys/types.h>
int utime (path, times)
char *path;
struct utimbuf *times;

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and modification
times of the named file.

If times is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file or have write permission to use utime
in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and
the access and modification times are set to the values contained in the designated
structure. Only the owner of the file or the super-user may use utime this way.

The times in the following structure are measured in seconds since 00:00:00 GMT,

Jan. 1, 1970.
struct utimbuf {
time t actime; /* access time */
time t modtime; /* modification time */
|3

Utime will fail if one or more of the following are true:

[ENOENTI The named file does not exist.

[ENOTDIRI A component of the path prefix is not a directory.

[EACCES] Search permission is denied by a component of the path prefix.

[EPERM] The effective user ID is not super-user and not the owner of the file
and times is not NULL.

[EACCES] The effective user ID is not super-user and not the owner of the file
and fimes is NULL and write access is denied.

[EROFS] The file system containing the file is mounted read-only.

[EFAULTI] Times is not NULL and points outside the process’s allocated
address space.

[EFAULTI Path points outside the process’s allocated address space.

SEE ALSO
stat(2).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

7/85 -1- 7/85

WAIT (2) WAIT(2)

NAME
wait — wait for child process to stop or terminate

SYNOPSIS
int wait (stat_loc)
int =stat_loc;

int wait ((int »)0)

DESCRIPTION
Wait suspends the calling process until until one of the immediate children ter-
minates or until a child that is being traced stops, because it has hit a break point.
The wait system call will return prematurely if a signal is received and if a child
process stopped or terminated prior to the call on wait, return is immediate.

If stat loc (taken as an integer) is non-zero, 16 bits of information called status are
stored in the low order 16 bits of the location pointed to by staz loc. Status can be
used to differentiate between stopped and terminated child processes and if the child
process terminated, status identifies the cause of termination and passes useful infor-
matjon to the parent. This is accomplished in the following manner:

If the child process stopped, the high order 8 bits of status will contain the
number of the signal that caused the process to stop and the low order 8
bits will be set equal to 0177.

If the child process terminated due to an exir call, the low order 8 bits of
status will be zero and the high order 8 bits will contain the low order 8 bits
of the argument that the child process passed to exit; see exit(2).

If the child process terminated due to a signal, the high order 8 bits of
status will be zero and the low order 8 bits will contain the number of the
signal that caused the termination. In addition, if the low order seventh bit
(i.e., bit 200) is set, a “core image” will have been produced; see signal(2).

If a parent process terminates without waiting for its child processes to terminate,
the parent process ID of each child process is set to 1. This means the initialization
process inherits the child processes; see intro(2).

Wait will fail and return immediately if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited-for child processes.
[EFAULTI] Stat_loc points to an illegal address.
SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).
WARNING
See WARNING in signal (2).
DIAGNOSTICS

If wait returns due to the receipt of a signal, a value of —1 is returned to the calling
process and errno is set to EINTR. If wait returns due to a stopped or terminated
child process, the process ID of the child is returned to the calling process. Other-
wise, a value of —1 is returned and errno is set to indicate the error.

7/85 -1~ 1/85

WRITE (2) WRITE(2)

NAME

write — write on a file

SYNOPSIS

int write (fildes, buf, nbyte)
int fildes;

char +buf;

unsigned nbyte;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system
call.

Write attempts to write nbyte bytes from the buffer pointed to by buf to the file
associated with the fildes.

On devices capable of secking, the actual writing of data proceeds from the position
in the file indicated by the file pointer. Upon return from write, the file pointer is
incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the current
position. The value of a file pointer associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be set to the
end of the file prior to each write.

For regular files, if the O_SYNC flag of the file status flags is set, the write will not
return until both the file data and file status have been physically updated. This
function is for special applications that require extra reliablity at the cost of perfor-
mance. Also, for block special files, if this flag is set, the write will not return until
the data has been physically updated.

Write will fail and the file pointer will remain unchanged if one or more of the fol-
lowing are true:

[EBADF] Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signall
An attempt is made to write to a pipe that is not open for reading
by any process.

[EFBIG] An attempt was made to write a file that exceeds the process’s file
size limit or the maximum file size. See wulimit (2).

[EFAULT] Buf points outside the process’s allocated address space.

[EINTR] A signal was caught during the write system call.

If a write requests that more bytes be written than there is room for (e.g., the
ulimit (see ulimit(2)) or the physical end of a medium), only as many bytes as
there is room for will be written. For example, suppose there is space for 20 bytes
more in a file before reaching a limit. A write of 512-bytes will return 20. The
next \};zrite of a non-zero number of bytes will give a failure return (except as noted
below).

If the file being written is a pipe (or FIFO) and the O NDELAY flag of the file flag
word is set, then write to a full pipe (or FIFO) will return a count of 0. Otherwise
(O_NDELAY clear), writes to a full pipe (or FIFO) will block until space becomes
available,

SEE ALSO

7/85

creat(2), dup(2), fentl(2), Iseek(2), open(2), pipe(2), ulimit(2).

-1- 7/85

WRITE (2) WRITE (2)

DIAGNOSTICS
Upon successful completion the number of bytes actually written is returned. Oth-
erwise, —1 is returned and errno is set to indicate the error.

7/85 -2- 7/85

Replace this
page with the
Section 3 (Subroutines)

tab separator.

INTRO(3) INTRO(3)

NAME

intro — introduction to subroutines and libraries

SYNOPSIS

#include <stdio.h>
#include <math.h>

DESCRIPTION

This section describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2 of this
volume. Certain major collections are identified by a letter after the section
number:

(3C) These functions, together with those of Section 2 and those marked (3S),
constitute the Standard C Library libc, which is automatically loaded by the
C compiler, cc(1). The link editor /d(1) searches this library under the —lec
option. Declarations for some of these functions may be obtained from
#include files indicated on the appropriate pages.

(3S) These functions constitute the “standard 1/0 package” (see stdio(38)).
These functions are in the library libc, already mentioned. Declarations for
these functions may be obtained from the #include file <stdio.h>.

(3M) These functions constitute the Math Library, /ibm. They are automatically
loaded as needed by the FORTRAN compiler f77(1). They are not automati-
cally loaded by the C compiler, cc(1); however, the link editor searches this
library under the —Im option. Declarations for these functions may be
obtained from the #include file <math.,h>>. Several generally useful
mathematical constants are also defined there (see math(5)).

(3X) Various specialized libraries. The files in which these libraries are found are
given on the appropriate pages.

(3F) These functions constitute the FORTRAN intrinsic function library, libF77.
These functions are automatically available to the FORTRAN programmer
and require no special invocation of the compiler.

DEFINITIONS

FILES

7/85

A character is any bit pattern able to fit into a byte on the machine. The null
character is a character with value 0, represented in the C language as \0°. A
character array is a sequence of characters. A null-terminated character array is a
sequence of characters, the last of which is the null character. A string is a desig-
nation for a null-terminated character array. The null string is a character array
containing only the null character. A NULL pointer is the value that is obtained by
casting 0 into a pointer. The C language guarantees that this value will not match
that of any legitimate pointer, so many functions that return pointers return it to
indicate an error. NULL is defined as 0 in <stdio.h>; the user can include an
appropriate definition if not using <stdie.h>.

Many groups of FORTRAN intrinsic functions have generic function names that do
not require explicit or implicit type declaration. The type of the function will be
determined by the type of its argument(s). For example, the generic function max
will return an integer value if given integer arguments (max0), a real value if given
real arguments (amaxlI), or a double-precision value if given double-precision argu-
ments (dmax1).

/lib/libc.a
/lib/libm.a
/usr/lib/1ibF77.a

-1~ 7/85

INTRO(3) INTRO(3)

SEE ALSO

intro(2), stdio(3S), math(5).
ar(1), cc(1), £77(1), 1d(1), lint(1}, nm(1} in the AT&T 3B2 Computer User Refer-
ence Manual.

DIAGNOSTICS

Functions in the C and Math Libraries (3C and 3M) may return the conventional
values 0 or +HUGE (the largest-magnitude single-precision floating-point numbers;
HUGE is defined in the <math.h> header file) when the function is undefined for
the given arguments or when the value is not representable. In these cases, the
external variable errno (see intro(2)) is set to the value EDOM or ERANGE. As
many of the FORTRAN intrinsic functions use the routines found in the Math
Library, the same conventions apply.

WARNING

7/85

Many of the functions in the libraries call and/or refer to other functions and exter-
nal variables described in this section and in section 2 (System Calls). If a pro-
gram inadvertantly defines a function or external variable with the same name, the
presumed library version of the function or external variable may not be loaded.
The lint(1) program checker reports name conflicts of this kind as “multiple
declarations” of the names in question. Definitions for sections 2, 3C, and 3S are
checked automatically. Other definitions can be included by using the —1 option
(for example, —lm includes definitions for the Math Library, section 3M). Use of
lint is highly recommended.

-2 - 7/85

Replace this
page with the
3C & 35

tab separator.

A64L (3C) (C Programming Language Utilities) A64L(3C)

NAME

a64], 164a — convert between long integer and base-64 ASCII string

SYNOPSIS

long 2641 (s)
char *s;

char +164a (1)
long I;

DESCRIPTION

BUGS

7/85

These functions are used to maintain numbers stored in base-64 ASCII characters.
This is a notation by which long integers can be represented by up to six characters;
each character represents a “digit” in a radix-64 notation.

The characters used to represent “digits” are . for 0, / for 1, 0 through 9 for 211,
A through Z for 12—37, and a through z for 38—63.

A641 takes a pointer to a null-terminated base~-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six char-
acters, a64! will use the first six.

L64a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, /64a returns a pointer to a null string.

The value returned by /64a is a pointer into a static buffer, the contents of which
are overwritten by each call.

.1- 7/85

ABORT (3C) (C Programming Language Utilities) ABORT(3C)

NAME
abort — generate an 10T fault

SYNOPSIS
int abort ()

DPESCRIPTION
Abort first closes all open files if possible, then causes an IOT signal to be sent to
the process. This usually results in termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored, in which case
the value returned is that of the kill(2) system call.

SEE ALSO
exit(2), kill(2), signal(2).
sdb(1) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory is writable, a core
dump is produced and the message “abort — core dumped” is written by the shell.

7/85 -1- 7/85

ABS(3C) (C Programming Language Utilities) ABS(3C)

NAME
abs — return integer absolute value

SYNOPSIS
int abs (i)
int i
DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M).
BUGS
In two’s-complement representation, the absolute value of the negative integer with

largest magnitude is undefined. Some implementations trap this error, but others
simply ignore it.

7/85 =1~ 7/85

BSEARCH (3C) (C Programming Language Utilities) BSEARCH (3C)

NAME

bsearch — binary search a sorted table

SYNOPSIS

#include <search.h>

char *bsearch ((char *) key, (char *) base, nel, sizeof (+key), compar)
unsigned nel;
int (+compar) ();

DESCRIPTION

Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It
returns a pointer into a table indicating where a datum may be found. The table
must be previously sorted in increasing order according to a provided comparison
function. Key points to a datum instance to be sought in the table. Base points to
the element at the base of the table. Nel is the number of elements in the table.
Compar is the name of the comparison function, which is called with two arguments
that point to the elements being compared. The function must return an integer
less than, equal to, or greater than zero as accordinly the first argument is to be
considered less than, equal to, or greater than the second.

EXAMPLE

7/85

The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the node
pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and
prints out the string and its length, or prints an error message.

#include <stdio.h>
#include <search.h>

#define TABSIZE 1000

struct node { /+ these are stored in the table */
char *string;
int length;

struct node table[TABSIZE]; /x table to be searched */

struct node *node ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char str_space[20]; /» space to read string into */

node.string = str_space;
while (scanf("%s", node.string) '= EOF) {
node ptr = (struct node *)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof (struct node), node_compare);
if (node ptr '= NULL)
(void) printf("string = %20s, length = %d\n",
node_ptr—>string, node ptr—>length);

-1- 7/85

BSEARCH (3C) (C Programming Language Utilities) BSEARCH (3C)

} else {
(void) printf("not found: %s\n", node.string);

}
}
/*

This routine compares two nodes based on an

alphabetical ordering of the string field.
*/
int

node_compare(nodel, node2)
struct node *nodel, *node2;

return stremp(nodel —>string, node2—> string);

NOTES
The pointers to the key and the element at the base of the table should be of type
pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast
into type pointer-to-element.

SEE ALSO
hsearch(3C), Isearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

7/85 ~2- 7/85

CLOCK (3C) (C Programming Language Utilities) CLOCK (3C)

NAME
clock — report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Clock returns the amount of CPU time (in microseconds) used since the first call to
clock. The time reported is the sum of the user and system times of the calling pro-
cess and its terminated child processes for which it has executed wait(2) or
system (3S).

The resolution of the clock is 10 milliseconds on AT&T Technologies 3B computer
processors.

SEE ALSO
times(2), wait(2), system(3S).

BUGS
The value returned by clock is defined in microseconds for compatibility with sys-
tems that have CPU clocks with much higher resolution. Because of this, the value
returned will wrap around after accumulating only 2147 seconds of CPU time
(about 36 minutes).

7/85 -1~ 7/85

CONV(3C) (C Programming Language Utilities) CONV (30)

NAME
toupper, tolower, _toupper, _tolower, toascii — translate characters

SYNOPSIS
#include <ctype.h>
int toupper (c)
int c;
int tolower (c)
int ¢;
int _toupper (c)
int c;
int _tolower (c)
int c;
int toascii (c)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of getc(3S): the integers from —1
through 255. If the argument of toupper represents a lower-case letter, the result is
the corresponding upper-case letter. If the argument of rolower represents an
upper-case letter, the result is the corresponding lower-case letter. All other argu-
ments in the domain are returned unchanged.
The macros _toupper and _tolower, are macros that accomplish the same thing as
toupper and tolower but have restricted domains and are faster. _toupper requires
a lower-case letter as its argument; its result is the corresponding upper-case letter.
The macro _tolower requires an upper-case letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause undefined
results.
Toascii yields its argument with all bits turned off’ that are not part of a standard
ASCII character; it is intended for compatibility with other systems.

SEE ALSO
ctype(3C), getc(3S).

7/85 -1- 7/85

CRYPT (3C) (C Programming Language Utilities) CRYPT(3C)

NAME

crypt, setkey, encrypt — generate hashing encryption

SYNOPSIS

char serypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, fake)
char *block;
int fake;

DESCRIPTION

Crypt is the password encryption function. It is based on a one way hashing
encryption algorithm with variations intended (among other things) to frustrate use
of hardware implementations of a key search.

Key is a user’s typed password. Salt is a two-character string chosen from the set
[a-zA-Z0-9./]; this string is used to perturb the hashing algorithm in one of 4096
different ways, after which the password is used as the key to encrypt repeatedly a
constant string. The returned value points to the encrypted password. The first two
characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual hash-
ing algorithm. The argument of setkey is a character array of length 64 containing
only the characters with numerical value 0 and 1. If this string is divided into
groups of 8, the low-order bit in each group is ignored; this gives a 56-bit key which
is set into the machine. This is the key that will be used with the hashing algorithm
to encrypt the string block with the function encrypr.

The argument to the encrypt entry is a character array of length 64 containing only
the characters with numerical value 0 and 1. The argument array is modified in
place to a similar array representing the bits of the argument after having been sub-
jected to the hashing algorithm using the key set by setkey. Fake is not used and is
ignored, but should be present if lint (1) is used.

SEE ALSO

BUGS

7/85

getpass (3C), passwd{(4).
login(1), passwd(1) in the AT&T 3B2 Computer User Reference Manual.

The return value points to static data that are overwritten by each call.

-1- 7/85

CTERMID (3S) (C Programming Language Utilities) CTERMID (3S)

NAME
ctermid — generate file name for terminal

SYNOPSIS
#inclnde <stdio.h>
char »ctermid (s)
char =s;

DESCRIPTION
Ctermid generates the path name of the controlling terminal for the current process,
and stores it in a string.

If s is 2 NULL pointer, the string is stored in an internal static area, the contents of
which are overwritten at the next call to crermid, and the address of which is
returned. Otherwise, s is assumed to point to a character array of at least
L_ctermid eclements; the path name is placed in this array and the value of s is
returned. The constant L_ctermid is defined in the <st¢dio.h> header file.

NOTES
The difference between ctermid and ttyname (3C) is that tfyname must be handed a
file descriptor and returns the actual name of the terminal associated with that file
descriptor, while ctermid returns a string (/dev/tty) that will refer to the terminal if
used as a file name. Thus ttyname is useful only if the process already has at least
one file open to a terminal.

SEE ALSO
ttyname(3C).

7/85 -1~ 7/85

CTIME (3C) (C Programming Language Utilities) CTIME (3C)

NAME

ctime, localtime, gmtime, asctime, tzset — convert date and time to string

SYNOPSIS

#Hinclude <time.h>

char »ctime (clock)
long *clock;

struet tm *localtime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char »asctime {tm)
struct tm *tm;

extern long timezone;
extern int daylight;
extern char =tznamel2];
void tzset ()

DESCRIPTION

7/85

Ctime converts a long integer, pointed to by clock, representing the time in seconds
since 00:00:00 GMT, January 1, 1970, and returns a pointer to a 26-character
string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to “tm” structures, described below. Local-
time corrects for the time zone and possible Daylight Savings Time; gmtime con-
verts directly to Greenwich Mean Time (GMT), which is the time the UNIX system
uses.

Asctime converts a “tm” structure to a 26-character string, as shown in the above
example, and returns a pointer to the string.

Declarations of all the functions and externals, and the “tm” structure, are in the
<time.h> header file. The structure declaration is:

struct tm {
int tm_sec; /# seconds (0 -~ 59) */
int tm_min; /* minutes (0 - 59) =/
int tm_hour; /* hours (0 - 23) »/
int tm_mday; /* day of month (1 - 31) »/
int tm_mon; /* month of year (0 - 11) #/
int tm_year; /* year — 1900 */
int tm_wday; /» day of week (Sunday = Q) »/
int tm_yday; /x day of year (0 - 365) »/

int tm_jsdst;
};
Tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in seconds, between
GMT and local standard time (in EST, timezone is 5+#60+60); the external variable
daylight is non-zero if and only if the standard U.S.A. Daylight Savings Time
conversion should be applied. The program knows about the peculiarities of this
conversion in 1974 and 1975; if necessary, a table for these years can be extended.

-1- 7/85

CTIME (3C) (C Programming Language Utilities) CTIME(3C)

If an environment variable named TZ is present, asctime uses the contents of the
variable to override the default time zone. The value of TZ must be a three-letter
time zone name, followed by a number representing the difference between local
time and Greenwich Mean Time in hours, followed by an optional three-letter name
for a daylight time zone. For example, the setting for New Jersey would be
ESTSEDT. The effects of setting TZ are thus to change the values of the external
variables timezone and daylight; in addition, the time zone names contained in the
external variable

char *tznamel2] = { "EST", "EDT" };

are set from the environment variable TZ. The function fzset sets these external
variables from TZ; tzset is called by asctime and may also be called explicitly by the
user.

Note that in most installations, TZ is set by default when the user logs on, to a
value in the local /etc/profile file (see profile(4)).

SEE ALSO

BUGS

7/85

time(2), getenv(3C), profile(4), environ(5).

The return values point to static data whose content is overwritten by each call.

-2~ 7/85

CTYPE(3C) {C Programming Language Utilities) CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph,
iscntrl, isascii — classify characters

SYNOPSIS
#include <ctype.h>

imt isalpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table lookup. Each is a
predicate returning nonzero for true, zero for false. Isascii is defined on all integer
values; the rest are defined only where isascii is trne and on the single non-ASCII
value EOF (—1 — see stdio(38)).

isalpha c is a letter.
isupper ¢ is an upper-case letter.
islower ¢ is a lower-case letter.
isdigit c is a digit [0-9]).
isxdigit ¢ is a hexadecimal digit [0-9], [A-F] or [a-fl.
isalnum ¢ is an alphanumeric (letter or digit).
isspace ¢ is a space, tab, carriage return, new-line, vertical tab, or form-
feed.
ispunct ¢ is a punctuation character (neither control nor alphanumeric).
isprint ¢ is a printing character, code 040 (space) through 0176 (tilde).
isgraph ¢ is a printing character, like isprint except false for space.
iscntrl ¢ i3 a delete character (0177) or an ordinary control character
(less than 040).
isascii ¢ is an ASCII character, code less than 0200.
SEE ALSO
stdio(38), ascii(5).
DIAGNOSTICS

If the argument to any of these macros is not in the domain of the function, the
result is undefined.

7/85 -1- 7/85

CUSERID (3S) (C Programming Language Utilities) CUSERID (3S)

NAME
cuserid — get character login name of the user

SYNOPSIS
#include <stdio.h>

char =cuserid (s)
char ss;

DESCRIPTION
Cuserid generates a character-string representation of the login name that the
owner of the current process is logged in under. If s is a NULL pointer, this
representation is generated in an internal static area, the address of which is
returned. Otherwise, s is assumed to point 10 an array of at least L_cuserid charac-
ters; the representation is left in this array. The constant L_cuserid is defined in the
<stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer, a null character (\@) will be placed at s/0].

SEE ALSO
getlogin(3C), getpwent(3C).

7/85 -1~ 7/85

DIAL(3C) (C Programming Language Utilities) DIAL (3C)

NAME

dial — establish an out-going terminal line connection

SYNOPSIS

#include <dial.h>

int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION

7/85

Dial returns a file-descriptor for a terminal line open for read/write. The argument
to dial is a CALL structure (defined in the <dial.h> header file).

When finished with the terminal line, the calling program must invoke undial to
release the semaphore that has been set during the allocation of the terminal device.

The definition of CALL in the <dial.h> header file is:
typedef struct {

struct termio =attr; /* pointer to termio attribute struct +/
int baud; /* transmission data rate */
int speed; /* 212A modem: low=300, high=1200 »/
char =line; /* device name for out-going line */
char *telno; /* pointer to tel-no digits string */
int modem,; /* specify modem control for direct lines */
char *device; /*Will hold the name of the device used
to make a connection */
int dev_len; /* The length of the device used to make

connection */
} CALL;

The CALL element speed is intended only for use with an outgoing dialed call, in
which case its value should be either 300 or 1200 to identify the 113A modem, or
the high- or low-speed setting on the 212A modem. Note that the 113A modem or
the low-speed setting of the 212A modem will transmit at any rate between 0 and
300 bits per second. However, the high-speed setting of the 212A modem transmits
and receivers at 1200 bits per secound only. The CALL element baud is for the
desired transmission baud rate. For example, one might set baud to 110 and speed
to 300 (or 1200). However, if speed set to 1200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name should
be placed in the line element in the CALL structure. Legal values for such terminal
device names are kept in the L-devices file. In this case, the value of the baud ele-
ment need not be specified as it will be determined from the L-devices file.

The telno element is for a pointer to a character string representing the telephone
number to be dialed. The termination symbol will be supplied by the dial function,
and should not be included in the felno string passed to dial in the CALL structure.

The CALL element modem is used to specify modem control for direct lines. This
element should be non-zero if modem control is required. The CALL element atir is
a pointer to a termio structure, as defined in the termio.h header file. A NULL
value for this pointer element may be passed to the dial function, but if such a
structure is included, the elements specified in it will be set for the outgoing termi-
nal line before the connection is established. This is often important for certain
attributes such as parity and baund-rate.

-1- 7/85

DIAL(3C) (C Programming Langnage Utilities) DIAL(3C)

The CALL element device is used to hold the device name (cul..) that establishes the
connection.

The CALL element dev_len is the length of the device name that is copied into the
array device.

FILES
/usr/lib/uucp/L-devices
fust/spool/uucp/LCK..t1y -device
SEE ALSO
alarm(2), read (), write(2).
termio(7) in the AT&T 3B2 Compuier System Adminisiration Reference Manual.
uwucp(1C) in the AT&T 3B2 Computer User Reference Manual.
DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indices as listed here are defined in the <dialh>
header file.
INTRPT -1 /* interrupt occurred »/
D HUNG -2 /+ dialer hung (no return from write) */
NO_ANS -3 /* no answer within 10 seconds »/
ILL_BD —~4 /» illegal baud-rate */
A_PROB -5 /+ acu problem (open() failure) */
L_PROB -6 /» line problem (open() failure) »/
NO_Ldv -7 /* can’t open LDEVS file =/
DV _NT A —8 /* requested device not available */
DV_NT K -9 /» requested device not known =/
NO_BD_A —10 /* no device available at requested baud */
NO_BD K —11 /* no device known at requested baud */
WARNINGS
Including the <dial.h> header file automatically includes the <termio.h> header
file.
The above routine uses <stdio.h>, which causes it to increase the size of programs,
not otherwise using standard 1/0, more than might be expected.
BUGS
An alarm(2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of “touching” the LCK.. file and constitutes the device allo-
cation semaphore for the terminal device. Otherwise, uucp(1C) may simply delete
the LCK.. entry on its 90-minute clean-up rounds. The alarm may go off while the
user program is in a read(2) or write(2) system call, causing an apparent error
return. If the user program expects to be around for an hour or more, error returns
from reads should be checked for {errno= =EINTR), and the read possibly reissued.
7/85 -2 - 7/85

DRAND48 (3C) (C Programming Language Utilities) DRANDA48 (3C)

NAME

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 —
generate uniformly distributed pseudo-random numbers

SYNOPSIS

double drand48 ()

double erand48 (xsubi)
unsigned short xsubil3];

Jong Irand48 ()

Jong nrand48 (xsubi)
unsigned short xsubil3};

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubil3];

void srand48 (seedval)
long seedval;

unsigned short »seed48 (seed16v)
unsigned short seed16vi3);

void Jcongd8 (param)
unsigned short param{7);

DESCRIPTION

7/85

This family of functions generates pseudo-random numbers using the well-known
linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating-point
values uniformly distributed over the interval [0.0, 1.0).

Functions /rand48 and nrand48 return non-negative long integers uniformly distri-
buted over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uniformly distributed
over the interval [—231, 231).

Functions srand48, seed48 and Icong48 are initialization entry points, one of which
should be invoked before either drand48, lrand48 or mrand48 is called. (Although
it is not recommended practice, constant default initializer values will be supplied
automatically if drand48, Irand48 or mrand48 is called without a prior call to an
initialization entry point.) Functions erand48, nrand48 and jrand48 do not require
an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, X;, accord-
ing to the linear congruential formula

Xn+1 = (@Xy+¢) mod m n>0.

The parameter m =2, hence 48-bit integer arithmetic is performed. Unless
Icong48 has been invoked, the multiplier value a and the addend value ¢ are given
by

a = SDEECE66D 4 = 2736731631554

c = Bm = 133

The value returned by any of the functions drand48, erand48, Irand48, nrand48,
mrand48 or jrand48 is computed by first generating the next 48-bit X; in the
sequence. Then the appropriate number of bits, according to the type of data item

-1 - 7/85

DRAND48 (3C) (C Programming Language Utilities) DRAND48 (3C)

to be returned, are copied from the high-order (leftmost) bits of X; and transformed
into the returned value.

The functions drand48, Irand48 and mrand48 store the last 48-bit X; generated in
an internal buffer; that is why they must be initialized prior to being invoked. The
functions erand48, nrand48 and jrand48 require the calling program to provide
storage for the successive X; values in the array specified as an argument when the
functions are invoked. That is why these routines do not have to be initialized; the
calling program merely has to place the desired initial value of X; into the array
and pass it as an argument. By using different arguments, functions erand48,
nrand48 and jrand48 allow separate modules of a large program to generate several
independent streams of pseudo-random numbers, i.e., the sequence of numbers in
each stream will not depend upon how many times the routines have been called to
generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of X; to the 32 bits con-
tained in its argument. The low-order 16 bits of X; are set to the arbitrary value
330E6.

The initializer function seed48 sets the value of X; to the 48-bit value specified in
the argument array. In addition, the previous value of X; is copied into a 48-bit
internal buffer, used only by seed48, and a pointer to this buffer is the value
returned by seed48. This returned pointer, which can just be ignored if not needed,
is useful if a program is to be restarted from a given point at some future time —
use the pointer to get at and store the last X; value, and then use this value to reini-
tialize via seed48 when the program is restarted.

The initialization function /cong48 allows the user to specify the initial X;, the mul-
tiplier value a, and the addend value ¢. Argument array elements paraml0-2/
specify X;, param(3-5] specify the multiplier a, and paraml6] specifies the 16-bit
addend c. After Icong48 has been called, a subsequent call to either srand48 or
seed48 will restore the “standard” multiplier and addend values, a and ¢, specified
on the previous page.

NOTES

The routines are coded in portable C. The source code for the portable version can
even be used on computers which do not have floating-point arithmetic. In such a
situation, functions drand48 and erand48 do not exist; instead, they are replaced by
the two new functions below.

long irand48 (m)
unsigned short m;

long kramd48 (xsubi, m)
unsigned short xsubil3], m;

Functions irand48 and krand48 return non-negative long integers uniformly distri-
buted over the interval [0, m—1].

SEE ALSO

7/85

rand(3C).

-2 - 7/85

ECVT(3C) {C Programming Language Utilities) ECVT(3C)

NAME

ecvt, fevt, gevt — convert floating-point number to string

SYMNOPSIS

char =ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, »decpt, =sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, »decpt, *sign;

char *gevt (value, ndigit, buf)
double value;

int ndigit;

char *buf;

DESCRIPTION

Ecvi converts value to a null-terminated string of ndigit digits and returns a pointer
thereto. The high-order digit is non-zero, unless the value is zero. The low-order
digit is rounded. The position of the decimal point relative to the beginning of the
string is stored indirectly through decp: (negative means to the left of the returned
digits). The decimal point is not included in the returned string. If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero.

Fevt is identical to ecvi, except that the correct digit has been rounded for printf
“%f” (FORTRAN F-format) output of the number of digits specified by ndigit.

Gevt converts the value to a null-terminated string in the array pointed to by buf
and returns buf. It attempts to produce ndigit significant digits in FORTRAN F-
format if possible, otherwise E-format, ready for printing. A minus sign, if there is
one, or a decimal point will be included as part of the returned string. Trailing
zeros are suppressed.

SEE ALSO

BUGS

7/85

printf(3S).

The values returned by ecvt and feve point to a single static data array whose con-
tent is overwritten by each call,

-1~ 7/85

END (3C) (C Programming Language Utilities) END (3C)

NAME
end, etext, edata — last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The
address of etext is the first address above the program text, edata above the initial-
ized data region, and end above the uninitialized data region.

When execution begins, the program break (the first location beyond the data) coin-
cides with end, but the program break may be reset by the routines of brk(2),
malloc(3C), standard input/output (stdio(3S)), the profile (—p) option of cc(1),
and so on. Thus, the current value of the program break should be determined by
sbrk(0) (see brk(2)).

SEE ALSO
brk(2), malloc(3C), stdio(3S).
cc(1) in the AT&T 3B2 Computer User Reference Manual.

7/85 -1- 7/85

FCLOSE(3S) (C Programming Language Utilities) FCLOSE (38}

NAME
fclose, fllush — close or flush a stream

SYNOPSIS
#inclnde <stdio.h>

int felose (stream)
FILE =stream;

imt fAlush (stream)
FILE =stream;

DESCRIPTION
Fclose causes any buffered data for the named stream to be written out, and the
stream to be closed.

Fclose is performed automatically for all open files upon calling exit (2).

Fflush causes any buffered data for the named stream to be written to that file.
The stream remains open.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

DIAGNOSTICS
These functions return 0 for success, and EQF if any error (such as trying to write
to a file that has not been opened for writing) was detected.

7/85 -1- 7/85

FERROR (38) (C Programming Language Utilities) FERROR (3S)

NAME

ferror, feof, clearerr, fileno — stream status inquiries

SYNOPSIS

#include <stdio.h>

int ferror (stream)
FILE #*stream;

int feof (stream)
FILE =*stream;

void clearerr (stream)
FILE =*stream;

int fileno (stream)
FILE *stream;

DESCRIPTION

Ferror returns non-zero when an I/O error bas previously occurred reading from or
writing to the named stream, otherwise zero.

Feof returns non-zero when EOF has previously been detected reading the nmamed
input stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named stream.

Fileno returns the integer file descriptor associated with the named stream; see
open(2).

NOTES

All these functions are implemented as macros; they cannot be declared or rede-
clared.

SEE ALSO

7/85

open(2), fopen(3S).

-1- 7/85

FOPEN (3S) (C Programming Language Utilities) FOPEN (3S)

NAME

fopen, freopen, fdopen — open a stream

SYNOPSIS

#include <stdio.h>

FILE +fopen (file-name, type)

char file-name, =type;

FILE *freopen (file-name, type, stream)
char sfile-name, s*type;

FILE =*stream;

FILE +fdopen (fildes, type)

int fildes;

char =type;

DESCRIPTION

7/85

Fopen opens the file named by file-name and associates a stream with it. Fopen
returns a pointer to the FILE structure associated with the stream.

File-name points to a character string that contains the name of the file to be
opened.

Type is a character string having one of the following values:

"r open for reading

"w" truncate or create for writing

"a" append; open for writing at end of file, or create for writing
"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original stream
is closed, regardless of whether the open ultimately succeeds. Freopen returns a
pointer to the FILE structure associated with stream.

Freopen is typically used to attach the preopened sireams associated with stdim,
stdout and stderr to other files.

Fdopen associates a stream with a file descriptor. File descriptors are obtained
from open, dup, creat, or pipe(2), which open files but do not return pointers to a
FILE structure stream. Streams are necessary input for many of the Section 3S
library routines. The type of stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the result-
ing stream. However, output may not be directly followed by input without an
intervening fseek or rewind, and input may not be directly followed by output
without an intervening fseek, rewind, or an input operation which encounters end-
of-file.

When a file is opened for append (i.e., when fype is "a" or "a+"), it is impossible to
overwrite information already in the file. Fseek may be used to reposition the file
pointer to any position in the file, but when output is written to the file, the current
file pointer is disregarded. All output is written at the end of the file and causes the
file pointer to be repositioned at the end of the output. If two separate processes
open the same file for append, each process may write freely to the file without fear
of destroying output being written by the other. The output from the two processes
will be intermixed in the file in the order in which it is written.

-1- 7/85

FOPEN (35) (C Programming Language Ultilities) FOPEN (38)

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(38), fseck(3S).

DIAGNOSTICS
Fopen and freopen return a NULL pointer on fajlure.

7/85 ~2- 7/85

FREAD(38) (C Programming Language Utilities) FREAD (38)

NAME

fread, fwrite — binary input/output

SYMOPSIS

#include <stdio.h>

int fread (ptr, size, nitems, stream)
char »ptr;

int size, mitems;

FILE =siream;

int fwrite (ptr, size, mitems, stream)
char =ptr;

int size, mitems;

FILE #stream;

DESCRIPTION

Fread copies, into an array pointed to by ptr, nitems items of data from the named
input stream, where an item of data is a sequence of bytes (not necessarily ter-
minated by a null byte) of length size. Fread stops appending bytes if an end-of-
file or error condition is encountered while reading stream, or if nitems items have
been read. Fread leaves the file pointer in stream, if defined, pointing to the byte
following the last byte read if there is one. Fread does not change the contents of
stream.

Fwrite appends at most nitems items of data from the array pointed to by ptr to the
named output stream. Fwrite stops appending when it has appended nitems items
of data or if an error condition is encountered on stream. Fwrite does not change
the contents of the array pointed to by pir.

The argument size is typically sizeof(+ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr. If ptr points to a data type other
than char it should be cast into a pointer to char.

SEE ALSO

read(2), write(2), fopen(3S), getc(3S), gets(3C), printf(3S), putc(3S), puts(3S),
scanf(38).

DIAGNOSTICS

7/85

Fread and fwrite return the number of items read or written. If size or nitems is
non-positive, no characters are read or written and 0 is returned by both fread and
Swrite.

-1- 7/85

FREXP (3C) (C Programming Language Utilities) FREXP (3C)

NAME

frexp, ldexp, modf — manipulate parts of floating-point numbers

SYNOPSIS

double frexp (value, eptr)
double value;
int =eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION

Every non-zero number can be written uniquely as x+* 2", where the “mantissa”
(fraction) x is in the range 0.5 < |x| < 1.0, and the “exponent” n is an integer.
Frexp returns the mantissa of a double value, and stores the exponent indirectly in
the location pointed to by eptr. If value is zero, both results returned by frexp are
Zero.

Ldexp returns the quantity value~ 2%,

Modf returns the signed fractional part of value and stores the integral part
indirectly in the location pointed to by iptr.

DIAGNOSTICS

7/85

If Idexp would cause overflow, £HUGE is returned (according to the sign of value),
and errno is set to ERANGE.
If Idexp would cause underflow, zero is returned and errno is set to ERANGE.

-1- 7/85

FSEEK (38) (C Programming Language Ultilities) FSEEK (3S)

NAME

fseek, rewind, ftell — reposition a file pointer in a stream

SYNOPSIS

#include <stdioh>

int fseek (stream, offset, ptrname)
FILE #stream;

long offset;

int ptrname;

void rewind (stream)
FILE =stream;

long ftell (stream)
FILE #*stream;

DESCRIPTION

Fseek sets the position of the next input or output operation on the siream. The
new position is at the signed distance offset bytes from the beginning, from the
current position, or from the end of the file, according as ptrname has the valoe 0,
1, or 2.

Rewind (stream) is equivalent to fseek({stream, OL, 0), except that no value is
returned.

Fseek and rewind undo any effects of ungetc(35).

After fseek or rewind, the next operation on a file opened for update may be either
input or output.

Frell returns the offset of the current byte relative to the beginning of the file asso-
ciated with the named stream.

SEE ALSO

Iseek(2), fopen{3S), popen(3S), ungetc(3S).

DIAGNOSTICS

Fseek returns non-zero for improper seeks, otherwise zero. An improper seek can
be, for example, an fseek done on a file that has not been opened via fopen; in par-
ticular, fseek may not be used on a terminal, or on a file opened via popen (3S).

WARNING

1/85

Although on the UNIX system an offset returned by ftell is measured in bytes, and
it is permissible to seek to positions relative to that offset, portability to non-UNIX
systems requires that an offset be used by fseek directly. Arithmetic may not mean-
ingfully be performed on such an offset, which is not necessarily measured in bytes.

-1- 7/85

FIW (3C) (C Programming Language Utilities) FTW (3C)

NAME

ftw — walk a file tree

SYNOPSIS

#include <ftw.h>

int ftw (path, fn, depth)
char *path;

int (*f) ();

int depth;

DESCRIPTION

Ftw recursively descends the directory hierarchy rooted in path. For each object in
the hierarchy, fiw calis fn, passing it a pointer to a null-terminated character string
containing the name of the object, a pointer to a stat structure (see staz(2)) con-
taining information about the object, and an integer. Possible values of the integer,
defined in the <ftw.h> header file, are FTW_F for a file, FTW_D for a directory,
FTW _DNR for a directory that cannot be read, and FTW_NS for an object for which
stat could not successfully be executed. If the integer is FTW_DNR, descendants of
that directory will not be processed. If the integer is FTW_NS, the stat structure
will contain garbage. An example of an object that would cause FTW_NS to be
passed to fn would be a file in a directory with read but without execute (search)
permission.

Fiw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a
nonzero value, or some error is detected within fiw (such as an 170 error). If the
tree is exhausted, fiw returns zero. If fr returns a nonzero value, ftw stops its tree
traversal and returns whatever value was returned by fn. If fiw detects an error, it
returns —1, and sets the error type in errno.

Fiw uses one file descriptor for each level in the tree. The depth argument limits
the number of file descriptors so used. If depth is zero or negative, the effect is the
same as if it were 1. Depth must not be greater than the number of file descriptors
currently availabie for use. Fiw will run more quickly if depth is at least as large
as the number of levels in the tree.

SEE ALSO

BUGS

7/85

stat(2), malloc(3C).

Because fiw is recursive, it is possible for it to terminate with a memory fault when
applied to very deep file structures.

It could be made to run faster and use less storage on deep structures at the cost of
considerable complexity.

Ftw uses malloc (3C) to allocate dynamic storage during its operation. If fiw is for-
cibly terminated, such as by longjmp being executed by fi or an interrupt routine,
JStw will not have a chance to free that storage, so it will remain permanently allo-
cated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have fa return a nonzero value at its next invocation.

-1- 7/85

GETC(3S) (C Programming Language Utilities) GETC(38)

NAME

getc, getchar, fgetc, getw — get character or word from a stream

SYNOPSIS

#include <stdio.h>

int getc (stream)
FILE =*stream;

int getchar ()

int fgetc (stream)
FILE s*stream;

int getw (stream)
FILE =*stream;

DESCRIPTION

Getc returns the next character (i.e., byte) from the named input stream, as an
integer. It also moves the file pointer, if defined, ahead one character in stream.
Getchar is defined as getc(stdin). Getc and getchar are macros.

Fgetc behaves like getc, but is a function rather than a macro. Fgetc runs more
slowly than getc, but it takes less space per invocation and its name can be passed
as an argument to a function.

Getw returns the next word (.e., integer) from the named input stream. Getw
increments the associated file pointer, if defined, to point to the next word. The size
of a word is the size of an integer and varies from machine to machine. Getw
assumes no special alignment in the file.

SEE ALSO

fclose(3S), ferror(3S), fopen(38S), fread(3S), gets(3C), putc(3S), scanf(3S).

DIAGNOSTICS

These functions return the constant EOF at end-of-file or upon an error. Because
EOF is a valid integer, ferror (3S) should be used to detect getw errors.

WARNING

BUGS

7/85

If the integer value returned by getc, getchar, or fgeic is stored into a character
variable and then compared against the integer constant EOF, the comparison may
never succeed, because sign-extension of a character on widening to integer is
machine-dependent.

Because it is implemented as a macro, gefc treats incorrectly a stream argument
with side effects. In particular, gete(»f++) does not work sensibly. Fgetc should be
used instead.

Because of possible differences in word length and byte ordering, files written using
putw are machine-dependent, and may not be read using gerw on a different proces-
sor.

-1- 7/85

GETCWD(3C) (C Programming Language Utilities) GETCWD (3C)

NAME
getcwd — get path-name of current working directory

SYNOPSIS
char »getcwd (buf, size)
char *buf;
int size;
DESCRIPTION
Getcwd returns a pointer to the current directory path name. The value of size
must be at least two greater than the length of the path-name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using malloc(3C).
In this case, the pointer returned by getewd may be used as the argument in a sub-
sequent call to free.

The function is implemented by using popen(3S) to pipe the output of the pwd (1)
command into the specified string space.

EXAMPLE
char *cwd, *getcwd O;
if ((cwd = getewd ((char *)NULL, 64)) == NULL) {
perror (“pwd”);
exit(1);
}
printf (“%s\n”, cwd);
SEE ALSO

malloc(3C), popen(3S).
pwd(1) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error ocurrs in a
lower-level function.

7/85 -1~ 7/85

GETENV (3C) (C Programming Language Utilities) GETENV (3C)

NAME
getenv — return value for environment name

SYNOPSIS
char »getenv (name)
chaxr »*name;

DESCRIPTION
Getenv searches the environment list (see emviron(5)) for a string of the form
name =value, and returns a pointer to the value in the current environment if such
a string is present, otherwise a NULL pointer.

SEE ALSO
exec(2), putenv(3C), environ(5).

7/85 -1~ 7/85

GETGRENT (3C) (C Programming Language Utilities) GETGRENT (3C)

NAME

getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent — get group file entry

SYNOPSIS

#include <grp.h>

struct group *getgrent ()
struct group *getgrgid (gid)
int gid;

struct group *getgrmam (mame)
char *mame;

void setgrent (}

void endgrent ()

struct group *fgetgrent (f)
FILE *f;

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the follow-
ing structure containing the broken-out fields of a line in the /etc/group file. Each
line contains a “group” structure, defined in the <grp.h> header file.

struct group {
char *gr_name; /* the name of the group +/
char *gr_passwd; /= the encrypted group password */
int gr_gid; /* the numerical group ID */
char #*gr_mem; /* vector of pointers to member names */
I3
Getgrent when first called returns a pointer to the first group structure in the file;
thereafter, it returns a pointer to the next group structure in the file; so, successive
calls may be used to search the entire file. Getgrgid searches from the beginning of
the file until a numerical group id matching gid is found and returns a pointer to
the particular structure in which it was found. Getgrnam searches from the begin-
ning of the file until a group name matching name is found and returns a pointer to
the particular structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return 2 NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. Endgrent may be called to close the group file when processing is com-
plete.

Fgetgrent returns a pointer to the next group structure in the stream f, which
matches the format of /etc/group.

/etc/group

SEE ALSO

getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS

A NULL pointer is returned on EOF or error.

WARNING

7/85

The above routines use <stdio.h>, which causes them to increase the size of pro-
grams, not otherwise using standard 1/0, more than might be expected.

-1 - 7/85

GETGREMT (3C) (C Programming Language Utilities) GETGRENT(3C)

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

7/85 -2~ 7/85

GETLOGIN (3C) (C Programming Language Utilities) GETLOGIN (3C)

NAME

getlogin — get login name
SYNOPSIS

char *getlogin ();
DESCRIPTION

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used
in conjunction with getpwnam to locate the correct password file entry when the
same user ID is shared by several login names.

If getlogin is called within a process that is not attached to a terminal, it returns a
NULL pointer. The correct procedure for determining the login name is to call
cuserid, or to call getlogin and if it fails to call getpwuid.

FILES
fetc/utmp

SEE ALSO
cuserid (35), getgrent (3C), getpwent{(3C), utmp(4).

DIAGNOSTICS
Returns the NULL pointer if name is not found.

BUGS
The return values point to static data whose content is overwritten by each call.

7/85 -1- 7/85

GETOPT (3C) (C Programming Language Utilities) GETOPT (3C)

NAME
getopt — get option letter from argument vector

SYNOPSIS
int getopt (arge, argv, optstring)
int arge;
char =*argv, *opstring;
extern char *optarg;
extern int optind, opterr;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in optstring.
Opistring is a string of recognized option letters; if a letter is followed by a colon,
the option is expected to have an argument that may or may not be separated from
it by white space. Optarg is set to point to the start of the option argument on
return from getopt.

Getopt places in optind the argv index of the next argument to be processed.
Because optind is external, it is normally initialized to zero automatically before the
first call to getopt.

When all options have been processed (i.e., up to the first non-option argument),

getopt returns EOF. The special option — — may be used to delimit the end of the
options; EOF will be returned, and — — will be skipped.
DIAGNOSTICS

Getopt prints an error message on stderr and returns a question mark (2) when it
encounters an option letter not included in optstring. This error message may be
disabled by setting opterr to a non-zero value.

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the options f
and o, both of which require arguments:

main (arge, argv)

int arge;

char **argv;

{
int ¢
extern char *optarg;
extern int optind;

while ((c = getopt(arge, argv, "abf:0:")) = EOF)
switch (c) {
case 'a";
if (bflg)
errflg++;
else
aflg++;
break;
case b
if (afig)
errflg++;
else
bproc();

7/85 -1- 1/85

GETOPT (3C) (C Programming Language Utilities)

break;

case 'f"
ifile = optarg;
break;

case 'o":
ofile = optarg;
break;

case '7"
errflg++;

if (errflg) {
fprintf(stderr, "usage: . . . ");
exit (2);

1

for (; optind < arge; optind++) |
if (access(argvloptind], 4)) {

}
SEE ALSO

getopt(1) in the AT&T 3B2 Computer User Reference Manual.

7/85 -2 -

GETOPT (3C)

7/85

GETPASS (3C) (C Programming Langnage Utilities) GETPASS (3C)

NAME
getpass — read a password

SYNOPSIS
char »getpass (prompt)
char *prompt;

DESCRIPTION
Getpass reads up to a newline or EOF from the file /dev/tty, after prompting on the
standard error output with the null-terminated string prompt and disabling echoing.
A pointer is returned to a null-terminated string of at most 8 characters. If
/dev/tty cannot be opened, 2 NULL pointer is returned. An interrupt will terminate
input and send an interrupt signal to the calling program before returning.

FILES
/dev/tty

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs
not otherwise using standard I/0, more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

7/85 -1- 7/85

GETPW (3C) (C Programming Language Utilities) GETPW (3C)

NAME
getpw — get name from UID

SYNOPSIS
int getpw (uid, buf)
int wid;
char *buf;
DESCRIPTION
Getpw searches the password file for a user id number that equals wid, copies the
line of the password file in which uid was found into the array pointed to by buf,
and returns 0. Getpw returns non-zero if uid cannot be found.
This routine is included only for compatibility with prior systems and should not be
used; see getpwent (3C) for routines to use instead.
FILES
/etc/passwd
SEE ALSO
getpwent (3C), passwd(4).
DPIAGNOSTICS
Getpw returns nomn-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to increase, more than might be
expected, the size of programs not otherwise using standard 1/0.

7/85 -1~ 7/85

GETPWENT (3C) (C Programming Language Utilities) GETPWENT (3C)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent — get password file
entry

SYNOPSIS

#include <pwd.h>

struct passwd *getpwent ()
struct passwd »getpwuid (uid)
int uid;

struct passwd sgetpwnam (name)
char *name;

void setpwent ()

void endpwent ()

struct passwd »fgetpwent (f)
FILE »f;

DESCRIPTION

FILES

7/85

Getpwent, getpwuid and getpwnam each returns a pointer to an object with the fol-
lowing structure containing the broken-out fields of a line in the /etc/passwd file.
Each line in the file contains a “passwd” structure, declared in the <pwd.h>
header file:

struct passwd {
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char »pw_dir;
char *pw_shell;
)
This structure is declared in <pwd.h> so it is not necessary to redeclare it.
The pw_comment field is unused; the others have meanings described in passwd (4).

Getpwent when first called returns a pointer to the first passwd structure in the file;
thereafter, it returns a pointer to the next passwd structure in the file; so successive
calls can be used to search the entire file. Getpwuid searches from the beginning of
the file until a numerical user id matching uid is found and returns a pointer to the
particular structure in which it was found. Getpwnam searches from the beginning
of the file until a login name matching name is found, and returns a pointer to the
particular structure in which it was found. If an end-of-file or an error is encoun-
tered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated
searches. Endpwent may be called to close the password file when processing is
complete.

Fgetpwent returns a pointer to the next passwd structure in the stream f, which
matches the format of /etc/passwd.

/etc/passwd

~1- 7/85

GETPWENT (3C) (C Programming Language Utilities) GETPWENT (3C)

SEE ALSO
getlogin(3C), getgrent(3C), passwd (4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdie.h>, which causes them to increase the size of pro-
grams, not otherwise using standard 1/0, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

7/85 -2~ 7/85

GETS(38) (C Programming Language Utilities) GETS(38)

NAME

gets, fgets — get a string from a stream

SYNOPSIS

#include <stdio.h>

char »gets (s)
char »s;

char *fgets (s, m, stream)
char =*s;

int m;

FILE =stream;

DESCRIPTION

Gets reads characters from the standard input stream, stdin, into the array pointed
to by s, until a new-line character is read or an end-of-file condition is encountered.
The new-line character is discarded and the string is terminated with a null charac-
ter.

Fgets reads characters from the stream into the array pointed to by s, until n—1
characters are read, or a new-line character is read and transferred to s, or an end-
of-file condition is encountered. The string is then terminated with a null character.

SEE ALSO

ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(38).

DIAGNOSTICS

7/85

If end-of-file is encountered and no characters have been read, no characters are
transferred to s and a NULL pointer is returned. If a read error occurs, such as try-
ing to use these functions on a file that has not been opened for reading, a NULL
pointer is returned. Otherwise s is returned.

-1~ 7/85

GETUT(3C) (C Programming Language Utilities) GETUT (3C)

NAME

getutent, getutid, getutline, pututline, setutent, endutent, utmpname — access utmp
file entry

SYNOPSIS

#include <utmp.h>
struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline (line)
struct utmp *line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()
void endutent ()

void utmpname (file)
char =file;

DESCRIPTION

7/85

Getutent, getutid and getutline each return a pointer to a structure of the following
type:
struct utmp {

char ut_user[8]; /* User login name =/
char ut_id[4]; /* /etc/inittab id (usually line #) +/
char ut line[12]; /* device name (console, Inxx) */
short ut_pid; /* process id +/
short ut_type; /* type of entry */
struct exit status {

short e termination; /* Process termination status */

short e_exit; /* Process exit status +/
} ut_exit; /* The exit status of a process

* marked as DEAD _PROCESS. */

time t ut_time; /* time entry was made */

13
Getutent reads in the next entry from a utmp-like file. If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

Getutid searches forward from the current point in the uzmp file until it finds an
entry with a uz_type matching id—>ut type if the type specified is RUN_LVL,
BOOT_TIME, OLD_TIME or NEW_TIME. If the type specified in id is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS or DEAD_PROCESS, then getu-
tid will return a pointer to the first entry whose type is one of these four and whose
ut_id field matches id —>ut_id. If the end of file is reached without a match, it
fails.

Getutline searches forward from the current point in the utmp file until it finds an
entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line
string matching the line—>ut line string. If the end of file is reached without a
match, it fails.

Pututline writes out the supplied utmp structure into the utmp file. It uses getutid
to search forward for the proper place if it finds that it is not already at the proper

-1- 7/85

GETUT(3C) (C Programming Language Utilities) GETUT(3C)

FILES

place. Tt is expected that normally the user of pututline will have searched for the
proper entry using one of the getut routines. If so, pututline will not search. If
pututline does not find a matching slot for the new entry, it will add a new entry to
the end of the file.

Setutent resets the input stream to the beginning of the file. This should be done
before each search for a new entry if it is desired that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from /etc/utmp
to any other file. It is most often expecied that this other file will be /etc/wtmp. If
the file does not exist, this will not be apparent until the first attempt to reference
the file is made. Urmpname does not open the file. It just closes the old file if it is
currently open and saves the new file name.

/etc/utmp
/etc/wtmp

SEE ALSO

ttyslot (3C), utmp(4).

DIAGNOSTICS

A NULL pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

COMMENTS

7/85

The most current entry is saved in a static structure. Multiple accesses require that
it be copied before further accesses are made. Each call to either getutid or getut-
line sees the routine examine the static structure before performing more 1/0. If
the contents of the static structure match what it is searching for, it looks no
further. For this reason to use getutline to search for multiple occurrences, it would
be necessary to zero out the static after each success, or getutline would just return
the same pointer over and over again. There is one exception to the rule about
removing the structure before further reads are done. The implicit read done by
pututline (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutent, getutid or getut-
line routines, if the user has just modified those contents and passed the pointer
back to pututline.

These routines use buffered standard 170 for input, but pututline uses an unbuffered
non-standard write to avoid race conditions between processes trying to modify the
utmp and wtmp files. ‘

-2 - 7/85

HSEARCH (3C) (C Programming Language Utilities) HSEARCH(3C)

NAME

hsearch, hcreate, hdestroy — manage hash search tables

SYMNOPSIS

#include <search.h>

ENTRY +hsearch (item, actiom)
ENTRY item;
ACTION action;

int hcreate (mel)
unsigned nel;

void hdestroy ()

DESCRIPTION

Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D.
Tt returns a pointer into a hash table indicating the location at which an entry can
be found. Jiem is a structure of type ENTRY (defined in the <search.h> header
file) containing two pointers: item.key points to the comparison key, and item.data
points to any other data to be associated with that key. (Pointers to types other
than character should be cast to pointer-to-character.) Action is a member of an
enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be inserted in the table at
an appropriate point. FIND indicates that no entry should be made. Unsuccessful
resolution is indicated by the return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called before Asearch is
used. Nel is an estimate of the maximum number of entries that the table will con-
tain. This number may be adjusted upward by the algorithm in order to obtain cer-
tain mathematically favorable circumstances.

Hdestroy destroys the search iable, and may be followed by another call to hcreate.

NOTES

7/85

Hsearch uses open addressing with a multiplicative hash function. However, its
source code has many other options available which the user may select by compil-
ing the hsearch source with the following symbols defined to the preprocessor:

L) AY Use the remainder modulo table size as the hash function
instead of the multiplicative algorithm.

USCR Use a User Supplied Comparison Routine for ascertaining table
membership. The routine should be named hcompar and
should behave in 2 mannner similar to stremp (see string(3C)).

CHAIMED Use a linked list to resolve collisions. If this option is selected,
the following other options become available.

START Place new entries at the beginning of the linked
list (default is at the end).

SORTUP Keep the linked list sorted by key in ascending
order,

SORTDOWN Keep the linked list sorted by key in descending
order.

Additionally, there are preprocessor flags for obtaining debugging printout { —DDE-
BUG) and for including a test driver in the calling routine (—~DDRIVER). The
source code should be consulted for further details.

~1- 7/85

HSEARCH (3C) {C Programming Language Utilities) HSEARCH(3C)

EXAMPLE
The following example will read in strings followed by two numbers and store them
in a hash table, discarding duplicates. It will then read in strings and find the
matching entry in the hash table and print it out.

#include <stdio.h>
#include <search.h>

struct info { /* this is the info stored in the table +/
int age, room; /# other than the key. =/
b

#define NUM_EMPL 5000 I+ # of elements in search table =/
main()

/* space to store strings */

char string_space[NUM_EMPL»*20];

/* space to store employee info »/
struct info info_space[NUM_EMPLI;
/* next avail space in string_space */
char =str_ptr = string_space;

/* next avail space in info_space */
struct info *info_ptr = info_space;
ENTRY item, *found item, *hsearch();
/* name to look for in table =/

char name to find{30];

int i = 0;

/* create table +/

(void) hcreate(NUM_EMPL);

while (scanf(*%s%d%d", str ptr, &info ptr—>age,
&info_ptr—>room) != EOF && i++ < NUM_EMPL) {
/= put info in structure, and structure in item */
item.key = str ptr;
item.data = (char *)info ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr+-+;
/# put item into table /

} (void) hsearch(item, ENTER);

/» access table =/
item.key = name to find;
while (scanf("%s", item.key) != EOF) {
if ((found_jtem = hsearch(item, FIND)) i= NULL) {
/= if item is in the table */
(void) printf("found %s, age = %d, room = %d\n",
found_jtem—>key,
((struct info *)found item—>data)—>age,
((struct info *)found item—>data)—>room);
} else {
(void) printf("no such employee %s\n",
name_to_find)

7/85 -~2- 1/85

HSEARCH (3C) (C Programming Language Utilities) HSEARCH (3C)

}
)
SEE ALSO
bsearch(3C), Isearch{(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C).
DIAGNOSTICS

Hsearch returns a NULL pointer if either the action is FIND and the item could not
be found or the action is ENTER and the table is fuil.

Hcreate returns zero if it cannot allocate sufficient space for the table.

WARNING
Hsearch and hcreate use malloc (3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

7/85 -~3- 7/85

L3TOL (3C) {C Programming Langunage Utilities) L3TOL(3C)

NAME
13tal, 1tol3 — convert between 3-byte integers and long integers

SYNOPSIS
void 13tol (p, cp, n)
long =Ip;
char *cp;
int n;
void ltol3 (cp, Ip, m)
char »cp;
long *lp;
int n;
DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character string pointed
to by cp into a list of long integers pointed to by Ip.

Ltol3 performs the reverse conversion from long integers (Ip) to three-byte integers
(cp).
These functions are useful for file-system maintenance where the block numbers are
three bytes long.

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the numerical values of the long
integers are machine-dependent.

7/8% -1- 7/85

LOCKF(3C) {C Programming Language Utilities) LOCKF (3C)

NAME

lockf — record locking on files

SYNOPSIS

include <unistd.h>

lockf (fildes, function, size)
long size;
int fildes, function;

DESCRIPTION

T/R5

The lockf command will allow sections of a file to be locked (advisory write locks).
(Mandatory or enforcement mode record locks are not currently available.) Lock-
ing calls from other processes which attempt to lock the locked file section will
either return an error value or be put to sleep until the resource becomes unlocked.
All the locks for a process are removed when the process terminates. (See fent/(2)
for more information about record locking.)

Fildes is an open file descriptor. The file descriptor must have O_WRONLY or
O_RDWR permission in order to establish lock with this function call.

Function is a control value which specifies the action to be taken. The permissible
values for function are defined in <umistd.h> as follows:

#define F ULOCK 0 /+ Unlock a previously locked section */
#define F_LOCK 1 /= Lock a section for exclusive use */

#define F TLOCK 2 /» Test and lock a section for exclusive use */
#define F _TEST 3 /+ Test section for other processes locks */

All other values of function are reserved for future extensions and will result in an
error return if not implemented.

F_TEST is used to detect if a lock by another process is present on the specified sec-
tion. F_LOCK and F_TLOCK both lock a section of a file if the section is available.
F_UNLOCK removes locks from 2 section of the file.

Size is the number of contiguous bytes to be locked or unlocked. The resource to be
locked starts at the current offset in the file and extends forward for a positive size
and backward for a negative size (the preceding bytes up to but not including the
current offset). If size is zero, the section from the current offset through the larg-
est file offset is locked (ie., from the current offset through the present or any
future end-of-file). An area need not be allocated to the file in order to be locked as
such locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or
be contained by a previously locked section for the same process. When this occurs,
or if adjacent sections occur, the sections are combined into a single section. If the
request requires that a new element be added to the table of active locks and this
table is already full, an error is returned, and the new section is not locked.

F LOCK and F_TLOCK requests differ only by the action taken if the resource is not
available. F_LOCK will cause the calling process to sleep until the resource is avail-
able. F_ TLOCK will cause the function to return a —1 and set errno to [EACCESS]
error if the section is already locked by another process.

F_ULOCK requests may, in whole or in part, release one or more locked sections
controlled by the process. When sections are not fully released, the remaining sec-
tions are still locked by the process. Releasing the center section of a locked section

-1 - 7/85

LOCKF (3C) {C Programming Language Utilities) LOCKF{(3C)

requires an additional element in the table of active locks. If this table is full, an
[EDEADLK] error is returned and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by accessing another process’s locked resource. Thus calls to lock or fentl scan
for a deadlock prior to sleeping on a locked resource. An error return is made if
sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm(2) command may
be used to provide a timeout facility in applications which require this facility.

ERRORS
The lockf utility will fail if one or more of the following are true:

[EBADFI
Fildes is not a valid open descriptor.

[EACCESS]
Cmd is F_TLOCK or F TEST and the section is already locked by another
process.

[EDEADLK]
Cmd is F_LOCK or F_TLOCK and a deadlock would occur. Also the cmd is
either of the above or F_ ULOCK and the number of entries in the lock table
would exceed the number allocated on the system.

SEE ALSQO
close(2), creat(2), fentl(2), intro(2), open(2), read(2), write(2).
RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.
WARNINGS
Unexpected results may occur in processes that do buffering in the user address

space. The process may later read/write data which is/was locked. The standard
170 package is the most common source of unexpecied buffering.

7/85 -2- 7/85

LSEARCH (3C) (C Programming Language Utilities) LSEARCH (3C)

NAME

Isearch, Ifind — linear search and update

SYNOPSIS

#include <stdio.h>
#include <search.h>

char isearch ((char *)key, (char *)base, melp, sizeof(*key), compar)
unsigned *nelp;
int (xcompar)();

char =lfind ((char *)key, {(char *}base, nelp, sizeof(rkey), compar)
unsigned *nelp;
int (+compar)();

DESCRIPTION

Lsearch is a linear search routine generalized frem Knuth (6.1) Algorithm S. It
returns a pointer into a table indicating where a datum may be found. If the datum
does not occur, it is added at the end of the table. Key points to the datum to be
sought in the table. Base points to the first element in the table. Nelp points to an
integer containing the current number of elements in the table. The integer is
incremented if the datum is added to the table. Compar is the name of the com-
parison function which the user must supply (stremp, for example). It is called
with two arguments that point to the elements being compared. The function must
return zero if the elements are equal and non-zero otherwise.

Lfind is the same as Isearch except that if the datum is not found, it is not added to
the table. Instead, a NULL pointer is returned.

NOTES

The pointers to the key and the element at the base of the table should be of type
pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be cast
into type pointer-to-element.

EXAMPLE

7/85

This fragment will read in < TABSIZE strings of length < ELSIZE and store them
in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

char linelELSIZE], tablTABSIZENELSIZE], #lsearch();
unsigned nel = 0
int stremp{);

while (fgets(line, ELSIZE, stdin) '= NULL & &
nel < TABSIZE)
(void) Isearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

-1 - 7/85

LSEARCH (3C) (C Programming Language Utilities) LSEARCH (3C)

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

DIAGNOSTICS
If the searched for datum is found, both Isearch and Ilfind return a pointer to it.
Otherwise, Ifind returns NULL and Isearch returns a pointer to the newly added
element.

BUGS

Undefined results can occur if there is not enough room in the table to add a new
item.

7/85 -2 7/85

MALLOC (3C) (C Programming Language Utilities) MALLOC(3C)

NAME
malloc, free, realloc, calloc — main memory allocator

SYNOPSIS
char *malloc (size)
unsigned size;

void free (ptr)
char *pir;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char »calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Malloc and free provide a simple general-purpose memory allocation package.
Malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc; after
free is performed this space is made available for further allocation, but its contents
are left undisturbed.

Undefined results will occur if the space assigned by malloc is overrun or if some
random number is handed to free.

Malloc allocates the first big enough contiguous reach of free space found in a cir-
cular search from the last block allocated or freed, coalescing adjacent free blocks
as it searches. It calls sbrk (see brk(2)) to get more memory from the system when
there is no suitable space already free.

Realloc changes the size of the block pointed to by pir to size bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If no free block of size bytes is available in the
storage arena, then realloc will ask malloc to enlarge the arena by size bytes and
will then move the data to the new space.

Realloc also works if ptr points to a block freed since the last call of malloc, real-
loc, or calloc; thus sequences of free, malloc and realloc can exploit the search
strategy of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of size elsize. The space is
initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after pos-
sible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS
Malloc, realloc and calloc return a NULL pointer if there is no available memory
or if the arena has been detectably corrupted by storing outside the bounds of a
block. When this happens the block pointed to by pir may be destroyed.

NOTES
Search time increases when many objects have been allocated; that is, if a program
allocates but never frees, then each successive allocation takes longer. For an alter-
nate, more flexible implementation, see malloc (3X).

7/85 -1- 7/85

MEMORY (3C) (C Programming Language Utilities) MEMORY (3C)

NAME

memcepy, memehr, mememp, mMemcpy, memset — memory operations

SYNOPSIS

#include <memory.h>

char *memccpy (s1, s2, ¢, m}
char *sl, *s2;
mt ©, m

char *memchr (s, ¢,)
char »s;
int ¢, m

int mememp (s1, s2, m
char *s1, #s2;

it m;

char *memcpy (s1, s2, m)
char =sl, *s2;

int m;

char *memset (s, ¢, m}
char =s;

nt ¢, m

DESCRIPTION

BUGS

7/85

These functions operate as efficiently as possible on memory areas (arrays of charac-
ters bounded by a count, not terminated by a null character). They do not check
for the overflow of any receiving memory area.

Memeccpy copies characters from memory area s2 into sl, stopping after the first
occurrence of character ¢ has been copied, or after m characters have been copied,
whichever comes first. It returns a pointer to the character after the copy of ¢ in
s1, or a NULL pointer if ¢ was not found in the first m characters of s2.

Memchr veturns a pointer to the first occurrence of character ¢ in the first » char-
acters of memory area s, or 2 NULL pointer if ¢ does not occur.

Memcemp compares its arguments, looking at the first m characters only, and returns
an integer less than, equal to, or greater than 0, according as sl is lexicographically
less than, equal to, or greater than s2.

Memcpy copies m characters from memory area s2 to s1. It returns si.

Memset sets the first m characters in memory area s to the value of character ¢. [t
returns s.

For user convenience, all these functions are declared in the optional <memory.h>
header file.

Memcmp vses native character comparison, which is unsigned. Thus the sign of the
value returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations. Thus
overlapping moves may yield surprises.

-1~ 7/85

MKTEMP (3C) (C Programming Language Utilities) MKTEMP(3C)

MNAME
mktemp — make a unique file name

SYMNOPSIS
char smktemp (template)
char stemplate;

DESCRIPTION ‘
Mktemp replaces the contents of the string pointed to by template by a unique file
name, and returns the address of template. The string in template should ook like
a file name with six trailing Xs; mktemp will replace the Xs with a letter and the
current process ID. The letter will be chosen so that the resulting name does not
duplicate an existing file.

SEE ALSO
getpid (2), tmpfile(38), tmpnam(3S).

BUGS
It is possible to run out of leiters.

7/85 -1~ 7/85

MONITOR (3C) (C Programming Language Utilities) MONITOR (3C)

NAME

monitor — prepare execution profile

SYNOPSIS

#include <mon.h>

void monitor (lowpe, highpe, buffer, bufsize, nfune)
int {slowpc)(), (+highpe) ();

WORD »buffer;

int bufsize, nfunc;

DESCRIPTIOMN

An executable program created by cc —p auntomatically includes calls for monitor
with default parameters; monitor needn’t be called explicitly except to gain fine
control over profiling.

Monitor is an interface to profil(2). Lowpc and highpc are the addresses of two
functions; buffer is the address of a (user supplied) array of bufsize WORDs
(defined in the <mon.h> header file). Monitor arranges to record a histogram of
periodically sampled values of the program counter, and of counts of calls of certain
functions, in the buffer. The lowest address sampled is that of lowpc and the
highest is just below highpc. Lowpc may not equal O for this use of monitor. At
most nfunc call counts can be kept; only calls of functions compiled with the
profiling option —p of cc(1) are recorded.

For the results to be significant, especially where there are small, heavily used rou-
tines, it is suggested that the buffer be no more than a few times smaller than the
range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

;;;onitor ((int (+} ()2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text.

To stop execution monitoring and write the results on the file mon.out, use
monitor (Gnt (+)0)0, 0, 0, 0, 0);

Prof(1) can then be used to examine the results.

FILES
mon.out
/1ib/libp/libe.a
/lib/libp/libm.a
SEE ALSO
profil(2).
cc(1), prof(1) in the AT&T 3B2 Computer User Reference Manual.
7/85 -1~ 7/85

NLIST (3C) (C Programming Langunage Utilities) NLIST (3C)

NAME
nlist — get entries from name list

SYNOPSIS
#include <mlist.h>
int nlist (file-name, ni)
char *file-name;
struct nlist *nl;

DESCRIPTION
Nlist examines the name list in the executable file whose name is pointed to by
file-name, and selectively extracts a list of values and puts them in the array of nlist
structures pointed to by n/. The name list nl consists of an array of structures con-
taining names of variables, types and values. The list is terminated with a null
name; that is, a null string is in the name position of the structure. Each variable
name is looked up in the name list of the file. If the name is found, the type and
value of the name are inserted in the next two fields. The type field will be set to O
unless the file was compiled with the —g option. If the name is not found, both
entries are set to 0. See a.out(4) for a discussion of the symbol table structure.
This function is useful for examining the system name list kept in the file /unix. In
this way programs can obtain system addresses that are up to date.

NOTES

The <nlisi.h> beader file is automatically included by <a.out.h> for compatabil-
ity. However, if the only information needed from <a.out.h> is for use of nlist,
then including <a.out.h> is discouraged. If <a.out.h> is included, the line
“#Hundef n_name” may need to follow it.

SEE ALSO
a.out(4).

DIAGNOSTICS
All value entries are set to O if the file cannot be read or if it does not contain a
valid name list.
Nlist returns —1 upon error; otherwise it returns 0.

7/85 -1- 7/85

PERROR (3C) (C Programming Language Utilities) PERROR (3C)

NAME
perror, errno, sys_errlist, sys_nerr — system error messages

SYNOPSIS
void perror (s)
char »s;

extern int errno;
extern char *sys_errlistl 1;
extern int sys merr;

DESCRIPTION
Perror produces a message on the standard error output, describing the last error
encountered during a call to a system or library function. The argument string s is
printed first, then a colon and a blank, then the message and a new-line. To be of
most use, the argument string should include the name of the program that incurred
the error. The error number is taken from the external variable errno, which is set
when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings sys_errlist
is provided; errno can be used as an index in this table to get the message string
without the new-line. Sys nerr is the largest message number provided for in the
table; it should be checked because new error codes may be added to the system
before they are added to the table.

SEE ALSO
intro(2).

7/85 -1- 7/85

POPEN (3S) (C Programming Language Utilities) POPEN (38)

NAME

popen, pclose — initiate pipe to/from a process

SYNOPSIS

#include <stdio.h>

FILE +pepen (command, type)
char *command, *type;

int pelose (stream)
FILE *stream;

DESCRIPTION

The arguments to popen are pointers to null-terminated strings containing, respec-
tively, a shell command line and an I/Q mode, either r for reading or w for writing.
Popen creates a pipe between the calling program and the command to be executed.
The value returned is a stream pointer such that one can write to the standard input
of the command, if the I/0 mode is w, by writing to the file stream; and one can
read from the standard output of the command, if the I/0 mode is r, by reading
from the file stream.

A stream opened by popen should be closed by pclose, which waits for the associ-
ated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and
a type w as an output filter.

SEE ALSO

pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

7/85

Popen returns a NULL pointer if files or processes cannot be created, or if the shell
cannot be accessed.

Pclose returns —1 if stream is not associated with a “popened” command.

1f the original and “popened” processes concurrently read or write a common file,
neither should use buffered 1/0, because the buffering gets all mixed up. Problems
with an output filter may be forestalled by careful buffer flushing, e.g. with ffush;
see fclose (3S).

-1~ 7/85

PRINTF(38) (C Programming Language Utilities) PRINTF(3S)

NAME

printf, fprintf, sprintf — print formatted output

SYNOPSIS

#include <stdio.h>
int printf (format [, arg 1 ...)
char *format;

int fprintf (stream, format [, arg 1 ...)
FILE =stream;
char »format;

int sprintf (s, format [, arg 1 ...)
char »s, format;

DESCRIPTION

7/85

Printf places output on the standard output stream stdout. Fprintf places output
on the named output stream. Sprintf places “output,” followed by the null charac-
ter (\0), in consecutive bytes starting at »s; it is the user’s responsibility to ensure
that enough storage is available. Each function returns the number of characters
transmitted {(not including the \0 in the case of sprintf), or a negative value if an
output error was encountered.

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character siring that contains two types of objects: plain
characters, which are simply copied to the output stream, and conversion
specifications, each of which results in fetching of zero or more args. The resulits
are undefined if there are insufficient args for the format. If the format is
exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field widith. If the
converted value has fewer characters than the field width, it will be padded
on the left (or right, if the left-adjustment flag ‘“—, described below, has
been given) to the field width. If the field width for an s conversion is pre-
ceded by a 0, the string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the 4, o,
u, x, or X conversions, the number of digits to appear after the decimal
point for the e and f conversions, the maximum number of significant digits
for the g conversion, or the maximum number of characters to be printed
from a string in s conversion. The precision takes the form of a period ()
followed by a decimal digit string; a null digit string is treated as zero.

An optional I (ell) specifying that a following d, o, u, x, or X conversion
character applies to a long integer arg. A 1 before any other conversion
character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (+) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The arg
that is actually converted is not fetched until the conversion letter is seen, so the
args specifying field width or precision must appear before the arg Gf any) to be
converted.

-1~ 7/85

PRINTF(38)

7/85

(C Programming Language Utilities) PRINTF(3S)

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within the field.

The result of a signed conversion will always begin with a sign (+ or
-).

If the first character of a signed conversion is not a sign, a blank will be
prefixed to the result. This implies that if the blank and + flags both
appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an “alternate
form.” For ¢, &, s, and u conversions, the flag has no effect. For e
conversion, it increases the precision to force the first digit of the result
to be a zero. For x er X conversion, a non-zero result will have 0x or
0X prefixed to it. For e, E, £, g, and G conversions, the result will
always contain a decimal point, even if no digits follow the point {nor-
mally, 2 decimal point appears in the result of these conversions only if a
digit follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,onx x

e K

%

The integer arg is converted to signed decimal, unsigned octal, decimal,
or hexadecimal notation (x and X), respectively; the letters abedef are
used for x conversion and the letters ABCDEF for X conversion. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded
with leading zeroes. (For compatibility with older versions, padding
with leading zeroes may alternatively be specified by prepending a zero
to the field width. This does not imply an octal value for the field
width.) The default precision is 1. The result of converting a zero value
with a precision of zero is a null string.

The float or double arg is converted to decimal notation in the style
“[~]ddd.ddd,” where the number of digits after the decimal point is
equal to the precision specification. If the precision is missing, six digits
are output; if the precision is explicitly 0, no decimal point appears.

The float or double arg is converted in the style “[—Id.ddde+dd,”
where there is one digit before the decimal point and the number of
digits after it is equal to the precision; when the precision is missing, six
digits are produced; if the precision is zero, no decimal point appears.
The E format code will produce a number with E instead of e introduc-
ing the exponent. The exponent always contains at least two digits.

The float or double arg is printed in style f or e (or in style E in the case
of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted: style e
will be used only if the exponent resulting from the conversion is less
than —4 or greater than the precision. Trailing zeroes are removed from
the result; a decimal point appears only if it is followed by a digit.

The character arg is printed.

The arg is taken to be a string (character pointer) and characters from
the string are printed until a null character (\0) is encountered or the
number of characters indicated by the precision specification is reached.
If the precision is missing, it is taken to be infinite, so all characters up
to the first null character are printed. A NULL value for arg will yield
undefined results.

Print 2 %; no argument is converted.

-2 - 7/85

PRINTF(3S) (C Programming Langnage Utilities) PRINTF(3S)

In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by printf and fprinif are
printed as if putc(3S) had been called.

EXAMPLES

To print a date and time in the form “Sunday, July 3, 10:02,” where weekday and
month are pointers to nuli-terminated strings:

printf ("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);
To print = to 5 decimal places:
printf("pi = %.5f", 4 = atan(1.0));

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

7/85 -3- 7/85

PUTC (38) (C Programming Language Utilities) PUTC(38)

NAME
putc, putchar, fpute, putw — put character or word on a stream
SYNOPSIS
#include <stdio.h>
int pute (c, stream)
int o
FILE =stream;
int putchar (c)
int ¢
int fputc (¢, stream)
int ¢;
FILE *stream;
int putw (w, stream}
int w;
FILE #stream;
DESCRIPTION
Putc writes the character ¢ onto the output siream (at the position where the file
pointer, if defined, is pointing). Putchar(c) is defined as putc(c, stdout). Putc and
putchar are macros.
Fputc behaves like putc, but is a function rather than a macro. Fpufc runs more
slowly than puic, but it takes less space per invocation and its name can be passed
as an argument to a function.
Putw writes the word (i.e. integer) w to the output stream (at the position at which
the file pointer, if defined, is pointing). The size of a word is the size of an integer
and varies from machine to machine. Putw neither assumes nor causes special
alignment in the file.
Qutput streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output refers to
a terminal. The standard error output stream stderr is by default unbuffered, but
use of freopen (see fopen(38)) will cause it to become buffered or line-buffered.
When an output stream is unbuffered, information is queued for writing on the des-
tination file or terminal as soon as written; when it is buffered, many characters are
saved up and written as a block. When it is line-buffered, each line of output is
queued for writing on the destination terminal as soon as the line is completed (that
is, as soon as a mew-line character is written or terminal input is requested).
Setbuf(3S) or Setbuf(3S) may be used to change the stream’s buffering strategy.
SEE ALSO
fclose(3S), ferror(38), fopen(3S), fread (3S), printf(3S), puts(3S), setbuf(3S).
DIAGNOSTICS
On success, these functions each return the value they have written. On failure,
they return the constant EOF. This will occur if the file stream is not open for writ-
ing or if the output file cannot be grown. Because EOF is a valid integer, ferror(3S)
should be used to detect putw errors.
BUGS
Because it is implemented as a macro, puic treats incorrectly a siream argument
with side effects. In particular, pute(c, #f + +); doesn’t work sensibly. Fputc should
be used instead.
Because of possible differences in word length and byte ordering, files written using
7/85 -1~ 7/85

PUTC (3S) (C Programming Language Utilities) PUTC(38)

putw are machine-dependent, and may not be read using gerw on a different proces-
SOT.

7/85 -2- 7/85

PUTENY (3C) (C Programming Language Utilities) PUTENV (3C)

NAME

putenv — change or add value to environment

SYNOPSIS

int putenv (string)
char =string;

DESCRIPTION

3

String points to a string of the form “name =value.” Putenv makes the value of
the environment variable name equal to value by altering an existing variable or
creating a new one. In either case, the string pointed to by string becomes part of
the environment, so altering the string will change the environment. The space used
by string is no longer used once a new string-defining name is passed to putenv.

SEE ALSO

exec(2), getenv(3C), malloc(3C), environ(5),

DIAGNOSTICS

Putenv returns non-zero if it was unable to obtain enough space via malloc for an
expanded environment, otherwise zero.

WARNINGS

T/85

Putenv manipulates the environment pointed to by environ, and can be used in con-
junction with gerenv. However, envp (the third argument to main) is not changed.
This routine uses malloc(3C) to enlarge the environment.

After putenv is called, environmental variables are not in alphabetical order.

A potential error is to call putenv with an automatic variable as the argument, then
exit the calling function while string is still part of the environment.

-1~ 7/85

PUTPWENT (3C) (C Programming Language Utilities) PUTPWENT (3C)

NAME
putpwent — write password file entry

SYNOPSIS
#include <pwd.h>
int patpwent (p, f)
struct passwd *p;
FILE =f;
DESCRIPTION
Putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure
created by getpwent (or getpwuid or getpwnam), putpwent writes a line on the
stream f, which matches the format of /ete/passwd.
SEE ALSO
getpwent (3C).
DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation, otherwise
zZero.
WARNING

The above routine uses <stdie.h>, which causes it to increase the size of programs,
not otherwise using standard 1/0, more than might be expected.

7/85 -1- 7/85

PUTS(38) (C Programming Langunage Utilities) PUTS(3S)

NAME
puts, fputs — put a string on a stream

SYNOPSIS
#inchude <stdio.h>
int puts {s)
char »s;
int fputs (s, stream)
char =s;
FILE =stream;
DESCRIPTION

Puts writes the null-terminated string pointed to by s, followed by a new-line char-
acter, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output stream.
Neither function writes the terminating null character.

SEE ALSO
ferror(3S), fopen(3S), fread(38), printf(3S), putc(3S).

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write on a
file that has not been opened for writing.

MNOTES
Puts appends a new-line character while fputs does not.

7/85 -1- 7/85

QSORT (3C) (C Programming Language Utilities) QSORT (3C)

NAME
gsort — quicker sort

SYNOPSIS
void qsort ({char *) base, nel, sizeof (base), compar)
unsigned nel;
int (=compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. It sorts a table of data in
place.

Base points to the element at the base of the table. Nel is the number of elements
in the table. Compar is the name of the comparison function, which is called with
two arguments that point to the elements being compared. As the function must
return an integer less than, equal to, or greater than zero, so must the first argu-
ment to be considered be less than, equal to, or greater than the second.

NOTES
The pointer to the base of the table should be of type pointer-to-element, and cast
to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.
The order in the output of two items which compare as equal is unpredictable.

SEE ALSO
bsearch(3C), lsearch(3C), string (3C).
sort(1) in the AT&T 3B2 Computer User Reference Manual.

7/85 -1~ 7/85

RAND (3C) (C Programming Language Utilities) RAND(3C)

NAME
rand, srand — simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION "
Rand uses a multiplicative congruential random-number generator with period 2
that returns successive pseudo-random numbers in the range from 0 to 2°°—1.

Srand can be called at any time to reset the random-number generator to a random
starting point. The generator is initially seeded with a value of 1.

NOTES
The spectral properties of rand leave a great deal to be desired. Drand48(3C) pro-
vides a much better, though more elaborate, random-number generator.

SEE ALSO
drand48(3C).

7/85 -1- /85

SCANF(3S) (C Programming Language Utilities) SCANF (38)

NAME

scanf, fscanf, sscanf — convert formatted input

SYNOPSIS

#include <stdio.h>

int scanf (format [, pointer 1...)
char *format;

int fscanf (stream, format [, pointer 1 ...)
FILE *stream;
char *format;

int sscanf (s, format [, pointer] ...)
char »s, »format;

DESCRIPTION

7/85

Scanf reads from the standard input stream stdin. Fscanf reads from the named
input stream. Sscanf reads from the character string s. Each function reads char-
acters, interprets them according to a format, and stores the results in its argu-
ments. Each expects, as arguments, a control string format described below, and a
set of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which, except in
two cases described below, cause input to be read up to the next non-white-space
character.

2. An ordinary character (pot %), which must match the next character of the
input stream.

3. Conversion specifications, consisting of the character %, an optional assignment
suppressing character #, an optional numerical maximum field width, an optional
I (ell) or h indicating the size of the receiving variable, and 2 conversion code.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argument, unless assignment
suppression was indicated by *. The suppression of assignment provides a way of
describing an input field which is to be skipped. An input field is defined as a string
of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted. For all descriptors except “[” and “c”, white
space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. For a suppressed field, no
pointer argument is given. The following conversion codes are legal:

% a single % is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an
integer pointer.

u an unsigned decimal integer is expected; the corresponding argument should
be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should be an
integer pointer.

-1~ 7/85

SCANF(38) (C Programming Language Utilities) SCANF(38)

7/85

X a hexadecimal integer is expected; the corresponding argument should be an
integer pointer.

ef,g a floating point number is expected; the next field is converted accordingly
and stored through the corresponding argument, which should be a pointer
to a floar. The input format for floating point numbers is an optionally
signed string of digits, possibly containing a decimal point, followed by an
optional exponent field consisting of an E or an e, followed by an optional
+, —, or space, followed by an integer.

s a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept
the string and a terminating \0, which will be added automatically. The
input field is terminated by a white-space character.

c a character is expected; the corresponding argument should be a character
pointer. The normal skip over white space is suppressed in this case; to
read the next non-space character, use %1s. If a field widih is given, the
corresponding argument should refer to a character array; the indicated
number of characters is read.

! indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, which we
will call the scanser, and a right bracket; the input field is the maximal
sequence of input characters consisting entirely of characters in the scanset.
The circumflex (™), when it appears as the first character in the scanset,
serves as a complement operator and redefines the scanset as the set of all
characters not contained in the remainder of the scanset string. There are
some conventions used in the construction of the scanset. A range of char-
acters may be represented by the construct first —last, thus [0123456789]
may be expressed [0—9). Using this convention, first must be lexically less
than or equal to Jast, or else the dash will stand for itself. The dash will
also stand for itself whenever it is the first or the last character in the scan-
set. To include the right square bracket as an element of the scanset, it
must appear as the first character (possibly preceded by a circumfiex) of
the scanset, and in this case it will not be syntactically interpreted as the
closing bracket. The corresponding argument must point to a character
array large enough to hold the data field and the terminating \0, which will
be added automatically. At least one character must match for this conver-
sion to be considered successful.

The conversion characters d, m, 0, and x may be preceded by 1 or h to indicate that
a pointer to lomg or to shert rather than io imt is in the argument list. Similarly, the
conversion characters e, f, and g may be preceded by 1 to indicate that a pointer to
double rather than to float is in the argument list. The } or h modifier is ignored for
other conversion characters.

Scanf conversion terminates at EOF, at the end of the control string, or when an
input character conflicts with the control string. In the latter case, the offending
character is left unread in the input stream.

Scanf returns the number of successfully matched and assigned input items; this
number can be zero in the event of an early conflict between an input character and
the control string. If the input ends before the first conflict or conversion, EOF is
returned.

-2 - 7/85

SCANF(3S) (C Programming Language Utilities) SCANF(38)

EXAMPLES

The call:

int i, n; float x; char namel50];
n = scanf ("%d%f%s", &i, &x, name);

with the input line:
25 54.32E—1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will
contain thompson\0. Or:

int i; float x; char namel50];
(void) scanf ("%2d%f%+d %[0—9]1", &i, &x, name);

with input:
56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the siring 56\0 in name. The
next call to getchar (see getc(3S)} will return a.

SEE ALSO

getc(3S), printf(3S), strtod (3C), strtol(3C).

DIAGNMNOSTICS

BUGS

7/85

These functions return EOF on end of input and a short count for missing or illegal
data items.

The success of literal matches and suppressed assignments is not directly determin-
able.

Trailing white space (including a new-line) is left unread unless matched in the con-
trol string.

-3 - 7/85

SETBUF(35) (C Programming Language Utilities) SETBUF (3S)

NAME

setbuf, setvbuf — assign buffering to a stream

SYNOPSIS

#include <stdio.h>

void setbuf (stream, buf)
FILE =*stream;
char sbuf;

int setvbuf (stream, buf, type, size)
FILE #stream;

char +buf;

int type, size;

DESCRIPTION

Setbuf may be used after a stream has been opened but before it is read or written.
It causes the array pointed to by buf to be used instead of an automatically allo-
cated buffer. If buf is the NULL pointer input/output will be completely
unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an array is
needed:

char buf{BUFSIZI;

Setvbuf may be used after a stream has been opened but before it is read or writ-
ten. Type determines how stream will be buffered. Legal values for type (defined
in stdio.h) are:

_JOFBF causes input/output to be fully buffered.

_TOLBF causes output to be line buffered; the buffer will be flushed when a
newline is written, the buffer is full, or input is requested.

_IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffering,
instead of an automatically allocated buffer. Size specifies the size of the buffer to
be used. The constant BUFSIZ in <stdioh> is suggested as a good buffer size. If
input/output is unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other input/output is fully
buffered.

SEE ALSO

fopen(3S), getc(35), malloc(3C), putc(35), stdio(3S).

DIAGNOSTICS

If an illegal value for fype or size is provided, seivbuf returns a non-zero value.
Otherwise, the value returned will be zero.

NOTES

1/85

A common source of error is allocating buffer space as an “automatic” variable in a
code block, and then failing to close the stream in the same block.

-1~ 7/85

SETIMP(3C) (C Programming Language Utilities) SETIMP(3C)

NAME
setjmp, longjmp — non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp (emv, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp buf, is defined in the
<setjmp.h> header file) for later use by longjmp. It returns the value 0.

Longjmp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longimp is completed, program execution con-
tinues as if the corresponding call of sezjmp (which must not itself have returned in
the interim) bhad just returned the value val. Longjmp cannot cause setjmp to
return the value 0. If longjmp is invoked with a second argument of 0, setjmp will
return 1. All accessible data had values as of the time longjmp was called.

SEE ALSO
signal(2).

WARNING
If longjmp is called even though env was never primed by a call to setjmp, or when
the last such call was in a function which has since returned, absolute chaos is
guaranteed.

7/85 -1- 7/85

SLEEP(3C) (C Programming Language Utilities) SLEEP (3C)

NAME

sleep — suspend execution for interval

SYNOPSIS

unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION

The current process is suspended from execution for the number of seconds specified
by the argument. The actual suspension time may be less than that requested for
two reasons: (1) Because scheduled wakeups occur at fixed 1-second intervals, {on
the second, according to an internal clock) and (2) because any caught signal will
terminate the sleep following execution of that signal’s catching routine. Also, the
suspension time may be longer than requested by an arbitrary amount due to the
scheduling of other activity in the system. The value returned by sleep will be the
“unslept” amount (the requested time minus the time actually slept) in case the
caller had an alarm set to go off earlier than the end of the requested sleep time, or
premature arousal due to another caught signal.

The routine is implemented by setiing an alarm signal and pausing until it (or some
other signal) occurs. The previous state of the alarm signal is saved and restored.
The calling program may have set up an alarm signal before calling sleep. If the
sleep time exceeds the time till such alarm signal, the process sleeps only until the
alarm signal would have occurred. The caller’s alarm catch routine is executed just
before the sleep routine returns. But if the sleep time is less than the time till such
alarm, the prior alarm time is reset to go off at the same time it would have without
the intervening sleep.

SEE ALSO

7/85

alarm(2), pause(2), signal(2).

- 7/85

SSIGNAL(3C) (C Programming Language Utilities) SSIGNAL (3C)

NAME

ssignal, gsignal — software signals

SYNOPSIS

#include <signalh>

int (»ssignal (sig, actiom))()
int sig, (+action){);

int gsignal (sig)

int sig;

DESCRIPTION

Ssignal and gsignal implement a software facility similar to signal(2). This facility
is used by the Standard C Library to enable users to indicate the disposition of error
conditions, and is also made available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive
range 1 through 15. A call to ssignal associates a procedure, action, with the
software signal sig; the software signal, sig, is raised by a call to gsignal. Raising a
software signal causes the action established for that signal to be raken.

The first argument to ssignal is a number identifying the type of signal for which
an action is to be established. The second argument defines the action; it is either
the name of a (user-defined) action function or one of the manifest constants
SIG_DFL (default) or SIG_IGN (ignore). Ssignal returns the action previously esta-
blished for that signal type; if no action has been established or the signal number is
illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to
SIG DFL and the action function is entered with argument sig. Gsignal
returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no other
action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no other
action.

If sig has an illegal value or no action was ever specified for sig, gsignal
returns the value 0 and takes no other action.

SEE ALSO

signal(2).

MNOTES

7/85

There are some additional signals with numbers outside the range 1 through 15
which are used by the Standard C Library to indicate error conditions. Thus, some
signal numbers outside the range 1 through 15 are legal, although their use may
interfere with the operation of the Standard C Library.

-1- 7/85

STDIO(3S) (C Programming Langnage Utilities) STDIO (3S)

NAME

stdio — standard buffered input/output package

SYNOPSIS

#include <stdio.h>
FILE =stdin, *stdout, rstderr;

DESCRIPTION

The functions described in the entries of sub-class 3S of this manual constitute an
efficient, user-level I/0 buffering scheme. The in-line macros getc(3S) and
putc(3S) handle characters quickly. The macros getchar and putchar, and the
higher-level routines fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, fwrite, geis,
getw, printf, puts, putw, and scanf all use or act as if they use getc and putc; they
can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a pointer to
a defined type FILE. Fopen(3S) creates certain descriptive data for a stream and
returns a pointer to designate the stream in all further transactions. Normally,
there are three open streams with constant pointers declared in the <stdio.h>
header file and associated with the standard open files:

stdin standard input file
stdont standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (—1) is returned upon end-of-file or error by most integer
functions that deal with streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular
implementation.

Any program that uses this package must include the header file of pertinent macro
definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this manual
are declared in that header file and need no further declaration. The constants and
the following “functions” are implemented as macros (redeclaration of these names
is perilous): geic, getchar, putc, putchar, ferror, feof, clearerr, and fileno.

SEE ALSO

open(2), close(2), Iseek(2), pipe(2), read(2), write(2), ctermid(3S), cuserid(3S),
fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3C),
popen(3S), printf(3S), putc(38), puts(3S), scanf(3S), setbuf(3S), system(3S),
tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS

7/85

Invalid stream pointers will usnally cause grave disorder, possibly including program
termination. Individual function descriptions describe the possible error conditions.

-1~ 7/85

STDIPC (3C) (C Programming Language Utilities) STDIPC (3C)

NAME
ftok — standard interprocess communication package

SYNOPSIS
#include <sys/typesh>
#include <sys/ipe.h>
key_t ftok(path, id)
char *path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be used
by the msgget(2), semget(2), and shmget(2) system calls to obtain interprocess
communication identifiers. One suggested method for forming a key is to use the
Jftok subroutine described below. Another way to compose keys is to include the
project ID in the most significant byte and to use the remaining portion as a
sequence number. There are many other ways to form keys, but it is necessary for
each system to define standards for forming them. If some standard is not adhered
to, it will be possible for unrelated processes to unintentionally interfere with each
other’s operation. Therefore, it is strongly suggested that the most significant byte
of a key in some sense refer to a project so that keys do not conflict across a given
system.
Frok returns a key based on path and id that is usable in subsequent msgget,
semget, and shmget system calls. Path must be the path name of an existing file
that is accessible to the process. Id is a character which uniquely identifies a pro-
ject. Note that fiok will return the same key for linked files when called with the
same id and that it will return different keys when called with the same file name
but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Fiok teturns (key £} —1 if path does not exist or if it is not accessible to the pro-
cess.

WARNING
If the file whose path is passed to ftok is removed when keys still refer to the file,
future calls to ftok with the same path and id will return an error. If the same file
is recreated, then fiok is likely to return a different key than it did the original time
it was called.

T/85 -1~ 7/85

STRING (3C) (C Programming Langunage Utilities) STRING (3C)

NAME

strcat, strncat, strcmp, strncmp, strepy, strncpy, strlen, strchr, strrchr, strpbrk,
strspn, strespn, strtok — string operations

SYNOPSIS

#include <string.h>

char »strcat (s1, s2)
char »sl, »s2;

char =strncat (sl, s2, m)
char »sl, =s2;

int n;

int stremp (s1, s2)

char ssl, »s2;

int strncmp (s1, s2, m)
char »sl, »s2;

int n;

char sstrepy (si, s2)
char »s1, *s2;

char sstrncpy (s1, s2, n)
char =81, »s2;

int n;

int strlen (s)

char »s;

char #strchr (s, ¢)
char »s;

int c;

char sstrrchr (s, ¢)
char »s;

int c;

char »strpbrk (s1, s2)
char »sl, »s2;

int strspn (s1, s2)
char *sl, »s2;

int strespn (s1, s2)
char =sl, »s2;

char sstrtok (s1, s2)
char »s1, »s2;

DESCRIPTION

7/85

The arguments s, s2 and s point to strings (arrays of characters terminated by a
null character). The functions strcat, sirncat, strcpy, and strncpy all alter sl.
These functions do not check for overflow of the array pointed to by sl.

Strcat appends a copy of string s2 to the end of string s1. Sirncat appends at most
n characters. Each returns a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer less than, equal to, or
greater than 0, according as sl is lexicographically less than, equal to, or greater
than s2. Strncmp makes the same comparison but looks at at most n characters.

-1 - 7/85

STRING (3C) (C Programming Langunage Utilities) STRING (3C)

BUGS

7/85

Strcpy copies string 82 to sl, stopping after the null character has been copied.
Strncpy copies exactly m characters, truncating s2 or adding null characters to sl if
necessary. The result will not be null-terminated if the length of s2 is m or more.
Each function returns sl.

Strien returns the number of characters in s, not including the terminating null
character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character ¢ in
string s, or a NULL pointer if ¢ does not occur in the string. The null character ter-
minating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any character from
string s2, or a NULL pointer if no character from s2 exists in s1.

Strspn (strespn) returns the length of the initial segment of string s1 which consists
entirely of characters from (not from) string s2.

Striok considers the string s1 to consist of a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string s2. The first
call (with pointer s1 specified) returns a pointer to the first character of the first
token, and will have written a null character into s1 immediately following the
returned token. The function keeps track of its position in the string between
separate calls, so that subsequent calls (which must be made with the first argument
a NULL pointer) will work through the string s1 immediately following that token.
In this way subsequent calls will work through the string s1 until no tokens remain.
The separator string s2 may be different from call to call. When no token remains
in s1, a NULL pointer is returned.

For user convenience, all these functions are declared in the optional <string.h>
header file.

Stremp and strnemp use native character comparison, which is unsigned. Thus the
sign of the value returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations. Thus
overlapping moves may yield surprises.

.0 7/85

STRTOD (3C) (C Programming Language Utilities) STRTOD (3C)

NAME

strtod, atof — convert string to double-precision number

SYNOPSIS

double strtod (str, ptr)
char *sty, »*ptr;

double atof (str)
char =str;

DESCRIPTION

Strtod returns as a double-precision floating-point number the value represented by
the character string pointed to by szr. The string is scanned up to the first unrecog-
nized character.

Strtod recognizes an optional string of “white-space” characters (as defined by
isspace in ctype(3C)), then an optional sign, then a string of digits optionally con-
taining a decimal point, then an optional e or E followed by an optional sign or
space, followed by an integer.

If the value of ptr is not {char **)NULL, a pointer to the character terminating the
scan is returned in the location pointed to by pir. If no number can be formed, #ptr
is set to sir, and zero is returned.

Atof(str) is equivalent to strtod(str, (char *+*)NULL).

SEE ALSO

ctype(3C), scanf(3S), strtol (3C).

DIAGNOSTICS

7/85

If the correct value would cause overflow, +HUGE is returned {according to the sign
of the value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to
ERANGE.

-1~ 7/85

STRTOL (3C) (C Programming Language Utilities) STRTOL (3C)

NAME
strtol, atol, atoi — convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char =str, *sptr;
int base;
long atol (str)
char *str;
int atei (str)
char »str;

DESCRIPTION
Striol returns as a long integer the value represented by the character string
pointed to by stzr. The string is scanned up to the first character inconsistent with
the base. Leading “white~space” characters (as defined by isspace in ctype(3C))
are ignored.
If the value of pir is not (char »»)NULL, a pointer to the character terminating the
scan is returned in the location pointed to by ptr. If no integer can be formed, that
location is set to sir, and zero is returned.
If base is positive {and not greater than 36), it is used as the base for conversion.
After an optional leading sign, leading zeros are igmored, and “0x” or “0X” is
ignored if base is 16.
If base is zero, the string itself determines the base thusly: After an optional leading
sign a leading zero indicates octal conversion, and a leading “0x” or “0X” hexade-
cimal conversion. Otherwise, decimal conversion is used.
Truncation from long to int can, of course, take place upon assignment or by an
explicit cast.
Atol(str) is equivalent to strtol(str, (char **)NULL, 10).
Atoi(str) is equivalent to (int) strtol(str, (char »~)NULL, 10).

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

BUGS

7/85

Overflow conditions are ignored.

-1 7/85

SWAB (3C) (C Programming Language Utilities) SWAB(3C)

NAME
swab — swap bytes

SYNOPSIS
void swab (from, to, mbytes)
char *from, =to;
int nbytes;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the array pointed to by z0, exchang-
ing adjacent even and odd bytes. It is useful for carrying binary data between
PDP-11s and other machines. Nbytes should be even and non-negative. If nbytes is
odd and positive swab uses nbytes—1 instead. If nbytes is negative, swab does noth-
ing.

7/85 -1- 7/85

SYSTEM (3S) (C Programming Language Utilities) SYSTEM (3S)

NAME
system — issue a shell command
SYNOPSIS
#include <stdio.h>
int system (string)
char »string;
DESCRIPTION
System causes the string to be given to sh(1) as input, as if the string had been
typed as a command at a terminal. The current process waits until the shell has
completed, then returns the exit status of the shell.
FILES
/bin/sh
SEE ALSO
exec(2).
sh(1) in the AT&T 3B2 Computer User Reference Manual.
DPIAGNOSTICS

System forks to create a child process that in turn exec’s /bin/sh in order to execute
siring. If the fork or exec fails, system returns a negative value and sets errno.

7/85 -1- 7/85

TMPFILE (38) (C Programming Language Utilities) TMPFILE (3S)

MNAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.h>

FILE ~tmpfile ()

DESCRIPTION
Tmpfile creates a temporary file using a name generated by tmpnam(33), and
returns a corresponding FILE pointer. If the file cannot be opened, an error message
is printed using perror(3C}, and a NULL pointer is returned. The file will automat-
ically be deleted when the process using it terminates. The file is opened for update
“W+").

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C), tmpnam(3S).

7/85 -1~ 7/85

TMPNAM (3S) (C Programming Language Utilities) TMPNAM (3S)

NAME

tmpnam, tempnam — create a name for a temporary file

SYNOPSIS

#include <stdio.h>

char *tmpnam (s)
char »s;

char *tempnam (dir, pfx)
char =dir, =pfx;

DESCRIPTION

These functions generate file names that can safely be used for a temporary file.

Tmpnam always generates a file name using the path-prefix defined as P_tmpdir in
the <stdio.h> header file. If s is NULL, tmpnam leaves its result in an internal
static area and returns a pointer to that area. The next call to tmpnam will destroy
the contents of the area. If s is not NULL, it is assumed to be the address of an
array of at least L_tmpmam bytes, where L tmpnam is a constant defined in
<stdio.h>; tmpnam places its result in that array and returns s.

Tempnam allows the user to control the choice of a directory. The argument dir
points to the name of the directory in which the file is to be created. If dir is NULL
or points to a string which is not a name for an appropriate directory, the path-
prefix defined as P_tmpdir in the <stdio.h> header file is used. If that directory is
not accessible, /tmp will be used as a last resort. This entire sequence can be up-
staged by providing an environment variable TMPDIR in the user’s environment,
whose value is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter
sequences in their names. Use the pfx argument for this. This argument may be
NULL or point to a string of up to five characters to be used as the first few charac-
ters of the temporary-file name.

Tempnam uses malloc(3C) to get space for the constructed file name, and returns a
pointer to this area. Thus, any pointer value returned from tempnam may serve as
an argument to free (see malloc(3C)). If tempnam cannot return the expected
result for any reason, i.e. malloc(3C) failed, or none of the above mentioned
attempts to find an appropriate directory was successful, a NULL pointer will be
returned.

NOTES

These functions generate a different file name each time they are called.

Files created using these functions and either fopen(3S) or creat(2) are temporary
only in the sense that they reside in a directory intended for temporary use, and
their names are unique. It is the user’s responsibility to use unlink(2) to remove
the file when its use is ended.

SEE ALSO

BUGS

7/85

creat(2), unlink(2), fopen(3S), malioc(3C), mktemp(3C), tmpfile(3S).

If called more than 17,576 times in a single process, these functions will start recy-
cling previously used names.

Between the time a file name is created and the file is opened, it is possible for some
other process to create a file with the same name. This can never happen if that
other process is using these functions or mktemp, and the file names are chosen so
as to render duplication by other means unlikely.

-1 7/85

TSEARCH (3C) (C Programming Language Utilities) TSEARCH(3C)

NAME

tsearch, tfind, tdelete, twalk — manage binary search trees

SYNOPSIS

#include <search.h>

char »tsearch ((char *) key, {char **) rootp, compar)
int (ecompar)();

char =tfind ((char *) key, {char *+) rootp, compar)
int (*compar)();

char =tdelete {((char ¢} key, (char **) rootp, compar)
int (*compar)();

void twalk ((char *) root, action)
void (raction)();

DESCRIPTION

/85

Tsearch, tfind, tdelete, and twalk are routines for manipulating binary search trees.
They are generalized from Knuth (6.2.2) Algorithms T and D. All comparisons are
done with a user-supplied routine. This routine is called with two arguments, the
pointers to the elements being compared. It returns an integer less than, equal to,
or greater than 0, according to whether the first argument is to be considered less
than, equal to or greater than the second argument. The comparison function need
not compare every byte, so arbitrary data may be contained in the elements in addi-
tion to the values being compared.

Tsearch is used to build and access the tree. Key is a pointer to a datum to be
accessed or stored. If there is a datum in the tree equal to +key (the value pointed
to by key), a pointer to this found datum is returned. Otherwise, *key is inserted,
and a pointer to it returned. Only pointers are copied, so the calling routine must
store the data. Rootp points to a variable that points to the root of the tree. A
NULL value for the variable pointed to by reetp denotes an empty tree; in this case,
the variable will be set to point to the datum which will be at the root of the new
tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if
found. However, if it is not found, tfind will return a NULL pointer. The argu-
ments for #find are the same as for isearch.

Tdelete deletes a node from a binary search tree. The arguments are the same as
for tsearch. The variable pointed to by reetp will be changed if the deleted node
was the root of the tree. Tdelete returns a pointer to the parent of the deleted
node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to be traversed.
(Any node in a tree may be used as the root for a walk below that node.) Action is
the name of a routine to be invoked at each node. This routine is, in turn, called
with three arguments. The first argument is the address of the node being visited.
The second argument is a value from an enumeration data type typedef enum {
preorder, postorder, endorder, leaf } VISIT; (defined in the <search.h> header
file), depending on whether this is the first, second or third time that the node has
been visited (during a depth-first, left-to-right traversal of the tree), or whether the
node is a leaf. The third argument is the level of the node in the tree, with the root
being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-
element, and cast to type pointer-to-character. Similarly, although declared as type
pointer-to-character, the value returned should be cast into type pointer-to-element.

-1~ 7/85

TSEARCH (3C) {C Programming Language Utilities) TSEARCH(3C)

EXAMPLE
The following code reads in strings and stores structures containing a pointer to
each string and a count of its length. It then walks the tree, printing out the stored
strings and their lengths in alphabetical order.

#include <search.h>
#include <stdio.h>

struct node { /* pointers to these are stored in the tree */
char #string;
int length;

char string_spacel100001; /= space to store strings */

struct node nodes[500]; /* nodes to store */

struct node *root = NULL; /= this points to the root */

main()

char =strptr = string_space;
struct node =nodeptr = nodes;
void print node(), twalk();
int i = 0, node compare();

while (gets{strptr) '= NULL && i++ < 500) {

/* set node =/

nodeptr—>string = strptr;

nodeptr—>length = strlen{strptr);

/* put node into the tree »/

(void) tsearch((char =)nodeptr, &root,
node_compare);

/* adjust pointers, so we don’t overwrite tree */

strptr += nodeptr—>length + 1;

nodeptr++;
}
twalk(root, print_node);
}
I
This routine compares two nodes, based on an
alphabetical ordering of the string field.
*/
int

node_compare(nodel, node2)
struct node #*nodel, *node2;

return strcmp(nodel—> string, node2—>string);

This routine prints out a node, the first time
twalk encounters it.
=/

7/85 -2~ 7/85

TSEARCH (3C) {C Programming Language Utilities) TSEARCH (3C)

void

print_node(node, order, level)
struct node #*node;

VISIT order;

int level;
if (order == preorder Il order == leaf) |
(void) printf("string = %20s, length = %d\n",
(*node) —>string, (*node)—>length);
)
)

SEE ALSO

bsearch(3C), hsearch(3C), Isearch(3C).

DIAGNOSTICS

A NULL pointer is returned by tsearch if there is not enough space available to
create a new node.

A NULL pointer is returned by tsearch, tfind and tdelete if rootp is NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not, #find
returns NULL, and fsearch returns a pointer to the inserted item.

WARNINGS

BUGS

7/85

The root argument to twalk is one level of indirection less than the rootp arguments
to tsearch and tdelete.

There are two nomenclatures used to refer to the order in which tree nodes are
visited. Tsearch uses preorder, postorder and endorder to respectively refer to vist-
ing a node before any of its children, after its left child and before its right, and
after both its children. The alternate nomenclature uses preorder, inorder and pos-
torder to refer to the same visits, which could resuit in some confusion over the
meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

-3- 7/85

TTYNAME (3C) (C Programming Language Utilities) TTYNAME (3C)

NAME
ttyname, isatty — find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION
Ttyname returns a pointer to a string containing the null-terminated path name of
the terminal device associated with file descriptor fildes.

Isatty returns 1 if fildes is associated with a terminal device, O otherwise.

FILES
/dev/*

DIAGNOSTICS
Ttyname returns a NULL pointer if fildes does not describe a terminal device in
directory /dev.

BUGS
The return value points to static data whose content is overwritten by each call.

7/85 -1~ 7/85

TTYSLOT (3C) {C Programming Language Utilities) TTYSLOT (3C)

NAME
ttyslot — find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION
Ttyslot returns the index of the current user’s entry in the /etc/utmp file. This is
accomplished by actually scanning the file /ete/inittab for the name of the terminal
associated with the standard input, the standard output, or the error output (0, 1 or
2).

FILES
/etc/inittab
/etc/utmp
SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for the termi-
nal name or if none of the above file descriptors is associated with a terminal device.

7/85 -1~ 7/85

UNGETC(3S) (C Programming Language Utilities) UNGETC(3S)

NAME
ungetc — push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungete (c, stream)
int c;
FILE *stream;

DESCRIPTION
Ungetc inserts the character ¢ into the buffer associated with an input stream. That
character, ¢, will be returned by the next getc(3S) call on that stream. Ungetc
returns ¢, and leaves the file stream unchanged.

One character of pushback is guaranteed, provided something has already been read
from the stream and the stream is actually buffered. In the case that stream is
stdin, one character may be pushed back onto the buffer without a previous read
statement.

If ¢ equals EOF, ungetc does nothing to the buffer and returns EOF.
Fseek (3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it cannot insert the character.

7/85 -1- 7/85

VPRINTF(3S) (C Programming Language Utilities) VPRINTF (3S)

NAME

vprintf, vfprintf, vsprintf — print formatted output of a varargs argument list

SYNOPSIS

#include <stdio.h>
#incinde <varargs.h>

imt vprintf (format, ap)
char *format;
va_list ap;

int viprintf (stream, format, ap)
FILE sstream,;

char *format;

va_list ap;

int vsprintf (s, format, ap)

char s, =format;

va_llist ap;

DESCRIPTION

vprintf, vfprintf, and vsprintf are the same as printf, fprinif, and sprintf respec-
tively, except that instead of being called with a variable number of arguments, they
are called with an argument list as defined by varargs(5).

EXAMPLE

7/85

The following demonstrates how vfprintf could be used to write an error routine.

#include <stdio.h>
#include <varargs.h>

/=

- error should be called like

» error(function_name, format, argl, arg2...);
+f

/*VARARGS0+/

void

error(va_alist)

/= Note that the function_name and format arguments cannot be
) separately declared because of the definition of varargs.
»/

va_dcl

va_list args;
char »fmt;

va_start(args);

/* print out name of function causing error *»/

(void) fprintf(stderr, "ERROR in %s: ", va_arg(args, char #));
fmt = va_arg(args, char *);

/* print out remainder of message */

(void) vfprintf (fmt, args);

va_end(args);

(void)abort();

-1 - 7/85

VPRINTF (38) (C Programming Langnage Utilities) VPRINTF(3S)

SEE ALSO
vprintf{(3X), varargs(5).

7/85 -2~ 7/85

Replace this
page with the
3M

tab separator.

BESSEL (3M) (Math Libraries) BESSEL (3M)

NAME

j0, i1, jn, y0, y1, yn — Bessel functions

SYNOPSIS

#include <math.h>

double jO (x)
double x;

double j1 ()
double x;
double jn (n, x)
int m

double x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int m;
double x;

DESCRIPTION

JO and jI return Bessel functions of x of the first kind of orders 0 and 1 respec-
tively. Jrn returns the Bessel function of x of the first kind of order n.

Y0 and yI return Bessel functions of x of the second kind of orders 0 and 1 respec-
tively. Yn returns the Bessel function of x of the second kind of order n. The value
of x must be positive.

SEE ALSO

matherr (3M).

DIAGNOSTICS

7/85

Non-positive arguments cause y0, y! and yn to return the value —HUGE and to set
errno to EDOM. In addition, a message indicating DOMAIN error is printed on the
standard error output.

Arguments too large in magnitude cause jO, jI, y0 and yl to return zero and to set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the
standard error output.

These error-handling procedures may be changed with the function matherr(3M).

1. 7/85

BRF(3M) (Math Libraries) ERF (3M)

NAME
erf, erfc — error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
dounble x;

double erfc (x)
double x;

DESCRIPTION

X
. 2 —
Erf returns the error function of x, defined as —= f e dr.
NT

Erfc, which returns 1.0 — erf(x), is provided because of the extreme loss of relative
accuracy if erf(x) is called for large x and the result subtracted from 1.0 (e.g., for x
= 5, 12 places are lost).

SEE ALSO
exp(3M).

7/85 -1- 7/85

EXP{(3M) (Math Libraries) EXP (3M)

NAME

exp, log, log10, pow, sqrt — exponential, logarithm, power, square root functions

SYNOPSIS

#inciude <math.h>

double exp (x)
double x;

double leg (x)
double x;

double logl0 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION

Exp returns e,
Log returns the natural logarithm of x. The value of x must be positive.
Logl0 returns the logarithm base ten of x. The value of x must be positive.

Pow returns x”. If x is zero, y must be positive. If x is negative, y must be an
integer.

Sgrt returps the non-negative square root of x. The value of x may not be nega-
tive.

SEE ALSO

hypot (3M), matherr(3M), sinh(3M).

DIAGNOSTICS

7/85

Exp returns HUGE when the correct value would overflow, or 0 when the correct
value would underflow, and sets errno to ERANGE.

Log and logl0 return —HUGE and set errno to EDOM when x is non-positive. A
message indicating DOMAIN error (or SING error when x is 0) is printed on the
standard error output.

Pow returns 0 and sets errno to EDOM when x is 0 and y is non-positive, or when x
is negative and y is not an integer. In these cases a message indicating DOMAIN
error is printed on the standard error output. When the correct value for pow
would overflow or underflow, pow returns :=HUGE or 0 respectively, and sets errno
to ERANGE.

Sgrt returns O and sets errno to EDOM when x is negative. A message indicating
DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function matherr (3M).

-1- 7/85

FLOOR (3M) (Math Libraries) FLOOR (3M)

NAME

floor, ceil, fmod, fabs — floor, ceiling, remainder, absolute value functions

SYNOPSIS

#include <math.h>
double floor (x)
double x;

double ceil (x)
double x;

double fmed (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION

Floor returns the largest integer (as a double-precision number) not greater than x.
Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x by y: zero if y is
zero or if x/y would overflow; otherwise the number f with the same sign as x, such
that x = iy + f for some integer i, and |f] < |yl.

Fabs returns the absolute value of x, |x).

SEE ALSO

7/85

abs(30).

-1 - 7/85

GAMMA (3M) (Math Libraries) GAMMA (3M)

NAME

gamma — log gamma function

SYNOPSIS

#inclnde <math.h>

double gamma (x)

double x;

extern int signgam;

DESCRIPTION

00

Gamma returns In(JT'(x)]), where T'(x) is defined as fe—’t"_ldt. The sign of

0
I'(x) is returned in the external integer signgam. The argument x may not be a
non-positive integer.

The following C program fragment might be used to calculate I™:

if ((y = gamma(x)) > LN_MAXDOUBLE)
error ();
y = signgam * exp(y);
where LN_MAXDOUBLE is the least value that causes exp(3M) to return a range
error, and is defined in the <values.h> header file.

SEE ALSO

exp{3M), matherr (3M), values(5).

DIAGNOSTICS

7/85

For non-negative integer arguments HUGE is returned, and errno is set to EDOM. A
message indicating SING error is printed on the standard error output.

If the correct value would overflow, gamma returns HUGE and sets errno to
ERANGE.

These error-handling procedures may be changed with the function matherr (3M).

.- 7/85

HYPOT (3M) (Math Libraries) HYPOT (3M)

NAME
hypot — Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x * x +y * y),
taking precautions against unwarranted overflows.

SEE ALSO
matherr(3M).

DIAGNOSTICS
When the correct value would overflow, hypot returns HUGE and sets errno to
ERANGE.

These error-handling procedures may be changed with the function matherr (3M).

7/85 -1~ 7/85

MATHERR (3M) (Math Libraries) MATHERR (3M)

NAME
matherr — error-handling function

SYNOPSIS
#include <math.h>

int matherr (x)
struct exception »x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are detected.
Users may define their own procedures for handling errors, by including a function
named matherr in their programs. Matherr must be of the form described above.
When an error occurs, a pointer to the exception structure x will be passed to the
user-supplied mazherr function. This structure, which is defined in the <math.h>
header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;
The element type is an integer describing the type of error that has occurred, from
the following list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that
incurred the error. The variables argl! and arg2 are the arguments with which the
function was invoked. Retval is set to the default value that will be returned by the
function unless the user’s matherr sets it to a different value.

If the user’s matherr function returns non-zero, no error message will be printed,
and errno will not be set.

If matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These pro-
cedures are also summarized in the table below. In every case, errno is set to
EDOM or ERANGE and the program continues.

EXAMPLE
#include <math.h>

int
matherr (x)
register struct exception *x;

switch (x—>type) {
case DOMAIN:
/» change sqrt to return sqrt(—argl), not 0 «/
if (tstremp (x—>name, "sqrt'}) {
x—>retval = sqrt(—x—~>argl);
return (0); /* print message and set errno */

7/85 -1~ 7/85

MATHERR (3M) (Math Libraries) MATHERR (3M)

1
case SING:
/= all other domain or sing errors, print message and abort »/
fprintf(stderr, "domain error in %s\n", x—>name);
abort(};
case PLOSS:
/» print detailed error message =/
fprintf(stderr, "loss of significance in %s(%g) = %g\n",
x—>name, x—>argl, x—>retval);
return (1); /* take no other action */

return (0); /» all other errors, execute default procedure »/

}
DEFAULT ERROR HANDLING PROCEDURES
Types of Errors
type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS
errno EDOM EDOM ERANGE ERANGE ERANGE ERANGE
BESSEL: - - - - M, 0 -
y0, y1, yn (arg < 0) M, —H - - - - -
EXP: - - H 0 - -
LOG, LOG10:
(arg < 0) M, —H - - - - —
(arg = 0) - M, —H - - ~ -~
POW: - - +H [- -
neg *» non-int M, 0 - - - - -
0 = non-pos
SQRT: M, 0 - - - - -
GAMMA: - M, H H - - -
HYPOT: - - H - - -
SINH: - - +H - - -
COSH: - - H - - -
SIN, COS, TAN: — - - - M, 0 N
ASIN, ACOS, ATAN2: M, 0 - - and - -

ABBREVIATIONS
~ As much as possible of the value is returned.
M Message is printed (EDOM error).
H HUGE is returned.
—H —HUGE is returned.
+H HUGE or —HUGGE is returned.
0 0 is returned.

7/85 -2 - 7/85

SINH (3M)

NAME

(Math Libraries)

sinh, cosh, tanh — hyperbolic functions

SYNOPSIS

#inclnde <math.h>

double
double

double
diouble

double
double

DESCRIPTION

sinh (x)
X;
cosh (x)
X;
tanh ()
b.Y

SINH(3M)

Sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine and tangent of
their argument.

SEE ALSO

matherr (3M).

DIAGNOSTICS

Sinh and cosh return MUGE (and sinhk may return —HUGE for negative x) when

the correct value would overflow and set errno to ERANGE.

These error-handling procedures may be changed with the function matherr 3M).

7/85

7/85

TRIG (3M) {Math Libraries) TRIG (3M)

NAME

sin, cos, tan, asin, acos, atan, atan2 — trigonometric functions

SYNOPSIS

#tinclude <math.h>

double sim (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION

Sin, cos and tan return respectively the sine, cosine and tangent of their argument,
x, measured in radians.

Asin returns the arcsine of x, in the range —n/2 to n/2.
Acos returns the arccosine of x, in the range 0 to «.
Atan returns the arctangent of x, in the range —n/2 to =/2.

Atan2 returns the arctangent of p/x, in the range —= to =, using the signs of both
arguments to determine the quadrant of the return value.

SEE ALSO

matherr(3M).

DIAGNMNOSTICS

7/85

Sin, cos, and tan lose accuracy when their argument is far from zero. For argu-
ments sufficiently large, these functions return zero when there would otherwise be a
complete loss of significance. In this case a message indicating TLOSS error is
printed on the standard error output. For less extreme arguments causing partial
loss of significance, a PLOSS error is generated but no message is printed. In both
cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or if both
arguments of atan? are zero, zero is returned and errno is set to EDOM. In addi-
tion, a message indicating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function matherr (3M).

-1- 7/85

Replace this
page with the
3X

tab separator.

ASSERT (3X) (Specialized Libraries) ASSERT (3X)

NAME
assert — verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed, if
expression is false (zero), assert prints

“Assertion failed: expression, file xyz, line nnn”

on the standard error output and aborts. In the error message, xyz is the name of
the source file and nnn the source line number of the assert statement.

Compiling with the preprocessor option —DNDEBUG (see cpp (1)), or with the

preprocessor conirol statement “#define NDEBUG” ahead of the “#include

<assert.h>" statement, will stop assertions from being compiled into the program.
SEE ALSO

abort(3C).

cpp(1) in the AT&T 3B2 Computer User Reference Manual.

7/85 -1- 7/85

CURSES (3X) (Specialized Libraries) CURSES (3X)

NAME

curses — CRT screen handling and optimization package

SYNOPSIS

#include <curses.h>
ce [flags] files —leurses | libraries }

DESCRIPTION

These routines give the user a method of updating screens with reasonable optimiza-
tion. In order to initialize the routines, the routine imitscr() must be called before
any of the other routines that deal with windows and screens are used. The routine
endwin() should be called before exiting. To get character-at-a-time input without
echoing, (most interactive, screen oriented-programs want this) after calling
initscr() you should call “nonl(); cbreak(); noecho();”

The full curses interface permits manipulation of data structures called windows
which can be thought of as two dimensional arrays of characters representing all or
part of a CRT screen. A default window called stdser is supplied, and others can be
created with newwin. Windows are referred to by variables declared “WINDOW *”,
the type WINDOW is defined in curses.h to be a C structure. These data structures
are manipulated with functions described below, among which the most basic are
move, and addch. (More general versions of these functions are included with
pames beginning with ‘w’, allowing you to specify a window. The routines not
beginning with ‘w’ affect stdser.) Then refresh() is called, telling the routines to
make the users CRT screen look like stdser.

Mini-Curses is a subset of curses which does not allow manipulation of more than
one window. To invoke this subset, use -DMINICURSES as a cc option. This level
is smaller and faster than full curses.

If the environment variable TERMINFO is defined, any program using curses will
check for a local terminal definition before checking in the standard place. For
example, if the standard place is /usr/lib/terminfo, and TERM is set to “vt100”,
then normally the compiled file is found in /usr/lib/terminfo/v/vt100. (The “v” is
copied from the first letter of “vt100” to avoid creation of huge directories.) How-
ever, if TERMINFO is set to /usr/mark/myterms, curses will first check
/opusr/mark/myterms/v/vt100, and if that fails, will then check
/usr/lib/terminfo/v/vt100. This is useful for developing experimental definitions or
when write permission in /usr/lib/terminfo is not available,

SEE ALSO

terminfo(4).

FUNCTIONS

1/85

Routines listed here may be called when using the full curses. Those marked with
an asterisk may be called when using Mini-Curses.

addch(ch)* add a character to stdscr (like putchar)
(wraps to next line at end of line)

addstr{str)* calls addch with each character in str

attroff (attrs) * turn off attributes named

attron(attrs)* turn on attributes named

attrset{(attrs)* set current attributes to artrs

baudrate() * current terminal speed

beep()* sound beep on terminal

box(win, vert, hor) draw a box around edges of win

vert and hor are chars to use for vert. and
hor. edges of box

-1- 7/85

CURSES (3X)

7/85

clear()

clearok (win, bf)
clrtobot ()
cirtoeol)
cbreak()*
delay_output{ms)*
delch()
deleteln()
delwin (win)
doupdate()
echo()*
endwin()*
erase()
erasechar ()
fixterm ()
flash)

flushinp () *
getch()*
getstr(str)
gettmode()
getyx (win, v, x)
has_jc()
has_i1()

idlok (win, bf)*
inch()

initser () *
insch(c)

insertin ()
intrflush (win, bf)
keypad(win, bf)
killchar()
leaveok(win, flag)

longname ()

meta (win, flag)*
move(y, x)*
mvaddch(y, x, ch)
mvaddstr(y, x, str)

(Specialized Libraries) CURSES (3X)

clear stdscr

clear screen before next redraw of win
clear to bottom of stdscr

clear to end of line on stdscr

set cbreak mode

insert ms millisecond pause in output
delete a character

delete a line

delete win

update screen from all wnooutrefresh

set echo mode

end window modes

erase stdscr

return user’s erase character

restore tty to "in curses" state

flash screen or beep

throw away any typeahead

get a char from tty

get a string through stdscr

establish current tty modes

get (y, x) co-ordinates

true if terminal can do insert character
true if terminal can do insert line

use terminal’s insert/delete line if bf = 0
get char at current (y, x) co-ordinates
initialize screens

insert a char

insert a line

interrupts flush output if bf is TRUE
enable keypad input

return current user’s kill character

QK to leave cursor anywhere after refresh if
flag!=0 for win, otherwise cursor must be left
at current position.

return verbose name of terminal

allow meta characters on input if flag '= 0
move to (y, x) on stdscr

move(y, x) then addch(ch)

similar...

mveur (oldrow, oldcol, newrow, newcol)low level cursor motion

mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x, str)
mvinch{y, x)

mvinsch(y, x, ¢}
mvprintw(y, x, fmt, args)
mvscanw (y, x, fmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr (win, y, x, str)
mvwdelch (win, y, x)
mvwgetch (win, y, x)
mvwgetstr{win, y, x, str)
mvwin{(win, by, bx)

like delch, but move(y, x) first
ete.

-2 7/85

CURSES (3X) (Specialized Libraries) CURSES (3X)

7/85

mvwinch{(win, y, x)
mvwinsch{win, y, x, ¢)
mvwprintw (win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)

newpad (nlines, ncols) create a new pad with given dimensions
newterm(type, fd) set up new terminal of given type to output on fd
newwin (lines, cols, begin_y, begin_x) create a new window

nl(* set newline mapping

nocbreak()* unset cbreak mode

nodelay(win, bf) enable nodelay input mode through getch
noecho()* unset echo mode

nonl()* unset newline mapping

noraw()* unset raw mode

overlay(winl, win2) overlay winl on win2

overwrite(win1, win2) overwrite winl on top of win2

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
like prefresh but with no output until doupdate called
prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
refresh from pad starting with given upper left corner of pad
with output to given portion of screen
printw (fmt, argl, arg2, ...) printf on stdscr

raw()* set raw mode

refresh()* make current screen look like stdscr
resetterm()* set tty modes to "out of curses” state
resetty () * reset tty flags to stored value
saveterm()* save current modes as "in curses" state
savetty () * store current tty flags

scanw (fmt, argl, arg2, ... scanf through stdscr

scroll (win) scroll win one line

scrollok (win, flag) allow terminal to scroll if flag != 0
set_term(new) now talk to terminal new
setscrreg(t, b) set user scrolling region to lines t through b
setterm (type) establish terminal with given type
setupterm(term, filenum, errret)

standend () * clear standout mode attribute
standout () * set standout mode attribute

subwin (win, lines, cols, begin_y, begin_x) create a subwindow
touchwin(win) change all of win

traceofT() turn off debugging trace output
traceon() turn on debugging trace output
typeahead (fd) use file descriptor fd to check typeahead
unctrl{ch) * printable version of ch

waddch(win, ch) add char to win

waddstr(win, str) add string to win

wattroff (win, attrs) turn off attrs in win

wattron (win, attrs) turn on attrs in win

wattrset (win, attrs) set atirs in win to aitrs

wclear{win) clear win

welrtobot (win) clear to bottom of win

welrtoeol (win) clear to end of line on win
wdelch(win, c) delete char from win

wdeleteln (win) delete line from win

werase (win) erase win

-3 7/85

CURSES (3X) (Specialized Libraries) CURSES (3X)

wgetch (win) get a char through win

weetstr (win, str) get a string through win

winch (win) get char at current (y, x) in win
winsch(win, ¢) insert char into win
winsertin{win) insert line into win

wmove (win, y, X) set current (y, x) co-ordinates on win
wnoutrefresh(win) refresh but no screen output
wprintw (win, fmt, argl, arg2, ...) printf on win

wrefresh (win) make screen look like win
wscanw(win, fmt, argl, arg2, ...) scanf through win
wsetscrreg(win, t, b) set scrolling region of win
wstandend (win) clear standout attribute in win
wstandout (win) set standout attribute in win

TERMINFO LEVEL ROUTINES

These routines should be called by programs wishing to deal directly with the ter-
minfo database. Due to the low level of this interface, it is discouraged. Initially,
setupterm should be called. This will define the set of terminal dependent variables
defined in terminfo(4). The include files <curses.h> and <term.h> should be
included to get the definitions for these strings, numbers, and flags. Parmeterized
strings should be passed through tparm to instantiate them. All terminfo strings
(including the output of tparm) should be printed with zputs or puip . Before exit-
ing, resetterm should be called to restore the tty modes. (Programs desiring shell
escapes or suspending with control Z can call reseiterm before the shell is called
and fixterm after returning from the shell.)

fixterm() restore tty modes for terminfo use

(called by setupterm)
resetterm() reset tty modes to state before program entry
setupterm (term, fd, rc) read in database. Terminal type is the

character string ferm, all output is to UNIX System file

descriptor fd. A status value is returned in the

integer pointed to by rc: 1 is normal. The simplest

call would be setupterm(0, 1, 0) which uses all the defaults.
tparm (str, pl, p2, ..., p9) instantiate string str with parms p;
tputs(str, affent, putc) apply padding info to string str.

affent is the number of lines affected, or 1 if

not applicable. Putc is a putchar-like function

to which the characters are passed, one at a time.
putp{str) handy function that calls tputs(str, 1, putchar).
vidputs(attrs, putc) output the string to put terminal in video attribute

mode attrs, which is any combination of the attributes

listed below. Chars are passed to putchar-like function putc.
vidattr(attrs) Like vidputs but outputs through putchar

TERMCAP COMPATIBILITY ROUTINES

7/85

These routines were included as a conversion aid for programs that use termcap.
Their parameters are the same as for termcap. They are emulated using the rer-
minfo database. They may go away at a later date.

tgetent(bp, name) look up termcap entry for name

tgetflag Gid) get boolean entry for id

tgetoum (id) get numeric entry for id

tgetstr(id, area) get string entry for id

tgoto(cap, col, row) apply parms to given cap

tputs{cap, affent, fn) apply padding to cap calling fn as putchar

-4 - 7/85

CURSES (3X) (Specialized Libraries) CURSES (3X)

ATTRIBUTES
The following video attributes can be passed to the functions attron,attroff,attrset.
A _STANDOUT Terminal’s best highlighting mode
A_UNDERLINE Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
A_BOLD Extra bright or bold
A BLANK Blanking (invisible)
A_PROTECT Protected
A_ALTCHARSET Alternate character set

FUNCTION KEYS
The following function keys might be returned by getch if keypad has been enabled.
Note that not all of these are currently supported, due to lack of definitions in ter-
minfo or the terminal not transmitting a unique code when the key is pressed.

Name Value Key name

KEY_BREAK 0401 break key (unreliable)

KEY_DOWN 0402 The four arrow keys ...

KEY_UP 0403

KEY_LEFT 0404

KEY _RIGHT 0405

KEY_HOME 0406 Home key (upward+left arrow)

KEY_BACKSPACE 0407 backspace (unreliable)

KEY_FO 0410 Function keys. Space for 64 is reserved.

KEY_F(n) (KEY_F0+(n)) Formula for fn.

KEY_DL 0510 Delete line

KEY_IL 0511 Insert line

KEY _DC 0512 Delete character

KEY_IC 0513 Insert char or enter insert mode

KEY EIC 0514 Exit insert char mode

KEY_CLEAR 0515 Clear screen

KEY_EOS 0516 Clear to end of screen

KEY_EOL 0517 Clear to end of line

KEY_SF 0520 Scroll 1 line forward

KEY SR 0521 Scroll 1 line backwards (reverse)

KEY NPAGE 0522 Next page

KEY PPAGE 0523 Previous page

KEY STAB 0524 Set tab

KEY_CTAB 0525 Clear tab

KEY_CATAB 0526 Clear all tabs

KEY_ENTER 0527 Enter or send (unreliable)

KEY_SRESET 0530 soft (partial) reset (unreliable)

KEY_RESET 0531 reset or hard reset {(unreliable)

KEY_PRINT 0532 print or copy

KEY _LL 0533 home down or bottom (lower left)
WARNING

The plotting library plot(3X) and the curses library curses (3X) both use the names
erase() and move(). The curses versions are macros. If you need both libraries,
put the plot(3X) code in a different source file than the curses(3X) code, and/or
#undef move() and erase() in the plor (3X) code.

7/85 -5 7/85

LDAHREAD (33) (Specialized Libraries) LDAHREAD (3X)

NAME
idahread — read the archive header of a member of an archive file

SYNOPSIS
#include <stdieh>
#inclnde <ar.h>
#include <flehdr.h>
#include <ldfen.a>

imt ldahread (dptr, arhead)
LDFILE +ldptr;
ARCHDR *arhead;

DPESCRIPTION
If TYPE(/dpir) is the archive file magic number, ldahread reads the archive header
of the common object file currently associated with ldptr into the area of memory
beginning at arhead.

Ldahread returns SUCCESS or FAILURE. Ldahread will fail if TYPE(dptr) does
not represent an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library libid.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn{4), ar(4).

7/85 -1- 7/85

LDPCLOSE (3X) (Specialized Libraries) LDCLOSE (3X)

NAME

ldclose, l1daclose — close a common object file

SYNOPSIS

#include <stdioh>
#include <filehdr.h>
#include <ldfenbh>

imt ldclose (dptr)
LDFILE *idptr;

int ldaclose (idptr)
LDFILE =idptr;

DESCRIPTIOMN

Ldopen (3X) and Idclose are designed to provide uniform access to both simple
object files and object files that are members of archive files. Thus an archive of
common object files can be processed as if it were a series of simple common object
files.

If TYPE(ldptr) does not represent an archive file, ldclose will close the file and free
the memory allocated to the LDFILE structure associated with Idptr. If
TYPE(ldpir) is the magic number of an archive file, and if there are any more files
in the archive, Idclose will reinitialize OFFSET{ldptr) to the file address of the next
archive member and return FAILURE. The LDFILE structure is prepared for a sub-
sequent Idopen(3X). In all other cases, ldclose returns SUCCESS.

Ldaclose closes the file and frees the memory allocated to the LDFILE structure
associated with Idpir regardless of the value of TYPE(ldptr). Ldaclose always
returns SUCCESS. The function is often used in conjunction with Idaopen.

The program must be loaded with the object file access routine library libld.a.

SEE ALSC

7/85

fclose(3S), 1dopen{(3X}, ldfen(4).

-1- 7/85

LDFHREAD (3X) (Specialized Libraries) LDFHREAD (3X)

NAME

ldfhread — read the file header of a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfenh>

int ldfhread (dptr, filchead)
LDFILE *ldptr;
FILHDR =filehead;

DESCRIPTION

Ldfhread reads the file header of the common object file currently associated with
ldptr into the area of memory beginning at filehead.

Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it cannot read the file
header.

In most cases the use of Idfhread can be avoided by using the macro
HEADER(/dptr) defined in ldfen.h (see ldfcn (4)). The information in any field,
fieldname, of the file header may be accessed using HEADER (idptr) fieldname,

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

7/85

ldclose(3X), ldopen(3X), 1dfcn(4).

-1- 7/85

LDGETNAME(3X) (Specialized Libraries) LDGETNAME (3X)

NAME
ldgetname — retrieve symbol name for common object file symbol table entry
SYMNOPSIES
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfen.h>
char rldgetname (ldptr, symbol)
LDFILE *idptr;
SYMENT =symbeol;
DESCRIPTION
Ldgetname returns a pointer to the name associated with symbel as a string. The
string is contained in a static buffer local to ldgetname that is overwritten by each
call to ldgetname, and therefore must be copied by the caller if the name is to be
saved.
As of UNIX System V Release 2.0, the common object file format has been
extended to handle arbitrary length symbol names with the addition of a “string
table”. Ldgetname will return the symbol name associated with a symbol table
entry for either a pre-UNIX System V Release 2.0 object file or a UNIX Sysiem V
Release 2.0 object file. Thus, Idgetname can be used to retrieve names from object
files without any backward compatibility problems. Ldgetname will return NULL
(defined in stdio.h) for an object file if the name cannot be retrieved. This situation
€an occur:
- if the “string table” cannot be found,
- if not enough memory can be allocated for the string table,
- if the string table appears not to be a string table (for example, if an auxili-
ary entry is handed to ldgetname that looks like a reference to a name in a
non-existent string table), or
- if the name’s offset into the string table is past the end of the string table.
- Typically, Idgetname will be called immediately after a successful call to Idtbread
to retrieve the name associated with the symbol table entry filled by Idibread.
The program must be loaded with the object file access routine library libld.a.
SEE ALSO
ldclose{(3X), Idopen(3X), Idtbread (3X), Idtbseek(3X), idfcn(4).
7/85 -1 7/85

LDLREAD (3X) (Specialized Libraries) LDLREAD (3X)

NAME

Idiread, 1dlinit, 1dliteman — manipulate line number entries of a common object file
function

SYNOPSIS

#include <stdio.h>
#incinde <filebdr.h>
#include <linenum.h>
#include <ldfenb>

int ldiread(ldptr, fenindx, linenum, linent)
LDFILE =ldptr;

fong fenindx;

unsigned short linenum;

LINENO linent;

int ldiinit(idptr, fenindx)
LDFILE »idptr;
long femindx;

int ldlitem(ldptr, linenum, Linent)
LDFILE =\dptr;

unsigned short linenum;

LINENO linent;

DESCRIPTION

Ldlread searches the line number entries of the common object file currently associ-
ated with ldptr. Ldlread begins its search with the line number entry for the begin-
ning of a function and confines its search to the line numbers associated with a sin-
gle function. The function is identified by fenindx, the index of its entry in the
object file symbol table. Ldiread reads the entry with the smallest line number
equal to or greater than linenum into linent.

Ldlinit and ldlitem together perform exactly the same function as Idlread. After an
initial call to Idlread or Idlinit, ldlitem may be used to retrieve a series of line
number entries associated with a single function. Ldlinit simply locates the line
number entries for the function identified by fenindx. Ldlitem finds and reads the
entry with the smallest line number equal to or greater than linenum into linent.

Ldlread, ldlinit, and Idlitem each return either SUCCESS or FAILURE. Ldlread will
fail if there are no line number entries in the object file, if fcnindx does not index a
function entry in the symbol table, or if it finds no line number equal to or greater
than linenum. Ldlinit will fail if there are no line number entries in the object file
or if fenindx does not index 2 function entry in the symbol table. Ldlitem will fail
if it finds no line number equal to or greater than linenum.

The programs must be loaded with the object file access routine library libid.a.

SEE ALSO

7/85

1dclose(3X), ldopen(3X), Idtbindex(3X), 1dfcn(4).

-1~ 7/85

LDLSEEK (3X) (Specialized Libraries) LDLSEEX (3X)

NAME

ldlseek, ldnlseek — seek to line number entries of a section of a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldlseek (\dptr, sectindx)
LDFILE =ldptr;

unsigned short sectindx;

int ldniseek (ldptr, sectname)
LDFILE =ldptr;
char *sectmame;

DESCRIPTION

Ldlseek seeks to the line number entries of the section specified by sectindx of the
common object file currently associated with ldpir.

Ldnlseek seeks to the line number entries of the section specified by sectname.

Ldlseek and ldniseek return SUCCESS or FAILURE. Ldiseek will fail if sectindx is
greater than the number of sections in the object file; Idniseek will fail if there is no
section name corresponding with *sectname. Either function will fail if the specified
section has no line number entries or if it cannot seek to the specified line number
entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

/85

ldclose(3X), Idopen(3X), Idshread (3X), ldfcn(4).

-1- 7/85

LDOHSEEK (3X) (Specialized Libraries) LDOHSEEK (3X)

NAME
ldohseek — seek to the optional file header of a common object file

SYNOPSIS
#include <stdio.h>
#inclnde <filehdr.h>
#include <Mfen.bh>

int ldohseek (ldptr)
LDFILE *idptr;

DESCRIPTION
Ldohseek seeks to the optional file header of the common object file currently asso-
ciated with Idptr.

Ldohseek returns SUCCESS or FATLURE. Ldohseek will fail if the object file has no
optional header or if it cannot seek to the optional header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), 1dfhread(3X), ldfen(4).

7/85 -1- 7/85

LDOPEN (3X) (Specialized Libraries) LDOPEN (3X)

NAME

ldopen, ldaopen — open a common object file for reading

SYNOPSIS

#include <stdio.h>
#include < filehdr.h>
#include <ldfen.h>

LDFILE =ldopen (filename, ldptr)
char =filename;
LDFILE =ldptr;

LDFILE #idaopen {(filename, oldptr)
char *filename;
LDFILE *oldptr;

DESCRIPTION

7/85

Ldopen and ldclose(3X) are designed to provide uniform access to both simple
object files and object files that are members of archive files. Thus an archive of
common object files can be processed as if it were a series of simple common object
files.

If ldptr has the value NULL, then ldopen will open filename and allocate and initial-
ize the LDFILE structure, and return a pointer to the structure to the calling pro-
gram.

If Idpir is valid and if TYPE(dpir) is the archive magic number, /dopen will reini-
tialize the LDFILE structure for the next archive member of filename.

Ldopen and ldclose(3X) are designed to work in concert. Ldclose will return
FAILURE only when TYPE({/dptr) is the archive magic number and there is another
file in the archive to be processed. Only then should /dopen be called with the
current value of Idptr. In all other cases, in particular whenever a new filename is
opened, Idopen should be called with a NULL /dptr argument.

The following is a prototype for the use of Idopen and ldclose (3X).
/+ for each filename to be processed »/

ldptr = NULL,;
do

if ((dptr = idopen(filename, Idptr)) '= NULL)
{

/* check magic number */
/# process the file #/

} while (Idclose(Idptr) == FAILURE);

If the value of oldptr is not NULL, ldaopen will open filename anew and allocate
and initialize a new LDFILE structure, copying the TYPE, OFFSET, and HEADER
fields from oldptr. Ldaopen returns a pointer to the new LDFILE structure. This
new pointer is independent of the old pointer, oldptr. The two pointers may be used
concurrently to read separate parts of the object file. For example, one pointer may
be used to step sequentially through the relocation information, while the other is
used to read indexed symbol table entries.

-1- 7/85

LDOPEN (3X) (Specialized Libraries) LDOPEN (3X)

Both Idopen and Idaopen open filename for reading. Both functions return NULL if
filename cannot be opened, or if memory for the LDFILE structure cannot be allo-
cated. A successful open does not insure that the given file is a common object file
or an archived object file.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

7/85

fopen(3S), ldclose(3X), 1dfcn(4).

-2~ 7/85

LDRSEEK (3X) (Specialized Libraries) LDRSEEK (3X)

NAME
ldrseek, ldnrseek — seek to relocation entries of a section of a common object file
SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>
int Idrseek (dptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;
int ldnrseek (ldpir, sectname)
LDFILE =idptr;
char *sectmame;
DESCRIPTION
Ldrseek secks to the relocation entries of the section specified by sectindx of the
common object file currently associated with Idpir.
Ldnrseek seeks to the relocation entries of the section specified by sectname.
Ldrseek and Ildnrseek return SUCCESS or FAILURE. Ldrseek will fail if sectindx is
greater than the number of sections in the object file; dnrseek will fail if there is no
section name corresponding with sectname. Either function will fail if the specified
section has no relocation enmtries or if it canmot seek to the specified relocation
entries.
MNote that the first section has an index of one.
The program must be loaded with the object file access routine library libid.a.
SEE ALSO
ldclose(3X), Idopen(3X), ldshread (3X), 1dfcn(4).
7/85 -1- 7/85

LDSHREAD (3X) {Specialized Libraries)} LDSHREAD (3X)

NAME
ldshread, ldnshread — read an indexed/named section header of a common object
file

SYNOPSIS
#Hinchude <stdio.h>
#include <filehdr.h>
#inclvde <scuhdr.h>
#Hinclude <ldfem.h>

imt Mdshread (ldptr, sectimdx, secthead)
LDFILE =ldptr;

unsigned short sectindx;

SCNHDR ssecthead;

int ldnshread (ldptr, sectmame, secthead)
LDFILE =dptr;

char *sectname;

SCNHDR =secthead;

DESCRIPTIONM
Ldshread reads the section header specified by sectindx of the common object file
currently associated with Idpir into the area of memory beginning at secthead.

Ldnshread reads the section header specified by sectname into the area of memory
beginning at secthead.

Edshread and ldnshread return SUCCESS or FAILURE. Ldshread will fail if sec-
tindx is greater than the number of sections in the object file; ldnshread will fail if
there is no section name corresponding with seciname. Either function will fail if it
cannot read the specified section header.

Note that the first section header has an index of one.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO
1dclose(3X), ldopen{3X)}, 1dfcn(4).

7/85 -1- 7/85

LDSSEEK (3X) (Specialized Libraries) LDSSEEK. (3X)

NAME

Idsseek, ldnsseek — seek to an indexed/named section of a common object file

SYNOPSIS

#include <stdio.h>
#include < filehdr.h>
#include <ldfenh>

int ldsseek (ldptr, sectindx)
LDFILE =idptr;

unsigned short sectindx;

int ldnsseek (ldptr, sectname)
LDFILE *ldptr;

char ssectname;

DESCRIPTION

Ldsseek seeks to the section specified by sectindx of the common object file
currently associated with ldptr.

Ldnsseek seeks to the section specified by sectname.

Ldsseek and ldnsseck retyrac3LESER 108 BAILARRe; Fnseah Wil ol if sseiiodeds
BIEALT HhARetheMRIPYERing with sectname. Either function will fail if there is no
section data for the specified section or if it cannot seek to the specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO

7/85

ldclose(3X), ldopen{(3X), Idshread(3X), idfen(4).

-1- 7/85

LDTBINDEX (3X) (Specialized Libraries) LDTBINDEX (3X)

NAME

ldtbindex — compute the index of a symbol table entry of a common object file

SYNOPSIS

#include <stdio.h>
#incinde < filehdr.h>
#include <syms.h>
#include <ldfem.h>

long ldtbindex (ldptr)
LDFILE =ldptr;

DESCRIPTION

Ldtbindex teturns the (lomg) index of the symbol table entry at the current position
of the common object file associated with Idpir.

The index returned by Idtbindex may be used in subsequent calls to Idtbread (3X).
However, since Idtbindex returns the index of the symbol table entry that begins at
the current position of the object file, if Idthindex is called immediately after a par-
ticular symbol table entry has been read, it will return the index of the next entry.

Ldtbindex will fail if there are no symbols in the object file, or if the object file is
not positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO

TIRA

ldclose(3X), Idopen(3X), ldtbread (3X), ldtbseek(3X), ldfcn(4).

-1- 7/85

LDTBREAD (3X) (Specialized Libraries) LDTBREAD (3X)

NAME

Idtbread — read an indexed symbol table entry of a common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#inclnde <lidfcm.h>

int ldtbread (dptr, symindex, symbol)
LDFILE *ldptr;

long symindex;

SYMENT *symbol;

DESCRIPTION

Ldtbread reads the symbol table entry specified by symindex of the common object
file currently associated with ldptr into the area of memory beginning at symbol.

Ldibread returns SUCCESS or FAILURE. Ldtbread will fail if symindex is greater
than the number of symbols in the object file, or if it cannot read the specified sym-
bol table entry.

Note that the first symbol in the symbol table has an index of zero.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO

7/85

ldclose(3X), ldopen(3X), ldtbseek (3X), Idgetname(3X), ldfcn(4).

-1- 7/85

LDTBSEEK (3X) (Specialized Libraries) LDTBSEEK (3X)

NAME
Idtbseek — seek to the symbol table of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldthseek (idptr)
LDFILE *Idptr;

DESCRIPTION
Ldtbseek seeks to the symbol table of the object file currently associated with
ldptr.

Ldthseek returns SUCCESS or FAILURE. Ldtbseek will fail if the symbol table has
been stripped from the object file, or if it cannot seek to the symbol table.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread (3X), ldfcn(4).

7/85 -1- 7/85

LOGNAME (3X) (Specialized Libraries) LOGNAME (3X)

NAME

logname — return login name of user
SYNOPSIS

char »legname()
DESCRIPTION

Logname returns a pointer to the null-terminated login name; it extracts the SLOG-
NAME variable from the user’s environment.

This routine is kept in Alib/libPW.a.

FILES
fete/profile

SEE ALSO
profile(4), environ(5).
env(1), login(1) in the AT&T 3B2 Compuier User Reference Manual.

BUGS
The return values point to static data whose content is overwritten by each call.

This method of determining a login name is subject to forgery.

7/85 -1- 7/85

MALLOC (3X) (Specialized Libraries) MALLOC(3X)

NAME

malloc, free, realloc, calloc, mallopt, mallinfo — fast main memory allocator

SYNOPSIS

#include <malloc.h>

char »*malloc (size)
unsigned size;

void free (ptr)

char *ptr;

char srealloc (ptr, size)
char =ptr;

unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struet mallinfo mallinfo (max)
int max;

DESCRIPTION

7/85

Malloc and free provide a simple general-purpose memory allocation package,
which runs considerably faster than the malloc(3C) package. It is found in the
library “malloc”, and is loaded if the option “~lmalloc” is used with cc (1) or Id(1).

Malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previousiy allocated by malloc; after
free is performed this space is made available for further allocation, and its contents
have been destroyed (but see mallopt below for a way to change this behavior).

Undefined results will occur if the space assigned by malloc is overrun or if some
random number is handed to free.

Realloc changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes.

Calloc allocates space for an array of nelem elements of size elsize. The space is
initialized to zeros.

Mallopt provides for control over the aliocation algorithm. The available values for
cmd are:

M_MXFAST Set maxfast to value. The algorithm allocates all blocks below the
size of maxfast in large groups and then doles them out very
quickly. The default value for maxfast is 0.

M_NLBLKS Set numlblks to value. The above mentioned “large groups” each
contain numlblks blocks. Numlblks must be greater than 0. The
default value for numliblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller than maxfast
are considered to be rounded up to the nearest multiple of grain.
Grain must be greater than 0. The default value of grain is the
smallest number of bytes which will allow alignment of any data
type. Value will be rounded up to a multiple of the default when

-1 7/85

MALLOC (3X) (Specialized Libraries) MALLOC(3X)

grain is set.

M _KEEP Preserve data in a freed block until the next malloc, realloc, or
calloc. This option is provided only for compatibility with the old
version of malloc and is ot recommended.

These values are defined in the <malloc.h> header file.

Mallopt may be called repeatedly, but may not be called after the first small block
is allocated.

Mallinfo provides instrumentation describing space usage. It returns the structure:

struct mallinfo {

int arena; /* total space in arena */

int ordblks; /* number of ordinary blocks */

int smbiks; /* number of small blocks */

int hblkhd; /* space in holding block headers */
int hblks; /* number of holding blocks */

int usmblks; /* space in small blocks in use */
int fsmblks; /* space in free small blocks */

int vordbiks; /* space in ordinary blocks in use */
int fordblks; /* space in free ordinary blocks */
int keepcost; /* space penalty if keep option */

/* is used */
}

This structure is defined in the <malloc.h> header file.

Each of the allocation routines returns a pointer to space suitably aligned (after pos-
sible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS
Malloc, realloc and calloc return a NULL pointer if there is not enough available
memory. When realloc returns NULL, the block pointed to by pir is left intact. If
mallopt is called after any allocation or if ¢md or value are invalid, non-zero is
returned. Otherwise, it returns zero.

WARNINGS
This package usually uses more data space than malloc (3C).
The code size is also bigger than malloc(3C).
Note that unlike malloc (3C), this package does not preserve the contents of a block
when it is freed, unless the M_KEEP option of mallop: is used.
Undocumented features of malloc{3C) have not been duplicated.

7/85 -2~ 7/85

PLOT(3X) (Specialized Libraries) PLOT (3X)

MNAME

plot — graphics interface subroutines

SYNOPSIS

openpl O
erase ()

label (s)
char »s;

time (x1, yi, x2, y2)
imt x4, yi, x2, y2;

circle (%, y, 1)
imt X, v, 3

are (x, y, x0, v0, x1, y})
imt x, v, x0, v0, x4, y1;

move (x, y)
imt X, ¥3

comt (%, y)
int X, ¥;

point (x, ¥)
int X, v;

linemed (s)
char =s;

space (x0, y0, x1, yi)
imt x0, y0, x1, yvi;

closepl ()

DESCRIPTION

FILES

7/85

These subroutines generate graphic output in a relatively device-independent
manner. Space musi be used before any of these functions to declare the amount of
space necessary. See plot(4). Openpl must be used before any of the others to open
the device for writing. Closepl flushes the output.

Circle draws a circle of radius » with center at the point (x, y).

Are draws an arc of a circle with center at the point (x, 3) between the points (x0,
y0) and (x1, y1).

String arguments to label and linemod are terminated by nulls and do not contain
new-lines.

See plot(4) for a description of the effect of the remaining functions.

The library files listed below provide several flavors of these routines.

/usr/lib/libplot.a produces output for tplot (1G) filters
/usr/1ib/1ib300.a for DASI 300
fusr/lib/1ib300s.a for DAST 300s
fusr/lib/1ib450.a for DAST 450
/usr/lib/1ib4014.a for TEKTRONIX 4014
-1- 7/85

PLOT (33) (Specialized Libraries) PLOT (3X)

SEE ALSO
plot{4).
graph(1G), stat(1G), tplot(iIG) in the AT&T 3B2 Computer User Reference
Manual.

WARMNINGS
In order to compile a program containing these functions in file.c it is necessary to
use “cc file.c —lIplot”.
In order to execute it, it is necessary to use “a.out | tplot”.

The above routines use <stdio.h>, which causes them to increase the size of pro-
grams, not otherwise using standard 1/0, more than might be expected.

7785 -2 - 7/85

REGCMP (3%) (8pecialized Libraries) REGCMP (3X)

NAME

regcmp, regex — compile and execute regular expression

SYMNOPSIS

char »regemp (stringl [, string2, ...}, {char =}0)
char =strimgl, »string2, ...;

char *regex (re, subject, ret0, ...1)
char »re, *subject, =retQ, ...;

exterm char = Jocl;

DESCRIPTION

7/85

Regemp compiles a regular expression and returns a pointer to the compiled form.
Malloc(3C) is used to create space for the vector. It is the user’s responsibility to
free unneeded space so allocated. A NULL return from regemp indicates an
incorrect argument. Regcmp{1) has been written to generally preclude the need for
this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional arguments
are passed to receive values back. Regex returns NULL on failure or a pointer to
the next unmatched character on success. A global character pointer _ Jocl points
to where the match began. Regemp and regex were mostly borrowed from the edi-
tor, ed (1); howeves, the syntax and semantics have been changed slightly. The fol-
lowing are the valid symbols and their associated meanings.

[1*." These symbols retain their current meaning.
$ Matches the end of the string; \m matches a new-line.

- Within brackets the minus means through. For example, [a—z) is
equivalent to [abed...xyzl. The — can appear as itself only if used as the
first or last character. For example, the character class expression []1—]
matches the characters | and —.

+ A regular expression followed by + means one or more times. For exam-
ple, [0 —9] + is equivalent to [0 —9M0 %]

{m} {m,} (m,u}
Integer values enclosed in {} indicate the number of times the preceding
regular expression is to be applied. The value m is the minimum number
and # is a number, less than 256, which is the maximoum. If only m is
present (e.g., {m}), it indicates the exact number of times the regular
expression is to be applied. The value {m,} is analogous to {m,infinity}.
The plus (+) and star (=) operations are equivalent to {1,} and {0,} respec-
tively.

(...)8n
The value of the enclosed regular expression is to be returned. The value
will be stored in the (n-+])th argument following the subject argument.
At most ten enclosed regular expressions are allowed. Regex makes its
assignments unconditionally.

(...) Parentheses are used for grouping. An operator, e.g., *, +, {}, can work
on a single character or a regular expression enclosed in parentheses. For
example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must, therefore, be
escaped to be used as themselves.

~1- 7/85

REGCMP (3X) (Specialized Libraries) REGCMP (3X)

EXAMPLES
Example 1:
char *cursor, *newcursor, *pir;

newcursor = regex{{(ptr = regemp(*"\n", 0)), cursor);
free(ptr);

This example will match a leading new-line in the subject string pointed at by cur-
SOf.

Example 2:
char retO[9];
char *newcursor, *name;

name = nr.e:gcmp("([A-—Za—-z][A—za—-zO—9_]{0,7})$0", 0);
newcursor = regex(name, "123Testing321", ret0);
This example will match through the string “Testing3” and will return the address

of the character after the last matched character {cursor+11). The string “Test-
ing3” will be copied to the character array ret0.

Example 3:
#include "file.i"
char »string, *newcursor;

newcursc.)f = regex (name, string);
This example applies a precompiled regular expression in filed (see regemp (1))
against string.
This routine is kept in /lib/libPW.a.
SEE ALSO

malloc(3C).
ed(1), regemp(1) in the AT&T 3B2 Computer User Reference Manual.

BUGS
The user program may run out of memory if regemp is called iteratively without
freeing the vectors no longer required. The following user-supplied replacement for
malloc (3C) reuses the same vector saving time and space:

/* user’s program #/
char =

malloc(n)

unsigned n;

static char rebuf{512];
return (n <= sizeof rebuf) ? rebuf : NULL;

7/85 ~2- 7/85

SPUTL (3X) (Specialized Libraries) SPUTL (3X)

NAME

sputl, sgetl — access long integer data in a machine-independent fashion.

SYNOPSIS

void sputl (value, buffer)
long value;
char sbufler;

long sgetl (buffer)
char +buffer;

DESCRIPTION

7/85

Sputl takes the four bytes of the long integer value and places them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the same
across all machines.

Sgetl retrieves the four bytes in memory starting at the address pointed to by buffer
and returns the long integer value in the byte ordering of the host machine.

The combination of spuzl and sget! provides a machine-independent way of storing
jong numeric data in a file in binary form without conversion to characters.

A program which uses these functions must be loaded with the object-file access
routine library libld.a.

-1 - 7/85

VPRINTF (3X) (Specialized Libraries) VPRINTF (3X)

NAME

vprintf, vfprintf, vsprintf — print formatted output of a varargs argument list

SYMNOPSIS

#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *format;
va_list ap;

int viprintf (stream, format, ap)
FILE =stream;

char »format;

va_list ap;

int vsprintf (s, format, ap)

char »s, *format;
va_list ap;

DESCRIPTION

vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf respec-
tively, except that instead of being called with a variable number of arguments, they
are called with an argument list as defined by varargs(5).

EXAMPLE

7/85

The following demonstrates how vfprintf could be used to write an error routine.

#include <stdio.h>
#include <varargs.h>

/=

* error should be called like

* error (function_name, format, argl, arg2...);
xf

/*VARARGS0+/

void

error (va_alist)

/* Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs.
*/

va_dcl

{

va_list args;
char *fmt;

va_start{args);

/+ print out name of function causing error */

(void) fprintf(stderr, "ERROR in %s: ", va_argfargs, char *));
fmt = va_arg(args, char *);

/* print out remainder of message =/

(void)vfprintf(fmt, args);

va_end(args);

(void)abort();

-1~ ‘ 7/85

VPRINTF(3X) (Specialized Libraries) VPRINTF(3X)

SEE ALSO
printf(3S), varargs(5).

7/85 -2- 7/85

Replace this
page with the
3F

tab separator.

ABORT (3F) (FORTRAN Programming Language Utilities) ABORT (3F)

NAME
abort — terminate Fortran program

SYNOPSIS
calt abort ()
DESCRIPTION
Abort terminates the program which calls it, closing all open files truncated to the
current position of the file pointer. The abort usually results in a core dump.
DIAGNOSTICS
When invoked, abort prints “Fortran abort routine called” on the standard error
output. The message “abort - core dumped” is sent to the terminal.

SEE ALSO
abort(3C).

7/85 -1~ 7/85

ABS (3F) (FORTRAN Programming Language Utilities) ABS (3F)

NAME

abs, iabs, dabs, cabs, zabs — Fortran absolute value

SYNOPSIS

integer il, i2

real rl, r2

double precision dpl, dp2
complex cx1, cx2

double complex dx1, dx2

r2 = abs(rl)
i2 = iabs(i1)
i2 = abs(i1)
dp2 = dabs(dpl)
dp2 = abs(dpl)
ex2 = cabs(cx1)
ex2 = abs(ex1)
dx2 = zabs(dx1)
dx2 = abs(dx1)
DESCRIPTION

Abs is the family of absolute value functions. Jabs returns the integer absolute
value of its integer argument. Dabs returns the double-precision absolute value of
its double-precision argument. Cabs returns the complex absolute value of its com-
plex argument. Zabs returns the double-complex absolute value of its double-
complex argument. The generic form abs returns the type of its argument.

SEE ALSO

TIRR

floor 3M).

A1- 7/85

ACOS(3F) (FORTRAN Programming Language Utilities) ACOS (3F)

NAME
acos, dacos — Fortran arccosine intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2

2 = acos(rl)

dp2 = dacos(dpl)
dp2 = acos(dpl)

DESCRIPTION
Acos returns the real arccosine of its real argument, Dacos returns the double-
precision arccosine of its double-precision argument. The generic form acos may be
used with impunity as its argument will determine the type of the returned value.

SEE ALSO
trig(GM).

miar 1 1/85

AIMAG (3F) (FORTRAN Programming Language Utilities) AIMAG (3F)

MAME
aimag, dimag — Fortran imaginary part of complex argument

SYNOPSIS
real ¥
complex cxr
double precision dp
double complex cxd
r = aimag(cxr)
dp = dimag(cexd)
DESCRIPTION

Aimag returns the imaginary part of its single-precision complex argument. Dimag
returns the double-precision imaginary part of its double~-complex argument.

7/85 -1- 7/85

AINT (3F) (FORTRAN Programming Language Utilities) AINT (3F)

MNAME

aint, dint — Fortran integer part intrinsic function
SYNOPSIS

real rl, r2

double precision dpl, dp2

r2 = aint(r1)

dp2 = dint(dpl)

dp2 = aint(dpl)

DESCRIPTION
Aint returns the truncated value of its real argument in a real. Dint returns the
truncated value of its double-precision argument as a double-precision value. Aint

may be used as a generic function name, returning either a real or double-precision
value depending on the type of its argument.

7/85 -1~ 7/85

ASIN (3F) (FORTRAN Programming Language Utilities) ASIN (3F)

NAME
asin, dasin — Fortran arcsine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = asin(r1)

dp2 = dasin(dpl)
dp2 = asin(dpl}
DESCRIPTION

Asin returns the real arcsine of its real argument. Dasin returns the double-
precision arcsine of its double-precision argument. The generic form asin may be
used with impunity as it derives its type from that of its argument.

SEE ALSO
trig(3M).

7/85 -1~ 7/85

ATAN (3F) (FORTRAN Programming Language Utilities) ATAN (3F)

NAME
atan, datan — Fortran arctangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
r2 = atan(rl)
dp2 = datan(dpl)
= atan(dp1)

DESCRIPTION
Atan returns the real arctangent of its real argument. Datan returns the double-
precision arctangent of its double-precision argument. The generic form atan may
be used with a double-precision argument returning a double-precision value.

SEE ALSO
trig(3M).

7/88 -1- 7/85

ATAN2(3F) (FORTRAN Programming Language Utilities) ATAN2(3F)

NAME

atan2, datan2 — Fortran arctangent intrinsic function
SYNOPSIS

real r1, r2, r3

double precision dpl, dp2, dp3

r3 = atan2{rl, r2)

dp3 = datan2(dp1, dp2)
dp3 = atan2(dpl, dp2)
DESCRIPTION

Atan?2 returns the arctangent of argllarg? as a real value. Datan2 returns the
double-precision arctangent of its double-precision arguments. The generic form
atan2 may be used with impunity with double-precision arguments.

SEE ALSO
trig(3M).

7/85 -1~ 7/85

BOOL (3F) (FORTRAN Programming Language Utilities) BOOL (3F)

NAME
and, or, xor, not, Ishift, rshift — Fortran Bitwise Boolean functions

SYNOPSIS
integer i, j, k
real a, b, ¢
k = and(, j)
¢ = or{a, b)
j = xor(i, a)
i = not@)
k = Ishift(i, j)
k = rshiftG, j)

DESCRIPTION
The generic intrinsic Boolean functions and, or and xor return the value of the
binary operations on their arguments. Not is a unary operator returning the one’s
complement of its argument. Lshift and rshift return the value of the first argu-
ment shifted left or right, respectively, the number of times specified by the second
(integer) argument.
The Boolean functions are generic; that is, they are defined for all data types as
arguments and return values. Where required, the compiler will generate appropri-
ate type conversions.

NOTE
Although defined for all data types, use of Boolean functions on any but integer
data is bizarre and will probably result in unexpected conseguences.

BUGS
The implementation of the shift functions may cause large shift values to deliver
weird results.

SEE ALSOC

7/85

mil(3F).

~1- 7/85

CONIG (3F) (FORTRAN Programming Language Utilities) CONIG (3F)
NAME

conjg, deconjg — Fortran complex conjugate intrinsic function
SYNOPSIS

complex cx1, ex2
double complex dx1, dx2

ex2 = conjglcxl)
dx2 = dconjg{dx1)
DESCRIPTION

Conjg returns the complex conjugate of its complex argument. Dconjg returns the
double-complex conjugate of its double-complex argument.

7/85 ~1- 7/85

COS(3F) (FORTRAN Programming Language Utilities) COS(3F)

NAME

cos, deos, ccos — Fortran cosine intrinsic function
SYNOPSIS

real r1, r2

double precision dpl, dp2
complex cx1, cx2

r2 = cos(rl)
dp2 = dcos(dpl)
dp2 = cos(dpl)
ex2 = ccoslexl)
ex2 = coslexl)
DESCRIPTION

Cos returns the real cosine of its real argument. Dcos returns the double-precision
cosine of its double-precision argument. Ccos returns the complex cosine of its com-
plex argument. The generic form cos may be used with impunity as its returned
type is determined by that of its argument.

SEE ALSQ
trig(3M).

7/85 -1- 7/85

COSH (3F) {FORTRAN Programming Language Utikities)

NAME

cosh, dcosh — Fortran hyperbolic cosine intrinsic function

SYNOPSIS

real rl, r2

double precision dpl, dp2
r2 = cosh(r1)

dp2 = deosh(dp1)

dp2 = cosh(dpl)

DESCRIPTION
Cosh returns the real hyperbolic cosine of its real argument. Dcosh returns the
double-precision hyperbolic cosine of its double-precision argument. The generic
form cosh may be used to return the hyperbolic cosine in the type of its argument.

SEE ALSO

7/85

sinh(3M).

COSH (3F)

7/85

DIM (3F) (FORTRAN Programming Language Utilities)

NAME

dim, ddim, idim — positive difference intrinsic functions
SYNOPSIS

integer al, a2, a3

a3 = jdim(al, a2)

real al, a2, a3
a3 = dim(al, a2)

double precision al, a2, a3
a3 = ddim(al, a2)

DESCRIPTION
These functions return:
al—a2 ifal > a2
0 ifal <=a2

7/85 =1 -

DIM (3F)

7/85

DPROD (3F) (FORTRAN Programming Language Utilities) DPROD (3F)

NAME
dprod — double precision product intrinsic function

SYNOPSIS
real al, a2

double precision a3

a3 = dprod(al, a2)

DESCRIPTION
Dprod returns the double precision product of its real arguments.

7/85 -1- 7/85

EXP(3F) (FORTRAN Programming Language Utilities) EXP (3F)

NAME

exp, dexp, cexp — Fortran exponential intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
complex ex1, ¢x2

r2 = exp(rl)
dp2 = dexp(dpl)
dp2 = exp(dpl)
ex2 = cexplexl}
ex2 = explex1)
DESCRIPTION

Exp returns the real exponential function e of its real argument. Dexp returns the
double-precision exponential function of its double-precision argument. Cexp
returns the complex exponential function of its complex argument. The generic
function exp becomes a call to dexp or cexp as required, depending on the type of
its argument.

SEE ALSO

7/85

exp(3M).

-1 - 7/85

FTYPE (3F) (FORTRAN Programming Language Utilities) FTYPE (3F)

NAME
int, ifix, idint, real, float, sngl, dble, cmplx, demplx, ichar, char — explicit Fortran
type conversion

SYNOPSIS
integer i, j
real r, s
double precision dp, dq
complex cx
double complex dcx
character+] ch

i = int(r)

i = int(dp)

i = intex)

i = int(dex)

i = ifix(r)

i = idint(dp)

r = real()

r = real(dp)

r = real{cx)

r = real(dex)

r = float(i)

r = sngl(dp)

dp = dble()

dp = dble(r)

dp = dblelex)

dp = dble(dex)

ex = cmplx(i)

ex = cmplx(,

ex = cmplx(r)

ex = cmplx(r, s)

ex = cmplx{(dp)

ex = cmplx(dp, dg)

cx = emplx(dex)

dex = demplx ()

dex = demplx(, j)

dex = dempix(r)

dex = demplx(r, s)

dex = demplx(dp)

dex = dempix(dp, dq)

dex = demplx(cex)

i = ichar{ch)

ch = char(i)
DESCRIPTION

These functions perform conversion from one data type to another.

The function int converts to integer form its real, double precision, complex, or
double complex argument. If the argument is real or double precision, int returns
the integer whose magnitude is the largest integer that does not exceed the magni-
tude of the argument and whose sign is the same as the sign of the argument (.e.
truncation). For complex types, the above rule is applied to the real part. ifix and

7/85 ~1- 7/85

FTYPE (3F) (FORTRAN Programming Language Ultilities) FTYPE (3F)

7/85

idint convert only real and double precision arguments respectively.

The function real converts to real form an integer, double precision, complex, or
double complex argument. If the argument is double precision or double complex,
as much precision is kept as is possible. If the argument is one of the complex types,
the real part is returned. fioat and sngl convert only integer and double precision
arguments respectively.

The function dble converts any integer, real, complex, or double complex argument
to double precision form. If the argument is of a complex type, the real part is
returned.

The function emplx converts its integer, real, double precision, or double complex
argument(s) to complex form.

The function demplx converts to double complex form its integer, real, double pre-
cision, or complex argument(s).

Either one or two arguments may be supplied to emplx and demplx . If there is only
one argument, it is taken as the real part of the complex type and an imaginary part
of zero is supplied. If two arguments are supplied, the first is taken as the real part
and the second as the imaginary part.

The function ichar converts from a character to an integer depending on the
character’s position in the collating sequence.

The function char returns the character in the ith position in the processor collating
sequence where i is the supplied argument.

For a processor capable of representing n characters,
ichar(char(})) =ifor 0 < i < n, and

char (ichar (ch)) = ch for any representable character ch.

-2~ 7/85

GETARG (3F) (FORTRAN Programming Language Utilities) GETARG (3F)

NAME
getarg — return Fortran command-line argument

SYNOPSIS
character*N ¢
integer i
call getarg(i, ¢)
DESCRIPTION

Getarg returns the i-th command-line argument of the current process. Thus, if a
program were invoked via

foo argl arg2 arg3

getarg(2, ¢) would return the string “arg2” in the character variable c.

SEE ALSO
getopt (3C).

7/85 -1- 7/85

GETENYV (3F) (FORTRAN Programming Language Utilities) GETENV (3F)

NAME
getenv — return Fortran environment variable

SYNOPSIS
character»N ¢
call getenv("VARIABLE NAME", ¢)

DESCRIPTION
Getenv returns the character-string value of the environment variable represented by
its first argument into the character variable of its second argument. If no such
environment variable exists, all blanks will be returned.

SEE ALSO
getenv(3C), environ(5).

1/85 -1- 7/85

1IARGC (3F) (FORTRAN Programming Language Utilities) IARGC(3F)

NAME

iarge — return the number of command line arguments
SYNOPSIS

integer i

i = iarge()

DESCRIPTION
The iarge function returns the number of command line arguments passed to the
program. Thus, if a program were invoked via

foo argl arg?2 arg3

iarge(') would return 3.

SEE ALSO
getarg(3F).

/85 - 1- 7/85

INDEX (3F) (FORTRAN Programming Language Utilities) INDEX (3F)

NAME

index — return location of Fortran substring
SYNOPSIS

character=N1 chl

charactersN2 ch2

integer i

i = index(chl, ch2)

DESCRIPTION
Index returns the location of substring ch2 in string chl. The value returned is the
position at which substring ch2 starts, or 0 if it is not present in string chl. If N2
is greater than N1, a zero is returned.

7/85 -1- 7/85

LEN (3F) (FORTRAN Programming Language Utilities) LEN (3F)

NAME
len — return length of Fortran string

SYNOPSIS
charactersN ch
integer i

i = len(ch)

DESCRIPTION
Len returns the length of string ch.

7/85 -1~ 1/85

LOG (3F) (FORTRAN Programming Language Utilities) LOG(3F)

NAME

log, alog, dlog, clog — Fortran natural logarithm intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
complex cx1, cx2

r2 = alog(rl)

r2 = log(rl)
dp2 = diog(dpl)
dp2 = log(dpl)
ex2 = cloglex1)
ex2 = loglex1)
DESCRIPTION

Alog returns the real natural logarithm of its real argument. Dlog returns the
double-precision natural logarithm of its double-precision argument. Clog returns
the complex logarithm of its complex argument. The generic function log becomes
a call to alog, dlog, or clog depending on the type of its argument.

SEE ALSO

7/85

exp(3M).

-1- 7/85

LOG10(3F) (FORTRAN Programming Language Utilities) LOG10(3F)

NAME

log10, alog10, dlogl0 — Fortran common logarithm intrinsic function
SYNOPSIS

real rl, r2

double precision dpl, dp2

r2 = alogl0(r1)

r2 = logl0(r1)

dp2 = dlog10(dp1)

dp2 = logl10(dpl)
DESCRIPTION

Alogl0 returns the real common logarithm of its real argument. Dlogl0 returns
the double-precision common logarithm of its double-precision argument. The gen-
eric function logl0 becomes a call to alogl0 or dlogl0 depending on the type of its
argument.

SEE ALSO
exp(3M).

7/85 ~1- 7/85

MAX (3F) (FORTRAN Programming Language Utilities) MAX (3F)

NAME
max, max0, amax0, maxl, amax}, dmaxl — Fortran maximum-value functions

SYNOPSIS
integer i, j, k, }
real a, b, ¢, d
double precision dpl, dp2, dp3
1 = max(@, j, k)
¢ = max(a, b)
dp = max(a, b, ©)

k = max0G, j)
a = amax0G, j, k)
i = maxl{a, b)
d = amaxl(a, b, ¢)

dp3 = dmaxl1(dpl, dp2)
DESCRIPTION

The maximum-value functions return the largest of their arguments (of which there
may be any number). Max is the generic form which can be used for all data types
and takes its return type from that of its arguments (which must all be of the same
type). Max0 returns the integer form of the maximum value of its integer argu-
ments; amax0, the real form of its integer arguments; max!, the integer form of its
real arguments; amaxl, the real form of its real arguments; and dmaxl, the
double-precision form of its double-precision arguments.

SEE ALSO
min(3F).

7/85 -1- 7/85

MCLOCK (3F) (FORTRAN Programming Language Utilities) MCLOCK (3F)

NAME
mclock ~ return Fortran time accounting

SYNOPSIS
integer i
i = mclock()

DESCRIPTION
Meclock returns time accounting information about the current process and its child
processes. The value returned is the sum of the current process’s user time and the
user and system times of all child processes.

SEE ALSO
times(2), clock(3C), system(3F).

7/85 -1- 7/85

MIL (3F) (FORTRAN Programming Language Utilities) MIL (3F)

NAME
ior, iand, not, ieor, ishft, ishftc, ibits, btest, ibset, ibclr, mvbits — bit field manipula-
tion intrinsic functions and subroutines from the Fortran Military Standard (MIL-

STD-1753).
SYNOPSIS

integer i, k, 1, m, n, len

logical b

i = ior{m, n)

i = ijand(m, n)

i = not(m)

i = ieor{m, n)

i = ishft(m, k)

i = ishfte(m, k, len)

i = ibits(m, k, lem)

b = btest{m, k)

i = ibset(n, k)

i = ibelr(n, k)

call mvbits(m, k, lem, n,)
DESCRIPTION

ior, iand, not, ieor — return the same results as and, or, not, xor as defined in

bool(3F).

ishft, ishftc — m specifies the integer to be shifted. k specifies the shift count. k >
0 indicates a left shift. k = 0 indicates no shift. k < 0 indicates a right shift. In
ishft, zeros are shifted in. In ishftc, the rightmost lem bits are shifted circularly k
bits. If k is greater than the machine word-size, ishftc will not shift.

Bit fields are numbered from right to left and the rightmost bit position is zero.
The length of the lem field must be greater than zero.

ibits — extract a subfield of len bits from m starting with bit position k and extend-
ing left for len bits. The result field is right justified and the remaining bits are set
to zero.

btest — The kth bit of argument n is tested. The value of the function is .TRUE. if
the bit is a and

ibset — the result is the value of m with the kth bit set to 1.
ibclr — the result is the value of m with the kth bit set to 0.

mvbits — len bits are moved beginning at position k of argument m to position 1 of
argument m.

SEE ALSO
bool (3F).

7/85 -1- 7/85

MIN (3F) {(FORTRAN Programming Language Utilities) MIN (3F)

NAME
min, min0, amin0, minl, aminl, dminl — Fortran minimum-value functions
SYNOPSIS
integer i, j, k, 1
real a, b, ¢, d
double precision dpl, dp2, dp3
1 = minG, j, k)
¢ = min(a, b)
dp = minfa, b, ¢)
k = min0G,)
a = amin0G, j, k)
i = minl(a, b)
d = aminl(a, b, ©)
dp3 = dminl(dpl, dp2)
DESCRIPTION
The minimum-value functions return the minimum of their arguments (of which
there may be any number). Min is the generic form which can be used for all data
types and takes its return type from that of its arguments (which must all be of the
same type). Min0 returns the integer form of the minimum value of its integer
arguments; amin0, the real form of its integer arguments; minl, the integer form of
its real arguments; aminl, the real form of its real arguments; and dminl, the
double-precision form of its double-precision arguments.
SEE ALSO
max(3F).
7/85 -1- 7/85

MOD (3F) (FORTRAN Programming Language Utilities) MOD (3F)

NAME
mod, amod, dmod — Fortran remaindering intrinsic functions

SYNOPSIS
integer i, j, k
real rl, r2, ©3
double precision dpl, dp2, dp3
k = med(, j)
r3 = amod(rl, r2)
= mod(rl, r2)
dp3 = dmeod{dpl, dp2)
= mod(dp1, dp2)
DESCRIPTION
Mod returns the integer remainder of its first argument divided by its second argu-
ment. Amod and dmod return, respectively, the real and double-precision whole

number remainder of the integer division of their two arguments. The generic ver-
sion mod will return the data type of its arguments.

1/85 -1- 7/85

RAND (3F) (FORTRAN Programming Language Utilities) RAND (3F)

NAME
irand, rand, srand — random number generator

SYNOPSIS
integer iseed, i, irand
double precision x, rand

call srand(iseed)
i = irand()
x = rand()

DESCRIPTION
Irand generates successive pseudo-random integers in the range from 0 to 2**15—1.
Rand generates pseudo-random numbers distributed in [0, 1.0]. Srand uses its
integer argument to re-initialize the seed for successive invocations of irand and
rand.

SEE ALSO
rand (3C).

7/85 -1- 7/85

ROUND (3F) (FORTRAN Programming Language Ultilities)

NAME

anint, dnint, nint, idnint — Fortran nearest integer functions

SYNOPSIS

integer i
real rl, r2
double precision dpl, dp2

r2 = anint(rl)
i = nint(cl)

anint(dp1)
dnint(dp1)
i = nint(dp1)

i = idnint(dp1)

dp2 =
dp2 =

DESCRIPTION
Anint returns the nearest whole real number to its real argument (i.e., int(a+0.5) if
a 2 0, int(a—0.5) otherwise). Dnint does the same for its double-precision argu-
ment. Nint returns the nearest integer to its real argument. Idnint is the double-
precision version. Anint is the generic form of anint and dnint , performing the
same operation and returning the data type of its argument. Nint is also the gen-

7/85

eric form of idnint.

ROUND (3F)

7/85

SIGN (3F) (FORTRAN Programming Language Utilities) SIGN (3F)

NAME
sign, isign, dsign — Fortran transfer-of-sign intrinsic function
SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3
k
k

r3 = sign(rl, r2)

isign(i, j)
signG,)

dp3 = dsign(dpl, dp2)
dp3 = sign(dpl, dp2)
DESCRIPTION

Isign returns the magnitude of its first argument with the sign of its second argu-
ment. Sign and dsign are its real and double-precision counterparts, respectively.
The generic version is sign and will devolve to the appropriate type depending on its
arguments.

7/85 ~1- 7/85

SIGNAL (3F) (FORTRAN Programming Language Utilities) SIGNAL (3F)

NAME
signal — specify Fortran action on receipt of a system signal

SYNOPSIS
integer i, intfc
external intfc

call signal(i, intfc)

DESCRIPTION
The argument i specifies the signal to be caught. Signal allows a process to specify
a function to be invoked upon receipt of a specific signal. The first argument
specifies which fault or exception. The second argument specifies the function to be
invoked.
NOTE: The interrupt processing function, intfe, does not take an argument.

SEE ALSO
kill(2), signal(2).

1/85 -1- 7/85

SIN(3F) (FORTRAN Programming Language Utilities) SIN (3F)

NAME

sin, dsin, csin — Fortran sine intrinsic function

SYNOPSIS

real ri, r2
double precision dpl, dp2
complex cx1, ex2

r2 = sin(r1)

dp2 = dsin(dpl)
dp2 = sin(dp1)
cx2
ex2

esin(ex1)
sin(ex1)

I

DESCRIPTION

Sin returns the real sine of its real argument. Dsin returns the double-precision
sine of its double-precision argument. Csin returns the complex sine of its complex
argument. The generic sin function becomes dsin or csin as required by argument
type.

SEE ALSO

7/85

trig(3M).

-1- 7/85

SINH (3F) (FORTRAN Programming Language Utilities) SINH (3F)

NAME
sinh, dsinh — Fortran hyperbolic sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = sinh(rl)

dp2 = dsinh(dp1)
dp2 = sinh{(dp1)
DESCRIPTION

Sinh returns the real hyperbolic sine of its real argument. Dsink returns the
double-precision hyperbolic sine of its double-precision argument. The generic form
sinh may be used to return a double-precision value when given a double-precision
argument.

SEE ALSO
sinh(3M).

7/85 ~1- 7/85

SQRT (3F) (FORTRAN Programming Language Utilities) SQRT(3F)

NAME

sqrt, dsqrt, csqrt — Fortran square root intrinsic function
SYNOPSIS

real rl, r2

double precision dpl, dp2

complex cx1, ex2

r2 = sqrt(rl)

dp2 = dsqrt(dp1)
dp2 = sqrt(dpl)
cx2 = csqritlex1)
ex2 = sqrt(ex1)
DESCRIPTION

Sgrt returns the real square root of its real argument. Dsqrt returns the double-
precision square root of its double-precision argument. Csqrt returns the complex
square root of its complex argument. Sgrz, the generic form, will become dsqrt or
csqrt as required by its argument type.

SEE ALSO
exp(3M).

7/85 -1- 7/85

STRCMP (3F) (FORTRAN Programming Langunage Utilities) STRCMP (3F)

NAME
Ige, lgt, lle, llt — string comparison intrinsic functions

SYNOPSIS
character*N al, a2
logical 1

Ige(al, a2)
Igt(al, a2)
Be(al, a2)
| Nt(al, a2)

DESCRIPTION
These functions return .TRUE. if the inequality holds and .FALSE. otherwise.

i
| I I

7/85 -1- 7/85

SYSTEM (3F) (FORTRAN Programming Language Utilities) SYSTEM (3F)

NAME
system — issue a shell command from Fortran

SYNOPSIS
charactersN ¢

call system(c)

DESCRIPTION
System causes its character argument to be given to sh(1) as input, as if the string
had been typed at a terminal. The current process waits until the sheil has com-
pleted.

SEE ALSO
exec(2), system(3S).
sh{1) in the AT&T 3B2 Computer User Reference Manual.

7/85 -1- 7/85

TAN (3F) (FORTRAN Programming Language Utilities) TAN(3F)

NAME
tan, dtan — Fortran tangent intrinsic function

SYNOPSIS

real rl, r2

double precision dpl, dp2
r2 = tan(rl)

dp2 = dtan(dpl}

dp2 = tan(dpl)

DESCRIPTION
Tan returns the real tangent of its real argument. Ditan returns the double-
precision tangent of its double-precision argument. The generic tan function
becomes dran as required with a double-precision argument.

SEE ALSO
trig(3MD).

7/85 -1- 7/85

TANH (3F) (FORTRAN Programming Language Utilities) TANH (3F)

NAME
tanh, dtanh — Fortran hyperbolic tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

12 = tanh(rD)

dp2 = dtanh{dp1)
dp2 = tanh{dp1)

DESCRIPTION
Tanh returns the real hyperbolic tangent of its real argument. Dtanh returns the
double-precision hyperbolic tangent of its double-precision argument. The generic
form tanh may be used to return a double-precision value given a double-precision
argument.

SEE ALSO
sinh(3M).

7/85 ~1- 7/85

Replace this
page with the
Section 4 (File Formats)

tab separator.

INTRO (4) INTRO (4)

NAME

intro — introduction to file formats

DESCRIPTION

7/85

This section outlines the formats of various files. The C struct declarations for the
file formats are given where applicable. Usually, these structures can be found in
the directories /usr/include or /usr/include/sys.

References of the type name(1M) refer to entries found in Section 1 of the AT&T
3B2 Computer System Administration Reference Manual.

-1- 7/85

A.OUT (4) A.OUT(4)

NAME

a.out — common assembler and link editor output

DESCRIPTION

7/85

The file name a.cut is the output file from the assembler as(1) and the link editor
Id(1). Both programs will make a.out executable if there were no errors in assem-
bling or linking and no unresolved external references.

A common object file consists of a file header, a UNIX system header, a table of
section headers, relocation information, (optional} line numbers, a symbol table, and
a string table. The order is given below.

File header.
UNIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

é;action n line numbers.
Symbo} table.
String table.

The last three parts of an object file (line numbers, symbol table and string table)
may be missing if the program was linked with the —s option of /d(1) or if they
were removed by szrip(1). Also note that the relocation information will be absent
if there were no unresolved external references after linking. The string table exists
only if the symbol table contains symbols with names longer than eight characters.

The sizes of each section (contained in the header, discussed below) are in bytes and
are even.

When an a.out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitial-
ized, the latter actually being initialized to all 0’s), and a stack. On the 3B2 com-
puters the text segment starts at location 0x80800000.

The a.out file produced by Id(1) by default has a number called the magic number
0413 in the first field of the UNIX system header. The headers (file header, UNIX
system header, and section headers) are loaded at the beginning of the text segment
and the text immediately follows the headers in the user address space. The first
text address will equal the size of the headers, and will vary depending upon the
number of section headers in the a.omt file. In an a.out file with three sections
(.text, .data, and .bss), the first text address is at 0x808000A8 on the 3B2 comput-
ers. The text segment is not writable by the program; if other processes are execut-
ing the same a.omt file, the processes will share a single text segment.

The data segment starts at the next segment boundary (512k on the 3B2 computers)
past the last text address. The first data address is determined by the following: If
an a.out file were split into 8k chunks, one of the chunks would contain both the end

-1~ 7/85

A.QUT (4) A.OUT (4)

of text and the beginning of data. When the core image is created, that chunk will
appear twice; once at the end of text and once at the beginning of data (with some
unused space in between). The duplicated chunk of text that appears at the begin-
ning of data is never executed; is is duplicated so that the operating system may
bring in pieces of the file in multiples of the page size without having to realign the
beginning of the data section to a page boundary. Therefore the first data address
is the sum of the next segment boundary past the end of text plus the remainder of
the last text address divided by 8k.

On the 3B2 computer the stack begins at location 0xC0020000 and grows toward
higher addresses. On all machines the stack is automatically extended as required.
The data segment is extended only as requested by the brk(2) system call,

The value of a word in the text or data portions that is not a reference to an
undefined external symbol is exactly the value that will appear in memory when the
file is executed. If a word in the text involves a reference to an undefined external
symbol, the storage class of the symbol-table eniry for that word will be marked as
an “external symbol”, and the section number will be set to 0. When the file is pro-
cessed by the link editor and the external symbol becomes defined, the value of the
symbol will be added to the word in the file.

File Header
The format of the filehdr header is

struct filehdr

{
unsigned short f magic; /» magic number */
unsigned short f nscns; /+ number of sections */
long f timdat; /* time and date stamp */
long f symptr; /= file ptr to symtab */
long f nsyms; /» # symtab entries #/
unsigned short f opthdr; /+ sizeof(opt hdr) */

| unsigned short f flags; /= flags =/

UNIX System Header
The format of the UNIX system header is

typedef struct aouthdr

short magic; /« magic number */

short vstamp; /» version stamp */

long tsize; /= text size in bytes, padded »/

long dsize; /* initialized data (data) =/

long bsize; /+ uninitialized data (.bss) »/

long entry; /* entry point »/

long text_start; /x base of text used for this file */

long data_start; /= base of data used for this file »/
} AOUTHDR;

7/85 -2~ 7/85

A.OUT (4) A.QUT(4)

Section Header
The format of the section header is

struct scnhdr

char s_namelSYMNMLEN];/* section name #/
long s_paddr; /» physical address =/

long s vaddr; /» virtual address */

long s _size; /» section size */

long s_scnptr; /= file ptr to raw data »/

long s_relptr; /= file ptr to relocation */
long s Innoptr; /» file ptr to line numbers =/

unsigned short s nreloc; /* # reloc entries */
unsigned short s ninno; /* # line number entries */
long s flags; /» flags »/
|5
Relocation
Object files have one relocation entry for each relocatable reference in the text or
data. If relocation information is present, it will be in the following format:

struct reloc

long r vaddr; /= (virtual) address of reference */
long r_symndx; /* index into symbol table »/
short r_type; /* relocation type */

};
The start of the relocation information is s_relptr from the section header. If there
is no relocation information, s_relptr is 0.

7/85 ~3- 7/85

A.OUT (4) A.OUT(4)

Symbol Table
The format of each symbol in the symbol table is

#define SYMNMLEN 8
#define FILNMLEN 14
#define SYMESZ 18 /* the size of a SYMENT */

struct syment

union /* all ways to get a symbol name */
char _n_name[SYMNMLEN]; /* name of symbol */
struct
long _n_zeroes; /* == 0L if in string table */
long _n_offset; /* Jocation in string table */
} nn;
char « n_npte[2]; /= allows overlaying */
} n;
unsigned long n_value; /* value of symbol */
short n_scnum; /* section number */
unsigned short n_type; /= type and derived type */
char n_sclass; /* storage class */
char n_numaux; /* number of aux entries »/
)
#define n_pame _D._n_name
#define n_zeroes _N._N_N._n_zeroes
#define n_offset _n._n_n. n_offset
#define n_nptr _n._n_nptr[1]

Some symbols require more information than a single entry; they are followed by
auxiliary entries that are the same size as a symbol entry. The format follows.

7/85 -4 - 7/85

AOUT (4) A.OUT(4)

union auxent {

struct {
long x_tagndx;
union {
struct {
unsigned short x_lono;
unsigned short x_size;
} x_Insz;
long x_fsize;
} x_misc;
union {
struct {
long x_lonoptr;
long x_endndx;
} x_fon;
struct {
unsigned short x_dimen[DIMNUM]I;
} x_ary;
} x_fenary;
unsigned short x_tvndx;
} x_sym;
struct {
char x_fnamel FILNMLEN};
} x_file;
struet {
long x_scnlen;

unsigned short x_nreloc;
unsigned short x mlinno;
} x_scn;

struet {
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];
} x_tv;
Indexes of symbol table entries begin at zero. The start of the symbol table is
f symptr (from the file header) bytes from the beginning of the file. If the symbol
table is stripped, £ sympir is 0. The string table (if one exists) begins at f sympir
+ (f nsyms * SYMESZ) bytes from the beginning of the file.

SEE ALSO
brk(2), filehdr(4), 1dfen{4), linenum(4), reloc(4), scnhdr(4), syms(4).
as(1), cc(1), 1d(1) in the AT&T 3B2 Computer User Reference Manual.

7/85 -5~ 7/85

AR (4) AR (4)

NAME
ar — common archive file format

DESCRIPTION
The archive command ar(1) is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link editor [/d(1).

Each archive begins with the archive magic string.

#define ARMAG "!'<arch>\n" /* magic string */
#define SARMAG 8 /* length of magic string »/

Each archive which contains common object files (see a.ouz(4)) includes an archive
symbol table. This symbol table is used by the link editor /d(1) to determine which
archive members must be loaded during the link edit process. The archive symbol
table (if it exists) is always the first file in the archive (but is never listed) and is
automatically created and/or updated by ar.

Following the archive magic string are the archive file members. Each file member
is preceded by a file member header which is of the following format:

#define ARFMAG "*\n" /* header trailer string »/

struct ar_hdr /* file member header =/
char ar_namel[16]; /= /" terminated file member name */
char ar_datel12]; /» file member date */
char ar uid[6]; /» file member user identification »/
char ar gidl6]; /* file member group identification */
char ar_model8}; /» file member mode (octal) */
char ar_sizel10]; /= file member size */
char ar fmagl2]; /» header trailer string */

|3

All information in the file member headers is in printable ASCIi. The numeric
information contained in the headers is stored as decimal numbers (except for
ar_mode which is in octal). Thus, if the archive contains printable files, the archive
itself is printable.

The ar_name field is blank-padded and slash (/) terminated. The ar_date field is
the modification date of the file at the time of its insertion into the archive. Com-
mon format archives can be moved from system to system as long as the portable
archive command ar (1) is used.

Each archive file member begins on an even byte boundary; a newline is inserted
between files if necessary. MNevertheless the size given reflects the actual size of the
file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a zero length name

(i.e., ar_namel0l == "/"). The contents of this file are as follows:

L] The number of symbols. Length: 4 bytes.

» The array of offsets into the archive file. Length: 4 bytes * “the number of
symbols”.

7/85 -1~ 7/85

AR (4) AR (4)

L The name string table. Length: ar size — (4 bytes * (“the number of
symbols” + 1)).

The number of symbols and the array of offsets are managed with sget! and sputl.
The string table contains exactly as many null terminated strings as there are ele-
ments in the offsets array. Each offset from the array is associated with the
corresponding name from the string table (in order). The names in the string table
are all the defined global symbols found in the common object files in the archive.
Each offset is the location of the archive header for the associated symbol.

SEE ALSO
sputl(3X), a.out{4).
ar(1), 1d(1), strip(1) in the AT&T 3B2 Computer User Reference Manual.

WARNINGS
Strip(1) will remove all archive symbol entries from the header. The archive sym-
bol entries must be restored via the ts option of the ar(1) command before the
archive can be used with the link editor /d(1).

7/85 -2~ 7/85

CHECKLIST (4) CHECKLIST (4)

NAME
checklist — list of file systems processed by fsck
DESCRIPTION
Checklist resides in directory /etc and contains a list of, at most, 15 special file

names. Each special file name is contained on a separate line and corresponds to a

file system. Each file system will then be automatically processed by the fsck(1M)
command.

SEE ALSQO
fsck(1M) in the AT&T 3B2 Computer System Administration Reference Manual.

7/85 -1~ 7/85

CORE (4) CORE(4)

NAME

core — format of core image file

DESCRIPTION

The UNIX system writes out a core image of a terminated process when any of vari-
ous errors occur. See signal(2) for the list of reasons; the most common are
memory violations, illegal instructions, bus errors, and user-generated quit signals.
The core image is called cere and is written in the process’s working directory (pro-
vided it can be; normal access controls apply). A process with an effective user ID
different from the real user ID will not produce a core image.

The first section of the core image is a copy of the system’s per-user data for the
process, including the registers as they were at the time of the fault. The size of
this section depends on the parameter wusize, which is defined in
/usr/include/sys/parambh. The remainder represents the actual contents of the
user’s core area when the core image was written. If the text segment is read-only
and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by the user structure
of the system, defined in /usr/include/sys/user.h. The important stuff not detailed
therein is the locations of the registers, which are outlined in /usr/include/sys/reg.h.

SEE ALSO

7/85

setuid (2}, signal(2).
crash(1M) in the AT&T 3B2 Computer System Administration Reference Manual.
sdb(1) in the AT&T 3B2 Computer User Reference Manual.

-1- 7/85

CPIO(4) CPIO(4)

NAME
cpio — format of cpio archive

DESCRIPTION
The header structure, when the —c option of cpio(1) is not used, is:

struct {
short h_magic,
h_dev;
ushort h_ino,
h_mode,
h_uid,

short b_nlink,
h_rdev,
h_mtimel 2],
h_namesize,
h_filesize[2];
char h_pamelb_namesize rounded to word];
} Hdr;

When the —c option is used, the header information is described by:

sscanf(Chdr,"%60%60%60%60%60%60%60%60%1110%60%1 110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h nlink, &Hdr.h_rdev,
& Longtime, &Hdr.h_namesize, &Longfile, Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize, respec-
tively. The contents of each file are recorded in an element of the array of varying
length structures, archive, together with other items describing the file. Every
instance of h_magic contains the constant 070707 (octal). The items k_dev through
h_mtime have meanings explained in staz(2). The length of the null-terminated
path name A_name, including the null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!. Special files,
directories, and the trailer are recorded with h_filesize equal to zero.
SEE ALSO
stat(2).
cpio(1), find(1) in the AT& T 3B2 Computer User Reference Manual.

7/85 -1 - 7/85

DIR (4) DIR (4)

NAME
dir — format of directories
SYNOPSIS
#include <sys/dir.h>
DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a
directory. The fact that a file is a directory is indicated by a bit in the flag word of
its i-node entry (see f5(4)). The structure of a directory entry as given in the
include file is:
#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
ino t d_ino;
char d_name[DIRSIZ];
b
By convention, the first two entries in each directory are for . and ... The first is an
entry for the directory itself. The second is for the parent directory. The meaning
of .. is modified for the root directory of the master file system; there is no parent,
so .. has the same meaning as ..
SEE ALSO

fs(4).

7/85 -1- 7/85

FILEHDR {4)

FILEHDR (4)
NAME
filehdr — file header for common object files
SYNOPSIS
#include <filehdr.h>
DESCRIPTION

Every common object file begins with a

declaration is used:
struct filehdr

unsigned short f magic ;
unsigned short f nscns ;

long f timdat ;
long f symptr ;
long f nsyms ;

unsigned short f opthdr ;
unsigned short f flags ;

1

20-byte header. The following C struct

/* magic number */

/= number of sections */
/* time & date stamp */
/* file ptr to symtab =/
/= # symtab entries */
/+ sizeof (opt hdr) */

/* flags =/

F_symptr is the byte offset into the file at which the symbol table can be found. Its
value can be used as the offset in fseek (3S) to position an I/O stream to the symbol

table. The UNIX system optional header
given below:

#define N3IBMAGIC 0550
#define NTVMAGIC 0551

#define VAXWRMAGIC 0570
#define VAXROMAGIC 0575

#define FBOMAGIC 0570

is 28-bytes. The valid magic numbers are

/* 3B20 computer */
/» 3B20 computer */

/* VAX writable text segments */
/= VAX readonly sharable text segments */

/* 3BS5 and 3B2 computers */

The value in f timdat is obtained from the rime(2) system call. Flag bits currently

defined are:

#define F_ RELFLG 0000001
#define F_EXEC 0000002
#define F LNNO 0000004
#define F_LSYMS 0000010
#define F_ MINMAL 0000020
#define F_UPDATE 0000040
#define F SWABD 0000100
#define F_ARI6WR 0000200
#define F_AR32WR 0000400
fidefine F_AR32W 0001000
#define F_ PATCH 0002000
#define F_BM32ID 0160000
#define F_BM32B 0020000
#define ¥ BM32RST 0010000

SEE ALSO
time(2), fseek(3S), a.out(4).

7/85 -1 -

/* relocation entries stripped =/

/* file is executable */

/= line numbers stripped */

/= local symbols stripped */

/* minimal object file */

/* update file, ogen produced »/

/* file is "pre~-swabbed" =/

/= 16-bit DEC host */

/= 32-bit DEC host =/

/# non-DEC host */

/+ "patch” list in opt hdr »/

/+ WE 32000 family identification field »/

/= file contains WE 32100 code */

/* this object file contains restore
work around [3B5/3B2 only] */

1/85

FS(4)

NAME

file system — format of system volume

SYNOPSIS
#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.bh>

DESCRIPTION

FS(4)

Every file system storage volume has a common format for certain vital information.
Every such volume is divided into a certain number of 512-byte long sectors. Sector
0 is unused and is available to contain a bootstrap program or other information.

Sector 1 is the super-block. The format of a super-block is:

/*

= Structure of the super-block

«/

struct filsys

{
ushort s_isize;
daddr_t s_fsize;
short s_nfree;
daddr t s_free[NICFREE];
short s_ninode;
ino_t s_inode[NICINOD);
char s_flock;
char s_ilock;
char s_fmod;
char s_ronly;
time_t s_time;
short s_dinfol4];
daddr t s_tfree;
ino_t s_tinode;
char s_fnamel6];
char s fpackl6];
long s fillf12];
long s_state;
long $_magic;
long s_type;

|3

#define FsSMAGIC 0Oxfd187e20

#define Fslb 1

#define Fs2b 2

#define FsOKAY 0x7¢269d38

#define FSACTIVE 0x5¢72d81a

#define FsBAD 0xch096f43

/» size in blocks of i-list »/

/* size in blocks of entire volume */
/* number of addresses in s_free */
/» free block list */

/* number of i-nodes in s_inode */
/= free i-node list »/

/= lock during free list manipulation */
/= lock during i-list manipulation »/
/= super block modified flag */

/+ mounted read-only flag +/

/+ last super block update »/

/» device information */

/» total free blocks*/

/» total free i-nodes */

/= file system name */

/» file system pack name */

/* ADJUST to make sizeof filsys

be 512 »/

/= file system state =/

/* magic number to denote new

file system */

/» type of new file system */

/# s_magic number =/

/% 512-byte block */
/= 1024-byte block */

/* s_state: clean »/
/* s_state: active ~/
/+ s_state: bad root */

S type indicates the file system type. Currently, two types of file systems are sup-
ported: the original 512-byte oriented and the nmew improved 1024-byte oriented.
S _magic is used to distinguish the original 512-byte oriented file systems from the

7/85

-1-

7/85

FS(4)

7/85

FS(4)

newer file systems. If this field is not equal to the magic number, FsMAGIC, the
type is assumed to be Fslb, otherwise the s type field is used. In the following
description, a block is then determined by the type. For the original 512-byte
oriented file system, a block is 512-bytes. For the 1024-byte oriented file system, a
block is 1024-bytes or two sectors. The operating system takes care of all conver-
sions from logical block numbers to physical sector numbers.

S state indicates the state of the file system. A cleanly unmounted, not damaged
file system is indicated by the FSOKAY state. After a file system has been mounted
for update, the state changes to FSACTIVE. A special case is used for the root file
system. If the root file system appears damaged at boot time, it is mounted but
marked FSBAD. Lastly, after a file system has been unmounted, the state reverts to
FsOKAY.

S isize is the address of the first data block after the i-list; the i-list starts just after
the super-block, namely in block 2; thus the i-list is s_isize—2 blocks long. S_fsize
is the first block not potentially available for allocation to a file. These numbers are
wsed by the system to check for bad block numbers; if an “impossible” block
number is allocated from the free list or is freed, a diagnostic is written on the on-
line console. Moreover, the free array is cleared, so as to prevent further allocation
from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s free array contains, in
s freelll, ..., s _freels nfree—1], up to 49 numbers of free blocks. S_freel0] is the
block number of the head of a chain of blocks constituting the free list. The first
long in each free-chain block is the number (up to 50) of free-block numbers listed
in the next 50 longs of this chain member. The first of these 50 blocks is the link to
the next member of the chain. To allocate a block: decrement s_nfree, and the new
block is s freels nfree]. If the new block number is 0, there are no blocks left, so
give an error. If s _nfree became 0, read in the block named by the new block
number, replace s_nfree by its first word, and copy the block numbers in the next 50
longs into the s _free array. To free a block, check if s_nfree is 50; if so, copy
s_nfree and the s_free array into it, write it out, and set s_nfree to 0. In any event
set s freels nfree] to the freed block’s number and increment s_nfree.

S _tfree is the total free blocks available in the file system.

S _ninode is the number of free i-numbers in the s_jnode array. To allocate an i-
node: if s_ninode is greater than 0, decrement it and return s_inodels ninodel. 1f
it was 0, read the i-list and place the numbers of all free i-nodes (up to 100) into
the s inode array, then try again. To free an i-node, provided s ninode is less than
100, place its number into s_inodels_ninodel and increment s_ninode. 1f s_ninode
is already 100, do not bother to enter the freed i-node into any table. This list of i~
nodes is only to speed up the allocation process; the information as to whether the
i-node is really free or not is maintained in the i-node itself.

8 _tinode is the total free i-nodes available in the file system.

S _flock and s_ilock are flags maintained in the core copy of the file system while it
is mounted and their values on disk are immaterial. The value of s_fmod on disk is
likewise immaterial; it is used as a flag to indicate that the super-block has changed
and should be copied to the disk during the next periodic update of file system infor-
mation.

S _ronly is a read-only flag to indicate write-protection.

8 _time is the last time the super-block of the file system was changed, and is the
number of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT). During a

~2- 7/85

FS(4)

FILES

FS(4)

reboot, the s_time of the super-block for the root file system is used to set the
system’s idea of the time.

S_fname is the name of the file system and s_fpack is the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes
are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is reserved for the
root directory of the file system, but no other i-number has a built-in meaning.
Each i-node represents one file. For the format of an i-node and its flags, see
inode (4).

/usr/include/sys/filsys.h
/usr/include/sys/stat.h

SEE ALSO

7/85

mount(2), inode(4).
fsck(1M), fsdb(1M), mkfs(IM) in the AT&T 3B2 Computer System Administra-
tion Reference Manual.

-3 7/85

FSPEC (4) FSPEC(4)

NAME
fspec — format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the UNIX system with non-
standard tabs, (i.e., tabs which are not set at every eighth column). Such files must
generally be converted to a standard format, frequently by replacing all tabs with
the appropriate number of spaces, before they can be processed by UNIX system
commands. A format specification occurring in the first line of a text file specifies
how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and
surrounded by the brackets <: and :>. Each parameter consists of a keyletter, pos-
sibly followed immediately by a value. The following parameters are recognized:

trabs The t parameter specifies the tab settings for the file. The value of
tabs must be one of the following:

1. a list of column numbers separated by commas, indicating tabs
set at the specified columns;

2. a — followed immediately by an integer n, indicating tabs at
intervals of n columns;

3. a — followed by the name of a “canned” tab specification.

Standard tabs are specified by t —8, or equivalently, t1,9,17,25,etc. The
canned tabs which are recognized are defined by the tabs (1) command.

ssize The s parameter specifies a maximum line size. The value of size must
be an integer. Size checking is performed after tabs have been
expanded, but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to each
line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line
containing the format specification is to be deleted from the converted
file.

e The e parameter takes no value. Its presence indicates that the current

format is to prevail only until another format specification is encoun-
tered in the file.

Default values, which are assumed for parameters not supplied, are t —8 and m0. If
the s parameter is not specified, no size checking is performed. If the first line of a
file does not contain a format specification, the above defaults are assumed for the
entire file. The following is an example of a line containing a format specification:

* <:15,10,15 s72:> =

If a format specification can be disguised as a comment, it is not necessary to code
the d parameter.

Several UNIX system commands correctly interpret the format specification for a
file. Among them is gath (see send (1C)) which may be used to convert files to a
standard format acceptable to other UNIX system commands.

SEE ALSO
ed(1), newform(1), tabs(1) in the AT&T 3B2 Computer User Reference Manual.

7/85 ~1- 7/85

GETTYDEFS (4) GETTYDEFS (4}

NAME

gettydefs — speed and terminal settings used by getty

DESCRIPTION

7/85

The /etc/gettydefs file contains information used by getry (1M) to set up the speed
and terminal settings for a line. It supplies information on what the login prompt
should look like. Tt also supplies the speed to try next if the user indicates the
current speed is not correct by typing a <break> character.

Each entry in /ete/gettydefs has the following format:
label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain quoted char-
acters of the form \b, \m, \¢, etc., as well as \nnn, where nnn is the octal value of the
desired character. The various fields are:

label This is the string against which geitty tries to match its second argu-
ment. It is often the speed, such as 1200, at which the terminal is
supposed to run, but it need not be (see below).

initial-flags These flags are the initial ioctI(2) settings to which the terminal is to
be set if a terminal type is not specified to geizy. The flags that
getty understands are the same as the ones listed in
/usr/inclnde/sys/termio.h (see termio(7)). Normally only the speed
flag is required in the initial-flags. Getty automatically sets the ter-
minal to raw input mode and takes care of most of the other flags.
The initial-flag settings remain in effect until geizy executes
login(1).

final-flags These flags take the same values as the initial-flags and are set just
prior to geity executes login. The speed flag is again required. The
composite flag SANE takes care of most of the other flags that need
to be set so that the processor and terminal are communicating in a
rational fashion. The other two commonly specified final-flags are
TAB3, so that tabs are sent to the terminal as spaces, and HUPCL, so
that the line is hung up on the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the above
fields where white space is ignored (a space, tab or new-line), they
are included in the login-prompt field.

next-label If this entry does not specify the desired speed, indicated by the user
typing a <break> character, then getty will search for the entry
with nexi-label as its label field and set up the terminal for those
settings. Usually, a series of speeds are linked together in this
fashion, into a closed set; For instance, 2400 linked to 1200, which in
turn is linked to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of /ete/gettydefs is
used, thus making the first entry of /etc/gettydefs the default entry. It is also used
if getty can not find the specified label. If /etc/gettydefs itself is missing, there is
one entry built into the command which will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs, it be run
through gerty with the check option to be sure there are no errors.

S 7/85

GETTYDEFS (4) GETTYDEFS(4)

FILES
letc/ gettydefs

SEE ALSO
ioctl(2).
getty(1IM), termio(7) in the AT&T 3B2 Computer System Administration Refer-
ence Manual.
login{(1) in the AT&T 382 Computer User Reference Manual.

7/85 -2~ 7/85

GPS(4) GPS(4)

NAME
gps — graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several routines have been developed
to edit and display GPS files on various devices. Also, higher level graphics pro-
grams such as plot (in staz (1G)) and vioc (in toc(1G)) produce GPS format output
files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES
lines The lines primitive has a variable number of points from which zero or
more connected line segments are produced. The first point given pro-
duces a move to that location. (A move is a relocation of the graphic
cursor without drawing.) Successive points produce line segments from
the previous point. Parameters are available to set color, weight, and
style (see below).

are The arc primitive has a variable number of points to which a curve is fit.
The first point produces a move to that point. If only two points are
included, a line connecting the points will result; if three points a circu-
lar arc through the points is drawn; and if more than three, lines connect
the points. (In the future, a spline will be fit to the points if they
number greater than three) Parameters are available to set color,
weight, and style.

text The text primitive draws characters. It requires a single point which
locates the center of the first character to be drawn. Parameters are
color, font, textsize, and textangle.

hardware The hardware primitive draws hardware characters or gives control com-
mands to a hardware device. A single point locates the beginning loca-
tion of the hardware string.

comment A comment is an integer string that is included in a GPS file but causes
nothing to be displayed. All GPS files begin with a comment of zero

length.
GPS PARAMETERS
color Color is an integer value set for arc, lines, and fext primitives.
weight Weight is an integer value set for arc and Jines primitives to indicate line
thickness. The value @ is narrow weight, 1 is bold, and 2 is medium
weight.
style Style is an integer value set for lines and arc primitives to give one of

the five different line styles that can be drawn om TEKTRONIX 4010
series storage tubes. They are:

0 solid
1 dotted
2 dot dashed
3 dashed
4 long dashed
font An integer value set for text primitives to designate the text font to be

used in drawing a character string. (Currently font is expressed as a
four-bit weight value followed by a four-bit siyle value.)

7/85 -1- 7/85

GPS(4)

textsize

textangle

GPS(4)

Texisize is an integer value used in tex: primitives to express the size of
the characters to be drawn. Textsize represents the height of characters
in absolute universe-units and is stored at one-fifth this value in the
size-orientation (so0) word (see below).

Textangle is a signed integer value used in fext primitives to express
rotation of the character string around the beginning point. Textangle is
expressed in degrees from the positive x-axis and can be a positive or
negative value. It is stored in the size-orientation (s0) word as a value
256/360 of it’s absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:

fimes

are

text
hardware
comment

cw

point(s)

SwW

SO

strimg

SEE ALSO
graphics(1G), stat(1G), toc(1G) in the AT&T 3B2 Computer User Reference

7/85

Manual.

cw points sw
cw poinis sw
cw point sw so [string)
ew point Istring)
ew lstring]

Cw is the control word and begins all primitives. It consists of four bits
that contain a primitive-type code and twelve bits that contain the
word-count for that primitive.

Point(s) is one or more pairs of integer coordinates. Text and hardware
primitives only require a single point. Point(s) are values within a
Cartesian plane or universe having 64K (—32K to +32K) points on each
axis.

Sw is the style-word and is used in /ines, arc, and text primitives. For
all three, eight bits contain color information. In arc and lines eight bits
are divided as four bits weight and four bits style. In the text primitive
eight bits of sw contain the font.

So is the size-orientation word used in fext primitives. Eight bits con-
tain text size and eight bits contain text rotation.

String is a null-terminated character string. If the string does not end
on a word boundary, an additional nuil is added to the GPS file to insure
word-boundary alignment.

~2- 7/85

GROUP (4) GROUP(4)

NAME

group — group file

DESCRIPTION

FILES

Group contains for each group the following information:

group pame

encrypted password

numerical group ID

comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is separated
from the next by a new-line. If the password field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can and
does have general read permission and can be used, for example, to map numerical
group ID’s to names.

/fetc/group

SEE ALSO

7/85

passwd(4).
passwd(1) in the AT&T 3B2 Computer User Reference Manual.

newgrp(1M) in the AT&T 3B2 Computer System Administration Reference
Manual.

-1~ 7/85

INITTAB (4) INITTAB (4)

NAME

inittab — script for the init process

DESCRIPTION

7/85

The inittab file supplies the script to init’s role as a general process dispatcher. The
process that constitutes the majority of init’s process dispatching activities is the line
process /etc/getty that initiates individual terminal lines. Other processes typically
dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent and have the fol-
lowing format:

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\) preceding a newline
indicates a continuation of the entry. Up to 512 characters per entry are permitted.
Comments may be inserted in the process field using the sh(1) convention for com-
ments. Comments for lines that spawn gefys are displayed by the who(1) com-
mand. It is expected that they will contain some information about the line such as
the location. There are no limits (other than maximum entry size) imposed on the
number of entries within the inittab file. The entry fields are:

id This is one or two characters used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed. Run-
levels effectively correspond to a configuration of processes in the system.
That is, each process spawned by init is assigned a run-level or run-levels
in which it is allowed to exist. The run-levels are represented by a
number ranging from 0 through 6. As an example, if the system is in
run-level 1, only those entries having a 1 in the rstate field will be pro-
cessed. When init is requested to change run-levels, all processes which do
not have an entry in the rstate field for the target run-level will be sent
the warning signal (SIGTERM) and allowed a 20-second grace period
before being forcibly terminated by a kill signal (SIGKILL). The rstate
field can define multiple run-levels for a process by selecting more than
one run-level in any combination from 0—6. If no run-level is specified,
then the process is assumed to be valid at all run-levels 0 —6. There are
three other values, a, b and ¢, which can appear in the rstate field, even
though they are not true run-levels. Entries which have these characters
in the rstate field are processed only when the telinit (see init (1M)) pro-
cess requests them to be run (regardless of the current run-level of the
system). They differ from run-levels in that init can never enter run-level
a, b or ¢. Also, a request for the execution of any of these processes does
not change the current run-level. Furthermore, a process started by an a,
b or ¢ command is not killed when init changes levels. They are only
killed if their line in /etc/inittab is marked off in the action field, their line
is deleted entirely from /etc/imittab, or init goes into the SINGLE USER
state.

action Key words in this field tell init how to treat the process specified in the
process field. The actions recognized by init are as follows:

respawn If the process does not exist then start the process, do not wait
for its termination (continue scanning the inittab file), and
when it dies restart the process. If the process currently exists
then do nothing and continue scanning the initzab file.

-1- 7/85

INITTARB(4)

7/85

wait

once

boot

bootwait

powerfail

powerwait

off

ondemand

initdefault

INITTAB(4)

Upon init’s entering the run-level that matches the entry’s
rstate, start the process and wait for its termination. All sub-
sequent reads of the inittab file while inif is in the same run-
level will cause init to ignore this entry.

Upon init’s entering a run-level that matches the entry’s
rstate, start the process, do not wait for its termination.
When it dies, do not restart the process. If upon entering a
new run-level, where the process is still running from a previ-
ous run-level change, the program will not be restarted.

The entry is to be processed only at init’s boot-time read of
the inirtab file. Init is to start the process, not wait for its ter-
mination; and when it dies, not restart the process. In order
for this instruction to be meaningful, the rstate should be the
default or it must match init’s run-level at boot time. This
action is useful for an initialization function following a
hardware reboot of the system.

The entry is to be processed only at init’s boot-time read of
the inittab file. Init is to start the process, wait for its termi-
pation and, when it dies, not restart the process.

Execute the process associated with this entry only when init
receives a power fail signal (SIGPWR see signal(2)).

Execute the process associated with this entry only when init
receives a power fail signal (SIGPWR) and wait until it ter-
minates before continuing any processing of inittab.

If the process associated with this entry is currently running,
send the warning signal (SIGTERM) and wait 20 seconds
before forcibly terminating the process via the kill signal (SIG-
KILL). If the process is nonexistent, ignore the entry.

This instruction is really a synonym for the respawnm action. It
is functionally identical to respawn but is given a different
keyword in order to divorce its association with run-levels.
This is used only with the a, b or ¢ values described in the
rstate field.

An entry with this action is only scanned when init initially
invoked. Init uses this entry, if it exists, to determine which
run-level to enter initially. It does this by taking the highest
run-level specified in the rstate field and using that as its ini-
tial state. If the rstate field is empty, this is interpreted as
0123456 and so init will enter run-level 6. Also, the initde-
fault entry cannot specify that init start in the SINGLE USER
state. Additionally, if init does not find an imitdefault entry in
/etc /inittab, then it will request an initial run-level from the
user at reboot time.

-2 7/85

INITTAB(4) INITTAB (4)

FILES

sysinit Entries of this type are executed before inir tries to access the
console. It is expected that this entry will be only used to ini-
tialize devices on which init might try to ask the run-level
question. These entries are executed and waited for before
continuing.

process This is a sh command to be executed. The entire process field is prefixed
with exec and passed to a forked sh as sh —¢ 'exec command’'. For this
reason, any legal sh syntax can appear in the process field. Comments can
be inserted with the ; #comment syntax.

/etc/inittab

SEE ALSO

7/85

exec(2), open(2), signal(2).

getty(1M), init(IM) in the AT&T 3B2 Computer System Administration Refer-
ence Manual.

sh{1), who(1) in the AT&T 3B2 Computer User Reference Manual.

-3 7/85

INODE (4) INODE (4)

NAME
inode — format of an i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION
An i-node for a plain file or directory in a file system has the following structure
defined by <sys/ine.h>.

/» Inode structure as it appears on a disk block. »/
struct dinode

ushort di_mode; /* mode and type of file =/
short di_nlink; /= number of links to file */

ushort di_uid; /* owner’s user id =/

ushort di_gid; /* owner’s group id */

off t di_size; /» number of bytes in file */

char di_addrl40]; /+ disk block addresses */

time t di_atime; /= time last accessed =/

time_t di_mtime; /» time last modified =/
| time_t di_ctime; /= time of last file status change */
/e

» the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*/
For the meaning of the defined types off ¢ and time ¢ see types(5).
FILES
/usr/include/sys/ino.h
SEE ALSO
stat(2), fs(4), types(5).

7/85 -1~ 7/85

ISSUE(4) ISSUE(4)

NAME
issue — issue identification file

DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed as a login
prompt. This is an ASCII file which is read by program getty and then written to
any terminal spawned or respawned from the lines file.

FILES
/etc/issue

SEE ALSO
login(1) in the AT&T 3B2 Computer User Reference Manual.

7/85 -1- 7/85

LDFCN (4) LDFCN (4)

NAME

ldfen — common object file access routines

SYNOPSIS

#include <stdio.h>
#incinde < filehdr.h>
#include <ldfco.n>

DESCRIPTION

7/85

The common object file access routines are a collection of functions for reading an
object file that is in computer (common) object file form. Although the calling pro-
gram must know the detailed structure of the parts of the object file that it
processes, the routines effectively insulate the calling program from knowledge of
the overall structure of the object file.

The interface between the calling program and the object file access routines is
based on the defined type LDFILE, defined as struct Idfile, declared in the header file
Idfcn.h. The primary purpose of this structure is to provide uniform access to both
simple object files and to object files that are members of an archive file.

The function ldopen(3X) allocates and initializes the LDFILE structure and returns
a pointer to the structure to the calling program. The fields of the LDFILE structure
may be accessed individually through macros defined in ldfen.h and contain the fol-
lowing information:

LDFILE *ldptr;

TYPE(ldptr) The file magic number used to distinguish between archive
members and simple object files.

IOPTR (Idptr) The file pointer returned by fopen and used by the standard
input/output functions.

OFFSET(ldptr) The file address of the beginning of the object file; the offset is
pon-zero if the object file is 2 member of an archive file.

HEADER (ldptr) The file header structure of the object file.
The object file access functions themselves may be divided into four categories:
(1) functions that open or close an object file

Idopen (3X) and Ildopen(3X)
open a common object file
Idclose (3X) and ldclose (3X)
close a common object file

(2) funétions that read header or symbol table information

ldahread (3X)

read the archive header of a member of an archive file
idfhread (3X)

read the file header of a common object file
ldshread (3X) and Idshread (3X)

read a section header of a common object file
ldtbread (3X)

read a symbol table entry of a common object file
ldgetname (3X)

retrieve a symbol name from a symbol table entry or from

the string table

- - 7/85

LDFCN (4) LDFCN{(4)

(3) functions that position an object file at (seek to} the start of the sec-
tion, relocation, or line number information for a particular section.

Idohseek (3X)
seek to the optional file header of a common object file
Idsseek (3X) and Idsseek (3X)
seek to a section of a common object file
ldrseek (3X) and Ildrseek (3X)
seek to the relocation information for a section of a com-
mon object file
Idiseek (3X) and Idiseek (3X)
seek to the line number information for a section of a com-
mon object file
Idthseek (3X)
seek to the symbol table of a common object file

(4) the function Idthindex(3X) which returns the index of a particular
common object file symbol table entry.

These functions are described in detail on their respective manual pages.

All the functions except Idopen(3X), Idgetname(3X), Idopen(3X), and
Idthindex (3X) return either SUCCESS or FAILURE, both constants defined in
Idfenk. Ldopen(3X) and ldopen{(3X) both return pointers to an LDFILE structure.

Additional access to an object file is provided through a set of macros defined in
ldfen.h. These macros parallel the standard input/output file reading and manipu-
lating functions, translating a reference of the LDFILE structure into a reference to
its file descriptor field.

The following macros are provided:

GETC(ldptr)

FGETC(dptr)

GETW (Idptr)

UNGETC (c, ldptr)

FGETS(s, n, Idptr)
FREAD((char #) ptr, sizeof {*ptr), nitems, ldptr)
FSEEXK (1dptr, offset, ptrname)
FTELL (dptr)

REWIND (Idptr)

FEOF (idptr)

FERROR (Idptr)
FILENO(ldptr)

SETBUF (Idptr, buf)
STROFFSET (Idptr)

The STROFFSET macro calculates the address of the string table in a UNIX system
release 5.0 object file. See the manual entries for the corresponding standard
input/output library functions for details on the use of the rest of the macros.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
fseek(3S), ldahread(3X), ldclose(3X), ldgetname(3X), Idfhread(3X), ldlread(3X),
1diseek(3X), ldohseek(3X), ldopen(3X), ldrseek(3X), Idiseek(3X), ldshread(3X),
1dtbindex(3X), 1dtbread (3X), Idtbseek(3X), intro(5).

7/85 -2 - 7/85

LDFCN (4) LDFCN (4)

WARNING

7/85

The macro FSEEK defined in the header file idfen.h translates into a call to the stan-
dard input/output function fseek (35). FSEEK should not be used to seek from the
end of an archive file since the end of an archive file may not be the same as the
end of one of its object file members!

-3- 7/85

LINENUM (4) LINENUM (4)

NAME

linenum — line number entries in a common object file
SYNOPSIS

#Hinclude <linenum.h>
DESCRIPTION

Compilers based on pcc generate an entry in the object file for each C source line on
which a breakpoint is possible (when invoked with the —g option; see cc(1)). Users
can then reference line numbers when using the appropriate software test system
(see sdb(1)). The structure of these line number entries appears below.

struct lineno
union

long 1 symndx ;
long 1 paddr;
} 1_addr ;
unsigned short 1 Inno ;
Numbering starts with one for each function. The initial line number entry for a
function has I Inno equal to zero, and the symbol table index of the function’s entry
is in {_symndx. Otherwise, ! Inno is non-zero, and /_paddr is the physical address
of the code for the referenced line. Thus the overall structure is the following:

1 addr I Inno
function symtab index 0
physical address line

physical address line

function symtab index O
physical address line
physical address line

SEE ALSO
a.out(4).
cc(1), sdb(1) in the AT&T 3B2 Computer User Reference Manual.

7/85 -1~ 7/85

MASTER (4) MASTER (4)

NAME
master — master configuration database

DESCRIPTION

The master configuration database is a collection of files. FEach file contains
configuration information for a device or module that may be included in the sys-
tem. A file is named with the module name to which it applies. This collection of
files is maintained in a directory called /etc/master.d. Each individual file has an
identical format. For convenience, this collection of files will be referred to as the
master file, as though it was a single file. This will allow a reference to the master
file to be understood to mean the individual file in the master.d directory that
corresponds to the name of a device or module. The file is used by the mkboot(1M)
program to obtain device information to generate the device driver and configurable
module files. It is also used by the sysdef(1M) program to obtain the names of sup-
ported devices. Master consists of two parts; they are separated by a line with a
dollar sign (8) in column 1. Part 1 contains device information for both hardware
and software devices, and loadable modules. Part 2 contains parameter declarations
used in part 1. Any line with an asterisk (*) in column 1 is treated as a comment.

Part 1, Description
Hardware devices, software drivers and loadable modules are defined with a line
containing the following information. Field 1 must begin in the left most position
on the line. Fields are separated by white space (tab or blank).

Field 1: element characterisitics:
) specify only once
r required device
b block device
c character device
a generate segment descriptor array
t initialize cdevswl].d_ttys
s software driver
X not a driver; a loadable module
number The first interrupt vector for an integral device
Field 2: number of interrupt vectors required by a hardware device:
"—" if none.
Field 3: handler prefix (4 chars. maximum)
Field 4: software driver external major number; "—" if not a software
driver
Field 5: number of sub-devices per device; "—" if none
Field 6: interrupt priority level of the device; "—" if none
Field 7: dependency list (optional); this is a comma separated list of

other drivers or modules that must be present in the
configuration if this module is to be included

For each module, two classes of information are required by mkboot (IM):
external routine references and variable definitions. Routine and variable
definition lines begin with white space and immediately follow the initial
module specification line. These lines are free form, thus they may be con-
tinued arbitrarily between non-blank tokens as long as the first character of
a line is white space.

Part 1, Routine Reference Lines

If the UNIX system kernel or other dependent module contains external references
to a module, but the module is not configured, then these external references would

7/85 -1- 7/85

MASTER (4) MASTER (4)

be undefined. Therefore, the routine reference lines are used to provide the infor-
mation necessary to generate appropriate dummy functions at boot time when the
driver is not leaded.

Routine references are defined as follows:

Field 1: routine name ()
Field 2: the routine type: one of
0 routine_name() {}

{nosys} routine name(} {return nosysQ;}
{nodev} routine name() {return nodev();}
{false} routine name(){return 0;}
{true} routine name(} {return 1;}

Part 1, Variable Definition Lines

7/85

Variable definition lines are used to generate all variables required by the module.
The variable generated may be of arbitrary size, be initialized or not, or be arrays
containing an arbitrary number of elements.

variable references are defined as follows:

Field 1: variable_name

Field 2: [expr] — optional field used to indicate array size

Field 3: (length) — required field indicating the size of the variable
Field 4: ={ expr,... } — optional field used to initialize individual ele-

ments of a variable
The length field is mandatory. It is an arbitrary sequence of length specifiers, each
of which may be one of the following:

%i an integer

%l a long integer

%s a short integer

%c a single character

%number a field which is number bytes long

%number ¢ a character string which is number bytes long
For example, the length field
(%8c %) %0x58 %l %c %e)

could be used to identify a variable consistring of a character sting 8-bytes long, a
long integer, a 0x58 byte structure of any type, another long integer, and two char-
acters. Appropriate alignment of each % specification is performed (%number is
word aligned) and the variable length is rounded up to the next word boundary dur-
ing processing.

The expressions for the optional array size and initialization are infix expressions
consisting of the usual operators for addition, subtraction, multiplication, and divi-
sion: +, —, *, and /. Moultiplication and division have the higher precedence, but
parentheses may be used to override the default order. The builtin functions min
and max accept a pair of expressions, and return the appropriate value. The
operands of the expression may be any mixture of the following:

&name address of name where name is any symbol defined by the
kernel, any module loaded or any variable definition line of
any module loaded

#name sizeof name where name is any variable name defined by a
variable definition for any module loaded; the size is that of

-2~ 7/85

MASTER (4) MASTER (4)

the individual variable--not the size of an entire array

#C number of controllers present; this number is determined by
the EDT for hardware devices, or by the number provided in
the system file for non-hardware drivers or modules

#C(name) number of controllers present for the module name; this
number is determined by the EDT for hardware devices, or by
the number provided in the system file for non-hardware
drivers or modules

#D number of devices per controller taken directly from the
current master file entry

#D(name) number of devices per controller taken directly from the mas-
ter file entry for the module name

#M the internal major number assigned to the current module if it
is a device driver; zero of this module is not a device driver

#M(name) the internal major number assigned to the module name if it
is a device driver: zero if that module is not a device driver

name value of a parameter as defined in the second part of master
number arbitrary number (octal, decimal, or hex allowed)
string a character string enclosed within double quotes (all of the

character string conventions supported by the C language are
allowed); this operand has a value which is the address of a
character array containing the specified string

When initializing a variable, one initialization expression should be provided for
each %i, %l, %s, or %c of the length field. The only initializers allowed for a
‘%number c’ are either a character string (the string may not be longer than
number), or an explicit zero. Initialization expressions must be separated by com-
mas, and variable initialization will proceed element by eclement. WNote that
%number specification cannot be initialized--they are set to zero. Only the first ele-
ment of an array can be initialized, the other elements are set to zero. If there are
more initializers than size specifications, it is an error and execution of the
mkboot (1IM) program will be aborted. If there are fewer initializations than size
specifications, zeros will be used to pad the variable. For example:

={"V2.L1", #C*#D, max(10,#D), #C(OTHER), #M(OTHER) }

would be a possible initialization of the variable whose length field was given in the
preceeding example.

Part 2, Description
Parameter declarations may be used to define a value symbolically. Values can be
associated with identifiers and these identifiers may be used in the variable
definition lines.

Parameters are defined as follows:

Field 1: identifier (8 characters maximum)
Field 2: =
Field 3: value, the value may be a number (decimal, octal, or hex

allowed), or a string
EXAMPLE
A sample master file for a tty device driver would be named "atty" if the device

7/85 ~3- 7/85

MASTER (4) MASTER (4)

FILES

appeared in the EDT as "ATTY". The driver is a character device, the driver prefix
is at, two interrupt vectors are used, and the interrupt priority is 6. In addition,
another driver named "ATLOG" is necessary for the correct operation of the software
associated with this device.

*FLAG #VEC PREFIX SOFT #DEV IPL DEPENDEMCIES/ VARIABLES

tca 2 at -~ 2 6 ATLOG
atpoint(){false]
at_tty[#C*#D] (%0x58)
at_cnt(%i) ={ #c*§p }
at_logmaj(%i) ={ §M(ATLOG) }
at_id(%8c) ={ aTIp }
at_table(%i%1%31%s)

={ max(#C,ATMAX),

gat_tty,
gc)

$

ATID = "fred"

ATMAX = 6

This master file will cause a routine named atpoint to be generated by the boot pro-
gram if the ATTY driver is not loaded, and there is a reference to this routine from
any other module loaded. When the driver is loaded, the variables at_tiy, at_cnt,
at_logmaj, at_id, and at_table will be allocated and initialized as specified. Due to
the t flag, the d_rtys field in the character device switch table will be initialized to
point to at_tty (the first variable definition line contains the variable whose address
will be stored in d ttys). The ATTY driver would reference these variables by cod-
ing:

extern struct tty at ttyl);
extern int at_cnt;
extern int at_logmayj;
extern char at id[8];
extern struct r

int memberl;

struct tty *member2;

char junk{31};

short member3;

} at_table;

/etc/master.d/*

SEE ALSO

7/85

system{4).
mkboot(1M), sysdef(IM) in the AT&T 3B2 Compuier System Administration
Reference Manual.

-4 - 7/85

MNTTAR (4) MNTTAB(4)

NAME

mnttab — mounted file system table
SYNOPSIS

#include <mnttab.h>
DESCRIPTION

Mpnitab resides in directory /ete and contains a table of devices, mounted by the
mount (1IM) command, in the following structure as defined by <mnttab.h>:

struct mnttab {

char mt_dev[32];
char mt_filsys[32];
short mt_ro_flg;
time _t mt_time;

};
Each entry is 70 bytes in length; the first 32 bytes are the null-padded name of the
place where the special file is mounted; the next 32 bytes represent the null-padded
root name of the mounted special file; the remaining 6 bytes contain the mounted
special file’s read/write permissions and the date on which it was mounted.

The maximum number of entries in mmnttab is based on the system parameter
NMOUNT located in /usr/src/uts/cf/conf.c, which defines the number of allowable
mounted special files.

SEE ALSO
mount(1M), setmnt(1M) in the AT&T 3B2 Computer System Administration
Reference Manual.

7/85 -1- 7/85

PASSWD (4) PASSWD (4)

NAME

passwd — password file

DESCRIPTION

FILES

Passwd contains for each user the following information:

login name

encrypted password

numerical user ID

numerical group ID

GCOS job number, box number, optional GCOS user 1D
initial working directory

program to use as shell

This is an ASCII file. Each field within each user’s entry is separated from the next
by a colon. The GCOS field is used only when communicating with that system, and
in other installations can contain any desired information. Each user is separated
from the next by a new-line. If the password field is null, no password is demanded;
if the shell field is null, the shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and
does have general read permission and can be used, for example, to map numerical
user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-character alpha-
bet (., /, 0—9, A—Z, a—z), except when the password is null, in which case the
encrypted password is also null. Password aging is effected for a particular user if
his encrypted password in the password file is followed by a comma and a non-null
string of characters from the above alphabet. (Such a string must be introduced in
the first instance by the super-user.)

The first character of the age, M say, denotes the maximum number of weeks for
which a password is valid. A user who attempts to login after his password has
expired will be forced to supply a new one. The next character, m say, denotes the
minimum period in weeks which must expire before the password may be changed.
The remaining characters define the week (counted from the beginning of 1970)
when the password was last changed. (A null string is equivalent to zero.) M and
m have numerical values in the range 0—63 that correspond to the 64-character
alphabet shown above (.e., / = 1 week; z = 63 weeks). If m = M = 0 (derived
from the string . or ..) the user will be forced to change his password the next time
he logs in (and the “age” will disappear from his entry in the password file). If m
> M (signified, e.g., by the string ./) only the super-user will be able to change the
password.

/etc/passwd

SEE ALSO

7/85

a641(3C), getpwent(3C), group(4).
login(1), passwd(1) in the AT&T 3B2 Computer User Reference Manual.

-1- 7/85

PLOT (4) PLOT (4)

NAME
plot — graphics interface

DESCRIPTION

Files of this format are produced by routines described in plor (3X) and are inter-
preted for various devices by commands described in zplot (1G). A graphics file is a
stream of plotiing instructions. Each instruction consists of an ASCII letter usually
followed by bytes of binary information. The instructions are executed in order. A
point is designated by four bytes representing the x and y values; each value is a
signed integer. The last designated point in an I, m, m, or p instruction becomes the
“current point” for the next instruction.

Each of the following descriptions begins with the name of the corresponding rou-
tine in plot (3X).

m move: The next four bytes give a new current point.

m cont: Draw a line from the current point to the point given by the next four
bytes. See tplot(1G).

p point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes to the point given
by the following four bytes.

t label: Place the following ASCII string so that its first character falls on the
current point. The string is terminated by a new-line.

e erase: Start another frame of output.

linemod: Take the following string, up to a new-line, as the style for drawing
further lines. The styles are “dotted”, “solid”, “longdashed”, “shortdashed”, and
“dotdashed”. Effective only for the —T4014 and ~Tver options of zplot(1G)
(TEKTRONIX 4014 terminal and Versatec plotter).

s space: The next four bytes give the lower left corner of the plotting area; the
following four give the upper right corner. The plot will be magnified or reduced
to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for
devices supported by the filters of zplot(1G). The upper limit is just outside the
plotting area. In every case the plotting area is taken to be square; points outside
may be displayable on devices whose face is not square.

DASI 300 space(0, 0, 4096, 4096);
DASI 300s space(0, 0, 4096, 4096);
DASI 450 space(0, 0, 4096, 4096);

TEKTRONIX 4014 space(0, 0, 3120, 3120);
Versatec plotter space(0, 0, 2048, 2048);

SEE ALSO
plot(3X), gps(4), term (5).
graph(1G), tplot{(1G) in the AT&T 3B2 Computer User Reference Manual.

WARNING
The plotting library plot (3X) and the curses library curses(3X) both use the names
erase() and move(}. The curses versions are macros. If you need both libraries, put
the plot(3X) code in a different source file than the curses(3X) code, and/or
#undef move() and erase(in the ploi (3X) code.

7/85 -1 - 7/85

PNCH (4) PNCH (4)

NAME

pnch — file format for card images

DESCRIPTION

7/85

The PNCH format is a convenient representation for files consisting of card images
in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card record consists of a
single control byte followed by a variable number of data bytes. The control byte
specifies the number {which must lie in the range 0-80) of data bytes that follow.
The data bytes are 8-bit codes that constitute the card image. If there are fewer
than 80 data bytes, it is understood that the remainder of the card image consists of
trailing blanks.

-1- 7/85

PROFILE (4) PROFILE (4)

NAME

profile — system-wide user profile
SYNOPSIS

/etc/profile
DESCRIPTION

FILES

All user who have the shell, sh(1), as their login command have the commands in
this file included as part of the login sequence. It allows the system administrator to
perform services for the entire user community. Typical services are the announce-
ment of system news, user mail, and the setting of default environmental variables.

It is not unusual to have special actions for the roet login or the su(1) command.

The file /ete/TIMEZONE is included early in the file to establish the default time
zone.

SEE ALSO

BUGS

7/85

timezone(4).
sh(1) in the AT&T 3B2 Computer User Reference Manual.
su(1M) in the AT&T 3B2 Computer System Administration Reference Manual.

Care must be taken in providing system-wide services. One user’s service is
another’s annoyance. Personal ".profile” files are better for serving all but the most
global needs.

-1- 7/85

RELOC(4) RELOC (4)

MAME

reloc — relocation information for a common object file
SYNOPSIS

#include <reloc.h>
DESCRIPTION

Object files have one relocation entry for each relocatable reference in the text or
data. If relocation information is present, it will be in the following format.

struct reloc

long r vaddr ; /+ (virtual) address of reference */
long r_symndx ; /* index into symbol table +/
short r_type ; /» relocation type */

7/85 -1~ 7/85

SCCSFILE (4) SCCSFILE(4)

NAME

scesfile — format of SCCS file

DESCRIPTION

7/85

An SCCS file is an ASCII file. Tt consists of six logical parts: the checksum, the
delta table (contains information about each delta), user names (contains login
names and/or numerical group IDs of users who may add deltas), flags (contains
definitions of internal keywords), comments (contains arbitrary descriptive informa-
tion about the file), and the body (contains the actual text lines intermixed with
control lines).

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of
heading) character (octal 001). This character is hereafter referred to as the con-
trol character and will be represented graphically as @. Any line described below
which is not depicted as beginning with the control character is prevented from
beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between 00000
and 99999).

Each logical part of an SCCS file is described in detail below.

Checksum
The checksum is the first line of an SCCS file. The form of the line is:
@hDDDDD

The value of the checksum is the sum of all characters, except those of the
first line. The @h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDRDD/DDDDD

@d <type> <SCCSID> yr/mo/da hrimiise <pgmr> DDDDD DDDDD
@i DDDDD ...

@x DDDDD ...

@g DDDDD ...

@m <MR number>

@c¢ <comments>> ...

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line (@d) contains
the type of the delta (currently, normal: D, and removed: R), the SCCS ID
of the delta, the date and time of creation of the delta, the login name

corresponding to the real user ID at the time the delta was created, and the
serial numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included,
excluded, and ignored, respectively. These lines are optional.

-1- 7/85

SCCSFILE (4) SCCSFILE (4)

The @m lines (optional) each contain one MR number associated with the
delta; the @c lines contain comments associated with the delta.

The @e line ends the delta table entry.

User names
The list of login names and/or numerical group IDs of users who may add
deltas to the file, separated by new-lines. The lines containing these login
names and/or numerical group IDs are surrounded by the bracketing lines
@u and @WU. An empty list allows anyone to make a delta. Any line start-
ing with a ! prohibits the succeeding group or user from making deltas.

Flags
Keywords used internally (see admin(1) for more information on their use).
Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:
@ft <type of program>
@fv <program name>
@fi <keyword string>
@fb
@f m <module name>
@eff <floor>
@f ¢ <ceiling>
@fd <default-sid>
@f n
@f j
@f1 <lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y% identification keyword.
The v flag controls prompting for MR numbers in addition to comments; if
the optional text is present it defines an MR number validity checking pro-
gram. The i flag controls the warning/error aspect of the “No id keywords”
message. When the i flag is not present, this message is only a warning;
when the i flag is present, this message will cause a “fatal” error (the file
will not be gotten, or the delta will not be made). When the b flag is
present the —b keyletter may be used on the ger command to cause a
branch in the delta tree. The m flag defines the first choice for the replace-
ment text of the %M% identification keyword. The f flag defines the
“floor” release; the release below which no deltas may be added. The ¢ flag
defines the “ceiling” release; the release above which no deltas may be
added. The d flag defines the default SID to be nused when none is specified
on a get command. The n flag causes delta to insert a “null” delta (a delta
that applies no changes) in those releases that are skipped when a delta is
made in a new release (e.g., when delta 5.1 is made after delta 2.7, releases
3 and 4 are skipped). The absence of the n flag causes skipped releases to
be completely empty. The j flag causes get to allow concurrent edits of the
same base SID. The 1 flag defines a list of releases that are locked against
editing (get (1) with the —e keyletter). The q flag defines the replacement
for the %Q% identification keyword. The z flag is used in certain

7/85 -2- 7/85

SCCSFILE (4) SCCSFILE (4)

specialized interface programs.

Comments
Arbitrary text is surrounded by the bracketing lines @t and @T. The com-
ments section typically will contain a description of the file’s purpose.

Body
The body consists of text lines and control Jines. Text lines do not begin
with the control character, control lines do. There are three kinds of con-
trol lines: insert, delete, and end, represented by:
@I DDDDD
@D DDDDD
@E DDDDD
respectively. The digit string is the serial number corresponding to the
delta for the control line.
SEE ALSO
admin(1), delta(1), get(1), prs(1) in the AT&T 3B2 Computer User Reference
Manual.

7/85 -3- 7/85

SCNHDR (4) SCNHDR (4)

NAME

scnhdr — section header for a common object file
SYNOPSIS

#include <scnhdr.h>
DESCRIPTION

Every common object file has a table of section headers to specify the layout of the
data within the file. Each section within an object file has its own header. The C
structure appears below.

struct scnhdr

char s_namelSYMNMLEN]; /+ section name */
long s paddr; /= physical address =/

long s_vaddr; /= virtual address */

long s _size; /» section size */

long s_scnptr; /* file ptr to raw data +/

long s relptr; /= file ptr to relocation */
long s_Innoptr; /* file ptr to line numbers */

unsigned short s nreloc; /* # reloc entries */

unsigned short s nlnno; /* # line number entries */

long s _flags; /= flags =/

)5

File pointers are byte offsets into the file; they can be used as the offset in a call to
fseek(35). If a section is initialized, the file contains the actual bytes. An unini-
tialized section is somewhat different. It has a size, symbols defined in it, and sym-
bols that refer to it. But it can have no relocation entries, line numbers, or data.
Consequently, an uninitialized section has no raw data in the object file, and the
values for s_scnptr, s_relptr, s_Innoptr, s_nreloc, and s_ninno are zero.

SEE ALSQO
fseek (3S), a.out(4).
1d(1) in the AT&T 3B2 Computer User Reference Manual.

7/85 -1- 7/85

SYMS (4) SYMS (4)

NAME

syms — common object file symbol table format

SYNOPSIS

#include <syms.h>

DESCRIPTION

7/85

Common object files contain information to support symbolic software testing (see
sdb(1)). Line number entries, linenum(4), and extensive symbolic information per-
mit testing at the C source level. Every object file’s symbol table is organized as
shown below.

File name 1.
Function 1.
Local symbols for function 1.
Function 2.
Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.
Local symbols for function 1.
Function 2.
Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the structure
hold the name (null padded), its value, and other information. The C structure is
given below.

#define SYMNMLEN 8
#define FILNMLEN 14

struct syment

{
union /= all ways to get symbol name =/
char _n_name[SYMNMLEN]; /* symbol name */
struct
long _n_zeroes; /» == OL when in string table */
long _n_offset; /* location of name in table =/
} nm;
char » n_nptr[2]; /» allows overlaying */
} n;
long n_value; /* value of symbol */
short n_scnum; /* section number */
unsigned short n_type; /+ type and derived type */
char n_sclass; /* storage class =/
char n_numaux; /» number of aux entries */

~ 1= 7/85

SYMS(4) SYMS (4)

|

#define n_name _n. n_name
#define n_zeroes _n._n_n._n_zeroes
#define n_offset n. n_pn._n offset
#define n_nptr _n._n_nptr(1]

Meaningful values and explanations for them are given in both syms.k and Common
Object File Format. Anyone who needs to interpret the entries should seek more
information in these sources. Some symbols require more information than a single
entry; they are followed by auxiliary entries that are the same size as a symbol
entry. The format follows.

union auxent

struct
long x_tagndx;
union
{
struct
unsigned short x_Inno;
unsigned short x_size;
} x_Insz;
long x_fsize;
} x_misc;
union
struct
long x_Innoptr;
long x_endndx;
} x_fen;
struct
unsigned short x_dimen[DIMNUM];
} X_ary;
} x_fenary;
unsigned short x_tvndx;
} X_sym;
struct

{
char x_fname[FILNMLEN];
} x_file;
struct
{
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;
} X_scn;

struct

7/85 -~2- 1/85

SYMS (4) SYMS (4)

long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];
} X_tv;
|3
Indexes of symbol table entries begin at zero.

SEE ALSO
a.out(4), linenum(4).
sdb(1) in the AT&T 3B2 Computer User Reference Manual.

WARNINGS
On machines in which longs are equivalent to ints (3B20 computer, VAX), they are
converted to ints in the compiler to minimize the complexity of the compiler code
generator. Thus the information about which symbols are declared as longs and
which, as ints, does not show up in the symbol table.

7/85 ~3- 7/85

SYSTEM (4) SYSTEM (4)

NAME
system — system configuration information table

DESCRIPTION
This file is used by the boot program to obtain configuration information that cannot
be obtained from the equipped device table (EDT) at system boot time. This file
generally contains a list of software drivers to include in the load, the assignment of
system devices such as pipedev and swapdev, as well as instructions for manually
overriding the drivers selected by the self~configuring boot process.

The syntax of the system file is given below. The parser for the /etc/system file is
case sensitive. All upper case strings in the syntax below should be upper case in
the /ete/system file as well. Nonterminal symbols are enclosed in angle brackets
"< >" while optional arguments are enclosed in square brackets "[1". Ellipses "..."
indicate optional repetition of the argument for that line.

<fname> := pathname

<string> ::= driver file name from /boot or EDT entry name
<device> ::= special device name | DEV (<major>, <minor>)
<major> = <pumber>

<minor> = <number>

<number> = decimal, octal or hex literal

The lines listed below may appear in any order. Blank lines may be inserted at any
point. Comment lines must begin with an asterisk. Entries for EXCLUDE and
INCLUDE are cumulative. For all other entries, the last line to appear in the file is
used -~ any earlier entries are ignored.

BOOT: <fname>
specifies the kernel a.out file to be booted; if the file is fully
resolved (such as that produced by the mkunix(1M) pro-
gram) then all other lines in the system file have no effect.

EXCLUDE: [<string> 1 ...
specifies drivers to exclude from the load even if the device
is found in the EDT.

INCLUDE: [<string>[{(<number>)] 1 ...
specifies software drivers or loadable modules to be included
in the load. This is necessary to include the drivers for
software "devices". The optional <number> (parenthesis
required) specifies the number of "devices" to be controlled
by the driver (defaults to 1). This number corresponds to
the builtin variable #c¢ which may be referred to by expres-
sions in part one of the /ete/master file.

ROOTDEY: <device>
identifies the device containing the root file system.

SWAPDEV: <device> <pumber> <number>
identifies the device to be used as swap space, the block
number the swap space starts at, and the number of swap
blocks available.

PIPEDEV: <device>
identifies the device to be used for pipe space.

FILES
/etc/system

7785 -1- 7/85

SYSTEM (4) SYSTEM (4)

SEE ALSO
master (4),
crash(1M), mkunix(1M}, mkboot(IM) in the AT&T 382 Computer System
Administration Reference Monual.

7/85 -2~ 7/85

TERM (4) TERM (4)

NAME

term — format of compiled term file

SYNOPSIS

term

DESCRIPTION

7/85

Compiled terminfo descriptions are placed under the directory /ust/lib/terminfo. In
order to avoid a linear search of a huge UNIX system directory, a two-level scheme
is used: /usr/lib/terminfe/c/name where name is the name of the terminal, and ¢ is
the first character of name. Thus, act4 can be found in the file
fusr/lib/terminfo/a/actd. Synonyms for the same terminal are implemented by
multiple links to the same compiled file.

The format has been chosen so that it will be the same on all hardware. An 8 or
more bit byte is assumed, but no assumptions about byte ordering or sign extension
are made.

The compiled file is created with the compile program, and read by the routine
setupterm. Both of these pieces of software are part of curses(3X). The file is
divided into six parts: the header, terminal names, boolean flags, numbers, strings,
and string table.

The header section begins the file. This section contains six short integers in the
format described below. These integers are (1) the magic number (octal 0432); (2)
the size, in bytes, of the names section; (3) the number of bytes in the boolean sec-
tion; (4) the number of short integers in the numbers section; (5) the number of
offsets (short integers) in the strings section; (6) the size, in bytes, of the string
table.

Short integers are stored in two 8-bit bytes. The first byte contains the least
significant 8 bits of the value, and the second byte contains the most significant 8
bits. (Thus, the value represented is 256*second+first) The value —1 is
represented by 0377, 0377, other negative value are illegal. The —1 generally
means that a capability is missing from this terminal. Note that this format
corresponds to the hardware of the VAX and PDP-11. Machines where this does not
correspond to the hardware read the integers as two bytes and compute the resuit.

The terminal names section comes next. It contains the first line of the terminfo
description, listing the various names for the terminal, separated by the ' character.
The section is terminated with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag
is present or absent. The capabilities are in the same order as the file <term.h>.

Between the boolean section and the number section, 2 null byte will be inserted, if
necessary, to ensure that the number section begins on an even byte. All short
integers are aligned on a short word boundary.

The numbers section is similar to the flags section. Each capability takes up two
bytes, and is stored as a short integer. If the value represented is —1, the capability
is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer, in
the format above. A value of —1 means the capability is missing. Otherwise, the
value is taken as an offset from the beginning of the string table. Special characters
in "X or \c notation are stored in their interpreted form, not the printing representa-
tion. Padding information $<nn> and parameter information %x are stored intact
in uninterpreted form.

-1- 7/85

TERM (4) TERM (4)

The final section is the string table. Tt contains all the values of string capabilities
referenced in the string section. Each siring is null terminated.

Note that it is possible for setupierm to expect a different set of capabilities than
are actually present in the file. Either the database may have been updated since
setupterm has been recompiled (resuiting in extra unrecognized entries in the file)
or the program may have been recompiled more recently than the database was
updated (resulting in missing entries). The routine setupierm must be prepared for
both possibilities — this is why the numbers and sizes are included. Also, new capa-~
bilities must always be added at the end of the lists of boolean, number, and string
capabilities.

As an example, an octal dump of the description for the Microterm ACT 4 is
included:

microtermlactdlmicroterm act iv,
cr="M, cud1="J, ind="J, bel="G, am, cubl="H,
ed="_, el="", clear="L, cup="T%pl%c%p2%c,
cols#80, lines#24, cufl="X, cuni="Z, home="],

000 032 001 \D 025 N0 \b N0 212 \o " \D m i c x
020 o T e r) 1 a c t 4 i m i c x o
040 t e r m a c t i v N0 \O 001 N0 \O

063G NO NO NO N0 NO NO NO NO NO NO NO N0 NO NO NO O
100 N0 \o P N0 377 377 030 N\O 1377 377 377 377 377 377 377 377
120 377 377 377 377 N0 N0 002 N\O 377 377 377 377 004 \O 006 \O
140 \b N0 377 377 377 377 \n \0 026 \O0O 030 \O 377 377 032 \O
160 377 377 377 377 034 \O0 377 377 036 \0 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
520 377 377 377 377 N0 377 377 377 377 377 377 377 377 377 377
540 377 377 377 377 377 377 087 NO N\xr N0 N\Nf \O0 036 \O0 037 \O
560 024 % P 1 % c % P 2 % c N0 X\n N0 035 \O
600 N\b N0 030 N\O 032 N0 \m \O

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field
cannot exceed 128 bytes.

FILES
fusr/lib/terminfo/*/* compiled terminal capability data base
SEE ALSO
curses(3X), terminfo(4).
7/85 ~2- 7/85

TERMINFO (4) TERMINFO (4)

NAME

terminfo — terminal capability data base

SYNOPSIS

fusr/lib/terminfo/*/*

DESCRIPTION

Terminfo is a data base describing terminals, used, e.g.,, by vi(1) and curses(3X).
Terminals are described in terminfo by giving a set of capabilities which they have,
and by describing how operations are performed. Padding requirements and initiali-
zation sequences are included in terminfo.

Entries in ferminfo consist of a number of °’ separated fields. White space after
each ‘) is ignored. The first entry for each terminal gives the names which are
known for the terminal, separated by { characters. The first name given is the most
common abbreviation for the terminal, the last name given should be a long name
fully identifying the terminal, and all others are understood as synonyms for the ter-
minal name. All names but the last should be in lower case and contain no blanks;
the last name may well contain upper case and blanks for readability.

Terminal names {except for the last, verbose entry) should be chosen using the fol-
lowing conventions. The particular piece of hardware making up the terminal
should have a root name chosen, thus “hp2621”. This name should not contain
hyphens, except that synonyms may be chosen that do not conflict with other names.
Modes that the hardware can be in, or user preferences, should be indicated by
appending a hyphen and an indicator of the mode. Thus, a vt100 in 132 column
mode would be vt100-w. The following suffixes should be used where possible:

Suffix Meaning Example
-W Wide mode (more than 80 columns) vt100-w
~am With auto. margins (usually default) vt100-am
~nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa-60
~na No arrow keys (leave them in local) ¢100-na
~np Number of pages of memory c100-4p
~TV Reverse video c100-rv
CAPARBILITIES

7/85

The variable is the name by which the programmer (at the terminfo level) accesses
the capability. The capname is the short name used in the text of the database, and
is used by a person updating the database. The i.code is the two letter internal code
used in the compiled database, and always corresponds to the old termecap capability
name.

Capability names have no hard length limit, but an informal limit of 5 characters
has been adopted to keep them short and to allow the tabs in the source file caps to
line up nicely. Whenever possible, names are chosen to be the same as or similar to
the ANSI X3.64-1979 standard. Semantics are also intended to match those of the
specification.

™ indicates that padding may be specified
(G) indicates that the string is passed through tparm withparms as given (#i).
* indicates that padding may be based on the number of lines affected

(#i) indicates the it parameter.

“l - 7/85

TERMINFO (4)

7/85

Variable

Booleans
auto_left_margin,
auto_right_margin,
beehive_glitch,
ceol_standout_glitch,
eat_newline_glitch,
erase_overstrike,
generic_type,
hard_copy,
has_meta_key,
has_status_line,
insert_null_glitch,
memory_above,
memory_below,
move_insert_mode,
move_standout_mode,
over_strike,
status_line_esc_ok,
teleray_glitch,
tilde_glitch,
transparent_underline,
xon_xoff,

Mumbers:

columns,

init_tabs,

lines,

lines_of memory,
magic_cookie_glitch,
padding_baud _rate,
virtual_terminal,
width_status_line,

Strings:

back_tab,

bell,

carriage_return,
change_scroll_region,
clear_all tabs,
clear_screen,

clr_eol,

clr_eos,
column_address,
command_character,
cursor_address,
cursor_down,
cursor_home,
cursor_invisible,
cursor_left,
cursor_mem_address,
cursor_normal,
cursor_right,

Cap-

name
bw
am
xsb
xhp
xenl
€0
gn
he
km
hs
in
da
db
mir
msgr
0s
eslok
xt
hz
ul
xon

cols
it
lines
Im
xme
pb
vt
wsl

cbt
bel

cr

csr
the
clear
el

ed

hpa
cmdch
cup
cudl
home
civis
cubl
mrecup
cnorm
cufl

.
Code

co
it
li

sg
pb
vt

ws

bt
bl
cr
cs
ct
cl
ce
cd
ch
CC
cm
do
ho
vi

CcM
ve
nd

TERMINFO(4)

Description

cubl wraps from column 0 to last column
Terminal has automatic margins

Beehive (f1=escape, f2=ctrl C)

Standout not erased by overwriting (hp)
newline ignored after 80 cols (Concept)
Can erase overstrikes with a blank
Generic line type (e.g.,, dialup, switch).
Hardcopy terminal

Has a meta key (shift, sets parity bit)
Has extra "status line"

Insert mode distinguishes nulls

Display may be retained above the screen
Display may be retained below the screen
Safe to move while in insert mode

Safe to move in standout modes
Terminal overstrikes

Escape can be used on the status line
Tabs ruin, magic so char (Teleray 1061)
Hazeltine; can not print ~’s

underline character overstrikes

Terminal uses xon/xoff handshaking

Number of columns in a line

Tabs initially every # spaces

Number of lines on screen or page

Lines of memory if > lines. 0 means varies
Number of blank chars left by smso or rmso
Lowest baud where cr/nl padding is needed
Virtual terminal number (UNIX system)
No. columns in status line

Back tab (P)

Audible signal (bell) (P)

Carriage return (P*)

change to lines #1 through #2 (vt100) (PG)
Clear all tab stops (P)

Clear screen and home cursor (P*)

Clear to end of line (P)

Clear to end of display (P*)

Set cursor column (PG)

Term. settable cmd char in prototype
Screen rel. cursor motion row #1 col #2 (PG)
Down one line

Home cursor (if no cup)

Make cursor invisible

Move cursor left one space

Memory relative cursor addressing

Make cursor appear normal (undo vs/vi)
Non-destructive space {(cursor right)

7/85

TERMINFO (4)

1/85

cursor_to],
cursor_up,
cursor_visible,
delete_character,
delete Jine,
dis_status_line,
down_half line,
enter_alt_charset_mode,
enter_blink_mode,
enter_bold_mode,
enter_ca_mode,
enter_delete_mode,
enter_dim_mode,
enter_insert_mode,
enter_protected_mode,
enter_reverse_mode,
enter_secure_mode,
enter_standout_mode,
enter_underline_mode,
erase_chars
exit_alt_charset_mode,
exit_attribute_mode,
exit_ca_mode,
exit_delete_mode,
exit_insert_mode,
exit_standout_mode,
exit_underline_mode,
flash_screen,
form_feed,
from_status_line,
init_1string,
init_2string,
init_3string,

init_file,
insert_character,
insert_line,
insert_padding,

key backspace,
key_catab,

key_clear,

key_ctab,

key_dc,

key_dl,

key_down,

key _eic,

key eol,

key_eos,

key_f0,

key f1,

key_f10,

key {2,

key 3,

key f4,

li
cuul
cvvis
dchl
di
dsl
hd
smacs
blink
bold
smcup
smdc
dim
smir
prot
rev
invis
SmMsc
smul
ech
FmAacs
sgr
rmcup
rmde
rmir
FISo
rmul
flash
ff

fsl

isl

is2
is3

if
ichl
ill

ip
kbs
ktbe
kelr
kctab
kdchi
kdl1
keud1
krmir
kel
ked
kfo
kf1
kf10
kf2
kf3
kf4

il
up
vs
de
dl
ds
hd
as

md
ti
dim

kS
kO
k1
ka
k2
k3
k4

TERMINFO (4)

Last line, first column (f no cup)
Upline {(cursor up)

Make cursor very visible

Delete character (P*)

Delete line (P*)

Disable status line

Half-line down (forward 1/2 linefeed)
Start alternate character set (P)
Turn on blinking

Turn on bold (extra bright) mode
String to begin programs that use cup
Delete mode {enter)

Turn on half-bright mode

Insert mode (enter);

Turn on protected mode

Turn on reverse video mode

Turn on blank mode (chars invisible)
Begin stand out mode

Start underscore mode

Erase #1 characters (PG)

End alternate character set (P)
Turn off all attributes

String to end programs that use cup
End delete mode

End insert mode

End stand out mode

End underscore mode

Visible bell (may not move cursor)
Hardcopy terminal page eject (P*)
Return from status line

Terminal initialization string
Terminal initialization string
Terminal initialization string

Name of file containing is

Insert character (P)

Add new blank line (P*)

Insert pad after character inserted (P*)
Sent by backspace key

Sent by clear-all-tabs key

Sent by clear screen or erase key
Sent by clear-tab key

Sent by delete character key

Sent by delete line key

Sent by terminal down arrow key
Sent by rmir or smir in insert mode
Sent by clear-to-end-of-line key
Sent by clear-to-end-of-screen key
Sent by function key fO

Sent by function key f1

Sent by function key £10

Sent by function key {2

Sent by function key 3

Sent by function key 4

7/85

TERMINFOQ (4)

7/85

key_f5,

key f6,

key {7,

key f8,

key f9,

key home,

key ic,

key il,

key_left,

key 11,

key npage,
key_ppage,

key right,
key_sf,

key sr,

key stab,

key up,
keypad_Jocal,
keypad_xmit,
lab_f0,

lab_f1,

lab_f10,

lab_f2,

lab_f3,

lab_f4,

lab_f5,

lab_f6,

lab 7,

lab_f8,

lab_f9,

meta_on,
meta_off,
newline,
pad_char,
parm_dch,
parm_delete line,
parm_down_cursor,
parm_ich,
parm_index,
parm_insert_line,
parm_left_cursor,
parm_right_cursor,
parm_rindex,
parm_up_cursor,
pkey_key,
pkey_local,
pkey_xmit,
print_screen,
prtr_off,

prtr_on,
repeat_char,
reset_lstring,
reset_2string,

kf5
kf6
kf7
kf8
kf9
khome
kich1
kill
kcubl
kil
knp
kpp
keufl
kind
kri
khts
kcuul
rmkx
smkx
1f0
If1
1f10
1f2
if3
1f4
If5
ifé6
1£7
if8
1f9
smm
rmm
nel
pad
dch
dl
cud
ich
indn
il
cub
cuf
rin
cuun
pfkey
pfioc
pfx
mc0
mc4
me5
rep
rsi
rs2

k5
k6
k7
k8
k9
kh
kI
kA
kl
kH
kN
kP

kF
kR
kT

ke
ks

pk

TERMINFO (4)

Sent by function key f5

Sent by function key 6

Sent by function key {7

Sent by function key 8

Sent by function key f9

Sent by home key

Sent by ins char/enter ins mode key
Sent by insert line

Sent by terminal left arrow key

Sent by home-down key

Sent by next-page key

Sent by previous-page key

Sent by terminal right arrow key
Sent by scroll-forward/down key
Sent by scroll-backward/up key
Sent by set-tab key

Sent by terminal up arrow key

Out of "keypad transmit" mode

Put terminal in "keypad transmit” mode
Labels on function key f0 if not fO
Labels on function key f1 if not f1
Labels on function key f10 if not f10
Labels on function key f2 if not 2
Labels on function key f3 if not 3
Labels on function key f4 if not f4
Labels on function key f5 if not 5
Labels on function key f6 if not f6
Labels on function key 7 if not 7
Labels on function key f8 if not f8
Labels on function key 9 if not f9
Turn on "meta mode" (8th bit)

Turn off "meta mode”

Newline (behaves like cr followed by 1f)
Pad character (rather than null)
Delete #1 chars (PG*)

Delete #1 lines (PG*)

Move cursor down #1 lines (PG*)
nsert #1 blank chars (PG*)

Scroll forward #1 lines (PG)

Add #1 new blank lines (PG*)
Move cursor left #1 spaces (PG)
Move cursor right #1 spaces (PG*)
Scroll backward #1 lines (PG)
Move cursor up #1 lines (PG*)
Prog funct key #1 to type string #2
Prog funct key #1 to execute string #2
Prog funct key #1 to xmit string #2
Print contents of the screen

Turn off the printer

Turn on the printer

Repeat char #1 #2 times. (PG*)
Reset terminal completely to sane modes.
Reset terminal completely to sane modes.

7/85

TERMINFO (4) TERMINFO(4)

reset_3string, rs3 r3 Reset terminal completely to sane modes.
reset_file, rf rf Name of file containing reset string
restore_cursor, rc e Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute (set row) (PG)
save_Cursor, sc sc Save cursor position ()

scroll_forward, ind sf Scroll text up (P)

scroll_reverse, ri sr Scroll text down (P)

set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts st Set a tab in all rows, current column
set_window, wind wi Current window is lines #1-#2 cols #3-#4
tab, ht ta Tab to next 8 space hardware tab stop
to_status_line, tsl ts Go to status line, column #1
underline_char, uc uc Underscore one char and move past it
up_half line, hu bu Half-line up (reverse 1/2 linefeed)
init_prog, iprog iP Path name of program for init

key al, kal K1 Upper left of keypad

key a3, ka3 K3 Upper right of keypad

key b2, kb2 K2 Center of keypad

key cl, kel K4 Lower left of keypad

key ¢3, ke3 K5 Lower right of keypad

prir_non, mesp pO Turn on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept—100, is among the more complex
entries in the terminfo file as of this writing.

concept100 ! c100! concept { c104ic100~4p{ concept 100,

7/85

am, bel="G, blank=\EH, blink=\EC, clear="L$<2#>, cnorm=\Ew,
cols#80, cr="M$<9>, cubl1="H, cud1="J, cufl1=\E=,

cup=\Ea%p1%’ ‘%+%c%p2%” ‘%+%c,

cuul=\E;, cvvis=\EW, db, dch1=\E"A$<16#>, dim=\EE, dl1=\E"B$<3x>,
ed=\E"C$<16%x>, el=\E"U$<16>, eo, flash=\Ek$<20>\EK, ht=\t$<8>,
il1=\E"R$<3%>, in, ind="J, .ind="J$<9>, ip=$<16x%>,
1i82=\EUNEE£\E7\E5\ES\E1\ENH\EK\E\200\E0&\200\E0\47\E,

kbs="h, kcubi=\E>, kcudl1=\E<, kcufi1=\E=, kcuul=\E;,

kf1=\E5, kf2=\E6, kf3=\E7, khome=\E?,

lines#24, mir, pb#9600, prot=\EI, rep=\Er%pIi1%c%p2%” "%+%c$<.2x>,
rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex,
rmso=\Ed\Ee, rmul=\Eg, rmul=\Eg, sgr0=\EN\200,

smcup=\EU\Ev 8p\Ep\xr, smir=\E"P, smkx=\EX, smso=\EE\ED,
smul=\EG, tabs, ul, vt#B, xenl,

Entries may continue onto multiple lines by placing white space at the beginning of
each line except the first. Comments may be included on lines beginning with “#”.
Capabilities in terminfo are of three types: Boolean capabilities which indicate that
the terminal has some particular feature, numeric capabilities giving the size of the
terminal or the size of particular delays, and siring capabilities, which give a
sequence which can be used to perform particular terminal operations.

Types of Capabilities

All capabilities have names. For instance, the fact that the Concept bas automatic
margins (i.e., an automatic return and linefeed when the end of a line is reached) is
indicated by the capability am. Hence the description of the Concept includes am.
Numeric capabilities are followed by the character ‘4’ and then the value. Thus
cols, which indicates the number of columns the terminal has, gives the value ‘80’

-5 7/85

TERMINFO (4) TERMINFO (4)

7/85

for the Concept.

Finally, string valued capabilities, such as el (clear to end of line sequence) are
given by the two-character code, an ‘=", and then a string ending at the next follow-
ing <. A delay in milliseconds may appear anywhere in such a capability, enclosed
in $<..> brackets, as in el=\EK$<3>, and padding characters are supplied by
tputs to provide this delay. The delay can be either a number, e.g., 20°, or a
number followed by an “*’, ie., 3%, A ** indicates that the padding required is
proportional to the number of lines affected by the operation, and the amount given
is the per-affected-unit padding required. (In the case of insert character, the fac-
tor is still the number of lines affected. This is always one unless the terminal has
xenl and the software uses it.) When a “*" is specified, it is sometimes useful to give
a delay of the form ‘3.5 to specify a delay per unit to tenths of milliseconds. (Only
one decimal place is allowed.)

A number of escape sequences are provided in the string valued capabilities for easy
encoding of characters there, Both \E and \e map to an ESCAPE character, "x
maps to a control-x for any appropriate x, and the sequences \m \k \r \t \b \f \s give
a newline, linefeed, return, tab, backspace, formfeed, and space. Other escapes
include \" for *, \\ for \, \, for comma, \: for :, and \Q for null. (O will produce
\200, which does not terminate a string but behaves as a null character on most ter-
minals.) Finally, characters may be given as three octal digits after a \.

Sometimes individual capabilities must be commented out. To do this, put a period
before the capability name. For example, see the second ind in the example above.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to
prepare a terminal description is by imitating the description of a similar terminal in
terminfo and to build up a description gradually, using partial descriptions with vi
to check that they are correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the terminfo file to describe it or bugs in vi. To easily
test a new terminal description you can set the environment variable TERMINFO
to a pathname of a directory containing the compiled description you are working
on and programs will look there rather than in fusrflibierminfo. To get the padding
for insert line right Gf the terminal manufacturer did not document it) a severe test
is to edit /etc/passwd at 9600 baud, delete 16 or so lines from the middle of the
screen, then hit the ‘v’ key several times quickly. If the terminal messes up, more
padding is vsually needed. A similar test can be used for insert character.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols numeric
capability. If the terminal is a CRT, then the number of lines on the screen is given
by the limes capability. If the terminal wraps around to the beginning of the next
line when it reaches the right margin, then it should have the am capability. If the
terminal can clear its screen, leaving the cursor in the home position, then this is
given by the clear string capability. If the terminal overstrikes (rather than clearing
a position when a character is struck over) then it should have the os capability. If
the terminal is a printing terminal, with no soft copy unit, give it both he and os.
(os applies to storage scope terminals, such as TEKTRONIX 4010 series, as well as
hard copy and APL terminals.) If there is a code to move the cursor to the left
edge of the current row, give this as ex. (MNormally this will be carriage return, con-
trol M.) If there is a code to produce an audible signal (bell, beep, etc) give this as
bel.

6- 7/85

TERMINFO (4) TERMINFO (4)

7/85

If there is a code to move the cursor one position to the left (such as backspace)
that capability should be given as eubl. Similarly, codes to move to the right, up,
and down should be given as cufl, comi, and emdl. These local cursor motions
should not alter the text they pass over, for example, you would not normally use
‘enfl= " because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo are
undefined at the left and top edges of a CRT terminal. Programs should never
attempt to backspace around the left edge, unless bw is given, and never attempt to
go up locally off the top. In order to scroll text up, a program will go to the bottom
left corner of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends
the ri (reverse index) string. The strings ind and ri are undefined when not on their
respective corners of the screen.

Parameterized versions of the scrolling sequences are indm and rim which have the
same semantics as imd and ri except that they take one parameter, and scroll that
many lines. They are also undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen
when text is output, but this does not necessarily apply to a cufl from the last
column. The only local motion which is defined from the left edge is if bw is given,
then a cubl from the left edge will move to the right edge of the previous row. If
bw is not given, the effect is undefined. This is useful for drawing a box around the
edge of the screen, for example. If the terminal has switch selectable automatic
margins, the rerminfo file usually assumes that this is on; i.e., am. If the terminal
has a command which moves to the first column of the next line, that command can
be given as mel (newline). It does not matter if the command clears the remainder
of the current line, so if the terminal has no er and ¥ it may still be possible to craft
a working mel out of one or both of them.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus the
model 33 teletype is described as

331 tty331ittyinodel 33 teletype,
bel="G, cols#72, cx="M, cudl1="J, hc, ind="J, os,

while the Lear Siegler ADM—3 is described as

adm3 31| lsi adm3,
am, bel="G, clear="Z, cols#80, cr="M, cubi1="H, cudl="J,
ind="J, lines#24,

Parameterized Strings

Cursor addressing and other strings requiring parameters in the terminal are
described by a parameterized string capability, with printf(3S) like escapes %x in
it. For example, to address the cursor, the cup capability is given, using two param-
eters: the row and column to address to. (Rows and columns are numbered from
zero and refer to the physical screen visible to the user, not to any unseen memory.)
If the terminal has memory relative cursor addressing, that can be indicated by
mreup.

The parameter mechanism uses a stack and special % codes to manipulate it. Typi-
cally a sequence will push one of the parameters onto the stack and then print it in
some format. Often more complex operations are necessary.

The % encodings have the following meanings:

-7~ 7/85

TERMINFO (4) TERMINFO (4)

7/85

%% outputs ‘%’

%d print pop(} as in printf
%2d print pop() like %2d

%3d print pop(} like %3d
%02d

%03d as in printf

%c print pop() gives %c

%s print pop() gives %s
%pl1-9] push ith parm

%Pla-z} set varjable [a-~z] to pop()
%gla-z} get variable [a-z] and push it
P’ char constant ¢

%{nn} integer constant nn

%t %~ %* %/ %om
arithmetic (%m is mod): push{(pop(Q op pop())

%& % %" bit operations: push(pop() op pop()

%= %> %< logical operations: push(pop() op pop())

%! %~ unary operations push(op pop())

%i add 1 to first two parms (for ANSJ terminals)

%? expr %t thenpart %e elsepart %;

if-then-else, %e elsepart is optional.

else-if’s are possible ala Algol 68:

%‘70 %t b %ec %tb %e ¢ %tb %ecA%tb %e %b;,
¢, are condltlons b are bodies.

Binary operations are in postﬁx form with the operands in the usual order. That is,
to get x-5 one would use "%gx%{5}%-".

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to
be sent \E&al12c¢03Y padded for 6 milliseconds. Mote that the order of the rows
and columns is inverted here, and that the row and column are printed as two digits.
Thus its cup capability is cup=6\E& %p2%2dc%hpl %2dY .

The Microterm ACT-IV needs the current row and column sent preceded by a "T,
with the row and column simply encoded in binary, cup="T%pl%c%p2%¢<. Termi-
nals which use %c need to be able to backspace the cursor (cubl), and to move the
cursor up one line on the screen (ewm?). This is necessary because it is not always
safe to transmit \m "D and \r, as the system may change or discard them. (The
library routines dealing with terminfo set tty modes so that tabs are never expanded,
so \t is safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank
character, thus cup=\E=%pl% ’%+%chp2% *%+%c. After sending \E=’, this
pushes the first parameter, pushes the ASCII value for a space (32), adds them
(pushing the sum on the stack in place of the two previous values) and outputs that
value as a character. Then the same is done for the second parameter. More com-
plex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be given as
single parameter capabilities hpa (horizontal position absolute) and wpa (vertical
position absolute). Sometimes these are shorter than the more general two parame-
ter sequence (as with the hp2645) and can be used in preference to cup . If there
are parameterized local motions {e.g., move # spaces to the right) these can be given

-8 - 7/85

TERMINFO (4) TERMINFO (4)

7/85

as cud, cub, cuf, and cun with a singie parameter indicating how many spaces to
move. These are primarily useful if the terminal does not have cup, such as the
TEKTRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor {to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the lower
left-hand corner can be given as II; this may involve going up with cumnl from the
home position, but a program should never do this itself (unless Il does) because it
can make no assumption about the effect of moving up from the home position.
Note that the home position is the same as addressing to (0,0): to the top left
corner of the screen, not of memory. (Thus, the \EH sequence on Hewlett-Packard
terminals cannot be used for home.)

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the
cursor where it is, this should be given as el. If the terminal can clear from the
current position to the end of the display, then this should be given as ed. Ed is
only defined from the first column of a line. (Thus, it can be simulated by a request
to delete a large number of lines, if a true ed is not available.)

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this
should be given as il1; this is done only from the first position of a line. The cursor
must then appear on the newly blank line. If the terminal can delete the line which
the cursor is on, then this should be given as dif; this is done only from the first
position on the line to be deleted. Versions of ill and dil which take a single
parameter and insert or delete that many lines can be given as il and dl. If the ter-
minal has a settable scrolling region (like the vt100) the command to set this can be
described with the esr capability, which takes iwo parameters: the top and bottom
lines of the scrolling region. The cursor position is, alas, undefined after using this
command. It is possible to get the effect of insert or delete line using this command
— the sc and rc (save and restore cursor) commands are also useful. Inserting lines
at the top or bottom of the screen can also be done using ri or ind on many termi-
nals without a true insert/delete line, and is often faster even on terminals with
those features.

If the terminal has the ability to define a window as part of memory, which all com-~
mands affect, it should be given as the parameterized string wind. The four param-
eters are the starting and ending lines in memory and the starting and ending
columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be
given; if display memory can be retained below, then db should be given. These
indicate that deleting a line or scrolling may bring non-blank lines up from below or
that scrolling back with ri may bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete char-
acter which can be described using terminfo. The most common insert/delete char-
acter operations affect only the characters on the current line and shift characiers
off the end of the line rigidly. Other terminals, such as the Concept 100 and the
Perkin Elmer Owl, make a distinction between typed and untyped blanks on the
screen, shifting upon an insert or delete only to an untyped blank on the screen
which is either eliminated, or expanded to two untyped blanks. You can determine

-9 - 7/85

TERMINFEO (4) TERMINFO (4)

7/85

the kind of terminal you have by clearing the screen and then typing text separated
by cursor motions. Type abc def using local cursor motions (not spaces) between
the abc and the def. Then position the cursor before the abc and put the terminal
in insert mode. If typing characters causes the rest of the line to shift rigidly and
characters to fall off the end, then your terminal does not distinguish between
blanks and untyped positions. If the abc shifts over to the def which then move
together around the end of the current line and onto the next as you insert, you
have the second type of terminal, and should give the capability im, which stands for
insert null. While these are two logically separate attributes (one line vs. multiline
insert mode, and special treatment of untyped spaces) we have seen no terminals
whose insert mode cannot be described with the single attribute.

Terminfo can describe both terminals which have an insert mode, and terminals
which send a simple sequence to open a blank position on the current line. Give as
smir the sequence to get into insert mode. Give as rmir the sequence to leave insert
mode. Now give as ichl any sequence needed to be sent just before sending the
character to be inserted. Most terminals with a true insert mode will not give ichi;
terminals which send a sequence to open a screen position should give it here. (If
your terminal has both, insert mode is usually preferable to ichl. Do not give both
unless the terminal actually requires both to be used in combination.) If post insert
padding is needed, give this as a number of milliseconds in ip (a string option).
Any other sequence which may need to be sent after an insert of a single character
may also be given in ip. If your terminal needs both to be placed into an ‘insert
mode’ and a special code to precede each inserted character, then both smir/rmir
and ichi can be given, and both will be used. The ich capability, with one parame-
ter, i, will repeat the effects of ichl » times.

It is occasionally necessary to move around while in insert mode to delete characters
on the same line (e.g., if there is a tab after the insertion position). If your terminal
allows motion while in insert mode you can give the capability mir to speed up
inserting in this case. Omitting mir will affect only speed. Some terminals (not-
ably Datamedia’s) must not have mir because of the way their insert mode works.

Finally, you can specify dehl to delete a single character, dch with one parameter,
n, to delete n characters, and delete mode by giving smde and rmde to enter and
exit delete mode (any mode the terminal needs to be placed in for dehl to work).

A command to erase n characters (equivalent to outputting » blanks without moving
the cursor) can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display atiributes, these can be
represented in a number of different ways. You should choose one display form as
standout mode, representing a good, high contrast, easy-on-the-eyes, format for
highlighting error messages and other attention getters. (If you have a choice,
reverse video plus half-bright is good, or reverse video alone.) The sequences to
enter and exit standout mode are given as smso and rmso, respectively. If the code
to change into or out of standout mode leaves one or even two blank spaces on the
screen, as the TVI 212 and Teleray 1061 do, then xme should be given to tell how
many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul
respectively. If the terminal has a code to underline the current character and move
the cursor one space to the right, such as the Microterm Mime, this can be given as
ue.

210~ - 7/85

TERMINFO (4) TERMINFQO (4)

7/85

Other capabilities to enter various highlighting modes include blink (blinking) bold
(bold or extra bright) dim (dim or half-bright) #mvis (blanking or invisible text) prot
(protected) rev (reverse video} sgr® (turn off a/l attribute modes) smacs (enter
alternate character set mode} and rmacs (exit alternate character set mode). Turn-
ing on any of these modes singly may or may not turn off other modes.

If there is a sequence o set arbitrary combinations of modes, this should be given as
sgr (set attributes), taking 9 parameters. Each parameter is either 0 or 1, as the
corresponding attribute is on or off. The 9 parameters are, in order: standout,
underline, reverse, blink, dim, bold, blank, protect, alternate character set. ™ot all
modes need be supported by sgr, only those for which corresponding separate attri-
bute commands exist.

Terminals with the “magic cookie” glitch (xme) deposit special “cookies” when they
receive mode-setting sequences, which affect the display algorithm rather than hav-
ing extra bits for each character. Some terminals, such as the Hewlett-Packard
2621, automatically leave standout mode when they move to a new line or the cur-
sor is addressed. Programs using standout mode should exit standout mode before
moving the cursor or sending a newline, unless the msgr capability, asserting that it
is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement) then this can be given as flash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on ihe bot-
tom line (to make, for example, a non-blinking underline into an easier to find block
or blinking underline) give this sequence as cvvis. If there is 2 way to make the cur-
sor completely invisible, give that as civis. The capability cnorm should be given
which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that uses
these capabilities, the codes to enter and exit this mode can be given as smeup and
rmcmp. This arises, for example, from terminals like the Concept with more than
one page of memory. If the terminal has only memory relative cursor addressing
and not screen relative cursor addressing, a one screen-sized window must be fixed
into the terminal for cursor addressing to work properly. This is also used for the
TEKTRONIX 4025, where smeup sets the command character to be the one used by
terminfo.

If your terminal correctly genmerates underlined characters (with no special codes
needed) even though it does not overstrike, then you should give the capability ul.
If overstrikes are erasable with a blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this
information can be given. Mote that it is not possible to handle terminals where the
keypad only works in local (this applies, for example, to the unshifted Hewlett-
Packard 2621 keys). If the keypad can be set to transmit or not transmit, give
these codes as smkx and rmkx. Otherwise the keypad is assumed to always
transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as keubl, keufl, keuul, keud, and khome respectively. If
there are function keys such as f0, i, ..., f10, the codes they send can be given as
KfO, kf1, ..., kf1®. If these keys have labels other than the default fO through f10,
the labels can be given as 0, 1, ..., 0. The codes transmitted by certain other
special keys can be given: kBl (home down), kbs (backspace), ktbe (clear all tabs),
ketab (clear the tab stop in this column), kelr (clear screen or erase key), kdchi
(delete character), kdiil (delete line), kemir (exit insert mode), kel (clear to end of

- 11 - 7/85

TERMINFC (4) TERMINFO (4)

7/85

line), ked (clear to end of screen), kiehl (insert character or enter insert mode),
kil (Gnsert line), kap (next page), kpp (previous page), kind (scroll forward/down),
kri (scroll backward/up), khts (set a tab stop in this column). In addition, if the
keypad has a 3 by 3 array of keys including the four arrow keys, the other five keys
can be given as kal, ka3, kb2, kel, and ke3. These keys are useful when the effects
of a 3 by 3 directional pad are needed.

Tabs and Imitialization

If the terminal has hardware tabs, the command to advance to the next tab stop can
be given as ht (usually control I). A “backtab” command which moves leftward to
the next tab stop can be given as cht. By convention, if the teletype modes indicate
that tabs are being expanded by the computer rather than being sent to the termi-
nal, programs should not use ht or cbt even if they are present, since the user may
not have the tab stops properly set. If the terminal has hardware tabs which are
initially set every n spaces when the terminal is powered up, the numeric parameter
it is given, showing the number of spaces the tabs are set to. This is normally used
by the #ser command to determine whether to set the mode for hardware tab expan-
sion, and whether to set the tab stops. If the terminal has tab stops that can be
saved in nonvolatile memory, the terminfo description can assume that they are
properly set.

Other capabiliiies include 81, is2, and is3, initialization strings for the terminal,
iprog, the path name of a program to be run to initialize the terminal, and if, the
name of a file containing long initialization strings. These strings are expected to
set the terminal into modes consistent with the rest of the terminfo description.
They are normally sent to the terminal, by the ise: program, each time the user logs
in. They will be printed in the following order: fsl; is2; seiting tabs using the and
bts; if; running the program iprog; and finally is3. Most initialization is done with
is2. Special terminal modes can be set up without duplicating strings by putting the
common sequences in is2 and special cases in is1 and is3. A pair of sequences that
does a harder reset from a totally unknown state can be amalogously given as rsl,
rs2, rf, and rs3, analogows to is2 and #f. These strings are output by the reset pro-
gram, which is used when the terminal gets into a wedged state. Commands are
normally placed in rs2 and rf only if they produce annoying effects on the screen
and are not necessary when logging in. For example, the command to set the vt100
into 80-column mode would normally be part of is2, but it causes an annoying glitch
of the screen and is not normally needed since the terminal is usually already in 80
column mode.

If there are commands to set and clear tab stops, they can be given as the (clear all
tab stops) and hts (set a tab stop in the current column of every row). If a more
complex sequence is needed to set the tabs than can be described by this, the
sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are primarily
needed by hard copy terminals, and are used by the fsef program to set teletype
modes appropriately. Delays embedded in the capabilities cr, ind, cubl, ff, and tab
will cause the appropriate delay bits to be set in the teletype driver. If pb (padding
baud rate) is given, these values can be ignored at baud rates below the value of pb.

Miscellaneous

If the terminal requires other than a null {zero) character as a pad, then this can be
given as pad. Only the first character of the pad string is used.

-12 - 7/85

TERMINFO (4) TERMINFO (4)

7/85

If the terminal has an extra “status line” that is not normally used by software, this
fact can be indicated. If the status line is viewed as an extra line below the bottom
line, into which one can cursor address normally (such as the Heathkit h19’s 25th
line, or the 24th line of a vt100 which is set to a 23-line scrolling region), the capa-
bility hs should be given. Special strings to go to the beginning of the status line
and to return from the status line can be given as tsl and fsl. (fsl must leave the
cursor position in the same place it was before tsl. If necessary, the sc¢ and re
strings can be included in sl and fsl to get this effect.) The parameter tsl takes one
parameter, which is the column number of the status line the cursor is to be moved
to. If escape sequences and other special commands, such as tab, work while in the
status line, the flag eslok can be given. A string which turns off the status line {or
otherwise erases its contents) should be given as dsl. If the terminal has commands
to save and restore the position of the cursor, give them as sc and re. The status
line is normally assumed to be the same width as the rest of the screen, e.g., cols. If
the status line is a different width (possibly because the terminal does not allow an
entire line to be loaded) the width, in columns, can be indicated with the numeric
parameter wsl.

If the terminal can move up or down half a line, this can be indicated with bhu
(half-line up) and hd (half-line down). This is primarily useful for superscripts and
subscripts on hardcopy terminals. If a hardcopy terminal can eject to the next page
(form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times (to save
time transmitting a large number of identical characters) this can be indicated with
the parameterized string rep. The first parameter is the character to be repeated
and the second is the number of times to repeat it. Thus, tparm(repeat char, x’,
10) is the same as ‘XXXXXXXXXX’.

If the terminal has a settable command character, such as the TEKTRONIX 4025,
this can be indicated with emdch. A prototype command character is chosen which
is used in all capabilities. This character is given in the cmdeh capability to identify
it. The following convention is supported on some UNIX systems: The environment
is to be searched for a CC variable, and if found, all occurrences of the prototype
character are replaced with the character in the environment variable.

Terminal descriptions that do not represent a specific kind of known terminal, such
as switch, dialup, patch, and network, should include the gn (generic) capability so
that programs can complain that they do not know how to talk to the terminal.
(This capability does not apply to virtual terminal descriptions for which the escape
sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding infor-
mation should still be included so that routines can make better decisions about
costs, but actual pad characters will not be transmitted.

If the terminal has a “meta key” which acts as a shift key, setting the 8th bit of
any character transmitted, this fact can be indicated with km. Otherwise, software
will assume that the 8th bit is parity and it will usually be cleared. If strings exist
to turn this “meta mode” on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with lm. A value of Im#0 indicates
that the number of lines is not fixed, but that there is still more memory than fits on
the screen.

If the terminal is one of those supported by the UNIX system virtual terminal proto-
col, the terminal number can be given as vt.

-13- 7/85

TERMIMFO (4) TERMINFO (4}

FILES

Media copy strings which control an aunxiliary printer connected to the terminal can
be given as mef: print the contents of the screen, me4: turn off the printer, and
me3: turn on the printer. When the printer is on, all text sent to the terminal will
be sent to the prinier. It is undefined whether the text is aiso displayed on the ter-
minal screen when the printer is on. A variation meSp takes one parameter, and
leaves the printer on for as many characters as the value of the parameter, then
turns the printer off. The parameter should not exceed 255. All text, including
med, is transparently passed to the printer while an meSp is in effect.

Strings to program function keys can be given as pfkey, pfloc, and pfx. Each of
these strings takes two parameters: the function key number to program (from 0 to
10) and the string to program it with. Function key numbers out of this range may
program undefined keys in a terminal dependent manner. The difference between
the capabilities is that pfkey causes pressing the given key to be the same as the
user typing the given string; pfloc causes the string to be executed by the terminal in
local; and pfx causes the string to be transmitted to the computer.

Glitches and Braindamage

&~

Hazeltine terminals, which do not allow
cate hz.

characters to be displayed should indi-

Terminals which ignore a linefeed immediately after an am wrap, such as the Con-
cept and vt100, should indicate xenl.

If el is required o get rid of standout (instead of merely writing normal text on top
of it), xhp should be given.

Teleray terminals, where tabs turn all characters moved over to blanks, should indi-
cate xt (destructive tabs). This glitch is also taken to mean that it is not possible to
position the cursor on top of a “magic cookie”, that to erase standout mode it is
instead necessary to use delete and insert line.

The Bechive Superbee, which is unable to correctly transmit the escape or control C
characters, has xsb, indicating that the f1 key is used for escape and f2 for control
C. (Only certain Superbees have this problem, depending on the ROM.)

Other specific terminal problems may be corrected by adding more capabilities of
the form xx.

Simnilar Terminals

1f there are two very similar terminals, one can be defined as being just like the

other with certain exceptions. The string capability use can be given with the name
of the similar terminal. The capabilities given before use override those in the ter-
minal type invoked by mse. A capability can be cancelled by placing xx@ to the
left of the capability definition, where xx is the capability. For example, the entry

2621-nl, smkx@, rmkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does
not turn on the function key labels when in visual mode. This is useful for different
modes for a terminal, or for different user preferences.

/ust/lib/terminfo/?/* files containing terminal descriptions

SEE ALSO

7/85

curses(3X), printf(35), term(5).

- 14 - 7/85

TIMEZONE (4) TIMEZONE (4)

NAME

timezone — set default system time zone
SYNOPSIS

fetc/TIMEZONE
DESCRIPTION

This file sets and exports the time zone environmental variable TZ.
This file is "dotted" into other files that must know the time zone.

EXAMPLES
Jete/TIMEZONE for the east coast:

Time Zone
TZ=EST5EDT
export TZ

SEE ALSO
ctime(3C), profile(4).
rc2(1M) in the AT&T 3B2 Computer System Administration Reference Manual.

7/85 -1~ 7/85

UTMP (4) UTMP(4)

NAME

utmp, wtmp — utmp and wtmp entry formats

SYNOPSIS

#include <sys/types.h>
#include <utmp.h>

DESCRIPTION

7/85

These files, which hold user and accounting information for such commands as
who(1), write(1), and login(1), have the following structure as defined by
<utmp.h>:

#define UTMP_FILE "/etc/utmp"
#define WTMP_FILE “/etc/wtmp”
ffdefine ut_name ut_user

struct utmp {

char ut_user(8]; /» User login name */
char ut_id[4]; /* [etc/inittab id (usually line #) =/
char ut_line{12]; /* device name (console, Inxx) */
short ut_pid; /* process id »/
short ut_type; /* type of entry */
struct exit_status {
short ¢ _termination; /» Process termination status */
short e_exit; /* Process exit status */
} ut_exit; /= The exit status of a process
* marked as DEAD_PROCESS. */
time t ut_time; /* time entry was made »/
b
/+ Definitions for ut_type =*/
#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5 /* Process spawned by "init" */
#define LOGIN_PROCESS 6 /* A "getty" process waiting for login */
#define USER_PROCESS 7 /+ A user process */
#define DEAD_PROCESS 8
#define ACCOUNTING 9
#define UTMAXTYPE ACCOUNTING /= Largest legal value of ut_type +/

/= Special strings or formats used in the "ut_line" ficld when +/
/* accounting for something other than a process */

/= No string for the ut_line field can be more than 11 chars + +/
/* a NULL in length =/

#define RUNLVL_MSG "run—level %c"

#define BOOT _MSG "system boot"

#define OTIME_MSG "old time"

#define NTIME_MSG "new time"

1- 7/85

UTMP (4) UTMP(4)

FILES
/usr/include/utmp.h
fetc/utmp
[etc/wtmp

SEE ALSO
getut(3C).
login(1), who(1), write{1) in the AT&T 3B2 Computer User Reference Manual.

7/85 -2~ 7/85

Replace this
page with the
Section 5 (Miscellaneous)

tab separator.

INTRO(5) INTRO(5)

NAME
intro — introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities such as macro packages, character set
tables, etc.

7/85 -1- 7/85

ASCII(5)

NAME
ascii — map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
|000 nul [001 soh|002 stx |003
{010 bs [011 ht [012 nl [013
020 dle|021 dcl|022 de2]023
{030 can]031 em |032 sub|033
|040 sp 041 t |042 " |043
fo50 ¢ Jost) 052 * [053
1060 0 061 1 |062 2 |063
jo70 8 071 9 |o072 : |073
[100 @ |101 A |102 B |103
[1toH J11t 1 1127 113
f120 P 121 Q J122 R [123
130 x Ji31 Y {132 Z 1133
|140 ~ [141 a |142 b]143
|150 b j151 & 152§ 153
|160 p |161 q |162 r |163
[170 x 171y [172 2z |173
] 00 nul] 01 soh] 02 stx| 03
| 08 bs | 09 ht | 0a nl | Ob
| 10 dle| 11 dcl| 12 de2]| 13
| 18 can| 19 em | 1a sub| 1b
] 20sp | 211 22" | 23
| 28 (29) | 2a* | 2b
| 300 | 311 | 322 | 33
| 388]399 |3a: | 3b
| 40@ | 41 A | 42B | 43
| 48 H | 491 | 4a 1 | 4b
| 50P | 51Q | 52R | 53
| 58 X | 59Y | 522Z | 5b
| 60 ~ | 61a | 621b | 63
[68h | 69i |[6aj | 6b
| 70p | 71q | 72 ¢ | 73
| 78 x | 79y | 7az | 7b

FILES
/usr/pub/ascii

7/85

ASCII(5)

Ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

etx | 004
vt [014
de3 [024
esc |034

w4 %

—n e R O

etxl
vt |
dc3 |
esc|

w 4+ H

|
|
|
I
|
I
|
|
I
I
|

—_— ;rn,—.(/)yqoq.

|044
[054
|064
|o74
| 104
114
l124
|134
| 144
| 154
| 164
f174

04
Oc
14
lc
24
2¢
34
3¢
44
4c
54
5¢
64
6¢c
74
7c

eot | 005
np |015
dc4 | 025
fs 035
$ 045
055
|o65
075
|105

l125
{135
| 145
155
|165
175

cotl

— e — =S O AR

4
<
D
L (115
T
\
d
]
t
|

05
0d
15
1d
25
2d
35

o
(=N

45
4d
55

i
[=N

65
6d
75

~J
[~}

enq | 006

cr

lole

nak [026

gs

—~2 36 2ol vl S

|036
|046
jos6
|o66
076
| 106
116
|126
[136
| 146
1156
|166
176

ean 06

cr

| oe

nak| 16

—e 3o —=CZmlwl N

| 1e
| 26
I 2e
| 36
| 3e
| 46
| de
| 56
| se
| 66
| 6e
| 76
| 7e

ack [007
so [017
syn |027
rs |037 u
& |047

> Z MYV o

1< 3 .

ack |
so .|
syn |
TS
&

><Z2mV o

TS 3 .

|
|
|
|
|
|
|
|
I
|
I

057
jos7
[o77
107
117
| 127
|137
| 147
1157
|167
1177

07
of
17
If
217
2f
37
3f
47
4f
57
5f
67
6f
77
7f

bel |
si |
ctb|

20@‘7\’\ -

|
I
I
I
|
|
|
|
;
|
el |

a £ o ua |

bel |
si |
eth |
us

200\7\1\ ~

oE O ga |

el

7/85

ENVIRON (5) ENVIRON (5)

NAME

environ — user environment

DESCRIPTION

An array of strings called the “environment” is made available by exec(2) when a
process begins. By convention, these strings have the form “name=value”. The fol-
lowing names are used by various commands:

PATH The sequence of directory prefixes that sk (1), time(1), nice(1), nohup(1),
etc., apply in searching for a file known by an incomplete path name. The
prefixes are separated by colons (:). Login(1) sets PATH =:/bin:/usr/bin.

HOME Name of the user’s login directory, set by login(1) from the password file
passwd(4).

TERM The kind of terminal for which output is to be prepared. This information
is used by commands, such as mm (1) or tplot (1G), which may exploit spe-
cial capabilities of that terminal.

TZ Time zone information. The format is xxxnzzz where xxx is standard local
time zone abbreviation, n is the difference in hours from GMT, and zzz is
the abbreviation for the daylight-saving local time zone, if any; for example,
ESTSEDT.

Further names may be placed in the environment by the export command and
“name=value” arguments in sk (1), or by exec(2). It is unwise to conflict with cer-
tain shell variables that are frequently exported by .profile files: MAIL, PS1, PS2,
IFS.

SEE ALSO

7/85

exec(2).

env(1), login(1), sh(1), nice(1), nohup(1}, time(1), tplot(1G) in the AT&T 3B2
Computer User Reference Manual.

mm(1) in the UNIX System V DOCUMENTER'S WORKBENCH Software Intro-
duction and Reference Manual.

-1- 7/85

FCNTL (5)

NAME

FCNTL(5)

fentl — file control options

SYNOPSIS

#include <fenthh>

DESCRIPTION

The fentl(2) function provides for control over open files. This include file describes
requests and arguments to fentl and open(2).

/* Flag values accessible to open(2) and fentl(2) +/
/+ (The first three can only be set by open) */

#define
#define
#tdefine
#define
#define
#define

O RDONLY 0

O WRONLY 1

O RDWR 2

O _NDELAY 04 /* Non-blocking 1/0 +/

O _APPEND 010 /» append (writes guaranteed at the end) */
O SYNC 020 /* synchronous write option */

/= Flag values accessible only to open(2) */

#define
ftdefine
ftdefine

/+ fentl(2) requests +/

#define
#define
#define
#define
#tdefine
#define
#define
#define

O _CREAT
O_TRUNC
0_EXCL

F DUPFD
F GETFD
F SETFD
F GETFL
F SETFL
F GETLK
F SETLK
F SETLKW

00400 /+ open with file create (uses third open arg)+/
01000 /= open with truncation */
02000 /= exclusive open */

/= Duplicate fildes */

/* Get fildes flags »/

/* Set fildes flags */

/* Get file flags +/

/* Set file flags +/

/* Get blocking file locks */

/* Set or clear file locks and fail on busy */
/* Set or clear file locks and wait on busy =/

NN A W= O

/* file segment locking control structure */
struct flock {
short 1_type;
short 1 whence;
long 1 _start;
long 1 len;
int 1 pid;

}

/* if O then until EOF +/
/* returned with F_ GETLK */

/+ file segment locking types */

#define ¥ RDLCK 01
#define F_ WRLCK 02
#define F_ UNLCK 03

SEE ALSO

fentl(2),

7/85

open(2).

/+ Read lock */
/= Write lock »/
/* Remove locks #/

-1 - 7/85

MATH(5) MATH (5)

NAME

math — math functions and constants
SYNOPSIS

#include <math.h>
DESCRIPTION

This file contains declarations of all the functions in the Math Library (described in
Section 3M), as well as various functions in the C Library (Section 3C) that return
floating-point values.

It defines the structure and constants used by the matherr(3M) error-handling
mechanisms, including the following constant used as an error-return value:

HUGE The maximum value of a single-precision floating-point
number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E The base-2 logarithm of e.

M_LOGI10E The base-10 logarithm of e.

M_LN2 The natural logarithm of 2.

M_LNI10 The natural logarithm of 10.

M_P1 m, the ratio of the circumference of a circle to its diameter.

(There are also several fractions of =, its reciprocal, and its
square root.)

M_SQRT2 The positive square root of 2.
M_SQRTI1_2 The positive square root of 1/2.

For the definitions of various machine-dependent “constants,” see the description of
the <values.h> header file.

FILES
/usr/include/math.h

SEE ALSO
intro(3), matherr(3M), values(5).

7/85 -1~ 7/85

PROF (5) PROF(5)

NAME

prof — profile within a function

SYNOPSIS

#define MARK
#include <prof.h>

void MARK (name)

DESCRIPTION

MARK will introduce a mark called name that will be treated the same as a func-
tion entry point. Execution of the mark will add to a counter for that mark, and
program-counter time spent will be accounted to the immediately preceding mark or
to the function if there are no preceding marks within the active function.

Name may be any combination of up to six letters, numbers or underscores. Each
name in a single compilation must be unique, but may be the same as any ordinary
program symbol.

For marks to be effective, the symbol MARK must be defined before the header file
<prof.-h> is included. This may be defined by a preprocessor directive as in the
synopsis, or by a command line argument, i.e:

cc —p —"DMARK foo.c

If MARK is not defined, the MARK (name) statements may be left in the source files
containing them and will be ignored.

EXAMPLE

In this example, marks can be used to determine how much time is spent in each
loop. Unless this example is compiled with MARK defined on the command line, the
marks are ignored.

#include <prof.h>

foo()

{
int i, j;
MARK(loopl);
for G = 0; i < 2000; i++) {
}
MARK (loop2);
for G = 0;j < 2000; j++) {
} i

}

SEE ALSO

7/85

profil (2), monitor(3C).
prof(1) in the AT&T 3B2 Computer User Reference Manual.

1 7/85

REGEXP(5)

regexp — regular expression compile and match routines
p

REGEXP(5)

NAME

SYNOPSIS

#define INIT <declarations>
#define GETC() <getc code>
#define PEEKC{() <peekc code>

#define
#define
#define

7/85

UNGETC(¢) <ungetc code>
RETURN (pointer) <return code>
ERROR(val) <error code>

#include <regexp.h>

char =compile (instring, expbuf, endbuf, eof)
char =+instring, *expbuf, *endbuf;

int eof;

int step (string, expbuf)

char =string, *expbuf;

extern char #locl, #loc2, *locs;

extern int circf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression matching routines in the
form of ed(1), defined in /usr/include/regexp.h. Programs such as ed(1), sed(1),
grep(1), bs(1), expr(1), etc., which perform regular expression matching use this
source file. In this way, only this file need be changed to maintain regular expres-

sion compatibility.

The interface to this file is unpleasantly complex. Programs that include this file
must have the following five macros declared before the “#include <regexp.h>”
statement. These macros are used by the compile routine.

GETC()

PEEKC()

UNGETC(c)

RETURN (pointer)

ERROR (val)

Return the value of the next character in the regular expres-
sion pattern. Successive calls to GETC() should return suc-
cessive characters of the regular expression.

Return the next character in the regular expression. Succes-
sive calls to PEEKC() should return the same character
(which should also be the next character returned by
GETC()).

Cause the argument ¢ to be returned by the next call to
GETC() (and PEEKC()). No more that one character of
pushback is ever needed and this character is guaranteed to
be the last character read by GETC(). The value of the
macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile routine.
The value of the argument pointer is a pointer to the charac-
ter after the last character of the compiled regular expres-
sion. This is useful to programs which have memory alloca-
tion to manage.

This is the abnormal return from the compile routine. The
argument val is an error number (see table below for mean-
ings). This call should never return.

-1- 7/85

REGEXP (5) REGEXP(5)

7/85

ERROR MEANING

11 Range endpoint too large.

16 Bad number.

25 “\digit” out of range.

36 Illegal or missing delimiter.

41 ™o remembered search string.

42 \(\} imbalance.

43 Too many \(.

44 More than 2 numbers given in \{ \}.
45 } expected after \.

46 First number exceeds second in \{ \}.
49 [J imbalance.

50 Regular expression overflow.

The syntax of the compile routine is as follows:
compile (instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine but is
vseful for programs that pass down different pointers to input characters. It is
sometimes used in the INIT declaration (see below). Programs which call functions
to input characters or have characters in an external array can pass down a value of
((char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place where the
compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled reg-
ular expression may be placed. If the compiled expression cannot fit in
(endbuf—expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression.
For example, in ed(1), this character is usually a /.

Each program that includes this file must have a #define statement for INIT. This
definition will be placed right after the declaration for the function compile and the
opening curly brace ({). It is used for dependent declarations and initializations.
Most often it is used to set a register variable to point the beginning of the regular
expression so that this register variable can be used in the declarations for GETC(),
PEEKC() and UNGETC(). Otherwise it can be used to declare external variables
that might be used by GETC(), PEEKC() and UNGETC(). See the example below
of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expression
matching, one of which is the function step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a
match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression which was obtained
by a call of the function compile.

The function step returns non-zero if the given string matches the regular expres-
sion, and zero if the expressions do not match. If there is a match, two external
character pointers are set as a side effect to the call to step. The variable set in
step is locl. This is a pointer to the first character that matched the regular
expression. The variable Joc2, which is set by the function advance, points to the
character after the last character that matches the regular expression. Thus if the

-2 7/85

REGEXP (5) REGEXP(5)

regular expression matches the entire line, locl will point to the first character of
string and loc2 will point to the null at the end of string.

Step uses the external variable circf which is set by compile if the regular expres-
sion begins with *. If this is set then step will try to match the regular expression to
the beginning of the string only. If more than one regular expression is to be com-
piled before the first is executed the value of circf should be saved for each com-
piled expression and circf should be set to that saved value before each call to step.

The function advance is called from step with the same arguments as step. The
purpose of step is to step through the string argument and call advance until
advance returns non-zero indicating a match or until the end of string is reached.
If one wants to constrain string to the beginning of the line in all cases, step need
not be cailed; simply call advance.

When advance encounters a * or \{ \} sequence in the regular expression, it will
advance its pointer to the string to be matched as far as possible and will recursively
call itself trying to match the rest of the string to the rest of the regular expression.
As long as there is no match, advance will back up along the string until it finds a
match or reaches the point in the string that initially matched the * or \{ \}. It is
sometimes desirable to stop this backing up before the initial point in the string is
reached. If the external character pointer locs is equal to the point in the string at
sometime during the backing up process, advance will break out of the loop that
backs up and will return zero. This is used by ed(1) and sed(1) for substitutions
done globally (not just the first occurrence, but the whole line) so, for example,
expressions like s/y*//g do not loop forever.

The additional external variables sed and nbra are used for special purposes.

EXAMPLES

FILES

The following is an example of how the regular expression macros and calls look
from grep(1):

#define INIT register char *sp = instring;
#define GETC() (ssp++)

#define PEEKC() (+sp)

#define UNGETC(c) (——sp)

#define RETURN({c) return;

#define ERROR(c) regerr()

#include <regexp.h>
(void) compile(*argv, expbuf, &expbuf[ESIZE], \0);

if (step(iinebuf, expbuf))
succeed();

/usr/include/regexp.h

SEE ALSO

BUGS

7/85

ed(1), expr(1), grep(1), sed(1) in the AT&T 3B2 Computer User Reference
Manual.

The handling of circf is kludgy.
The actual code is probably easier to understand than this manual page.

-3 7/85

STAT(5)

NAME

STAT(5)

stat — data returned by stat system call

SYNOPSIS

#include <sys/types.h>
#include <sys/stath>

DESCRIPTION

The system calls stat and fstat return data whose structure is defined by this
include file. The encoding of the field st_mode is defined in this file also.

/*
* Structure of the result of stat
*/
struct stat

dev_t st_dev;

ino_t st_ino;

ushort st_mode;

short st_nlink;

ushort st_uid;

ushort st_gid;

dev t st_rdev;

off t st_size;

time t st_atime;

time t st_mtime;

time t st_ctime;
b
#define S_IFMT 0170000 /* type of file »/
#define S IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /+ character special */
#define S_IFBLK 0060000 /* block special +/
#define S_IFREG 0100000 /+ regular */
#define S_IFIFO 0010000 /+ fifo =/
#define S ISUID 04000 /+ set user id on execution */
#define S_ISGID 02000 /+ set group id on execution */
#define S_ISVTX 01000 /= save swapped text even after use */
#define S_IREAD 00400 /» read permission, owner */
#define S_IWRITE 00200 /* write perinission, owner */
#define S_IEXEC 00100 /* execute/search permission, owner */

FILES

/usr/include/sys/types.h
/usr/include/sys/stat.h

SEE ALSO
stat(2), types(5).

7/85 7/85

TERM (5) TERM (5)

NAME

term — conventional names for terminals

DESCRIPTION

7/85

These names are used by certain commands (e.g., fabs(1) is maintained as part of
the shell environment (see sh(1), profile(4), and environ(5)) in the variable STERM:

1520 Datamedia 1520

1620 DIABLO 1620 and others using the HyType II printer
1620—12 same, in 12-pitch mode

2621 Hewlett-Packard 2621 series

2631 Hewlett-Packard 2631 line printer

2631—c Hewlett-Packard 2631 line printer - compressed mode
2631—e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard 2640 series

2645 Hewlett-Packard 264n series (other than the 2640 series)
300 DASI/DTC/GSI 300 and others using the HyType I printer
300—12 same, in 12-pitch mode

300s DASI/DTC/GSI 300s

382 DTC 382

300s—12 same, in 12-pitch mode
3045 Datamedia 3045

33 TELETYPE® Model 33 KSR
37 TELETYPE Model 37 KSR
40—2 TELETYPE Model 40/2
40—4 TELETYPE Model 40/4
4540 TELETYPE Model 4540
3270 IBM Model 3270

4000a Trendata 4000a

4014 TEKTRONIX 4014

43 TELETYPE Model 43 KSR

450 DASI 450 (same as Diablo 1620)

450—12 same, in 12-pitch mode

735 Texas Instruments T1735 and T1725

745 Texas Instruments T1745

dumb generic name for terminals that lack reverse
line-feed and other special escape sequences

syne generic name for synchrenous TELETYPE
4540-compatible terminals

hp Hewlett-Packard (same as 2645)

Ip generic name for a line printer

tn1200 User Electric TermiNet 1200
tn300 User Electric TermiNet 300

Up to 8 characters, chosen from [—a—z0—9], make up a basic terminal name. Ter-
minal sub-models and operational modes are distinguished by suffixes beginning with
a —. Names should generally be based on original vendors, rather than local distri-
butors. A terminal acquired from one vendor should not have more than one dis-
tinct basic name.

Commands whose behavior depends on the type of terminal should accept argu-
ments of the form —Trerm where term is one of the names given above; if no such
argument is present, such commands should obtain the terminal type from the
environment variable $TERM, which, in turn, should contain zerm.

-1~ 7/85

TERM (5) TERM{(5)

SEE ALSO

BUGS

7/85

profile(4), environ(5).

sh(1), stty(1), tabs(1), tplot(1G) in the AT&T 3B2 Computer User Reference
Manual.

mm(1), nroff(1) in the UNIX System V DOCUMENTER'S WORKBENCH
Software Introduction and Reference Manual.

This is a small candle trying to illuminate a large, dark problem. Programs that
ought to adhere to this nomenclature do so somewhat fitfully.

-2 7/85

TYPES (5)

NAME

TYPES (5)

types — primitive system data types

SYNOPSIS

#include <sys/types.h>

DESCRIPTION

The data types defined in the include file are used in UNIX system code; some data
of these types are accessible to user code:

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

struct {int rl1];} =

long

char »
unsigned int
unsigned short
ushort

short

long

int

short

long

long

long

physadr;
daddr _t;
caddr_t;
uint;
ushort;
ino_t;
cnt_t;
time t;
label t[10];
dev t;

off t;
paddr_t;
key t;

The form daddr t is used for disk addresses except in an i-node on disk, see f5(4).
Times are encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and
minor parts of a device code specify kind and unit number of a device and are
installation-dependent. Offsets are measured in bytes from the beginning of a file.
The label t variables are used to save the processor state while another process is

running.

SEE ALSO
fs(4).

7/85

7/85

VALUES (5) VALUES (5)

NAME

values — machine-dependent values

SYNOPSIS

#include <values.h>

DESCRIPTION

FILES

This file contains a set of manifest constants, conditionally defined for particular
processor architectures.

The model assumed for integers is binary representation (one’s or two’s comple-
ment), where the sign is represented by the value of the high-order bit.

BITS (sype) The number of bits in a specified type (e.g., int).

HIBITS The value of a short integer with only the high-order bit set
(in most implementations, 0x8000).

HIBITL The value of a long integer with only the high-order bit set
(in most implementations, 0x80000000).

HIBITI The value of a regular integer with only the high-order bit
set (usually the same as HIBITS or HIBITL).

MAXSHORT The maximum value of a signed short integer (in most
implementations, 0Ox7FFF = 32767).

MAXLONG The maximum value of a signed long integer (in most imple-
mentations, 0X7FFFFFEFF = 2147483647).

MAXINT The maximum value of a signed regular integer (usually the

same as MAXSHORT or MAXLONG).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision
floating-point number, and its natural logarithm.

MAXDOUBLE, LN MAXDOUBLE The maximum value of a double-precision
floating-point number, and its natural logarithm.

MINFLOAT, LN_MINFLOAT The minimum positive value of a single~precision
floating-point number, and its natural logarithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a double-precision
floating-point number, and its natural logarithm.

FSIGNIF The number of significant bits in the mantissa of a single-
precision fleating-point number.

DSIGNIF The number of significant bits in the mantissa of a double-
precision floating-point number.

/usr/include/values.h

SEE ALSO

7/85

intro(3), math(5).

-1- 7/85

VARARGS (5) VARARGS((5)

NAME

varargs — handle variable argument list

SYNOPSIS

#include <varargs.h>
va_alist
va_dcl

void va_start(pvar)
va_list pvar;

type va_arg(pvar, type)
va_list pvar;

void va_end(pvar)
va_list pvar;

DESCRIPTION

This set of macros allows portable procedures that accept variable argument lists to
be written. Routines that have variable argument lists (such as printf(3S)) but do
not use varargs are inherently nonportable, as different machines use different
argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should follow va_dcl.
va_Jist is a type defined for the variable used to traverse the list.
va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. Type is the type
the argument is expected to be. Different types can be mixed, but it is up to the
routine to know what type of argument is expected, as it cannot be determined at
runtime.

va_end is used to clean up.

Mulitiple traversals, each bracketed by va_start ... va_end, are possible.

EXAMPLE

7/85

This example is a possible implementation of execl (2).

#include <varargs.h>
#define MAXARGS 100

/* execl is called by
execl(file, argl, arg2, ..., (char *)0);

*/
execl(va_alist)
va_dcl
{

va_list ap;

char *file;

char *argslMAXARGS];

int argno = 0;

va_start(ap);

file = va_arg(ap, char *);
while ((argslargnot++] = va_arg(ap, char »)) != (char »)0)

-1- 7/85

VARARGS (5) YARARGS(5)

va_end(ap);
return execv(file, args);

SEE ALSO

BUGS

7/85

exec(2), printf(3S).

It is up to the calling routine to specify how many arguments there are, since it is
not always possible to determine this from the stack frame. For example, execl is
passed a zero pointer to signal the end of the list. Prinif can tell how many argu-
ments are there by the format.

It is non-portable to specify a second argument of char, short, or float to va_arg,
since arguments seen by the called function are not char, short, or float. C con-
verts char and short arguments to int and converts float arguments to double before
passing them to a function.

~2- 7/85

