

NOTICIE

The information in this document is subject to change without notice. AT&T assumes no
responsibility for any errors that may appear in this document.

Copyright© 1985 AT&T
All Rights Reserved

Printed in U .S.A

TRADEMARKS

The following is a listing of the trademarks that are used in this manual:

• UNIX - Trademark of AT&T

• DOCUMENTER'S WORKBENCH - Trademark of AT&T

• DIABLO - Registered trademark of Xerox Corporation

• HP - Trademark of Hewlett-Packard, Inc .

• Versatec - Trademark of Versatec Corporation

• TELETYPE - Registered trademark of AT&T

• DEC, PDP, and VAX - Trademarks of Digital Equipment Corporation

• TEKTRONIX - Registered trademark of Tektronic, Inc .

• WE - Registered trademark of AT&T

ORDERING INFORMATION

Additional copies of this document can be ordered by calling

1-800-432-6600 Inside the U.S.A.

OR

1-317-352-8557 Outside the U.S.A.

OR by writing to:

AT&T Customer Information Center (CIC)
Attn: Customer Service Representative
P.O. Box 19901
Indianapolis, IN 46219

Replace this

page with the

Introduction

tab separator"

INTRODUCTION

This manual describes the programming features of the UNIX system. It provides nei·
ther a general overview of the UNIX system nor details of the implementation of the
system.

Not all commands, features, and facilities described in this manual are available in
every UNIX system. Some of the features require additional utilities which may not
exist on your system.

This manual is divided into four sections, some containing interfiled subclasses:

2. System Calls.
3. Subroutines:

3C. C Programming Language Libraries
3S. Standard l/O Library Routines
3M. Mathematical Library Routines
3X. Specialized Libraries
3F. FORTRAN Programming Libraries

4. File Formats.
5. Miscellaneous Facilities.

Section 2 (System Calls) describes the entries into the UNIX system kernel, including
the C language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions
reside in various system libraries in the directories /Rib and /usr/lib. See intro (3) for
descriptions of these libraries and the files in which they are stored.

Section 4 (File Formats) documents the structure of particular kinds of files; for exam·
pie, the format of the output of the link editor is given in a.out (4). Excluded are files
used by only one command (for example, the assembler's intermediate files). In gen·
era!, the C language strnct declarations corresponding to these formats can be found in
the directories /usr /inclmle and /usr /inclmle/sys.

Sectio111 5 (Miscellaneous Facilities) contains a variety of things. Included are descrip·
tions of character sets, macro packages, etc.

References with numbers. other than those above mean that the manual page is found in
another Reference Manual. References with (l) following the command generally
mean that the manual page is contained in the AT & T 3B2 Computer User Reference
Manual. Those followed by (lM), (7), or (8) are contained in the AT&T 3B2 Com·
puter System Administration Reference Manual.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each section
are alphabetized, with the exception of the introductory entry that begins each section
(also Section 3 is in alphabetical order by suffixes). Some entries may describe several
routines, commands, etc. In such cases, the entry appears only once, alphabetized
under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 2 (System Calls):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program
names found elsewhere in the manual (they are underlined in the typed ver·
sion of the entries).

" 3 "

Introduction

Square brackets 11 around an argument prototype indicate that the argument
is optional. When an argument prototype is given as "name" or "file", it
always refers to a.file name.

Ellipses ... are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument begin­
ning with a minus -, plus +, or equal sign - is often taken to be some sort of
flag argument, even if it appears in a position where a file name could appear.
Therefore, it is unwise to have files whose names begin with-, +,or-.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the
suggested fix is also described.

A table of contents and a permutted index derived from that table precede Section 2.
On each index line, the title of the entry to which that line refers is followed by the
appropriate section number in parentheses. This is important because there is consider­
able duplication of names among the sections, arising principally from commands that
exist only to exercise a particular system call.

A Permuted Index follows the Introduction and Table of Contents. The Permuted
Index is used by searching the middle column for a key word or phrase. The right
column will then contain the name of the manual page that contains that command.
The left column contains additional useful information about the command.

Replace this

page with the

Table of Contents

tab separatoL

TABLE OF CONTENTS

2. System Calls

intro • introduction to system calls and error numbers
access . determine accessibility of a file
acct • . . • . . • enable or disable process accounting
alarm . . . • . set a process alarm clock
brk . change data segment space allocation
chdir . change working directory
chmod change mode of file
chown . change owner and group of a file
chroot change root directory
close close a file descriptor
creat • create a new file or rewrite an existing one
dup . duplicate an open file descriptor
exec . . . execute a file
exit .
fcntl

. terminate process
. file control

fork . create a new process
getpid get process, process group, and parent process IDs
getuid get real user, effective user, real group, and effective group IDs
ioctl control device
kill . send a signal to a process or a group of processes
link Ii nk to a file
!seek move read/write file pointer
mknod . make a directory, or a special or ordinary file
mount • mount a file system
msgctl . message control operations
msgget get message queue
msgop . message operations
nice . . change priority of a process
open . open for reading or writing
pause suspend process until signal
pipe create an interprocess channel
plock lock process, text, or data in memory
profil execution time profile
ptrace . • • . process trace
read . read from file
semctl . semaphore control operations
semget . get set of semaphores
semop . semaphore operations
setpgrp set process group ID
setuid . set user and group XD_s
shmctl . shared memory control operations
shmget . . . get shared memory segment identifier
shmop . shared memory operations
signal specify what to do upon receipt of a signal
stat . . . • . . . • . . • get file status
stime . set time
sync • . update super block
sys3b . machine specific function
time . get time
times . get process and child process times

" l "

Table of Contents

uadmin . • • . administrative control
ulimit get and set user limits
umask . set and get file creation mask
umount . . . • unmount a file system
uname • get name of current UNIX system
unlink . remove directory entry
ustat get file system statistics
utime . . . set file access and modification times
wait . . wait for child process to stop or terminate
write • write on a file

3\. Subroutines

intro introduction to subroutines and libraries
C PROGRAMMING LANGUAGE UTILITIES
a641 • . . . • . convert between long integer and base-64 ASCII string
abort . generate an IOT fault
abs • return integer absolute value
bsearch . binary search a sorted table
clock . report CPU time used
conv • . translate characters
crypt . . generate hashing encryption
ctermid . generate file name for terminal
ctime . convert date and time to string
ctype . classify characters
cuserid get character login name of the user
dial . • . • • . . • establish an out-going terminal line connection
drand48 generate uniformly distributed pseudo-random numbers
ecvt . convert floating-point number to string
end . . . last locations in program
fclose close or flush a stream

. stream status inquiries
. open a stream

ferror .
fopen
fread
frexp
fseek
ftw .

. binary input/output
. manipulate parts of floating-point numbers
. • reposition a file pointer in a stream

. . . • . . . • . • walk a file tree
getc get character or word from a stream
getcwd get path-name of current working directory
getenv • • • • return value for environment name
getgrent • get group file entry
getlogin . • get login name
getopt get option letter from argument vector
getpass read a password
getpw • get name from UID
getpwent . get password file entry
gets . . • get a string from a stream
getut access utmp file entry
hsearch manage hash search tables
13tol . convert between 3-byte integers and long integers
lockf . . . • record locking on files
!search linear search and update
malloc . . main memory allocator
memory . memory operations

- 2 -

Table of Contents

mktemp . make a unique file name
monitor . • • prepare execution profile
nlist . get entries from name list
perror . system error messages
papen . . . initiate pipe to/from a process
printf . print formatted output
putc . put character or word on a stream
putenv . change or add value to environment
putpwent . write password file entry
puts . put a string on a stream
qsort quicker sort
rand . simple random-number generator
scanf . . . convert formatted input
setbuf . . assign buffering to a stream
setjmp non-local goto
sleep . . suspend execution for interval
ssignal software signals
stdio standard buffered input/output package
stdipc . . . • standard interprocess communication package
string . string operations
strtod • convert string to double-precision number
strtol convert string to integer
swab swap bytes
system issue a shell command
tmpfile create a temporary file
tmpnam . create a name for a temporary file
tsearch manage binary search trees
ttyname find name of a terminal
ttyslot . . find the slot in the utmp file of the current user
ungetc push character back into input stream
vprintf . . print formatted output of a varargs argument list
MATH LIBRARIES .
bessel . Bessel functions
erf error function and complementary error function
exp exponential, logarithm, power, square root functions
floor floor, ceiling, remainder, absolute value functions
gamma . log gamma function
hypot • Euclidean distance function
matherr • error-handling function
sinh . hyperbolic functions
trig • . trigonometric functions
assert verify program assertion
curses CRT screen handling and optimization package
ldahread . read the archive header of a member of an archive file
ldclose dose a common object file
ldfhread read the file header of a common object file
ldgetname retrieve symbol name for common object file symbol table entry
ldlread manipulate line number entries of a common object file function
ldlseek seek to line number entries of a section of a common object file
ldohseek seek to the optional file header of a common object file
ldopen open a common object file for reading
ldrseek . . seek to relocation entries of a section of a common object file
ldshread . read an indexed/named section header of a common object file

. 3 .

Table of Contents

ldsseek seek to an indexed/named section of a common object file
ldtbindex . compute the index of a symbol table entry of a common object file
ldtbread read an indexed symbol table entry of a common object file
ldtbseek . seek to the symbol table of a common object file
logname . . . return login name of user
malloc fast main memory allocator
plot graphics interface subroutines
regcmp . . compile and execute regular expression
sputl access long integer data in a machine-independent fashion.
vprintf print formatted output of a varargs argument list
FORTRAN PROGRAMMING LIBRARIES
abort • terminate Fortran program
abs . Fortran absolute value
acos Fortran arccosine intrinsic function
aimag . Fortran imaginary part of complex argument
aint Fortran integer part intrinsic function
asin Fortran arcsine intrinsic function
atan . . Fortran arctangent intrinsic function
atan2 Fortran arctangent intrinsic function
boo! • . . . • Fortran Bitwise Boolean functions
conjg Fortran complex conjugate intrinsic function
cos Fortran cosine intrinsic function
cosh . • Fortran hyperbolic cosine intrinsic function
dim . positive difference intrinsic functions
dprod double precision product intrinsic function
exp . Fortran exponential intrinsic function
ftype . • . explicit Fortran type conversion
getarg return Fortran command-line argument
getenv return Fortran environment variable
iargc . return the number of command line arguments
index return location of Fortran substring
Jen return length of Fortran string
log Fortran natural logarithm intrinsic function
loglO Fortran common logarithm intrinsic function
max . Fortran maximum-value functions
mclock return Fortran time accounting
mil . • bit field manipulation intrinsic functions and subroutines
mm Fortran minimum-value functions
mod . . Fortran remaindering intrinsic functions
rand random number generator
round . • . . Fortran nearest integer functions
sign Fortran transfer-of-sign intrinsic function
signal specify Fortran action on receipt of a system signal
sm . Fortran sine intrinsic function
sinh • . Fortran hyperbolic sine intrinsic function
sqrt Fortran square root intrinsic function
strcmp . string comparison intrinsic functions
system • • issue a shell command from Fortran
tan Fortran tangent intrinsic function
tanh Fortran hyperbolic tangent intrinsic function

- 4 .

Table of Contents

4. File Formats

intro • . . . • introduction to file formats
a.out common assembler and link editor output
ar . common archive file format
checklist . . list of file systems processed by fsck
core . format of core image file
cpio format of cpio archive
dir format of directories
filehdr . file header for common object files
fs format of system volume
fspec . . . format specification in text files
gettydefs . speed and terminal settings used by getty
gps . graphical primitive string, format of graphical files
group group file
inittab . script for the init process
inode . format of an i-node
issue issue identification file
ldfcn common object file access routines
linenum . line number entries in a common object file
master master configuration database
mnttab mounted file system table
passwd password file
plot . graphics interface
pnch file format for card images
profile . system-wide user profile
reloc • . . . relocation information for a common object file
sccsfile • format of SCCS file
scnhdr section header for a common object file
syms common object file symbol table format
system system configuration information table
term . format of compiled term file
terminfo . terminal capability data base
timezone . . set default system time zone
utmp utmp and wtmp entry formats

5. Miscellaneous Facilities

intro
ascii .

. . introduction to miscellany

. map of ASCII character set
environ user environment
fcntl . • file control options
math • math functions and constants
prof . profile within a function
regexp . regular expression compile and match routines
stat . data returned by stat system call
term . conventional names for terminals
types . primitive system data types
values . machine-dependent values
varargs . handle variable argument list

- 5 -

Replace this

page with the

Permuted Index

tab separator"

PERMUTED INDEX

13tol, lto13: convert between 3-byte integers and long/
long integer and base-64/ a641, 164a: convert between

abort: generate an JOT fault.
program. abort: terminate Fortran .

Fortran absolute value. abs, iabs, dabs, cabs, zabs:
value. abs: return integer absolute

abs: return integer absolute value.
dabs, cabs, zabs: Fortran absolute value. abs, iabs, .
/floor, ceiling, remainder, absolute value functions. .

utime: set file access and modification times.
accessibility of a file. access: determine

sputl, sgetl: access long integer data in a/
ldfcn: common object file access routines. . . .

/setutent, endutent, utmpname: access utmp file entry.
access: determine accessibility of a file.

enable or disable process accounting. acct:
mclock: return Fortran time accounting.

process accounting. acct: enable or disable
sin, cos, tan, asin, acos, atan, atan2:/
intrinsic function. acos, dacos: Fortran arccosine
putenv: change or add value to environment.

uadmin: administrative control. . .
imaginary part of complex/ aimag, dimag: Fortran . .

part intrinsic function. aint, dint: Fortran integer
alarm: set a process alarm clock.

clock. alarm: set a process alarm
change data segment space allocation. brk, sbrk:

realloc, calloc: main memory allocator. malloc, free, . .
mallinfo: fast main memory allocator. /calloc, mallopt,

natural logarithm/ log, alog, dlog, clog: Fortran
logarithm intrinsic/ log!O, alog!O, dloglO: Fortran common

Fortran/ max, maxO, amaxO, max I, amax I, dmax I:
max, maxO, amaxO, maxi, amaxl, dmax\: Fortran/ ..

Fortran/ min, minO, aminO, mini, aminl, dminl:
min, minO, aminO, mini, aminl, dminl: Fortran/

remaindering intrinsic/ mod, amod, dmod: Fortran
rshift: Fortran Bitwise/ and, or, xor, not, !shift,

Fortran nearest integer/ anint, dnint, nint, idnint:
link editor output. a.out: common assembler and

format. ar: common archive file
acos, dacos: Fortran arccosine intrinsic function.
cpio: format of cpio archive. • . .

ar: common archive file format.
header of a member of an archive file. /the archive

an archive/ ldahread: read the archive header of a member of
asin, dasin: Fortran arcsine intrinsic function.

atan2, datan2: Fortran arctangent intrinsic function.
atan, datan: Fortran arctangent intrinsic function.

imaginary part of complex argument. /dimag: Fortran
return Fortran command-line argument. getarg: .

varargs: handle variable argument list.
formatted output of a varargs argument list. /print
formatted output of a varargs argument list. /print
getopt: get option letter from argument vector.
the number of command line arguments. iargc: return

ascii: map of ASCH character set.
set. ascii: map of ASCH character

- 1 -

13tol(3C)
a641(3C)
abort(3C)
abort(3F)
abs(3F)
abs(3C)
abs(3C)
abs(3F)
floor(3M)
utime(2)
access(2)
sputl(3X)
ldfcn(4)
getut(3C)
access(2)
acct(2)
mclock(31')
acct(2)
trig(3M)
acos(3F)
putenv(3C)
uadmin(2)
aimag(3F)
aint(3F)
alarm(2)
alarm(2)
brk(2)
malloc(3C)
malloc(3X)
log(3F)
logl0(3F)
max(3F)
max(3F)
min(3F)
min(JF)
mod(3F)
bool(3F)
round(3F)
a.out(4)
ar(4)
acos(3F)
cpio(4)
ar(4)
ldahread (3X)
ldahread(3X)
asin(3F)
atan2(3F)
atan(3F)
aimag(3F)
getarg(3F)
varargs(5)
vprintf(3S)
vprintf(3X)
getopt(3C)
iargc(3F)
ascii (5)
ascii(5)

Permuted Index

long integer and base-64 ASCII string. I convert between
and/ ctime, localtime, gmtime, asctime, tzset: convert date

trigonometric/ sin, cos, tan, asin, acos, atan, atan2: . .
intrinsic function. asin, dasin: Fortran arcsine

output. a.out: common assembler and link editor
assertion. assert: verify program

assert: verify program assertion.
setbuf, setvbuf: assign buffering to a stream.

sin, cos, tan, asin, acos, atan, atan2: trigonometric/
arctangent intrinsic/ atan, datan: Fortran . .
arctangent intrinsic/ atan2, datan2: Fortran .

cos, tan, asin, acos, atan, atan2: trigonometric/ sin,
double-precision/ strtod, atof: convert string to

integer. strtol, atol, atoi: convert string to
integer. strtol, atol, atoi: convert string to

ungetc: push character back into input stream.
terminal capability data base. terminfo:

between long integer and base-64 ASCII string. /convert
jO, jl, jn, yO, yl, yn: Bessel functions.

fread, fwrite: binary input/output.
bsearch: binary search a sorted table.

tfind, tdelete, twalk: manage binary search trees. !search,
btest, ibset, ibclr, mvbits: bit field manipulation/ /ibits,

/not, !shift, rshift: Fortran Bitwise Boolean functions.
sync: update super block.

rshift: Fortran Bitwise Boolean functions. /!shift,
space allocation. brk, sbrk: change data segment

sorted table. bsearch: binary search a
/ieor, ishft, ishftc, ibits, btest, ibset, ibclr, mvbits:/

stdio: standard buffered input/output package.
setbuf, setvbuf: assign buffering to a stream.

swab: swap bytes.
value. abs, iabs, dabs, cabs, zabs: Fortran absolute

data returned by stat system call. stat:
malloc, free, realloc, calloc: main memory allocator.

fast/ malloc, free, realloc, calloc, mallopt, mallinfo:
int introduction t system calls and error numbers.

terminfo: terminal capability data base.
pnch: file format for card images.
function. cos, dcos, ccos: Fortran cosine intrinsic

ceiling, remainder,/ floor, ceil, fmod, fabs: floor,
/ceil, fmod, fabs: floor, ceiling, remainder, absolute/

intrinsic/ exp, dexp, cexp: Fortran exponential
pipe: create an interprocess channel.

/dble, cmplx, dcmplx, ichar, char: explicit Fortran type/
stream. ungetc: push character back into input

user. cuserid: get character login name of the
/getchar, fgetc, getw: get character or word from a/

/putchar, fputc, putw: put character or word on a stream.
ascii: map of ASCII character set.

_tolower, toascii: translate characters. / _toupper, . . .
iscntrl, isascii: classify characters. /isprint, isgraph,

directory. chdir: change working
systems processed by fsck. checklist: list of file

times: get process and child process times.
terminate. wait: wait for child process to stop or

chmod: change mode of file.
of a file. chown: change owner and group

chroot: change root directory.
isgraph, iscntrl, isascii: classify characters. /isprint,

- 2 -

a64l(3C)
ctime(3C)
trig(3M)
asin(3F)
a.out(4)
assert(3X)
assert(3X)
setbuf(3S)
trig(3M)
atan(3F)
atan2(3F)
trig(3M)
strtod(3C)
strtol(3C)
strtol(3C)
ungetc(3S)
terminfo(4)
a641(3C)
bessel(3M)
fread(3S)
bsearch (3C)
!search (3C)
mil(3F)
bool(3F)
sync(2)
bool(3F)
brk(2)
bsearch (3C)
mil(3F)
stdio(3S)
setbuf(3S)
swab(3C)
abs(3F)
stat(5)
malloc(3C)
malloc(3X)
intro(2)
terminfo(4)
pnch(4)
cos(3F)
floor(3M)
floor(3M)
exp(3F)
pipe(2)
ftype(3F)
ungetc(3S)
cuserid (3S)
getc(3S)
putc(3S)
ascii(5)
conv(3C)
ctype(3C)
chdir(2)
checklist(4)
times(2)
wait(2)
chmod(2)
chown(2)
chroot(2)
ctype(3C)

status/ ferror, feof, clearerr, fileno: stream ...
alarm: set a process alarm clock. •

clock: report CPU time used.
logarithm/ log, alog, dlog, clog: Fortran natural

ldclose, ldaclose: close a common object file.
close: close a file descriptor.

descriptor. close: close a file
fclose, ffiush: close or flush a stream.

/real, float, sngl, dble, cmplx, dcmplx, ichar, char:/
system: issue a shell command from Fortran.

iargc: return the number of command line arguments.
system: issue a shell

getarg: return Fortran
ar:

editor output. a.out:
loglO, alog!O, dlog!O: Fortran

routines. ldfcn:
ldopen, ldaopen: open a

/line number entries of a
ldclose, ldaclose: close a
read the file header of a
entries of a section of a

the optional file header of a
/entries of a section of a

/section header of a
an indexed/named section of a

of a symbol table entry of a
symbol table entry of a

seek to the symbol table of a

command.
command-line argument.
common archive file format.
common assembler and link
common logarithm intrinsic/
common object file access
common object file for/
common object file function.
common object file.
common object file. ldfhread:
common object file. /number
common object file. /seek to
common object file.
common object file.
common object file. /seek to
common object file. /the index
common object file. /indexed
common object file,. ldtbseek:

line number entries in a common object file. linenum:
relocation information for a common object file. reloc:
scnhdr: section header for a common object file.

/retrieve symbol name for common object file symbol/
table format. syms: common object file symbol

filehdr: file header for common object files. . .
ftok: standard interprocess communication package. .

lge, !gt, lie, lit: string comparison intrinsic/
expression. regcmp, regex: compile and execute regular
regexp: regular expression compile and match routines.

term: format of compiled term file.
erf, erfc: error function and complementary error function.

Fortran imaginary part of complex argument. /dimag:
conjg, dconjg: Fortran complex conjugate intrinsic/

table entry of a/ ldtbindex: compute the index of a symbol
master: master configuration database.

table. system: system configuration information
conjugate intrinsic function. conjg, dconjg: Fortran complex

conjg, dconjg: Fortran complex conjugate intrinsic function.
an out-going terminal line connection. dial: establish
math: math functions and constants.

ioctl: control device.
fcntl: file control.

msgctl: message control operations.
semctl: semaphore control operations.

shmctl: shared memory control operations.
fcntl: file control options. .

uadmin: administrative control.
terminals. term: conventional names for

char: explicit Fortran type conversion. /dcmplx, ichar,
integers and/ 13tol, ltol3: convert between 3-byte

" 3 "

Permuted Index

ferror(3S)
alarm(2)
clock(3C)
log(3F)
ldclose(3X)
close(2)
close(2)
fclose(3S)
ftype(3F)
system(3F)
iargc(3F)
system(3S)
getarg(3F)
ar(4)
a.out(4)
logl0(3F)
ldfcn(4)
ldopen(3X)
ldlread (3 X)
ldclose(3X)
ldfhread (3X)
ldlseek (3X)
ldohseek(3X)
ldrseek (3X)
ldshread(3X)
ldsseek(3X)
ldtbindex (3X)
ldtbread (3X)
ldtbseek(JX)
linenum(4)
reloc(4)
scnhdr(4)
ldgetname(3X)
syms(4)
filehdr(4)
stdipc(3C)
strcmp(3F)
regcmp(3X)
regexp(5)
term(4)
erf(3M)
aimag(3F)
conjg(3F)
ldtbindex(3X)
master(4)
system(4)
conjg(3F)
conjg(3F)
dial(3C)
math(5)
ioctl(2)
fcntl(2)
msgctl(2)
semctl(2)
shmct1(2)
fcnti(5)
uadmin(2)
term(S)
ftype(3F)
13tol(3C)

Permuted Index

and base-64 ASCII/ a641, 164a: convert between long integer
/gmtime, asctime, tzset: convert date and time to/

to string. ecvt, fcvt, gcvt: convert floating-point number
scanf, fscanf, sscanf: convert formatted input.

strtod, atof: convert string to/ . . . •
strtol, atol, atoi: convert string to integer. .

file. core: format of core image
core: format of core image file. • . . .

cosine intrinsic function. cos, dcos, ccos: Fortran
atan2: trigonometric/ sin, cos, tan, asin, acos, atan,

hyperbolic cosine intrinsic/ cosh, dcosh: Fortran . .
functions. sinh, cosh, tanh: hyperbolic

cos, dcos, ccos: Fortran cosine intrinsic function.
/dcosh: Fortran hyperbolic cosine intrinsic function.

cpio: format of cpio archive.
cpio: format of cpio archive.

clock: report CPU time used.
rewrite an existing one. creat: create a new file or

file. tmpnam, tempnam: create a name for a temporary
an existing one. creat: create a new file or rewrite

fork: create a new process.
tmpfile: create a temporary file.

channel. pipe: create an interprocess
umask: set and get file creation mask.

optimization package. curses: CRT screen handling and
generate hashing encryption. crypt, setkey, encrypt:

function. sin, dsin, csin: Fortran sine intrinsic
intrinsic/ sqrt, dsqrt, csqrt: Fortran square root

for terminal. ctermid: generate file name
asctime, tzset: convert date/ ctime, localtime, gmtime,

uname: get name of current UNIX system. . .
slot in the utmp file of the current user. /find the . .
getcwd: get path-name of current working directory.

and optimization package. curses: CRT screen handling
name of the user. cuserid: get character login

absolute value. abs, iabs, dabs, cabs, zabs: Fortran
intrinsic function. acos, dacos: Fortran arccosine
intrinsic function. asin, dasin: Fortran arcsine

terminfo: terminal capability data base.
/sgetl: access long integer data in a machine-independent/

plock: lock process, text, or data in memory.
call. stat: data returned by stat system

brk, sbrk: change data segment space allocation.
types: primitive system data types.

master: master configuration database. •
intrinsic function. atan, datan: Fortran arctangent

intrinsic function. atan2, datan2: Fortran arctangent
/asctime, tzset: convert date and time to string.
/idiot, real, float, sngl, dble, cmplx, dcmplx, ichar,/

/float, sngl, dble, cmplx, dcmplx, ichar, char: explicit/
conjugate intrinsic/ conjg, dconjg: Fortran complex

intrinsic function. cos, dcos, ccos: Fortran cosine
cosine intrinsic/ cosh, dcosh: Fortran hyperbolic

difference intrinsic/ dim, ddim, idim: positive
timezone: set default system time zone.

close: close a file descriptor. •
dup: duplicate an open file descriptor. . .•...

file. access: determine accessibility of a
ioctl: control device.

exponential intrinsic/ exp, dexp, cexp: Fortran

- 4 -

a641(3C)
ctime(3C)
ecvt(3C)
scanf(3S)
strtod(3C)
strtol(3C)
core(4)
core(4)
cos(3F)
trig(3M)
cosh(3F)
sinh(3M)
cos(3F)
cosh(3F)
cpio(4)
cpio(4)
clock(3C)
creat(2)
tmpnam(3S)
creat(2)
fork(2)
tmpfile(3S)
pipe(2)
umask(2)
curses(3X)
crypt(3C)
sin(3F)
sqrt(3F)
ctermid (3S)
ctime(3C)
uname(2)
ttyslot (3C)
getcwd(3C)
curses(3X)
cuserid (3S)
ahs(3F)
acos(3F)
asin(3F)
terminfo(4)
sputl(3X)
plock(2)
stat(5)
brk(2)
types(5)
master(4)
atan(3F)
atan2(3F)
ctime(3C)
ftype(3F)
ftype(3F)
conjg(3F)
cos(3F)
cosh(3F)
dim(3F)
timezone(4)
close(2)
dup(2)
access(2)
ioctl(2)
exp(3F)

terminal line connection. dial: establish an out-going
dim, ddim, idim: positive difference intrinsic/

difference intrinsic/ dim, ddim, idim: positive .
of complex argument. aimag, dimag: Fortran imaginary part

intrinsic function. aint, dint: Fortran integer part
dir: format of directories.

dir: format of directories.
chdir: change working directory.

chroot: change root directory.
unlink: remove

path-name of current working
ordinary file. mknod: make a

acct: enable or
hypot: Euclidean

/lcong48: generate uniformly
logarithm/ log, alog,

logarithm/ log 10, alog 10,
max, maxO, amaxO, maxl, amaxl,

min, minO, aminO, minl, aminl,
intrinsic/ mod, amod,

nearest integer I anint,
intrinsic function. dprod:

/atof: convert string to
product intrinsic function.

nrand48, mrand48, jrand48,/
transfer-of-sign/ sign, isign,

intrinsic function. sin,
intrinsic function. sinh,

root intrinsic/ sqrt,
intrinsic function. tan,

tangent intrinsic/ tanh,
descriptor.

descriptor. dup:
floating-point number to/

program. end, etext,
common assembler and link

/user, real group, and
and/ I getegid: get real user,

accounting. acct:
encryption. crypt, setkey,
encrypt: generate hashing

locations in program.
I getgrgid, getgmam, setgrent,

/getpwuid, getpwnam, setpwent,
utmp/ /pututline, setutent,

nlist: get
file. linenum: line number

file/ /manipulate line number
/ldnlseek: seek to line number

/ldnrseek: seek to relocation
utmp, wtmp: utmp and wtmp

fgetgrent: get group file
fgetpwent: get password file
utmpname: access utmp file

object file symbol table
/the index of a symbol table

/read an indexed symbol table
putpwent: write password file

unlink: remove directory

directory entry.
directory. getcwd: get
directory, or a special or
disable process accounting.
distance function. , • . ,
distributed pseudo-random/
dlog, clog: Fortran natural
dlog!O: Fortran common .
dmaxl: Fortran maximum-value/
dminl: Fortran minimum-value/
dmod: Fortran remaindering
dnint, nint, idnint: Fortran
double precision product
double-precision number ..
dprod: double precision
drand48, erand48, lrand48,
dsign: Fortran
dsin, csin: Fortran sine . .

dsinh: Fortran hyperbolic sine
dsqrt, csqrt: Fortran square
dtan: Fortran tangent
dtanh: Fortran hyperbolic
dup: duplicate an open file
duplicate an open file
ecvt, fcvt, gcvt: convert
edata: last locations in
editor output. a.out: ,
effective group IDs.
effective user, real group,
enable or disable process
encrypt: generate hashing
encryption. crypt, setkey,
end, etext, edata: last
endgrent, fgetgrent: get group/
endpwent, fgetpwent: get/
endutent, utmpname: access
entries from name list. , .
entries in a common object
entries of a common object
entries of a section of a/
entries of a section of a/ ,
entry formats.
entry. /setgrent, endgrent,
entry. /setpwent, endpwent,
entry. /setutent, endutent,
entry. /symbol name for common
entry of a common object file.
entry of a common object file.
entry.
entry.
environ: user environment.

Permuted Index

dialC3C)
dim(3F)
dim(3F)
aimag(3F)
aint(3F)
dir(4)
dir(4)
chdir(2)
chroot(2)
unlink(2)
getcwd(3C)
mknod(2)
acct(2)
hypot(3M)
drand48 (3C)
log(3F)
logl0(3F)
max(3F)
min(3F)
mod(3F)
round(3F)
dprod(3F)
strtod(3C)
dprod(3F)
drand48 (3C)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)
dup(2)
dup(2)
ecvt(3C)
end(3C)
a.out(4)
getuid(2)
getuid(2)
acct(2)
crypt(3C)
crypt(3C)
end(3C)
getgren t (3C)
getpwent(3C)
getut(3C)
nlist(3C)
linenum(4)
ldlread (3X)
ldlseek(3X)
ldrseek (3X)
utmp(4)
getgrent (3C)
getpwent(3C)
getut(3C)
ldgetnameOX)
ldtbindex(3X)
ldtbread (3X)
putpwent(3C)
unlink(2)
environ(S)

Permuted Index

environ: user
getenv: return value for

putenv: change or add value to
getenv: return Fortran

mrand48, jrand48,/ drand48,
complementary error function.

complementary error/ erf,
system error/ perror,

complementary/ erf, erfc:
function and complementary
sys_ err list, sys_ nerr: system

to system calls and
matherr:

terminal line/ dial:
in program. end,

hypo!:
execlp, execvp: execute a/

execvp: execute/ execl, execv,
ex eel, execv, execle, execve,

execve, execlp, execvp:
regcmp, regex: compile and

sleep: suspend
monitor: prepare

profil:
execvp: execute a/ exec!,

execute/ execl, execv, execle,
/execv, execle, execve, execlp,

a new file or rewrite an
process.

exit,
exponential intrinsic/

exponential, logarithm,/
cm pix, dcmplx, ichar, char:

exp, dexp, cexp: Fortran
exp, log, loglO, pow, sqrt:
routines. regexp: regular

compile and execute regular
remainder,/ floor, ceil, fmod,

data in a machine-independent
/calloc, mallopt, mallinfo:

abort: generate an JOT
a stream.

floating-point number/ ecvt,
fopen, freopen,

status inquiries. ferror,
fileno: stream status/

stream. fclose,
word from a/ getc, getchar,

I getgrnam, setgrent, endgrent,
/getpwnam, setpwent, endpwent,

stream. gets,
times. utime: set

ldfcn: common object
determine accessibility of a

chmod: change mode of

environment.
environment name.
environment. ~ ~ "
environment variable.
erand48, lrand48, nrand48,
erf, erfc: error function and
erfc: error function and
errno, sys_ err list, sys_ nerr:
error function and
error function. /erfc: error
error messages. /errno,
error numbers. /introduction
error-handling function.
establish an out-going
etext, edata: last locations
Euclidean distance function.
execl, execv, execle, execve,
execle, execve, execlp,
execlp, execvp: execute a/
execute a file. I execle, . .
execute regular expression.
execution for interval.
execution profile.
execution time profile.
execv, execle, ex.ecve. execlp,
execve, ex.eel p, execvp: . .
execvp: execute a file.
existing one. creat: create
exit, _exit: terminate
_exit: terminate process.
exp, dexp, cexp: Fortran
exp, log, loglO, pow, sqrt:
explicit Fortran type/ /dble,
exponential intrinsic/
exponential, logarithm, power,/
expression compile and match
expression. regcmp, regex:
fabs: floor, ceiling,
fashion .. /access long integer
fast main memory allocator.
fault. •...•. , •.
fclose, mush: close or flush
fcntl: file control.
fcntl: file control options.
fcvt, gcvt: convert . • ,
fdopen: open a stream. .
feof, clearerr, fileno: stream
ferror, feof, clearerr,
ffiush: close or flush a
fgetc, getw: get character or
fgetgrent: get group file/ . .
fgetpwent: get password file/
fgets: get a string from a .
file access and modification
file access routines.
file. access:
file .•••

change owner and group of a file. chown:
fcntl: file control.
fcntl: file control options.

"6 -

environ(5)
getenv(3C)
putenv(3C)
getenv(3F)
drand48 (3C)
erf(3M)
erf(3M)
perror(3C)
erf(3M)
erf(3M)
perror(3C)
intro(2)
matherr(3M)
dial(3C)
end(3C)
hypot(3M)
exec(2)
exec(2)
exec(2)
exec(2)
regcmp(3X)
sleep(3C)
monitor(3C)
profil(2)
exec(2)
exec(2)
exec(2)
creat(2)
exit(2)
exit(2)
exp OF)
exp(3M)
ftype(3F)
exp(3F)
exp(3M)
regexp(5)
regcmp(3X)
floor(3M)
sputl(3X)
malloc(3X)
abort(3C)
fclose(3S)
fcnt1(2)
fcntl(5)
ecvt(3C)
fopen(3S)
ferror(3S)
ferror(3S)
fclose(3S)
getc(3S)
getgrent (3C)
getpwent (3C)
gets(3S)
utime(2)
ldfcn(4)
access(2)
chmod(2)
chown(2)
fcnt1(2)
fcntl(5)

core: format of core image file.
umask: set and get file creation mask.

close: close a file descriptor.
dup: duplicate an open file descriptor.

endgrent, fgetgrent: get group file entry. /setgrent,
fgetpwent: get password file entry. /endpwent,
utmpname: access utmp file entry. /endutent,

putpwent: write password file entry.
execlp, ex.ecvp: execute a file. I execv, execle, execve,

ldaopen: open a common object file for reading. ldopen,
ar: common archive file format.

pnch: file format for card images.
intro: introduction to file formats.

entries of a common object file function. /line number
group: group file.
files. filebdr: file header for common object

file. ldfhread: read the file header of a common object
ldohseek: seek to the optional file header of a common object/

issue: issue identification file.
of a member of an archive file. /read the archive header

close a common object file. ldclose, ldaclose:
file header of a common object file. ldfhread: read the . .

a section of a common object file. /line number entries of
file header of a common object file. /seek to the optional

a section of a common object file. /relocation entries of
header of a common object file. /indexed/named section
section of a common object file. /to an indexed/named •

table entry of a common object file. /the index of a symbol .
table entry of a common object file. /read an indexed symbol

table of a common object file. /seek to the symbol
entries in a common object file. linem1m: line number

link: link to a file.
or a special or ordinary file. /make a directory,

ctermid: generate file name for terminal.
mktemp: make a unique file name.

/find the slot in the utmp file of the current user.
one. creat: create a new file or rewrite an existing

passwd: password file. • . • . . • . .
/rewind, ftell: reposition a file pointer in a stream.

lseek: move read/write file pointer.
read: read from file.

for a common object file. /relocation information
sccsfile: format of secs file. . . . • . . •

header for a common object file. scnhdr: section
stat, fstat: get file status.

/symbol name for common object file symbol table entry.
syms: common object file symbol table format.

volume. file system: format of system
mount: mount a file system.

ustat: gel file system statistics.
mnttab: mounted file system table.

umount: unmount a file system.
fsck. checklist: list of file systems processed by

term: format of compiled term file. • • . . •
tmpfile: create a temporary file. . • . . . • . . .

create a name for a temporary file. tmpnam, tempnam:
ftw: walk a file tree. . • • . . •

write: write on a file. . . • •
common object files. filehdr: file header for
ferror, feof, clearerr, fileno: stream status/

- 7 -

Permuted Index

core(4)
umask(2)
close(2)
dup(2)
getgrent (3C)
getpwent (3C)
getut(3C)
putpwent (3C)
exec(2)
ldopen(3X)
ar(4)
pnch(4)
intro(4)
ldlread (3X)
group(4)
filehdr(4)
ldfhread(3X)
ldohseek(3X)
issue(4)
ldahread(3X)
ldclose(3X)
ldfhread (3X)
ldlseek(3X)
ldohseek(3X)
ldrseek (3X)
ldshread (3X)
ldsseek(3X)
ldtbindex (3X)
ldtbread(3X)
ldtbseek(3X)
linenum(4)
link(2)
mknod(2)
ctermid (3S)
mktemp(3C)
ttyslot (3C)
creat(2)
passwd(4)
fseek(3S)
lseek(2)
read(2)
reloc(4)
sccsfile(4)
scnhdr(4)
stat(2)
ldgetname(3X)
syms(4)
fs(4)
mount(2)
ustat(2)
mnttab(4)
umount(2)
checklist(4)
term(4)
tmpfile(3S)
tmpnam(3S)
ftw(3C)
write(2)
filehdr(4)
ferror(3S)

Permuted Index

file header for common object files. filehdr:
format specification in text
string, format of graphical

lockf: record Jocking on
ttyname, isatty:

of the current user. ttyslot:
int, ifix, idiot, real,

ecvt, fcvt, gcvt: convert
/modf: manipulate parts of

floor, ceiling, remainder ,I
floor, ceil, fmod, fabs:
fclose, fHush: close or

remainder ,I floor, ceil,
stream.

ar: common archive file
pncb: file

inode:
term:
core:
cpio:

dir:
I graphical primitive string,

sccsfile:
file system:
files. fspec:

object file symbol table
intro: introduction to file

wtmp: utmp and wtmp entry
scanf, fscanf, sscanf: convert

/vfprintf, vsprintf: print
/vfprintf, vsprintf: print

fprintf, sprintf: print
abs, iabs, dabs, cabs, zabs:

system/ signal: specify
function. acos, dacos:
function. asin, dasin:

function. atan2, datan2:
function. atan, datan:

or, xor, not, !shift, rshift:
getarg: return

log!O, aloglO, dlog!O:
intrinsic/ conjg, dconjg:

function. cos, dcos, ccos:
getenv: return

function. exp, dexp, cexp:
intrinsic/ cosh, dcosh:
intrinsic/ sinh, dsinh:

intrinsic/ tanh, dtanh:
complex/ aimag, dimag:

function. aint, dint:
amaxO, maxi, amaxl, dmaxl:

/and subroutines from the
amino, mini, aminl, <)mini:

log, alog, dlog, clog:
anint, dnint, nint, idnint:

abort: terminate
functions. mod, amod, dmod:

function. sin, dsin, csin:
function. sqrt, dsqrt, csqrt:

files. fspec: .
files. /graphical primitive
files. . .•.••..
find name of a terminal.
find the slot in the utmp file
float, sngl, dble, cmplx,/
floating-point number to/
floating-point numbers.
floor, ceil, fmod, fabs:
floor, ceiling, remainder,/
flush a stream.
fmod, fabs: floor, ceiling,
fopen, freopen, fdopen: open a
fork: create a new process.
format. . ••.••.
format for card images.
format of an i-node. . .
format of compiled term file.
format of core image file.
format of cpio archive. •
format of directories.
format of graphical files.
format of SCCS file.
format of system volume.
format specification in text
format. syms: common
formats. • ..
formats. utmp,
formatted input.
formatted output of a varargs/
formatted output of a varargs/
formatted output. printf, • .
Fortran absolute value.
Fortran action on receipt of a
Fortran arccosine intrinsic
Fortran arcsine intrinsic
Fortran arctangent intrinsic
Fortran arctangent intrinsic
Fortran Bitwise Boolean/ and,
Fortran command-line argument.
Fortran common logarithm/
Fortran complex conjugate •
Fortran cosine intrinsic
Fortran environment variable.
Fortran exponential intrinsic
Fortran hyperbolic cosine
Fortran hyperbolic sine
Fortran hyperbolic tangent
Fortran imaginary part of
Fortran integer part intrinsic
Fortran maximum-value/ /maxO,
Fortran Military Standard/
Fortran minimum-value/ /minO,
Fortran natural logarithm/
Fortran nearest integer/
Fortran program.
Fortran remaindering intrinsic
Fortran sine intrinsic
Fortran square root intrinsic

- 8 -

filehdr(4)
fspec(4)
gps(4)
lockf(3C)
ttyname(3C)
ttys lot (3C)
ftype(3F)
ecvt(3C)
frexp(3C)
floor(3M)
floor(3M)
fclose(3S)
floor(3M)
fopen(3S)
fork(2)
ar(4)
pnch(4)
inode(4)
term(4)
core(4)
cpio(4)
dir(4)
gps(4)
sccsfile(4)
fs(4)
fspec(4)
syms(4)
intro(4)
utmp(4)
scanf(3S)
vprintf(3S)
vprintf(3X)
printf(3S)
abs(3F)
signal(3F)
acos(3F)
asin(3F)
atan2(3F)
atan(3F)
bool(3F)
getarg(3F)
log10(3F)
conjg(3F)
cos(3F)
getenv(3F)
exp(3F)
cosh(3F)
sinh(3F)
tanh(3F)
aimag(3F)
aint(3F)
max(3F)
mil(3F)
min(3F)
log(3F)
round(3F)
abort(3F)
mod(3F)
sin(3F)
sqrt(3F)

Jen: return length of Fortran string.
index: return location of Fortran substring.

issue a shell command from Fortran. system:
function. tan, dtan:

mclock: return
intrinsic/ sign, isign, dsign:

/dcmplx, ichar, char: explicit
formatted output. printf,

word on a/ putc, putchar,
stream. puts,
input/output.

memory allocator. malloc,
mallopt, mallinfo:/ malloc,

stream. fopen,
parts of floating-point/

getw: get character or word
gets, fgets: get a string
getopt: get option letter

read: read
system: issue a shell command

nlist: get entries
/functions and subroutines

getpw: get name
formatted input. scanf,

of file systems processed by
reposition a file pointer in/

text files.
stat,

pointer in a/ fseek, rewind,
communication package.

Fortran arccosine intrinsic
Fortran integer part intrinsic

error I erf, erfc: error
Fortran arcsine intrinsic

Fortran arctangent intrinsic
Fortran arctangent intrinsic
complex conjugate intrinsic

ccos: Fortran cosine intrinsic
hyperbolic cosine intrinsic
precision product intrinsic
and complementary error

Fortran exponential intrinsic
gamma: log gamma

hypot: Euclidean distance
of a common object file

common logarithm intrinsic
natural logarithm intrinsic

matherr: error-handling
prof: profile within a

transfer-of-sign intrinsic
csin: Fortran sine intrinsic

hyperbolic sine intrinsic
Fortran square root intrinsic

sys3b: machine specific
Fortran tangent intrinsic

hyperbolic tangent intrinsic
math: math

/field manipulation intrinsic
jO, jl, jn, yO, yl, yn: Bessel

Fortran tangent intrinsic
Fortran time accounting.
Fortran transfer-of-sign
Fortran type conversion.
fprintf, sprintf: print . .
fputc, putw: put character or
fputs: put a string on a
fread, fwrite: binary . .
free, realloc, calloc: main
free, realloc, calloc,
freopen, fdopen: open a
frexp, ldexp, modf: manipulate
from a stream. /fgetc,
from a stream.
from argument vector.
from file.
from Fortran.
from name list.
from the Fortran Military I
from UID
fscanf, sscanf: convert
fsck. checklist: list
fseek, rewind, ft ell:
fspec: format specification in
fstat: get file status. . . .
ftell: reposition a file
ftok: standard interprocess
ftw: wa;k a file tree. .
function. acos, dacos:
function. aint, dint:
function and complementary
function. asin, dasin:
function. atan2, datan2:
function. atan, datan:
function. /dconjg: Fortran
function. cos, dcos,
function. /dcosh: Fortran
function. dprod: double
function. /error function
function. exp, dexp, cexp:
function.
function.
function.
function.
function.
function.
function.

/line number entries
/dloglO: Fortran
/dlog, clog: Fortran

function. /dsign: Fortran
function. sin, dsin,
function. /dsinh: Fortran
function. sqrt, dsqrt, csqrt:
function
function. tan, dtan:
function. /dtanh: Fortran
functions and constants.
functions and subroutines from/
functions.

" 9 "

Permuted Index

]en(3F)
index(3F)
system(3F)
tan(3F)
mclock(3F)
sign(3F)
ftype(3F)
printf(3S)
putc(3S)
puts(3S)
fread(3S)
malloc(3C)
malloc(3X)
fopen(3S)
frexp(3C)
getc(3S)
gets(3S)
getopt(3C)
read(2)
system(3F)
nlist(3C)
mil(3F)
getpw(3C)
scanf(3S)
checklist(4)
fseek(3S)
fspec(4)
stat(2)
fseek(3S)
stdipc(3C)
ftw(3C)
acos(3F)
aint(3F)
erf(3M)
asin(3F)
atan2(3F)
atan(3F)
conjg(3F)
cos(3F)
cosh(3F)
dprod(3F)
erf(3M)
exp(3F)
gamma(3M)
hypot(3M)
ldlread (3X)
logl0(3f)
log(3F)
matherr(3M)
prof(5)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
sys3b(2)
tan(3F)
tanh(3F)
math(5)
mil(3F)
bessel(3M)

Permuted Index

Fortran Bitwise Boolean functions. /lshift, rshift:
positive difference intrinsic functions. dim, ddim, idim: .

logarithm, power, square root functions. /sqrt: exponential,
remainder, absolute value functions. /floor, ceiling, .

dmaxl: Fortran maximum-value functions. /maxi, amaxl,
dminl: Fortran minimum-value functions. /mini, aminl, .
Fortran remaindering intrinsic functions. mod, amod, dmod:

Fortran nearest integer functions. /nint, idnint:
sinh, cosh, tanh: hyperbolic functions.
string comparison intrinsic functions. /lgt, lie, lit:
atan, atan2: trigonometric functions. /tan, asin, acos,

fread, fwrite: binary input/output.
gamma: log gamma function.

gamma: log gamma function.
number to string. ecvt, fcvt, gcvt: convert floating-point

abort: generate an KOT fault. . . .
terminal. ctermid: generate file name for

crypt, setkey, encrypt: generate hashing encryption.
/srand48, seed48, lcong48: generate uniformly distributed/

srand: simple random-number generator. rand,
rand, srand: random number generator. irand,

gets, fgets: get a string from a stream.
ulimit: get and set user limits. . .

the user. cuserid: get character login name of
getc, getchar, fgetc, getw: get character or word from a/

nlist: get entries from name list.
umask: set and get file creation mask.

stat, fstat: get file status.
ustat: get file system statistics.

/setgrent, endgrent, fgetgrent: get group file entry.
getlogin: get login name. . .
msgget: get message queue.
getpw: get name from lJID.

system. uname: get name of current UNIX
argument vector. getopt: get option letter from

/setpwent, endpwent, fgetpwent: get password file entry.
working directory. getcwd: get path-name of current

times. times: get process and child process
and/ getpid, getpgrp, getppid: get process, process group,

/geteuid, getgid, getegid: get real user, effective user,/
semget: get set of semaphores.

identifier. shmget: get shared memory segment
time: get time. . • • . . • • .

command-line argument. getarg: return Fortran . .
get character or word from a/ getc, getchar, fgetc, getw:
character or word from/ getc, getchar, fgetc, getw: get

current working directory. getcwd: get path-name of
getuid, geteuid, getgid, getegid: get real user,/ .

environment variable. getenv: return Fortran .
environment name. getenv: return value for

real user, effective/ getuid, geteuid, getgid, getegid: get
user,/ getuid, geteuid, getgid, getegid: get real

setgrent, endgrent,/ getgrent, getgrgid, getgrnam,
endgrent,/ getgrent, getgrgid, getgrnam, setgrent,

getgrent, getgrgid, getgrnam, setgrent, endgrent,/
getlogin: get login name. . .

argument vector. getopt: get option letter from
getpass: read a password.

process group, and/ getpid, getpgrp, getppid: get process,
process, process group, and/ getpid, getpgrp, getppid: get

- 10 -

bool(3F)
dim(3F)
exp(3M)
ftoor(3M)
max(3F)
min(3F)
mod(3F)
round(3F)
sinh(3M)
strcmp(3F)
trig(3M)
fread(3S)
gamma(3M)
gamma(3M)
ecvt(3C)
abort(3C)
ctermid (3S)
crypt(3C)
drand48 (3C)
rand(3C)
rand(3F)
gets(3S)
ulimit(2)
cuserid (3S)
getc{3S)
nlist(3C)
umask(2)
stat(2)
ustat(2)
getgrent (3C)
getlogin (3C)
msgget(2)
getpw(3C)
uname(2)
getopt(3C)
getpwent (3C)
getcwd(3C)
times(2)
getpid(2)
getuid(2)
semget(2)
shmget(2)
time(2)
getarg(3F)
getc(3S)
getc(3S)
getcwd(3C)
getuid(2)
getenv(3F)
getenv(3C)
getuid(2)
getuid(2)
getgrent (3C)
getgrent (3C)
getgrent (3C)
getlogin (3C)
getopt(3C)
getpass(3C)
getpid(2)
getpid(2)

group, and/ getpid, getpgrp, getppid: get process, process
getpw: get name from UID.

setpwent, endpwent,/ getpwent, getpwuid, getpwnam,
getpwent, getpwuid, getpwnam, setpwent, endpwent,/

endpwent,/ getpwent, getpwuid, gctpwnam, setpwent,
a stream. gets, fgets: get a string from

and terminal settings used by getty. gettydefs: speed . . .
settings used by getty. gettydefs: speed and terminal
getegid: get real user,/ getuid, geteuid, getgid,

pututline, setutent,/ getutent, getutid, getutline,
setutent, endutent,/ getutent, getutid, getutline, pututline,

setutent,/ getutent, getutid, getutline, pututline,
from a/ getc, getchar, fgetc, getw: get character or word

convert/ ctime, localtime, gmtime, asctime, tzset:
setjmp, longjmp: non-local goto.

string, format of graphical/ gps: graphical primitive
primitive string, format of graphical files. /graphical
format of graphical/ gps: graphical primitive string,

plot: graphics interface.
subroutines. plot: graphics interface

/user, effective user, real group, and effective group/
I getppid: get process, process group, and parent process IDs.

endgrent, fgetgrent: get group file entry. /setgrent,
group: group file.

group: group file.
setpgrp: set process group ID.

real group, and effective group IDs. /effective user,
setuid, setgid: set user and group IDs.
chown: change owner and group of a file.
a signal to a process or a group of processes. /send

ssignal, gsignal: software signals.
varargs: handle variable argument list.

package. curses: CRT screen handling and optimization
hcreate, hdestroy: manage hash search tables. hsearch,

setkey, encrypt: generate hashing encryption. crypt,
search tables. hsearch, hcreate, hdestroy: manage hash

tables. hsearch, hcreate, hdestroy: manage hash search
file. scnhdr: section header for a common object

files. filehdr: file header for common object
file. ldfhread: read the file header of a common object .

/seek to the optional file header of a common object/
/read an indexed/named section header of a common object/

ldahread: read the archive header of a member of an/
manage hash search tables. hsearch, hcreate, hdestroy:

cash, dcosh: Fortran hyperbolic cosine intrinsic/
sinh, cash, tanh: hyperbolic functions.

sinh, dsinh: Fortran hyperbolic sine intrinsic/ .
tanh, dtanh: Fortran hyperbolic tangent intrinsic/

function. hypot: Euclidean distance
Fortran absolute value. abs, iabs, dabs, cabs, zabs:

ishftc, ibits, btest,/ ior, iand, not, ieor, ishft, . A

command line arguments. iargc: return the number of
/ishftc, ibits, btest, ibset, ibclr, mvbits: bit field/ .

/not, ieor, ishft, ishftc, ibits, btest, ibset, ibclr,/
/ishft, ishftc, ibits, btest, ibset, ibclr, mvbits: bit/

/sngl, dble, cmplx, dcmplx, ichar, char: explicit Fortran/
setpgrp: set process group ID.

issue: issue identification file.
get shared memory segment identifier. shmget:

intrinsic/ dim, ddim, idim: positive difference

- 11 -

Permuted Index

getpid(2)
getpw(3C)
getpwent(3C)
getpwent (3C)
getpwent (3C)
gets(3S)
gettydefs(4)
gettydefs (4)
getuid(2)
getut(3C)
getut(JC)
getut(3C)
getc(3S)
ctime(3C)
setjmp(3C)
gps(4)
gps(4)
gps(4)
plot(4)
plot(3X)
getuid(2)
getpid(2)
getgrent (3C)
group(4)
group(4)
setpgrp(2)
getuid(2)
setuid(2)
chown(2)
kill(2)
ssignal (3C)
varargs(5)
curses(3X)
hsearch (3C)
crypt(3C)
hsearch (3C)
hsearch (3C)
scnhdr(4)
filehdr(4)
ldfhread(JX)
ldohseek(3X)
ldshread (3X)
ldahread(3X)
hsearch (3C)
cosh(3F)
sinh(3M)
sinh(3F)
tanh(3F)
bypot(3M)
abs(3F)
mil(3F)
iargc(3F)
mil(3F)
mil(3F)
mil(3F)
ftype(3F)
setpgrp(2)
issue(4)
shmget(2)
dim(3F)

Permuted Index

dble, cmplx,/ int, ilix,
integer/ anint, dnint, nint,
group, and parent process
group, and effective group
setgid: set user and group

btest, ibset,/ ior, iand, not,
sngl, dble, cmplx,/ int,

core: format of core
pnch: file format for card

aimag, dimag: Fortran
of a/ ldtbindex: compute the

Fortran substring.
a common/ ldtbread: read an

ldshread, ldnshread: read an
ldsseek, ldnsseek: seek to an

inittab: script for the
process. popen, pclose:

process.

inode: format of an
sscanf: convert formatted
push character back into

fread, fwrite: binary
stdio: standard buffered

fileno: stream status
sngl, dble, cmplx, dcmplx,/

abs: return
/164a: convert between long

sputl, sgetl: access long
nint, idnint: Fortran nearest
function. aint, dint: Fortran

atol, atoi: convert string to
/ltol3: convert between 3-byte

3-byte integers and long
plot: graphics
plot: graphics

pipe: create an
package. ftok: standard

sleep: suspend execution for
acos, dacos: Fortran arccosine

dint: Fortran integer part
asin, dasin: Fortran arcsine
datan2: Fortran arctangent

datan: Fortran arctangent
Fortran complex conjugate

dcos, ccos: Fortran cosine
Fortran hyperbolic cosine
double precision product

cexp: Fortran exponential
Fortran common logarithm
Fortran natural logarithm

Fortran transfer-of-sign
sin, dsin, csin: Fortran sine

dsinh: Fortran hyperbolic sine
csqrt: Fortran square root
tan, dtan: Fortran tangent

Fortran hyperbolic tangent
/mvbits: bit field manipulation

idim: positive difference
dmod: Fortran remaindering

idiot, real, float, sngl,
idnint: Fortran nearest
IDs. /get process, process
IDs. /effective user, real
IDs. setuid,
ieor, ishft, ishftc, ibits,
ifix, idiot, real, float,
image file.
images.
imaginary part of complex/
index of a symbol table entry
index: return location of
indexed symbol table entry of
indexed/named section header/
indexed/named section of a/
init process.
initiate pipe to/from a . .
inittab: script for the init .
inode: format of an i-node.
i-node. . •....
input. scanf, fscanf, .
input stream. ungetc:
input/output.
input/output package.
inquiries. /feof, clearerr,
int, ifix, idiot, real, float,
integer absolute value. •
integer and base-64 ASCII/
integer data in a/ . . .
integer functions. /dnint,
integer part intrinsic
integer. strtol,
integers and long integers.
integers. /convert between
interface.
interface subroutines.
interprocess channel.
interprocess communication
interval. •..•..
intrinsic function. . .
intrinsic function. aint,
intrinsic function. . .
intrinsic function. atan2,
intrinsic function. atan,
intrinsic function. /dconjg:
intrinsic function. cos, . .
intrinsic function. /dcosh:
intrinsic function. dprod: .
intrinsic function. /dexp, .
intrinsic function. /dlog!O:
intrinsic function. /clog:
intrinsic function. /dsign:
intrinsic function.
intrinsic function. sinh,
intrinsic function. /dsqrt,
intrinsic function.
intrinsic function. /dtanh:
intrinsic functions and/
intrinsic functions. /ddim,
intrinsic functions. /amod,

- 12 -

ftype(3F)
round(3F)
getpid(2)
getuid(2)
setuid(2)
mi1(3F)
ftype(JF)
core(4)
pnch(4)
aimag(3F)
ldtbindex (3X)
index(3F)
ldtbread(3X)
ldshread (3 X)
ldsseek(3X)
inittab(4)
popen(JS)
inittab(4)
inode(4)
inode(4)
scanf(3S)
ungetc(3S)
fread(3S)
stdio(3S)
ferror(3S)
ftype(3F)
abs(3C)
a641(3C)
sputl(3X)
round(3F)
aint(3F)
strtol(3C)
13tol(3C)
l3tol(3C)
plot(4)
plot(3X)
pipe(2)
stdipc(3C)
sleep(JC)
acos(3F)
aint(3F)
asin(3F)
atan2(3F)
atan(3F)
conjg(3F)
cos(3F)
cosh(3F)
dprod(3F)
exp(3F)
logl0(3F)
log(3F)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)
mil(3F)
dim(3F)
mod(3F)

Ile, lit: string comparison intrinsic functions. /lgt,
formals. intro: introduction to file

miscellany. intro: introduction to
subroutines and libraries. intro: introduction to
calls and error numbers. intro: introduction to system

intro: introduction to file formats.
intro: introduction to miscellany.

and libraries. intro: introduction to subroutines
and error numbers. intro: introduction to system calls

ioctl: control device. . .
ishftc, ibits, btest, ibset,/ ior, iand, not, ieor, ishft,

abort: generate an IOT fault. •
number generator. irand, rand, srand: random

/islower, isdigit, isxdigit, isalnum, isspace, ispunct,/
isdigit, isxdigit, isalnum,I isalpha, is upper, isl ow er,

/isprint, isgraph, iscntrl, isascii: classify characters.
terminal. ttyname, isatty: find name of a

/ispunct, isprint, isgraph, iscntrl, isascii: classify/
isalpha, isupper, islower, isdigit, isxdigit, isalnum,/
/isspace, ispunct, isprint, isgraph, iscntrl, isascii:/

ibset,/ ior, iand, not, ieor, ishft, ishftc, ibits, btest,
ior, iand, not, ieor, ishft, ishftc, ibits, btest, ibset,/

transfer-of-sign/ sign, isign, dsign: Fortran . .
isalnum,/ isalpha, isupper, islower, isdigit, isxdigit,
/isalnum, isspace, ispunct, isprint, isgraph, iscntrl,/
/isxdigit, isalnum, isspace, ispunct, isprint, isgraph,/
/isdigit, isxdigit, isalnum, isspace, ispunct, isprint,/

Fortran. system: issue a shell command from
system: issue a shell command.

issue: issue identification file.
file. issue: issue identification

isxdigit, isalnum,/ isalpha, is upper, is lower, isdigit,
/isupper, is lower, isdigit, isxdigit, isalnum, isspace,/

functions. jO, jl, jn, yO, yl, yn: Bessel
functions. jO, jl, jn, yO, yl, yn: Bessel

functions. jO, j I, jn, yO, y I, yn: Bessel
/lrand48, nrand48, mrand48, jrand48, srand48, seed48,/

process or a group of/ kill: send a signal to a
3-byte integers and long/ l3tol, ltol3: convert between

integer and base-64/ a64l, l64a: convert between long
/jrand48, srand48, seed48, lcong48: generate uniformly/

object file. ldclose, ldaclose: close a common . .
header of a member of an/ ldahread: read the archive

file for reading. ldopen, ldaopen: open a common object
common object file. ldclose, ldaclose: close a

of floating-point/ frexp, ldexp, modf: manipulate parts
access routines. ldfcn: common object file

of a common object file. ldfhread: read the file header
name for common object file/ ldgetname: retrieve symbol
line number entries/ ldlread, ldlinit, ldlitem: manipulate

number/ ldlread, ldlinit, ldlitem: manipulate line
manipulate line number/ ldlread, ldlinit, ldlitem:
line number entries of a/ ldlseek, ldnlseek: seek to

entries of a section/ ldlseek, ldnlseek: seek to line number
entries of a section/ ldrseek, ldnrseek: seek to relocation

indexed/named/ ldshread, ldnshread: read an
indexed/named/ ldsseek, ldnsseek: seek to an
file header of a common/ ldohseek: seek to the optional

object file for reading. ldopen, ldaopen: open a common
relocation entries of a/ ldrseek, ldnrseek: seek to . . •

- 13 -

Permuted Index

strcmp(3F)
intro(4)
intro(5)
intro(3)
intro(2)
intro(4)
intro(5)
intro(3)
intro(2)
ioctl(2)
mil(JF)
abort(JC)
rand(3F)
ctype(3C)
ctype(3C)
ctype(JC)
ttyname(3C)
ctype(3C)
ctype(3C)
ctype(3C)
mil(3F)
mil(JF)
sign(3F)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
system(3F)
system(3S)
issue(4)
issue(4)
ctype(JC)
ctype(JC)
bessel(3M)
besse!(3M)
bessel(3M)
drand48 (3C)
kill(2)
l3tol(3C)
a64l(3C)
drand48 (3C)
ldclose(3X)
ldahread (3X)
ldopen(3X)
ldclose(3X)
frexp(3C)
ldfcn(4)
ldfhread(3X)
ldgetname(JX)
ldlread(3X)
ldlread(3X)
ldlread (3X)
ldlseek(JX)
ldlseek(3X)
ldrseek(3X)
ldshread (3X)
ldsseek (3X)
ldohseek(3X)
ldopen(3X)
ldrseek (3 X)

Permuted Index

indexed/named section header/ ldshread, ldnshread: read an
indexed/named section of a/ ldsseek, ldnsseek: seek to an
of a symbol table entry of a/ ldtbindex: compute the index

symbol table entry of a/ ldtbread: read an indexed
table of a common object/ ldtbseek: seek to the symbol

string. Jen: return length of Fortran
Jen: return length of Fortran string.

getopt: get option letter from argument vecto~.
update. !search, !find: linear search and

comparison intrinsic/ lge, lgt, lie, lit: string
comparison intrinsic/ lge, !gt, lie, lit: string

to subroutines and libraries. /introduction
ulimit: get and set user limits. • . . . • . •

return the number of command line arguments. iargc:
an out-going terminal line connection. /establish

common object file. linenum: line number entries in a
/ldlinit, ldlitem: manipulate line number entries of a/

ldlseek, ldnlseek: seek to line number entries of a/
]search, !find: linear search and update.

in a common object file. linenum: line number entries
a.out: common assembler and link editor output.

link: link to a file.
link: link to a file. • .

nlist: get entries from name list. •
by fsck. checklist: list of file systems processed

handle variable argument list. varargs:
output of a varargs argument list. /print formatted
output of a varargs argument list. /print formatted

intrinsic/ lge, lgt, Ile, lit: string comparison
intrinsic/ Jge, !gt, lie, llt: string comparison

tzset: convert date/ ctime, localtime, gmtime, asctime,
index: return location of Fortran substring.

end, etext, edata: last locations in program.
memory. plock: lock process, text, or data in

files. lockf: record locking on
lockf: record locking on files. . . . • . .

natural logarithm intrinsic/ log, alog, dlog, clog: Fortran
gamma: log gamma function.

exponential, logarithm,/ exp, log, log!O, pow, sqrt:
common logarithm intrinsic/ log I 0, alog I 0, dlog I 0: Fortran
logarithm, power,/ exp, log, log!O, pow, sqrt: exponential,

/alog!O, dlog!O: Fortran common logarithm intrinsic function.
/dlog, clog: Fortran natural logarithm intrinsic function.

/log!O, pow, sqrt: exponential, logarithm, power, square root/
getlogin: get login name.

cuserid: get character login name of the user.
logname: return login name of user.

user. logname: return login name of
a641, 164a: convert between long integer and base-64 ASCII/

sputl, sgetl: access long integer data in a/ . . .
between 3-byte integers and long integers. /ltol3: convert

setjmp, longjmp: non-local goto.
jrand48,/ drand48, erand48, lrand48, nrand48, mrand48,

and update. !search, !find: linear search
pointer.]seek: move read/write file

Bitwise/ and, or, xor, not, !shift, rshift: Fortran
integers and long/ 13tol, ltol3: convert between 3-byte

sys3b: machine specific function.
values: machine-dependent values. .

/access long integer data in a machine-independent fashion ..

- 14 -

ldshread (3X)
ldsseek (3X)
ldtbindex (3X)
Jdtbread (3X)
Jdtbseek (3X)
len(3F)
Jen(3F)
getopt(3C)
!search (3C)
strcmp(3F)
strcmp(3F)
intro(3)
ulimit(2)
iargc(3F)
dial(3C)
linenum(4)
ldlread (3X)
ldlseek(3X)
!search (3C)
linenum(4)
a.out(4)
link(2)
link(2)
nlist(3C)
checklist(4)
varargs(S)
vprintf(3S)
vprintf(3X)
strcmp(3F)
strcmp(3F)
ctime(3C)
index(3F)
end(3C)
plock(2)
lockf(3C)
lockf(3C)
log(3F)
gamma(3M)
exp(3M)
logl0(3F)
exp(3M)
logl0(3F)
Jog(3F)
exp(3M)
getlogin (3C)
cuserid (3S)
logname(3X)
logname(3X)
a641(3C)
sputl(3X)
13tol(3C)
setjmp(3C)
drand48 (3C)
!search (3C)
Iseek(2)
bool(3F)
13tol(3C)
sys3b(2)
values(S)
sputl(3X)

malice, free, realloc, calloc:
/mallopt, mallinfo: fast

or ordinary file. mknod:
mktemp:

/realloc, calloc, mallopt,
main memory allocator.

mallopt, mallinfo: fast main/
malloc, free, realloc, canoe,

/tfind, tdelete, twalk:
hsearch, hcreate, hdestroy:
of/ ldlread, ldlinit, ldlitem:

frexp, ldexp, modf:
ibclr, mvbits: bit field

ascii:
set and get file creation

master:
database.

regular expression compile and
math:

constants.
function.

dmaxl: Fortran maximum-value/
dmaxl: Fortran/ max,

max, maxO, amaxO,
/maxi, amaxl, dmaxl: Fortran

accounting.
memcpy, memset: memory/

memset: memory/ memccpy,
operations. memccpy, memchr,

memccpy, memchr, memcmp,
free, realloc, calloc: main

mallopt, mallinfo: fast main
shmctl: shared

memcmp, memcpy, memset:
shmop: shared

lock process, text, or data in
shmget: get shared

/memchr, memcmp, memcpy,
msgctl:
msgop:

msgget: get
sys _nerr: system error

subroutines from the Fortran
the Fortran Military Standard

dminl: Fortran minimum-value/
dminl: Fortran/ min,

min, minO, amino,
/mini, aminl, dminl: Fortran

special or ordinary file.
name.
table.

remaindering intrinsic/
chmodl: change

floating-point/ frexp, ldexp,
utime: set file access and

profile.
mount:

mnttab:
!seek:

main memory allocator.
main memory allocator.
make a directory, or a special
make a unique file name.
mallinfo: fast main memory/
malloc, free, realloc, calloc:
malloc, free, realloc, calloc,
mallopt, mallinfo: fast main/
manage binary search trees.
manage hash search tables. .
manipulate line number entries
manipulate parts of/
manipulation intrinsic/ /ibset,
map of ASCII character set.
mask. umask:
master configuration database.
master: master configuration
match routines. regexp:
math functions and constants.
math: math functions and
matherr: error-handling
max, maxO, amaxO, maxl, amaxl,
max.O, amaxO, maxl, arnaxl,
maxi, amaxl, dmaxl: Fortran/
maximum-value functions.
mclock: return Fortran time
memccpy, memchr, memcmp,

memchr, memcmp, memcpy,
memcmp, memcpy, memset: memory
memcpy, memset: memory/
memory allocator. malloc,
memory allocator. I calloc,
memory control operations.
memory operations. /memchr,
memory operations.
memory. plock: . • • . • •
memory segment identifier. .
memset: memory operations.
message control operations.
message operations.
message queue.
messages. /errno, sys_errlist,
Military Standard/ /and . ,
(MIL-STD-1753) .. /from
min, minO, aminO, minl, aminl,
minO, amino, minl, aminl, "
mini, aminl, dminl: Fortran/
minimum-value functions.
mknod: make a directory, or a
mktemp: make a unique file
mnttab: mounted file system
mod, amod, dmod: Fortran
mode of file. . . • . . .
modf: manipulate parts of
modification times.
monitor: prepare execution
mount a file system. • • ,
mount: mount a file system.
mounted file system table.
move read/write file pointer.

- 15 -

Permuted Index

malloc(3C)
malloc(3X)
mknod(2)
mktemp(3C)
malloc(3X)
malloc(3C)
malloc(3X)
malloc(3X)
tsearch (3C)
hsearch (3C)
ldlread (3X)
frexp(3C)
mi1(3F)
ascii(5)
umask(2)
master(4)
master(4)
regexp(5)
math(5)
math(5)
matherr(3M)
max(3F)
max(3F)
max(3F)
max(3F)
mclock(3F)
memory(3C)
memory(3C)
memory(3C)
memory(3C)
malloc(3C)
malloc(3X)
shmctl(2)
memory(3C)
shmop(2)
plock(2)
shmget(2)
memory(3C)
msgctl(2)
msgop(2)
msgget(2)
perror(3C)
mil(3F)
mii(3F)
min(3F)
min(3F)
min(3F)
min(3F)
mknod(2)
mktemp(3C)
mnttab(4)
mod(3F)
chmod(2)
frexp(3C)
utime(2)
monitor(3C)
mount(2)
mount(2)
mnttab(4)
lseek(2)

Permuted Index

/erand48, lrand48, nrand48, mrand48, jrand48, srand48,/
operations. msgctl: message control

msgget: get message queue.
msgop: message operations.

/ibits, btest, ibset, ibclr, mvbits: bit field manipulation/
log, alog, dlog, clog: Fortran natural logarithm intrinsic/
/dnint, nint, idnint: Fortran nearest integer functions.

process. nice: change priority of a
integer/ anint, dnint, nint, idnint: Fortran nearest

list. nlist: get entries from name
setjmp, longjmp: non-local goto.

ibits, btest,/ ior, iand, not, ieor, ishft, ishftc,
Bitwise Boolean/ and, or, xor, not, !shift, rshift: Fortran

drand48, erand48, lrand48, nrand48, mrand48, jrand48,/
ldfcn: common object file access routines.

ldopen, ldaopen: open a common object file for reading. •
number entries of a common object file function. /line

ldaclose: close a common object file. ldclose,
the file header of a common object file. ldfhread: read

of a section of a common object file. /number entries
file header of a common object file. /to the optional

of a section of a common object file. /entries
section header of a common object file. /indexed/named

section of a common object file. /indexed/named
symbol table entry of a common object file. /the index of a
symbol table entry of a common object file. /read an indexed

the symbol table of a common object file. /seek to
number entries in a common object file. linenum: line

information for a common object file. /relocation
section header for a common object file. scnhdr:

entry. /symbol name for common object file symbol table
format. syms: common object file symbol table
file header for common object files. filehdr:

reading. ldopen, ldaopen: open a common object file for
fopen, freopen, fdopen: open a stream.

dup: duplicate an open file descriptor.
open: open for reading or writing.

writing. open: open for reading or
memcmp, memcpy, memset: memory operations. memccpy, memchr,

msgctl: message control operations.
msgop: message operations.

semctl: semaphore control operations.
semop: semaphore operations.

shmctl: shared memory control operations.
shmop: shared memory operations.

strcspn, strtok: string operations. /strpbrk, strspn,
CRT screen handling and optimization package. curses:

vector. getopt: get option letter from argument
common/ ldohseek: seek to the optional file header of a

fcntl: file control options.
Fortran Bitwise Boolean/ and, or, xor, not, !shift, rshift:

a directory, or a special or ordinary file. mknod: make
dial: establish an out-going terminal line/

assembler and link editor output. a.out: common . .
/vsprintf: print formatted output of a varargs argument/
/vsprintf: print formatted output of a varargs argument/

sprintf: print formatted output. printf, fprintf, . . .
chown: change owner and group of a file.

handling and optimization package. curses: CRT screen
standard buffered input/output package. stdio:

- 16 -

drand48 (3C)
msgctl(2)
msgget(2)
msgop(2)
mil(3F)
log(3F)
round(3F)
nice(2)
round(3F)
nlist(3C)
setjmp(3C)
mil(3F)
bool(3F)
drand48 (3C)
ldfcn(4)
ldopen(3X)
ldlread (3X)
ldclose(3X)
ldfhread (3X)
ldlseek(3X)
ldohseek(3X)
ldrseek(3X)
ldshread (3X)
ldsseek(3X)
ldtbindex (3X)
ldtbread (3X)
ldtbseek (3X)
linenum(4)
reloc(4)
scnhdr(4)
ldgetname(3X)
syms(4)
filehdr(4)
ldopen(3X)
fopen(3S)
dup(2)
open(2)
open(2)
memory(3C)
msgctl(2)
msgop(2)
semctl(2)
semop(2)
shmctl(2)
shmop(2)
string(3C)
curses(3X)
getopt(3C)
ldohseek(3X)
fcntl(5)
bool(3F)
mknod(2)
dial(3C)
a.out(4)
vprintf(3S)
vprintf(3X)
printf(3S)
chown(2)
curses(3X)
stdio(3S)

interprocess communication package. ftok: standard
process, process group, and parent process IDs. I get

passwd: password file.
/endpwent, fgetpwent: get password file entry.

putpwent: write password file entry.
passwd: password file. . . .

getpass: read a password.
directory. getcwd: get path-name of current working

signal. pause: suspend process until
a process. popen, pclose: initiate pipe to/from

sys_nerr: system error/ perror, errno, sys_errlist, .
channel. pipe: create an interprocess

popen, pclose: initiate pipe to/from a process.
data in memory. plock: lock process, text, or

plot: graphics interface.
subroutines. plot: graphics interface

images. pnch: file format for card
ftell: reposition a file pointer in a stream. /rewind,

!seek: move read/write file pointer.
to/from a process. popen, pclose: initiate pipe

functions. dim, ddim, idim: positive difference intrinsic
logarithm,/ exp, log, log 10, pow, sqrt: exponential, . .

/sqrt: exponential, logarithm, power, square root functions.
function. dprod: double precision product intrinsic

monitor: prepare execution profile.
graphical/ gps: graphical primitive string, format of

types: primitive system data types.
vprintf, vfprintf, vsprintf: print formatted output of a/
vprintf, vfprintf, vsprintf: print formatted output of a/

printf, fprintf, sprintf: print formatted output.
print formatted output. printf, fprintf, sprintf:

nice: change priority of a process.
acct: enable or disable process accounting.

alarm: set a process alarm clock.
times. times: get process and child process

exit, _exit terminate process.
fork: create a new process.

/getpgrp, getppid: get process, process gronp, and parent/
setpgrp: set process group ID.

process group, and parent process IDs. /get process,
inittab: script for the init process.
nice: change priority of a process.

kill: send a signal to a process or a group of/
initiate pipe to/from a process. popen, pclose:

getpid, getpgrp, getppid: get process, process group, and/
memory. plock: lock process, text, or data in

times: get process and child process times.
wait: wait for child process to stop or terminate.

ptrace: process trace. "
pause: suspend process until signal.

list of file systems processed by fsck. checklist:
to a process or a group of processes. /send a signal .

dprod: double precision product intrinsic function.
function. prof: profile within a

profile. profil: execution time
monitor: prepare execution profile.

profil: execution time profile.
profile: system-wide nser profile.

profile. profile: system-wide user
prof: profile within a function.

" 17 -

Permuted Index

stdipc(3C)
getpid(2)
passwd(4)
getpwent (3C)
putpwent (3C)
passwd(4)
getpass (3C)
getcwd(3C)
pause(2)
popen(3S)
perror(3C)
pipe(2)
popen(3S)
plock(2)
plot(4)
plot(3X)
pnch(4)
fseek(3S)
lseek(2)
popen(3S)
dim(3F)
exp(3M)
exp(3M)
dprod(3F)
monitor(3C)
gps(4)
types(5)
v;irintf(3S)
vprintf(3X)
printf(3S)
printf(3S)
nice(2)
acct(2)
alarm(2)
times(2)
exit(2)
fork(2)
getpid(2)
setpgrp(2)
getpid(2)
inittab(4)
nice(2)
kill(2)
popen(3S)
getpid(2)
plock(2)
times(2)
wait(2)
ptrace(2)
pause(2)
checklist(4)
kill(2)
dprod(3F)
prof(5)
profil(2)
monitor(3C)
profil(2)
profile(4)
profile(4)
prof(5)

Permuted Index

/generate uniformly distributed pseudo-random numbers. . . .
ptrace: process trace.

stream. ungetc: push character back into input
put character or word on a/ putc, putchar, fputc, putw:

character or word on a/ putc, putchar, fputc, putw: put . . .
environment. putenv: change or add value to

entry. putpwent: write password file
stream. puts, fputs: put a string on a

getutent, getutid, getutline, pututline, setutent, endutent,/
a/ putc, putchar, fputc, putw: put character or word on

qsort: quicker sort.
msgget: get message queue.

qsort: quicker sort. •
generator. irand, rand, srand: random number

random-number generator. rand, srand: simple
irand, rand, srand: random number generator.

rand, srand: simple random-number generator.
getpass: read a password.

entry of a common/ ldtbread: read an indexed symbol table
header/ ldshread, ldnshread: read an indexed/named section

read: read from file.
read: read from file.

member of an/ ldahread: read the archive header of a
common object file. ldfhread: read the file header of a
open a common object file for reading. ldopen, ldaopen:

open: open for reading or writing.
!seek: move read/write file pointer. .

cmplx,/ int, ifix, idiot, real, float, sngl, dble,
allocator. malloc, free, realloc, calloc: main memory

mallinfo: fast/ malloc, free, realloc, calloc, mallopt,
specify what to do upon receipt of a signal. signal:

/specify Fortran action on receipt of a system signal.
lockf: record locking on files. . .

execute regular expression. regcmp, regex: compile and
regular expression. regcmp, regex: compile and execute

compile and match routines. regexp: regular expression
match routines. regexp: regular expression compile and

regex: compile and execute regular expression. regcmp,
for a common object file. reloc: relocation information
ldrseek, ldnrseek: seek to relocation entries of a/

common object file. reloc: relocation information for a
/fmod, fabs: floor, ceiling, remainder, absolute value/

mod, amod, dmod: Fortran remaindering intrinsic/
unlink: remove directory entry.
clock: report CPU time used.

stream. fseek, rewind, ftell: reposition a file pointer in a
common object file/ ldgetname: retrieve symbol name for .

argument. getarg: return Fortran command-line
variable. getenv: return !Fortran environment

accounting. mclock: return Fortran time
abs: return integer absolute value.

string. len: return length of Fortran
substring. index: return location of Fortran

iogname: return login name of user.
line arguments. iargc: return the number of command

name. getenv: return value for environment
stat: data returned by stat system call.

file pointer in a/ fseek, rewind, ftell: reposition a
creat: create a new file or rewrite an existing one.

chroot: change root directory.

" 18 "

drand48 (3C)
ptrace(2)
ungetc(3S)
putc(3S)
putc(3S)
putenv(3C)
putpwent(3C)
puts(3S)
getut(3C)
putc(3S)
qsort(3C)
msgget(2)
qsort(3C)
rand(3F)
rand(3C)
rand(3F)
rand(3C)
getpass(3C)
ldtbread (3X)
ldshread(3X)
read(2)
read(2)
ldahread (3X)
ldfhread (3X)
ldopen(3X)
open(2)
lseek(2)
ftype(3F)
malloc(3C)
malloc(3X)
signal(2)
signal(3F)
lockf(3C)
regcmp(3X)
regcmp(3X)
regexp(5)
regexp(5)
regcmp(3X)
reloc(4)
ldrseek(3X)
reloc(4)
floor(3M)
mod(3F)
unlink(2)
clock(3C)
fseek(3S)
ldgetname(3X)
getarg(3F)
getenv(3F)
mclock(31F)
abs(3C)
len(3F)
index(3F)
logname(3X)
iargc(3F)
getenv(3C)
stat(5)
fseek(3S)
creat(2)
chroot(2)

logarithm, power, square root functions. /exponential,
/dsqrt, csqrt: Fortran square root intrinsic function. .

common object file access routines. ldfcn:
expression compile and match routines. regexp: regular

and, or, xor, not, !shift, rshift: Fortran Bitwise/
space allocation. brk, sbrk: change data segment

formatted input. scanf, fscanf, sscanf: convert
sccsfile: format of secs file.

sccsfile: format of SCCS file.
common object file. scnhdr: section header for a

optimization/ curses: CRT screen handling and . .
inittab: script for the init process.

bsearch: binary search a sorted table.
!search, lfind: linear search and update.

hcreate, hdestroy: manage hash search tables. hsearch,
!delete, twalk: manage binary search trees. tsearch, tfind,

object file. scnhdr: section header for a common
object/ /read an indexed/named section header of a common

Ito line number entries of a section of a common object/
/to relocation entries of a section of a common object/

/seek to an indexed/named section of a common object/
/mrand48, jrand48, srand48, seed48, lcong48: generate/
section of/ ldsseek, ldnsseek: seek to an indexed/named

a section/ ldlseek, ldnlseek: seek to line number entries of
a section/ ldrseek, ldnrseek: seek to relocation entries of

header of a common/ ldohseek: seek to the optional file
common object file. ldtbseek: seek to the symbol table of a

shmget: get shared memory segment identifier.
brk, sbrk: change data segment space allocation.

semctl: semaphore control operations.
semop: semaphore operations.

semget: get set of semaphores.
operations. semctl: semaphore control

semget: get set of semaphores.
semop: semaphore operations.

a group of processes. kill: send a signal to a process or
buffering to a stream. setbuf, setvbuf: assign

IDs. setuid, setgid: set user and group
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent:/

goto. setjmp, longjmp: non-local
hashing encryption. crypt, setkey, encrypt: generate . .

setpgrp: set process group ID.
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent:/

gettydefs: speed and terminal settings used by getty.
group IDs. setuid, setgid: set user and

/getutid, getutline, pututline, setutent, endutent, utmpname:/
stream. setbuf, setvbuf: assign buffering to a

data in a/ sputl, sgetl: access long integer .
operations. shmctl: shared memory control

shmop: shared memory operations.
identifier. shmget: get shared memory segment

system: issue a shell command from Fortran.
system: issue a shell command. •

operations. shmctl: shared memory control
segment identifier. shmget: get shared memory

operations. shmop: shared memory
transfer-of-sign intrinsic/ sign, isign, dsign: Fortran

pause: suspend process until signal.
what to do upon receipt of a signal. signal: specify
action on receipt of a system signal. /specify fortran

- 19 -

Permuted Index

exp(3M)
sqrt(3F)
ldfcn(4)
regexp(S)
bool(3F)
brk(2)
scanf(3S)
sccsfile(4)
secsfile(4)
scnhdr(4)
curses(3X)
inittab(4)
bsearch (3C)
!search (3C)
hsearch (3C)
tsearch (3C)
scnhdr(4)
ldshread (3X)
ldlseek(3X)
ldrseek(3X)
ldsseek(3X)
drand48 (3C)
ldsseek(3X)
ldlseek(3X)
ldrseek (3X)
ldohseek(3X)
ldtbseek(3X)
shmget(2)
brk(2)
semct\(2)
semop(2)
semget(2)
semctl(2)
semget(2)
semop(2)
ki11(2)
setbuf(3S)
setuid(2)
getgrent (3C)
setjmp(3C)
crypt(3C)
setpgrp(2)
getpwent(3C)
gettydefs(4)
setuid(2)
getut(3C)
setbuf(3S)
sputl(3X)
shmct\(2)
shmop(2)
shmget(2)
system(3F)
system(3S)
shmctl(2)
shmget(2)
shmop(2)
sign(3F)
pause(2)
signal(2)
signal(3F)

Permuted Index

on receipt of a system/
upon receipt of a signal.
of processes. kill: send a
ssignal, gsignal: software

generator. rand, srand:
atan, atan2: trigonometric/

intrinsic function.
sin, dsin, csin: Fortran

/dsinh: Fortran hyperbolic
functions.

hyperbolic sine intrinsic/
interval.

current/ ttyslot: find the
int, ifix, idint, real, float,

ssignal, gsignal:
qsort: quicker

bsearch: binary search a
brk, sbrk: change data segment

sys3b: machine
fspec: format

receipt of a system/ signal:
receipt of a signal. signal:

used by getty. gettydefs:
output. printf, fprintf,

integer data in a/
square root intrinsic/

power,/ exp, log, log!O, pow,
exponential, logarithm, power,

sqrt, dsqrt, csqrt: Fortran
generator. irand, rand,

generator. rand,
/nrand48, mrand48, jrand48,

input. scanf, fscanf,
signals.

package. stdio:
communication package. ftok:

/from the Fortran Military
system call.

stat: data returned by
ustat: get file system

feof, clearerr, fileno: stream
stat, fstat: get file

input/output package.

wait for child process to
strncmp, strcpy, strncpy,/

/strcpy, strncpy, strlen,
strncpy,/ strcat, strncat,

/strncat, strcmp, strncmp,
/strrchr, strpbrk, strspn,

fftush: close or flush a
fopen, freopen, fdopen: open a

reposition a file pointer in a
get character or word from a

fgets: get a string from a
put character or word on a

puts, fputs: put a string on a
setvbuf: assign buffering to a

/feof, clearerr, fileno:

signal: specify Fortran action
signal: specify what to do
signal to a process or a group
signals.
simple random-number
sin, cos, tan, asin, acos,
sin, dsin, csin: Fortran sine
sine intrinsic function. . .
sine intrinsic function. . .
sinh, cosh, tanh: hyperbolic
sinh, dsinh: Fortran
sleep: suspend execution for
slot in the utmp file of the
sngl, dble, cmplx, dcmplx,/
software signals.
sort.
sorted ta hie.
space allocation.
specific function.
specification in text files.
specify Fortran action on
specify what to do upon
speed and terminal settings
sprintf: print formatted
sputl, sgetl: access long
sqrt, dsqrt, csqrt: Fortran
sqrt: exponential, logarithm,
square root functions. /sqrt:
square root intrinsic/
srand: random number . . .
srand: simple random-number
srand48, seed48, lcong48:/
sscanf: convert formatted
ssignal, gsignal: software .
standard buffered input/output
standard interprocess
Standard (MJL-STD-1753) ..
stat: data returned by stat
stat, fstat: get file status.
stat system call.
statistics.
status inquiries. ferror,
status.
stdio: standard buffered
stime: set time.
stop or terminate. wait:
strcat, strncat, strcmp, A

strchr, strrchr, strpbrk,/
strcmp, strncmp, strcpy,
strcpy, strncpy, strlen,/
strcspn, strtok: string/
stream. fclose,
stream.
stream. fseek, rewind, ftell:
stream. /getchar, fgetc, getw:
stream. gets, " " " " " " "
stream. /putchar, fputc, putw:
stream.
stream. setbuf,
stream status inquiries.

- 20 -

signal(3F)
signal(2)
kill(2)
ssignal (3C)
rand(3C)
trig(3M)
sin(3F)
sin(3F)
sinh(3F)
sinh(3M)
sinh(3F)
sleep(3C)
ttyslot (3C)
ftype(3F)
ssignal (3C)
qsort(3C)
bsearch (3C)
hrk(2)
sys3b(2)
fspec(4)
signal(3F)
signal(2)
gettydefs (4)
printf(3S)
sputl(3X)
sqrt(3F)
exp(3M)
exp(3M)
sqrt(3F)
rand(3F)
rand(3C)
drand48 (3C)
scanf(3S)
ssignal (3C)
stdio(3S)
stdipc(3C)
miJ(3F)
stat(5)
stat(2)
stat(5)
ustat(2)
ferror(3S)
stat(2)
stdio(3S)
stime(2)
wait(2)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
fclose(3S)
fopen(3S)
fseek(3S)
getc(3S)
gets(3S)
putc(3S)
puts(3S)
setbuf(3S)
ferror(3S)

push character back into input
long integer and base-64 ASCII

lge, !gt, Ile, lit:
convert date and time to
floating-point number to
gps: graphical primitive

gets, fgets: get a
!en: return length of Fortran

puts, fputs: put a
strspn, strcspn, strtok:

number. strtod, atof: convert
strtol, atol, atoi: convert

/strncmp, strcpy, strncpy,
strcpy, strncpy,/ strcat,
strcat, strncat, strcmp,

/strcmp, strncmp, strcpy,
/strlen, strchr, strrchr,
/strncpy, strlen, strchr,

/strchr, strrchr, strpbrk,
to double-precision number.

/strpbrk, strspn, strcspn,
string to integer.

intro: introduction to
/intrinsic functions and
plot: graphics interface

return location of Fortran
sync: update

interval. sleep:
pause:

swab:
file/ ldgetname: retrieve

name for common object file
object/ /compute the index of a

Jdtbread: read an indexed
syms: common object file

object/ ldtbseek: seek to the
symbol table format.

function.
error I perror, errno,

perror, errno, sys_ err list,
profile:

binary search a sorted
for common object file symbol

/compute the index of a symbol
file. /read an indexed symbol

common object file symbol
mnttab: mounted file system
ldtbseek: seek to the symbol

configuration information
hdestroy: manage hash search

trigonometric/ sin, cos,
intrinsic function.
tan, dtan: Fortran

/dtanh: Fortran hyperbolic
hyperbolic tangent intrinsic/

sinh, cosh,
search trees. tsearch, tfind,

temporary file. tmpnam,

stream. ungetc: . •
string. /164a: convert between
string comparison intrinsic/
string. /asctime, tzset: . .
string. /fcvt, gcvt: convert
string, format of graphical/
string from a stream.
string
string on a stream.
string operations. /strpbrk,
string to double-precision
string to integer.
strlen, strchr, strrchr,/ .
strncat, strcmp, strncmp,
strncmp, strcpy, strncpy,/
strncpy, strlen, strchr,/
strpbrk, strspn, strcspn,/
strrchr, strpbrk, strspn,/
strspn, strcspn, strtok:/
strtod, atof: convert string
strtok: string operations.
strtol, atol, atoi: convert
subroutines and libraries.
subroutines from the Fortran/
subroutines.
substring. index:
super block.
suspend execution for
suspend process until signal.
swab: swap bytes. •
swap bytes. . . • . . . •
symbol name for common object
symbol table entry. /symbol
symbol table entry of a common
symbol table entry of a common/
symbol table format.
symbol table of a common
syms: common o~ject file
sync: update super block. .
sys3b: machine specific
sys_ err list, sys_ nerr: system
sys_nerr: system error/
system-wide user profile. .
table. bsearch:
table entry. /symbol name
table entry of a common object/
table entry of a common object
table format. syms:
table. • ••••.
table of a common object file.
table. system: system
tables. hsearch, hcreate,
tan, asin, acos, atan, atan2:
tan, dtan: Fortran tangent
tangent intrinsic function.
tangent intrinsic function.
tanh, dtanh: Fortran . • .
tanh: hyperbolic functions.
tdelete, twalk: manage binary
tempnam: create a name for a

- 21 -

Permuted Index

ungetc(3S)
a641(3C)
strcmp(3F)
ctime(3C)
ecvt(3C)
gps(4)
gets(3S)
len(3F)
puts(3S)
string(3C)
strtod(3C)
strtol(3C)
string(3C)
string(3C)
string(JC)
string(3C)
string(3C)
string(3C)
string(3C)
strtod(3C)
string(3C)
strtol(JC)
intro(3)
mil(3F)
plot(3X)
index(3F)
sync(2)
sleep(3C)
pause(2)
swab(3C)
swab(3C)
ldgetname(3X)
ldgetname(3X)
ldtbindex (3X)
ldtbread (3X)
syms(4)
ldtbseek(3X)
syms(4)
sync(2)
sys3b(2)
perror(3C)
perror(3C)
profile(4)
bsearch (3C)
ldgetname(3X)
ldtbindex (3X)
ldtbread (3X)
syms(4)
mnttah(4)
ldtbseek(3X)
system(4)
hsearch (3C)
trig(3M)
tan(3F)
tan(3F)
tanh(3F)
tanh(3F)
sinh(3M)
tsearch (3C)
tmpnam(3S)

Permuted Index

tmpfile: create a temporary file.
tempnam: create a name for a temporary file. tmpnam, . .

terminals. term: conventional names for
term: format of compiled term file. . •

file. term: format of compiled term
terminfo: terminal capability data base.

generate file name for terminal. ctermid:
dial: establish an out-going terminal line connection.
getty. gettydefs: speed and terminal settings used by

isatty: find name of a terminal. ttyname,
term: conventional names for terminals.

abort: terminate Fortran program.
exit, _exit: terminate process.

for child process to stop or terminate. wait: wait
data base. terminfo: terminal capability

fspec: format specification in text files.
plock: lock process, text, or data in memory.

binary search trees. tsearch, tfind, !delete, twalk: manage
mclock: return Fortran time accounting.

time: get time.
profil: execution time profile.

stime: set time.
time: get time.

tzset: convert date and time to string. /asctime,
clock: report CPU time used.

timezone: set default system time zone.
process times. times: get process and child

get process and child process times. times:
file access and modification times. utime: set

time zone. timezone: set default system
file. tmpfile: create a temporary .

for a temporary file. tmpnam, tempnam: create a name
/tolower, _toupper, _tolower, toascii: translate characters.

popen, pclose: initiate pipe to/from a process.
toupper, tolower, _toupper, _tolower, toascii: translate/
toascii: translate/ toupper, tolower, _toupper, _tolower,

translate/ toupper, tolower, _toupper, _tolower, toascii:
_tolower, toascii: translate/ toupper, tolower, _toupper,

ptrace: process trace.
sign, isign, dsign: fortran transfer-of-sign intrinsic/

/ _toupper, _tolower, toascii: translate characters.
ftw: walk a file tree.

twalk: manage binary search trees. /tfind, tdelete,
tan, asin, acos, atan, atan2: trigonometric functions. /cos,

!walk: manage binary search/ !search, tfind, tdelete,
a terminal. ttyname, isatty: find name of

utmp file of the current/ ttyslot: find the slot in the
!search, tlind, !delete, twalk: manage binary search/

ichar, char: explicit Fortran type conversion. /dcmplx,
types. types: primitive system data

types: primitive system data types.
/localtime, gmtime, asctime, tzset: convert date and time/

control. uadmin: administrative
getpw: get name from UID.

limits. ulimit: get and set user
creation mask. umask: set and get file

umount: unmount a file system.
UNIX system. uname: get name of current

into input stream. ungetc: push character back
/seed48, lcong48: generate uniformly distributed/ . . .

- 22 -

tmpfile(3S)
tmpnam(3S)
term(5)
term(4)
term(4)
terminfo(4)
ctermid (3S)
dial(3C)
gettydefs(4)
ttyname(3C)
term(5)
abort(3F)
exit(2)
wait(2)
terminfo(4)
fspec(4)
plock(2)
!search (3C)
mclock(3F)
time(2)
profil(2)
stime(2)
time(2)
ctime(3C)
clock(3C)
timezone(4)
times(2)
times(2)
utime(2)
timezone(4)
tmpfile(3S)
tmpnam(3S)
conv(3C)
popen(3S)
conv(3C)
conv(3C)
conv(3C)
conv(3C)
ptrace(2)
sign(3F)
conv(3C)
ftw(3C)
tsearch (3C)
trig(3M)
tsearch (3C)
ttyname(3C)
ttyslot (3C)
!search (3C)
ftype(3F)
types(5)
types(5)
ctime(3C)
uadmin(2)
getpw(3C)
ulimit(2)
umask(2)
umount(2)
uname(2)
ungetc(3S)
drand48 (3C)

mktemp: make a
entry.

umount:
Hind: linear search and

sync:
setuid, setgid: set

character login name of the
I getgid, getegid: get real

environ:
ulimit: get and set

logname: return login name of
profile: system-wide

/get real user, effective
the utmp file of the current

statistics.
modification times.

utmp, wtmp:
endutent, utmpname: access

ttyslot: find the slot in the
entry formats.

/pututline, setutent, endutent,
abs: return integer absolute
cabs, zabs: Fortran absolute

getenv: return
ceiling, remainder, absolute

putenv: change or add
values.

values: machine-dependent
/print formatted output of a
/print formatted output of a

argument list.
varargs: handle

return Fortran environment
option letter from argument

assert:
formatted output of/ vprintf,
formatted output of/ vprintf,
file system: format of system
print formatted output of a/
print formatted output of a/
output of/ vprintf, vfprintf,
output of/ vprintf, vfprintf,

or terminate. wait:
to stop or terminate.

ftw:
signal. signal: specify

chdir: change
get path-name of current

write:

unique file name.
unlink: remove directory
unmount a file system.
update. !search,
update super block.
user and group IDs.
user. cuserid: get
user, effective user, real/
user environment.
user limits.
user.
user profile.
user, real group, and/
user. /find the slot in
ustat: get file system
utime: set file access and
utmp and wimp entry formats.
utmp file entry. /setutent,
utmp file of the current user.
utmp, wimp: utmp and wimp
utmpname: access ntmp file/
value ..•••.•..••
value. abs, iabs, dabs,
value for environment name.
value functions. /fabs: floor,
value to environment.
values: machine-dependent
values. • ...•.
varargs argument list.
varargs argument list.
varargs: handle variable
variable argument list.
varia hie. getenv:
vector. getopt: get
verify program assertion.
vfprintf, vsprintf: print
vfprintf, vsprintf: print .
volume. . •••..•
vprintf, vfprintf, vsprintf:
vprintf, vfprintf, vsprintf:
vsprintf: print formatted
vsprintf: print formatted
wait for child process to stop
wait: wait for child process •
walk a file tree. •
what to do upon receipt of a
working directory.
working directory. getcwd:
write on a file.

putpwent: write password file entry.
write: write on a file.

open: open for reading or writing.
utmp, wtmp: utmp and wtmp entry formats.

formats. utmp, wimp: utmp and wtmp entry
Fortran Bitwise/ and, or, xor, not, !shift, rshift:

jO, jl, jn, yO, yl, yn: Bessel functions.
jO, jl, jn, yO, yl, yo: Bessel functions.

jO, jl, jn, yO, yl, yn: Bessel functions. . •.
abs, iabs, dabs, cabs, zabs: Fortran absolute value.

set default system time zone. timezone: . . . • . .

- 23 -

Permuted Index

mktemp(3C)
unlink(2)
umount(2)
!search (3C)
sync(2)
setuid(2)
cuserid (3S)
getuid(2)
environ(5}
ulimit(2)
logname(3X)
profile(4}
getuid(2)
ttyslot (3C)
ustat(2)
utime(2)
utmp(4)
getut(3C)
ttyslot (3C)
utmp(4)
getut(3C)
abs(3C)
abs(3F)
getenv(3C)
ftoor(3M)
putenv(3C)
values(5)
values(5)
vprintf(3S)
vprin tf(3 X)
varargs(5)
varargs(5)
getenv(3F)
getopt(3C)
assert(3X)
vprintf(3S)
vprintf(3X)
fs(4)
vprintf(3S)
vprintf(3 X)
vprintf(3S)
vprintf(3X)
wait(2)
wait(2)
ftw(3C)
signal(2)
chdir(2)
getcwd(3C)
write(2)
putpwent(3C)
write(2)
open(2)
utmp(4)
utmp(4)
bool(3F)
bessel(3M)
bessel(3M)
bessel(3M)
abs(3F)
timezone(4)

Replace this

page with the

Section 2 (System Calls)

tab separator"

INTR0(2) INTR0(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION

7/85

This section describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value. This is almost always -1; the individual descriptions specify the details. An
error number is also made available in the external variable errno. Errno is not
cleared on successful calls, so it should be tested only after an error has been indi­
cated.

Each system call description attempts to list all possible error numbers. The follow­
ing is a complete list of the error numbers and their names as defined in
<enno.h>.

EPERM Not owner
Typically this error indicates an attempt to modify a file in some way for­
bidden except to its owner or super-user. It is also returned for attempts by
ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but
doesn't, or when one of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in kill or
ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system call. If execution is resumed
after processing the signal, it will appear as if the interrupted system call
returned this error condition.

5 EIO 1/0 error
Some physical 1/0 error has occurred. This error may in some cases occur
on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond
the limits of the device. It may also occur when, for example, a tape drive
is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member of the
exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate
permissions, does not start with a valid magic number (see a.out (4)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively, write)
request is made to a file which is open only for writing (respectively, read­
ing).

10 ECHILD No child processes
A wait was executed by a process that had no existing or unwaited-for child

- l - 7/85

INTR0(2) INTR0(2)

7/85

processes.

11 EAGAIN No more processes
A fork failed because the system's process table is full or the user is not
allowed to create any more processes.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more space than the sys­
tem is able to supply. This is not a temporary condition; the maximum
space size is a system parameter. The error may also occur if the arrange­
ment of text, data, and stack segments requires too many segmentation
registers, or if there is not enough swap space during a fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection
system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument
of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required, e.g., in
mount.

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active file
(open file, current directory, mounted-on file, active text segment). It will
also occur if an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

l 7 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device;
e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in
a path prefix or as an argument to chdir (2).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINV AL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device; mention­
ing an undefined signal in signal, or kill; reading or writing a file for which
!seek has generated a negative pointer). Also set by the math functions
described in the (3M) entries of this manual.

23 ENFILE File table overflow
The system file table is full, and temporarily no more opens can be
accepted.

24 EMFILE Too many open files
No process may have more than 20 file descriptors open at a time. When a

- 2 - 7/85

INTR0(2) INTR0(2)

record lock is being created with fcntl, there are too many files with record
locks on them.

25 ENOTTY Not a character device
An attempt was made to ioctl(2) a file that is not a special character dev­
ice.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing a pure­
procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size (l,082,201,088 bytes) or
UUMIT; see ulimit (2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.
In Jent!, the setting or removing of record locks on a file cannot be accom­
plished because there are no more record entries left on the system.

29 ESPIPE Illegal seek
An !seek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted
read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links (1000) to a
file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This con­
dition normally generates a signal; the error is returned if the signal is
ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain
of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) 1s not representable
within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on
the specified message queue; see msgop (2).

36 EIDRM Identifier Removed
This error is returned to processes that resume execution due to the removal
of an identifier from the file system's name space (see msgctl (2), semctl (2),
and shmct/(2)).

45 EDEADLK Deadlock
A deadlock situation was detected and avoided.

Definitions

7/85

Process ID Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 1 to 30,000.

- 3 - 7/85

INTR0(2) INTR0(2)

7/85

Parent Process ID A new process is created by a currently active process; see
fork (2). The parent process ID of a process is the process ID of its creator.

Process Group ID Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This ID is the process ID
of the group leader. This grouping permits the signaling of related processes; see
kil/(2).

Tty Group ID Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping is used to ter­
minate a group of related processes upon termination of one of the processes in the
group; see exit (2) and signal(2).

Real User ID and Real Group ID Each user allowed on the system is identified by a
positive integer called a real user ID.

Each user is also a member of a group. The group is identified by a positive integer
called the real group ID.

An active process has a real user ID and real group ID that are set to the real user
ID and real group ID, respectively, of the user responsible for the creation of the
process.

Effective User ID and Effective Group ID An active process has an effective user ID
and an effective group JD that are used to determine file access permissions (see
below). The effective user ID and effective group ID are equal to the process's real
user ID and real group ID respectively, unless the process or one of its ancestors
evolved from a file that had the set-user-ID bit or set-group ID bit set; see exec(2).

Super-user A process is recognized as a super-user process and is granted special
privileges if its effective user ID is 0.

Special Processes The processes with a process ID of 0 and a process ID of l are
special processes and are referred to as procO and procl.

Proco is the scheduler. Procl is the initialization process (init). Procl is the
ancestor of every other process in the system and is used to control the process
structure.

File Descriptor A file descriptor is a small integer used to do 1/0 on a file. The
value of a file descriptor is from 0 to 19. A process may have no more than 20 file
descriptors (0-19) open simultaneously. A file descriptor is returned by system calls
such as open(2), or pipe(2). The file descriptor is used as an argument by calls
such as read(2), write(2), ioct/(2), and close(2).

File Name Names consisting of 1 to 14 characters may be used to name an ordi­
nary file, special file or directory.

These characters may be selected from the set of all character values excluding \0
(null) and the ASCII code for I (slash).

- 4 - 7/85

INTR0(2) INTR0(2)

7/85

Note that it is generally unwise to use *, ? , I, or I as part of file names because of
the special meaning attached to these characters by the shell. See sh (1). Although
permitted, it is advisable to avoid the use of unprintable characters in file names.

Path Name and Path Prefix A path name is a null-terminated character string
starting with an optional slash ({), followed by zero or more directory names
separated by slashes, optionally followed by a file name.

More precisely, a path name is a null-terminated character string constructed as fol­
lows:

<path-name>::=<file-name> I <path-prefix> <file-name>I/
<path-prefix> ::=<rtprefix> I/ <rtprefix>
< rtprefix > ::= < dirname > / I < rtprefix > < dirname >I

where <file-name> is a string of l to 14 characters other than the ASCII slash and
null, and <dirname> is a string of 1 to 14 characters (other than the ASCII slash
and null) that names a directory.

ff a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a
non-existent file.

Directory

Directory entries are called links. By convention, a directory contains at least two
links, , and --, referred to as dot and dot-dot respectively. Dot refers to the direc­
tory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory Each process has associated with it
a concept of a root directory and a current working directory for the purpose of
resolving path name searches. The root directory of a process need not be the root
directory of the root file system.

file Access Permissions

Read, write, and execllte/search permissions on a file are granted to a process if one
or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of the
file and the appropriate access bit of the "owner" portion (0700) of the file
mode is set.

The effective user ID of the process does not match the user ID of the owner
of the file, and the effective group TD of the process matches the group of
the file and the appropriate access bit of the "group" portion (070) of the
file mode is set.

The effective user ID of the process does not match the user ID of the owner
of the file, and the effective group ID of the process does not match the
group ID of the file, and the appropriate access bit of the "other" portion
(07) of the file mode is set.

- 5 - 7/85

KNTR0(2) INTR0(2)

7/85

Otherwise, the corresponding permissions are denied.

Message Queue Identifier A message queue identifier (msqid) is a unique positive
integer created by a msgget (2) system call. Each msqid has a message queue and a
data structure associated with it. The data structure is referred to as msqid_ds and
contains the following members:

struct
ushort
ushort
ushort
ushort
time t
time_t
time_t

ipc _perm msg_perm;
msg qnum;
msg=qbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

I• operation permission struct •/
I• number of msgs on q •/
I• max number of bytes on q •/
I• pid of last msgsnd operation •/
I• pid of last msgrcv operation •/
I• last msgsnd time •/
I• last msgrcv time •/
I• last change time •/
I• Times measured in secs since •/
I• 00:00:00 GMT, Jan. 1, 1970 •/

Msg_perm is an ipc _perm structure that specifies the message operation permission
(see below). This structure includes the following members:

ushort
ushort
ushort
ushort
ushort

msg_qm11m

cuid;
cgid;
uid;
gid;
mode;

I• creator user id • /
I• creator group id •/
I• user id •/
I• group id •/
I• r/w permission •/

is the number of messages currently on the queue.

msg_qbytes
is the maximum number of bytes allowed on the queue.

msg_lspid
is the process id of the last process that performed a msgsnd operation.

msgJrpid
is the process id of the last process that performed a msgrcv operation.

msg_sfone
is the time of the last msgsnd operation.

msg_rtime
is the time of the last msgrcv operation

msg dime
- is the time of the last msgct/(2) operation that changed a member of the

above structure.

Message Operation Permissions In the msgop (2) and msgctl (2) system call descrip­
tions, the permission required for an operation is given as "{token}", where "token" is
the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

- 6 - 7/85

INTR0(2) INTR0(2)

7/85

Read and Write permissions on a msqid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msg__perm.lcluid in the data
structure associated with msqid and the appropriate bit of the "user" por­
tion (0600) of msg__perm.mode is set.

The effective user ID of the process does not match msg_perm.lcluid and the
effective group ID of the process matches msg__perm.lclgid and the appropri­
ate bit of the "group" portion (060) of msg__perm.mode is set.

The effective user ID of the process does not match msg__perm.lcluid and the
effective group ID of the process does not match msg__perm.lclgid and the
appropriate bit of the "other" portion (06) of msg__perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier A semaphore identifier (semid) is a unique positive integer
created by a semget (2) system call. Each semid has a set of semaphores and a data
structure associated with it. The data structure is referred to as semid_ds and con­
tains the following members:

struct
ushort
time t
time t

ipc _perm sem _perm;
sem_nsems;
sem_otime;
sem_ctime;

I• operation permission struct •/
I• number of sems in set •/
I• last operation time •/
!• last change time •/
I• Times measured in secs since •/
/• 00:00:00 GMT, Jan. 1, 1970 •/

Sem_perm is an ipc_perm structure that specifies the semaphore operation permis­
sion (see below). This structure includes the following members:

ushort cuid; /• creator user id •/
ushort cgid; /• creator group id •/
ushort uid; /• user id •/
ushort gid; /• group id •/
ushort mode; /• r/a permission •I

The value of sem _nsems is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a positive integer referred to as a sem_num.
Sem_num values run sequentially from 0 to the value of sem_nsems minus l.
Sem_otime is the time of the last semop(2) operation, and sem_ctime is the time of
the last semctl(2) operation that changed a member of the above structure.

A semaphore is a data structure that contains the following members:

ushort semval;
short sempid;
ushort semncnt;
ushort semzcnt;

I• semaphore value •/
I• pid of last operation •/
/• #awaiting semval > cval •/
I• #awaiting semval = 0 •!

Semval is a non-negative integer. Sempid is equal to the process ID of the last pro­
cess that performed a semaphore operation on this semaphore. Semncnt is a count
of the number of processes that are currently suspended awaiting this semaphore's
semval to become greater than its current value. Semzcnt is a count of the number
of processes that are currently suspended awaiting this semaphore's semval to
become zero.

- 7 - 7/85

INTR0(2) INTR0(2)

7/85

Semaphore Operation Permissions In the semop(2) and semct/(2) system call
descriptions, the permission required for an operation is given as "{token}", where
"token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches sem_perm.lcluid in the data
structure associated with semid and the appropriate bit of the "user" por­
tion (0600) of sem_perm.mode is set.

The effective user ID of the process does not match sem_perm.lcluid and the
effective group ID of the process matches sem _perm.lclgid and the appropri­
ate bit of the "group" portion (060) of sem_perm.mode is set.

The effective user ID of the process does not match sem_perm.[cluid and the
effective group ID of the process does not match sem_perm.lclgid and the
appropriate bit of the "other" portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier A shared memory identifier (shmid) is a unique positive
integer created by a shmget (2) system call. Each shmid has a segment of memory
(referred to as a shared memory segment) and a data structure associated with it.
The data structure is referred to as shmid _ds and contains the following members:

struct
int
ushort
ushort
short
time t
time t
time t

ipc _perm shm _perm;
shm_segsz;
shm_cpid;
shm_lpid;
shm_nattch;
shm_atime;
shm_dtime;
shm_ctime;

I• operation permission struct •/
I• size of segment •/
I• creator pid *I
I• pid of last operation •/
I• number of current attaches •/
I• last attach time •/
I• last detach time •/
I* last change time •/
I• Times measured in secs since •/
I• 00:00:00 GMT, Jan. l, 1970 •/

Shm_perm is an ipc_perm structure that specifies the shared memory operation per­
mission (see below). This structure includes the following members:

ushort cuid; /• creator user id •/
ushort cgid; /• creator group id •/
ushort uid; /• user id •/
ushort gid; /• group id •/
ushort mode; /• r/w permission *I

Shm_segsz specifies the size of the shared memory segment. Shm_cpid is the pro­
cess id of the process that created the shared memory identifier. Shm_lpid is the
process id of the last process that performed a shmop(2) operation. Shm_nattch is
the number of processes that currently have this segment attached. Shm atime is
the time of the last shmat operation, shm_dtime is the time of the laSt shmdt

- 8 - 7/85

INTR0(2) INTR0(2)

operation, and shm_ctime is the time of the last shmct/(2) operation that changed
one of the members of the above structure.

Shared Memory Operation Permissions In the shmop (2) and shmctl (2) system call
descriptions, the permission required for an operation is given as "{token}", where
"token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shmyerm.lcluid in the data
structure associated with shmid and the appropriate bit of the "user" por­
tion (0600) of shm __perm.mode is set.

The effective user ID of the process does not match shmyerm.lcluid and the
effective group ID of the process matches shmyerm.lclgid and the appropri­
ate bit of the "group" portion (060) of shmyerm.mode is set.

The effective user ID of the process does not match shmyerm.lcluid and the
effective group ID of the process does not match shm__perm.lclgid and the
appropriate bit of the "other" portion (06) of shm __perm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
close(2), ioctl(2), open(2), pipe(2), read(2), write(2), intro(3).

7/85 - 9 - 7/85

ACCESS(2) ACCESS(2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char •path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for accessi­
bility according to the bit pattern contained in amode, using the real user ID in
place of the effective user ID and the real group ID in place of the effective group
ID. The bit pattern contained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] Read, write, or execute (search) permission is

[ENOENT]
[EACCES]

[EROFS]

[ETXTBSY]

[EACCESS]

[EFAULT]

requested for a null path name.
The named file does not exist.
Search permission is denied on a component of the
path prefix.
Write access is requested for a file on a read-only
file system.
Write access is requested for a pure procedure
(shared text) file that is being executed.
Permission bits of the file mode do not permit
the requested access.
Path points outside the allocated address
space for the process.

The owner of a file has permission checked with respect to the "owner" read, write,
and execute mode bits Members of the file's group other than the owner have per­
missions checked with respect to the "group" mode bits, and all others have permis­
sions checked with respect to the "other" mode bits.

SEE ALSO
chmod(2), stat(2).

DIAGNOSTICS

7/85

If the requested access is permitted, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

- 1 - 7/85

ACCT(2) ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char •path;

DESCRIPTION
Acct is used to enable or disable the system process accounting routine. If the rou­
tine is enabled, an accounting record will be written on an accounting file for each
process that terminates. Termination can be caused by one of two things: an exit
call or a signal; see exit (2) and signal (2). The effective user ID of the calling pro­
cess must be super-user to use this call.

Path points to a path name naming the accounting file.

The accounting routine is enabled if path is non-zero and no errors occur during the
system call. It is disabled if path is zero and no errors occur during the system call.

Acct will fail if one or more of the following are true:

[EPERM] The effective user of the calling process is not super-user.

[EBUSYI An attempt is being made to enable accounting when it is already
enabled.

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EACCES]

[EISDIR]

[EROFS]

[EFAULT]

A component of the path prefix is not a directory.

One or more components of the accounting file path name do not
exist.

A component of the path prefix denies search permission.

The file named by path is not an ordinary file.

Mode permission is denied for the named accounting file.

The named file is a directory.

The named file resides on a read-only file system.

Path points to an illegal address.

SEE ALSO
exit (2), signal (2).

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

- 1 - 7/85

ALARM(2) ALARM(2)

NAME
alarm - set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the signal SIGALRM
to the calling process after the number of real time seconds specified by sec have
elapsed; see signal (2).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling
process.

If sec is 0, any previously made alarm request is canceled.

SEE ALSO
pause (2), signal (2).

DIAGNOSTICS

7/85

Alarm returns the amount of time previously remaining in the alarm clock of the
calling process.

- 1 - 7/85

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk Hncr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space allocated for the
calling process's data segment; see exec (2). The change is made by resetting the
process's break value and allocating the appropriate amount of space. The break
value is the address of the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases. The newly allo­
cated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space accord­
ingly. Iner can be negative, in which case the amount of allocated space is
decreased.

Brk and sbrk will fail without making any change in the allocated space if one or
more of the following are true:

[ENOMEM] Using brk(O) or brk(.textaddress).

[ENOMEM] Such a change would result in more space being allocated
than is allowed by a system-imposed maximum (see
ulimit (2)).

Such a change would result in the break value being greater than or equal
to the start address of any attached shared memory segment (see
shmop(2)).

SEE ALSO
exec(2), shmop(2), ulimit(2).

DIAGNOSTICS

7/R"i

Upon successful completion, brk returns a value of 0 and sbrk returns the old break
value. Otherwise, a value of -1 is returned and errno is set to indicate the error.

- 1 - 7/85

CHDIR(2) CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (pa th)
char •path;

DESCRIPTION
Path points to the path name of a directory. Chdir causes the named directory to
become the current working directory, the starting point for path searches for path
names not beginning with /.

Chdir will fail and the current working directory will be unchanged if one or more
of the following are true:

[ENOTDIR) A component of the path name is not a directory.

[ENO ENT)

[EACCES)

[EFAULT]

The named directory does not exist.

Search permission is denied for any component of the path name.

Path points outside the allocated address space of the process.

SEE ALSO
chroot(2).

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

- 1 - 7/85

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char •path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access permission por­
tion of the named file's mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000
02000
01000
00400
00200
00100
00070
00007

Set user ID on execution.
Set group ID on execution.
Save text image after execution.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute (search) by group.
Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be super­
user to change the mode of a file.

U the effective user ID of the process is not super-user, mode bit 01000 (save text
image on execution) is cleared.

If the effective user ID of the process is not super-user and the effective group ID of
the process does not match the group ID of the file, mode bit 02000 (set group ID on
execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000 prevents the sys­
tem from abandoning the swap-space image of the program-text portion of the file
when its last user terminates. Thus, when the next user of the file executes it, the
text need not be read from the file system but can simply be swapped in, saving
time.

Chmod will fail and the file mode will be unchanged if one or more of the following
are true:

[ENOTDilR]

[ENO ENT]

[EACCES]

[EPERM]

[EROFS]

[EFAUL'f]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the
effective user ID is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the process.

SEE ALSO
chown (2), mknod (2) .

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

- 1 - 7/85

CHOWN(2) CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char •path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and group ID of the
named file are set to the numeric values contained in owner and group respectively.

Only processes with effective user ID equal to the file owner or super-user may
change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-group-ID
bits of the file mode, 04000 and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named file will remain unchanged if
one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENTI

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the
effective user ID is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the process.

SEE ALSO
chmod(2).
chown(l) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned. Otherwise, a value of -J 1s
returned and errno is set to indicate the error.

- 1 - 7/85

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char •path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named directory
to become the root directory, the starting point for path searches for path names
beginning with /. The user's working directory is unaffected by the chroot system
call.

The effective user ID of the process must be super-user to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the subtree rooted at the root direc­
tory.

Chroot will fail and the root directory will remain unchanged if one or more of the
following are true:

[ENOTDIRI Any component of the path name is not a directory.

[ENO ENT]

[EPERM]

[EFAULT]

The named directory does not exist.

The effective user ID is not super-user.

Path points outside the allocated address space of the process.

SEE ALSO
chdir(2).

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 1s
returned and errno is set to indicate the error.

- l - 7/85

CLOSE(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION

CLOSE(2)

Fildes is a file descriptor obtained from a creat, open, dup, Jent!, or pipe system
call. Close closes the file descriptor indicated by fildes. All outstanding record
locks owned by the process (on the file indicated by fildes) are removed.

Close will fail if fildes is not a valid open file descriptor.

SEE ALSO
creat(2), dup(2), exec(2), fen ti (2), open (2), pipe(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

7/85 - 1 - 7/85

CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char •path;
int mode;

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite an existing file named by
the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file's owner ID is set to the effective user ID, of the pro­
cess the group ID of the process is set to the effective group ID, of the process and
the low-order 12 bits of the file mode are set to the value of mode modified as fol­
lows:

All bits set in the process's file mode creation mask are cleared. See
umask(2).

The "save text image after execution bit" of the mode is cleared. See
chmod(2).

Upon successful completion, the file descriptor is returned and the file is open for
writing, even if the mode does not permit writing. The file pointer is set to the
beginning of the file. The file descriptor is set to remain open across exec system
calls. See fcntl(2). No process may have more than 20 files open simultaneously.
A new file may be created with a mode that forbids writing.

Creat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENTI

[EACCES]

[ENO ENT]

CEACCES]

[EROFS]

CETXTBSY]

CEACCES]

[EISDIR]

[EMFILJE]

[EFAULT]

[EN FILE]

A component of the path prefix does not exist.

Search permission is denied on a component of the path prefix.

The path name is null.

The file does not exist and the directory in which the file is to be
created does not permit writing.

The named file resides or would reside on a read-only file system.

The file is a pure procedure (shared text) file that is being exe­
cuted.

The file exists and write permission is denied.

The named file is an existing directory.

Twenty (20) file descriptors are currently open.

Path points outside the allocated address space of the process.

The system file table is full.

SEE ALSO
chmod(2),
write(2).

close(2), dup(2), fcntl(2), lseek(2), open(2), read(2), umask(2),

DIAGNOSTICS

7/85

Upon successful completion, a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

- l - 7/85

DUP(2) DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (tildes)
int fildes;

DESCRIPTION
Fi/des is a file descriptor obtained from a creat, open, dup, Jent!, or pipe system
call. Dup returns a new file descriptor having the following in common with the ori­
ginal:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls. See Jent! (2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

[EBADF) Fi/des is not a valid open file descriptor.

[EM FILE] Twenty (20) file descriptors are currently open.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

DIAGNOSTICS

7/85

Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of - I is returned and errno is set to indicate the
error.

- I . 7/85

EXEC(2) EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, argl, ... , argn, 0)
char •path, •argO, •argl, ... , •argn;

int execv (path, argv)
char •path, •argvl I;

int execle (path, argO, argl, ... , argn, 0, envp)
char •path, •argO, •argl, ... , •argn, •envpl I;

int execve (path, argv, envp)
char •path, •argvl I, •envp[I;

int execlp (file, argO, argl, ... , argn, 0)
char •file, •argO, •argl, ... , •argn;

int execvp (file, argv)
char •file, •argvl I;

DESCRIPTION

7/85

Exec in all its forms transforms the calling process into a new process. The new
process is constructed from an ordinary, executable file called the new process file.
This file consists of a header (see a.out(4)), a text segment, and a data segment.
The data segment contains an initialized portion and an uninitialized portion (bss).
There can be no return from a successful exec because the calling process is over­
laid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char uargv, uenvp;

where argc is the argument count and argv is an array of character pointers to the
arguments themselves. As indicated, argc is conventionally at least one and the first
member of the array points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a
search of the directories passed as the environment line "PA TH =" (see environ (5)).
The environment is supplied by the shell (see sh(l)).

ArgO, argl, ... , argn are pointers to null-terminated character strings. These strings
constitute the argument list available to the new process. By convention, at least
argO must be present and point to a string that is the same as path (or its last com­
ponent).

Argv is an array of character pointers to null-terminated strings. These strings con­
stitute the argument list available to the new process. By convention, argv must
have at least one member, and it must point to a string that is the same as path (or
its last component). Argv is terminated by a null pointer.

Envp is an array of character pointers to null-terminated strings. These strings con­
stitute the environment for the new process. Envp is terminated by a null pointer.
For exec/ and execv, the C run-time start-off routine places a pointer to the
environment of the calling process in the global cell:

extern char ••environ;
and it is used to pass the environment of the calling process to the new process.

- 1 - 7/85

EXEC(2) EXEC{2)

7/85

File descriptors open in the calling process remain open in the new process, except
for those whose close-on-exec flag is set; see Jent! (2). For those file descriptors that
remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new process.
Signals set to be ignored by the calling process will be set to be ignored by the new
process. Signals set to be caught by the calling process will be set to terminate new
process; see signal (2).

If the set-user-ID mode bit of the new process file is set (see chmod(2)), exec sets
the effective user ID of the new process to the owner ID of the new process file.
Similarly, if the set-group-ID mode bit of the new process file is set, the effective
group ID of the new process is set to the group ID of the new process file. The real
user ID and real group ID of the new process remain the same as those of the calling
process.

The shared memory segments attached to the calling process will not be attached to
the new process (see shmop (2)).

Profiling is disabled for the new process; see profil (2).

The new process also inherits the following attributes from the calling process:

nice value (see nice (2))
process ID
parent process ID
process group ID
semadj values (see semop (2))
tty group ID (see exit (2) and signal (2))
trace flag (see pt race (2) request 0)
time left until an alarm clock signal (see alarm (2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit (2))
utime, stime, cutime, and cstime (see times (2))

Exec will fail and return to the calling process if one or more of the following are
true:

[ENO ENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENO EXEC]

[ETXTBSY]

[ENOMEM]

One or more components of the new process path name of the file
do not exist.

A component of the new process path of the file prefix is not a
directory.

Search permission is denied for a directory listed in the new pro­
cess file's path prefix.

The new process file is not an ordinary file.

The new process file mode denies execution permission.

The exec is not an execlp or execvp, and the new process file has
the appropriate access permission but an invalid magic number in
its header.

The new process file is a pure procedure (shared text) file that is
currently open for writing by some process.

The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM.

- 2 - 7/85

EXEC(2) EXEC(2)

[E2BIG]

[EFAULT]

[EFAULT)

The number of bytes in the new process's argument list is greater
than the system-imposed limit of 5120 bytes.

The new process file is not as long as indicated by the size values
in its header.

Path, argv, or envp point to an illegal address.

SEE ALSO
alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2),
ulimit(2), umask(2), a.out(4), environ(5).
sh(l) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS

7/85

If exec returns to the calling process an error has occurred; the return value will be
-1 and errno will be set to indicate the error.

- 3 - 7/85

EXIT(2) EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;
void exit (status)
int status;

DESCRIPTION
Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified
of the calling process's termination and the low order eight bits (i.e., bits
0377) of status are made available to it; see wait (2).

If the parent process of the calling process is not executing a wait, the cal­
ling process is transformed into a zombie process. A zombie process is a
process that only occupies a slot in the process table. It has no other space
allocated either in user or kernel space. The process table slot that it occu­
pies is partially overlaid with time accounting information (see
<sys/proc.h>) to be used by times.

The parent process ID of all of the calling process's existing child processes
and zombie processes is set to 1. This means the initialization process (see
intro(2)) inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by l.

For each semaphore for which the calling process has set a semadj value
(see semop (2)), that semadj value is added to the semval of the specified
semaphore.

If the process has a process, text, or data lock, an unlock is performed (see
plock(2)).

An accounting record is written on the accounting file if the system's
accounting routine is enabled; see acct (2).

If the process ID, tty group ID, and process group ID of the calling process
are equal, the SIGHUP signal is sent to each process that has a process
group ID equal to that of the calling process.

The C function exit may cause cleanup actions before the process exits. The func­
tion _exit circumvents all cleanup.

SEE ALSO
acct(2), intro(2), plock(2), semop(2), signa1(2), wait(2).

WARNING
See WARNING in signa/(2).

7/85 - l - 7/85

FCNTL(2) FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
#include < fcntl.b >
int fcntl (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION

7/85

Fenti provides for control over open files. Fildes is an open file descriptor obtained
from a creat, open, dup, Jent/, or pipe system call.

The commands available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL

F_SETFL

F GETLK

F_SETLK

F SETLKW

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or equal to
arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors
share one file pointer).

Same access mode (read, write or read/write).

Same file status flags G.e., both file descriptors share the same
file status flags).

The close-on-exec flag associated with the new file descriptor is
set to remain open across exec (2) system calls.

Get the close-on-exec flag associated with the file descriptor
fl/des. If the low-order bit is 0 the file will remain open across
exec, otherwise the file will be closed upon execution of exec.

Set the close-on-exec flag associated with fl/des to the low-order
bit of arg (O or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags can be set; see
Jcnt/(5).

Get the first lock which blocks the lock description given by the
variable of type struct flock pointed to by arg. The information
retrieved overwrites the information passed to Jent/ in the flock
structure. If no lock is found that would prevent this lock from
being created, then the structure is passed back unchanged
except for the lock type which will be set to F _ UNLCK.

Set or clear a file segment lock according to the variable of type
struct flock pointed to by arg (see Jcnt/(5)). The cmd F _SETLK
is used to establish read (F _RDLCK) and write (F _ WRLCK) locks,
as well as remove either type of lock (F_UNLCK). If a read or
write lock cannot be set Jent! will return immediately with an
error value of -1.

This cmd is the same as F _SETLK except that if a read or write
lock is blocked by other locks, the process will sleep until the seg­
ment is free to be locked.

- l - 7/85

FCNTL(2) FCNTL(2)

A read lock prevents any process from write locking the protected area. More than
one read lock may exist for a given segment of a file at a given time. The file
descriptor on which a read lock is being placed must have been opened with read
access.

A write lock prevents any process from read locking or write locking the protected
area. Only one write lock may exist for a given segment of a file at a given time.
The file descriptor on which a write lock is being placed must have been opened
with write access.

The structure flock describes the type (/_type), starting offset (/_whence), relative
offset (I _start), size (I _Jen), and process id (1 _pid) of the segment of the file to be
affected. The process id field is only used with the F _GETLK cmd to return the
value for a blocking lock. Locks may start and extend beyond the current end of a
file, but may not be negative relative to the beginning of the file. A lock may be set
to always extend to the end of file by setting I _Jen to zero (O). If such a lock also
has I _start set to zero (0), the whole file will be locked. Changing or unlocking a
segment from the middle of a larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by the calling process causes
the old lock type to be removed and the new lock type to take affect. All locks asso­
ciated with a file for a given process are removed when a file descriptor for that file
is closed by that process or the process holding that file descriptor terminates.
Locks are not inherited by a child process in a fork(2) system call.

Fenti will fail if one or more of the following are true:

[EBADF]

[EM FILE]

[EINFILE]

[EINVAL]

[EACCESS]

[EM FILE]

[ENOSPC]

[EDEADLK]

Fi/des is not a valid open file descriptor.

Cmd is F _DUPFD and 20 file descriptors are currently open.

Cmd is F _DUPFD and arg is negative or greater than 20.

Cmd is F _GETLK, F _SETLK, or SETLKW and arg or the data it
points to is not valid.

Cmd is F _SETLK the type of lock (I _type) is a read (F _RDLCK) or
write (F _ WRLCK lock and the segment of a file to be locked is
already write locked by another process or the type is a write lock
and the segment of a file to be locked is already read or write
locked by another process.

Cmd is F _SETLK or F _SETLKW, the type of lock is a read or write
lock and there are no more file locking headers available (too
many files have segments locked).

Cmd is F _SETLK or F _SETLKW, the type of lock is a read or write
lock and there are no more file locking headers available (too
many files have segments locked) or there are no more record locks
available (too many file segments locked).

Cmd is F _SETLKW, the lock is blocked by some lock from another
process and sleeping (waiting) for that lock to become free. This
would cause a deadlock situation.

SEE ALSO
close(2), exec(2), open (2), fen ti (5).

7/85 - 2 - 7/85

FCNTL(2) FCNTL(2)

DIAGNOSTICS

7/85

Upon successful completion, the value returned depends on cmd as follows:
F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL
F_GETLK
F_SETLK
F_SETLKW

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value other than -1.
Value of file flags.
Value other than -1.
Value other than -1.
Value other than -1.
Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

- 3 - 7/85

FORK(2) FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork 0

DESCRIPTION

7/85

Fork causes creation of a new process. The new process (child process) is an exact
copy of the calling process (parent process). This means the child process inherits
the following attributes from the parent process:

environment
close-on-exec flag (see exec (2))
signal handling settings (i.e., SIG_DFL, SIG_IGN, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice (2))
all attached shared memory segments (see shmop (2))
process group ID
tty group ID (see exit (2) and signal (2))
trace flag (see ptrace (2) request 0)
current working directory
root directory
file mode creation mask (see um ask (2))
file size limit (see ulimit (2))

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of
the parent process).

The child process has its own copy of the parent's file descriptors. Each of
the child's file descriptors shares a common file pointer with the correspond­
ing file descriptor of the parent.

All semadj values are cleared (see semop (2)).

Process locks, text locks and data locks are not inherited by the child (see
plock(2)).

The child process's utime, slime, cutime, and cstime are set to 0. The time
left until an alarm clock signal is reset to 0.

Fork will fail and no child process will be created if one or more of the following
are true:

[EAGAIN]

[EA GAIN]

The system-imposed limit on the total number of processes under
execution would be exceeded.

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded.

- 1 - 7/85

FORK(2) FORK(2)

SEE ALSO
exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signa1(2), times(2),
ulimit(2), umask(2), wait(2).

DIAGNOSTICS

7/85

Upon successful completion, fork returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a value
of -1 is returned to the parent process, no child process is created, and errno is set
to indicate the error.

- 2 - 7/85

GETPID(2) GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process IDs

SYNOPSIS
int getpid ()

int getpgrp 0
int getppid ()

DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal (2).

7/85 - 1 - 7/85

GETUID(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and
effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user JD of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
intro (2), setuid (2).

7/85 - 1 - 7/85

IOCTL(2) IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
ioctl (tildes, request, arg)
int fildes, request;

DESCRIPTION
Ioctl performs a variety of functions on character special files (devices). The
write-ups of various devices in Section 7 of the AT&T 3B2 Computer System
Administration Reference Manual discuss how ioctl applies to them.

Ioctl will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[ENOTTY]

[EINVAL]

[EINTR]

Fildes is not associated with a character special device.

Request or arg is not valid. See Section 7 of the AT&T 3B2 Sys­
tem Administration Reference Manual.

A signal was caught during the ioctl system call.

SEE ALSO
termio(7) in the AT&T 3B2 Computer System Administration Reference Manual.

DIAGNOSTICS

7/85

If an error has occurred, a value of -1 is returned and errno is set to indicate the
error.

- 1 - 7/85

KILL(2) KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pid. The signal that is to
be sent is specified by sig and is either one from the list given in signa/(2), or 0. If
sig is 0 (the null signal), error checking is performed but no signal is actually sent.
This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or effective
user ID of the receiving process, unless the effective user ID of the sending process is
super-user.

The processes with a process ID of 0 and a process ID of l are special processes (see
intro (2)) and will be referred to below as procO and procl, respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is equal
to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and procl whose process
group ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be sent
to all processes excluding procO and procl whose real user ID is equal to the
effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be sent to
all processes excluding procO and procl.

If pid is negative but not -1, sig will be sent to all processes whose process group
ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are true:

[EINVAL] Sig is not a valid signal number.

[EINV AL] Sig is SIG KILL and pid is 1 (procl).

[ESRCH)

[EPERM]

No process can be found corresponding to that specified by pid.

The user ID of the sending process is not super-user, and its real or
effective user ID does not match the real or effective user ID of the
receiving process.

SEE ALSO
getpid (2), setpgrp(2), signal(2).
kill(l) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

- l - 7/85

UNK(2) LINK(2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char •pathl, •path2;

DESCRIPTION
Path] points to a path name naming an existing file. Path2 points to a path name
naming the new directory entry to be created. Link creates a new link (directory
entry) for the existing file.

Link will fail and no link wi11 be created if one or more of the following are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[ENOENT]

[EEXIST]

[EPERM]

!EXDEV]

[ENOENT]

[EACCES]

[EROFS]

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by pathl does not exist.

The link named by path2 exists.

The file named by path! is a directory and the effective user ID is
not super-user.

The link named by path2 and the file named by pathl are on
different logical devices (file systems).

Path2 points to a null path name.

The requested link requires writing in a directory with a mode that
denies write permission.

The requested link requires writing in a directory on a read-only
file system.

[EFAULT]

[EMLINK]

SEE ALSO

Path points outside the allocated address space of the process.

The maximum number of links to a file would be exceeded.

unlink(2).

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 1s

returned and errno is set to indicate the error.

- 1 - 7/85

LSEEK(2) LSEEK(2)

NAME
!seek - move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fi/des is a file descriptor returned from a creat, open, dup, or fcntl system call.
Lseek sets the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in bytes
from the beginning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the fol·
lowing are true:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE] Fi/des is associated with a pipe or fifo.

[EINV AL and SIGSYS signal]
Whence is not 0, 1, or 2.

[EINV AL] The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

DIAGNOSTICS

7/85

Upon successful completion, a non.negative integer indicating the file pointer value
is returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

" 1 " 7/85

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char •path;
int mode, dev;

DESCRIPTION

7/85

Mknod creates a new file named by the path name pointed to by path. The mode
of the new file is initialized from mode. Where the value of mode is interpreted as
follows:

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The group ID
of the file is set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be used. The
low-order 9 bits of mode are modified by the process's file mode creation mask: all
bits set in the process's file mode creation mask are cleared. See umask (2). If
mode indicates a block or character special file, dev is a configuration-dependent
specification of a character or block 1/0 device. If mode does not indicate a block
special or character special device, dev is ignored.

Mknod may be invoked only by the super-user for file types other than FIFO special.

Mknod will fail and the new file will not be created if one or more of the following
are true:

[EPERM]

[ENOTDIRI

!ENO ENT]

[EROFS]

[EEXIST]

[EFAULT]

The effective user ID of the process is not super-user.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The directory in which the file is to be created is located on a
read-only file system.

The named file exists.

Path points outside the allocated address space of the process.

- 1 - 7/85

MKNOD(2) MKNOD(2)

SEE ALSO
chmod(2), exec(2), umask(2), fs(4).
mkdir(l) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

7/85 - 2 - 7/85

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char •spec, •dir;
int rwftag;

DESCRIPTION
Mount requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. Spec and dir are
pointers to path names.

Upon successful completion, references to the file dir will refer to the root directory
on the mounted file system.

The low-order bit of rwfiag is used to control write permission on the mounted file
system; if 1, writing is forbidden, otherwise writing is permitted according to indivi­
dual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT] Any of the named files does not exist.

[ENOTDIR)

[ENOTBLK)

[ENXIO)

[ENOTDIR]

[EFAULT]

[EBUSY]

[EBUSY]

[EBUSY)

IEROFS]

[ENOSPC)

[EINVAL]

A component of a path prefix is not a directory.

Spec is not a block special device.

The device associated with spec does not exist.

Dir is not a directory.

Spec or dir points outside the allocated address space of the pro­
cess.

Dir is currently mounted on, is someone's current working direc­
tory, or is otherwise busy.

The device associated with spec is currently mounted.

There are no more mount table entries.

Spec is write protected and rwfiag requests write permission.

The file system state in the super-block is not FsOKA Y and rwfiag
requests write permission.

The file system magic is not FsMAGIC.

SEE ALSO
umount(2), fs(4).

DIAGNOSTICS

7/85

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

- l - 7/85

MSGCTL(2) MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h >
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds •buf;

DESCRIPTION
Msgctl provides a variety of message control operations as specified by cmd. The
following cmds are available:

IPC_STAT Place the current value of each member of the data structure asso­
ciated with msqid into the structure pointed to by buf. The con­
tents of this structure are defined in intro (2). {READ}

IPC_SET

IPC_RMID

Set the value of the following members of the data structure asso­
ciated with msqid to the corresponding value found in the struc-
ture pointed to by buf:

msg_perm.[c]uid
msg_perm.gid
msg_perm.mode /• only low 9 bits •/
msg_qbytes

This cmd can only be executed by a process that has an effective
user ID equal to either that of super user or to the value of
msg_perm.lcluid in the data structure associated with msqid. Only
super user can raise the value of msg_qbytes.

Remove the message queue identifier specified by msqid from the
system and destroy the message queue and data structure associ­
ated with it. This cmd can only be executed by a process that has
an effective user ID equal to either that of super user or to the
value of msg_perm.kluid in the data structure associated with
msqid.

Msgctl will fail if one or more of the following are true:

[EJNVAL] Msqid is not a valid message queue identifier.

[EINVAL]

[EACCES]

[EPERM]

IEPERM]

IEFAULT]

Cmd is not a valid command.

Cmd is equal to IPC_STAT and {READ} operation permission is
denied to the calling process (see intro (2)).

Cmd is equal to IPC_RMID or IPC_SET. The effective user ID of
the calling process is not equal to that of super user and it is not
equal to the value of msg_perm.kluid in the data structure associ­
ated with msqid.

Cmd is equal to IPC_SET, an attempt is being made to increase to
the value of msg_qbytes, and the effective user ID of the calling
process is not equal to that of super user.

Bz.~f points to an illegal address.

SEE ALSO
intro(2), msgget(2), msgop(2).

7/85 - 1 - 7/85

MSGCTL(2) MSGCTL(2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -I 1s
returned and errno is set to indicate the error.

7/85 - 2 - 7/85

MSGGET(2) MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.b>
#include <sys/ipc.b>
#include <sys/msg.b>

int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure (see
intro(2)) are created for key if one of the following are true:

10 Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated with it, and
(msgflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue identifier
is initialized as follows:

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set
equal to the effective user ID and effective group TD, respectively, of the cal­
ling process.

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits
of msgflg.

Msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set equal to
0.

Msg_ ctime is set equal to the current time.

Msg_qbytes is set equal to the system limit.

Msgget will fail if one or more of the following are true:

[EACCES] A message queue identifier exists for key, but operation permission
(see intro(2)) as specified by the low-order 9 bits of msgflg would
not be granted.

[ENO ENT]

[ENOSPC]

[EEXIST]

A message queue identifier does not exist for key and (msgflg &
IPC_CREAT) is "false".

A message queue identifier is to be created but the system-imposed
limit on the maximum number of allowed message queue
identifiers system wide would be exceeded.

A message queue identifier exists for key but ((msgfl.g &
IPC_CREAT) & (msgfl.g & IPC_EXCL)) is "true".

SEE ALSO
intro (2), msgctl (2), msgop (2).

DIAGNOSTICS

7/85

Upon successful completion, a non-negative integer, namely a message queue
identifier, is returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

- 1 - 7/85

MSGOP(2) MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.b >
#include <sys/msg.b>

int msgsnd (msqid, msgp, msgsz, msgftg)
int msqid;
struct msgbuf •msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf •msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION

7/85

Msgsnd is used to send a message to the queue associated with the message queue
identifier specified by msqid. (WRITE} Msgp points to a structure containing the
message. This structure is composed of the following members:

long mtype; /• message type •/
char mtexd]; /• message text •/

Mtype is a positive integer that can be used by the receiving process for message
selection (see msgrcv below). Mtext is any text of length msgsz bytes. Msgsz can
range from 0 to a system-imposed maximum.

Msgfig specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes (see
intro(2)).

The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

If (msgfig & IPC_NOWAIT) is "true", the message will not be sent and the
calling process will return immediately.

If (msgfig & IPC_NOWAIT) is "false", the calling process will suspend exe­
cution until one of the following occurs:

The condition responsible for the suspension no longer exists, in
which case the message is sent.

Msqid is removed from the system (see msgct/(2)). When this
occurs, errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case the message is not sent and the calling process resumes exe­
cution in the manner prescribed in signal (2)).

Msgsnd will fail and no message will be sent if one or more of the following are
true:

[EINVAL] Msqid is not a valid message queue identifier.

- 1 - 7/85

MSGOP(2) MSGOP(2)

7/85

[EACCES]

[EINVALI

[EAGAIN]

[EINVALI

[EFAULT]

Operation permission is denied to the calling process (see
intro(2)).

Mtype is less than 1.

The message cannot be sent for one of the reasons cited above and
(msgftg & IPC_NOWAIT) is "true".

Msgsz is less than zero or greater than the system-imposed limit.

Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid (see intro (2)).

Msg_qnum is incremented by l.

Msg_lspid is set equal to the process ID of the calling process.

Msg_stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the structure pointed to by msgp.
(READ) This structure is composed of the following members:

long mtype; /• message type •/
char mtexdl; /• message text •/

Mtype is the received message's type as specified by the sending process. Mtext is
the text of the message. Msgsz specifies the size in bytes of mtext. The received
message is truncated to msgsz bytes if it is larger than msgsz and (msgftg &
MSG_NOERROR) is "true". The truncated part of the message is lost and no indica­
tion of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

Msgftg specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

If (msgftg & IPC_NOWAIT) is "true", the calling process will return
immediately with a return value of -1 and errno set to ENOMSG.

If (msgftg & IPC_NOWAIT) is "false'', the calling process will suspend exe­
cution until one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs, errno is set
equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case a message is not received and the calling process resumes exe­
cution in the manner prescribed in signal (2)).

Msgrcv will fail and no message will be received if one or more of the following are
true:

[EINVALI Msqid is not a valid message queue identifier.

- 2 - 7/85

MSGOP(2) MSGOP(2)

[EACCES]

[EINVAL]

[E2BIG]

[ENOMSG]

[EFAULT]

Operation permission is denied to the calling process.

Msgsz is less than 0.

Mtext is greater than msgsz and (msgfig & MSG_NOERROR) 1s
"false".

The queue does not contain a message of the desired type and
(msgtyp & IPC_NOWAIT) is "true".

Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid (see intro (2)).

Msg_ qnum is decremented by l.

Msg_lrpid is set equal to the process ID of the calling process.

Msg_rtime is set equal to the current time.

SEE ALSO
intro (2), msgctl (2), msgget (2), signal (2).

DIAGNOSTICS

7/85

If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is returned
to the calling process and errno is set to EINTR. If they return due to removal of
msqid from the system, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of 0.

Msgrcv returns a value equal to the number of bytes actually placed into
mtext.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

- 3 - 7/85

NICE(2) NICE{2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A process's nice
value is a positive number for which a more positive value results in lower CPU
priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the
system. Requests for values above or below these limits result in the nice value
being set to the corresponding limit.

[EPERM] Nice will fail and not change the nice value if incr is negative or
greater than 40 and the effective user JD of the calling process is
not super-user.

SEE ALSO
exec(2).
nice(l) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS

7/85

Upon successful completion, nice returns the new nice value minus 20. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

- l - 7/85

OPEN(2) OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
#include <fcntl.h>
int open (path, oflag [, mode])
char •path;
int oflag, mode;

DESCRIPTION

7185

Path points to a path name naming a file. Open opens a file descriptor for the
named file and sets the file status flags according to the value of ofiag. Ofiag values
are constructed by or-ing flags from the following list (only one of the first three
flags below may be used):

O_RDONLY Open for reading only.

O_WRONLY

O_RDWR

O_NDELAY

O_APPEND

O_SYNC

O_CREAT

Open for writing only.

Open for reading and writing.

This flag may affect subsequent reads and writes. See read(2) and
write(2).

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O _NDELA Y is set:

An open for reading-only will return without delay. An
open for writing-only will return an error if no process
currently has the file open for reading.

If 0 ND ELA Y is clear:

An open for reading-only will block until a process opens
the file for writing. An open for writing-only will block
until a process opens the file for reading.

When opening a file associated with a communication line:

IfO_NDELAY is set:

The open will return without waiting for carrier.

If 0 ND ELA Y is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file prior to each
write.

When opening a regular file, this flag affects subsequent writes. If
set, each write(2) will wait for both the file data and file status to
be physically updated.

If the file exists, this flag has no effect. Otherwise, the owner ID of
the file is set to the effective user ID of the process, the group ID of
the file is set to the effective group ID of the process, and the low­
order 12 bits of the file mode are set to the value of mode modified
as follows (see creat (2)):

All bits set in the file mode creation mask of the process
are cleared. See umask (2).

- 1 - 7/85

OPEN(2) OPEN(2)

O_TRUNC

O_EXCL

The "save text image after execution bit" of the mode is
cleared. See chmod (2).

If the file exists, its length is truncated to 0 and the mode and
owner are unchanged.

If O_EXCL and O_CREAT are set, open will fail if the file exists.

The file pointer used to mark the current position within the file is set to the begin­
ning of the file.

The new file descriptor is set to remain open across exec system calls. See Jent! (2).

The named file is opened unless one or more of the following are true:

[ENOTDIRI A component of the path prefix is not a directory.

[ENOENT] O _CREA T is not set and the named file does not exist.

[EACCES]

[EACCES]

[EIS DIR]

[EROFSI

[EM FILE]

[ENXIO]

[ETXTBSY]

[EFAULT]

[EEXIST]

[ENXIO]

A component of the path prefix denies search permission.

Oflag permission is denied for the named file.

The named file is a directory and oflag is write or read/write.

The named file resides on a read-only file system and oflag is write
or read/write.

Twenty (20) file descriptors are currently open.

The named file is a character special or block special file, and the
device associated with this special file does not exist.

The file is a pure procedure (shared text) file that is being exe­
cuted and oflag is write or read/write.

Path points outside the allocated address space of the process.

O_CREAT and O_EXCL are set, and the named file exists.

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set,
and no process has the file open for reading.

[EINTR]

[EN FILE]

SEE ALSO
chmod(2),
write(2).

A signal was caught during the open system call.

The system file table is full.

close(2), creat(2), dup(2), fcntl(2), lseek(2), read(2), umask(2),

DIAGNOSTICS

7/85

Upon successful completion, the file descriptor is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

- 2 - 7/85

PAUSE(2) PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause 0

DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal must be one
that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function (see signal (2)), the calling process resumes execution from
the point of suspension; with a return value of -1 from pause and errno set to
EINTR.

SEE ALSO
alarm (2), kill (2), signal (2), wait (2).

7/85 - l - 7/85

PIPE(2) PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildesl21;

DESCRIPTION
Pipe creates an 1/0 mechanism called a pipe and returns two file descriptors,
fildes[O] and fildes[l]. Fildes[O] is opened for reading and .fi/des[l] is opened for
writing.

Up to 5120 bytes of data are buffered by the pipe before the writing process is
blocked. A read only file descriptor fildes[O] accesses the data written to ft/des [1]
on a first-in-first-out (FIFO) basis.

[EM FILE]

[ENFILE]

Pipe will fail if 19 or more file descriptors are currently open.

The system file table is full.

SEE ALSO
read(2), write(2).
sh(l) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 1s
returned and errno is set to indicate the error.

- 1 - 7/85

PLOCK(2) PLOCK(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text lock), its data segment
(data lock), or both its text and data segments (process lock) into memory. Locked
segments are immune to all routine swapping. Plock also allows these segments to
be unlocked. The effective user ID of the calling process must be super-user to use
this call. Op specifies the following:

PROCLOCK - lock text and data segments into memory (process lock)

TXTLOCK -

DATLOCK -

UNLOCK -

lock text segment into memory (text lock)

lock data segment into memory (data lock)

remove locks

Plock will fail and not perform the requested operation if one or more of the follow­
ing are true:

[EPERM]

[EINVALI

[EINVALI

IEINVALI

IEINVALI

The effective user ID of the calling process is not super-user.

Op is equal to PROCLOCK and a process lock, a text lock, or a data
lock already exists on the calling process.

Op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process.

Op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process.

Op is equal to UNLOCK and no type of lock exists on the calling
process.

SEE ALSO
exec(2), exit(2), fork(2).

DIAGNOSTICS

7/85

Upon successful completion, a value of 0 is returned to the calling process. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

- 1 - 7/85

PROFIL(2) PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char •buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz. After this
call, the user's program counter (pc) is examined each clock tick (60th second);
offset is subtracted from it, and the result multiplied by scale. If the resulting
number corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the
left: 0177777 (octal) gives a 1-1 mapping of pc's to words in buff; 077777 (octal)
maps each pair of instruction words together. 02(octal) maps all instructions onto
the beginning of buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giv­
ing a bufsiz of 0. Profiling is turned off when an exec is executed, but remains on
in child and parent both after a fork. Profiling will be turned off if an update in
buff would cause a memory fault.

SEE ALSO
monitor (3C).
prof(l) in the AT&T 3B2 Computer User Reference Manual.

DIAGNOSTICS
Not defined.

7/85 - 1 - 7/85

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION

7/85

Ptrace provides a means by which a parent process may control the execution of a
child process. Its primary use is for the implementation of breakpoint debugging;
see sdb(l). The child process behaves normally until it encounters a signal (see sig­
nal(2) for the list), at which time it enters a stopped state and its parent is notified
via wait (2). When the child is in the stopped state, its parent can examine and
modify its "core image" using ptrace. Also, the parent can cause the child either to
terminate or continue, with the possibility of ignoring the signal that caused it to
stop.

The request argument determines the precise action to be taken by ptrace and is
one of the following:

0 This request must be issued by the child process if it is to be traced
by its parent. It turns on the child's trace flag that stipulates that the
child should be left in a stopped state upon receipt of a signal rather
than the state specified by June; see signa/(2). The pid, addr, and
data arguments are ignored, and a return value is not defined for this
request. Peculiar results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent process. For each,
pid is the process ID of the child. The child must be in a stopped state before these
requests are made.

1, 2 With these requests, the word at location addr in the address space of
the child is returned to the parent process. If I and D space are
separated, request 1 returns a word from I space, and request 2
returns a word from D space. If I and D space are not separated,
either request 1 or request 2 may be used with equal results. The
data argument is ignored. These two requests will fail if addr is not
the start address of a word, in which case a value of -1 is returned to
the parent process and the parent's errno is set to EIO.

3 With this request, the word at location addr in the child's USER area
in the system's address space (see <sys/user.h>) is returned to the
parent process. The data argument is ignored. This request will fail
if addr is not the start address of a word or is outside the USER area,
in which case a value of -1 is returned to the parent process and the
parent's errno is set to EIO.

4, 5 With these requests, the value given by the data argument is written
into the address space of the child at location addr. If I and D space
are separated, request 4 writes a word into I space, and request 5
writes a word into D space. If I and D space are not separated, either
request 4 or request 5 may be used with equal results. Upon success­
ful completion, the value written into the address space of the child is
returned to the parent. These two requests will fail if addr is a loca­
tion in a pure procedure space and another process is executing in
that space, or addr is not the start address of a word. Upon failure a
value of -1 is returned to the parent process and the parent's errno is

- 1 - 7/85

PTRACE(2) PTRACE(2)

set to EIO.

6 With this request, a few entries in the child's USER area can be writ­
ten. Data gives the value that is to be written and addr is the loca­
tion of the entry. The few entries that can be written are:

the general registers

the condition codes of the Processor Status Word.

7 This request causes the child to resume execution. If the data argu­
ment is 0, all pending signals including the one that caused the child
to stop are canceled before it resumes execution. If the data argu­
ment is a valid signal number, the child resumes execution as if it had
incurred that signal, and any other pending signals are canceled. The
addr argument must be equal to 1 for this request. Upon successful
completion, the value of data is returned to the parent. This request
will fail if data is not 0 or a valid signal number, in which case a
value of - I is returned to the parent process and the parent's errno is
set to EIO.

8 This request causes the child to terminate with the same consequences
as exit (2).

9 This request sets the trace bit in the Processor Status Word of the
child and then executes the same steps as listed above for request 7.
The trace bit causes an interrupt upon completion of one machine
instruction. This effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent
exec (2) calls. If a traced process calls exec, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

General Errors
Ptrace will in general fail if one or more of the following are true:

[EIO]

[ESRCH]

Request is an illegal number.

Pid identifies a child that does not exist or has not executed a
ptrace with request 0.

SEE ALSO
exec (2), signal (2), wait (2).
sdb(l) in the AT&T 3B2 Computer User Reference Manual.

7/85 - 2 - 7/85

::C~~~d ... ~'N<d fr<~i:J:l i)k

!i<Y}u:n~rn::;

i:~ fs.::i*.-d {m~~. lffit, ~$J~ir
~M 1lUri:%~
d~&l:I' ;\:~~f;
~w.:iw~ ~~yios.::~

1w:~.;;{·!'l:1n·ioN:

f:~f: .. :l~~·.~= ·~:::; <~: fih$ di::~~::::t·~p;~:~:::r ::;:%~tB:~:~~~~<~ {~·~.::::n ~~ :::·t~:;.~~'t :- {~(<f$f: .:f~~l}:- jt~~f.~ nf p.;~pt:· *~W:t:H::n~
.:~;~~~:u.

l>.\~~i-d .:::.1t~'mp~.~ ~:~:; ~·:<l::::.<1 .rd~p\· byi:::;s fr:>~::::: ifm ~n~ :~@<:i:::,,~i,~'.d with fi/,fo.~· rnJ:::: ~h::>
~:~~==:~~~'.:~· f~:~~:::~:(~~~~ ~;:;::: ·~?~' bx.~f.

~)n <~~:::~:+~.:'.·:::;::; ·:~~~r~~~)~~ ..::~f :;..;;;?::~)~~:;. ~::~~:~:: t~:.;:·Ml ~::::.:$.~{::: :~:::: ::~. ·r'<:~f~:~:~~::i:r.: ~::::: ~:r::*~ ff;:::;~ .~~::i~=t::~ by H~~:::

ilk j:<!deite1· ::WW(iiik~} with ./ii~fr:i.': Up~m ro:}:~::ni fr<>i~i f·.f:Mt, di<:: ffk pc:~i:nk:r i~ in->~t'i'
m~rnkA by tk:: ~umh~:i· d ~yi:~'.::i ::M'.t'!~!ll)' ~{~::,>..!

f):~)::.:;·k:~~:~ .. :~h~.~~ ~:f:::;; ~i:~::~;~~~1ht::~: ·:::::f ::::_~'=~;k~.t{:~~ ::::.h~<·~~.r::: ~ .. :::~::~cl f:·:::;:~~:: ~.~~::~ <:-<~.rrt::~~~ ~x~::;~:i~:~::::~s-t ·rh~~

:::·~~}~:~~~ ::.~ f:J!:;: ~~:i~:::~:~:'.:t ~~-~~==:~::{:::J~~~~ ·:xifk ::;;::}{'.}: ::~ NJt i_:;: :::n~4~~f;:~~~~~~-

\Vil<::>> ::~i:.t:l'lr.q:>~ir~!l fo n:m<t fr~l;:n :i,~:: t.mpty t~r>~ fot Hfi:il:

!f O .. ::·<i:l)hL"" Y i!o ;;;~~' ;fo~ M:~~d vdH rnHi.m .:l. (}.

ff o .. NP:f:t..:l:.Y b ::::k::::.r., i.h:x: ri::M~ .. ,.,g §>.i::(:ds is:i::Hl >'l::it~i is '*'~:i:i::::<:~=: ~:;:) dt:~ :iik ~:ii'
~.h::::: f}~: ~·~ :;:~~::: ~k:<~:=:.&~~:;. :~>t::o::::~~ k::;. '{.~{f'~~ ~-~::;f:-

!t~:iAl>~''l

l!''.fA:J:..itTl

iUf·dR!

;§bE ALWJ

Fiidi-s h Mt ~i \1di,d fib +,8<:~it!:(~' ql<;:;'i f(~t r~:'><lii:ig.

lfa/ :::J>c-,ihh ,:>,::::~:h:k:. tht: d.b:::;::):t.d ::i<id::':w;.$: q>.:l#~.

~'N>>.d)} du~(;(l, Ril~H)J, *(:~;'ilCl\ ci~:i{)), 1<:if~/JJ.
~~::~·:~:~:)<d 7} fa:: th~:: >~ ;;r:& ·r Jfi} {\:~~~~{=:~~·J·::::::.--· .:~(:;::;~·~;B:~?.~ .. ./~~\,.~·i~~L~t.;;·:=:~:~:fa~~:: .R<i~~~~~:~t,f .Jf~~#~~l ..

n~A<i'Ni:)$TH:::':1c
~)·~~~}n :~~::<..~~~~:.:>::>n~)~ '.:.::~):::~:::p~~~~·~~:~~~ .:s ~>ff"·H-~::*r:::~:~J:{:::: :::H=~-~~~~~~r :~:~ ·r~:·::·~::.n~<::o::J! ~::::~~:H~:::~:~:{~$;: ~:fa~~

n::.i.n~l>~~t ~)f bJ·H.~~ ::1:~:H~.;:il!~< ;:~{~~~. ()~.h$:~r~·si~: .. <~ ~. ~::; r~i:·~~tn~zl: ~u~d <?tr·N::::· fa *·~:t t<(hi~:H·:
<:~H.(:· ~.hx: :£:::~T:}f ..

::;'i:'NO!''f.1lS
#ind~lk: •=::srMfy~ll >
#*i&dmk <$J&R~-~>·
m$d~k <~w~l@mJi >·
bt wmd§ {uldil, -~:i3~~; •. <0=~~ :Mt:!
l~t wmhl; ~:~;
hi~ i;i1rn~*<~1m:;
~~foll %'l!*lj)J& l

($j ~~h

:i::titll<d $*diii .. ~i>: ,.:k!;f:;
i:;:i~~:r.~ ~:~n:i:::'.'i;

~~~:; 

nMCR§!"U(~N 

.S';;•mn't .1>N~·iih::$ ii %l~i'W< ,,,f M~miph<>t<:: ~:,;,:::Hn>l q·mr::s~Jrnis ii.~ si~::dn~il 'l:iy ami. 

·rk; hJl::y:*:ii:1g rmd;; ~f:~: M:%:iH@1 whll n:4ii'.:'A i:;;: tb;: M:t::K~:pk>.i'S: t.:pc;;:~:illd \c:f :%mid 
;:;:,:::-;:~ .~'.f.'.~'.~t~~::~;~;::~ . 

~;i:n~·m 

{;t:rw:N·i 

S:zZ iJ~?:: >;·:ifo<:: <1( M:r:=n::;:i~ l:i> ;}.>'§;'Y::i:/. ~:'}'~} Wh~i::: d;:i::; Z:it::d: 

b ~~i<:(::@All!!'f m;(:Ga.v:d., ~h: ?<e::mMl:i ~'~ilw~ rnnc:sfim~fo:w ::<~ 
H::t ~.p:::dikd $:Z:i::~:?.ph<~N:: i.tl di pi·<.·K,~;ssw.; bi dNirmi. 

R.t:::::,;:n:: ~1% i:.;~hi>> ,>f ~~u::,'\:n:: 

Tl1~~ (dl>~w)~* <omd" rd\ffll <Wd :>-<~!, ri:.~:p(;:<;ti\.•d;-.. ¢"-'MY M!'li'<'>) hi th~ ~e:\. <4 ;;~:m~i-.· 
ph;Jf%. 

S::::~ :~mw;·d::> ::~·<=<:<mfa~:f ~:::: ·~k~ ::<trny w~~r::i::::<z!: ~:<> ~>.<= ~~:r:r~~:~,,..!~/·. 
vs. 'i<V§l<::~~ ::N~ ::::t::d :~:~· WS:>~::t:dVly f::~:¢¢'ii<~d d!t: tt~;.:;::,:;;:dJ 
-,.;·~$~::~~;:; *~~::::f:'r:;;;:;-~p;>f:~iJ:::~~t:: ~;~.f ~::::~:<:h :;.~5~~ .. :H~~>J ~.:;:m<~:p~~~:~r~': ~r:: ~~:H 
p~ .. <X:~t~§~:::~ ::~ r~:. {~h::~:.:~·~~t. 

r~~~{:~ ~}$;~:· (:~~:rr.;:;-:;:::;:~ :~::::~:j:~}~:: <::{ ~~::~;~::*:: ©::.:::::nt~~f gf ~ ~t ·:;~~{{~~· ::.:::.:~·5$:~::~.:::::~::-=: 

~!::~~~::;~::~~::H .. ~:d: ·;Y.:+:~h .;:::~:~~:)~f ~~~:~:,:::~: th:£:· ~;;f::f~::~::h~:~·~: ~~~:~~4H:i i0 ·h~: :::~:?f}~~~~f. 
·rh::::. ·::::~-~~)~r;:r.:~:~. ~.~f ~.h~:::: .:r:;n.::¢Z~~·;;;: ~~.:~~-: d>:::=~~:~>::;~ ~:~~~: ~:::-:::~:~::~·:ttL 
lf{*;···"<J)l 

S.:::t i:h,~ y::dirn or t.b:::: i'dk;~~fof, m~~inhf::r~ (~f tk~ ,fa.rn ::i({.;::ti::i)!.\}.!~(::: 
i~'~w1,:::!:::)\.d: with ,<:(~d:;:f :::~i l.h~'' >.;HH~Sf<::m::H~t,: •·~ihi¢ H:mm:l >..~< tht: 
:?.t~'::4(:'.~:~~-~t'! ~:;:;~x::~:»~ :~::::: t<)' .;:$:i'i~:·J:~::..~/.: 

~ ..... ~:;:or,;:dd~M 
~ .. ~~1*,tM 
Mm~ .. -.fw.@Ul~ !:,, M!lf k'-"' ·i~ hlt:5.< ~/ 

T~ris (::ff::d <:::::i.ii rn:::1y l:«i (:·~=i~'-mt<:il by <i: \>fo~'t:~s ::1i.M hM ;rn 
~~~}~~::t~~:t. :~~~~tf ~ r:: ·~:~~5::.:;~ ~ ·:;~:~ ~~J~h~:.r <h~1:~: ~:;4 ~~:;J~~;:s·..-~:;;~-::~ <~::· {~) ~.h~} 
~''*·k::;;: d' :$¢:w ..2¢'tmf1:~A~ ~::<:: ~!::;:;:- ·ih.:::'* ~::~.nw~.~i:~·,~ M$<>:~i:,;:::;,,j ,,,,tfr
.~:~~'{.,~#~:f .

. l ;

SEMCTL (2) SEMCTL (2)

IPC_RMID Remove the semaphore identifier specified by semid from the
system and destroy the set of semaphores and data structure
associated with it. This cmd can only be executed by a pro·
cess that has an effective user ID equal to either that of
super-user or to the value of sem_perm.lcluid in the data
structure associated with semid.

Semctl will fail if one or more of the following are true:

[EINVALl Semid is not a valid semaphore identifier.

[EINVALI Semnum is less than zero or greater than sem_nsems.

[EINVALI Cmd is not a valid command.

[EACCES]

[ERAN GE]

[EPERM]

[EFAULT]

Operation permission is denied to the calling process (see
intro(2)).

Cmd is SETVAL or SETALL and the value to which semval
is to be set is greater than the system imposed maximum.

Cmd is equal to IPC_RMID or IPC_SET and the effective
user ID of the calling process is not equal to that of
super-user and it is not equal to the value of
sem_perm.kluid in the data structure associated with
semid.

Arg.buf points to an illegal address.

SEE ALSO
intro (2), semget (2), semop (2) .

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

GETVAL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
All others A value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

7/85 " 2 " 7/85

SYNn~sm
l#n<:fad<1: < !$f!'i/l:y?f?.~J~ >
#faidiail¢ < !Jl)':Sl!pd1.>
#hid~~ <!ly!lhtm/ti>

hH ~~d {k~~·, ~~mo$, !i~~nil~J
·i.-,R:~ .J ~W1';
i~~ rl!Jlli?::'MO, "'~~!l:~;

[JESCR !fl'.lf~N
.-5~~it~ <~}t:;~~ ·rf;S 'Q.~ rr~:~ th~~ ::;cn:.:tph{:>f ¢ id~-H"~ ~fi~~r ~i x:~(}C~~~-~ !J;~j ·w~ tf: ~J~y,

:::n:;:'i'~;;::~~~'f{:<l!d~~::~~:~;} ;s~~;~ ~:~~~~.:::~~::ir 't~~< ! ;''(:~;,'.;',';';~h!'1;,~;n:;i~~)~:~:.is:~~;:'. fHffm$

l(..-y h ~$qB;i\ t;; fl>f'.J''!ilJ'd.TK

*'~'}! ,fo~~'.', ;,tit >lir~~::..dy ha,•;:-; ;~ rnmaph)r~ likmiHcr <'i%<:id&tNl w\t~ :~ .. lrnd
(um/~,•: & ff't:_nrnAT) is ''tr;i<;''.

L{l<m'o ·~'·tation, the ~:i,:~w ~·J::":.;('.'i:<m~ :•ise,,;.:;:i.&l:N1 .,,,,.i;J; i:!•ic !!<rn· $C:m<i.pi:K,;:·~~ ~tk:1siti<5r i~
!~lslidlrJ.'.~J <~~ f•:)Jhl,,,.·$:

$~$1l..Jl'ifn!l,i'.!!M, ~m ~ru.,AA!~ .. ~¢ru .. ~m1~q~:M, &~id !i~!ll_._fl'!l'rm.~M ;it~' Bd
>:wrnl ~o !.fa~ i:fft,:::d~·,~ u.&ft m ,:rnd ;~lfm::i:!v<: ;:rt<)~<P fl\ n::~l)¢cfr;,.·"'l'.i. of th'2· fa<l··
hi1g j>((i(;~$:S.

'!k:: k;~<1"(;f>.:k:i- ~l bi% of !'l~i_Jwmi~n~i<>"l0 "rn r<t'l ~tr~.d to !.h,; [::)»~,qrd.m \l blt'
(~r .. ~'.(?{~~tf:ff ~
S:i::m .. ~~iP i;:, $i.':i: ~'tlirnl tu thi:! ·rnim; <Jf n.ff·r~w.

~m $Hnw b &(:l t:>~1.1<i~ w 'O .:?i.tid wii:i_.,t:tiai~ i:~ &c:t ~wrnl (:l ~hi; (:urrn;1t t~m<.~­

,)'itmg~l wi!:i fail jf ·;>!it:': (~t mm;~ c;!' dw fdkw!l\~'. ::,.n;. i:rnc

1V .. ~>ims !:< (:,ilh¢r [::"''~ tii<rn (';: <Xlmd).{; ?.~:f'-' <:>r grmikr th~rn th¢
~y~a0ir1,.·irnp<.)S<::d Ernk

r\ &em>&pho.;,·t hfomlfi~~(¢:(;~,1~ fr;r kn· .. lmt <l;;:¢i·:~,i:km• JMNtsi:$~J~>(~
(8~:':~ l1~j:Y(t {2) :? $.~~ ~pe~t~ f~cd hy th::;": ~OW'-~)~"d~r ~) b-i:~~:; :(~f :><:~~~HR, ~·<:-uJ<l
Ji{~~ hi~. f.::ni~Hi2'.~1.

A. ~t~~na~>.t~on~ idc:~~!.~~~c;~ ~:::ii:~.~~~~ f~:·r k-<.~_r: hut ·~h.-t ~Htn:::r~:r ~1f &:2:·t{.:.a·
ph<m:~ ki tb; ~1 a~!«ll.~bi~~<l widl it fa k$~ c.!wxi 1·B'•:·m.•> :i.nd r1.\ems i~.
~B:.rt ~"::(~8.iB.~ h> ~~.~)t.<t;.

A. :;:<:trmplwri: i.<.i~mtifk:r d<x8 nd t':~i~:l fof k~'Y ~HFl (~·<-:tti/l.~ &
ff~·: .. cJe:~:AT.i i~ "fo]8&>;".

t\ &~B~~iph,;)~-~~ i~~~;t'~t!:fi~::~· t') 8:0 ht: (:f·(:~lt·Bd hBt the ~.Y~~i~"::{[.~"';::nBf*}::i¢:&
fatfrt M. th<? 1mti::~mum n:,Pxsh<~r <>f ~<!kl'w'd ~<:f:':tn<iph:,,ms ii;foiHElcl'~
~<:t~;..H~r~~ '<l.~..i.i.;~ w'.:::~~l:d ~:: e:~ .. t:~::e.~J<;-:·d,

;~· mmJ.&rl:mri:' iifoniii~¢r !" \1,3 bt). >:i:•~awd bu~ ~ht i;J"!H:o:rn-~:<l}>(~s.d
:lJ:tt'5J.~ fj.n th<:: :::tBssx~~nirH£ :·~usn~.~~::- ~.4 ~:.:;k::-..~·~:.d :.>1::.~:t·j~q::.h-:)~··~:> :~y~;,t<:-;~:~ }~·:td;;~

~~~£:.~b5 b~~ C)j::t:t~(;;,:~~d, 

.. \ ;;¢~~~~J~}l<)t"e 1d:;;:.l-:.~~f~>~:r $J:}.:~::;t~: f~}r ~%·~.~ b~.Jt 

H:'C c~r.\·iJ 1tri.d ( W'll/!.g & f!'C. LX(!j i ';", "trn~" 



SEMGET(2) SEMGET(2) 

SEE ALSO 
intro(2), semctl(2), semop(2). 

DIAGNOSTICS 
Upon successful completion, a non-negative integer, namely a semaphore identifier, 
is returned. Otherwise, a value of -1 is returned and errno is set to indicate the 
error. 

7/85 - 2 - 7/85 



SYN(!J%!f:~ 
#!~dude ""::: ;-;~·~/ty~~<!t > 
#1:11dt1d0 <~y·~/l:f!<¢,h> 
#!nd!.l{!~ <~,·~Ai~m.~> 

fot o;:.ell!*'~P i:w1iihl, ;;..;1~, ~~lfsfi:s} 
i!u ~<e:mid,; 

,.;;trnd ~<:m:b!.$f ~:'i<:)p~; 

mi.,;.ig11;::-1§ mr<i$~; 

ti~~C:R!rT!O:N 
Sen·'*'·OP ~s B'.}<Xi t~J· ::;.:u.~t:>~JH~~sc~~Hy ~~rfr;rn~ ;~n ::~r:,~t)' ~:::f ~¢~t!,;:l.~}hoH::. ·:..:':lP!!:'T~~~i~>n:~ <~~~: tbt'.: ~ct 
of :;~m;wh~:ilt>~ Z:~~<Xillti:':>l Wi~i! :J;t ~<::,l'lil!1hOi··e ~\"k:U!~fo:.~ ~<f:'0<:di¢<,~ b)· H"mid. S,'op:; i;-. 
~~ }X~int~r t{:- i:h<:~ ~~rn~y t)f ~k.':rt:t~1.~}.hl.)f(: ..... ..:}r~,:;n::1:!.:::~:r1 ~t::::.:::(~·D~~r~~·s. ..~i.;;opr. 5~ ~~~'.::' jHH·nf&~;r ~~f 

~<i..:::h ~trndt.J.r<:'.i ~Jt ~h1: .;m·a:.. "f"h<5 t::mikMs (>f ~::~.dl ~it~ict(m;' i:nchB:les the fo)h1w(l!i?, 
~H .. ~rn b(;:r~·. 

~!H>n: 
~hf~~:i. 
~h{>n. 

~tm_m.:im; 

s.·ern .. ~)fJ~ 
:;cmJ1g:: 

/* ~(·J~h'~.f3h<~r·~~ r~:1·~rnho.r .,)o/ 
/.cw ::;r;::~rla.f:·h<~rt {~r:;i:r.~ ~:~~~Jn ~ / 
/.,,, •:>pi.:"::r::i: t i.<W: ~1~~ .. ~~~ "'/ 

Haeh s-ti!m.ph::1.1·~: ::itJl!l1·,i~i;w ~pe-cik<l hy .~('mpp i". j:K:'fof!'.~k'd M ~h"' ("l'.\tr<:'spniHhtl!l 
~mJ1;iri><>f~~ t<rx;0dhxl by .w:~nid Mi~{ ·~'<'m .. tw1·n, 

,s,.,..m ... '"P ~f~dfi;;::;; .;m<:: of tk~~<> $<:.irB:'l\:!ll<}tc :::%W:rnl.irn-is "" f•.JHo,,,,.~: 

if .B:em .op i~ '''· ·n1l:J?.Jitiv,; inkw::·:·, on.r.. d H;:t; friik><.<:i.r:s; wi.l! c,1;;,;u.r: iM .. TFR I 

ff .~·:m\~l {?;>,~;; imrt;C::}1 i~; !F~~'~!-~~t lh~si or <:tiua~ w th<:. ;i,b~>DhHe 
<"<Hut ol se.m ':>fl, tht ahsd!>t~ <'i.ihi.: ,::i .H'M up i.~ ~llM.Md.~d fnwn 
~~mwai:., A~~,:;: ifC><'m..J~g & St:\·~._}:JM)()) h ·yu;/', tht~ ::b:>(=inte 

;~~~;ttf~ ~~;\'i;,~,,~,;~~Wi;:~~ :;:;:t;;;i;:~l~~:~mg im;i<;<:i;~ ~ ~;m~~d.1 Yallrn \~<x 
H :-;.t:.tn"·t<t~ i~ k~&1 ~hat: th~ ;tb~:~~hHt v:~.~u;;:: ~;.f .'i?::f$t ... }>ip ~~.~~t tY~"t:~: __ f?g 
& i,r•f.: __ NOW.'\fP h ''::m~<, f<'n•op wHJ r<:tnrn i;rnn-:::.d.bt~'iy 

~;~~:~~~:~~~;;:~~7~~~~~~1~~;§:::~ 
Scmn.l h1:<::::Jm~l~ gr(;;;<;:1;o;:r r.h;H1 ::>r ~,;iual J<i H1~ .abi;:~hH:o vuhi;;; <>f 
:~?'?tiJip . . ~'·b~n Hiit; iJ:lXt~r:;;, th~ s<:ihl!i: nf s'-'l'.1JKM ,t~Mx:i~k~t witt~ 
tJ1<: ~~Jx:<;~_i:~(~d ~~;::~t~J~j.pho~"'<.:'. ~:~ ~J:N~t'E'.'.~l~~u~~=d~ 1:~~¢ ~b~t<~:U~¢ '!."8:1u~:. n~ 
.\'~>rn <'lfj ir; ~'llbtrw.::tt"d fr\>•Y1 ~t~m¥<d B.m1, ff fa<mijfg & 
~:a;:~fJ;:NnO) i~ "1;-aie'", t hr. »~~oluk' ·f;;:.hw oJ,~<:'mJ~P i1< <.iiJ<lt:~l tn 
v1~ (:(:.ihrig ))t<iC::t:% s ~('.ma<l.J >·A<r{;' fo:: !lw 3\'.<i;,Ai~;~ ;;,tmapb:m: .. 

Th~: ~;:;~.rni d f·:}1:· '-'>'h:id:: th{:- '""' Hin1>, fir·..-K:<:-~.;,; \:< ::<w·,; it\ ~g ;;cfr:m t~ 
:t'=>~tt,~~/oo fro:tn -~h~ syBh~ro: ('3~e -~~~~1~~tti f2fL ·\~:l:J:~8 ~h~~ :.-:i<'.<'.iH':~. 
ftf·n10 :i.s 1'~~~ 0<wi! ·i,:1 Vi~)}~\\A, <tnd 8. '<'il.l!H~ elf ··· ! ~~ f¢turn<::<l. 



SEMOJ.>(2) SEMOP(2) 

7/85 

The calling process receives a signal that is to be caught. When 
this occurs, the value of semncnt associated with the specified 
semaphore is decremented, and the calling process resumes execu­
tion in the manner prescribed in signal (2). 

If sem_op is a positive integer, the value of sem_op is added to semval and, 
if (sem_flg & SEM_UNDO) is "true", the value of sem_op is subtracted 
from the calling process's semadj value for the specified semaphore. 
{ALTER) 

If sem_op is zero, one of the following will occur: {READ) 

If semval is zero, semop will return immediately. 

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is 
"true", semop will return immediately. 

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is 
"false", semop will increment the semzcnt associated with the 
specified semaphore and suspend execution of the calling process 
until one of the following occurs: 

Semval becomes zero, at which time the value of semzcnt associ­
ated with the specified semaphore is decremented. 

The semid for which the calling process is awaiting action is 
removed from the system. When this occurs, errno is set equal to 
EIDRM, and a value of -1 is returned. 

The calling process receives a signal that is to be caught. When 
this occurs, the value of semzcnt associated with the specified 
semaphore is decremented, and the calling process resumes execu­
tion in the manner prescribed in signal (2). 

Semop will fail if one or more of the following are true for any of the semaphore 
operations specified by sops: 

[EINVALI Semid is not a valid semaphore identifier. 

[EFBIG] 

[E2BIG] 

[EACCES] 

[EAGAIN] 

[ENOSPC] 

[EINVAL] 

[ERAN GE] 

[ERAN GE] 

[EFAULT] 

Sem num is less than zero or greater than or equal to the number 
of semaphores in the set associated with semid. 

Nsops is greater than the system-imposed maximum. 

Operation permission is denied to the calling process (see 
intro (2)). 

The operation would result in suspension of the calling process but 
(sem_flg & IPC_NOWAIT) is "true". 

The limit on the number of individual processes requesting an 
SEM UNDO would be exceeded. 

The number of individual semaphores for which the calling process 
requests a SEM_UNDO would exceed the limit. 

An operation would cause a semval to overflow the system-imposed 
limit. 

An operation would cause a semadj value to overflow the system­
imposed limit. 

Sops points to an illegal address. 

- 2 - 7/85 



Upon :m<'.:'i::1:&Sfol ;;ompkth:m.;. th<'. v&kt('. <:>f ~~-mpid f<:lt ~~<i<::h "~;m.aphorn $f'.'i(:~ih~d in tll¢ 
:::n-~~J' f<)if::tit~~ tn by ~VL'.r.,Pf<r i$ ~~1 'f;~qu~~.l t~~~ ·th~.t t~~·~.;:.;.>:.:::;~; ~::J:) .::;.f ~h·~: 1~:!dH~1g pf•Jc-C·$~ .. 

SEE AU<i.O 
:;;;~.:;;,:::(2}, <::Kiti'.D, fodd)J, irt•:H;i(/}, :;,M1<.~l(D, @in~'¢i0), 

rHAONOS'f!C1 
If .wmop r0rnrns, <Inc w ch1: i··¢<;,:ift <l ~1 "ig::~A, ;l v;ik~~ •.if ...... 1 L n:t::in:<~~d ki ill:? ¢:;d.­

fo:,f~ pt<:\t<~~& .ai1rl. ~'trm; i:< $¢~ ~<> LrNll~ H i.1 nii.iini,; <hw ~<' th¢ f·t~r!J;<.W:?J nf :~ :<·emld 
fr~~"::~~. Hl:f: 'Sy-s·1:.~~t~ .. }~ :i.,;-~3h.J(: nf _._. .. l i.~ n~tn~r:.:::--d ~~~~d ~~sr-r~~o ::.s set 1.<) f.Jnl~}.,·L 

t.'pN.' ~;~;tn~:;;~fd <:>;lrnpkricrn., :wro i~ n;·!:<ftfJJ:-<:L Othcr.>,·~;ic, :~ v&b.ll:' nf ~1. i~ rnim:n~d 
iirni <Ymo i~ M~l. ·:n ~ndi>:;•:>t<e >!i~ 1:rrnr. 





NAME 

$VMJ~IS 
~~!! ill.>!Jlii·p (} 

OHSC~.l.!"TlON 
S<'!f>WP 2it:{S the pf<.X:~S:S gmnp ![} :A ~Jw <::;;1!in&,: pr>:.X:<:.:% lo;) i:h<~ p;:(lC{:S;l lfl d' tk C:~.·1. 
Jig~ pHK(::ii~ ::Hltl rnt~ffllS th~'. m;:'li pHX:(:% g;:-rnip ff>. 

m~t :\l.SO 
t'x.:;,-:...::(2)~ kwk.(2) ~ ~~~{~tp:Jd.(iL h~H\~{1):. kiH{!.}~ s.~~.n(df2) .. 

l.HAGNn<BTK:S 
SdN;Pp r<:Wrn~ Hi~ v8tl:J<~ <:ff UH3 nm.i; lJnx:·%;; grn:up !ti. 





SYNCW~lS 

~Iii M~tiit'! {t1ld) 
hit ~Id:; 

i:n:t ~tgM !.i;!d} 
~JI! ~id~ 

OE:?iCR.!PT§ON 
$~~·«·hi (!fet°gid) 'i.&. l~Si:::-d h:: B~~ th~::. 'fl:.<:B.~ ~~B~:.~:· (gf<~~.rt$) f: D ::tnd :;::ff~_::,-;-.~·~~~··f;'. ·~J.~?.r ~:_gs·.,-;:;_r~:<~ ~ D 
<>[' ~ h~~: ca Hh1g r;rnC£1>9 •. 

!f th~ d'focth·~: ui>'1,~ W of ti11: ;:.;,di!ng pnx:~>:"-> i~: ~:;ip•~:r··!.lf'ilH, th>'. <<:~d ':l:l<.~r (gmnp) H; 
<1M:1 f:ffi~i:Ji.-,«~ ~z~~t letr·o;i}il JD ~rn f;i;l. t>;) i;;frf {gid} ... 

n· (!:\\'. <::fhx:tiY·<~ US<::t 11) d. i.ii?l \~HHi!3t f>t<X:tS$ ·i:; ~N sup<::t·B:~f; bu~ i~.~ f¢;J.[ u;;~~·r 

(gm1<p) lD fa <>!l.trnl w :ui'J (gidl, ~h<:: ieff<>::'i:i>1¢ ':l8<.~f (grn~f<) mi!;~<:~ l>l 1->id (gi.d). 

ff !hi: ~~:ffectlve l.k~e:r m of th~: <:<\!~iri13: pi·<.X:('.% i::~ i1>.)\. :•~pm··H~N. hut tk n~·N:i ~.<;;H.i~,>(~f· 

{gn)ur) !O fmrn P..:n~d2.l i~ ~;,qual w w'd (~:id.i, ih~: l'<ff~~(:tlnl B:~M (gmup) m h; sd t{i 

uid (gM) .. 

S\~tufrl Cs;:~gidi wHJ f::iil ff th!'. n;·.HJ U$<l~ {grmir) m ,)f th.e u;Hlng f!N'x~t~~s i:. nm. 
cqu>i.l k uU i:;;Ml ami h:;; cffe<:dv.1: ::amt· lD b n<>~ ~:~!pCt·!:l~mr. [i::~'~_:J~~~j 

TtH;l !~iJ' fa <:>u1. ;;f i·a11ge:. i'F!NVAU 

sm-; Aiso 
g¢~;Jid Ci!, i.r:t.rnCV. 

D~AGNO~>'flC) 

Up<•n ~~K'N~s:;fol \'.emp:i.~~d.{H'~, a ·;;,.)1!>; A (). ls rern.!·::~t;;:l Odw:r1•'h:>, 3. \i~d~~,; of ...... l. :'.;, 
r~:tur~h~d ~tnd ~~trf~~·~ ·[:~ w~ t~·~ h::di<~AAt(: ~:h~~ ~~'fr<~r 





~YNO~~~-l~~ 

#h~,iJiid!.> < l>'"Ji/t~·lit~dl > 
#hid~d~ <s~·~/!~Ji> 
#!:il(:'hMfo < ~rJ~i:ifidl >· 
foi '.ihwdi fal1wM,. ~Wld, ~*f.l 
fof ~.:hm1,:j, ~mid.; 

&injd s:lmiM_d!i .. ~ti:f; 

nm•c~ !YrioN 
Skmul pi-nvid;:;;>; ;1 vM·k;y <:!!. §h;~fd :r:tni<.HY Cfmtrol (lperMb;i~ .:1~ '.<pedtk:r.l by rmd. 
'J'~f t'~>U~>w~ng <">end:~ ~~.r<: :.J.Y::1.ik=t;b!k.: 

~'ia:::<.'. ih.'. (;~:n::.~t1i. >i~il::i<~ d '-!<l.d1 nit~rnb~~r ,,f ~ht dab su·nctn.i·c 
;:i%:nc:hi:<:(l ·•;iiidl .;X.f»iid :~·il.\; tk sinK:tm·(: p<:>inbl 1(> by h1;f 
Th1': coslt~nH~;. ~4 t;:r;.$ :-:;it:}('·~·~n~:: ~H·<;~ ~h;fh:~i~·d h~ l~rtd(!.). 
iKh\i>! 

s~~~ l h~l \':l.b<: <if ! tJ:¢ foii/1win.g m~:lnbcrn qf ih<: <.hi.ta Str1l(:H;f(: 

~t~sc:xc:i2~t""l w·irh .sim:dd to !rw (:\'.•ncsp(mdin;f'. '<i~hF~ fow:id jr:i dN 
s·:.::-u:~~~}3fx~ p<>~~~t~~~~ t{~ hy b1~f·: 

:t::~::~;~;;,~~!dd 
:~hxn .. ~·;·:Tr:. . .r::::{:~:d~!: l~ ·:)f3}y ::..~:•:v.:' ~~ h~t~~ ";9/ 

Th~:l 1:md <):ir: mlly )'.l¢ <;:~<,ns!:,:tl by '1 1"';,;.;c~:• foal hilS M~ 
dTN:!:;<;t·': ns<::t ~H i;l>}tbii. !.<:> <:·il.b:~( i:!rn.l of e.np~r '-l~t;r <)~ !/'· :J;~; 

vi?.fo~; d $\!~\.~~:?m,khi~ i}1 it\<'. <fo:rn .~i:ni<::t\lt~ ;~,;;;od:ucd witll 
.~·h.r.Nfri. 

ii!.<;t(J>.::.·;,(:: Hu;· ~h:ir(::::l m:~:m·::~ty ii.i.t~r:i:ifi~;i· ~rcdht':d by siimfd 
!'mm 1he s;y~i~~m mid dmiU(iY I ht: ~.ht:rnd nmn1,:::ty %;,:gmtiH :inti 
dai:~. ~trn<::t.Mc :::,%<:>0;i.;~~':;o:i '"·''h ii Thi~. ;:nid. rnn oi1ly h;? o;~~­
¢U:t-cd hy :3 pr(:oi;:?-~·~ tb~n hzl~ :J.r~ ~::ff~::{:·tj"•r~: ~.~$~~· rn ~~q ~.~~~-~ t1a 
~)ith(;r H;;:;,t d ~i<p<::r iw;f i.ir tD Hit: v.:~iu.t~ of ~hm_perm,kl~i,~ Jri 
l!w -cbw mrn-:;:t.tH<> :,i~&<:x::::~~\~;(~ wi<h shii#d. 

t~~.f:~:f ... } . .<X·;~. }.}.~J.: th~~:: :~h~~.n~.:::~ ffH>~n~::;~y ~~ ... ::~g;:r~~~nt .Bf.:.t~t~ht~1 h;-.' s:h~nf.d 3.~ 

:TH_-:rnory. 'Thb. <-(',{ti ('.~~~ or:~11 b::: ::_-:~~:.~~.ta~~d by ;~ p~x:¢:s~' ·~h:3:t 
h.:~s: ;~_g ~::f:h:c.~~i.,·~~ ::~~~'r n> :::qi:::d to :f::~p~:'.J' ::::~~;:~~{'. 

(.;;HM .. U:'>JHX.'~. 
U nk:<:k :lt!>:e strn~-i::~ mi::rn•.Jr)" >;~:Rmcnt "'l~i:::d!:~~d b)' sh~m'd. T!ih 
a11d ·:~;l.r: •m!) (,;,:: e;:;W<:\<i.\'.~i hy >) pn~.;c~'~ t.h«i: tl»:l >W d~<::ctivc 
~;~;,,,,r lO t~:iju~\l i:(", !i.llf<'H t!!\i'.L 

·.'i'hi:«1Ui ,,~·:1! foi! if (:ik. (~:- rn;)(Y,; d" 1.b; fdl<};<;·in~: ;H"C i:!"HC: 

t· r: -~ j'o~- >,/ ,.\,[. :~ 

,.'i;'hmid i~ n:A ::, v;1!;id {~i::~::<!d fr;.,~fr:1)ri) l<kri~iha·. 

U.'.l"-''<,"\.Li 
Cmd :s not <! ,,,<>h>J S:(H-rtsnand. 

! E/\~. f !SS! 
Cmd i:; ~· .. w«;i ~>.:< ~l''(·._._S.lA"f ;i.wJ (R[ADi '::r•:::atirn1 p(?.nm~don \~ 
>:.!<.w.id tu tbs.; rn.l.Hn:;): pi<X\;% hi;:-:;; hfn.:(;;:) l. 



SHMCTL(2) 

SEE ALSO 

SHMCTL(2) 

[EPERM] 
Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of 
the calling process is not equal to that of super user and it is not 
equal to the value of sbm_Jlerm.lcluid in the data structure associ­
ated with shmid. 

[EPERM] 
Cmd is equal to SHM_LOCK or SHM_UNLOCK and the effective 
user ID of the calling process is not equal to that of super user. 

[EINVAL] 
Cmd is equal to SHM_UNLOCK and the shared-memory segment 
specified by shmid is not locked in memory. 

[EFAULT] 
Buf points to an illegal address. 

shmget (2), shmop (2) . 

DIAGNOSTICS 

7/85 

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 1s 
returned and errno is set to indicate the error. 

. 2. 7/85 



sv·.No.rsrs 
#!whiti~ < s;yi;hy1M';s;J1 > 
#iiwhme < ><~·~/!~,!:\ > 
#h::,dooi~ < ,,;ysJ~ilimJi~,,... 
fa~~ ~h:m~Jl?:'i: Ch~:~, ~1~, $hmllr,) 
i.~r.:i i.~h 
h!~ ~i~~' $h:lllll!~~ 

(H';5C!~~!'T10N 

Shmgd rtw.r.m (he. ~h1JJN! tm:mury hkini!im :;~~nd:::i.t<::<l wi1h An·. 
!\ :)rni·~"'-i mC::m~wy M~mtifkr <md ::>%•Ki.&i(:d d:;;.;;~ s~n~dM¢ ;wd $har~d m¢m~wji '<t~i·· 
r:::!.::.~nt ~,~f -:::~. h::~~1-~. ;~(~·~:· 'b:-.:~~~~ ['}-cc .:):~fY'<.• (2}) :·itc ~~~r~~-~t~>~} for k.:~J( ·:T •;HH:.· of :::h<> f<)~k .. ~-,.·i~~~~ 
::H'~ frn.:::: 

Kzy b e<:W<.1i k• n'f ... J'Rh".-'dl: 

Kn: <kl% wit <lhi;~Hh k~~·,;: i> dia:-:;;d mc;:wxv i;km:ilkr a~~«.?..:i;ttdt with iL 
:~:;·i1}: (\·Jw:\f!g .& n•c"'(::izK,~·n i:< ··~rn~'.". ·· 

() }X~~~ l~~~~a.t~·:.)ri. ~h-? d::: ~.~l ~~ r~~<:~ un~ &~~:;:<>:d.:~ ~:r:i~ \·":·it~~ ~hi;: t1:~\)/ ~;.h2.t't:{~ n-~~sl:.<:-ry id.cf! ~·~.fk::~ 
:::: ;::::it.ic:Ji~;'.,~d ,,,~;, fr:·Ik::w~· 

Shm.p.'niiA'.~i:ld, ;;;hmy~~~.i;,i:~t, ihMiyrm . .;:;~~el,. >HH~ ~fo11 .. pt~rm,i!'~ ;m' $<:·:: 
<:<p&! ~<' the dfo<::ti>i·c -.::wr H) :~w:l df('<::ti~«; ('X{)~ifi ff~, i"%f)t;<:tih~ly- .. <>f thz :ml, 
b;g p::<::('.(:%. 

Tt(' l~'w .. ,:;nl.~T ';l hi~~ of ~bmy:r~i~.,~mffi'i? :.:.n-: ~i:t <~~r~;~! t(l th0 bw-.<>ti.fo.r 9 b--ii:~ 
o·; shmHg. !'i~m .. ~~~z ~s ~:;::( t5tN<li J.<'' th::· >'i~b.K Oi s1.~t'. 

S:!imJ~il<i. ~fo~ ... ~aHd:t ;s;foil~~i:k:;~, ;i:nd §iim.JW.~~ :u~~ '~f:i: f~paJ !<) (J 

S:11m .. y~i:m~ :ii; :><;i 1.~q"'~! t<> H!<:: <;:urnirt ::El<: . 

. 'S'hmgf~r wlll fail ~f ml<.~ •;r mwi.~ >~f lh<: hlkiwi~jg <ff~. trn<:. 

Sf~-:' i' lt'.% tli;rn th" :;y:!c~::: 0 irnp<;1.<:1.~<:! :ni~rimmn ¥ gr·~:.;w::r ti:ian d::t 
.~ y:~tc.::b"i~n p(>s.;,,;-:d ~n~5 . .:<l::~n~~ f:~J. 

A. :.h;~e('d :mN1i::i::y i>kMiE<.~~ ·~:;i;i$tt: f«)'f k<:J' ~!!~·:: ::i§)¢mli<>ll pcnni.:x"km 
fot;<; >.~!U<::d.?.P ;~~ ~pt~cifa·d by (!::,t: hw·,nrd·ef ':) hils d i-~m~ff ;g w<>i}]tJ 

~1~~t (x;'.: ~tr;H~dx;~~. 

l<. ;;han':d rn.:t:m<r:y i>l<:<:>.\ll(·t <.~Ki;,.,,; for kiiy bll} th<: ;;~,,c of the '>"!~· 

meir:. "~~ff.i>.\i<:'.d \~ith H :i:; k% ih<lr: .)·irr M;i! si;;<'' i::; n<;~ (:;qirnl tn 

;\ »h~m:<l n·;m:~·:,Pf} :;(k;r:tHkr !.lots ~ml. (:.~io.i h! kn:· :;sr.,::1. t.4im.fig ,& 

U'{:,,tR[A'f} i> "fob)" 

,·\ ~ku0::! men1<ir';" hi0r.'d.ifor i:; to 1:><: <:nm.Ni: tial( il1<0 ;;.>;:;ttm-

::;;;~~;·;~:'.,~i:~i!:l~~~i '.~;~l~n;~):;~~r~~ :;~::~~~,f ~\lh;w,~d stmml n;·,~,iwxy 
;\. ~i.1~~-t:~·t~t :·n~~~·f.:i(~1-y ~d::::n~~-~~,,:~f ~tnd ;~.~s-:x:~::~~:8'.-d ?.JB~.f.-..:-:d :::~s•.:::nF~ry ::',.$:~_ ..... 

miotH 1i.r-::: zn k~ i;;n:ilt(~ii hH HH~ il.m<H~1it 1ri' i~v<lH\~11!1;: mi;;rn<W~' ic; mA 
;;:,dlkciDH t<:> fi1l 1.trn €·~~qn<::;;t ·· 

A ~fatrn:d rn.~m<>ry kkn~ifkr <;;;ht~ fo:r k~'.J' b~,at { frfmr{ig & 
uic.ouu;JJ <H1<l ( _\'fmptg & Wf .. rxcu ) i>: ''trne"' 

.. 1 .. 



SHMGET(2) SHMGET(2) 

SEE ALSO 
intro(2), shmctl(2), shmop(2). 

DIAGNOSTICS 
Upon successful completion, a non-negative integer, namely a shared memory 
identifier is returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error. 

7/85 - 2 - 7/85 



;ibxn::;·,p ... S:1'M<::<l m<::m<)f)' :.)~WriHi<:>.M 

'.H'N~:ws~t~ 

#fodm~ <e-;,~·~/~.~~!i--~> 
#fod~w < ~,,1~/i'!'"' b: "'• 
'iflnd~™'. < ~;;>~lili~,[i > 
,;:t,mf "mmll!! (~!tmM, ~hm.~d!lJ, ~1!1m~~J 
!~! '.~hw.'ld; 
('hSir ~~b:ru:lid~r 
i~ii ~h~~{lg:; 

fart &hmd~ ("'!ui:1&dd:~} 

d!iM· "'!!nt~&:ihk 

nnSCRH''lF>N 
s·hn~u~~ ~rHa~J:.{~$ ~.ht ~Jsa.r~~cl tn{~fn~~fY ~>t~in~n~ .~~~:::o•d%t:-;-:<~ ·~~dih ~h::;. ~h~~n::;d ~nt;fft~:Jry 
i{knW';.,n :+0ciik~i hy "-f1mid h) n:,~; tbt>; $~~g:rn;:;it <)f :)m (:>i.lifog pt'o<;'~""'· Th:~ ~'.':~­
:n~:nt i~ sw:c:.dicd ::Jl iht 1i.&h-<!:% s.p<·~,:Hh::d by {>fr;; of tk: foik•wing ''ri!.Mb,: 

~J :s·h..'(,,-:v.~ddt· ~~~~ ~~1~.r:.;d t<~ ·;~:~::ro~ the .~<::~~n~.i~:n~: ·t:~t. {1tt:~.tfa~~d ~~t th.:~ fir~t ::~~~'~nk:b~~; 
::3.zidr":;::;~.:: ~~~: 3~~~01,J:~~d by th0 ~:y~t~no. 

ff :,hm;w'dr i~ rn.;t t'.;rn"i w w•·;:, ;Hid: (,fi--n/fo & :'<HM: :!l:'llH~ ,;,~ ''1.t'n('.''\ tk 
s-:~~~~:r:.tn~: ~:~ ~:.i'l:::$C:~l~~d ~~~ th~~ ~s:;.i.dt~5~~:; g~:v(::~ b)· {!ih.~1:~fi~<~dr ··_ (~;hn~q~Jdr r:n-<.>::h1h.10 
Sfl:l,:~ L~r<}) 

H sh~?rnddr i~ ')l;i{. ~;q~~~*i i:{l 11::.::::. fHH} isiimffg & SHl\·~J.!.ND) :~; "fi:il:::~<, fo1:; 

:;,.1~.,gffic·c~i ~& att~~Gh·~:d ~~~. 1.~~0 ~:.ddr~::!~& ~~.i·t/~~r. by /ih?~-:.add~""-

T1;c :;~1'(llWlH !::; :ut~KtH~d few r~;;~~fa~f! if t~f<m/./g & ~HM .. ~i'!ii)N.t't') is '\me" :::{f,\Di, 
<ltlRni:'~~'~ it i~ :::nz<:tl!~{i f:w tN~dii:i~ irnd writh~g i;lU·:,~J)/\VlffffJ 
.SfH·n:::d -;.,\1Dl f:~.H ::rrid n-:>t. ~~t.~:~~;;.::!h d~~ =:;.h:::-f<.:-d. rn:en:~~:-i:1·y ~t-:~}n<.:-l'H ff ~:::n.c. :.;r mor~;: ~:)f t::e 
fr:lh·;;.:·hg ~tn'.. ~nic: 

{')~x::f.::..tk:i:n r>-~rfr.:k~s.~un :.~; d>:.~:fl.i;;:x} t.<:· ~-h~: ~..:<±H;::ri.s;:. pi{.){:.e~ ... s f~~e: 
~)~~~P~> { 2)) , 

l'h::;· a~.B~·t::Jht:;;,,;-: d<Ha :~{.p:~{:{.°:· i::J ~8~}t :::8.tt~: ::~n~>U.§h ~~} ac;{;f:~r:x~~"1d~st{:: i:ht:.. 
~;_h;~N~d ~H¢r;~·H>ty ~;~~/~-J,.t;:::'tS-n 

Sh::;;;,1(&:dd? ~.s ~~ot t:ifual ~~:: :;?:t:t<~ .. :B·t~ ~:i~:¢ "'"b .. a~n~: <Jf t~·h~tt.t-UJ.d.dr .,. 
bhmaddr m<:oddnt< SHMU'lkn ~" ;rn ill~.g:il il<hh~\%. 

SJ;<,<?i#>fl i~~ :\{ii; t~1ud l~) :rnrn .. (:1:fm:;#,~ ? SH\~)t'l<U} b ''fah<::''. 
~n~d ·~h~:: ~;·~~h~(; ~::t ;~};:(t~~~~~·htt .;8 ~~n :~~~;~-~it· ~t~lcn·i~~:s. 

Tii<~ :rnmh:o:r c:if $fHm:.:\ n:':(:rn<:i:'} :;qtff':t)i'\i.~ '~t~z:dl<~d ~() Hw i;:~1lEng 
p~<~::;:~:~;. w-<:?:~td ~·~i!J~:::·ed th~: r;~y~,:.te·:·~~--.~mr,:-:«t~d ~hH~.L 

,)'Mmh' ~fo~,1},'\i¢~ fr<:>~ll ~bt; (·,~!Fr:f\ p~·<;i;;::t;S{~ (faH ~t'.g::ii,;:tH !.h<:: $hi'!Ni>~ 

r::::tw~m·y (o(l1\m~iH !<:~:<ik<l M the ~;:ddto~r, ;;podlb:l by ,>l'ifYwddr, 

.Yhmdt ..• ,,.rn :foil .&8id iirn. <l('.bdi th~~ ~d;w-.. ~<l m<::fE:iory ,."~wm}n~ if 
:;;f)n·;:~·uid.r fa r::~~~ t::h<~ ~:~;~,t:> ~i~~J~Jx~·a.~ ~H.»st addr~.::~::: ~~f ~~ $h:;~n::d r~tt'.n-~nr::i· 

~<"f!inimt 



SHMOP(2) SHMOP(2) 

SEE ALSO 
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2). 

DIAGNOSTICS 

7/85 

Upon successful completion, the return value is as follows: 

Shmat returns the data segment start address of the attached shared 
memory segment. 

Shmdt returns a value of 0. 

Otherwise, a value of -1 is returned and errno is set to indicate the error. 

- 2 - 7/85 



6'VNDHW 
#fa1dmk <~$~t.~ :::> 

l.~t h&~i;l~~§ (Jli.~., t~1dl 0 

$i~. ">% 
wM ~\:fwd i}:; 

m~s,r~R~{9lK* 
;:>·~;~·~~::::} i~~~~.~~:·$ ~:fa<: ::;:~th~~:~: ~~:t~7"~:t$;:} ~}.~ >~:,h<x:.~:x:: ;:}~~~~ :::~:f d~s:~;~ l'«::~.y:;: ~:~~ ::.:--::~)~::.~: :A h~ p~>?:~:~t~:~ 
t::·: ~midfa :fo::: rn:"•::i:f!. <i ::i S:fmdJs:c: H~:~H). S.it ~:r)':;dJk~ tk~ ~:i:;;,w:::ii =ilW1 /iM~:::· :;:ps::::.:Yk~ 
th~~ ~::~~:{Jk-~. 

Sit qi~ t•;i <1,;&i~n~l <my <mi::: iif th<> fril~W-*'~(\f.!: :;i:);rnj:~t $WKU.:t: 

smHVP (): ~;:$.t!:f:'&:p 
%H~;fNT frt i$:kt~ti.W 
~:H:;:Q!:}fl i:lY' ::ph 
~:m:ru... fH" Hkf::as iln:W~:;:;ti:m~ fo>i::: ~:iei'<~> wh@i :nrn#::J 
:::;:w:ri:~-*i (Vi* tn:M trnr fr~N N:::::d wfa~~ <;,r:4~A:J 
sn:;:gn (!ti* mr ir.:s~nH.:tk::::i 
!Y<!l.ll!:Mr (H* ~i.M.l iM~nwtim\ 
§;!CFPt 1)$~ tlr::>t~li:ig p~ini Z::n::q;)lkm 
:M'O~:ll.t. 09 MH {;~.;rn:iid h<i :;::::::::,<~}1~ :ir 1~:{::~~t:i::iP 
:~l:G~:U$ H}~ ~~M ::::i·i·M· 

::;;:H:~'!i<Ffr~' j: l'~· ~<':tJY.<i:::'*Wiw::: ·d:dMi:m':: 
&K~'?iiY§ :: }~· h::d M?i~H;::;:~;.::;::1 t::::: ;:::F*:;:;:;:~~ ~:dl 

!':'ll't;npf l :): w·r\tt: ,,~~ :~, WM wMi ~w N11:. Vi M~l(l i:. 
MC~tRM l~ iihrm df~;~ 
~ivn;!*:u \ ", ~<lf!Wi\rn \j:;'.rmi11::r:.h·m ~i:~u~i 

;:i~i:~:~ :1 ::~;~:::.::::~~~ :::;;:;: :~ 
&WCtJ'.i lt &~;:Ht d ~:: ::::bM 

(:;:~~· ff:~Af.~.?*::f:~i:~7 %:··.~d<~~~;) 

~=~~~,~:~Nt:'<'C ikA>~} 
S~::i:: 1"*'k:w- :fnr th~:: i;):tsr:Jk:;rn~::t:: nf th<l ;~H1.::d~k t:~:i iW tb~: ~b:O:)'.\ii~ fat. 

~:~::>:::;:::;,:-i;;;;:~~l;~::~,~;:;;;.;l ~::. ;~~:~:~ ,;,:l::~t:~f;~::~;~:;:,;:;~.;it;y::N,. or .;~ ftmrikw dhi:..H. 

$~~{~ J}ft ...,.,. t>:;::r~~:?.:~}~*{~~ ~~~:::::-~~=:~~::::::: :~~J~:~~ -~·::.::~::~dp::: :::~r -:~. ~~t:::::;~:~ 
tJ~»ti :r~,;;:~:::rii. & d~;;;, :s:i:f~>il'!: :;:fr<:: n~:::':~:h::~::>K i:;:r·;:\ti:;:;:;@: h -~'''' k ~~r·r.~iil::n~A 
*Ath ::}:B ·::i· ~:h;;::: ~:::::~~:::~m:~:::..-:K.~~~;~-:::~. ·::~~~#.~~~:~( k~ e."i$it: ~~)~} .. h~ ::~.~hh~::::::~::::: ~~ '"\::~:;:{:;~:: 
:,:,:mi,*w,'·' ~"';,n k ~irn8k in th~ ,;::lit:!.'~m w,,,,.,.iiJi:~: -::hrnnw:y -::::{ th:;;:, t~:::;:h:~r':f 
~m::«~o1;;;;;~ ff :Ri:f b ~rn'; fo:r wll:idi Ml :M!>n:-hk >i:p~:~n ii> tl'\::i >~bi}''~ fat ::~;·id 
ih(~ foHowfa~ ~~rnditk::m :&,.t rn~t: 

Th dfociht: \l<iM lf:l M~d tk rn;'{i MN m dN r~;>.~d>.:iJ>t;, rw· 
.:;}%$ ~~~~ ~::;f~~.~ . 

. ~\;:) ~:~r~~:i1t~~~.r~:: ·~u~ '.::~~~.~~:::~==:~ t:~~~~ ~~:;r(:K;;t~. ::~·:==~~f:: :~::;. ·~~:·~::;~:ih~t· ·:'.:::t -::::~:=·~ ~:~:: 

~::~wdd. H !:k: o~: Wf::::a -~% ':tWH:t~k k hHt. ~b fol:i'\iiht 
p>.·:::spc:::h:h":::;:: 



SIGNAL(2) SIGNAL(2) 

SIG_IGN - ignore signal 

a mode of 0666 modified by the file creation mask 
(see umask(2)) 

a file owner ID that is the same as the effective user 
ID of the receiving process. 

a file group IlD that is the same as the effective group 
ID of the receiving process 

The signal sig is to be ignored. 

Note: the signal SIGKILL cannot be ignored. 

function address - catch signal 
Upon receipt of the signal sig, the receiving process is to execute the 
signal-catching function pointed to by June. The signal number sig will be 
passed as the only argument to the signal-catching function. Additional 
arguments are passed to the signal-catching function for hardware­
generated signals. Before entering the signal-catching function, the value 
of June for the caught signal will be set to SIG _DFL unless the signal is 
SIGILL, SIGTRAP, or SIGPWR. 

Upon return from the signal-catching function, the receiving process will 
resume execution at the point it was interrupted. 

When a signal that is to be caught occurs during a read, a write, an open, 
or an ioctl system call on a slow device (like a terminal; but not a file), 
during a pause system call, or during a wait system call that does not 
return immediately due to the existence of a previously stopped or zombie 
process, the signal catching function will be executed and then the inter­
rupted system call may return a -1 to the calling process with errno set to 
EINTR. 

Note: 'fhe signal SIGKILL cannot be caught. 

A call to signal cancels a pending signal sig except for a pending SIGKILL signal. 

Signal will fail if sig is an illegal signal number, including SIGKlLL. [JEINVAL] 

SEE ALSO 
kill(2), pause(2), ptrace(2), wait(2), setjmp(3C). 
kill(l) in the AT&T 3B2 Computer User Reference Manual. 

WARNING 

7/85 

Two other signals that behave differently than the signals described above exist in 
this release of the system; they are: 

SIGCLD 18 death of a child (reset when caught) 
SIGPWR 19 power fail (not reset when caught) 

There is no guarantee that, in future releases of the UNIX system, these signals will 
continue to behave as described below; they are included only for compatibility with 
other versions of the UNIX system. Their use in new programs is strongly 
discouraged. 

For these signals, June is assigned one of three values: SIG DFL, SIG IGN, or a 
function address. The actions prescribed by these values of are-as follows~ 

SIG_DFL - ignore signal 
The signal is to be ignored. 

- 2 - 7/85 



./\:~~<::~"=:~;:;~: ·~>:l.:.:f::.::;;::~:::: ... <~:;~t~A~ :$:;:~:~~:;~~ 

H tfi:<.' ~~tM:J H 'i:m:;r:1\\'R t% wAbl'' Z{i b rnh@ b the: mm:::' <~s tirnt 
d>~~:;tJSo$f:d ~~ };~:~?:~~ f~:~f ./~>?,(' ~~~:~~~~d ~;::::: .f'~·,(~f#(>'({. ~i~;~~~~.;-~~.'K~· · ··rh:t ::»e:::;::~:;:~ ~::; ~-~~:<~· ~:f 

th;;: S*i{}rn! !~< :":{WCtll 0~1;:<.':pt. ilt::ii whih i'h~ pt(:>(;Z'% b i:::~%'':llit1E:, th0 
?,igiH~! .... <%tdU1t f's.Hldi<:m, Ml} rnwd~W! ;gg(/'U) sign.:?.ii:< wW !X~ qw:iw<l <H~d 
di<:: ~;.i.!J'.i:!i~k:::n.dliii:t fi~ll{::ti{!!' -,~HI \'<Ii' 1::;:iiiili'lll~iny t¢:Z'i\!:~~N)d llii!H !ht <(il0>.i>i$ 

i$ ;;:,inpi:y. 

Tt:::: %!f;>:::tJHJfo~:n i<.<:-,:: :Al~~ n-~'~"'r:'' ;!;ilh f~,:;dd:i':L .:::xd ~%i~en ;,,;, dw f:x\h::;;,+ilt 

:~~;.;i~~;~~~.!:;::~>.l:,,;~~lz:~!;~,;~·:;:si:~· ,~'.~~il1::~5:i;:;~.::: .. ~~·~::,~l~;~!;::~:~~~~~~~-:~;7;~,,:;~ 
it wiH ~h:Ni Mt>.~ttl ::>. ~rnhw d ·""") wl<.f .,i:.o-,o;% $¢~ !<> f(HiU:l 

ff il1 l!W !}'.l:Hi~g t)t-;;;t'~'~ p:;nmt r.~n~~~':M i.ht fum.' r~iirn (l{ SJGflH b ~;e;1 
l:(l Slti .. WN .. t!w t~::i.ihi.il ))(~X:k~:% wili: ;:::,\;•! m·:;:mt~ <~ r~~m.bk Pf<:O(:'!:%.· 

;:~~~~:~ ~:;:i<::t:<!:i,;:,t,:,~t;:~-~%;::~,;:'.·:;:dl :~ll;:~~~:,~,'.!i:',it:.~l .~:~~,~~ i:~&i~~ ;;:,;;:·1i0,;' :~;~ 
:~~:::~~:~~:?:::c~t (~~~:d thS:}.:::: :~w::::::n~::::: ~.ht p:.~:n~::=::~: =::::f <::~h::;::~· ~:~~\:-.:;::~~::;;:.;::°!;:::;} si~~·~~~.~>J ~~::::~;~:: (::~::·~·:::;: r.::<>~ }<:: 
:::#: M·V: LU :;:;:· h~ ;::::W.#K 

n 1 An ="<K~':ff::cs 
tr~~;~~$ ~l'U;¢:¢;<~~;::;.n;Sf ~)~>~~\~~h~t~<$~~:~ .$:(~~:?f1.°Ji' r~:::;~:(fi}'~, ~J:~~ t~~~·{hJ~j~'S 1,:~~h*~~ ~:4 /~~~f f::;:r: ~.~~ 
qx~nikd «i~,f!.;sl sig. Oi:hf:.1~wi:;::<.':, $ vaJw: d' ...... i b r-;~hHt~f.":l ';ntl efnw ·i$ ~N i:~i hHii.· 
::::i~ t~~ t.~~· ~rr>:~r ~ 





STAT(2) STAT(2) 

NAME 
stat, fstat - get file status 

SYNOPSIS 
#include <sys/typesJ1> 
#include <sys/stat.h> 

mt stat (path, buf) 
char •path; 
strnct stat •buf; 

int fstat (tildes, buf) 
int tildes; 
struct stat •buf; 

DESCRIPTION 

7/85 

Path points to a path name naming a file. Read, write, or execute permission of the 
named file is not required, but all directories listed in the path name leading to the 
file must be searchable. Stat obtains information about the named file. 

Similarly, /stat obtains information about an open file known by the file descriptor 
fildes, obtained from a successful open, creat, dup,fcntl, or pipe system call. 

Buf is a pointer to a stat structure into which information is placed concerning the 
file. 

The contents of the structure pointed to by buf include the following members: 
ushort st_mode; /• File mode; see mknod(2) •I 
ino t st_ino; /• Inode number •/ 
dev t st_dev; /• ID of device containing •/ 

dev t 

short 
ushort 
ushort 
off t 
time t 
time t 
time_t 

st_rdev; 

st_nlink; 
st_uid; 
st_gid; 
st_size; 
st_atime; 
st_mtime; 
st_ctime; 

I• a directory en try for this file • / 
I• ID of device •/ 
/• This entry is defined only for •/ 
I• character special or block special files •/ 
I• Number of links •/ 
I• User ID of the file's owner •/ 
I• Group ID of the file's group •/ 
/• File size in bytes •/ 
I• Time of last access •/ 
I• Time of last data modification •/ 
I• Time of last file status change •/ 
I• Times measured in seconds since •/ 
I• 00:00:00 GMT, Jan. 1, 1970 •/ 

st_atime Time when file data was last accessed. Changed by the following system 
calls: creat (2), mknod (2), pipe (2), utime (2), and read (2). 

st mtime Time when data was last modified. Changed by the following system 
calls: creat (2), mknod (2), pipe (2), utime (2), and write (2). 

st ctime Time when file status was last changed. Changed by the following sys­
tem calls: chmod (2), chown (2), creat (2), link (2), mknod (2), pipe (2), 
unlink (2), utime (2), and write (2). 

Stat will fail if one or more of the following are true: 

[ENOTDIR] A component of the path prefix is not a directory. 

[ENO ENT] The named file does not exist. 

- 1 - 7/85 



STAT(2) STAT(2) 

[EACCES] 

[EFAULT] 

Search permission is denied for a component of the path prefix. 

Buf or path points to an invalid address. 

Fstat will fail if one or more of the following are true: 

[EBADF] Fi/des is not a valid open file descriptor. 

IEFAULTI Buf points to an invalid address. 

SEE ALSO 
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2), 
unlink(2), utime(2), write(2). 

DIAGNOSTICS 

7/85 

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is 
returned and errno is set to indicate the error. 

- 2 - 7/85 



STIME(2) 

NAME 
stime - set time 

SYNOPSIS 
int stime (tp) 
long •tp; 

DESCRIPTION 

STIME(2) 

Stime sets the system's idea of the time and date. Tp points to the value of time as 
measured in seconds from 00:00:00 GMT January 1, 1970. 

[EPERM] 

SEE ALSO 
time(2). 

DIAGNOSTICS 

Stime will fail if the effective user TD of the calling process is not 
super-user. 

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is 
returned and errno is set to indicate the error. 

7/85 - 1 - 7/85 





SYNC(2) SYNC(2) 

NAME 
sync - update super block 

SYNOPSIS 
void sync ( ) 

DESCRIPTION 

7/85 

Sync causes all information in memory that should be on disk to be written out. 
This includes modified super blocks, modified i-nodes, and delayed block 110. 

It should be used by programs which examine a file system, for example fsck, df, 
etc. It is mandatory before a boot. 

The writing, although scheduled, is not necessarily complete upon return from sync. 

- l - 7/85 





SYS3B (2) SYS3B (2) 

NAME 
sys3b - machine specific function 

SYNOPSIS 
#include <sys/sys3b.h> 

int sys3b (cmd, argl, arg2, arg3) 
int cmd, argl, arg2, arg3; 

DESCRIPTION 
Sys3b implements machine specific functions. The cmd argument determines the 
function performed. The number of arguments expected is dependent on the func­
tion. 

Command S3BSYM 
When cmd is S3BSYM, the symbol table created during a seif-config boot process 
may be accessed. The symbols defined within the driver routines loaded and those 
created from the /etc/master file variable specifications are available via this com­
mand. Two arguments are expected; the first must be a pointer to a buffer into 
which the symbol table is copied, and the second must be an integer containing the 
total size of the buffer. The format of the symbol table is: 

int size; /* symbol size in bytes *I 
int nsyms; /* total number of symbols *I 

I* for each symbol ... *I 
char namell; /* name of symbol, padded with *I 

/* ' ' to next sizeofOong) *I 
/* boundary *I 

long value; /* value of symbol *I 

Typically, the symbol table would be retrieved with two calls to sys3b. First, the 
size of the symbol table is obtained by calling sys3b with a buffer of one integer. 
This integer is then used to obtain a buffer large enough to contain the entire sym­
bol table. The second invocation of sys3b with this newly obtained buffer retrieves 
the entire symbol table. 

#include <sys/sys3b.b> 

int size; 
struct s3bsym *buffer; 

/* size of buffer needed *I 
I* buffer pointer *I 

sys3b( S3BSYM, &size, sizeof(size) ); 
buffer = (struct s3bsym *) malloc( size); 
sys3M S3BSYM, buffer, size); 

Command S3BCONF 

7/85 

When cmd is S3BCONF, the configuration table created during a self-config boot 
process may be accessed. This table contains the names and locations of the devices 
supported by the currently running UNIX system, the names of all software modules 
included in the system, and the names of all devices in the EDT that were ignored. 
Two arguments are expected; the first must be a pointer to a buffer into which the 
configuration table is copied, and the second must be an integer containing the total 
size of the buffer. The format of the configuration table is: 

- 1 - 7/85 



SYS3B(2) SYS3B(2) 

int 

long 
char 
char 

dmr 

ndev; 

times tamp; 
namel14l; 
flag; 

board!; 

/* total number of entries *I 

/* for each entry ... *I 
/* f timdat from file header *I 
/* name of device/module *I 
/* configuration information *I 
/* Ox80: device ignored *I 
/* Ox40: name!! is a driver *I 
/* Ox20: namell is a software module *I 
/* local bus address of device *I 

Typically, the configuration table would be retrieved with two calls to sys3b. First, 
the number of entries is obtained by calling sys3b with a buffer of one integer. This 
integer is then used to calculate and obtain a buffer large enough to contain the 
entire configuration table. The second invocation of sys3b with this newly obtained 
buffer retrieves the configuration table. 

#include <sys/sys3b.h> 

int count; 
int size; 
strnct s3bconf *buffer; 

/* total mm1ber of devices *I 
I* size of lmffer needed *I 
/* buffer pointer *I 

sys3b( S3BCONF, &conmt, sizeof(co1.mt) ); 
size = sizeof(int); 
size + = count * sizeof(struct s3bd; 
buffer = (strnct s3bconf *) malloc( size ); 
sys3b( S3BCONF, buffer, size); 

Command S3BBOOT 
When cmd is S3BBOOT, the timestamp and boot program path name used for a 
self-config boot process may be accessed. The path name of the a.out format file 
which was booted, and the timestamp from the file header (see a.out (4)) are saved. 
One argument is expected; a pointer to a buffer into which the information is 
copied. The format of this information is: 

long timestamp; /* f timdat from file header *I 
char pathl100l; /* path name *I 

This information would be retrieved with a single call to sys3b. 

#include <sys/sys3b.h> 

struct s3bboot buffer; /* buffer *I 

sys3b( S3BBOOT, & buffer); 

Command S3BAUTO 

7/85 

When cmd is S3BAUTO, no arguments are expected. This function returns a 
boolean value in answer to the question "was the last boot an auto-config boot or 
was a fully configured file booted?". The value returned is zero if a fully configured 
file (such as /unix) was booted. The integer value 1 is returned if the preceeding 
boot was an auto-config boot. 

- 2 - 7/85 



SYS3B (2) SYS3B(2) 

Command S3BBFPHW 
When cmd is S3BFPHW, an indication of whether or not a MAU is present is 
made. One argument, the adddress of a int, is expected. On return from the sys­
tem call, this int will contain a 1 if a MAU is present or a 0 if a MAU is not 
present. If the address of the int is not valid (i.e. not word aligned, not user accessi­
ble, etc.) EFAULT will be returned. 

To determine whether a MAU is present, the following should be done: 

#include <sys/sys3b.b> 

int mau _present; 

sys3b(S3BFPHW, & mau _present); 

SEE ALSO 
sync(2), a.out(4). 

DIAGNOSTICS 

7/85 

Upon successful completion, the value returned depends on cmd as follows: 
S3BSYM A value of zero. 
S3BCONF A value of zero. 
S3BBOOT A value of zero. 
S3BAUTO A value of zero if a fully-configured file (such as /unix) 

was booted. A value of one if an auto-config boot was 
performed. 

Otherwise, a value of -1 is returned and errno is set to indicate the error. When 
cmd is invalid, a SJGSYS signal is generated (and errno is set to EI NV AL). 

- 3 - 7/85 





TIME(2) TIME(2) 

NAME 
time - get time 

SYNOPSIS 
long time ((long •) 0) 

long time (tloc) 
long .. tloc; 

DESCRIPTION 
Time returns the value of time in seconds since 00:00:00 GMT, January 1, 1970. 

If tloc (taken as an integer) is non-zero, the return value is also stored in the loca­
tion to which tloc points. 

[EFAULT] Time will fail if tloc points to an illegal address. 

SEE ALSO 
stime(2). 

DIAGNOSTICS 

7/85 

Upon successful completion, time returns the value of time. Otherwise, a value of 
-1 is returned and errno is set to indicate the error. 

- l - 7/85 





TIMES(2) TIMES(2) 

NAME 
times - get process and child process times 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/times.h> 

long times (buffer) 
struct tms •buffer; 

DESCRIPTION 
Times fills the structure pointed to by buffer with time-accounting information. 
The following are the contents of this structure: 

struct tms { 

}; 

time_t tms_utime; 
time_t tms_stime; 
time t tms_cutime; 
time t tms_cstime; 

This information comes from the calling process and each of its terminated child 
processes for which it has executed a wait. All times are in 60ths of a second on 
DEC processors, 1 OOths of a second on AT&T processors. 

Tms_utime is the CPU time used while executing instructions in the user space of 
the calling process. 

Tms _stime is the CPU time used by the system on behalf of the calling process. 

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes. 

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes. 

[EFAULTI Times will fail if buffer points to an illegal address. 

SEE ALSO 
exec(2), fork(2), time(2), wait(2). 

DIAGNOSTICS 

7/85 

Upon successful completion, times returns the elapsed real time, in 60ths (lOOths) 
of a second, since an arbitrary point in the past (e.g., system start-up time). This 
point does not change from one invocation of times to another. If times fails, a -1 
is returned and errno is set to indicate the error. 

" 1 " 7/85 





UADMIN(2) UADMIN(2) 

NAME 
uadmin - administrative control 

SYNOPSIS 
#include <sys/uadmin.h> 

int uadmin (cmd, fen, mdep) 
int cmd, fen, mdep; 

DESCRIPTION 
Uadmin provides control for basic administrative functions. This system call is 
tightly coupled to the system administrative procedures and is not intended for gen­
eral use. The argument mdep is provided for machine-dependent use and is not 
defined here. 

The commands available as specified by emd are: 

A_SHUTDOWN The system is shutdown. All user processes are killed, the buffer 
cache is flushed, and the root file system is unmounted. The action 
to be taken after the system is shutdown is specified by fen. The 
functions are generic, on specific machines the hardware capabili­
ties will vary. 

AD_ HALT Halt the processor and turn off power. 

AD BOOT Reboot the system, use /unix. 

AD _!BOOT Interactive reboot, prompt for system name. 

A_REBOOT The system stops immediately without any further processing. The 
actton io be taken next is specified by fen as above. 

A_REMOUNT The root file system is mounted again after having been fixed. 
This should only be used during the startup process. 

Uadmin will fail if any of the following are true: 

[EPERM] The effective user ID is not super-user. 

DIAGNOSTICS 

7/85 

Upon successful completion, the value returned depends on emd as follows: 

A SHUTDOWN 
A REBOOT 
A_REMOUNT 

Never returns. 
Never returns. 
0 

Otherwise, a value of -1 is returned and errno is set to indicate the error. 
mount(2). 

- 1 - 7/85 





ULIMIT(2) UUMIT(2) 

NAME 
ulimit - get and set user limits 

SYNOPSIS 
long ulimit (cmd, newlimit) 
int cmd; 
long newlimit; 

DESCRIPTION 
This function provides for control over process limits. The cmd values available are: 

1 Get the file size limit of the process. The limit is in units of 512-byte blocks 
and is inherited by child processes. Files of any size can be read. 

2 Set the file size limit of the process to the value of newlimit. Any process 
may decrease this limit, but only a process with an effective user ID of super­
user may increase the limit. Ulimit will fail and the limit will be unchanged 
if a process with an effective user ID other than super-user attempts to 
increase its file size limit. [EPERM] 

3 Get the maximum possible break value. See brk (2). 

SEE ALSO 
brk (2), write (2). 

DIAGNOSTICS 

7/85 

Upon successful completion, a non-negative value is returned. Otherwise, a value of 
-1 is returned and errno is set to indicate the error. 

- 1 - 7/85 





UMASK(2) 

NAME 
umask - set and get file creation mask 

SYNOPSIS 
int umask (cmask) 
int cmask; 

DESCRIPTION 

UMASK(2) 

Umask sets the process's file mode creation mask to cmask and returns the previous 
value of the mask. Only the low-order 9 bits of cmask and the file mode creation 
mask are used. 

SEE ALSO 
chmod (2), creat (2), mknod (2), open (2). 
mkdir(l), sh(l) in the AT&T 3B2 Computer User Reference Manual. 

DIAGNOS'flCS 
The previous value of the file mode creation mask is returned. 

7/85 - 1 - 7/85 





UMOUNT(2) 

NAME 
umount - unmount a file system 

SYNOPSIS 
int umount (spec) 
char •spec; 

DESCRIPTION 

UMOUNT(2) 

Umount requests that a previously mounted file system contained on the block spe­
cial device identified by spec be unmounted. Spec is a pointer to a path name. 
After unmounting the file system, the directory upon which the file system was 
mounted reverts to its ordinary interpretation. 

Umount may be invoked only by the super-user. 

Umount will fail if one or more of the following are true: 

[EPERM] 

[ENXIO] 

[ENOTBLK] 

[EINVAL] 

[EBUSY] 

[EFAULT] 

SEE ALSO 
mount(2). 

DIAGNOSTICS 

The process's effective user ID is not super-user. 

Spec does not exist. 

Spec is not a block special device. 

Spec is not mounted. 

A file on spec is busy. 

Spec points to an illegal address. 

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 1s 
returned and errno is set to indicate the error. 

7/85 - 1 - 7/85 





UNAME(2) UNAME(2) 

NAME 
uname - get name of current UNIX system 

SYNOPSIS 
#include <sys/utsname.h> 

int uname (name) 
struct utsname •name; 

DESCRIPTION 
Uname stores information identifying the current UNIX system in the structure 
pointed to by name. 

Uname uses the structure defined in <sys/utsname.h> whose members are: 

char sysname[9]; 
char nodename[9]; 
char release[9]; 
char version[9]; 
char machine[9]; 

Uname returns a null-terminated character string naming the current UNIX system 
in the character array sysname. Similarly, nodename contains the name that the 
system is known by on a communications network. Release and version further 
identify the operating system. Machine contains a standard name that identifies the 
hardware that the UNIX system is running on. 

[EFAULT] Uname will fail if name points to an invalid address. 

SEE ALSO 
uname(l) in the AT&T 3B2 Computer User Reference Manual. 

DIAGNOSTICS 

7/85 

Upon successful completion, a non-negative value is returned. Otherwise, -1 is 
returned and errno is set to indicate the error. 

- l - 7/85 





UNUNK(2) UNLINK(2) 

NAME 
unlink - remove directory entry 

SYNOPSIS 
int unlink (path) 
char •path; 

DESCRIPTION 
Unlink removes the directory entry named by the path name pointed to be path. 

The named file is unlinked unless one or more of the following are true: 

[ENOTDIR] A component of the path prefix is not a directory. 

[ENOENTI 

[EA CC ES] 

[EACCES] 

[EPERM] 

[EBUSY] 

[ETXTBSY] 

[EROFS] 

The named file does not exist. 

Search permission is denied for a component of the path prefix. 

Write permission is denied on the directory containing the link to 
be removed. 

The named file is a directory and the effective user ID of the pro­
cess is not super-user. 

The entry to be unlinked is the mount point for a mounted file sys-
tem. 

The entry to be unlinked is the last link to a pure procedure 
(shared text) file that is being executed. 

The directory entry to be unlinked is part of a read-only file sys-
tem. 

[EFAULT] Path points outside the process's allocated address space. 

When all links to a file have been removed and no process has the file open, the 
space occupied by the file is freed and the file ceases to exist. If one or more 
processes have the file open when the last link is removed, the removal is postponed 
until all references to the file have been closed. 

SEE ALSO 
close (2), link (2), open (2). 
rm(l) in the AT&T 3B2 Computer User Reference Manual. 

DIAGNOSTICS 

7/85 

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is 
returned and errno is set to indicate the error. 

- 1 - 7/85 





USTAT(2) 

NAME 
ustat - get file system statistics 

SYNOPSIS 
#include <sys/types.b> 
#include <ustat.h> 

int ustat (dev, buf) 
int dev; 
strnct ustat •buf; 

DESCRIPTION 

USTAT(2) 

Ustat returns information about a mounted file system. Dev is a device number 
identifying a device containing a mounted file system. Ruf is a pointer to a ustat 
structure that includes to following elements: 

daddr t f tfree; /• Total free blocks •/ 
ino t - ftinode; /•Number of free inodes •/ 
char ffname[6]; /• Filsys name•/ 
char (fpack[6]; /* Filsys pack name•/ 

Ustat will fail if one or more of the following are true: 

[EINVALI Dev is not the device number of a device containing a mounted file 
system. 

[EFAULT] 

SEE ALSO 

Ruf points outside the process's allocated address space. 

stat(2), fs(4). 

DIAGNOSTICS 

7/85 

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is 
returned and errno is set to indicate the error. 

- 1 - 7/85 





UTIME(2) UTIME(2) 

NAME 
utime - set file access and modification times 

SYNOPSIS 
#include <sys/types.h> 
int utime (path, times) 
char •path; 
struct utimbuf •times; 

DESCRIPTION 
Path points to a path name naming a file. Utime sets the access and modification 
times of the named file. 

If times is NULL, the access and modification times of the file are set to the current 
time. A process must be the owner of the file or have write permission to use utime 
in this manner. 

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and 
the access and modification times are set to the values contained in the designated 
structure. Only the owner of the file or the super-user may use utime this way. 

The times in the following structure are measured in seconds since 00:00:00 GMT, 
Jan. 1, 1970. 

struct utimbuf 

}; 

time t actime; 
time t modtime; 

I• access time •/ 
I• modification time •/ 

Utime will fail if one or more of the following are true: 

[ENOENT] The named file does not exist. 

[ENOTDIR] 

[EACCES] 

[EPERM] 

[EACCES] 

[EROFS] 

[EFAULT] 

A component of the path prefix is not a directory. 

Search permission is denied by a component of the path prefix. 

The effective user ID is not super-user and not the owner of the file 
and times is not NULL. 

The effective user ID is not super-user and not the owner of the file 
and times is NULL and write access is denied. 

The file system containing the file is mounted read-only. 

Times is not NULL and points outside the process's allocated 
address space. 

[EFAULT] 

SEE ALSO 

Path points outside the process's allocated address space. 

stat(2). 

DIAGNOSTICS 

7/85 

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is 
returned and errno is set to indicate the error. 

- 1 - 7/85 





WAIT(2) WAIT(2) 

NAME 
wait - wait for child process to stop or terminate 

SYNOPSIS 
int wait (stat Joe) 
int •stat Joe; 

int wait ((int •)0) 

DESCRIPTION 
Wait suspends the calling process until until one of the immediate children ter­
minates or until a child that is being traced stops, because it has hit a break point. 
The wait system call will return prematurely if a signal is received and if a child 
process stopped or terminated prior to the call on wait, return is immediate. 

If stat loc (taken as an integer) is non-zero, 16 bits of information called status are 
stored In the low order 16 bits of the location pointed to by stat _foe. Status can be 
used to differentiate between stopped and terminated child processes and if the child 
process terminated, status identifies the cause of termination and passes useful infor­
mation to the parent. This is accomplished in the following manner: 

If the child process stopped, the high order 8 bits of status will contain the 
number of the signal that caused the process to stop and the low order 8 
bits will be set equal to 0177. 

If the child process terminated due to an exit call, the low order 8 bits of 
status will be zero and the high order 8 bits will contain the low order 8 bits 
of the argument that the child process passed to exit; see exit (2). 

If the child process terminated due to a signal, the high order 8 bits of 
status will be zero and the low order 8 bits will contain the number of the 
signal that caused the termination. In addition, if the low order seventh bit 
(i.e., bit 200) is set, a "core image" will have been produced; see signal (2). 

If a parent process terminates without waiting for its child processes to terminate, 
the parent process ID of each child process is set to 1. This means the initialization 
process inherits the child processes; see intro (2). 

Wait will fail and return immediately if one or more of the following are true: 

!ECHILD] The calling process has no existing unwaited-for child processes. 

[EFAULT] Stat_loc points to an illegal address. 

SEE ALSO 
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2). 

WARNING 
See WARNING in signal (2). 

DIAGNOSTICS 

7/85 

If wait returns due to the receipt of a signal, a value of -1 is returned to the calling 
process and errno is set to EINTR. If wait returns due to a stopped or terminated 
child process, the process ID of the child is returned to the calling process. Other­
wise, a value of -1 is returned and errno is set to indicate the error. 

- 1 - 7/85 





WRITE(2) WRITE(2) 

NAME 
write - write on a file 

SYNOPSIS 
int write (fildes, buf, nbyte) 
int fildes; 
char •buf; 
unsigned nbyte; 

DESCRIPTION 
Fildes is a file descriptor obtained from a creat, open, dup, Jent/, or pipe system 
call. 

Write attempts to write nbyte bytes from the buffer pointed to by buf to the file 
associated with the ft/des. 

On devices capable of seeking, the actual writing of data proceeds from the position 
in the file indicated by the file pointer. Upon return from write, the file pointer is 
incremented by the number of bytes actually written. 

On devices incapable of seeking, writing always takes place starting at the current 
position. The value of a file pointer associated with such a device is undefined. 

If the 0 _APPEND flag of the file status flags is set, the file pointer will be set to the 
end of the file prior to each write. 

For regular files, if the O _SYNC flag of the file status flags is set, the write will not 
return until both the file data and file status have been physically updated. This 
function is for special applications that require extra reliablity at the cost of perfor­
mance. Also, for block special files, if this flag is set, the write will not return until 
the data has been physically updated. 

Write will fail and the file pointer will remain unchanged if one or more of the fol­
lowing are true: 

[EBADF] Fi/des is not a valid file descriptor open for writing. 

[EPIPE and SIGPIPE signal] 

[EFBIG] 

[EFAULT] 

[EINTR] 

An attempt is made to write to a pipe that is not open for reading 
by any process. 

An attempt was made to write a file that exceeds the process's file 
size limit or the maximum file size. See ulimit (2). 

Buf points outside the process's allocated address space. 

A signal was caught during the write system call. 

If a write requests that more bytes be written than there is room for (e.g., the 
ulimit (see ulimit (2)) or the physical end of a medium), only as many bytes as 
there is room for will be written. For example, suppose there is space for 20 bytes 
more in a file before reaching a limit. A write of 512-bytes will return 20. The 
next write of a non-zero number of bytes will give a failure return (except as noted 
below). 

If the file being written is a pipe (or FIFO) and the O _NDELA Y flag of the file flag 
word is set, then write to a full pipe (or FIFO) will return a count of 0. Otherwise 
(O_NDELAY clear), writes to a full pipe (or FIFO) will block until space becomes 
available. 

SEE ALSO 
creat(2), dup(2), fcnt1(2), lseek(2), open(2), pipe(2), ulimit(2). 

7/85 - l - 7/85 



WRITE(2) WRITE(2) 

DIAGNOSTICS 
Upon successful completion the number of bytes actually written is returned. Oth­
erwise, -1 is returned and errno is set to indicate the error. 

7/85 - 2 - 7/85 



Replace this 

page with the 

Section 3 (Subroutines) 

tab separator. 





INTR0(3) INTR0(3) 

NAME 
intro - introduction to subroutines and libraries 

SYNOPSIS 
#include < stdio.h > 

#include < math.h > 

DESCRIPTION 
This section describes functions found in various libraries, other than those functions 
that directly invoke UNIX system primitives, which are described in Section 2 of this 
volume. Certain major collections are identified by a letter after the section 
number: 

(3C) These functions, together with those of Section 2 and those marked (3S), 
constitute the Standard C Library libc, which is automatically loaded by the 
C compiler, cc(l). The link editor /d(l) searches this library under the -le 
option. Declarations for some of these functions may be obtained from 
#include files indicated on the appropriate pages. 

(3S) These functions constitute the "standard I/O package" (see stdio (3S)). 
These functions are in the library libc, already mentioned. Declarations for 
these functions may be obtained from the #include file <stdio.h>. 

(3M) These functions constitute the Math Library, libm. They are automatically 
loaded as needed by the FORTRAN compiler f77(1). They are not automati­
cally loaded by the C compiler, cc(l); however, the link editor searches this 
library under the -Im option. Declarations for these functions may be 
obtained from the #include file <math.h>. Several generally useful 
mathematical constants are also defined there (see math (5)). 

(3X) Various specialized libraries. The files in which these libraries are found are 
given on the appropriate pages. 

(3F) These functions constitute the FORTRAN intrinsic function library, libF77. 
These functions are automatically available to the FORTRAN programmer 
and require no special invocation of the compiler. 

DEFINITIONS 

FILES 

7/85 

A character is any bit pattern able to fit into a byte on the machine. The null 
character is a character with value 0, represented in the C language as '\O'. A 
character array is a sequence of characters. A null-terminated character array is a 
sequence of characters, the last of which is the null character. A string is a desig· 
nation for a null-terminated character array. The null string is a character array 
containing only the null character. A NULL pointer is the value that is obtained by 
casting 0 into a pointer. The C language guarantees that this value will not match 
that of any legitimate pointer, so many functions that return pointers return it to 
indicate an error. NULL is defined as 0 in <stdio.h>; the user can include an 
appropriate definition if not using <stdio.h>. 

Many groups of FORTRAN intrinsic functions have generic function names that do 
not require explicit or implicit type declaration. The type of the function will be 
determined by the type of its argument(s). For example, the generic function max 
will return an integer value if given integer arguments (maxO), a real value if given 
real arguments (amaxl), or a double-precision value if given double-precision argu­
ments (dmaxl). 

/lib/libc.a 
/lib/libm.a 
/usr /lib/libF77 .a 

- 1 - 7/85 



INTR0(3) INTR0(3) 

SEE ALSO 
intro(2), stdio(3S), math(5). 
ar(l), cc(l), f77(1), ld(I), lint(!), nm(l) in the AT&T 3B2 Computer User Refer­
ence Manual. 

DIAGNOSTICS 
Functions in the C andl Math Libraries (3C and 3M) may return the conventional 
values 0 or ±HUGE (the largest-magnitude single-precision floating-point numbers; 
HUGE is defined in the <math.h> header file) when the function is undefined for 
the given arguments or when the value is not representable. In these cases, the 
external variable errno (see intro(2)) is set to the value EDOM or ERANGE. As 
many of the FORTRAN intrinsic functions use the routines found in the Math 
Library, the same conventions apply. 

WARNING 

7/85 

Many of the functions in the libraries call and/or refer to other functions and exter­
nal variables described in this section and in section 2 (System Calls). If a pro­
gram inadvertantly defines a function or external variable with the same name, the 
presumed library version of the function or external variable may not be loaded. 
The /int(!) program checker reports name conflicts of this kind as "multiple 
declarations" of the names in question. Definitions for sections 2, 3C, and 3S are 
checked automatically. Other definitions can be included by using the -I option 
(for example, -Im includes definitions for the Math Library, section 3M). Use of 
lint is highly recommended. 

- 2 - 7/85 



Replace th is 

page with the 

3C& 3S 

tab separator. 





A64L(3C) (C Programming Language Utilities) A64L(3C) 

NAME 
a641, 164a - convert between long integer and base-64 ASCII string 

SYNOPSIS 
long a641 (s) 
char •s; 

char •164a (I) 
long I; 

DESCRIPTION 

BUGS 

7/85 

These functions are used to maintain numbers stored in base-64 ASCII characters. 
This is a notation by which long integers can be represented by up to six characters; 
each character represents a "digit" in a radix-64 notation. 

The characters used to represent "digits" are. for 0, I for 1, 0 through 9 for 2-11, 
A through Z for 12-37, and a through z for 38-63. 

A64l takes a pointer to a null-terminated base-64 representation and returns a 
corresponding long value. If the string pointed to by s contains more than six char­
acters, a64 l will use the first six. 

L64a takes a long argument and returns a pointer to the corresponding base-64 
representation. If the argument is 0, l64a returns a pointer to a null string. 

The value returned by 164a is a pointer into a static buffer, the contents of which 
are overwritten by each calL 

- 1 - 7/85 





ABORT(JC) (C Programming Language Utilities) 

NAME 
abort - generate an IOT fault 

SYNOPSIS 
int abort ( ) 

DESCRIPTION 

ABORT(3C) 

Abort first closes all open files if possible, then causes an IOT signal to be sent to 
the process. This usually results in termination with a core dump. 

It is possible for abort to return control if SIGIOT is caught or ignored, in which case 
the value returned is that of the kill (2) system call. 

SEE ALSO 
exit (2), kill (2), signal (2). 
sdb(l) in the AT&T 3B2 Computer User Reference Manual. 

DIAGNOSTICS 

7/85 

If SIGIOT is neither caught nor ignored, and the current directory is writable, a core 
dump is produced and the message "abort - core dumped" is written by the shell. 

- 1 - 7/85 





ABS(3C) (C Programming Language Utilities) 

NAME 
abs - return integer absolute value 

SYNOPSIS 
int abs (i) 
int i; 

DESCRIPTION 
Abs returns the absolute value of its integer operand. 

SEE ALSO 
floor(3M). 

BUGS 

ABS(3C) 

In two's-complement representation, the absolute value of the negative integer with 
largest magnitude is undefined. Some implementations trap this error, but others 
simply ignore it. 

7/85 - 1 - 7/85 





BSEARCH (3C) (C Programming Language Utilities) BSEARCH (3C) 

NAME 
bsearch - binary search a sorted table 

SYNOPSIS 
#include < search.h > 
char •bsearch ((char •) key, (char •) base, net, sizeof (•key), compar) 
unsigned net; 
int (•compar)( ); 

DESCRIPTION 
Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It 
returns a pointer into a table indicating where a datum may be found. The table 
must be previously sorted in increasing order according to a provided comparison 
function. Key points to a datum instance to be sought in the table. Base points to 
the element at the base of the table. Ne! is the number of elements in the table. 
Compar is the name of the comparison function, which is called with two arguments 
that point to the elements being compared. The function must return an integer 
less than, equal to, or greater than zero as accordinly the first argument is to be 
considered less than, equal to, or greater than the second. 

EXAMPLE 

7/85 

The example below searches a table containing pointers to nodes cons1stmg of a 
string and its length. The table is ordered alphabetically on the string in the node 
pointed to by each entry. 

This code fragment reads in strings and either finds the corresponding node and 
prints out the string and its length, or prints an error message. 

#include <stdio.h> 
#include <search.h> 

#define TABSIZE 1000 

struct node { /• these are stored in the table •/ 

}; 

char •string; 
int length; 

struct node tablelTABSIZE]; I• table to be searched •/ 

struct node •node_ptr, node; 
int node_compare( ); /• routine to compare 2 nodes •/ 
char str_space[20]; /• space to read string into •/ 

node.string - str _space; 
while (scanf("%s", node.string) != EOF) { 

node_ptr = (struct node •)bsearch((char .) (&node), 
(char •)table, TABSIZE, 
sizeof(struct node), node_ compare); 

if (node _ptr != NULL) { 
(void)printf("string = %20s, length = %d\n", 

node _ptr- >string, node _ptr- >length); 

- 1 - 7/85 



BSEARCH (JC) (C Programming Language Utilities) BSEARCH (JC) 

int 

else { 
(void)printf("not found: %s\n", node.string); 

This routine compares two nodes based on an 
alphabetical ordering of the string field. 

node_compare(nodel, node2) 
struct node •nodel, •node2; 
{ 

} 
return strcmp(nodel - >string, node2-> string); 

NOTES 
The pointers to the key and the element at the base of the table should be of type 
pointer-to-element, and cast to type pointer-to-character. 
The comparison function need not compare every byte, so arbitrary data may be 
contained in the elements in addition to the values being compared. 
Although declared as type pointer-to-character, the value returned should be cast 
into type pointer-to-element. 

SEE ALSO 
hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C). 

DIAGNOSTICS 
A NULL pointer is returned if the key cannot be found in the table. 

7/85 - 2 - 7/85 



CLOCK(3C) (C Programming Language Utilities) CLOCK(3C) 

NAME 
clock - report CPU time used 

SYNOPSIS 
long clock ( ) 

DESCRIPTION 
Clock returns the amount of CPU time (in microseconds) used since the first call to 
clock. The time reported is the sum of the user and system times of the calling pro­
cess and its terminated child processes for which it has executed wait (2) or 
system (3S). 

The resolution of the clock is 10 milliseconds on AT&T Technologies 3B computer 
processors. 

SEE ALSO 

BUGS 

7/85 

times (2), wait (2), system (3S). 

The value returned by clock is defined in microseconds for compatibility with sys­
tems that have CPU clocks with much higher resolution. Because of this, the value 
returned will wrap around after accumulating only 2147 seconds of CPU time 
(about 36 minutes). 

- 1 - 7/85 





CONV(3C) (C Programming Language Utilities) CONV(3C) 

NAME 
toupper, tolower, _toupper, _tolower, toascii - translate characters 

SYNOPSIS 
#include <ctype.h> 

int toupper (c) 
int c; 

int tolower (c) 
int c; 

int _toupper (c) 
int c; 

int _tolower (c) 
int c; 

int toascii ( c) 
int c; 

DESCRIPTION 
Toupper and tolower have as domain the range of getc(3S): the integers from -1 
through 255. If the argument of toupper represents a lower-case letter, the result is 
the corresponding upper-case letter. If the argument of tolower represents an 
upper-case letter, the result is the corresponding lower-case letter. All other argu­
ments in the domain are returned unchanged. 

The macros _toupper and _Jolower, are macros that accomplish the same thing as 
toupper and tolower but have restricted domains and are faster. _toupper requires 
a lower-case letter as its argument; its result is the corresponding upper-case letter. 
The macro _Jolower requires an upper-case letter as its argument; its result is the 
corresponding lower-case letter. Arguments outside the domain cause undefined 
results. 

Toascii yields its argument with all bits turned off that are not part of a standard 
ASCII character; it is intended for compatibility with other systems. 

SEE ALSO 
ctype(3C), getc(3S). 

7/85 - l - 7/85 





CRYPT(JC) (C Programming Language Utilities) CRYPT(3C) 

NAME 
crypt, setkey, encrypt - generate hashing encryption 

SYNOPSIS 
char •crypt (key, salt) 
char •key, •salt; 

void setkey (key) 
char •key; 

void encrypt (block, fake) 
char •block; 
int fake; 

DESCRIPTION 
Crypt is the password encryption function. It is based on a one way hashing 
encryption algorithm with variations intended (among other things) to frustrate use 
of hardware implementations of a key search. 

Key is a user's typed password. Salt is a two-character string chosen from the set 
[a-zA-Z0-9./]; this string is used to perturb the hashing algorithm in one of 4096 
different ways, after which the password is used as the key to encrypt repeatedly a 
constant string. The returned value points to the encrypted password. The first two 
characters are the salt itself. 

The setkey and encrypt entries provide (rather primitive) access to the actual hash­
ing algorithm. The argument of setkey is a character array of length 64 containing 
only the characters with numerical value 0 and 1. If this string is divided into 
groups of 8, the low-order bit in each group is ignored; this gives a 56-bit key which 
is set into the machine. This is the key that will be used with the hashing algorithm 
to encrypt the string block with the function encrypt. 

The argument to the encrypt entry is a character array of length 64 containing only 
the characters with numerical value 0 and l. The argument array is modified in 
place to a similar array representing the bits of the argument after having been sub­
jected to the hashing algorithm using the key set by set key. Fake is not used and is 
ignored, but should be present if lint ( 1) is used. 

SEE ALSO 
getpass(3C), passwd(4). 
login(!), passwd(l) in the AT&T 3B2 Computer User Reference Manual. 

BUGS 
The return value points to static data that are overwritten by each call. 

7/85 - l - 7/85 





CTERMID (3S) (C Programming Language Utilities) CTERMID ( 3S) 

NAME 
ctermid - generate file name for terminal 

SYNOPSIS 
#include <stdio.h> 
char •ctermid (s) 
char •s; 

DESCRIPTION 
Ctermid generates the path name of the controlling terminal for the current process, 
and stores it in a string. 

Ifs is a NULL pointer, the string is stored in an internal static area, the contents of 
which are overwritten at the next call to ctermid, and the address of which is 
returned. Otherwise, s is assumed to point to a character array of at least 
L_ctermid elements; the path name is placed in this array and the value of s is 
returned. The constant L_ctermid is defined in the <stdio.h> header file. 

NOTES 
The difference between ctermid and ttyname (3C) is that ttyname must be handed a 
file descriptor and returns the actual name of the terminal associated with that file 
descriptor, while ctermid returns a string (/dev/tty) that will refer to the terminal if 
used as a file name. Thus ttyname is useful only if the process already has at least 
one file open to a terminal. 

SEE ALSO 
ttyname(3C). 

7/85 - l - 7/85 





CTIME(3C) (C Programming Language Utilities) CTIME(3C) 

NAME 
ctime, localtime, gmtime, asctime, tzset - convert date and time to string 

SYNOPSIS 
#include <time.h> 

char •ctime (clock) 
long •clock; 

struct tm •localtime (clock) 
long •clock; 

struct tm •gmtime (clock) 
long •clock; 

char •asctime (tm) 
struct tm •tm; 

extern long timezone; 

extern int daylight; 

extern char •tznamel21; 

void tzset ( ) 

DESCRIPTION 

7/85 

Ctime converts a long integer, pointed to by clock, representing the time in seconds 
since 00:00:00 GMT, January 1, 1970, and returns a pointer to a 26-character 
string in the following form. All the fields have constant width. 

Sun Sep 16 01:03:52 1973\n\0 

Localtime and gmtime return pointers to "tm" structures, described below. Local­
time corrects for the time zone and possible Daylight Savings Time; gmtime con­
verts directly to Greenwich Mean Time (GMT), which is the time the UNIX system 
uses. 

Asctime converts a "tm" structure to a 26-character string, as shown in the above 
example, and returns a pointer to the string. 

Declarations of all the functions and externals, and the "tm" structure, are in the 
< time.h > header file. The structure declaration is: 

struct tm { 

} ; 

int tm_sec; 
int tm min; 
int tm }tour; 
int tm_mday; 
int tm_mon; 
int tm _year; 
int tm_wday; 
int tm_yday; 
int tm _isdst; 

I• seconds (0 - 59) •/ 
I• minutes (0 - 59) •/ 
I• hours (O - 23) •/ 
I• day of month (1 - 31) •/ 

I• month of year (0 - 11) •/ 
I• year - 1900 •/ 
I• day of week (Sunday = 0) •/ 
I• day of year (0 - 365) •/ 

Tm _jsdst is non-zero if Daylight Savings Time is in effect. 

The external long variable timezone contains the difference, in seconds, between 
GMT and local standard time (in EST, timezone is 5•60•60); the external variable 
daylight is non-zero if and only if the standard U.S.A. Daylight Savings Time 
conversion should be applied. The program knows about the peculiarities of this 
conversion in 1974 and 1975; if necessary, a table for these years can be extended. 

- 1 - 7/85 



CTIME(JC) (C Programming Language Utilities) CTIME(3C) 

If an environment variable named TZ is present, asctime uses the contents of the 
variable to override the default time zone. The value of TZ must be a three-letter 
time zone name, followed by a number representing the difference between local 
time and Greenwich Mean Time in hours, followed by an optional three-letter name 
for a daylight time zone. For example, the setting for New Jersey would be 
ESTSEDT. The effects of setting TZ are thus to change the values of the external 
variables timezone and daylight; in addition, the time zone names contained in the 
external variable 

char •tznamel21 = { "EST", "EDT"}; 

are set from the environment variable TZ. The function tzset sets these external 
variables from TZ; tzset is called by asctime and may also be called explicitly by the 
user. 

Note that in most installations, TZ is set by default when the user logs on, to a 
value in the local /etc/profile file (see profile(4)). 

SEE ALSO 
time(2), getenv(3C), profile(4), environ (5). 

BUGS 
The return values point to static data whose content is overwritten by each call. 

7/85 - 2 - 7/85 



CTYPE(JC) (C Programming Language Utilities) CTYPE(JC) 

NAME 
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, 
iscntrl, isascii - classify characters 

SYNOPSIS 
#include <ctype.b> 

int isalpha (c) 
int c; 

DESCRIPTION 
These macros classify character-coded integer values by table lookup. Each is a 
predicate returning nonzero for true, zero for false. lsascii is defined on all integer 
values; the rest are defined only where isascii is true and on the single non-ASCII 
value EOF (-1 - see stdio (3S)). 

isalpha 

isupper 

is lower 

is digit 

isxdigit 

isalnum 

isspace 

ispunct 

is print 

is graph 

iscntrl 

isascii 

c is a letter. 

c is an upper-case letter. 

c is a lower-case letter. 

c is a digit [0-9]. 

c is a hexadecimal digit [0-9], [A-F] or [a-fl 

c is an alphanumeric (letter or digit). 

c is a space, tab, carriage return, new-line, vertical tab, or form­
feed. 

c is a punctuation character (neither control nor alphanumeric). 

c is a printing character, code 040 (space) through 0176 (tilde). 

c is a printing character, like isprint except false for space. 

c is a delete character (0177) or an ordinary control character 
(less than 040). 

c is an ASCH character, code less than 0200. 

SEE ALSO 
stdio(3S), ascii (5). 

DIAGNOSTICS 

7/85 

If the argument to any of these macros is not in the domain of the function, the 
result is undefined. 

- l - 7/85 





CUSERID(3S) (C Programming Language Utilities) CUSERID ( 3S) 

NAME 
cuserid - get character login name of the user 

SYNOPSIS 
#include <stdio.h> 

char •cuserid (s) 
char •s; 

DESCRIPTION 
Cuserid generates a character-string representation of the login name that the 
owner of the current process is logged in under. If s is a NULL pointer, this 
representation is generated in an internal static area, the address of which is 
returned. Otherwise, s is assumed to point to an array of at least L_cuserid charac­
ters; the representation is left in this array. The constant L_cuserid is defined in the 
<stdio.h> header file. 

DIAGNOSTICS 
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a 
NULL pointer, a null character (\0) will be placed at s[Ol. 

SEE ALSO 
getlogin (3C), getpwent (3C). 

7/85 - 1 - 7/85 





DIAL(3C) (C Programming Language Utilities) DIAL(3C) 

NAME 
dial - establish an out-going terminal line connection 

SYNOPSIS 
#include < dial.h > 
int dial (call) 
CALL call; 

void undial (fd) 
int fd; 

DESCRIPTION 

7/85 

Dial returns a file-descriptor for a terminal line open for read/write. The argument 
to dial is a CALL structure (defined in the <dial.h> header file). 

When finished with the terminal line, the calling program must invoke undial to 
release the semaphore that has been set during the allocation of the terminal device. 

The definition of CALL in the <dial.h> header file is: 

typedef struct { 
struct termio •attr; 
int baud; 
int speed; 
char •line; 
char •telno; 
int modem; 
char *device; 

int dev_len; 

} CALL; 

I• pointer to termio attribute struct •/ 
I• transmission data rate •/ 
I• 212A modem: low=300, high=1200 •/ 
I• device name for out-going line •/ 
I• pointer to tel-no digits string •/ 
I• specify modem control for direct lines •/ 
/*Will hold the name of the device used 
to make a connection *I 
I* The length of the device used to make 
connection *I 

The CALL element speed is intended only for use with an outgoing dialed call, in 
which case its value should be either 300 or 1200 to identify the l 13A modem, or 
the high- or low-speed setting on the 212A modem. Note that the 113A modem or 
the low-speed setting of the 212A modem will transmit at any rate between 0 and 
300 bits per second. However, the high-speed setting of the 212A modem transmits 
and receivers at 1200 bits per secound only. The CALL element baud is for the 
desired transmission baud rate. For example, one might set baud to 110 and speed 
to 300 (or 1200). However, if speed set to 1200 baud must be set to high (1200). 

If the desired terminal line is a direct line, a string pointer to its device-name should 
be placed in the line element in the CALL structure. Legal values for such terminal 
device names are kept in the L-devices file. In this case, the value of the baud ele­
ment need not be specified as it will be determined from the L-devices file. 

The telno element is for a pointer to a character string representing the telephone 
number to be dialed. The termination symbol will be supplied by the dial function, 
and should not be included in the telno string passed to dial in the CALL structure. 

The CALL element modem is used to specify modem control for direct lines. This 
element should be non-zero if modem control is required. The CALL element attr is 
a pointer to a termio structure, as defined in the termio.h header file. A NULL 
value for this pointer element may be passed to the dial function, but if such a 
structure is included, the elements specified in it will be set for the outgoing termi­
nal line before the connection is established. This is often important for certain 
attributes such as parity and baud-rate. 

- 1 - 7/85 



DIAL(JC) (C Programming Language Utilities) DIAL(3C) 

FILES 

The CALL element device is used to hold the device name (cul..) that establishes the 
connection. 

The CALL element dev _Jen is the length of the device name that is copied into the 
array device. 

I usr /Ii bl uucp/L-devices 
I usr I spool/uucp/LCK .. tty-device 

SEE ALSO 
alarm (2), read (2), write(2). 
termio(7) in the AT&T 3B2 Computer System Administration Reference Manual. 
uucp(lC) in the AT&T 3B2 Computer User Reference Manual. 

DIAGNOSTICS 
On failure, a negative value indicating the reason for the failure will be returned. 
Mnemonics for these negative indices as listed here are defined in the <dial.h> 
header file. 

IN TR PT 
D HUNG 
NO ANS 
ILL BD 
A_PROB 
L_PROB 
NO_Ldv 
DV_NT_A 
DV_NT_K 
NO_BD_A 
NO_BD_K 

-1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 
-9 
-10 
-11 

I• interrupt occurred •/ 
I• dialer hung (no return from write) •/ 
I• no answer within 10 seconds •/ 
/• illegal baud-rate •/ 
I• acu problem (open() failure) •/ 
/• line problem (open() failure) •/ 
I• can't open LDEVS file •/ 
I• requested device not available•/ 
/• requested device not known •/ 
I• no device available at requested baud •/ 
I• no device known at requested baud •/ 

WARNINGS 

BUGS 

7/85 

Including the <dial.h> header file automatically includes the <termio.h> header 
file. 

The above routine uses <stdio.h>, which causes it to increase the size of programs, 
not otherwise using standard I/O, more than might be expected. 

An alarm (2) system call for 3600 seconds is made (and caught) within the dial 
module for the purpose of "touching" the LCK .. file and constitutes the device allo­
cation semaphore for the terminal device. Otherwise, uucp(1C) may simply delete 
the LCK.. entry on its 90-minute clean-up rounds. The alarm may go off while the 
user program is in a read (2) or write (2) system call, causing an apparent error 
return. If the user program expects to be around for an hour or more, error returns 
from reads should be checked for (errno= =EINTR), and the read possibly reissued. 

- 2 - 7/85 



DRAND48 (JC) (C Programming Language Utilities) DRAND48 (JC) 

NAME 
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 -
generate uniformly distributed pseudo-random numbers 

SYNOPSIS 
double drand48 ( ) 

double erand48 (xsubi) 
unsigned short xsubi[3); 

long lrand48 ( ) 

long nrand48 (xsubi) 
unsigned short xsubil31; 

long mrand48 ( ) 

long jrand48 (xsubi) 
unsigned short xsubil31; 

void srand48 (seedvaO 
long seedval; 

unsigned short •seed48 (seed16v) 
unsigned short seed16vl3l; 

void lcong48 (param) 
unsigned short param!71; 

DESCRIPTION 

7/85 

This family of functions generates pseudo-random numbers using the well-known 
linear congruential algorithm and 48-bit integer arithmetic. 

Functions drand48 and erand48 return non-negative double-precision floating-point 
values uniformly distributed over the interval [0.0, 1.0). 

Functions lrand48 and nrand48 return non-negative long integers uniformly distri­
buted over the interval [O, 231

). 

Functions mrand48 and jrand48 return signed long integers uniformly distributed 
over the interval [-231 , 231

). 

Functions srand48, seed48 and lcong48 are initialization entry points, one of which 
should be invoked before either drand48, lrand48 or mrand48 is called. (Although 
it is not recommended practice, constant default initializer values will be supplied 
automatically if drand48, lrand48 or mrand48 is called without a prior call to an 
initialization entry point) Functions erand48, nrand48 and jrand48 do not require 
an initialization entry point to be called first. 

All the routines work by generating a sequence of 48-bit integer values, X;, accord­
ing to the linear congruential formula 

Xn+l = (aXn +c)mod m n ;;;i,o. 
The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless 
lcong48 has been invoked, the multiplier value a and the addend value c are given 
by 

a = 5DEECE66D 16 = 273673163155s 
c = B 16 = l3g. 

The value returned by any of the functions drand48, erand48, lrand48, nrand48, 
mrand48 or jrand48 is computed by first generating the next 48-bit X; in the 
sequence. Then the appropriate number of bits, according to the type of data item 

- l - 7/85 



DRAND48 (JC) (C Programming Language Utilities) DRAND48 (3C) 

to be returned, are copied from the high-order (leftmost) bits of X; and transformed 
into the returned value. 

The functions drand48, lrand48 and mrand48 store the last 48-bit X; generated in 
an internal buffer; that is why they must be initialized prior to being invoked. The 
functions erand48, nrand48 and jrand48 require the calling program to provide 
storage for the successive X; values in the array specified as an argument when the 
functions are invoked. That is why these routines do not have to be initialized; the 
calling program merely has to place the desired initial value of X; into the array 
and pass it as an argument. By using different arguments, functions erand48, 
nrand48 and jrand48 allow separate modules of a large program to generate several 
independent streams of pseudo-random numbers, i.e., the sequence of numbers in 
each stream will not depend upon how many times the routines have been called to 
generate numbers for the other streams. 

The initializer function srand48 sets the high-order 32 bits of X; to the 32 bits con­
tained in its argument. The low-order 16 bits of X; are set to the arbitrary value 
330E16· 
The initializer function seed48 sets the value of X; to the 48-bit value specified in 
the argument array. In addition, the previous value of X; is copied into a 48-bit 
internal buffer, used only by seed48, and a pointer to this buffer is the value 
returned by seed48. This returned pointer, which can just be ignored if not needed, 
is useful if a program is to be restarted from a given point at some future time -
use the pointer to get at and store the last X; value, and then use this value to reini­
tialize via seed48 when the program is restarted. 

The initialization function lcong48 allows the user to specify the initial X;, the mul­
tiplier value a, and the addend value c. Argument array elements param{0-2] 
specify X;, param{3-5] specify the multiplier a, and param{6] specifies the 16-bit 
addend c. After lcong48 has been called, a subsequent call to either srand48 or 
seed48 will restore the "standard" multiplier and addend values, a and c, specified 
on the previous page. 

NOTES 
The routines are coded in portable C. The source code for the portable version can 
even be used on computers which do not have floating-point arithmetic. In such a 
situation, functions drand48 and erand48 do not exist; instead, they are replaced by 
the two new functions below. 

long irand48 (m) 
unsigned short m; 

long krand48 (xsubi, m) 
unsigned short xsubil3l, m; 

Functions irand48 and krand48 return non-negative long integers uniformly distri­
buted over the interval [O, m-1 ]. 

SEE ALSO 
rand(3C). 

7/85 - 2 - 7/85 



ECVT(JC) (C Programming Language Utilities) ECVT(JC) 

NAME 
ecvt, fcvt, gcvt - convert floating-point number to string 

SYNOPSIS 
char •ecvt (value, ndigit, decpt, sign) 
double value; 
int ndigit, •decpt, •sign; 

char •fcvt (value, ndigit, decpt, sign) 
double value; 
int ndigit, •decpt, •sign; 

char •gcvt (value, ndigit, huf) 
double value; 
int ndigit; 
char •buf; 

DESCRIPTION 
Ecvt converts value to a null-terminated string of ndigit digits and returns a pointer 
thereto. The high-order digit is non-zero, unless the value is zero. The low-order 
digit is rounded. The position of the decimal point relative to the beginning of the 
string is stored indirectly through decpt (negative means to the left of the returned 
digits). The decimal point is not included in the returned string. If the sign of the 
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. 

Fcvt is identical to ecvt, except that the correct digit has been rounded for printf 
"%f' (FORTRAN F-format) output of the number of digits specified by ndigit. 

Gcvt converts the value to a null-terminated string in the array pointed to by buf 
and returns buf. It attempts to produce ndigit significant digits in FORTRAN F­
format if possible, otherwise E-format, ready for printing. A minus sign, if there is 
one, or a decimal point will be included as part of the returned string. Trailing 
zeros are suppressed. 

SEE ALSO 
printf(3S). 

BUGS 

7/85 

The values returned by ecvt and fcvt point to a single static data array whose con­
tent is overwritten by each call. 

- 1 - 7/85 





END(3C) (C Programming Language Utilities) END(3C) 

NAME 
end, etext, edata - last locations in program 

SYNOPSIS 
extern end; 
extern etext; 
extern edata; 

DESCRIPTION 
These names refer neither to routines nor to locations with interesting contents. The 
address of etext is the first address above the program text, edata above the initial­
ized data region, and end above the uninitialized data region. 

When execution begins, the program break (the first location beyond the data) coin­
cides with end, but the program break may be reset by the routines of brk(2), 
malloc(3C), standard input/output (stdio(3S)), the profile (-p) option of cc(l), 
and so on. Thus, the current value of the program break should be determined by 
sbrk (0) (see brk (2)). 

SEE ALSO 
brk(2), malloc(3C), stdio(3S). 
cc(l) in the AT&T 3B2 Computer User Reference Manual. 

7/8", - 1 - 7/85 





FCLOSE(3S) (C Programming Language Utilities) FCLOSE(3S) 

NAME 
fclose, ffiush - close or flush a stream 

SYNOPSIS 
#include < stdio.h > 
int fclose (stream) 
FILE •stream; 

int mush (stream) 
FILE ~stream; 

DESCRIPTION 
Fclose causes any buffered data for the named stream to be written out, and the 
stream to be closed. 

Fclose is performed automatically for all open files upon calling exit (2). 

Ffiush causes any buffered data for the named stream to be written to that file. 
The stream remains open. 

SEE ALSO 
close(2), exit (2), fopen (3S), setbuf(3S). 

DIAGNOSTICS 

7/85 

These functions return 0 for success, and EOF if any error (such as trying to write 
to a file that has not been opened for writing) was detected. 

- 1 - 7/85 





FERROR(3S) (C Programming Language Utilities) FERROR(3S) 

NAME 
ferror, feof, clearerr, fileno - stream status inquiries 

SYNOPSIS 
#include <stdio.h> 

int ferror (stream) 
FILE •stream; 

int feof (stream) 
FILE •stream; 

void clearerr (stream) 
FILE •stream; 

int fileno (stream) 
FILE •stream; 

DESCRIPTION 
Ferror returns non-zero when an I/O error has previously occurred reading from or 
writing to the named stream, otherwise zero. 

Feof returns non-zero when EOF has previously been detected reading the named 
input stream, otherwise zero. 

Clearerr resets the error indicator and EOF indicator to zero on the named stream. 

Fileno returns the integer file descriptor associated with the named stream; see 
open(2). 

NOTES 
All these functions are implemented as macros; they cannot be declared or rede­
clared. 

SEE ALSO 
open (2), fopen (3S). 

7/85 - 1 - 7/85 





FOPEN(3S) (C Programming Language Utilities) FOPEN(3S) 

NAME 
fopen, freopen, fdopen - open a stream 

SYNOPSIS 
#include <stdio.h> 

FILE •fopen (file-name, type) 
char •file-name, •type; 

FILE •freopen (file-name, type, stream) 
char •file-name, •type; 
FILE •stream; 

FILE •fdopen (fildes, type) 
int fildes; 
char •type; 

DESCRIPTION 

7/85 

Fopen opens the file named by file-name and associates a stream with it. Fopen 
returns a pointer to the FILE structure associated with the stream. 

File-name points to a character string that contains the name of the file to be 
opened. 

Type is a character string having one of the following values: 

"r" open for reading 

"w" truncate or create for writing 

"a" append; open for writing at end of file, or create for writing 

"r+" open for update (reading and writing) 

"w+" truncate or create for update 

"a+" append; open or create for update at end-of-file 

Freopen substitutes the named file in place of the open stream. The original stream 
is closed, regardless of whether the open ultimately succeeds. Freopen returns a 
pointer to the FILE structure associated with stream. 

Freopen is typically used to attach the preopened streams associated with stdio, 
stdout and stderr to other files. 

Fdopen associates a stream with a file descriptor. File descriptors are obtained 
from open, dup, creat, or pipe(2), which open files but do not return pointers to a 
FILE structure stream. Streams are necessary input for many of the Section 3S 
library routines. The type of stream must agree with the mode of the open file. 

When a file is opened for update, both input and output may be done on the result­
ing stream. However, output may not be directly followed by input without an 
intervening fseek or rewind, and input may not be directly followed by output 
without an intervening fseek, rewind, or an input operation which encounters end­
of-file. 

When a file is opened for append (i.e., when type is "a" or "a+"), it is impossible to 
overwrite information already in the file. Fseek may be used to reposition the file 
pointer to any position in the file, but when output is written to the file, the current 
file pointer is disregarded. All output is written at the end of the file and causes the 
file pointer to be repositioned at the end of the output. If two separate processes 
open the same file for append, each process may write freely to the file without fear 
of destroying output being written by the other. The output from the two processes 
will be intermixed in the file in the order in which it is written. 

- 1 - 7/85 



FOPEN(3S) (C Programming Language Utilities) FOPEN(3S) 

SEE ALSO 
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S). 

DIAGNOSTICS 
Fopen and /reopen return a NULL pointer on failure. 

7/85 - 2 - 7/85 



FREAD(3S) (C Programming Language Utilities) FREAD(3S) 

NAME 
fread, fwrite - binary input/output 

SYNOPSIS 
#include <stdio.h> 

int fread (ptr, size, nitems, stream) 
char •ptr; 
int size, nitems; 
FILE •stream; 

int fwrite (ptr, size, nitems, stream) 
char '"ptr; 
int size, nitems; 
FILE •stream; 

DESCRIPTION 
Fread copies, into an array pointed to by ptr, nitems items of data from the named 
input stream, where an item of data is a sequence of bytes (not necessarily ter­
minated by a null byte) of length size. Fread stops appending bytes if an end-of­
file or error condition is encountered while reading stream, or if nitems items have 
been read. Fread leaves the file pointer in stream, if defined, pointing to the byte 
following the last byte read if there is one. Fread does not change the contents of 
stream. 

Fwrite appends at most nitems items of data from the array pointed to by ptr to the 
named output stream. Fwrite stops appending when it has appended nitems items 
of data or if an error condition is encountered on stream. Fwrite does not change 
the contents of the array pointed to by ptr. 

The argument size is typically sizeof(•ptr) where the pseudo-function sizeof 
specifies the length of an item pointed to by ptr. If ptr points to a data type other 
than char it should be cast into a pointer to char. 

SEE ALSO 
read(2), write(2), fopen(3S), getc(3S), gets(3C), printf(3S), putc(3S), puts(3S), 
scanf(3S). 

DIAGNOSTICS 

7/85 

Fread and /write return the number of items read or written. If size or nitems is 
non-positive, no characters are read or written and 0 is returned by both /read and 
fwrite. 

- 1 - 7/85 





FREXP(3C) (C Programming Language Utilities) FREXP(3C) 

NAME 
frexp, ldexp, modf - manipulate parts of floating-point numbers 

SYNOPSIS 
double frexp (value, eptr) 
double value; 
int •eptr; 

double ldexp (value, exp) 
double value; 
int exp; 

double modf (value, iptr) 
double value, •iptr; 

DESCRIPTION 
Every non-zero number can be written uniquely as x * 2n, where the "mantissa" 
(fraction) x is in the range 0.5 ~ lxl < 1.0, and the "exponent" n is an integer. 
Frexp returns the mantissa of a double value, and stores the exponent indirectly in 
the location pointed to by eptr. If value is zero, both results returned by frexp are 
zero. 

Ldexp returns the quantity value• 2exp. 

Modf returns the signed fractional part of value and stores the integral part 
indirectly in the location pointed to by iptr. 

DIAGNOSTICS 

7/85 

If ldexp would cause overflow, ±HUGE is returned (according to the sign of value), 
and errno is set to ERANGE. 
If ldexp would cause underflow, zero is returned and errno is set to ERANGE. 

- 1 - 7/85 





FSEEK(3S) (C Programming Language Utilities) FSEEK(3S) 

NAME 
fseek, rewind, ftell - reposition a file pointer in a stream 

SYNOPSIS 
#include <stdio.h> 

int fseek (stream, offset, ptrname) 
FILE •stream; 
long offset; 
int ptrname; 

void rewind (stream) 
FILE •stream; 

long ftell (stream) 
FILE •stream; 

DESCRIPTION 
Fseek sets the position of the next input or output operation on the stream. The 
new position is at the signed distance offset bytes from the beginning, from the 
current position, or from the end of the file, according as ptrname has the value 0, 
1, or 2. 

Rewind(stream) is equivalent to fseek(stream, OL, O), except that no value is 
returned. 

Fseek and rewind undo any effects of ungetc(3S). 

After /seek or rewind, the next operation on a file opened for update may be either 
input or output 

Ftell returns the offset of the current byte relative to the beginning of the file asso­
ciated with the named stream. 

SEE ALSO 
lseek(2), fopen(3S), popen(3S), ungetc(3S). 

DIAGNOSTICS 
Fseek returns non-zero for improper seeks, otherwise zero. An improper seek can 
be, for example, an /seek done on a file that has not been opened via /open; in par­
ticular, /seek may not be used on a terminal, or on a file opened via popen (3S). 

WARNING 

7/85 

Although on the UNIX system an offset returned by /tell is measured in bytes, and 
it is permissible to seek to positions relative to that offset, portability to non-UNIX 
systems requires that an offset be used by /seek directly. Arithmetic may not mean­
ingfully be performed on such an offset, which is not necessarily measured in bytes. 

- 1 - 7/85 





FTW(3C) (C Programming Language Utilities) FTW(3C) 

NAME 
ftw - walk a file tree 

SYNOPSIS 
#include <ftw.h > 
int ftw (path, fn, depth) 
char *path; 
int (*fn) ( ); 
int depth; 

DESCRIPTION 
Ftw recursively descends the directory hierarchy rooted in path. For each object in 
the hierarchy, Jtw calls Jn, passing it a pointer to a null-terminated character string 
containing the name of the object, a pointer to a stat structure (see stat (2)) con­
taining information about the object, and an integer. Possible values of the integer, 
defined in the <ftw.h> header file, are FTW _F for a file, FTW _D for a directory, 
FTW _DNR for a directory that cannot be read, and FTW _NS for an object for which 
stat could not successfully be executed. If the integer is FTW _DNR, descendants of 
that directory will not be processed. If the integer is FTW _NS, the stat structure 
will contain garbage. An example of an object that would cause FTW _NS to be 
passed to Jn would be a file in a directory with read but without execute (search) 
permission. 

Ftw visits a directory before visiting any of its descendants. 

The tree traversal continues until the tree is exhausted, an invocation of Jn returns a 
nonzero value, or some error is detected within Jtw (such as an I/O error). If the 
tree is exhausted, Jtw returns zero. If Jn returns a nonzero value, Jtw stops its tree 
traversal and returns whatever value was returned by Jn. If ftw detects an error, it 
returns -1, and sets the error type in errno. 

Ftw uses one file descriptor for each level in the tree. The depth argument limits 
the number of file descriptors so used. If depth is zero or negative, the effect is the 
same as if it were 1. Depth must not be greater than the number of file descriptors 
currently available for use. Ftw will run more quickly if depth is at least as large 
as the number of levels in the tree. 

SEE ALSO 

BUGS 

7/85 

stat(2), malloc(JC). 

Because Jtw is recursive, it is possible for it to terminate with a memory fault when 
applied to very deep file structures. 
It could be made to run faster and use less storage on deep structures at the cost of 
considerable complexity. 
Ftw uses malloc(3C) to allocate dynamic storage during its operation. If Jtw is for­
cibly terminated, such as by longjmp being executed by Jn or an interrupt routine, 
Jtw will not have a chance to free that storage, so it will remain permanently allo­
cated. A safe way to handle interrupts is to store the fact that an interrupt has 
occurred, and arrange to have Jn return a nonzero value at its next invocation. 

- l - 7/85 





GETC(3S) (C Programming Language Utilities) GETC(3S) 

NAME 
getc, getchar, fgetc, getw - get character or word from a stream 

SYNOPSIS 
#include <stdio.h> 

int getc (stream) 
FILE •stream; 

int getchar () 

int fgetc (stream) 
FILE •stream; 

int getw (stream) 
FILE •stream; 

DESCRIPTION 
Getc returns the next character (i.e., byte) from the named input stream, as an 
integer. It also moves the file pointer, if defined, ahead one character in stream. 
Get char is defined as getdstdin). Getc and get char are macros. 

Fgetc behaves like getc, but is a function rather than a macro. Fgetc runs more 
slowly than getc, but it takes less space per invocation and its name can be passed 
as an argument to a function. 

Getw returns the next word (i.e., integer) from the named input stream. Getw 
increments the associated file pointer, if defined, to point to the next word. The size 
of a word is the size of an integer and varies from machine to machine. Getw 
assumes no special alignment in the file. 

SEE ALSO 
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3C), putc(3S), scanf(3S). 

DIAGNOSTICS 
These functions return the constant EOF at end-of-file or upon an error. Because 
EOF is a valid integer,ferror(3S) should be used to detect getw errors. 

WARNING 

BUGS 

7/85 

If the integer value returned by getc, get char, or f getc is stored into a character 
variable and then compared against the integer constant EOF, the comparison may 
never succeed, because sign-extension of a character on widening to integer is 
machine-dependent. 

Because it is implemented as a macro, getc treats incorrectly a stream argument 
with side effects. In particular, getc(•f++) does not work sensibly. Fgetc should be 
used instead. 
Because of possible differences in word length and byte ordering, files written using 
putw are machine-dependent, and may not be read using getw on a different proces­
sor. 

- 1 - 7/85 





GETCWD(3C) (C Programming Language Utilities) GETCWD(JC) 

NAME 
getcwd - get path-name of current working directory 

SYNOPSIS 
char •getcwd (buf, size) 
char •buf; 
int size; 

DESCRIPTION 
Getcwd returns a pointer to the current directory path name. The value of size 
must be at least two greater than the length of the path-name to be returned. 

If buf is a NULL pointer, getcwd will obtain size bytes of space using malloc(3C). 
In this case, the pointer returned by getcwd may be used as the argument in a sub­
sequent call to free. 

The function is implemented by using popen(3S) to pipe the output of the pwd(l) 
command into the specified string space. 

EXAMPLE 

SEE ALSO 

char •cwd, •getcwdO; 

if ((cwd = getcwd((char •)NULL, 64)) ==NULL) { 
perror ("pwd"); 
exit(!); 

} 
printf("%s\n", cwd); 

malloc(3C), popen (3S). 
pwd(l) in the AT&T 3B2 Computer User Reference Manual. 

DIAGNOSTICS 
Returns NULL with errno set if size is not large enough, or if an error ocurrs in a 
lower-level function. 

7/85 - 1 - 7/85 





GETENV(3C) (C Programming Language Utilities) 

NAME 
getenv - return value for environment name 

SYNOPSIS 
char •getenv (name) 
char •name; 

DESCRIPTION 

GETENV(3C) 

Getenv searches the environment list (see environ (5)) for a string of the form 
name =value, and returns a pointer to the value in the current environment if such 
a string is present, otherwise a NULL pointer. 

SEE ALSO 
exec(2), putenv(3C), environ (5). 

7/85 - 1 - 7/85 





GETGRENT(3C) (C Programming Language Utilities) GETGRENT (3C) 

NAME 
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file entry 

SYNOPSIS 
#include < grp.h > 

struct group •getgrent ( ) 

struct group •getgrgid (gid) 
int gid; 

stmct group •getgmam (name) 
char •name; 

void setgrent ( ) 

void endgrent ( ) 

struct group •fgetgrent (f) 
FILE •f; 

DESCRIPTION 

FILES 

Getgrent, getgrgid and getgrnam each return pointers to an object with the follow­
ing structure containing the broken-out fields of a line in the /etc/group file. Each 
line contains a "group" structure, defined in the <grp.h> header file. 

struct group ( 
char 
char 
int 
char 

}; 

•gr_name; 
•gr _passwd; 
gr_gid; 
ogr_mem; 

I• the name of the group •/ 
I• the encrypted group password •/ 
I• the numerical group ID•/ 
I• vector of pointers to member names •/ 

Getgrent when first called returns a pointer to the first group structure in the file; 
thereafter, it returns a pointer to the next group structure in the file; so, successive 
calls may be used to search the entire file. Getgrgid searches from the beginning of 
the file until a numerical group id matching gid is found and returns a pointer to 
the particular structure in which it was found. Getgrnam searches from the begin­
ning of the file until a group name matching name is found and returns a pointer to 
the particular structure in which it was found. If an end-of-file or an error is 
encountered on reading, these functions return a NULL pointer. 

A call to setgrent has the effect of rewinding the group file to allow repeated 
searches. Endgrent may be called to close the group file when processing is com­
plete. 

Fgetgrent returns a pointer to the next group structure in the stream f, which 
matches the format of /etc/group. 

/etc/group 

SEE ALSO 
getlogin (3C), getpwent(3C), group(4). 

DIAGNOSTICS 
A NULL pointer is returned on EOF or error. 

WARNING 
The above routines use <stdio.h>, which causes them to increase the size of pro­
grams, not otherwise using standard I/O, more than might be expected. 

7/85 - l - 7/85 



GETGRENT (3C) 

BUGS 

(C Programming Language Utilities) GETGRENT(3C) 

All information is contained in a static area, so it must be copied if it is to be saved. 

7/85 - 2 - 7/85 



GETLOGIN(3C) (C Programming Language Utilities) GETLOGIN (3C) 

NAME 
getlogin - get login name 

SYNOPSIS 
char •getlogin ( ) ; 

DESCRIPTION 

FILES 

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used 
in conjunction with getpwnam to locate the correct password file entry when the 
same user ID is shared by several login names. 

If getlogin is called within a process that is not attached to a terminal, it returns a 
NULL pointer. The correct procedure for determining the login name is to call 
cuserid, or to call getlogin and if it fails to call getpwuid. 

/etc/utmp 

SEE ALSO 
cuserid (3S), getgrent(3C), getpwent(3C), utmp(4). 

DIAGNOSTICS 
Returns the NULL pointer if name is not found. 

BUGS 
The return values point to static data whose content is overwritten by each call. 

7/85 - 1 - 7/85 





GETOPT(3C) (C Programming Language Utilities) GETOPT(3C) 

NAME 
getopt - get option letter from argument vector 

SYNOPSIS 
int getopt (argc, argv, optstring) 
int argc; 
char .. argv, •opstring; 

extern char •optarg; 
extern int optind, opterr; 

DESCRIPTION 
Getopt returns the next option letter in argv that matches a letter in optstring. 
Optstring is a string of recognized option letters; if a letter is followed by a colon, 
the option is expected to have an argument that may or may not be separated from 
it by white space. Optarg is set to point to the start of the option argument on 
return from get opt. 

Getopt places in optind the argv index of the next argument to be processed. 
Because optind is external, it is normally initialized to zero automatically before the 
first call to get opt. 

When all options have been processed (i.e., up to the first non-option argument), 
getopt returns EOF. The special option - - may be used to delimit the end of the 
options; EOF will be returned, and - - will be skipped. 

DIAGNOSTICS 
Getopt prints an error message on stderr and returns a question mark (?) when it 
encounters an option letter not included in optstring. This error message may be 
disabled by setting opterr to a non-zero value. 

EXAMPLE 

7/85 

The following code fragment shows how one might process the arguments for a 
command that can take the mutually exclusive options a and h, and the options f 
and o, both of which require arguments: 

main (argc, argv) 
int argc; 
char uargv; 
{ 

int c; 
extern char •optarg; 
extern int optind; 

while ((c = getopt(argc, argv, "abf:o:")) != EOF) 
switch (c) { 
case 'a': 

if (bflg) 
errflg++; 

else 
aflg++; 

break; 
case 'b': 

if (aflg) 
errflg++; 

else 
bproc( ); 

- 1 - 7/85 



GETOPT(JC) 

SEE ALSO 

(C Programming Language Utilities) 

break; 
case 'f': 

case 'o': 

case '?': 

} 
if (errflg) ( 

ifile = optarg; 
break; 

ofile = optarg; 
break; 

errflg++; 

fprintf(stderr, "usage: ... "); 
exit (2); 

for ; optind < argc; optind++) ( 
if (access(argv[optindl, 4)) { 

getopt(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - 2 -

GETOPT(JC) 

7/85 



GETPASS(3C) (C Programming Language Utilities) GETPASS(3C) 

NAME 
getpass - read a password 

SYNOPSIS 
char •getpass (prompt) 
char •prompt; 

DESCRIPTION 

FILES 

Getpass reads up to a newline or EOF from the file /dev/tty, after prompting on the 
standard error output with the null-terminated string prompt and disabling echoing. 
A pointer is returned to a null-terminated string of at most 8 characters. If 
/dev/tty cannot be opened, a NULL pointer is returned. An interrupt will terminate 
input and send an interrupt signal to the calling program before returning. 

/dev/tty 

WARNING 

BUGS 

7/85 

The above routine uses <stdio.h>, which causes it to increase the size of programs 
not otherwise using standard I/O, more than might be expected. 

The return value points to static data whose content is overwritten by each call. 

- 1 - 7/85 





GETPW(3C) (C Programming Language Utilities) GETPW(3C) 

NAME 
getpw - get name from UID 

SYNOPSIS 
int getpw (uid, buf) 
int uid; 
char •buf; 

DESCRIPTION 

FILES 

Getpw searches the password file for a user id number that equals uid, copies the 
line of the password file in which uid was found into the array pointed to by buf, 
and returns 0. Getpw returns non-zero if uid cannot be found. 

This routine is included only for compatibility with prior systems and should not be 
used; see getpwent (3C) for routines to use instead. 

/etc/passwd 

SEE ALSO 
getpwent(3C), passwd(4). 

DIAGNOSTICS 
Getpw returns non-zero on error. 

WARNING 
The above routine uses <stdio.b>, which causes it to increase, more than might be 
expected, the size of programs not otherwise using standard 1/0. 

7/85 - 1 - 7/85 





GETPWENT (3C) (C Programming Language Utilities) GETPWENT(3C) 

NAME 
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get password file 
entry 

SYNOPSIS 
#include <pwd.h> 

struct passwd •getpwent ( ) 

struct passwd •getpwuid (uid) 
int uid; 

struct passwd •getpwnam (name) 
char •name; 

void setpwent ( ) 

void endpwent ( ) 

struct passwd •fgetpwent (f) 
FILE •f; 

DESCRIPTION 

FILES 

7/85 

Getpwent, getpwuid and getpwnam each returns a pointer to an object with the fol­
lowing structure containing the broken-out fields of a line in the /etc/passwd file. 
Each line in the file contains a "passwd" structure, declared in the <pwd.h> 
header file: 

struct passwd { 
char 
char 
int 

}; 

int 
char 
char 
char 
char 
char 

•pw_name; 
•pw __passwd; 
pw_uid; 
pw_gid; 
•pw_age; 
•pw _comment; 
•pw_gecos; 
•pw_dir; 
•pw_shell; 

This structure is declared in <pwd.h> so it is not necessary to redeclare it. 

The pw _comment field is unused; the others have meanings described in passwd(4). 

Getpwent when first called returns a pointer to the first passwd structure in the file; 
thereafter, it returns a pointer to the next passwd structure in the file; so successive 
calls can be used to search the entire file. Getpwuid searches from the beginning of 
the file until a numerical user id matching uid is found and returns a pointer to the 
particular structure in which it was found. Getpwnam searches from the beginning 
of the file until a login name matching name is found, and returns a pointer to the 
particular structure in which it was found. If an end-of-file or an error is encoun­
tered on reading, these functions return a NULL pointer. 

A call to setpwent has the effect of rewinding the password file to allow repeated 
searches. Endpwent may be called to close the password file when processing is 
complete. 

Fgetpwent returns a pointer to the next passwd structure in the stream f, which 
matches the format of /etc/passwd. 

/etc/passwd 

- 1 - 7/85 



GETPWENT (3C) (C Programming Language Utilities) GETPWENT (3C) 

SEE ALSO 
getlogin(3C), getgrent(3C), passwd(4). 

DIAGNOSTICS 
A NULL pointer is returned on EOF or error. 

WARNING 
The above routines use <stdio.h>, which causes them to increase the size of pro­
grams, not otherwise using standard I/O, more than might be expected. 

BUGS 
All information is contained in a static area, so it must be copied if it is to be saved. 

7/85 - 2 - 7/85 



GETS(3S) (C Programming Language Utilities) GETS(3S) 

NAME 
gets, fgets - get a string from a stream 

SYNOPSIS 
#include <stdio.h> 

char •gets (s) 
char •s; 

char •fgets (s, n, stream) 
char •s; 
int n; 
FILE •stream; 

DESCRIPTION 
Gets reads characters from the standard input stream, stdin, into the array pointed 
to bys, until a new-line character is read or an end-of-file condition is encountered. 
The new-line character is discarded and the string is terminated with a null charac­
ter. 

Fgets reads characters from the stream into the array pointed to by s, until n-1 
characters are read, or a new-line character is read and transferred to s, or an end­
of-file condition is encountered. The string is then terminated with a null character. 

SEE ALSO 
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S). 

DIAGNOSTICS 

7/85 

If end-of-file is encountered and no characters have been read, no characters are 
transferred to s and a NULL pointer is returned. If a read error occurs, such as try­
ing to use these functions on a file that has not been opened for reading, a NULL 
pointer is returned. Otherwise s is returned. 

- 1 - 7/85 





GETUT(JC) (C Programming Language Utilities) GETUT(3C) 

NAME 
getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access utmp 
file entry 

SYNOPSIS 
#include <utmp.h> 

struct utmp •getutent ( ) 

struct utmp •getutid (id) 
struct utmp •id; 

struct utmp •getutline Oine) 
struct utmp •line; 

void pututline (utmp) 
struct utmp •utmp; 

void setutent ( ) 

void endutent ( ) 

void utmpname (file) 
char •file; 

DESCRIPTION 

7/85 

Getutent, getutid and getutline each return a pointer to a structure of the following 
type: 

struct utmp { 
char 
char 
char 
short 
short 
struct 

short 
short 

} ut_exit; 

time t 
}; 

ut user[8]; 
ut-id[4]; 
ut-line[ 12]; 
u(pid; 
ut_type; 
exit _status { 

e_termination; 
e_exit; 

ut_time; 

I• User login name•/ 
I• /etc/inittab id (usually line #) •/ 
I• device name (console, lnxx) •/ 
I• process id •/ 
/• type of entry •/ 

I• Process termination status •/ 
/• Process exit status •/ 
I• The exit status of a process 
• marked as DEAD _PROCESS. •/ 

I• time entry was made•/ 

Getutent reads in the next entry from a utmp-like file. If the file is not already 
open, it opens it. If it reaches the end of the file, it fails. 

Getutid searches forward from the current point in the utmp file until it finds an 
entry with a ut_type matching id->ut_type if the type specified is RUN_LVL, 
BOOT_ TIME, OLD_ TIME or NEW_ TIME. If the type specified in id is 
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS or DEAD_PROCESS, then getu­
tid will return a pointer to the first entry whose type is one of these four and whose 
ut _id field matches id-> ut_jd. If the end of file is reached without a match, it 
fails. 

Getutline searches forward from the current point in the utmp file until it finds an 
entry of the type LOGIN_PROCESS or USER_PROCESS which also has a utjine 
string matching the line - > ut _line string. If the end of file is reached without a 
match, it fails. 

Pututline writes out the supplied utmp structure into the utmp file. It uses getutid 
to search forward for the proper place if it finds that it is not already at the proper 

- 1 - 7/85 



GETUT(JC) (C Programming Language Utilities) GETUT(3C) 

FILES 

place. It is expected that normally the user of pututline will have searched for the 
proper entry using one of the getut routines. If so, pututline will not search. If 
pututline does not find a matching slot for the new entry, it will add a new entry to 
the end of the file. 

Setutent resets the input stream to the beginning of the file. This should be done 
before each search for a new entry if it is desired that the entire file be examined. 

Endutent closes the currently open file. 

Utmpname allows the user to change the name of the file examined, from /etc/utmp 
to any other file. It is most often expected that this other file will be /etc/wtmp. If 
the file does not exist, this will not be apparent until the first attempt to reference 
the file is made. Utmpname does not open the file. It just closes the old file if it is 
currently open and saves the new file name. 

/etc/utmp 
/etc/wtmp 

SEE ALSO 
ttyslot(3C), utmp(4). 

DIAGNOSTICS 
A NULL pointer is returned upon failure to read, whether for permissions or having 
reached the end of file, or upon failure to write. 

COMMENTS 

7/85 

The most current entry is saved in a static structure. Multiple accesses require that 
it be copied before further accesses are made. Each call to either getutid or getut­
line sees the routine examine the static structure before performing more 1/0. If 
the contents of the static structure match what it is searching for, it looks no 
further. For this reason to use getutline to search for multiple occurrences, it would 
be necessary to zero out the static after each success, or getutline would just return 
the same pointer over and over again. There is one exception to the rule about 
removing the structure before further reads are done. The implicit read done by 
pututline (if it finds that it is not already at the correct place in the file) will not 
hurt the contents of the static structure returned by the getutent, getutid or getut­
line routines, if the user has just modified those contents and passed the pointer 
back to pututline. 

These routines use buffered standard I/O for input, but pututline uses an unbuffered 
non-standard write to avoid race conditions between processes trying to modify the 
utmp and wtmp files. 

- 2 - 7/85 



HSEARCH (3C) (C Programming Language Utilities) HSEARCHOC) 

NAME 
hsearch, hcreate, hdestroy - manage hash search tables 

SYNOPSIS 
#include < searcb.h > 
ENTRY •lhsearch (item, action) 
ENTRY item; 
ACTION action; 

int bcreate (nel) 
unsigned nel; 

void hdestmy ( ) 

DESCRIPTION 
Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D. 
It returns a pointer into a hash table indicating the location at which an entry can 
be found. Item is a structure of type ENTRY (defined in the <search.h > header 
file) containing two pointers: item.key points to the comparison key, and item.data 
points to any other data to be associated with that key. (Pointers to types other 
than character should be cast to pointer-to-character.) Action is a member of an 
enumeration type ACTION indicating the disposition of the entry if it cannot be 
found in the table. ENTER indicates that the item should be inserted in the table at 
an appropriate point. FIND indicates that no entry should be made. Unsuccessful 
resolution is indicated by the return of a NULL pointer. 

Hcreate allocates sufficient space for the table, and must be called before hsearch is 
used. Nel is an estimate of the maximum number of entries that the table will con­
tain. This number may be adjusted upward by the algorithm in order to obtain cer­
tain mathematically favorable circumstances. 

Hdestroy destroys the search table, and may be followed by another call to hcreate. 

NOTES 

7/85 

Hsearch uses open addressing with a multiplicative hash function. However, its 
source code has many other options available which the user may select by compil­
ing the hsearch source with the following symbols defined to the preprocessor: 

DIV Use the remainder modulo table size as the hash function 
instead of the multiplicative algorithm. 

USCR Use a User Supplied Comparison Routine for ascertaining table 
membership. The routine should be named hcompar and 
should behave in a mannner similar to strcmp (see string(3C)). 

CHAINED Use a linked list to resolve collisions. If this option is selected, 
the following other options become available. 

START Place new entries at the beginning of the linked 
list (default is at the end). 

SORTUP Keep the linked list sorted by key in ascending 
order. 

SORTOOWN Keep the linked list sorted by key in descending 
order. 

Additionally, there are preprocessor flags for obtaining debugging printout (-DDE­
BUG) and for including a test driver in the calling routine ( - DDRIVER). The 
source code should be consulted for further details. 

- 1 - 7/85 



HSEARCH (3C) (C Programming Language Utilities) HSEARCH (3C) 

EXAMPLE 

7/85 

The following example will read in strings followed by two numbers and store them 
in a hash table, discarding duplicates. It will then read in strings and find the 
matching entry in the hash table and print it out. 

#include <stdio.h> 
#include <search.h> 

struct info { /• this is the info stored in the table •/ 
int age, room; /• other than the key. *I 

} ; 
#define NUM _EMPL 5000 I• # of elements in search table •/ 

main( ) 
{ 

I• space to store strings •/ 
char string_space[NUM_EMPL•20]; 
I• space to store employee info •/ 
struct info info_space[NUM_EMPL]; 
I• next avail space in string_space •/ 
char •str _ptr = string_space; 
I• next avail space in info_space •/ 
struct info •info _ptr = info _space; 
ENTRY item, •found item, •hsearch( ); 
I• name to look for Tn table •/ 
char name to find[30]; 
int i = O;- -

I• create table •/ 
(void) hcreate(NUM_EMPL); 
while (scanf("%s%d%d", str_ptr, &info_ptr->age, 

&info_ptr->room) !- EOF && i++ < NUM_EMPL) 
I• put info in structure, and structure in item •/ 
item.key - str _ptr; 
item.data - (char •)info_ptr; 
str_ptr += strlen(str_ptr) + 1; 
info_ptr++; 
I• put item into table •/ 
(void) hsearch (item, ENTER); 

I• access table •/ 
item.key = name_to_find; 
while (scanf("%s", item.key) != EOF) { 

if ((found item = hsearch(item, FIND)) != NULL) { 
I• if item is in the table •/ 
(void)printf("found %s, age = %d, room = %d\n", 

found _item-> key, 

else { 

( (struct info •)found jtem->data)-> age, 
( (struct info •)found _item-> data)-> room); 

(void)printf("no such employee %s\n", 
name _to_ find) 

- 2 - 7/85 



HSEARCH (3C) (C Programming Language Utilities) HSEARCH (3C) 

SEE ALSO 
bsearch (3C), !search (3C), malloc(3C), malloc(3X), string(3C), tsearch (3C). 

DIAGNOSTICS 
Hsearch returns a NULL pointer if either the action is FIND and the item could not 
be found or the action is ENTER and the table is full. 

Hcreate returns zero if it cannot allocate sufficient space for the table. 

WARNING 
Hsearch and hcreate use malloc(3C) to allocate space. 

BUGS 
Only one hash search table may be active at any given time. 

7/85 - 3 - 7/85 





L3TOL(3C) (C Programming Language Utilities) L3TOL(3C) 

NAME 
l3tol, ltol3 - convert between 3-byte integers and long integers 

SYNOPSIS 
void 13tol Op, cp, n) 
long •Ip; 
char •cp; 
int n; 

void ltol3 (cp, Ip, n) 
char •cp; 
long •Ip; 
int n; 

DESCRIPTION 
L3tol converts a list of n three-byte integers packed into a character string pointed 
to by cp into a list of long integers pointed to by Ip. 

Lto/3 performs the reverse conversion from long integers (/p) to three-byte integers 
(cp). 

These functions are useful for file-system maintenance where the block numbers are 
three bytes long. 

SEE ALSO 
fs(4). 

BUGS 

711~ 

Because of possible differences in byte ordering, the numerical values of the long 
integers are machine-dependent. 

- 1 - 7/85 





LOCKF(3C) (C Programming Language Utilities) LOCKF(3C) 

NAME 
lockf - record locking on files 

SYNOPSIS 
# include < unistd.b > 

lockf (fildes, function, size) 
long size; 
int tildes, function; 

DESCRIPTION 

7/R'i 

The lock/ command will allow sections of a file to be locked (advisory write locks). 
(Mandatory or enforcement mode record locks are not currently available.) Lock­
ing calls from other processes which attempt to lock the locked file section will 
either return an error value or be put to sleep until the resource becomes unlocked. 
All the locks for a process are removed when the process terminates. (See fcntl(2) 
for more information about record locking.) 

Fildes is an open file descriptor. The file descriptor must have O _ WRONL Y or 
0 _RDWR permission in order to establish lock with this function call. 

Function is a control value which specifies the action to be taken. The permissible 
values for function are defined in <unistd.b> as follows: 

#define 
#define 
#define 
#define 

F ULOCK 0 
FLOCK 1 
F TLOCK 2 
F-TEST 3 

I• Unlock a previously locked section •/ 
I• Lock a section for exclusive use •/ 
I• Test and lock a section for exclusive use •/ 
I• Test section for other processes locks •/ 

All other values of function are reserved for future extensions and will result in an 
error return if not implemented. 

F _'fEST is used to detect if a lock by another process is present on the specified sec­
tion. F _LOCK and F _TLOCK both lock a section of a file if the section is available. 
F _UNLOCK removes locks from a section of the file. 

Size is the number of contiguous bytes to be locked or unlocked. The resource to be 
locked starts at the current offset in the file and extends forward for a positive size 
and backward for a negative size (the preceding bytes up to but not including the 
current offset). If size is zero, the section from the current offset through the larg­
est file offset is locked (i.e., from the current offset through the present or any 
future end-of-file). An area need not be allocated to the file in order to be locked as 
such locks may exist past the end-of-file. 

The sections locked with F _LOCK or F _TLOCK may, in whole or in part, contain or 
be contained by a previously locked section for the same process. When this occurs, 
or if adjacent sections occur, the sections are combined into a single section. If the 
request requires that a new element be added to the table of active locks and this 
table is already full, an error is returned, and the new section is not locked. 

F _LOCK and F _TLOCK requests differ only by the action taken if the resource is not 
available. F _LOCK will cause the calling process to sleep until the resource is avail­
able. F_TLOCK will cause the function to return a -1 and set errno to [EACCESS] 
error if the section is already locked by another process. 

F _ULOCK requests may, in whole or in part, release one or more locked sections 
controlled by the process. When sections are not fully released, the remaining sec­
tions are still locked by the process. Releasing the center section of a locked section 

- 1 - 7/85 



LOCKF(JC) (C Programming Language Utilities) LOCKF(3C) 

requires an additional element in the table of active locks. If this table is full, an 
[EDEADLK] error is returned and the requested section is not released. 

A potential for deadlock occurs if a process controlling a locked resource is put to 
sleep by accessing another process's locked resource. Thus calls to lock or Jent! scan 
for a deadlock prior to sleeping on a locked resource. An error return is made if 
sleeping on the locked resource would cause a deadlock. 

Sleeping on a resource is interrupted with any signal. The alarm(2) command may 
be used to provide a timeout facility in applications which require this facility. 

ERRORS 
The lockf utility will fail if one or more of the following are true: 

[EBADF] 
Fildes is not a valid open descriptor. 

[EACCESS] 
Cmd is F _ TLOCK or F _TEST and the section is already locked by another 
process. 

[EDEADLK] 
Cmd is F _LOCK or F _TLOCK and a deadlock would occur. Also the cmd is 
either of the above or F _ ULOCK and the number of entries in the lock table 
would exceed the number allocated on the system. 

SEE ALSO 
close(2), creat (2), fen ti (2), intro(2), open (2), read (2), write(2). 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is 
returned and errno is set to indicate the error. 

WARNINGS 

7/85 

Unexpected results may occur in processes that do buffering in the user address 
space. The process may later read/write data which is/was locked. The standard 
I/O package is the most common source of unexpected buffering. 

- 2 - 7/85 



LSEARCH (3C) (C Programming Language Utilities) LSEARCH(3C) 

NAME 
!search, !find - linear search and update 

SYNOPSIS 
#include <stdio.b> 
#include <searcb.b> 

char •lsearch ((char •)key, (char •)base, nelp, sizeof(•key), compar) 
unsigned •nelp; 
int (•compar)( ); 

char •Hind ((char •)key, (char •)base, nelp, sizeof(•key), compar) 
unsigned •nelp; 
int (•compar)( ); 

DESCRIPTION 
Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It 
returns a pointer into a table indicating where a datum may be found. If the datum 
does not occur, it is added at the end of the table. Key points to the datum to be 
sought in the table. Base points to the first element in the table. Nelp points to an 
integer containing the current number of elements in the table. The integer is 
incremented if the datum is added to the table. Compar is the name of the com­
parison function which the user must supply (strcmp, for example). It is called 
with two arguments that point to the elements being compared. The function must 
return zero if the elements are equal and non-zero otherwise. 

Lfind is the same as !search except that if the datum is not found, it is not added to 
the table. Instead, a NULL pointer is returned. 

NOTES 
The pointers to the key and the element at the base of the table should be of type 
pointer-to-element, and cast to type pointer-to-character. 
The comparison function need not compare every byte, so arbitrary data may be 
contained in the elements in addition to the values being compared. 
Although declared as type pointer-to-character, the value returned should be cast 
into type pointer-to-element. 

EXAMPLE 

7/85 

This fragment will read in ~ TABSIZE strings of length ~ ELSIZE and store them 
in a table, eliminating duplicates. 

#include <stdio.h> 
#include <search.h> 

#define T ABSIZE 50 
#define ELSIZE 120 

char lindELSIZE], tab[TABSIZE][ELSIZE], •!search ( ) ; 
unsigned nel = O; 
int strcmp( ); 

while (fgetsOine, ELSIZE, stdin) != NULL && 
nel < T ABSIZE) 

(void) !search Oine, (char •)tab, &nel, 
ELSIZE, strcmp); 

- 1 - 7/85 



LSEARCH (JC) (C Programming Language Utilities) LSEARCH (3C) 

SEE ALSO 
bsearch (3C), hsearch (3C), tsearch (3C). 

DIAGNOSTICS 

BUGS 

7/85 

H the searched for datum is found, both !search and /find return a pointer to it. 
Otherwise, I.find returns NULL and /search returns a pointer to the newly added 
element. 

Undefined results can occur if there is not enough room in the table to add a new 
item. 

- 2 - 7/85 



MALLOC(3C) (C Programming Language Utilities) MAJLJLOC (JC) 

NAME 
malloc, free, realloc, calloc - main memory allocator 

SYNOPSIS 
char •malloc (size) 
unsigned size; 

void free (ptr) 
char •ptr; 

char •realloc (ptr, size) 
char •ptr; 
unsigned size; 

char •calloc (nelem, elsize) 
unsigned nelem, elsize; 

DESCRIPTION 
Malloc and free provide a simple general-purpose memory allocation package. 
Malloc returns a pointer to a block of at least size bytes suitably aligned for any 
use. 

The argument to free is a pointer to a block previously allocated by malloc; after 
free is performed this space is made available for further allocation, but its contents 
are left undisturbed. 

Undefined results will occur if the space assigned by malloc is overrun or if some 
random number is handed to free. 

Malloc allocates the first big enough contiguous reach of free space found in a cir­
cular search from the last block allocated or freed, coalescing adjacent free blocks 
as it searches. It calls sbrk (see brk (2)) to get more memory from the system when 
there is no suitable space already free. 

Realloc changes the size of the block pointed to by ptr to size bytes and returns a 
pointer to the (possibly moved) block. The contents will be unchanged up to the 
lesser of the new and old sizes. If no free block of size bytes is available in the 
storage arena, then realloc will ask malloc to enlarge the arena by size bytes and 
will then move the data to the new space. 

Realloc also works if ptr points to a block freed since the last call of mal/oc, real­
loc, or cal/oc; thus sequences of free, malloc and realloc can exploit the search 
strategy of malloc to do storage compaction. 

Calloc allocates space for an array of nelem elements of size elsize. The space is 
initialized to zeros. 

Each of the allocation routines returns a pointer to space suitably aligned (after pos­
sible pointer coercion) for storage of any type of object. 

SEE ALSO 
brk(2), malloc(3X). 

DIAGNOSTICS 
Malloc, realloc and calloc return a NULL pointer if there is no available memory 
or if the arena has been detectably corrupted by storing outside the bounds of a 
block. When this happens the block pointed to by ptr may be destroyed. 

NOTES 

7/85 

Search time increases when many objects have been allocated; that is, if a program 
allocates but never frees, then each successive allocation takes longer. For an alter­
nate, more flexible implementation, see malloc(3X). 

- l - 7/85 





MEMORY(3C) (C Programming Language Utilities) MEMORY(3C) 

NAME 
memccpy, memchr, memcmp, memcpy, memset - memory operations 

SYNOPSIS 
#include <memory .h > 
char •memccpy (sl, s2, c, n) 
char •sl, •s2; 
int c, n; 

char *memchr (s, c, n) 
char •s; 
int c, n; 

int memcmp (s1, s2, n) 
char •sl, •s2; 
int n; 

char •memcpy (sl, s2, n) 
char •sl, •s2; 
int 11; 

char •memset (s, c, n) 
char •s; 
int c, n; 

DESCRIPTION 

BUGS 

7/85 

These functions operate as efficiently as possible on memory areas (arrays of charac­
ters bounded by a count, not terminated by a null character). They do not check 
for the overflow of any receiving memory area. 

Memccpy copies characters from memory area s2 into st, stopping after the first 
occurrence of character c has been copied, or after n characters have been copied, 
whichever comes first. It returns a pointer to the character after the copy of c in 
sl, or a NULL pointer if c was not found in the first n characters of s2. 

Memchr returns a pointer to the first occurrence of character c in the first n char­
acters of memory area s, or a NULL pointer if c does not occur. 

Memcmp compares its arguments, looking at the first n characters only, and returns 
an integer less than, equal to, or greater than 0, according as sl is lexicographically 
less than, equal to, or greater than s2. 

Memcpy copies n characters from memory area s2 to sl. It returns st. 

Memset sets the first n characters in memory area s to the value of character c. It 
returns s. 

For user convenience, all these functions are declared in the optional <memory.h> 
header file. 

Memcmp uses native character comparison, which is unsigned. Thus the sign of the 
value returned when one of the characters has its high-order bit set is 
implementation-dependent. 

Character movement is performed differently in different implementations. Thus 
overlapping moves may yield surprises. 

- l - 7/85 





MKTEMP(JC) (C Programming Language Utilities) MKTEMP(3C) 

NAME 
mktemp - make a unique file name 

SYNOPSIS 
d1ar •mktemp (template) 
char •template; 

DESCRIPTION 
Mktemp replaces the contents of the string pointed to by template by a unique file 
name, and returns the address of template. The string in template should look like 
a file name with six trailing Xs; mktemp will replace the Xs with a letter and the 
current process ID. The letter will be chosen so that the resulting name does not 
duplicate an existing file. 

SEE ALSO 
getpid(2), tmpfile(3S), tmpnam (3S). 

BUGS 
It is possible to run out of letters. 

7/85 - 1 - 7/85 





MONITOR (JC) (C Programming Language Utilities) MONITOR (JC) 

NAME 
monitor - prepare execution profile 

SYNOPSIS 
#include < mon.h> 

void monitor Oowpc, highpc, buffer, bufsize, nfunc) 
int (•lowpcH ), (•highpc)( ); 
WORD •buffer; 
int bufsize, nfunc; 

DESCRIPTION 

FILES 

An executable program created by cc -p automatically includes calls for monitor 
with default parameters; monitor needn't be called explicitly except to gain fine 
control over profiling. 

Monitor is an interface to profil (2). Lowpc and highpc are the addresses of two 
functions; buffer is the address of a (user supplied) array of bu/size WORDs 
(defined in the <mon.h> header file). Monitor arranges to record a histogram of 
periodically sampled values of the program counter, and of counts of calls of certain 
functions, in the buffer. The lowest address sampled is that of lowpc and the 
highest is just below highpc. Lowpc may not equal 0 for this use of monitor. At 
most nfunc call counts can be kept; only calls of functions compiled with the 
profiling option -p of cc(l) are recorded. 

For the results to be significant, especially where there are small, heavily used rou­
tines, it is suggested that the buffer be no more than a few times smaller than the 
range of locations sampled. 

To profile the entire program, it is sufficient to use 

extern etext; 

monitor ((int ( •) ()) 2, etext, buf, bufsize, nfunc); 

Etext lies just above all the program text. 

To stop execution monitoring and write the results on the file moo.out, use 

monitor ((int (•)0)0, 0, 0, 0, O); 

Prof(l) can then be used to examine the results. 

mon.out 
/lib/libp/libc.a 
/lib/libp/libm.a 

SEE ALSO 
profil(2). 
cc(l), prof(!) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - l - 7/85 





NUST(3C) (C Programming Language Utilities) NLIST(3C) 

NAME 
nlist - get entries from name list 

SYNOPSIS 
#include <nlist.b> 

int nlist (file-name, nO 
char •file-name; 
struct nlist •nl; 

DESCRIPTION 
Nlist examines the name list in the executable file whose name is pointed to by 
file-name, and selectively extracts a list of values and puts them in the array of nlist 
structures pointed to by nl. The name list nl consists of an array of structures con­
taining names of variables, types and values. The list is terminated with a null 
name; that is, a null string is in the name position of the structure. Each variable 
name is looked up in the name list of the file. If the name is found, the type and 
value of the name are inserted in the next two fields. The type field will be set to 0 
unless the file was compiled with the -g option. If the name is not found, both 
entries are set to 0. See a.out (4) for a discussion of the symbol table structure. 

This function is useful for examining the system name list kept in the file /unix. In 
this way programs can obtain system addresses that are up to date. 

NOTES 
The <nlist.h> header file is automatically included by <a.out.h> for compatabil­
ity. However, if the only information needed from <a.out.h> is for use of nlist, 
then including <a.out.h> is discouraged. If <a.out.h> is included, the line 
"#undef n_name" may need to follow it. 

SEE ALSO 
a.out(4). 

DIAGNOSTICS 

7/85 

All value entries are set to 0 if the file cannot be read or if it does not contain a 
valid name list. 

Nlist returns -1 upon error; otherwise it returns 0. 

- l - 7/85 





PERROR(JC) (C Programming Language Utilities) PERROR(3C) 

NAME 
perror, errno, sys_errlist, sys_nerr - system error messages 

SYNOPSIS 
void perror (s) 
char •s; 

extern int errno; 

extern char •sys_ errlistl I; 
extern int sys_ nerr; 

DESCRIPTION 
Perror produces a message on the standard error output, describing the last error 
encountered during a call to a system or library function. The argument string s is 
printed first, then a colon and a blank, then the message and a new-line. To be of 
most use, the argument string should include the name of the program that incurred 
the error. The error number is taken from the external variable errno, which is set 
when errors occur but not cleared when non-erroneous calls are made. 

To simplify variant formatting of messages, the array of message strings sys_errlist 
is provided; errno can be used as an index in this table to get the message string 
without the new-line. Sys _nerr is the largest message number provided for in the 
table; it should be checked because new error codes may be added to the system 
before they are added to the table. 

SEE ALSO 
intro(2). 

7/85 - l - 7/85 





POPEN(3S) (C Programming Language Utilities) POPEN(3S) 

NAME 
popen, pclose - initiate pipe to/from a process 

SYNOPSIS 
#include <stdio.h> 

FILE •popen (command, type) 
char •command, •type; 

int pclose (stream) 
FILE •stream; 

DESCRIPTION 
The arguments to popen are pointers to null-terminated strings containing, respec­
tively, a shell command line and an 1/0 mode, either r for reading or w for writing. 
Popen creates a pipe between the calling program and the command to be executed. 
The value returned is a stream pointer such that one can write to the standard input 
of the command, if the I/O mode is w, by writing to the file stream; and one can 
read from the standard output of the command, if the I/O mode is r, by reading 
from the file stream. 

A stream opened by popen should be closed by pclose, which waits for the associ­
ated process to terminate and returns the exit status of the command. 

Because open files are shared, a type r command may be used as an input filter and 
a type w as an output filter. 

SEE ALSO 
pipe(2), wait (2), fclose(3S), fopen (3S), system (3S). 

DIAGNOSTICS 

BUGS 

7/85 

Popen returns a NULL pointer if files or processes cannot be created, or if the shell 
cannot be accessed. 

Pclose returns -1 if stream is not associated with a "popened" command. 

If the original and "popened" processes concurrently read or write a common file, 
neither should use buffered 1/0, because the buffering gets all mixed up. Problems 
with an output filter may be forestalled by careful buffer flushing, e.g. with ffiush; 
see /close (3S). 

- 1 - 7/85 





PRINTF(3S) (C Programming Language Utilities) PRINTF(3S) 

NAME 
printf, fprintf, sprintf - print formatted output 

SYNOPSIS 
#include <stdio.h> 

int printf (format [ , arg l ... 
char •format; 

int fprintf (stream, format [ , arg ] ... 
FILE •stream; 
char •format; 

int sprintf (s, format [ , arg I ... 
char •s, format; 

DESCRIPTION 

7/85 

Print/ places output on the standard output stream stdout. Fprintf places output 
on the named output stream. Sprint/ places "output," followed by the null charac­
ter (\0), in consecutive bytes starting at •s; it is the user's responsibility to ensure 
that enough storage is available. Each function returns the number of characters 
transmitted (not including the \0 in the case of sprint}), or a negative value if an 
output error was encountered. 

Each of these functions converts, formats, and prints its args under control of the 
format. The format is a character string that contains two types of objects: plain 
characters, which are simply copied to the output stream, and conversion 
specifications, each of which results in fetching of zero or more args. The results 
are undefined if there are insufficient args for the format. If the format is 
exhausted while args remain, the excess args are simply ignored. 

Each conversion specification is introduced by the character % . After the % , the 
following appear in sequence: 

Zero or more flags, which modify the meaning of the conversion 
specification. 

An optional decimal digit string specifying a minimum field width. If the 
converted value has fewer characters than the field width, it will be padded 
on the left (or right, if the left-adjustment flag '-', described below, has 
been given) to the field width. If the field width for an s conversion is pre­
ceded by a 0, the string is right adjusted with zero-padding on the left. 

A precision that gives the minimum number of digits to appear for the d, o, 
u, x, or X conversions, the number of digits to appear after the decimal 
point for the e and f conversions, the maximum number of significant digits 
for the g conversion, or the maximum number of characters to be printed 
from a string in s conversion. The precision takes the form of a period (.) 
followed by a decimal digit string; a null digit string is treated as zero. 

An optional I (ell) specifying that a following d, o, u, x, or X conversion 
character applies to a long integer arg. A I before any other conversion 
character is ignored. 

A character that indicates the type of conversion to be applied. 

A field width or precision may be indicated by an asterisk ( •) instead of a digit 
string. In this case, an integer arg supplies the field width or precision. The arg 
that is actually converted is not fetched until the conversion letter is seen, so the 
args specifying field width or precision must appear before the arg (if any) to be 
converted. 

- l " 7/85 



PRINTF(3S) (C Programming Language Utilities) PRINTF(3S) 

7/85 

The flag characters and their meanings are: 
The result of the conversion will be left-justified within the field. 

+ The result of a signed conversion will always begin with a sign ( + or 

blank 

# 

-). 
If the first character of a signed conversion is not a sign, a blank will be 
prefixed to the result. This implies that if the blank and + flags both 
appear, the blank flag will be ignored. 
This flag specifies that the value is to be converted to an "alternate 
form." For c, d, s, and u conversions, the flag has no effect. For o 
conversion, it increases the precision to force the first digit of the result 
to be a zero. For x or X conversion, a non-zero result will have Ox or 
OX prefixed to it. For e, E, f, g, and G conversions, the result will 
always contain a decimal point, even if no digits follow the point (nor­
mally, a decimal point appears in the result of these conversions only if a 
digit follows it). For g and G conversions, trailing zeroes will not be 
removed from the result (which they normally are). 

The conversion characters and their meanings are: 

d,o,u,x,x The integer arg is converted to signed decimal, unsigned octal, decimal, 
or hexadecimal notation (x and X), respectively; the letters abcdef are 
used for x conversion and the letters ABCDEF for X conversion. The 
precision specifies the minimum number of digits to appear; if the value 
being converted can be represented in fewer digits, it will be expanded 
with leading zeroes. (For compatibility with older versions, padding 
with leading zeroes may alternatively be specified by prepending a zero 
to the field width. This does not imply an octal value for the field 
width.) The default precision is 1. The result of converting a zero value 
with a precision of zero is a null string. 

f The float or double arg is converted to decimal notation in the style 
"[ - ]ddd.ddd," where the number of digits after the decimal point is 
equal to the precision specification. If the precision is missing, six digits 
are output; if the precision is explicitly 0, no decimal point appears. 

e,E The float or double arg is converted in the style "[-]d.ddde±dd," 
where there is one digit before the decimal point and the number of 
digits after it is equal to the precision; when the precision is missing, six 
digits are produced; if the precision is zero, no decimal point appears. 
The E format code will produce a number with E instead of e introduc­
ing the exponent. The exponent always contains at least two digits. 

g,G The float or double arg is printed in style for e (or in style E in the case 
of a G format code), with the precision specifying the number of 
significant digits. The style used depends on the value converted: style e 
will be used only if the exponent resulting from the conversion is less 
than -4 or greater than the precision. Trailing zeroes are removed from 
the result; a decimal point appears only if it is followed by a digit. 

c The character arg is printed. 
s The arg is taken to be a string (character pointer) and characters from 

the string are printed until a null character (\O) is encountered or the 
number of characters indicated by the precision specification is reached. 
If the precision is missing, it is taken to be infinite, so all characters up 
to the first null character are printed. A NULL value for arg will yield 
undefined results. 

% Print a % ; no argument is converted. 

- 2 - 7/85 



PRINTIF ( 3S) (C Programming Language Utilities) PRINTF(3S) 

In no case does a non-existent or small field width cause truncation of a field; if the 
result of a conversion is wider than the field width, the field is simply expanded to 
contain the conversion result. Characters generated by print/ and fprintf are 
printed as if putc (3S) had been called. 

EXAMPLES 
To print a date and time in the form "Sunday, July 3, 10:02," where weekday and 
month are pointers to null-terminated strings: 

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min); 

To print 7r to 5 decimal places: 

printf("pi = %.5f', 4 * atan(l.O)); 

SEE ALSO 
ecvt(3C), putc(3S), scanf(3S), stdio(3S). 

7/85 " 3 " 7/85 





PUTC(3S) (C Programming Language Utilities) PUTC(3S) 

NAME 
putc, putchar, fputc, putw - put character or word on a stream 

SYNOPSIS 
#include < stdio.b > 
int putc (c, stream) 
int c; 
FILE •stream; 

int putchar (c) 
int c; 

int fputc (c, stream) 
int c; 
FILE •stream; 

int putw (w, stream) 
int w; 
FILE •stream; 

DESCRIPTION 
Putc writes the character c onto the output stream (at the position where the file 
pointer, if defined, is pointing). Put char (c) is defined as putc (c, stdout). Putc and 
putchar are macros. 

Fputc behaves like putc, but is a function rather than a macro. Fputc runs more 
slowly than putc, but it takes less space per invocation and its name can be passed 
as an argument to a function. 

Putw writes the word (i.e. integer) w to the output stream (at the position at which 
the file pointer, if defined, is pointing). The size of a word is the size of an integer 
and varies from machine to machine. Putw neither assumes nor causes special 
alignment in the file. 

Output streams, with the exception of the standard error stream stderr, are by 
default buffered if the output refers to a file and line-buffered if the output refers to 
a terminal. The standard error output stream stderr is by default unbuffered, but 
use of /reopen (see fopen (3S)) will cause it to become buffered or line-buffered. 
When an output stream is unbuffered, information is queued for writing on the des­
tination file or terminal as soon as written; when it is buffered, many characters are 
saved up and written as a block. When it is line-buffered, each line of output is 
queued for writing on the destination terminal as soon as the line is completed (that 
is, as soon as a new-line character is written or terminal input is requested). 
Setbuf(3S) or Setbuf(3S) may be used to change the stream's buffering strategy. 

SEE ALSO 
fclose(3S), ferror(3S), fopen (3S), fread (3S), printf(3S), puts(3S), setbuf(3S). 

DIAGNOSTICS 

BUGS 

7/RS 

On success, these functions each return the value they have written. On failure, 
they return the constant EOF. This will occur if the file stream is not open for writ­
ing or if the output file cannot be grown. Because EOF is a valid integer, ferror (3S) 
should be used to detect putw errors. 

Because it is implemented as a macro, putc treats incorrectly a stream argument 
with side effects. In particular, putc(c, .. f + + ); doesn't work sensibly. Fputc should 
be used instead. 
Because of possible differences in word length and byte ordering, files written using 

- l - 7/85 



PUTC(3S) (C Programming Language Utilities) PUTC(3S) 

7/85 

putw are machine-dependent, and may not be read using getw on a different proces­
sor. 

- 2 - 7/85 



PUTENV(3C) (C Programming Language Utilities) PUTENV(3C) 

NAME 
putenv - change or add value to environment 

SYNOPSIS 
int putenv (string) 
char •string; 

DESCRIPTION 
String points to a string of the form "name= value." Putenv makes the value of 
the environment variable name equal to value by altering an existing variable or 
creating a new one. In either case, the string pointed to by string becomes part of 
the environment, so altering the string will change the environment. The space used 
by string is no longer used once a new string-defining name is passed to putenv. 

SEE ALSO 
exec(2), getenv(3C), malloc(3C), environ (5). 

DIAGNOSTICS 
Putenv returns non-zero if it was unable to obtain enough space via malloc for an 
expanded environment, otherwise zero. 

WARNINGS 

7 /R'i 

Putenv manipulates the environment pointed to by environ, and can be used in con­
junction with getenv. However, envp (the third argument to main) is not changed. 
This routine uses malloc (3C) to enlarge the environment. 
After putenv is called, environmental variables are not in alphabetical order. 
A potential error is to call putenv with an automatic variable as the argument, then 
exit the calling function while string is still part of the environment. 

- l - 7/85 





PUTPWENT (JC) (C Programming Language Utilities) PUTPWENT (JC) 

NAME 
putpwent - write password file entry 

SYNOPSIS 
#include <pwd.h> 

int putpwent (p, f) 
struct passwd •p; 
FILE •f; 

DESCRIPTION 
Putpwent is the inverse of getpwent (3C). Given a pointer to a passwd structure 
created by getpwent (or getpwuid or getpwnam), putpwent writes a line on the 
stream f, which matches the format of /etc/passwd. 

SEE ALSO 
getpwent (3C). 

DIAGNOSTICS 
Putpwent returns non-zero if an error was detected during its operation, otherwise 
zero. 

WARNING 

7/85 

The above routine uses <stdio.h>, which causes it to increase the size of programs, 
not otherwise using standard I/O, more than might be expected. 

- 1 - 7/85 





PUTS(3S) (C Programming Language Utilities) PUTS(3S) 

NAME 
puts, fputs - put a string on a stream 

SYNOPSIS 
#include <stdio.h> 

int puts (s) 
char •s; 

int fputs (s, stream) 
char ,.s; 
FILE •stream; 

DESCRIPTION 
Puts writes the null-terminated string pointed to bys, followed by a new-line char­
acter, to the standard output stream stdout. 

Fputs writes the null-terminated string pointed to by s to the named output stream. 

Neither function writes the terminating null character. 

SEE ALSO 
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S). 

DIAGNOSTICS 
Both routines return EOF on error. This will happen if the routines try to write on a 
file that has not been opened for writing. 

NOTES 
Puts appends a new-line character while fputs does not. 

7/85 - l - 7/85 





QSORT(3C) (C Programming Language Utilities) QSORT(3C) 

NAME 
qsort - quicker sort 

SYNOPSIS 
void qsort ((char •) base, nel, sizeof (•base), compar) 
unsigned nel; 
int (•compar) ( ); 

DESCRIPTION 
Qsort is an implementation of the quicker-sort algorithm. It sorts a table of data in 
place. 

Base points to the element at the base of the table. Ne/ is the number of elements 
in the table. Compar is the name of the comparison function, which is called with 
two arguments that point to the elements being compared. As the function must 
return an integer less than, equal to, or greater than zero, so must the first argu­
ment to be considered be less than, equal to, or greater than the second. 

NOTES 
The pointer to the base of the table should be of type pointer-to-element, and cast 
to type pointer-to-character. 
The comparison function need not compare every byte, so arbitrary data may be 
contained in the elements in addition to the values being compared. 
The order in the output of two items which compare as equal is unpredictable. 

SEE ALSO 
bsearch (3C), !search (3C), string (3C). 
sort(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - 1 - 7/85 





RAND(3C) (C Programming Language Utilities) RAND(3C) 

NAME 
rand, srand - simple random-number generator 

SYNOPSIS 
int rand ( ) 

void srand (seed) 
unsigned seed; 

DESCRIPTION 
Rand uses a multiplicative congruential random-number generator with period 232 

that returns successive pseudo-random numbers in the range from 0 to 215-1. 

Srand can be called at any time to reset the random-number generator to a random 
starting point. The generator is initially seeded with a value of 1. 

NOTES 
The spectral properties of rand leave a great deal to be desired. Drand48(3C) pro­
vides a much better, though more elaborate, random-number generator. 

SEE ALSO 
drand48 (3C). 

7/85 - l - 7/85 





SCANF(3S) (C Programming Language Utilities) SCANF(3S) 

NAME 
scanf, fscanf, sscanf - convert formatted input 

SYNOPSIS 
#include <stdio.h> 

int scanf (format [ , pointer ] ... 
char "format; 

int fscanf (stream, format [ , pointer ] ... 
FILE •stream; 
char •format; 

int sscanf (s, format [ , pointer ] ... 
char •s, •format; 

DESCRIPTION 

7/85 

Scanf reads from the standard input stream stdin. Fscanf reads from the named 
input stream. Sscanf reads from the character string s. Each function reads char­
acters, interprets them according to a format, and stores the results in its argu­
ments. Each expects, as arguments, a control string format described below, and a 
set of pointer arguments indicating where the converted input should be stored. 

The control string usually contains conversion specifications, which are used to 
direct interpretation of input sequences. The control string may contain: 

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which, except in 
two cases described below, cause input to be read up to the next non-white-space 
character. 

2. An ordinary character (not % ) , which must match the next character of the 
input stream. 

3. Conversion specifications, consisting of the character % , an optional assignment 
suppressing character •, an optional numerical maximum field width, an optional 
I (ell) or h indicating the size of the receiving variable, and a conversion code. 

A conversion specification directs the conversion of the next input field; the result is 
placed in the variable pointed to by the corresponding argument, unless assignment 
suppression was indicated by •. The suppression of assignment provides a way of 
describing an input field which is to be skipped. An input field is defined as a string 
of non-space characters; it extends to the next inappropriate character or until the 
field width, if specified, is exhausted. For all descriptors except "[" and "c", white 
space leading an input field is ignored. 

The conversion code indicates the interpretation of the input field; the corresponding 
pointer argument must usually be of a restricted type. For a suppressed field, no 
pointer argument is given. The following conversion codes are legal: 

% a single % is expected in the input at this point; no assignment is done. 
d a decimal integer is expected; the corresponding argument should be an 

integer pointer. 
u an unsigned decimal integer is expected; the corresponding argument should 

be an unsigned integer pointer. 
o an octal integer is expected; the corresponding argument should be an 

integer pointer. 

- 1 - 7/85 



SCANF(3S) (C Programming Language Utilities) SCANF(3S) 

7/85 

x a hexadecimal integer is expected; the corresponding argument should be an 
integer pointer. 

e,f,g a floating point number is expected; the next field is converted accordingly 
and stored through the corresponding argument, which should be a pointer 
to a float. The input format for floating point numbers is an optionally 
signed string of digits, possibly containing a decimal point, followed by an 
optional exponent field consisting of an E or an e, followed by an optional 
+, -, or space, followed by an integer. 
a character string is expected; the corresponding argument should be a 
character pointer pointing to an array of characters large enough to accept 
t)le string and a terminating \0, which will be added automatically. The 
input field is terminated by a white-space character. 
a character is expected; the corresponding argument should be a character 
pointer. The normal skip over white space is suppressed in this case; to 
read the next non-space character, use % ls. If a field width is given, the 
corresponding argument should refer to a character array; the indicated 
number of characters is read. 
indicates string data and the normal skip over leading white space is 
suppressed. The left bracket is followed by a set of characters, which we 
will call the scan.set, and a right bracket; the input field is the maximal 
sequence of input characters consisting entirely of characters in the scanset. 
The circumflex C), when it appears as the first character in the scanset, 
serves as a complement operator and redefines the scanset as the set of all 
characters not contained in the remainder of the scanset string. There are 
some conventions used in the construction of the scanset. A range of char­
acters may be represented by the construct .first-last, thus [0123456789] 
may be expressed [0-91 Using this convention, first must be lexically less 
than or equal to last, or else the dash will stand for itself. The dash will 
also stand for itself whenever it is the first or the last character in the scan­
set. To incillde the right square bracket as an element of the scanset, it 
must appear as the first character (possibly preceded by a circumflex) of 
the scanset, and in this case it will not be syntactically interpreted as the 
closing bracket. The corresponding argument must point to a character 
array large enough to hold the data field and the terminating \0, which will 
be added automatically. At least one character must match for this conver­
sion to be considered successful. 

The conversion characters d, 111, o, and x may be preceded by I or h to indicate that 
a pointer to long or to short rather than to int is in the argument list. Similarly, the 
conversion characters e, f, and g may be preceded by I to indicate that a pointer to 
double rather than to float is in the argument list. The I or h modifier is ignored for 
other conversion characters. 

Scan/ conversion terminates at EOF, at the end of the control string, or when an 
input character conflicts with the control string. In the latter case, the offending 
character is left unread in the input stream. 

Sco.nf returns the number of successfully matched and assigned input items; this 
number can be zero in the event of an early conflict between an input character and 
the control string. If the input ends before the first conflict or conversion, EOF is 
returned. 

7/85 



SCANF(3S) (C Programming Language Utilities) SCANF(3S) 

EXAMPLES 
The call: 

int i, n; float x; char name[50]; 
n = scanf("%d%f%s", &i, &x, name); 

with the input line: 

25 54.32E-1 thompson 

will assign to n the value 3, to i the value 25, to x the value 5A32, and name will 
contain thompson\O. Or: 

int i; float x; char name[50]; 
(void) scanf ("%2d%f%•d %[0-9]'', &i, &x, name); 

with input: 

56789 0123 56a72 

will assign 56 to i, 789,0 to x, skip 011.23, and place the string 56\0 in name. The 
next call to get char (see getc (3S)) will return a. 

SEE ALSO 
getc(3S), printf(3S), strtod(3C), strtoi(3C). 

DIAGNOSTICS 

BUGS 

7/85 

These functions return EOF on end of input and a short count for missing or illegal 
data items. 

The success of literal matches and suppressed assignments is not directly determin­
able. 

Trailing white space (including a new-line) is left unread unless matched in the con­
trol string. 

- 3 - 7/85 





SETBUF(JS) (C Programming Language Utilities) SETBUF(3S) 

NAME 
setbuf, setvbuf - assign buffering to a stream 

SYNOPSIS 
#include <stdio.h> 

void setbuf (stream, buf) 
FILE •stream; 
char •buf; 

int setvbuf (stream, buf, type, size) 
FILE •stream; 
char •buf; 
int type, size; 

DESCRIPTION 
Setbuf may be used after a stream has been opened but before it is read or written. 
It causes the array pointed to by buf to be used instead of an automatically allo­
cated buffer. If buf is the NULL pointer input/output will be completely 
unbuffered. 

A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an array is 
needed: 

char buf[BUFSIZ]; 

Setvbuf may be used after a stream has been opened but before it is read or writ­
ten. Type determines how stream will be buffered. Legal values for type (defined 
in stdio.h) are: 

_IOFBF 

_IOLBF 

causes input/output to be fully buffered. 

causes outpu_t to be line buffered; the buffer will be flushed when a 
newline is written, the buffer is full, or input is requested. 

_IONBF causes input/output to be completely unbuffered. 

If buf is not the NULL pointer, the array it points to will be used for buffering, 
instead of an automatically allocated buffer. Size specifies the size of the buffer to 
be used. The constant BUFSIZ in <stdio.h> is suggested as a good buffer size. If 
input/output is unbuffered, buf and size are ignored. 

By default, output to a terminal is line buffered and all other input/output is fully 
buffered. 

SEE ALSO 
fopen (3S), getc(3S), malloc(3C), putc(3S), stdio OS). 

DIAGNOSTICS 
If an illegal value for type or size is provided, setvbuf returns a non-zero value. 
Otherwise, the value returned will be zero. 

NOTES 

7/85 

A common source of error is allocating buffer space as an "automatic" variable in a 
code block, and then failing to close the stream in the same block. 

- l - 7/85 





SETJMPOC) (C Programming Language Utilities) SETJMP(3C) 

NAME 
setjmp, longjmp - non-local goto 

SYNOPSIS 
#include <setjmp.h> 

int setjmp (env) 
jmp _buf env; 

void longjmp (env, vaO 
jmp _buf env; 
int val; 

DESCRIPTION 
These functions are useful for dealing with errors and interrupts encountered in a 
low-level subroutine of a program. 

Setjmp saves its stack environment in env (whose type, jmp_buf, is defined in the 
<se(jmp.h> header file) for later use by longjmp. It returns the value 0. 

Longjmp restores the environment saved by the last call of setjmp with the 
corresponding env argument. After longjmp is completed, program execution con­
tinues as if the corresponding call of setjmp (which must not itself have returned in 
the interim) had just returned the value val. Longjmp cannot cause setjmp to 
return the value 0. If /ongjmp is invoked with a second argument of 0, setjmp will 
return l. All accessible data had values as of the time longjmp was called. 

SEE ALSO 
signal(2). 

WARNING 

7/85 

If longjmp is called even though env was never primed by a call to setjmp, or when 
the last such call was in a function which has since returned, absolute chaos is 
guaranteed. 

- 1 - 7/85 





SLEEP(3C) (C Programming Language Utilities) SLEEP(3C) 

NAME 
sleep - suspend execution for interval 

SYNOPSIS 
unsigned sleep (seconds) 
unsigned seconds; 

DESCRIPTION 
The current process is suspended from execution for the number of seconds specified 
by the argument. The actual suspension time may be less than that requested for 
two reasons: (l) Because scheduled wakeups occur at fixed I-second intervals, (on 
the second, according to an internal clock) and (2) because any caught signal will 
terminate the sleep following execution of that signal's catching routine. Also, the 
suspension time may be longer than requested by an arbitrary amount due to the 
scheduling of other activity in the system. The value returned by sleep will be the 
"unslept" amount (the requested time minus the time actually slept) in case the 
caller had an alarm set to go off earlier than the end of the requested sleep time, or 
premature arousal due to another caught signal. 

The routine is implemented by setting an alarm signal and pausing until it (or some 
other signal) occurs. The previous state of the alarm signal is saved and restored. 
The calling program may have set up an alarm signal before calling sleep. If the 
sleep time exceeds the time till such alarm signal, the process sleeps only until the 
alarm signal would have occurred. The caller's alarm catch routine is executed just 
before the sleep routine returns. But if the sleep time is less than the time till such 
alarm, the prior alarm time is reset to go off at the same time it would have without 
the intervening sleep. 

SEE ALSO 
a!arm(2), pause(2), signal(2). 

7/85 - 1 - 7/85 





SSIGNAL(3C) (C Programming Language Utilities) SSIGNAL(3C) 

NAME 
ssignal, gsignal - software signals 

SYNOPSIS 
#include <signath> 

int ( •ssignal (sig, action)) ( ) 
int sig, (•action)( ) ; 

int gsignal (sig) 
int sig; 

DESCRIPTION 
Ssignal and gsignal implement a software facility similar to signal (2). This facility 
is used by the Standard C Library to enable users to indicate the disposition of error 
conditions, and is also made available to users for their own purposes. 

Software signals made available to users are associated with integers in the inclusive 
range 1 through 15. A call to ssignal associates a procedure, action, with the 
software signal sig; the software signal, sig, is raised by a call to gsignal. Raising a 
software signal causes the action established for that signal to be taken. 

The first argument to ssignal is a number identifying the type of signal for which 
an action is to be established. The second argument defines the action; it is either 
the name of a (user-defined) action function or one of the manifest constants 
SIG _DFL (default) or SIG _IGN (ignore). Ssignal returns the action previously esta­
blished for that signal type; if no action has been established or the signal number is 
illegal, ssignal returns SIG_DFL. 

Gsignal raises the signal identified by its argument, sig: 

If an action function has been established for sig, then that action is reset to 
SIG_DFL and the action function is entered with argument sig. Gsignal 
returns the value returned to it by the action function. 

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no other 
action. 

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no other 
action. 

If sig has an illegal value or no action was ever specified for sig, gsignal 
returns the value 0 and takes no other action. 

SEE ALSO 
signal(2). 

NOTES 

7/85 

There are some additional signals with numbers outside the range 1 through 15 
which are used by the Standard C Library to indicate error conditions. Thus, some 
signal numbers outside the range 1 thi_:ough 15 are legal, although their use may 
interfere with the operation of the Standard C Library. 

- 1 - 7/85 





STDI0(3S) (C Programming Language Utilities) STDIO (3S) 

NAME 
stdio - standard buffered input/output package 

SYNOPSIS 
#include <stdio.h> 

FILE •stdio, •stdout, •stderr; 

DESCRIPTION 
The functions described in the entries of sub-class 3S of this manual constitute an 
efficient, user-level 1/0 buffering scheme. The in-line macros getc(3S) and 
putc(3S) handle characters quickly. The macros getchar and putchar, and the 
higher-level routines fgetc, /gets, fprintf, fputc, /puts, /read, fscanf, /write, gets, 
getw, print/, puts, putw, and scan/ all use or act as if they use getc and putc; they 
can be freely intermixed. 

A file with associated buffering is called a stream and is declared to be a pointer to 
a defined type FILE. Fopen (3S) creates certain descriptive data for a stream and 
returns a pointer to designate the stream in all further transactions. Normally, 
there are three open streams with constant pointers declared in the <stdio.h> 
header file and associated with the standard open files: 

stdio 
stdout 
stderr 

standard input file 
standard output file 
standard error file 

A constant NULL (0) designates a nonexistent pointer. 

An integer-constant EOF (-1) is returned upon end-of-file or error by most integer 
functions that deal with streams (see the individual descriptions for details). 

An integer constant BUFSIZ specifies the size of the buffers used by the particular 
implementation. 

Any program that uses this package must include the header file of pertinent macro 
definitions, as follows: 

#include <stdio.h> 

The functions and constants mentioned in the entries of sub-class 3S of this manual 
are declared in that header file and need no further declaration. The constants and 
the following "functions" are implemented as macros (redeclaration of these names 
is perilous): getc, getchar, putc, putchar,ferror,feof, clearerr, andfileno. 

SEE ALSO 
open(2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(3S), cuserid(3S), 
fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3C), 
popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S), system(3S), 
tmpfile(3S), tmpnam (3S), ungetc(3S). 

DIAGNOSTICS 

7/85 

Invalid stream pointers will usually cause grave disorder, possibly including program 
termination. Individual function descriptions describe the possible error conditions. 

- l - 7/85 





STDIPC(JC) (C Programming Language Utilities) STDIPC(3C) 

NAME 
ftok - standard interprocess communication package 

SYNOPSIS 
#include <sys/types.bi> 
#include <sys/ipc.h> 

key_t ftok(path, id) 
char •path; 
char id; 

DESCRIPTION 
All interprocess communication facilities require the user to supply a key to be used 
by the msgget (2), semget (2), and shmget (2) system calls to obtain interprocess 
communication identifiers. One suggested method for forming a key is to use the 
ftok subroutine described below. Another way to compose keys is to include the 
project ID in the most significant byte and to use the remaining portion as a 
sequence number. There are many other ways to form keys, but it is necessary for 
each system to define standards for forming them. If some standard is not adhered 
to, it will be possible for unrelated processes to unintentionally interfere with each 
other's operation. Therefore, it is strongly suggested that the most significant byte 
of a key in some sense refer to a project so that keys do not conflict across a given 
system. 

Ftok returns a key based on path and id that is usable in subsequent msgget, 
semget, and shmget system calls. Path must be the path name of an existing file 
that is accessible to the process. Id is a character which uniquely identifies a pro­
ject. Note that ftok will return the same key for linked files when called with the 
same id and that it will return different keys when called with the same file name 
but different ids. 

SEE ALSO 
intro (2), msgget (2), semget (2), shmget (2). 

DIAGNOSTICS 
Ftok returns (key _0 -1 if path does not exist or if it is not accessible to the pro­
cess. 

WARNING 

7/85 

If the file whose path is passed to ftok is removed when keys still refer to the file, 
future calls to ftok with the same path and id will return an error. If the same file 
is recreated, then ftok is likely to return a different key than it did the original time 
it was called. 

- 1 - 7/85 





STRING(3C) (C Programming Language Utilities) STRING(3C) 

NAME 
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, 
strspn, strcspn, strtok - string operations 

SYNOPSIS 
#include <string.h> 

char •strcat (sl, s2) 
char •sl, •s2; 

char •strncat (sl, s2, n) 
char •sl, •s2; 
int n; 

int strcmp (sl, s2) 
char •sl, •s2; 

int strncmp (sl, s2, n) 
char •sl, •s2; 
int n; 

char •strcpy (sl, s2) 
char •sl, •s2; 

char •strncpy (sl, s2, n) 
char •sl, •s2; 
int n; 

int strlen (s) 
char •s; 

char •strcbr (s, c) 
char •s; 
int c; 

char •strrchr (s, c) 
char •s; 
int c; 

char •strphrk (sl, s2) 
char •sl, •s2; 

int strspn (s 1, s2) 
char •sl, •s2; 

int strcspn (sl, s2) 
char •sl, •s2; 

char •strtok (sl, s2) 
char •sl, •s2; 

DESCRIPTION 

7/85 

The arguments sl, s2 and s point to strings (arrays of characters terminated by a 
null character). The functions streat, strneat, strepy, and strnepy all alter st. 
These functions do not check for overflow of the array pointed to by sl. 

Streat appends a copy of string s2 to the end of string st. Strneat appends at most 
n characters. Each returns a pointer to the null-terminated result. 

Stremp compares its arguments and returns an integer less than, equal to, or 
greater than 0, according as sl is lexicographically less than, equal to, or greater 
than s2. Strnemp makes the same comparison but looks at at most n characters. 

- 1 - 7/85 



STRING(3C) (C Programming Language Utilities) S'IRING(3C) 

BUGS 

7/85 

Strcpy copies string s2 to sl, stopping after the null character has been copied. 
Strncpy copies exactly n characters, truncating s2 or adding null characters to sl if 
necessary. The result will not be null-terminated if the length of s2 is n or more. 
Each function returns sl. 

Strlen returns the number of characters in s, not including the terminating null 
character. 

St re hr (strrchr) returns a pointer to the first (last) occurrence of character c in 
string s, or a NULL pointer if c does not occur in the string. The null character ter­
minating a string is considered to be part of the string. 

Strpbrk returns a pointer to the first occurrence in string sl of any character from 
string s2, or a NULL pointer if no character from s2 exists in sl. 

Strspn (strcspn) returns the length of the initial segment of string sl which consists 
entirely of characters from (not from) string s2. 

Strtok considers the string sl to consist of a sequence of zero or more text tokens 
separated by spans of one or more characters from the separator string s2. The first 
call (with pointer sl specified) returns a pointer to the first character of the first 
token, and will have written a null character into s1 immediately following the 
returned token. The function keeps track of its position in the string between 
separate calls, so that subsequent calls (which must be made with the first argument 
a NULL pointer) will work through the string sl immediately following that token. 
In this way subsequent calls will work through the string sl until no tokens remain. 
The separator string s2 may be different from call to call. When no token remains 
in sl, a NULL pointer is returned. 

For user convenience, all these functions are declared in the optional <string.h> 
header file. 

Strcmp and strncmp use native character comparison, which is unsigned. Thus the 
sign of the value returned when one of the characters has its high-order bit set is 
implementation-dependent. 

Character movement is performed differently in different implementations. Thus 
overlapping moves may yield surprises. 

- 2 - 7/85 



STRTOD(3C) (C Programming Language Utilities) STRTOD(3C) 

NAME 
strtod, atof - convert string to double-precision number 

SYNOPSIS 
double strtod (str, ptr) 
char •str, ,...ptr; 

double atof (str) 
char •str; 

DESCRIPTION 
Strtod returns as a double-precision floating-point number the value represented by 
the character string pointed to by str. The string is scanned up to the first unrecog­
nized character. 

Strtod recognizes an optional string of "white-space" characters (as defined by 
isspace in ctype(3C)), then an optional sign, then a string of digits optionally con­
taining a decimal point, then an optional e or E followed by an optional sign or 
space, followed by an integer. 

If the value of ptr is not (char u)NULL, a pointer to the character terminating the 
scan is returned in the location pointed to by ptr. If no number can be formed, •ptr 
is set to str, and zero is returned. 

Atof(str) is equivalent to strtod(str, (char u)NULL). 

SEE ALSO 
ctype(3C), scanf(3S), strtol (3C). 

DIAGNOSTICS 

7/85 

If the correct value would cause overflow, ±HUGE is returned (according to the sign 
of the value), and errno is set to ERANGE. 
If the correct value would cause underflow, zero is returned and errno is set to 
ERAN GE. 

- l - 7/85 





STRTOL(3C) (C Programming Language Utilities) STRTOL(3C) 

NAME 
strtol, atol, atoi - convert string to integer 

SYNOPSIS 
long strtol (str, ptr, base) 
char •str, ,..ptr; 
int base; 

long atol (str) 
char •str; 

int atoi (str) 
char •str; 

DESCRIPTION 
Strtol returns as a long integer the value represented by the character string 
pointed to by str. The string is scanned up to the first character inconsistent with 
the base. Leading "white-space" characters (as defined by isspace in ctype(3C)) 
are ignored. 

If the value of ptr is not (char ••)NULL, a pointer to the character terminating the 
scan is returned in the location pointed to by ptr. If no integer can be formed, that 
location is set to str, and zero is returned. 

If base is positive (and not greater than 36), it is used as the base for conversion. 
After an optional leading sign, leading zeros are ignored, and "Ox" or "OX" is 
ignored if base is 16. 

If base is zero, the string itself determines the base thusly: After an optional leading 
sign a leading zero indicates octal conversion, and a leading "Ox" or "OX" hexade­
cimal conversion. Otherwise, decimal conversion is used. 

Truncation from long to int can, of course, take place upon assignment or by an 
explicit cast. 

Atol(str) is equivalent to strtol(str, (char u)NULL, JO). 

Atodstr) is equivalent to (int) strtol(str, (char n)NULL, 10). 

SEE ALSO 
ctype(3C), scanf(3S), strtod (3C). 

BUGS 
Overflow conditions are ignored. 

7/85 - 1 7/85 





SWAB(3C) (C Programming Language Utilities) SWAB(3C) 

NAME 
swab - swap bytes 

SYNOPSIS 
void swab (from, to, nbytes) 
char •from, •to; 
int nbytes; 

DESCRIPTION 

7/85 

Swab copies nbytes bytes pointed to by from to the array pointed to by to, exchang­
ing adjacent even and odd bytes. It is useful for carrying binary data between 
PDP-1 ls and other machines. Nbytes should be even and non-negative. If nbytes is 
odd and positive swab uses nbytes-1 instead. If nbytes is negative, swab does noth­
ing. 

- 1 - 7/85 





SYSTEM(3S) (C Programming Language Utilities) 

NAME 
system - issue a shell command 

SYNOPSIS 
#include <stdio.h> 

int system (string) 
char •string; 

DESCRIPTION 

SYSTEM(3S) 

System causes the string to be given to sh (1) as input, as if the string had been 
typed as a command at a terminal. The current process waits until the shell has 
completed, then returns the exit status of the shell. 

FILES 
/bin/sh 

SEE ALSO 
exec(2). 
sh(l) in the AT&T 3B2 Computer User Reference Manual. 

DIAGNOSTICS 
System forks to create a child process that in turn exec's /bin/sh in order to execute 
string. If the fork or exec fails, system returns a negative value and sets errno. 

7/85 - 1 - 7/85 





TMPFILIE (3S) (C Programming Language Utilities) TMPFXLE(3S) 

NAME 
tmpfile - create a temporary file 

SYNOPSIS 
#include <stdio.bi> 

FILE •tmpfile 0 
DESCRIPTION 

Tmpfile creates a temporary file using a name generated by tmpnam (3S), and 
returns a corresponding FILE pointer. H the file cannot be opened, an error message 
is printed using perror(3C), and a NULL pointer is returned. The file will automat­
ically be deleted when the process using it terminates. The file is opened for update 
("w+"). 

SEIE ALSO 
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C), tmpnam(3S). 

7185 - l - 7/85 





TMPNAM(3S) (C Programming Language Utilities) TMPNAM(3S) 

NAME 
tmpnam, tempnam - create a name for a temporary file 

SYNOPSIS 
#include <stdio.h> 

char •tmpnam (s) 
char •s; 

char •tempnam (dir, pfx) 
char •dir, •pfx; 

DESCRIPTION 
These functions generate file names that can safely be used for a temporary file. 

Tmpnam always generates a file name using the path-prefix defined as P _tmpdir in 
the <stdio.h> header file. If s is NULL, tmpnam leaves its result in an internal 
static area and returns a pointer to that area. The next call to tmpnam will destroy 
the contents of the area. If s is not NULL, it is assumed to be the address of an 
array of at least L_tmpnam bytes, where L_tmpnam is a constant defined in 
<stdio.h>; tmpnam places its result in that array and returns s. 

Tempnam allows the user to control the choice of a directory. The argument dir 
points to the name of the directory in which the file is to be created. If dir is NULL 
or points to a string which is not a name for an appropriate directory, the path­
prefix defined as P _tmpdir in the <stdio.h> header file is used. If that directory is 
not accessible, /tmp will be used as a last resort. This entire sequence can be up­
staged by providing an environment variable TMPDIR in the user's environment, 
whose value is the name of the desired temporary-file directory. 

Many applications prefer their temporary files to have certain favorite initial letter 
sequences in their names. Use the pfx argument for this. This argument may be 
NULL or point to a string of up to five characters to be used as the first few charac­
ters of the temporary-file name. 

Tempnam uses malloc (3C) to get space for the constructed file name, and returns a 
pointer to this area. Thus, any pointer value returned from tempnam may serve as 
an argument to free (see malloc(3C)). If tempnam cannot return the expected 
result for any reason, i.e. malloc(3C) failed, or none of the above mentioned 
attempts to find an appropriate directory was successful, a NULL pointer will be 
returned. 

NOTES 
These functions generate a different file name each time they are called. 

Files created using these functions and either fopen (3S) or creat (2) are temporary 
only in the sense that they reside in a directory intended for temporary use, and 
their names are unique. It is the user's responsibility to use unlink (2) to remove 
the file when its use is ended. 

SEE ALSO 

BUGS 

7/85 

creat(2), unlink(2), fopen (3S), malloc(3C), mktemp(3C), tmpfile(3S). 

If called more than 17 ,576 times in a single process, these functions will start recy­
cling previously used names. 
Between the time a file name is created and the file is opened, it is possible for some 
other process to create a file with the same name. This can never happen if that 
other process is using these functions or mktemp, and the file names are chosen so 
as to render duplication by other means unlikely. 

- 1 - 7/85 





TSEARCH (3C) (C Programming Language Utilities) TSEARCH(3C) 

NAME 
tsearch, tfind, tdelete, twalk - manage binary search trees 

SYNOPSIS 
#include <search.h> 

char •tsearch ((char •) key, (char u) rootp, compar) 
int (•compar)( ); 

char •tfind ((char •) key, (char u) rootp, compar) 
int (•comparH ); 

char •tdelete ((char •) key, (char u) rootp, compar) 
int (•coinpar)( ); 

void twalk ((char •) root, action) 
void (•action)( ) ; 

DESCRIPTION 

7/85 

Tsearch, t.find, tdelete, and twalk are routines for manipulating binary search trees. 
They are generalized from Knuth (6.2.2) Algorithms T and D. All comparisons are 
done with a user-supplied routine. This routine is called with two arguments, the 
pointers to the elements being compared. It returns an integer less than, equal to, 
or greater than 0, according to whether the first argument is to be considered less 
than, equal to or greater than the second argument. The comparison function need 
not compare every byte, so arbitrary data may be contained in the elements in addi­
tion to the values being compared. 

Tsearch is used to build and access the tree. Key is a pointer to a datum to be 
accessed or stored. If there is a datum in the tree equal to •key (the value pointed 
to by key), a pointer to this found datum is returned. Otherwise, •key is inserted, 
and a pointer to it returned. Only pointers are copied, so the calling routine must 
store the data. Rootp points to a variable that points to the root of the tree. A 
NULL value for the variable pointed to by rootp denotes an empty tree; in this case, 
the variable will be set to point to the datum which will be at the root of the new 
tree. 

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if 
found. However, if it is not found, tfind will return a NULL pointer. The argu­
ments for t.find are the same as for tsearch. 

Tdelete deletes a node from a binary search tree. The arguments are the same as 
for tsearch. The variable pointed to by rootp will be changed if the deleted node 
was the root of the tree. Tdelete returns a pointer to the parent of the deleted 
node, or a NULL pointer if the node is not found. 

Twalk traverses a binary search tree. Root is the root of the tree to be traversed. 
(Any node in a tree may be used as the root for a walk below that node.) Action is 
the name of a routine to be invoked at each node. This routine is, in turn, called 
with three arguments. The first argument is the address of the node being visited. 
The second argument is a value from an enumeration data type typedef enum { 
preorder, postorder, endorder, leaf} VISIT; (defined in the <search.h > header 
file), depending on whether this is the first, second or third time that the node has 
been visited (during a depth-first, left-to-right traversal of the tree), or whether the 
node is a leaf. The third argument is the level of the node in the tree, with the root 
being level zero. 

The pointers to the key and the root of the tree should be of type pointer-to­
element, and cast to type pointer-to-character. Similarly, although declared as type 
pointer-to-character, the value returned should be cast into type pointer-to-element. 

- 1 - 7/85 



TSEARCH (3C) (C Programming Language Utilities) 1'SEARCH (3C) 

EXAMPLE 

7/85 

The following code reads in strings and stores structures contammg a pointer to 
each string and a count of its length. It then walks the tree, printing out the stored 
strings and their lengths in alphabetical order. 

#include <search.h> 
#include <stdio.h> 

struct node { I• pointers to these are stored m the tree •/ 

}; 

char •string; 
int length; 

char string_space[ 10000]; 
struct node nodes[500]; 
struct node •root = NULL; 

I• space to store strings • / 
I* nodes to store •/ 
I• this points to the root •/ 

main( 
{ 

int 

char •strptr = string_space; 
struct node •nodeptr = nodes; 
void print_node( ), twalk( ); 
int i = 0, node_compare( ); 

while (gets(strptr) != NULL && i++ < 500) 
I• set node •/ 

} 

nodeptr- >string = strptr; 
nodeptr- >length = strlen (strptr); 
I• put node into the tree • / 
(void) tsearch((char •)nodeptr, &root, 

node_ compare); 
I• adjust pointers, so we don't overwrite tree •/ 
strptr += nodeptr- >length + 1; 
nodeptr++; 

twalk(root, print_node); 

This routine compares two nodes, based on an 
alphabetical ordering of the string field. 

node_ compare (node l, node2) 
struct node •node 1, •node2; 
{ 

•I 

return strcmp (node 1->string, node2- >string); 

This routine prints out a node, the first time 
twalk encounters it. 

7/85 



TSEARCH (3C) (C Programming Language Utilities) TSEARCH(3C) 

void 
print_node(node, order, level) 
struct node unode; 
VISIT order; 
int level; 
{ 

if (order == preorder II order == leaf) { 
(void)printf("string = %20s, length = %d\n", 

(•node)-> string, (•node)-> length); 

SEE ALSO 
bsearch (3C), hsearch (3C), !search (3C). 

DIAGNOSTICS 
A NULL pointer is returned by tsearch if there is not enough space available to 
create a new node. 
A NULL pointer is returned by tsearch, tfind and tdelete if rootp is NULL on entry. 
If the datum is found, both tsearch and tfind return a pointer to it. If not, tfind 
returns NULL, and tsearch returns a pointer to the inserted item. 

WARNINGS 

BUGS 

7/85 

The root argument to twalk is one level of indirection less than the rootp arguments 
to tsearch and tde/ete. 
There are two nomenclatures used to refer to the order in which tree nodes are 
visited. Tsearch uses preorder, postorder and endorder to respectively refer to vist­
ing a node before any of its children, after its left child and before its right, and 
after both its children. The alternate nomenclature uses preorder, inorder and pos­
torder to refer to the same visits, which could result in some confusion over the 
meaning of postorder. 

If the calling function alters the pointer to the root, results are unpredictable. 

- 3 - 7/85 





TTYNAME (3C) (C Programming Language Utilities) TTYNAME(3C) 

NAME 
ttyname, isatty - find name of a terminal 

SYNOPSIS 
char •ttyname (tildes) 
int tildes; 

int isatty (tildes) 
int tildes; 

DESCRIPTION 

FILES 

Ttyname returns a pointer to a string containing the null-terminated path name of 
the terminal device associated with file descriptor .fildes. 

Isatty returns 1 if fildes is associated with a terminal device, 0 otherwise. 

/dev/• 

DIAGNOSTICS 

BUGS 

7/85 

Ttyname returns a NULL pointer if fildes does not describe a terminal device in 
directory /dev. 

The return value points to static data whose content is overwritten by each call. 

- 1 - 7/85 





T'IYSLOT(JC) (C Programming Language Utilities) TTYSLOT(JC) 

NAME 
ttyslot - find the slot in the utmp file of the current user 

SYNOPSIS 
int ttyslot ( ) 

DESCRIPTION 

FILES 

Ttyslot returns the index of the current user's entry in the /etc/utmp file. This is 
accomplished by actually scanning the file /etc/inittab for the name of the terminal 
associated with the standard input, the standard output, or the error output (0, 1 or 
2). 

/etc/inittab 
/etc/utmp 

SEE ALSO 
getut(3C), ttyname(3C). 

DIAGNOSTICS 

7/85 

A value of 0 is returned if an error was encountered while searching for the termi­
nal name or if none of the above file descriptors is associated with a terminal device. 

- l - 7/85 





UNGETC(JS) (C Programming Language Utilities) UNGETC(3S) 

NAME 
ungetc - push character back into input stream 

SYNOPSIS 
#include <stdio.h> 

int ungetc (c, stream) 
int c; 
FILE •stream; 

DESCRIPTION 
Ungetc inserts the character c into the buffer associated with an input stream. That 
character, c, will be returned by the next getc(3S) call on that stream. Ungetc 
returns c, and leaves the file stream unchanged. 

One character of pushback is guaranteed, provided something has already been read 
from the stream and the stream is actually buffered. In the case that stream is 
stdin, one character may be pushed back onto the buffer without a previous read 
statement. 

If c equals EOF, ungetc does nothing to the buffer and returns EOF. 

Fseek (3S) erases all memory of inserted characters. 

SEE ALSO 
fseek(3S), getc(3S), setbuf(3S). 

DIAGNOSTICS 
Ungetc returns EOF if it cannot insert the character. 

7/85 - 1 - 7/85 





VPRINTF(JS) (C Programming Language Utilities) VPRINTF(3S) 

NAME 
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list 

SYNOPSIS 
#include <stdio.h> 
#include <varargs.h> 

int vprintf (format, ap) 
char •format; 
va_list ap; 

int vfprintf (stream, format, ap) 
FILE •stream; 
char •format; 
va_list ap; 

int vsprintf (s, format, ap) 
char •s, •format; 
va_list ap; 

DESCRIPTION 
vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprint! respec­
tively, except that instead of being called with a variable number of arguments, they 
are called with an argument list as defined by varargs (5). 

EXAMPLE 

7/85 

The following demonstrates how vfprintf could be used to write an error routine. 

#include <stdio.h> 
#include <varargs.h> 

I• 
• error should be called like 
• error(function_name, format, argl, arg2 .. .); 
•I 

/•VARARGSO•/ 
void 
error ( va alist) 
I• Note-that the function_name and format arguments cannot be 

• separately declared because of the definition of varargs. 
•I 

va dcl 
{ -

va list args; 
char •fmt; 

va _start (args); 
I• print out name of function causing error •/ 
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char •)); 
fmt = va_arg(args, char •); 
I• print out remainder of message •/ 
(void)vfprintf(fmt, args); 
va end (args); 
(void)abort( ); 

- 1 - 7/85 



VPRINTF ( 3S) (C Programming Language Utilities) VPRINTF(3S) 

SEE ALSO 
vprintf(3X), varargs (5). 

7/85 - 2 - 7/85 



Replace this 

page with the 

3M 

tab separator. 





BESSEL(3M) (Math Libraries) BESSEL(3M) 

NAME 
jO, j 1, jn, yO, y 1, yn - Bessel functions 

SYNOPSIS 
#include < math.h > 
double jO (x) 
double x; 

double jl (x) 
double x; 

double jn (n, x) 
int n; 
double x; 

double yO (x) 
double x; 

double yl (x) 
double x; 

double yn (n, x) 
int n; 
double x; 

DESCRIPTION 
JO and jl return Bessel functions of x of the first kind of orders 0 and 1 respec­
tively. Jn returns the Bessel function of x of the first kind of order n. 

YO and y I return Bessel functions of x of the second kind of orders 0 and 1 respec­
tively. Yn returns the Bessel function of x of the second kind of order n. The value 
of x must be positive. 

SEE ALSO 
matherr(3M). 

DIAGNOSTICS 

7/85 

Non-positive arguments cause yO, yl and yn to return the value -HUGE and to set 
errno to EDOM. In addition, a message indicating DOMAIN error is printed on the 
standard error output. 

Arguments too large in magnitude cause jO, jl, yO and yl to return zero and to set 
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the 
standard error output. 

These error-handling procedures may be changed with the function matherr (3M). 

- 1 - 7/85 





ERF(3M) (Math Libraries) 

NAME 
erf, erfc - error function and complementary error function 

SYNOPSIS 
#include <math.h> 

double erf (x) 
double x; 

double erfc (x) 
double x; 

DESCRIPTION 
x 

Erf returns the error function of x, defined as 7:- J e-1'dt. 
"\/7r 0 

ERF(3M) 

Erfc, which returns 1.0 - erf(x), is provided because of the extreme loss of relative 
accuracy if erf(x) is called for large x and the result subtracted from 1.0 (e.g., for x 
= 5, 12 places are lost). 

SEE ALSO 
exp(3M). 

7/85 - 1 - 7/85 





EXP(JM) (Math Libraries) EXP(3M) 

NAME 
exp, log, loglO, pow, sqrt - exponential, logarithm, power, square root functions 

SYNOPSIS 
#include <math.h> 

double exp (x) 
double x; 

double log (x) 
double x; 

double loglO (x) 
double x; 

double pow (x, y) 
double x, y; 

double sqrt (x) 
double x; 

DESCRIPTION 
Exp returns ex. 

Log returns the natural logarithm of x. The value of x must be positive. 

Log JO returns the logarithm base ten of x. The value of x must be positive. 

Pow returns x1'. If x is zero, y must be positive. If x is negative, y must be an 
integer. 

Sqrt returns the non-negative square root of x. The value of x may not be nega­
tive. 

SEE ALSO 
hypot(3M), matherr(3M), sinh(3M). 

DIAGNOSTICS 

7/85 

Exp returns HUGE when the correct value would overflow, or 0 when the correct 
value would underflow, and sets errno to ERANGE. 

Log and logJO return -HUGE and set errno to EDOM when x is non-positive. A 
message indicating DOMAIN error (or SING error when x is O) is printed on the 
standard error output. 

Pow returns 0 and sets errno to EDOM when x is 0 and y is non-positive, or when x 
is negative and y is not an integer. In these cases a message indicating DOMAIN 
error is printed on the standard error output. When the correct value for pow 
would overflow or underflow, pow returns ±HUGE or 0 respectively, and sets errno 
to ERANGE. 

Sqrt returns 0 and sets errno to EDOM when x is negative. A message indicating 
DOMAIN error is printed on the standard error output. 

These error-handling procedures may be changed with the function matherr(3M). 

- 1 - 7/85 





FLOOR(3M) (Math Libraries) FLOOR(3M) 

NAME 
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions 

SYNOPSIS 
#include <math.h> 

double floor (x) 
double x; 

double ceil (x) 
double x; 

double fmod (x, y) 
double x, y; 

double fabs (x) 
double x; 

DESCRIPTION 
Floor returns the largest integer (as a double-precision number) not greater than x. 

Ceil returns the smallest integer not less than x. 

Fmod returns the floating-point remainder of the division of x by y: zero if y is 
zero or if xly would overflow; otherwise the number f with the same sign as x, such 
that x = iy +/for some integer i, and lfl < IYI· 
Fabs returns the absolute value of x, lxl. 

SEE ALSO 
abs(3C). 

7/85 - 1 - 7/85 





GAMMA(3M) (Math Libraries) GAMMA(3M) 

NAME 
gamma - log gamma function 

SYNOPSIS 
#include <math.h> 

double gamma (x) 
double x; 

extern int signgam; 

DESCRIPTION 

Gamma returns Jn(jr(x)j), where f(x) is defined as f e-tix-Idt. The sign of 
0 

f(x) is returned in the external integer signgam. The argument x may not be a 
non-positive integer. 

The following C program fragment might be used to calculate r: 
if ((y = gamma(x)) > LN_MAXDOUBLE) 

errorO; 
y = signgam • exp(y); 

where LN_MAXDOUBLE is the least value that causes exp(3M) to return a range 
error, and is defined in the <values.h> header file. 

SEE ALSO 
exp(3M), matherr(3M), values(5). 

DIAGNOSTICS 

7/85 

For non-negative integer arguments HUGE is returned, and errno is set to EDOM. A 
message indicating SING error is print<':d on the standard error output. 

If the correct value would overflow, gamma returns HUGE and sets errno to 
ERAN GE. 

These error-handling procedures may be changed with the function matherr(3M). 

- 1 - 7/85 





HYPOT(3M) (Math Libraries) 

NAME 
hypot - Euclidean distance function 

SYNOPSIS 
#include <math.h> 

double bypot (x, y) 
double x, y; 

DESCRIPTION 
Hypot returns 

sqrt(x * x + y * y), 

taking precautions against unwarranted overflows. 

SEE ALSO 
matherr(3M). 

DIAGNOSTICS 

HYPOT(3M) 

When the correct value would overflow, hypot returns HUGE and sets errno to 
ERAN GE. 

These error-handling procedures may be changed with the function matherr(3M). 

7/85 - 1 - 7/85 





MATHERR(3M) (Math Libraries) MATHERR(3M) 

NAME 
matherr - error-handling function 

SYNOPSIS 
#include <math.h> 
int matherir (x) 
struct exception •x; 

DESCRIPTION 
Matherr is invoked by functions in the Math Library when errors are detected. 
Users may define their own procedures for handling errors, by including a function 
named matherr in their programs. Matherr must be of the form described above. 
When an error occurs, a pointer to the exception structure x will be passed to the 
user-supplied matherr function. This structure, which is defined in the <math.h> 
header file, is as follows: 

struct exception { 
int type; 
char •name; 
double argl, arg2, retval; 

}; 

The element type is an integer describing the type of error that has occurred, from 
the following list of constants (defined in the header file): 

DOMAIN argument domain error 
SING argument singularity 
OVERFLOW overflow range error 
UNDERFLOW underflow range error 
TLOSS total loss of significance 
PLOSS partial loss of significance 

The element name points to a string containing the name of the function that 
incurred the error. The variables argl and arg2 are the arguments with which the 
function was invoked. Retval is set to the default value that will be returned by the 
function unless the user's matherr sets it to a different value. 

If the user's matherr function returns non-zero, no error message will be printed, 
and errno will not be set. 

If matherr is not supplied by the user, the default error-handling procedures, 
described with the math functions involved, will be invoked upon error. These pro­
cedures are also summarized in the table below. In every case, errno is set to 
EDOM or ERANGE and the program continues. 

EXAMPLE 

7/85 

#include <math.h> 

int 
matherr(x) 
register struct exception •x; 
( 

switch (x- >type) 
case DOMAIN: 

I• change sqrt to return sqrt(-argl), not 0 •/ 
if Ostrcmp(x->name, "sqrt")) { 

x->retval = sqrt(-x->argl); 
return (O); I* print message and set errno *I 

- 1 - 7/85 



MATHERR(3M) (Math Libraries) MATHERR(3M) 

case SING: 
I• all other domain or sing errors, print message and abort •/ 
fprintf(stderr, "domain error in %s\n", x->name); 
abort(); 

case PLOSS: 
I• print detailed error message *I 
fprintf(stderr, "loss of significance in %s(%g) = %g\n", 

x->name, x->argl, x->retvaO; 
return (I);/* take no other action */ 

} 
return (O); /• all other errors, execute default procedure•/ 

DEFAULT ERROR HANDLING PROCEDURES 

Types of Errors 
type DOMAIN SING OVERFLOW UNDERFLOW TLOSS 

err no EDOM EDOM ERANGE ERAN GE ERANGE 

BESSEL: - - - - M,O 

yO, yl, yn (arg .,;; 0) M,-H - - - -
EXP: - - H 0 -
LOG, LOGIO: 

(arg < O) M,-H - - - -
(arg - 0) - M,-H - - -

POW: - - ±H 0 -
neg """ nonRint M,O - - - -

0 ° non~pos 

SQRT: M,O - - - -
GAMMA: - M,H H - -
HYPOT: - - H - -
SINH: - - ±H - -
COSH: - - H - -
SIN, COS, TAN: - - - - M,O . 
ASIN, ACOS, ATAN2: M, 0 - - - - -

ABBREVIATIONS 
As much as possible of the value is returned. 

M Message is printed (EDOM error). 
H HUGE is returned. 

-H -HUGE is returned. 
±H HUGE or -HUGE is returned. 
0 0 is returned. 

7/85 - 2 -

PLOSS 

ERANGE 

" 
-
-

-
-
-
-

-
-
-
-
-

7/85 



SINH(3M) (Math Libraries) 

NAME 
sinh, cosh, tanh - hyperbolic functions 

SYNOPSIS 
#include <math.h> 

double sinh (x) 
double x; 

double cosh (x) 
double x; 

double tanh (x) 
double x; 

DESCRIPTION 

SINH(3M) 

Sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine and tangent of 
their argument. 

SEE ALSO 
matherr(3M). 

DIAGNOSTICS 
Sinh and cosh return HUGE (and sinh may return -HUGE for negative x) when 
the correct value would overflow and set errno to ERANGE. 

These error-handling procedures may be changed with the function matherr(3M). 

7/85 - l - 7/85 





TRIG(3M) (Math Libraries) TRIG(3M) 

NAME 
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions 

SYNOPSIS 
#include < math.h > 
double sin (x) 
double x; 

double cos (x) 
double x; 

double tan (x) 
double x; 

double asin (x) 
double x· 

' 
double a cos (x) 
double x; 

double atan (x) 
double x; 

double atan2 (y, x) 
double y, x; 

DESCRIPTION 
Sin, cos and tan return respectively the sine, cosine and tangent of their argument, 
x, measured in radians. 

Asin returns the arcsine of x, in the range -7r/2 to 7r/2. 

Acos returns the arccosine of x, in the range 0 to 7r. 

Atan returns the arctangent of x, in the range -7r/2 to 7r/2. 

Atan2 returns the arctangent of y!x, in the range -7r to 7r, using the signs of both 
arguments to determine the quadrant of the return value. 

SEE ALSO 
matherr(3M). 

DIAGNOSTICS 

7/85 

Sin, cos, and tan lose accuracy when their argument is far from zero. For argu­
ments sufficiently large, these functions return zero when there would otherwise be a 
complete loss of significance. In this case a message indicating TLOSS error is 
printed on the standard error output. For less extreme arguments causing partial 
loss of significance, a PLOSS error is generated but no message is printed. In both 
cases, errno is set to ERANGE. 

If the magnitude of the argument of asin or acos is greater than one, or if both 
arguments of atan2 are zero, zero is returned and errno is set to EDOM. In addi­
tion, a message indicating DOMAIN error is printed on the standard error output. 

These error-handling procedures may be changed with the function matherr(3M). 

- 1 - 7/85 





Replace this 

page with the 

3X 

tab separatoL 





ASSERT ( 3X) (Specialized Libraries) ASSERT(3X) 

NAME 
assert - verify program assertion 

SYNOPSIS 
#include <assert.h> 

assert (expression) 
int expression; 

DESCRIPTION 
This macro is useful for putting diagnostics into programs. When it is executed, if 
expression is false (zero), assert prints 

"Assertion failed: expression, file xyz, line nnn" 

on the standard error output and aborts. In the error message, xyz is the name of 
the source file and nnn the source line number of the assert statement. 

Compiling with the preprocessor option -DNDEBUG (see cpp (1)), or with the 
preprocessor control statement "#define NDEBUG" ahead of the "#include 
<assert.h>" statement, will stop assertions from being compiled into the program. 

SEE ALSO 
abort(3C). 
cpp(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 " 1 " 7/85 





CURSES(JX) (Specialized Libraries) CURSES(3X) 

NAME 
curses - CRT screen handling and optimization package 

SYNOPSIS 
#include < curses.h > 
cc [ flags ] files -lcurses [ libraries ] 

DESCRIPTION 
These routines give the user a method of updating screens with reasonable optimiza­
tion. In order to initialize the routines, the routine initscr() must be called before 
any of the other routines that deal with windows and screens are used. The routine 
endwinO should be called before exiting. To get character-at-a-time input without 
echoing, (most interactive, screen oriented-programs want this) after calling 
initscrO you should call "nonlO; cbreakO; noecho();" 

The full curses interface permits manipulation of data structures called windows 
which can be thought of as two dimensional arrays of characters representing all or 
part of a CRT screen. A default window called stdscr is supplied, and others can be 
created with newwin. Windows are referred to by variables declared "WINDOW *", 
the type WINDOW is defined in curses.h to be a C structure. These data structures 
are manipulated with functions described below, among which the most basic are 
move, and addch. (More general versions of these functions are included with 
names beginning with 'w', allowing you to specify a window. The routines not 
beginning with 'w' affect stdscr.) Then refresh() is called, telling the routines to 
make the users CRT screen look like stdscr. 

Mini-Curses is a subset of curses which does not allow manipulation of more than 
one window. To invoke this subset, use -DMINICURSES as a cc option. This level 
is smaller and faster than full curses. 

If the environment variable TERMINFO is defined, any program using curses will 
check for a local terminal definition before checking in the standard place. For 
example, if the standard place is /usr/lib/teirminfo, and TERM is set to "vtlOO", 
then normally the compiled file is found in /usr/lib/terminfo/v/vtlOO. (The "v" is 
copied from the first letter of "vtlOO" to avoid creation of huge directories.) How­
ever, if TERMINFO is set to /usr/mark/myterms, curses will first check 
/opusr/mark/myterms/v/vUOO, and if that fails, will then check 
/usr/lib/terminfo/v/vtlOO. This is useful for developing experimental definitions or 
when write permission in /usr/lib/terminfo is not available. 

SEE ALSO 
terminfo(4). 

FUNCTIONS 

7/85 

Routines listed here may be called when using the full curses. Those marked with 
an asterisk may be called when using Mini-Curses. 

addch(ch)* add a character to stdscr (like putchar) 
(wraps to next line at end of line) 

addstr(str)* calls addch with each character instr 
attroff(attrs) * 
attron (attrs) * 
attrset (attrs) * 
baudrateO* 
beep()* 
box (win, vert, hor) 

turn off attributes named 
turn on attributes named 
set current attributes to attrs 
current terminal speed 
sound beep on terminal 
draw a box around edges of win 
vert and hor are chars to use for vert. and 
hor. edges of box 

- 1 - 7/85 



CURSES(JX) (Specialized Libraries) 

7/85 

clear() 
clearok(win, bf) 
clrtobotO 
clrtoeoIO 
cbreak()* 
de!ay _output(ms) * 
de!chO 
deletelnO 
delwin (win) 
doupdateO 
echo()* 
endwinO* 
erase() 
erasecharO 
fixtermO 
flash() 
flushinpO* 
getchO* 
gets tr (str) 
gettmode() 
getyx(win, y, x) 
has_icO 
hasjlO 
idlok(win, bf)* 
inch() 
initscrO* 
insch(c) 
insertlnO 
intrftush (win, bf) 
keypad (win, bf) 
killcharO 
leaveok(win, flag) 

clear stdscr 
clear screen before next redraw of win 
clear to bottom of stdscr 
clear to end of line on stdscr 
set cbreak mode 
insert ms millisecond pause in output 
delete a character 
delete a line 
delete win 
update screen from all wnooutrefresh 
set echo mode 
end window modes 
erase stdscr 
return user's erase character 
restore tty to "in curses" state 
flash screen or beep 
throw away any typeahead 
get a char from tty 
get a string through stdscr 
establish current tty modes 
get (y, x) co-ordinates 
true if terminal can do insert character 
true if terminal can do insert line 
use terminal's insert/delete line if bf!= 0 
get char at current (y, x) co-ordinates 
initialize screens 
insert a char 
insert a line 
interrupts flush output if bf is TRUE 
enable keypad input 
return current user's kill character 
OK to leave cursor anywhere after refresh if 
flag!=O for win, otherwise cursor must be left 
at current position. 

longnameO return verbose name of terminal 
meta(win, flag)* allow meta characters on input if flag!= 0 
move(y, x) * move to (y, x) on stdscr 
mvaddch(y, x, ch) move(y, x) then addch(ch) 
mvaddstr(y, x, str) similar. .. 
mvcur(oldrow, oldcol, newrow, newcoi)low level cursor motion 
mvdelch(y, x) like delch, but move(y, x) first 
mvgetch (y, x) etc. 
mvgetstr(y, x, str) 
mvinch(y, x) 
mvinsch(y, x, c) 
mvprintw(y, x, fmt, args) 
mvscanw(y, x, fmt, args) 
mvwaddch(win, y, x, ch) 
mvwaddstr(win, y, x, str} 
mvwdelch(win, y, x) 
mvwgetch(win, y, x) 
mvwgetstr(win, y, x, str) 
mvwin(win, by, bx) 

- 2 -

CURSES(3X) 

7/85 



CURSES(3X) (Specialized Libraries) CURSES(3X) 

7/85 

mvwinch(win, y, x) 
mvwinsch(win, y, x, c) 
mvwprintw(win, y, x, fmt, args) 
mvwscanw(win, y, x, fmt, args) 
newpad(nlines, ncols) create a new pad with given dimensions 
newterm(type, fd) set up new terminal of given type to output on fd 
newwin(lines, cols, beginy, begin_x) create a new window 
nl () * set newline mapping 
nocbreakO* unset cbreak mode 
nodelay(win, bf) enable nodelay input mode through getch 
noechoO* unset echo mode 
non]()* unset newline mapping 
norawO* unset raw mode 
overlay(winl, win2) overlay win! on win2 
overwrite( win I, win2) overwrite win! on top of win2 
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol) 

like prefresh but with no output until doupdate called 
prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol) 

refresh from pad starting with given upper left corner of pad 

printw(fmt, argl, arg2, .. .) 
raw()* 
refresh()* 

with output to given portion of screen 
printf on stdscr 
set raw mode 
make current screen look like stdscr 

resettermO* set tty modes to "out of curses" state 
resetty() * reset tty flags to stored value 
saveterm () * save current modes as "in curses" state 
savettyO* store current tty flags 
scanw (fmt, arg 1, arg2, .. .) scanf through stdscr 
scroll (win) scroll win one line 
scrollok(win, flag) allow terminal to scroll if flag != 0 
set_term(new) now talk to terminal new 
setscrreg(t, b) set user scrolling region to lines t through b 
setterm(type) establish terminal with given type 
setupterm(term, filenum, errret) 
standend () * clear standout mode attribute 
standout 0 * set standout mode attribute 
subwin(win, lines, cols, begin_y, begin_x) create a subwindow 
touchwin(win) change all of win 
traceoffO turn off debugging trace output 
traceonO turn on debugging trace output 
typeahead (fd) use file descriptor fd to check typeahead 
unctrl (ch)* printable version of ch 
waddch (win, ch) add char to win 
waddstr(win, str) add string to win 
wattroff(win, attrs) turn off attrs in win 
wattron(win, attrs) turn on attrs in win 
wattrset(win, attrs) set attrs in win to attrs 
wclear(win) clear win 
wclrtobot (win) clear to bottom of win 
wclrtoeol (win) 
wdelch(win, c) 
wdeleteln (win) 
werase(win) 

clear to end of line on win 
delete char from win 
delete line from win 
erase win 

- 3 - 7/85 



CURSES(3X) (Specialized Libraries) CURSES(3X) 

wgetch(win) get a char through win 
wgetstr(win, str) get a string through win 
winch(win) get char at current (y, x) in win 
winsch(win, c) insert char into win 
winsertln (win) insert line into win 
wmove(win, y, x) set current (y, x) co-ordinates on win 
wnoutrefresh(win) refresh but no screen output 
wprintw(win, fmt, argl, arg2, .. .) printf on win 
wrefresh(win) make screen look like win 
wscanw(win, fmt, argl, arg2, ... ) scanf through win 
wsetscrreg(win, t, b) set scrolling region of win 
wstandend(win) clear standout attribute in win 
wstandout(win) set standout attribute in win 

TERMINFO LEVEL ROUTINES 
These routines should be called by programs wishing to deal directly with the ter­
minfo database. Due to the low level of this interface, it is discouraged. Initially, 
setupterm should be called. This will define the set of terminal dependent variables 
defined in terminfo(4). The include files <curses.h> and <term.h> should be 
included to get the definitions for these strings, numbers, and flags. Parmeterized 
strings should be passed through tparm to instantiate them. All terminfo strings 
(including the output of tparm) should be printed with tputs or putp . Before exit­
ing, resetterm should be called to restore the tty modes. (Programs desiring shell 
escapes or suspending with control Z can call resetterm before the shell is called 
and .fixterm after returning from the shell.) 
fixtermO restore tty modes for terminfo use 

resetterm () 
setupterm (term, fd, re) 

tparm<str, pl, p2, .. ., p9) 
tputs(str, affcnt, putc) 

putp(str) 
vidputs(attrs, putc) 

vidattr (attrs) 

(called by setupterm) 
reset tty modes to state before program entry 
read in database. Terminal type is the 
character string term, all output is to UNIX System file 
descriptor fd. A status value is returned in the 
integer pointed to by re: 1 is normal. The simplest 
call would be setupterm(O, I, O) which uses all the defaults. 
instantiate string str with parms pi. 
apply padding info to string str. 
ajfcnt is the number of lines affected, or 1 if 
not applicable. Putc is a putchar-like function 
to which the characters are passed, one at a time. 
handy function that calls tputs(str, 1, putchar). 
output the string to put terminal in video attribute 
mode attrs, which is any combination of the attributes 
listed below. Chars are passed to putchar-like function putc. 
Like vidputs but outputs through putchar 

TERMCAP COMPATIBILITY ROUTINES 

7/85 

These routines were included as a conversion aid for programs that use termcap. 
Their parameters are the same as for termcap. They are emulated using the ter­
minfo database. They may go away at a later date. 
tgetent(bp, name) look up termcap entry for name 
tgetftag(id) get boolean entry for id 
tgetnum (id) get numeric entry for id 
tgetstr (id, area) get string entry for id 
tgoto(cap, col, row) apply parms to given cap 
tputs(cap, affcnt, fn) apply padding to cap calling fn as putchar 

- 4 - 7/85 



CURSES(JX) (Specialized Libraries) CURSES(3X) 

ATTRIBUTES 
The following video attributes can be passed to the functions attron,attroff,attrset. 
A STANDOUT Terminal's best highlighting mode 
A-UNDERLINE Underlining 
A -REVERSE Reverse video 
A -BUNK Blinking 
A - DIM Half bright 
A - BOLD Extra bright or bold 
A - BLANK Blanking (invisible) 
A PROTECT Protected 
A - ALTCHARSET Alternate character set 

FUNCTION KEYS 
The following function keys might be returned by getch if keypad has been enabled. 
Note that not all of these are currently supported, due to lack of definitions in ter­
minfo or the terminal not transmitting a unique code when the key is pressed. 
Name Value Key name 
KEY _BREAK 0401 break key (unreliable) 
KEY _DOWN 0402 The four arrow keys ... 
KEY UP 0403 
KEY_ LEFT 0404 
KEY_RIGHT 0405 
KEY _HOME 0406 
KEY _BACKSPACE 0407 
KEY FO 
KEY_F(n) 
KEY_DL 
KEY_IL 
KEY_DC 
KEY_IC 
KEY EiC 
KEY_CLEAR 
KEY EOS 
KEY_EOL 
KEY_SF 
KEY SR 
KEY NPAGE 
KEY_PPAGE 
KEY_STAB 
KEY_CTAB 
KEY_CATAB 
KEY_ENTER 
KEY_SRESET 
KEY_RESET 
KEY_PRINT 
KEY LL 

0410 
(KEY_FO+(n)) 
0510 
0511 
0512 
0513 
0514 
0515 
0516 
0517 
0520 
0521 
0522 
0523 
0524 
0525 
0526 
0527 
0530 
0531 
0532 
0533 

Home key (upward+left arrow) 
backspace (unreliable) 
Function keys. Space for 64 is reserved. 
Formula for fn. 
Delete line 
Insert line 
Delete character 
Insert char or enter insert mode 
Exit insert char mode 
Clear screen 
Clear to end of screen 
Clear to end of line 
Scroll 1 line forward 
Scroll I line backwards (reverse) 
Next page 
Previous page 
Set tab 
Clear tab 
Clear all tabs 
Enter or send (unreliable) 
soft (partial) reset (unreliable) 
reset or hard reset (unreliable) 
print or copy 
home down or bottom (lower left) 

WARNING 

7/85 

The plotting library plot(3X) and the curses library curses(3X) both use the names 
erase() and move(). The curses versions are macros. If you need both libraries, 
put the plot (3X) code in a different source file than the curses (3X) code, and/or 
#undef move() and erase() in the plot(3X) code. 

- 5 - 7/85 





LDAHREAD (3X) (Specialized Libraries) LDAHREAD (3X) 

NAME 
ldahread - read the archive header of a member of an archive file 

SYNOPSIS 
#include <stdio.h> 
#include <ar.b> 
#include <filebdr.b> 
#include <ldfcn.h> 

int ldabread Odptr, arhead) 
LDFILE •ldptr; 
ARCHDR •arhead; 

DESCRIPTION 
If TYPE(/dptr) is the archive file magic number, ldahread reads the archive header 
of the common object file currently associated with ldptr into the area of memory 
beginning at arhead. 

Ldahread returns SUCCESS or FAILURE. Ldahread will fail if TYPE(/dptr) does 
not represent an archive file, or if it cannot read the archive header. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen(3X), ldfcn(4), ar(4). 

7/85 - 1 - 7/85 





LDCLOSE (3X) (Specialized Libraries) LDCLOSJE (3X) 

NAME 
ldclose, ldaclose - close a common object file 

SYNOPSIS 
#include <stdio.II> 
#include <filebdr.h> 
#include <ldfcn.b> 

int ldclose Odptr) 
LDFILE •ldptr; 

int ldadose Odptr) 
LDFILE •ldptr; 

DESCRIPTION 
Ldopen (3X) and ldclose are designed to provide uniform access to both simple 
object files and object files that are members of archive files. Thus an archive of 
common object files can be processed as if it were a series of simple common object 
files. 

If TYPE(ldptr) does not represent an archive file, ldclose will close the file and free 
the memory allocated to the LDFILE structure associated with ldptr. If 
TYPE(ldptr) is the magic number of an archive file, and if there are any more files 
in the archive, ldclose will reinitialize OFFSET(/dptr) to the file address of the next 
archive member and return FAILURE. The LDFILE structure is prepared for a sub­
sequent ldopen (3X). In all other cases, ldclose returns SUCCESS. 

Ldaclose closes the file and frees the memory allocated to the LDFILE structure 
associated with ldptr regardless of the value of TYPE(/dptr). Ldaclose always 
returns SUCCESS. The function is often used in conjunction with ldaopen. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
fclose(3S), ldopen(3X), ldfcn(4). 

7/85 - 1 - 7/85 





LDFHREAD (3X) (Specialized Libraries) LDFHREAD(3X) 

NAME 
ldfhread - read the file header of a common object file 

SYNOPSIS 
#include <stdio.h> 
#include <filehdr.h> 
#include <ldfcn.h> 

int ldfhread Odptr, filehead) 
LDFILE •ldptr; 
FILHDR •filehead; 

DESCRIPTION 
Ldfhread reads the file header of the common object file currently associated with 
ldptr into the area of memory beginning at file head. 

Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it cannot read the file 
header. 

In most cases the use of ldfhread can be avoided by using the macro 
HEADER(ldptr) defined in ldfcn.h (see ldfcn (4)). The information in any field, 
fieldname, of the file header may be accessed using HEADER(ldptr).fieldname. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen(3X), ldfcn(4). 

7/85 - 1 - 7/85 





LDGETNAME (3X) (Specialized Libraries) LDGETNAME(3X) 

NAME 
ldgetname - retrieve symbol name for common object file symbol table entry 

SYNOPSIS 
#include <stdio.h> 
#include <filehdrJ1> 
#include < syms.h > 
#include <ldfcn.h> 

char >t(dgetname Odptr, symbol) 
LDFILE •ldptr; 
SYMENT •symbol; 

DESCRIPTION 
Ldgetname returns a pointer to the name associated with symbol as a string. The 
string is contained in a static buffer local to ldgetname that is overwritten by each 
call to ldgetname, and therefore must be copied by the caller if the name is to be 
saved. 

As of UNIX System V Release 2.0, the common object file format has been 
extended to handle arbitrary length symbol names with the addition of a "string 
table". Ldgetname will return the symbol name associated with a symbol table 
entry for either a pre-UNIX System V Release 2.0 object file or a UNIX System V 
Release 2.0 object file. Thus, ldgetname can be used to retrieve names from object 
files without any backward compatibility problems. Ldgetname will return NULL 
(defined in stdio.b) for an object file if the name cannot be retrieved. This situation 
can occur: 

if the "string table" cannot be found, 

if not enough memory can be allocated for the string table, 

if the string table appears not to be a string table (for example, if an auxili­
ary entry is handed to ldgetname that looks like a reference to a name in a 
non-existent string table), or 

if the name's offset into the string table is past the end of the string table. 

Typically, ldgetname will be called immediately after a successful call to ldtbread 
to retrieve the name associated with the symbol table entry filled by ldtbread. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4). 

7/85 - 1 - 7/85 





LDLREAD (3X) (Specialized Libraries) LDLREAD(3X) 

NAME 
ldlread, ldlinit, ldlitem - manipulate line number entries of a common object file 
function 

SYNOPSIS 
#include <stdio.b> 
#include <filehdr.h> 
#include <linenum.h> 
#include <ldfcn.h> 

int ldlread(ldptr, fcnindx, linenum, linent) 
LDFILE •ldptr; 
long fcnindx; 
unsigned short linenum; 
UNENO linent; 

int ldlinitOdptr, fcnindx) 
LDFILE •ldptr; 
long fcnindx; 

int ldlitemOdptr, linenum, linent) 
LDFILE •ldptr; 
unsigned short linenum; 
UNENO linent; 

DESCRIPTION 
Ldlread searches the line number entries of the common object file currently associ­
ated with ldptr. Lll.lread begins its search with the line number entry for the begin­
ning of a function and confines its search to the line numbers associated with a sin­
gle function. The function is identified by fcnindx, the index of its entry in the 
object file symbol table. Ldlread reads the entry with the smallest line number 
equal to or greater than linenum into linent. 

Ldlinit and Id/item together perform exactly the same function as Id/read. After an 
initial caU to Id/read or ldlinit, Id/item may be used to retrieve a series of line 
number entries associated with a single function. Ldlinit simply locates the line 
number entries for the function identified by fcnindx. Ldlitem finds and reads the 
entry with the smallest line number equal to or greater than linenum into linent. 

Ldlread, ldlinit, and ldlitem each return either SUCCESS or FAILURE. Ldlread will 
fail if there are no line number entries in the object file, if fcnindx does not index a 
function entry in the symbol table, or if it finds no line number equal to or greater 
than linenum. Ldlinit will fail if there are no line number entries in the object file 
or if fcnindx does not index a function entry in the symbol table. Ldlitem will fail 
if it finds no line number equal to or greater than linenum. 

The programs must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen (3X), ldtbindex(3X), ldfcn (4). 

7/85 - 1 - 7/85 





LDLSEEK (3X) (Specialized Libraries) LDLSEEK(3X) 

NAME 
ldlseek, ldnlseek - seek to line number entries of a section of a common object file 

SYNOPSIS 
#include <stdio.h> 
#include <filehdr.h> 
#include <ldfcn.h> 

int ldlseek Odptr, sectindx) 
LDFILE •ldptr; 
unsigned short sectindx; 

int ldnlseek (ldptr, sectname) 
LDFILE •ldptr; 
char •sectname; 

DESCRIPTION 
Ldlseek seeks to the line number entries of the section specified by sectindx of the 
common object file currently associated with ldptr. 

Ldnlseek seeks to the line number entries of the section specified by sect name. 

Ldlseek and ldnlseek return SUCCESS or FAILURE. Ldlseek will fail if sectindx is 
greater than the number of sections in the object file; ldnlseek will fail if there is no 
section name corresponding with •sectname. Either function will fail if the specified 
section has no line number entries or if it cannot seek to the specified line number 
entries. 

Note that the first section has an index of one. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen (3X), ldshread (3X), ldfcn (4). 

7/85 - 1 - 7/85 





LDOHSEEK (3X) (Specialized Libraries) LDOHSEEK (3X) 

NAME 
ldohseek - seek to the optional file header of a common object file 

SYNOPSIS 
#include <stdio.h> 
#include <filehdr.h> 
#include <ldfcn.b> 

int ldohseek (Idptr) 
LDFILE •ldptr; 

DESCRIPTION 
Ldohseek seeks to the optional file header of the common object file currently asso­
ciated with ldptr. 

Ldohseek returns SUCCESS or FAILURE. Ldohseek will fail if the object file has no 
optional header or if it cannot seek to the optional header. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen (3X), ldfhread(3X), ldfcn (4). 

7/85 - 1 - 7/85 





LDOPENOX) (Specialized Libraries) LDOPEN(3X) 

NAME 
ldopen, ldaopen - open a common object file for reading 

SYNOPSIS 
#include <stdio.h> 
#include < filehdr .b > 
#include <Idfcn.h> 

LDFILE •Idopen (filename, ldptr) 
char •filename; 
LDFILE •ldptr; 

LDFILE •ldaopen (filename, oldptr) 
char •filename; 
LDFILE •oldptr; 

DESCRIPTION 

7/85 

Ldopen and Ide lose (3X) are designed to provide uniform access to both simple 
object files and object files that are members of archive files. Thus an archive of 
common object files can be processed as if it were a series of simple common object 
files. 

If ldptr has the value NULL, then ldopen will open filename and allocate and initial­
ize the LDFILE structure, and return a pointer to the structure to the calling pro­
gram. 

If ldptr is valid and if TYPE(/dptr) is the archive magic number, ldopen will reini­
tialize the LDFILE structure for the next archive member of filename. 

Ldopen and ldclose (3X) are designed to work in concert. Ldclose will return 
FAILURE only when TYPE(/dptr) is the archive magic number and there is another 
file in the archive to be processed. Only then should ldopen be called with the 
current value of ldptr. In all other cases, in particular whenever a new filename is 
opened, ldopen should be called with a NULL ldptr argument. 

The following is a prototype for the use of ldopen and ldclose (3X). 

I• for each filename to be processed •/ 

ldptr = NULL; 
do 
{ 

if ( (ldptr = ldopen(filename, ldptr)) !=NULL) 
{ 

} 

/• check magic number •/ 
I• process the file • / 

} while (ldclose(ldptr) ==FAILURE); 

If the value of oldptr is not NULL, ldaopen will open filename anew and allocate 
and initialize a new LDFILE structure, copying the TYPE, OFFSET, and HEADER 
fields from oldptr. Ldaopen returns a pointer to the new LDFILE structure. This 
new pointer is independent of the old pointer, oldptr. The two pointers may be used 
concurrently to read separate parts of the object file. For example, one pointer may 
be used to step sequentially through the relocation information, while the other is 
used to read indexed symbol table entries. 

- 1 - 7/85 



LDOPEN(3X) (Specialized Libraries) LDOPEN(3X) 

Both ldopen and ldaopen open filename for reading. Both functions return NULL if 
filename cannot be opened, or if memory for the LDFILE structure cannot be allo­
cated. A successful open does not insure that the given file is a common object file 
or an archived object file. 

The program must be loaded with the object file access routine library )ibid.a. 

SEE ALSO 
fopen (3S), ldclose(3X), ldfcn (4). 

7/85 - 2 - 7/85 



LDRSEEK (3X) (Specialized Libraries) LDRSEEK (3X) 

NAME 
ldrseek, ldnrseek - seek to relocation entries of a section of a common object file 

SYNOPSIS 
#include <stdio.h> 
#include < filehdr .h > 
#include <ldfcn.h> 

int ldrseek Odptr, sectindx) 
LDFILE •ldptr; 
unsigned short sectindx; 

int ldnrseek (ldptr, sectname) 
LDFILE •ldptr; 
char •sectname; 

DESCRIPTION 
Ldrseek seeks to the relocation entries of the section specified by sectindx of the 
common object file currently associated with ldptr. 

Ldnrseek seeks to the relocation entries of the section specified by sectname. 

Ldrseek and ldnrseek return SUCCESS or FAILURE. Ldrseek will fail if sectindx is 
greater than the number of sections in the object file; ldnrseek will fail if there is no 
section name corresponding with sect name. Either function will fail if the specified 
section has no relocation entries or if it cannot seek to the specified relocation 
entries. 

Note that the first section has an index of one. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen (3X), ldshread (3X), ldfcn (4). 

7/85 - l - 7/85 





LDSHREAD (3X) (Specialized Libraries) LDSHREAD OX) 

NAME 
ldshread, ldnshread - read an indexed/named section header of a common object 
file 

SYNOPSIS 
#include <sMio.11> 
#include < filehdr .b > 
#include < sc111hdr .h > 
#include < ldfcn.b > 

int ldshread (ldptJr, sedindx, sectbead) 
LDFILE ,.ldptJr; 
unsigned short sedimb:; 
SCNHDR "'Sectbead; 

int ldnshread (ldptr, sectname, secthead) 
JLDFILE ,.ldptr; 
char "secmame; 
SCNHDR "Sectbead; 

DESCRIPTION 
Ldshread reads the section header specified by sectindx of the common object file 
currently associated with ldptr into the area of memory beginning at sect head. 

Ldnshread reads the section header specified by sectname into the area of memory 
beginning at secthead. 

Ldshread and ldnshread return SUCCESS or FAILURE. Ldshread will fail if sec­
tindx is greater than the number of sections in the object file; ldnshread will fail if 
there is no section name corresponding with sect name. Either function will fail if it 
cannot read the specified section header. 

Note that the first section header has an index of one. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen (3X), ldfcn (4). 

7/85 - 1 - 7/85 





LDSSEEK (3X) (Specialized Libraries) LDSSEEK(3X) 

NAME 
ldsseek, ldnsseek - seek to an indexed/named section of a common object file 

SYNOPSIS 
#include <stdio.h> 
#include < filehdr .h > 
#include <ldfcn.h> 

int ldsseek Odptr, sectindx) 
LDFILE •ldptr; 
unsigned short sectindx; 

int ldnsseek Odptr, sectname) 
LDFILE •ldptr; 
char •sectname; 

DESCRIPTION 
Ldsseek seeks to the section specified by sectindx of the common object file 
currently associated with ldptr. 

Ldnsseek seeks to the section specified by sect name. 

Ldsseek and /dnsseek ret§f~~Y~til.e U_fWll&; ~ w#l1 lfa% w {ft'i!le4lria 
Uffiffif lki.We1~rl1-8ing with sectname. Either function will fail if there is no 
section data for the specified section or if it cannot seek to the specified section. 

Note that the first section has an index of one. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4). 

7/85 - l - 7/85 





LDTBINDEX (3X) (Specialized Libraries) LDTBINDEX (3X) 

NAME 
ldtbindex - compute the index of a symbol table entry of a common object file 

SYNOPSIS 
#include < stdio.h > 
#include <filehdr.h> 
#include <syrns.h> 
#include <ldfcn.h> 

long ldtbindex (ldptr) 
LDFILE •ldptr; 

DESCRIPTION 
Ldtbindex returns the Oong) index of the symbol table entry at the current position 
of the common object file associated with ldptr. 

The index returned by ldtbindex may be used in subsequent calls to ldtbread (3X). 
However, since ldtbindex returns the index of the symbol table entry that begins at 
the current position of the object file, if ldtbindex is called immediately after a par­
ticular symbol table entry has been read, it will return the index of the next entry. 

Ldtbindex will fail if there are no symbols in the object file, or if the object file is 
not positioned at the beginning of a symbol table entry. 

Note that the first symbol in the symbol table has an index of zero. 

The program must be loaded with the object file access routine library libld.a. 

SEE ALSO 
ldclose(3X), ldopenO:},O, ldtbread(3X), ldtbseek(3X), ldfcn(4). 

7/R", - 1 - 7/85 





LDTBREAD (3X) (Specialized Libraries) LDTBREAD ( 3X) 

NAME 
ldtbread - read an indexed symbol table entry of a common object file 

SYNOPSIS 
#include <stdio.h> 
#include <filehdr.h> 
#include <syms.h> 
#include <ldfcn.h> 

int ldtbread Odptr, symindex, symbol) 
LDFILE •ldptr; 
long symindex; 
SYMENT •symbol; 

DESCRIPTION 
Ldtbread reads the symbol table entry specified by symindex of the common object 
file currently associated with ldptr into the area of memory beginning at symbol. 

Ldtbread returns SUCCESS or FAILURE. Ldtbread will fail if symindex is greater 
than the number of symbols in the object file, or if it cannot read the specified sym­
bol table entry. 

Note that the first symbol in the symbol table has an index of zero. 

The program must be loaded with the object file access routine library !ibid.a. 

SEE ALSO 
ldclose(3X), ldopen(3X), ldtbseek(3X), ldgetname(3X), ldfcn(4). 

7/85 - 1 - 7/85 





LDTBSEEK (3X) (Specialized Libraries) LDTBSEEK (3X) 

NAME 
ldtbseek - seek to the symbol table of a common object file 

SYNOPSIS 
#include <stdio.h> 
#include <filebdr.h> 
#include <ldfcn.h> 

int ldtbseek Odptr) 
LDFILE •ldptr; 

DESCRIPTION 
Ldtbseek seeks to the symbol table of the object file currently associated with 
ldptr. 

Ldtbseek returns SUCCESS or FAILURE. Ldtbseek will fail if the symbol table has 
been stripped from the object file, or if it cannot seek to the symbol table. 

The program must be loaded with the object file access routine library !ibid.a. 

SEE ALSO 
ldclose(3X), ldopen(3X), ldtbread(3X), ldfcn(4). 

7/85 " 1 " 7/85 





LOG NAME (3X) (Specialized Libraries) LOG NAME (3X) 

NAME 
logname - return login name of user 

SYNOPSIS 
char •logname( ) 

DESCRIPTION 
Logname returns a pointer to the null-terminated login name; it extracts the $LOG­
NAME variable from the user's environment. 

This routine is kept in /lib/libPW.a. 

FILES 
/etc/profile 

SEE ALSO 

BUGS 

7/85 

profile(4), environ (5). 
env(l), login(l) in the AT&T 3B2 Computer User Reference Manual. 

The return values point to static data whose content is overwritten by each call. 

This method of determining a login name is subject to forgery. 

- l - 7/85 





MALLOC(3X) (Specialized Libraries) MALLOC(3X) 

NAME 
malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory allocator 

SYNOPSIS 
#include <malloc.h> 

char •malloc (size) 
unsigned size; 

voi.d free (ptr) 
char •ptr; 

char •realloc (ptr, size) 
char •ptr; 
unsigned size; 

char •calloc (nelem, elsize) 
unsigned nelem, elsize; 

int mallopt (cmd, value) 
int cmd, value; 

struct mallinfo mallinfo (max) 
int max; 

DESCRIPTION 

7/85 

Malloc and free provide a simple general-purpose memory allocation package, 
which runs considerably faster than the malloc(3C) package. It is found in the 
library "malloc", and is loaded if the option "-lmalloc" is used with cc(l) or ld(l). 

Malloc returns a pointer to a block of at least size bytes suitably aligned for any 
use. 

The argument to free is a pointer to a block previously allocated by ma/Zoe; after 
free is performed this space is made available for further allocation, and its contents 
have been destroyed (but see mal/opt below for a way to change this behavior). 

Undefined results will occur if the space assigned by malloc is overrun or if some 
random number is handed to free. 

Realloc changes the size of the block pointed to by ptr to size bytes and returns a 
pointer to the (possibly moved) block. The contents will be unchanged up to the 
lesser of the new and old sizes. 

Calloc allocates space for an array of nelem elements of size elsize. The space is 
initialized to zeros. 

Mallopt provides for control over the allocation algorithm. The available values for 
cmd are: 

M_MXFAST 

M_NLBLKS 

M_GRAIN 

Set maxfast to value. The algorithm allocates all blocks below the 
size of maxfast in large groups and then doles them out very 
quickly. The default value for maxfast is 0. 

Set numlblks to value. The above mentioned "large groups" each 
contain numlblks blocks. Numlblks must be greater than 0. The 
default value for numlblks is 100. 

Set grain to value. The sizes of all blocks smaller than maxf ast 
are considered to be rounded up to the nearest multiple of grain. 
Grain must be greater than 0. The default value of grain is the 
smallest number of bytes which will allow alignment of any data 
type. Value will be rounded up to a multiple of the default when 

- l - 7/85 



MALLOC(3X) (Specialized Libraries) MALLOC(3X) 

grain is set. 

M_KEEP Preserve data in a freed block until the next malloc, realloc, or 
calloc. This option is provided only for compatibility with the old 
version of malloc and is not recommended. 

These values are defined in the < malloc. h > header file. 

Mal/opt may be called repeatedly, but may not be called after the first small block 
is allocated. 

M allinf o provides instrumentation describing space usage. It returns the structure: 

struct mallinfo { 
int arena; 
int ordblks; 
int smblks; 
int hblkhd; 
int hblks; 
int usmblks; 
int fsmblks; 
int uordblks; 
int fordblks; 
int keepcost; 

I* total space in arena *I 
I* number of ordinary blocks *I 
I* number of small blocks *I 
I* space in holding block headers *I 
I* number of holding blocks */ 
I* space in small blocks in use *I 
I* space in free small blocks *I 
/* space in ordinary blocks in use *I 
I* space in free ordinary blocks *I 
I* space penalty if keep option */ 
I* is used */ 

This structure is defined in the < malloc.h > header file. 

Each of the allocation routines returns a pointer to space suitably aligned (after pos­
sible pointer coercion) for storage of any type of object. 

SEE ALSO 
brk(2), malloc(3C). 

DIAGNOSTICS 
Malloc, realloc and calloc return a NULL pointer if there is not enough available 
memory. When realloc returns NULL, the block pointed to by ptr is left intact. If 
mallopt is called after any allocation or if cmd or value are invalid, non-zero is 
returned. Otherwise, it returns zero. 

WARNINGS 

7/85 

This package usually uses more data space than malloc (3C). 
The code size is also bigger than mal/oc (3C). 
Note that unlike mal!oc(3C), this package does not preserve the contents of a block 
when it is freed, unless the M_KEEP option of ma/lopt is used. 
Undocumented features of malloc (3C) have not been duplicated. 

- 2 - 7/85 



PJLOT(3X) (Specialized Libraries) PLOT(3X) 

NAME 
plot - graphics interface subroutines 

SYNOPSIS 
openpl 0 
ernse 0 
label (s) 
i::bar "S; 

Hine (xl, yl, x2, y2) 
int xl, yl, x2, y2; 

circle (x, y, r) 
int x, y, rr; 

uc (x, y, xO, yO, :d, yl) 
int x, y, xO, yO, xl, yl; 

move (x, y) 
ant x, y; 

cont (x, y) 
int x, y; 

point (x, y) 
int x, y; 

linemod (s) 
char •s; 

space (xO, yO, xl, yl) 
i1d xO, yO, xl, yl; 

dosepl () 

DESCRIPTION 

FILES 

7/85 

These subroutines generate graphic output in a relatively device-independent 
manner. Space must be used before any of these functions to declare the amount of 
space necessary. See plot(4). Openpl must be used before any of the others to open 
the device for writing. Closepl flushes the output. 

Circle draws a circle of radius r with center at the point (x, y). 

Arc draws an arc of a circle with center at the point (x, y) between the points (xO, 
yO) and (xl, y/). 

String arguments to label and linemod are terminated by nulls and do not contain 
new-lines. 

See plot (4) for a description of the effect of the remaining functions. 

The library files listed below provide several flavors of these routines. 

/usr /lib/libplot.a 
I usr /lib/lib300.a 
/usr /lib/lib300s.a 
/usr /lib/lib450.a 
/usr /lib/lib4014.a 

produces output for tplot (lG) filters 
for DASI 300 
for DASI 300s 
for DASI 450 
for TEKTRONIX 4014 

- 1 " 7/85 



PLOT(3X) (Specialized Libraries) PLOT(3X) 

SEE ALSO 
plot(4). 
graph(lG), stat(lG), tplot(lG) in the AT&T 3B2 Computer User Reference 
Manual. 

WARNINGS 

7/85 

In order to compile a program containing these functions in file.c it is necessary to 
use "cc file.c -!plot". 

In order to execute it, it is necessary to use "a.out I tplot". 

The above routines use <stdio.h>, which causes them to increase the size of pro­
grams, not otherwise using standard 1/0, more than might be expected. 

- 2 - 7/85 



REGCMP(3X) (Specialized Libraries) REGCMP(3X) 

NAME 
regcmp, regex - compile and execute regular expression 

SYNOPSXS 
char *regcmp (stringl I, string2, .. J, (char .. )0) 
char "'String!, •strftng2, "" "; 

char *ll'egex (re, subject!, retO, "" J) 
char .. re, '"subject, •retO, "" ., 

extern char * _iod; 

DESCRIPTION 

7/85 

Regcmp compiles a regular expression and returns a pointer to the compiled form. 
Malloc(3C) is used to create space for the vector. It is the user's responsibility to 
free unneeded space so allocated. A NULL return from regcmp indicates an 
incorrect argument. Regcmp(l) has been written to generally preclude the need for 
this routine at execution time. 

Regex executes a compiled pattern against the subject string. Additional arguments 
are passed to receive values back. Regex returns NULL on failure or a pointer to 
the next unmatched character 011 success. A global character pointer _Joel points 
to where the match began. Reganp and regex were mostly borrowed from the edi­
tor, ed(l); however, the syntax and semantics have been changed slightly. The fol­
lowing are the valid symbols and their associated meanings. 

11 * "' These symbols retain their current meaning. 

$ Matches the end of the string; \n matches a new-line. 

Within brackets the minus means through. For example, la-zl is 
equivalent to labc11L.sy:d. The - can appear as itself only if used as the 
first or last character. For example, the character class expression II - I 
matches the characters I and - . 

+ A regular expression followed by + means one or more times. For exam­
ple, I0-91 + is equivalent to I0-9110-91•. 

{m} {m,} {m,u} 

( """ )$n 

Integer values enclosed in 0 indicate the number of times the preceding 
regular expression is to be applied. The value m is the minimum number 
and u is a number, less than 256, which is the maximum. If only m is 
present (e.g., {m}), it indicates the exact number of times the regular 
expression is to be applied. The value {m,} is analogous to {m,infinity}. 
The plus ( +) and star (") operations are equivalent to { 1,} and {O,} respec­
tively. 

The value of the enclosed regular expression is to be returned. The value 
will be stored in the (n + J)th argument following the subject argument. 
At most ten enclosed regular expressions are allowed. Regex makes its 
assignments unconditionally. 

( "'") Parentheses are used for grouping. An operator, e.g., •, +, 0, can work 
on a single character or a regular expression enclosed in parentheses. For 
example, (a*(cb+)*)$0. 

By necessity, all the above defined symbols are special. They must, therefore, be 
escaped to be used as themselves. 

- l - 7/85 



REGCMP(3X) (Specialized Libraries) REGCMPOX) 

EXAMPLES 
Example 1: 

char •cursor, •newcursor, •ptr; 

newcursor = regex((ptr = regcmp("'\n", 0)), cursor); 
free(ptr); 

This example will match a leading new-line in the subject string pointed at by cur­
sor. 

Example 2: 
char ret0[9]; 
char •newcursor, •name; 

name= regcmp("(IA-Za-zUA-za-z0-9_]{0,7})$0", O); 
newcursor = regex(name, "123Testing321", retO); 

This example will match through the string "Testing3" and will return the address 
of the character after the last matched character (cursor+ 11). The string "Test­
ing3" will be copied to the character array retO. 

Example 3: 
#include "file.i" 
char •string, •newcursor; 

newcursor = regex(name, string); 

This example applies a precompiled regular expression in file.i (see regcmp (l)) 
against string. 

This routine is kept in /lib/libPW.a. 

SEE ALSO 
malloc(3C). 

BUGS 

7/85 

ed(l), regcmp(l) in the AT&T 3B2 Computer User Reference Manual. 

The user program may run out of memory if regcmp is called iteratively without 
freeing the vectors no longer required. The following user-supplied replacement for 
malloc (3C) reuses the same vector saving time and space: 

I• user's program •/ 

char• 
malloc(n) 
unsigned n; 
{ 

static char rebufC512]; 
return (n < = sizeof rebuf) ? rebuf : NULL; 

- 2 - 7/85 



SPUTL(3X) (Specialized Libraries) SPUTL(3X) 

NAME 
sputl, sgetl - access long integer data in a machine-independent fashion. 

SYNOPSIS 
void sputl (value, buffer) 
long value; 
char •buffer; 

long sgetl (buffer) 
char •buffer; 

DESCRIPTION 

7/85 

Sputl takes the four bytes of the long integer value and places them in memory 
starting at the address pointed to by buffer. The ordering of the bytes is the same 
across all machines. 

Sgetl retrieves the four bytes in memory starting at the address pointed to by buffer 
and returns the long integer value in the byte ordering of the host machine. 

The combination of sputl and sgetl provides a machine-independent way of storing 
long numeric data in a file in binary form without conversion to characters. 

A program which uses these functions must be loaded with the object-file access 
routine library !ibid.a. 

- l - 7/85 





VPRINTF(3X) (Specialized Libraries) VPRINTF(3X) 

NAME 
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list 

SYNOPSIS 
#include <stdio.h> 
#include <varargs.h> 

int vprintf (format, ap) 
char •format; 
va_list ap; 

int vfprintf (stream, format, ap) 
FILE •stream; 
char •format; 
va_list ap; 

int vsprintf (s, format, ap) 
char •s, •format; 
va_list ap; 

DESCRIPTION 
vprintf, vfprintf, and vsprintf are the same as print/, fprintf, and sprint/ respec­
tively, except that instead of being called with a variable number of arguments, they 
are called with an argument list as defined by varargs (5). 

EXAMPLE 

7/85 

The following demonstrates how vfprintf could be used to write an error routine. 

#include <stdio.h> 
#include <varargs.h> 

I• 
error should be called like 

error(function_name, format, argl, arg2 ... ); 
•I 

/•V ARARGSO•/ 
void 
error(va alist) 
I• Note-that the function_name and format arguments cannot be 

separately declared because of the definition of varargs. 
•I 

va dcl 
{ -

va _list args; 
char •fmt; 

va start (args); 
/•-print out name of function causing error •/ 
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char •)); 
fmt = va_arg(args, char •); 
I• print out remainder of message •/ 
(void)vfprintf(fmt, args); 
va _end (args); 
(void)abort( ); 

- 1 - 7/85 



VPRJNTF(3X) (Specialized Libraries) VPRINTF(JX) 

SEE ALSO 
printf(3S), varargs (5). 

7/85 - 2 - 7/85 



Replace this 

page with the 

3F 

tab separator. 





ABORT(3F) (FORTRAN Programming Language Utilities) 

NAME 
abort - terminate Fortran program 

SYNOPSIS 
call abort ( ) 

DESCRIPTION 

ABORT OF) 

Abort terminates the program which calls it, closing all open files truncated to the 
current position of the file pointer. The abort usually results in a core dump. 

DIAGNOSTICS 
When invoked, abort prints "Fortran abort routine called" on the standard error 
output. The message "abort - core dumped" is sent to the terminal. 

SEE ALSO 
abort(3C). 

7/85 - 1 - 7/85 





ABS (3F) (FORTRAN Programming Language Utilities) 

NAME 
abs, iabs, dabs, cabs, zabs - Fortran absolute value 

SYNOPSIS 
integer il, i2 
real rl, r2 
double precision dpl, dp2 
complex ext, cx2 
double complex dxl, dx2 

r2 = abs(rO 

i2 = iabs(il) 
i2 = abs(il) 

dp2 dabs(dpl) 
dp2 abs(dpl) 

cx2 cabs(cxl) 
cx2 abs(cxO 

dx2 zabs(dxO 
dx2 abs(dxO 

DESCRIPTION 

ABS(3F) 

Abs is the family of absolute value functions. Jabs returns the integer absolute 
value of its integer argument. Dabs returns the double-precision absolute value of 
its double-precision argument. Cabs returns the complex absolute value of its com­
plex argument. Zabs returns the double-complex absolute value of its double­
complex argument. The generic form abs returns the type of its argument. 

SEE ALSO 
floor(3M). 

7 /R'\ - 1 - 7/85 





ACOS(JF) (FORTRAN Programming Language Utilities) ACOS(3F) 

NAME 
acos, dacos - Fortran arccosine intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpt, dp2 

r2 = acos(rl) 

dp2 = dacos(dpl) 
dp2 = acos(dpl) 

DESCRIPTION 
Acos returns the real arccosine of its real argument. Dacos returns the double­
precision arccosine of its double-precision argument. The generic form acos may be 
used with impunity as its argument will determine the type of the returned value. 

SEE ALSO 
trig(3M). 

- 1 - 7/85 





AIMAG(3F) (FORTRAN Programming Language Utilities) 

NAME 
aimag, dimag - Fortran imaginary part of complex argument 

SYNOPSIS 
l!'eal r 
complex cxr 
double precision dp 
double complex cxd 

r = aimag(cxr) 

dp = dimag(cxd) 

DESCRIPTION 

AIMAG(JF) 

Aimag returns the imaginary part of its single-precision complex argument. Dimag 
returns the double-precision imaginary part of its double-complex argument. 

7/85 • 1 • 7/85 





AINT(3F) (FORTRAN Programming Language Utilities) AINT(3F) 

NAME 
aint, dint - Fortran integer part intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 

r2 = aintfrl) 

dp2 = dint(dpl) 
dp2 = aint(dpl) 

DESCRIPTION 

7/85 

Aint returns the truncated value of its real argument in a real. Dint returns the 
truncated value of its double-precision argument as a double-precision value. Aint 
may be used as a generic function name, returning either a real or double-precision 
value depending on the type of its argument. 

- l - 7/85 





ASIN(3F) (FORTRAN Programming Language Utilities) ASIN (3F) 

NAME 
asin, dasin - Fortran arcsine intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpt, dp2 

r2 = asin (r 1) 

dp2 = dasin(dpl) 
dp2 = asin(dpl) 

DESCRIPTION 
Asin returns the real arcsine of its real argument. Dasin returns the double­
precision arcsine of its double-precision argument. The generic form asin may be 
used with impunity as it derives its type from that of its argument. 

SEE ALSO 
trig(3M). 

7/85 - 1 - 7/85 





ATAN(3F) (FORTRAN Programming Language Utilities) ATAN(3F) 

NAME 
atan, datan - Fortran arctangent intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 

r2 = atan(rl) 

dp2 = datan(dpl) 
dp2 = atan(dpl) 

DESCRIPTION 
Atan returns the real arctangent of its real argument. Datan returns the double­
precision arctangent of its double-precision argument. The generic form atan may 
be used with a double-precision argument returning a double-precision value. 

SEE ALSO 
trig(3M). 

7 /R<; - l - 7/85 





ATAN2(3F) (FORTRAN Programming Language Utilities) 

NAME 
atan2, datan2 - Fortran arctangent intrinsic function 

SYNOPSIS 
real rl, r2, r3 
double precision dpl, dp2, dp3 

r3 = atan2frl, r2) 

dp3 = datan2(dpl, dp2) 
dp3 = atan2(dpl, dp2) 

DESCRIPTION 

ATAN2(3F) 

Atan2 returns the arctangent of argl/arg2 as a real value. Datan2 returns the 
double-precision arctangent of its double-precision arguments. The generic form 
atan2 may be used with impunity with double-precision arguments. 

SEE ALSO 
trig(3M). 

7/85 - 1 - 7/85 





BOOL(3F) (FORTRAN Programming Language Utilities) BOOL(3F) 

NAME 
and, or, xor, not, !shift, rshift - Fortran Bitwise Boolean functions 

SYNOPSIS 
integer i, j, k 
real a, b, c 

k = and(i, j) 
c = or(a, b) 
j = xor(i, a) 
j = not(i) 
k = Ishift(i, j) 
k = rsbift (i, j) 

DESCRIPTION 

NOTE 

BUGS 

The generic intrinsic Boolean functions and, or and xor return the value of the 
binary operations on their arguments. Not is a unary operator returning the one's 
complement of its argument. Lshift and rshift return the value of the first argu­
ment shifted left or right, respectively, the number of times specified by the second 
(integer) argument. 

The Boolean functions are generic; that is, they are defined for all data types as 
arguments and return values. Where required, the compiler will generate appropri­
ate type conversions. 

Although defined for all data types, use of Boolean functions on any but integer 
data is bizarre and will probably result in unexpected consequences. 

The implementation of the shift functions may cause large shift values to deliver 
weird results. 

SEE ALSO 
mil(3F). 

7/85 - l - 7/85 





CONJG(3F) (FORTRAN Programming Language Utilities) CONJG(3F) 

NAME 
conjg, dconjg - Fortran complex conjugate intrinsic function 

SYNOPSIS 
complex ext, cx2 
double complex dxl, dx2 

cx2 = conjg(cxO 

dx2 = dconjg(dxl) 

DESCRIPTION 
Conjg returns the complex conjugate of its complex argument. Dconjg returns the 
double-complex conjugate of its double-complex argument. 

7/85 - l - 7/85 





COS(3F) (FORTRAN Programming Language Utilities) 

NAME 
cos, dcos, ccos - Fortran cosine intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 
complex cxl, cx2 

r2 = cos(rl) 

dp2 dcos(dpl) 
dp2 cos(dpl) 

cx2 ccos(cxl) 
cx2 cos(cxO 

DESCRIPTION 

COS(3F) 

Cos returns the real cosine of its real argument. Dcos returns the double-precision 
cosine of its double-precision argument. Ccos returns the complex cosine of its com­
plex argument. The generic form cos may be used with impunity as its returned 
type is determined by that of its argument. 

SEE ALSO 
trig(3M). 

7/85 - 1 - 7/85 





COSH(3F) (FORTRAN Programming Language Utilities) COSH(3F) 

NAME 
cash, dcosh - Fortran hyperbolic cosine intrinsic function 

SYNOPSIS 
real rt, r2 
double precision dpl, dp2 

r2 = coshfrO 

dp2 = dcosh(dpl) 
dp2 = cosh(dpl) 

DESCRIPTION 
Cosh returns the real hyperbolic cosine of its real argument. Dcosh returns the 
double-precision hyperbolic cosine of its double-precision argument. The generic 
form cosh may be used to return the hyperbolic cosine in the type of its argument. 

SEE ALSO 
sinh(3M). 

7/85 - l - 7/85 





DIM (3F) (FORTRAN Programming Language Utilities) 

NAME 
dim, ddim, idim - positive difference intrinsic functions 

SYNOPSIS 
integer al, a2, a3 
a3 = idim(al, a2) 

real al, a2, a3 
a3 = dim(al, a2) 

double precision al, a2, a3 
a3 == ddim(al, a2) 

DESCRIPTION 

7/85 

These functions return: 
al-a2 if al > a2 
0 if al <= a2 

- 1 -

DIM (3F) 

7/85 





DPROD(3F) (FORTRAN Programming Language Utilities) 

NAME 
dprod - double precision product intrinsic function 

SYNOPSIS 
real al, a2 

double precision a3 

a3 = dprod(al, a2) 

DESCRIPTION 
Dprod returns the double precision product of its real arguments. 

7/85 - 1 -

DPROD(3F) 

7/85 





EXP(JF) (FORTRAN Programming Language Utilities) 

NAME 
exp, dexp, cexp - Fortran exponential intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 
complex ext, cx2 

r2 = exp(rl) 

dp2 dexp(dpl) 
dp2 exp(dpl) 

cx2 cexp(cxO 
cx2 exp(cxO 

DESCRIPTION 

EXP(JF) 

Exp returns the real exponential function ex of its real argument. Dexp returns the 
double-precision exponential function of its double-precision argument. Cexp 
returns the complex exponential function of its complex argument. The generic 
function exp becomes a call to dexp or cexp as required, depending on the type of 
its argument. 

SEE ALSO 
exp(3M). 

7/85 - 1 - 7/85 





FTYPE(3F) (FORTRAN Programming Language Utilities) FTYPE(3F) 

NAME 
int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichar, char - explicit Fortran 
type conversion 

SYNOPSIS 
integer i, j 
real r, s 
double precision dp, dq 
complex ex 
double complex dcx 
character•] ch 

int fr) 
int(dp) 
int(cx) 
int(dcx) 
ifix(r) 
idint(dp) 

r real(i) 
r real(dp) 
r = real( ex) 
r = real(dcx) 
r = float(i) 
r = sngl(dp) 

dp dble(i) 
dp dble(r) 
dp dble(cx) 
dp dble(dcx) 

ex cmplx(i) 
ex cmplx(i, j) 
ex cmplx(r) 
ex cmplx(r, s) 
ex cmplx(dp) 
ex cmplx(dp, dq) 
ex cmplx(dcx) 

dcx dcmplx(i) 
dcx dcmplx(i, j) 
dcx dcmplx(r) 
dcx dcmplx (r, s) 
dcx dcmplx(dp) 
dcx dcmplx(dp, dq) 
dcx dcmplx(cx) 

i = ichar(ch) 
ch = char(i) 

DESCRIPTION 

7/85 

These functions perform conversion from one data type to another. 

The function int converts to integer form its real, double precision, complex, or 
double complex argument. If the argument is real or double precision, int returns 
the integer whose magnitude is the largest integer that does not exceed the magni· 
tude of the argument and whose sign is the same as the sign of the argument (i.e. 
truncation). For complex types, the above rule is applied to the real part. ifix and 

- 1 - 7/85 



FTYPE(3F) (FORTRAN Programming Language Utilities) FTYPE(3F) 

7/85 

idint convert only real and double precision arguments respectively. 

The function real converts to real form an integer, double precision, complex, or 
double complex argument. If the argument is double precision or double complex, 
as much precision is kept as is possible. If the argument is one of the complex types, 
the real part is returned. float and sngl convert only integer and double precision 
arguments respectively. 

The function dble converts any integer, real, complex, or double complex argument 
to double precision form. If the argument is of a complex type, the real part is 
returned. 

The function cmplx converts its integer, real, double precision, or double complex 
argument(s) to complex form. 

The function dcmplx converts to double complex form its integer, real, double pre­
cision, or complex argument(s). 

Either one or two arguments may be supplied to cmplx and dcmplx . If there is only 
one argument, it is taken as the real part of the complex type and an imaginary part 
of zero is supplied. If two arguments are supplied, the first is taken as the real part 
and the second as the imaginary part. 

The function ichar converts from a character to an integer depending on the 
character's position in the collating sequence. 

The function char returns the character in the ith position in the processor collating 
sequence where i is the supplied argument. 

For a processor capable of representing n characters, 

ichar(char(i)) = i for 0 ~ i < n, and 

char(ichar(ch)) =ch for any representable character ch. 

- 2 - 7/85 



GETARG(3f) (FORTRAN Programming Language Utilities) 

NAME 
getarg - return Fortran command-line argument 

SYNOPSIS 
character• N c 
integer i 

call getarg (i, c) 

DESCRIPTION 

GETARG(3F) 

Getarg returns the i-th command-line argument of the current process. Thus, if a 
program were invoked via 

foo argl arg2 arg3 

getarg(2, c) would return the string "arg2" in the character variable c. 

SEE ALSO 
getopt (3C). 

7/8S - 1 - 7/85 





GETENV(3F) (FORTRAN Programming Language Utilities) 

NAME 
getenv - return Fortran environment variable 

SYNOPSIS 
character• N c 

call getenv("VARIABLE_NAME", c) 

DESCRIPTION 

GETENV(3F) 

Getenv returns the character-string value of the environment variable represented by 
its first argument into the character variable of its second argument. If no such 
environment variable exists, all blanks will be returned. 

SEE ALSO 
getenv(3C), environ (5). 

7/85 - 1 - 7/85 





IARGC(3F) (FORTRAN Programming Language Utilities) 

NAME 
iargc - return the number of command line arguments 

SYNOPSIS 
integer i 

i = iargc( ) 

DESCRIPTION 

IARGC(3F) 

The iargc function returns the number of command line arguments passed to the 
program. Thus, if a program were invoked via 

foo argl arg2 arg3 

iargc() would return 3. 

SEE ALSO 
getarg (3 F) . 

7/R"i - l - 7/85 





INDEX(3F) (FORTRAN Programming Language Utilities) 

NAME 
index - return location of Fortran substring 

SYNOPSIS 
character•Nl chl 
character•N2 ch2 
integer i 

i = index(chl, ch2) 

DESCRIPTION 

INDEX(3F) 

Index returns the location of substring ch2 in string chl. The value returned is the 
position at which substring ch2 starts, or 0 if it is not present in string chl. If N2 
is greater than Nl, a zero is returned. 

7/85 - 1 - 7/85 





LEN(3f) (FORTRAN Programming Language Utilities) 

NAME 
!en - return length of Fortran string 

SYNOPSIS 
character• N ch 
integer i 

i = len(ch) 

DESCRIPTION 
Len returns the length of string ch. 

7/85 - 1 -

LEN(3F) 

7/85 





LOG(JF) (FORTRAN Programming Language Utilities) 

NAME 
log, alog, dlog, clog - Fortran natural logarithm intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpt, dp2 
complex cxl, cx2 

r2 = alog(rl) 
r2 = log(rl) 

dp2 dlog(dpl) 
dp2 log(dpl) 

cx2 clog(cxl) 
cx2 log(cxl) 

DESCRIPTION 

LOG(3F) 

Alog returns the real natural logarithm of its real argument. Dlog returns the 
double-precision natural logarithm of its double-precision argument. Clog returns 
the complex logarithm of its complex argument. The generic function log becomes 
a call to alog, dlog, or clog depending on the type of its argument. 

SEE ALSO 
exp(3M). 

7/85 - 1 - 7/85 





LOG10(3F) (FORTRAN Programming Language Utilities) LOGl0(3F) 

NAME 
loglO, aloglO, dloglO - Fortran common logarithm intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 

rl = aloglO(rl) 
r2 = loglO(rl) 

dp2 = dloglO(dpl) 
dp2 = loglO(dpl) 

DESCRIPTION 
AlogJO returns the real common logarithm of its real argument. DlogJO returns 
the double-precision common logarithm of its double-precision argument. The gen­
eric function logJO becomes a call to alogJO or dlogJO depending on the type of its 
argument. 

SEE ALSO 
exp(3M). 

7/85 - l - 7/85 





MAX(3f) (FORTRAN Programming Language Utilities) MAX(JF) 

NAME 
max, maxO, amaxO, maxi, amaxl, dmaxl - Fortran maximum-value functions 

SYNOPSIS 
integer i, j, k, I 
real a, b, c, d 
double precision dpl, dp2, dp3 

I = max(i, j, k) 
c = max(a, b) 
dp = max(a, b, c) 
k = maxO(i, j) 
a = amaxO (i, j, k) 
i = maxl (a, b) 
d = amaxl (a, b, c) 
dp3 = dmaxl (dpl, dp2) 

DESCRIPTION 
The maximum-value functions return the largest of their arguments (of which there 
may be any number). Max is the generic form which can be used for all data types 
and takes its return type from that of its arguments (which must all be of the same 
type). MaxO returns the integer form of the maximum value of its integer argu­
ments; amaxO, the real form of its integer arguments; max], the integer form of its 
real arguments; amaxl, the real form of its real arguments; and dmaxl, the 
double-precision form of its double-precision arguments. 

SEE ALSO 
min(3F). 

7/85 - 1 - 7/85 





MCLOCK(3F) (FORTRAN Programming Language Utilities) 

NAME 
mclock - return Fortran time accounting 

SYNOPSIS 
integer i 

i = mclock( ) 

DESCRIPTION 

MCLOCK(3F) 

Mclock returns time accounting information about the current process and its child 
processes. The value returned is the sum of the current process's user time and the 
user and system times of all child processes. 

SEE ALSO 
times(2), clock(3C), system(3F). 

7/85 - 1 - 7/85 





MIL(3F) (FORTRAN Programming Language Utilities) MIL OF) 

NAME 
ior, iand, not, ieor, ishft, ishftc, ibits, btest, ibset, ibclr, mvbits - bit field manipula­
tion intrinsic functions and subroutines from the Fortran Military Standard (MIL­
STD-1753). 

SYNOPSIS 
integer i, k, I, m, n, len 
logical b 

ior(m, n) 
iand(m, n) 
not(m) 
ieor(m, n) 
ishft(m, k) 
ishftc(m, k, Jen) 

i ibits(m, k, Jen) 
b = btest(n, k) 
i = ibset(n, k) 
i = ibclr(n, k) 
call mvbits(m, k, len, n, I) 

DESCRIPTION 
ior, iand, not, ieor - return the same results as and, or, not, xor as defined in 
bool(3F). 

ishft, ishftc - m specifies the integer to be shifted. k specifies the shift count. k > 
0 indicates a left shift. k = 0 indicates no shift. k < 0 indicates a right shift. In 
ishft, zeros are shifted in. In ishftc, the rightmost ten bits are shifted circularly k 
bits. If k is greater than the machine word-size, ishftc will not shift. 

Bit fields are numbered from right to left and the rightmost bit position is zero. 
The length of the Jen field must be greater than zero. 

ibits - extract a subfield of Jen bits from m starting with bit position k and extend­
ing left for len bits. The result field is right justified and the remaining bits are set 
to zero. 

btest - The kth bit of argument n is tested. The value of the function is .TRUE. if 
the bit is a and 

ibset - the result is the value of n with the kth bit set to 1. 

ibclr - the result is the value of n with the kth bit set to 0. 

mvbits - len bits are moved beginning at position k of argument m to position I of 
argument n. 

SEE ALSO 
bool(3F). 

7/85 - 1 - 7/85 





MIN(3F) (FORTRAN Programming Language Utilities) MIN(3F) 

NAME 
min, minO, aminO, minl, aminl, dminl - Fortran minimum-value functions 

SYNOPSIS 
integer i, j, k, I 
real a, b, c, d 
double precision dpl, dp2, dp3 

I = min(i, j, k) 
c = min(a, b) 
dp = min(a, b, c) 
k = minO(i, j) 
a = aminO(i, j, k) 
i = minl (a, b) 
d = aminl (a, b, c) 
dp3 = dminl (dpl, dp2) 

DESCRIPTION 
The minimum-value functions return the mm1mum of their arguments (of which 
there may be any number). Min is the generic form which can be used for all data 
types and takes its return type from that of its arguments (which must all be of the 
same type). MinO returns the integer form of the minimum value of its integer 
arguments; aminO, the real form of its integer arguments; mini, the integer form of 
its real arguments; aminl, the real form of its real arguments; and dminl, the 
double-precision form of its double-precision arguments. 

SEE ALSO 
max(3F). 

7/85 - 1 - 7/85 





MOD(JF) (FORTRAN Programming Language Utilities) MOD(JF) 

NAME 
mod, amod, dmod - Fortran remaindering intrinsic functions 

SYNOPSIS 
integer i, j, k 
real rl, r2, r3 
double precision dpt, dp2, dp3 

k = mod(i, j) 

r3 = amodfrl, r2) 
r3 = mod(rl, r2) 

dp3 = dmod(dpl, dp2) 
dp3 = mod(dp1, dp2) 

DESCRIPTION 

7/85 

Mod returns the integer remainder of its first argument divided by its second argu­
ment. Amod and dmod return, respectively, the real and double-precision whole 
number remainder of the integer division of their two arguments. The generic ver­
sion mod will return the data type of its arguments. 

- l - 7/85 





RAND(JF) (FORTRAN Programming Language Utilities) 

NAME 
irand, rand, srand - random number generator 

SYNOPSIS 
integer iseed, i, irand 
double precision x, rand 

call srand (iseed) 

i = irand( ) 

x = rand( ) 

DESCRIPTION 

RAND(3F) 

!rand generates successive pseudo-random integers in the range from 0 to 2**15-1. 
Rand generates pseudo-random numbers distributed in [O, 1.01. Srand uses its 
integer argument to re-initialize the seed for successive invocations of irand and 
rand. 

SEE ALSO 
rand(3C). 

7/85 - 1 - 7/85 





ROUND(3F) (FORTRAN Programming Language Utilities) ROUND(3F) 

NAME 
anint, dnint, nint, idnint - Fortran nearest integer functions 

SYNOPSIS 
integer i 
real rl, r2 
double precision dpl, dp2 

r2 = anintfrO 
i = nint(rl) 

dp2 = anint(dpl) 
dp2 = dnint(dpl) 

i = nint(dpl) 
i = idnint(dpO 

DESCRIPTION 

7/85 

Anint returns the nearest whole real number to its real argument G.e., int(a+0.5) if 
a ~ 0, int(a-0.5) otherwise). Dnint does the same for its double-precision argu­
ment. Nint returns the nearest integer to its real argument. Idnint is the double­
precision version. Anint is the generic form of anint and dnint , performing the 
same operation and returning the data type of its argument. Nint is also the gen­
eric form of idnint. 

- 1 - 7/85 





SIGN(3F) (FORTRAN Programming Language Utilities) SIGN(3F) 

NAME 
sign, isign, dsign - Fortran transfer-of-sign intrinsic function 

SYNOPSIS 
integer i, j, k 
real rl, r2, r3 
double precision dpt, dp2, dp3 

k = isign(i, j) 
k = sign (i, j) 

r3 = signfrl, r2) 

dp3 = dsign(dpl, dp2) 
dp3 = sign(dpl, dp2) 

DESCRIPTION 

7/85 

!sign returns the magnitude of its first argument with the sign of its second argu­
ment. Sign and dsign are its real and double-precision counterparts, respectively. 
The generic version is sign and will devolve to the appropriate type depending on its 
arguments. 

- 1 - 7/85 





SIGNAL(3F) (FORTRAN Programming Language Utilities) SIGNAL(3F) 

NAME 
signal - specify Fortran action on receipt of a system signal 

SYNOPSIS 
integer i, intfc 
external intfc 

call signal (i, intfc) 

DESCRIPTION 
The argument i specifies the signal to be caught. Signal allows a process to specify 
a function to be invoked upon receipt of a specific signal. The first argument 
specifies which fault or exception. The second argument specifies the function to be 
invoked. 
NOTE: The interrupt processing function, intfc, does not take an argument. 

SEE ALSO 
kill (2), signal (2). 

7/85 - 1 - 7/85 





SIN(3F) (FORTRAN Programming Language Utilities) 

NAME 
sin, dsin, csin - Fortran sine intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 
complex cxl, cx2 

r2 = sinfrO 

dp2 dsin(dpl) 
dp2 sin(dpl) 

cx2 csin(cxO 
cx2 sin(cxO 

DESCRIPTION 

SIN(3F) 

Sin returns the real sine of its real argument. Dsin returns the double-precision 
sine of its double-precision argument. Csin returns the complex sine of its complex 
argument. The generic sin function becomes dsin or csin as required by argument 
type. 

SEE ALSO 
trig(3M). 

7/85 - 1 - 7/85 





SINH (3F) (FORTRAN Programming Language Utilities) SINH(3F) 

NAME 
sinh, dsinh - Fortran hyperbolic sine intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 

r2 = sinh(rl) 

dp2 = dsinh(dpl) 
dp2 = sinh(dpO 

DESCRIPTION 
Sinh returns the real hyperbolic sine of its real argument. Dsinh returns the 
double-precision hyperbolic sine of its double-precision argument. The generic form 
sinh may be used to return a double-precision value when given a double-precision 
argument. 

SEE ALSO 
sinh(3M). 

7/85 - 1 - 7/85 





SQRT(3F) (FORTRAN Programming Language Utilities) 

NAME 
sqrt, dsqrt, csqrt - Fortran square root intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpl, dp2 
complex ext, cx2 

r2 = sqrt(rl) 

dp2 dsqrt(dpl) 
dp2 sqrt(dpl) 

cx2 csqrt(cxl) 
cx2 sqrt(cxl) 

DESCRIPTION 

SQRT(JF) 

Sqrt returns the real square root of its real argument. Dsqrt returns the double­
precision square root of its double-precision argument. Csqrt returns the complex 
square root of its complex argument. Sqrt, the generic form, will become dsqrt or 
csqrt as required by its argument type. 

SEE ALSO 
exp(3M). 

7/85 - 1 - 7/85 





STRCMP(3F) (FORTRAN Programming Language Utilities) 

NAME 
lge, !gt, Ile, lit - string comparison intrinsic functions 

SYNOPSIS 
character*N al, a2 
logical I 

lge(al, a2) 
lgt(al, a2) 
lle(at, a2) 
llt(al, a2) 

DESCRIPTION 

STRCMP(3F) 

These functions return .TRUE. if the inequality holds and .FALSE. otherwise. 

7/85 - 1 - 7/85 





SYSTEM(3F) (FORTRAN Programming Language Utilities) 

NAME 
system - issue a shell command from Fortran 

SYNOPSIS 
character• N c 

call system(c) 

DESCRIPTION 

SYSTEM(3F) 

System causes its character argument to be given to sh (1) as input, as if the string 
had been typed at a terminal. The current process waits until the shell has com­
pleted. 

SEE ALSO 
exec(2), system (3S). 
sh(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - 1 - 7/85 





TAN(3F) (FORTRAN Programming Language Utilities) TAN(3F) 

NAME 
tan, dtan - Fortran tangent intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpt, dp2 

r2 = tan(rl) 

dp2 = dtan(dpl) 
dp2 = tan(dpO 

DESCRIPTION 
Tan returns the real tangent of its real argument. Dtan returns the double­
precision tangent of its double-precision argument. The generic tan function 
becomes dtan as required with a double-precision argument. 

SEE ALSO 
trig(3M). 

7/85 - 1 - 7/85 





TANH(3F) (FORTRAN Programming Language Utilities) 

NAME 
tanh, dtanh - Fortran hyperbolic tangent intrinsic function 

SYNOPSIS 
real rl, r2 
double precision dpt, dp2 

r2 = tanh(r1) 

dp2 = dtanh(dpl) 
dp2 = tanh(dpl) 

DESCRIPTION 

TANH(JF) 

Tanh returns the real hyperbolic tangent of its real argument. Dtanh returns the 
double-precision hyperbolic tangent of its double-precision argument. The generic 
form tanh may be used to return a double-precision value given a double-precision 
argument. 

SEE ALSO 
sinh(3M). 

7/85 " 1 " 7/85 





Replace th is 

page with the 

Section 4 (File Formats) 

tab separator. 





INTR0(4) INTR0(4) 

NAME 
intro - introduction to file formats 

DESCRIPTION 

7/85 

This section outlines the formats of various files. The C struct declarations for the 
file formats are given where applicable. Usually, these structures can be found in 
the directories /usr/include or /usr/include/sys. 

References of the type name ( 1 M) refer to entries found in Section 1 of the AT & T 
3B2 Computer System Administration Reference Manual. 

- l - 7/85 





A.OUT(4) A.OUT(4) 

NAME 
a.out - common assembler and link editor output 

DESCRIPTION 

7/85 

The file name a.out is the output file from the assembler as (1) and the link editor 
ld(l). Both programs will make a.out executable if there were no errors in assem­
bling or linking and no unresolved external references. 

A common object file consists of a file header, a UNIX system header, a table of 
section headers, relocation information, (optional) line numbers, a symbol table, and 
a string table. The order is given below. 

File header. 
UNIX system header. 
Section 1 header. 

Section n header. 
Section l data. 

Section n data. 
Section 1 relocation. 

Section n relocation. 
Section l line numbers. 

Section n line numbers. 
Symbol table. 
String table. 

The last three parts of an object file (line numbers, symbol table and string table) 
may be missing if the program was linked with the -s option of /d(l) or if they 
were removed by strip (1). Also note that the relocation information will be absent 
if there were no unresolved external references after linking. The string table exists 
only if the symbol table contains symbols with names longer than eight characters. 

The sizes of each section (contained in the header, discussed below) are in bytes and 
are even. 

When an a.out file is loaded into memory for execution, three logical segments are 
set up: the text segment, the data segment (initialized data followed by uninitial­
ized, the latter actually being initialized to all O's), and a stack. On the 3B2 com­
puters the text segment starts at location Ox80800000. 

The a.out file produced by /d(l) by default has a number called the magic number 
0413 in the first field of the UNIX system header. The headers (file header, UNIX 
system header, and section headers) are loaded at the beginning of the text segment 
and the text immediately follows the headers in the user address space. The first 
text address will equal the size of the headers, and will vary depending upon the 
number of section headers in the a.out file. In an a.out file with three sections 
(.text, .data, and .bss), the first text address is at Ox808000A8 on the 3B2 comput­
ers. The text segment is not writable by the program; if other processes are execut­
ing the same a.out file, the processes will share a single text segment. 

The data segment starts at the next segment boundary (512k on the 3B2 computers) 
past the last text address. The first data address is determined by the following: If 
an a.out file were split into 8k chunks, one of the chunks would contain both the end 

- 1 - 7/85 



A.OUT(4) A.OUT(4) 

of text and the beginning of data. When the core image is created, that chunk will 
appear twice; once at the end of text and once at the beginning of data (with some 
unused space in between). The duplicated chunk of text that appears at the begin­
ning of data is never executed; is is duplicated so that the operating system may 
bring in pieces of the file in multiples of the page size without having to realign the 
beginning of the data section to a page boundary. Therefore the first data address 
is the sum of the next segment boundary past the end of text plus the remainder of 
the last text address divided by 8k. 

On the 382 computer the stack begins at location OxC0020000 and grows toward 
higher addresses. On all machines the stack is automatically extended as required. 
The data segment is extended only as requested by the brk(2) system call. 

The value of a word in the text or data portions that is not a reference to an 
undefined external symbol is exactly the value that will appear in memory when the 
file is executed. If a word in the text involves a reference to an undefined external 
symbol, the storage class of the symbol-table entry for that word will be marked as 
an "external symbol", and the section number will be set to 0. When the file is pro­
cessed by the link editor and the external symbol becomes defined, the value of the 
symbol will be added to the word in the file. 

File Header 
The format of the filebdr header is 

struct filehdr 
{ 

} ; 

unsigned short 
unsigned short 
long 
long 
long 
unsigned short 
unsigned short 

f magic; 
(nscns; 
f_timdat; 
f_symptr; 
f_nsyms; 
f_opthdr; 
f_flags; 

UNIX System Header 

7/85 

The format of the UNIX system header is 

typedef struct aouthdr 
{ 

short 
short 
long 
long 
long 
long 
long 
long 

} AOUTHDR; 

magic; 
vstamp; 
tsize; 
dsize; 
bsize; 
entry; 
text start; 
data_start; 

- 2 -

I• magic number •/ 
/• number of sections •/ 
I• time and date stamp •/ 
I• file ptr to symtab •/ 
I• # symtab entries •/ 
I• sizeof(opt hdr) •/ 
I• flags •/ 

I• magic number •/ 
I• version stamp •/ 
I• text size in bytes, padded •/ 
I• initialized data (.data) •/ 
I• uninitialized data (bss) •/ 
I• entry point •/ 
I• base of text used for this file •/ 
I• base of data used for this file •/ 

7/85 



A.OUT(4) A.OUT(4) 

Section Header 
The format of the section header is 

struct scnhdr 
{ 

} ; 

char 
long 
long 
long 
long 
long 
long 
unsigned short 
unsigned short 
long 

s namelSYMNMLENI;/• section name •/ 
syaddr; /• physical address •/ 
s vaddr; /• virtual address •/ 
s=size; /• section size•/ 
s_scnptr; /• file ptr to raw data•/ 
s_relptr; /• file ptr to relocation •/ 
s_lnnoptr; /• file ptr to line numbers•/ 
s nreloc; /• # reloc entries •/ 
s-nlnno; /• #line number entries •/ 
s)lags; /• flags •/ 

Relocation 

7/85 

Object files have one relocation entry for each relocatable reference in the text or 
data. If relocation information is present, it will be in the following format: 

struct reloc 
{ 

long r_vaddr; /• (virtual) address of reference •/ 
long r_symndx; /• index into symbol table•/ 
short r_type; /• relocation type•/ 

}; 

The start of the relocation information is SJelptr from the section header. If there 
is no relocation information, s_relptr is 0. 

- 3 - 7/85 



A.OUT(4) A.OUT(4) 

Symbol Table 

7/85 

The format of each symbol in the symbol table is 

#define SYMNMLEN 8 
#define FILNMLEN 14 
#define SYMESZ 18 /* the size of a SYMENT */ 

struct syment 
{ 

union I• all ways to get a symbol name •/ 

}; 

{ 
char 
struct 
{ 

long 
long 

_n_n; 
char 

_n; 
unsigned long 
short 
unsigned short 
char 
char 

#define n name 
#define n _zeroes 
#define n offset 
#define n_nptr 

_n_namdSYMNMLEN]; /• name of symbol•/ 

_n_zeroes; 
_n_offset; 

• _n_nptd2]; 

n_value; 
n_scnum; 
n_type; 
n_sclass; 
n_numaux; 

n. n name 

I• == OL if in string table •/ 
I• location in string table •/ 

I• allows overlaying •/ 

I• value of symbol •/ 
I• section number •/ 
/• type and derived type •/ 
I• storage class • / 
I• number of aux entries •/ 

n. n n. n zeroes 
-n.-n-n.-n -offset 

=n-=n=nptrfl] 

Some symbols require more information than a single entry; they are followed by 
auxiliary entries that are the same size as a symbol entry. The format follows. 

- 4 - 7/85 



A.OUT(4) A.OUT(4) 

union auxent { 
struct { 

}; 

long x _ tagndx; 
union { 

struct { 
unsigned short x _lnno; 
unsigned short x_size; 

} x_lnsz; 
long x fsize; 

} x misc; -
union { 

struct { 
long x _lnnoptr; 
long x_endndx; 

} x fen; 
struct { 

unsigned short x_dimen[DIMNUM]; 
} x ary; 

} x_fcnary; 
unsigned short x_tvndx; 

} x_sym; 

struct { 
char x_fname[FILNMLEN]; 

} x_file; 

struct { 
long x_scnlen; 
unsigned short x_nreloc; 
unsigned short x _ nlinno; 

} x_scn; 

struct { 
long 

} x_tv; 

unsigned short 
unsigned short 

x_tvfill; 
x tvkn; 
x=tvran[2]; 

Indexes of symbol table entries begin at zero. The start of the symbol table is 
f_symptr (from the file header) bytes from the beginning of the file. If the symbol 
table is stripped, f_symptr is 0. The string table (if one exists) begins at f_symptr 
+ (f_nsyms * SYMESZ) bytes from the beginning of the file. 

SEE ALSO 

7/85 

brk(2), filehdr(4), ldfcn(4), linenum(4), reloc(4), scnhdr(4), syms(4). 
as(l), cc(l), ld(l) in the AT&T 3B2 Computer User Reference Manual. 

- 5 - 7/85 





AR(4) AR(4) 

NAME 
ar - common archive file format 

DESCRIPTION 

7/85 

The archive command ar(l) is used to combine several files into one. Archives are 
used mainly as libraries to be searched by the link editor /d(l). 

Each archive begins with the archive magic string. 

#define ARMAG "!<arch>\n" 
#define SARMAG 8 

I• magic string •/ 
I• length of magic string •/ 

Each archive which contains common object files (see a.out (4)) includes an archive 
symbol table. This symbol table is used by the link editor /d(l) to determine which 
archive members must be loaded during the link edit process. The archive symbol 
table (if it exists) is always the first file in the archive (but is never listed) and is 
automatically created and/or updated by ar. 

Following the archive magic string are the archive file members. Each file member 
is preceded by a file member header which is of the following format: 

#define ARFMAG '"\n" 

struct ar hdr 
{ -

} ; 

char 
char 
char 
char 
char 
char 
char 

ar name[l6]; 
ar-date[l2]; 
ar-uid[6]; 
ar ::Eid[ 6]; 
ar mode[8]; 
ar -size[ l O]; 
ar)mag[2]; 

I• header trailer string • / 

I• file member header •/ 

I•'/' terminated file member name•/ 
/• file member date •/ 
I• file member user identification •/ 
I• file member group identification •/ 
/• file member mode (octal) •/ 
I• file member size •/ 
I• header trailer string •I 

All information in the file member headers is in printable ASCII. The numeric 
information contained in the headers is stored as decimal numbers (except for 
ar _mode which is in octal). Thus, if the archive contains printable files, the archive 
itself is printable. 

The ar _name field is blank-padded and slash (/) terminated. The ar _date field is 
the modification date of the file at the time of its insertion into the archive. Com­
mon format archives can be moved from system to system as long as the portable 
archive command ar(l) is used. 

Each archive file member begins on an even byte boundary; a newline is inserted 
between files if necessary. Nevertheless the size given reflects the actual size of the 
file exclusive of padding. 

Notice there is no provision for empty areas in an archive file. 

If the archive symbol table exists, the first file in the archive has a zero length name 
(i.e., ar_namelOI == '/'). The contents of this file are as follows: 

• The number of symbols. Length: 4 bytes. 

• The array of offsets into the archive file. Length: 4 bytes * "the number of 
symbols". 

- 1 - 7/85 



AR(4) 

• 

AR(4) 

The name string table. Length: ar size - (4 bytes * ("the number of 
symbols" + 1)). 

The number of symbols and the array of offsets are managed with sgetl and sputl. 
The string table contains exactly as many null terminated strings as there are ele­
ments in the offsets array. Each offset from the array is associated with the 
corresponding name from the string table (in order). The names in the string table 
are all the defined global symbols found in the common object files in the archive. 
Each offset is the location of the archive header for the associated symbol. 

SEE ALSO 
sputl(3X), a.out(4). 
ar(l), ld(l), strip(l) in the AT&T 3B2 Computer User Reference Manual. 

WARNINGS 

7/85 

Strip (1) will remove all archive symbol entries from the header. The archive sym­
bol entries must be restored via the ts option of the ar(l) command before the 
archive can be used with the link editor ld(l). 

- 2 - 7/85 



CHECKUST(4) CHECKLIST(4) 

NAME 
checklist - list of file systems processed by fsck 

DESCRIPTION 
Checklist resides in directory /etc and contains a list of, at most, 15 special file 
names. Each special file name is contained on a separate line and corresponds to a 
file system. Each file system will then be automatically processed by the fsck(IM) 
command. 

SEE ALSO 
fsck(lM) in the AT&T 3B2 Computer System Administration Reference Manual. 

7/85 - 1 - 7/85 





CORE(4) CORE(4) 

NAME 
core - format of core image file 

DESCRIPTION 
The UNIX system writes out a core image of a terminated process when any of vari­
ous errors occur. See signal (2) for the list of reasons; the most common are 
memory violations, illegal instructions, bus errors, and user-generated quit signals. 
The core image is called core and is written in the process's working directory (pro­
vided it can be; normal access controls apply). A process with an effective user ID 
different from the real user ID will not produce a core image. 

The first section of the core image is a copy of the system's per-user data for the 
process, including the registers as they were at the time of the fault. The size of 
this section depends on the parameter usize, which is defined in 
/usr/include/sys/param.h. The remainder represents the actual contents of the 
user's core area when the core image was written. If the text segment is read-only 
and shared, or separated from data space, it is not dumped. 

The format of the information in the first section is described by the user structure 
of the system, defined in /usr/include/sys/user.h. The important stuff not detailed 
therein is the locations of the registers, which are outlined in /usr/include/sys/reg.h. 

SEE ALSO 

7/85 

setuid (2), signal (2). 
crash(lM) in the AT&T 3B2 Computer System Administration Reference Manual. 
sdb(l) in the AT&T 3B2 Computer User Reference Manual. 

- 1 - 7/85 





CPI0(4) CPI0(4) 

NAME 
cpio - format of cpio archive 

DESCRIPTION 
The header structure, when the -c option of cpio(I) is not used, is: 

struct { 

} Hdr; 

short h _magic, 
h_dev; 

ushort h_ino, 
h mode, 
h=uid, 
h_gid; 

short h nlink, 
h-rdev, 
h-mtime[2], 
h - namesize, 
h -filesizd2]; 

char h=name[h_namesize rounded to word]; 

When the -c option is used, the header information is described by: 

sscanf( Chdr, 11%60%60%60%60%60%60%60%60% 1110%60% l 1 lo%s", 
&Hdr.h magic, &Hdr.h dev, &Hdr.h ino, &Hdr.h mode, 
&Hdr.h=uid, &Hdr.h_gid, &Hdr.h_nlfnk, &Hdr.h_fdev, 
&Longtime, &Hdr .h _ namesize,&Longfile,Hdr .h _name); 

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h.filesize, respec­
tively. The contents of each file are recorded in an element of the array of varying 
length structures, archive, together with other items describing the file. Every 
instance of h _magic contains the constant 070707 (octal). The items h _ dev through 
h _ mtime have meanings explained in stat (2). The length of the null-terminated 
path name h_!!ame, including the null byte, is given by h_namesize. 

The last record of the archive always contains the name TRAILER!!!. Special files, 
directories, and the trailer are recorded with h .filesize equal to zero. 

SEE ALSO 
stat(2). 
cpio(l), find(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - I - 7/85 





DIR(4) DIR(4) 

NAME 
dir - format of directories 

SYNOPSIS 
#include <sys/dir.h> 

DESCRIPTION 
A directory behaves exactly like an ordinary file, save that no user may write into a 
directory. The fact that a file is a directory is indicated by a bit in the flag word of 
its i-node entry (see fs (4)). The structure of a directory entry as given in the 
include file is: 

#ifndef DIRSIZ 
#define DIRSIZ 14 
#endif 
struct direct 
{ 

ino t d ino; 
char d=name[DIRSIZ]; 

}; 

By convention, the first two entries in each directory are for . and . •. The first is an 
entry for the directory itself. The second is for the parent directory. The meaning 
of .. is modified for the root directory of the master file system; there is no parent, 
so .. has the same meaning as .. 

SEE ALSO 
fs(4). 

7/85 - 1 - 7/85 





FH .. EHDR(4) FILEHDR(4) 

NAME 
filehdr - file header for common object files 

SYNOPSIS 
#include <filehdr.h> 

DESCRIPTION 
Every common object file begins with a 20-byte header. The following C struct 
declaration is used: 

struct filehdr 
{ 

} ; 

unsigned short 
unsigned short 
long 
long 
long 
unsigned short 
unsigned short 

f_magic; 
f_nscns ; 
f_timdat; 
f_symptr ; 
f nsyms; 
(opthdr; 
f_flags ; 

I• magic number •/ 
I• number of sections •/ 
I• time & date stamp •/ 
I• file ptr to symtab •/ 
I• # symtab entries •/ 
I• sizeof(opt hdr) •/ 
I• flags •/ 

F symptr is the byte offset into the file at which the symbol table can be found. Its 
value can be used as the offset in /seek (3S) to position an I/O stream to the symbol 
table. The UNIX system optional header is 28-bytes. The valid magic numbers are 
given below: 

#define N3BMAGIC 
#define NTVMAGIC 

0550 
0551 

#define V AXWRMAGIC 0570 
#define VAXROMAGIC 0575 

I• 3B20 computer •/ 
I• 3B20 computer •/ 

I• VAX writable text segments •/ 
I• VAX readonly sharable text segments •/ 

#define FBOMAGIC 0570 /• 3B5 and 3B2 computers •/ 

The value in f_timdat is obtained from the time (2) system call. Flag bits currently 
defined are: 

#define F_RELFLG 0000001 I• relocation entries stripped •/ 
#define F_EXEC 0000002 I• file is executable •/ 
#define F_LNNO 0000004 /• line numbers stripped •/ 
#define F_LSYMS 0000010 I• local symbols stripped •/ 
#define F_MINMAL 0000020 I• minimal object file •/ 
#define F_UPDATE 0000040 I• update file, ogen produced •/ 
#define F_SWABD 0000100 I• file is "pre-swabbed" •/ 
#define F_AR16WR 0000200 I• 16-bit DEC host•/ 
#define F_AR32WR 0000400 I• 32-bit DEC host •/ 
#define F_AR32W 0001000 I• non-DEC host •/ 
#define F_PATCH 0002000 /• "patch" list in opt hdr •/ 
#define F_BM32ID 0160000 I• WE 32000 family identification field •/ 
#define F_BM32B 0020000 I• file contains WE 32100 code•/ 
#define F _BM32RST 0010000 I* this object file contains restore 

work around [3B5/3B2 only] */ 

SEE ALSO 
time(2), fseek(3S), a.out(4). 

7/85 - 1 - 7/85 





FS(4) FS(4) 

NAME 
file system - format of system volume 

SYNOPSIS 
#include <sys/filsys.h> 
#include <sys/types.h> 
#include <sys/param.b> 

DESCRIPTION 

7/85 

Every file system storage volume has a common format for certain vital information. 
Every such volume is divided into a certain number of 512-byte long sectors. Sector 
0 is unused and is available to contain a bootstrap program or other information. 

Sector 1 is the super-block. The format of a super-block is: 

I• 
* Structure of the super-block 
•I 

struct filsys 
{ 

ushort s_isize; I• size in blocks of i-list •/ 
daddr_t s_fsize; /• size in blocks of entire volume •/ 
short s_nfree; I• number of addresses in s free •/ 
daddr t s_free[NICFREE]; I• free block list •/ 
short s ninode; /• number of i-nodes in s_inode •/ 
ino_t sJnode[NICINOD]; /• free i-node list •/ 
char s_flock; I• lock during free list manipulation •/ 
char s_ilock; /• lock during i-list manipulation •/ 
char s_fmod; I• super block modified flag•/ 
char s_ronly; I• mounted read-only flag •/ 
time_t s_time; /• last super block update •/ 
short s _ dinfo[ 4 ]; I• device information •/ 
daddr t s_tfree; I• total free blocks•/ 
ino_t s_tinode; I• total free i-nodes •/ 
char s_fname[6]; I• file system name •/ 
char s_fpack[6]; /• file system pack name •/ 
long s_fiil[J2]; I• AD.JUST to make sizeof filsys 

be 512 •/ 
long s_state; I• file system state •/ 
long s_magic; /• magic number to denote new 

file system •/ 
long s_type; I• type of new file system •/ 

}; 

#define FsMAGIC Oxfd187e20 /• s_magic number•/ 

#define Fslb /• 512-byte block •/ 
#define Fs2b 2 I• 1024-byte block•/ 

#define FsOKAY Ox7c269d38 I• s_state: clean •/ 
#define FsACTIVE Ox5e72d8la I• s_state: active•/ 
#define FsBAD Oxcb096f43 !• s_state: bad root•/ 

S _type indicates the file system type. Currently, two types of file systems are sup­
ported: the original 512-byte oriented and the new improved 1024-byte oriented. 
S _magic is used to distinguish the original 512-byte oriented file systems from the 

- 1 - 7/85 



FS(4) 

7/85 

FS(4) 

newer file systems. If this field is not equal to the magic number, FsMAGIC, the 
type is assumed to be Fsl b, otherwise the s _type field is used. In the following 
description, a block is then determined by the type. For the original 512-byte 
oriented file system, a block is 512-bytes. For the 1024-byte oriented file system, a 
block is 1024-bytes or two sectors. The operating system takes care of all conver­
sions from logical block numbers to physical sector numbers. 

S state indicates the state of the file system. A cleanly unmounted, not damaged 
file system is indicated by the FsOKA Y state. After a file system has been mounted 
for update, the state changes to FsACTIVE. A special case is used for the root file 
system. If the root file system appears damaged at boot time, it is mounted but 
marked FsBAD. Lastly, after a file system has been unmounted, the state reverts to 
FsOKAY. 

S isize is the address of the first data block after the i-list; the i-list starts just after 
the super-block, namely in block 2; thus the i-list is s _jsize-2 blocks long. S Jsize 
is the first block not potentially available for allocation to a file. These numbers are 
used by the system to check for bad block numbers; if an "impossible" block 
number is allocated from the free list or is freed, a diagnostic is written on the on­
line console. Moreover, the free array is cleared, so as to prevent further allocation 
from a presumably corrupted free list. 

The free list for each volume is maintained as follows. The sJree array contains, in 
sJree[l], ... , sJree[s_nfree-1), up to 49 numbers of free blocks. SJree[O] is the 
block number of the head of a chain of blocks constituting the free list. The first 
long in each free-chain block is the number (up to 50) of free-block numbers listed 
in the next 50 longs of this chain member. The first of these 50 blocks is the link to 
the next member of the chain. To allocate a block: decrement s_nfree, and the new 
block is sJree[s_nfree]. If the new block number is 0, there are no blocks left, so 
give an error. If s_nfree became 0, read in the block named by the new block 
number, replace s_nfree by its first word, and copy the block numbers in the next 50 
longs into the sJree array. To free a block, check if s_nfree is 50; if so, copy 
s_nfree and the sJree array into it, write it out, and set s_nfree to 0. In any event 
set sJree[s_nfreel to the freed block's number and increment s_nfree. 

S _tfree is the total free blocks available in the file system. 

S _ninode is the number of free i-numbers in the s _jnode array. To allocate an i­
node: ifs ninode is greater than 0, decrement it and returns inode[s ninode]. If 
it was 0, read the i-list and place the numbers of all free i-nodes (up to 100) into 
the s_jnode array, then try again. To free an i-node, provided s_ninode is less than 
l 00, place its number into s inode [s ninode] and increment s ninode. If s ninode 
is already 100, do not bother-to enter the freed i-node into any-table. This fist of i­
nodes is only to speed up the allocation process; the information as to whether the 
i-node is really free or not is maintained in the i-node itself. 

S _tinode is the total free i-nodes available in the file system. 

S _flock and s _ilock are flags maintained in the core copy of the file system while it 
is mounted and their values on disk are immaterial. The value of sJmod on disk is 
likewise immaterial; it is used as a flag to indicate that the super-block has changed 
and should be copied to the disk during the next periodic update of file system infor­
mation. 

S _Jonly is a read-only flag to indicate write-protection. 

S _time is the last time the super-block of the file system was changed, and is the 
number of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT). During a 

- 2 - 7/85 



FS (4) FS (4) 

FILES 

reboot, the s _time of the super-block for the root file system is used to set the 
system's idea of the time. 

S Jname is the name of the file system and s Jpack is the name of the pack. 

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes 
are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is reserved for the 
root directory of the file system, but no other i-number has a built-in meaning. 
Each i-node represents one file. For the format of an i-node and its flags, see 
inode (4). 

I usr /include/ sys/ filsys.h 
/usr/include/sys/stat.h 

SEE ALSO 

7/85 

mount(2), inode(4). 
fsck(lM), fsdb(lM), mkfs(lM) in the AT&T 3B2 Computer System Administra­
tion Reference Manual. 

. 3 • 7/85 





FSPEC(4) FSPEC(4) 

NAME 
fspec - format specification in text files 

DESCRIPTION 
It is sometimes convenient to maintain text files on the UNIX system with non­
standard tabs, (i.e., tabs which are not set at every eighth column). Such files must 
generally be converted to a standard format, frequently by replacing all tabs with 
the appropriate number of spaces, before they can be processed by UNIX system 
commands. A format specification occurring in the first line of a text file specifies 
how tabs are to be expanded in the remainder of the file. 

A format specification consists of a sequence of parameters separated by blanks and 
surrounded by the brackets <: and :>. Each parameter consists of a keyletter, pos­
sibly followed immediately by a value. The following parameters are recognized: 

ttabs The t parameter specifies the tab settings for the file. The value of 
tabs must be one of the following: 

1. a list of column numbers separated by commas, indicating tabs 
set at the specified columns; 

2. a - followed immediately by an integer n, indicating tabs at 
intervals of n columns; 

3. a - followed by the name of a "canned" tab specification. 

Standard tabs are specified by t-8, or equivalently, tl,9,17,25,etc. The 
canned tabs which are recognized are defined by the tabs(I) command. 

ssize The s parameter specifies a maximum line size. The value of size must 
be an integer. Size checking is performed after tabs have been 
expanded, but before the margin is prepended. 

mmargin The m parameter specifies a number of spaces to be prepended to each 
line. The value of margin must be an integer. 

d The d parameter takes no value. Its presence indicates that the line 
containing the format specification is to be deleted from the converted 
file. 

e The e parameter takes no value. Its presence indicates that the current 
format is to prevail only until another format specification is encoun­
tered in the file. 

Default values, which are assumed for parameters not supplied, are t-8 and mO. If 
the s parameter is not specified, no size checking is performed. If the first line of a 
file does not contain a format specification, the above defaults are assumed for the 
entire file. The following is an example of a line containing a format specification: 

* <:t5,10,15 s72:> • 

If a format specification can be disguised as a comment, it is not necessary to code 
the d parameter. 

Several UNIX system commands correctly interpret the format specification for a 
file. Among them is gath (see send(lC)) which may be used to convert files to a 
standard format acceptable to other UNIX system commands. 

SEE ALSO 
ed(l), newform(l), tabs(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - l - 7/85 





GETTYDEFS(4) GETTYDEFS(4) 

NAME 
gettydefs - speed and terminal settings used by getty 

DESCRIPTION 

7/85 

The /etc/gettydefs file contains information used by getty(IM) to set up the speed 
and terminal settings for a line. It supplies information on what the login prompt 
should look like. It also supplies the speed to try next if the user indicates the 
current speed is not correct by typing a <break> character. 

Each entry in /etc/gettydefs has the following format: 

label# initial-flags # final-flags # login-prompt #next-label 

Each entry is followed by a blank line. The various fields can contain quoted char­
acters of the form \b, \n, \c, etc., as well as \nnn, where nnn is the octal value of the 
desired character. The various fields are: 

label This is the string against which getty tries to match its second argu­
ment. It is often the speed, such as 1200, at which the terminal is 
supposed to run, but it need not be (see below). 

initial-flags These flags are the initial ioct/(2) settings to which the terminal is to 
be set if a terminal type is not specified to getty. The flags that 
getty understands are the same as the ones listed in 
/usr/include/sys/termio.h (see termio (7)). Normally only the speed 
flag is required in the initial-flags. Getty automatically sets the ter­
minal to raw input mode and takes care of most of the other flags. 
The initial-flag settings remain in effect until getty executes 
login(l). 

final-flags These flags take the same values as the initial-flags and are set just 
prior to getty executes login. The speed flag is again required. The 
composite flag SANE takes care of most of the other flags that need 
to be set so that the processor and terminal are communicating in a 
rational fashion. The other two commonly specified final-flags are 
TAB3, so that tabs are sent to the terminal as spaces, and HUPCL, so 
that the line is hung up on the final close. 

login-prompt This entire field is printed as the login-prompt. Unlike the above 
fields where white space is ignored (a space, tab or new-line), they 
are included in the login-prompt field. 

next-label If this entry does not specify the desired speed, indicated by the user 
typing a <break> character, then getty will search for the entry 
with next-label as its label field and set up the terminal for those 
settings. Usually, a series of speeds are linked together in this 
fashion, into a closed set; For instance, 2400 linked to 1200, which in 
turn is linked to 300, which finally is linked to 2400. 

If getty is called without a second argument, then the first entry of /etc/gettydefs is 
used, thus making the first entry of /etc/gettydefs the default entry. It is also used 
if getty can not find the specified label. If /etc/gettydefs itself is missing, there is 
one entry built into the command which will bring up a terminal at 300 baud. 

It is strongly recommended that after making or modifying /etc/gettydefs, it be run 
through getty with the check option to be sure there are no errors. 

- 1 - 7/85 



GETTYDEFS(4) 

FILES 
I etc/ gettydefs 

SEE ALSO 
ioctl(2). 

GETTYDEFS(4) 

getty(lM), termio(7) in the AT&T 3B2 Computer System Administration Refer­
ence Manual. 
login(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - 2 - 7/85 



GPS(4) GPS(4) 

NAME 
gps - graphical primitive string, format of graphical files 

DESCRIPTION 
GPS is a format used to store graphical data. Several routines have been developed 
to edit and display GPS files on various devices. Also, higher level graphics pro­
grams such as plot (in stat (lG)) and vtoc (in toe (lG)) produce GPS format output 
files. 

A GPS is composed of five types of graphical data or primitives. 

GPS PRIMITIVES 
lines The lines primitive has a variable number of points from which zero or 

more connected line segments are produced. The first point given pro­
duces a move to that location. (A move is a relocation of the graphic 
cursor without drawing.) Successive points produce line segments from 
the previous point. Parameters are available to set color, weight, and 
style (see below). 

arc The arc primitive has a variable number of points to which a curve is fit. 
The first point produces a move to that point. If only two points are 
included, a line connecting the points will result; if three points a circu­
lar arc through the points is drawn; and if more than three, lines connect 
the points. On the future, a spline will be fit to the points if they 
number greater than three.) Parameters are available to set color, 
weight, and style. 

text The text primitive draws characters. It requires a single point which 
locates the center of the first character to be drawn. Parameters are 
color, font, textsize, and textangle. 

hardware The hardware primitive draws hardware characters or gives control com­
mands to a hardware device. A single point locates the beginning loca­
tion of the hardware string. 

comment A comment is an integer string that is included in a GPS file but causes 
nothing to be displayed. All GPS files begin with a comment of zero 
length. 

GPS PARAMETERS 

7/85 

color 

weight 

style 

font 

Color is an integer value set for arc, lines, and text primitives. 

Weight is an integer value set for arc and lines primitives to indicate line 
thickness. The value 0 is narrow weight, 1 is bold, and 2 is medium 
weight. 

Style is an integer value set for lines and arc primitives to give one of 
the five different line styles that can be drawn on TEKTRONIX 4010 
series storage tubes. They are: 

0 solid 
1 dotted 
2 dot dashed 
3 dashed 
4 long dashed 

An integer value set for text primitives to designate the text font to be 
used in drawing a character string. (Currently font is expressed as a 
four-bit weight value followed by a four-bit style value.) 

- l - 7/85 



GPS(4) GPS(4) 

textsi:ze Textsize is an integer value used in text primitives to express the size of 
the characters to be drawn. Textsize represents the height of characters 
in absolute universe-units and is stored at one-fifth this value in the 
size-orientation (so) word (see below). 

textangle Textangle is a signed integer value used in text primitives to express 
rotation of the character string around the beginning point. Textangle is 
expressed in degrees from the positive x-axis and can be a positive or 
negative value. It is stored in the size-orientation (so) word as a value 
256/360 of it's absolute value. 

ORGANIZATION 
GPS primitives are organized internally as follows: 

lines 
arc 
text 
hardware 
comment 

cw 

point(s) 

SW 

so 

string 

cw points sw 
cw points sw 
cw point sw so [string I 
cw point [string l 
cw [string] 

Cw is the control word and begins all primitives. It consists of four bits 
that contain a primitive-type code and twelve bits that contain the 
word-count for that primitive. 

Point(s) is one or more pairs of integer coordinates. Text and hardware 
primitives only require a single point. Point(s) are values within a 
Cartesian plane or universe having 64K (-32K to +32K) points on each 
axis. 

Sw is the style-word and is used in lines, arc, and text primitives. For 
all three, eight bits contain color information. In arc and lines eight bits 
are divided as four bits weight and four bits style. In the text primitive 
eight bits of sw contain the font. 

So is the size-orientation word used in text primitives. Eight bits con­
tain text size and eight bits contain text rotation. 

String is a null-terminated character string. If the string does not end 
on a word boundary, an additional null is added to the GPS file to insure 
word-boundary alignment. 

SEE ALSO 

7/85 

graphics(lG), stat(lG), toc(lG) in the AT&T 3B2 Computer User Reference 
Manual. 

- 2 - 7/85 



GROUP(4) GROUP(4) 

NAME 
group - group file 

DESCRIPTION 

FILES 

Group contains for each group the following information: 

group name 
encrypted password 
numerical group ID 
comma-separated list of all users allowed in the group 

This is an ASCH file. The fields are separated by colons; each group is separated 
from the next by a new-line. If the password field is null, no password is demanded. 

This file resides in directory /etc. Because of the encrypted passwords, it can and 
does have general read permission and can be used, for example, to map numerical 
group ID's to names. 

/etc/group 

SEE ALSO 
passwd(4). 

7/85 

passwd(l) in the AT&T 3B2 Computer User Reference Manual. 
newgrp(lM) in the AT&T 3B2 Computer System Administration Reference 
Manual. 

- 1 - 7/85 





INITTAB(4) INITTAB(4) 

NAME 
inittab - script for the init process 

DESCRIPTION 

7/85 

The inittab file supplies the script to init's role as a general process dispatcher. The 
process that constitutes the majority of init's process dispatching activities is the line 
process /etc/getty that initiates individual terminal lines. Other processes typically 
dispatched by init are daemons and the shell. 

The inittab file is composed of entries that are position dependent and have the fol­
lowing format: 

id:rstate:action:process 

Each entry is delimited by a newline, however, a backslash (\) preceding a newline 
indicates a continuation of the entry. Up to 512 characters per entry are permitted. 
Comments may be inserted in the process field using the sh (1) convention for com­
ments. Comments for lines that spawn gettys are displayed by the who(l) com­
mand. It is expected that they will contain some information about the line such as 
the location. There are no limits (other than maximum entry size) imposed on the 
number of entries within the inittab file. The entry fields are: 

id This is one or two characters used to uniquely identify an entry. 

rstate This defines the run-level in which this entry is to be processed. Run­
leve/s effectively correspond to a configuration of processes in the system. 
That is, each process spawned by init is assigned a run-level or run-levels 
in which it is allowed to exist. The run-levels are represented by a 
number ranging from 0 through 6. As an example, if the system is in 
run-level 1, only those entries having a 1 in the rstate field will be pro­
cessed. When init is requested to change run-levels, all processes which do 
not have an entry in the rstate field for the target run-level will be sent 
the warning signal (SIGTERM) and allowed a 20-second grace period 
before being forcibly terminated by a kill signal (SIGKILL). The rstate 
field can define multiple run-levels for a process by selecting more than 
one run-level in any combination from 0 -6. If no run-level is specified, 
then the process is assumed to be valid at all run-levels 0 -6. There are 
three other values, a, b and c, which can appear in the rstate field, even 
though they are not true run-levels. Entries which have these characters 
in the rstate field are processed only when the telinit (see init(lM)) pro­
cess requests them to be run (regardless of the current run-level of the 
system). They differ from run-levels in that init can never enter run-level 
a, b or c. Also, a request for the execution of any of these processes does 
not change the current run-level. Furthermore, a process started by an a, 
b or c command is not killed when init changes levels. They are only 
killed if their line in /etc/inittab is marked off in the action field, their line 
is deleted entirely from /etc/inittab, or init goes into the SINGLE USER 
state. 

action Key words in this field tell init how to treat the process specified in the 
process field. The actions recognized by init are as follows: 

respawn If the process does not exist then start the process, do not wait 
for its termination (continue scanning the inittab file), and 
when it dies restart the process. If the process currently exists 
then do nothing and continue scanning the inittab file. 

- l - 7/85 



INITTAB(4) INITTAB(4) 

7/85 

wait Upon init's entering the run-level that matches the entry's 
rstate, start the process and wait for its termination. All sub­
sequent reads of the inittab file while init is in the same run­
level will cause init to ignore this entry. 

once Upon init's entering a run-level that matches the entry's 
rstate, start the process, do not wait for its termination. 
When it dies, do not restart the process. If upon entering a 
new run-level, where the process is still running from a previ­
ous run-level change, the program will not be restarted. 

boot The entry is to be processed only at init's boot-time read of 
the inittab file. /nit is to start the process, not wait for its ter­
mination; and when it dies, not restart the process. In order 
for this instruction to be meaningful, the rstate should be the 
default or it must match init's run-level at boot time. This 
action is useful for an initialization function following a 
hardware reboot of the system. 

bootwait The entry is to be processed only at init's boot-time read of 
the inittab file. /nit is to start the process, wait for its termi­
nation and, when it dies, not restart the process. 

powerfail Execute the process associated with this entry only when init 
receives a power fail signal (SIGPWR see signal (2)). 

powerwait Execute the process associated with this entry only when init 
receives a power fail signal (SIGPWR) and wait until it ter­
minates before continuing any processing of inittab. 

off If the process associated with this entry is currently running, 
send the warning signal (SIGTERM) and wait 20 seconds 
before forcibly terminating the process via the kill signal (SIG­
KILL). If the process is nonexistent, ignore the entry. 

ondemand This instruction is really a synonym for the respawn action. It 
is functionally identical to respawn but is given a different 
keyword in order to divorce its association with run-levels. 
This is used only with the a, b or c values described in the 
rstate field. 

initdefault An entry with this action is only scanned when init initially 
invoked. /nit uses this entry, if it exists, to determine which 
run-level to enter initially. It does this by taking the highest 
run-level specified in the rstate field and using that as its ini­
tial state. If the rstate field is empty, this is interpreted as 
0123456 and so init will enter run-level 6. Also, the initde­
fault entry cannot specify that init start in the SINGLE USER 
state. Additionally, if init does not find an initdefault entry in 
/etc/inittab, then it will request an initial run-level from the 
user at reboot time. 

- 2 - 7/85 



INITTAB(4) INITTAB(4) 

FILES 

sysinit Entries of this type are executed before init tries to access the 
console. It is expected that this entry will be only used to ini­
tialize devices on which init might try to ask the run-level 
question. These entries are executed and waited for before 
continuing. 

process This is a sh command to be executed. The entire process field is prefixed 
with exec and passed to a forked sh as sh -c 'exec command'. For this 
reason, any legal sh syntax can appear in the process field. Comments can 
be inserted with the; #comment syntax. 

I etc/ini tta b 

SEE ALSO 

7/85 

exec(2), open (2), signal(2). 
getty(lM), init(lM) in the AT&T 3B2 Computer System Administration Refer­
ence Manual. 
sh(l), who(l) in the AT&T 3B2 Computer User Reference Manual. 

- 3 - 7/85 





INODE(4) 

NAME 
inode - format of an i-node 

SYNOPSIS 
#include <sys/types.b> 
#include <sys/ino.h> 

DESCRIPTION 

INODE(4) 

An i-node for a plain file or directory in a file system has the following structure 
defined by <sys/ino.h>. 

FILES 

I• Inode structure as it appears on a disk block. •/ 
struct dinode 
{ 

} ; 
I• 

ushort 
short 
ushort 
ushort 
off t 
char 
time t 
time t 
time t 

di_mode; 
di nlink; 
d(uid; 
di_gid; 
di size; 
d(addr[40]; 
di atime; 
di-mtime; 
d(ctime; 

• the 40 address bytes: 
39 used; 13 addresses 

• of 3 bytes each. 
•I 

I• mode and type of file •/ 
I• number of links to file •/ 
I• owner's user id •/ 
I• owner's group id •/ 
I• number of bytes in file •/ 
I• disk block addresses •/ 
I• time last accessed •/ 
I• time last modified •/ 
I• time of last file status change •/ 

For the meaning of the defined types ojf_t and time _J see types (5). 

/usr/include/sys/ino.h 

SEE ALSO 
stat(2), fs(4), types(5). 

7/85 - l - 7/85 





ISSUE(4) ISSUE(4) 

NAME 
issue - issue identification file 

DESCRIPTION 
The file /etc/issue contains the issue or project identification to be printed as a login 
prompt. This is an ASCII file which is read by program getty and then written to 
any terminal spawned or respawned from the lines file. 

FILES 
/etc/issue 

SEE ALSO 
login(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - 1 - 7/85 





LDFCN(4) LDFCN(4) 

NAME 
ldfcn - common object file access routines 

SYNOPSIS 
#include <stdio.h> 
#include <filehdr.h> 
#include <ldfcn.h> 

DESCRIPTION 

7/85 

The common object file access routines are a collection of functions for reading an 
object file that is in computer (common) object file form. Although the calling pro­
gram must know the detailed structure of the parts of the object file that it 
processes, the routines effectively insulate the calling program from knowledge of 
the overall structure of the object file. 

The interface between the calling program and the object file access routines is 
based on the defined type LDFILE, defined as struct ldfile, declared in the header file 
ldfcn.h. The primary purpose of this structure is to provide uniform access to both 
simple object files and to object files that are members of an archive file. 

The function ldopen (3X) allocates and initializes the LDFILE structure and returns 
a pointer to the structure to the calling program. The fields of the LDFILE structure 
may be accessed individually through macros defined in ldfcn.h and contain the fol­
lowing information: 

LDFILE •ldptr; 

TYPE0dptr) The file magic number used to distinguish between archive 
members and simple object files. 

IOPTR (ldptr) The file pointer returned by fopen and used by the standard 
input/output functions. 

OFFSET(ldptr) The file address of the beginning of the object file; the offset 1s 
non-zero if the object file is a member of an archive file. 

HEADER(idptr) The file header structure of the object file. 

The object file access functions themselves may be divided into four categories: 

(1) functions that open or close an object file 

ldopen (3X) and ldopen (3X) 
open a common object file 

Id close (3X) and ldclose (3X) 
close a common object file 

(2) furtctions that read header or symbol table information 

ldahread(3X) 
read the archive header of a member of an archive file 

ldfhread(3X) 
read the file header of a common object file 

ldshread(3X) and ldshread(3X) 
read a section header of a common object file 

ldtbread (3X) 
read a symbol table entry of a common object file 

ldgetname (3X) 
retrieve a symbol name from a symbol table entry or from 
the string table 

- 1 - 7/85 



LDFCN(4) LDFCN(4) 

(3) functions that position an object file at (seek to) the start of the sec­
tion, relocation, or line number information for a particular section. 

ldohseek (3X) 
seek to the optional file header of a common object file 

ldsseek (3X) and ldsseek (3X) 
seek to a section of a common object file 

ldrseek (3X) and ldrseek (3X) 
seek to the relocation information for a section of a com­
mon object file 

ldlseek (3X) and Id/seek (3X) 
seek to the line number information for a section of a com­
mon object file 

ldtbseek (3X) 
seek to the symbol table of a common object file 

(4) the function ldtbindex (3X) which returns the index of a particular 
common object file symbol table entry. 

These functions are described in detail on their respective manual pages. 

All the functions except ldopen (3X), ldgetname (3X), ldopen (3X), and 
ldtbindex (3X) return either SUCCESS or FAILURE, both constants defined in 
ldfcn.h. Ldopen (3X) and ldopen (3X) both return pointers to an LDFILE structure. 

Additional access to an object file is provided through a set of macros defined in 
ldfcn.h. These macros parallel the standard input/output file reading and manipu­
lating functions, translating a reference of the LDFILE structure into a reference to 
its file descriptor field. 

The following macros are provided: 

GETC(ldptr) 
FGETC(ldptr) 
GETW(ldptr) 
UNGETC(c, ldptr) 
FGETS(s, n, ldptr) 
FREAD((char •) ptr, sizeof (•ptr), nitems, ldptr) 
FSEEK(ldptr, offset, ptrname) 
FTELL(ldptr) 
REWINDOdptr) 
FEOF(ldptr) 
FERROR(ldptr) 
FILENO(ldptr) 
SETBUF(ldptr, buf) 
STROFFSET(idptr) 

The STROFFSET macro calculates the address of the string table in a UNIX system 
release 5.0 object file. See the manual entries for the corresponding standard 
input/output library functions for details on the use of the rest of the macros. 

The program must be loaded with the object file access routine library !ibid.a. 

SEE ALSO 

7/85 

fseek(3S), ldahread (3X), ldclose(3X), ldgetname(3X), ldfhread (3X), ldlread (3X), 
ldlseek(3X), ldohseek(3X), ldopen (3X), ldrseek(3X), ldlseek(3X), ldshread (3X), 
ldtbindex (3X), ldtbread (3X), ldtbseek (3X), intro (5). 

- 2 - 7/85 



LDFCN(4) LDFCN(4) 

WARNING 

7/85 

The macro FSEEK defined in the header file ldfcn.h translates into a call to the stan­
dard input/output function /seek (3S). FSEEK should not be used to seek from the 
end of an archive file since the end of an archive file may not be the same as the 
end of one of its object file members! 

- 3 - 7/85 





LINENUM(4) LINENUM(4) 

NAME 
linenum - line number entries in a common object file 

SYNOPSIS 
#include < linenum.b > 

DESCRIPTION 
Compilers based on pee generate an entry in the object file for each C source line on 
which a breakpoint is possible (when invoked with the -g option; see cc(l)). Users 
can then reference line numbers when using the appropriate software test system 
(see sdb(l)). The structure of these line number entries appears below. 

struct lineno 
{ 

} ; 

union 
{ 

long 
long 

unsigned short 

l_symndx; 
l_paddr; 
l_addr; 
!Jnno; 

Numbering starts with one for each function. The initial line number entry for a 
function has /jnno equal to zero, and the symbol table index of the function's entry 
is in l _symndx. Otherwise, I Jnno is non-zero, and I _paddr is the physical address 
of the code for the referenced line. Thus the overall structure is the following: 

l addr l lnno 

function symtab index 0 
physical address line 
physical address line 

function symtab index 0 
physical address line 
physical address line 

SEE ALSO 
a.out(4). 
cc(l), sdb(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - 1 - 7/85 





MASTER(4) MASTER(4) 

NAME 
master - master configuration database 

DESCRIPTION 
The master configuration database is a collection of files. Each file contains 
configuration information for a device or module that may be included in the sys­
tem. A file is named with the module name to which it applies. This collection of 
files is maintained in a directory called /etc/master.d. Each individual file has an 
identical format. For convenience, this collection of files will be referred to as the 
master file, as though it was a single file. This will allow a reference to the master 
file to be understood to mean the individual file in the master.d directory that 
corresponds to the name of a device or module. The file is used by the mkboot(IM) 
program to obtain device information to generate the device driver and configurable 
module files. It is also used by the sysdef(IM) program to obtain the names of sup­
ported devices. Master consists of two parts; they are separated by a line with a 
dollar sign ($) in column 1. Part 1 contains device information for both hardware 
and software devices, and loadable modules. Part 2 contains parameter declarations 
used in part 1. Any line with an asterisk (*) in column l is treated as a comment. 

Part 1, Description 
Hardware devices, software drivers and loadable modules are defined with a line 
containing the following information. Field 1 must begin in the left most position 
on the line. Fields are separated by white space (tab or blank). 

Field 1: element characterisitics: 

Field 2: 

Field 3: 
Field 4: 

Field 5: 
Field 6: 
Field 7: 

o specify only once 
r required device 
b block device 
c character device 
a generate segment descriptor array 
t initialize cdevsw[].d_ttys 
s software driver 
x not a driver; a loadable module 
number The first interrupt vector for an integral device 
number of interrupt vectors required by a hardware device: 
"-"if none. 
handler prefix (4 chars. maximum) 
software driver external major number; "-" if not a software 
driver 
number of sub-devices per device; "-" if none 
interrupt priority level of the device; "-" if none 
dependency list (optional); this is a comma separated list of 
other drivers or modules that must be present in the 
configuration if this module is to be included 

For each module, two classes of information are required by mkboot(IM): 
external routine references and variable definitions. Routine and variable 
definition lines begin with white space and immediately follow the initial 
module specification line. These lines are free form, thus they may be con­
tinued arbitrarily between non-blank tokens as long as the first character of 
a line is white space. 

Part 1, Routine Reference Lines 

7/85 

If the UNIX system kernel or other dependent module contains external references 
to a module, but the module is not configured, then these external references would 

- l - 7/85 



MASTER(4) MASTER(4) 

be undefined. Therefore, the routine reference lines are used to provide the infor­
mation necessary to generate appropriate dummy functions at boot time when the 
driver is not loaded. 
Routine references are defined as follows: 

Field 1: routine name 0 
Field 2: the routine type: one of 

0 routine name(){} 
{nosys} routine :flame() {return nosys () ;} 
{nodev} routine name() {return nodevO ;} 
{false} routine - name 0 {return O;} 
{true} routine= name() {return 1;} 

Part 1, Variable Definition Lines 

7185 

Variable definition lines are used to generate all variables required by the module. 
The variable generated may be of arbitrary size, be initialized or not, or be arrays 
containing an arbitrary number of elements. 
variable references are defined as follows: 

Field l: variable name 
Field 2: [ expr ]-:_optional field used to indicate array size 
Field 3: (length) - required field indicating the size of the variable 
Field 4: ={ expr, ... } - optional field used to initialize individual ele­

ments of a variable 
The length field is mandatory. It is an arbitrary sequence of length specifiers, each 
of which may be one of the following: 

%i 
%1 
%s 

an integer 
a long integer 
a short integer 

%c 
%number 
%number c 

a single character 
a field which is number bytes long 
a character string which is number bytes long 

For example, the length field 

( %8c %1 %0x58 %1 %c %c ) 

could be used to identify a variable consistring of a character sting 8-bytes long, a 
long integer, a Ox58 byte structure of any type, another long integer, and two char­
acters. Appropriate alignment of each % specification is performed (%number is 
word aligned) and the variable length is rounded up to the next word boundary dur­
ing processing. 
The expressions for the optional array size and initialization are infix expressions 
consisting of the usual operators for addition, subtraction, multiplication, and divi­
sion: +, -, *, and /. Multiplication and division have the higher precedence, but 
parentheses may be used to override the default order. The builtin functions min 
and max accept a pair of expressions, and return the appropriate value. The 
operands of the expression may be any mixture of the following: 

&name 

#name 

address of name where name is any symbol defined by the 
kernel, any module loaded or any variable definition line of 
any module loaded 
sizeof name where name is any variable name defined by a 
variable definition for any module loaded; the size is that of 

- 2 - 7/85 



MASTER(4) MASTER(4) 

#C 

#C(name) 

#D 

#D(name) 

#M 

#M(name) 

name 
number 
string 

the individual variable--not the size of an entire array 
number of controllers present; this number is determined by 
the EDT for hardware devices, or by the number provided in 
the system file for non-hardware drivers or modules 
number of controllers present for the module name; this 
number is determined by the EDT for hardware devices, or by 
the number provided in the system file for non-hardware 
drivers or modules 
number of devices per controller taken directly from the 
current master file entry 
number of devices per controller taken directly from the mas­
ter file entry for the module name 
the internal major number assigned to the current module if it 
is a device driver; zero of this module is not a device driver 
the internal major number assigned to the module name if it 
is a device driver: zero if that module is not a device driver 
value of a parameter as defined in the second part of master 
arbitrary number (octal, decimal, or hex allowed) 
a character string enclosed within double quotes (all of the 
character string conventions supported by the C language are 
allowed); this operand has a value which is the address of a 
character array containing the specified string 

When initializing a variable, one initialization expression should be provided for 
each %i, %1, %s, or %c of the length field. The only initializers allowed for a 
'%number c' are either a character string (the string may not be longer than 
number), or an explicit zero. Initialization expressions must be separated by com­
mas, and variable initialization will proceed element by element. Note that 
%number specification cannot be initialized--they are set to zero. Only the first ele­
ment of an array can be initialized, the other elements are set to zero. If there are 
more initializers than size specifications, it is an error and execution of the 
mkboot(lM) program will be aborted. If there are fewer initializations than size 
specifications, zeros will be used to pad the variable. For example: 

=( "V2.Ll", #C*#D, max(lO,#D), #C(OTHER), #M(OTHER)} 

would be a possible initialization of the variable whose length field was given in the 
preceeding example. 

Part 2, Description 
Parameter declarations may be used to define a value symbolically. Values can be 
associated with identifiers and these identifiers may be used in the variable 
definition lines. 

Parameters are defined as follows: 

Field 1: 
Field 2: 
Field 3: 

identifier (8 characters maximum) 

value, the value may be a number (decimal, octal, or hex 
allowed), or a string 

EXAMPLE 
A sample master file for a tty device driver would be named "atty" if the device 

7/85 - 3 - 7/85 



MASTER(4) MASTER(4) 

FILES 

appeared in the EDT as "ATTY". The driver is a character device, the driver prefix 
is at, two interrupt vectors are used, and the interrupt priority is 6. In addition, 
another driver named "ATLOG" is necessary for the correct operation of the software 
associated with this device. 

*FLAG #VEC PREFIX SOFT #DEV IPL DEPENDENCIES/VARIABLES 
tea 2 at 2 6 ATLOG 

$ 

ATID = "fred" 
ATMAX = 6 

atpoint( ){false) 
at_tty[#C*#D] (%0x58) 
at_cnt(%i) ={ #C*#D) 
at_logmaj(%i) =( #M(ATLOG) 
at_id(%8c) ={ ATID} 
at_table(%i%1%31%s) 

={ max(#C,ATMAX), 
6.at_tty, 
#C } 

This master file will cause a routine named atpoint to be generated by the boot pro­
gram if the A TTY driver is not loaded, and there is a reference to this routine from 
any other module loaded. When the driver is loaded, the variables at _Jty, at _cnt, 
at _jogmaj, at_jd, and at _!able will be allocated and initialized as specified. Due to 
the t flag, the d_Jtys field in the character device switch table will be initialized to 
point to at_tty (the first variable definition line contains the variable whose address 
will be stored in d _ttys). The ATTY driver would reference these variables by cod­
ing: 

extern struct tty at_tty[]; 
extern int at_cnt; 
extern int at_logmaj; 
extern char at id[8]; 
extern struct r 

int memberl; 
struct tty *member2; 
char junk[3 l ]; 
short member3; 
} at_table; 

/etc/master.di* 

SEE ALSO 
system(4). 

7/85 

mkboot(IM), sysdef(IM) in the AT&T 3B2 Computer System Administration 
Reference Manual. 

- 4 - 7/85 



MNTTAB(4) MNTTAB(4) 

NAME 
mnttab - mounted file system table 

SYNOPSIS 
#include < mnttab.h > 

DESCRIPTION 
Mnttab resides in directory /etc and contains a table of devices, mounted by the 
mount ( l M) command, in the following structure as defined by < mnttab.h >: 

struct mnttab { 
char 
char 
short 
time t 

} ; 

mt dev[32]; 
mt-filsys[32]; 
m(ro_flg; 
mt_time; 

Each entry is 70 bytes in length; the first 32 bytes are the null-padded name of the 
place where the special file is mounted; the next 32 bytes represent the null-padded 
root name of the mounted special file; the remaining 6 bytes contain the mounted 
special file's read/write permissions and the date on which it was mounted. 

The maximum number of entries in mnttab is based on the system parameter 
NMOUNT located in /usr/src/uts/cf/conf.c, which defines the number of allowable 
mounted special files. 

SEE ALSO 

7/85 

mount (1 M), setmnt (1 M) in the AT & T 3B2 Computer System Administration 
Reference Manual. 

- 1 - 7/85 





PASSWD(4) PASSWD(4) 

NAME 
passwd - password file 

DESCRIPTION 

FILES 

Passwd contains for each user the following information: 

login name 
encrypted password 
numerical user ID 
numerical group ID 
GCOS job number, box number, optional GCOS user ID 
initial working directory 
program to use as shell 

This is an ASCII file. Each field within each user's entry is separated from the next 
by a colon. The GCOS field is used only when communicating with that system, and 
in other installations can contain any desired information. Each user is separated 
from the next by a new-line. If the password field is null, no password is demanded; 
if the shell field is null, the shell itself is used. 

This file resides in directory /etc. Because of the encrypted passwords, it can and 
does have general read permission and can be used, for example, to map numerical 
user IDs to names. 

The encrypted password consists of 13 characters chosen from a 64-character alpha­
bet (., /, 0-9, A-Z, a-z), except when the password is null, in which case the 
encrypted password is also null. Password aging is effected for a particular user if 
his encrypted password in the password file is followed by a comma and a non-null 
string of characters from the above alphabet. (Such a string must be introduced in 
the first instance by the super-user.) 

The first character of the age, M say, denotes the maximum number of weeks for 
which a password is valid. A user who attempts to login after his password has 
expired will be forced to supply a new one. The next character, m say, denotes the 
minimum period in weeks which must expire before the password may be changed. 
The remaining characters define the week (counted from the beginning of 1970) 
when the password was last changed. (A null string is equivalent to zero.) M and 
m have numerical values in the range 0-63 that correspond to the 64-character 
alphabet shown above (i.e., I = 1 week; z = 63 weeks). If m = M = 0 (derived 
from the string • or .• ) the user will be forced to change his password the next time 
he logs in (and the "age" will disappear from his entry in the password file). If m 
> M (signified, e.g., by the string ./) only the super-user will be able to change the 
password. 

/etc/passwd 

SEE ALSO 
a641 (3C), getpwent(3C), group(4). 
login(l), passwd(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - l - 7/85 





PLO'f(4) PLOT(4) 

NAME 
plot - graphics interface 

DESCRIPTION 
Files of this format are produced by routines described in plot (3X) and are inter­
preted for various devices by commands described in tplot(IG). A graphics file is a 
stream of plotting instructions. Each instruction consists of an ASCII letter usually 
followed by bytes of binary information. The instructions are executed in order. A 
point is designated by four bytes representing the x and y values; each value is a 
signed integer. The last designated point in an I, m, n, or p instruction becomes the 
"current point" for the next instruction. 

Each of the following descriptions begins with the name of the corresponding rou­
tine in plot (3X). 

m move: The next four bytes give a new current point. 

n cont: Draw a line from the current point to the point given by the next four 
bytes. See tplot(lG). 

p point: Plot the point given by the next four bytes. 

line: Draw a line from the point given by the next four bytes to the point given 
by the following four bytes. 

label: Place the following ASCH string so that its first character falls on the 
current point. The string is terminated by a new-line. 

e erase: Start another frame of output. 

f linemod: Take the following string, up to a new-line, as the style for drawing 
further lines. The styles are "dotted", "solid", "longdashed", "shortdashed", and 
"dotdashed". Effective only for the -T4014 and -'fver options of tplot(IG) 
(TEKTRONIX 4014 terminal and Versatec plotter). 

s space: The next four bytes give the lower left corner of the plotting area; the 
following four give the upper right corner. The plot will be magnified or reduced 
to fit the device as closely as possible. 

Space settings that exactly fill the plotting area with unity scaling appear below for 
devices supported by the filters of tplot(lG). The upper limit is just outside the 
plotting area. In every case the plotting area is taken to be square; points outside 
may be displayable on devices whose face is not square. 

DASI 300 space(O, 0, 4096, 4096); 
DASI 300s space(O, 0, 4096, 4096); 
DASI 450 space(O, 0, 4096, 4096); 
TEKTRONIX 4014 space(O, 0, 3120, 3120); 
Versatec plotter space(O, 0, 2048, 2048); 

SEE ALSO 
plot(3X), gps(4), term(5). 
graph(lG), tplot(lG) in the AT&T 3B2 Computer User Reference Manual. 

WARNING 

7/85 

The plotting library plot (3X) and the curses library curses (3X) both use the names 
erase() and move(). The curses versions are macros. If you need both libraries, put 
the plot(3X) code in a different source file than the curses(3X) code, and/or 
#undef move() and erase() in the plot (3X) code. 

- 1 - 7/85 





PNCH(4) PNCH(4) 

NAME 
pnch - file format for card images 

DESCRIPTION 

7/85 

The PNCH format is a convenient representation for files consisting of card images 
in an arbitrary code. 

A PNCH file is a simple concatenation of card records. A card record consists of a 
single control byte followed by a variable number of data bytes. The control byte 
specifies the number (which must lie in the range 0-80) of data bytes that follow. 
The data bytes are 8-bit codes that constitute the card image. If there are fewer 
than 80 data bytes, it is understood that the remainder of the card image consists of 
trailing blanks. 

- 1 - 7/85 





PROFILE(4) PROFILE(4) 

NAME 
profile - system-wide user profile 

SYNOPSIS 
/etc/profile 

DESCRIPTION 

FILES 

All user who have the shell, sh(l), as their login command have the commands in 
this file included as part of the login sequence. It allows the system administrator to 
perform services for the entire user community. Typical services are the announce­
ment of system news, user mail, and the setting of default environmental variables. 

It is not unusual to have special actions for the root login or the su(l) command. 

The file /etc/TIMEZONE is included early in the file to establish the default time 
zone. 

SEE ALSO 
timezone(4). 

BUGS 

7/85 

sh(l) in the AT&T 3B2 Computer User Reference Manual. 
su(lM) in the AT&T 3B2 Computer System Administration Reference Manual. 

Care must be taken in providing system-wide services. One user's service is 
another's annoyance. Personal ".profile" files are better for serving all but the most 
global needs. 

- 1 - 7/85 





RELOC(4) 

NAME 
reloc - relocation information for a common object file 

SYNOPSIS 
#include <reloc.h> 

DESCRIPTION 

RELOC(4) 

Object files have one relocation entry for each relocatable reference in the text or 
data. If relocation information is present, it will be in the following format. 

struct reloc 
{ 

long r_vaddr ; I• (virtual) address of reference •/ 
long r_symndx ; I• index into symbol table•/ 
short r_type ; I• relocation type •/ 

} ; 

7/85 - 1 - 7/85 





SCCSFILE(4) SCCSFILE(4) 

NAME 
sccsfile - format of SCCS file 

DESCRIPTION 

7/85 

An secs file is an ASCII file. It consists of six logical parts: the checksum, the 
delta table (contains information about each delta), user names (contains login 
names and/or numerical group IDs of users who may add deltas), flags (contains 
definitions of internal keywords), comments (contains arbitrary descriptive informa­
tion about the file), and the body (contains the actual text lines intermixed with 
control lines). 

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of 
heading) character (octal 001). This character is hereafter referred to as the con­
trol character and will be represented graphically as @. Any line described below 
which is not depicted as beginning with the control character is prevented from 
beginning with the control character. 

Entries of the form DDDDD represent a five-digit string (a number between 00000 
and 99999). 

Each logical part of an SCCS file is described in detail below. 

Checksum 
The checksum is the first line of an SCCS file. The form of the line is: 

@hDDDDD 

The value of the checksum is the sum of all characters, except those of the 
first line. The @h provides a magic number of (octal) 064001. 

Delta table 
The delta table consists of a variable number of entries of the form: 

@s DDDDD/DDDDD/DDDDD 
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD 
@iDDDDD •.. 
@xDDDDD .•. 
@g DDDDD ..• 
@m <MR number> 

@c <comments> ... 

@e 

The first line (@s) contains the number of lines 
inserted/deleted/unchanged, respectively. The second line (@d) contains 
the type of the delta (currently, normal: D, and removed: R), the SCCS ID 
of the delta, the date and time of creation of the delta, the login name 
corresponding to the real user ID at the time the delta was created, and the 
serial numbers of the delta and its predecessor, respectively. 

The @i, @x, and @g lines contain the serial numbers of deltas included, 
excluded, and ignored, respectively. These lines are optional. 

- 1 - 7/85 



SCCSFILE(4) SCCS FILE ( 4) 

The @m lines (optional) each contain one MR number associated with the 
delta; the @c lines contain comments associated with the delta. 

The @e line ends the delta table entry. 

User names 

Flags 

7/85 

The list of login names and/or numerical group IDs of users who may add 
deltas to the file, separated by new-lines. The lines containing these login 
names and/or numerical group IDs are surrounded by the bracketing lines 
@u and @U. An empty list allows anyone to make a delta. Any line start­
ing with a ! prohibits the succeeding group or user from making deltas. 

Keywords used internally (see ad min (I) for more information on their use). 
Each flag line takes the form: 

@f <flag> <optional text> 

The following flags are defined: 
@ft <type of program> 
@f v <program name> 
@f i <keyword string> 
@fb 
@fm 
@ff 
@fc 
@fd 
@fn 
@f j 

<module name> 
<floor> 
<ceiling> 
<default-sid> 

@f I <lock-releases> 
@f q <user defined> 
@f z <reserved for use in interfaces> 

The t flag defines the replacement for the % Y% identification keyword. 
The v flag controls prompting for MR numbers in addition to comments; if 
the optional text is present it defines an MR number validity checking pro­
gram. The i flag controls the warning/error aspect of the "No id keywords" 
message. When the i flag is not present, this message is only a warning; 
when the i flag is present, this message will cause a "fatal" error (the file 
will not be gotten, or the delta will not be made). When the b flag is 
present the -b keyletter may be used on the get command to cause a 
branch in the delta tree. The m flag defines the first choice for the replace­
ment text of the % M % identification keyword. The f flag defines the 
"floor" release; the release below which no deltas may be added. The c flag 
defines the "ceiling" release; the release above which no deltas may be 
added. The d flag defines the default SID to be used when none is specified 
on a get command. The n flag causes delta to insert a "null" delta (a delta 
that applies no changes) in those releases that are skipped when a delta is 
made in a new release (e.g., when delta 5.1 is made after delta 2.7, releases 
3 and 4 are skipped). The absence of the n flag causes skipped releases to 
be completely empty. The j flag causes get to allow concurrent edits of the 
same base SID. The I flag defines a list of releases that are locked against 
editing (get (1) with the -e keyletter). The q flag defines the replacement 
for the % Q % identification keyword. The z flag is used in certain 

- 2 - 7/85 



SCCS FILE ( 4) SCCS FILE ( 4) 

specialized interface programs. 

Comments 

Body 

Arbitrary text is surrounded by the bracketing lines @t and @T. The com­
ments section typically will contain a description of the file's purpose. 

The body consists of text lines and control Jines. Text lines do not begin 
with the control character, control lines do. There are three kinds of con­
trol lines: insert, delete, and end, represented by: 

@IDDDDD 
@DDDDDD 
@EDDDDD 

respectively. The digit string 1s the serial number corresponding to the 
delta for the control line. 

SEE ALSO 

7/85 

admin(l), delta(l), get(l), prs(l) m the AT&T 3B2 Computer User Reference 
Manual. 

- 3 - 7/85 





SCNHDR(4) SCNHDR(4) 

NAME 
scnhdr - section header for a common object file 

SYNOPSIS 
#include <scnhdr.h> 

DESCRIPTION 
Every common object file has a table of section headers to specify the layout of the 
data within the file. Each section within an object file has its own header. The C 
structure appears below. 

struct scnhdr 
{ 

} ; 

char 
long 
long 
long 
long 
long 
long 
unsigned short 
unsigned short 
long 

s name[SYMNMLEN]; /•section name•/ 
s~addr; /• physical address •/ 
s_vaddr; /• virtual address •/ 
s_size; 
s_scnptr; 
s_relptr; 
s_lnnoptr; 
s_nreloc; 
s_nlnno; 
s_flags; 

I• section size •/ 
I• file ptr to raw data •/ 
I• file ptr to relocation •/ 
I• file ptr to line numbers •/ 
I• # reloc entries •/ 
I• # line number entries •/ 
I• flags •/ 

File pointers are byte offsets into the file; they can be used as the offset in a call to 
fseek (3S). If a section is initialized, the file contains the actual bytes. An unini­
tialized section is somewhat different. It has a size, symbols defined in it, and sym­
bols that refer to it. But it can have no relocation entries, line numbers, or data. 
Consequently, an uninitialized section has no raw data in the object file, and the 
values for s _scnptr, s _Jelptr, s _J.nnoptr, s _nreloc, and s _nlnno are zero. 

SEE ALSO 
fseek(3S), a.out(4). 
ld(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - 1 - 7/85 





SYMS(4) SYMS(4) 

NAME 
syms - common object file symbol table format 

SYNOPSIS 
#include < syms.h > 

DESCRIPTION 

7/85 

Common object files contain information to support symbolic software testing (see 
sdb(I)). Line number entries, linenum(4), and extensive symbolic information per­
mit testing at the C source level. Every object file's symbol table is organized as 
shown below. 

File name 1. 
Function 1. 

Local symbols for function 1. 
Function 2. 

Local symbols for function 2. 

Static externs for file 1. 

File name 2. 
Function l. 

Local symbols for function 1. 
Function 2. 

Local symbols for function 2. 

Static externs for file 2. 

Defined global symbols. 
Undefined global symbols. 

The entry for a symbol is a fixed-length structure. The members of the structure 
hold the name (null padded), its value, and other information. The C structure is 
given below. 

#define SYMNMLEN 8 
#define FILNMLEN 14 

struct syment 
{ 

um on I* all ways to get symbol name •/ 
{ 

char 
struct 

_n_namdSYMNMLEN]; /•symbol name•/ 

( 
long 
long 

_n_n; 
char 

_n; 
long 
short 
unsigned short 
char 
char 

n zeroes; 
=n=offset; 

•_n_nptr[2]; 

n_value; 
n__scnum; 
n_type; 
n_sclass; 
n_numaux; 

- l -

I• == OL when in string table•/ 
I• location of name in table •/ 

I• allows overlaying •/ 

I• value of symbol •/ 
I• section number •/ 
I• type and derived type •/ 
I• storage class •/ 
I• number of aux entries •/ 

7/85 



SYMS(4) SYMS(4) 

7/85 

}; 

#define n name 
#define n _zeroes 
#define n offset 
#define n _nptr 

n. n name 
n. n n. n zeroes - - - - -
n. n n. n offset 

=n-=n=nptrfll 

Meaningful values and explanations for them are given in both syms.b and Common 
Object File Format. Anyone who needs to interpret the entries should seek more 
information in these sources. Some symbols require more information than a single 
entry; they are followed by auxiliary entries that are the same size as a symbol 
entry. The format follows. 

union auxent 
{ 

struct 
{ 

long 
union 
{ 

x_tagndx; 

struct 
{ 

unsigned short x _lnno; 
unsigned short x _size; 

} x lnsz; 
long x _fsize; 

} x_misc; 
union 
( 

struct 
{ 

} 
struct 
{ 

long 
long 
x_fcn; 

x_lnnoptr; 
x_endndx; 

unsigned short x_dimen[DIMNUM]; 
x_ary; 
x_fcnary; 

unsigned short x _ tvndx; 
x_sym; 

struct 
( 

} 
struct 
{ 

struct 
( 

char 
x_file; 

x _fname[ FILNMLEN]; 

long x scnlen; 
unsigned-short x_nreloc; 
unsigned short x _ nlinno; 
x_scn; 

- 2 - 7/85 



SYMS(4) SYMS(4) 

}; 

long x _tvfill; 
unsigned short x tvlen; 
unsigned short x=tvran[2]; 
x_tv; 

Indexes of symbol table entries begin at zero. 

SEE ALSO 
a.out(4), linenum(4). 
sdb(l) in the AT&T 3B2 Computer User Reference Manual. 

WARNINGS 

7/85 

On machines in which longs are equivalent to ints (3820 computer, VAX), they are 
converted to ints in the compiler to minimize the complexity of the compiler code 
generator. Thus the information about which symbols are declared as longs and 
which, as ints, does not show up in the symbol table. 

- 3 - 7/85 





SYSTEM(4) SYSTEM(4) 

NAME 
system - system configuration information table 

DESCRIPTION 

FILES 

7/85 

This file is used by the boot program to obtain configuration information that cannot 
be obtained from the equipped device table (EDT) at system boot time. This file 
generally contains a list of software drivers to include in the load, the assignment of 
system devices such as pipedev and swapdev, as well as instructions for manually 
overriding the drivers selected by the self-configuring boot process. 

The syntax of the system file is given below. The parser for the /etc/system file is 
case sensitive. All upper case strings in the syntax below should be upper case in 
the /etc/system file as well. Nonterminal symbols are enclosed in angle brackets 
"< >" while optional arguments are enclosed in square brackets "[]". Ellipses " ... " 
indicate optional repetition of the argument for that line. 

<fname> ::=pathname 
<string> ::=driver file name from /boot or EDT entry name 
<device>::= special device name I DEV(<major>,<minor>) 
<major> ::= <number> 
<minor> ::= <number> 
<number> ::=decimal, octal or hex literal 

The lines listed below may appear in any order. Blank lines may be inserted at any 
point. Comment lines must begin with an asterisk. Entries for EXCLUDE and 
INCLUDE are cumulative. For all other entries, the last line to appear in the file is 
used -- any earlier entries are ignored. 

BOOT: <fname> 
specifies the kernel a.out file to be booted; if the file is fully 
resolved (such as that produced by the mkunix(lM) pro­
gram) then all other lines in the system file have no effect. 

EXCLUDE: [ <string> ] ... 
specifies drivers to exclude from the load even if the device 
is found in the EDT. 

INCLUDE: [ <string>[(<number>)] ] ... 
specifies software drivers or loadable modules to be included 
in the load. This is necessary to include the drivers for 
software "devices". The optional <number> (parenthesis 
required) specifies the number of "devices" to be controlled 
by the driver (defaults to 1). This number corresponds to 
the builtin variable #c which may be referred to by expres­
sions in part one of the /etc/master file. 

ROOTDEV: <device> 
identifies the device containing the root file system. 

SWAPDEV: <device> <number> <number> 
identifies the device to be used as swap space, the block 
number the swap space starts at, and the number of swap 
blocks available. 

PIPEDEV: <device> 
identifies the device to be used for pipe space. 

/etc/system 

- 1 - 7/85 



SYSTEM(4) SYSTEM(4) 

SEE ALSO 
master(4). 
crash(lM), mkunix(lM), mkboot(lM) m the AT&T 3B2 Computer System 
Administration Reference Manual. 

7/85 - 2 - 7/85 



TERM(4) TERM(4) 

NAME 
term - format of compiled term file 

SYNOPSIS 
term 

DESCRIPTION 

7/85 

Compiled terminfo descriptions are placed under the directory /usr/lib/terminfo. In 
order to avoid a linear search of a huge UNIX system directory, a two-level scheme 
is used: /usr/lib/terminfo/c/name where name is the name of the terminal, and c is 
the first character of name. Thus, act4 can be found in the file 
/usr/lib/terminfo/a/act4. Synonyms for the same terminal are implemented by 
multiple links to the same compiled file. 

The format has been chosen so that it will be the same on all hardware. An 8 or 
more bit byte is assumed, but no assumptions about byte ordering or sign extension 
are made. 

The compiled file is created with the compile program, and read by the routine 
setupterm. Both of these pieces of software are part of curses (3X). The file is 
divided into six parts: the header, terminal names, boolean flags, numbers, strings, 
and string table. 

The header section begins the file. This section contains six short integers in the 
format described below. These integers are (l) the magic number (octal 0432); (2) 
the size, in bytes, of the names section; (3) the number of bytes in the boolean sec­
tion; (4) the number of short integers in the numbers section; (5) the number of 
offsets (short integers) in the strings section; (6) the size, in bytes, of the string 
table. 

Short integers are stored in two 8-bit bytes. The first byte contains the least 
significant 8 bits of the value, and the second byte contains the most significant 8 
bits. (Thus, the value represented is 256*second+first.) The value -1 is 
represented by 0377, 0377, other negative value are illegal. The -1 generally 
means that a capability is missing from this terminal. Note that this format 
corresponds to the hardware of the VAX and PDP-11. Machines where this does not 
correspond to the hardware read the integers as two bytes and compute the result. 

The terminal names section comes next. H contains the first line of the terminfo 
description, listing the various names for the terminal, separated by the 'I' character. 
The section is terminated with an ASCH NUL character. 

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag 
is present or absent. The capabilities are in the same order as the file <term.h>. 

Between the boolean section and the number section, a null byte will be inserted, if 
necessary, to ensure that the number section begins on an even byte. All short 
integers are aligned on a short word boundary. 

The numbers section is similar to the flags section. Each capability takes up two 
bytes, and is stored as a short integer. U the value represented is -1, the capability 
is taken to be missing. 

The strings section is also similar. Each capability is stored as a short integer, in 
the format above. A value of -1 means the capability is missing. Otherwise, the 
value is taken as an offset from the beginning of the string table. Special characters 
in 'X or \c notation are stored in their interpreted form, not the printing representa­
tion. Padding information $<nn> and parameter information %x are stored intact 
in uninterpreted form. 

- 1 - 7/85 



TERM (4) TERM(4) 

Fil.ES 

The final section is the string table. H contains all the values of string capabilities 
referenced in the string section. Each string is null terminated. 

Note that it is possible for setupterm to expect a different set of capabilities than 
are actually present in the file. Either the database may have been updated since 
setupterm has been recompiled (resulting in extra unrecognized entries in the file) 
or the program may have been recompiled more recently than the database was 
updated (resulting in missing entries). 'fhe routine setupterm must be prepared for 
both possibilities - this is why the numbers and sizes are included. Also, new capa­
bilities must always be added at the end of the lists of boolean, number, and string 
capabilities. 

As an example, an octal dump of the description for the Microterm ACT 4 is 
included: 

microtermlact4lmicroterm act iv, 
cr='M, cudl='J, ind='J, bel='G, am, cubl="H, 
ed=' _, el=", clear='L, cup="T%pl %c%p2%c, 
cols#80, lines#24, cufl ="X, cuul ="Z, home='], 

000 032 001 \0 025 \0 \b \0 212 \0 

020 0 t e r m a c t 4 

\0 

m 

m 

i 

i 

c 

c 

r 

r 

0 

040 t e r m a c t i v \0 \0 001 \0 \0 

060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 

100 \0 \0 p \0 377 377 030 \0 377 377 377 377 377 377 377 377 

120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0 006 \0 
140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 377 377 032 \0 

160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377 

200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 

520 377 377 377 377 

540 377 377 377 377 

560 024 % p 

\0 377 377 377 377 377 377 377 377 377 377 

377 377 007 \0 \r \0 \f \0 036 \0 037 \0 

% c % p 2 % c \0 \n \0 035 \0 
600 \b \0 030 \0 032 \0 \n \0 

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field 
cannot exceed 128 bytes. 

/usr/lib/terminfo/* /* compiled terminal capability data base 

SEE Al.SO 
curses(3X), terminfo(4). 

7/85 - 2 - 7/85 



TERMINF0(4) TERMINF0(4) 

NAME 
terminfo - terminal capability data base 

SYNOPSIS 
/usr/lib/terminfo/* /* 

DESCRIPTION 
Terminfo is a data base describing terminals, used, e.g.,, by vi(l) and curses(3X). 
Terminals are described in terminfo by giving a set of capabilities which they have, 
and by describing how operations are performed. Padding requirements and initiali­
zation sequences are included in terminfo. 

Entries in terminfo consist of a number of ',' separated fields. White space after 
each ',' is ignored. The first entry for each terminal gives the names which are 
known for the terminal, separated by 'I' characters. The first name given is the most 
common abbreviation for the terminal, the last name given should be a long name 
fully identifying the terminal, and all others are understood as synonyms for the ter­
minal name. All names but the last should be in lower case and contain no blanks; 
the last name may well contain upper case and blanks for readability. 

Terminal names (except for the last, verbose entry) should be chosen using the fol­
lowing conventions. The particular piece of hardware making up the terminal 
should have a root name chosen, thus "hp2621 ". This name should not contain 
hyphens, except that synonyms may be chosen that do not conflict with other names. 
Modes that the hardware can be in, or user preferences, should be indicated by 
appending a hyphen and an indicator of the mode. Thus, a vtlOO in 132 column 
mode would be vtlOO-w. The following suffixes should be used where possible: 

Suffix Meaning Example 
-w Wide mode (more than 80 columns) vtlOO-w 
-am With auto. margins (usually default) vtlOO-am 
-nam Without automatic margins vtlOO-nam 
-n Number of lines on the screen aaa-60 
-na No arrow keys (leave them in local) clOO-na 
-np Number of pages of memory c100-4p 
-rv Reverse video cl 00-rv 

CAPABILITIES 

7/85 

The variable is the name by which the programmer (at the terminfo level) accesses 
the capability. The capname is the short name used in the text of the database, and 
is used by a person updating the database. The i.code is the two letter internal code 
used in the compiled database, and always corresponds to the old termcap capability 
name. 

Capability names have no hard length limit, but an informal limit of 5 characters 
has been adopted to keep them short and to allow the tabs in the source file caps to 
line up nicely. Whenever possible, names are chosen to be the same as or similar to 
the ANSI X3.64-1979 standard. Semantics are also intended to match those of the 
specification. 

(P) indicates that padding may be specified 

(G) indicates that the string is passed through tparm withparms as given (#i). 

(*) indicates that padding may be based on the number of lines affected 

(#) . d" h .th i m 1cates t e 1 parameter. 

- l - 7/85 



TERMINFO (4) TERMINF0(4) 

Variable Cap- I. Description 
Booleans name Code 

auto _left_ margin, bw bw cub! wraps from column 0 to last column 
auto _right_ margin, am am Terminal has automatic margins 
beehive _glitch, xsh xb Beehive (fl =escape, f2=ctrl C) 
ceol_standout_glitch, xhp XS Standout not erased hy overwriting (hp) 
eat_ newline _glitch, xenl xn newline ignored after 80 cols (Concept) 
erase_ overstrike, eo eo Can erase overstrikes with a blank 
generic_ type, gn gn Generic line type (e.g.,, dialup, switch). 
hard_copy, he he Hardcopy terminal 
has_meta_key, km km Has a meta key (shift, sets parity bit) 
has _status _line, hs hs Has extra "status line" 
insert_ null _glitch, in in Insert mode distinguishes nulls 
memory_ above, da da Display may be retained above the screen 
memory_ below, db db Display may be retained below the screen 
move _insert _mode, mir mi Safe to move while in insert mode 
move_ standout_ mode, ms gr ms Safe to move in standout modes 
over _strike, OS OS Terminal overstrikes 
status_line _esc _ok, eslok es Escape can be used on the status line 
teleray _glitch, xt xt Tabs ruin, magic so char (Teleray 1061) 
tilde _glitch, hz hz Hazeltine; can not print -,s 
transparent_ underline, ul ul underline character overstrikes 
xon_xoff, xon XO Terminal uses xon/xoff handshaking 

Numbers: 
columns, cols co Number of columns in a line 
init_tabs, it it Tabs initially every # spaces 
lines, lines Ii Number of lines on screen or page 
lines_ of_ memory, Im Im Lines of memory if > lines. 0 means varies 
magic_ cookie _glitch, xmc sg Number of blank chars left by smso or rmso 
padding_ baud _rate, pb pb Lowest baud where cr/nl padding is needed 
virtual_ terminal, vt vt Virtual terminal number (UNIX system) 
width_status _line, wsl ws No. columns in status line 

Strings: 
back_tab, cbt bt Back tab (P) 
bell, be! bl Audible signal (bell) (P) 
carriage _return, er er Carriage return (P*) 
change _scroll _region, csr cs change to lines #I through #2 (vt!OO) (PG) 
clear_all_tabs, the ct Clear all tab stops (P) 
clear _screen, clear cl Clear screen and home cursor (P*) 
clr_eol, el ce Clear to end of line (P) 
clr_eos, ed cd Clear to end of display (P*) 
column_ address, hpa ch Set cursor column (PG) 
command_ character, cmdch cc Term. settable cmd char in prototype 
cursor_ address, cup cm Screen rel. cursor motion row #I col #2 (PG) 
cursor_ down, cud! do Down one line 
cursor_ home, home ho Home cursor (if no cup) 
cursor _invisible, civis vi Make cursor invisible 
cursor _left, cub! le Move cursor left one space 
cursor_ mem _address, mrcup CM Memory relative cursor addressing 
cursor_ normal, cnorm ve Make cursor appear normal (undo vs/vi) 
cursor _right, cu fl nd Non-destructive space (cursor right) 

7/85 - 2 - 7/85 



TERMINF0(4) TERMINF0(4) 

cursor_ to _II, II II Last line, first column (if no cup) 
cursor_up, cuul up Upline (cursor up) 
cursor _visible, cvvis VS Make cursor very visible 
delete_ character, dchl de Delete character (P*) 
delete _line, di! di Delete line (P*) 
dis _status _line, dsl ds Disable status line 
down_half_line, hd hd Half-line down (forward 1/2 linefeed) 
enter_alt_charset_mode, smacs as Start alternate character set (P) 
enter_ blink_ mode, blink mb Turn on blinking 
enter_ bold_ mode, bold md Turn on bold (extra bright) mode 
enter_ ca_ mode, smcup ti String to begin programs that use cup 
enter_ delete_ mode, smdc dm Delete mode (enter) 
enter_ dim _mode, dim mh Turn on half-bright mode 
enter _insert_ mode, smir im Insert mode (enter); 
enter _protected_ mode, prot mp Turn on protected mode 
enter _reverse_ mode, rev mr Turn on reverse video mode 
enter _secure_ mode, in vis mk Turn on blank mode (chars invisible) 
enter _standout_ mode, smso so Begin stand out mode 
enter_ underline_ mode, smul us Start underscore mode 
erase _chars ech ec Erase #1 characters (PG) 
exit_ alt_ charset __ mode, rm a cs ae End alternate character set (P) 
exit_attribute _mode, sgrO me Turn off all attributes 
exit_ca_mode, rmcup te String to end programs that use cup 
exit_ delete_ mode, rmdc ed End delete mode 
exit_insert_ mode, rmir ei End insert mode 
exit_standout_mode, rm so se End stand out mode 
exit_ underline_ mode, rmul ue End underscore mode 
flash _screen, flash vb Visible bell (may not move cursor) 
form_feed, ff ff Hardcopy terminal page eject (P*) 
from _status _line, fsl fs Return from status line 
init_lstring, isl ii Terminal initialization string 
init _ 2string, is2 i2 Terminal initialization string 
init_3string, is3 i3 Terminal initialization string 
init_file, if if Name of file containing is 
insert_ character, ichl ic Insert character (P) 
insert _line, ill al Add new blank line (P*) 
insert_padding, ip ip Insert pad after character inserted (P*) 
key_ backspace, kbs kb Sent by backspace key 
key_catab, ktbc ka Sent by clear-all-tabs key 
key_clear, kclr kC Sent by clear screen or erase key 
key_ctab, kctab kt Sent by clear-tab key 
key_dc, kdchl kD Sent by delete character key 
key_dl, kdll kL Sent by delete line key 
key_down, kcudl kd Sent by terminal down arrow key 
key_eic, krmir kM Sent by rmir or smir in insert mode 
key_eol, kel kE Sent by clear-to-end-of-line key 
key_eos, ked kS Sent by clear-to-end-of-screen key 
key_fO, kfO kO Sent by function key fO 
key_fl, kfl kl Sent by function key fl 
key_f!O, kf!O ka Sent by function key fl 0 
key_f2, kf2 k2 Sent by function key f2 
key_f3, kf3 k3 Sent by function key f3 
key_f4, kf4 k4 Sent by function key f4 

7/85 - 3 - 7/85 



TERMINF0(4) TERMINF0(4) 

key_f5, kf 5 k5 Sent by function key f5 
key_f6, kf6 k6 Sent by function key f6 
key_f7, kf7 k7 Sent by function key f7 
key_f8, kf8 k8 Sent by function key f8 
key _f9, kf9 k9 Sent by function key f9 
key_home, khome kh Sent by home key 
key_ic, kichl kl Sent by ins char/enter ins mode key 
key_il, kill kA Sent by insert line 
key_left, kcubl kl Sent by terminal left arrow key 
key_ll, kll kH Sent by home-down key 
key_npage, knp kN Sent by next-page key 
key_ppage, kpp kP Sent by previous-page key 
key_right, kcufl kr Sent by terminal right arrow key 
key_sf, kind kF Sent by scroll-forward/down key 
key_sr, kri kR Sent by scroll-backward/up key 
key_stab, khts kT Sent by set-tab key 
key_up, kcuul ku Sent by terminal up arrow key 
keypad _local, rmkx ke Out of "keypad transmit" mode 
keypad_ xmit, smkx ks Put terminal in "keypad transmit" mode 
lab_fO, lfO 10 Labels on function key fO if not fO 
lab_fl, !fl 11 Labels on function key fl if not fl 
lab_flO, lflO la La be ls on function key fl 0 if not fl 0 
lab_f2, lf2 12 Labels on function key f2 if not f2 
lab_f3, lf3 13 Labels on function key f3 if not f3 
lab_f4, lf4 14 Labels on function key f4 if not f4 
lab_f5, lf5 15 Labels on function key f5 if not f5 
lab_f6, lf6 16 Labels on function key f6 if not f6 
lab_f7, lf7 17 Labels on function key f7 if not f7 
lab_f8, lf8 18 Labels on function key f8 if not f8 
lab_f9, lf9 19 Labels on function key f9 if not f9 
meta_on, smm mm Turn on "meta mode" (8th bit) 
meta_off, rmm mo Turn off "meta mode" 
newline, nel nw Newline (behaves like er followed by If) 
pad_char, pad pc Pad character (rather than null) 
parm_dch, dch DC Delete #I chars (PG*) 
parm _delete _line, di DL Delete #1 lines (PG*) 
parm _down_ cursor, cud DO Move cursor down #1 lines (PG*) 
parm_ich, ich IC Insert #1 blank chars (PG*) 
parm_index, indn SF Scroll forward #I lines (PG) 
parm _insert _line, ii AL Add #1 new blank lines (PG*) 
pa rm _left_ cursor, cub LE Move cursor left #1 spaces (PG) 
pa rm _right_ cursor, cuf RI Move cursor right #1 spaces (PG*) 
parm_rindex, rin SR Scroll backward #1 lines (PG) 
parm_up_cursor, cuu UP Move cursor up #I lines (PG*) 
pkey_key, pfkey pk Prog funct key #I to type string #2 
pkey _local, ptloc pl Prog fun ct key #I to execute string #2 
pkey_xmit, pfx px Prog funct key #1 to xmit string #2 
print_screen, mcO ps Print contents of the screen 
prtr_off, mc4 pf Turn off the printer 
prtr_on, mc5 po Turn on the printer 
repeat_char, rep rp Repeat char #I #2 times. (PG*) 
reset_ I string, rsl rl Reset terminal completely to sane modes. 
reset_ 2string, rs2 r2 Reset terminal completely to sane modes. 

7/85 - 4 - 7/85 



TERMINFO (4) TERMINF0(4) 

reset_3string, rs3 r3 Reset terminal completely to sane modes. 
reset_file, rf rf Name of file containing reset string 
restore_ cursor, re re Restore cursor to position of last sc 
row_ address, vpa CV Vertical position absolute (set row) (PG) 
save _cursor, SC SC Save cursor position (P) 
scroll _forward, ind sf Scroll text up (P) 
scroll_reverse, ri sr Scroll text down (p) 
set_ attributes, sgr sa Define the video attributes (PG9) 
set_tab, hts st Set a tab in all rows, current column 
set_ window, wind WI Current window is lines #1-#2 cols #3-#4 
tab, ht ta Tab to next 8 space hardware tab stop 
to _status _line, ts! ts Go to status line, column #I 
underline_ char, UC UC Underscore one char and move past it 
up_half_line, hu hu Half-line up (reverse 1/2 linefeed) 
init_prog, iprog iP Path name of program for init 
key_al, kal Kl Upper left of keypad 
key_a3, ka3 K3 Upper right of keypad 
key_b2, kb2 K2 Center of keypad 
key_cl, kc! K4 Lower left of keypad 
key_c3, kc3 KS Lower right of keypad 
prtr_non, mc5p pO Turn on the printer for #I bytes 

A Sample Entry 

The following entry, which describes the Concept-100, is among the more complex 
entries in the terminfo file as of this writing. 

concept100: c100I concept i c104 I c100-4p I concept 100, 

7/85 

am, bel='G, blank=\EH, blink=\EC, clear='L$<2*>, cnorm=\Ew, 
cols#SO, cr='M$<9>, cub1='H, cud1='J, cuf1=\E=, 
cup=\Ea%p1%' '%+%c%p2%' '%+%c, 
cuu1=\E;, cvvis=\EW, db, dch1=\E'A$<16*>, dim=\EE, dl1=\E'BS<3*>, 
ed=\E'C$<16*>• el=\E'U$<16>, eo, flash=\Ek$<20>\EK, ht=\t$<8>, 

i11=\E'R$<3*>, in, ind='J, .ind='J$<9>, ip=$<16*>, 
is2=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E, 

kbs='h, kcub1=\E>, kcud1=\E<, kcuf1=\E=, kcuu1=\E;, 

kf1=\E5, kf2=\E6, kf3=\E7, khome=\E?, 
lines#24, mir, pb#9600, prot=\EI, rep=\Er%p1%c%p2%' '%+%c$<.2*>, 
rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex, 

rmso=\Ed\Ee, rmul=\Eg, rmul=\Eg, sgrO=\EN\200, 
smcup=\EU\Ev Sp\Ep\r, smir=\E'P, smkx=\EX, smso=\EE\ED, 
smul=\EG, tabs, ul, vt#S, xenl, 

Entries may continue onto multiple lines by placing white space at the beginning of 
each line except the first. Comments may be included on lines beginning with "#". 
Capabilities in terminfo are of three types: Boolean capabilities which indicate that 
the terminal has some particular feature, numeric capabilities giving the size of the 
terminal or the size of particular delays, and string capabilities, which give a 
sequence which can be used to perform particular terminal operations. 

Types of Capabilities 

All capabilities have names. For instance, the fact that the Concept has automatic 
margins (i.e., an automatic return and linefeed when the end of a line is reached) is 
indicated by the capability am. Hence the description of the Concept includes am. 
Numeric capabilities are followed by the character '#' and then the value. Thus 
cols, which indicates the number of columns the terminal has, gives the value '80' 

- 5 - 7/85 



TERMINFO (4) TERMINFO ( 4) 

7/85 

for the Concept. 

Finally, string valued capabilities, such as e! (clear to end of line sequence) are 
given by the two-character code, an '=',and then a string ending at the next follow­
ing ','. A delay in milliseconds may appear anywhere in such a capability, enclosed 
in $ < .. > brackets, as in iel=\EK$ < 3 >, and padding characters are supplied by 
tputs to provide this delay. The delay can be either a number, e.g., '20', or a 
number followed by an '*', i.e., '3*'. A '*' indicates that the padding required is 
proportional to the number of lines affected by the operation, and the amount given 
is the per-affected-unit padding required. On the case of insert character, the fac­
tor is still the number of lines affected. This is always one unless the terminal has 
xenl and the software uses it.) When a '*' is specified, it is sometimes useful to give 
a delay of the form '3.5' to specify a delay per unit to tenths of milliseconds. (Only 
one decimal place is allowed.) 

A number of escape sequences are provided in the string valued capabilities for easy 
encoding of characters there. Both \E and \e map to an ESCAPE character, 'x 
maps to a control-x for any appropriate x, and the sequences \n \I \r \t \b \f \s give 
a newline, linefeed, return, tab, backspace, formfeed, and space. Other escapes 
include \' for ', \\ for\, \, for comma, \: for :, and \0 for null. (\0 will produce 
\200, which does not terminate a string but behaves as a null character on most ter­
minals.) Finally, characters may be given as three octal digits after a\. 

Sometimes individual capabilities must be commented out. To do this, put a period 
before the capability name. For example, see the second ind in the example above. 

Preparing Descriptions 

We now outline how to prepare descriptions of terminals. The most effective way to 
prepare a terminal description is by imitating the description of a similar terminal in 
terminfo and to build up a description gradually, using partial descriptions with vi 
to check that they are correct. Be aware that a very unusual terminal may expose 
deficiencies in the ability of the terminfo file to describe it or bugs in vi. To easily 
test a new terminal description you can set the environment variable TERMINFO 
to a pathname of a directory containing the compiled description you are working 
on and programs will look there rather than in /usrlliblterminfo. To get the padding 
for insert line right (if the terminal manufacturer did not document it) a severe test 
is to edit /etc/passwd at 9600 baud, delete 16 or so lines from the middle of the 
screen, then hit the 'u' key several times quickly. ff the terminal messes up, more 
padding is usually needed. A similar test can be used for insert character. 

Basic Capabilities 

The number of columns on each line for the terminal is given by the cols numeric 
capability. If the terminal is a CRT, then the number of lines on the screen is given 
by the lines capability. If the terminal wraps around to the beginning of the next 
line when it reaches the right margin, then it should have the am capability. If the 
terminal can clear its screen, leaving the cursor in the home position, then this is 
given by the dear string capability. If the terminal overstrikes (rather than clearing 
a position when a character is struck over) then it should have the os capability. If 
the terminal is a printing terminal, with no soft copy unit, give it both he and os. 
(os applies to storage scope terminals, such as TEKTRONIX 4010 series, as well as 
hard copy and APL terminals.) If there is a code to move the cursor to the left 
edge of the current row, give this as er. (Normally this will be carriage return, con­
trol M.) If there is a code to produce an audible signal (bell, beep, etc) give this as 
be!. 

. 6 • 7/85 



TERMINFO (4) TERMINF0(4) 

7/85 

If there is a code to move the cursor one position to the left (such as backspace) 
that capability should be given as cubl. Similarly, codes to move to the right, up, 
and down should be given as cun, cuu1, and cudl. These local cursor motions 
should not alter the text they pass over, for example, you would not normally use 
'cufl= ' because the space would erase the character moved over. 

A very important point here is that the local cursor motions encoded in terminfo are 
undefined at the left and top edges of a CRT terminal. Programs should never 
attempt to backspace around the left edge, unless bw is given, and never attempt to 
go up locally off the top. In order to scroll text up, a program will go to the bottom 
left corner of the screen and send the ind (index) string. 

To scroll text down, a program goes to the top left corner of the screen and sends 
the ri (reverse index) string. The strings ind and ri are undefined when not on their 
respective corners of the screen. 

Parameterized versions of the scrolling sequences are indn and rin which have the 
same semantics as ind and ri except that they take one parameter, and scroll that 
many lines. They are also undefined except at the appropriate edge of the screen. 

The am capability tells whether the cursor sticks at the right edge of the screen 
when text is output, but this does not necessarily apply to a cufl from the last 
column. The only local motion which is defined from the left edge is if bw is given, 
then a cubl from the left edge will move to the right edge of the previous row. If 
bw is not given, the effect is undefined. This is useful for drawing a box around the 
edge of the screen, for example. If the terminal has switch selectable automatic 
margins, the terminfo file usually assumes that this is on; i.e., am. If the terminal 
has a command which moves to the first column of the next line, that command can 
be given as nel (newline). It does not matter if the command clears the remainder 
of the current line, so if the terminal has no cr and If it may still be possible to craft 
a working nel out of one or both of them. 

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus the 
model 33 teletype is described as 

33 :tty33:tty:model 33 teletype, 
bel=AG, cols#72, cr=AM, cud1=AJ, he, ind=AJ, os, 

while the Lear Siegler ADM-3 is described as 

adm3: 3: lsi adm3, 
am, bel=AG, clear=AZ, cols#BO, cr=AM, cub1=AH, cud1=AJ, 
ind=AJ, lines#24, 

Parameterized Strings 

Cursor addressing and other strings requmng parameters in the terminal are 
described by a parameterized string capability, with printf(3S) like escapes % x in 
it. For example, to address the cursor, the cup capability is given, using two param­
eters: the row and column to address to. (Rows and columns are numbered from 
zero and refer to the physical screen visible to the user, not to any unseen memory.) 
If the terminal has memory relative cursor addressing, that can be indicated by 
mrcup. 

The parameter mechanism uses a stack and special % codes to manipulate it. Typi­
cally a sequence will push one of the parameters onto the stack and then print it in 
some format. Often more complex operations are necessary. 

The % encodings have the following meanings: 

- 7 - 7/85 



TERMINFO (4) TJERMINFO (4) 

7/85 

%% 
%d 
%2d 
%3d 
%02d 
%03d 
%c 
%s 

%p[!-9] 
%P[a-z] 
%g[a-z] 

%{nn) 

%+ %-%* %/ %m 

%& %1%' 
%= %> %< 
%!%" 
%i 

outputs'%' 
print pop() as in printf 
print pop() like %2d 
print pop() like %3d 

as in printf 
print pop() gives %c 
print pop() gives %s 

push ith parm 
set variable [a-zl to pop() 
get variable [a-zl and push it 
char constant c 
integer constant nn 

arithmetic (%mis mod): push(popO op pop()) 
bit operations: push (pop() op pop()) 
logical operations: push(popO op pop()) 
unary operations push(op pop()) 
add I to first two parms (for ANSK terminals) 

%? expr %t thenpart %e elsepart %; 
if-then-else, %e elsepart is optional. 
else-ifs are possible ala Algol 68: 
%? c1 %t bJ· ~e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e %; 
ci are con 1t1ons, bi are bodies. 

Binary operations are in postfix form with the operands in the usual order. 'That is, 
to get x-5 one would use "%gx%{5}%-". 

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to 
be sent \E&al2c03Y padded for 6 milliseconds. Note that the order of the rows 
and columns is inverted here, and that the row and column are printed as two digits. 
'Thus its cup capability is cup=6\E&%p2%2dc%pl %2dY. 

The Microterm ACT-IV needs the current row and column sent preceded by a 'T, 
with the row and column simply encoded in binary, cup='T%pl %c%p2%c. Termi­
nals which use %c need to be able to backspace the cursor (cub!), and to move the 
cursor up one line on the screen (euul). This is necessary because it is not always 
safe to transmit \n 'D and \r, as the system may change or discard them. (The 
library routines dealing with terminfo set tty modes so that tabs are never expanded, 
so \t is safe to send. This turns out to be essential for the Ann Arbor 4080.) 

A final example is the LSI ADM-3a, which uses row and column offset by a blank 
character, thus cup=\E=%pl %' '%+%c%p2%' '%+%c. After sending '\E=', this 
pushes the first parameter, pushes the ASCH value for a space (32), adds them 
(pushing the sum on the stack in place of the two previous values) and outputs that 
value as a character. Then the same is done for the second parameter. More com­
plex arithmetic is possible using the stack. 

If the terminal has row or column absolute cursor addressing, these can be given as 
single parameter capabilities hpa (horizontal position absolute) and vpa (vertical 
position absolute). Sometimes these are shorter than the more general two parame­
ter sequence (as with the hp2645) and can be used in preference to cup . If there 
are parameterized local motions (e.g., move n spaces to the right) these can be given 

- 8 - 7/85 



TERMINF0(4) TERMXNF0(4) 

7/85 

as cud, cub, cuf, and c111u with a single parameter indicating how many spaces to 
move. These are primarily useful if the terminal does not have cup, such as the 
TEKTRONIX 4025. 

Cursor Motions 

If the terminal has a fast way to home the cursor (to very upper left corner of 
screen) then this can be given as home; similarly a fast way of getting to the lower 
left-hand corner can be given as 11; this may involve going up with cuul from the 
home position, but a program should never do this itself (unless II does) because it 
can make no assumption about the effect of moving up from the home position. 
Note that the home position is the same as addressing to (0,0): to the top left 
corner of the screen, not of memory. (Thus, the \EH sequence on Hewlett-Packard 
terminals cannot be used for home.) 

Area Clears 

If the terminal can clear from the current position to the end of the line, leaving the 
cursor where it is, this should be given as el If the terminal can clear from the 
current position to the end of the display, then this should be given as ed. Ed is 
only defined from the first column of a line. (Thus, it can be simulated by a request 
to delete a large number of lines, if a true ed is not available.) 

Insert/ delete line 

If the terminal can open a new blank line before the line where the cursor is, this 
should be given as in; this is done only from the first position of a line. The cursor 
must then appear on the newly blank line. H the terminal can delete the line which 
the cursor is on, then this should be given as dll; this is done only from the first 
position on the line to be deleted. Versions of ill and dU which take a single 
parameter and insert or delete that many lines can be given as ii and di. If the ter­
minal has a settable scrolling region Oike the vtlOO) the command to set this can be 
described with the csr capability, which takes two parameters: the top and bottom 
lines of the scrolling region. The cursor position is, alas, undefined after using this 
command. It is possible to get the effect of insert or delete line using this command 
- the sc and re (save and restore cursor) commands are also useful. Inserting lines 
at the top or bottom of the screen can also be done using ri or ind on many termi­
nals without a true insert/delete line, and is often faster even on terminals with 
those features. 

If the terminal has the ability to define a window as part of memory, which all com­
mands affect, it should be given as the parameterized string wind. The four param­
eters are the starting and ending lines in memory and the starting and ending 
columns in memory, in that order. 

If the terminal can retain display memory above, then the da capability should be 
given; if display memory can be retained below, then db should be given. These 
indicate that deleting a line or scrolling may bring non-blank lines up from below or 
that scrolling back with ri may bring down non-blank lines. 

Insert/Delete Character 

There are two basic kinds of intelligent terminals with respect to insert/delete char­
acter which can be described using terminfo. The most common insert/delete char­
acter operations affect only the characters on the current line and shift characters 
off the end of the line rigidly. Other terminals, such as the Concept 100 and the 
Perkin Elmer Owl, make a distinction between typed and untyped blanks on the 
screen, shifting upon an insert or delete only to an untyped blank on the screen 
which is either eliminated, or expanded to two untyped blanks. You can determine 

- 9 - 7/85 



TERMINFO ( 4) TERMINF0(4) 

7/85 

the kind of terminal you have by clearing the screen and then typing text separated 
by cursor motions. Type abc def using local cursor motions (not spaces) between 
the abc and the def Then position the cursor before the abc and put the terminal 
in insert mode. If typing characters causes the rest of the line to shift rigidly and 
characters to fall off the end, then your terminal does not distinguish between 
blanks and untyped positions. If the abc shifts over to the def which then move 
together around the end of the current line and onto the next as you insert, you 
have the second type of terminal, and should give the capability in, which stands for 
insert nu!L While these are two logically separate attributes (one line vs. multiline 
insert mode, and special treatment of untyped spaces) we have seen no terminals 
whose insert mode cannot be described with the single attribute. 

Terminfo can describe both terminals which have an insert mode, and terminals 
which send a simple sequence to open a blank position on the current line. Give as 
smi:r the sequence to get into insert mode. Give as rmir the sequence to leave insert 
mode. Now give as ichll any sequence needed to be sent just before sending the 
character to be inserted. Most terminals with a true insert mode will not give icbl; 
terminals which send a sequence to open a screen position should give it here. Of 
your terminal has both, insert mode is usually preferable to ichl. Do not give both 
unless the terminal actually requires both to be used in combination) If post insert 
padding is needed, give this as a number of milliseconds in ip (a string option). 
Any other sequence which may need to be sent after an insert of a single character 
may also be given in ip. If your terminal needs both to be placed into an 'insert 
mode' and a special code to precede each inserted character, then both smir/rmir 
and ichl can be given, and both will be used. The kh capability, with one parame­
ter, n, will repeat the effects of khl n times. 

H is occasionally necessary to move around while in insert mode to delete characters 
on the same line (e.g., if there is a tab after the insertion position). If your terminal 
allows motion while in insert mode you can give the capability mi:r to speed up 
inserting in this case. Omitting mir will affect only speed. Some terminals (not­
ably Datamedia's) must not have rnir because of the way their insert mode works. 

Finally, you can specify dchl to delete a single character, deb with one parameter, 
n, to delete n characters, and delete mode by giving smdc and rmdc to enter and 
exit delete mode (any mode the terminal needs to be placed in for dchl to work). 

A command to erase n characters (equivalent to outputting n blanks without moving 
the cursor) can be given as ech with one parameter. 

Highlighting, Underlining, and Visible Bells 

ff your terminal has one or more kinds of display attributes, these can be 
represented in a number of different ways. You should choose one display form as 
standout mode, representing a good, high contrast, easy-on-the-eyes, format for 
highlighting error messages and other attention getters. (If you have a choice, 
reverse video plus half-bright is good, or reverse video alone.) The sequences to 
enter and exit standout mode are given as smso and nnso, respectively. If the code 
to change into or out of standout mode leaves one or even two blank spaces on the 
screen, as the TVI 912 and Teleray 1061 do, then xmc should be given to tell how 
many spaces are left. 

Codes to begin underlining and end underlining can be given as smul and l!'mul 
respectively. H the terminal has a code to underline the current character and move 
the cursor one space to the right, such as the Microterm Mime, this can be given as 
UC. 

- 10 - 7/85 



'flERMINFO (4) TERMINF0(4) 

7/85 

Other capabilities to enter various highlighting modes include blink (blinking) lhold 
(bold or extra bright) dim (dim or half-bright) invis (blanking or invisible text) prot 
(protected) !l'ev (reverse video) sg!l'O (turn off all attribute modes) smacs (enter 
alternate character set mode) and rmacs (exit alternate character set mode). Turn­
ing on any of these modes singly may or may not turn off other modes. 

If there is a sequence to set arbitrary combinations of modes, this should be given as 
sgr (set attributes), taking 9 parameters. Each parameter is either 0 or 1, as the 
corresponding attribute is on or off. The 9 parameters are, in order: standout, 
underline, reverse, blink, dim, bold, blank, protect, alternate character set. Not all 
modes need be supported by sgir, only those for which corresponding separate attri­
bute commands exist. 

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when they 
receive mode-setting sequences, which affect the display algorithm rather than hav­
ing extra bits for each character. Some terminals, such as the Hewlett-Packard 
2621, automatically leave standout mode when they move to a new line or the cur­
sor is addressed. Programs using standout mode should exit standout mode before 
moving the cursor or sending a newline, unless the msgr capability, asserting that it 
is safe to move in standout mode, is present. 

If the terminal has a way of flashing the screen to indicate an error quietly (a bell 
replacement) then this can be given as flash; it must not move the cursor. 

H the cursor needs to be made more visible than normal when it is not on the bot­
tom line (to make, for example, a non-blinking underline into an easier to find block 
or blinking underline) give this sequence as c1111is. If there is a way to make the cur­
sor completely invisible, give that as cMs. The capability cnorm should be given 
which undoes the effects of both of these modes. 

If the terminal needs to be in a special mode when running a program that uses 
these capabilities, the codes to enter and exit this mode can be given as smcup and 
rmcup. This arises, for example, from terminals like the Concept with more than 
one page of memory. If the terminal has only memory relative cursor addressing 
and not screen relative cursor addressing, a one screen-sized window must be fixed 
into the terminal for cursor addressing to work properly. This is also used for the 
TEKTRONIX 4025, where smcup sets the command character to be the one used by 
terminfo. 

If your terminal correctly generates underlined characters (with no special codes 
needed) even though it does not overstrike, then you should give the capability ul. 
If overstrikes are erasable with a blank, then this should be indicated by giving eo. 

Keypad 

If the terminal has a keypad that transmits codes when the keys are pressed, this 
information can be given. Note that it is not possible to handle terminals where the 
keypad only works in local (this applies, for example, to the unshifted Hewlett­
Packard 2621 keys). If the keypad can be set to transmit or not transmit, give 
these codes as smkx and rmkx. Otherwise the keypad is assumed to always 
transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and 
home keys can be given as kcubl, kcufll, kcuul, kcud1, and khome respectively. If 
there are function keys such as fO, fl, ... , flO, the codes they send can be given as 
kfO, kf1, ... , kf!W. If these keys have labels other than the default fO through flO, 
the labels can be given as ll''O, ifl, ... , UfJIO. The codes transmitted by certain other 
special keys can be given: !!di (home down), kbs (backspace), ktbc (clear all tabs), 
kctab (clear the tab stop in this column), kdr (clear screen or erase key), kdch1 
(delete character), kdH (delete line), krmir (exit insert mode), kel (clear to end of 

- 11 - 7/85 



TERMINFO (4) TERMINF0(4) 

7/85 

line), lked (clear to end of screen), kicld (insert character or enter insert mode), 
kin (insert line), knp (next page), kpp (previous page), kind (scroll forward/ down), 
kri (scroll backward/up), kbts (set a tab stop in this column). In addition, if the 
keypad has a 3 by 3 array of keys including the four arrow keys, the other five keys 
can be given as ka1, ka3, kb2, kcl, and kc3. These keys are useful when the effects 
of a 3 by 3 directional pad are needed. 

Tabs and Initialization 

If the terminal has hardware tabs, the command to advance to the next tab stop can 
be given as ht (usually control I). A "backtab" command which moves leftward to 
the next tab stop can be given as cbt By convention, if the teletype modes indicate 
that tabs are being expanded by the computer rather than being sent to the termi­
nal, programs should not use bt or cbt even if they are present, since the user may 
not have the tab stops properly set. If the terminal has hardware tabs which are 
initially set every n spaces when the terminal is powered up, the numeric parameter 
nt is given, showing the number of spaces the tabs are set to. This is normally used 
by the tset command to determine whether to set the mode for hardware tab expan­
sion, and whether to set the tab stops. H the terminal has tab stops that can be 
saved in nonvolatile memory, the terminfo description can assume that they are 
properly set. 

Other capabilities include isl, is2, and is3, initialization strings for the terminal, 
ipmg, the path name of a program to be run to initialize the terminal, and if, the 
name of a file containing long initialization strings. These strings are expected to 
set the terminal into modes consistent with the rest of the terminfo description. 
They are normally sent to the terminal, by the tset program, each time the user logs 
in. They will be printed in the following order: isl; is2; setting tabs using tbc and 
Ms; if; running the program iprog; and finally is3. Most initialization is done with 
is2. Special terminal modes can be set up without duplicating strings by putting the 
common sequences in is2 and special cases in isl and is3. A pair of sequences that 
does a harder reset from a totally unknown state can be analogously given as rsl, 
rs2, rf, and rs3, analogous to is2 and if. These strings are output by the reset pro­
gram, which is used when the terminal gets into a wedged state. Commands are 
normally placed in rs2 and irf only if they produce annoying effects on the screen 
and are not necessary when logging in. For example, the command to set the vtlOO 
into 80-column mode would normally be part of is2, but it causes an annoying glitch 
of the screen and is not normally needed since the terminal is usually already in 80 
column mode. 

If there are commands to set and clear tab stops, they can be given as tbc (clear all 
tab stops) and hts (set a tab stop in the current column of every row). If a more 
complex sequence is needed to set the tabs than can be described by this, the 
sequence can be placed in is2 or if. 

Delays 

Certain capabilities control padding in the teletype driver. These are primarily 
needed by hard copy terminals, and are used by the tset program to set teletype 
modes appropriately. Delays embedded in the capabilities er, ind, cubl, ff, and tab 
will cause the appropriate delay bits to be set in the teletype driver. If pb (padding 
baud rate) is given, these values can be ignored at baud rates below the value of pb. 

Miscellaneous 

If the terminal requires other than a null (zero) character as a pad, then this can be 
given as pad. Only the first character of the pad string is used. 

- 12 - 7/85 



TERMINFO (4) TERMINF0(4) 

7/85 

If the terminal has an extra "status line" that is not normally used by software, this 
fact can be indicated. If the status line is viewed as an extra line below the bottom 
line, into which one can cursor address normally (such as the Heathkit h l 9's 25th 
line, or the 24th line of a vtlOO which is set to a 23-line scrolling region), the capa­
bility hs should be given. Special strings to go to the beginning of the status line 
and to return from the status line can be given as tsl and fsl. (fsl must leave the 
cursor position in the same place it was before tsl. If necessary, the sc and re 
strings can be included in tsl and fsl to get this effect.) The parameter tsl takes one 
parameter, which is the column number of the status line the cursor is to be moved 
to. If escape sequences and other special commands, such as tab, work while in the 
status line, the flag eslok can be given. A string which turns off the status line (or 
otherwise erases its contents) should be given as dsl. If the terminal has commands 
to save and restore the position of the cursor, give them as sc and re. The status 
line is normally assumed to be the same width as the rest of the screen, e.g., cols. If 
the status line is a different width (possibly because the terminal does not allow an 
entire line to be loaded) the width, in columns, can be indicated with the numeric 
parameter wsl. 

If the terminal can move up or down half a line, this can be indicated with bu 
(half-line up) and hd (half-line down). This is primarily useful for superscripts and 
subscripts on hardcopy terminals. If a hardcopy terminal can eject to the next page 
(form feed), give this as ff (usually control L). 

If there is a command to repeat a given character a given number of times (to save 
time transmitting a large number of identical characters) this can be indicated with 
the parameterized string rep. The first parameter is the character to be repeated 
and the second is the number of times to repeat it. Thus, tparm(repeat_char, 'x', 
10) is the same as 'xxxxxxxxxx'. 

If the terminal has a settable command character, such as the TEKTRONIX 4025, 
this can be indicated with cmdch. A prototype command character is chosen which 
is used in all capabilities. This character is given in the cmdch capability to identify 
it. The following convention is supported on some UNIX systems: The environment 
is to be searched for a CC variable, and if found, all occurrences of the prototype 
character are replaced with the character in the environment variable. 

Terminal descriptions that do not represent a specific kind of known terminal, such 
as switch, dialup, patch, and network, should include the gn (generic) capability so 
that programs can complain that they do not know how to talk to the terminal. 
(This capability does not apply to virtual terminal descriptions for which the escape 
sequences are known.) 

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding infor­
mation should still be included so that routines can make better decisions about 
costs, but actual pad characters will not be transmitted. 

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of 
any character transmitted, this fact can be indicated with km. Otherwise, software 
will assume that the 8th bit is parity and it will usually be cleared. If strings exist 
to turn this "meta mode" on and off, they can be given as smm and rmm. 

If the terminal has more lines of memory than will fit on the screen at once, the 
number of lines of memory can be indicated with Im. A value of lm#O indicates 
that the number of lines is not fixed, but that there is still more memory than fits on 
the screen. 

If the terminal is one of those supported by the UNIX system virtual terminal proto­
col, the terminal number can be given as vt. 

- 13 - 7/85 



TIERMINF0(4) TERMINF0(4) 

FKLES 

Media copy strings which control an auxiliary printer connected to the terminal can 
be given as mcO: print the contents of the screen, mc4: turn off the printer, and 
mc5: turn on the printer. When the printer is on, all text sent to the terminal will 
be sent to the printer. It is undefined whether the text is also displayed on the ter­
minal screen when the printer is on. A variation mc5p takes one parameter, and 
leaves the printer on for as many characters as the value of the parameter, then 
turns the printer off. The parameter should not exceed 255. All text, including 
mc4, is transparently passed to the printer while an mc5p is in effect. 

Strings to program function keys can be given as pfkey, pfloc, and pfx. Each of 
these strings takes two parameters: the function key number to program (from 0 to 
10) and the string to program it with. Function key numbers out of this range may 
program undefined keys in a terminal dependent manner. The difference between 
the capabilities is that pfkey causes pressing the given key to be the same as the 
user typing the given string; pfloc causes the string to be executed by the terminal in 
local; and pfx causes the string to be transmitted to the computer. 

Glitches and Braindamage 

Hazeltine terminals, which do not allow ,_, characters to be displayed should indi­
cate h:i:. 

Terminals which ignore a linefeed immediately after an am wrap, such as the Con­
cept and vtlOO, should indicate xenl. 

If el is required to get rid of standout (instead of merely writing normal text on top 
of it), xhp should be given. 

Teleray terminals, where tabs turn all characters moved over to blanks, should indi­
cate xt (destructive tabs). This glitch is also taken to mean that it is not possible to 
position the cursor on top of a "magic cookie", that to erase standout mode it is 
instead necessary to use delete and insert line. 

The Beehive Superbee, which is unable to correctly transmit the escape or control C 
characters, has xsb, indicating that the fl key is used for escape and f2 for control 
C. (Only certain Superbees have this problem, depending on the ROM.) 

Other specific terminal problems may be corrected by adding more capabilities of 
the form xx. 

Similar Terminals 

If there are two very similar terminals, one can be defined as being just like the 
other with certain exceptions. The string capability use can be given with the name 
of the similar terminal. The capabilities given before use override those in the ter­
minal type invoked by use. A capability can be cancelled by placing xx@ to the 
left of the capability definition, where xx is the capability. For example, the entry 

2621-nl, smkx@, rmkx@, use=2621, 

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does 
not turn on the function key labels when in visual mode. This is useful for different 
modes for a terminal, or for different user preferences. 

/usr/lib/terminfo/? /* files containing terminal descriptions 

SEE ALSO 
curses(3X), printf(3S), term(5). 

7/85 - 14 - 7/85 



TIMEZONE(4) 

NAME 
timezone - set default system time zone 

SYNOPSIS 
/etc/TIMEZONE 

DESCRIPTION 
This file sets and exports the time zone environmental variable TZ. 

This file is "dotted" into other files that must know the time zone. 

EXAMPLES 
/etc/TIMEZONE for the east coast: 

SEE ALSO 

# Time Zone 
TZ=EST5EDT 
export TZ 

ctime(3C), profile(4). 

TIMEZONE(4) 

rc2(1M) in the AT&T 3B2 Computer System Administration Reference Manual. 

7/85 - 1 - 7/85 





UTMP(4) UTMP(4) 

NAME 
utmp, wtmp - utmp and wtmp entry formats 

SYNOPSIS 
#include <sys/types.h> 
#include <utmp.h> 

DESCRIPTION 

7/85 

These files, which hold user and accounting information for such commands as 
who(l), write(I), and login(I), have the following structure as defined by 
<utmp.h>: 

#define UTMP _FILE 
#define WTMP _FILE 
#define ut name 

"/etc/utmp" 
"/etc/wtmp" 
ut user 

struct utmp { 
char 
char 
char 
short 
short 
struct 

ut user[8]; 
ut-id[4]; 
ut=line[12]; 
ut_pid; 
ut_type; 
exit_status { 

} ; 

short 
short 

} ut_exit; 

time t 

e _termination; 
e_exit; 

ut_time; 

I• Definitions for ut_type •/ 
#define EMPTY 0 
#define RUN_LVL 
#define BOOT_TIME 2 
#define OLD_TIME 3 
#define NEW_TIME 4 
#define INIT_PROCESS 5 
#define LOGIN _PROCESS 6 
#define USER_PROCESS 7 
#define DEAD _PROCESS 8 
#define ACCOUNTING 9 

I• User login name •/ 
I• /etc/inittab id (usually line #) •/ 
I• device name (console, lnxx) •/ 
I• process id •/ 
I• type of entry •/ 

I• Process termination status •/ 
I• Process exit status •/ 
I• The exit status of a process 
• marked as DEAD PROCESS. •/ 

I• time entry was ~ade •/ 

I• Process spawned by "init" •/ 
I• A "getty" process waiting for login •/ 
I• A user process •I 

#define UTMAXTYPE ACCOUNTING I• Largest legal value of ut_type •/ 

I• Special strings or formats used in the "ut_line" field when •/ 
I• accounting for something other than a process •/ 
I• No string for the ut_line field can be more than 11 chars + •I 
I• a NULL in length •/ 
#define RUNLVL_MSG "run-level %c" 
#define BOOT_MSG "system boot" 
#define OTIME_MSG "old time" 
#define NTIME_MSG "new time" 

- 1 - 7/85 



UTMP(4) 

FILES 
/usr/include/utmp.h 
/etc/utmp 
/etc/wtmp 

SEE ALSO 
getut(3C). 

UTMP(4) 

login(l), who(l), write(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - 2 - 7/85 



Replace this 

page with the 

Section 5 (Miscellaneous) 

tab separator. 





INTRO(S) 

NAME 
intro - introduction to miscellany 

DESCRIPTION 

INTRO(S) 

This ffction describes miscellaneous facilities such as macro packages, character set 
table~, etc. 

7/85 - 1 - 7/85 





ASCII(5) ASCII(S) 

NAME 
ascii - map of ASCII character set 

SYNOPSIS 
cat /usr/pub/ascii 

DESCRIPTION 
Ascii is a map of the ASCII character set, g1vmg both octal and hexadecimal 
equivalents of each character, to be printed as needed. It contains: 

000 nu!IOOI sohl002 stxl003 etxl004 eotlOOS enql006 ack I 007 be! I 
010 bs 1011 ht 1012 nl 1013 vt 1014 np IOIS er 1016 so 1017 s i I 
020 die 1021 de! 022 dc2 I023 dc3 I024 dc4 I02S nak 1026 syn I 027 etb I 
030 can I 031 em 032 sub I 033 esc I 034 fs I03S gs 036 rs 1037 us 
040 sp 041 042 " 1043 # 1044 $ I 04s % 046 & 1047 , 
oso ( OSI OS2 * IOS3 + los4 ' loss - OS6 . IOS7 I 
060 0 061 I 062 2 1063 3 1064 4 I06S 5 066 6 1067 7 
070 8 071 9 072 1073 ; 1074 < I07S = 076 > I 011 ? 
JOO@ 101 A 102 B I 103 c I 104 D I !OS E 106 F I 107 G 
110 H Ill I 112 J I 113 K I 114 L l!IS M 116 N I 117 0 
120 p 121 Q 122 R I 123 s I 124 T 112s u 126 v 1127 w 
130 x 131 y 132 z 1133 [ 1134 \ I 13S l 136 ' I 137 -
140 ' 141 a 142 b I 143 c I 144 d I 14S e 146 I 147 g 
lSO h i S l 1S2 IIS3 k llS4 I IISS m 1S6 n 11s7 0 

160 p 161 q 162 r 1163 s 1164 t I 16S u 166 v I 167 w 
170 x 171 y 172 z 1173 { I 114 I I 11s J 176 - I 177 de! 

00 nu! I 01 soh I 02 stx 03 et x I 04 eot OS enq I 06 ack I 07 be! 
08 bs I 09 ht I Oa nl Ob vt I Oc np Od er I Oe so I Of s i 
10 die I 11 dc! I 12 dc2 13 dc3 I 14 dc4 IS nak I 16 syn I 17 etb 
18 can I 19 em I la sub I b esc I le fs Id gs I le rs I If us 
20 sp I 21 22 " 23 # I 24 $ 2S % I 26 & I 27 , 

28 ( I 29 2a * 2b + I 2c 2d - I 2e • I 2f I 
30 0 I 31 I 32 2 33 3 I 34 4 3S 5 I 36 6 I 37 7 
38 8 I 39 9 3a 3b ; I 3c < 3d = I 3e > I 3 f ? 
40 @ I 41 A 42 B 43 c I 44 D 4S E I 46 F I 47 G 
48 H I 49 I 4a J 4b K I 4c L 4d M I 4e N I 4f 0 
so p I SI Q 52 R S3 s I S4 T SS u I S6 v I S7 w 
S8 x I S9 y Sa Z Sb [ I Sc \ sd I I Se ' I Sf -
60 ' I 61 a 62 b 63 c I 64 d 6S e I 66 I 67 g 
68 h I 69 6a 6b k I 6c I 6d m I 6e n I 6f 0 

70 p I 71 q 72 r 73 s I 74 7S u I 76 v I 77 w 
78 x I 79 y 7a z 7b I 7c 7d } I 7e - I 7f de! 

FILES 
/usr/pub/ascii 

7/85 - 1 • 7/85 





ENVIRON(5) ENVIRON(S) 

NAME 
environ - user environment 

DESCRIPTION 
An array of strings called the "environment" is made available by exec(2) when a 
process begins. By convention, these strings have the form "name=value". The fol­
lowing names are used by various commands: 

PATH The sequence of directory prefixes that sh(l), time(l), nice(l), nohup(l), 
etc., apply in searching for a file known by an incomplete path name. The 
prefixes are separated by colons (:). Login(l) sets PATH=:/bin:/usr/bin. 

HOME Name of the user's login directory, set by login ( 1) from the password file 
passwd(4). 

TERM The kind of terminal for which output is to be prepared. This information 
is used by commands, such as mm(l) or tplot(lG), which may exploit spe­
cial capabilities of that terminal. 

TZ Time zone information. The format is xxxnzzz where xxx is standard local 
time zone abbreviation, n is the difference in hours from GMT, and zzz is 
the abbreviation for the daylight-saving local time zone, if any; for example, 
EST5EDT. 

Further names may be placed in the environment by the export command and 
"name=value" arguments in sh(l), or by exec(2). It is unwise to conflict with cer­
tain shell variables that are frequently exported by .profile files: MAIL, PSI, PS2, 
IFS. 

SEE ALSO 
exec(2). 

7/85 

env(l), login(l), sh(l), nice(l), nohup(l), time(l), tplot(lG) in the AT&T 3B2 
Computer User Reference Manual. 
mm(l) in the UNIX System V DOCUMENTER'S WORKBENCH Software Intro­
duction and Reference Manual. 

- 1 - 7/85 





FCNTL(5) FCNTL(5) 

NAME 
fcntl - file control options 

SYNOPSIS 
#include <fcntl.h> 

DESCRIPTION 
The fcnt/(2) function provides for control over open files. 
requests and arguments to Jent/ and open (2). 

This include file describes 

/• Flag values accessible to open(2) and fcnt1(2) •/ 
/• (The first three can only be set by open) •/ 
#define O _RDONL Y 0 
#define 0 WRONL Y 1 
#define O=RDWR 2 
#define O _NDELA Y 04 
#define O_APPEND 010 
#define O_SYNC 020 

I• Non-blocking I/O •/ 
I• append (writes guaranteed at the end) •/ 
I• synchronous write option •/ 

/• Flag values accessible only to open(2) •/ 
#define O_CREAT 00400 I• open with file create (uses third open arg)•/ 
#define 0 _TR UN C 01000 I• open with truncation • / 
#define O _EXCL 02000 /• exclusive open•/ 

I• fcntl(2) requests •/ 
#define F DUPFD 0 
#define F GETFD 1 
#define F SETFD 2 
#define F GETFL 3 
#define F SETFL 4 
#define F-GETLK 5 
#define F SETLK 6 
#define F-SETLKW 7 

I• Duplicate fildes •/ 
I• Get fildes flags • / 
I• Set fildes flags •/ 
I• Get file flags • / 
I• Set file flags •/ 
I• Get blocking file locks •/ 
I• Set or clear file locks and fail on busy •/ 
I• Set or clear file locks and wait on busy •/ 

/• file segment locking control structure •/ 
struct flock ( 

short !_type; 
short !_whence; 
long !_start; 
long l_len; 
int l_pid; 

I• if 0 then until EOF •/ 
I• returned with F GETLK •/ 

I• file segment locking types •/ 
#define F _RDLCK 01 
#define F _ WRLCK 02 
#define F _ UNLCK 03 

I• Read lock•/ 
I• Write lock •/ 
I• Remove locks •/ 

SEE ALSO 
fen ti (2), open (2). 

7/85 - 1 - 7/85 





MATH(5) MATH(S) 

NAME 
math - math functions and constants 

SYNOPSIS 
#include <math.h> 

DESCRIPTION 

FILES 

This file contains declarations of all the functions in the Math Library (described in 
Section 3M), as well as various functions in the C Library (Section 3C) that return 
floating-point values. 

It defines the structure and constants used by the matherr (3M) error-handling 
mechanisms, including the following constant used as an error-return value: 

HUGE The maximum value of a single-precision floating-point 
number. 

The following mathematical constants are defined for user convenience: 

M_E The base of natural logarithms (e). 

M_LOG2E 

M_LOGlOE 

M LN2 

M LNlO 

M PI 

M_SQRT2 

M_SQRTI_2 

The base-2 logarithm of e. 

The base- I 0 logarithm of e. 

The natural logarithm of 2. 

The natural logarithm of 10. 

11", the ratio of the circumference of a circle to its diameter. 
(There are also several fractions of 11", its reciprocal, and its 
square root.) 

The positive square root of 2. 

The positive square root of 1/2. 

For the definitions of various machine-dependent "constants," see the description of 
the <values.h> header file. 

/usr/include/math.h 

SEE ALSO 
intro(3), matherr(3M), values(5). 

7/85 - 1 - 7/85 





PROF(5) PROF(5) 

NAME 
prof - profile within a function 

SYNOPSIS 
#define MARK 
#include < prof.h > 

void MARK (name) 

DESCRIPTION 
MARK will introduce a mark called name that will be treated the same as a func­
tion entry point. Execution of the mark will add to a counter for that mark, and 
program-counter time spent will be accounted to the immediately preceding mark or 
to the function if there are no preceding marks within the active function. 

Name may be any combination of up to six letters, numbers or underscores. Each 
name in a single compilation must be unique, but may be the same as any ordinary 
program symbol. 

For marks to be effective, the symbol MARK must be defined before the header file 
<prof h > is included. This may be defined by a preprocessor directive as in the 
synopsis, or by a command line argument, i.e: 

cc -p -DMARK foo.c 

If MARK is not defined, the MARK(name) statements may be left in the source files 
containing them and will be ignored. 

EXAMPLE 
In this example, marks can be used to determine how much time is spent in each 
loop. Unless this example is compiled with MARK defined on the command line, the 
marks are ignored. 

#include <prof.h> 

foo( ) 
{ 

int i, j; 

MARK(loopl); 
for (i = O; i < 2000; i++) { 

} 
MARK Ooop2); 
for (j = O; j < 2000; j++) { 

SEE ALSO 
profil (2), monitor(3C). 
prof(l) in the AT&T 3B2 Computer User Reference Manual. 

7/85 - 1 - 7/85 





REGEXP(5) REGEXP(5) 

NAME 
regexp - regular expression compile and match routines 

SYNOPSIS 
#define INIT <declarations> 
#define GETCO <getc code> 
#define PEEKCO <peekc code> 
#define UNGETC(c) <ungetc code> 
#define RETURN(pointer) <return code> 
#define ERROR(vaO <error code> 

#include < regexp.h > 
char •compile Onstring, expbuf, endbuf, eof) 
char •instring, •expbuf, •endbuf; 
int eof; 

int step (string, expbuf) 
char •string, •expbuf; 

extern char •loci, •loc2, •locs; 

extern int circf, sed, nbra; 

DESCRIPTION 

7/85 

This page describes general-purpose regular expression matching routines in the 
form of ed(l), defined in /usr/include/regexp.h. Programs such as ed(l), sed(l), 
grep(I), bs(l), expr(O, etc., which perform regular expression matching use this 
source file. In this way, only this file need be changed to maintain regular expres­
sion compatibility. 

The interface to this file is unpleasantly complex. Programs that include this file 
must have the following five macros declared before the "#include <regexp.h>" 
statement. These macros are used by the compile routine. 

GETC() 

PEEKC() 

UNGETC(c) 

RETURN (pointer) 

ERROR(va/) 

Return the value of the next character in the regular expres­
sion pattern. Successive calls to GETCO should return suc­
cessive characters of the regular expression. 

Return the next character in the regular expression. Succes­
sive calls to PEEKCO should return the same character 
(which should also be the next character returned by 
GETC()). 

Cause the argument c to be returned by the next call to 
GETC() (and PEEKC()). No more that one character of 
pushback is ever needed and this character is guaranteed to 
be the last character read by GETCO. The value of the 
macro UNGETC(c) is always ignored. 

This macro is used on normal exit of the compile routine. 
The value of the argument pointer is a pointer to the charac­
ter after the last character of the compiled regular expres­
sion. This is useful to programs which have memory alloca­
tion to manage. 

This is the abnormal return from the compile routine. The 
argument val is an error number (see table below for mean­
ings). This call should never return. 

- 1 - 7/85 



REGEXP(5) REGEXP(5) 

7/85 

ERROR MEANING 
11 Range endpoint too large. 
16 Bad number. 
25 "\digit" out of range. 
36 Illegal or missing delimiter. 
41 No remembered search string. 
42 \ ( \) imbalance. 
43 Too many\(. 
44 More than 2 num hers given in \ { \). 
45 } expected after \. 
46 First number exceeds second in \ { \}. 
49 I I imbalance. 
50 Regular expression overflow. 

The syntax of the compile routine is as follows: 

compile(instring, expbuf, endbuf, eof) 

The first parameter instring is never used explicitly by the compile routine but is 
useful for programs that pass down different pointers to input characters. It is 
sometimes used in the INIT declaration (see below). Programs which call functions 
to input characters or have characters in an external array can pass down a value of 
((char *) 0) for this parameter. 

The next parameter expbuf is a character pointer. It points to the place where the 
compiled regular expression will be placed. 

The parameter endbuf is one more than the highest address where the compiled reg­
ular expression may be placed. If the compiled expression cannot fit in 
(endbuf-expbuj) bytes, a call to ERROR(50) is made. 

The parameter eof is the character which marks the end of the regular expression. 
For example, in ed(l), this character is usually a/. 

Each program that includes this file must have a #define statement for INIT. This 
definition will be placed right after the declaration for the function compile and the 
opening curly brace ({). It is used for dependent declarations and initializations. 
Most often it is used to set a register variable to point the beginning of the regular 
expression so that this register variable can be used in the declarations for GETC(), 
PEEKCO and UNGETCO. Otherwise it can be used to declare external variables 
that might be used by GETCO, PEEKCO and UNGETCO. See the example below 
of the declarations taken from grep(l). 

There are other functions in this file which perform actual regular expression 
matching, one of which is the function step. The call to step is as follows: 

step(string, expbuf) 

The first parameter to step is a pointer to a string of characters to be checked for a 
match. This string should be null terminated. 

The second parameter expbuf is the compiled regular expression which was obtained 
by a call of the function compile. 

The function step returns non-zero if the given string matches the regular expres­
sion, and zero if the expressions do not match. If there is a match, two external 
character pointers are set as a side effect to the call to step. The variable set in 
step is locl. This is a pointer to the first character that matched the regular 
expression. The variable loc2, which is set by the function advance, points to the 
character after the last character that matches the regular expression. Thus if the 

- 2 - 7/85 



REGEXP(5) REGEXP(5) 

regular expression matches the entire line, Joel will point to the first character of 
string and loc2 will point to the null at the end of string. 

Step uses the external variable circf which is set by compile if the regular expres­
sion begins with A. If this is set then step will try to match the regular expression to 
the beginning of the string only. If more than one regular expression is to be com­
piled before the first is executed the value of circf should be saved for each com­
piled expression and circf should be set to that saved value before each call to step. 

The function advance is called from step with the same arguments as step. The 
purpose of step is to step through the string argument and call advance until 
advance returns non-zero indicating a match or until the end of string is reached. 
If one wants to constrain string to the beginning of the line in all cases, step need 
not be called; simply call advance. 

When advance encounters a • or \{ \} sequence in the regular expression, it will 
advance its pointer to the string to be matched as far as possible and will recursively 
call itself trying to match the rest of the string to the rest of the regular expression. 
As long as there is no match, advance will back up along the string until it finds a 
match or reaches the point in the string that initially matched the • or \{ \}. It is 
sometimes desirable to stop this backing up before the initial point in the string is 
reached. If the external character pointer foes is equal to the point in the string at 
sometime during the backing up process, advance will break out of the loop that 
backs up and will return zero. This is used by ed(l) and sed(l) for substitutions 
done globally (not just the first occurrence, but the whole line) so, for example, 
expressions like s/r//g do not loop forever. 

The additional external variables sed and nbra are used for special purposes. 

EXAMPLES 

FILES 

The following is an example of how the regular expression macros and calls look 
from grep(l): 

#define INIT 
#define GETCO 
#define PEEKCO 
#define UNGETC(c) 
#define RETURN(c) 
#define ERROR (c) 

#include <regexp.h> 

register char •sp = instring; 
(•sp++) 
(•sp) 
(--sp) 
return; 
regerrO 

(void) compile(•argv, expbuf, &expbufCESIZE], '\O'); 

if (stepOinebuf, expbuf)) 
succeed(); 

/usr /include/regexp.h 

SEE ALSO 

BUGS 

7/85 

ed(l), expr(l), grep(l), sed(l) in the AT&T 3B2 Computer User Reference 
Manual. 

The handling of circf is kludgy. 
The actual code is probably easier to understand than this manual page. 

- 3 - 7/85 





STAT(5) 

NAME 
stat - data returned by stat system call 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/stat.h> 

DESCRIPTION 

STAT(S) 

The system calls stat and fstat return data whose structure is defined by this 
include file. The encoding of the field st_ mode is defined in this file also. 

FILES 

I* 
* Structure of the result of stat 
*I 

struct stat 
{ 

dev t st_dev; 
ino t st_ino; 
ushort st_mode; 
short st_nlink; 
ushort st_uid; 
ushort st_gid; 
dev t st_rdev; 
off t st_size; 
time t st_atime; 
time t st_mtime; 
time t st_ctime; 

} ; 

#define S IFMT 0170000 /• type of file •/ 
#define S IFDIR 0040000 /• directory •/ 
#define S_IFCHR 0020000 
#define S IFBLK 0060000 
#define S_IFREG 0100000 
#define S_IFIFO 0010000 
#define S_ISUID 04000 
#define S ISGID 02000 
#define S ISVTX 01000 
#define S_IREAD 00400 
#define S_IWRITE 00200 
#define S_IEXEC 00100 

/usr/include/sys/types.h 
/usr I include/ sys/ sta t.h 

/• character special •/ 
/• block special •/ 
I• regular •/ 
I• fifo •/ 
I• set user id on execution •/ 
/• set group id on execution •/ 
I• save swapped text even after use •/ 
I• read permission, owner •/ 
I• write permission, owner •/ 
I• execute/search permission, owner •/ 

SEE ALSO 
stat(2), types(5). 

7/85 - 1 - 7/85 





TERM(5) TERM(5) 

NAME 
term - conventional names for terminals 

DESCRIPTION 

7/85 

These names are used by certain commands (e.g., tabs ( 1) is maintained as part of 
the shell environment (see sh(l), profile(4), and environ(5)) in the variable $TERM: 

1520 Datamedia 1520 
1620 DIABLO 1620 and others using the HyType II printer 
1620-12 same, in 12-pitch mode 
2621 Hewlett-Packard 2621 series 
2631 Hewlett-Packard 2631 line printer 
2631-c Hewlett-Packard 2631 line printer - compressed mode 
2631-e Hewlett-Packard 2631 line printer - expanded mode 
2640 Hewlett-Packard 2640 series 
2645 Hewlett-Packard 264n series (other than the 2640 series) 
300 DASI/DTC/GSI 300 and others using the HyType I printer 
300-12 same, in 12-pitch mode 
300s DASI/DTC/GSI 300s 
382 OTC 382 
300s-12 same, in 12-pitch mode 
3045 Datamedia 3045 
33 TELETYPE® Model 33 KSR 
37 TELETYPE Model 37 KSR 
40-2 TELETYPE Model 40/2 
40-4 TELETYPE Model 40/ 4 
4540 TELETYPE Model 4540 
3270 IBM Model 3270 
4000a Trendata 4000a 
4014 TEKTRONIX 4014 
43 TELETYPE Model 43 KSR 
450 DASI 450 (same as Diablo 1620) 
450-12 same, in 12-pitch mode 
735 Texas Instruments TI735 and TI725 
745 Texas Instruments TI745 
dumb 

sync 

hp 
Ip 
tnl200 
tn300 

generic name for terminals that lack reverse 
line-feed and other special escape sequences 
generic name for synchronous TELETYPE 
4540-compatible terminals 
Hewlett-Packard (same as 2645) 
generic name for a line printer 
User Electric TermiNet 1200 
User Electric TermiNet 300 

Up to 8 characters, chosen from [-a-z0-9], make up a basic terminal name. Ter­
minal sub-models and operational modes are distinguished by suffixes beginning with 
a - . Names should generally be based on original vendors, rather than local distri­
butors. A terminal acquired from one vendor should not have more than one dis­
tinct basic name. 

Commands whose behavior depends on the type of terminal should accept argu­
ments of the form -Tterm where term is one of the names given above; if no such 
argument is present, such commands should obtain the terminal type from the 
environment variable $TERM, which, in turn, should contain term. 

- 1 - 7/85 



TERM(S) TERM(S) 

SEE ALSO 

BUGS 

7/85 

profile(4), environ(5). 
sh(l), stty(l), tabs(l), tplot(lG) in the AT&T 3B2 Computer User Reference 
Manual. 
mm(l), nroff(l) in the UNIX System V DOCUMENTER'S WORKBENCH 
Software Introduction and Reference Manual. 

This is a small candle trying to illuminate a large, dark problem. Programs that 
ought to adhere to this nomenclature do so somewhat fitfully. 

- 2 - 7/85 



TYPES(5) TYPES(5) 

NAME 
types - primitive system data types 

SYNOPSIS 
#include <sys/types.h> 

DESCRIPTION 
The data types defined in the include file are used in UNIX system code; some data 
of these types are accessible to user code: 

typedef struct { int r[ 1 ]; } • physadr; 
typedef long daddr_t; 
typedef char• caddr_t; 
typedef unsigned int uint; 
typedef unsigned short ushort; 
typedef ushort ino_t; 
typedef short cnt_t; 
typedef long time t; 
typedef int labe(_t[ 1 O]; 
typedef short dev _t; 
typedef long off _t; 
typedef long paddr _t; 
typedef long key _t; 

The form daddr _t is used for disk addresses except in an i-node on disk, see fs (4). 
Times are encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and 
minor parts of a device code specify kind and unit number of a device and are 
installation-dependent. Offsets are measured in bytes from the beginning of a file. 
The label _t variables are used to save the processor state while another process is 
running. 

SEE ALSO 
fs(4). 

7/85 - 1 - 7/85 





VALUES(5) VALUES(5) 

NAME 
values - machine-dependent values 

SYNOPSIS 
#include < values.b > 

DESCRIPTION 

FILES 

This file contains a set of manifest constants, conditionally defined for particular 
processor architectures. 

The model assumed for integers is binary representation (one's or two's comple­
ment), where the sign is represented by the value of the high-order bit. 

BITS (type) The number of bits in a specified type (e.g., int). 

HIBITS 

HIBITL 

HIBITI 

MAXSHORT 

MAXLONG 

The value of a short integer with only the high-order bit set 
(in most implementations, Ox8000). 

The value of a long integer with only the high-order bit set 
(in most implementations, Ox80000000). 

The value of a regular integer with only the high-order bit 
set (usually the same as HIBITS or HIBITL). 

The maximum value of a signed short integer (in most 
implementations, Ox7FFF = 32767). 

The maximum value of a signed long integer (in most imple­
mentations, Ox7FFFFFFF = 2147483647). 

MAXINT The maximum value of a signed regular integer (usually the 
same as MAXSHORT or MAXLONG). 

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision 
floating-point number, and its natural logarithm. 

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a double-precision 
floating-point number, and its natural logarithm. 

MINFLOAT,LN_MINFLOAT The minimum positive value of a single-precision 
floating-point number, and its natural logarithm. 

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a double-precision 

FSIGNIF 

DSIGNIF 

floating-point number, and its natural logarithm. 

The number of significant bits in the mantissa of a single­
precision floating-point number. 

The number of significant bits in the mantissa of a double­
precision floating-point number. 

/usr /include/values.h 

SEE ALSO 
intro(3), math(5). 

7/85 - 1 - 7/85 





VARARGS(5) VARARGS(5) 

NAME 
varargs - handle variable argument list 

SYNOPSIS 
#include <varargs.h> 

va_alist 

va dcl 

void va _start (pvar) 
va _list pvar; 

type va_arg(pvar, type) 
va _list pvar; 

void va _end (pvar) 
va _list pvar; 

DESCRIPTION 
This set of macros allows portable procedures that accept variable argument lists to 
be written. Routines that have variable argument lists (such as printf(3S)) but do 
not use varargs are inherently nonportable, as different machines use different 
argument-passing conventions. 

va _ alist is used as the parameter list in a function header. 

va_dcl is a declaration for va_alist. No semicolon should follow va_dcl. 

va _list is a type defined for the variable used to traverse the list. 

va _start is called to initialize pvar to the beginning of the list. 

va_arg will return the next argument in the list pointed to by pvar. Type is the type 
the argument is expected to be. Different types can be mixed, but it is up to the 
routine to know what type of argument is expected, as it cannot be determined at 
runtime. 

va _end is used to clean up. 

Multiple traversals, each bracketed by va_start ... va_end, are possible. 

EXAMPLE 

7/85 

This example is a possible implementation of execl(2). 

#include <varargs.h> 
#define MAXARGS 100 

I• execl is called by 
execl (file, arg 1, arg2, ... , (char •) 0); 

•I 
execl (va alist) 
va dcl -
{ -

va_list ap; 
char •file; 
char •args[MAXARGS]; 
int argno = O; 

va_start(ap); 
file = va_arg(ap, char •); 
while ( (args[argno++] = va _ arg (ap, char •)) != (char •) 0) 

- 1 - 7/85 



VARARGS(S) VARARGS(5) 

, 
va end(ap); 
return execv (file, args); 

SEE ALSO 

BUGS 

7/85 

exec(2), printf(3S). 

It is up to the calling routine to specify how many arguments there are, since it is 
not always possible to determine this from the stack frame. For example, exec/ is 
passed a zero pointer to signal the end of the list. Printf can tell how many argu­
ments are there by the format. 
It is non-portable to specify a second argument of char, short, or float to va_arg, 
since arguments seen by the called function are not char, short, or float. C con­
verts char and short arguments to int and converts float arguments to double before 
passing them to a function. 

7/85 


