

©1984AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

UNIX is a trademark of AT&T

CONTENTS

HOW TO READ THIS GUIDE ... vii

PART 1. UNIX SYSTEM OVERVIEW

CHAPTER 1. WHAT IS THE UNIX SYSTEM?

What The UNIX System Is.. 1-1

How The UNIX System Works.. 1-3

CHAPTER 2. BASICS FOR UNIX SYSTEM USERS

Getting Started.. 2-1

About The Terminal... 2-2

Obtaining A Login Name .. 2-11

Establishing Contact With The UNIX System ... 2-11

CHAPTER 3. USING THE FILE SYSTEM

!ntroductnon............ 3-1

How The File System Is Structured... 3-4

Your Place In The File System Structure... 3-4

Organizing A Directory Structure .. 3-16

Accessing And Manipulating Files ... 3-29

Summary ... 3-64

CHAPTER 4. UNIX SYSTEM CAPABILITIES

! ntrod uction 4-1

Text Editing... 4-1

Working In The Shell... 4-6

Communicating Electronically ... 4-20

Programming In The System ... 4-21

CONTENTS

PART 2. UNIX SYSTEM Tl.JJTORIALS

CHAPTER 5. LINE EDITOR TUTORIAL (ed)

Introducing The Line Editor... 5-1

How To Read This Tutorial.. 5-2

Getting Started.. 5-3

Exercise 1 ... 5-13

General Format Of ed Commands ... 5-13

Line Addressing .. 5-14

Exercise 2•... 5-29

Display Lines !n A File... 5-30

Creating Text .. 5-33

Exercise 3 ... 5-39

Deleting Text.. ... 5-41

Substituting Text ... 5-47

Exercise 4 ... 5-54

Special Characters.. 5·56

Exercise 5 ... 5-61

Moving Text .. 5-69

Exercise 6 ... 5-79

Other Usehil Commands And information ... 5-19

Exercise 1 ... 5-88

Answers to Exercises .. 5-90

CHAPTER 6. SCREEN EDITOR TUTORIAL (vi)

nv

Getting Acquainted Wm1 vL.. 6-1

How To Read This Tutorial.. 6-2

Getting Started.. 6-5

Exercise 1 ... 6-15

Positioning The Cursor in The Window ... 6-16

Positioning The Cursor In The File.. 6-34

Exercise 2 6-45

Creating Text .. 6-46

Exercise 3 6-50

CONTENTS

CHAPTER 6. SCREEN EDITOR TUTORIAL (vi) (Continued)

Deleting Text ... 6-51

Exercise 4 ... 6-60

Changing Text ... 6-60

Cutting And Pasting Text Electronically .. 6-66

Exercise 5 ... 6-70

Special Commands .. 6-71

Line Editing Commands ... 6-74

Quitting vi.. 6-80

Special Options For vi .. 6-82

Exercise 6 ... 6-84

Changing Your E1111irn11ment .. 6-85

Answers to Exercises .. 6-88

CHAPTER 7. SHELL TUTORIAL

Making Life Easier In The Shell... 7-1

How To Read This Tutorial.. 7··2

Shell Command Language... 7-3

Command Language Exercises ... 7-31

Shell Programming .. 7-32

Shell Programming Exercises .. 7-86

Answers to Exercises .. 7-88

CHAPTER 8. COMMUNICATION TUTORIAL

Introduction... 8· 1

Communicating On Tile l.INIX System ... ,.. 8-2

How Can You Communicate?... 8-3

Sending And Receiving Messages... 8·4

Sending And Receiving Files ... 8-17

Advanced Message And File Handling .. 8·29

'\I

CONTENTS

PART 3. SUPPLEMENTARY INFORMATION AND REFERENCE TOOLS

Appendix A. Selected UNIX System Documentation A-1

Appendix B. File System Organization ... B-1

Appendix C. Summary of UNIX System Commands C-1

Appendix D. Quick Reference to ed Commands .. D-1

Appendix E. Quick Reference to vi Commands .. E-1

Appendix F. Summary of Sheil Programming Ingredients F-1

Glossary .. G-1

index... 1-1

HOW TO READ THIS GUIDE

The UNIX* system is a family of computer operating systems
developed by AT&T Bell Laboratories and licensed by AT&T
Technologies, Inc. Because it can run on many sizes and types of
computers and because of all it can do, the UNIX system has gained
wide popularity since it was introduced in the late 1960s. Now,
either by choice or by fate, you are interested in learning something
about it.

This guide is written to help you, the user, understand how the
UNIX system works and what it can do for you. It introduces you to
UNIX System V, Release 2. New versions of the UNIX system, called
releases, will be offered as changes are made or as improvements are
added.

Who Should Read This Guide

Whether you are a newcomer to the world of computers or an
experienced computer user who is unfamiliar with the UNIX system,
this guide is for you. Although it contains technical material, it can
be understood by either a newcomer or an expert. You will find that
learning to use the UNIX system requires some thought and time, but
you will be rewarded with power and flexibility unattainable with
other operating systems.

This guide assumes that you are one of a number of people using a
computer on which the UNIX system is running, and that there is a
person responsible for monitoring and controlling the UNIX system
you are using. This person is the system administrator. If, however,
you are using the UNIX system on a small computer, you may also act
as its system administrator. In this case, in addition to this guide, you
should consult the documents you received when the UNIX system
programs were delivered to you. (See Appendix A for information on
how to order additional copies.)

* Trademark of AT&T Bell Laboratories

vii

HOW TO READ THIS GUIDE

How This Guide Is Organized

The material in this guide is organized into three major parts: UNIX
System Overview, UNIX System Tutorials, and Supplementary Information
and Reference Tools. Both the major parts and the chapters in each part
are separated by tab dividers.

The following list summarizes the contents of each major part:

0 UNIX System Overview--This part introduces you to the basic
principles of the UNIX operating system. The material in this
part is organized into four chapters, each chapter building on
information presented in preceding chapters. Therefore, it is
recommended that you read chapters 1 through 4 in order. The
chapters that make up this part are:

Chapter 1, What is the UNIX System?--Acquaints you with
the UNIX system and explains how it works.

Chapter 2, Basics for UNIX System Users--Covers topics
related to using your terminal, obtaining a system
account, and establishing contact with the UNIX system.

Chapter 3, Using the File System-- Explains what the file
system is, how you can organize information (data, text,
and programs) using the file system, and how you can
store and retrieve this information using appropriate
commands.

Chapter 4, UNIX System Capabilities-- Builds on material
and terminology presented in the first three chapters. H
highlights UNIX system capabilities, such as command
execution, text editing, electronic communication,
programming, and aids to software development.

• UNIX System Tutorials--Each chapter in this part takes a
step-by-step approach to teach you about one aspect of the UNIX
system. You will gain the greatest benefit from them if you work
through the examples and exercises at a terminal connected to
the UNIX system you will be using. The tutorials assume that

HOW TO READ THIS GUIDE

you understand the concepts introduced in chapters 1 through 4.
For example, before reading either the Line Editor Tutorial or the
Screen Editor Tutorial, read the explanation of text editors in
Chapter 4. The chapters that make up this part are:

Chapter 5, Line Editor Tutorial--Teaches you how to use the
ed text editor to create and to modify text on a paper
printing or a video display terminal.

Chapter 6, Screen Editor Tutorial-- Teaches you how to use
the vi* text editor to create and to modify text on a video
display terminal.

Chapter 7, Shell Tutorial-- Teaches you how to use the shell
to automate repetitive jobs. The shell is the part of the
UNIX system that interprets the commands you type.

Chapter 8, Communication Tutorial--Teaches you how to
send information to others, whether they are working on
your UNIX system or on a different UNIX system.

• Supplementary Information and Reference Tools--This part is
organized into six appendices, a glossary, and an index. This
material contains additional information that you may find useful
in learning about the UNIX system. The appendices are:

Appendix A, Selected UNIX System Documentation -- Lists
additional UNIX system documentation that enhances or
elaborates on the information presented in this guide.
This appendix gives document titles, reference numbers,
and information on how to obtain the documents.

Appendix B, File System Organization--Illustrates how
information is stored in the UNIX operating system.

Appendix C, Summary of UNIX
Describes, in alphabetical order,
command discussed in this guide.

System Commands-­
each UNIX system

* The visual editor is based on software developed by The University of California,
Berkeley, California; Computer Service Division, Department of Electrical
Engineering and Computer Science, and such software is owned and licensed by the
Regents of the University of California.

ix

HOW TO READ THIS GUIDE

Appendix D, Quick Reference to ed Commands-- Describes
the commands used with the line editor (ed), first in
alphabetical order, and then organized by topic, such as
creating text, deleting text, and displaying text.

Appendix E, Quick Reference to vi Commands-- Describes the
commands used with the screen editor (vi), first in
alphabetical order, and then organized by topics, such as
creating text, changing text, and cutting and pasting text.

Appendix F, Summary of Shell Programming Ingredients-­
Describes shell command language concepts and shows
how to use shell programming language statements.

Other sections in this part of the guide are:

Glossary-- Defines technical words and terms used in this
book.

Index-- Gives an alphabetical listing of topics, together
with the page numbers on which they appear in this
guide.

Acknowledgements

Many persons, too numerous to mention, contributed suggestions that
are reflected in the pages of this guide. These persons include
members of AT&T Bell Laboratories and AT&T Technologies, Inc., as
well as reviewers and consultants not affiliated with AT&T.

The text of this guide was prepared usi.ng UNIX system text editors
described in this guide, formatted using the UNIX System
Documenter's Workbench* hoff, ~bt and mm macros, and produced on
an AUTOLOGIC, Inc., APS-5 phototypesetter operating under the
UNIX system.

* Trademark of AT&T Technologies, Inc.

x

UNIX SYSTEM OVERVIEW

Contents

Chapter 1. What Is the UNIX System?

Chapter 2. Basics for UNIX System Users

Chapter 3. Using the File System

Chapter 4. UNIX System Capabilities

Chapter 1

WHAT IS THE UNIX SYSTEM?

PAGE

WHAT THE UNIX SYSTEM IS.. 1-1

HOW THE UNIX SYSTEM WORKS... 1-3

Kernel.. 1-4

Shel!.. 1-8

Commands.. 1-9

What Commands 00 .. 1-10

How Commands Execute ... 1-11

Chapter 1

WHAT IS THE UNIX SYSTEM?

WHAT THE UNIX SYSTEM IS

The UNIX system is a set of programs, called software, that acts as the
link between a computer and you, its user. The UNIX system is
designed to control the computer on which it is running so the
computer can operate efficiently and smoothly and to provide you
with an uncomplicated, efficient, and flexible computing
environment.

UNIX system software does three things:

• It controls the computer,

• It acts as an interpreter between you and the computer, and

• It provides a package of programs or tools that allows you to do
your work.

The UNIX system software that controls the computer is referred to as
the operating system. The operating system coordinates all the
details of the computer's internals, such as allocating system resources
and making the computer available for general purposes. The
nucleus of this operating system is called the kernel.

In the UNIX system, the software that acts as a liaison between you
and the computer is called the shell. The shell interprets your
requests and, if valid, retrieves programs from the computer's
memory and executes them.

The UNIX system software that allows you to do your work includes
programs and packages of programs called tools for electronic
communication, for creating and changing text, and for writing
programs and developing software tools.

1-1

WHAT !S THE UNIX SYSTEM?

Put simply, this package of services and utilities called the UNIX
system offers:

0 A general purpose system that makes the resources and capabilities
of the computer available to you for performing a wide variety of
jobs or applications, not simply one or a few specific tasks.

0 A computing environment that allows for an interactive method
of operation so you can directly communicate with the computer
and receive an immediate response to your request or message.

• A technique for sharing what the system has to offer with other
users, even though you have the impression that the UNIX
system is giving you its undivided attention. This is called
timesharing. The UNIX system creates this feeling by allowing
you and other users--multiusers--slots of computing time
measured in fractions of seconds. The rapidity and effectiveness
with which the UNIX system switches from working with you to
working with other users makes it appear that the system is
working with all users simultaneously.

" A system that provides you with the capability of executing more
than one program simultaneously, this feature is called
multitasking.

The UNIX system, like other operating systems, gives the computer
on which it runs a certain profile and distinguishing capabilities. But
unlike other operating systems, it is largely machine-independent;
this means that the UNIX system can run on mainframe computers as
well as microcomputers and minicomputers.

From your point of view, regardless of the size or type of computer
you are using, your computing environment will be the same. In
fact, the integrity of the computing environment offered by the UNIX
system remains intact, even with the addition of optional UNIX
system software packages that enhance your computing capabilities.

1-2

HOW THE UNIX SYSTEM WORKS

HOW THE UNIX SYSTEM WORKS

After reading the past few pages, you know that the UNIX system
offers you a set of software that performs services--some
automatically, some you must request. You also know that the system
creates a certain environment in which you can use its software. But
before you can ask the UNIX system to do something, you need to
know what it is capable of doing.

Look at Figure 1-1. It shows a set of layered circles in graduated sizes.
Each circle represents specific UNIX system software, such as:

• Kernel,

• Shell, and

• Programs/tools that run on command.

Communicalion

Additional
Utility

Programs

Figure 1-1.

Processing

UNIX system model

1-3

WHAT IS THE UNIX SYSTEM?

You should know something about the major components of UNIX
system software to communicate with the UNIX system. Therefore,
the remainder of this chapter introduces you to each component: the
kernel, the shell, and user programs or commands.

Kernel

The heart of the UNIX system is called the kernel. Figure 1-2 gives an
overview of the kernel's activities. Essentially, the kernel is software
that controls access to the computer, manages the computer's
memory, and allocates the computer's resources to one user, then to
another. From your point of view, the kernel performs these tasks
automatically. The details of how the kernel accomplishes this are
hidden from you. This arrangement lets you focus on your work, not
on the computer's.

Manages
memory

Allocates
system

resources

Controls
access to
computer

Maintains
file system

Figure 1-2. Functional view of kernel

On the other hand, you will become increasingly familiar with
another feature of the kernel; this feature is referred to as the file
system.

1-4

HOW THE UNIX SYSTEM WORKS

The file system is the cornerstone of the UNIX operating system. It
provides you with a logical, straightforward way to organize, retrieve,
and manage information electronically. If it were possible to see this
file system, it might look like an inverted tree or organization chart
made up of various types of files Figure 1-3. The file is the basic unit
of the UNIX system and it can be any one of three types:

0 =Directories

D = Ordinary Files

V =Special Ries

Figure 1-3, Branching directories and files give the UNIX system
its treelike structure

• An ordinary file is simply a coUection of characters. Ordinary files
are used to store information. They may contain text or data for
the letters or reports you type, code for the programs you write,
or commands to run your programs. In the UNIX system,
everything you wish to save must be written into a file.

In other words, a file is a place for you to put information for
safekeeping until you need to recall or use its contents again.
You can add material to or delete material from a file once you
have created it, or you can remove it entirely when the file is no
longer needed.

1-5

WHAT IS THE UNIX SYSTEM?

• A directory is a file maintained by the operating system for
organizing the treelike structure of the file system. A directory
contains files and other directories as designated by you. You
can build a directory to hold or organize your files on the basis
of some similarity or criterion, such as subject or type.

For example, a directory might hold files containing memos and
reports you write pertaining to a specific project or client. Or a
directory might hold files containing research specifications and
programming source code for product development. A directory
might hold files of executable code allowing you to run your
computing jobs. Or a directory might contain files representing
any combination of these possibilities.

• A special file represents a physical device, such as the terminal on
which you do your computing work or a disk on which ordinary
files are stored. At least one special file corresponds to each
physical device supported by the UNIX system.

In some operating systems, you must define the kind of file you will
be working with and then use it in a specified way. You must
consider how the files are stored since they can be sequential,
random-access, or binary files. To the UNIX system, however, all files
are alike. This makes the UNIX system file structure easy to use. For
example, you need not specify memory requirements for your files
since the system automatically does this for you. Or if you or a
program you write needs to access a certain device, such as a printer,
you specify the device just as you would another one of your files. In
the UNIX system, there is only one interface for all input from you
and output to you; this simplifies your interaction with the system.

The source of the UNIX system file structure is a directory known as
root, which is designated with a slash (/). All files and directories in
the file system are arranged in a hierarchy under root. Root normally
contains the kernel as well as links to several important system
directories that are shown in Figure 1-4:

1-6

/bin Many executable programs and utilities reside in this
directory.

I dev This directory contains special files that represent
peripheral devices, such as the console, the line
printer, user terminals, and disks.

O=Directories

D = Ordinary Files

'\J =Special Files

Figure 1~4. Sample of typical file system structure

WHAT IS THE UNIX SYSTEM?

I etc Programs and data files for system administration can
be found in this directory.

/lib This directory contains available program and
language libraries.

/tmp

/usr

This directory is a place where anyone can create
temporary files.

This directory holds other directories, such as mail
(which further holds files storing efectronic mail),
news (which contains files holding newsworthy
items), rje (which contains files needed to send data
via something called the remote job entry
communication Hnk), and games (which contains files
holding electronic games).

In summary, the directories and files you create comprise the portion
of the file system that is structured and, for the most part, controlled
by you. Other parts of the file system are provided and maintained
by the operating system, such as bin, dlev, etc, lib, tmp and usr, and
have much the same structure on all UNIX systems.

Chapter 3 shows how to organize a file system directory structure and
how to access and manipulate files. Chapter 4 gives an overview of
UNIX system capabilities. The effective use of these capabilities
depends on your familiarity with the file system and your ability to
access information stored within it. Chapter 5 and Chapter 6 are
tutorials designed to teach you how to create and edit files to meet
your computing and information management needs.

Shell

The shell is a unique UNIX system program or tool that is central to
most of your interactions with the UNIX system. Figure 1-1 illustrates
how the shell works. The drawing shows the shell as a circle
containing arrows pointing away from the kernel and the file system
to the outer circle that contains programs and then back again. The
arrows indicate that a two-way flow of communication is possible
between you and the computer via the shell.

1-8

HOW THE UNIX SYSTEM WORKS

When you enter a request to the UNIX system by typing on the
terminal keyboard, the shell translates your request into language the
computer understands. If your request is valid, the computer honors
it and carries out an instruction or set of instructions. Because of its
job as translator, the shell is called the command language
interpreter.

As the command language interpreter, the shell can also help you to
manage information. The shell's ability to manage information stems
from the design of the UNIX system. Each program in the UNIX
system is designed to do one thing well. In a sense, a UNIX system
program is a building block or module that you can use in tandem
with other programs to create even more powerful tools.

In addition to acting as a command language interpreter, the shell is
a programming language complete with variables and control flow
capabilities.

A section of Chapter 4 describes each of the shell's capabilities.
Chapter 7 teaches you how to use these capabilities to write simple
shell programs called shell scripts and how to custom-tailor your
computing environment.

Commands

A program is a set of instructions that the computer follows to do a
specific job. In the UNIX system, programs that can be executed by
the computer without need for translation are called executable
programs or commands.

As a typical user of the UNIX system, you have many standard
programs and tools available to you. If you also use the UNIX system
to write programs and to design and develop software, you have
system calls, subroutines, and other tools at your disposal. And you
have, of course, the programs you write.

This book introduces you to approximately 40 of the most frequently
used programs and. tools that you will probably use on a regular basis
when you interact with the UNIX system. If you need additional
information on these or other standard UNIX system programs, check
the UNIX System User Reference Manual. If you want to use tools and

1-9

WHAT IS THE UNIX SYSTEM?

routines that relate to programming and software development, you
should consult the UNIX System Programmer Reference Manual and the
UNIX System Support Tools Guide. Appendix A provides you with
information on how to obtain copies of these manuals.

The details contained in the two reference manuals may also be
available via your terminal in what is called the on-line version of the
UNIX system reference manuals. This on-line version is made up of
formatted text files that look exactly like the printed pages in the
manuals. You can summon pages in this electronic manual using the
command man, which stands for manual page. If the electronic
version of the manuals is available on your computer, the man
command is documented in your copy of the UNIX System User
Reference Manual.

What Commands Do

The outer circle of Figure 1-1 organizes UNIX system programs and
tools into general categories according to what they do. The
programs and tools allow you to:

• Process text. This capability includes programs, such as, line and
screen editors (which create and change text), a spelling checker
(which locates spelling errors), and optional text formatters
(which produce high-quality paper copies that are suitable for
publication).

• Manage information. The UNIX system provides many programs
that allow you to create, organize, and remove files and
directories.

• Communicate electronically. Several programs, such as mail,
provide you with the capability to transmit information to other
users and to other UNIX systems.

• Use a productive programming and software development environment.
A number of UNIX system programs establish a friendly
programming environment by providing UNIX-to-programming­
language interfaces and by supplying numerous utility programs.

• Take advantage of additional system capabilities. These programs
include graphics, a desk calculator package, and computer games.

1-10

HOW THE UNIX SYSTEM WORKS

How Commands Execute

Figure 1-5 gives a general idea of what happens when the UNIX
system executes a command.

YOUR
REQUEST

PROGRAM
EXECUTION

DIRECTORY
SEARCH

PROGRAM
RETRIEVAL

FILES

Figure 1-5. Flow of control between you and computer when
you request prngram to run

When the shell signals i.t is ready to accept your request, you type in
the command you wish to execute on the keyboard. The command is
considered input, and the shell searches one or more directories to
locate the program you specified. When the program is found, the
shell brings your request to the attention of the kernel. The kernel
then follows the program's instructions and executes your request.
After the program runs, the shell asks you for more information or
tells you it is ready for your next command.

This is how the UNIX system works when your request is in a format
that the shell understands. The structure that the shell understands
is called a command line. Chapter 3 explains what you need to know
about the command line so you can request a program to run.

This chapter has outlined some basic principles of the UNIX
operating system and explained how they work. The following
chapters will help you begin to apply these principles according to
your computing needs.

1-11

Chapter 2

BASICS FOR UNIX SYSTEM USERS

PAGE

GIETTING STARTED... 2·1

ABOUT THE TERMINAL.. 2·2

Required Terminal Settings... 2·3

Keyboard Characteristics.. 2·4

Typing Conventions .. 2·6

Responding to the Command Prompt.. 2·8

Correcting Typing Errors... 2-8

Typing Speed 2-9

Stopping a Command.. 2·9

Using Control Charcters .. 2-9

OBTAINING A LOGIN NAME ... 2·11

ESTABLISHING CONTACT WITH THE UNIX SYSTEM .. 2·11

Login Procedure .. 2·13

Password .. 2-14

External Security Code ... 2·16

Possible Problems When Logging in ... 2-17

Simple Commands ... 2·19

logging Off.. 2-20

Chapter 2

BASICS FOR UNIX SYSTEM USERS

GETTING STARTED

There are general rules and guidelines with which you should be
familiar before you begin to work on the UNIX system. For example,
you need information about your terminal and how to use its
keyboard and about how to begin and end a computing session.

This chapter acquaints you with these rules and guidelines and
presents you with information to help to make your first encounter
with the UNIX system understandable and to lay the groundwork for
future computing sessions. Since the best way to learn about the
UNIX system is to use it, this chapter helps to get you started by
providing examples of how to use these rules and guidelines to
establish contact with the UNIX system and to respond to its requests
and prompts.

For your convenience, an outline of a terminal display screen is used
to set off examples of interactions between you and the UNIX system.
These examples apply regardless of the type of terminal you use.
Inside the screen, what the UNIX system prompts and its responses
are printed in italic. The commands you type in response to the
system prompts and your other input and data are printed in
boldface type. These include the commands you type that do not
appear on the screen (such as, a carriage return), which are enclosed
in angle brackets < >. The following screen summarizes these
conventions.

2-1

BASICS FOR UNIX SYSTEM USERS

italic (UNIX system prompts and
responses)

bold (Your commands)

< > (Your commands or parts
of commands that do not
appear on the screen)

Without further ado, let's begin.

To establish contact with the UNIX system, you need:

• A terminal,

• An identification name, called a login name, by which the UNIX
system recognizes you as one of its authorized users,

• A password with which the UNIX system double-checks and
verifies your identity after you log in and before it allows you to
use its resources, and

• The telephone number to the UNIX system to which your login
name is assigned if your terminal is not directly connected or
wired to the computer.

ABOUT THE TERMINAL

A terminal is an input/ output device: through it you input a request
to the UNIX system and the system, in turn, outputs a response to
you. The terminal is equipped with a keyboard, a monitor or display
unit (much like the screen on a television set), a control unit, and a
link that allows it to communicate with the computer.

ABOUT THE TERMINAL

The terminal you use to interact with the UNIX system can be either
a video display terminal or a printing terminal (Figure 2-1).

Figure 2-1. Left, video display terminal (TELETYPE® 5410);
right, printing terminal (TELETYPE 43)

These terminals differ in how they monitor or display input/output.
The video display terminal uses a display screen, whereas the
printing terminal uses continuously fed paper.

Required Terminal Settings

Regardless of the type of terminal you use, you must set it up or
configure it in a certain way to insure proper communication with
the UNIX system.

If you have not set terminal options before, you might feel more
comfortable seeking help from someone who has. Or you can, of
course, be adventurous.

® Registered trademark of Teletype Corporation

BASICS FOR UNIX SYSTEM USERS

How you configure a terminal depends on the type of terminal that
you are using. Some terminals are configured with switches, whereas
other terminals are configured directly from the keyboard using a set
of function keys. To determine how to configure your terminal,
consult the owner's manual provided by the manufacturer.

Following is a list of configuration checks to be performed on any
terminal before attempting to establish contact with the UNIX system.

• Turn on the power.

• Set the terminal to ON-UNE or REMOTE operation. This setting
insures that the terminal is under direct control of the computer.

• Set the terminal to FULL DUPLEX mode. The full duplex mode
insures two-way communication or input/output between you
and the UNIX system.

0 If your terminal is not directly connected or hard wired to the
computer, make sure the acoustic coupler or data phone set you
are using is set to the FULL DUPLEX mode.

• Set character generation to LOWERCASE. If the terminal,
however, generates only uppercase letters, the UNIX system will
accommodate it by printing everything that transpires during the
computing session in uppercase letters.

• Set the terminal to NO PARITY.

• Set the speed or rate at which the computer communicates with
the terminal. This rate of communication is called the baud rate.
Typical terminal speeds are 30 and 120 characters per second or
300 and 1,200 baud, respectively. Occasionally, speeds such as
240, 480, and 960 characters per second or 2,400, 4,800, and 9,600
baud, respectively, are available.

Keyboard Characteristics

If you have seen or had some experience with a typewriter, the
keyboard shown in Figure 2-2 should look somewhat familiar.

2-4

Figure 2-2. Example of keyboard layout (TELETYPE 5410)

BASICS FOR UNIX SYSTEM USERS

Its keys correspond to:

0 Letters of the English alphabet a through z and A through Z
when you are holding down a shift key,

• Numeric characters 0 through 9,

• A variety of symbols, such as ! @ # $ % " & () _ - + = - ' { } []
\:;'"<>,?/

0 Words, such as RETURN and BREAK, and abbreviations, such as
DEL (delete), CTRL (control), and ESC (escape).

Many of the keys corresponding to symbols, words, and abbreviations
have been added to the keyboard layout and the placement of these
characters or symbols on a keyboard may vary from terminal to
terminal.

Consequently, there is not a truly standard layout for terminal
keyboard characters. There is, however, a standard set of characters
that keyboards have, consisting of 128 characters, called the ASCH
character set. ASCH is pronounced "as kee" and is the abbreviation
for American Standard Code for Information Interchange. When you
depress a key or combination of keys, the appropriate ASCII code is
sent to the computer for translation from the alphabetic and numeric
characters that we understand to electronic signals that the computer
can decode.

Typing Conventions

To interact effectively with the UNIX system, you should be familiar
with certain typing conventions. An example of a UNIX system
typing convention is using lowercase letters when you issue
commands. Other typing conventions require that you use specific
characters to erase letters and delete lines, or combinations of
characters to stop the UNIX system from printing output on your
terminal monitor temporarily.

The next few pages introduce you to these conventions. Table 2-1
lists these special characters, keystrokes, and their meanings for your
quick reference.

2-6

Key(s)

$

@

BREAK*

DEL*

ESC*

RETURN*

Control d*

Control h*

Control i*

Controls*

Control q*

ABOUT THE TERMINAL

TABLE 2-1

UNIX System Typing Conventions

Meaning

System's command prompt (your cue to respond)

Erase a character

Erase or kill an entire line

Stop execution of a program or command

Delete or kiU the current command line

Use with another character to perform specific
function (called escape sequence)

OR

Use to indicate end of create mode when using screen
editor (vi)

End a line of typing; designated as <CR>

Stop input to system or log off; designated as <~d>

Backspace for terminals without a backspace key;
designated as <~h>

Horizontal tab for terminals without a tab key;
designated as < ~i >

Temporarily stops output from printing on screen;
designated as < ~s>

Resumes printing after typing < ~s>; designated as
<~q>

NOTE: All control characters are sent by holding down the control key and pressing
the appropriate letter.

* Nonprinting characters.

2-7

BASICS FOR UNIX SYSTEM USERS

Responding to the Command Prompt

The standard UNIX system command prompt is the dollar sign, $.
When the $ appears on your terminal monitor, it means that the
UNIX system is waiting for you to tell it to do something. Your
response to the $ prompt is to issue commands followed by
depressing the carriage return key, designated as <CR> throughout
this guide.

The $ is the default value for the command prompt. Chapter 7
explains how to change the default value to another prompt.

Correcting Typing Errors

You can correct typing errors in two ways providing you have not
pressed <CR>. The# symbol allows you to erase previously typed
characters on a line, and the @ sign allows you to delete the line on
which you are working. The # and the @ characters are default
values for character and line deletion, respectively.

Pressing the # key erases the character previously typed, whereas
repetitive use of the # sign erases any number of characters back to
the beginning of the line, but not beyond that. For example, typing

helo#lo

on your terminal keyboard is interpreted by the UNIX system as
"hello" correctly typed.

To delete the entire line on which you are working, press the@ key.
When you do, the UNIX system moves you to the beginning of the
next line.

If you want to use the # or the @ characters literally, that is, you
would like a file to contain the line

Only one # appears on this sheet of music.

or

I purchased three books @ $15.75 per book.

2-8

ABOUT THE TERMINAL

you would have to press the backslash (\) key before pressing the #
key. Otherwise, the # would erase the space after the word "one"
and the line would print as

Only one appears on this sheet of music.

If you press the @ key without first pressing the \ key while typing
the second example, the @ would erase the entire line. On the other
hand, the leading \ removes the special meaning attached to
characters like # and @ so that they can be understood literally by
the computer.

Typing Speed

After the $ appears on your terminal monitor you can type as fast as
you want, even during periods when the UNIX system is responding
to or executing a command. The printout on your terminal monitor
will appear garbled because your input is intermixed with the
system's output. The UNIX system, however, has what is referred to
as read-ahead capability, which allows it to separate input from
output and to respond to your command properly.

With read-ahead capability, the UNIX system stores your next request
while the system is outputting information on your terminal monitor
in response to a previous request.

Stopping a Command

If you wish to stop the execution of a command, simply depress the
BREAK or DEL key. In turn, you will receive the $ prompt indicating
that the UNIX system terminated the running of the program and is
ready to accept your next command.

Using Control Characters

Locate the control key on your terminal keyboard. The key may be
labeled CTRL or CONTROL and is probably to the left of the A key
or below the Z key. The control character is used in combination
with other keyboard characters to initiate a physical controlling
action across a line of typing, such as backspacing or tabbing. In
addition, some control characters define UNIX-system-specific

2-9

BASICS FOR UNIX SYSTEM USERS

commands, such as temporarily halting output from printing on a
terminal monitor.

Type a control character by holding down the CTRL key and
depressing an appropriate alphabetic key. Control characters do not
print on the terminal when typed. In this book, control characters
are designated with a preceding carat ('), such as <As> for control s,
to help identify them.

Let's take a look at the capabilities of the control character
combinations you will be using regularly when working with the
UNIX system.

Temporarily Stopping Output. At times, you may wish to stop the
UNIX system temporarily from printing output on your terminal
monitor. This could surely be the case when you wish to keep
information from rolling off the screen monitor on a video display
terminal. If you type <As>, printing of output ceases; typing <Aq>
causes the printing to resume.

Terminating a Computing Session. When you have completed a
session with the UNIX system, you should type <Ad>. This is the
recommended way to log off the system and is described in detail
later in this chapter.

Additional Control Character Capabilities. The UNIX system
furnishes other control character capabilities. For instance, if your
terminal keyboard does not have a backspace key, typing <Ah> gives
you a backspace. Typing <Ai> gives you a tab key if your terminal
is set properly. (Refer to the section entitled Possible Problems When
Logging In for information on how to set the tab key.)

After you configure the terminal and survey its keyboard, you are
ready to establish communication with the UNIX system if you have
a login name.

2-10

OBTAINING A LOGIN NAME

Generally speaking, a log contains a record. of information or data
that notes a series of events or measures progress or performance.

The UNIX system procedure for logging in is based on this idea.
When you attempt to establish contact with the system, the UNIX
system verifies that you are an authorized user. If you pass the
system's security checks, the UNIX system allows you to log in. After
you are logged in, the system maintains a record of the resources you
use, the way in which you use them, and for how long. This log
helps the people who manage and maintain the system by giving
them complete user and resource allocation information.

To receive a login name, set up a UNIX system account through your
local system administrator or the person in charge of your UNIX
system installation. When the account is approved you should
receive notification of your login name and the telephone number of
the system to which your login is assigned.

Your login name is determined by local practices. Possible examples
are your last name, your nickname, or a UNIX system account
number. Typically, a login name is three to eight characters in
length. It can contain any combination of alphanumeric characters,
as long as it starts with a letter. It cannot, however, contain any
symbols. According to these rules, the following examples are legal
UNIX system login names: starship, mary2, and jmrs.

ESTABLISHING CONTACT WITH THE UNIX SYSTEM

When you attempt to contact the UNIX system, you will typically be
using a terminal that is directly wired to a computer or a terminal
that communicates with the system via a telephone connection.

If your terminal has a direct-wired connection, turn on the power and
the message login should appear on the upper left side of the screen
monitor or paper display.

If you must establish a dial-in connection, do the following:

L Dial the telephone number that connects you to the UNIX
system. You will hear one of the following:

• Busy signal, which means circuits are busy. Hang up and
dial again.

Continuous ringing and no answer. This usually indicates
that there is trouble with the telephone line or that the
system is inoperable because of mechanical failure or
electronic problems. Hang up and dial again later.

0 A high-pitched tone, which indicates the system is accessible.

2. When you receive the high-pitched tone, place the handset of the
phone in the acoustic coupler or momentarily depress the
appropriate button on the data phone set (you can determine this
by referring to the owner's manual for the equipment) and then
replace the handset in the cradle (Figure 2-3).

3. After a few seconds, the UNIX system should display the login
prompt.

4. If you are greeted with a series of meaningless characters, the
telephone number you called serves more than one baud rate and
the UNIX system is trying to communicate with you but is using
the wrong speed. Depress the BREAK or RETURN key, which
signals the system to try another speed. If the UNIX system does
not display the login prompt within a few seconds, depress the
BREAK or RETURN key once again.

ESTABLISHING CONTACT WITH THE UNIX SYSTEM

Figure 2-3. Left, data phone set (Data Set 212A *);

right, modem fo:r data phone set (DATAPHONE® II Modem);
lower :right, acoustic ooupler

login Procedure

When the connection is made and the UNIX system prompts for your
login name, type in your login name and depress <CR>. In the
following examples, starship is the login name.

I fog;n, starship< CR>

Remember to type in lowercase letters. If you use uppercase letters,
the UNIX system will also use uppercase letters until you log out and
log in again.

* Manufactured by AT&T Technologies, Inc.

® Registered trademark of AT&T

2-13

BASICS FOR UNIX SYSTEM USERS

Password!

After typing in your login name, the UNIX system prompts you for
your password. In a typical session, you would simply type in your
password followed by <CR>. For security reasons, the UNIX system
will not print (echo) your password on the terminal monitor.

If both your login name and password are acceptable to the UNIX
system, the system prints newsworthy messages for users. These
items might include details about a new system tool or furnish a
schedule for system maintenance. The news items are followed by
the UNIX system command prompt, which is the$ symbol.

Your terminal monitor should look something like the one that
follows when you complete the login sequence successfully:

login: starship<CR>
password:
UNIX system news
$

If you made a typing mistake that you did not correct before
depressing <CR>, the UNIX system displays the message login
incorrect on your terminal monitor and asks you to try again by
printing the login prompt. It is also possible that your
communication link with the UNIX system might be dropped in
which case you would have to try to log in again.

2-14

login: Uarship <CR>
password:
login incorrect
login:

ESTABLISHING CONTACT WITH THE UNIX SYSTEM

If you have never logged into the UNIX system, your login procedure
will differ somewhat from the typical one just described. This is
because as a first-time user you were probably assigned a temporary
password when your system account was set up and the system will
not allow you to access its resources until you choose a new one.

This extra step maintains a security requirement, which is that you
choose a password for your exclusive use. Protection of system
resources and your personal files depends on you keeping the
password you select private.

The actual procedure you will follow is determined according to
administration procedures at your computer installation site. A
typical example of what you might be expected to do if you have a
new UNIX system account and you are logging in for the first time
follows.

L The UNIX system displays the login prompt when you establish
contact with it. You should type in your login name followed by
<CR>.

2. When the UNIX system prints the password prompt, you should
type in your temporary password and depress <CR>.

3. At this point, the system tells you the temporary password has
expired and that it is time to select a new one.

4. The UNIX system asks you to input the old password again.
Type in your temporary password.

5. The system prompts you to input your new password. Type in
the password you choose.

The password you select is usually six to eight characters in
length and contains at least one numeric character. In addition,
you can also use special characters. Examples of valid passwords
are: mar84ch, Jonathon, and BRAV3S.

The UNIX system you are using may have different requirements
to consider when choosing a password. Ask another system user
or contact the system administrator if you are not sure of the
specifics.

2-15

BASICS FOR UNIX SYSTEM USIERS

6. For verification, the system requests that you re-enter your new
password. Type in the new password once again.

This is a valuable check for you and the UNIX system since a
password is not printed on the terminal monitor.

7. If you do not re-enter the new password exactly as you typed it
the first time, the system tells you that the passwords do not
match and asks you to try the procedure again. On some
systems, however, the communication link may be dropped if
you do not re-enter the password exactly as you typed it the first
time. If this is the case, you must begin the login procedure
again.

When the passwords match, the system displays the $ command
prompt.

The following screen summarizes this procedure for first-time UNIX
system users.

login: starship
password:
Your password has expired.
Choose a new one.
Old password:
New password:
Re-enter new password:
UNIX system news
$

External Security Code

<CR>
<CR>

<CR>
<CR>
<CR>

If you are able to access the UNIX system from outside your computer
installation site, you may need additional information to establish
contact with the UNIX system, such as a special telephone number or
another security code. To determine if this feature is available to
you, contact your system administrator.

2-16

ESTABLISHING CONTACT WITH THE UNIX SYSTEM

Possible Problems When logging 1111

A terminal usually behaves predictably providing you have
configured it properly. Sometimes, however, it may act peculiarly.
For example, each character you type may appear twice on the
terminal monitor or the carriage return may not work properly.

Some problems can be corrected by simply logging off the system and
logging on again. If logging on a second time does not remedy the
problem, you should first check the following and try logging in
once again:

• Keyboard-- Keys that are marked CAPS, LOCAL, BLOCK, and so
on should not be enabled, that is, in the locked position. You
can usually disable these keys simply by depressing them.

• Data phone set or modem -- If your terminal is connected to the
computer via telephone lines, verify that the baud rate and
duplex settings are correctly specified.

• Switches--Some terminals have several switches that must be set
to be compatible with the UNIX system. If this is the case with
the terminal you are using, make sure they are set properly.

Refer to the section Required Terminal Settings in this chapter if you
need information to verify the terminal configuration. If you need
additional information about the keyboard, terminal, and data phone
or modem, check the owner's manuals for the equipment.

Table 2-2 presents a list of procedures you can follow to detect,
diagnose, and correct some problems you may experience when
trying to establish contact with the UNIX system. If none of the
possibilities covered in the table helps you, contact the system
administrator or the person in charge of the UNIX installation at your
location.

2-17

TABLE 2-2

Troubleshooting Problems When Logging in*

Problemt

Stream of meaningless characters when
logging in

Input nn<l output is printed in
uppercase letters

Input is printed in UPPERCASE letters,
output in LOWERCASE

1nput is printed (echued) twice

Tab key does not work properly

Communication link cannot be
established in spite of receiving high
pitched tone when dialing in

Communication link between terminal
and UNIX system is repeatedly
dropped on logging in

Possible Cause

UNIX system attempting to
communicate at wrong speed

Terminal configuration includes
UPPERCASE setting

Action/Remedy

Depreso RETURN or BREAK key

Log off, set ch<i.ractcr generatiun to
LOVVFRCASE, and log in again

Key marked CAPS or CAPS LOCK is Depress the CAPS or CAPS LOCK key
locked or enabled to disable setting

Terminal is set to HALF DUPLEX mode Change setting to FULL DUPLEX mode

Tabs arc not set to advunce to next

Terminal is set to LOCAL or Off-LI:\fE
mode

Terminal is ~et to LOCAL or OFF-LIJ\-E
mode

Type stty -tabs+

Set terminal to ON-U['.;E operation and
try logging in aguin

Call system administrator

~ _'\umerous problems ran ocrur if your tt>rminal i.'> not rnnfigured properly To eliminate these possibilities before attempting to log in,
pnfnrm the rnnfigurution check;, listed 1m page 2-4.

t Some problems may be specific to your termmal, data set, or modem, check the owner's manual for this rguipment if suggested actionb do
nut rerni:;dy the prnblem .

.j. Typing stty -tabs corn~L"tb t<Jb bt'tting only for yuur current rnmputrn):; sessrnn. To insure correct tab setting for ull sessions, add the line
stty -tabs to your profile (see Chnpler 7).

ESTABLISHING CONTACT WITH THE UNIX SYSTEM

Simple Commands

When the $ command prompt is displayed on your monitor, you
know that the UNIX system recognizes you as an authorized user.
Your response to the $ command prompt is to request UNIX system
programs to run.

Type in the command date and press <CR> after the command
prompt. When you do this, the UNIX system retrieves the date
program and executes it. As a result, your terminal monitor should
look something like the following.

$ date<CR>
Wed Oct 12 09:49:44 CDT 1983
$

As you can see, the UNIX system prints the date and the time. In
this example, the CDT stands for Central Daylight Time. Your
terminal monitor will display the appropriate time for your
geographical location.

Now type the command who and depress <CR> . Your screen will
look something like this.

$ who<CR>
starship ttyOO Oct 12 8:53
mary2 tty02 Oct 12 8:56
acct123 tty05 Oct 12 8:54
jmrs tty06 Oct 12 8:56
$

2-19

BASICS FOR UNIX SYSTEM USERS

The who command lists the login names of everyone currently
working on your system. The tty designations refer to the names of
the special files that correspond to the terminals on which you and
other users are currently working. The login date and time for each
are also given.

logging Off

When you have completed a session with the UNIX system, you
should type <'d> after the $ command prompt. (Remember that
control characters such as the <'d> are typed by holding down the
control key and depressing the appropriate alphabetic key.) Since
they are nonprinting characters, they do not appear on the terminal
monitor. In a few seconds, the UNIX system should display the login
message again. This indicates you have logged off successfully and
someone else can log in at this time. Your terminal monitor should
look like the one that follows.

$ <'d>
login:

It is strongly recommended that you log off the system using <'d>
before turning off the terminal or hanging up the phone. It is the
only way to assure you have been logged off the UNIX system.

2-20

Chapter 3

USING THE FILE SYSTEM

PAGE

INTRODUCTION... 3-1

HOW THE FILE SYSTEM IS STRUCTURED... 3-4

YOUR PLACE IN THE FILE SYSTEM STRUCTURE .. 3-4

Your Home Directory... 3·6

Your Working Directory... 3·6

Path Names... 3-9

Full Path Names.. 3-9

Relative Path Names ... 3-12

ORGANIZING A DIRECTORY STRUCTURE .. 3-16

Creating Directories (mkdir) ... 3-16

listing the Contents of a Directory (/s) ... 3-19

Frequently Used ls Options... 3-21

Command Summary .. 3-24

Changing Your Working Directory (cd) .. 3-25

Removing Directories (rmdir) .. 3-27

ACCESSING AND MANIPULATHNG IFllLES .. 3-29

Basic Commands... 3·29

Displaying a File's Contents (cat, pg, pr) ... 3-30

Requesting a Paper Copy of a File (/p) ... 3-39

Making a Duplicate Copy of a File (cp) ... 3-41

Moving and Renaming a File (mv)•.. 3-44

Removing a File (rm)... 3-46

Counting lines, Words, and Characters in a File (we)............................. 3-4 7

Protecting Your Files (chmod) .•... 3-51

Advanced Commands.. 3-56

Identifying Differences Between Files (df/f) ••••....••••••.....••••••••....•...•..•••... 3-57

Searching a File for a Pattern (grep)•..•........•.........•..•••••.... 3-59

Sorting and Merging Files (sort).. 3·62

SUMMARY .. 3·64

Chapter 3

USING THE FILE SYSTEM

INTRODUCTION

To use the file system effectively you must be familiar with its
structure, know something about your relationship to this structure,
and understand how the relationship changes as you move around
within it. Reading this chapter serves as preparation to use this file
system.

The first ten or so pages should help to give you a working
perspective of the file system. These pages contain information on
the makeup of the file system and on how you fit into its
organization. The remainder of the chapter introduces you to a
number of UNIX system commands. Some you can use to build your
own directory structure, whereas others allow you to access and
manipulate the subdirectories and files you organize within it. And
others still allow you to examine the contents of other directories in
the system that you have permission to look at or to use.

Each command is discussed in a separate subsection in a way that will
allow you to use it effectively. Many of the commands presented in
this section have additional, sophisticated uses; these, however, are
left for more experienced users and are described in other UNIX
system documentation. You can choose to read these sections in the
order in which they are presented in the text or you can opt to read
about the commands and their capabilities in the order that best suits
your interests and purpose. Nevertheless, all the commands
presented are basic to using the file system efficiently and easily. It is
recommended that you read through them thoroughly and then try
them out. Before viewing how the file system is structured, however,
let's take a look at the structure of a command.

3-1

USING THE FILE SYSTEM

For the UNIX system to understand your intentions when using
commands, you must take care to see that you input commands using
the correct format, called the command line syntax. The command
line syntax provides a procedure for ordering elements in a command
line. H serves the same purpose as putting words in a certain
sequence or order so that you can meaningfully express your ideas
and thoughts to others. Without sentence structure, people would
have difficulty interpreting what you mean. Similarly, without
command line syntax, the UNIX system shell cannot interpret your
request.

Command line syntax consists of one or more of the following
elements separated by a blank or blanks and followed by pressing the
carriage return <CR> key:

where

command option(s) argument(s)

command is the name of the program you wish to run,

option modifies how the command runs, and

argument specifies data on which the command is to focus or
operate (usually a directory or file name).

A command line can simply contain a command name followed by
<CR>, or it can list options and/or arguments in addition to the
command. If you specify options and arguments on the command
line, you must separate them with at least one blank. Blanks can be
typed by pressing the space bar or the tab key. If a blank is part of
the argument name, enclose the argument in double quotation marks,
for example, "sample 1 ".

3-2

INTRODUCTION

Some commands allow you to specify multiple options and/or
arguments on a command line. Consider the following command
line:

Command
Arguments

Options

l l
A,---A--,~
wc -1 -wfilel file2 file3

In this example, we is the name of the command and two options -1
and -w have been specified. (The UNIX system usually allows you
to group options such as these to read -lw if you prefer.) In
addition, three files--filel, file2, and file3--are specified as arguments.
Although most options can be grouped together, arguments cannot.

The following examples show the proper sequence and spacing in
command line syntax:

Incorrect Correct

wcfile WC file
wc-lfile WC -1 file
WC -1 W file WC -lw file

or
WC -1 -w file

wc filelfile2 wc filel file2

You can refer back to the ground rules on command line syntax as
you read and work through the chapter.

3-3

USING THE FILE SYSTEM

HOW THE FILE SYSTEM IS STRUCTURED

The file system is comprised of a set of directories, ordinary files, and
special files. These components provide you with a way to organize,
retrieve, and manage information electronically. Chapter 1 introduced
you to directories and files, but let's review what they are before
learning how to use them to tap the resources of the file system.

In general, a directory is a collection of files and other directories.
Specifically, it contains the names of these files and directories. You
can build a directory to organize the files you create on the basis of
some similarity. An ordinary file is a collection of characters that is
stored on a disk. Such a file may contain text for a status report you
type or code for a program you write. Any information you wish to
save must be written into a file. And a special file represents a
physical device, such as your terminal.

The set of all the directories and files is organized into a treelike
structure. Figure 3-1 helps you to visualize this. It shows a single
directory called root as the source of a sample file structure. By
descending the branches that extend from root, several other major
system directories can be reached. By branching down from these,
you can, in turn, reach all the directories and files in the file system.
In this hierarchy, files and directories that are subordinate to a
directory have what is called a parent/child relationship. This type
of relationship is possible for many generations of files and
directories, giving you the capability to organize your files in a
variety of ways.

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

When you are interacting with the UNIX system, you will be doing
so from a location in its file system structure. The UNIX system
automatically places you at a specific point in its file system every
time you log in. From that point, you can move through the
hierarchy to work in any of the directories and files you own and to
access those belonging to others that you have permission to use.

The following sections describe your place in relation to the file
system structure and how this relationship changes as you move
through the file system.

3-4

w
' tn

0 =Directories

D = Ordinary Files

V =Special Files

Figure 3-1. Sample file system

<
0
c:
l:J ,,
r
>
(")
m
z
-I :c
m ,,
r
m
(J)
<
(/)
-I m
!::
(/)
-I
::l:J
c:
(")
-I
c:
:ti
m

USING THE FILE SYSTEM

Your Home Directory

When you successfully complete the login procedure, the UNIX
system positions you at a specific point in its file system structure
called your login or home directory. The login name that was
assigned to you when your UNIX system account was set up is
usually the name of this home directory. In fact, every user with an
authorized login name has a unique home directory in the file
system.

The UNIX system is able to keep track of all these home directories
by maintaining one or more system directories that organize them.
For example, let's say that the name of one of these system directories
is userl, and that it contains the home directories of the login names
starship, mary2, and jmrs. Figure 3-2 shows you how a system
directory like userl ranks in relation to the other important UNIX
system directories you read about in Chapter 1.

Within your home directory, you can create files and additional
directories (sometimes called subdirectories) to organize them, you
can move and delete these files and directories, and you can control
who can access your files and directories. You have full
responsibility for everything you create in your home directory
because you own it. Your home directory is a vantage point from
which to view all the files and directories it holds. It is also a point
from which to view the file system all the way up to root.

Your Working Directory

As long as you continue to work in your home directory, it is
considered your current or working directory. If you move to
another directory, that directory becomes your new working
directory.

There is a UNIX system command called pwd., which stands for print
working directory, that you can use to verify the name of the
directory in which you are currently working. For example, if your

3-6

O=Dlrectories

D =Ordinary Flies

'\J =Special Files

Figure 3-2. A directory that organizes home directories is equivalent to dire<lories like bin and Imp in the file system

USING THE FILE SYSTEM

login name is starship and you issue the pwd command in response to
the first $ prompt after logging in, the UNIX system should respond
as follows:

$ pwd<CR>
I userl I starship
$

The system reply indicates that your working directory is
I userl I starship. Technically, I userl I starship is the full or complete
name of the working directory. The name of a directory like
/userl/starship or a file is also referred to as a path name.

Printing the complete or full path name of your working directory in
response to a pwd command is a courtesy that the UNIX system
extends to you. The full path name indicates your exact position in
terms of the file system structure.

We will analyze and trace this path name in the next few pages so
you can start to move around in the file system. For now, it is
sufficient to say that what I userl I starship tells you is that the root
directory I (indicated by the leading slash in the line) contains the
directory userl, which in turn contains the current working directory,
which is starship. AU other slashes in the path name are simply used
to separate names of directories and files.

Remember, you are never more than issuing a pwd command away
from determining where you are in the file system. Issuing the pwd
command will be especially helpful if you try to read or copy a file
and the UNIX system tells you that the file you are trying to access
does not exist. You may be surprised to find that you are in a
different directory than you thought.

To provide you with a quick summary of what you can expect the
pwd command to do, a recap of how to use it follows.

3-8

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

Command Recap

pwd - print full name of working directory

command

pwd

Description:

Remarks:

Path Names

options arguments

none none

pwd prints the fuU path name of the directory in
which you are currently working.

If the system responds with messages, such as,
cannot open directory or read error in directory, there
may be problems with the file system. Inform
the system administrator.

Every file and directory in the UNIX system is identified by a unique
path name. The path name tracks or indicates the location of the file
or directory relative to the structure of the system. In addition to
identifying the location of a file or directory in the file system
structure, a path name provides directions to that file or directory.
Knowing how to follow the directions the path name gives is your
key to moving around the directory structure successfully.

In the file system, there are two types of path names -- full and
relative. Let's take a closer look at both types.

Full Path Names

A full path name (sometimes called an absolute path name) gives you
directions that take you from the root directory down through a
unique sequence of directories that leads to a particular directory or
file. You can use a full path name to reach any file or directory in
the UNIX system in which you are working. A full path name
always starts at the root of the file system and its leading character is
a I (slash). The final name in a full path name can be either a file
name or a directory name. All other names in the path must be
directories.

3-9

USING THE FILE SYSTEM

To understand how a full path name is constructed and where it can
lead you, let's use the sample file system (Figure 3-2) and say that you
are in the directory starship. H you issue the pwd command, the
system responds by printing the full path name of your working
directory, which is /used/starship.

We can analyze the elements of this path name using the following
diagram.

where:

I (leading)

userl

System
Directory Home

Directory

Root of the file system when it is the first character
in the path name,

System directory one level below root in the
hierarchy to which root points or branches,

I (subsequent) = Slash that separates or delimits the directory
names, used and starship, and

starship Current working directory, which is also the home
directory.

Now look at Figure 3-3, it traces the full path to /used/starship
through the sample file system we are using.

3-10

O=Dlrectories

D =Ordinary Flies

"\J =Spacial Files

Figure 3-3. Heavy bold lines trace the full path name of the directory /userl/starship

"<
0
c:
:c .,,
r;
n
m
z
-i
::i::
m ..,,
;=
m
(/)
"<
(/)
-i
m
;::
(/)
-i
:c
c:
!:l
c:
:c m

USING THE FILE SYSTEM

Relative Path Names

A relative path name is the name of a file or directory that varies
with relation to the directory in which you are currently working.
From your working directory, you can move "down" in the file system
structure to access files and directories you own or you can move "up"
in the hierarchy through generations of parent directories to the
grandparent of all system directories, the root. A relative path name
begins with a directory or file name, with a . (dot), which is a
shorthand notation for the directory in which you are currently
located, or a .. (dot dot), which is a shorthand notation for the
directory immediately above your current working directory in the
file system hierarchy. The .. (dot dot) is called the parent directory of
the one in which you are currently located, which is the current
directory or. (dot).

For example, if you are in the home directory starship in the sample
system and starship contains directories named draft, letters, and bin
and a file named mbox, the relative path name to any of these is
simply its name, be it draft, letters, bin, or mbox. Figure 3-4 traces the
relative path name from starship to draft.

Now, let's say the draft directory belonging to starship contains the
files outline and table. Then, the relative path name from starship to
the file outline is written as draft I outline.

Figure 3-5 traces this relative path. Notice that the slash in this path
name separates the directory named draft from the file named outline.
Here, the slash is a delimiter that indicates that outline is subordinate
to draft; that is, outline is a child of its parent, draft.

Thus far, the discussion of relative path names covered how to
specify names and directories of files that belong to, or are children
of, your current directory-- in other words, to descend the system
hierarchy level by level until you reach your destination. You can
also, however, ascend the levels in the system structure or ascend and
subsequently descend into other files and directories.

To ascend to the parent of your working directory, you can use the ..
notation. This means that if you are in the directory named draft in
the sample file system, .. is the path name to starship, and . ./ .. is the
path name to starship's parent directory userl. From draft, you could

3-12

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

0 = Directories

D =Ordinary Files

Figure 3-4. Relative path name for the draft directory is
traced with heavy bold lines

also trace a path to the file sanders in the sample system by using the
path name .. /letters/sanders (•. brings you up to starship, then down to
letters, and finally sanders).

Keep in mind that you can always use a full path name in place of a
relative one.

3-13

USING THE FILE SYSTEM

0 = Directories

D =Ordinary Files

Figure 3-5. The relative path draft/outline is traced in bold lines

In summary, some examples of full and relative path names would
be:

Path Name

I

/bin

3-14

Meaning

Full path name of the root directory
for the file system.

Full path name of the bin directory
that contains most executable
programs and utilities.

(continued on next page)

YOUR PLACE IN THE FILE SYSTEM STRUCTURE

Path Name

I userl I starship/bin/ tools

bin/ tools

tools

Meaning

Full path name of the directory called
tools belonging to the directory bin
that belongs to the directory starship
belonging to user1 that belongs to
root.

Relative path name to the file or
directory tools in the directory bin. If
the current directory is I, then the
UNIX system searches for I bin I tools.
But, if the current directory is starship,
then the system searches the full path
I userl I starship I bin I tools.

Relative
directory
directory.

path name
tools in

of a
the

file or
working

Knowing how to follow path names, such as in these examples, and
move about in the file system is a skill tantamount to being able to
read and follow a map when you are traveling in a new or unfamiliar
place.

It might take some practice to move around in the file system with
confidence. But this is to be expected when learning a new concept
and the techniques to use it.

To give you a chance to try your hand at moving about in the
system's structure, the remainder of the chapter introduces you to the
UNIX system commands that make it possible for you to peruse the
file system. If you lose track of where you are in the system's
structure, use the pwd command to identify your location.

3-15

USING THE FILE SYSTEM

ORGANIZING A DIRECTORY STRUCTURE

This section introduces you to four UNIX system commands that
make it possible for you to organize and use a directory structure.
These commands and what you can expect them to do are as follows:

mkdir -- Allows you to create or make new directories and
subdirectories within your current directory,

ls Allows you to list the names of aH the subdirectories
and files in a directory,

cd Provides you with the ability to change your location
from one directory to another in the file system, and

rmdir -- Lets you remove a directory when you no longer have
a need for it.

All of the commands can be used with path names--full or
relative--when organizing a directory structure and when moving to
the directories and subdirectories you organize, as well as when
navigating to directories in the file system that belong to others that
you have permission to access. Two of the commands -- ls and
cd--can also be used without a path name.

Each of the commands is described more fully in the four sections
that follow. In addition, a summary called a command recap is given
for each command. The command recaps allow you to review quickly
the command line syntax and the capabilities of each command.

Creating Directories (mkdir)

It is recommended that you create subdirectories in your home
directory according to some logical and meaningful scheme to help
you retrieve information you will keep in files. A convenient way to
organize your files is to put all files pertaining to one subject together
in a directory.

To create a directory, the UNIX system provides you with the mkdir
command, which stands for make directory. In the sample file

3-16

ORGANIZING A DIRECTORY STRUCTURE

system, the draft subdirectory in the home directory starship, for
example, may have been built by inputting the following while
located in starship:

$ mkdir draft< CR>
$

The $ response to the mkdir command indicates that a directory
named draft was successfully created.

Similarly, the other subdirectories named letters and bin were created
with the same command, as indicated in the following screen:

$ mkdir letters<CR>
$ mkdir bin<CR>
$

All the subdirectories (draft, letters, bin) could have been created in
one command with the same results, as the following screen shows:

$ mkdir draft letters bin< CR>
$

You can also move to a subdirectory you created and build additional
directories if necessary and reasonable. When you build directories,
or create files for that matter, you can name them anything you wish
as long as you keep in mind the guidelines presented in the
following list.

3-17

USING THE FILE SYSTEM

• The name of a directory (or file) can be from one to fourteen
characters in length.

• All characters other than I are legaL

• Some characters are best avoided, such as a blank or space, a tab,
or a backspace, and the following:

If you use a blank or tab in a directory or file name, you must
enclose the name in quotation marks on the command line.

0 A void using the +, - or . as the first character in names.

• Uppercase and lowercase characters are distinct to the UNIX
system. For example, the directory or file named draft would not
be the same as the directory or file named DRAFT.

Examples of legal directory or file names would be:

memo
file.c

MEMO
chap3+4

section2
iteml-10

ref:list
outline

See the command recap that follows for a quick reference to mkdir's
capabilities.

command

mkdir

Description:

Remarks:

3-18

Command Recap

mkdir - make a new directory

options arguments

none directoryname(s)

mkdir creates a new directory (subdirectory).

The system returns the $ prompt if the directory
is successfully created.

ORGANIZING A DIRECTORY STRUCTURE

Listing the Contents of a Directory (ls)

All directories in the file system have information about the files and
directories they contain, such as name, size, and the date last
modified. You can obtain this information about what your working
directory and other system directories contain by using the ls
command.

The ls command, which stands for list, lists the names of the files and
subdirectories of the directory you specify by path name. If you do
not specify a path name, ls lists the names of files and directories in
your working directory. To demonstrate how the ls command works,
let's use the sample file system (Figure 3-2) once again.

You are logged into the UNIX system and the shell responds to your
pwd command with the line /userl/starship. To display the names of
files and directories in the working directory, you would type
ls<CR>. After this sequence, your terminal should read:

$ pwd<CR>
$ I userl I starship
$ ls<CR>
bin
draft
letters
list
mbox
$

As you can see, the system responds by listing the names of files and
directories in the working directory starship in alphabetical order. If
the first character of any of the file or directory names was a number,
or a capital letter, it would have been printed first.

3-19

USING THE FILE SYSTEM

Now, if you want to print the names of files and subdirectories in a
directory other than your working directory without moving from
your working directory, you should use the command format:

ls directoryname <CR>

where the directory name is the full or relative path name of the
desired directory. This means that you can print the contents of draft
while you are working in starship by inputting ls draft<CR>.

$ ls draft<CR>
outline
table
$

In the example, draft is a relative path name from starship to draft. By
the same token, you could print the contents of the userl directory,
which is the parent of the starship by typing:

$ ls .. <CR>
jmrs
mary2
starship
$

where .. is the relative path name from starship to userl. You could
also list the contents of user1 by typing ls /used <CR> (since /userl
is the full path name from root to userl) and get the identical listing.

Similarly, you can list the contents of any system directory that you
have permission to access using the ls command and a full or relative
path name.

3-20

ORGANIZING A DIRECTORY STRUCTURE

The ls command is particularly useful if you have a long list of files
and you are trying to determine whether one of them exists in your
working directory. For example, if you are in the directory draft and
you wish to determine if the files named outline and notes are there,
you can use the ls command as follows:

$ ls outline notes<CR>
outline
notes not found
$

The output on the terminal monitor shows that the system
acknowledges the existence of outline by printing its name, but says
that the file notes is not found.

By the way, the ls command will not print the contents of a file. H
you wish to see what a file contains, you can use the cat, pg, or pr
command, which are described in the section of this chapter entitled
Accessing and Manipulating Files.

Frequently Used ls Options

The ls command also accepts options that cause specific attributes of a
file or subdirectory to be listed. There are more than a dozen
available options for the ls commands. Of these, the -a and -1 will
probably be most valuable in your basic use of the UNIX system.
Refer to the UNIX System User Reference Manual for information and
details on the other options.

Listing All Names in a File. Some important file names in your
home directory begin with a . (dot), such as .profile, . (the current
directory), and .. (the parent directory). The ls command will not

3-21

USING THE FILE SYSTEM

print these names unless you use the -a option in the command line.
Thus, to list all files in your working directory starship, including
those that start with a . (dot), type ls -a<CR>. The terminal
should look something like this:

$ ls -a<CR>

.profile
bin
draft
letters
list
mbox
$

Listing Contents in Long Format. Probably the most informative ls
option is -1. If you type ls -1 <CR> while in the starship directory,
you would get the following:

$ ls -l<CR>
total 30
drwxr-xr-x 3 starship project 96 Oct 27 08:16 bin
drwxr-xr-x 2 starship project 64 Nov 1 14:19 draft
drwxr-xr-x 2 starship project 80 Nov 8 08:41 letters
- rwx------ 2 starship project 12301 Nov 2 10:15 list
- rw------- 1 starship project 40 Oct 27 10:00 mbox
$

3-22

ORGANIZING A DIRECTORY STRUCTURE

After the command line, the first line of output, total 30, shows the
amount of memory used, which is measured in chunks called blocks.
Next is one line for each directory and file. The first character in
each of these lines tells you what kind of file is listed, where:

d =Directory,

- =Ordinary disk file,

b = Block special file, and

c =Character special file.

The next several characters, which are either letters or hyphens,
describe who has permission to read and use the file or directory.
(Permissions are discussed with the chmod command in the section
entitled Accessing and Manipulating Files in this chapter.) The
following number is the link count, which in the case of a file, equals
the number of directories it is in, or in the case of a directory, also
includes the number of directories immediately under it in the file
system structure. Next is the login name of the owner of the file,
which is starship, and then the group name of the file or directory,
which is project. The following number indicates the length of the
file or directory entry measured in units of information (or memory)
called bytes. Then there is the month, day, and time that the file was
last modified. Finally, the file or directory name is given.

Figure 3-6 sums up what you get when you list the contents of a
directory in long format.

3-23

USING THE FILE SYSTEM

Number of Owner
blocks used name

Number of

Number Group
characters

of links name

I Name

~ ~ i
total 30

~'wuu-x 3 starship project 96 Oct 27 08:16 bin
File rwxr-xr-x 2 starship project 64 Nov 1 14:19 draft
type ~ rwxr-xr-x 2 starship project 80 Nov 8 08:41 letters

rwx------ 2 starship project 12301 Nov 2 10:15 list
rw------- 1 starship project 40 Oct 27 10:00 mbox

~ "---v---J

I I
Time/ date last

Permissions modified

Figure 3-6. Description of output produced by the ls -1 command

Command Summary. Following is a recap of capabilities provided
by the ls command and two available options. See the UNIX System
User Reference Manual for information on other available options.

3-24

command

ls

Description:

Options:

Remarks:

ORGANIZING A DIRECTORY STRUCTURE

Command Recap

ls - list contents of a directory

options arguments

-a, -1, and others* directoryname(s)

ls lists the names of the files and subdirectories
in the specified directories. If no directory name
is given as an argument, the contents of your
working directory are listed.

-a Lists all entries, including those beginning
with . (dot).

-1 Lists contents of a directory in long format
furnishing mode, permissions, size in bytes,
and time of last modification.

If you want to read the contents of a file, use the
cat command.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Changing Your Working Directory (cd)

When you first log into the UNIX system, you are placed in your
home directory, which becomes your current or working directory.
You may, however, wish to work in a different directory for any
number of reasons. For example, you might want to create a file in a
specific directory, you may need to make corrections to a file in
another directory, or you may wish to obtain information by reading
a file in a different directory.

Whatever the reason, the UNIX system provides you with the cd
command that allows you to move around in its directory structure.
When you use the cd command to move to a new directory, that
directory becomes your working directory.

3-25

USING THE FILE SYSTEM

To use the cd command, enter the command:

cd newdirectory-pathname <CR>

where the path name, whether full or relative, to the new directory is
optional. Any valid path name of a directory can be used as an
argument to the cd command. If you use the cd command without
specifying a path name, it will move you to your login directory
regardless of where you are in the file system.

When you specify a valid directory path name on the command line,
the UNIX system moves you to that directory. For example, to move
from the starship directory to the child directory draft in the sample
file system, type cd draft<CR>. In this example, draft is the relative
path name to the desired directory. When you get the $ prompt,
verify your new location by typing pwd <CR>. Your terminal
monitor should look something like the following after going
through this sequence:

$ cd draft<CR>
$ pwd<CR>
I userl I starship I draft
$

Now that you are in the draft directory you can access the files and
directories in it, in this case, the files outline and table. You can also
create subdirectories in draft with mkdir and additional files with the
ed and vi commands. (See Chapter 4 for general information on the
ed and vi commands and Chapter 5 and Chapter 6 for tutorials on
using theed and vi commands, respectively.)

You may also use full path names with the cd command. For
example, to move to the letters directory from the draft directory, you
could use the command

cd /userl/starship/leUers<CR>

where I userl I starship /letters is the full path name to letters.

3-26

ORGANIZING A DIRECTORY STRUCTURE

Or, since letters and draft are both children of starship, you could use
the cd command with the relative path name .. /letters. The
notation moves you to the directory starship, and the remainder of the
path name moves you to letters.

If you wish to return to your home directory after perusing the file
system, simply type cd <CR>. The cd command with no arguments
returns you to your login directory.

command

cd

Description:

Remarks:

Command Recap

cd - change your working directory

options arguments

none directoryname

cd changes your position in the file system from
the current directory to the directory specified. If
no directory name is given as an argument, the
cd command places you in your home directory.

When the shell places you in the directory
specified, the $ prompt is returned to you. You
will also receive a $ prompt when you issue the
cd command with no argument. To access a
directory that is not in your working directory,
you must substitute the full or relative path name
in place of a simple directory name.

Removing Directories (rmdir)

If you decide you no longer need a directory, you can remove it with
the rmdir command. The rmdir command, which stands for remove
a directory, removes a directory if that directory does not contain
subdirectories and files, or, in other words, if the directory is empty.

3-27

!USING THE FILE SYSTEM

If the directory you are attempting to remove is not empty, rmdir
will not remove it unless you remove the contents of the directory
first. In addition, you are not allowed to remove directories
belonging to other system users unless you have permission to do so.

The standard format for the rmdir command is:

rmdir diredoryname(s)<CR>

where one or more directory names can be specified.

If you were to attempt to remove the directory bin in the sample file
system, the UNIX system would respond in the following manner:

$ rmdir bin<CR>
rmdir: bin not empty
$

To remove the directory bin with the rmdir command, you would first
have to remove the files display and list and the subdirectory tools. If
you wish to remove files, see the section entitled Accessing and
Manipulating Files in this chapter. To remove any subdirectories like
tools, use the rmdir comm.and. The system will return the $ prompt
in response to the rmdi:r command when the directory specified in
the command line is empty.

The command recap that follows summarizes how :rmdir works.

3-28

command

rmdir

Description:

Remarks:

ACCESSING AND MANIPULATING FILES

Command Recap

rmdir - remove a directory

options arguments

none directoryname(s)

rmdir removes named directories if they do not
contain files and/ or subdirectories.

If the directory is empty, the system returns the $
prompt when the directory is removed. If the
directory contains files or subdirectories, the
message, rmdir: directory name not empty is
returned to you.

ACCESSING AND MANIPULATING FILES

This section introduces you to several UNIX system commands that
access and manipulate files in the file system structure. Information
in this section is organized into two parts -- basic and advanced. The
part devoted to basic commands is fundamental to your using the file
system; the advanced commands offer you more sophisticated
information processing techniques when working with files. You
may skip reading the advanced section if you do not need to use the
commands it covers.

Basic Commands

This section discusses UNIX system commands that are important to
your being able to access and use the files in your directory structure.
Specifically, these commands and their capabilities are:

cat Outputs the contents of a file you name,

pg Prints on a video display terminal the contents of a file
you name in chunks or pages,

3-29

USING THE FILE SYSTEM

pr Prints on your terminal a partially formatted version of
the file you name,

lp Allows you to request a paper copy of a file from a
device called the line printer,

cp Makes a duplicate copy of an existing file,

mv -- Moves and renames a file,

rm -- Permanently removes a file when you no longer need it,

wc -- Counts the lines, words, and characters in a file, and

chmod --Changes permission modes for a file (and a directory).

Each command is covered in one of following sections. A command
recap follows the discussion of each command allowing you to review
quickly the command line syntax and command capabilities.

Displaying a File's Contents (cat, pg, pr)

The UNIX system provides three commands that allow you to display
and print the contents of a file or files--cat, pg, and pr. The cat
command, which stands for concatenate, outputs the contents of files
you specify by name on the command line, and displays the result on
your terminal unless you tell cat to direct the output to another file
or a new command. The pg command is particularly useful when
you wish to read the contents of a lengthy file or a number of files
because the command displays the text of a file in chunks or pages, a
screenful at a time at your direction on a video display terminal. The
pr command partially formats and outputs the files you specify on
your terminal unless you direct the output to a paper printing device
(see the Ip command in this chapter).

The following three sections describe how to use these commands.

Concatenate and Print Contents of a File (cat). The cat command
displays the contents of a file or files. For example, if you are located
in directory letters in the sample file system and you wish to display
the contents of the file johnson, you would type cat johnson <CR>
and the following output would appear on the terminal.

3-30

command

rmdir

Description:

Remarks:

ACCESSING AND MANIPULATING FILES

Command Recap

rmdir - remove a directory

options arguments

none directoryname(s)

rmdir removes named directories if they do not
contain files and/ or subdirectories.

If the directory is empty, the system returns the $
prompt when the directory is removed. If the
directory contains files or subdirectories, the
message, rmdir: directory name not empty is
returned to you.

ACCESSING AND MANIPULATING FILES

This section introduces you to several UNIX system commands that
access and manipulate files in the file system structure. Information
in this section is organized into two parts -- basic and advanced. The
part devoted to basic commands is fundamental to your using the file
system; the advanced commands offer you more sophisticated
information processing techniques when working with files. You
may skip reading the advanced section if you do not need to use the
commands it covers.

Basic Commands

This section discusses UNIX system commands that are important to
your being able to access and use the files in your directory structure.
Specifically, these commands and their capabilities are:

cat Outputs the contents of a file you name,

pg Prints on a video display terminal the contents of a file
you name in chunks or pages,

3-29

USING THE FILE SYSTEM

pr Prints on your terminal a partially formatted version of
the file you name,

Ip Allows you to request a paper copy of a file from a
device called the line printer,

cp Makes a duplicate copy of an existing file,

mv -- Moves and renames a file,

rm -- Permanently removes a file when you no longer need it,

wc -- Counts the lines, words, and characters in a file, and

chmod --Changes permission modes for a file (and a directory).

Each command is covered in one of following sections. A command
recap follows the discussion of each command allowing you to review
quickly the command line syntax and command capabilities.

Displaying a File's Contents (cat, pg, pr)

The UNIX system provides three commands that allow you to display
and print the contents of a file or files--cat, pg, and pr. The cat
command, which stands for concatenate, outputs the contents of files
you specify by name on the command line, and displays the result on
your terminal unless you tell cat to direct the output to another file
or a new command. The pg command is particularly useful when
you wish to read the contents of a lengthy file or a number of files
because the command displays the text of a file in chunks or pages, a
screenful at a time at your direction on a video display terminal. The
pr command partially formats and outputs the files you specify on
your terminal unless you direct the output to a paper printing device
(see the Ip command in this chapter).

The following three sections describe how to use these commands.

Concatenate and Print Contents of a File (cat). The cat command
displays the contents of a file or files. For example, if you are located
in directory letters in the sample file system and you wish to display
the contents of the file johnson, you would type cat johnson <CR>
and the following output would appear on the terminal.

3-30

ACCESSING AND MANIPULATING FILES

$ cat johnson <CR>
This file contains a letter
to Mr. Johnson on the topic of
office automation.
$

As you can see, the contents of the file are dispiayed after the
command line and are followed by the $ prompt.

To display the contents of two (or more) files, like johnson and sanders,
simply type $ cat johnson sanders<CR> and the cat command
reads johnson and sanders and displays their contents in that order on
your terminal.

$ cat johnson sanders<CR>
This file contains a letter
to Mr. Johnson on the topic of
office automation.
This file contains a letter
to Mrs. Sanders inviting her to
speak at our departmental
meeting.
$

To direct the output of the cat command to another file or to a new
command, see the section in Chapter 7 that discusses redirecting input
and output.

The command recap that follows summarizes what you can expect the
cat command to do.

3-31

USING THE FILE SYSTEM

Command Recap

cat - concatenate and print a file's contents

command

cat

Description:

Remarks:

options arguments

available* filename(s)

cat reads the name of each file given on the
command line and displays the contents of the
files.

If the file(s) exist, the contents are displayed on
the terminal monitor; if not, the message cat:

cannot open filename is returned to you.

If you wish to display the contents of a directory,
use the ls command.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Paging Through the Contents of a File (pg). The pg command, short
for page, allows you to examine the contents of a file or files
screenful by screenful on a video display terminal. The pg command
displays the text of a file in chunks or pages followed by a colon (:).
After displaying the colon, the system pauses and waits for your
instructions to proceed. For example, your instructions can request
pg to continue displaying the file's contents a page at a time or you
can ask pg to search through the file(s) to locate a specific character
pattern. Table 3-1 summarizes some of the instructions you can give
pg after the colon is displayed.

3·32

ACCESSING AND MANIPULATING FILES

TABLE 3-1

Summary of Selected Commands for pg*

Commandt

h

q or Q

<CR>

d or 'd

. or 'l

f

n

p

$

/pattern/

'pattern'

Meaning

Help; display list of available pg commands

Quit pg perusal mode

Display next page of text

Display next line of text

Display additional half page of text

Redisplay current page of text

Skip next page of text, and display following one

Begin displaying next file you specified
on command line

Display previous file specified on command line

Display last page of text in file currently
displayed

Search forward in file for specified character
pattern

Search backward in file for specified character
pattern

* See the UNIX System User Reference Manual for a detailed explanation of all available
pg commands.

t Most commands can be typed with a number preceding them: +I (display next page),
-I (display previous page), or I (display first page of text).

The pg command is especially useful when you wish to peruse a long
file or a series of files because the system pauses after displaying each
page allowing you as much time as you need to examine it. The size
of the page displayed depends on the terminal you are using. For
example, on a video display terminal with a window capable of
showing 24 lines, 23 lines of text and a line containing the colon
will be displayed as a page. However, if the file is less than 23 lines
long, the page size will be the number of lines in the file plus the
line containing the colon.

3-33

USING THE FILE SYSTEM

To peruse the contents of a file with pg, use the following command
line format:

pg filename(s) <CR>

For example, to display the contents of the file outline in the sample
file system, type pg outline<CR> and the first page of the file will
appear on the screen. Since the file has more lines in it than can be
displayed in one page, the colon indicates there is more to be looked
at when you are ready. Pressing the <CR> key will print the next
page of the file.

The following screen summarizes what has been done thus far.

3-34

$ pg outline<CR>
After you analyze the subject for your
report, you must consider organizing and
arranging the material you wish to use in
writing it.

An outline is an effective method of
organizing the material. The outline
is a type of blueprint or skeleton,
a framework for you the builder-writer
of the report; in a sense it is a recipe
:<CR>

ACCESSING AND MANIPULATING FILES

After pressing the <CR> key, the pg program will resume
outputting the file's contents on the screen as follows:

that contains the names of the
ingredients and the order in which
to use them.

Your outline need not be elaborate or
overly detailed; it is simply a guide you
may consult as you write, to be varied,
if need be, when additional important
ideas are suggested in the actual writing.
(EOF):

In addition to the remainder of the file's contents, a line with the
output (EOF): is displayed. The EOF designates that you have
reached the end of the file and the colon is your cue for the next
instruction.

When you have completed examining the file, you can type q or Q
followed by pressing the <CR> key and the $ prompt will appear
on your screen. Or you can choose to use one of the other available
commands given in Table 3-1 depending on your needs.

In addition, there are a number of options that can be specified on
the pg command line. Refer to the UNIX System User Reference
Manuai if you are interested in learning more about them.

The following command recap summarizes the highlights of pg's
capabilities.

3-35

USING THE FILE SYSTEM

Command Recap

pg - display a file's contents in chunks or pages

command

pg

Description:

Remarks:

options arguments

available* filename(s)

pg reads the name of each file given on the
command line and displays the contents of the
file(s) in chunks or pages, screenful by screenful.

After displaying a screenful of text, the pg
command awaits your instruction to continue to
display text, to search for a pattern of characters,
or to exit the pg perusal mode. In addition, a
number of options are available for you to use
with pg on the command line. For example, you
can start to display the contents of file at a
specific line or at a line containing a certain
sequence or pattern or you can opt to go back
and review text that has already been displayed.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Print Partially Formatted Contents of a File (pr). The pr command is
typically used to prepare files for printing. You can expect the pr
command to title, paginate, supply headings, and print a file
according to varying page lengths and widths on your terminal
monitor unless you specify that it prints on another output device,
such as a line printer (read the discussion on the Ip command in this
section), or you direct the printing to a different file (see the section
on redirecting input and output in Chapter 7).

If you choose not to specify any of the available options, the pr
command produces output that is in a single column with 66 lines
per page and is preceded by a short heading. The heading consists of
five lines--two blank lines; a line containing the date, time, file name,
and page number; and two more blank lines. And the formatted file
is followed by five blank lines. (Complete sets of text formatting

3-36

ACCESSING AND MANIPULATING FILES

tools, called nroff and troff, are available on UNIX systems equipped
with the appropriate application software. Check with your system
administrator to see if this software is available to you.)

Typically, the pr command is used in tandem with the lp command
to provide a paper copy of text as it was entered into a file. (See the
section discussing the lp command for details.) However, you can
also use the pr command to format partially and print the contents of
a file on your terminal. For example, to review the contents of the
file johnson in the sample file system, type in the command
pr johnson <CR>. The following screen summarizes this activity.

$ pr johnson <CR>

Nov 29 09:19 1983 johnson Pagel

This file contains a letter
to Mr. Johnson on the topic of
office automation.

$

Note that the ellipses after the last line in the file stand for the
remaining 58 lines (all blanks in this case) that pr formatted into the
output. If you are working on a video display terminal, which
typically allows you to view about 24 lines at a time, the entire
66 lines of the formatted file will print continuously and rapidly to
the end of file. This means that the first 41 lines will "roll" off the
top of your screen making it impossible for you to read them unless
you have the ability to "roll" or "page" back a screen or two. If you
are looking at a particularly long file, this feature might not solve the
problem.

3-37

USING THE FILE SYSTEM

In this case, you should use the control-s <As> combination to stop
printing on your terminal temporarily and control-q <Aq> to resume
the printing.

The command recap that follows summarizes what you can expect the
pr command to do.

Command Recap

pr - print partially formatted contents of a file

command

pr

Description:

Remarks:

options arguments

available* filename(s)

pr produces a partially formatted copy of a file(s)
on your terminal monitor unless otherwise
specified. The program prints the text of the
file(s) on 66-line pages and places five blank lines
at the bottom of each page and a five-line
heading at the top of each page. The heading
consists of two blank lines; a line containing the
date, time, file name and page number; and two
additional blank lines.

If the specified file(s) exists, the contents are
partially formatted and displayed on the screen;
if not, the message pr: can't open filename is
returned to you.

The pr command is most commonly used with
the lp command when a paper copy of a file is
needed. However, when using the pr command
to review a file on a video display terminal, use
<As> and <Aq> to temporarily stop and start
printing the file.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

3-38

ACCESSING AND MANIPULATING FILES

Requesting a Paper Copy of a File (lp)

At some point in time, you may want a paper copy of a file. Some
terminals have built-in printers that allow you to get paper copies of
files. In this case you simply need to turn the printer on and then
use cat or pr to print the file. If, however, you wish to obtain a
higher quality paper copy, you should consider using the ip
command. The lp command, which stands for line printer, allows
you to request a line-printing device to furnish you with a paper
copy of a file or files (Figure 3-7).

Figure 3-7. Examples of TELETYPE Model 40 line printers; left,
printer with tractor feed belt; upper right, printer with tractor

feed; bottom right, printer with high-speed tractor feed

The line printer or types of line printers that you have access to
depends on what your UNIX system facility has to offer. You should
ask your system administrator for the names of the line printers

3-39

USING THE FILE SYSTEM

available to you. Or you can type lpsl:at -v<CR> to obtain a
complete listing of every accessible line-printing device.

The basic format for the command is:

Ip file<CR>

For example, to print the file letters on a line printer, you would type
lp letters<CR> on the command line. In turn, the system would
provide you with the name of the device or type of device on which
the file will be printed and an identification (id) number indicating
your request. The following screen summarizes this activity.

$ Ip letters<CR>
Request id is laser-6885 1 file
$

The system response indicates that your job is to be printed on a laser
line-printing device (the system default), has a request id number of
6885, and is to include the printing of one file.

Using the -ddest (destination) option on the command line would
cause your file to be printed on another available device that you
name in place of dest. Using the -m option would cause mail to be
sent to you indicating when the job is completed.

If you would like to cancel the request to lp to print the file letters,
type cancel laser-6885<CR>, where laser-6885 is the request id.
The lpstat command gives the status and request id of the line
printer jobs.

A command recap follows that summarizes what you can expect of
the Ip command.

3-40

ACCESSING AND MANIPULATING FILES

Command Recap

Ip - request paper copy of file from a line printer

command

lp

Description:

Options:

Remarks:

options arguments

-d, -m, and others* file(s)

lp requests that specified files be printed by a
line printer, thus providing paper copies of the
contents.

-ddest Allows you to choose dest as the printer
or type of printer that is to produce the
paper copy. H you do not use this
option, the lp program specifies the
printer for you.

-m Sends a message to you via mail after
the printing is complete.

You can cancel a request to the line printer by
typing cancel and the request id furnished to you
by the system when the request was
acknowledged.

Check with the system administrator for
information on additional and/ or different
commands for printers that may be available at
your location.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Making a Duplicate Copy of a File (cp)

When using the UNIX system, you may wish to make a copy of a file.
For example, you might want to revise a file while leaving the
original version intact. The UNIX system provides you with the cp
command, short for copy, which copies the complete contents of one
file into another. The cp command also allows you to copy one or

3-41

USING THE FILE SYSTEM

more files from one directory into a different directory while leaving
the original file or files in place.

To copy the file named outline to a file named new.outline in the
sample directory, simply type cp outline new.outline<CR>. The
system returns the $ prompt when the copy is made. To verify the
existence of the new file, you can type ls<CR>, which lists the
names of all files and directories in the current directory, in this case
draft. The following screen summarizes the activity.

$ cp outline new.outline<CR>
$ ls<CR>
new.outline
outline
table
$

You know from looking at the sample file system that the file
new.outline did not exist before the cp command to copy outline to
new.outline was given. However, if it had, it would have been
replaced by a copy of the file outline and the previous version of
new.outline would have been deleted.

If you had tried to copy the file outline to another file named outline in
the same directory, the system would have told you that the file
names were identical and returned the$ prompt to you. If you listed
the contents of the directory to determine exactly how many copies of
outline exist, the terminal monitor would look something like the
following:

3-42

$ cp outline outline<CR>
cp: outline and outline are identical
$ ls<CR>
outline
table
$

ACCESSING AND MANIPULATING FILES

As you can see, the UNIX system does not allow you to have two files
with the same name in a directory.

You could, however, copy the file named outline from the directory
draft to another file named outline in the directory named letters by
using any of the following command lines assuming you are
currently in draft:

cp outline ""/letters/outline<CR>
cp outline . ./letters<CR>
cp outline /userl/starship/letters/ouHine<CR>
cp outline /use:rl/starship/letters<CR>

A copy of the file outline would reside in both directories draft and
letters after using one of these commands since each of them contains
a legal path name to the file outline. From this example, you can see
that the UNIX system allows you to have files with identical names as
long as they are in different directories.

If you would like to copy the file outline in the directory draft to a file
named outline.vers2 in the directory letters, you could use either of the
following command limes:

cp outline .. /letters/outline.vers2<CR>
cp outline /userl/sfarship /letters/ outline. vers2 <CR>

Keep in mind the conventions for naming directories and files given
in the section entitled Creating Directories in this chapter.

The following recap summarizes how the cp command works.

3-43

USING THE FILE SYSTEM

command

cp

Description:

Remarks:

Command Recap

cp - make a copy of a file

options

none

arguments

filel file2
file(s) directory

cp allows you to make a copy of filel and call it
file2 leaving filel intact, or to copy one or more
files into a different directory.

When copying filel to file2 and file2 already exists,
the cp command will overwrite the first version
of file2 with a copy of filel calling it file2. The
first version of file2 is deleted.

You cannot copy directories with the cp
command.

Moving and Renaming a File (mv)

The mv command allows you to rename a file in the same directory
or to move a file from one directory to another. If you move a file to
a different directory, the file can be renamed or it can retain its
original name.

To rename a file in a directory, use the following command:

mv filel file2<CR>

The mv command changes a file's name from filel to file2. Remember
that the names filel and file2 can be any valid names, including path
names.

For example, if you are in the directory draft in the sample file system
and you would like to rename the file table as new.table, simply type
mv table new.table<CR>. You should receive the $ command

ACCESSING AND MANIPULATING FILES

prompt if the command executed successfully. To verify that the file
new.table exists, you can list the contents of the directory by typing
ls< CR> . In turn, the terminal should read:

$ mv table new.table<CR>
$ ls<CR>
new.table
outline
$

You can also move a file from one directory to another keeping the
file's name the same or changing it to a different one. To do so, use
the following command line.

mv file(s) directory<CR>

where the file and directory names can be any valid names, including
path names.

To move the file table from the current directory named draft (whose
full path name is I userl I starship I draft) to a file with the same name in
the directory letters (whose relative path name from draft is .. /letters
and whose full path name is I userl I starship /letters), any one of several
command lines can be used, including the following:

mv table /userl/starship/leUers<CR>
mv table /userl/starship/letters/table<CR>
mv table .. /leUers<CR>
mv table .. /letters/table<CR>
mv /userl/starship/ draft/table /userl/starship /letters/table< CR>

The file table could have been renamed table2 when moving it to the
directory letters using any of the following:

mv table /userl/starship/letters/table2<CR>
mv table .. /leUers/table2<CR>
m v I userl I starship I draft I tab le2 I userl Is tars hip/ letters I tab le2 < CR>

3-45

USING THE FILE SYSTEM

You can verify that the command worked by listing the contents of
the directory with the ls command.

Refer to the recap that follows for a summary of how the mv
command works.

command

mv

Description:

Remarks:

Command Recap

mv - move or rename files

options

none

arguments

filel file2
file(s) directory

mv allows you to change the name of a file or to
move a file(s) into another directory.

When changing the name of filel to file2 and file2
already exists, the mv command will overwrite
the first version of file2 with filel and rename it
file2. The first version of file2 is deleted.

Removing a File (rm)

When you no longer need a file, you can get rid of it by using the rm
command, which is short for remove.

To remove one or more files, use the format:

rm file(s)<CR>

After the command executes, the file(s) you specified are removed
permanently.

To remove a file named new.outline in the current directory type
rm new.outline<CR> and Hst the contents of the directory with the
ls command to verify that the file new.outline no longer exists.

3-46

ACCESSING AND MANIPULATING FILES

To remove more than one file, such as the files outline and table, type
rm outline table<CR> and list the contents of the directory by
typing ls< CR> .

$ rm outline table<CR>
$ ls<CR>
$

The $ response indicates that the files named outline and table were
removed permanently.

The following recap summarizes how the rm command works.

command

rm

Description:

Remarks:

Command Recap

rm - remove a file

options

available*

arguments

file(s)

rm allows you to remove one or more files.

Files specified as arguments to the rm command
are removed permanently.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Counting Lines, Words, and Characters in a File (we)

The wc command, which stands for word count, reports the number
of lines, words, and characters there are in a file that you specify by
name on the command line. If you name more than one file, the wc

3-47

USING THE FILE SYSTEM

program counts the number of lines, words, and characters in each
specified file and then totals the counts. In addition, you can direct
the we program to give you only a line, a word, or a character count
by using the -1, -w, or -c options, respectively.

To determine the number of lines, words, and characters in a file, use
the following format on the command line:

wc filel <CR>

When you do, the system responds with a line in the format:

w c filel

where

= Number of lines in filel,

w =Number of words in filel, and

c = Number of characters in filel.

For example, to count the lines, words, and characters in the file
johnson in the current directory l.etters, type wc johnson <CR>. The
terminal monitor would show the following output:

$ wc johnson<CR>
3 14 78 johnson

$

The system response displays the line count (3), the word count (14),
and the character count (78) for the file johnson.

To determine the number of lines, words, and characters in more
than one file, use the following format:

WC filel file2<CR>

3-48

ACCESSING AND MANIPULATING FILES

In turn, the system responds with the following format:

w
w
w

c
c
c

filel
file2
total

where line, word, and character counts are displayed for filel and file2
on separate lines and the combined counts appear on the last line
called total.

If you request that the wc program count lines, words, and characters
in the files johnson and sanders in the current directory, the system
would respond as follows:

$ wc johnson sanders< CR>
3 14 78 johnson
4 16 95 sanders
7 30 173 total

$

In this case, the first line of the system response shows the line,
word, and character counts for the file johnson. The second line of
output gives line, word, and character counts for sanders. The last
line of output shows combined line, word, and character counts for
both files in the line labeled total.

If you prefer to get only a line, a word, or a character count, select
the appropriate format from the following lines:

WC

WC

WC

-1 filel <CR>
-w filel <CR>
-c filel <CR>

(line count)
(word count)
(character count)

3-49

USING THE FILE SYSTEM

For instance, by typing wc -1 sanders<CR> on the command line
you would obtain the following output:

$ wc -l sanders<CR>
4 sanders

$

The system tells you that the number of lines in the file sanders is 4 in
answer to specifying -1. If the -w or -c option was specified for
that file, the UNIX system would have responded with the number of
words or number of characters, respectively, in the file.

The command recap that follows summarizes how the wc command
works.

Command Recap

we - count lines, words, and characters in a file

command

WC

Description:

Options

Remarks:

3-50

options arguments

-1, -w, -c file(s)

wc counts lines, words, and characters in the
file(s) named keeping a total count of all tallies
when more than one file is specified.

-1 Counts the number of lines in the specified
file(s).

-w Counts the number of words in the specified
file(s).

-c Counts the number of characters in a
specified file(s).

When a file name is specified in the command
line, it is printed with the count(s) requested.

ACCESSING AND MANIPULATING FILES

Protecting Your Files (chmod)

The chmod command, short for change mode, allows you to decide
who can read, alter, and use your files and who cannot. Because the
UNIX operating system is a multiuser system, you are not working
alone in the file system: you and other system users can follow path
names and run system commands to move to various directories and
to read and use files belonging to one another if you have permission
to do so.

If you own a file, then you are able to determine who has the right to
read that file, to make changes to or write the file, and to run or
execute the file if it is a program. These permissions are defined as:

r = Allows system users to read a file or to copy its
contents,

w Allows system users to write changes into a file or
copy of a file, and

x = Permits system users to run an executable file.

Specifically, you can determine who in the population of UNIX
system users is entitled to these various permissions and who is not
according to the following classifications:

u = You, the user and login owner of your files and
directories,

g Members of the group to which you belong (the group
could consist of team members working on a project,
members of a department, or a group arbitrarily
designated by the person who set up your UNIX
system account), and

o = All other system users.

When you create a file or a directory, the system automatically grants
or denies permission specifically to you, members of your group, and
other system users. You can alter this automatic action to some extent
by modifying your environment, which is discussed in Chapter 7.
Regardless of how the permissions are granted when a file is created,
as the owner of the file or directory it is up to you to allow current

USING THE FILE SYSTEM

perm1ss10ns to remain in effect or to change them to suit your
purposes and the situation. For example, you may wish to keep
certain files private and for your use only. Or you may wish to grant
permission to read and to write changes into a file to members of
your group and all other system users as well. Or you may share a
program with members of your group by granting them permission
to execute it.

How to Determine Existing Permissions. You can determine what
permissions are currently in effect on a file or a directory by using
the command that produces a long listing of a directory's content,
which is ls -1. For example, typing ls -1 <CR> while in the
directory named starship/bin in the sample file system would produce
the following output:

$ ls -l<CR>
total 35
-rwxr-xr-x 1 starship project 9346 Nov 1 08:06 display
-rwx--x--x 1 starship project 6428 Dec 2 10:24 list
drwx--x--x 2 starship project 32 Nnv 8 15:32 tools
$

Permissions for the files display and list and the directory tools are
shown on the left of the terminal monitor under the line total 35, and
look like:

rwxr-xr-x
rwx--x--x
rwx--x--x

(file display)
(file list)
(directory tools)

These nine characters represent three groups of three characters. The
first set of three characters refers to your (or the user's/ owner's)
permissions, the second set to members of the group, the last set to
all other system users. Within each set of characters, the r, w, and x
indicate the permission currently enabled for the groups. If a dash
appears instead of an r, w, or x, permission to read, write, or execute
is denied.

3-52

ACCESSING AND MANIPULATING FILES

The following diagram summarizes this breakdown for the file named
display.

User Group Others

\1/
rwxr-xr-x

~
read

write
execute

Permission to write to
the file denied to
group and other

As you can see, the owner has r, w, and x permissions and members
of the group and other system users have r and x permissions.

How to Change Existing Permissions. After you have determined
what permissions are in effect, you can change them using the
following format:

chmod who + (or -) permission file(s)<CR>

where:

chmod =Name of program,

who =One of three user groups u, g, o:

u = User,

g = Group, and

o = Other.

+ - = Instruction that grants(+) or denies(-) permission.

3-53

USING THE FILE SYSTEM

permission Authorization to r, w, or x:

r = Read,

w = Write, and

x = Execute.

file(s) = File (or directory) name(s) listed; assumed to be
branches from your working directory, unless you use
full path (names).

This may sound a bit confusing. But, a few examples on how to use
the chmod command should help to make permission possibilities
clear.

Let's use the perm1ss10ns for the file display to experiment with
chmod. You can see from the permissions that as the user and owner
of display you can read, write, and run this executable file. You can
protect the file against accidentally changing it by denying yourself
write (w) perm1ss10n by typing the command line chmod
u-w display<CR>. After rece1vmg the $ prompt, type in
ls -1 <CR> to verify the permission has changed.

$ chmod u-w display<CR>
$ ls -l<CR>
total 35
-r-xr-xr-x
-rwx--x--x
drwx--x--x
$

1 starship project
1 starship project
2 starship project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

From this output, you can see that you no longer have permission to
write changes into the file, that is, unless you change the mode back
to include write permission.

Now, let's consider another example. Notice that permission to write
into the file display has been denied to members of your group and
other system users. These users, however, have read permission,
which means that any of these users can copy the file into their own
directories and then make changes to it. To prevent all system users

3-54

ACCESSING AND MANIPULATING FILES

from copying this file, you could deny them read perm1ss10n by
typing chmod go-r display<CR>. The g and o stand for group
members and all other system users, respectively, and the -r denies
them permission to read or copy the file. Check the results with the
ls -1 command.

$ chmod go-r display<CR>
$ ls -l<CR>
total 35
-rwx--x--x 1 starship project 9346 Nov 1 08:06 display
-rwx--x--x 1 starship project 6428 Dec 2 10:24 list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools
$

A Note on Permissions and Directories. If you read the preceding
pages describing the chmod command, you might have gathered that
you can use this command to grant or deny permission for directories
as well as files. It is true, you can. To do so, simply use the directory
name instead of a file name on the command line.

The impact, however, of granting or denying perm1ss1ons for
directories to various system users is worth considering. For example,
if you grant read permission for a directory to yourself (u), members
of your group (g), and other system users (o), every user who has
access to the system can read the names of the files that directory
contains by using the ls -1 command. Similarly, granting write
permission allows the designated users to create new files in the
directory and change and remove existing ones. And granting
permission to execute the directory allows the designated users the
ability to move to that directory (and make it their working directory)
by using the cd command.

An Alternate Method. The chmod method described in the
preceding pages is one of two ways to change permissions to read,
write, and execute files and directories. The method previously
described uses symbols, such as r, w, x and u, g, o, to specify
instructions to chmod. Hence, it is called the symbolic method.

3-55

USING THE FILE SYSTEM

The alternate method uses a number system called octal that is
different than the decimal number system we typically use on a
day-to-day basis. This method uses three octal numbers ranging from
0 through 7 to assign permissions. If you wish to use the octal
method when changing permission, see the description of chmod in
the UNIX System User Reference Manual.

Summary. The command recap that follows provides a quick
reference on how chmod works.

Command Recap

chmod - change permission modes for files (and directories)

command

chmod

Description:

Remarks:

instruction

who + - permission

arguments

filename(s)
directoryname(s)

chmod gives (+) or removes (-) read, write, and
execute permissions for three types of system
users: user (you), group (members of your group),
and other (all other users able to access the system
on which you are working).

The instruction set can be represented in either
octal or symbolic terms.

Advanced Commands

You will become more and more familiar with the file system as you
use the commands thus far discussed in this chapter. As this
familiarity increases so might your need or interest for more

3-56

ACCESSING AND MANIPULATING FILES

sophisticated information processing techniques when working with
files. This section introduces you to three commands that give you
just that. These commands and. their capabilities are listed as follows:

diff -- Finds difference between two files,

grep -- Searches a file for a pattern, and

sort -- Sorts and merges files.

The following discussion only scratches the surface on information
processing techniques available with the UNIX system. You may
refer to the UNIX System User Reference Manual for additional
information.

Identifying Differences Between Files (dijf)

The diff command locates all the differences between two files and
proceeds to tell you how to change the first file to be a carbon copy
of the second. It reports all differences between the files.

The basic format for the command is:

diff filel file2<CR>

If filel and file2 are identical, the system returns the $ prompt to you.
If not, the diff command instructs you on how to bring the first file
into agreement with the second by using line editor (ed) commands.
(See Chapter 5 for details on the line editor.) The UNIX system flags
lines in filel with the < symbol and file2 with the > symbol.

3-57

USING THE FILE SYSTEM

For example, if you use the diff command to identify differences
between the files johnson and sanders, the system would respond as
follows:

$ diff johnson sanders<CR>
2,3c2,4
< to Mr. Johnson on the topic of
< office automation.

> to Mrs. Sanders inviting her to
> speak at your departmental
> meeting.
$

The first line of the system response is

2,3c2,4

which means lines 2 through 3 in the file johnson must be changed
(designated by c) to lines 2 through 4 in the file sanders. The system
then displays lines 2 through 3 in the file johnson as follows:

< to Mr. Johnson on the topic of
< office automation.

and lines 2 through 4 in the file sanders

> to Mrs. Sanders inviting her to
> speak at our departmental
> meeting.

If you make these changes (using the ed or the vi text editing
program), the file johnson will be identical to the file sanders.
Remember, the diff command tells you exactly what the differences
are between the named files. If you simply want an identical copy of
a file, use the cp command.

3-58

ACCESSING AND MANIPULATING FILES

Refer to the recap that follows for a summary of what you can expect
the diff command to do when no options are specified. See the
reference to the UNIX System User Reference Manual for details on
available options.

Command Recap

diff - finds differences between two files

command

di ff

Description:

Remarks:

options arguments

available* filel file2

diff reports what lines are different in two files
and what you must do to make the first file
identical with the second.

Instructions on how to change a file to bring it
into agreement with another file are line editor
(ed) commands: a (append), c (change), or d
(delete). Numbers given with a, c, or d indicate
the lines to be modified. Also used are the
symbols < (indicating a line from the first file)
and > (indicating a line from the second file).

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Searching a File for a Pattern (grep)

You can request the UNIX system to search through files for a specific
word, phrase, or group of characters by using the grep command.
Technically, grep means globally search through a file or files to
locate a regular expression and print the lines that contain the
regular expression. Put simply, a regular expression is the pattern of
characters--be it a word, a phrase, or an equation--that you stipulate.

The basic format for the command line is:

grep pattern file(s)<CR>

3-59

USING THE FILE SYSTEM

Thus, to locate the line containing the word automation in the file
Johnson, you would type:

grep automation johnson. <CR>

and the system would respond as follows:

$ grep automation. johnson <CR>
office automation
$

The output gives you all the lines in the file Johnson that contain the
pattern for which you were searching, which is the word automation.

If the pattern contains multiple words or any characters that have a
special meaning to the UNIX system, such as $, I, *, ? , and so on, the
entire pattern must be enclosed in single quotes. (For an explanation
of the special meaning for these and other characters see the section
entitled Metacharacters in Chapter 7, Shell Tutorial.) For example, if you
are interested in locating the lines containing the pattern office
automation, the command line and system response would read:

$ grep 'office automation' johnson <CR>
office automation.
$

But what if you could not recall to whom you sent a letter on the
topic of office automation in the first place-- Mr. Johnson or Mrs.
Sanders? You could type:

grep 'office automation' john.son sanders<CR>

3-60

ACCESSING AND MANIPULATING FILES

If you did, the system would respond in the following manner:

$ grep 'office automation' johnson sanders<CR>
johnson:office automation.
$

The output tells you that the pattern office automation is found once in
the file Johnson.

In addition to the capabilities of the grep command that are
summarized in the recap that follows, the UNIX system provides
variations to the basic grep command, called egrep and fgrep, along
with several options that further enhance the searching powers of the
command. See the UNIX System User Reference Manual if you are
interested in learning more.

command

grep

Description:

Remarks:

Command Recap

grep - searches a file for a pattern

options arguments

available* pattern file(s)

grep searches the file or files you name for lines
containing a pattern and then prints the lines
that match. If you name more than one file, the
name of the file containing the pattern is given
also.

If the pattern you give contains multiple words
or special characters, enclose the pattern in single
quotes on the command line.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

3-61

USING THE FILE SYSTEM

Sorting and Merging Files (sort)

The UNIX system provides you with an efficient tool called sort for
sorting and merging files. The basic form of the command line is:

sort file(s)<CR>

which causes lines in the specified files to be sorted and merged in
the order defined by the ASCII representations of the characters in
the lines.

• Lines beginning with numbers are sorted by digit and listed
before letters in the output,

• Lines beginning with uppercase letters are listed before lines
beginning with lowercase letters, and

• Lines beginning with symbols, such as *, %, or @, are sorted on
the basis of the symbol's ASCII representation.

To get an idea of how the sort command works, let's say that you
have two files, named phasel and phase2, each containing a list of
names that you wish to sort alphabetically and finally interfile into
one list. First, display the contents of each file using the cat
command.

$ cat phasel <CR>
Smith, Allyn
Jones, Barbara
Cook, Karen
Moore, Peter
Wolf, Robert
$ cat phase2<CR>
Frank, M. Jay
Nelson, James
West, Donna
Hill, Charles
Morgan, Kristine
$

(Note: we could
cat phasel phase2<CR>
separately.)

ACCESSING AND MANIPULATING FILES

have used the command line
instead of listing the contents of each file

Now, sort and merge the contents of the two files using the sort
command. Note that the output of the sort program will print on the
terminal monitor unless you specify otherwise.

$ sort phasel phase2<CR>
Cook, Karen
Frank, M. Jay
Hill, Charles
Jones, Barbara
Moore, Peter
Morgan, Kristine
Nelson, James
Smith, Allyn
West, Donna
Wolf, Robert
$

In addition to putting together simple listings as in the previous
examples, the sort command can rearrange the lines and parts of lines
(called fields) according to a number of other specifications you can
designate on the command line. The possible specifications are
complex and are not within the scope of this text. You should
consult the UNIX System User Reference Manual for a full rundown on
the available options.

However, the following command recap summarizes the capabilities
of the sort program.

3-63

USING THE FILE SYSTEM

command

sod

Description:

Remarks:

Command Recap

sort - sorts and merges files

options arguments

available* file(s)

sod sorts and merges lines from the file or files
you name and displays the result on your
terminal.

If no options are specified on the command line,
lines are sorted and merged in the order defined
by the ASCH representations of the characters in
the hnes.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

SUMMARY

This chapter described the structure of the file system and presented
ways to use and to navigate through the file system via UNIX system
commands. The next chapter gives you an overview of a variety of
UNIX system capabilities, such as text editing, using the shell as a
command language, communicating electronically with other system
users, and programming and developing software.

3-64

Chapter 4

UNIX SYSTEM CAPABILITIES

PAGE

INTRODUCTION... 4·1

TEXT EDITING... 4-1

What Is a Text Editor?... 4-2

How Does a Text Editor Work?.. 4-2

Text Editing Buffers .. 4-2

Modes of Operation... 4-3

Line Editor... 4-4

Screen Editor .. 4-5

WORKING IN THE SHELL ... 4·6

Using Shell Shorthand... 4-7

Redirecting the Flow of Input and Output ... 4-9

Redirecting the Standard Output (>) .. 4-11

Redirecting and Appending the Standard Output (> >) 4-13

Redirecting the Standard input (<) .. 4-13

Connecting Commands with the Pipe (I) ... 4-14

Summary ... 4-16

Running Multiple Programs .. 4-16

Executing Commands in Sequence ... 4-16

Executing Commands Simultaneously ... 4-17

Customizing Your Computing Environment ... 4-19

COMMUNICATING ELECTRONICALLY .. 4-20

PROGRAMMING IN THE SYSTEM ... 4-21

Programming in the Shell 4-21

Programming in the C Language... 4-23

Other Programming Languages... 4-24

Tools to Aid Software Development .. 4-25

Source Code Control System (SCCS) .. 4-25

Remote Job Entry (RJE) ... 4-26

Maintaining Programs (make) .. 4-26

Generating Programs for Lexical Tasks (/ex) .. 4-27

Generating Parser Programs (yacc)•.. 4-27

Chapter 4

UNIX SYSTEM CAPABILITIES

INTRODUCTION

This chapter serves as a transition between the first three chapters in
the overview part of this guide and the four tutorials that follow.
The material in this chapter combines basic, fundamental concepts
about the UNIX system covered in the first three chapters of this
guide with information about system capabilities that you may use to
do your computing work efficiently and effectively.

This chapter provides an overview of the following UNIX system
capabilities: text editing, working in the shell, communicating
electronically, and programming in the UNIX system environment.
In addition, it serves as an introduction to chapters 5, 6, 7, and 8--Line
Editor Tutorial, Screen Editor Tutorial, Shell Tutorial, and Communication
Tutorial, respectively.

TEXT EDITING

You have read a good deal about files up to this point simply because
using the file system is a way of life in a UNIX system environment.
The information in this section will enhance your knowledge about
manipulating files by introducing you to a software tool called a text
editor. A text editor provides you with the ability to create and
modify files: it will help you to fare well in the UNIX system since a
considerable amount of your computing time may be spent writing
and revising letters, memos, reports, or source code for programs that
will be stored in files.

This section contains information that tells you what a text editor is
and how it works. In addition, this section acquaints you with two
types of text editors supported on the UNIX system: the line editor
and the visual, or screen, editor. Since you will probably come to
prefer one of these editing programs over the other--even if you
learn to use them equally well--the line editor and the screen editor

UNIX SYSTEM CAPABILITIES

are briefly compared to help you to assess their capabilities. For
detailed information on the line editor and the screen editor, see
Chapter 5 and Chapter 6.

What Is a Text Editor?

When you write or type letters, memos, and reports and then decide
to change what you have written or typed, you will use skills
required in text editing. These skills include inserting new or
additional material, deleting unneeded material, transposing material
(sometimes called cutting and pasting), and finally preparing a dean,
corrected copy. Text editors perform these tasks at your direction
making writing and revising text much easier and quicker than if
done by hand or on a typewriter.

In the UNIX system, a text editor is much like the UNIX system shell.
Both a text editor and the shell are programs that accept your
commands and then perform the requested functions--essentially,
they are both interactive programs. A major difference between a text
editor and the shell, however, is the set of commands that each
recognizes. All the commands you have learned up to this point
belong to the shell's command set. A text editor, on the other hand,
has its own distinct set of commands that allow you to create, move,
add, and delete text in files, as well as acquire text from other files.

How Does a Text Editor Work?

To understand how a text editor works you need information about
the environment created when you use an editing program and the
modes of operation understood by a text editor.

Text Editing Buffers

To create a new file, you must ask the shell to put the editor in
control of your computing session. When you do, a temporary work
space is allocated to you by the editor. This work space is called the
editing buffer, in it you can enter information you want the file to
hold and modify it if you wish.

Because you are in a temporary work space when using a text editor,
the file you are creating along with the changes you make to it are
also temporary. This work space allotment and what it is holding

4-2

TEXT EDITING

will exist only as long as you work in the editing program. If you
wish to save the file, you must tell the text editor to write the
contents of the buffer into a storage area. If you do not tell the editor
to write or record what you have done during the editing session, the
buffer's contents will disappear when you leave the editing program.
If you forget to write a new file or update an existing one, the text
editors remind you to do so when you attempt to leave the editing
environment.

To modify an existing file, the procedure is almost identical to the
one you follow when creating a new file. First, call the editor and
give it the name of the file you wish to change. In turn, the editor
makes a copy of the file that is in the storage area and places it in the
buffer so you can work on it.

When you finish editing the file, you can write the buffer's contents
into storage and leave the editing program knowing the file is
updated and ready to be recalled when you need it again. Or you
can chose to leave the editor without writing the file if you have
made a critical mistake or you are unhappy with the edited version.
This step leaves the original file intact and the edited copy
disappears.

Regardless of whether you are creating a new file or updating an
existing one, the text you put in the buffer is organized into lines. A
line of text is simply the series of characters that appears horizontally
across a row of typing that is ended by pressing the <CR> key.
Occasionally, files may contain a line of text that is too long to fit on
the terminal monitor. Some terminals will automatically display the
continuation of the line on the next row of the monitor, whereas
others will not.

Modes of Operation

Text editors are capable of understanding two modes of operation:
the command mode and the text input mode.

When you begin an editing session, you will automatically be placed
in command mode. In command mode, all your input is interpreted
as a command. Typical editing commands allow you to move about
in a file, search for patterns in the file's contents, or print a portion of
a file on the terminal monitor. The input mode is entered when you

4-3

UNIX SYSTEM CAPABILITIES

use a command to create text. Once in input mode, what you type on
the keyboard is placed into the buffer as part of the text file until you
send the appropriate instruction to the editor that returns you to
command mode.

You may occasionally lose track of the mode in which you are
working by attempting to enter text while in command mode or by
trying to enter a command while in input mode. This is something
even experienced users do from time to time. It will not take long to
recognize the mistake and it will be apparent what to do to remedy
these situations as you work through the tutorials in Chapter 5 and
Chapter 6.

Une Editor

The line editor, accessed by the ed command, is a fast, versatile
program for preparing text files. This editor gets its name because it
operates on the lines of text a file holds. For example, to change a
single character in a file, you specify the line of the file that contains
the character you wish to change and then specify the change.

Put simply, you manipulate text on a line-by-line basis with the line
editor. Commands for this text editor can change lines, print lines,
read and write files, and initiate text entry. In addition, you can
specify the line editor to run from a shell program; something you
cannot do with the screen editor. (See Chapter 7 for information on
basic shell programming techniques.)

The line editor works equally well on paper printing terminals and
video display terminals. It will also obligingly accommodate you if
you are using a slow-speed telephone line.

Refer to Chapter 5, Line Editor Tutorial, for instructions on how to use
this editing tool. Also see Appendix D for a summary of line editor
commands. If you are interested in a comparison of line editor (ed)
and screen editor (vi) features, see Table 4-1.

4-4

TEXT EDITING

TABLE 4-1

Comparison of Line (ed) and Screen (vi) JEditors

Feature Line Editor (ed) Screen Editor (vi)

Recommended Paper-printing or VDT* VDT
terminal type

Speed Accommodates high- Works best via high-
and low-speed data speed data
transmission lines. transmission lines

(1,200+ baud).

Versatility Can be specified to run Must be used
from shell scripts as well interactively during
as used during editing editing sessions.
sessions.

Sophistication Changes text quickly. Changes text easily.
Uses comparatively However, can make
small amounts of heavy demands on
processing time. computer resources.

Power Provides a full set of Provides its own
editing commands. editing commands and
Standard UNIX system recognizes all line
text editor. editor commands as

well.

* VDT = video display terminal

Screen Editor

The screen editor, accessed by the vi command, is a display-oriented,
interactive software tool. When you use the screen editor, your
terminal acts as a window to let you view the file you are editing a
screenful or page at a time. This editor works most efficiently and
effectively when used on a video display terminal operating at 1,200
or higher baud.

For the most part, modifications to a file (such as, additions, deletions,
and changes) are accomplished by positioning the cursor at the point
in the window where the modification is to be made and then
making the change. In other words, the screen editor displays tl}e
effects of editing changes in the context in which you make them.

4-5

UNIX SYSTEM CAPABILITIES

Because of this feature, the screen editor in considered to be much
more sophisticated than the line editor.

Furthermore, the screen editor offers a replete collection of
commands. For example, a number of screen editor commands allow
you to move the cursor around within the window to a file. Other
commands move the window up or down through a page or more of
the file. Still other commands allow you to change existing text or to
create new text. In addition to its own set of commands, the screen
editor has access to all the commands offered by the line editor. This
arsenal of commands accounts for the screen editor's tremendous
power.

There is, however, a trade-off for the screen editor's speed, visual
appeal, efficiency, and power, which is the heavy demand that it
places on the computer's processing time. For example, a simple
change might cause an entire screen to need updating. Moreover, if
simple changes lead to long delays while you wait for a screen to be
updated, the pleasant experience of using a visual-oriented editor can
be somewhat diminished.

Refer to Chapter 6, Screen Editor Tutorial, for instructions on how to
use this software. And see Appendix E, which contains a summary of
screen editor commands. If you wish to compare the features of the
line editor (ed) and the screen editor (vi) see Table 4-1.

WORKING IN THE SHELL

Every time you log into the UNIX system you will be communicating
directly with a program called the shell. You will continue to
interact with the shell until you log off the system, unless you use a
program, such as a text editor, that temporarily suspends your
dealings with the shell until you are finished using that particular
program.

The shell is much like other programs, except that instead of
performing one job, as cat or ls does, it is central to most of your
interactions with the UNIX system. This is because the shell's
primary function is to act as an interpreter between you and the
computer on which the UNIX system is running. As an interpreter,

4-6

WORKING IN THE SHELL

the shell translates your requests into language the computer
understands, calls requested programs into memory, and executes
them.

This section acquaints you with some of the ways you can use the
shell as the command language interpreter to simplify a computing
session and to enhance your ability to use system features. In
addition to running a single program for you, you can also use the
shell to:

• interpret the name of a file or a directory you input in an
abbreviated way using a type of "shell shorthand,"

• redirect the flow of input and output of the programs you run,

• execute multiple programs, and

• tailor your computing environment to meet your individual
needs and preferences.

In addition to being the command language interpreter, the shell is
also a programming language. If you would like an overview of shell
programming capabilities, see the section entitled Programming in the
System at the end of this chapter. Or refer to Chapter 7, Shell Tutorial,
for detailed information on how to use the shell as a command
language interpreter and as a programming language. A separate
document, UNIX System Shell Commands and Programming, should be
consulted for complete, unabridged information on shell
programming.

Using Shell Shorthand

Many UNIX system commands require that you name a file or a
directory as an argument to it on a command line, such as mkdir
directory name(s)<CR> or rm filename(s)<CR>. Easy enough!
But suppose you have 12 files to remove corresponding to monthly
reports for 1983 named reptl, rept2, rept3, rept4, and so on? Or
suppose you need to move 24 files corresponding to file names sectl,
sect2, ... sect24 to a different directory?

4-7

UNIX SYSTEM CAPABILITIES

Typing the file name for each monthly report after the rm command
or the file name for each section after the mv command is still easy,
but all the repetition gets tedious after inputting four or five names.

In instances like these, you should consider using shorthand notation
when specifying file or directory names. If the file or directory
names have some part in common, you can use a type of shorthand to
tell the shell that you are referring to all of them on the basis of the
similarity without specifying each one individually. Or, if a file has a
unique character or sequence of characters within a group of similarly
named files, you can use this shorthand notation to locate the file on
the basis of the difference.

The UNIX system recognizes several characters as having special
meanings when they are used in place of a directory name or when
they appear as part of a file or directory name on a command line.
These characters allow you to specify the names of files and
directories in a rapid, abbreviated way. Some of the characters are
referred to as metacharacters because of their special meanings to the
shell.

The special characters are . .. ? * [] - \ and their meanings are
summarized in Table 4-2. When you specify file or directory names,
you can substitute various characters within them with the
appropriate shorthand abbreviation. Any part of the name that is not
a special character is taken at its literal value.

For example, for the possibilities described at the beginning of this
section, typing rm rept* <CR> would remove all the files in the
current directory starting with the characters rept followed by any
other characters corresponding to monthly reports for 1983, and
typing mv sect* .. /chapter3<CR> would move all the files from the
current directory beginning with the letters sect and followed by any
other characters to another directory named chapter3 belonging to its
parent directory.

Details on how to use the special characters appear in other chapters
of this guide as indicated in Table 4-2. Refer to that chapter for the
information you need.

4-8

WORKING IN THE SHELL

TABLE 4-2

Shorthand Notation for File and Directory Names

Special Detailed
Character Meaning Reference

Current directory Chapter 3

Parent directory Chapter 3

? Match any single character Chapter 7

* Match any number of characters Chapter 7

[J Designate a sequence of characters to
be matched, such as [abc] or [628] Chapter 7

Specify a character range within
[], such as A-Z Chapter 7

\ Remove meaning of special characters Chapters 2, 7

Redirecting the Flow of Input and Output

Up to this point in the UNIX System User Guide, any request to ask the
shell to execute a command was done by inputting the command and
the necessary argument(s) on the terminal keyboard. In turn, the
output, if any, was displayed on the terminal monitor. This pattern
illustrates the idea of standard input and standard output.

In general, the place from which a program expects to receive its
input is called the standard input. A UNIX system command called
mail, which you will learn more about in Chapter 8, provides a good
example of this and warrants mentioning here. For example, to use
mail, you would simply type mail jmrs<CR> and the mail
command takes everything you type on your keyboard after <CR>
until you type <~d> as input. After you type <~d>, mail sends
your input to the person with the login name jmrs. The place to
which a program writes its results, in this case the login name jmrs, is
referred to as the standard output.

In the UNIX system, most commands expect to receive their input
from the keyboard and then display output on the terminal monitor.

4-9

UNIX SYSTEM CAPABIUTiES

By default, then, the standard input is the keyboard and the standard
output is the terminal monitor (Figure 4-1).

Figure 4-1. Standard input/output flow. A program's standard
input and standard output are usually assigned to your terminat

You can, if you wish, use a feature called redirection to change these
defaults. Put simply, redirection is a UNIX system feature that allows
you to request the shell to reassign standard input and/or standard
output to other files or devices.

With the redirection feature, you can request the shell to do the
following:

• reassign to a file any output that a program would ordinarily
send to your terminal,

• have a program take its input from a file rather than from your
terminal keyboard, or

• use a program as the source of data for another program.

You request the shell to redirect input and output using a set of
operators, which are > (greater than sign), > > (two greater than
signs), < (less than sign), and I (a pipe). Now let's take a look at what
each of these operators can do for you.

4-10

WORKING IN THE SHELL

Redirecting the Standard Output (>)

The > operator allows you to redirect the output of a command (or
program) into a file (Figure 4-2).

G

Figure 4-2. Standard output can be redirected
from your terminal to a file.

To use the > operator, follow the command line format:

command> newfile<CR>

in which you can choose to surround the > operator with spaces as
indicated in the command line or leave the spaces out
(command>newfile<CR>); either method is correct.

For example, if you have two files, named groupl and group2 each
containing a list of names with telephone extension numbers that you
would like to sort alphabetically and then interfile into a separate file
called members, you would type:

sort groupl group2 > members<CR>

When you do, the UNIX system first alphabetically sorts and then
interfiles the contents of the files groupl and group2 and redirects the

4-11

UNIX SYSTEM CAPABILITIES

output into the file called members rather than displaying it on your
terminal. If you wish to read the contents of the members file, you
could use the cat or pg command.

Therefore, if the contents of the file groupl is:

Smith, Allyn 101
Jones, Barbara 203
Cook, Karen 521
Moore, Peter 180
Wolf, Robert 125

and the contents of the file group2 is:

Frank, M. Jay 118
Nelson, James 210
West, Donna 333
Hill, Charles 256
Morgan, Kristine 175

then the file members would appear as follows on your terminal when
displayed with the cat command.

$ sort phasel phase2 > members<CR>
$ cat members<CR>
Cook, Karen 521
Frank, M. Jay 118
Hill, Charles 256
Jones, Barbara 203
Moore, Peter 180
Morgan, Kristine 175
Nelson, James 210
Smith, Allyn 101
West, Donna 333
Wolf, Robert 125
$

Keep in mind that if the file to which you are redirecting the
standard output already exists, its contents will be replaced with the
output of the redirection command.

4-12

WORKING IN THE SHELL

Redirecting and Appending the Standard Output (> >)

Occasionally, you might like to add information to the end of an
existing file. You can use the > > operator to do so. Simply input
the following command line:

command > > file< CR>

For example, if the file members that was created in the previous
section was subject to additions and deletions, it might be a good idea
to date the list so you know at a glance what version of the list you
are using. You could do so by typing

date>> members<CR>

on the command line and the date and time would be printed at the
end of the file members. Or instead of adding the date to the end of
the file members, you could have appended another file containing
even more names.

Redirecting the Standard Input (<)

Standard input can be redirected as well as standard output with the
< operator. The general command line format for input redirection
is:

command < file<CR>

in which the < operator informs the command (or program) to take
input from the file you specify rather than from the terminal
keyboard (Figure 4-3).

4-13

UNIX SYSTEM CAPABILITIES

Figure 4-3" You can ask the shell to take a program's
input from a file rather than from your terminaL

For example, if you would like to send a copy of the file members to
co-workers who work on your UNIX system and who have the login
names mary2 and jmrs, typing

mail mary2 jmrs < memlbers<CR>

will accomplish the task. The mail command, however, does not
know whether it received its input from the file members (which it
did) or from your keyboard. Rather, input/output redirection is a
service provided by the UNIX system shell and is available to every
program. (You will learn more about the mail command in
Chapter 8.)

Connecting Commands with the Pipe (/)

The pipe operator is a powerful, yet flexible, mechanism for doing
computing tasks quickly and without the need to develop special

4-14

WORKING IN THE SHELL

purpose tools. You can use it to redirect the standard output of one
program to be the standard input of another (Figure 4-4). Generally,
the format for using the pipe is:

command I command< CR>

STANDARD
OUTPUT

Figure 4-4. You can use the output from one
program to be the input for another.

A popular example of this is taking the output of the who command
(which you were introduced to in Chapter 2) and using it as input to
the we command (which counts lines, words, and/or characters) as
follows:

who I wc -1 <CR>

This example shows that the standard output of the who command
was passed to the we -1 command (-1 is the option that counts the
number of lines output by the who command, each corresponding to
a user who is logged into your UNIX system.)

4-15

UNIX SYSTEM CAPABILITIES

Summary

Table 4-3 summarizes which operator performs which redirection task
and what general format should be followed in using it. Refer to the
section on redirection in Chapter 7 for details on how to use them.

TABLE 4-3

Options for Redirecting Input and/ or Outputt

Action

Redirecting output to a file

Redirecting and appending
output to a file

Redirecting input from a file

Redirecting output of first
command to be input for
second

Operator General Format

> command > filename

> > command > > filename

< command < filename

command I command

* See Chapter 7 for complete details on how to use these options.

f Blank spaces immediately before and after redirection operators are optional.

Running Multiple Programs

There are two methods for running multiple programs: you can
specify more than one command to execute in sequence from a single
command line or you can run commands simultaneously.

Executing Commands in Sequence

Up to this point, the command li.nes to which you have been
introduced and examples for using them have dealt with asking the
shell to run a single request or program. For example, each of the
command lines cat filename<CR>, date<CR>, and ls -1
directoryname<CR> requests the shell to perform one task. You
can, however, ask the shell to execute more than one request per
command line. Sequential execution allows you to enter as many
commands as you wish on one command line and have them execute
in the order in which you input them.

4-16

WORKING IN THE SHELL

To do so, you should first be familiar with the general rules for
command line syntax given in Chapter 3. Briefly, command line
syntax orders elements in the command line so that the command
name, any options you wish to specify, and the data on which the
command is to operate (usually the name of a file or directory) follow
one another.

To execute more than one command on a line, simply separate the
request sequences with semicolons (;) as follows:

command option(s) argument(s); command option(s) argument(s); ... <CR>

For example, to determine where you are in the file system and then
list the contents of the directory in which you are working, you can
type pwd; ls<CR> and the terminal monitor might read:

$pwd; ls< CR>
I userl I starship I bin
dir
list
tools
$

As you can see, the output of the multiple commands is ordered the
same way the input is: first, the current working directory is given
(in response to pwd) and, then, the names of the files and/or
directories it holds follow (in response to ls).

You could just as easily type who am i; date; who<CR> or
mkdir directoryabc; cd directoryabc; pwd <CR> or any
combination of commands that you wish to use.

Executing Commands Simultaneously

In addition to running programs sequentially, you can choose to run
them simultaneously. To do so, you need to know the difference
between foreground and background commands. When a program
runs in the background, the computer is executing that program
concurrently with the commands that you enter or with the program

UNIX SYSTEM CAPABILITIES

that you run in the foreground. However, the computer considers
your foreground work more important, in a sense, than your
background program. This difference has no perceivable effect on the
execution of most programs, but running a job in the background is a
useful technique when you wish to run a lengthy or time-consuming
job without tying up your terminal.

All the command lines used in this guide until now have been
examples of foreground commands. This means that they were
initiated and run to completion before other commands could be
executed and before the shell would return the $ prompt for you to
continue. However, you also have the option of running a command
in the background so you can continue to work in the foreground.

You can run a command in the background by placing an ampersand
(&)at the end of the command line as follows:

command option(s) argument(s) &<CR>

When the shell reads the &, it starts running the program, prints an
identification number, and displays the $ prompt so you can use the
terminal immediately for other work.

To save the output from the job you are running in the background,
you must redirect the results of the execution into another file so you
can look at or use the output when you are ready. For example, if
you input the command cat filel file2 > file3 &<CR>, the shell
would first give you an identification number, and then the prompt.
H will also save the results of cat filel file2 in a file named file3.
When you are ready to peruse file3, simply use cat or pg. If you do
not redirect the output, then no output is saved.

When a program is running in the background, it ignores interrupt
and break signals, but if you log off, the shell terminates the
background program along with the computing session. If you
would like to stop a background command while you are still logged
into the UNIX system, type kill id <CR>, where id is the
identification number of the command. On the other hand, to have a
program continue to run after you log off, you can use the nohup
command (which stands for "no hang up") in the following way

nohup command &<CR>

4-18

WORKING IN THE SHELL

When you do, the command will continue to run until completion
and its output is saved in a file called nohup.out (which stands for
nohup output).

Customizing Your Computing Environment

The information in this section deals with another dimension of
control provided to you by the shell called your environment. When
you log into the UNIX system, the shell automatically sets up a
computing environment for you. You can choose to use it as
supplied by the system or you can tailor it to meet your needs.

By default, the environment set up by the shell includes the
variables:

HOME= your login directory,

PA TH = route the shell takes to search for executable files
or commands (typically PATH=:/bin:/usr/bin), and

LOGNAME = your login name.

If you find the default environment satisfactory, simply leave it as it
is and go on with your work. However, if you would like to modify
it, you must have a file in your login directory named .profile. If you
do not, you can create one with a text editor like ed or vi.

To determine if you have a .profile, move to your login directory and
type cat .profile<CR> and its contents should appear on the
terminal monitor. Typically, the .profile tests for mail and sets data
parameters, system variables, and terminal settings.

Possible modifications to your login environment might include
changing your login prompt, setting tab stops, and changing erase
and kill characters. H you would like to customize your .profile, see
the section entitled Modifying Your Login Environment, in Chapter 7.

4-19

UNIX SYSTEM CAPABILITIES

COMMUNICATING ELECTRONICALLY

Before the days of office automation, you would probably have
thought of relaying a message or information to someone either
personally or by way of a letter, note, or telephone conversation.
Now as a UNIX system user, you can choose to communicate
electronically with other UNIX system users by way of the computer.

You can send messages or transmit information stored in files to other
users who work on your system or on another UNIX system. To do
so, your UNIX system must be able to communicate with the UNIX
system to which you wish to send information. In addition, the
command you use to send information depends on what you are
sending.

This guide introduces you to these communication programs:

mail -- This command is typically used for sending messages
to others and reading the messages sent to you. You
can use mail to send messages or files to other UNIX
system users using their login names as addresses.
And, at your convenience, you can use the mail
command to read messages sent to you by other users.
With mail, the recipient can choose when to read it.

uuto / uupick -- These commands are used to send and retrieve files.
You use the uuto command to send a file(s) to a
public directory; when its available to the recipient,
the person is sent mail telling him/her that the file(s)
has arrived. The recipient then can use the uupick
command to copy the file(s) from the public directory
to the directory of choice.

mailx -- This command is a sophisticated, more powerful
spin-off of mail. It offers a number of options for
managing the electronic mail you send and receive.

Chapter 8 teaches you how to use the mail, uuto, and uupick
commands. It also introduces you to the mailx command so you can
begin to use it.

4-20

PROGRAMMING IN THE SYSTEM

PROGRAMMING IN THE SYSTEM

The UNIX system provides an efficient, effective, and convenient
environment for programming and software development. This
section briefly describes the environment and your programming
options when working in it.

If you are not a programmer, your immediate reaction might be to
skip this section. But you need not be a programmer or software
developer to enjoy some of the capabilities that fall under the realm
of programming.

For example, you can use the shell as a command level programming
language as well as the command line interpreter. Shell
programming capabilities are useful and usable techniques that allow
you to take simple, existing programs and make them more powerful.
So why not read on.

On the other hand, if you're interested in sophisticated programming
and software development capabilities, this section can serve as a
springboard to using them.

What you can expect to find in the next few pages is an overview of
shell and C language programming and a mention of other languages
that can be used on the UNIX system. In addition, an overview of
some UNIX system tools for software development is included.

Programming in the Shell

Most interactive users of the UNIX system think of the shell solely as
the command language interpreter. The shell, however, is also a
command level programming language. What this means is that you
can let the shell continue to act as your liaison with the computer or
you can program the shell to repeat sequences of instructions and to
test certain considerations for you automatically. When you program
the shell to perform a task, you use the shell to read and to execute
commands that you place in an executable file. These files are
sometimes called shell scripts or shell procedures.

When you use the shell in this manner, it provides you with features,
like variables, control structures, subroutines, and parameter passing

4-21

UNIX SYSTEM CAPABILITIES

that are very similar to those offered by programming languages.
These features provide you with the ability to create your own tools
by linking together system commands.

For example, you can write a simple shell procedure from existing
UNIX system programs that tells you the date and time along with
the number of users working on your UNIX system. One way to do
so is illustrated in the following screen:

$ cat > users<CR>
date; who I we -l<CR>
<~d>

$ chmod u+x users<CR>
$

A file called users is created using the > redirection operator. In the
example, cat is taking as input everything you type after <CR> on
the command line and placing it in a file named users. Then the file
is made executable with the chmod command. If you type the
command users<CR>, your terminal monitor would look something
like the next screen.

$ users<CR>
Tues May 22 10:29:09 CDT 1984

7
$

The output tells you that seven users were logged into the system
when you typed the command at approximately 10:30 A.M. on
Tuesday, May 22.

4-22

PROGRAMMING IN THE SYSTEM

For additional information on shell procedures and for more
sophisticated shell programming techniques, see Chapter 7, Shell
Tutorial, for step-by-step instructions.

Programming in the C language

C is a general purpose programming language. It is a relatively
"low level" language, which means that C deals with the same sort of
objects that most computers do, namely characters, numbers, and
addresses. These may be combined and moved about with the usual
arithmetic and logic operators.

C is closely associated with the UNIX system because it was
developed on the UNIX system and because UNIX system software is
largely written in C.

Although the C programming language is implemented on many
computers, it is independent of any particular machine architecture.
With a little care, it is easy to write portable programs, that is,
programs that can be run without change on a variety of computers if
the machine supports a C compiler.

The C programming language comprises the following main
elements:

• Types, operators, and expressions--Constants and variables are the
basic data objects manipulated in a program. Constants are data
objects that do not change during the execution of a program,
while variables are assigned new values throughout execution.
Declarations list variables, state type, and perhaps initial values.
Operators specify what is to be done on them. Expressions
combine variables and constants to produce new values.

• Control flow--Control flow statements of a language specify the
order in which computations are done. In C, these include if­
else, else-if, and switch statements, and while, for, and do-while
loops. In addition, break, continue, and goto statements can be
used. Labels can be used as well.

4-23

UNIX SYSTEM CAPABILITIES

• Functions and program structure--C programs generally consist of
numerous small functions rather than a few big ones. These
functions break large computing tasks into smaller ones and
enable you to build on what others have done.

• Pointers and arrays--A pointer is a variable that contains the
address of another variable. Pointers are frequently used when
programming in C because oftentimes they provide the only way
to express a computation and partly because their use typically
leads to more compact and efficient code than can be obtained in
other ways.

• Structures--A structure is a collection of one or more variables,
possibly of different types, that are grouped together under a
single name for convenient handling. Structures help to
organize complicated data because they permit a group of related
variables to be treated as a unit instead of separate entities.

• Input and output--A standard I/0 library containing a set of
functions designed to provide a standard input and output
system is available for C programs. This library is a UNIX
system feature available for programming in C.

These elements are covered in detail in The C Programming Language
by R W. Kernighan and D. M. Ritchie (Prentice-Hall, 1978).
Additional information is also available in the UNIX System
Programming Guide.

Other Programming Languages

In addition to C, other programming languages are available for use
on the UNIX system, such as FORTRAN-77, BASIC, Pascal, COBOL,
APL, LISP, and SNOBOL

You can obtain details on FORTRAN and its variations in the UNIX
System Programming Guide. Or contact your AT&T Technologies
Account Representative for document availability and ordering
information on the others.

4-24

PROGRAMMING IN THE SYSTEM

Tools to Aid Software Development

This section highlights some sophisticated software development
tools available on the UNIX system. The tools are designed to make
development of software easier and to provide you with a systematic
approach to programming.

There are numerous software development aids provided by the
UNIX operating system. This section introduces you to five of them
to give you an idea of what you can expect development utilities to
do. They are:

SCCS -- Source Code Control System,

RJE -- Remote job entry,

make -- Maintaining programs,

lex -- Generating programs for simple lexical tasks, and

yacc -- Generating parser programs.

Refer to the UNIX System Support Tools Guide and the UNIX System
Programming Guide for more information.

Source Code Control System (SCCS)

The Source Code Control System (SCCS) is a collection of UNIX
system commands that helps you to control and report changes to
source code files or text files. secs allows you to access different
versions of the same file while maintaining only one file. The way
this works is that SCCS stores the original file on a disk. Whenever
modifications are made to the file secs stores only those changes as a
set in something called a delta. Each delta or set of changes is
numbered to reflect the different versions of a file. You can then
choose to retrieve either the original file or a version of the original
file.

4-25

UNIX SYSTEM CAPABILITIES

By allowing SCCS to sto:re and control all iterations of a file, space
allocations for storage are minimized and administration of different
versions of the same program or document is efficient and simplified.
Updates to files can be made quickly and the original version of a
program or document is retained if you should need to recall it later.

For additional information, see the UNIX System Support Tools Guide.
Most of the commands needed to use SCCS are documented in the
UNIX System User Reference Manual.

Remote Job Entry (RJE)

Remote job entry (RJE) is a software package designed to facilitate
communication between a UNIX operating system and an IBM
System/360 or an IBM System/370 computer. The RJE software
allows the UNIX operating system to communicate with the IBM Job
Entry Subsystem by mimicking an IBM System/360 remote
multileaving work station. A set of background processes support
RJE, and the UNIX system uses these processes to submit jobs for
remote execution on the networked IBM system.

When RJE software runs, it does so in the background. It transmits
jobs (consisting of job control statements [JCL] and input data) that
you queue with the send command and status reports you request
with the rjestat command. In turn, the RJE software subsystem
receives print and punch data sets and message output from the IBM
system.

For more information on RJE software, see the UNIX System Support
Tools Guide. Commands to be used with RJE are covered in the UNIX
System User Reference Manual and the UNIX System Administrator
Reference Manual.

Maintaining Programs (make)

The make command :is a tool for maintaining, supporting, and
regenerating large programs or documents on the basis of smaller
ones. Since it is easier to handle and modify small programs, it is
recommended that if you wish to develop a large program, you start
by creating a series of smaller ones that work together to produce the
large one.

4-26

PROGRAMMING IN THE SYSTEM

The make command provides you with a method to store all the
information you need to assemble small programs or modules into a
large, more sophisticated one. A file called a makefile holds the file
names of the small programs, the steps necessary to generate the
large program, and specifies the dependencies among the files.

When make executes the makefile, the date and time you last
modified any of the small programs are checked and the operations
needed to update them are performed in sequence. Then, make goes
on to create the overall large program.

For details on the operation of make, see the UNIX System Support
Tools Guide. Or, for a quick reference, see the entry for make in the
UNIX System User Reference Manual.

Generating Programs for Lexical Tasks (lex)

The lex utility generates programs to be used in simple lexical
analysis of text. Lexical analysis is done by evaluating a stream of
characters and constructing the forms that are acceptable to the
language. Proper forms are defined in the lex program and usable
forms can be defined by lex defaults or by you. Lex produces a
subroutine as output that must be compiled and combined with other
programs to use the lexical analyzer.

The processing done by the lex command can be the first step in
creating a compiler-type program. In addition, it can be useful as a
preprocessing tool for many different software generation functions.

For additional information on the lex command, see the UNIX System
Support Tools Guide. A brief description of how lex operates and an
explanation of its options can be found in the UNIX System User
Reference Manual.

Generating Parser Programs (yacc)

The yacc program, short for yet another compiler compiler, is
primarily used in the generation of software compilers. Essentially,
yacc is a utility for creating parser subroutines. The way this works
is that first yacc uses specified syntax and produces source code for a
parser subroutine. Then, the parser subroutine is compiled, and
finally used with a program that calls it to parse input. In this way,

4-27

UNIX SYSTEM CAPABILITIES

structure can be imposed on the input to a program and the desired
language can be created from defined rules.

See the UNIX System Support Tools Guide for details on the yacc
command. Or refer to the UNIX System User Reference Manual far
some general guidelines on how to use it.

4-28

UNIX SYSTEM TUTORIALS

Contents

Chapter 5. line Editor Tutorial

Chapter 6. Screen Editor Tutorial

Chapter 7. Shel~ Tutorial

Chapter 8. Communication Tutorial

Chapter 5

LINE EDITOR TUTORIAL (ed)

PAGE

INTRODUCING THE LINE EDnTOR .. 5-1

HOW TO READ THIS TUTORIAL... 5-2

GETTING STARTED... 5-3

How to Access ed 5-4

How to Create Text... 5-5

How to Display a line of Text... 5-6

How to Delete a line of Text .. 5-8

How to Move Up or Down a line in the File.. 5-9

How to Save the Butler Contents in a File .. 5-10

How to Quit the Editor.. 5-11

EXERCISE 1... 5-13

GENERAL FORMAT OF ed COMMANDS... 5-13

LINE ADDRESSING... 5-14

Number Line Addresses.. 5-15

Special Symbols Addresses.. 5-16

Current line Address Character.. 5-16

Last Line Address Character... 5-17

Address for the First Line Through the Last Line.................................... 5-18

Address for the Current Line Through the Last Line............................... 5-18

Relative Addressing, Adding or Subtracting Lines from the Current Line..... 5-19

Charncter String Addresses 5-21

Specifying a Range of Lines... 5-24

Specifying a Global Search ··································-······································ 5-26

EXERCISE 2... 5-29

PAGE

DISPLAY LINES IN A FILE.. 5-30

Display Lines of Text.. 5-30

Display Lines of Text Preceded by the Line Address Number....................... 5-31

CREA Tl NG TEXT.. 5-33

Appending Text... 5-33

lnserti n g Text.. 5-36

Changing Text... 5-37

EXERCISE 3... 5-39

DELETING TEXT.. 5-41

Deleting Lines of Text... 5-41

Undo the Last Command... 5-43

Deleting Commands in the Text Input Mode ... 5-44

Deleting the Current Line.. 5-44

Deleting the Last Characters Typed.. 5-45

SUBSTITUTING TEXT... 5-47

Substituting on the Current Line ... 5-49

Substituting on One line... 5-50

Substituting on a Range of Lines.. 5-50

Global Substitution.. 5-52

EXERCISE 4... 5-54

SPECIAL CHARACTERS... 5-56

EXERCISE 5... 5-67

MOVING TEXT ... 5-69

Move Lines of Text.. 5-69

Copy Lines of Text.. 5-72

Joining Contiguous Lines.. 5-7 4

Write Lines of Text to a File.. 5-75

Read in the Contents of a File.. 5-77

EXERCISE 6... 5-79

PAGE

OTHER USEFUL COMMANDS AND INFORMATION... 5-79

Help Commands.. 5-79

Display No11pri11ti11g Characters... 5-82

The Current File Name .. 5-84

Escape to the Shell... 5-86

Recover Frnm a System Interrupt ... 5-87

Conclusion .. 5-87

EXERCISE 7 ... 5-88

ANSWERS TO EXERCISES... 5-90

Exercise 1 ... 5-90

Exercise 2 ... 5-91

Exercise 3 ... 5-93

Exercise 4 ... 5-96

Exercise 5 ... 5-97

Exercise 6 ... 5-100

Exercise 1 ... 5-101

Chapter 5

LINE EDITOR TUTORIAL (ed)

INTRODUCING THE LINE EDITOR

This tutorial is an introduction to the line editor, ed. The advantages
of the line editor are speed and versatility. ed requires very little
computer time to perform editing tasks. The line editor commands
can be typed in by you at a terminal, or they can be used in a shell
program. (See Chapter 7, Shell Tutorial.)

When you enter ed, you are placed in a temporary buffer. The buffer
is like a piece of scratch paper for you to work on until you have
finished creating or correcting your text in this scratch pad buffer. If
you are creating a new file, you enter commands from your terminal
that tell ed how to create or modify your text in this scratch pad
buffer. If you are editing an existing file, a copy of that file is placed
in the buffer. Changes are made to the copy of the file. The changes
have no effect on the original file until you instruct ed, using the
"write command", to move the contents of the scratch pad buffer into
the file.

You can create text in a file line by line, just as you would on a
typewriter. However, ed is easier to use than a typewriter because it
gives you commands that allow you to change, delete, or add text on
several lines in the file, and then display those lines of text on your
terminal. You can also add text from another file.

After you have read through this tutorial and have done the
examples and exercises, you will have a good working knowledge of
ed. The following basics will be covered:

• A brief introduction to ed, accessing the line editor, creating
some text, displaying the lines of text, deleting lines, writing the
text to a UNIX system file, and quitting ed,

- How to address those lines of the file that you want to work on,

5-1

UNE EDITOR TUTORIAL (ed)

" How to display lines of text,

• How to create text,

" How to delete text,

" How to substitute new text for old text,

• How to use special characters as shortcuts for search and
substitute patterns,

• How to move text around in the file, and

• Some other useful commands and information.

HOW TO READ THIS TUTORIAL

In this tutorial, commands printed in bold should be typed into the
system exactly as shown. The system responses to those commands
are shown in italic. Text that you type into a file is not shown in
bold. You should assume that each line you type in at your terminal
ends in a carriage return unless the text directs you to do something
else. The carriage return is denoted by <CR>. As you read the text,
you may want to glance back to this section for a quick recap of these
conventions.

bold command (Type in exactly as shown.)

italic response (The system's response to the command.)

roman (Text that is being typed into a file.)

<CR> (Carriage return.)

A display screen or partial screen, like the one above, will be used to
illustrate the commands. Because ed is versatile and can be used on
any type of terminal, you may not be working on a video display

5-2

GETTING STARTED

terminal. However, the lines you type in, and the system responses
are the same whether you are working with a video display terminal
or a paper printing terminal.

The ed commands are introduced by depicting the corresponding key
on your keyboard. The key will appear as shown below in the
example of the "a" key.

Notice that the letter on the key appears as it does on your keyboard.
However, when you press the key, the letter will appear in lowercase
on your terminal. If you need an uppercase letter, the example will
include the SHIFT key.

The commands discussed in each section are reviewed at the end of
that section. A summary of the ed commands discussed in this
chapter is found in Appendix D, where they are listed in alphabetical
order, as well as by topic.

At the end of some sections, exercises are given so you· can
experiment with the commands. The answers to all of the exercises
are at the end of this chapter.

GETTING STARTED

Let's get started. The best way to learn ed is to log into the UNIX
system and try the examples as you read this tutorial, do the
exercises, and do not be afraid to experiment with the ed commands.
The more you experiment with ed commands, the sooner these
commands will become second nature to you, and you will have a
fast and versatile method of editing text.

5-3

UNE EDITOR TUTORIAL (ed)

In this section, you will learn the bare essentials on how to:

" Accessed,

• Append some text,

• Move up or down in the file to display a line of text,

• Delete a line of text,

• Write the buffer to a file, and

• Quit ed.

How to Access ed

To access the line editor, type in ed and then a file name. The
general format for the ed command line is:

ed filename< CR>

Choose a file name that reflects what will be in the file. The system
will respond with a question mark if this is a new file.

$ ed new-file<CR>
? new-file

If you are going to edit an existing file, ed will respond with the
number of characters in the file.

I$ ed old-file<CR>
235

In the above example, the existing file, old-file, has 235 characters.

5-4

GETTING STARTED

How to Create Text

If you have just accessed ed, you are in the command mode of the
line editor. ed is waiting for your commands. How do you tell ed to
create some text? Press the "a" key and then a carriage return.

Append text.

If a is the only character on a line, it tells the editor that the next
characters typed in from the terminal are text for the file. You are
now in the text input mode of ed. After you have added all the text
that you want to the file, type in a period on the line by itself. This
takes you out of the text input mode and returns you to the command
mode of ed, so that you can give ed other commands.

The next example shows how to enter ed and begin creating text in
the new file, try-me. The text input mode is then ended with a
period.

$ ed try-me<CR>
? try-me
a<CR>
This is the first line of text.< CR>
This is a second line,<CR>
and this is the third line.< CR>
.<CR>

Notice that ed does not give you a response to the period. It just
waits for you to enter a new command. If ed is not responding to
your commands, you may have forgotten to type in the period. Even
experienced users sometimes forget to end the text input mode with a
period. Type in a period at the beginning of the line. Now ed
should respond to your commands. If you have added some

5-5

LINE EDITOR TUTORIAL (ed)

unwanted characters or lines to your text, you can delete them once
you are back in the command mode.

How to Display a Une of Text

How can you display what is in the file? Type in p, for print, on a
line by itself.

Display text.

Since you have not specified any line number, or line address, p will
display the current line, that is, the line that was last touched or
worked on by ed.

5-6

$ ed try-me<CR>
? try-me
a<CR>
This is the first line of text.<CR>
This is a second line,<CR>
and this is the third line. <CR>
.<CR>
p<CR>
and this is the third line.

GETTING STARTED

If you want to see all the lines of text in the file, type in 1,$p. The 1
and the $ are the line addresses for the first line and the last line of
the file. These will be discussed in detail in the section on Linc
Addressing.

Problem:

1,$p<CR>
This is the first line of text.
This is a second line,
and this is the third line.

If you forgot to end the text input mode with the period, you would
have added a line of text that you did not want. Try to make this
mistake. Add another line of text to your try-me file and then try the
p command without ending the text input mode. Now, end the text
input mode and press "p". What did you get? How do you get rid of
that line?

p<CR>
and this is the third line.
a<CR>
This is the fourth line. <CR>
p<CR>
.<CR>
1,$p<CR>
This is the first line of text.
This is a second line,
and this is the third line.
This is the fourth line.
p

5-7

UNE EDITOR TUTORIAL (ed)

How to Delete a Line of Text

If you are in the command mode of ed, press d to delete the current
line.

Delete text.

To get rid of the line with the "p" on it, in the last example, delete
the line with the d command. The next example displays the current
line, deletes the current line, and then displays all the lines in the
file.

p<CR>
p
d<CR>
1,$p<CR>
This is the first line of text.
This is a second line,
and this is the third line.
This is the fourth line.

After you press d, ed deletes the current line, but it does so quickly
and quietly. It is not evident to you that anything has happened
unless you press p and find that the current line has been deleted.

5-8

GETTING STARTED

How to Move Up or Down a line nn the file

To display the line below the current line, press <CR>.

RETURN Display the next line
of text.

If there is no line below the current line, ed will respond with a ?
and the current line will remain the last line of file. Pressing <CR>
is a good way to move down through the buffer.

How do you display the line above the current line? Use the minus
key, - .

Display the Hne of text above the
current line.

The next screen demonstrates how to display a line of text, above or
below the current line in the file.

p<CR>
This is the fourth line.
-<CR>
and this is the third line.
-<CR>
This is a second line,
-<CR>
This is the first line of text.
<CR>
This is a second line,
<CR>
and this is the third line.

5-9

UNE EDITOR TUTORIAL (ed)

If you pressed the -<CR> or <CR>, you noticed that the line was
displayed without having to press the "p" key. You were addressing a
line. If you give a line address and do not follow it with a command,
ed assumes you want the p command, which is the default command
for a line address.

Experiment with these commands, ·create some text, delete a line, and
display your file.

How to Save the Buffer Contents in a Fi!·e

If you have finished editing your text, how do you move it from the
buffer, your scratch pad, into a file? To save your text, write the
contents of the buffer into a file with the w command.

Write the con.tents of the buffer to
a file"

ed will remember the file name you gave when you accessed ed, and
will write the contents of the buffer to a file with that name. If the
file did not already exist, ed will create it and then write the contents
of the buffer into it.

I w<CR>
107

If the write command is successful, the character count is displayed.
In the last example, there are 107 characters of text. When you write
a file, you copy the contents of the buffer into the file. The text in
the buffer is not disturbed. You can add more text to it. It is a good
idea to write the buffer text into your file frequently. If an interrupt
occurs (such as an accidental loss of power to your terminal), you may
lose the material in the buffer, but you will not lose the copy written
to your file. You can also write to another file name that is different

5·10

GETTING STARTED

from the one you entered in the ed command line. The file name
will be a parameter to the w command. In the following example,
the new file name is stuff.

r w stuff <CR>
107

When you return to the shell command mode, display the contents of
stuff and try-me. Are they the same file?

How to Quit the Editor

You have completed editing your file, and have written the editing
buffer to the file. To leave the editor and return to the shell
command mode, type in the quit command, q.

w<CR>
107
q<CR>
$

Quit the editing buffer"

The system responds with your shell prompt. At this point, the
editing buffer vanishes. Unless you have used the write command,

5-11

UNE EDITOR TUTORIAL (ed)

your text in the buffer has also vanished. Since this could be a
serious problem, ed warns you with a ? the first time you type in q
without having written any new changes to a file.

q<CR>
?
w<CR>
107
q<CR>
$

If you insist on typing in a second q, ed assumes you do not want to
write the changes to the buffer into your file, and returns you to the
shell command mode. Your file is left unchanged and the buffer
contents are wiped out.

You now know the basic commands to create and edit a file.

SUMMARY OF COMMANDS FOR GETTING STARTED

ed filename

5-12

p

dl

<CR>

w

q

Enter ed to edit the file called filename.

Append. text after the current line.

End the text input mode, and return to the
command mode of ed.

Display text on your terminal.

Delete text.

Display the next line in the buffer.

Display the line above the current line in the
buffer.

Write the buffer to the file.

Quit ied and return to shell command mode.

GENERAL FORMAT OF ed COMMANDS

EXERCISE 1

The answers to all the exercises throughout this chapter are found at
the end of this chapter. However, if your method works, if it
performs the task even though it does not match the answer given, it
is a correct answer.

1-1. Enter ed with the file named junk. Create a line of text "Hello
World", write to the file and quit ed.

1-2. Reenter ed with the file named junk. What was the system
response? Was it the same character count as the response to
thew command in Exercise 1-1.?

Display the contents of the file. Is that your file junk?

How do you get back to the shell command mode? Try q
without writing the file. Why do you think the editor allowed
you to quit without writing to the buffer?

1-3. Enter ed with the file junk. Add a line:

This is not Mr. Ed, there is no horsing around.

Since you did not specify a line address, where do you think the
line was added to the buffer? Display the contents of the buffer.
Try quitting the buffer without writing to the file. Try writing
the buffer to a different file stuff. Notice that ed does not warn
you that the file stuff already exists. You have erased the
contents of stuff and replaced it with new text.

GENERAL FORMAT OF ed COMMANDS

The commands in ed have a simple and regular format. Commands
are of the form:

[addressl,address2]command[parameter] <CR>

5-13

LINE EDITOR TUTORIAL (ed)

The brackets around the addresses and parameter denote that these
are optional. The brackets are not part of the command line.

address1,address2

command

parameter

The addresses give the position of lines in the buffer.
Addressl through address2 gives you a range of lines
that will be affected by the command.

The command is one character and tells the editor
what task to perform.

The parameters to a command are those parts of the
text that will be modified, or a file name, or another
line address.

This general format will become clearer to you when you begin to
experiment with the commands in ed.

LINE ADDRESSING

Line addresses are very important to ed. To add text before or after a
line, to delete, move, or change a line, ed. must know the line
address.

[addressl,address2]command <CR>

Address2 is given only if you are specifying a range of lines. If
addressl is not given, ed assumes that the line address is the current
line.

A line address is a character or group of characters that identify a line
of text. The most common ways to address a line in ed are:

0 Line numbers, 1 being the first line of the file,

• Special symbols for the current line, last line, and a range of
lines,

5-14

LINE ADDRESSING

• Adding or subtracting a number of lines from the current line,
and

• A character string or word on that line.

You can access one line, a range of lines, or make a global search for
all lines containing a specified character string. A character string is
a group of successive characters, such as a word.

Number Line Addresses

ed gives a number address to each line in the buffer. The first line of
the buffer is 1, the second line of the buffer is 2 and so on for each
line in the buffer. Each line can be accessed by ed with the line
address number. If you want to see how line numbers address a line,
enter ed with the file try-me and type in a number of a line.

$ ed try-me<CR>
107
l<CR>
This is the first line of text.
3<CR>
and this is the third line.

Remember that p is the default command for ed. Since you gave a
line address, ed assumes you wanted that line displayed on your
terminal.

Problem:
Later in this tutorial you will create lines in the middle of the text, or
delete lines, or move a line to a different position. This will change
the address number of a line. The number of a specific line is always
the current position of that line in the editing buffer. If you add five
lines of text between line 5 and line 6, once the lines have been
added, line 6 becomes line 11. If you delete line 5, line 6 becomes
line 5.

5-15

LINE EDITOR TUTORIAL (ed)

Special Symbols Addresses

Current Line Address Character

The address of the current line.

The current line is the line that was most recently acted upon by ed,
either displayed, created, or moved. H you have just accessed ed with
an existing file, the current line is the last line of the buffer. The
address for the current line is a period. If you want to display the
current line, type in:

H you access ed with your file try~me, you will find that the current
line is the last line. Try it.

$ ed try-me<CR>
107
.<CR>
This is the fourth line.

The "." is the address. Since no command is given, ed assumes the
default command p and displays the line addressed by " . ".

If you want to know the line number of the current line, you can
type in the command:

ed will respond with the line number. In the last example the
current line is 4.

.<CR>
This is the fourth line .
. =<CR>
4

last Line Address Character

LINE ADDRESSING

The address of the last line.

The last line of the file can be addressed by $. It does not matter how
many lines are in the file, the last line can always be addressed by $.
If you access ed with the try-me file, you can see that when you first
enter ed the current line is the last line.

$ ed try-me<CR>
107
.<CR>
This is the fourth line.
$<CR>
This is the fourth line.

Remember that the $ address within ed is not the same as the $
prompt of the shell. If this gets confusing and you want to change
your prompt, see Changing Your Environment in Chapter 7, Shell Tutorial.

5-17

LINE EDITOR TUTORIAL (ed)

Address for the First Line Through the Last Line

The , used as an address will refer to all lines of the file, the first
line through the last line.

Address all lines of the file.

If you wanted to display all lines of the file, you could use , as a
shortcut address for 1,$.

,p<CR>
This is the first line of text.
This is a second line,
and this is the third line.
This is the fourth line.

Address torr the Current Line Through the Last Line

The ; addresses the current line through the last line of the file.

Address the range of lines from the
current line through the last line.

LINE ADDRESSING

The is the same as addressing .,$.

. <CR>
This is a second line,
;p<CR>
This is a second line,
and this is the third line.
This is the fourth line.

Relative Addressing, Adding or Subtracting lines from the Current
line

If you are in a long file, you may want to address lines with respect
to the current line. You can do this by adding or subtracting the
number of lines from the current line, thus giving a relative line
address.

Add a number of lines to
the current line address.

Subtract a number of lines from
the current line address.

5-19

UNE EDITOR TUTOIF!iAl (ed)

To see relative line addressing, add several more lines to your file
try-me. Each line should contain the number of the line.

$ ed h"y-me<CR>
107
.<CR>
This is the fourth line.
a<CR>
five
six
seven
eight
nine
ten
.<CR>

Now try adding and subtracting line numbers from the current line.

5-20

4<CR>
This is the fourth line.
+3<CR>
seven
-5<CR>
This is a second line,

LINE ADDRESSING

What happens if you ask for a line address that is greater than the
last line, or you try to subtract a number greater than the current line
number? Experiment with a relative line addressing. See what
happens.

S<CR>
five
-6<CR>
?
.=<CR>
5
+7<CR>
?

Notice in the above example that the current line remains at line 5 of
the buffer. The current line only changes if you give ed a correct
address. The ? response indicates an error. The section on Other
Useful Commands and Information at the end of this chapter, will
discuss getting a help message which describes the error.

Character String Addresses

You can search forward or backward in the file for a line containing a
specified character string. The line address is the search delimiter
and the character string.

A delimiter gives the boundaries of the character string. Delimiters
tell ed where a character string starts and ends. The most common
de limiter is I. You may also use ? . If I is used at the beginning of
an address ed will search forward or down the buffer for the next
line containing the specified character string.

Type in:

Search down or forward in the buffer and
address the first line with a specified
pattern of characters.

/pattern

5-21

UNE EDffOR TUTORIAL (ed)

edl will search the current line and then down the buffer for the first
line that contains the characters paUern. If the search reaches the last
line of the buffer, ed will then wrap around and start searching down
the buffer from line 1.

The rectangle below represents the editing buffer. The path of the
arrows shows the search initiated by I .

,----,
I
I

1
~

j
I

I I
L ____ ..J

First Line

Current line

Last line

If ? is used at the beginning of an address, ed. will search backward
or up in the buffer for the specified character string.

Type in: ?pa Hern

Search up or badr<:w<11rd ilia the buffer and
address the firsfr line coiataill1in.g <11 specified
patfte1m of charaders.

ed searches backward from the current line for the first line
containing the characters paUerll1l. If the search reaches the first line
of the file, it will wrap around and continue searching upward from
the last line of the file.

LINE ADDRESSING

The next rectangle represents the editing buffer. The path of the
arrows shows the search initiated by ? .

Experiment with these two search address requests on the file try-me.
What happens if ed does not find the search pattern?

$ ed try-me<CR>
107
.<CR>
ten
?first<CR>
This is the first line of text.
I fourth <CR>
This is the fourth line.
/junk<CR>
?

Once again, since no command was given, ed assumes it is the p
command and displays the line. In the above example when ed was
asked to search for the pattern junk, it could not find junk and
responded with a ? .

5-23

UNE EDHOR TUTOR!Al (ed)

Try the following sequence of commands.

Type in: /line<CR>
/<CR>

What happened?

.<CR>
This is the first line of text.
/line<CR>
This is the second line,
/<CR>
and this is the third line.
/<CR>
This is the fourth line.

ed remembers the pattern of the last search and looks for that pattern
until it is given a new pattern.

Specnfynrig a Range of U111es

There are two ways to address a range of lines. You can specify a
range of lines such as address] through address2, or you can specify a
global search for all lines containing a specified pattern.

The simplest way to specify a range of lines is to use the line number
of the first line through the line number of last line of the range.
These numbers are separated by a comma and placed before the
command. If you want to display lines four through ten of the
editing buffer, you would give addressl as 4 and address2 as 10.

Type in: 4,10p<CR>

5-24

LINE ADDRESSING

If you are editing the file try-me, how would you display lines one
through five?

l,Sp<CR>
This is the first line of text.
This is a second line,
and this is the third line.
This is the fourth line.
five

Did you try typing in 1,5 without the p? What happened? If you do
not add the p command, ed only prints out address2, the last line of
the range of addresses.

You can also use relative line addressing for a range of lines. Be
careful, addressl must come before address2 in the buffer. The
relative addresses are calculated from the current line .

. <CR>
This is the fourth line
-2,+3p<CR>
This is a second line,
and this is the third line.
This is the fourth line.
five
SIX

seven

5-25

UNE IEDffOR TUTOIR:!AL (ed)

Specifying a G!oba! Search

There are two commands that do not follow the general format of the
ed commands. They are the global search commands that specify the
addresses with a character string.

The global search command. searches the entire
file for lines tha~ corntain a specified pattern.
of chaR"aders,

The giollnJ search comman.d seardu.•s the en.tire
file for lines that do NOT contain a specified
pa.Uern. of cha.raiders,

The general format for these two commands gives the command, a
delimiter, the search pattern, a delimiter, and a command.

g/paHem/commaJt11d <CR>
v /paUern/comm.amd <CIR>

Try out these commands on try-me.

g/line/p<CR>
This is the first line of text.
This is a second line,
and this is the third line.
This is the fourth line

v/line/p<CR>
five
SIX

seven
eight
nine
ten

LINE ADDRESSING

p will act as a default command for the lines addressed by g or v. If
you just want to display the lines, you do not need the last delimiter
or p.

g/line<CR>
This is the first line of text.
This is a second line,
and this is the third line.
This is the fourth line

If the lines are used as addresses for other ed commands, you will
need the beginning and ending delimiters. All of these methods of
addressing a line can be used as addresses for ed commands.

5-27

UNE EDITOR 'fUTOR~Al (ed)

SUMMARY Of UNJE ADDRESSING

The number of the line in the buffer.

The current line, the last line ed touched.

The command that gives the line number of the current
line.

$ The last line of the file.

+ 11

- 11

I :abc/

?a be?

g/abc/

v/abc/

5-28

Addresses lines 1 through the last line.

Addresses the current line through the last line.

Add a number of lines /1 to the current line address.

Subtract a number of lines n from the current line
address.

Search forward in the buffer and address the first line
containing the pattern of characters abc.

Search bachvard in the buffer and address the first line
containing the pattern of characters abc.

Address all hnes containing the pattern abc.

Address all lines that do NOT contain the pattern abc.

EXERCISE 2

2-1. Create a file towns with the following lines:

My kind of town is
Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York
I lost my heart in
San Francisco
I lost$$ in
Las Vegas

2-2. Display line 3.

EXERCISE 2

2-3. What lines are displayed for the relative address range -2,+3p ?

2-4. The current line number is? Display the current line.

2-5. The last line says?

2-6. What line is displayed by the search:

?town<CR>

Now type in:

?<CR>

alone on a line. What happened?

2-7. Address all lines that contain the pattern "in". Then address all
lines that do NOT contain the pattern "in".

5-29

DiSIPlA Y UN!ES m A IF~ILIE

The two commands that display lines of text in the editing buffer are
p and R

Pirint m <lliispfalJr HITTes of ftextc iiRil Hne edHing buffer
on yom· fteirmiin<11t

You have already used the p command in several examples.

The general form of the print command is:

p does not have parameters. However, it can be combined with the
substitute command line. This v1rill be discussed later in this chapter.

Experiment 1Nith different line addresses and the p command on a file
in your directory. Try out the following types of addresses.

Type in: 1,$p<CR>

The entire file should have been displayed on your terminal.

Type in: -5p<CR>

The editor should have subtracted 5 from the current line and
displayed that line.

Type in: +2p<CJR>

5-30

D!SPLA Y LINES IN A FILE

The editor should have added 2 to the current line and displayed that
line.

Type in: 1,/a/p<CR>

Did you figure out what happened? The editor searched for the next
"a" from the current line, and then displayed lines 1 through the first
line that contained "a" after the current line.

It is very important to delimit the search pattern to avoid errors in
ed. You have to delimit the search pattern "a" (enclose "a" between
slashes) so that ed can tell the difference between the search pattern
address "a" and an ed command a.

Dispiay Lines of Text Preceded by the Line Address Number

Display the line address number with
the line of text.

The n command is a convenient command when you are deleting,
creating, or changing lines. Besides displaying the lines of text, n
precedes each line with the line address number.

The general format for n is the same as p.

[addressl,address2Jn <CR>

Also, like p, n does not have parameters, but it can be combined with
the substitute command.

5-31

out Ji1\ on your test file try-me.

$ ied h:y-m!!:'<CJR>
137
1,$n<CR>
1 This is the first line of text.
2 This is a second
3 and this is the third line.
4 This is the fourt/1 line.
5 five
6
7
8
9
10

SIX

seven
eight
nme
ten

Experiment 'with n using different line addresses. In the next
example, the relative hne addresses -5 and +2 are used. Also, the
range of lines addressed from line 1 through the first line after the
current line that contains an "ne" is also displayed.

-5n<CR>
5 five
+21.11<CIR>
7
1,/ne/Kil <CR>
1
2
3
4
5
6
7
8
9

seven

This is the first line of text.
This is a second line,
and this is the third line
This is the fourth line.
five
six
seven
eight
nine

CREATING TEXT

SUMMARY OF DISPLAY COMMANDS

p Displays on your terminal the specified lines of text in
the editing buffer.

n Displays on your terminal the line address numbers
with the specified lines of text in the editing buffer.

CREATING TEXT

ed has three basic commands for creating new lines of text:

a Append text,

Insert text, and

c Change text.

Appending Text

Create text after the specified line
in the buffer"

You have already used the append command in the Getting Started
section of this tutorial. The general format for the append command
is:

[addressl)a<CR>

The default for addressl is the current line. If you do not give a an
address, ed will make addressl the current line.

5-33

UINIE IEDlllOIR TIUITOIR!Al (eidl~

You have used the default address for 21, now try using different line
numbers for address!. In the next example, a new file called new-file
is created. The first append command uses the default address. The
second append command uses address! as 1. The lines are displayed
with Jti\ so that you can see the line addresses.

$ ed Jti\ew-fiJe<CR>
?new-file
<11<CR>
Create some hnes
of text in
this file .
. <CR>
1,$Jti\<CR>
1 Create some lines
2
3
fa<CR>

of text in
this file.

This wHl be line 2 <CR>
This wi.H be line 3 <CR>
.<CR>
1,$lli1<CR>
1 Create some lines
2 This will be line 2
3 This will be line 3
4
5

of text in
this file.

Notice that the address of the line "of text in" changes from two to
four after you append the two new lines.

Try out the following special addresses.

. a<CR>

$a<CR>

Oa<CR>

5-34

Append after the current line .

Append after the last line of the file.

Append text before the first hne of the file.

CREATING TEXT

Each of these addresses is used to append text in the following
examples.

.<CR>
This is the current line
.a<CR>
This line is after the current line.<CR>
.<CR>
-1,.p<CR>
This is the current line.
This line is after the current line.

$a<CR>
This is the last line now.< CR>
.<CR>
$<CR>
This is the last line now.

Oa<CR>
This is the first line now. <CR>
This is the second line now.<CR>
The line numbers change<CR>
as lines are added.< CR>
.<CR>
1,4n<CR>
1 This is the first line now.
2 This is the second line now.
3 The line numbers change
4 as lines are added.

5-35

UNIE IED!TOIR TUTOIF!iAl (eon

The Oa command can be replaced by the next command, the insert
command.

The insert command creates text before a specified line in the editing
buffer.

The general format for i is the same as for a.

[addlr€ss1Ji <CR>

As with the append command, you can insert one or more lines of
text. The text input mode is always ended with a period alone on a
line.

The example that follows inserts a line of text above line two; inserts
a line of text above the first line; and displays all the lines of the
buffer with n.

5-36

2i<CR>
Now this is line 2.<CR>
.<CR>
1,$n<CR>
1 Line 1
2 Now this is line 2
3 Line 2
4 Line 3
5 Line 4
li<CR>
In the beginning< CR>
1,$n<CR>
1 In the beginning
2 Line 1
3 Now this is line 2
4 Line 2
5 Line 3
6 Line 4

CREATING TEXT

Take a few minutes to experiment with the insert command. Try out
the special line addresses.

Type in: j<CR>

or

Type in: $i<CR>

Changing Text

The change text command erases all of the specified lines and creates
new text beginning at address!. You can create one or more lines of
text. The change command puts you in the text input mode, so you
must end the text input mode by a period alone on a line.

Erase specified lines and
create new text.

5-37

Since c can erase a range of lines, the general format for the change
command gives both address! and address2.

["1\dli!lbress1,adldliress2]c <CR>

Address! is the first hne to be erased, and address2 is the last line of
the range of lines to be replaced by new text. H you only want to
erase one line of text, you would use only address!. If you do not
type in address!, ed assumes the current line is addressl.

The next example changes a range of lines. The first five lines are
displayed with n. Then lines one through four 0,4d are changed.
The lines in the buffer are di.splayed after the change.

1,5n<CR>
1 Line 1
2 Line 2
3 Line 3
4 Line 4
5 Line 5
1,4c<CR>
Change line 1 <CR>
and line 2 through 4 <CR>
"<CR>
1,$n<CR>
1 Change line 1
2 and line 2 through 4
3 Line 5

Now experiment with c. Try changing the current line.

5-38

.<CR>
This is the current line.
c<CR>
I am changing the current line.< CR>
.<CR>
.<CR>
I am changing the current line.

EXERCISE 3

If you are not sure you have left the text input mode, it is a good idea
to type in the period a second time. If the current line is displayed,
you know you are in the command mode of ed.

SUMMARY OF CREATE COMMANDS

a Append text after the specified line in the buffer.

Insert text before the specified line in the buffer.

c Change the text on the specified lines to new text

End the text input mode with a period alone on a line,
and return toed command mode.

EXERCISE 3

3-1. As an experiment, create a new file ex3. Instead of using the
append command to create new text in the empty buffer, try the
insert command. What happened?

5-39

UINIE IEDITOA llJITOIFUAl (ed)

3-2. Enter the file towns into ed. 'Nhat is the current line?

Insert above the third line:

UHnois < CJR >

Insert above the current line:

or<CJR>
N apenrme <CR>

Insert before the last line:

hotels in< CR>

Display the text in the buffer preceded by line numbers.

3-3. In the file towns, display lines one through five and replace lines
two through five with:

London<CR>

Display lines one through three.

3-4. After you have completed exercise 3-3, what is the current line?

Find the line of text containing:

Toledo

Replace:
Toledo

with:
Peoria

Display the current line.

3-5. With one command line search for and replace:

New York
with:

Iron City

5-40

DELETING TEXT

DELETING TEXT

This section of the tutorial discusses the delete commands:

d Delete lines in the command mode;

u Undo the last command;

#or <BACK SPACE> Delete characters in the text input mode;
and

@

Deleting Unes of Text

Delete a line of text i.n the text input
mode or delete the current command
line.

You have already deleted lines of text with the delete command d in
the section of Getting Started.

Delete one or more lines of text.

The general format for d is:

[addressl,ad.dress2]d <CR>

You can delete a range of lines, address! through address2, or you
can delete one line using only addressl. If no address is given, ed
assumes you want to delete the current line.

The next example displays lines one through five and then deletes
the range of lines two through four.

5-41

UNIE ED!lfOR 1ii.HOIP!!Al (ed)

1r5n<CR>
1 1 horse
2 2 chickens
3 3 ham tacos
4 4 cans of mustard
5 5 bails of hay
2Ad<CR>
1r$n<CR>
1 1 horse
2 5 bails of hay

How would you delete only the last line of a file?

($d<CR>

How would you delete the current line? One of the most common
errors in ed. is forgetting to end the create mode with a period. A
line or two of text that you do not want may be added to the buffer.
In the next example, the print command is accidentally added to the
text before the create mode is ended. Then the current line, the print
command, is deleted.

a<CR>
Last line of text< CR>
l,$p<CR>
"<CR>
p<CR>
1,$p
"d<CR>
p<CR>
Last line of text.

Remember that 1,$p prints every line of the buffer.

5·42

DELETING TEXT

Before you do much experimenting with the delete command, you
may first want to learn about the u command.

Undo the Last Command

The undo command will erase the effect of the last command and
restore any text that had been added, changed, or deleted by that
command.

Undo the last command.

If you create new text, change lines of text, delete lines of text, or
read new lines into the file, u undoes the effect of these commands.
(The read command will be discussed in the section on Moving Text).
Since u undoes the last command, it does not have any addresses or
arguments. The general form is:

u<CR>

u does not undo the write command or the quit command. However,
u will undo an undo command.

One example of the u command is restoring deleted lines. If you
delete all the lines in the file and then type in p, ed will respond
with a ? since there are no more lines in the file. Type in u and all
lines of the file will be restored.

1,$d<CR>
p<CR>
?
u<CR>
p<CR>
This is the last line

5-43

LINE EDITOR TUTORIAL (ed)

Now try u on the append command.

,<CR>
This is the only line of text
a<CR>
Add this line< CR>
,<CR>
1,$p<CR>
This is the only line of text
Add this line
u<CR>
1,$p<CR>
This is the only line of text

Deleting Commands in the Te:d llflput Mode

Deleting the Current line

The @ will delete the current line of typing. The line will not be
erased from your terminal, but will end 1Arith an @ sign and the
cursor will move to the next hne. When you end the create mode
and display the lines of text, the deleted line will not appear.

Delete the current Hne
in the text input mode,

DELETING TEXT

a<CR>
I don't want to add this @
a new line of text< CR>
.<CR>
1,$p<CR>
a new line of text

The above example begins creating a new file. The first line is
deleted in the text input mode, therefore, only the second line is
displayed by the 1,$p command. @ will also delete the current
command line. If you make an error typing in a command, type in@
instead of <CR> and ed will ignore the command. In the next
example, an incorrect address is given, so the command line is
cancelled with @.

ll,$d@
ld<CR>

Deleting the Last Characters Typed

If you only made a mistake in typing the last few characters, the # or
<BACK SPACE> can delete those characters if you have not pressed
<CR>.

Delete the last character
just typed into the buffer.

5-45

UNE IEDffOR TUlfORiAl {ed)

BACK
SPACE

\

Delete ff:he fast charader just
typed RITTitQ the !buffer"

The <BACK SPACE> key will delete characters if you have
changed your environment to include this command. (See Chapter 7,
Shell Tutorial for changing your environment.)

a<CR>
This is a typoo#<CJR>
"<CR>
"<CR>
This is a typo

In the above example, the extra o in typo was deleted by #. When
the line is displayed the error is gone.

You must enter a :f:t: for each character that needs to be erased or
retyped. In the following example, the error is corrected and new
characters follm~r the last #. (The <BACK SPACE> will back up
over the characters.)

a<CR>
To the IRS, I mail a check<CR>
for one hun###thousand doHars.<CR>
"<CR>
"<CR>
for one thousand doliars.

H you press <CR> before you correct the error, it is too late to
correct the error in the text input mode. However, once you have
left the text input mode, the substitute command, discussed in the
next section, can solve your problem.

5-46

DELETING TEXT

Create a junk file and practice each of these four commands until you
are comfortable with them.

SUMMARY OF DELETE COMMANDS

In the command mode:

d Delete one or more lines of text.

Undo the last command.

@ Delete the current command line.

In the text input mode:

@ Delete the current line.

or
<BACK SPACE> Delete the last character typed in.

SUBSTITUTING TEXT

You can modify your text with the substitute command s.

Replace a pattern of characters with new text.

The substitute command replaces the first occurrence of a string of
characters with new text. The general format is:

[addressl,address2]s I old text I new text/[command]< CR>

Since this is a more complicated format than the preceding
commands, let's look at it piece by piece.

5-47

UNE EDITOR TUTORIAL (ed)

address 1 and address2

s

/old text/

The range of lines being addressed by s. The address
can be one line, addressl, a range of lines addressl
through address2 or the global search address. If no
address is given, ed will make the substitution on the
current line.

The substitute command, which is positioned right
after the line address.

The text to be replaced. It is usually delimited by
backslashes, however, it can be delimited by other
symbols such as ? or a period. The old text matches
the first occurrence of the words or characters to be
replaced.

/new ~ext/

command

The text that replaces the l(J\ldl il:exil:. It is placed
between the second and third delimiters and replaces
the l(J\M text between the first and second delimiters.

This may be one of four commands that can be
placed after the last delimiter. The commands are:

g Change all occurrences of old text on the
specified lines.

Di.splay the last line of substituted text including
nonpri.nting characters. (See last section of this
chapter entitled Other Useful Commands and
Information.)

n Display the last line of the substituted text
preceded by the line number.

p Display the last line of substituted text.

SUBSTITUTING TEXT

Substituting on the Current Line

The simplest example of the substitute command is making a change
to the current line. You do not need to give the line address for the
current line.

s/old text/new text/ <CR>

In the next example, a typing error was made on the current line.
The example displays the current line, then makes the substitution to
correct the error. The old text is the ai of airor, the new text is er .

. p<CR>
In the beginning, I made an airor
s/ai/er/ <CR>
.p<CR>
In the beginning, I made an error

Did you try out the example? Did you notice ed was quiet and gave
no response to the substitute command? You either have to display
the line with p or n, or place p or n on the substitute line. The
example below substitutes file for toad .

. p<CR>
This is a test toad
s I toad I file In< CR>
1 This is a test file

ed has a short cut for you. If you leave off the last delimiter of the
substitute command, the line will automatically be displayed.

UNE EDITOR TUTORIAL (ed)

.p<CR>
This is a test file
sf file/ frog< CR>
This is a test frog

Substituting on One Une

To substitute on a line that is not the current line, use address!.

[addlresslJs/old text/new text/ <CR>

In this example, the current line is line three. Line one will be
corrected.

1,3p<CR>
This is a pest toad
testing testing
come in toad
.<CR>
come in toad
ls/pest/tesl!:<CR>
This is a test toad

Notice that the last delimiter was omitted and ed printed out the line.

If you want to make a substitution on a range of lines, you can
specify the first address, address!, through the last address, address2.

[addressl,address2)s/old text/new text/ <CR>

If ed does not find the pattern to be replaced on one of the lines, no
changes are made to that line. In the next example, all the lines in

5-50

SUBSTITUTING TEXT

the file are addressed for the substitute command. However, only the
lines that contain the old text, es, are changed.

1,$p<CR>
This is a test toad
testing testing
come in toad
testing 1, 2, 3
1,$s/es/ES/n <CR>

4 tESting 1, 2, 3

When you specify a range of lines, p or n on the substitute line only
prints out the last line changed.

To display all the text that was changed use n or p alone in a
command line.

1,$n<CR>
1 This is a tESt toad
2 tESting testing
3 come in toad
4 tESting 1, 2, 3

Notice only the first occurrence of "es" is changed on line 2. How do
you change every occurrence?

5-51

UNE EDITOR TUTORIAL (ed)

Glolba~ Substitution

One of the most versatile tools in ed is global substitution.

GRobal substitution or search.

If you place the g command after the last delimiter of the substitute
command, you will change every occurrence on the specified lines.
Try changing every occurrence of es in the last example. If you are
following along, doing the examples as you read this, remember you
can use u to undo the last substitute command.

u<CR>
1,$p<CR>
This is a test toad
testing, testing
come in toad
testing 1, 2, 3
1,$s/es/ES/g<CR>
1,$p<CR>
This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

Another way to do the above example is to use the global search as
an address instead of the range of lines one through the last line
(1,$).

5-52

1,$p<CR>
This is a test toad
testing testing
come in toad
testing 1, 2, 3
g/test/s/es/ES/g<CR>
1,$p<CR>
This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

SUBSTITUTING TEXT

If the global search pattern is unique, and is the same as the old text
to be replaced, you can use an ed shortcut. You do not need to repeat
the pattern for the old text. ed remembers the search pattern and
uses it again as the pattern to be replaced.

g/old text/s/ /new text/g<CR>

1,$p<CR>
This is a test toad
testing testing
come in toad
testing 1, 2, 3
g/es/s/ /ES/g<CR>
1,$p<CR>
This is a tESt toad
tESting tESting
come in toad
tESting 1, 2, 3

5-53

UNE EDITOR TUTORIAL (ed~

Experiment with the other search pattern addresses:

I pattern< CR>
?pattern <CR>
v/paUern<CR>

See how they react with the substitute command. In the example
below, the v /pattern is used to locate the characters in that are NOT
in the word testing.

v /testing/s/in/out<CR>
This is a test toad
come out toad

H you leave off the last delimiter all search addresses will print out
including the ones where no substitution occurs.

g/testing/s/ /jumping< CR>
jumping testing
jumping 1, 2, 3

Notice that the global search substitutes for only the first occurrence
of testing in each line. The lines are displayed on your terminal
because the last delimiter is missing.

EXERCISE 4

4-1. In your file towns change town to city on all lines but the line
with little town on it.

The file should read:

My kind of city is

5-54

London
Like being no where at all in
Peoria
I lost those little town blues in
Iron City
I lost my heart in
San Francisco
I lost$$ in
hotels in
Las Vegas

4-2. Try using ? as a delimiter. Change the current line

Las Vegas
to

Toledo

EXERCISE 4

You could also use the change command c, since you were
changing the whole line.

4-3. Try searching backward in the file for the word

lost

and substitute

found

using the ? as the delimiter. Did it work? (The last line of the
file is the current line.)

4-4. Search forward in the file for

no

and substitute

NO

for it. What happens if you try to use ? as a delimiter?

5-55

UNE EDITOR TUTORIAL (ed)

Experiment with the various combinations of addressing a range of
lines and global searches.

V\That happens if you try to substitute for the $$? Try to substitute
for the $ on line nine of your file.

Type in: 9s/$/Big $<CR>

What happened?

9s/$/Rig$<CR>
I found $$ in Big $

The substitution did not work correctly because $ is a special
character in ed. It will be discussed next in the section on special
characters.

SPECIAL CHARACTERS

If you tried to substitute for the $ in the line

I lost my $ in Las Vegas

you would find that instead of replacing the $, the new text was
placed at the end of the line. The $ is a special character meaning
the end of the line.

ed has several special characters that give you a shorthand for search
patterns and substitution patterns. The characters act as wild cards.
If you have tried to type in any of these characters, the result was
probably different than what you had expected.

5-56

SPECIAL CHARACTERS

The special characters are:

*

*

Match any one character.

Match zero or more occurrences of the preceding
character.

Match zero or more occurrences of any character
following the period.

Match the beginning of the line.

$ Match the end of the line.

\ Take away the special meaning of the special character
that follows.

& Repeat the old text to be replaced in the new text of the
replacement pattern.

[...] Match the first occurrence of a character in the brackets.

r ...] Match the first occurrence of a character that is NOT in
the brackets.

Match any one character.

The period will represent any one character in a search or substitute
pattern. In the next example, a list of animals is searched for the
pattern of any letter followed by at.

5-57

LINE EDITOR TUTORIAL (ed)

1,$p<CR>
rat
cat
turtle
cow
goat
g/.at<CR>
rat
cat
goat

Notice that the characters oat in goat match .at.

The combination of the period and the * is a very potent wild card
for the substitution pattern. (See below)

Match zero or more occurrences
of the preceding character.

The * is shorthand for a character that is repeated several times in a
row in a search or substitute pattern. For example, if you were
creating some text and held down a key a little too long, the
character would be entered several times into your text. The * is an
easy way to substitute one character for those extra characters.

p<CR>
brrroke
s/br* /br<CR>
broke

It is important to include the b in the substitute pattern since * will
substitute for zero or more occurrences of r. Below is an example of
using only r*.

5-58

SPECIAL CHARACTERS

p<CR>
brrroke
s/r*/r<CR>
rbrrroke

The first zero or more occurrences of r is at the beginning of the line
where there are no occurrences of r.

Match zero or more
occurrences of any
character after the
period.

If you combine the period and the *, the combination will match all
characters after the period. With this combination you can replace all
characters on the last part of a line.

p<CR>
Toads are slimy, cold creatures
s/are.*/are wonderful and warm<CR>
Toads are wonderful and warm

The . * can also replace all characters between two patterns.

p<CR>
Toads are slimy, cold creatures
s/are.*cre/are wonderful and warm cre<CR>
Toads are wonderful and warm creatures

5-59

LINE EDITOR TUTORIAL (ed)

Match the beginning of a line.

If you want to insert a word at the beginning of a line, use the ~ for
the old text to be substituted. This is very helpful when you want to
insert the same pattern in the front of several lines. The next
example places the word all at the beginning of each line.

1,$p<CR>
creatures great and small
things wise and wonderful
things bright and beautiful
1,$sr I all I< CR>
1,$p<CR>
all creatures great and small
all things wise and wonderful
all things bright and beautiful

Match the end of the line.

This character is useful for adding characters at the end of a line or a
range of lines.

5-60

1,$p<CR>
I love
I need
I use
The IRS wants my
1,$s/$/ money.<CR>
1,$p<CR>
I love money.
I need money.
I use money.
The IRS wants my money.

SPECIAL CHARACTERS

Did you try out the last two examples? Did you remember to put a
space after the aH or before many? ed adds the characters to the very
beginning or the very end of the sentence. If you forgot the space
before money, your file looks like the following:

1,$s/$/money/ <CR>
1,$p<CR>
I lovemoney
I needmoney
I usemoney
The IRS wants mymoney

The $ is a good way to add punctuation to the end of the line.

5-61

UNE EDITOR TUTORIAL (ed)

1,$p<CR>
I love money
I need money
I use money
The IRS wants my money
1,$s/$/./ <CR>
1,$pfl I <CR>
I love money.
I need money.
I use money.
The IRS wants my money.

Since . is not matching a character, but replacing a character, it does
not have a special meaning in this case. How could you change a
period in the middle of a line to another punctuation? You must take
away the special meaning of the period in the old text.

Take away the special meaning
of the following special character.

If you want to substitute or search for some of the special characters,
you must precede them by a \ . To change a period, precede the .
with a\.

p<CR>
Way to go. Wow!
s/ \. /!<CR>
Way to go! Wow!

Because the backslash is a special character, it too must be preceded
by a \ if it is used in the old text.

5-62

SPECIAL CHARACTERS

p<CR>
Way to go\ Wow!
sf\\ /!<CR>
Way to go! Wow!

Repeat the old text to be replaced
in the new text of the replacement
pattern.

If you want to add text without changing the rest of the line, the & is
a useful shortcut. The & repeats the old text in the replacement
pattern, so you do not have to worry about typing the correct pattern
twice. The next screen shows an example of this.

p<CR>
The neanderthal skeletal remains
s/thal/& man's/ <CR>
The neanderthal man's skeletal remains

Repeat the last replacement pattern.

ed automatically remembers the last pattern of characters in a search
pattern or the old text in a substitution. But, you must tell ed to
repeat the replacement characters in a substitution with the %. The %
pattern is very useful if you do not want to make a global change, but
you do want to make the same substitution on several different lines.
If you want to change money into gold for yourself, but not the IRS,
you would repeat the last substitution from line one on line three,
but not on line four.

5-63

LINE EDITOR TUTORIAL (ed)

1,$p<CR>
I love money
I need food
I use money
The IRS wants my money
ls I money I gold< CR>
I love gold
3s/ /%<CR>
I use gold
l,$p<CR>
I love gold
I need food
I use gold
The IRS wants my money

ed automatically remembers money, the old text to be replaced, so it
does not have to be repeated between the first two delimiters. The %
tells ed to use the last replacement pattern, gold.

Match the first occurrence
of a charad:e:r in the bracket"

ed will try to match one of the characters enclosed in the brackets
and substitute the specified old text with new text. The brackets can
occur anywhere in the pattern to be replaced.

To conceal the large appetite of the anteater, the zoo keeper quietly
altered his file on the animal's dietary habits as shown in the
following screen.

5-64

SPECIAL CHARACTERS

1,$p<CR>
Monday 33,000 ants
Tuesday 75,000 ants
Wednesday 88,000 ants
Thursday 62,000 ants
1,$s/[6789]/4<CR>
Monday 33,000 ants
Tuesday 45,000 ants
Wednesday 48,000 ants
Thursday 42,000 ants

In the example above, the first occurrence of 6, 7, 8, or 9 was
changed to 4 on each line that ed found a match.

The next example deletes the Mr or Ms from a list of names.

1,$p<CR>
Mr Arthur Middleton
Mr Matt Lewis
Ms Anna Kelley
Ms M. L. Hodel
1,$s/M[rs] //<CR>
1,$p<CR>
Arthur Middleton
Matt Lewis
Anna Kelley
M. L. Hodel

Match the first
occurrence of a character
that is not in
the brackets.

If the caret is placed as first character in the brackets it tells ed to
replace characters that are NOT one of these characters. However, if
the caret is placed at any other position other than the first character,
it will stand for the character'.

5-65

UNE EDITOR TUTORIAL (ed)

If a copy of John's grades were sent to him as a file in his login, he
could enter the file into ed and make the following changes to
correspond with his own evaluation of his performance.

1,$p<CR>
grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade D Jogging
grade C Tennis
1,$s/grade r AB]/ grade A <CR>
1,$p<CR>
grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade A Jogging
grade A Tennis

Whenever you use special characters as wild cards in the old text to
be changed, remember to use a unique pattern of characters. In the
above example, if you had used only

1,$s/['ABJ/A<CR>

you would have changed the gin grade to A. Try it.

As with all commands in ed, experiment with these special characters.
Find out what happens (or does not happen) if you use them in
different combinations.

5-66

*

*

EXERCISE 5

SUMMARY OF SPECIAL CHARACTERS

Match any one character in a search or substitute
pattern.

Match zero or more occurrences of the preceding
character in a search or substitute pattern.

Match zero or more occurrences of any characters
following the period.

Match the beginning of the line in the substitute
pattern to be replaced or in a search pattern.

$ Match the end of the line in the substitute pattern to be
replaced.

\ Take away the special meaning of the special character
that follows in the substitute or search pattern.

& Repeat the old text to be replaced in the new text
replacement pattern.

% Repeat the last replacement pattern.

["".] Match the first occurrence of a character in the brackets.

r ...] Match the first occurrence of a character that is NOT in
the brackets.

EXERCISE 5

5-1. Create a file that contains the following lines of text.

A Computer Science
D Jogging
C Tennis

5-67

UNE EDITOR TUTORIAL (ed)

What happens if you try the command line:

1,$s/rABJ/A/ <CR>

Undo the above command. How would you make the C and D
unique? (Hint: they are at the beginning of the line '.) Do not
be afraid to experiment!

5-2. Insert the following line above line 2:

These are not really my grades

Using brackets and the beginning of the line character ', create
a search pattern that you could use to locate the line you
inserted. There are several ways to address a line. When you
edit text, use the way that is quickest and easiest for you.

5-3. With one command, change the next three lines

I love money
I need money
The IRS wants my money

to the following lines:

It's my money
It's my money
The IRS wants my money

Using two command lines: change the first line from money to
gold, change the last two lines from money to gold without
using the characters money or gold.

5-4. How would you change the line

1020231020

to

10202031020

without repeating the old digits in the replacement pattern?

5-68

MOVING TEXT

5-5. Create a line of characters

Substitute a letter for each character. Did you need to use the
backslash for every substitution?

MOVING TEXT

You have now learned to address lines, create and delete text, and
make substitutions. ed has one more set of versatile and important
commands. You can move, copy, or join lines of text in the editing
buffer. You can also read in text from a file that is not in the editing
buffer, or write lines of the file in the buffer to another file in the
current directory. The commands that move text are:

m Move lines of text.

t Copy lines of text.

Join contiguous lines of text.

w Write lines of text to a file.

r Read in the contents of a file.

Move lines of Text

You can move paragraphs of text to another place in the file, or you
can move an entire subroutine of a program to another place in the
computer program you are creating in ed.

Move one or more lines of text.

The general format for the move command is:

[addressl,address2]m[address3]< CR>

5-69

UINE EDITOR TUTORIAL (ed)

addressl,address2
The range of lines to be moved. If only one line is
moved, only addressl is given. If no address is
given, the current line is moved.

m The move command.

address3 Place the text after this line.

The following lines are in a file.

I want to move this line.
I want the first line
below this line.

Type in: lm3<CR>

ed will move line 1 below line 3.

- I want to move this line.

I want the first line
below this line.

~ I want to move this line.

The next screen shows how this will appear on your terminal.

1,$p<CR>
I want to move this line.
I want the first line
below this line.
lm3<CR>
l,$p<CR>
I want the first line
below this line.
I want to move this line.

5-70

MOVING TEXT

If you want to move a paragraph of text, addressl and address2
would be the range of lines of the paragraph.

The following example depicts moving a block of text. Line 8
through line 12 are moved below line 65.

This is line 8
It is the beginning of a
very short paragraph.
This paragraph ends
on this line.

Move the block of text
below this line.
This is line 8
It is the beginning of a
very short paragraph
This paragraph ends
on this line.

The next screen shows how the command would appear on your
terminal. The ll command is used so that you can see how the line
numbers change.

5-71

LINE EDITOR TUTORIAL (ed)

8,12n<CR>
8 This is line 8.
9 It is the beginning of a
10 very short paragraph.
11 This paragraph ends
12 on this line.
64,65n<CR>
64 Move the block of text
65 below this line.
8,12m65<CR>
59,65n<CR>
59 Move the block of text
60 below this line.
61 This is line 8.
62 It is the beginning of a
63 very short paragraph.
64 This paragraph ends
65 on this line.

How do you think you would move lines above the first line of the
file? Try the following command.

Type in: 3,4mO<CR>

When address3 is 0, the lines are placed at the beginning of the file.

Copy lines of Text

The copy command t acts like the m command except that the block
of text is not deleted at the original address of the line. A copy of
that block of text is placed after a specified line of text.

5-72

Copy lines of text and place them
after a specified line.

MOVING TEXT

The general format of the t command also looks like the m command.

[addressl,address2Jt[address3] <CR>

addressl,address2
The range of lines to be copied.
copied, only addressl is given.
given, the current line is copied.

If only one line is
If no address is

t The copy command.

address3 Place the copy of the text after this line.

You may want to reiterate a set of directions. You can place a copy of
those lines of text below another line in the file. In the next example
you want to copy three lines of text below the last line.

Safety procedures:

If there is a fire in the building:
Close the door of the room to seal off the fire

Break glass of nearest alarm
Pull lever
Locate and use fire extinguisher

A chemical fire in the lab requires that you

Break glass of nearest alarm
Pull lever

-----3» Locate and use fire extinguisher

The commands and ed's responses to those commands are displayed
in the next screen. The n command displays the line numbers.

5-73

LINE EDITOR TUTORIAL (ed)

5,Bn<CR>
5 Close the door of the room, to seal off the fire.
6 Break glass of nearest alarm
7 Pull lever
8 Locate and use fire extinguisher
30n<CR>
30 A chemical fire in the lab requires that you:
6,8t30<CR>
30,$n<CR>
30 A chemical fire in the lab requires that you:
31 Break glass of nearest alarm
32 Pull lever
33 Locate and use fire extinguisher
6,Bn<CR>
6 Break glass of nearest alarm
7 Pull lever
8 Locate and use fire extinguisher

The text in lines six through eight remain in place. A copy of those
three lines is placed after line 50.

Experiment with m and t on one of your files.

Joining Contiguous lines

The j command joins the line below the current line with the current
line.

5-74

Join the line below the current
line with the current line.

MOVING TEXT

The j command does not accept an address, so the general format for
the j command is:

j<CR>

H the current line is not the line you want joined, the easiest way to
make it the current line is to display it with p or n.

1,2p<CR>
Now is the time to join
the team.
p<CR>
the team.
lp<CR>
Now is the time to join
j<CR>
p<CR>
Now is the time to jointhe team.

Notice that there is no space inserted between the last word join and
the first word of the next line the. You will have to place the space
between them with the s command.

Write lines of Text to a File

If you are writing the same letter to several different people, you may
want to keep the body of the text in a special file to use over again.
Those lines of text can be written to the special file with the w
command.

Write a copy of the contents of the
editing buffer to a file.

5-75

LINE EDITOR TUTORIAL (ed)

The general format for the w command is:

[addressl,address2Jw [filename]< CR>

addressl,address2
The range of lines to be placed into another file. If
you do not use addressl or address2, the entire file is
written into a new file.

w The write command.

filename The name of the new file that contains a copy of the
block of text.

In the next example the body of the letter is saved in a file called
memo, so that it can also be sent to other people.

1,$n<CR>
1 March 17, 1985

Dear Kelly, 2
3
4
5
6
3,6w
87

There is a meeting in the
green room at 4:30 P.M.
today. Refreshments will
be served.

memo<CR>

The w command has placed a copy of lines three through six into a
new file memo. ed responds to the w command with the number of
characters in the new file.

Problem:
If there was a file called memo in the current directory, it has been
erased. The w command will overwrite, that is, erase the current file
called memo, and put the new block of text in the file without giving
any warning. In the next section of this tutorial on Special Commands,
you will learn how to execute shell commands from ed. Then, you
can list the file names in the directory to make sure that you are not
overwriting a file.

5-76

MOVING TEXT

Problem:
You cannot write other lines to the file memo. If you tried to add
lines 13 through 16, the existing lines (3 through 6) would be erased
and the file would only contain the new lines 13 through 16.

Read in the Contents of a File

The body of your memo is in a file called memo. How do you copy it
from that file into the editing buffer?

Read in a copy of the contents of another file
into the current editing buffer.

The general format for the read command is:

[address1Jr filename<CR>

addressl The text will be placed after the line addressl. H
addressl is not given, the file is added to the end of
the buffer.

r The read command.

filename The name of the file that will be copied into the
editing buffer.

Using the example from the write command, the next screen depicts
editing a new letter and then reading in the contents of the file
memo.

5-77

LINE EDITOR TUTORIAL (ed)

1,$n<CR>
1 March 17, 1985
2 Dear Michael,
3 Are you free later today?
4 Hope to see you there.
3r memo<CR>
87
3,$n<CR>
3 Are you free later today?
4 There is a meeting in the
5 green room at 4:30 P.M.
6 today. Refreshments will
7 be served.
8 Hope to see you there.

ed responds to the read command with the number of characters in
the file memo that are now added to the editing buffer.

It is always a good idea to display new or changed lines of text to be
sure that they are correct.

SUMMARY OF COMMANDS TO MOVE TEXT

m Move lines of text.

t Copy lines of text.

Join contiguous lines.

w Write text into a new file.

r Read in text from another file.

5-78

OTHER USEFUL COMMANDS AND INFORMATION

EXERCISE 6

6-1. There are two ways to copy lines of text in the buffer, one is the
copy command, the other is writing the lines of text to a file
and then reading the file into the buffer. Writing to a file and
then reading the file into the buffer is a longer process. Can
you think of an example where this would be more practical?
What commands would copy lines 10 through 17 of file exer into
the file exer6 at line 7?

6-2. Lines 33 through 46 give an example that you want placed after
line 3, and not after line 32. What command performs this task?

6-3. If you are on line 10 of a file and you want to join lines 13 and
14, what commands would you issue?

OTHER USEFUL COMMANDS AND INFORMATION

There are four other commands and a special file that will be useful
to you when you are editing your files. They are the following:

h,H The help commands that give error messages.

Display characters that are not normally displayed.

f Display the current file name.

Temporarily escape ed to execute a shell command.

ed.hup When a system interrupt occurs, the ed. buffer is saved in
a special file named ed.hup.

Help Commands

You may have noticed when you were editing a file that ed responds
to some of your commands with a ?. The ? is a diagnostic message
indicating there is an error. The help commands give you a short
message to explain the reason for the most recent diagnostic.

5.79

LINE EDITOR TUTORIAL (ed)

Display a shod error message to explain
the ? diagnostic.

There are two help commands.

h Display a short error message that explains the reason
for the most recent ?.

H Place ed in a help mode that displays the short error
message each time ? is displayed. The next H turns off
the help mode.

Let's look at an example of h first. At the beginning of this tutorial,
you learned that if you tried to quit ed without writing the changes
in the buffer to a file, you would get a ?. Try it now using h to find
out what the problem is. When the ? is displayed, type in h.

q<CR>
?
h<CR>
warning: expecting 'w'

The ? is displayed when you give a new file name to the ed
command line. Examine that ? with h to see what the error message
is.

5·80

ed new file< CR>
? newfile
h<CR>
cannot open input file

OTHER USEFUL COMMANDS AND INFORMATION

This error message is telling you there is no file called newfile, or if
there is a file named newfile ed is not allowed to read the file.

Now let's examine the H command. This command will respond to
the ? and then turn on the help mode of ed, so that ed will give you
an explanation each time the ? is displayed until you turn off the
help mode with a second H. The next screen shows the help mode
turned on by H. The various error messages are displayed in
response to some common mistakes.

e newfile <CR>
? newfile
H<CR>
cannot open input file
/hello<CR>
?
search string not found
1,22p<CR>
?
line out of range
a<CR>
This is line one .
. <CR>
s/$ end of line<CR>
?
illegal or missing delimiter
,sf/ end of line<CR>
?
unknown command
H<CR>
q<CR>
?
h<CR>
warning expecting 'w'

In the preceding example, the help mode is turned on by H and
displays the error message for ? newfile. Then it displays some of the
error messages you may encounter in an editing session.

5-81

LINE EDITOR TUTORIAL (ed)

/hello<CR> There is no search pattern hello since the buffer is
empty.

search string not found

1,22p<CR> There are no lines in the buffer so ed cannot print
the lines.

line out of range

A line of text is appended to the buffer to show you some error
messages associated with the s command.

s/$ end of line<CR>
The delimiter between the old text to be replaced and the
new text is missing.

illegal or missing delimiter

,$s/$/end of line<CR>
addressl was not typed in before the comma, ed does not
recognize ,$.

unknown command

The help mode is then turned off and h was used to discover the
meaning of the last ? . While you are learning ed, you may want to
leave the help mode turned on so you will use H. However, once
you become more adept at editing in ed, you will only need to see
the error message occasionally and so you will use h.

Display Nonprinting Characters

If you are typing in a tab character, normally the terminal will
display up to eight spaces to the next tab setting. (Your tab setting
may be more or less than eight spaces. See Chapter 7, Shell Tutorial,
on setting stty-tabs.)

If you want to see how many tabs you have inserted into your text,
you would use the 1 command.

5-82

OTHER USEFUL COMMANDS AND INFORMATION

Display nonprinting characters.

The general format for the l command is the same as for n and p.

[addressl,address2]1 <CR>

addressl,address2
The range of lines to be displayed. If no address is
given, the current line will be displayed. If only
addressl is given, only that line will be displayed.

The command that displays the nonprinting
characters along with the text.

The 1 command denotes tabs with a > character. l displays some
control characters. These characters are typed in by holding down
the CTRL key and pressing another character key. The key that
sounds the bell is control g. It is displayed as \07 which is the ASCII
hexadecimal representation (the computer's code) for control g.

Type in two lines of text that contain a control g, denoted in the text
by <Ag>, and a tab denoted by <tab>. Then use the 1 command to
display the lines of text on your terminal as shown below.

a<CR>
Type in <Ag> control g.<CR>
Type in a <tab> tab.<CR>
.<CR>
1,2l<CR>
Type in \07 control g
Type in a > tab.

Did the bell sound when you typed in <Ag>?

5-83

UNE EDITOR TUTORIAL (ed)

The Current File Name

In a long editing session, you may forget the file name. The f
command will remind you which file is currently in the buffer.

Or, you may want to preserve the original file that you entered into
the editing buffer and write the contents of the buffer to a new file.
In a long editing session, you may forget, and accidentally overwrite
the original file with the customary w and q command sequence.
You can prevent this by telling the editor to associate the contents of
the buffer with a new file name while you are in the middle of the
editing session. This is done with the £ command and a new file
name.

Displays or changes the current file name.

The general format to display the current file name is just £ alone on
a line.

f<CR>

To see how f works, enter a file into ed and then use the £ command.
The file oldfile is entered into ed in the example.

5-84

ed oldfile<CR>
323
f<CR>
old file

OTHER USEFUL COMMANDS AND INFORMATION

The general format to associate the contents of the editing buffer with
a new file name is:

f newfile <CR>

If no file name is given to the write command, ed remembers the file
name given at the beginning of the editing session and writes to that
file. If you do not want to overwrite the original file, you must either
use a new file name with the write command, or change the current
file name using the£ command followed by the new file name. Since
you can use f at any point in the editing session, you can
immediately change the currently remembered file name, thus
protecting the original file. You can then continue with the editing
session without worrying about overwriting the original file.

The next screen shows the commands for entering the editor with
oldfile and then changing the current file name to newfile. A line of
text is added to the buffer and then the write and qui.t commands are
given.

ed oldfile<CR>
323
£<CR>
old file
f newfile<CR>
new file
a<CR>
Add a line of text. <CR>
"<CR>
w<CR>
343
q<CR>

Once you have returned to the shell command mode, you can list
your files and see that there is a new file named newfile. newfile
should contain a copy of the contents of oldfile plus the new line of
text.

5-85

LINE EDITOR TUTORIAL (ed)

Escape to the Shell

How can you make sure you are not overwriting an existing file
when you write the contents of the editor to a new file name? You
need to return to the shell command mode and list your files. The !
allows you to temporarily return to the shell and execute a shell
command line and then return to the current line of the editor.

Temporarily escape to the shell.

The general format for the escape sequence is:

! shell command line< CR>
shell response to the command line

When you type in the ! as the first character on a line, the shell
command must follow on that same line. The response to the shell
command line will be displayed. When the shell command is
finished executing, the ! will be displayed alone on a line. This tells
you that you are back in the editor at the current line.

If you want to return to the shell to find out the correct date, you
could type in ! and the shell command date.

p<CR>
This is the current line
! date<CR>
mon Apr 1 14:24:22 CST 1988
!
p<CR>
This is the current line.

OTHER USEFUL COMMANDS AND INFORMATION

The screen first displays the current line. Then, the command is
given to temporarily leave the editor and display the date. After the
date is displayed, you are returned to the current line of the editor.

If you want to execute more than one command on the shell
command line, see the ; in the section on Special Characters in
Chapter 7, Shell Tutorial.

Recover From a System Interrupt

What happens if you are creating text in ed. and there is an interrupt
to the system, you accidentally hung up on the system, or your
terminal was unplugged? Is all lost? When there is an interrupt to
the system, the UNIX system trys to save the contents of the editing
buffer in a special file named ed.hup. You can either use the shell
command to move ed.hup to another file name, or you can put ed.hup
back into ed and, use the f command to associate the contents of the
editing buffer with a new file name. The next screen shows placing
ed.hup in ed and giving it a new file name.

Conclusion

ed ed.hup<CR>
928
f myfile<CR>
my file

You now are familiar with many useful commands in ed. The
commands that were not discussed in this tutorial, such as G, P, Q
and the use of () and { } , are discussed in the Editing Guide. Their
functions are also listed under the ed command in the UNIX System
User Reference Manual. (See Appendix A.) You can experiment with
these commands and try them out to see what tasks they perform.

5-87

UNE EDITOR TUTORIAL (ed)

h

H

1

f

SUMMARY OF OTHER USEFUL COMMANDS
AND INFORMATION

Display a short error message for the preceding
diagnostic ? .

Turn on the help mode. An error message will be
given with each diagnostic ?. The second H turns
off the help mode.

Display nonprinting characters in the text.

Display the current file name.

f newfile Change the current file name associated with the
editing buffer to newfile.

! cmd

ed.hup

Temporarily escape to the shell to execute a shell
command cmd.

The editing buffer is saved in ed.hup if the terminal
is hung up before a write command.

EXERCISE 7

7-1. Create a new file newfilel. Once you have entered ed, change
the current file name to currentl. Create some text and write
and quit ed. If you do the shell command ls you will see the
directory does not contain a file called newfilel.

5-88

EXERCISE 7

7-2. Create a file named filel. Append some lines of text to the file.
Leave the append mode. Do not write the file. Turn off your
terminal. Turn on your terminal and log in again. Do an ls in
the shell. Is there a new file ed.hup? Place ed.hup in ed. How
do you change the current file name to filel? Display the
contents of the file. Are the lines the same lines you created
before you turned off your terminal?

7-3. While you are in ed, temporarily escape to the shell and send a
mail message to yourself.

5-89

LINE EDITOR TUTORIAL (ed)

ANSWERS TO EXERCISES

Exercise 1

1-L

1-2.

5-90

$ ed junk<CR>
? junk
a<CR>
Hello world.<CR>
.<CR>
w<CR>
12

q<CR>
$

$ ed junk<CR>
12
1,$p<CR>
Hello world.<CR>
q<CR>
$

The system did not respond with the warning question mark because
you did not make any changes to the buffer.

1-3.

Exercise 2

2-l.

ANSWERS TO EXERCISES

$ ed junk<CR>
12
a<CR>
This is not Mr. Ed, there is no horsing around <CR>
.<CR>
1,$p<CR>
Hello world.
This is not Mr. Ed, there is no horsing around

q<CR>

w stuff<CR>
60
q<CR>
$

$ ed towns<CR>
? towns
a<CR>
My kind of town is<CR>
Chicago<CR>
Like being no where at all in <CR>
Toledo<CR>
I lost those little town blues in<CR>
New York<CR>
I lost my heart in <CR.>
San Francisco<CR>
I lost $$ in <CR>
Las Vegas<CR>
.<CR>
w<CR>
164

5-91

LINE EDITOR TUTORIAL (ed)

2-2.

(
2-3.

2-4.

I
2-5.

(
2-6.

5-92

3<CR>
Like being no where at all in

-2,+3p<CR>
My kind of town is
Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York

.=<CR>
6

6<CR>
New York

$<CR>
Las Vegas

?town<CR>
I lost those little town blues in
?<CR>
My kind of town is

2-7.

g/in<CR>
My kind of town is
Like being no where at all in
I lost those little town blues in
I lost my heart in

lost $$·in

v/in<CR>
Chicago
Toledo
New York
San Francisco
Las Vegas

ANSWERS TO EXERCISES

Exercise 3

3-1.

$ ed ex3<CR>
?ex3
i<CR>
?
q<CR>

The ? after the i indicates there is an error in the command. There is
no current line to insert text before that line.

5-93

LINE EDITOR TUTORIAL (ed)

3-2.

5-94

$ ed towns<CR>
164

.n<CR>
10 Las Vegas
3i<CR>
Illinois< CR>
.<CR>
.i<CR>
or<CR>
Naperville<CR>
.<CR>
$i<CR>
hotels in<CR>
.<CR>
1,$n<CR>
1

2
3
4
5
6

7
8
9
10
11
12

13
14

my kind of town is
Chicago
or
Naperville
Illinois
Like being no where at all in
Toledo
I lost those little town blues in
New York
I lost my heart in

San Francisco
I lost $$ in
hotels in
Las Vegas

3-3.

3-4.

3-5.

1,Sn<CR>
1 My kind of town is
2 Chicago

3
4

5

or

Naperville
Illinois

2,Sc<CR>
London<CR>
.<CR>
1,3n<CR>
1 My kind of town is
2 London

ANSWERS TO EXERCISES

3 Like being no where at all

.<CR>
Like being no where at all

/Tol<CR>
Toledo

c<CR>
Peoria<CR>
.<CR>
.<CR>
Peoria

.<CR>
/New Y/c<CR>
Iron City<CR>
.<CR>
.<CR>
Iron City

Your search string need not be the entire word or line. It only needs to be
unique.

5-95

LINE EDITOR TUTORIAL (ed)

Exercise 4

4-1.

The line

v/little/s/town/dty<CR>
My kind of city is
London
Like being no where at all in
Peoria
Iron City
I lost my heart in
San Francisco

I lost $$ in
hotels in
Las Vegas

I lost those little town blues in

was not printed because it was NOT addressed by the v command.

4-2.

4-3.

5-96

.<CR>
Las Vegas
s?Las Vegas?Toledo<CR>
Toledo

?lost?s??found <CR>
I found $$ in

4-4.

/no?s??NO<CR>
?
/no/s/ /NO<CR>
Like being NO where at all in

ANSWERS TO EXERCISES

You can not mix delimiters such as I and 7: in a command line.

Exercise 5

5-1.

$ ed filel <CR>
? frle1
a<CR>
A Computer Science<CR>
D Jogging<CR>
C Tennis<CR>
.<CR>
1,$sf[' AB]/ A/ <CR>
1,$p<CR>
AA Computer Science
A Jogging
A Tennis
u<CR>

1,$s/TAB]/ A <CR>
1,$p<CR>
A Computer Science
A Jogging
A Tennis

5-97

LINE EDITOR TUTORIAL (ed)

5-2.

5-3.

5-4.

5-98

2i<CR>
These are not really my grades.<CR>
.<CR>
1,$p<CR>
A Computer Science
These are not really my grades.
A Tennis
A Jogging
I TAJ< CR>
These are not really my grades
?'[T]<CR>
These are not really my grades

1,$p<CR>
I love money
I need money
The IRS wants my money
grI/s/I.*m /H's my m<CR>
It's my money
It's my money

/s/money /gold <CR>
It's my gold
2,$s/ /%<CR>
The IRS wants my gold

s/10202/&0<CR>
10202031020

5-5.

ANSWERS TO EXERCISES

a<C.R>
* . \ & 3 A *<CR>
.<CR>
s/*fa<CR>
a.\&%'*
sf* fb<CR>
a.\&%'b

Because there were no preceding characters, * substituted for itself.

sf \.fc<CR>
ac\&%'b
sf \\/d<CR>
acd&%'b

sf&/e<CR>
acde%'b
s/%ff<CR>
acdef'b

The & and % are only special characters in the replacement text.

sf \'/g<CR>
acdefgb

5-99

LINE EDITOR TUTORIAL (ed)

Exercise 6

6-1. Any time you have lines of text that you may want to have repeated
several times, it may be easier to write those lines to a file and read in
the file at those points in the text.

6-2.

6-3.

If you want to copy the lines into other files you must write them to a
file and then read in that file into the buffer containing another file.

ed exer<CR>
725
10,17 w temp<CR>
210
q<CR>
ed exer6 <CR>
305
7r temp<CR>
210

The file temp can be called any file name.

(33,46m3<CR>

.=<CR>
10
13p<CR>
This is line 13.
j<CR>
.p<CR>
This is line 13 and line 14.

Remember the .= will give you the current line.

5-100

ANSWERS TO EXERCISES

Exercise 7

7-1.

7-2.

ed newfilel <CR>
? newfilel
£ cmrirenn <CR>
currentl
a<CR>
This is a line of text<CR>
Will it go into newfilel <CR>
or into current! <CR>
.<CR>
w<CR>
66
q<CR>
ls<CR>
bin
currentl
rje

ed filel <CR>
? file 1
a<CR>
I am adding text to this file. <CR>
Will it show up in ed.hup?<CR>
.<CR>

Turn off your terminal.

Log in again.

5-101

LINE EDITOR TUTORIAL (ed)

7-3.

5-102

ed ed.hup<CR>
58
f filel<CR>
filel
1,$p<CR>
I am adding text to this file.
Will it show up in ed.hup?

ed filel <CR>
58
! mail mylogin<CR>
You will get mail when<CR>
you are done editing!<CR>
.<CR>
!<CR>

Chapter 6

SCREEN EDITOR TUTORIAL (vi)

PAGE

GETTING ACQUAINTED WITH vi.. 6-1

HOW TO READ THIS Tl.JTOmAl ... 6-2

GETTING STARTED... 6-5

How to Set Terminal Configuration.. 6-5

How to Access vi... 6-7

How to Create Text... 6-8

How to Leave the Append Mode ... 6-9

How to Move the Cursor.. 6-1 O

How to Delete Text... 6-12

How to Add Text... 6-13

How to Quit vi... 6-14

EXERCISE 1... 6-15

POSITIONING THE CURSOR IN THE WINDOW.. 6-16

Character Positioning.. 6-18

Positioning the Cursor to the Right or Left... 6-18

Positioning the Cursor at the End or Beginning of a Line 6-20

Searching for a Character on a Line... 6-21

Line Positioning... 6-23

Word Positioning... 6-25

Positioning the Cursor by Sentences .. 6-27

Positioning the Cursor by Paragraphs... 6-29

Positioning in the Window... 6-30

POSITIONING THE CURSOR IN THE FILE... 6-34

Scrolling the Text.. 6-35

Go to a Specified Line... 6-40

Line Numbers.. 6-40

Search for a Pattern of Characters... 6-41

PAGE

EXERCISE 2 6-45

CREATING TEXT.. 6-46

Append Text.. 6-47

Insert Text... 6-47

EXERCISE 3 ... 6-50

DELETING TEXT .. 6-51

Delete Commands in the Text Input Mode.. 6-51

Undo the Last Command... 6-53

Delete Commands in the Command Mode... 6-54

Delete Text Objects.. 6-55

EXERCISE 4... 6-60

CHANGING TEXT ... 6-60

Replacing Text.. 6-61

Substituting Text... 6-62

Changing Text... 6-63

CUTTING AND PASTING TEXT ELECTRONICALLY... 6-66

Moving Text .. 6-66

Fixing Typos ... 6-67

Copying Text... 6-68

Copying or Moving Text Using Registers.. 6-69

EXERCISE 5... 6-70

SPECIAL COMMANDS.. 6-71

Repeating the Last Command... 6-71

Joining Two Lines... 6-72

Typing Nonprinting Characters.. 6-72

Clearing and Redrawing the Window... 6-73

Changing Lowercase to Uppercase and Vice Versa...................................... 6-73

PAGE

UNE EDITING COMMANDS.. 6-14

Write Text to a New File... 6·15

Finding the Line Number... 6-16

Deleting the Rest of the Buffer.. 6-11

Adding a File to the Buffer.. 6-11

Making Global Changes... 6·11

QUITTING VI.. 6-80

SPECIAL OPTIONS FOR vi... 6·82

Recovering a File lost by an Interrupt.. 6-82

Editing Multiple Files... 6-83

EXERCISE 6 6-84

CHANGING YOUR ENVIRONMENT.. 6-85

Setting the Automatic Carriage Return.. 6-86

ANSWERS TO EXERCISES... 6·88

Exercise 1 6-88

Exercise 2 6-89

Exercise 3 ... 6·90

Exercise 4 ... 6-91

Exercise 5 6-92

Exercise 6 6·92

Chapter 6

SCREEN EDITOR TUTORIAL (vi)

GETTING ACQUAINTED WITH vi

The screen editor, accessed by the vi command, is a powerful and
sophisticated tool for creating and editing files. The video display
terminal is used as a window to view the text of a file. Within this
window, you can add, delete, or change text in much the same way as
you would on a typewriter or with paper and pencil. However,
making corrections in vi does not involve white out, correction tape,
or cutting and pasting. A few simple commands change the text, and
these changes are quickly reflected in the text on the screen.

The vi editor displays from 1 to several lines of text. The cursor can
be moved to any point on the screen and text can be created,
changed, or deleted from that point. The text in the file can be
scrolled forward to reveal the lines below the current window, the
window that is on the screen now. Or, the file can be scrolled
backward to reveal lines above the current window. (See the display
on page 6-2.) Other commands can place you at the beginning or end
of the file, paragraph, line, or word.

Besides the convenience of editing portions of text within the
window, vii also gives you the advantage of some line editor
commands, such as the powerful global commands that make the
same change throughout the whole file.

6-1

SCREEN EDITOR TUTORIAL (vi)

TEXT FILE

You are in the screen editor.

This portion of the file is above
the display window. You can scroll
backward to place this part on the
screen.

This portion of the file
is in the display window.

This part of the file in
display window can be edited.

This is another part of the file
which is below the display window.

You can scroll the screen forward
to place this text in the
display window.

Editing window of vi displaying part of a file

HOW TO READ THIS TUTORIAL

This chapter is a tutorial on how to access and use vi. Although
there are more than 100 commands within vi, this tutorial covers
only the basic commands that will enable you to effectively use vi.
The following basics will be covered:

• How to set up your particular type of terminal so you can access
vi,

6-2

HOW TO READ THIS TUTORIAL

• How to get started creating a file, deleting some of your mistakes,
writing the text into a UNIX system file, and then leaving vi to
go back to the shell command mode,

• How to move around within the file, so that you can create,
delete, or change text,

0 How to electronically cut and paste your text,

• How to use some special commands and shortcuts,

0 How to temporarily escape to the shell to perform some shell
commands and then return to edit the current window of text,

• How to use some line editing commands within vi,

• How to quit vi,

• How to edit several files in the same session,

0 How to recover a file lost by an interruption to an editing
session, and

• How to change your shell environment to automatically set your
terminal configuration, and set an automatic carriage return.

In this tutorial, commands printed in bold should be typed into the
system exactly as shown. UNIX system responses to those commands
are printed in italic. The vi editor commands that do not print out on
the screen will be enclosed in < >. For example, <CR> denotes
carriage return, meaning press the RETURN key.

The vi editor has several commands executed by holding down the
"control" or CTRL key while you press another key. These are called
control characters. A A and a letter denote a control character in the
text. For example, Ad means hold down the control key and press the
"d" key. Since 'd is a command that does not appear on the screen, it
will appear in the text as <Ad>, meaning you should execute vi
command <Ad>. As you read the text you may want to glance back
for a quick review of these conventions, which are summarized next.

6-3

SCREEN EDITOR TUTORIAL (vi)

bold command (Type in exactly as shown.)

italic response (The system's response to a command.)

roman (Text that is being typed in
a file.)

<CR> (Commands that are typed in,
but not reflected on the screen
are enclosed in < > .)

(A control character. Hold down the
control key, CTRL, while you press "g".)

In the following sections, a full or partial screen may be used to
display the examples showing how the commands are executed. An
arrow will point to the letter that is over the cursor. Cursor
movements on the screen are depicted by arrows pointing in the
direction that the cursor will move.

The keys on your keyboard may be depicted as shown in the example
of the "m" key.

Notice that the letter on the key appears as it does on your keyboard.
However, when you press the key it will appear in lowercase in your
text. If you need an uppercase letter, the example will include the
SHIFT key.

The commands discussed in each section are reviewed at the end of
the section. A summary of all the vi commands is found in
Appendix E, where they are listed in alphabetical order, as well as by
topic.

6-4

GETTING STARTED

At the end of some sections, exercises are given for you to experiment
with those commands covered in the section. The answers to all of
the exercises are at the end of this chapter.

GETTING STARTED

The best way to learn vi is to log into the UNIX system and do the
examples and the exercises as you read the tutorial. If you
experiment with the commands, they will become familiar to you and
you will soon be adept at editing in vi.

You should be logged into the UNIX system, and ready to create a
file in your current directory, the directory you are in now.

How to Set Terminal Configuration

Before you access vi, you must set your terminal configuration. That
is, you must tell the system what kind of terminal will display the
editing window of your file. Each type of terminal has a code name
that can be recognized by the system. The code for your terminal is
in the UNIX system file I etc/ termcap. The termcap file contains
information about different terminals. You only need to know the
code for your terminal, which is the first two letters of the line
containing information about your terminal.

To find the code for your type of terminal, use the grep command to
search the I etc/ termcap file for your terminal type. For example, if
you have a TELETYPE 5420 terminal, type in the following from your
login directory:

$ grep "teletype 5420" /etc/termcap<CR>
T7 I 5420 I tty5420 I teletype 5420 80 columns:
$

6-5

SCREEN EDITOR TUTORIAL (vi)

The code for a Teletype 5420 is T7.

To set the terminal configuration, type in:

TERM=code <CR>
export TERM< CR>

TERM must be typed in uppercase and there are no spaces on either
side of the equal sign. "code" will be the first two letters on the line
for your terminal from the termcap file. In this command sequence,
the export command assigns the terminal type to your login
environment for this session while you are logged in to the UNIX
System. You can learn more about exporting variables such as TERM
in Chapter 7, Shell Tutorial and in UNIX System Shell Commands and
Programming. (See Appendix A.)

In the example below, you have logged into the UNIX system and
have gotten your $ prompt from the system. Then, you set your
terminal configuration for the Teletype 5420.

$ TERM=T7 <CR>
$ export TERM< CR>
$

Look up your terminal code in the termcap file, or ask your system
administrator for the code. If you set your terminal configuration
now, you can do the examples as you read the text.

Do not experiment typing in terminal configurations that do not
match your terminal, since you may confuse the UNIX system, and
you will either have to log off, hang up, or get the help of the system
administrator to restore your login environment.

Later in this chapter, you will learn how to set your shell
environment so that you do not have to set the terminal
configuration each time that you log in to the UNIX system.

6-6

GETTING STARTED

How to Access vi

Now you are ready to access vi.

Type in: vi filename< CR>

where filename is the name of the file you wish to edit, or the name of
the file you are about to create.

After you have set your terminal configuration, you want to create a
file called stuff. For the purpose of this example, TERM is set to T7.

TERM=T7<CR>
export TERM< CR>
vi stuff<CR>

The vi command will clear the screen and display the window for the
screen editor. It should look like this:

"stuff" [new file]

The vi editor window initially displays some lines of text. In this
example there are no lines of text. The screen editor displays a - on
each line to indicate the file is empty. The cursor is at the beginning

6-7

SCREEN EDITOR TUTORIAL (vi)

of the file waiting for the first command. In this example, the cursor
appears as a short line. Your video display terminal may indicate the
cursor by a blinking line or a reverse color block.

Problem:
If you access vi and get the following message you have forgotten to
set the terminal configuration.

$ vi stuff<CR>
I don't know what kind of terminal you are on - all I have is unknown
[Using open model
"stuff" [New file]

Type in: :q<CR>

This returns you to the shell command mode, now you can set your
terminal configuration.

How to Create Text

If you have successfully accessed vi, you are in the command mode of
the screen editor, and vi is waiting for your commands. How do you
create some text?

0 Press the "a" key, <a>. Now you are in the append mode of vi.
You can add text to the file. The a does not print out on the
screen.

• Start typing in some text.

• To begin a new line press the carriage return key <CR>.

• Notice as you get dose to the right margin a bell sounds to
remind you to press the carriage return. Terminals which do not
have a bell, may warn you another way, such as flashing the
screen.

6-8

GETTING STARTED

It is possible to set the carriage return so that it is automatic; this is
discussed later in this chapter in the section on changing your
environment.

How to Leave the Append Mode

If you are finished creating text, you need to leave the append mode
and return to the command mode of vi to edit any text you have
created, or to write the text into a UNIX system file. Press the escape
key, ESC or DEL, denoted by <ESC>. You are now back in the
command mode.

Problem:

<a>
Create some text <CR>
in the screen editor <CR>
and return to the <CR>
command mode. <ESC>

If you press <ESC> and a bell sounds, vi is telling you that you are
already in command mode. It will not affect the text in the file if you
press <ESC> several times. The vi editor will only sound a bell
each time that you press <ESC>.

6-9

SCREEN EDITOR TUTORIAL (vi)

How to Move the Cursor

To edit your text, you need to move the cursor to the point on the
screen where you will begin the correction. This is easily done with
four keys that are next to each other on the keyboard, "h, j, k, l".

<h> Moves the cursor one character to the left.

<j> Moves the cursor down one line.

<k> Moves the cursor up one line.

<l> Moves the cursor to the right one character.

k

r
h -----

l

Right now try moving the cursor around. Watch the cursor on the
screen while you press the keys <h>, <j>, <k>, and <l>. If you
want to move two spaces to the right, press <l> twice. If you want
to move up four lines, press <k> four times. If you cannot go any
farther in the direction you have indicated, vi will sound a bell.

6-10

GETTING STARTED

Many people who use vi find it helpful to mark these four keys with
arrows indicating the direction that each key moves the cursor. Mark
an arrow on each of four small pieces of white correction tape and
place a left arrow on the front of the "h" key, a down arrow on the "j"
key, an up arrow on the "k" key, and a right arrow on the "l" key.

Some terminals have special cursor control keys that are marked with
arrows. These may be used as "h, j, k, and l" keys are used.

Problem:
If you are trying to move the cursor around on the screen and the
letters h, j, k, and 1 print out on the screen, you are still in the
append mode of vi. Press <ESC>. Most of the commands in the
screen editor are silent, that is they do not print out. If the screen
editor commands are printing out on the screen you are sti.ll in
append mode. Press <ESC> and try the commands again.

6-11

SCREEN EDITOR TUTORIAL (vi)

How to Delete Text

If you have put in an extra character in the text, you will want to
delete that character. Move the cursor to that character, and press the
"x" key. Watch the screen. The letter will disappear and the line will
readjust to the change. If you want to erase three letters in a row,
press <x> three times. In the examples below, the position of cursor
is depicted by the arrow under the letter.

Hello Wurld!

t

Press

Hello Wrld!

t

6-12

GETTING STARTED

How to Add Text

If you need to add text at a certain point in the text that is in the
window, move the cursor to that point using <h>, <j>, <k>, and
<1>. Then, press <a> and text will be created after that point. As
you append text, the characters to the right will move over on the
screen to make room for the new characters. The vi editor will
continue adding all characters that you type in, until you press
<ESC>. If necessary the characters to the right will even wrap
around onto the next line.

Hello Wrld!

t

Press ~then~

Hello World!

t

Press

Moving around on the screen, or scrolling through the file to add or
delete characters, words, or lines, is discussed in detail later in this
tutorial.

6-13

SCREEN EDITOR TUTORIAL (vi)

How to Quit vi

The vi command creates a temporary buffer for you. This is
equivalent to giving you a piece of scratch paper. When the text or
data on the scratch pad is in the form you want for this editing
session, you must write it to a UNIX system file. If you are done
editing your test file, you will want to put this file in a file called stuff
in the current directory and get back into the shell command mode.

Hold down the SHIFT key and press the "z" key twice, <ZZ>. The
vi editor remembers the file name given to the vi command at the
beginning of the editing session, and moves the text from the buffer
of the editor to the file named stuff. You will get a notice at the
bottom of the screen giving the file name, and the number of lines
and characters in the file. Then, you are returned to the shell
command level, and the UNIX system displays the shell prompt $.
Since stuff is a new file, the notice at the bottom of the screen will
include this fact.

6-14

<a>
This is a test file. <CR>
I am adding text to <CR>
a temporary buffer and <CR>
now it is perfect. <CR>
I want to write this file, <CR>
and return to the shell command <CR>
mode. <ESC> <ZZ>

"stuff" [New file] 6 lines, 151 characters

$

EXERCISE 1

SUMMARY OF GETTING STARTED

TERM=code
export=TERM Set the terminal configuration.

vi filename

<a>

<h>

<j>

<k>

<l>

<x>

<CR>

<ESC>

<ZZ>

:q

Enter vi editor to edit the file called filename.

Add text after the cursor.

Move one character to the left.

Move down one line.

Move up one line.

Move to the right one character.

Delete a character.

Carriage return.

Leave the append mode, and return to vi
command mode.

Write to a file, and quit vi.

Quit vi.

EXERCISE 1

There is often more than one way to perform a task in vi. If the way
you tried worked, then your answer is correct. Watch the screen as
you give the commands, and see how it changes or how the cursor
moves.

The answers to the exercises are at the end of this chapter.

1-1. If you have not logged in yet, do so now, and set your terminal
configuration.

6-15

SCREEN EDITOR TUTORIAL (vi)

1-2. Enter vi and append the following five lines of text to a new
file called ex er 1.

This is an exercise!
Up, down
left, right,
build your terminal's
muscles bit by bit.

1-3. Move the cursor to the first line of the file and the seventh
character from the right. Notice as you move up the file, the
cursor moves "in" to the last letter of the file, but it does not
move "out" to the last letter of the next line.

1-4. Delete the seventh and eighth character from the right.

1-5. Move the cursor to the last line of the text, and the last
character of that line.

1-6. Append a new line of text.

and byte by byte

1-7. Write the buffer to a file and quit vi.

1-8. Reenter vi and append two more lines of text to the file exer1.

What does the notice at the bottom of the screen say once you
have reentered vi to edit exer1?

POSITIONING THE CURSOR IN THE WINDOW

Until now you have been positioning the cursor with the keys "h, j, k
and, l". However, there are several commands to help you move the
cursor quickly around the window.

This section on positioning the cursor in the window will look at:

• Positioning by characters on a line,

6-16

POSITIONING THE CURSOR IN THE WINDOW

0 Positioning by lines,

• Positioning by text objects

By words,

By sentences, and

By paragraphs, and

0 Positioning in the window.

There are also several commands that position the cursor within the
vi editing buffer. These commands will be looked at in the next
section, Positioning in the File.

The vi editor provides two very helpful patterns in cursor movement.

• Instead of pressing a key such as "h" or "k" a certain number of
times, you can precede the command with that number. For
example, <7h> moves the cursor seven characters to the left.

• Many lowercase commands have an uppercase equivalent that
will slightly modify or enhance the command. For example,
<a> appends text after the cursor, but <A> appends text after
the last character at the end of the line.

The uppercase commands will be mentioned briefly in the text,
and will be defined in the summary. As you try out the
lowercase commands, experiment with the uppercase commands
and see what they can do.

If you have not logged into the UNIX system and have not accessed
vi to edit a file, please do so now. You will want a file that has at
least 40 lines in it. If you do not have one, create one now, because
you will want to try out each of these cursor movements as you read
this section of the tutorial. Remember, to execute these commands,
you must be in the command mode of vi. Press <ESC> to make
sure you are out of the append mode, and are in the command mode
of vi.

6-17

SCREEN EDITOR TUTORIAL (vi)

Character Positioning

There are three ways to position the cursor by a character on a line.

• You can move the cursor right or left to a character,

• You can specify the character at either end of the line, or

• You can search for a character on a line.

Positioning the Cursor to the Right or Left

The commands, <h>, <l>, the space bar, and the BACK SPACE key
move the cursor right or left to a character on the current line.

You are already familiar with the "h" and "l" keys.

Move the cursor to the left.

<h> -E- Move the cursor one character to the left.

<nh> Move the cursor "n" characters to the left.

Move the cursor to the right.

<1> ---- Move the cursor one character to the right.

<nl> Move the cursor "n" characters to the right.

6-18

POSITIONING THE CURSOR !N THE WINDOW

Try typing in a number before the command key. Notice that the
cursor moves the specified number of characters to the left or right.
In the example below, the cursor movement is depicted by the
arrows.

To quickly move the cursor
left or right on the screen,
prefix a number to the command.

Move the cursor left 7 spaces.
-E-- <7h>

Move the cursor right three spaces.
<31>-

Even if there are not 100 characters in a line, if you type in < 1001 >,
the cursor will simply travel to the end of the line. If you type in
< lOOh> the cursor will travel to the beginning of the line.

By now, you have probably accidentally discovered that you can
move the cursor back and forth on a line using the space bar and the
BACK SPACE key.

[,,____\ --\ -..;;... Space bar
moves one
space to the
right

<space bar> ---3" Move the cursor one character to the
right.

<nspace bar> Move the cursor "n" characters to the right.

SCREEN EDITOR TUTORIAL (vi)

BACK
SPACE

\

<BS>

<nBS>

Move the cursor one character to the left.

-E-- Move the cursor one character to the
left.

Move the cursor "n" characters to the left.

You can type in a number before the space bar or <BS>. The cursor
will move that many characters to the left or right.

Positioning the Cursor at the End or Beginning of a Line

The second method of positioning the cursor on the line is shown
below. These commands will place you at the first character or last
character of a line.

6-20

Position the cursor on the last character of
the line.

The number zero positions the cursor on the
first character of the line.

The carat key positions the cursor on the first
character of the line thall: is not a blank.
(This is not a control character.)

POSITIONING THE CURSOR IN THE WINDOW

The next examples show the movement of the cursor for each of the
three commands.

Go to the back of the line!

<$>

Go to the front of the line!

<O> (The number zero)

Go to the first character
of the line that

is not blank!

Searching for a Character on a line

The third way to position the cursor on a line is to search for a
specific character on the current line. If the character is not on the
current line, a bell will sound and the cursor will not move. There is
a command that will search the file for patterns. It is discussed in the
next section of this tutorial.

6-21

SCREEN EDITOR TUTORIAL {vi)

<fx>

<Fx>

<;>

Moves the cursor to the right
to find the specified letter
on the current line.

~ Move the cursor to the right to
the specified character x.

-E- Move the cursor to the left to the
specified character x.

The <;> will continue the search. It will
remember the character and seek out the next
occurrence of that character on the current
line.

In the next example, v1 is searching to the right for the first
occurrence of the letter "A" on the current line.

Go forward to the letter A on this line.

<fA>

You may also find the < tx > command useful.

<tx>

<Tx>

~ Move the cursor to the right, to the
character just before the specified
character x.

-E-- Move the cursor left to the character
just after the specified character x.

Try the search commands on one of your files. Notice the difference
between the uppercase and lowercase commands.

6-22

POSITIONING THE CURSOR IN THE WINDOW

Line Positioning

Besides the <j> and <k> commands that you have already used,
the "+", "-"and RETURN keys will move the cursor line by line. The
cursor will try to remain at the same position on the line. If the
cursor is on the seventh character from the left in the current line, it
will try to go to the seventh character on the new line. If there is no
seventh character, the cursor will move to the last character.

~ \----\ t Move the cmsm down one line.

~ t Move the cu"°' up on line.

Since you have already tried out <j> and <k> and know how they
react, try adding a number of lines to the command as you did with
<h> and <l>.

Type in: 7k

The cursor will move up seven lines above the current line. If there
are not seven lines above the current line, a bell will sound and the
cursor will remain on the current line.

Type in: 35j

The screen will clear and redraw. The cursor will be on the 35th line
below the current line. The new line will be located in the middle of
the new window. If there are not 35 lines below the current line, the
bell will sound and the cursor will remain on the current line. Try
the following command.

Type in: 35k

Did the screen clear and redraw?

6-23

SCREEN EDITOR TUTORIAL {vi)

Now, try out the following three easy ways to move up or down in
the file.

Type in: 13-

The minus sign moves the
cursor up a line.

The cursor will travel up 13 lines. If some of those 13 lines are above
the current window, the window will move up to reveal those lines.
This is a rapid way to move quickly up the file. Try the following
command.

Type in: 100-

What happened to the window? If there are less then 100 lines above
the current line, a bell will sound telling you that you have made a
mistake, and the cursor will remain on the current line.

or

\

RETURN Move the cursor
down a line.

Now, try moving down the lines of the file with+.

Typein: 9+

The cursor will move down nine lines below the current line.

Try moving down line by line in the file with the RETURN key.

Type in: S<CR>

Did the RETURN key give the same response as the "+" key?

6-24

POSITIONING THE CURSOR IN THE WINDOW

Word Positioning

The vi editor considers a word a string of characters that are either
numbers or letters. The word positioning commands, <w>, ,
and <e>, consider that any other character is a delimiter, telling vi
it is the beginning or end of a word. Punctuation before or after a
blank is considered a word. The beginning or end of a line is also a
delimiter.

The uppercase word positioning commands, <W>, , and <E>,
consider that the punctuation is part of the word and define a word
by all the characters within two blank spaces, that is, the word is
delimited by blanks.

<w>

<nw>

<W>

Move the cursor to the right by words.

Move the cursor forward to the first character in the
next word. You may press the "w" key as many times
as you wish to reach the word you want, or you can
prefix the number to the <w> command as shown
below.

Move the cursor forward "n" number of words to the
first character of that word. The end of the line does
not stop the movement of the cursor, it will wrap
around and continue to count words from the
beginning of the next line.

Ignore all punctuation, and move the cursor forward
to the word after the next blank.

6-25

SCREEN EDITOR TUTORIAL (vi)

<nb>

6-26

The w command
leaps word by word through the
file. Move from this word forward

<6w>
six words to this word.

Move the cursor backwards, to the left,
by words.

Move the cursor backward one word to the first
character of that word.

Move the cursor backward "n" number of words to
the first character of the nth word. The
command does not stop at the beginning of a line,
but moves to the end of the line above and continues
to move backward.

Can be used just like the command, except that
it delimits the word only by blank spaces. It treats
all other punctuation as letters of a word.

Leap backward word by word through
the file. Go back four words from here.

<4b>

!POSITIONING THE CURSOR IN THE WINDOW

Move forward to the end of the word"

The <e> command acts like <w> moving forward in the file by
words, except that it moves the cursor to the end of the word. 'fhis
makes it easy to add punctuation or add "s" to the end of a word.

The <E> command ignores all punctuation except blanks, delimiting
the words only by blanks.

Go forward one word to the end of
the next word in this line

<e>

Go to the end of the third word.
<3e> ""' 3" ~

Positioning the Cursor by Sentences

The vi editor also recognizes sentences. In vi, a sentence ends in
"! or . or ? ". If they appear in the middle of a line, they must be
followed by two blanks spaces for vi to recognize them. You should
get used to the vi convention of putting two spaces at the end of each
sentence, because you can also delete, change, or yank whole
sentences, which will be discussed later in this tutorial.

Move the cursor to the beginning
of a sentence"

6-27

SCREEN EDITOR TUTORIAL. (vi)

<(>

< n(>

<)>

< n) >

Move the cursor to the beginning
of the next sentence.

Move the cursor to the beginning of the current
sentence.

Move the cursor to the beginning of the "nth"
sentence above the current sentence.

Move the cursor to the beginning of the next
sentence.

Move the cursor to the beginning of the "nth"
sentence below the current sentence.

In the next example, the arrows show the movement of the cursor.

This sentence ends in the middle of
a line. Followed by two blank spaces.

<(>

You can go to the end of a sentence.
<)>

Now, precede the command with a number.

Type in: 3(or 5)

Did the cursor move the correct number of sentences?

6-28

POSITIONING THE CURSOR IN THE WINDOW

Positioning the Cursor by Paragraphs

Paragraphs are recognized by vi if they begin after a blank line, or
after the paragraph formatting command . r. If you want to be able
to move the cursor to the beginning of a paragraph (or later in this
tutorial, delete or change a whole paragraph), then make sure each
paragraph ends in a blank line.

Move the cursor to the beginning
of the current paragraph.

Move the cursor to the beginning
of the next paragraph.

< { > Move the cursor to the beginning of the current
paragraph, which is delimited by a blank line above
it.

< n { > Move the cursor to the beginning of the paragraph,
"n" number of paragraphs above the current
paragraph.

< } > Move the cursor to the beginning of the next
paragraph.

< n} > Move the cursor to the "nth" paragraph below the
current line.

The next example uses arrows to show the cursor moving down to
the beginning of the paragraph.

6-29

SCREEN EDITOR TUTORIAL (vi)

The end of a paragraph is
a blank line.

This is a new paragraph.
It also ends in a blank
line. <}>
Go to the beginning
of the next paragraph.

This is the third paragraph.

Try moving the cursor with the following commands.

Type in: {
3{
6}

Did you have enough blank lines in your file to test out the last two
commands?

Positioning in the Window

The next three commands help you quickly position yourself in the
window. Try out each of the commands.

6-30

Move the cursor to the first line
on the screen.

POSITIONING THE CURSOR IN THE WINDOW

Move the cursor to the middle line
on the screen,

Move the cursor to the last line
on the screen.

This is the text of the file
above the current window.

This is the first line of the screen: HOME

t <H>

This is the MIDDLE line of the screen

t <M>

This is the LAST line of the screen

t <L>

This is the portion of text
in the file that is below the
current window.

6-31

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF POSITIONING IN THE WINDOW

Character Positioning Commands

<h>

<1>

<BS>

<space bar>

<fx>

<Fx>

<;>

<tx>

<Tx>

Positioning by Lines

<j>

6-32

~ Move the cursor one character to the
left.

~ Move the cursor one character to the
right.

~ Move the cursor one character to the
left.

~ Move the cursor one character to the
right.

~ Move the cursor to the right to
the specified character x.

~ Move the cursor to the left to the
specified character x.

Continue the search. It will remember
the character and seek out the next
occurrence of the character on the
current line.

~ Move the cursor to the right, to
the character just before the
specified character x.

~ Move the cursor left to the
character just after the specified
character x.

Move the cursor down one line in the same
column, if possible.

(Continued on next page)

POSITIONING THE CURSOR IN THE WINDOW

SUMMARY OF POSITIONING IN THE WINDOW (continued)

<k>

<->

<+>

<CR>

Word Positioning

<w>

<W>

<e>

<E>

Move the cursor up one line in the same
column, if possible.

Move the cursor up one line.

Move the cursor down one line.

Move the cursor down one line.

Move the cursor forward to the first
character in the next word.

Ignore all punctuation, and move the cursor
forward to the next word delimited
only by blanks.

Move the cursor backward one word to the
first character of that word.

Move the cursor to the left one word,
which is delimited only by blanks.

Move the cursor to the end of the
current word.

Delimit the words by blanks only. The
cursor is placed on the last character
before the next blank space, or end of
the line.

(Continued on next page)

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF POSITIONING IN THE WINDOW (continued)

Positioning by Sentences

<(>

<)>

Move the cursor to the beginning of the
current sentence.

Move the cursor to the beginning of the
next sentence.

Positioning by Paragraphs

<{>

<}>

Move the cursor to the beginning of the
current paragraph.

Move the cursor to the beginning of the
next paragraph.

Positioning in the Window

<H>

<M>

<L>

Move the cursor to the first line on the
screen, or "home".

Move the cursor to the middle line on the
screen.

Move the cursor to the last line on the
screen.

POSITIONING THE CURSOR IN THE FILE

How do you move the cursor to text that is not in the current editing
window? You can type in the commands <20j> or <20k>.
However, if you are editing a large file, you need to move quickly

6-34

POSITIONING THE CURSOR IN THE FILE

and accurately to another place in the file. This section covers those
commands that help you move around within the file. You can:

• Scroll forward or backward in a file,

• Go to a specified line in the file, or

• Search for a pattern in the file.

s·cromng the Text

Four basic commands scroll the text of the file. <Af> and <Ad>
scroll the screen forward. <Ab> and <Au> scroll the screen
backward.

<Af> Scroll the text forward one full window, revealing
the window of text below the current window.

To scroll the file forward, vi clears the screen and redraws the
window. The last two lines that were at the bottom of the current
window are placed at the top of the new window. If there are not
enough lines left in the file to fill the window, the screen will display
the - to indicate the empty lines.

6-35

SCREEN EDITOR TUTORIAL (vi)

Type in:

These last two lines of the current window
become the first two lines of the new window

This part of the file
is below the display
window.

You can scroll forward
to place this text in the
display window.

vi clears the screen and redraws the new screen shown next.

6-36

POSITIONING THE CURSOR IN THE FILE

These last two lines of the current window
become the first two lines of the new window

This part of the file
is below the display
window.

You can scroll forward
to place this text in the
display window.

Scroll down a half screen
to reveal lines below the window"

Scroll down a half screen to reveal text below the
window.

When you use < 'd >, it seems as if the text is being rolled up at the
top and unrolling at the bottom to allow the lines below the screen to
appear on the screen, while the lines at the top of the screen
disappear. If there are not enough lines in the file, a bell will sound
indicating there are no more lines.

6-37

SCREEN EDITOR TUTORIAL (vi)

Scroll the screen back a full window to reveal the
text above the current window.

The < 'b> command clears the screen and redraws the window with
the text that is above the current screen. Unlike the <Af> command,
<'b> does not leave any reference lines from the previous window.
Also, it does not use the ~ to indicate space above the top of the file.
If there are not enough lines above the current window to fill a full
new window, a bell will sound and the current window will remain
on the screen.

6-38

This part of the file
is above the display
window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is
redrawn with the text above the window.

POSITIONING THE CURSOR IN THE FILE

Type in:

vi clears the screen and redraws the new screen shown next.

This part of the file
is above the display window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window dears and is
redrawn with the text above the window.

Any text that was in the display window is placed below the current
window.

Scroll up a half screen to reveal
lines above the window.

Scroll up a half window of text to reveal the lines
just above the window. At the same time, the lines at
the bottom of the window will be erased.

6-39

SCREEN EDITOR TUTORIAL (vi)

When you use < 'u>, it appears as though the text in the file is on a
scroll that is being unwound at the top and wound up at the bottom
of the screen.

When the cursor is near the top of the file, it will move to the first
line of the file and then sound a bell, alerting you it cannot scroll any
farther. Try the <'u> and <'d> commands now. Watch the file
scroll through the window.

Go to a Specified line

The <G> command will position the cursor on a specified line in
the window, or it will clear the screen and redraw the window
around that line. If you do not specify a line, <G> will go to the
last line of the file.

~~Go to a line

<G> Go to the last line of the file.

<nG> Go to the "nth" line of the file.

line Numbers

Each line of the file has a line number, that corresponds to the
number of lines in the buffer. How can you find out the line
numbers? There are two basic ways. One way is to use a line editor
command, which you will learn about in the section on the line
editor commands. The other way is to position the cursor on the line
and type in a <'g> command. Try the <'g> command now.

6-40

POSITIONING THE CURSOR IN THE FILE

The <Ag> command will give you a status notice at the bottom of
the screen. The notice tells you:

Name of the file,

If the line has been changed [modified],

Line number,

Number of the last line in the file, and

Percent the current line is of the total lines in the buffer.

This line is the 35th line of the buffer.
The cursor is on this line. i <Ag>

There are several more lines in the
buffer.
The last line of the buffer is line 116.

"file.name" [modified] line 36 of 116 --34%--

Search for a Pattern of Characters

The fastest way to reach a specific place in your text is to use one of
the search commands. You can search forward or backward for the
first occurrence of a specified pattern of characters or words in the
buffer. The search pattern is ended by <CR> .

6-41

SCREEN EDITOR TUTORIAL (vi)

The search commands, I and ? , are not silent. They will print out on
the bottom of the screen along with the search pattern. However, the
command to repeat the search <n> is silent, it does not print out on
the bottom of the screen.

Search forward in the buffer.

Search backward in the buffer.

Repeat the previous search.

/pattern <CR>

Search forward in the buffer for the next occurrence
of the characters pattern. Position the cursor on the
first character of the pattern.

/Hello world<CR>

Find the next occurrence in the buffer of the two
words Hello world. Position the cursor under the H.

?pattern< CR>

Search backward in the buffer for the first occurrence
of the pattern. Position the cursor under the first
character of the pattern.

POSITIONING THE CURSOR IN THE FILE

?data set design <CR>

<n>

<N>

Search backward in the buffer until the first
occurrence of data set design. Position the cursor
under the "d" of data.

Repeat the last search command.

Repeat the search command in the opposite direction.

The search commands will not wrap around the end of the line in
searching for two words. If you are searching for "Hello world", and
"Hello" is at the end of one line, and "world" is at the beginning of
another line, the search commands will not find that occurrence of
"Hello world". However, the search commands will wrap around the
end or the beginning of the buffer to continue the search. For
example, if you are toward the end of the buffer, and the pattern you
are searching for with the I command is at the top of the buffer, I
will find that pattern.

The <n> command continues the last search, remembering the
pattern and direction of the search.

The following example shows the results of first typing in ?the and
then typing in < n > .

Search backward for the character
pattern "the".

Notice that " here" also qualifies

for he search.
<n>

?the

6-43

SCREEN EDITOR TUTORIAL (vi)

Experiment for a minute. What happens if you try to type in a
number before ? or I or <n>? Experiment with commands in a file
called junk. If you tried to type in a number before I or ?, you found
out it does not work. However, if you tried to type in <7n>, you
found out that it searched for the seventh identical pattern.

Scrolling

<'f>

<'d>

<'b>

<'u>

SUMMARY OF POSITIONING IN THE FILE

Scroll the screen forward a full window, revealing the
window of text below the current window.

Scroll the screen down a half window, revealing lines
below the current window.

Scroll the screen back a full window, revealing the
window of text above the current window.

Scroll the screen up a half window, revealing the lines
of text above the current window.

Positioning on a Numbered Line

<G> Go to the last line of the file.

<'g> Give the line number and status.

Searching for a Pattern

/pattern Search forward in the buffer for the next occurrence of the
pattern. Position the cursor on the first character of the
pattern.

(Continued on next page)

6-44

EXERCISE 2

SUMMARY OF POSITIONING IN THE FILE (continued)

?pattern Search backward in the buffer for the first occurrence of
the pattern. Position the cursor under the first character
of the pattern.

<n> Repeat the last search command.

<N> Repeat the search command in the opposite direction.

EXERCISE 2

2-1. Create a file called exer2. Type a number on each line,
numbering the lines from 1 to 50. Your files should look
similar to the following.

1
2
3
4
5

45
46
47
48
49
50

2-2. Try using each of the scroll commands, notice how many lines
scroll through the window. Try the following:

<'f>
<'b>
<'u>
<'d>

6-45

SCREEN EDITOR TUTORIAL (vi)

2-3. Go to the end of the file. Append the following line of text.

123456789 123456789

What number does the command 7h place the cursor on? What
number does the command 31 place the cursor on?

2-4. Try the command$ and the command 0 (number zero)

2-5. Go to the first character on the line that is not a blank. Move
to the first character in the next word. Move back to the first
character of the word to the left. Move to the end of the word.

2-6. Go to the first line of the file. Try the commands that place the
cursor on the middle of the window, on the last line of the
window, and on the first line of the window.

2-7. Search for the number 8. Find the next occurrence of number
8. Find 48.

CREA TING TEXT

There are three basic commands for creating text:

• Append command <a>,

• Insert command < i > , and

• Open command that creates text on a new line < o >.

After you finish creating text with any one of these commands, you
can return to the command mode of vi with the <ESC> command.

6-46

The ESC key ends the text
input mode.

CREATING TEXT

Append Text

Append text.

<a> Create text to the right of the cursor, or after the
cursor.

<A> Append text at the end of the current line.

You have already experimented with the <a> command in the
section on Getting Started. Make a new file named junk2. Append
some text using the <a> command. Escape or return to the
command mode of vi by pressing the ESC key. Then, compare the
<a> command with the <A> command.

Insert Text

Insert text.

<i> Insert text to the left of the cursor, or before the
cursor.

<I> Create text at the beginning of the current line before
the first character that is not a blank.

In the example below, the arrow shows where the new text will be
created.

6-41

SCREEN EDITOR TUTORIAL (vi)

Insert before the H of Here.
Insert before the Hof[Here.

<i>

To end the insert mode and return to the command mode of vi, press
the "ESC" key. In the next example you can compare the append
command with the insert command.

Append after the Hof Here.
Append after the Hof HI ere.

<a>

Insert before the H of Here.
Insert before the Hof lHere.

<i>

Remember to end the append mode and the insert mode with the
< ESC > command.

6-48

<o>

<0>

CREATING TEXT

Create a new line of text.

The open command < o > creates text at the
beginning of a new line below the current line. The
cursor can be on any character in the current line.

To create text at the beginning of a new line above
the current line, use the <0> command.

In the next screen the <o> command opens a new line below the
current line and begins creating text at the beginning of the new
line.

Create text with the open line command.

Create text below)
c-----------....

the current line.

<o>

6-49

SCREEN EDITOR TUTORIAL (vi)

<a>

<A>

<i>

<I>

<o>

<0>

<ESC>

SUMMARY OF CREATE COMMANDS

Create text after the cursor.

Create text at the end of the current line.

Create text in front of the cursor.

Create text before the first character on the current line
that is not a blank.

Create text at the beginning of a new line below the
current line.

Create text at the beginning of a new line above the
current line.

Return vi to the command mode from any of the above
text input modes.

EXERCISE 3

3-1. Create a test file exer3.

3-2. Insert the following four lines of text.

Append text
Insert text
a computer's
job is boring.

3-3. Create a line of text

financial statement and

above the last line.

3-4. Create a line of text

Delete text

above the third line using an insert command.

6-50

DELETING TEXT

3-5. Create a line of text

byte of the budget

below the current line.

3-6. Using an append command create a line of text

But, it is an exciting machine.

below the last line.

3-7. Move to the first line and append "some" before "text".

Now, practice each of the six commands for creating text until
you are familiar with using them.

3-8. Leave vi and go on to the next section to find out how to
delete any mistakes you made in creating text.

DELETING TEXT

You can delete text from the text input mode or the command mode
of vi. In addition, you can undo the effect of your most recent
command that changed the buffer.

Delete Commands in the Text Input Mode

To delete text in the text input mode, you will use <BS>.

<BS> Delete the current character, the character indicated
by the cursor.

BACK
SPACE

Delete a character in the create
mode of vi.

6-51

SCREEN EDITOR TUTORIAL (vi)

The BACK SPACE key <BS> backs up the cursor in the create mode
and deletes each character that the cursor backs across. However, the
deleted characters are not erased from the screen until you type over
them, or use < ESC > and return to the command mode of vi.

In the next examples, the arrows show the movement of the cursor.

6-52

Press

<a>

BACK
SPACE

Back space 3 spaces
-E-

Press

<a>
Back space 3 spa

~

three times.

DELETING TEXT

Notice that the characters do not erase from the screen until you
press the ESC key.

There are two other commands that delete text in the text input
mode. Although you may not use them often, you want to be aware
that they are commands in the text input mode and need a special
command to type them into your text, see the section on special
commands.

<@>

Delete the current word, or a specified portion of the
word from the cursor to the end of the word.

Delete all of the portion of the line that is currently
being created.

Undo the Last Command

Before you experiment with the commands that can delete a good
portion of your text, you will want to try out the "undo" command,
which will undo the last command.

Undo the last command.

<u> Undo the last command.

<U> Erase the last change on the current line.

If you deleted a line, <u> will bring it back on the screen. If you
hit the wrong command, <u> will undo that command.

If you press the "u" key twice, it will undo the "undo". That is, if you
delete a line, the first <u> will restore the line. If you press <u>
again, it will delete the line again.

6-53

SCREEN EDITOR TUTORIAL (vi)

Delete Commands in the Command Mode

You know that you can precede a number before the command.
Many of the commands in vi, such as the delete and change
commands, allow an argument after the command. The argument can
specify a text object such as a word, or a line, or a sentence, or a
paragraph. The general form of a vi command is:

[number]command[argument]

The brackets around objects in the general form of the command line
denote optional parts of the command. They are not part of the
command line.

You will see many examples of this form for the delete and change
commands.

All of the delete commands in the command mode of vi immediately
remove the deleted text from the screen and redraw that part of the
screen.

<x>

<nx>

Delete a character.

Delete one character.

Delete "n" characters, where n is the number of
characters you want to delete.

You used <x> in the Getting Started section of this chapter. Now try
preceding <x> with the number of characters you want to delete.

6-54

Tomorrow the Loch Ness monster
shall slither forth from the
deep dark reep depths of the lake.

DELETING TEXT

Put the cursor on the first letter you want to delete, in this example
the "d" of the second "deep".

Type in: 5x

The screen will delete "deep", plus the extra space, and readjust the
text on the screen so that it will now read:

Tomorrow the Loch Ness monster
shall slither forth from the
deep dark repths of the lake.

You can also use the delete word command, which is discussed next.

Delete Text Objects

The delete command follows the general form of a vi command.

[number]d[text object]

6-55

SCREEN EDITOR TUTORIAL (vi)

Delete a word, a line, a
sentence, or a paragraph.

Delete a word.

You can delete all of a word or part of a word with <dw> by
moving the cursor to the first character you want deleted. Pressing
<dw> deletes that character and all characters up to and including
the next space or punctuation character.

To delete part of thisill word.

t

Type in: dw

To delete part of thisword.

t

You can delete one word with <dw> or several words by prefixing
the "dw" with a number. The cursor must be on the first character of
the first word to be deleted. To delete five words, you would type in
Sdw. An example of how to do this follows.

6-56

The quick red fox jumped over
the lazy black turtle or an ox

t< J

Type in: 5dw

The quick red fox jumped over
the lazy

t

DELETING TEXT

Try typing in the arguments for other text objects that you learned in
the section on positioning the cursor.

Type in: d(or d}

Observe what happens to your file. Remember, you can restore the
text that you just deleted with < u>.

< dd > Delete a line of text.

To delete a line, press the "d" key twice. You do not. need to worry
about deleting text if you press the "d" key once. Nothing will

6-57

SCREEN EDITOR TUTORIAL (vi)

happen, unless you press the space bar. The <d space bar> acts like
the <x> command and deletes one character. If you accidentally
press "d" key in the command mode, press the ESC key. The ESC key
will cancel the previous typed command.

Try to delete ten lines.

Type in: lOdd

The lines will be deleted from the screen. If some of the lines are
below the current window, vi will display a notice on the bottom of
the screen:

10 lines deleted

If there are not ten lines below the current line in the file, a bell will
sound and no lines will be deleted.

Delete the line from the cursor to the end
of the line.

If you are erasing the end of a line, use the < D > command. Put the
cursor on the first character to be deleted, hold down the SHIFT key
while you press the "d" key.

Type in: D

The <D> command will not allow you to specify more than the
current line. You cannot type in "30". However, you could type in
<3d$>. Remember the general form of a vi command? The$ refers
to the end of the line in vi

6-58

DELETING TEXT

SUMMARY OF DELETE COMMANDS

For the CREATE Mode:

<BS>

<'h>

<'W>

<@>

Delete the current character.

Delete the current character.

Delete the current word.

Delete the current line of new text, or delete all new
text on the current line.

For the COMMAND Mode:

<u>

<U>

<x>

<ndx>

<dw>

<dd>

<D>

<d)>

<d}>

Undo the last command.

Erase the last change on the current line.

Delete the current character.

Delete "n" number of text objects "x".

Delete the word at cursor through the next space or to
the next punctuation mark.

Delete the current line.

Delete the line at the cursor to the end of the line.

Delete the current sentence.

Delete the current paragraph.

6-59

SCREEN EDITOR TUTORIAL (vi)

EXERCISE 4

4-L Create a file exer4 containing the following four lines:

When in the course of human events
there are many repetitive, boring
chores, then one ought to get a
robot to perform those chores.

4-2. Move the cursor to line 2 and append to the end of that line:

tedious and unsavory.

Delete "unsavory" while in the append mode.

Delete "boring" in the command mode.

What is another way you could have deleted "boring"?

4-3. Insert at the beginning of line 4:

congenial and computerized.

Delete the line.

How could you delete the line and leave it blank?

Delete all the lines with one command.

4-4. Leave the screen editor and remove the empty file from your
directory.

CHANGING TEXT

Instead of deleting text using a delete command and then creating
text with a text input command, the three basic commands, <r>,
<s>, and <c> both erase the text and then create new text.

6-60

Replacing Text

<r>

<nr>

<R>

CHANGING TEXT

Replace one character that is typed. over.

Replace the current character, the character pointed
to by the cursor. This is not a text input mode. It
does not need to be ended by <ESC>.

Replace "n" characters with the same letter. This
command automatically terminates after "nth"
character is replaced. It does not need the <ESC>.

Replace only those characters typed over until the
<ESC> command is given. If the end of the line is
reached, this command will then begin appending
new text.

The <r> command will replace the current character with the next
character that is typed in. For example, in the sentence below you
want to change "acts" to "ants".

The circus has many acts.

Place the cursor under the "c" of "acts".

Type in: m

The sentence becomes:

The circus has many ants.

To change "many" to "6666", place the cursor under the "m" of "many".

Type in: 4r6

The <r> command changes the four letters of "many" to 6s.

The circus has 6666 ants.

6-61

SCREEN EDITOR TUTORIAL (vi)

Substituting Text

The substitute command replaces characters, but then allows you to
continue to create text from that point until you press <ESC>.

<s>

<ns>

<S>

Substitute for a character of text.

Delete the character the cursor is on and append text.
End the text input mode with the ESC key.

Delete "n" characters and append text. End the text
input mode with <ESC>.

Replace all the characters in the line.

The <s> command indicates the last character in the substitution
with a $. The characters are not erased from the screen until you
type over them, or leave the text input mode with the <ESC>
command.

Notice that you cannot use an argument with either <r> or <s>.
Did you try?

Suppose you want to substitute "million" for "hundred" in the
following example.

My salary is one hundred dollars.

i

Put the cursor under the h of hundred.

6-62

CHANGING TEXT

Then type in: 7s

Notice where the$ is placed.

My salary is one hundre$ dollars.

i

Now type in: million

Press the ESC key, and you will owe the Internal Revenue Service
$500,000.

Changing Text

The substitute command replaces characters. The change command
replaces text objects, and then continues to append text from that
point until you press <ESC>. To end the change command and
return to the command mode in vi, you must press the ESC key.

Change. Replace a text object with
new text.

The change command can take an argument. You can replace a
character, word, or an entire line with new text.

<cw> Replace a word or the remaining characters in a word
with new text. The vi editor prints a $ indicating the
last character to be changed.

<new> Replace "n" number of words with new text.

6-63

SCREEN EDITOR TUTORIAL (vi)

<cc>

<nee>

<ncx>

<C>

<nC>

Replace all the characters in the line.

Replace all the characters in the current line and up
to "n" lines of text.

Replace "n" number of text objects "x", such as
sentences) and paragraphs}.

Replace the remaining characters in the line, from
the cursor to the end of the line.

Replace the remaining characters from the cursor in
the current line and replace all the lines under the
current line up to "n" lines.

For the <cw> command and the <C>, a $ will indicate the last
letter that will be replaced. The characters will remain on the screen
until you have pressed the ESC key. When used to change one or
more lines of text, the change command simply deletes the lines that
are to be replaced, and then places you in the text input mode of vi.

To change a word, use the <cw>
command. In the next line change
the word "chang$" to "replace".

i
<cw>

In the example, notice that "replace" has more letters then "change".
Once you have executed the change command you are in the text
input mode of vi and you can add as much text as you want, until
you press < ESC > .

6-64

To change a word, use the <cw>
command. In the next line change
the word "replace" to "replace".

i
<ESC>

CHANGING TEXT

Try the other change commands. Watch the screen. When you use
<C> the $ will appear at the end of the line. Try using other
arguments.

Type in: c{

Since you know the undo command, do not hesitate to experiment
with different arguments, or preceding the command with a number.
You must press <ESC> before you can use <u> since <c> places
you in a text input mode.

Com pare < S > to <cc> . The results should be the same for both
commands.

SUMMARY OF CHANGE COMMANDS

<r> Replace only the current character.

<R>

<s>

<S>

Replace only those characters typed over with new
characters until the < ESC> command is given.

Delete the character the cursor is on and append text.
End the append mode with the ESC key.

Replace all the characters in the line.

(Continued on next page)

6-65

SCREEN EDITOR TUTORIAL (vi)

<cw>

<cc>

<ncx>

<C>

SUMMARY OF CHANGE COMMANDS (continued)

Replace a word or the remaining characters in a word
with new text.

Replace all the characters in the line.

Replace "n" number of text objects "x", such as
sentences) and paragraphs } .

Replace the remaining characters in the line, from the
cursor to the end of the line.

CUTTING AND PASTING TEXT ELECTRONICALLY

There is a set of commands that will cut and paste text in a file.
Another set of commands will copy a portion of text and place it in
another section of a file.

Moving Text

You can move text from one place to another in the vi buffer by
deleting the lines and then placing them at the spot in the text that
you want them. The last text or lines that were deleted go into a
temporary buffer. If you move the cursor to that part of the file
where you want the deleted lines to be placed and press the "p" key,
the deleted lines will be added below the current line.

6-66

The put command <p> puts the last
yank or delete in the prnper place.

<p>

<np>

CUTTING AND PASTING TEXT ELECTRONICALLY

Place the contents of the temporary buffer after the
cursor.

Place "n" number of copies of the temporary buffer
after the cursor.

A partial sentence that was deleted by the <D> command can be
placed in the middle of another line. Position the cursor in the space
between two words, then press "p". The partial line is placed after
the cursor.

Characters deleted by <nx> also go into a temporary buffer. Any
text object that was just deleted can be placed somewhere else in the
text with <p>.

The <p> command should be used right after a delete command
since the temporary buffer only stores the results of one command at
a time. The <p> command also places a copy of text after the cursor
that had been placed in the temporary buffer by the yank command.
Yank <y> is discussed next in Copying TexL

Fixing Typos

A quick way to fix typos that consist of transposed letters is to
combine the <x> and the <p> commands as <xp>. <x> deletes
the letter. <p> places it after next character.

Notice the error in the next line.

A line of tetx

This error can be quickly changed by placing the cursor under the "t"
in "tx" and then pressing first "x" and then "p" keys. The result is:

A line of text

Try it. Make a typing error in your file. Then use <xp>.

6-67

SCREEN EDITOR TUTORIAL {vi)

Copying Text

You can "yank" (copy) a part of the text into a temporary buffer, then
move the cursor to that part of the file where you want to place a
copy of the text, and place it there. <p> places the text after the
current line.

The "yank" command follows the general form of a vi command. It
allows you to specify the number of text objects that you want copied.

[numberMtext object]

The "yank" command <y> saves a copy
of the text object.

<yw> Yank a copy of a word.

<yy> Yank a copy of the current line into a temporary
buffer to be placed below another line.

<nyy> Yank "n" lines into a temporary buffer to be placed
below the current line. "n" is the number of lines.

<y)> Yank a copy of a sentence.

<y} > Yank a copy of the paragraph.

<nyx> Yank "n" number of text objects "x", such as sentences
) and paragraphs } .

Try the following command lines and see what happened to your
screen. Of course you can undo the last command.

Type in: Syw

Move the cursor to another spot.

Type in: p

6-68

CUTTING AND PASTING TEXT ELECTRONICALLY

Try yanking a paragraph <y} > and placing it after the current
paragraph, then move to the end of the file <G> and place that
same paragraph at the end of the file.

Copying or Moving Text Using Registers

If you have several sections of text that you wish moved or copied to
a different part of the file, it would be tedious to move each portion
one at a time. vi has named registers, which are electronic storage
boxes where you can store the text until you want to place it into a
specific spot in the file. These registers are named for each letter of
the alphabet, a through z. You can either yank or delete text to one
of these registers.

These commands are handy if you have an example that you want to
use several times in the text. The example will stay in the specified
register until you end the editing session or yank or delete another
section of text to that register.

The general form of the command is:

[number"l]command[text object]

The 1 represents any letter, and is the name of the register. You can
precede the command with a number to indicate how many text
objects, such as words or lines, that you want to save in the register.

Place the cursor at the beginning of a line.

Type in: 3"ayy

Now, type in more text. Then, go to the end of the file.

Type in: "ap

Did the lines you saved in register "a" appear at the end of the file?

6-69

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF CUT AND PASTE COMMANDS

<p> Place the contents of the temporary buffer containing
the last delete or yank command into the text after the
cursor.

<yy>

<nyx>

<"lyn>

<"lp>

Yank a line of text and place it into a temporary buffer.

Yank a copy of "n" number of text objects "x" and place
them in a temporary buffer.

Place a copy of text object "n" in the register named by
a letter "l".

Place the contents of register 1 after the cursor.

EXERCISE 5

5-1. Edit the file exer2. Notice that this is the same file you created
in Exercise 2.

Go to line 8 and change that line to read "END OF FILE".

5-2. Yank the first eight lines of the file and place them in register
"z". Put the contents of register "z" after the last line of the file.

5-3. Go to line 8 and change that line to read "8 is great".

5-4. Go to line 18 and make the same change as you did in 5-3.

5-5. Go to the last line of the file. Substitute "EXERCISE" for "FILE".
Replace "OF" with "TO".

6-10

SPECIAL COMMANDS

SPECIAL COMMANDS

There are some special commands that you will find useful.

<. > Repeat the last command.

<J> Join two lines together.

<\>
or

<'v> Print out nonprinting character.

<'I> Clear the screen and redraw it.

< - > Change lowercase to uppercase and vice versa.

Repeating the last Command

Repeat the last
change command.

You may have already accidentally pressed the "." key, thinking that
you were adding a period at the end of your sentence. If you were in
the command mode of vi, you were unpleasantly surprised by the last
text change suddenly appearing on the screen.

The period repeats the last change command. This is a very handy
command when it is used with the search command. For example,
you forgot to capitalize the "S" in United States. However, you do
not want to capitalize the "s" in "chemical states". One way you could
correct this problem is search for "states". The first time you found
"states" in United states, you would change the "s" to "S". The next
occurrence you found, you would simply press the "." key and vi
would remember to change the "s" to "S".

The <. > will repeat change, or create, or delete, or put commands.
Experiment with the commands. Watch the screen to see how the
text is affected.

6-71

SCREEN EDITOR TUTORIAL (vi)

Joining Two lines

Join the line below the current line
with the current line,

The <J> command joins lines. Place the cursor on the current line,
hold down the SHIFT key and press the "j" key. The line below the
current line is joined to the current line at the end of the current
line.

Now is the time to join
forces.

To join these two lines into one line, place the cursor under any
character in the first line.

Type in: J

Those two lines become:

Now is the time to join forces.

Notice that vi automatically places a space between the last word on
the first line and the first word on the second line.

Typing Nonprinting Characters

In the section of this tutorial on deleting in the text input mode, two
commands were mentioned that are probably seldom used, but act as
commands and will not print out in your text. How do you get
characters that are commands in the text input mode to type out in
your text? Precede them with a \ .

6-12

SPECIAL COMMANDS

Type in nonprinting characters.

What happens when you want to type in the @ character? Try it. It
erased the line you are working on. How do you type in the @
character?

Type in: \@

Clearing and Redrawing the Window

Clear and redraw the current screen.

One of the frustrating things that can happen to you in v1 is that
another user in your UNIX system decides to send you a message
using the write command. If you have not turned off your messages
in the shell, the message will appear right at the spot where you are
editing in the current window. After you have read the message,
how do you restore the current window? If you are in the text input
mode, you must end it with the <ESC> command to get you into
the command mode of vi. Then, hold down the CTRL key and press
the "l" key. vi will dear away the garbage, and redraw the window
exactly as it was before the message arrived.

Changing Lowercase to Uppercase and Vice Versa

Change uppercase to lowercase,
or lowercase to uppercase-

6-73

SCREEN EDITOR TUTORIAL (vi)

A quick way to change any lowercase letter to a capital letter or any
capital letter to lowercase is the <-> command. To change a to A,
or B to b press - . This command does not allow you type in a
number before the command and change several letters with one
command.

<.>

<J>

<\x>

<'v>

<'l>

SUMMARY OF SPECIAL COMMANDS

Repeat the last command.

Join the line below the current line with the current
line.

Print the nonprinting character x that does not print
out in the text input mode.

Print characters that do not normally print out in the
text input mode.

Clear and redraw the current window.

Change lowercase to uppercase, or vice versa.

UNE EDITING COMMANDS

The screen editor vi also has some line editing capabilities. The line
editor associated with vi is called ex. However, the ex commands are
very similar to the ed commands discussed in Chapter 5. If you know
the ed commands, you may want to experiment on a test file and see
how many will work in vi.

There are many commands in the ex editor that can be called from vi.
These commands are discussed at length in the UNIX System Editing
Guide. (See Appendix A.) Only a few of the most useful commands
are discussed here.

6-74

LINE EDITING COMMANDS

Call in the line editor commands.

To call in the line editor commands, type in a ":" from the command
mode of vi. The cursor will drop down to the bottom of the screen
and display the ":". As you try out the line editing commands notice
that they print out at the bottom of the editing window.

A powerful and useful command of ex is the command that
temporarily returns you to the shell. You can return to the shell,
perform some shell commands (even edit and write another file in vi)
and then return to the current window of vi.

:sh <CR> Temporarily return to the shell, leaving the vi buffer
with the cursor on the current line.

After you have executed the shell commands, hold
CTRL and press "d". You will return to the exact line
and window you were editing before you left vi

Even if you change directories while you are temporarily in the shell
and then execute < 'd >, you will return to the vi buffer in the
directory where you were editing the file.

Write Text to a New File

What do you do if you want only part of the file in the editing buffer
placed in a UNIX system file?

Many of the commands in ex will accept a line number or a range of
line numbers typed in before the command w. Try to write the third
line of the buffer to a file named three.

Type in: :3w three<CR>

Notice the system response.

"three" [N cw file] 1 line, 20 characters

6-75

SCREEN EDITOR TUTORIAL (vi)

The "." is the special character that indicates the number of the
current line.

Type in: :.w junk<CR>

A new file called junk will be created containing only the current line
in the vi buffer.

You can also specify the range of lines. To write lines 23 through 37
to a file, type in:

23,37w newfile<CR>

Fi11di111g the Line Number

If you want to specify a range of lines, you can find out the line
number of that line by moving the cursor to that line.

Type in: :.=<CR>

The editor will come back with the response that is the number of
that line.

If you want to know the number
of this line, type in :.=<CR>

As soon as you press RETURN, the bottom line will dear and give
you the number of the line in the buffer.

6·76

If you want to know the number
of this line, type in :.=<CR>

34

LINE EDITING COMMANDS

You can move the cursor to any line in the buffer by typing in a ":"
and the line number.

:n <CR> Go to the "nth" line of the buffer.

Deleting the Rest of the Buffer

One of the easiest ways to delete all the lines from the current line to
the end of the buffer is to use the line editor command to delete
lines.

Type in: :.,$d<CR>

The II 11 is the current line, and the last line is $.

Adding a !File to the Buffer

If you have a file with some data or text in it that you would like to
add below a specific line in the editing buffer, you can do so with the
:r command. To read in the file data place the cursor on the line
above the desired insertion.

Type in: :r data<CR>

You may also specify the line number instead of moving the cursor.
Insert the file data below line 56 of the buffer.

Type in: :56r dlata <CR>

Do not be afraid to experiment, <u> will undo the ex commands
too.

Making Global Changes

One of the most powerful commands in ex is the global command.
The global command is given here to help those users who are
familiar with the line editor. Even if you c.re not familiar with a line
editor, you may want to try the command on a test file.

If you had typed in several pages of text about the DNA molecule,
calling its structure a "helix", you would have to change each
occurrence of the word "helix" to "double helix". This could be a long

6-71

SCREEN EDITOR TUTORIAL (vi)

involved process searching for each one and probably using the "."
command of vi to repeat the change. H you are sure you want every
"helix" changed, you can use the global command of ex. You need to
understand a series of commands to do this. Let's take one at a time.

6-18

:g I characters< CR>

Search for these exact characters.

Type in: :g/hefo:<CR>

The line editor does a global search for the first
instance of the characters "helix" on a line.

:s/text/new words/ <CR>

This is the substitute command. Instead of writing
over the word text, as the screen editor would have
done, the line editor searches for the first instance of
the characters text on the current line, and changes
them to new words. You must tell ex what word you
are looking for and it must appear between the first
two delimiters, /. H will then replace only those
exact characters with the exact characters, new words,
between the last two delimiters.

:s/text/new words/g<CR>

By adding a "g" at the end of the last delimiter of this
command line, ex will change every occurrence on
the current line.

:g/helix/s/ /double helix/g<CR>

This command line searches for the word helix. Each
time helix is found, the substitute command
substitutes double helix for every instance of helix
on that line. The delimiters after the s do not need
to have helix typed in again. The command
remembers the word from the delimiters after the
global command g.

LINE EDITING COMMANDS

This is a very powerful command. If it is confusing to you, but you
still want to add it to your vi command knowledge, read Chapter 5 on
the line editor ed for a more detailed explanation of the global and
substitution commands.

SUMMARY OF LINE EDITOR COMMANDS

:sh<CR>

:n<CR>

:x,zw data<CR>

:$<CR>

:.,$d<CR>

:r shell.file< CR>

:s/text/new words/ <CR>

:s/text/new words/g<CR>

Indicates that the next commands are
line editor commands.

Temporarily return to the shell to
perform some shell commands.

Escape the temporary shell and return
to edit the current window of vi.

Go to the "nth" line of the buffer.

Write lines from the number "x"
through the number "z" into a new file
called data.

Go to the last line of the buffer.

Delete all the lines in the buffer from
the current line to the last line.

Insert the contents of shell.file under
the current line of the buffer.

Replace the first instance of the
characters text on the current line
with new words.

Replace every occurrence of text on
the current line with new word.

:g/text/s/ /new word/g<CR> Change every occurrence of text to
new word.

6-79

SCREEN EDITOR TUTORIAL (vi)

QUITTING VI

There are six basic command sequences to quit the vi editor.

<ZZ> Write the contents of the vi buffer to the UNIX
system file currently being edited and quit vi.

:wq <CR> Write the contents of the vi buffer to the UNIX
system file currently being edited and quit vi.

:w filename< CR>
:q <CR> Write the temporary buffer to a new file named

filename and quit vi.

:w! filename< CR>
:q <CR> Overwrite an existing file called filename with the

contents of the buffer and quit vi.

:q!<CR> Quit vi without writing to the shell file.

:q<CR> Quit vi without writing the buffer to a UNIX system
file. This command, without the write command w,
can only be used in special cases, such as the view
command discussed in the next section, or if the
buffer has not been changed.

The commands that are preceded by a":" are line editor commands.

The <ZZ> command and :wq command sequence both write the
buffer to a UNIX system file, then quit vi, and return you to the shell
command level. You have tried the <ZZ> command, now try to exit
vi with :wq.

Type in: :wq<CR>

The system response is the same as it is for the <ZZ> command. It
gives you the name of the file, and the number of lines and
characters in the file.

vi remembers the file name of the file currently being edited, so you
do not have to reiterate the file name when you want to write the
buffer of the editor back into that file. What do you do if you want
to give the file a different name?

6-80

QUITTING VI

If you want to write to a file called junk:

Type in: :w junk<CR>

After you write to a new file, you can leave vi by just typing in the
:q.

Type in: :q<CR>

If you try to write to a file called letter that already exists in the shell,
you will receive a warning:

"letter" File exists - use "w! letter" to overwrite

Type in: :w! letter< CR>

You will erase the current file called letter and overwrite it with the
new file.

If you began editing a file called memo, made some changes to the
file, and then decided you didn't want to make the changes, or you
accidentally pressed a key that gave vi a command you could not
undo, you can leave vi without writing to the file.

Type in: :q!<CR>

SUMMARY OF QUIT COMMANDS

<ZZ>

:wq<CR>

:w filename< CR>
:q<CR>

Write the file and quit vi.

Write the file and quit vi.

Write the editing buffer to a new file named
filename and quits vi.

(Continued on next page)

6-81

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF QUIT COMMANDS (continued)

:w! filename< CR>
:q<CR> Overwrite an existing file called filename with the

contents of the editing buffer and quits vi.

:q!<CR>

:q<CR>

Quit vi without writing to the buffer.

Quit vi without writing the buffer to a UNIX
system file.

SPECIAL OPTIONS FOR vi

The vi command has some special options. It allows you to:

0 Recover a file lost by an interrupt to the UNIX system,

0 Place several files in the editing buffer and edit each in sequence,
and

0 View the file with the vi cursor positioning commands.

Recovering a File lost by an lntem..1pt

There are times when an interrupt or a disconnect will cause the
system to exit the vi command without writing the temporary buffer
to the UNIX system file. Or, you may become confused or have a
problem with the vi editor that you cannot solve. If that happens,
one solution is simply to hang up, or disconnect from the UNIX
system. In both of these cases, the UNIX system will store a copy of
the buffer for you. When you log back into the UNIX system you
will want to restore the file with the -r option for the vi command:

Type in: vi -r filename<CR>

6-82

SPECIAL OPTIONS FOR vi

The changes you made to the file filename, before the interrupt
occurred, are now in the vi buffer. You can continue editing the file,
or you can write the file and quit vi. The vi editor will remember
the file name and write to that file.

Editing Multiple Files

If you wish to edit more than one file in the same editing session,
type in the vi command followed by each file name.

Type in: vi filel file2 <CR>

vi will respond by telling you how many files you are going to edit.

2 files to edit

After you have edited the first file, .file I, you need to write the
changes to the shell file.

Type in: :w<CR>

The system response to the :w <CR> command will be a message at
the bottom of the screen giving the name of the file, and how many
lines and characters are in that edited file. Then you must ask for the
next file in the editing buffer with the :n command.

Type in: :n<CR>

The system response to the command :n <CR> is a notice at the
bottom of the screen with the name of the next file to be edited and
the character and line count of that file.

Pick two of the files in your current directory and enter vi to place
the two files in the editing buffer at the same time. Notice the
system responses to the commands at the bottom of the screen.

6-83

SCREEN EDITOR TUTORIAL (vi)

SUMMARY OF SPECIAL OPTIONS FOR vi

vi filel file2 file3 <CR> Enter three files into the vi buffer to be
edited. Those files are filel, file2, and file3.

:w<CR>
:n<C:R> Write the current file and call the next

file in the buffer.

vi -r filel <CR> Restore the changes made to the file file 1.

EXERCISE 6

6-1. Try to restore a file lost by an interrupt.

Enter vi, create some text in a file called exer6.

Turn off your terminal without writing to a file or leaving vi.

Log back in to your terminal.

Try to get back into vi and edit the exer6 file.

6-2. Place exerl and exer2 in the vi buffer to be edited.

Write exerl and call in the next file in the buffer, exer2.

Write exer2 to a file called junk.

Quit vi.

6-3. Try out the comm.and:

vi ex er*< CR>

What happens? To quit vi:

Type in: ZZ ZZ

6-84

CHANGING YOUR ENVIRONMENT

6-4. Look at exer4 in read only mode.

Scroll forward.

Scroll down.

Scroll backward.

Scroll up.

Quit and return to the shell.

CHANGING YOUR ENVIRONMENT

If you are going to edit with vi you will want to change your login
environment so that you do not have to reconfigure your terminal
each time you login. Your login environment is controlled by a file
in your login directory called the .profile. The .profile is explained in
more detail in the shell tutorial in Chapter 7.

You are about to edit your .profile that sets up your environment each
time you login. If you are concerned that you might cause a problem
with your .profile in the editing process, you may want to keep a
backup copy of your original .profile for safekeeping.

From your login directory, type in:

cp .profile safe"profile<CR>

Now that you have a copy of your .profile in a safe place, safe.profile,
you can edit your .profile just like any other file in vi.

Type in: vi .profile<CR>

Go to the last line of the file, ignoring all the lines currently in the
file.

Type in: G

You are going to add two lines to the bottom of the file, the same
terminal configuration you typed in at the beginning of your login
session so that you could enter vi.

6-85

SCREEN EDITOR TUTORIAL (vi)

Type in: <o>

Now you are ready to append text to the end of the file.

Type in: TERM =code< CR>
export TERM< CR>

Remember "code" is the special code characters for your type of
terminal.

Write and quit vi. Now, the next time that you log into the UNIX
system TERM is automatically set and you can immediately begin
editing with vi.

Setting the Automatic Carriage Return

If you want an automatic carriage return, create a new file .exrc. The
.exrc file controls the editing environment for vi. There are several
options you can set in this file. If you want to know more about .exrc,
read the Editing Guide. (See Appendix A.)

Type in: vi .exrc<CR>

Add one line to this file.

Type in: wm=n<CR>

"n" is the number of characters from the right side of the screen
where the carriage return will occur. If you want a carriage return at
20 characters from the right edge of the screen,

Type in: wm=20<CR>

Write and quit that file. The next time you login this file will give
you an automatic carriage return.

You can check on these settings, the terminal setting and the
wrapmargin (automatic carriage return) when you are in vi.

Type in: :set<CR>

6-86

CHANGING YOUR ENVIRONMENT

vi will tell you the terminal type and the wrapmargin. You can also
use the ;set command to create or change the wrapmargin. Try
experimenting with it.

Now you know the basics of vi! Experiment with the commands,
find the ones that work best for you.

6-81

SCREEN EDITOR TUTORIAL (vi)

ANSWERS TO EXERCISES

There is often more than one way to perform a task in vi. If the way
you tried worked, then your answer is correct. Below are suggestions
for performing the task given in the exercise.

Exercise 1

1-1. Look up your terminal code with the following command. Type in:

grep "your type of terminal" /ek/termcap<CR>

The first two letters of of the system response are your terminal code.
Type in:

TERM =code< CIR>
export TERM <CR>

1-2. Type in:
vi exer1 <CR>
<a>
This is an exercise!<CR>
Up, down <CR>
left, right,<CR>
build your terminal's<CR>
muscles bit by bit. <ESC>

1-3. Use the <k> and the <h> commands.

1-4. Use <x>.

1-5. Use the <j> and <l> commands.

1-6. Type in:
<a> <CR>
and byte by byte<ESC>

Use <j> and <l> to move to the last line and character of the file.
Use <a> to add text. <CR> will create the new line. <ESC> will
end the create mode.

1-7. Type in:
zz

6-88

1-8. Type in:
vi exert< CR>

System response:
"exerl" 6 lines, 100 characters

Exercise 2

2-1. Type in:

2-2. Type in:

vi exer2 <CR>
<a>l<CR>
2<CR>
3<CR>

48<CR>
49<CR>
SO<ESC>

<'f>
<'b>
<'u>
<'d>

ANSWERS TO EXERCISES

Notice the line numbers as the screen changes.

2-3. Type in:
<G>
<o>
123456789 123456789 < ESC >

2-4. $ = end of line
0 = first character in the line

2-5. Type in:

2-6. Type in:

<'>
<w>

<e>

<IG>
<M>
<L>
<H>

6-89

SCREEN EDITOR TUTORIAL (vi)

2-7. Type in:

Exercise 3

3-1. Type in:

3-2. Type in:

3-3. Type in:

3-4. Type in:

/8
<n>
/48

vi exer3<CR>

<a> Append text <CR>
Insert text< CR>
a computer's <CR>
job is boring.< ESC>

<0>
financial statement and <ESC>

<3G>
< i >Delete text< CIR> < ESC >

The text in your file now reads:

Append text
Insert text
Delete text
a computer's
financial statement and
job is boring.

3-5. The current line is "a computer's". To create a line of text below that
line use the < o > command.

3-6. The current line is "byte of the budget".
<G> will put you on the bottom line.

6-90

<A> will begin appending at the end of the line.
<CR> will create the new line.
Then, type in the text "But, it is an exciting machine."
<ESC> ends the append mode.

ANSWERS TO EXERCISES

3-7. Type in:
<lG>
/text
<i>some<space bar> <ESC>

3-9. <ZZ> will write the buffer to exer3 and put you in the command mode
of the shell.

Exercise 4

4-1. Type in:

4-2. Type in:

vi exer4 <CR>
<a> When in the course of human events<CR>
there are many repetitive, boring<CR>
chores, then one ought to get a<CR>
robot to perform those chores.< ESC>

<2G>
<A> tedious and unsavory<CR>
<BBS>
<ESC>

Press <h> until you get to the "b" of "boring" then press
<dw>. Or, you could have used <6x>.

4-3. You are at the second line. Type in:
<2j>
<I> congenial and computerized <ESC>
<dd>

To delete the line and leave it blank, type in:
<O> (zero to place you at the beginning of the line)
<D>

<H>
<3dd>

4-4. Write and quit vi.

<ZZ>

Remove the file.

rm exer4 <CR>

6-91

SCREEN EDITOR TUTORIAL (vi)

Exercise 5

5-L Type in:

5-2. Type in:

5-3. Type in:

5-4. Type in:

5-5. Type in:

Exercise 6

6-1. Type in:

vi exer2 <CR>
<BG>
<cc> END OF FILE <ESC>

<lG>
<8"zyy>
<G>
<"zp>

<BG>
<cc> 8 is great<ESC>

<18G>
<.>

</FI>
<cw> EXERCISE<ESC>

<?OF>
<R>TO<ESC>

vi exer6 <CR>

6-92

<a> (append several lines of text)
<ESC>

Turn off the terminal.

Turn on the terminal.
Log into the UNIX system. Type in:

vi -r exer6<CR>
:wq<CR>

6-2. Type in:

6-3. Type in:

6-4. Type in:

ANSWERS TO EXERCISES

vi exert exer2 <CR>
:w<CR>
:n<CR>

:w junk<CR>
zz

vi exer*<CR>

(Response)
8 files to edit (vi calls in all files with

names that begin with exer.)

zz
zz

view exer4 <CR.>
<"f>
<"di>
<"b>
<"u>

6-93

Clhapter 1

SHELL TUTORIAL

PAGE

MAKING UFE EASIEIF! IN THE SHEll ... 1·"1

HOW TO READ THIS TUTORIAL... 1·2

SHELL COMMAND LANGUAGE... 1·3

Special Characters in the Shell ... 1·3

Metacharacters ... 1·3

Metacharacter that Matches Al! Characters.. 1·4

Metacharacter that Matches One Character.. 1·6

Metacharacters that Match One of a Specntic Range of Characters........ 1·8

Commands in the l'lackgrou11d Mode... 1·9

Sequential Execution.. 1·10

Turning Off Special Character Mea11ing... 1·1 "1

Turning Off Special Characters by Quoting... 7·"11

Redirecting Input and Output.. 7·"14

Redirecting Input... 7·14

Redirecting Output.. 7·15

Pipes... 1·19

Command Output Subsmutio11 .. 1·22

Executi11g and Terminating Process.. 1·23

Running Commands at a later Time.. 7·23

Obtaining the Status of Running Processes.. 1·28

Termi11ating Active Processes... 7·29

Using the No Hang Up Command.. 1·30

COMMAND LANGUAGE EXERCISES... 1·31

SHELL PROGRAMMING.. 1·32

Getting Started.. 7·32

Creating a Simple Shell Program... 7-34

Executing a Shell Program.. 1·35

PAGE

Creating a bin Directory for Executable Files ... 7-36

Variables... 7-38

Positional Parameters... 7-39

Parameters with Special Meaning ... 7-43

Variable Names... 7-46

Assign Values to Variables.. 7-48

Assign Variable by the Read Command... 7-48

Substitute Command Output for the Value of a Variable......................... 7-52

Assign Values with Positional Parameters... 7-54

Shell Programming Constrncts .. 7-55

Comments... 7-56

The Here Document... 7-56

Using ed in a Shell Program.. 7-58

looping... 7-60

The for Loop... 7-61

The while Loop.. 7·64

Conditional Constructs if ... then... 7-66

The Shell Garbage Can /de11/nuU ... 7-67

The test Command for loops.. 7·69

The Conditional Constmct case ... esac.. 7-72

Unconditional Control Statement break.. 7-15

Debugging Programs... 7·17

Modifying Your login Environment.. 1-80

What is a .profile?.. 7·80

Adding Commands to .profile.. 7-81

Setting Terminal Options... 7-82

Using Shell Variables... 7-83

Conclusion.. 7-85

SHELL PROGRAMMING EXERCISES... 7-85

ANSWERS TO EXERCISES... 7-88

Command language Exercises... 7-88

Shell Programming Exercises.. 7·89

Chapter 7

SHELL TUTORIAL

MAKING LIFE EASIER IN THE SHELL

You have used the shell to interact with the UNIX system by typing
in commands that give you information, such as who, or commands
that perform a task, such as sort. This chapter introduces some
methods and commands that will help expedite the day-to-day tasks
that you perform in the shell.

The first part of the tutorial, Shell Command Language, introduces some
basic shortcuts and commands to help you perform tasks in the UNIX
system quickly and easily. The second part of the tutorial, Shell
Programming, shows you how to put these tasks into a file and call on
the shell to execute the commands in the file while you go get a cup
of coffee. The following basics are covered:

0 How to use some special characters in the shell,

• How to redirect input and output,

0 How to execute and terminate processes,

• How to create and execute a simple shell program,

• How to use variables in a shell program,

• How to use shell programming constructs for looping,
conditional execution, and unconditional execution,

• How to locate problems and debug a shell program, and

• How to modify your login environment by editing the file called
.profile.

7-1

SHELL TUTORIAL

If, after you have read this tutorial, you want to learn more advanced
concepts in shell programming, read UNIX System Shell Commands and
Programming. (See Appendix A.)

HOW TO READ THIS TUTORIAL

Log into your UNIX system and try the examples as you read the text.
Experiment with the concepts and perhaps combine them into a shell
program. Often, there is more then one correct way to write a shell
program. You may discover a different method. If your shell
program works, if it performs the task, then it is a correct method.

Here is a quick review of the text conventions mentioned in Chapter 2
that are used throughout this book.

bold command

italic response

<>

(Type in the command line exactly as shown.)

(The system's response to a command.)

(Commands that are typed in, but not displayed
on your terminal, are enclosed in < > .)

(A control character, hold down the control key
CTRL while your press "g".)

A display screen like the one above is used to illustrate the
commands and the text of the shell programs. You may not be
working on a terminal with a screen. This will not affect the shell
tasks that you perform or shell programs that you create. The lines
that you type in and the system responses should be the same.

SHELL COMMAND LANGUAGE

SHELL COMMAND LANGUAGE

Special Characters in the Shell

The shell language has special characters that give you some shortcuts
for performing tasks in the shell. These special characters are listed
below and are discussed in this section of the tutorial.

* ? []

&

\

These are metacharacters. A metacharacter is a
character that has a special meaning in shell
command language. These metacharacters give you
shortcuts for file names.

This character places commands in the background
mode. While the shell is performing the commands
in the background, your terminal is free for you to
work on other tasks.

This character allows you to type in several
commands on one line. Each command must be
followed by a ; . When you type in the <CR>,
each command will execute sequentially from the
beginning of the line to the end of the line.

This character allows you to turn off the meaning of
special characters such as *, ? , [], & and ; .

Both double and single quotes turn off the
delimiting meaning of the space, and the special
meaning of special characters. However, double
quotes will allow the characters $ and \ to retain
their special meaning. (The $ and \ are discussed
later in this chapter and are important for shell
programs.

Metacharacters

The meaning of the metacharacters is similar to saying "etc. etc. etc.",
"all of the above", or "one of these". Using metacharacters for all or
part of a file name is called file name generation. It is a quick and
easy way to refer to file names.

7-3

SHELL TUTORIAL

Metacharacter That Matches All Characters

This metacharacter matches "all", any string
of characters, including no characters at all.

The * alone refers to all the file names in the current directory, the
directory you are in now. To see the effect of the *, try the next
command.

Type in: echo *<CR>

The echo command displays its arguments on your terminal. The
system response to echo * should have been a listing of all file names
in the current directory. However, unlike ls, the file names were
displayed in horizontal lines instead of a vertical listing.

Since you may not have used the echo command before, here is a
brief recap of the command.

Command Recap

echo - write any arguments to the output

command

echo

Description:

Remarks:

1-4

options arguments

none any character

echo writes arguments, which are separated by
blanks and ended with <CR>, to the output.

In shell programming, echo will be used to issue
instructions, to redirect words or data into a file,
and to pipe data into a command. All of these
uses will be discussed later in this chapter.

SHELL COMMAND LANGUAGE

Problem:
Be very careful with * because it is a powerful character. If you type
in rm * you will erase all the files in your current directory.

The * metacharacter is also used to expand file names in the current
directory. H you have written several reports and have named them:

then

report
reportl
reportla
reportlb.01
report25
report316

report*

refers to all six reports in the current directory. H you want to find
out how many reports you have written, you could use the ls
command to list all the reports that begin with the letters report.

$ ls report*<CR>
report
reportl
report la
reportlb.01
report25
report316
$

The * refers to any characters after the letters report, including no
letters at all. Notice that * calls the files in numerical and
alphabetical order. A quick and easy way to print out all of those
reports in order is:

Type in: pr report*<CR>

Choose a character that your file names have in common, such as an
a, and list all those files in the current directory.

Type in: ls *a*<CR>

7·5

SHELL TUTORIAL

The * can be placed anywhere in the file name.

Type in: ls F*E<CR>

This command line would list all of the following files in order:

F123E
FATE
FE
Fig3AE

Metacharacter That Matches One Character

This metacharacter matches any
single character.

The ? metacharacter replaces any one character of a file name. If you
have created text for several chapters of a book, but you only want to
list the chapters you have written through chapter9, you would use
the?.

$ ls chapter?< CR>
chapterl
chapter2
chapters
chapter9
$

Although ? matches any one character, you can use it more than once
in a file name. To list the rest of the chapters up through chapter99,
type in:

ls chapter??< CR>

1·6

SHELL COMMAND LANGUAGE

Of course, if you want to list all the chapters in the current directory
you would use chapter*.

Problem:
Sometimes when you mv or cp a file you accidentally press a
character that does not print out on your terminal as part of the file
name when you do an ls. If you try to cat that file, you get an error
message. The * and ? are very useful in calling up the file and
moving it to the correct name. Try the following example.

1. Make a very short file called trial.

2. Type in: mv trial t:rial<'g>l<CR>

Remember to type in <'g> you hold down the CTRL key and
press the "g" key.

3. Type in:

4. Type in:

ls t:rfall <CR>

$ ls trfall <CR>
triall not found
$

ls trial ?1 <CR>

$ ls trial?l <CR>
triall
$ m v trial ?'1 t:riall < CR>
$ ls triaU <CR>
triall
$

1-7

SHELL TUTORIAL

Metacharacters That Match One of a Specific Range of Characters

The shell matches one of
the specified characters
or range of characters
within the brackets.

Characters enclosed in [J act as a specialized form of the ? . The shell
will match only one of the characters enclosed in the brackets in the
position specified in the file name. If you use [crf] as part of a file
name, the shell will look for c, or r, or f.

$ ls [crf]at<CR>
cat
fat
rat
$

The shell will also look for a range of characters within the brackets.
For chapter[0-5] the shell looks for the files named chapterO through
chapters. This is an easy way to print out only certain chapters at one
time.

Type in; pr chapter[2-4)<CR>

This command will print out the contents of chapter2, chapter3, and
chapter4 in that order.

The shell will also look for a range of letters. For [A-Z], the shell will
look for uppercase letters, or for [a-z], the shell will look for
lowercase letters.

Try out each of these metacharacters on the files in your current
directory.

7-8

SHELL COMMAND LANGUAGE

Commands in the Background Mode

This character, placed at the end of a command
line, runs a task in background mode.

Some shell commands take considerable time to execute. It is
convenient to let these commands run in background mode to free
your terminal so that you can continue to type in other shell tasks.
The general format for a command to run in background mode is:

command & <CR>

The grep command can perform long searches that may take a lot of
time. If you place the grep command in a background mode, you can
continue doing some other task at your terminal while the search is
being done by the shell. In the example below, the background
mode is used while all the files in the directory are being searched
for the characters word. The & is the last character after the
command.

$ grep word * &<CR>
21940
$

21940 is the process number. This number is essential if you want to
stop the execution of a background command. This will be discussed
in Executing and Terminating Processes.

In the next section of this tutorial you will see how to redirect the
system response of the grep command into a file so that it does not
display on your terminal and interrupt your current work Then, you
can look at the file when you have finished your task

7-9

SHELL TUTORIAL

Sequential Execution

The shell performs sequential execution
of commands typed on one line and
separated by a ; "

If you want to type in several commands on one line, you must
separate each command with a ; . The general format to place
commandl, command2, and command3 on one command line is the
following:

commandl; command2; command3<CR>

Sequential execution is very useful if you need to execute several
shell commands while you are in the line editor ed. (See the section
on Other Useful Commands and Information in Chapter 5.) Try out the ; .
Type in several commands separated by a ; . Notice that, after you
press <CR>, the system responds to each command in the order that
they appear on the command line.

Type in: cd; pwd; ls; ed. t:dal <CR>

The shell will execute these commands sequentially:

1. cd Change to login directory.

2. pwd Print the path of the current directory.

3. ls List the files in the current directory.

4. ed trial Enter the line editor ed and begin editing the file
trial.

Did you notice the rapid fire response to each of the commands? You
may not want these responses to display on your terminal. The
section on Redirecting Output will show you how to solve this
problem.

7-10

SHELL COMMAND LANGUAGE

Tuming Off Special Character Meaning

The backslash turns off the special
meaning of a metacharacter.

How do you search for one of the special characters in a file? Type in
a backslash just before you type in the metacharacter. The backslash
turns off the special meaning of the next character that you type in.
Create a file called trial that has one line containing the sentence "The
all * game". Search for the * character in the file trial.

$ grep \ * trial <CR>
The all * game
$

Tuming Off Special Characters by Quoting

AU special characters
enclosed in single quotes
fose their special meaning.

AH special characters except
$, \, and ' lose their special
meaning when they are in
double quotes.

SHEll TUTORIAL

The special characters in the shell lose their special meaning when
they are enclosed by quotes. The single quote turns off the special
meaning of any character. The double quote will turn off the special
meaning of any character except $ and '. The $ and ' are very
important characters in shell programming.

A delimiter separates arguments, telling the shell where one
argument ends and a new one starts. The space has a special
meaning to the shell because it is used as a delimiter between
arguments of a command.

The banner command uses spaces to delimit arguments. If you have
not used the banner command, try it out. The system response is
rather surprising.

Type in: banner happy birthday to you< CR>

Was each word displayed in large poster sized letters?

Now put quotes around to you.

Type in: banner happy birthday "to you"<CR>

Notice that to and you appear on the same poster display line. The
space between the ll:o and the you has lost its special meaning as a
delimiter.

Since you may not have used the banner command before, the
following is a quick recap of that command. You may find that you
do not have access to the banner command. Not aU systems have all
the commands referenced in this chapter. If you cannot access a
command, check with your system administrator.

command

banner

Description:

Remarks:

SHEl...l COMMAND LANGUAGE

Command Recap

banner - make posters

options

none

arguments

characters

Displays arguments, up to ten characters on a
poster-sized line, in large letters.

Later in this chapter you will learn how to
redirect the banner command into a file to be
used as a poster.

If you use single quotes in the argument for the grep command, the
space loses the meaning of a delimiter. You can search for two
words. The line, The all * game is in your file trial. Look for the two
words The all in the file trial.

$ grep 'The alr trial <CR>
The all " game
$

Try turning off the special character meaning of the * using single
quotes.

grep '*' trial< CR>
The all * game
$

SHIEll TUTORIAL

If you want to know more about quoting, read the UNIX System User
Reference Manual pages on the sh command.

Redirecting Input and Output

The redirection of input and output are important tools for
performing many sheH tasks and programs.

Redirecting Input

You can redirect the text of a file to be the input for a command.

This character redirects the contents
of a file into a command.

The general format to redirect the contents of a file into a command
is shown below.

command < filename< CR>

H you write a report to your boss, you probably do not want to type
in the maH command and then type in your text. You want to be
able to put your report in an editor and correct errors. You want to
run the file through the speH command to make sure there are no
misspelled words. You can mail a file containing your report to
another login using the redirection symbol. In the example below, a
file called report is checked for misspelled words and then redirected
to be the input to the mail command and mailed to login boss.

7-14

$ spell repod <CR>
$
$ mail boss < report< CR>
$

SHELL COMMAND LANGUAGE

Since the only response to the speH command is the prompt, there
are no misspelled words in report. The speU command is a useful tool
that gives you a list of words that are not in a dictionary spelling list.
The following is a brief recap of spell.

command

spell

Description:

Options:

Remarks:

Command Recap

spell - find spelling errors

options

available*

arguments

filename

speU collects words from the specified file or files
and looks them up in a spelling list. Words that
are not on the spelling list are displayed on your
terminal.

speH has several options, including one for
checking the British spelling.

The misspelled words can be redirected into a
file. See the redirection symbol > discussed
next.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Redirecting Output

You can redirect the output of a command to be the contents of a file.
When you redirect output into a file, you can either create a new file,
append the output to the bottom of a file, or you can erase the
contents of an old file and replace it with the redirection output.

7-15

SHELL Tfi.JITORIAl

This character redirects the output
of a command into a file.

The single redirection symbol > will create a new file, or it will erase
an old file and replace the contents with new output. The general
format to redirect output is shown below.

command > filename< CR>

If you want the spell command list of misspelled words placed in a
file instead of displayed on your terminal, redirect spell into a file.
In the example, spell searches the file memo for misspelled words and
places those words in the file misspell.

$ spell memo > misspell< CR>
$

The sort command can be redirected into a file. Suppose a file called
list contains a list of names. In the next example, the output of the
sort command lists the names alphabetically and redirects the list to a
new file names.

Problem:

$ sort list > names<CR>
$

Be careful to choose a new name for the file that will contain the
alphabetized list. The shell first cleans out the contents of the file

SHELL COMMAND LANGUAGE

Since the only response to the speH command is the prompt, there
are no misspelled words in report. The spell command is a useful tool
that gives you a list of words that are not in a dictionary spelling list.
The following is a brief recap of spell.

command

speU

Description:

Options:

Remarks:

Command Recap

spell - find spelling errors

options

available*

arguments

filename

spell collects words from the specified file or files
and looks them up in a spelling list. Words that
are not on the spelling list are displayed on your
terminal.

spell has several options, including one for
checking the British spelling.

The misspelled words can be redirected into a
file. See the redirection symbol > discussed
next.

'' See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Redirecting Output

You can redirect the output of a command to be the contents of a file.
When you redirect output into a file, you can either create a new file,
append the output to the bottom of a file, or you can erase the
contents of an old file and replace it with the redirection output.

7-15

SHELL TUTORIAL

This character redirects the output
of a command into a file.

The single redirection symbol > will create a new file, or it will erase
an old file and replace the contents with new output. The general
format to redirect output is shown below.

command > filename< CR>

H you want the spell command list of misspelled words placed in a
file instead of displayed on your terminal, redirect spell into a file.
In the example, spell searches the file memo for misspelled words and
places those words in the file misspell.

$ spell memo > misspell< CR>
$

The sort command can be redirected into a file. Suppose a file called
list contains a list of names. In the next example, the output of the
sod command lists the names alphabetically and redirects the list to a
new file names.

Problem:

$ sort list > names< CR>
$

Be careful to choose a new name for the file that will contain the
alphabetized list. The shell first deans out the contents of the file

7-16

SHELL COMMAND LANGUAGE

that is going to accept the redirected output, then it sorts the file and
places the output in the clean file. If you type in

sort list > list<CR>

the shell will erase list and then sort nothing into list.

Problem:
If you redirect a command into a fHe that exists, the shell will erase
the existing file and put the output of the command into that file. No
warning is given that you are erasing an existing file. If you want to
assure yourself that there is not an existing file, first execute the ls
command with the file name as an argument.

If the file exists, ls will list the file. If the file does not exist, ls will
tell you the file was not found in the current directory.

$ ls filename< CR>
filename
$ ls junk<CR>
junk not found
$

The double redirection symbol >> appends the output of a command
after the last line of a file.

The general format to append output to a file is:

command > > filename< CR>

In the next example, the contents of trial2 are added after the last line
of triall by redirecting the cat command output of trial2 into triall.

1-11

SHELL TUTORIAL

The first command, cat triall, displays the contents of triall. Then,
cat h'ial2 displays the contents of trial2. The third command line, cat
trial2 >> triall, adds the contents of trial2 to the bottom of file triall,
and call: triall displays the new contents of triall.

$ cat triall <CR>
hello
this is a trial
This is the last line of this file
$
$ cat trial2<CR>
Add this to file trial1
This is the last line of file trial2
$
$ cat trial2 > > triall <CR>
$ cat: triall <CR>
hello
this is a trial
This is the last line of this file
Add this to file triall
This is the last line of file trial2
$

In the section on Special Characters, one of the examples showed how
to execute the grep command in background mode with &. Now,
you can redirect the outpu~ of that command into a file called wordfile,
and then look at the file when you have finished your current task.
The & is the last character of the command line.

7-18

$ grep word * > word.file & <CR>
$

SHELL COMMAND LANGUAGE

Pipes

The I character is called a pipe. It redirects the output of one
command to be the input of another command.

This character directs the output
from one command to be the iinput
of the next command.

If two or more commands are connected by a pipe, I, the output of
the first command is "piped" into the next command as the input for
that command.

The general format for the pipe line is:

commandl I command2 I command3<CR>

The output of commandl is used as the input of command2. The
output of command2 is then used as the input for command3.

You have already tried the banner display on your terminal. The
pipe can be used to send a banner birthday greeting to someone by
electronic mail.

If the person using login david. has a birthday, pipe the banner
display of happy birthday into the mail command.

Type in: banner happy birthday I mail david <CR>

Login david will get a banner display in his electronic mail.

The date command gives you the date and the time. Since you may
not have used the date command before, a brief recap of date follows.

7-19

SHELL TUTORIAL

command

date

Description:

Op Hons:

Remarks:

Command Recap

date - display the date and time

options

+%m%d%y*
+%H%M%S

arguments

available*

date displays the current date and time on your
terminal.

+% followed by m for month, d for day, y for
year, H for hour, M for month, and S for second
will echo these back to your terminal. You can
add an explanation to these such as:

date '+%H:M is the time'

If you are working on a small computer system
in which you are acting as both user and system
administrator, you may be able to set the date
and time using optional arguments to the date
command. Check your reference manual for
details. When working in a multiuser
environment, the arguments are available only to
the system administrator.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Try out the date command on your terminal.

1-20

$ date<CR>
Mon Nov 25 17:57:21 CST 1985
$

SHELL COMMAND LANGUAGE

Notice that the time is given from the 12th character through the
19th character. If you want to know just the time and not the date,
you can pipe the output of the date command into the cut command.
The cut command looks for characters only in a specified part of each
line of a file. If you use the -c option, cut will choose only those
characters in the specified character positions. Character positions are
counted from the left. To display only the time on your terminal
pipe the output of the date command into the cut command asking
for characters 12 through 19.

$ date I cut -c12-19<CR>
18:08:23
$

Several pipes can be used in one command line. The output of the
example can be piped into the pr command.

Type in: date I cut -c12-19 I pr<CR>

Try each of these examples. Check the system response.

Later in this chapter, you will write a shell program that will give
you the time.

Since you may not have used the cut command until now, a brief
recap of that command follows next.

7-21

SHEll TUTORIAL

Commalt1ld Recap

cut - cut out selected fields of each line of a file

command

cut

Desoriptfon:

Opltions:

Remarks:

options arguments

-dist filel file2
-flist [-d]

cut will cut out columns from a table or fields
from each line of a file.

-c lists the number of character positions from
the left. A range of numbers such as characters
1-9 can be specified by -cl-9

-f lists the number of fields from the left
separated by a delimiter described by -d.

-di gives the field delimiter for -f. The default
is a tab. H the delimiter is a colon, this would be
specified by -d : .

If you find the cut command useful, you may also
want to use the paste command and the split
command.

Command Output Substitution

The output of any command line or shell program that is enclosed in
back quotes, ', can be substituted anywhere on a shell command line.
In the section on Shell Programming, you will substitute the output of a
command line as the value for a variable.

7-22

SHELL COMMAND LANGUAGE

Substitute the output of the
ieommand line in back quotes.

The output of the time command can be substituted for the argument
in a banner printout.

Type in: banner 'date I cut -d2-19'<CR>

Did you get a banner display of the time?

Executing and Terminating Processes

Running Commands at a Later Time

When you type in a command line at your terminal, the UNIX system
tries to execute that command immediately. It is possible to tell the
system to execute those commands at another time with the batch or
the at command. End the commands with <Ad> to let the shell
know you have finished listing the commands to be executed.

The batch command is useful if you are running a process or shell
program that uses a longer then normal amount of system time. The
batch command submits a "batch" job, which consists of the
commands to be executed, to the system. The job is put in a queue,
and then the job is run when the load on the system falls to an
acceptable level. This frees the system to rapidly respond to other
input by yourself or others on the system.

7-23

SHEll TUTORIAL

The general format for batch is:

batch<CR>
first command <CR>

last command <CR>
<'idl>

If there is only one command line, it may follow the batch command.

batch command Hne<CR>
<'d>

The next example uses the batch command to execute the grep
command at a convenient time. When the system can execute that
command and still respond quickly to other users, it will execute the
grep command to search all the files for the word dollar, and redirect
the output into the file dol-ftJe. Using the batch command is a
courtesy to other users sharing your UNIX system.

$ batch grep dolfaur * > dlol-file <CR>
<'d>
job 155223141.b at Mon Dec 7 11:14:54 1983
$

A brief recap of the batch command follows.

7·24

SHELL COMMAND LANGUAGE

Command Recap

batch - execute commands at a later time

command

batch

Description:

Remarks:

options arguments

none command lines

batch submits a "batch job", which is placed into
a queue and executed when the load on the
system falls to an acceptable level.

The list of commands must end with a <'d> to
tell the system the last command has been typed
in for this batch job.

The at command gives the system a specific time that the commands
are to be executed. The general format for the at command is:

at time<CR>
first command< CR>

last command<CR>
<'d>

The time must first give the time of day and then the date, if the date
is not today.

If you are afraid you will forget login david's birthday, you can use
the at command to make sure the banner birthday greeting will
arrive on his birthday.

7-25

SHELL TUTORIAL

$ at 8:15am Feb 27<CR>
banner happy birthday I mail david <CR>
<'d>
job 453400603.a at Mon Feb 27 08:15:00 1984
$

Both the batch and at commands give you a job number. If you
decide you do not want to execute the commands currently waiting
in a batch or at job queue, you can erase those jobs with the -r
option of the at command and the job number. The general format
is:

at -r jobnumber<CR>

Try erasing the previous at job for the happy birthday banner.

Type in: at -r 453400603.a <CR>

If you have forgotten the job number, the alt -] command will give
you the current jobs in the batch or at queue.

$at -l<CR>

$

login 168302040.a a Tue Nov 29 13:00:00 1983
login 453400603.a a Mon Feb 27 08:15:00 1984

login will be your login name.

Try the followi11g request. Using the at command, mail yourself a
file at noon. The file, called memo, says that it is lunch time. You
must redirect the file into mail. (You cannot type in the text directly
unless you use the here document discussed in the Shell Programming
section.) Now try the at command with the -1 option.

7-26

SHELL COMMAND LANGUAGE

$ at 12:00pm <CR>
mail mylogin < memo<CR>
<Ad>
job 263131754.a at Jun 30 12:00:00 1985
$
$at -l<CR>
: mylogin 263131754.a at Jun 30 12:00:00 1985
$

A brief recap of the at command follows next.

Command Recap

at - execute a list of commands at a specified time.

command

at

Description:

Options:

Remarks:

options

-r
-1

arguments

time date
jobnumber

Executes commands at the time specified. The
order of the arguments is the time which can be
1 to 4 digits and "am" or "pm". The date need not
be added if it is today. The date is specified by a
month name followed by the number for the day.

The -r option with the job number removes
previously scheduled jobs.

The -1 option without arguments gives the status
of at and batch jobs and job numbers.

Some times and dates are: at 08:15am Feb 27 and
at 5:14pm Sept 24.

7-27

SHELL TUTORIAL

Obtaining the Status of Running Processes

The ps command will give you the status of the processes you are
running.

Running a process or command in background with & was discussed
in the section on special characters. The ps command will tell you
the status of those processes. In the next example, the grep command
was run in the background, and then the ps command was typed in.
The system response, the output from the ps command, gives the
PIO, which is the process identification number, and TTY, which is
the current number identification assigned to the terminal you are
logged in on. It also gives the cumulative execution TIME for each
process, and the COMMAND that is being executed. The PIO is an
important number if you decide to stop the execution of that
command.

($grep word * & <CR>
28223
$
$ ps<CR>
PIO TTY TIME COMMAND
28124 10 0:00 sh
28223 10 0:04 grep
28224 10 0:04 ps
$

The example not only gives you the PIO for the grep command, but
also for the other processes that are running, the ps command itself,
and the sh command that is always running as long as you are logged
in. sh is the shell program that interprets the shell commands. It is
discussed in Chapter 1 and Chapter 4.

1·28

command

ps

Description:

Options:

Remarks:

SHELL COMMAND LANGUAGE

Command Recap

ps - report process status

options arguments

several* none

Displays information about active processes.

This command has several options. H you do not
use any options you will get the status of the
active shell processes that you are running.

Gives you the PIO, the Process ID. This is
needed if you are going to kill the process, that
is, stop the process from executing.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Terminating Active Processes

The kill command is used to stop active shell processes. The general
format for the kill command is:

kill PID<CR>

What do you do if you decide you do not need to execute the
command that you are running in the background?. If you press the
BREAK key or the DEL key, you will find it does not stop the
background process as it does the interactive commands. The kill

7-29

SHELL TUTORIAL

command terminates a background process. H you want to terminate
the grep command used in the previous example:

$ kill 28223<CR>
28223 Terminated
$

A recap of the kill command follows.

command

kiU

Description:

Command Recap

kill - terminate a process

options arguments

available* job number or PIO

kill will terminate the process given by the PIO.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Using the No Hang Up Command

Another way to kill all processes is to hang up on the system, to log
off. What if you want the background process to continue to run
after you have logged off? The nohup command will allow
background commands to continue to run even if you log off.

nohup command &<CR>

If you place the nohup command at the beginning of the command
that you will be running as a background process, the background
process will continue to run to completion after you have logged off.

Type in: nohup grep word * > word.list &<CR>

7-30

COMMAND LANGUAGE EXERCISES

The nohup command can be stopped by the kill command. The
recap of the nohup command is the following:

Command Recap

nohup - runs a command, ignoring hanging up or
quitting the system

command options arguments

nohup none command line

Description: Executes a command line, even if you hang up or
quit the system.

Now that you have mastered these shortcuts in the shell commands,
use them in your shell programs.

COMMAND LANGUAGE EXERCISES

1-1. What happens if you use the * at the beginning of a file
name? Try to list some of the files in a directory using the *
with a last letter of one of your file names. What happens?

1-2. Try out the following two commands.

Type in: cat [0-9]*<CR>
echo *<CR>

1-3. Can you use ? at the beginning or in the middle of a file
name generation? Try it.

1-4. Do you have any files that begin with a number? Can you
list them without listing the other files in your directory?
Can you list only those files that begin with a lowercase
letter between a and m? (Hint use a range of numbers or
letters in []).

7-31

SHELL TUTORIAL

1-5. Can you place a command in background mode on the line
that is executing several other commands sequentially. Try
it. What happens? (Hint use ; and &.) Can the command in
background mode be placed at any position on the command
line? Try it. Experiment with each new character that you
learn, so that you can learn the full power of the character.

1-6. Using the command line

cd; pwd; ls; ed trial< CR>

redirect the output of pwd and ls into a file. Remember, if
you want to redirect both commands to the same file, you
have to use >> for the second redirection or you will wipe
out the information from the pwd command.

1-7. Instead of cutting the time out of the date response, try
redirecting only the date, without the time, into banner.
What is the only part that you need to change in the "time"
command line?

banner 'date I cut -c12-19'

SHELL PROGRAMMING

Getting Started

Let a shell program perform your tasks for you. A shell program is a
UNIX system file that contains the commands that you would use to
perform your task.

• How do you create a simple shell program?

• What makes the program run?

• Is there a special directory for your shell programs?

In this section of the tutorial you will learn the answers to these
questions. The examples for creating shell programs usually show

1·32

SHELL PROGRAMMING

two display screens. The first screen displays the contents of the file
containing the commands used in your program. It shows the
command line

cat file<CR>

and the system response to that command, which is the contents of
the file.

$ cat file<CR>
First command

Last command
$

The $ indicates the shell prompt. The second screen shows the
results of executing your shell program.

r $ file<CR>
Results
$

The names of the file containing the shell program will be printed in
bold in the text, since it is a command and not an ordinary text file.

Before you begin to create shell programs, you should be familiar
with one of the editors. The editors are discussed in the tutorials in
Chapter 5 and Chapter 6.

7-33

SHELL TUTORIAL

Creating a Simple Shell Program

How do you think you would create a simple shell program that
would:

• Tell you the directory you were in,

• List the contents of that directory, and then

• Display on your terminal: "This is the end of the shell program".

Think about it now before you read any further.

To create the shell program, you will need the following three shell
commands:

pwd. The command that prints the path name of the current
directory,

ls

echo

The command that lists the contents of the current
directory, and

The command that displays on your terminal the
characters following echo.

To create your shell program, using pwd, ls, and echo, enter an editor
and type in the following three commands.

Type in: pwd<CR>
ls<CR>
echo This is the end of the shell program. <CR>

Write the contents of the editor buffer to a file called dl (for directory
list) and quit the editor. You have just created a shell program.

7-34

SHELL PROGRAMMING

$ cat di <CR>
pwd
ls
echo This is the end of the shell program.
$

Executing .a Shell Program

How do you tell the shell that your file is a shell program that needs
to be executed? The simplest way to execute a program is to use the
sh command.

Type in: sh dl<CR>

What happened?

Did you notice the path name of the current directory printed out
first, then the list of the contents of the current directory, and last of
all the comment This is the end of the shell program. ?

The sh command is a good way to test out your shell program to
make sure that it works.

If dl is a useful command, you will want to change the file
permissions so that you need only type in dl to execute the
command. The command that changes the permissions on a file,
chmod, is discussed in Chapter 3. The example below reminds you
how to type in the chmod command to make a file executable, and
then do an ls -1 so you can see the change in the permissions.

7-35

SHELL TUTORIAL

$ chmod u+x dl <CR>
$ ls -l<CR>
total 4
-rw------- 1 login login

drwxrwxrwx 2 login login
-rwx - - - - - - 1 login login

$

3661 Nov 2
1056 Nov 11

48 Nov 15

10:28 mbox
18:20 rje
10:50 dl

Now you have an executable program di in your current directory.

Type in: dl<CR>

Did the dl command execute?

Creating a bin Directory for Executable Files

If your shell program is useful, you will want to keep it in a special
directory called bin, which is under your login directory.

If you want your di command accessible from all your directories,
make a bin directory from your login directory and move the dl file to
your bin. Below is a reminder of those commands. In this example,
dl is in the login directory.

Type in: mkdir bin <CR>
mv di bin/dl <CR>

Move to the bin directory and type in the ls -1 command. Does dl
still have execute permission?

Now move to another directory other than the login directory.

Type in: dl<CR>

What happened?

1-36

SHELL PROGRAMMING

A command recap of your new program dl follows.

Shell Program Recap

dl - display the directory path and directory contents

command

dl

Description:

arguments

none

Displays the output of the shell command pwd
and then lists the contents of the directory.

The bin is the best place to keep your executable shell programs. It is
possible to give the bin directory another name, but you need to
change the shell variable PA TH to do so. The shell variables are
discussed briefly in this chapter. For more advanced information
read the document the UNIX System Shell Commands and Programming.
(See Appendix A.)

Problem:
You can give your sheU program file any appropriate file name.
However, you should not name your program with the same name as
a system command. The system will execute your command and not
the command of the system.

If you had named your di program mv, each time you tried to move a
file, the system would not move your file. It would have executed
your program to display the directory name and list the contents.

Problem:
Another problem would occur if you had named the dl file ls, and
then tried to execute the file ls. You would create an infinite loop.
After some time, the system would give you an error message:

Too many processes, cannot fork

7-37

SHELL TUTORIAL

What happened? You typed in your new command ls. The shell
read the command pwd and executed that command. Then the shell
read the command ls in your file and tried to execute your ls
command. This formed an infinite loop:

$ G,!D
echo This is the end of the shell program

UNIX system designers wisely set a limit on how many times this
infinite loop can execute. One way to keep this from happening is to
give the path name for the system's ls command, /bin/ls.

The following ls shell program would work.

$ cat ls<CR>
pwd
/bin/ ls
echo This is the end of the shell program

H you name your command ls, then you can only execute the system
command with /bin/ls.

Varnables

If you enjoyed sending the banner birthday greeting, you could make
a shell program that would pipe the banner printout into the
electronic mail. A good shell program would let you send to a
different login each time you executed the program. The login would
then be a variable. There are two ways you can specify a variable for
a shell program:

• Positional parameters and

• Variables that you define.

7-38

SHELL PROGRAMMING

Positional Parameters

A positional parameter is a variable that is found in a specified
position in the command line of your shell program. Positional
parameters are typed in after the command. They are strings of
characters delimited by spaces, except for the last parameter, which is
ended with <CR>. If ppl is the first positional parameter, pp2 is
the second positional parameter, and ... pp9 is the ninth positional
parameter, then the command line of your shell program called
shell.prog will look like this.

shell.prog ppl pp2 pp3 pp4 pp5 pp6 pp7 pp8 pp9<CR>

The shell program will take the first positional parameter (ppl) and
substitute it in the shell program text for the characters $1. The
second positional parameter (pp2) will be substituted for the
characters $2. The ninth positional parameter (pp9), of course, will
be substituted for the characters $9.

If you want to see how the positional parameters are substituted into
a program, try typing the following lines into a file called pp
(positional parameters).

Type in: echo The first positional parameter is: $1 <CR>
echo The second positional parameter is: $2<CR>
echo The third positional parameter is: $3<CR>
echo The fourth positional parameter is: $4<CR>

First the echo command tells which parameter will be displayed and
then displays the parameter. The next example shows the contents of
the file pp.

$ cat pp<CR>
echo The first positional parameter is: $1
echo The second positional parameter is: $2
echo The third positional parameter is: $3
echo The fourth positional parameter is: $4
$

7-39

SHELL TUTORIAL

The following example shows the results of giving the four positional
parameters one, two, three, and four to the shell program pp.
Remember to change the mode of pp to be executable.

$ chmod u+x pp<CR>
$
$ pp one two three four< CR>
The first positional parameter is: one
The second positional parameter is: two
The third positional parameter is: three
The fourth positional parameter is: four
$

Now, return to creating your shell program for the banner birthday
greeting. Call the file bbday. What command line would go into
that file? Before you go on reading, try it.

Did you get the following?

$ cat bbday<CR>
banner happy birthday I mail $1

Try sending yourself a birthday greeting. If your login name is
slowmo, then the command line would be:

7-40

$ bbday slowmo<CR>
you have mail
$

SHELL PROGRAMMING

The following is a brief recap of the shell program command bbday.

Shell Program Recap

bbday - mail a banner birthday greeting

command

bbday

Description:

arguments

login

bbday mails "happy birthday" in poster-sized
letters to the specified login.

The who command will tell you every login that is currently using
the system. How would you make a simple shell program called
whoson that will tell you if a particular login is currently working on
the system? You could try the following:

$ who I grep boss<CR>
boss tty51 Nov 29 17:01
$

This command pipes the output of the who command into the grep
command. The grep command is searching for the characters "boss".
Since login boss is currently logged into the system, the shell will
respond with:

boss tty51 Nov 29 17:01

If the only response is a prompt sign, then login boss is not currently
on the system because the grep command found nothing. Create a
whoson shell program.

7-41

SHELL TUTORIAL

Below are the ingredients for your shell program whoson.

who The shell command that lists everyone on the system,

grep The search command, and

$1 The first positional parameter for your shell program.

The grep command searches the output of the who command for the
parameter designated in the program by $1. If it finds the login, it
will display the line of information. If it does not find the login in
the output from who, it will display your prompt.

Enter an editor and type the following command line into a file
called whoson.

Type in: who I grep $1 <CR>

Write the file, quit the editor, and change the mode of the file
whoson to have execute permission.

Now try using your login as the positional parameter for the new
program whoson. What was the system's response?

H your login name is slowmo, your new shell command line would
look like:

$ whoson sfowmo<CR>
slowmo tty26 Jan 24 13:35
$

The first positional parameter is slowmo. The shell substitutes
slowmo for the $1 in your program.

who I grep slowmo<CR>

7-42

SHELL PROGRAMMING

The following is a brief recap of the whoson command.

Shell Program Recap

whoson - display login information if user is logged in

command

whoson

Description:

arguments

login

If a user is on the system, displays the user's
login, the TTY number, the time and date the
user logged in.

The shell command line will allow 128 positional parameters.
However, your shell program text is restricted to $1 through $9,
unless you use the $* described below, or the shift command, which
is described in the document the UNIX System Shell Commands and
Programming. (See Appendix A.)

Parameters with Special Meaning

$# This variable in your shell program will record and display
the number of positional parameters you typed in for your
shell program.

Let's look at an example that will show you what happens when you
use $#. Put the following command lines in a shell program called
get.num.

$ cat get.num <CR>
echo The number of parameters is: $#
$

7-43

SHELL TUTORIAL

The program counts all the positional parameters and displays that
number. Give get.num four parameters. They can be any string of
characters.

$ get.num test out this program<CR>
The number of parameters is: 4
$

Shell Program Recap

geLnum - count and display the number of arguments

command

get.num

Description:

Remarks:

arguments

(any string)

get.num counts the number of arguments given
to the command and then displays that number.

This command
parameter $#.

demonstrates the special

$* This variable in your shell program will substitute all
positional parameters starting with the first positional
parameter. The parameter$* does not restrict you to nine
parameters.

You can make a simple shell program to demonstrate $*. Make a
shell program called show.param that will echo all of the parameters.
Type in the echo command line shown in the following screen.

1-44

SHELL PROGRAMMING

$ cat show.param<CR>
echo The parameters for this command are: $*
$

Make show.param executable and try it out.

$ show.param hello how are you<CR>
The parameters for this command are: hello how are you
$

Now try show.param using more than nine positional parameters.

$ show.param one two 3 4 5 six 7 8 9 10 11 <CR>
The parameters for this command are: one two 3 4 5 six
7 8 9 10 11
$

The $* is very handy if file generation names are used as the
parameters.

Try a file name generation parameter in your show.param command.
H you have several chapters of a manual in your directory called
chapl, chap2 through chap7, you will get a printout listing of all of
those chapters.

7-45

SHIEll TUTORIAL

$ show.pa:ram chap?<CR>
The parameters for this command are: chapl chap2 chap3
chap4 chap5 chap6 chap7
$

A quick recap of show.pa:ram follows.

Shell Program Recap

show.param - display all of the parameters

command

show.pa:ram

Description:

Remarks:

arguments

(any positional parameters)

show.pa:ram displays all of the parameters.

If the parameters are file name generations, it
will display each of those file names.

You may want to practice with positional parameters so that they are
familiar to you before you continue on to the next section in which
you will name the variables within the program, rather than use
them as arguments in a command line.

Variable Names

The shell allows you to name the variables within a shell program.
Naming the variables in a shell program makes it easier for another
person to use. Instead of using positional parameters, you will tell
the user what to type in for the variable, or you will give the variable
a value that is the output of a command.

1-46

SHELL PROGRAMMING

What does a named variable look like? In the example below, varl is
the name of the variable and myname is the value or character string
assigned to that variable. There are no spaces on either side of the =
sign.

varl =myname <CR>

Within the shell program, a $ in front of the variable name alerts the
shell that a substitution is needed in the shell program. $varl tells
the shell to substitute the value myname, which was given to varl,
for the characters $var1.

The first character of a variable name must be a letter or an
underscore. The rest of the name can be composed of letters,
underscores, and digits. As in the case of shell program file names, it
is a risky business to use a shell command as a variable name. Also,
the shell has reserved some variable names to be used by the· shell.
The following names are used by the shell and should not be used as
the name of one of your variables. A brief explanation of each
variable is given.

CDP A TH
This variable defines the search path for the cd command.

HOME

IFS

This is the default variable for the cd command (Home
Directory).

This variable defines the internal field separators, normally the
space, the tab, and the carriage return.

MAIL
This variable is set to the name of the file that contains your
electronic mail.

PATH
This variable determines the path that is followed to find
commands.

7-41

SHELL TUTORIAL

PSl
PS2.

These variables define the primary and secondary prompt
strings. The defaults are $ and >. Do you have a prompt sign
$?

TERM
This variable tells the shell what kind of terminal you are
working on. H is important to set this variable if you are
editing with vi.

Many of these named variables are explained in the last section of
this chapter on your login environment.

Assign Values to Variables

If you edit with vi, you know that you must set the variable TERM to
equal the code for your type of terminal before you use the vi editor.
For example:

TERM=T3<CR>

This is the simplest way to assign a value to a variable.

There are several other ways to assign values to variables. One way
is to use the read command to assign input to the variable. Another
way is to assign the value from the output of a command using back
quotes ' ... '. A third way would be to assign a positional parameter
to the variable.

Assign Values by the Read Command

You can set up your program so that you can type in the command
and then be prompted by the program to type in the value for the
variable. The read command assigns the input to the specified
variable. The general format for the read command is:

read vax<CR>

The values assigned by :read. to var will be substituted for $var in the
program. If the echo command is executed just before the read

7-48

SHELL PROGRAMMING

command, the program can display the directions "type in The
read command will wait until you type in the value, and then assign
the string of characters that you type in as the value for the variable.

If you had a list that contained the names and telephone numbers of
people you called often, you could make a simple shell program that
would automatically give you someone's number. Stop for a minute.
How would you make up the program using the following
ingredients?

echo The command that echoes the instructions.

read The command that assigns the input value to the variable
name.

grep The command that searches for the person's name and
number.

First, you would use the echo command to inform the user to type in
the name of the person to be called.

echo Type in the last name<CR>

The read command will then assign the person's name to the variable
name.

read name< CR>

Notice that you do not use the = to assign the variable, the read
command automatically assigns the typed in characters to name.

The grep command will then search your phone list for the name. H
your phone list were called list, the command line would be:

grep $name list< CR>

In the next example, the shell program is called num.please.
Remember, the system response to the cat command is the contents of
the shell program file.

7-49

SHELL TUTORIAL

$ cat num.please<CR>
echo Type in the last name
read name
grep $name list
$

Make a list of last names and phone numbers and try m1m.please.
Or, try the next example, which is a program that creates a list. You
can use several variables in one program. If you have a phone list,
you may want a quick and easy way to add names and numbers to
the list. The program:

0 Asks for the name of the person,

• Assigns the name to the variable name,

0 Asks for the person's number,

0 Assigns the number to the variable num, and

• Echos the name and num into the file list. You must use >> to
redirect the output of the echo command to the bottom of your
list. If you use >, your list will contain only the last phone
number.

The program is called mknum.

$ cat mknum<CR>
echo Type in name
read name
echo Type in number
read num
echo $name $num > > list
$
$ chmod u+x mknum<CR>
$

SHELL PROGRAMMING

Now try out the new programs for your phone list. In the next
example, mknum creates the new listing for Mr. Niceguy. Then,
num.please gives you Mr. Niceguy's phone number.

$ mknum<CR>
Type in the name
Mr. Niceguy<CR>
Type in the number
668-0007 <CR>
$
$ num.please<CR>
Type in last name
Niceguy<CR>
Mr. Niceguy 668-0007
$

Notice that the variable name accepts both Mr. and Niceguy as the
value.

Here is a brief recap of mknum and m.llm.please.

Shell Program Recap

mknum - place name and number on a phone list

command

mknum

Description:

Remarks:

arguments

(interactive)

Asks you for the name and number of a person
and adds the name and number to your phone
list.

This is an interactive command.

7-51

SHELL TUTORIAL

Shell Program Recap

num.please - display a person's name and number

command

num.please

Description:

Remarks:

arguments

(interactive)

Asks you for a person's last name, and then
displays the name and telephone number.

This is an interactive command.

Substitute Command Output for the Value of a Variable

Another way to assign a value to a variable is to substitute the output
of a command for the value. This will be very useful in the next
section when you try loops and conditional constructs.

The general format to assign output as the value for a variable is:

var= 'command'< CR>

The variable var has the value of the output from command.

In one of the previous examples on piping, the date command was
piped into the cut command to get the correct time. That command
line was:

date I cut -c12-19<CR>

You can place that command in a simple shell program called t that
will give you the time.

7-52

$ cat t<CR>
time= 'date I cut -cl 2-19'
echo The time is: $time
$

SHELL PROGRAMMING

Remember there are no spaces on either side of the equal sign.

Change the mode on the file and you now have a program that gives
you the time.

$ chmod u+x t<CR>
$ t<CR>
The time is: 10:36
$

The recap for the t shell program follows.

command

t

Description:

Shell Program Recap

t - display the correct time

arguments

none

t gives you the correct time in hours and
minutes.

7-53

SHELL TUTORIAL

Assign Values with Positional Parameters

A positional parameter can be assigned to a named parameter. For
example:

vaur1=$1 <CR>

The example below is a simple program simp.p that demonstrates
how you can assign a positional parameter to a variable. The
command lines in the file would be the following:

$ cat simp.p<CR>
var1=$1
echo $var1
$

Or, you can assign the output of a command that uses a positional
parameter.

person='who I grep $1'<CR>

H you wanted to keep track of the results of your whoson program,
you could create the program log.Hme. The output of your whoson
shell program is assigned to the variable person. Then, that value
$person is added to the file login.file with the echo command. The
last part of the program displays the value of $person, which is the
same as the response to the whoson command.

$ cat log.Hme<CR>
person='who I grep $1'
echo $person > > login.file
echo $person
$

The system response to log.time would appear as in the following
screen.

7-54

SHELL PROGRAMMING

$ log.time maryann<CR>
maryann tty61 Apr 11 10:26
$

The following is a quick recap of the log.time program.

Shell Program Recap

log.time - log and display a specified login that is
currently logged in

command

log.time

Description:

arguments

login

If the specified login is currently on the system,
log.time places the line of information from the
who command into the file login.file and then
displays that line of information on your
terminal.

As you do more programming, you may discover other ways to assign
variables that will help you in shell programs.

Shell Programming Constructs

The shell programming language has several constructs that give you
more flexibility in your programs.

• The "here document" allows you to redirect lines of input into a
command.

• The looping constructs for or while cause a program to reiterate
commands in a loop.

7-55

SHELL TUTORIAL

- The conditional control commands, if or case, execute a group of
commands only if a particular set of conditions is met.

0 The break command gives the unconditional end of a loop.

Comments

Before you begin 'N"riting shell programs with loops, you may want to
know how to put comments about your program into the file, which
the system will ignore. To place comments in a program, begin the
comment with # and end it with <CR>. The general format for a
comment line is:

#comment<CR>

The shell will ignore all characters after the #. These lines

This program sends a generic birthday greeting< CR>
This program needs a login as the positional parameter< CR>

v1rill be ignored by the system when your program is being executed.
They only serve as a reminder to you, the programmer.

The Here Document

The here document allows you to redirect lines of input of a shell
program into a command. The here document consists of the
redirection symbol << and the delimiter that specifies the beginning
and end of the lines of input. The delimiter can be one character or a
string of characters. The ! is often used as a delimiter. The general
format for the here document is:

1-56

command <<!<CR>
.. .in put lines ... <CR>
!<CR>

SHELL PROGRAMMING

The here document could be used in a shell program, to redirect lines
of input into the mail command. The program shown below sends a
generic birthday greeting with the mail command. The program is
called gbday.

$ cat gbda.y<CR>
mail $1 < <!
Best wishes to you on your birthday.

$

The person's login is the first positional parameter $1.

The redirected input is:

Best wishes to you on your birthday.

To send the greeting:

$ gbday mary<CR>
$

To receive the greeting, login mary would execute the mail command.

$ mail<CR>
From mylogin Mon May 14 14:31 CDT 1984
Best wishes to you on your birthday
$

The following is a recap of gbday.

7-57

SHELL TUTORIAL

Shell Program Recap

gbday - send a generic birthday greeting

command

gbday

Description:

arguments

login

gbday sends a generic birthday greeting to the
login given as an argument.

Using ed in a Shell Program

The line editor ed can be used within a shell program if it is
combined with the here document commands.

Suppose you want to make a shell program that will enter the editor,
ed, make a global substitution to a file, write the file, and then quit
the editor. The ed command to make a global substitution is:

g/text to be changed/sf /new text/g<CR>

Before you read any further, jot down what you think the command
sequence will be. Put your command sequence into a file called
ch.text. H you want to suppress the character count of ed so that it
will not appear on your terminal, use the - option:

ed - filename< CR>

Try to execute the file. Did it work?

If you used the read command to enter the variables, your program
ch.text may look similar to what appears in the following screen.

7-58

SHELL PROGRAMMING

$ cat ch.text<CR>
echo Type zn the file name.
read filel
echo Type in the exact text to be changed.
read oldtext
echo Type in the exact new text to replace the above.
read newtext
ed - $filel < <!
g I $old text I sf I $newtext I g
w
q
!
$

This program uses three variables. Each of them is entered into the
program with the read command.

$file The name of the file to be edited.

$oldtext The exact text to be changed.

$newtext The new text.

Once the variables are entered into the program, the here document
redirects the global, write, and quit commands into the ed command.
Try out the new ch.text command.

$ ch.text<CR>
Type in the filename.
memo<CR>
Type in the exact text to be changed.
Dear John:< CR>
Type in the exact new text to replace the above.
To whom it may concern:<CR>
$ cat memo<CR>
To whom it may concern:
$

7-59

SHELL TUTORIAL

Did you try to use positional parameters? Did you have any
problems entering the text changes as variables, or did you quote the
character strings for each parameter?

The recap of the ch.text command is:

command

ch.text

Description:

Remarks:

Shell Program Recap

ch.text - change text in a file

arguments

(interactive)

Replaces text in a file with new text.

This shell program is interactive. It will prompt
you to type in the arguments.

If you want to become more familiar with the line editor ed, see
Chapter 5, Line Editor Tutorial (ed).

The stream editor sed can also be used in shell programming. More
information on that editor can be found in the UNIX System Editing
Guide. (See Appendix A.)

Looping

Until now, the commands in your shell program have been executed
once and only once and in sequence. Looping constructs give you
repetitive execution of a command or group of commands. The for or
while commands will cause a program to loop and execute a sequence
of commands several times.

7-60

SHELL PROGRAMMING

The for Loop

The for loop executes a sequence of commands for each member of a
list. The for command loop also requires the keywords in, do, and
done. The for, do, and done keywords must be the first word· on a
line. The general format of the for loop is:

for variable<CR>
in this list of values<CR>

do the following commands< CR>
command 1 <CR>
command 2 <CR>

last command< CR>
done<CR>

The variable can be any name you choose. If it is var, then the
values given after the keyword in will be sequentially substituted for
$var in the command list. If in is omitted, the values for var will be
the positional parameters. The command list between the keywords
do and done will be executed for each value.

When the commands have been executed for the last value, the
program will execute the next line below done. If there is no line,
the program will end.

It is easier to read a shell program if the looping constructs stand out.
Since the shell ignores spaces at the beginning of the lines, each
section of commands can be indented as it was in the above format.
Also, if you indent each command section, you can quickly check to
make sure each do has a corresponding done statement to end the
loop.

The easiest way to understand a shell programming construct is to try
an example. Try to create a program that will move files to another
directory.

7-61

SHEl...l TUTORIAL

The ingredients for the program are:

echo

read

for variable

You want to echo directions to type in the
path name to reach the new directory.

You want to type in the path name, and
assign it to the variable path.

You must name the variable. Call it file
for your shell program. It will appear as
$file in the command sequence.

in list of values The list of values will be the file names. If
the in clause is omitted, the list of values is
taken to be $* , that is, the parameters
entered on the command line.

do command sequence The command sequence for this program
is:

mv $file $path/$file<CR>

done

Your shell program text for the program called mv.file will look like:

$ cat mv.file<CR>
echo Please type in the directory path
read path
for file

in memol memo2 memo3
do

mv $file $path/$file
done
$

Notice that you did not type in any values for the variable file. The
values are already in your program. If you want to change the files
each time you invoke the program, use positional parameters or

1-62

SHELL PROGRAMMING

variables that you name. You do not need the in keyword to list the
values when you use positional parameters. H you choose positional
parameters, your shell program will look like:

$ cat mv.file<CR>
echo type in the directory path
read path
for file
do

mv $file $path/ $file
done
$

It is likely that you will want to move several files using the special
file name generation characters.

If this is a useful command, remember to move it into your bin.

Following is a recap of the mv.file shell program.

Shell Program Recap

mv.file - move files to another directory

command

mv.file

Description:

Remarks:

Moves files to a directory.

arguments

file names
(interactive)

This program requires the file names to be given
as positional parameters. The path to the new
directory is asked for interactively by the
program.

7-63

SHELL TUTORIAL

The while Loop

The while loop will continue executing the sequence of commands in
the do ... done list as long as the final command in the while
command list returns a status of true, that is can be executed. The
while, do, and done keywords must be the first characters on the
line. The general format of the while loop is the following:

while<CR>
command 1 <CR>

last command<CR>
do<CR>

command 1 <CR>

last command< CR>
done<CR>

A simple program using the while loop enters a list of names into a
file. The command lines for that program called enter.name are:

$ cat enter.name<CR>
while

read x
do

echo $x> > xfile
done
$

This shell program needs some instructions. You have to know to
delimit or separate the names by a <CR>, and you have to use a
<Ad> to end the program. Also, it would be nice if your program

7-64

SHELL PROGRAMMING

displayed the list of names in the xfile at the end of the program. If
you added those ingredients to the program, the commands lines for
the program become:

$ cat enter.name<CR>
echo 'Please type in each person's name and then a <CR>'
echo 'Please end the list of names with a < 'd>'
while read x
do

echo $x> > xfile
done
echo xfile contains the following names:
cat xfile
$

Notice that after the loop is completed, the program executes the
commands below the done.

In the echo command line, you used characters that are special to the
shell, so you must use the ' ... ' to turn off that special meaning. Put
the above command lines in an executable file and try out the shell
program.

$ enter.name<CR>
Please type in each person's name and then a <CR>
Please end the list of names with a < 'd >
Mary Lou< CR>
Janice<CR>
<'d>
xfile contains the following names:
Mary Lou
Janice
$

7-65

SHELL TUTORIAL

Conditional Constructs if ... then

The if command tells the shell program to execute the then sequence
of commands only if the final command in the if command list is
successful. The if construct ends with the keyword fi. The general
format for the if construct is as follows:

if<CR>
commandl <CR>

last command< CR>
then<CR>

commandl <CR>

last command< CR>
fi<CR>

The next shell program demonstrates the iL.then construct. The
program will search for a word in a file. If the grep command is
successful then the program will echo that the word is found in the
file. In this example the variables are read into the shell program.
Type in the shell program shown below and try it out. Call the
program search.

$ cat search<CR>
echo Type in the word and the file name.
read word file
if grep $word $file

fi
$

then echo $word is in $file

SHELL PROGRAMMING

Notice that the read command is assigning values to two variables.
The first characters that you type in, up to a space, are assigned to
word. All of the rest of the characters including spaces will be
assigned to file.

Pick a word that you know is in one of your files and try out this
shell program. Did you see that even though the program works,
there is an irritating problem? Your program displayed more than
the line of text called for by the program. The extra lines of text
displayed on your terminal were the output of the grep command.

The Shell Garbage Can /dev/null

The shell has a file that acts like a garbage can. You can deposit any
unwanted output in the file called I dev I null, by redirecting the
command output to I dev I null.

Try out I dev I null by throwing out the results of the who command.
First, type in the who command. The response tells you who is on
the system. Now, try the who command, but redirect the response
into the file I dev I null.

who > /dev/nuU<CR>

The response displayed on your terminal was your prompt. The
response to the who command was placed in I dev I null and became
null, or nothing. If you want to dispose of the grep command
response in your search program, change the if command line.

if grep $word $file > I dev I null< CR>

Now execute your search program. The program should only
respond with the text of the echo command line.

The if ... then construction can also issue an alternate set of commands
with else, when the if command sequence is false. The general
format of the iL.then ... else construct follows.

7-67

SHELL TUTORIAL

if<CR>
commandl <CR>

last command< CR>
then<CR>

commandl <CR>

last command< CR>
else<CR>

command! <CR>

last command< CR>
fi<CR>

You can now improve your search command. The shell program
search can look for a word in a file. If the word is found, the
program will tell you the word is found. If it is not found (else) the
program will tell you the word was NOT found. The text of your
search file will look like the following:

1·68

$ cat search<CR>
echo Type in the word and the file name.
read word file
if

grep $word $file >I dev I null
then

echo $word is in $file
else

echo $word is NOT in $file
fi
$

SHELL PROGRAMMING

Following is a quick recap of the enhanced shell program called
search.

command

search

Description:

Remarks:

Shell Program Recap

search - tell if a word is in a file

arguments

interactive

Tells the user whether or not a word is in a file.

The arguments, the word and the file, are asked
for interactively.

The test Command for Loops

test is a very useful command for conditional constructs. The test
command checks to see if certain conditions are true. If the condition
is true, then the loop will continue. If the condition is false, then the
loop will end and the next command is executed. Some of the useful
options for the test command are:

test -r filename<CR>
True if the file exists and is readable

test -w filename<CR>
True if the file exists and has write permission

test -x filename<CR>
True if the file exists and is executable

test -s filename<CR>
True if the file exists and has at least one character

If you have not changed the values of the PA TH variable that were
initially given to you by the system, then the executable files in your
bin directory can be executed from any one of your directories. You
may want to create a shell program that will move all the executable
files in the current directory to your bin directory. The test -x

SHELL TUTORIAL

command can be used to select the executable files from the list of
files in the current directory. Review the mv.file program example of
the for construct.

$ cat mv.file<CR>
echo type in the directory path
read path
for file
do

mv $file $path I $file
done
$

Include an if test -x statement in the do ... done loop to move only
those files that are executable.

If you name the shell program mv.ex, then the shell program will be
as follows:

$ cat mv.ex<CR>
echo type in the directory path
read path
for file

$

do
if test -x $file

then
mv $file $path I $file

ft
done

The directory path will be the path from the current directory to the
bin directory. However, if you use the value for the shell variable
HOME, you will not need to type in the path each time. $HOME
gives the path to the login directory. $HOME/bin gives the path to
your bin.

1·10

$ cat mv.ex<CR>
for file

do
if test -x $file

then

SHELL PROGRAMMING

mv $file $HOME /bin /$file
fi

done
$

To execute the command, use all the files in the current directory, * ,
as the positional parameters. The following screen executes the
command from the current directory and then moves to the bin
directory and lists the files in that directory. All the executable files
should be there.

$ mv.ex *<CR>
$ cd; cd bin; ls<CR>

Shell Program Recap

mv.ex - move all executable files in the current
directory to the bin directory

command

mv.ex

Description:

Remarks:

arguments

an file names (*)

Moves all the files with execute permission that
are in the current directory to the bin directory

All executable files in the bin directory (or the
directory indicated by the PA TH variable) can be
executed from any of your directories.

7-71

SHELL TUTORIAL

The Conditional Construct case""esac

The case ... esac is a multiple choice construction that allows you to
choose one of several patterns and then execute a list of commands
for that pattern. The keyword in must begin the pattern statements
with their command sequence. You must place a) after the last
character of each pattern. The command sequence for each pattern is
ended with ;; . The case construction must be ended with esac (letters
of case reversed). The general format for the case construction is:

7-12

case characters<CR>
in<CR>

paUernl)<CR>
command line 1 <CR>

last command line< CR>
;;<CR>
pattern2) <CR>

command line 1 <CR>

last command line< CR>
;;<CR>
pattern3) <CR>

command line 1 <CR>

last command line<CR>
;;<CR>
*)<CR>

command 1 <CR>

last command< CR>
;;<CR>

esac<CR>

SHELL PROGRAMMING

The case construction will try to match characters with the first
pattern. If there is a match, the program will execute the command
lines after the first pattern and up to the ;; .

If the first pattern is not matched, then the program will proceed to
the second pattern. After a pattern is matched, the program does not
try to match any more of the patterns, but goes to the command
following esac. The * used as a pattern at the end of the list of
patterns allows you to give instructions if none of the patterns are
matched. The * means any pattern, so it must be placed at the end
of the pattern list if the other patterns are to be checked first.

If you have used the vi editor, you know you must assign a value to
the TERM variable so that the shell knows what kind of terminal is
going to display the editing window of vi. A good example of the
case construction would be a program that will set up the shell
variable TERM for you according to what type of terminal you are
logged in on. If you log in on different types of terminals, the
program set.term will be very handy for you.

set.term will ask you to type in the terminal type, then it will set
TERM equal to the terminal code. You may want to glance back at
the beginning of the vi tutorial for the explanation of those
commands. The command lines are:

TERM=terminal code< CR>
export TERM< CR>

In this example of set.term, the person uses either a TELETYPE 4420,
TELETYPE 5410, or a TELETYPE 5420.

7.73

SHELL TUTORIAL

The set.term program will first check if the value of term is 4420. If
it is, then it will assign the value T4 to TERM, and exit the program.
If it is not 4420, it will check for 5410 and then for 5420. It will
execute the commands under the first pattern that it finds, and then
go to the next command after the esac command.

At the end of the patterns for the TELETYPE terminals, the pattern
* , meaning everything else, will warn you that you do not have a

pattern for that terminal, and it will also allow you to leave the case
construct.

$ cat set.term<CR>
echo If you have
echo If you
echo If you
read term
case $term

in

have
have

a TTY 4420 type
a TTY 5410 type
a TTY 5420 type

4420)
TERM=T4

..
"
5410)

TERM=T5
..
" 5420)

TERM=T7
..
" *)

in 4420
in 5410
in 5420

echo not a correct terminal type
..
"

esac
export TERM
echo end of program
$

What would have happened if you had placed the * pattern first?
The set.term program would never assign a value to TERM since it
would always fit the first pattern *,which means everything.

SHELL PROGRAMMING

When you read the section on modifying your login environment,
you may want to put the set.term command in your bin, and add the
command line

set.term <CR>

to your .profile.

Following is a quick recap of the set.term shell program.

command

set.term

Description:

Remarks:

Shell Program Recap

set.term - assign a value to TERM

arguments

interactive

Assigns a value to the shell variable TERM and
then exports that value to other shell procedures.

This command asks for a specific terminal code to
be used as a pattern for the case construction.

Unconditional Control Statement break

The break command unconditionally stops the execution of any loop
in which it is encountered, and goes to the next command after the
done, fi, or esac statement. H there are no commands after that
statement, the program ends.

In the example for the program set.term, the break command could
have been used instead of the echo command.

7-75

SHELL TUTORIAL

$ cat set.term <CR>
echo If you have a TTY 4420 type in 4420
echo If you have a TTY 5410 type in 5410
echo If you have a TTY 5420 type in 5420
read term
case $term

in

..
"

4420)
TERM=T4

5410)
TERM=T5

..
"
5420)

TERM=T7
..
" *)

break
..
"

esac
export TERM
echo end of program
$

As you do more shell programming, you may want to use two other
unconditional commands, the continue command and the exit
command. The continue command causes the program to go
immediately to the next iteration of a do or for loop without
executing the remaining commands in the loop.

Normally, a shell program terminates when the end of the file is
reached. If you want the program to end at some other point, you
can use the exit command. Both of these commands are explained in
detail in the UNIX System Shell Commands and Programming. (See
Appendix A.)

1·16

SHELL PROGRAMMING

Debugging Programs

Debugging is computer slang for finding and correcting errors in a
program. There will be times when you will execute a shell program
and nothing will happen. There is a "bug" in your program.

Your program may consist of several steps or several groups of
commands. How do you discover which step is the culprit? There
are two options to the sh command that will help you debug a
program.

sh -v<CR>

sh -x<CR>

Prints the shell input lines as they are read by
the system.
Prints commands and their arguments as they
are executed.

To try out these two options, create a shell program that has an error
in it. For example, type in the following list of commands in a file
called bug.

$ cat bug<CR>
today= 'date'
person=$1
mail $2
$person
When you log off come into my office please.
$today.
MLH
$

The mail message sent to Tom ($1) at login tommy ($2) should read as
shown in the following screen.

SHELL TUTORIAL

$ mail<CR>
From mlh Thu Apr 10 11:36 CST 1984
Tom
When you log
Thu Apr 10
MLH
$
?

off come into my office please.
11:36:32 CST 1984

If you try to execute bug, you will have to press the BREAK key or
the DEL key to end the program.

To debug this program, try sh -v, which will print the lines of the
file as they are read by the system.

$ sh -v bug tom tommy<CR>
today= 'date'
person=$1
mail $2

Notice that the output stops on the mail command. There is a
problem with mail. The here document must be used to redirect
input into mail.

Before you fix the bug program, try sh -x, which prints the
commands and their arguments as they are read by the system.

SHELL PROGRAMMING

$ sh -x bug tom tommy<CR>
+date
today=Thu Apr 10 11:07:23 CST 1984
person= tom
+ mail tommy

Once again, the program stops at the mail command. Notice that the
substitutions for the variables have been made and are displayed.

The corrected bug program is as follows:

$ cat bug<CR>
today= 'date'
person=$1
mail $2 < <!
$person
When you log off come into my office please.
$today
MLH

$

The tee command is a helpful command to debug pipe lines. It
places a copy of the output of a command into a file that you name,
as well as piping it to another command. The general form of the tee
command is:

commandl I tee save.file I command2<CR>

save.file is the name of the file that will save the output of commandl
for you to study.

7-79

SHELL TUTORIAL

If you wanted to check on the output of the grep command in the
following command line

who I grep $1 I cut -c1-9<CR>

you can use tee to copy the output of grep into a file to check after
the program is done executing.

who I grep $1 I tee check I cut -cl-9<CR>

The file check contains a copy of the output from the grep command.

$ who I grep mlhmo I tee check I cut -c1-9<CR>
$ mlhmo
$ cat check<CR>
mlhmo tty61 Apr 10 11:30
$

If you do a lot of shell programming, you will want to refer to the
UNIX System Shell Commands and Programming and learn about
command return codes and redirecting standard error.

Modifying Your login Environment

What is a .profile?

When you log in, the shell first looks at a file in your login directory
called the .profile (pronounced "dot profile"). The .profile is a shell
program that issues commands to control your shell environment.

Since the .profile is a file, it can be edited and changed to suit your
needs. On some systems you can edit this file yourself, and on other
systems the system administrator will do this for you.

7-80

SHELL PROGRAMMING

If you can edit the file yourself, you may want to be cautious the first
few times and make a copy of your .profile in another file called
safe.profile.

$ cp .profile safe.profile<CR>
$

You can add commands to your .profile just as you can add commands
to any other shell program. You can also set some terminal options
with the stty command, and you can set some shell variables.

Adding Commands to .profile

How do you add commands to your .profile? Try this pleasant
example. The UNIX system will allow you to start out your day with
a message from your computer. Edit your .profile and add the
following echo command to the last line of the file.

Type in:

echo Good Morning! I am ready to work for you.

Write and quit the editor.

Whenever you make changes to your .profile and you want to initiate
them in the current work session, you may type in a . and space
before .profile. The shell will reinitialize your environment, that is, it
will read and execute the commands in your .profile.

Now, experience communicating with your computer .

Type in: . . profile<CR>

The system should respond with:

Good Morning! I am ready to work for you
$

7-81

SHELL TUTORIAL

Setting Terminal Options

The stty command can make your shell environment more
convenient for you. You can set the following options for stty.

stty -tabs

This option preserves tabs when you are printing. It expands
the tab setting to eight spaces, which is the default. The
number of spaces for each tab can be changed. Read the UNIX
System User Reference Manual on stty for more details.

sUy erase <Ah>

This option allows you to use the erase key on your keyboard
to erase a letter, instead of the default character #. Usually
this key is the BACK SPACE key.

stty echoe

If you have a terminal with a screen, this option erases
characters from the screen as you erase them with the
BACK SPACE key.

If you want to use these options for the stty command, you create
those command lines in your .profile just as you would create them in
one of your the shell programs. If you use the tail command, which
displays the last few lines of a file, you can see the results of adding
those four command lines to your .profile.

$ tail -4 .profile<CR>
echo Good Morning! I am ready to work for you
stty -tabs
stty erase <Ah>
stty echoe
$

If you have not used the tail command before, the following is a
brief recap of tail.

command

tail

Description:

Options:

SHELL PROGRAMMING

Command Recap

tail - display the last portion of a file

options arguments

-n file name

Displays the last lines of a file.

Using the option you can specify number of lines
n. The default (no options) is ten lines. There
are other options, besides specifying -n. You can
specify blocks (b) or characters (c) instead of
lines.

Using Shell Variables

Several of the variables reserved by the shell are used in your .profile.

Let's take a quick look at four of these variables.

HOME

This variable gives the path for your login directory. Go to
your login directory and type in pwd <CR> . What was the
system response? Now type in echo $HOME<CR>. Was the
system response the same as the response to pwd? $HOME is
the default option for ed. If you do not specify a directory for
cd, it will move you to $HOME.

PATH

This variable gives the system the search path for finding and
executing commands.

If you want to see the current values for your PATH variable
type in: echo $PA TH.

7-83

SHELL TUTORIAL

$ echo $PATH<CR>
: I my login I bin: I bin: I usr I bin: I usr /lib
$

The : is a delimiter. Notice that for this PATH the system
looks in /mylogin/bin, for the command first, then into /bin,
then into /usr/bin, and so on.

If you are working on a project with several other people, you
may want to set up a group bin, a directory of special shell
programs used only by your group. The directory would be
found from the root directory. The path would be /group/bin.
How do you add this to your PATH variable? Edit your
.profile, and add :/group/bin to the end of your PATH.

PATH=:/mylogin/bin:/bin:/usr/lib:/group/bin<CR>

TERM

7-84

This variable tells the shell what kind of terminal you are
working on. If you have done any editing with vi you know
that you have to specify:

TERM =code< CR>
export TERM< CR>

Not only do you have to tell the shell what kind of terminal
you are working on but you must export the variable. If you
read the UNIX System Shell Commands and Programming, you
will learn why variables need to be exported.

If you do not want to specify the TERM variable each time you
log in you can add those two command lines to your .profile
and they will automatically be recognized each time you log
into the UNIX system. Or, if you log in on more than one type
of terminal, you will want to add your set.term command to
your .profile.

SHELL PROGRAMMING

PSl

One of the delightful things about your .profile is that you can
change your prompt. This one is fun to experiment with. Try
the following example. If you wish to use several words,
remember to quote the phrase. Also, if you use quotes you can
add a carriage return to your prompt.

Type in: PSl="Your wish is my command<CR>"

Now your prompt sign looks like:

$.. profile<CR>
Your wish is my command

The mundane $ is gone forever, or until you delete the PSl
variable from your .profile.

Conclusion

This tutorial has given you the basics for creating some shell
programs. If you have logged in and tried the examples and exercises
as you read the tutorial, you can probably perform many of your
day-to-day tasks with your new shell programs. Shell programming
can be much more complex and perform more complicated tasks than
shown in this brief tutorial. If you want to read further on shell
commands and programming, read the UNIX System User Reference
Manual on the sh command, and read the UNIX System Shell
Commands and Programming.

7-85

SHELL TUTORIAL

SHELL PROGRAMMING EXERCISES

2-1. Make the command line

banner 'date I cut -c12-19'<CR>

into a shell program called time.

2-2. Make a shell program that will give only the date in a banner
display. Be careful what you name the program!

2-3. Make a shell program that will send a note to several people on
your system.

2-4. Redirect the date command without the time into a file.

2-5. Echo the phrase "Dear colleague" in the same file as the date
command without erasing the date.

2-6. Using the above exercises, make a shell program that will send a
memo with:

• Current date and the "Dear colleague" at the top of the
memo,

• Body of a file that is the memo, and

• Closing statement

to the same people on your system as in Exercise 2-3.

2-7. How would you read variables into the mv.file program.

2-8. Use the for loop to move a list of files in the current directory
to another directory.

7-86

SHELL PROGRAMMING

How would you move all files to another directory?

Ingredients:
*
$*
mv $file newdirectory

2-9. How would you change the program search, to search through
several files?

Hint:
for file
in$*

2-10. Set the stty options for your environment.

2-11. Give yourself a new prompt that includes a carriage return.
(Hint " <CR>")

2-12. Check to see what $HOME, $TERM, and $PATH are set to in
your environment.

7-87

SHELL TUTORIAL

ANSWERS TO EXERCISES

Command language Exercises

1-L The * at the beginning of a file name will refer to all files that end
in that file name, including that file name.

$ls *t<CR>
cat
123t
new.t
t
$

1-2. cat [0-9)* would display the files:

lmemo
100data
9
OS name

echo * will list all the files in the current directory.

1-3. You can place ? any place in a file name.

1-4. ls [0-9]* will list only those files that start with a number.

ls [a-m]* will list only those files that begin with letters "a" through
"m".

1-5. If you placed the sequential command line in the background mode,
the immediate system response was the PIO for the job.

No, the & must be placed at the end of the command line.

1-6. The command line would be:

cd; pwd > junk; ls > > junk; ed trial< CR>

7-88

ANSWERS TO EXERCISES

1-7. Change the -c option of the command line to read:

banner 'date I cut -cl-lO'<CR>

Shell Programming Exercises

2-1.

2-2.

2-3.

$cat time<CR>
banner 'date I cut -c12-19'
$
$chmod u+x time<CR>
$ time<CR>
(banner display of the time 10:26)

$

$cat mydate<CR>
banner 'date I cut -cl-10'

$

$cat tofriends<CR>
echo "Type in the name of the file containing the note."
read note
mail Janice marylou bryan < $note
$

Or, if you wanted to use parameters for the logins.

7-89

SHELL TUTORIAL

$cat tofriends<CR>
echo "Type in the name of the file containing the note."
read note
mail $ * < $note
$

2-4. date I cut -cl-10 > filel <CR>

2-5. echo Dear colleague > > filel <CR>

2-6.

2-7.

7-90

$cat send.memo<CR>
date I cut -cl-10 > memol
echo Dear colleague > > memol
cat memo > > memol
echo A memo from M. L. Kelly > > memol
mail janice marylou bryan < memol
$

$cat mv.file<CR>
echo type in the directory path
read path
echo "type in file names, end with < 'd>"
while
read file

do
for file

in $file
do

mv $file $path/ $file
done

done
echo all done

$

ANSWERS TO EXERCISES

2-8.

$cat mv.file<CR>
echo Please type in directory path
read path
for file

in $*
do

mv $file $path/ $file
done
$

The command line would then be:

$ mv.file *<CR>
$

2-9. See hint.

$ cat search< CR>
for file

in $*
do

if grep $word $file >I dev I null
then echo $word is in $file
else echo $word is NOT in $file
fi

done

7-91

SHELL TUTORIAL

2-10. Type the following lines into your .profile.

stty -tabs<CR>
sUy erase <'h> <CR>
stty echoe<CR>

2-11. Type the following command line into your .profile

PSl="Hello<CR>" <CR>

2-12.

($echo $HOME<CR>

($echo $TERM<CR>

($ echo $PATH<CR>

7-92

Chapter 8

COMMUNICATION TUTORIAL

PAGE

INTRODUCTION... 8-1

COMMUNICATING ON THE UNIX SYSTEM.. 8-2

HOW CAN YOU COMMUNICATE?.. 8·3

SENDING AND RECEIVING MESSAGES (mail).. 8-4

Sending Mail... 8·4

Basics of Sending Mail .•....•.•.••.............................•.•.............•.........•..... 8·4
Sending Mail to One Person .. 8-5
Sending Mail to Several People Simultaneously................................. 8·7

Sending Mail to Remote Systems (uname, uuname)•............................. 8-8

Receiving Mail•...........•.•.......•.......••••................••.••••••....•...•.•...•..••.•. 8-12

SENDING AND RECEIVING FILES ...•............................. 8-17

Sending Small Files (mail) .. 8·17

Sending large Files (uuto) ...•............................. 8-19

Have You Got Permission?••............•.••.............•..•........................•.... 8-19

Sending a File (uuto -m, uustat) .. 8-21

Receiving Files (uupick) .. 8-26

ADVANCED MESSAGE AND FILE HANDLING (uucp, mailx) 8-29

Chapter 8

COMMUNICATION TUTORIAL

INTRODUCTION

Sooner or later, you will want to use the UNIX system to get in touch
with other UNIX system users. You may want to send a message to
someone; the message may be one that must be read immediately.
Perhaps you might need to send another user information from a file
in your login.

Whatever the case, this chapter teaches you how to use the
communication tools available to you on the UNIX system. The
chapter begins with a brief overview of just who you might want to
communicate with on the UNIX system. You learn how to send basic
messages to users on your system and other UNIX systems, and also
how to deal with messages you receive. You also learn about
commands that enable you to send files to other users.

The following list is a review of the text conventions mentioned in
Chapter 2 that are used in this chapter.

bold (Commands typed in exactly as shown.)

italic (UNIX system prompts and responses.)

roman (Input other than commands.)

< > (Commands that are typed in, but are not
reflected on the screen, are enclosed in
angle brackets.)

8-1

COMMUNICATION TUTORIAL

COMMUNICATING ON THE UNIX SYSTEM

You can use the UNIX system to communicate with just about anyone
else who uses the UNIX system. This means that your terminal does
more than serve as a work station--it becomes your personal
message-handling center as well, with the electronic equivalent of
transmission, routing, and storage facilities.

Who would you want to communicate with over the UNIX system?
Here are some examples to consider:

• The person in your office who needs to know about a department
meeting tomorrow,

• Other users on your UNIX system who should see a posted
message concerning their use of the system after office hours,

• The supervisor who wants a copy of your last two reports by 2:30
this afternoon,

• The supervisor who wants to review the memo you are presently
working on as soon as you have finished it,

• A person working with you on the UNIX system to modify
several files you both have in common; you need to be in touch
from time to time, but the phones are being used as links from
your terminals to the computer and you would rather not shout
down the halls, and

• A coordinator who wants your daily operations records (all in
very large files), but does not want to have to wade through
them all at once when he receives them on the terminal.

As you can see, you can keep in touch with any number of people for
any number of reasons through the UNIX system. The remainder of
this chapter shows you how to use the various communication tools
provided by the UNIX system to reach these people.

8-2

HOW CAN YOU COMMUNICATE?

HOW CAN YOU COMMUNICATE?

The UNIX system offers several commands for user-to-user
communication. This chapter explains the most important commands
to know and suggests how to select the one to use in a given
situation. The basic choice is between sending (or receiving) a
message and sending (or receiving) a file.

To expand on one of the previous examples, suppose you are working
at your terminal and you remember that you are giving a
presentation at an officewide meeting tomorrow. You want to remind
someone in your office about the presentation, but you do not want to
take the time for a phone call or a walk to the other person's office.
What can you do?

If the other person has a login on your UNIX system, you can use the
mail command to send a brief message. When the recipient of your
message finishes whatever task he or she is using the UNIX system
for, a notice is posted that there is mail waiting to be read. The
recipient can then read your message and send a reply back to your
login.

To take another example, what if you need to send other people
copies of things you already have on file--memos, reports, saved
messages, documents, and the like? You can send such files using the
maH command; however, this may not be the best way to send long
files. For sending files over a page in length, you should use the
uuto command. This command sends the file to a public directory on
the recipient's system instead of sending it straight to the recipient's
login. The recipient can then deal with it at his or her own leisure.

These are the important communication tools available to you. (Two
other tools, the uucp and maib: commands, are discussed briefly at
the end of the chapter.) Now that you have a general idea of how to
communicate in the UNIX system, let's move on to the specifics.

8-3

COMMUNICATION TUTORIAL

SENDING AND RECEIV!NG MESSAGES (mail)

The mail command works in two ways--it lets you send messages to
other UNIX system users, and it lets you read messages sent to you.
This section deals first with sending messages, both to users on your
UNIX system and to users on other UNIX systems that can
communicate with yours.

Sending Mai!

It is easy to send mail to another user. The basic command line
format for sending mail is

mail login< CR>

where login is the recipient's login name on the UNIX system. This
login name can be either of the following:

0 A login name if the recipient is on your system, or

0 A system name and login name if the recipient is on a system
that can communicate with yours.

For the moment, assume that the recipient is on your system (known
as the local system); we will deal with sending mail to users on other
systems (known as remote systems) a little later.

Basics of Sending Mail

Since the recipient is on your system, you type the mail command as
follows at the system prompt ($):

mail login< CR>
text

where login is the recipient's login name. Then you type in the text
of the letter, as many lines as you need. When your message is
complete, you send the message on its way by typing a dot (.) at the
beginning of a new line.

SENDING AND RECEIVING MESSAGES

The resulting message looks like this:

$ mail login< CR>
After you enter the command line,<CR>
type in as many lines of text as you need< CR>
to get the message across.< CR>
When you're done,<CR>
type in a control-d or a dot<CR>
on a line by itself, as shown on the next line.<CR>
.<CR>
$

The system prompt returns to notify you that your message has been
queued (placed in line) and will be sent.

Sending Mail to One Persoff11

Let's look at a sample situation. You have to notify another person in
your office of a meeting later this afternoon, but he is not in and you
have to leave your office. He has a login on your UNIX system with
the login name tommy, so you can leave a message for him to read the
next time he logs into the system:

$ mail tommy<CR>
Tom,<CR>
There's a meeting of the review committee<CR>
at 3:00 this afternoon. D.F. wants your<CR>
comments and an idea of how long you think<CR>
the project wiU take to complete.<CR>
B.K.<CR>

$

8-5

COMMUNICATION TUTORiAl

When Tom logs in at his terminal (or while he is already logged in),
he receives a message that tells him he has mail waiting:

To see how tommy can read his mail, see the section titled Receiving
Mail.

You can practice using the mail command by sending mail to
yourself. This may sound strange at first, but it is the easiest way to
practice sending messages. Simply type in the mail command and
your own login name, then write a short message to yourself. When
you type in the dot, the mail will be sent to your login and you will
receive the notice that you have mail.

Sending mail to yourself can also serve as a handy reminder system.
Suppose your login name is rover; you are ready to log off of the
system for the day and you want to leave a reminder to call someone
first thing the next morning. You might enter the following:

8-6

$ mail rover< CR>
Remember to call Accounting and find out<CR>
why they haven't returned my 1984 figures!<CR>

$

SENDING AND RECEIVING MESSAGES

When you log in the next day, you will get a notice of messages
awaiting you. Reading your mail then brings up the reminder
message (and any other messages you may have received).

Sending Mail to Severa§ People SimuHtaneously

If you need to send the same message to more than one person,
simply place their login names after the mail command on the
command line, with a space between each one, in the following
format:

mail foginl fogin2 "'. <CR>

where loginl, login2, and ... are the different login names. You can
mail messages to as many logins as you wish.

For example, if you send. a notice about the department softball game
to team members with login names tommy, switch, wombat, and dave, it
might look like this:

$ mail tommy switch womb;ait d.ave<CR>
Diamond cutters,<CR>
The game is on for tonight at diamond three.< CR>
Don't forget your gloves!<CR>
Your Manager<CR>
.<CR>
$

To provide you with a quick summary of what you can expect when
using the mail command to send messages, a recap of how to use it
follows.

COMMUNICATION TUTORIAL

Command Recap

mail - sends a message to another user's login

command

man

Description:

Remarks:

options arguments

none login

mail followed by one or more login names, sends
the message typed on the lines following the
command line to the specified login(s).

Typing a dot at the beginning of a new line
sends the message.

Sending Mail to Remote Systems (uname, uuname)

We have assumed to this point that you are sending messages to
recipients on your (local) UNIX system. You may have occasion,
however, to send messages to recipients on other (remote) UNIX
systems. For example, your office may have three separate systems,
each in a different part of the building. Or perhaps you may have
offices in several different locations, each with its own system.

How do you send mail to someone on a remote system? The UNIX
system you are on must be able to communicate with a remote UNIX
system before mail can be sent between the two. So, if you plan to
send a mail message to someone on a remote system, you need to do
a little legwork to find out the following information:

• Recipient's login name,

" Name of the remote system, and

• H your system and the remote system can communicate.

Two commands are available to help you answer these questions--the
uname and uuname commands.

8-8

SENDING AND RECEIVING MESSAGES

You can get the login name and the remote system name from the
recipient. If it happens that the recipient does not remember the
system name, have him or her log into the system and type the
following at the system prompt:

uname -n <CR>

The uname -n command responds with the name of the system you
are logged into. For example, if you are logged into a system named
syslO and you type in uname -n, your screen should look like this:

$ uname -n<CR>
syslO
$

Once you know the remote system name, the uuname command
helps you find out if your system can communicate with the remote
system. At the prompt, type:

uuname<CR>

This generates a list containing the names of remote systems with
which your system can communicate. If the recipient's system is in
that list, then you can send messages there by mail.

The uuname command may respond with a large list of names if your
system can communicate with many other systems. To avoid having
that long list scroll quickly up your screen, use the pipe and grep
command in conjunction with uuname. At the prompt, type:

uuname I grep system <CR>

where system is the recipient's system name. This generates the same
list, then searches for and prints only the specified system name if it
is found in the list.

8-9

COMMUNICATION TUTORIAL

For example, if you want to find out whether a system called sys10
can communicate with your system, type:

$ uuname I grep syslO<CR>

If this is the case, the system name is printed in response:

$ uuname I grep systo<CR>
sys10
$

If you get only the system prompt back, then the two systems cannot
communicate:

$ uuname I grep syslO<CR>
$

Once you determine that you can send messages to a login on a
remote system, your mail command line is slightly different than it is
for sending mail to someone on your local system. The command
line format for remote systems is:

mail system!login <CR>

where system is the remote system name and login is the recipient's
login name. The two parts of the address are separated by an
exclamation point (!).

8-10

SENDING AND RECEIVING MESSAGES

Now that you have all the parts, let's put them together into an
example. Assume that you have a message for someone on a different
system in another part of your office. You know from the recipient
her login name, sarah, and her system name, syslO. To find out if her
system can communicate with yours, use the uuname command:

$ uuname I grep syslO<CR>
syslO
$

The system response tells you that your system is indeed networked
to system syslO. Now all you have to do is send the message, using
the expanded address format given previously:

$ mail syslO!sarah<CR>
Sarah,<CR>
The final counts for the writing seminar<CR>
are as follows:< CR>
<CR>
Our department - 18<CR>
Your department - 20<CR>
<CR>
Tom<CR>
.<CR>
$

Following is a quick summary of the two commands introduced in
this section and what you can expect them to do.

8-11

COMMUNICATION TUTORIAL

Command Recap

uname - displays the system name

command

uname

Description:

options arguments

-n and others* none

uname -n displays the name of the system on
which your login resides.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Command Recap

uuname - displays a list of networked systems

command

uuname

Description:

Receiving Mail

options arguments

none none

uuname displays a hst of remote systems that can
communicate with your system.

Once you learn to send messages, you may be anxious to read what
others are sending your way. As stated earlier, the mail command
also allows you to read messages sent by other UNIX system users.

8-12

SENDING AND RECEIVING MESSAGES

After logging in, you may receive the following message at your
terminal:

I yau have ma"

This tells you that one or more messages are being held for you in a
UNIX system directory named usr/mail, usually referred to as the the
mailbox. Entering the mail command by itself allows you to read
these messages.

To read your mail, type the mail command by itself at the system
prompt:

mail<CR>

This displays the waiting messages at your terminal, one message at a
time, with the most recently received message displayed first. In
other words, as you read your messages, you go from the "newest"
message to the "oldest" message.

A typical mail message looks like this:

$ mail
From tommy Mon May 21 15:33 CST 1984
B.K.
Looks like the meeting has been canceled.
Do you still want the technical review material?
Tom

?

8-13

COMMUNICATION TUTORIAL

The first line, called the header, displays information about a
particular message--the login name of the sender, the date sent, and
the time sent. The following lines (except for the last line) are the
body of the message.

Notice the question mark (?) on the last line of the message. After
displaying each message, the mail command displays a ? and a space,
and waits for a response from you before going on to the next
message. There are several responses; we will look at the most
common responses and what they do.

After reading a message, you may want to delete it. To do so, type a
d after the question mark.

(? d<CR>

This response deletes the message from the mailbox and displays the
next message waiting in the mailbox (if there is one). If there are no
other messages, the system prompt returns to indicate that you've
finished reading your messages.

H you would rather display the next message without deleting the
message being displayed, type a carriage return after the question
mark.

(?<CR>

The current message goes back into the mailbox and the next message
is displayed. If there are no more messages in the mailbox, the system
prompt returns.

8-14

SENDING AND RECEIVING MESSAGES

You may want to save the message for later reference. To do so, type
an s after the question mark:

This response saves the mail message by default in a file called mbox
in your login directory. If you v11ould rather save the message in
another file, follow the s response with a file name or with a path
name ending in a file name.

For example, to save the message in a file called mailsave in your
current directory, enter the following response after the question
mark:

I ? s mailsave<CR>

If you use the Is command. to list the contents of this directory, you
will find the file mailsave.

You can also save the message in a file under another of your
directories. If you have a mail message about a particular project or
piece of work that you keep in a certain directory, you may want to
save that message in the same directory. Let's say you have such a
directory, named projectl, under your login directory. If a mail

8-15

COMMUNICATION TUTORIAL

message comes in that you want to place in directory projectl, under a
file named memo, enter the following response after the question
mark:

(? s p•ojedl/memo<CR>

If you use the cd command to change directories from your login
directory to projectl and then use the ls command, you will find that
the file memo is now listed. (You can use other, more complete path
names as well; refer to Chapter 3 for instruction on using path
names.)

If you want to quit reading messages, enter the following response
after the question mark:

(? q<CR>

Any messages that you have left unread are put back in the mailbox
until the next time you use the mail command.

If a long message is being displayed at your terminal, you can
interrupt it by pressing the BREAK key. This stops the message
display, prints the ?, and waits for your response.

Other responses are available; these are listed in the UNIX System
User Reference Manual. The following command recap summarizes
what you can expect when using the mail command to read
messages.

8-16

SENDING AND RECEIVING MESSAGES

Command Recap

mail - reads messages sent to your login

command

mail

Description:

Remarks:

options arguments

available* none

mail entered by itself displays any messages
waiting in the system file usr/mail (the mailbox).

The question mark (?) at the end of a message
indicates that a response is expected. A full list
of responses is given in the UNIX System User
Reference Manual.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

SENDING AND RECEIVING FILES

In several examples cited so far in this chapter, the need to send files
from your UNIX system login to another UNIX system user has come
up. Memos, reports, stories, baseball scores--there are numerous
items that you can keep in your files. What do you do to send copies
of those files to other UNIX system users?

Sending Small Files (mail)

The mail command uses the redirection symbol < to take its input
from a specified file instead of from the keyboard. (For more detailed
information on the use of redirection symbols, see Chapter 7.) The
general format is as follows:

mail login < filename< CR>

where login is the recipient's login name and filename is the name of
the file containing the information to be sent.

8-17

COMMUNICATION Tl.llTORIAl

For example, assume you keep a standard meeting notice in a file
named meetnote. If you want to send the letter to the owner of login
sarah using the mail command, type the following at the prompt:

$ mail sarah < meetnote <CR>
$

The system prompt returns to let you know that the contents of
meetnote have been sent. When sarah types in the mail command to
read her messages, she will receive the standard meeting notice.

Likewise, if you want to send the same file to several users on your
system, type in the mail command followed by the login names of
the users, and then follow these with the < file redirection operator
and the file name. It might look like this:

$ mail sarah tommy dingo wombat < meetnote<CR>
$

The system prompt tells you that the messages have been sent.

If the recipient for your file is on a remote system that can
communicate with yours, simply redirect the file with the < operator:

mail system!login < filename<CR>

8-18

SENDING AND RECEIVING FIL.ES

For example:

$ mail syslO!wombat < meetnote<CR>
$

Again, the system prompt notifies you that the message has been
quteued for sending.

Sending Large Files (uuto)

When you need to send. large files, you should use the uuto
command. This command can be used to send files to both local and
remote systems. When the files arrive at their destination, the
recipient receives a mail message announcing its arrival.

The basic format for the uuto command is

uuto filename system!login <CR>

where filename is the name of the file to be sent, system is the
recipient's system, and login is the recipient's login name. The
filename may be the name of a file or a path name ending in a specific
file.

If you send a file to someone on your local system, you may omit the
system name and use the following format:

uut:o filename login< CR>

Have You Got Permission?

Before you actually send a file with the uuto command, you need to
find out whether or not the file is transferable. To do that, you need
to check the file's permissions. If they are not correct, you must use
the chmod command to change them. (Permissions and the chmod.
command are covered in detail in Chapter 3.)

8-19

COMMUNICATION TUTORIAL

There are two permission criteria that must be met before a file can
be transferred using uuto:

• The file to be transferred must have read permission (r) for others,
and

" The directory that contains the file must have read (r) and
execute (x:) permission for others.

This may sound confusing, but an example should clarify the matter.

Assume that you have a file named chicken, under a directory named
soup, that you want to send to another user with the uuto command.
First you check the permissions on soup, which is under your login
directory:

$ ls -l<CR>
total 35
-rwxr-xr-x
drwxr--r-­
drwxr-xr-x
$

1 reader groupl
2 reader group1
2 reader groupl

5598
477

45

Mar 313:00 memos
Mar 109:08 lists
Feb 9 10:43 soup

Checking the line that contains the information for directory soup
shows that it has read (r) and execute (x) permissions in all three
groups; no changes have to be made. Now you use the cd command
to change from your login directory to soup and then check the
permissions on the file chicken:

8-20

$ ls -1 chicken<CR>
total 4
-rw------- 1 reader groupl 3101 Mar 1 18:22 chicken
$

SENDING AND RECEIVING FILES

The output informs you that the file chicken has read permission for
you, but not for the rest of the system. To add those read
permissions, you use the chmod command:

r $ ohmod go+, ohioken<CR>

This adds read permissions to the rest of the system--group (g) and
others (o)--without changing the previous perm1ss10ns. Now,
checking again with the ls -1 command reveals the following:

$ ls -1 chicken <CR>
-rw-r--r-- 1 reader groupl 3101 Mar 1 18:22 chicken
$

This confirms that the file is now transferable using the uuto
command. After you send copies of the file, you can reverse the
procedure and replace the previous permissions.

Sending a File (uuto -m, uustat)

Now that you know how to determine if a file is transferable, let's
take an example and see how the v1rhole thing works.

The process of sending a file by uufo is referred to as a job. When
you enter a uuto command, your job is not sent immediately. First it
is stored in a queue (a waiting line of jobs) and assigned a job
number. When the job's number comes up, it is transmitted to the
remote system and placed in a public directory there. The recipient
is notified by mail message and must use the uupick command to
retrieve the file (this command is discussed later in the chapter).

8-211

COMMUNICATION TUTORIAL

For the following discussions, assume this information:

wombat

sys10

marie

sys20

money

Your login name.

Your system name.

Recipient's login name.

Recipient's system name.

File to be sent.

Also assume that the two systems can communicate with each other.

To send the file money to login marie on system sys20, enter the
following:

$ uuto money sys20!marie<CR>
$

The system prompt returns, notifying you that the file has been sent
to the job queue. The job is now out of your hands; all you can do is
wait for confirmation that the job reached its destination.

How do you know when the job has been sent? The easiest method
is to alter the uuto command line by adding a -m option, like so:

8-22

$ uuto -m money sys20!marie<CR>
$

SENDING AND RECEIVING FllES

This option sends a mail message back to you when the job has
reached the recipient's system. The message may look something like
this:

$ mail<CR>
From uucp Tue Apr 3 09:45 EST 1984
file I syslO I wombat I money, system syslO
copy succeeded

?

If you would rather check from time to time while you are working
on the system, you can use the uusfat command. This command
keeps track of all the uuto jobs you submit and gives you their status.
For example,

$ uustat<CR>
1145 wombat sys20 10/05-09:31 10/05-09:33 JOB IS QUEUED
$

The elements of this sample status message are as follows:

0 1145 is the job number associated with sending file money to marie
on sys20.

• wombat is your login name.

• sys20 is the recipient's system.

• 10/05-09:31 is the date and time the job was queued.

8-23

COMMUNICATION TUTORIAL

• 10/05-09:33 is the date and time of this particular uustat message.

• The final part is the status of the job--in this case indicating that
the job has been queued, but has not yet been sent.

H you are interested in just one 111uto job, you can use the -j option
and the job number when requesting job status:

uustat -jjobnumber<CR>

In the example, let's say you enter the uustall: command with the -j
option (for job 1145) until you receive the following response:

$ uustat -j1145<CR>
1145 wombat sys20 10/05-09:31 10/05-09:37 COPYFINISHED,JOB DELETED
$

This status message indicates that the job was sent and has been
deleted from the job queue--in other words, it has reached the public
directory of the recipient's system. There are other status messages
and options for the uustat command which are described in the
UNIX System User Reference Manual.

That is all there is to sending files. You can practice simply by
sending another UNIX system user a file. You should practice with a
test file until you have the procedures down pat.

The following command recaps give a summary of the uuto and
uustat commands for your convenience.

8-24

command

uuto

Description:

Remarks:

SENDING AND RECEIVING FILES

Command Recap

unto - sends files to another login

options arguments

-m and others* file system!login

uuto sends the specified file to the public
directory of the specified system. The owner of
the login is notified by mail that a file has
arrived.

Files to be sent must have read permission for
others; the directory above the file must have read
and execute permissions for others.

The -m option notifies you by mail when the file
arrives at its destination.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

Command Recap

uustat - checks job status of a uuto job

command

uustat

Description:

Remarks:

options arguments

-j and others* none

uustat checks on the status of all uuto jobs sent
from your login and displays the results.

The -j option, followed by a specific job number,
displays the status of only the specified job.

* See the UNIX System User Reference Manual for all available options and an
explanation of their capabilities.

8-25

COMMUNICATION TUTORIAL

Receiving Files (uupick)

When a file sent by uuto shows up in the public directory on your
UNIX system, you receive a mail message telling you that the file has
arrived and where you can find it. To contiilue our previous
example, let's see what the owner of login marie receives when she
types in the mail command, not long after you (login wombat) have
sent her the file money:

$mail
From uucp Mon May 14 09:22 EST 1984
I usr I spool I uucppublic/ receive I marie/ syslO I I money from syslO!wombat arrived
$

The message contains the following pieces of information:

• The first line tells you when the file arrived at its destination.

" The second line up to the two slashes (/ /) gives you the path
name to the pa·_ t of the public directory where the file has been
stored.

• The second line after the two slashes tells you the name of the
file and who sent it.

Once you have disposed of the maH message, you can use the uupick
command to store the file where you want it. Type

uupick<CR>

at the system prompt. The command searches the public directory for
any files sent to you. If it finds any, it prompts you with a ? to do
something with the file (much like the mail command).

8-26

SENDING AND RECEIVING FILES

Continuing with our previous example, if the owner of login marie
enters the uupick command, she receives the following response:

$ uupick<CR>
from system syslO: file money
?

After the question mark (?'), the command goes to the next line and
waits for your response. There are several available responses; we
will look at the most common responses and what they do.

The first thing you should do is move the file from the public
directory and place it in your login directory so you can see what it
is. To do so, type an m after the question mark.

This response moves the file into your current directory. If you wish
to put it in some other directory instead, follow the m response with
the directory name:

I ~ dfrectory<CR>

If there are other files waiting to be moved, the next one is displayed,
followed by the question mark. If not, the prompt returns.

8-27

COMMUNICATION TUTORIAL

If you would rather display the next message without doing anything
to the current file, press the carriage return key after the question
mark.

I ~CR>
The current file remains in the public directory until you next use the
uupick command. If there are no more messages, the system prompt
returns.

If you already know that you do not want to save the file, you can
delete it by typing in a d after the question mark:

This response deletes the current file from the public directory and
displays the next message (if there is one). If there are no additional
messages about waiting files, the prompt returns.

Finally, if you want to stop the uupick command, type a q after the
question mark:

8-28

ADVANCED MESSAGE AND FILE HANDLING

Any unmoved or undeleted files will wait in the public directory
until the next time you use the uupick command.

Other available responses are listed in the UNIX System User Reference
Manual. The following command recap summarizes what you can
expect from the uupick command.

Command Recap

uupick - searches for files sent by uuto

command

uupick

Description:

Remarks:

options options

none none

uupick searches the public directory of your
system for files sent by uuto. If any are found,
the command displays information about the file
and awaits a response.

The question mark (?) at the end of the message
indicates that a response is expected. The full list
of responses is given in the UNIX System User
Reference Manual.

ADVANCED MESSAGE AND FILE HANDLING (uucp, mailx)

Once you master the mail and uuto/uupick commands, you may
decide that you want commands that are more flexible or efficient. If
so, you should try the mailx and uucp commands.

The uucp command enables you to send a copy of a file directly to
another user's login directory, instead of to the public directory on
that user's system. In some cases, you can even copy directly from

8-29

COMMUNICATION TUTORIAL

files in another login and place the copy in your login directory. The
uucp command also enables you to rename a file when it reaches its
destination.

There are a number of considerations to deal with when using uucp,
such as file permissions and system security procedures. The uucp
system is more complex and requires more experience to use than
uut:o and uupick.

If you want an electronic mail facility with more features, there is the
maih: command. This command is an interactive message-handling
system that gives you, among other things, the following:

0 The ability to use either the ed or vi text editor for use on
incoming and outgoing messages,

• A list of waiting messages from which the user can decide which
messages to deal with and in what order,

• Several options for saving files, and

• Commands for replying to specific messages and sending copies
to other users (both of incoming and outgoing messages).

As you might gather, these two commands are complex and are not
recommended for the beginning user. Because of this, we do not
cover the uses of uucp or mailx in this guide. However, these
commands are mentioned here because they may be available in your
UNIX system package and are useful commands to know about.

Once you are thoroughly familiar with the standard tools for user
communication, you may want to experiment with the uucp and
mailx commands. Refer to the UNIX System User Reference Manual for
more information on using these commands.

8-30

SUPPLEMENTARY INFORMAT!ON AND REFERENCE TOOLS

Contents

Appendix A" Selected UNIX System Documentation

Appendix B" File System Organizatim1

Appendix C" Summary of UNIX System Commands

Appendix D" Quick !Reference to edl Commands

Appendix E" Quick Reference to vi Commands

Appendix F" Summary of Shell Programming Ingredients

Glossary

Index

APPENDICES

PAGE

Appendix A: SELECTED UNIX SYSTEM DOCUMENTATION............................... A-1

Document Descriptions... A-1

Ordering Documents... A-4

Appendix B: FILE SYSTEM ORGANIZATION.. B-1

UN!X System Directories... B-3

Appendix C: SUMMARY OF UNIX SYSTEM COMMANDS.................................... C-1

Command Descriptions... C-3

Appendix D: QUICK REFERENCE TO ed COMMANDS....................................... D-1

Commands in Alphabetical Order.. D-1

Commands by Topic.. 0-5

Appendix E: QUICK REFERENCE TO vi COMMANDS... E-1

Commands in Alphabetical Order.. E-1

Commands by Topic.. E-8

Appendix F: · SUMMARY OF SHELL PROGRAMMING !NGRED!ENTS F-1

Shell Command Language... F-1

Shell Programming Constructs.. F-3

Appendix A

SELECTED UNIX SYSTEM
DOCUMENTATION

The UNIX System User Guide is a general introduction to the UNIX
system. Several documents are available for follow-up study and for
further reference. This appendix highlights documents to which you
should refer next for detailed information on the topics presented in
this guide. In addition, it provides brief instructions for obtaining
these documents.

The documents selected for the appendix conform to the scope of the
UNIX System User Guide; your needs may be different. For example,
your documentation requirements will depend upon your use of the
UNIX system, the special add-on packages available to you, and the
computer on which you run the UNIX system. You may require
more advanced or more detailed documentation on such things as
support tools, system administration, or error messages. If so, refer to
the Documentation Directory described in this appendix or contact your
AT&T Technologies Account Representative.

DOCUMENT DESCRIPTIONS

Table A-1 summarizes the additional documentation by select code
number (the reference number you must use when ordering any of
the documents) and title. Following are brief descriptions of these
documents.

UNIX System Synopsis (US-S02)
Briefly describes UNIX System V, Release 2.0, and some add­
on software.

UNIX System Documentation Directory (307-006)
A conceptual outline of how to learn about the UNIX system
through the existing documentation.

APPENDIX A

TABLE A-1

UNIX System Documentation Arranged by Select Code

Select
Code

307-020

307-118

307-103

307-108

307-109

307-110

307-113

307-116

307-123

307-126

307-130

307-137

US-S02

UNIX System
Document Title

Documentation Directory

User Guide

Programming Guide

Support Tools Guide

User Reference Manual

User Reference Manual

Programmer Reference Manual

Programmer Reference Manual

Shell Commands and Programming

Editing Guide

User Quick Reference

Visual Editor Quick Reference

Synopsis of the UNIX System

UNIX System Editing Guide (307-126)
Contains beginning and advanced information on the editing
programs (including ed and vi) available with the UNIX
system.

UNIX System Programmer Reference Manual

A-2

Gives detailed instructions for programmers using the UNIX
system. This manual covers system calls, library functions
and subroutines, file formats, and miscellaneous facilities for
the programmer.

The UNIX system is portable to many different computers.
Reference manuals are presently available for two types of
computer systems; check with your system administrator

APPENDIX A

before ordering to determine which manual most closely
serves the needs of your particular system:

• For the UNIX system running on an AT&T 3B20
computer, order 307-116, or

• For the UNIX system running on a DEC* VAX 11-780 or
11-750 computer, order 307-113.

UNIX System Programming Guide (307-103)
Describes the programming languages and language aids
available on the UNIX system, including C, FORTRAN-77,
and libraries.

UNIX System Shell Commands and Programming (307-123)
Gives detailed instructions for using the shell command
language. This manual covers shell commands, input/output
redirection, keyword parameters, and control flow.

UNIX System Support Tools Guide (307-108)
Describes the various software tools available to aid a UNIX
system user/programmer.

UNIX System User Reference Manual
Gives complete instructions on all standard UNIX system
commands, including proper format and all options.

The UNIX system is portable to many different computers.
Reference manuals are presently available for two types of
computer systems; check with your system administrator
before ordering to determine which manual most closely suits
the needs of your particular system:

• For the UNIX System running on an AT&T 3B20
computer, order 307-110, or

* Trademark of Digital Equipment Corporation

A-3

APPENDIX A

For UNIX system running on a DEC VAX 11-780 or
11-750 computer, order 307-109.

UNIX System Quick Reference (307-130)
A pocket reference card with brief summaries of common
UNIX system commands.

UNIX System Visual Editor Quick Reference (307-137)
A pocket reference card with brief summaries of the UNIX
system screen editor (vi) commands and formatting
information.

ORDERING DOCUMENTS

You may order UNIX system documents through your AT&T
Technologies Account Representative or directly from AT&T
Technologies Customer Information Center (CIC). This appendix
does not cover pricing information, which is subject to change. For
current and complete document availability and pricing information,
contact the CIC Commercial Sales Representatives at one of the
following numbers:

Continental U.S.
Elsewhere

1-800-432-6600 (ton free)
1-317-265-3339

When you have the current prices and are ready to order, refer to the
following checklist.

• AH orders must be prepaid and are subject to state and local
taxes. If your organization is tax-exempt, provide a copy of your
exemption certificate in lieu of the sales tax (except in Alaska,
Arkansas, Delaware, Hawaii, Illinois, Maine, Montana, New
Hampshire, Oregon, South Dakota, and Vermont).

APPENDIX A

• When ordering from the Customer Information Center, please
include the following information:

Six-digit select code of each document,

Title of each document,

Quantity of each document, and

Ship-to address.

• Make checks payable to AT&T Technologies.

• Send your order to:

AT&T Technologies
CIC Commercial Sales
Post Office Box 19901
Indianapolis, Indiana 46219

• Orders shipped outside the continental United States must
include freight charges. Freight is prepaid for orders shipped
within the continental United States. Quotes expire within 30
days of the date of reply.

A-5

Appendix B

FILE SYSTEM ORGANIZATION

To make full use of the capabilities of the file system, you must
understand its organization of files and directories. This appendix
summarizes the standard system directories provided and maintained
by the UNIX operating system.

The file structure of the UNIX system is a treelike structure (or
hierarchy), with directories and files descending and branching out
from a single directory. This directory is called the root and is
designated by a slash (/). One path from the root leads to a directory
that, in turn, leads. to the directory that you find yourself in when
you log in (your home directory). Under your home di.rectory, you can
establish your own hierarchy of di.rectories and files for organizing
information.

Other paths lead from the root to system directories. These directories
are available to all users. The system directories described in this
book are common to all UNIX system installations; they are provided
and maintained by the operating system. In addition to this standard
set of directories, you may have other system directories available to
you. To obtain a complete listing of all the directories and files in
the root directory on your UNIX system, type:

ls -1 I <CR>

When you understand the organization of di.rectories and files in the
UNIX system, you will be able to use path names to move around in
the structure and find out what other directories contain. For
example, you can move to the directory /bin (which contains UNIX
system executable files) by typing:

cd /bin<CR>

B-1

APPENDIX B

and then list its contents by inputting one of the following command
lines:

ls<CR>
ls -l<CR>

for a list of file and directory names
for a detailed list of the contents

Or, you can use the ls command to view the contents of the /bin
directory from any directory. Type:

ls /bin<CR>
ls -1 /bin<CR>

for a short listing
for a detailed listing

You may use the same commands to look at the contents of other
system directories, substituting the desired directory name for /bin.

Figure B-1 shows the root and the major system directories belonging
to it. On the following pages are brief descriptions of each system
directory.

B·2

Q = Directories

0 =Ordinary Files

V =Special Files

Figure B-1. Sample of file system structure of the UNIX system

I

/bin

/lib

/dev

/etc

/tmp

APPENDIX B

UNIX SYSTEM DIRECTORIES

Root, the source of the file system.

Many executable programs and utilities reside in this
directory, such as:

cat
date
login
grep
mkdir
who

This directory contains available program and
language libraries, such as:

system calls, standard I/0)
math routines and support for
languages such as C,
FORTRAN, and BASIC.

This directory contains special files that represent
peripheral devices, such as:

console
lp
UyOO
UyOl
1"p00

console
line printer
user terminal
user terminal
disks.

Special programs and data files for system
administration reside in this directory.

This directory holds temporary files, such as the
buffers created for editing a file.

B-3

APPENDIX B

/usr

B-4

This directory is the parent to the following
subdirectories:

news
rje

maiiJ
games
man
spool

important news items
data sent by the remote job

entry
electronic mail
electronic games
on-line user's manual
files waiting to print on the

line printer.

Appendix C

SUMMARY OF UNIX SYSTEM COMMANDS

This appendix consists of two sections.

• Table C-1 summarizes the UNIX system commands covered in
this guide. The table lists these commands alphabetically and
supplies a brief definition for each one.

• The remainder of this appendix contains abridged descriptions
of the capabilities of these commands.

Name

at

banner

batch

cat

cd

chmod

cp

cut

date

TABLE C-1

Summary of UNIX System Commands

Description

Specify time to run a job

Display posters on the standard output

Run jobs when system load permits

Display contents of a file on the terminal

Change your working directory

Change permission modes for a file or directory

Copy an existing file to another file

Cut out selected fields in a file

Display the current date and time

(Continued on next page)

C-1

APPEND!X C

Name

di ff

echo

ed

grep

kill

lex

lp

lpstat

ls

mail

mailx

make

man

mkdir

mv

nohup

pg

pr

ps

pwd

rm

rmdir

sh

sort

C-2

TABLE C-1--continued

Description

Find difference(s) between two files

Echo input to the standard output

Edit (or create) a file using line editor

Search a file for a pattern

Terminate a background process

Generate programs for simple lexical tasks

Print a file on the line printer

Display current line printer status

List the contents of a directory

Send or receive electronic mail

Interactive message handing system

Maintain large programs or documents

On-line manual

Make (create) a new directory

Move and rename a file

Continue background processes after logoff

Display file contents a page at a time

Display a partially formatted file on terminal

Show status of background processes

Display the current working directory

Remove (delete) a file

Remove (delete) an empty directory

Execute a shell file/program

Sort or merge files

(Continued on next page)

Name

spell

stty

uname

uucp

uuname

uupick

uuto

uustat

vi

WC

who

yacc

at

APPENDIX C

TABLE C-1--continued

Description

Find spelling errors in a file

Report or set I I 0 options for a terminal

Print the name of the current UNIX system

Send a copy of a file directly to another
user's login

List names of known remote systems

Retrieve a file in the public directory

Send a copy of a file to another user

uuto status inquiry

Edit (create) a file using full screen editor

Count lines, words, and characters in a file

Show who is logged into the system

Impose a structure on program input

COMMAND DESCRIPTIONS

Displays the job numbers of all jobs you have in the at or batch
modes or in the background mode. Followed by a time, submits
commands to be run at that time. A sample format for this
command is:

at 0845am Jun 09<CR>
command! <CR>
command2 <CR>
<~d>

If you use the at command without the date, the command
executes within 24 hours at the time specified.

C-3

APPENDIX C

banner
Displays a message (in words up to 10 characters long) in large
letters on the standard output.

batch

cat

cd

cp

cut

date

C-4

Submits command(s) to be processed when the system load is at
an acceptable level. A sample format of this command is:

batch<CR>
commandl <CR>
command2 <CR>
<'d>

You may use a shell script for a command in batch. This may
be useful and timesaving if you have a set of commands you
frequently submit using the batch command.

Displays the contents of a specified file at your terminal. To
pause the output, use <'s>; <'q> resumes the display. To
stop the display and return to the shell prompt, press the
<BREAK> key.

Changes your position in the file system from the current
directory to your home directory. Followed by a directory
name, this command changes your position in the file system
from the current directory to the directory specified. You can
move up or down in the file system. By using a path name in
place of the directory name, you may jump several levels with
one command.

Copies a specified file into a new file. The cp command leaves
the original file intact; if you do not want to retain the file as is,
use mv.

Cuts out specified fields from each line of a file. This command
can be used to cut columns from a table, for example.

Displays the current date and ti.me.

diff

echo

ed

grep

km

lex

Ip

APPENDIX C

Compares two files. The diff command reports which lines are
different and what changes should be made to the second file to
make it the same as the first file.

Displays (echoes) input to the terminal on the standard output,
followed by a carriage return.

Edits a specified. file using the line editor. If there is no file by
that name, the ed command creates a file. See Chapter 5 for
detailed instructions on using the ed editor.

Searches a specified file or files for a specified pattern and tells
you which lines match. If you name more than one file, grep
also tells you which file contains the pattern.

Terminates a background process specified by its process
identification number (PID). The PIO can be found by using
the ps command.

Generates programs to be used in simple lexical analysis of text,
perhaps as a first step in creating a compiler. See the UNIX
System User Reference Manual for details.

Prints a specified file on the line printer. This gives you a paper
copy of the file's contents.

lpstat

ls

Displays the status of any requests made to the line printer
system. Options are available to request more detailed
information.

Lists the names of all files in the current directory except those
whose names begin with a dot (.). Options are available to list
more detailed information about the files in the directory.

C-5

APPENDIX C

mail
Displays any electronic mail you may have received at your
terminal, one message at a time. Each message ends with ?;
type r for a list of options available to you at this point. There
are options for saving, forwarding, or deleting mail.

When followed by a login name, mail sends a message to the
user with the specified login name through electronic mail. You
may type in as many lines of text as you wish; a dot(.) entered
at the beginning of a new line ends the message and sends it to
the recipient. Press the <BREAK> key to stop the mail session
while composing the message or while reading one.

mailx
A more sophisticated, expanded version of electronic mail. See
the Unix System User Reference Manual for details.

make

man

Provides a method for maintaining and supporting large
programs or documents on the basis of smaller ones. See the
UNIX System User Reference Manual for details.

Displays the manual page for a specified command at your
terminal.

mkdir

mv

Makes (creates) a new directory. The new directory becomes a
subdirectory of the directory you are in when you issue the
command. To create subdirectories or files in the new directory,
you should move into the new directory with the cd command.

Moves or renames a specified file. Either file name may be a
path name. To make a copy of a file use the cp command.

nohup
Allows a command placed in the background to continue
executing after you log off. Error messages are placed in a file
called nohup.out.

pg

pr

ps

pwd

rm

APPENDIX C

Displays the contents of a specified file at your terminal, a
screenful at a time. After each screenful, the system pauses and
waits for your instructions before proceeding.

Displays a partially formatted version of a specified file at your
terminal. The pr command shows page breaks, but does not
implement any macros supplied for text formatter packages.

Shows the status and number of all processes currently running.
The ps command does not show the status of jobs in the at or
batch queues, but it shows them when they are executing.

Displays the name of the current working directory. The pwd
command shows the working directory with its full path name,
beginning from the root. For an explanation of the file system
organization, see Appendix B.

Removes (deletes) a file. You may use metacharacters with the
rm command, but with caution; a removed file cannot usually be
recovered.

rmdir

sort

Removes (deletes) a directory. The directory must be empty
before you delete it; you must delete all files and subdirectories
in the specified directory first.

Sorts a file by the ASCII sequence and displays the results at
your terminal. The sequence is as follows:

numbers before letters
capitals before lower case
alphabetical order

There are other options for sorting a file. For a complete list of
sort options, see the UNIX System User Reference Manual.

C·1

APPENDIX C

spell

stty

Collects words from a specified file and checks them against a
spelling list. Words not on the list or not related to words on
the list (with suffixes, prefixes, etc.) are displayed.

By itself, reports the settings of certain input/output options for
your terminal. It sets these options when followed with
appropriate options and arguments (see the UNIX System User
Reference Manual).

uname

uucp

Displays the name of the UNIX system on which your login
resides.

Sends a specified file directly to a user's login. See the Unix
System User Reference Manual for details.

uuname
Lists the names of remote UNIX systems that can communicate
with your UNIX system.

uupick
Searches the public directory for files sent to you by the uuto
command. If files are found, it displays the file name and the
system it came from, then prompts you (?) to take action.

uustat

uuto

vi

C-8

Displays the status of your request to send files to another user
with the uuto command.

Sends a specified file to another user. The destination is in the
format system!fogin where the system must be on the list of
systems generated by the uuname command.

Edits a specified file using the screen editor. If there is no file
by that name, vi creates the file. See Chapter 6 for detailed
information on using the vi editor.

WC

who

yacc

APPENDIX C

Counts the number of lines, words, and characters in a specified
file and displays the results at your terminal.

Displays the login names of the users logged in to the UNIX
system on your computer, along with the terminals they are
using and the times they logged in.

Imposes a structure on the input of a program. See the UNIX
System User Reference Manual for details.

C-9

Appendix D

QUICK REFERENCE TO ed COMMANDS

This Quick Reference to ed Commands is organized into two sections.

• The first section lists the commands, with brief descriptions, in
alphabetical order.

• The second section groups the commands according to each topic
discussed in Chapter 5.

The commands are shown as you type them. The general format for
ed commands is:

[addressl,address2]command[parameter]< CR>

where addressl and address2 denote line addresses and parameter(s)
indicates data on which the command operates. You can find
complete information on using ed commands in Chapter 5, Line Editor
Tutorial.

COMMANDS IN ALPHABETICAL ORDER

!command

I

\

Returns to command mode from text input
mode.

Address of the current line.

Matches any single character (in a search
pattern and in a substitution).

Temporarily escapes to the shell to execute a
shell command.

Acts as a delimiter (for s, v, or g commands).

Removes the meaning of a special character
(in a search pattern and in a substitution).

D-1

APPENDIX D

+x

-x

*

*

r ... J

/pattern

?pattern

$

$

&

D-2

Displays the address of the last line in the
buffer.

Displays the current line number.

Relative address; add x to the current line
number.

Relative address; subtract x from the current
line number.

Matches zero or more occurrences of the
preceding character (in search or substitution
patterns).

Matches zero or more occurrences of any
characters following the period (in search or
substitution patterns).

Matches the first character of those characters
within the brackets.

If the caret () is the first character in brackets,
finds and matches the first character that is not
within the brackets.

The caret () matches the beginning of a line
(in a search pattern and in a substitution).

Searches forward in the buffer and addresses
the .first line after the current line that
contains the pattern of text.

Searches backward in the buffer and addresses
the first line before the current line that
contains the pattern of text.

Denotes the last line in the buffer.

Matches the end of a line.

Repeats the last pattern to be substituted.

%

@

a

c

APPENDIX D

Repeats the last replacement pattern.

Deletes the current line (text input mode) or a
command line (command mode).

Deletes the character just entered (text input
mode).

Creates text after the specified line.

Replaces text in the specified lines with new
text.

CR Carriage return; moves down a line in the
buffer.

d Deletes specified lines of text.

ed filename Enters ed line editor to edit a file called
filename; copies the file into the buffer.

E filename Replaces the current buffer with the contents
of a file called filename; deletes present
contents of the buffer whether written to a
permanent file or not.

f

f newfile

g/pattern

G/pattern

h

H

Displays the name of the file being edited.

Changes the current file name associated with
the buffer to newfile.

Addresses all lines in the buffer that contain
the specified pattern of text.

Addresses all lines in the buffer that contain
the specified pattern of text; prints each
occurrence for you to deal with separately.

Displays a short explanation of the previous
diagnostic response (?).

Automatically displays
diagnostic responses (?)
editing session.

explanations
throughout

of
the

D-3

APPENDIX D

m

n

p

q

Q

r filename

Inserts new text before the specified line.

Joins contiguous lines.

Displays the specified lines with all
nonprinting (hidden) characters.

Moves the specified lines after a destination
line; deletes the lines at the old location.

Displays the specified lines preceded by the
line addresses and a tab space.

Displays the specified lines in the buffer.

Causes ed to print an asterisk (*) as a
command mode prompt (for more details, see
the UNIX System Editing Guide described in
Appendix A).

Ends an editing session. If changes to the
buffer were not written to a file, a warning (?)
is given. Typing q a second time ends the
session without writing to a file.

Ends an editing session whether or not
changes to the buffer were written into a file.

Appends the contents of a file called filename
to the end of the present buffer contents.

s/old text/new text/
Substitutes the first occurrence of old text
with new text on the current line. A g after
the final slash changes all occurrences on the
current line.

address1,address2s/old text/new text/

t

Substitutes the first occurrence of old text
with new text on the lines denoted by
addressl,address2.

Copies the specified lines and places them
after a destination line.

u

v/pattern

V/pattern

w

w filename

APPENDIX D

Undoes the last command given, except for w
and q (command mode).

Addresses all lines in the buffer that do not
contain the specified pattern of text.

Addresses all lines in the buffer that do not
contain the specified pattern of
each occurrence for you to
separately.

text; prints
deal with

Copies the buffer contents into the file
currently associated with the buffer.

Copies the buffer contents into a file called
filename.

COMMANDS BY TOPIC

Commands for Getting Started

ed filename Enters ed line editor to edit a file called
filename.

a Appends text after the current line.

p

d

CR

w

Ends the text input mode and returns to the
command mode.

Displays the current line.

Deletes the current line.

Moves down one line in the buffer.

Moves up one line in the buffer.

Writes the buffer contents to the file currently
associated with the buffer.

D-5

APPENDIX D

q Ends an editing session. If changes to the
buffer were not written to a file, a warning (?)
is issued. Typing q a second time ends the
session without writing to a file.

Line Addressing Commands

1, 2, 3 ...

$

+x

-x

/abc

?a be

g/abc

v/abc

D-6

Denotes line addresses in the buffer.

Address of the current line in the buffer.

Displays the current line address.

Denotes the last line in the buffer.

Addresses lines 1 through the last line.

Addresses the current line through the last
line.

Relative address; add x to the current line
number.

Relative address; subtract x from the current
line number.

Searches forward in the buffer and addresses
the first line after the current line that
contains the pattern abc.

Searches backward in the buffer and addresses
the first line before the current line that
contains the pattern abc.

Addresses all lines in the buffer that contain
the pattern abc.

Addresses all lines in the buffer that do not
contain the pattern abc.

Display Commands

p

n

Text Input

a

i

c

Deleting Text

d

u

@

or backspace

APPENDIX D

Displays the specified lines in the buffer.

Displays the specified lines preceded by the
line addresses and a tab space.

Enters text after the specified line in the
buffer.

Enters text before the specified line in the
buffer.

Replaces text in the specified lines with new
text.

On a line by itself, ends the text input mode
and returns to the command mode.

Deletes one or more lines of text (command
mode).

Undoes the last command given (command
mode).

Deletes the current line (text input mode) or a
command line (command mode).

Deletes the last character typed in (text input
mode).

D-7

APPENDIX D

Substituting Text

address1,address2s/old text/new text/command

Special Characters

*

*

$

\

&

%

[...]

r ... J

D-8

Substitutes new text for old text within the
range of lines denoted by addressl,address2
(which may be numbers, symbols, or text).
The command may beg, l, n, p, or gp.

Matches any single character in search or
substitution patterns.

Matches zero or more occurrences of the
preceding character in search or substitution
patterns.

Matches zero or more occurrences of any
characters following the period in search or
substitution patterns.

The caret 0 matches the beginning of the
line in search or substitution patterns.

Matches the end of the line in search or
substitution patterns.

Takes away the special meaning of the special
character that follows in search and
substitution patterns.

Repeats the last pattern to be substituted.

Repeats the last replacement pattern.

Matches the first occurrence of a pattern in
the brackets.

Matches the first occurrence of a character that
is not in the brackets.

APPENDIX D

Text Movement Commands

m

t

w

r

Moves the specified lines of text after a
destination line; deletes the lines at the old
location.

Copies the specified lines of text and places
the copied lines after a destination line.

Joins the current line with the next
contiguous line.

Copies (writes) the buffer contents into a file.

Reads in text from another file and appends it
to the buffer.

Other Useful Commands and Information

h

H

f

f newfile

!command

ed.hup

Displays a short explanation for the preceding
diagnostic response (?).

Turns on the help mode, which automatically
displays an explanation for each diagnostic
response (?) during the editing session.

Displays nonprinting (hidden) characters in
the text.

Displays the current file name.

Changes the current file name associated with
the buffer to newfile.

Temporarily escapes to the shell to execute a
shell command.

If the terminal is hung up before a write
command, the editing buffer is saved in the
file ed.hup.

D-9

Appendix E

QUICK REFERENCE TO vi COMMANDS

This Quick Reference to vi Commands is organized into two sections.

• The first section lists the commands, with brief descriptions, in
alphabetical order.

• The second section lists the commands according to each topic
discussed in Chapter 6.

Please note the following conventions when using this appendix.

• Typing the control key is denoted by a caret () and the key--for
example, ~g.

• "Current line," "current word," and "current character" refer to the
line, word, or character denoted by the cursor.

The commands are shown as you type them. The general format for
vi commands is:

[x]command(argument]

where x denotes a number and argument indicates data on which the
command operates. You can find complete information on using vi
commands in Chapter 6, Screen Editor Tutorial.

\

COMMANDS IN ALPHABETICAL ORDER

Continues the search for the character specified by
the f command.

Repeats the action initiated by the last command.

Prints the characters that are normally nonprinting
(hidden characters) text input mode.

Begins a line editor command.

E-1

APPENDIX E

:$

:n

+

/pattern

?pattern

@

CR

space bar

a

A

b

E-2

Moves the cursor to the beginning of the last line in
the buffer.

Moves the cursor to the beginning of the nth line of
the buffer (n = line number).

Moves the cursor up one line.

Moves the cursor down one line.

Moves the cursor to the beginning of the current
sentence.

Moves the cursor to the beginning of the next
sentence.

Moves the cursor to the beginning of the current
paragraph.

Moves the cursor to the beginning of the next
paragraph.

Change uppercase to lowercase or lowercase to
uppercase.

Searches forward in the buffer for pattern.

Searches backward in the buffer for pattern.

In text input mode, erases the current line.

Carriage return; in command mode, moves the cursor
down one line.

Moves the cursor to the right one character.

Enters text after the cursor.

Enters text at the end of the current line.

Moves the cursor to the left one word, to the first
character of that word.

B

BS

BS

CW

cc

ncx

c

D

APPENDIX E

Moves the cursor to the left one word (delimited only
by blanks), to the first character of that word.

Scrolls the screen back a full window, revealing the
window of text above the current window.

Backspace; in command mode, moves the cursor one
character to the left.

Backspace; in text input mode, deletes the current
character.

Replaces a word (or part of a word), from the cursor
to the next space or punctuation, with new text.

Replaces all the characters in the current line.

Replaces n number of text objects x, where x can
include a sentence or a paragraph.

Replaces the characters in the current line from the
cursor to the end of the line.

Deletes the line from the cursor to the end of the
line.

Scrolls the screen down a half window, revealing
lines below the current window.

~d Escapes the temporary return to the shell and returns
to vi to edit the current window.

dd Deletes the current line.

dw Deletes a word (or part of a word) from the cursor
through the next space or to the next punctuation.

ndx Deletes n number of text objects x, where x can
include a sentence or a paragraph.

:.,$d Deletes all the lines from the current line to the last
line.

E-3

APPENDIX E

E

Moves the cursor to the end of the current word.

Moves the cursor to the end of the current word
(delimited by blanks only); places the cursor on the
last character before the next blank space or at the
end of the current line.

ESC Escape; returns to the command mode from any of
the text input modes.

£x Moves the cursor right to the specified character x.

Fx Moves the cursor left to the specified character x.

'f Scrolls the screen forward a full window, revealing
the window of text below the current window.

G Moves the cursor to the beginning of the last line in
the buffer.

nG Moves the cursor to the nth line of the file (n = line
number).

'g Gives the line number, its position in the buffer (as a
percentage of the buffer completed), and status.

:g/t.ext/s/ /new words/g

h

H

i

I

J

E-4

Changes every occurrence of text to new words.

Moves the cursor one character to the left.

Moves the cursor to the first line on the screen, or
"home".

Enters text to the right of the cursor.

Enters text to the left of the first character that is not
a blank on the current line.

Moves the cursor down one line from its present
position.

Joins the line immediately below the current line
with the current line.

k

L

M

n

N

0

p

"xp

:q

:q!

r

R

:r filename

APPENDIX E

Moves the cursor up one line from its present
position.

Moves the cursor one character to the right.

Moves the cursor to the last line on the screen.

Clears and redraws the current window.

Moves the cursor to the middle line on the screen.

Repeats the last search command.

Repeats the last search command in the opposite
direction.

Enters text at the beginning of a new line
immediately below the current line.

Enters text at the beginning of a new line
immediately above the current line.

Places the contents of the temporary buffer
containing the last "delete" or "yank" command into
the text after the cursor or below the current line.

Places the contents of register x after the cursor or
below the current line.

Quits vi if changes made to the buffer were written
to a file.

Quits vi whether or not changes made to the buffer
were written to a file.

Replaces the current character.

Replaces only those characters that are typed over
with new text; continues to append new text after the
end of the line is reached.

Inserts the contents of a file called filename under the
current line of the buffer.

E-5

APPENDIX E

E-6

s Deletes the current character and appends text.

s Replaces all the characters in the current line.

:s/text/new words/
Replaces text with new words on the current line.

:s/text/new words/g

'Ix

u

vi filename

Changes every occurrence of text on the current line
to new words.

Moves the cursor right to the character just before the
specified character x.

Moves the cursor left to the character just after the
specified character x.

Undoes the last command.

Erases the last change on the current line.

Scrolls the screen up a half window, revealing the
lines of text above th£ current window.

In text input mode, prints characters that are
normally nonprinting (hidden characters).

Enters vi screen editor to edit the file filename.

vi filel file2 file3

vi -r filel

view filel

w

Enters three files into the vi buffer to be edited.
Those files are filel, file2, and file3.

Restores the changes made to file filel that were lost
because of an interrupt in the system.

Views file filel in the read-only mode of vi

Moves the cursor forward to the first character in the
next word.

w

:w filename
:n

:w filename
:q

:wq

:x,zw data

:w! filename
:q

x

nyx

"lyn

yy

zz

APPENDIX E

Ignores all punctuation and moves the cursor forward
to the beginning of the next word delimited only by
blanks.

When editing more than one file, writes the buffer to
the file called filename and calls the next file in the
buffer (use :n only after :w).

Writes the buffer to a new file called filename and
quits vi.

Writes the buffer to a file and quits vi.

Writes lines from the number x through the number
z into a new file called data.

Overwrites an existing file called filename and quits
vi.

In text input mode, deletes the current word
delimited by blanks.

Deletes the current character.

Places (yanks) a copy of n numbertext objects x into a
temporary buffer, where x can include a word, line,
sentence, or paragraph.

Places a copy of text object x into a register named by
a letter l.

Places the current line of text into a temporary buffer.

Writes the buffer to a file and quits vi

E-7

APPENDIX E

SUMMARY OF vi COMMANDS BY TOPIC

Commands for Getting Started

TERM=code

export TERM
Before entering vi, sets the terminal configuration.

vi filename
Enters vi screen editor to edit a file called filename.

a Enters text after the cursor.

h Moves the cursor to the left one character.

Moves the cursor down one line.

k Moves the cursor up one line.

1 Moves the cursor to the right one character.

x Deletes the current character.

CR Carriage return; moves the cursor down to the
beginning of the next line.

JESC Escape; leaves text input mode and returns to
command mode.

ZZ Writes to a file and quits vi.

:q Quits vi if changes made to the buffer were written
to a file.

Commands for Positioning in the Window

Character Positioning

h Moves the cursor one character to the left.

Moves the cursor one character to the right.

E-8

BS

space bar

£x

Fx

tx

Tx

APPENDIX E

Backspace; moves the cursor one character to the left.

Moves the cursor one character to the right.

Moves the cursor right to the specified character x.

Moves the cursor left to the specified character x.

Continues the search for the character specified by
the f command. It will remember the character and
seek out the next occurrence of the character on the
current line.

Moves the cursor right to the character just before the
specified character x.

Moves the cursor left to the character just after the
specified character x.

Positioning by Lines

k

+

CR

Word Positioning

w

w

Moves the cursor down one line from its present
position.

Moves the cursor up one line from its present
position.

Moves the cursor down one line.

Moves the cursor up one line.

Carriage return; moves the cursor down to the
beginning of the next line.

Moves the cursor to the right, to the first character in
the next word.

Ignores all punctuation and moves the cursor to the
right, to the beginning of the next word delimited
only by blanks.

E-9

APPENDIX E

b

B

E

Moves the cursor to the left one word, to the first
character of that word.

Moves the cursor to the left one word, (delimited
only by blanks) to the first character of that word.

Moves the cursor to the end of the current word.

Moves the cursor to the end of the current word
(delimited by blanks only); places the cursor on the
last character before the next blank space or at the
end of the current line.

Positioning by Sentences

Moves the cursor to the beginning of the current
sentence.

Moves the cursor to the beginning of the next
sentence.

Positioning by Paragraphs

Moves the cursor to the beginning of the current
paragraph.

Moves the cursor to the beginning of the next
paragraph.

Positioning in the Window

H

M

L

E-10

Moves the cursor to the first line on the screen, or
"home".

Moves the cursor to the middle line on the screen.

Moves the cursor to the last line on the screen.

APPENDIX E

Commands for Positioning in the File

Scrolling

'f

u

Scrolls the screen forward a full window, revealing
the window of text below the current window.

Scrolls the screen down a half window, revealing
lines of text below the current window.

Scrolls the screen back a full window, revealing the
window of text above the current window.

Scrolls the screen up a half window, revealing the
lines of text above the current window.

Positioning on a Numbered Line

G

nG

Moves the cursor to the beginning of the last line in
the buffer.

Gives the line number, position in the buffer (as a
percentage of the buffer completed), and status.

Moves the cursor to the nth line of the file (n = line
number).

Searching for a Pattern

/pattern

?pattern

n

N

Searchs forward in the buffer for the next occurrence
of the pattern of text. Positions the cursor under the
first character of the pattern.

Searchs backward in the buffer for the first
occurrence of pattern of text. Positions the cursor
under the first character of the pattern.

Repeats the last search command.

Repeats the search command in the opposite
direction.

APPENDIX E

Create Commands

a

A

I

0

0

Enters text after the cursor.

Enters text at the end of the current line.

Enters text to the right of the cursor.

Enters text to the right the first character that is not a
blank on the current line.

Enters text at the beginning of a new line
immediately below the current line.

Enters text at the beginning of a new line
immediately above the current line.

ESC Escape; returns to the command mode from any of
the above text input modes.

Delete Commands

For the TEXT INPUT Mode

BS Backspace; deletes the current character.

Deletes the current word delimited by blanks.

@ Erases the current line of text.

For the COMMAND Mode

u

u

x

dw

E-12

Undoes the last command.

Erases the last change on the current line.

Deletes the current character.

Deletes a word (or part of a word) from the cursor
through the next space or to the next punctuation.

dd

ndx

D

APPENDIX E

Deletes the current line.

Deletes n number of text objects x. x can be the
symbol for a word, line, current sentence, or current
paragraph.

Deletes the current line from the cursor to the end of
the line.

Change Commands

r

R

s

s

CW

cc

ncx

c

Replaces the current character.

Replaces only those characters typed over with new
characters; continues to append new text after the
end of the line until the ESC command is given.

Deletes the current character and appends text until
the ESC command is given.

Replaces all the characters in the current line.

Replaces the current word or the remaining
characters in the current word with new text, from
the cursor to the next space or punctuation.

Replaces all the characters in the current line.

Replaces n number of text objects x. x can be the
symbol for a word, line, current sentence, or current
paragraph.

Replaces the remaining characters in the current line,
from the cursor to the end of the line.

E-13

APPEND!X E

Cut <1tnd Paste Commands

p

yy

nyx

"lyx

"xp

Places the contents of the temporary buffer
containing the last "delete" or "yank" command into
the text after the cursor or below the current line.

Places (yanks) a line of text into a temporary buffer.

Places a copy of n number of text objects x into a
temporary bufffer.

Places a copy of text object x into a register named by
a letter l. x can be the symbol for a word, line,
current sentence, or current paragraph.

Places the contents of register x after the cursor or
below the current line.

Special Commands

\

Repeats the action initiated by the last command.

Joins the line immediately below the current line
with the current line.

Prints characters that are normally nonprinting
(hidden characters) in text input mode.

Prints characters that are normally nonprinting
(hidden characters) in text input mode.

Clears and redraws the current window.

Change uppercase to lowercase or lowercase to
uppercase.

APPENDIX E

Line Editor Commands

:sh

:n

:x,zw data

Tells vi that the next commands are line editor
commands.

Temporarily returns to the shell to perform some
shell commands without leaving vi.

Escapes the temporary return to the shell and returns
to vi to edit the current window.

Goes to the nth line of the buffer.

Writes lines from the number x through the number
z into a new file called data.

:$ Moves the cursor to the beginning of the last line in
the buffer.

:.,$d Deletes all the lines from the current line to the last
line.

:r filename
Inserts the contents of the file filename under the
current line of the buffer.

:s/text/new words/
Replaces the first instance of text on the current line
with new words.

:s/text/new words/g
Replace every occurrence of text on the current line
with new words.

:g/text/s/ /new words/g
Changes every occurrence of text in the buffer to
new words.

E-15

APPENDIX E

Quit Commands

zz

:wq

:w filename
:q

:w! filename
:q

:q!

:q

Writes the buffer to a file and quits vi.

Writes the buffer to a file and quits vi.

Writes the buffer to a new file named filename and
quits vi.

Overwrites an existing file called filename with the
contents of the buffer and quits vi.

Quits vi whether or not changes made to the buffer
were written to a file.

Quits vi if changes made to the buffer were written
to a file.

Special Options for vi

vi filel file2 file3

:w
:n

vi -r filel

view filel

E-16

Enters three files into the vi buffer to be edited.
Those files are filel, file2, and file3.

When editing more than one file, writes the buffer to
a file called filename and calls the next file in the
buffer (use :n only after :w).

Restores the changes made to file 1 that were lost
because of an interrupt in the system.

Views file1 in the read-only mode of vi. Changes
cannot be made to the buffer.

Appendix F

SUMMARY OF SHELL PROGRAMMING
INGREDIENTS

This summary of sheU programming ingredients discussed in Chapter
7, Shell Tutorial, is organized into two sections.

• The first section is a summary of the variables and special
symbols of the shell. These are arranged by topic in the order
that they were discussed in the chapter.

• The second section shows the shell programming constructs.

SHELL COMMAND LANGUAGE

Special Characters in the Shell

* ? []"

&

\

II II

Metacharacters; used as file name shortcuts (file name
generation).

Executes commands in the background mode.

Sequentially executes several commands typed in on
one line, each separated by ;.

Turns off the meaning of special characters in the
shell.

Single quotes turn off the special meaning of all
characters. Double quotes allow $, ' , and " to
retain their special meaning.

Redirecting Input and Output

< Redirects the contents of a file into a command.

F·1

APPENDIX F

>

>>

Redirects the output of a command into a new file, or
replaces the contents of an existing file with the
output.

Redirects the output to be added to the end of a file.

Directs the output of one command to be the input of
the next command.

'command' Substitutes the output of the enclosed command line.

Executing and Terminating Processes

batch

at

at -1

at -r

ps

kill PID

Submits the commands that follow to be processed
at a time when the system load is at an acceptable
level. Ad ends the batch command.

Submits the following commands to be executed at a
specified time. Ad ends the at command.

Gives the current jobs in the at or batch queue.

Removes the at or batch job from the queue.

Gives the status of the shell processes.

Terminates the shell process with the specified
process ID (PID).

nohup command list &
Completes background processes after logging off.

Executing A File

sh filename Executes a shell file that is a program.

chmod u+x filename

bin

Changes the mode of a file to be executable by you.

Your directory for storing executable shell programs
that are accessible to all of your other directories.

Variables

F-2

positional parameter
A variable defined by its position on the command
line.

APPENDIX F

$# Gives the number of positional parameters.

$* Substitutes all positional parameters starting
with the first positional parameter.

named variable
A variable that is given a name by you.

Variables Used by the Shell

HOME Denotes your home directory; the default variable for
the cd command.

PATH Defines the path your login shell follows to find
commands.

CDP A TH Defines the search path for the cd command.

MAIL Gives the name of the file containing your electronic
mail.

PSl PS2 Defines the primary and secondary prompt strings.

TERM Defines the type of terminal.

IFS Defines the internal field separators; normally the
space, the tab, and the carriage return.

SHELL PROGRAMMING CONSTRUCTS

Here Document

command <<!
input lines
!

f-3

APPENDIX F

For Loop

While Loop

IL Then

F-4

for variable<CR>
in this hst of values<CR>

do the following commands<CR>
command l<CR>
command 2<CR>

.<CR>

.<CR>
last command< CR>

done<CR>

while command list<CR>
do<CR>

command! <CR>
command2 <CR>

.<CR>

.<CR>
last command <CR>

done<CR>

if this command is successful< CR>
then commandl <CR>

command2 <CR>
.<CR>
.<CR>

last command< CR>
fi<CR>

IL. Then ... Else

if command list< CR>
then command list< CR>
else command list< CR>

fi<CR>

Case Construction

case characters< CR>
in<CR>

patternl)<CR>
command line 1 <CR>

.<CR>

.<CR>
last command line< CR>

;;<CR>
pattern2)<CR>

command line 1 <CR>
.<CR>
.<CR>

last command line< CR>
;;<CR>
pattern3) <CR>

command line 1 <CR>
.<CR>
.<CR>

last command line<CR>
;;<CR>

esac<CR>

break Statement

APPENDIX F

This statement forces the program to leave any loop and
execute the next command.

F·5

GLOSSARY

This glossary defines terms and acronyms used in the UNIX System
User Guide that may not be familiar to you.

acoustic coupler

address

A device that permits transmission of data over an ordinary
telephone line. When you place a telephone handset in the
coupler, you link a computer at one end of the phone line to
a peripheral device, such as a user terminal, at the other.

Generally, a number that indicates the location of
information in the computer's memory. In the UNIX system,
the address is part of an editor command that specifies a line
number or range.

append mode
A text editing mode where you enter (append) text after the
current position in the buffer. See text input mode, compare
with command mode and insert mode.

argument

ASCII

Special instructions on the command line that specify data
on which a command is to operate. Arguments usually
follow the command and can include numbers, letters, or
text strings. For instance, in the command Ip -m myfile, Ip
is the command and myfile is the argument. See option.

(pronounced as'-kee) American Standard Code for
Information Interchange, a standard for data transmission
that is used in the UNIX system. ASCII assigns sets of Os
and ls to represent 128 characters, including alphabetical
characters, numerals, and standard special characters, such as
#, $,%,and&.

AT&T 3B computers
Computers manufactured by AT&T Technologies, Inc.

G-1

GLOSSARY

background.
A type of program execution where you request the shell to
run a command away from the interaction between you and
the computer ("in the background"). While this command
runs, the shell prompts you to enter other commands
through the terminal.

baud rate

buffer

A measure of the speed of data transfer from a computer to a
peripheral device (such as a terminal) or from one device to
another. Common baud rates are 300, 1200, 4800, and 9600.
As a general guide, divide a baud rate by 10 to get the
approximate number of English characters transmitted each
second.

A temporary storage area of the computer used by text
editors to make changes to a copy of an existing file. When
you edit a file, its contents are read into a buffer, where you
make changes to the text. For the changes to become a part
of the permanent file, you must write the buffer contents
back into the file. See permanent file.

child directory
See subdirectory.

command
The name of a file that contains a program that can be
processed or executed by the computer on request.

command file
See executable file.

command language interpreter
A program that acts as a direct interface between you and the
computer. In the UNIX system, a program called the shell
takes commands and translates them into a language
understood by the computer.

command line

G-2

A line containing one or more commands, ended by typing a
carriage return (<CR>). The line may also contain options
and arguments. You type this line to the shell to instruct the
computer to perform one or more tasks.

GLOSSARY

command mode
A text editing mode in which each character you type is
interpreted as an editing command. This mode permits
actions such as moving around in the buffer, deleting text, or
moving lines of text. See text input mode, compare with
append mode and insert mode.

context search
A technique for locating a specified pattern of characters
(called a string) when in a text editor. Editing commands
that cause a context search scan the buffer, looking for a
match with the string specified in the command. See string.

control character
A nonprinting character that is entered by holding down the
control key and typing a character. A control character
transmits a special command to the computer. For instance,
when viewing a long file on your screen with the cat
command, typing control-s Cs) stops the display so you can
read it, and typing control-q (q) continues the display.

current directory

cursor

default

The directory in which you are presently working. You have
direct access to all files and subdirectories contained in your
current directory. The shorthand notation for the current
directory is a dot (.).

A cue printed on the terminal screen that indicates the
position at which you enter or delete a character. It is
usually a rectangle or a blinking line.

An automatically assigned value or condition that exists
unless you explicitly change it. For example, the shell
prompt string has a default value of$ unless you change it.

delimiter
A character that logically separates items or arguments on a
command line. Two frequently used delimiters in the UNIX
system are the space and the tab. Another is the slash
character (I) that separates directories from subdirectories
and files in a path name.

G-3

GLOSSARY

diagnostic
A message printed at your terminal to indicate an error
encountered while trying to execute some command or
program. Generally, you need not respond directly to a
diagnostic message.

directory

disk

A type of file used to group and organize other files or
directories. You cannot enter text or other data into a
directory. (For more detail, see Appendix B, File System
Organization.)

A magnetic data storage device consisting of several round
plates similar to phonograph records. Disks store large
amounts of data and allow quick access to any piece of data.

electronic mail
The feature of an operating system that allows computers
users to exchange written messages via the computer. The
UNIX system mail command provides electronic mail in
which the addresses are the login names of users.

environment
The conditions under which you work while using the UNIX
system. Your environment includes those things that
personalize your login and allow you to interact in specific
ways with the UNIX system and the computer. For example,
your shell environment includes such things as your shell
prompt string, specifics for backspace and erase characters,
and commands for sending output from your terminal to the
computer.

erase character

escape

execute

G-4

The character you type to delete the previous character on
the current line. The UNIX system default erase character is
#.

A means of getting into the shell from within a text editor or
another program.

The computer's action of interpreting a programmed
instruction or command and performing the indicated
operation(s).

GLOSSARY

executable file

field

file

A file that can be processed or executed by the computer
without any further translation. When you type in the file
name, the commands in the file are executed. See shell
procedure.

A word or a group of characters treated as one word on a
command line. Fields are usually a fixed number of
character positions in size, but they may also vary.

A collection of information. Files may contain data,
programs, or other text. You access UNIX system files by
name. See ordinary file, permanent file, and executable file.

file name
A sequence of characters that denotes a file. (In the UNIX
system, a slash character (/) cannot be used as part of a file
name.)

file system

filter

A collection of files and the structure that links them
together. The file system is a hierarchical structure--that is,
a ranked system of files. (For more detail, see Appendix B, File
System Organization.)

A command that reads the standard input, acts on it in some
way, and then prints the result as standard output.

final copy
The completed, printed version of a file of text.

foreground
The normal type of program execution. In foreground mode,
the shell waits for a command to end before prompting you
for another command. In other words, you enter something
into the computer and the computer "replies" before you
enter something else.

full-duplex
A type of data communication in which a computer system
can transmit and receive data simultaneously. Terminals and
modems usually have settings for half-duplex (one-way) and
full-duplex communication; the UNIX system uses the full­
duplex setting.

G-5

GLOSSARY

full path name

global

A path name that originates at the root directory of the
UNIX system and leads to a specific file or directory. Each
file and directory in the UNIX system has a unique full path
name, sometimes called an absolute path name. See path
name.

A qualifier that indicates the complete or entire file. While
normal editor commands commonly act on only the first
instance of a pattern in the file, global commands perform
the action on all instances in the file.

hardware
The physical machinery of a computer and any associated
devices.

hidden character
One of a group of characters within the standard ASCH set,
but not normally printed as visible symbols. Control
characters, such as backspace and escape, are examples.

home directory
The directory in which you are located when you log in to
the UNIX system; also known as your login directory.

input/ output
The path by which information enters a computer system
(input) and leaves the system (output). An input device that
you use is the keyboard and an output device is the terminal
monitor.

insert mode
A text editing mode in which you enter (insert) text before
the current position in the buffer. See text input mode,
compare with append mode and command mode.

interactive
Describes an operating system (such as the UNIX system)
that can handle immediate-response communication between
you and the computer. In other words, you interact with the
computer from moment to moment.

line editor
An editing program in which text is operated upon on a
line-by-line basis within a file. Commands for creating,
changing, and removing text use line addresses to determine

login

GLOSSARY

where in the file the changes are made. Changes can be
viewed after they are made by displaying the lines changed.
See text editor, compare with screen editor.

The procedure used to gain access to the UNIX operating
system.

login directory
See home directory.

login name

log off

A string of characters used to identify a user. Your login
name is different from other login names.

The procedure used to exit from the UNIX operating system.

meta character

mode

modem

One of a group of characters with a special meaning to the
shell, such as < > * ? I & $; () \ " ' ' [] .

In general, a particular type of operation (for example, an
editor's append mode). In relation to the file system, a mode
is an octal number used to determine who can have access to
your files and what kind of access they can have. See
permissions.

A device that connects a terminal and a computer by way of
a telephone line. A modem converts digital signals to tones
and converts tones back to digital signals, allowing a
terminal and a computer to exchange data over standard
telephone lines.

multitasking
The ability of an operating system to execute more than one
program at a time.

multiuser

nroff

The ability of an operating system to support several users
on the system at the same time.

A text formatter available as an add-on to the UNIX system.
You can use the nroff program to produce a formatted on­
line copy or a printed copy of a file. See text formatter.

G-7

GLOSSARY

operating system

option

The software system on a computer under which all other
software runs. The UNIX system is an operating system.

Special instructions that modify how a command runs.
Options are a type of argument that follow a command and
are preceded by a minus sign (-). You can specify more
than one option for any command given in the UNIX
system. For example, in the command ls -1 -a directory,
-1 and -a are options that modify the ls command. See
argument.

ordinary file

output

A collection of one to several thousand characters. Ordinary
files may contain text or other data but are not executable.
See executable file.

Information processed in some fashion by a computer and
delivered to you by way of a printer, a terminal, or a similar
device.

parameter
Generally, a value that determines the characteristics or
behavior of something. In the UNIX system, a type of
variable found only on the command line. See variable.

parent directory

parity

The directory immediately above a subdirectory or file in the
file system organization. The shorthand notation for the
parent directory is two dots (..).

A method used by a computer for checking that the data
received matches the data sent.

password
A code word known only to you that is called for in the
login process. The computer uses the password to verify that
you may indeed use the system.

path name

G-8

A sequence of directory names separated by the slash
character (/)and ending with the name of a file or directory.
The path name defines the connection path between some
directory and a file.

GLOSSARY

peripheral device
Auxiliary devices under the control of the main computer,
used mostly for input, output, and storage functions. Some
examples include terminals, printers, and disk drives.

permanent file
The data stored permanently in the file system structure. To
change a permanent file, you must make use of a text editor,
which maintains a temporary work space, or buffer, apart
from the permanent files. Once changes have been made to
the buffer, they must be written to the permanent file to
make the changes permanent. See buffer.

permissions

pipe

pipeline

Access modes, associated with directories and files, that
permit or deny system users the ability to read, write, and/or
execute the directories or files. You determine the
permissions for your directories or files by changing the
mode for each one with the chmod command.

A method of redirecting the output of one command to be
the input of another command. H is named for the character
(I) that redirects the output. For example, the shell
command who I we -1 pipes output from the who command
to the we command, telling you the total number of people
logged into your UNIX system.

A series of filters separated by the pipe character (I). The
output of each filter becomes the input of the next filter in
the line. The last filter in the pipeline writes to its standard
output. See filter.

positional parameters

prompt

Variables that hold arguments supplied with a shell
procedure. They are placed into variable names, such as $1,
$2, and $3 when the shell calls for the shell procedure. The
name of the shell procedure is positional parameter $0. See
variable and shell procedure.

A cue displayed at your terminal by the shell, telling you
that the shell is ready to accept your next request. The
prompt can be a character or a series of characters. The
UNIX system default prompt is the dollar sign character ($).

G-9

GLOSSARY

printer

process

program

An output device that prints the data it receives from the
computer on paper.

Generally a program that is at some stage of execution. In
the UNIX system, it also refers to the execution of a
computer environment, including contents of memory,
register values, name of the current directory, status of files,
information recorded at login time, and various other items.

The instructions given to a computer on how to do a specific
task. Programs are user-executable software.

read-ahead capability
The ability of the UNIX system to read and interpret your
input while sending output information to your terminal in
response to previous input. The UNIX system separates
input from output and processes each correctly.

relative path name
The path name to a file or directory which varies in relation
to the directory in which you are currently working.

remote system

root

A system other than the one on which you are working.

The source of all files and directories in the file system,
designated by a slash character (/).

screen editor
An editing program in which text is operated on relative to
the position of the cursor on a visual display. Commands for
entering, changing, and removing text involve moving the
cursor to the area to be altered and performing the necessary
operation. Changes are viewed on the terminal display as
they are made. See text editor, compare with line editor.

search pattern
See string.

search string
See string.

G-10

GLOSSARY

secondary prompt

shell

A cue displayed at your terminal by the shell to tell you that
the command typed in response to the primary prompt is
incomplete. The UNIX system default secondary prompt is
the "greater than" character (>).

A UNIX system program that handles the communication
between you and the computer. The shell is also known as a
command language interpreter because it translates your
commands into a language understandable by the computer.
The shell accepts commands and causes the appropriate
program to be executed.

shell procedure
An executable file that is not a compiled program. A shell
procedure calls the shell to read and execute commands
contained in a file. This lets you store a sequence of
commands in a file for repeated use. It is also called a
command file. See executable file.

silent character
See hidden character.

software
Instructions and programs that tell the computer what to do.
Contrast with hardware.

source code
The English-language version of a program. The source code
must be translated to machine language by a program known
as a compiler before the computer can execute the program.

special character
See metacharacter.

special file
A file (called a device driver) used as an interface to an
input/output device, such as a user terminal, a disk drive, or
a line printer.

standard input
An open file that is normally connected directly to the
keyboard. Standard input to a command normally goes from
the keyboard to this file and then into the shell. You can
redirect the standard input to come from another file instead
of from the keyboard; use an argument in the form < file.
Input to the command will then come from the specified file.

G-11

GLOSSARY

standard output

string

An open file that is normally connected directly to a primary
output device, such as a terminal printer or screen. Standard
output from the computer normally goes to this file and then
to the output device. You can redirect the standard output
into another file instead of to the printer or screen; use an
argument in the form > file. Output will then go to the
specified file.

Designation for a particular group or pattern of characters,
such as a word or phrase, that may contain special characters.
In a text editor, a context search interprets the special
characters and attempts to match a specified string with an
identical string in the editor buffer.

string value
A specified group of characters that is symbolized to the
shell by a variable. See variable.

subdirectory
A directory pointed to by a directory one level above it in
the file system organization; also called a child directory.

system administrator
The person who monitors and controls the computer on
which your UNIX system runs; sometimes referred to as a
super-user.

terminal
An input/output device connected to a computer system,
usually consisting of a keyboard with a video display or a
printer. A terminal allows you to give the computer
instructions and to receive information in response.

text editor
Software for creating, changing, or removing text with the
aid of a computer (known as text processing). Most text
editors have two modes--an input mode for typing in text,
and a command mode for moving or modifying text. Two
examples are the UNIX system editors ed and vi. See line
editor and screen editor.

text formatter

G-12

A program that prepares a file of text for printed output. To
make use of a text formatter, your file must also contain some
special commands for structuring the final copy. These
special commands tell the formatter to justify margins, start

GLOSSARY

new paragraphs, set up lists and tables, place figures, and so
on. Two text formatters available as add-ons to your UNIX
system are nroff and troff.

text Jinput mode
A text editing mode where the text you type is added into
the buffer. To execute a command, you must leave the input
mode. See command mode, compare with append mode and
insert mode.

timesharing

tool

troff

Uy

useir

A method of operation in which several users share a
common computer system seemingly simultaneously. The
computer interacts with each user in sequence, but the high­
speed operation makes it seem that the computer is giving
each user its complete attention.

A package of software programs.

A text formatter available as an add-on to the UNIX system.
The troff program drives a phototypesetter to produce high­
quality printed text from a file. See ted formatter.

Historically, the abbreviation for a teletype terminal. Today,
it is generally used to denote a user terminal.

Anyone who uses a computer or an operating system.

user-defined
Something determined by the user.

user-defined variable
A shell name given by the user for the value of a string of
characteirs. See variable.

UNIX system
A general-purpose, multiuser, interactive, time-sharing
operating system developed by AT&T Bell Laboratories. The
UNIX system allows limited computer resources to be shared
by several users and efficiently organizes the user's interface
to a computer system.

Software used to carry out routine functions or to assist a
programmer or system user in establishing routine tasks.

GILOSSAA'\f

variable
A symbol whose value may change within a program or a
repetition of a pwgram. In the shell, a variable is a name
representing some string of characters (a string value). Some
variables are normally set only on a command line and are
called parameters (positional p21r21meters and keyword
par.ameters). Other variables are simply names to which the
user (user-defined variables) or the shell itself may assign
string values. (Keyword parameters are discussed fully in
UNIX System Shell Commands and Programming; see description
in Appendix A.)

video display terminal
A terminal that uses a televisionlike screen (a monitor) to
display information. A video display terminal can display
information much faster than printing terminals.

visual editor
See screen editor.

working directory
See current diredmy.

INDEX

as current directory, 3-12, 4-9
as current line in ed, 5-16, D-1
matching any one character in ed,

5-57, D-1, D-6
repeating last command

in vi, 6-71, E-1
returning to command mode from

text input mode in ed, 5-5, D-1
parent directory, 3-12, 4-9
matching any single character, 4-9,

7-3, 7-6, F-1
searching backward in buffer for

text pattern in vi, 6-42
searching forward or backward in

buffer in ed, 5-22
matching any number of characters,

4-9, 5-58, 7-3, 7-4, F-1
[] sequence of characters to be matched,

4-9, 5-64, 7-3, 7-8, F-1
specifying character range within [],

4-9, 7-8
\ removing special character meaning,

2-9, 4-9, 5-62, 6-72, 7-3, 7-11, D-1,
E-1, F-1

as root directory, 1-6, 3-4, B-3
(see also Root)
as delimiter, 3-4, 5-26, 5-48, D-1

searching forward in buffer for
text pattern, 5-21, 6-42

> redirecting output, 4-11, 4-16, 7-15,
F-2

>>redirecting and appending output,
4-13, 4-16, 7-17, F-2

< redirecting input, 4-13, 4-16, 7-14,
F-2

redirecting output of one command
as input for another, 4-14, 4-16,
7-19, F-2

running commands in sequence, 4-16,
7-3, 7-10, F-1

searching for character in vi, 6-22,
E-1

$ system command prompt, 2-7
as last line of buffer in ed, 5-17,

D-2

matching end of line in ed, 5-60,
D-2

erasing a character, 2-7, 5-45
@ erasing entire line of typing

in shell or command mode, 2-7
erasing current line in text

input mode in ed, 5-44, D-3
erasing current line in text

input mode in vi, 6-53, E-2
& background processing, 4-17, 7-3, 7-9,

F-1

pattern substitution in ed, 5-63, D-8
temporarily escaping to shell

from ed editor, 5-86, D-1
displaying address of last line

of ed buffer, 5-16, D-2
matching beginning of line in ed

search, 5-60, D-2
% repeating replacement pattern in

ed, 5-63, D-3
beginning line editor command while

in vi, 6-74, E-1
changing lowercase to uppercase,

vice versa, in ed, 6-71, E-2
turning off all special characters,

7-3, 7-11, F-1
turning off special characters, 7-3,

7-11, F-1
substituting output of command line,

7-23, F-2

A

Acoustic coupler, 2-12
Address

by line number in ed, 5-15
character string in ed, 5-21
for character string in ed, 5-20
for current line through last

line in ed, 5-18
for first line through last line

in ed, 5-18
for more than one line in ed, 5-23
relative, 5-19

1·1

INDEX

Answers to exercises, 5-90, 6-88, 7-88
Argument, 3-2, 3-3, 6-54, E-1
Arrays, in C programming language,

4-24
at command, 7-25, C-1, C-3, F-2

recap of, 7-27

fB

Background mode, 4-17, 7-9
harmer command, 7-13, C-1, C-4
batch command, 7-23, C-1, C-4, F-2

recap of, 7-25
Baud rate, 2-4
bbday shell program, 7-40

recap of, 7-41
bin directory, creating your own, 7-36,

F-2
/bin system directory, 1-6, B-3
break statement, 7-75, F-5
Buffers, text editing, 4-2

c

C programming language, 4-23
control flow, 4-23
functions and program structure,

4-23
input and output, 4-24
pointers and arrays, 4-24
structures, 4-24
types, operators, and expressions,

4-23
case ... esac construction, 7-72, F-5
cat command, 3-30, C-1, C-4

recap of, 3-32
cd command, 3-25, C-1, C-4

recap of, 3-27
CDPATH, shell variable, 7-47, F-3
Changing text in ed (see ed editor)
Changing text in vi (see vi editor)
Changing your working directory

(cd), 3-25
Changing your environment, 4-19, 6-85,

7-80
Changing permissions on files and

directories (chmod), 3-51, 8-19
Character positioning in vi

(see vi editor)
Character string (see address)
chmod command, 3-30, 3-51, 8-19,

C-1, F-2

1-2

changing existing permissions
with, 3-53

determining existing permissions
with, 3-52

recap of, 3-56
symbolic versus octal method, 3-35

ch.ltext shell program, 7-58
recap of, 7-60

Command line syntax
(see Co1111111111ds, format of)

Command mode
in text editing, 4-3
in ed, 5-5
in vi, 6-8

Commands, 1-9
advanced, 3-56
basic, 3-29
execution of, J-11
format of, 3-2
sequential, 4-16, 7-9
simultaneous, 4-17
specifying when to run (at), 7-23, F-2
stopping, 2-9, 7-29

Command output substitution, 7-22
Command prompt, 2-8
Command recaps

at, 7-27
batch, 7-25
cat, 3-32
cd, 3-27
chmod, 3-56
cp, 3-44
cut, 7-22
date, 7-20
diff, 3-59
echo, 7-4
grep, 3-61
kill, 7-30
Ip, 3-41
Is, 3-25
mail, 8-8
mkdir, 3-18
mv, 3-46

noh1J1p, 7-31
pg, 3-36
pr, 3-38

ps, 7-29
pwd, 3-9
rm, 3-47
rmdir, 3-29
sort, 3-64
spell, 7-15
l.Jlname, 8-12
um1ame, 8-12

Ul!Jlpick, 8-29
1mstat, 8-25
uuto, 8-25
we, 3-50

Communicating with UNIX system
users, 8-1

Concatenating and printing
(cat), 3-29, 3-30

Conditional constructions, 7-66
corntirnue command, 7-76
Control characters, 2-9
Control flow, in C programming

language, 4-23
Copying file contents to another

file (cp), 3-30, 3-41
Copying files from public directory to

directory of choice (uupkk),
4-20, 8-26

Correcting typing errors, 2-8
Counting lines, words, and characters

in file (we), 3-30, 3-47
cp command, 3-30, 3-41, C-1, C-4

recap of, 3-44
Creating directories (mkdir), 3-16
Creating text in ed (see ed editor)
Creating text in vi (see vi editor)
Current directory, 3-8
Cursor (see vi editor)
cut command, 7-21, C-1, C-4

recap of, 7-22
Cutting and pasting text electronically,

5-66, E-14

D

date command, 2-19, 7-19, C-1, C-4
recap of, 7-20

Debugging shell programs, 7-77
Deleting text in ed (see ed editor)
Deleting text in vi (see vi editor)
/dev system directory, 1-6, B-3
/dev/null, 7-67
diff command, 3-57, C-2, C-5

recap of, 3-59
Differences between files (diff), 3-30,

3-57
Directories, 1-6, 3-4

changing (cd), 3-16, 3-25
creating (mkdir), 3-16
determining permissions for

(chmod), 3-55
listing contents of (Rs), 3-16, 3-19
naming, 3-18

organizing, 3-15
removing, 3-16, 3-27

INDEX

Display commands in ed (see ed editor)
Displaying a file's contents

(cat, pg, pr), 3-30
di shell program, 7-36

recap of, 7-37
Documentation for UNIX system, A-1

descriptions of, A-1
ordering information, A-4
with select codes, A-2

IE

echo command, 7-3, C-2, C-5
recap of, 7-4

ed editor
accessing, 5-4, D-1, D-5
addressing current line, 5-16, D-1, D-6
addressing current line through

last line, 5-18, D-6
addressing first line through

last line, 5-18, D-6
addressing last line in buffer, 5-17
addressing range of lines, 5-24, D-6
answers to exercises, 5-90
appending text, 5-33, D-3, D-5
changing text, 5-37, D-3
command, 4-2, 5-1, C-2, C-5, D-1
commands for using

arranged alphabetically, D-1
arranged by topic, D-5
for getting started, 5-12, D-5
format of, 5-13

copying lines of text, 5-72, D-4, D-9
character string address, 5-21
create commands summarized, 5-39
creating text, 5-5, 5-33, D-3, D-7
current file name, 5-84, D-3, D-9
current line address character,

5-15, D-1, D-6
deleting commands summarized, 5-47,

D-7
deleting commands used in text

input mode, 5-44, D-7
deleting text, 5-8, 5-41, D-7
deleting current line, 5-8, 5-44, D-5,

D-7
deleting last characters typed, 5-45,

D-7
display commands summarized, 5-33,

D-7
displaying lines of text, 5-6, 5-30, D-7

1-3

HNOEX

displaying lines of text preceded
by line address number, 5-31, D-7

displaying nonprinting characters,
5-82, D-4, D-9

displaying text, 5-6, 5-30, D-7
edJ111.llp file, D-9
escaping to shell, 5-86, D-1
exercises, 5-13, 5-29, 5-39, 5-54,

5-67, 5-79, 5-88
getting started, 5-3, D-5
global searches, 5-26, 0-3
global substitution, 5-52, 0-4
help commands, 5-79
in a shell program, 7-58
inserting text, 5-36, D-4
introduction to, 4-4, 5-1
joining contiguous lines, 5-74, 0-4,

0-9
last line address character, 5-17, D-2,

D-6
line addresses, 5-14, D-1, D-2, 0-6
line addressing commands, 5-28, 0-6
line addressing symbols, 5-16
line number addressing, 5-15
modes of operation, 4-3
moving around in a file, 5-9, D-5
moving lines of text, 5-69, D-4, D-8
moving text commands summarized,

5-78, D-9
quick reference to commands, 0-1
quitting, 5-11, D-4, D-61
reading in contents of file, 5-77, D-4,

D-9
recovering from system interrupt, 5-87
relative addressing, 5-19
returning to command mode from

text input mode, 5-5, D-1, D-5
saving buffer contents of a file, 5-10
searching for patterns, 5-21, 5-22, D-2,

D-5
special characters, 5-56, 5-67, D-1, D-8
special symbols, 5-16
specifying range of lines, 5-24
substituting in range of lines, 5-50,

D-4, D-7
substituting text on one line, 5-50, D-4

D-7
substituting on current line, 5-49,

D-4, D-7
substituting text, 5-47, D-7
text input, 5-5, 5-33, D-7
text movement commands, 5-9, D-8
undoing last command, 5-43, D-5

writing contents of buffer to
file, 5-10

writing lines of text to file, 5-10, 5-75,
D-5, D-9

edJmp file, 5-87, D-9
Electronic communication, 4-20, 8-1

(see mail, u11to, uupick, and mailx)
entew.name shell program, 7-64
Escape to the shell, 5-86
/etc system directory, 1-8, B-3
Executing a shell program, 7-35
Executing and terminating processes,

7-23
Executing commands in sequence, 4-16,

7-10
Executing commands simultaneously,

4-17, 7-9
Exercises

for line editor (ed), 5-13, 5-29, 5-39,
5-54, 5-67' 5-79, 5-88

for screen editor (vi), 6-15, 6-45,
6-60, 6-70, 6-84

for shell command language, 7-31
for shell programming language,

7-86
exit command, 7-76
Expressions, in C programming language,

4-23
External security code, 2-16

IF

Files, l-5
accessing and manipulating, 3-29
concatenating and printing contents

of (cat), 3-29, 3-30
counting lines, words, characters in

(we), 3-30, 3-47
determining permissions for

(chmod), 3-30, 3-51
editing (see cd editor and vi editor)
identifying differences between

(cliff), 3-57
naming, 3-18
making duplicate copies of (cp), 3-30,

3-41
moving and renaming (mv), 3-30,

3-44
ordinary, 1-5, 3-4
paging through contents of (pg),

3-29, 3-32

printing partially formatted contents
of (pr), 3-30, 3-36

receiving via uupick, 8-26
requesting paper copies of

files (Ip), 3-30, 3-39
removing (rm), 3-30, 3-46
searching for patterns in

(grep), 3-57, 3-59
sending and receiving, 8-17
sending small via mail, 8-17
sending large via uuto, 8-19
sorting and merging (sort), 3-57,

3-62
special, 1-6, 3-4

File system structure, 1-5, 3-4, B-1
major system directories in, 1-6, B-3

for loop, 7-61, F-4
Foreground mode, 4-17
Full duplex, 2-4
Full path names, 3-1 0
Functions, in C programming language,

4-24

G

gbday shell program, 7-57
recap of, 7-58

General purpose system, 1-2
Generating parser programs (yacc), 4-27
Generating programs for lexical

tasks (lex), 4-27
get.num shell program, 7-43

recap of, 7-44
grep command, 3-37, 3-59, C-2, C-5

recap of, 3-61

H

Half duplex, 2-18
Help commands, 5-79
here document, 7-56, F-3
HOME, shell variable, 4-19, 7-47,

7-83, F-3
Home directory, 3-6

INDEX

IFS, shell variable, 7-47, F-3
Input mode (see text input mode)
Interactive computing environment, 1-2
Interrupts, 5-87, 6-77
iL.then constructions, 7-66, F-4
iL.then ... else constructions, 7-67, F-5

Kernel, 1-3, 1-4
Keyboard characteristics, 2-4
kiH command, 7-29, C-2, C-5, F-2

recap of, 7-30

l

lex command, 4-27, C-2, C-5
/lib system directory, 1-8, B-3
Line addressing in ed (see ed editor)
Line editor, 1-4, 4-4, 5-1 (also see ed

editor)
Line positioning in vi (see vi editor)
Line printers, 3-39
Listing the contents of a directory

(ls), 3-16, 3-19
Local system (see Sending small files)
Logging off, 2-20
Login names, 2-11
Login procedure, 2-13
LOGNAME, shell variable, 4-19
log.time shell program, 7-54

recap of, 7-55
Looping, 7-60
lp command, 3-30, 3-39, C-2, C-5

recap of, 3-41
lpstat command, 3-40, C-2, C-5
Is command, 3-16, 3-19, C-2, C-5

-a option, 3-21
-I option, 3-22
recap of, 3-25

i-5

M

mail command, 4-20, 8-4, C-2, C-6
recap of, 8-8

MAIL, shell variable, 7-47, F-3
mailx command, 4-20, 8-29, C-2, C-6
Maintaining programs (make), 4-26
make command, 4-26, C-2, C-6
mal!ll command, 1-10, C-2, C-6
mkdfr command, 3-16, C-2, C-6

recap of, 3-18
mlmum shell program, 7-50

recap of, 7-5 l
Message and file handling

(uucp, mailx), 8-29
Messages

receiving, 8-12
sending to one person (mail), 8-5
sending to remote systems

(u1t11ame, uuname), 8-8
sending to several persons (mail), 8-7

Metacharacter, 4-8, 7-3, F-1
that matches all characters, 4-9, 7-4,

F-1
that matches one character, 4-9, 7-6,

F-1
that matches one of a specific range

of characters, 4-9, 7-8, F-1
turning off special meaning of,

2-9, 4-9, 7-11, F-1
turning off special meaning by

quoting, 7-11, F-1
Modes of editor operation, 4-3
Moving and renaming files (mv),

3-30, 3-44
Moving text in ed (see cd editor)
Multitasking, 1-2
mv command, 3-30, 3-44, C-2, C-6

recap of, 3-46
mv.ex shell program, 7-70

recap of, 7-71
mv.file shell program, 7-62

recap of, 7-63

nolhmp command, 4-18, 7-30, C-2, C-6, F-2
recap of, 7-31

No interrupt command, 7-30
num.please shell program, 7-49

recap of, 7-52

1-6

0

Obtaining status of running processes,
7-28

On-line operation, 2-4
Operators, in C programming language,

4-23
Options, 3-2, 3-3

Paging through file contents
(pg), 3-29, 2-32

Paper-printi1~g terminal, 2-2, 4-4
Paragraph positioning in vi (see vi

editor)
Parameters

positional, 7-39, F-2
in command lines, 5-13, 5-14, D-1
with special meaning, 7-43

Parity, 2-4
Password, 2-14
PATH, shell variable, 4-19, 7-47, 7-83,

F-3
Path names, 3-9

full or absolute, 3-9
relative, 3-12

pg command, 3-29, 3-32, C-2, C-7
recap of, 3-36

Permissions (see chmod)
Pipes (I), 4-14, 7-19
Pointers, in C programming language,

4-24
Positional parameters (see Parameters)
Positioning in file in vi (see z>i editor)
Positioning in window in vi (see vi

editor)
pr command, 3-30, 3-36, C-2, C-7

recap of, 3-38
Printing partially formatted file contents

(pr), 3-30, 3-36
Problems when logging in, 2-17
Processes, executing and terminating,

7-23
.profile, 4-19, 6-85, 7-80, 7-81
Program structure, in C programming

language, 4-24
Programming

shell, 4-21, 7-32
system, 4-21

Programming languages, 4-23, 4-24
Protecting your files (chmod), 3-50

ps command, 7-28, C-2, C-7, F-2
recap of, 7-29

PSI, PS2, shell variables, 7-48, 7-85, F-3
pwd command, 3-6, C-2, C-7

recap of, 3-9

Q

Quick reference
to ed commands, D-1
to vi commands, E-1

Quoting, 7-11, F-1

A

Recaps, for commands
(see Command recaps)

Receiving files (uupick), 8-26
Receiving messages (mail), 8-12
Redirection

and appending output, 4-13, 7-17,
F-2

of input, 4-13, 7-14, F-1
of output, 4-11, 7-15, F-2
with pipes, 4-14, 7-19, F-2

Relative path names, 3-12
Remote job entry (RJE), 4-26
Remote operation, 2-4
Remote system, sending mail to, 8-8
Removing files (rm), 3-30, 3-46
Removing directories (rmdir), 3-16, 3-27
Requesting a paper copy of a file

(lp), 3-30, 3-39
RJE, 4-26
rm command, 3-30, 3-46, C-2, C-7

recap of, 3-47
rmdir command, 3-16, 3-27, C-2, C-7

recap of, 3-29
Root, 1-6, 3-4, 3-7, 3-9
Running multiple programs, 4-16

s
secs, 4-25
Screen editor, 4-5, 6-1 (see also vi editor)
Scrolling in vi (see vi editor)
search shell program, 7-68

recap of, 7-69
Searching a file for a pattern

(grep), 3-30, 3-59
Sending files

INDEX

large (uuto), 8-19
small (mail), 8-17
via public UNIX-to-UNIX system

(uuto, uustat), 8-21
Sending messages

basics of, 8-4
to one person, 8-5
to several people, 8-7
to remote systems, 8-8

Sentence positioning in vi (see vi editor)
set.term shell program, 7-73

recap of, 7-75
sh command, 7-35, C-2, F-2
Shell, 1-8

answers to command language
exercises, 7-88

command language, 4-6, 7-3, F-1
command language exercises, 7-31
executing and terminating processes

in the, 7-23, F-2
programming language, 4-21, 7-32
redirecting input/output in the

(see Rcdireclio11)
special characters in the

(see Mctacharacters)
variables in the, 7-38, F-2

Shell program recaps
bbday, 7-41
ch.text, 7-60
di, 7-37
gbday, 7-58
get.num, 7-44
log.time, 7-55
mknurn, 7-51
mv.ex, 7-71
mv.file, 7-63
num.please, 7-52
search, 7-69
set.term, 7-75
show.param, 7-44
t, 7-53
tail, 7-83
whoson, 7-43

Shell programming
answers to exercises, 7-88
constructions, 7-55, F-3
creating a simple program, 7-34
executing programs, 7-35
exercises, 7 -86
language, 7-32
variables, 7-38, F-2

Shell scripts (see Shell programming)
Shell shorthand (see Mctac/rnmctcrs)

1-7

INDEX

slHJw.param shell program, 7-44
recap of, 7-45

Software development, 4-25
generating parser programs

(yacc), 4-27
generating programs for lexical

tasks (lex), 4-27
maintaining programs (make),

4-26
remote job entry (RJE), 4-26
Source Code Control System

(SCCS), 4-25
sod command, 3-57, 3-62, C-2, C-7

recap of, 3-64
Sorting and merging files

(smt), 3-57, 3-63
Source Code Control System

(SCCS), 4-25
Special characters (see Metacharacters)
Special characters in ed (see ed editor)
spell command, 7-14, C-3, C-8

recap of, 7-15
Standard input and output, 4-9
Standard input/output (I/0)

library, 4-24
Stopping commands, 2-9, 7-20
Stopping execution of at or batch job,

7-22, F-2
Structures, in C programming language,

4-24
stty command, 2-18, 7-82, C-3, C-8
Substituting text in ed (see ed editor)

T

t shell program, 7-52
recap of, 7-53

tail shell program, 7-82
recap of, 7-83

tee command, 7-79
TERM, shell variable, 7-79 F-3
Terminal, 2-2

configuration for vi, 6-5, E-8
keyboard characteristics, 2-4
optional settings, 7-82
paper-printing, 2-2, 4-4, 5-3
required settings, 2-3
typing conventions, 2-6
setting automatic carriage

return in vi, 6-86
typing speed, 2-9
video display, 2-2, 4-4, 5-2, 6-1

Terminating active processes, 7-29

M~

test command for loops, 7-69
Text editing, 4-1

buffers, 4-2
line-oriented, 4-4, 5-1
modes of operation, 4-3
screen-oriented, 4-5, 6-1

Text editors (see line editor, ed editor,

screen editor, vi editor)
Text input mode, 4-3

in ed, 5-5, 5-33, D-7
in vi, 6-12, E-12

Timesharing, 1-2
/tmp system directory, 1-8, B-3
Turn off meaning of special characters

by quoting, 7-3, 7-11, F-3
Tutorial

for electronic communication, 8-1
for line editor (ed), 5-1
for shell command and programming

languages, 7-1
for visual editor (vi), 6-1

Types, in C programming language, 4-23
Typing

conventions, 2-6
nonprinting characters, 6-67
speed, 2-9

u

u111ame command, 8-8, C-2, C-8
recap of, 8-12

Unconditional control statements, 7-64
UNIX system description, 1-1
/usr system directory, 1-8, B-4
uucp command, 8-29, C-3, C-8
uuname command, 8-8, C-3, C-8

recap of, 8-12
uupick command, 4-20, 8-26, C-3, C-8

recap of, 8-29
uustaa command, 8-21, C-3, C-8

recap of, 8-25
uu~o command, 4-20, 8-21, C-3, C-8

recap of, 8-25

Variables, 7-38, F-2
assigning values to, 7-48, F-3
assigning name values with

positional parameters, 7-54
assigning name values by Read

command, 7-48

assigning name values with
command output, 7-52

names, 7-46, F-3
positional parameters, 7-39, F-2
used by the shell, 7-46, F-3

vi editor
accessing, 6-7, E-1, E-8
adding file to buffer, 6-77
adding text, 6-13, E-2, E-8
appending text, 6-47
answers to exercises, 6-88
changing lowercase characters to

uppercase characters, 6-73, E-2
changing text, 6-60, 6-63, E-13
changing uppercase characters to

lowercase characters, 6-73, E-2
changing your environment, 6-85
character positioning, 6-18, E-8
clearing and redrawing the window,

6-73, E-5, E-14
command, 6-1, C-3, C-8, E-1
commands for using

alphabetically arranged, E-1
arranged by topic, E-8
for getting started, 6-5, 6-15, E-8

copying
or moving text using registers, 6-69

copying text, 6-68
creating text, 6-8, 6-46, E-12
cutting and pasting text, 6-66, E-14
deleting commands in command

mode, 6-54, E-12
deleting commands in text input

mode, 6-51, E-12
deleting rest of buffer, 6-77, E-3
deleting text, 6-12, 6-51, E-3, E-12
deleting text objects, 6-55, E-13
escaping to shell, 6-75, E-15
exercises, 6-15, 6-45, 6-50, 6-60, 6-70,

6-84
finding line number, 6-76
fixing typos, 6-67
getting started in, 6-5, E-8
global changes, 6-77
hidden characters (see nonprinfing

characters in vi)

inserting text, 6-47
moving to specified line, 6-40

joining two lines, 6-72, E-14
leaving append mode, 6-9
line editor commands in,

6-74, 6-79, E-1, E-15
line numbers, 6-40
line positioning, 6-23, E-9
moving cursor, 6-9, E-2, E-3
moving text, 6-66

INDEX

nonprinting characters, 6-71, E-1,
E-14

positioning cursor at end or
beginning of line, 6-20, E-9

positioning cursor by paragraphs,
6-29, E-10

positioning cursor by sentences,
6-27, E-10

positioning cursor in the file,
6-34, E-11

positioning cursor in window, 6-16,
6-30, E-8, E-9

positioning cursor to right or left,
6-18

positioning on a numbered line,
6-40, E-11

quick reference to commands, E-1
quitting, 6-14, 6-80, E-16
repeating last command, 6-71, E-14
replacing text, 6-61, E-6
restoring file after system interrupt,

6-82, E-16
scro!Iing text, 6-35, E-11
searching for character on line, 6-21,

E-2, E-11
searching for character pattern, 6-41,

E-2, E-11
setting automatic carriage

return, 6-86
special commands, 6-71, E-14
special options, 6-77, E-16
substituting text, 6-62
terminal configuration, 6-5, E-8
undoing last command, 6-53, E-6
word positioning, 6-25, E-9, E-10
writing text to new file, 6-75,

E-6, E-7
Video display terminal

(VDT), 2-2, 4-4, 6-1
Visual editor (see screen editor)

i!NIDEX

w

wc command, 3-30, 3-47, C-3, C-9
recap of, 3-50

while loop, 7-64, F-4
who command, 2-19, C-3, C-9
whoson shell program, 7-42

recap of, 7-43

1-10

Window positioning in vi (see vi editor)
Word positioning in vi (see vi editor)
Working directory, 3-6

yacc command, 4-27, C-3, C-9

