
Replace this 

page with the 

DIRECTORY AND FILE MANAGEMENT 

tab separator. 





AT&T 

AT&T 382 Computer 
UNIXTM System V Release 2"0 
Directory and File Management 
Utilities Guide 





CONTENTS 

Chapter L INTRODUCTION 

Chapter 2. COMMAND DESCRIPTIONS 





Chapter 1 

INTRODUCTION 

PAGE 

GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l·l 

GUIDE ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 





Chapter 1 

INTRODUCTION 

GENERAL 
This guide describes command formats (syntax) and use of the Directory 
and File Management Utilities provided with your AT&T 382 Computer. 
The commands and procedures described in this guide can be used by 
anyone who has a need for enhanced file and directory manipulation on 
the 382 Computer. 

Directory and File Management Utilities are software tools to aid in 
managing your directories and files. With one-step commands, you can 
skillfully do any of the following: 

• Search directories and files 

• Compare their contents 

• Manipulate file data. 

OF 1-1 



INTRODUCTION 

GUIDE ORGANIZATION 
The remainder of this guide, Chapter 2 -- "COMMAND DESCRIPTIONS," 
describes the command formats (syntax) for each command in the 
Directory and File Management Utilities. The descriptions include the 
purpose of the command, a discussion of the command syntax and 
options, and examples of using each command. 

OF 1-2 



Chapter 2 

COMMAND DESCRIPTIONS 

COMMAND SUMMARY ................................................ . 

HOW COMMANDS ARE DESCRIBED ...........................•............ 

COMMANDS ........................................................ . 

"ar" - Archive and library Maintainer for Portable Archives ............. . 

"awk" - Pattern Scanning and Processing Language ................... . 

"bdiff" - Big Differential File Comparator ........................... . 

"bfs" - Big File Scanner Editor .................................... . 

"comm" - Select or Reject Common lines .......................... . 

"csplit" - Context Split .•........................................• 

"cut" - Output Selected Fields of a File ............................. . 

"diff3" - 3-Way Differential File Comparator ......................... . 

"dircmp" - Directory Comparison ................................. . 

"egrep," "fgrep" - Search a File for a Pattern ........................ . 

"file" - Determine File Type ...................................... . 

"join" - Relational Data Base Operator .............................. . 

"newform" - Change the Format of a Text File ....................... . 

"nl" - line Numbering Filter ..................................... . 

"od" - Octal Dump ....•......................................... 

"pack" - Compress Files ......................................... . 

"paste" - Side-by-Side File Merge .................................. . 

"peat" - Concatenate and Print Packed files ......................... . 

"pg" - Command Description ..................................... . 

"sdiff" - Side-By-Side Difference Program ........................... . 

"split" - Split a File Into Pieces ................................... . 

"sum" - Print Check Sum and Block Count of a File ................... . 

"tail" - Output End of a File ...............................•....... 

"tr" - Translate Characters ....................................... . 

"uniq" - Report Repeated lines in a File ............................ . 

"unpack" - Expand Files ......................................... . 

PAGE 

2-1 

2-5 

2-7 

2-7 

2-13 

2-29 

2-33 

2-47 

2-51 

2-55 

2-59 

2-63 

2-67 

2-73 

2-77 

2-79 

2-83 

2-87 

2-91 

2-95 

2-99 

2-101 

2-107 

2-111 

2-113 

2-115 

2-119 

2-123 

2-127 





Chapter 2 

COMMAND 
DESCRIPTIONS 

COMMAND SUMMARY 
The Directory and File Management Utilities Package provided with the 
382 Computer includes twenty-seven UNIX* System commands. These 
commands with a brief description are listed in Figure 2-1. 

* Trademark of AT&T 

DF 2-1 



COMMAND DESCRIPTIONS 

Commands Description 

ar Maintains groups of files that are part of a 
single archive file. 

awk Searches input lines for a matching pattern and 
performs specific actions. 

bdiff Finds what lines should be changed for two 
files to agree. 

bfs A read-only editor, similar to theed 
editor, that is used to scan big files. 

comm Selects or rejects lines common to two sorted 
files. 

csplit Splits a file into parts as specified. 

cut Cuts out selected fields of data on each line 
of a file. 

diff3 Compares three versions of a file. 

dircmp Compares two directories. 

egrep Searches a file for an egrep pattern, 
that is, a full regular expression. 

fgrep Searches a file for an fgrep pattern, 
that is, a fixed string. 

Fngure 2-L Directory and file Management Commands (Sheet 1 of 3) 

DF 2-2 



COMMAND DESCRIPTIONS 

Commands Description 

file Determines information about a file. 

join Joins two sorted files. 

newform Reads lines from a file or the standard input 
and reproduces those lines in a reformatted 
form on the standard output. 

nl Numbers lines in a file. 

od Outputs data in octal, decimal, ASCII, or 
hexadecimal formats. 

pack Stores file data in a compressed form. 

paste Merges the lines of two or more files in a 
side-by-side fashion. 

peat Unpacks a compressed file for viewing only. 

pg Allows you to view a file, one page at a time on 
a video display terminal. 

sdiff Compares two files to produce a 
side-by-side listing of different lines. 

split Splits a file into parts of equal length. 

Figure 2-L Directory and File Management Commands (Sheet 2 of 3) 

OF 2-3 



COMMAND DESCRIPTIONS 

Commands Description 

sum Calculates the checksum and blocks of a file. 

tail Copies a file or portion of a file to standard output. 

tr Filters a file by translating specified 
characters to other characters. 

uniq Reports file lines that are repeated. 

unpack Stores a compressed file in uncompressed form. 

Figure 2-1. Directory and File Management Commands (Sheet 3 of 3) 

OF 2-4 



COMMAND DESCRIPTIONS 

HOW COMMANDS ARE DESCRIBED 
A common format is used to describe each of the commands. This format 
is as follows: 

.. General: The purpose of the command is defined. Any special or 
uncommon information about the command is also provided . 

.. Command format: The basic command line format (syntax) is 
defined and the various arguments and options discussed . 

.. Sample Command Use: Example command line entries and system 
responses are provided to show you how to use the command. 

In the command format discussions, the following symbology and 
conventions are used to define the command syntax . 

.. The basic command is shown in bold type. For example, command 
is in bold type . 

.. Arguments that you must supply to the command are shown in a 
special type. For example: command argument. 

.. Command options and fields that do not have to be supplied are 
enclosed in brackets ([)). For example: command [optional 
arguments]. 

• The pipe symbol (I) is used to separate arguments when one of 
several forms of an argument can be used for a given argument 
field. The pipe symbol can be thought of as an exclusive OR 
function in this context. For example: command [argumentl : 
argument2] 

DF 2-5 



COMMAND DESCRIPTIONS 

In the sample command discussions, user inputs and 382 Computer 
response examples are shown as follows: 

This style of type is used to show system generated 
responses displayed on your screen. 

This style of bold type is used to show inputs 
entered from your keyboard that are displayed on your 
screen. 

These bracket symbols, < > identify inputs from the 
keyboard that are not displayed on your screen, such 
as: <CR> carriage return, <CTRL d> control d, <ESC g> 
escape g, passwords, and tabs. 

Th1:s sty/,e of italic type is used.for notes that 
provide you with additfonal informa,tion. 

Refer to the AT&T 382 Computer User Reference Manual for UNIX System 
V manual pages supporting the commands described in this guide. 

DF 2-6 



COMMAND DESCRIPTIONS 

COMMANDS 

"ar" - Archive and library Maintainer for Portable Archives 

General 

The ar command is used to maintain groups of files that are part of a 
single archive file. The ar command is mainly used to create and update 
library files that are used by the link editor (Id command), but it can be 
used for any similar purpose. Refer to the AT&T 382 Computer User 
Reference Manual for information on the Id command. When the ar 
command creates an archive, the archive file is put into a format with 
headers that are portable across all computers that are compatible with 
your AT&T 382 Computer. These headers are placed at the beginning of 
each archive and have the following format: 

#define ARMAG "<ar>" 

#define SARMAG 4 

struct ar _ hdr {/ * archive header*/ 
char ar_magic[SARMAG); /*magic number*/ 
char ar_name[l6];/* archive name*/ 
char ar _date[ 4];/ * date of last archive modification * / 
char ar_syms[4];/* number of ar_sym entries*/ 
}; 

The header is followed by an archive symbol table which is included in 
each archive that has common object files. This symbol table is 
automatically created by the ar command. The archive symbol table is 
used by the link editor to determine what archive members must be 
loaded during the link edit process. 

OF 2-7 



COMMAND DESCRIPTIONS 

There may be more than one archive symbol table. The number of symbol 
table entries is shown in the header under the ar_syms variable. Each 
archive symbol table has the following format: 

struct ar _ sym {/ • archive symbol table entry*/ 
char sym_name[8];/* symbol name, recognized by Id*/ 
char sym_ptr[ 4]; / * archive position of symbol * / 
} ; 

The archive symbol table is rebuilt each time the ar command is used to 
create or update the contents of an archive. 

The archive symbol table is followed by the archive file members. A file 
member header precedes each file member. The file member header has 
the following format: 

struct arf _hdr {I* archive file member header*/ 
char arf_name[l6];/* file member name*/ 
char arf_date[4];/* file member date*/ 
char arf_uid[ 4] ;/ * file member user identification * / 
char arf_gid[4];/* file member group identification*/ 
char arf_mode[4];/* file member mode*/ 
char arf_size[4];/* file member size*/ 
} ; 

All the information in the archive header, the archive symbol table, and the 
archive file member headers is stored in a machine (computer) 
independent fashion. Because of this, an archive file may be used on a 
computer that is compatible with the 382 Computer. 

DF 2-8 



COMMAND DESCRIPTIONS 

Command Format 

The general format of the ar command is as follows: 

ar key [ posname] afile name(s) 

The key argument uses the following options: 

Note: Options v, u, a, i, b, c, I, or s must be used in combination 
with at least one of options d, r, q, t, p, m, or x. 

d Delete name(s) from the archive file. 

r Replace name(s) in the archive file using the following options: 

u 

a 

b or i 

Replace only those files that have modified dates 
later than the archive files. 

Place new files after posname. 

Place new files before posname. 

The posname argument must be specified. If you do 
not specify where to place new files, they will be 
placed at the end. 

q Quickly append the named files to the end of the archive file. The 
positioning options under the r option will not work if used with 
this option. The ar command does not check to see if the added 
members are already in the archive. 

t Print a table of contents of the archive file. If name(s) is specified, 
only that file(s) will be placed in the table of contents. If name(s) 
is not specified, all files in the archive will be placed in the table of 
contents. 

DF 2-9 



COMMAND DESCRIPTIONS 

p Print the contents of name(s) in the archive file. 

m Move name(s) to the end of the archive. The positioning options 
under the r option can be used to place the file in a specific place. 

x Extract name(s). If name(s) is not specified, extract all files in the 
archive. This option will not alter the archive file. 

v Verbose. When making a new archive from an old archive and the 
constituent files, a file-by-file description of the process is given. 
When this option is used with the t option, a long listing of all 
information about the files is given. When this option is used with 
the x option, each file is preceded by its name. 

c Create afile. Normally, the ar command will create afile when it 
needs to. The normal message that is produced when afile is 
created will not appear when this option is specified. 

Place temporary files in the local directory. If this option is not 
specified, temporary files will be placed in /tmp. 

s Regenerate the archive symbol table even if the ar command is 
invoked with an option that will not change the archive contents. 
This option is useful to restore the archive symbol table after the 
strip command has been used on the archive. 

The posname argument is used to determine the position of a file that is 
being moved: either before or after posname. posname is the name of a 
file in the archive. The posname argument must be used when using the 
positioning options listed under the r option of the key argument. 

The afile argument is the name of the archive file. 

The name(s) argument is the name of the constituent files in the archive 
file. Take caution not to list name(s) twice. If name(s) is mentioned twice, 
it may be put in the archive twice. 

OF 2-10 



COMMAND DESCRIPTIONS 

Sample Commands 

The following command line entries and system responses show you how 
to create an archive. The Is command is used to show you the files that 
will be placed in the archive. The ar command used with the q option 
shows you how to create an archive named archivel. 

$ ls<CR> 
cars 
cities 
people 
states 
streets 
$ ar q archivel cars cities people states streets< CR> 
ar: creating archive 1 
$ 

The following command line entry and system response show you how to 
print a table of contents of the archive that was created in the previous 
example: 

$ art archivel<CR> 
cars 
cities 
people 
states 
streets 
$ 

DF 2-11 



COMMAND DESCRIPTIONS 

The following command line entry and system response show you how to 
print the contents of a file in an archive: 

$ ar p archi11el cars<CR> 
Camero 
Ferrari 
Jaguar 
Mustang 
Porsche 
$ 

The following command line entry and system response show you how to 
print a long listing of the table contents in an archive: 

$ ar t11 archivel<CR> 
rw------- 5516/ 5500 
rw------- 5516/ 5500 
rw------- 5516/ 5500 
rw------- 5516/ 5500 
rw------- 5516/ 5500 
$ 

DF 2-12 

38 July 19 13:29 1985 cars 
51July19 13:33 1985 cities 
29 July 19 13:27 1985 people 
51 July 19 13:48 1985 states 
60 July 19 14: 16 1985 streets 



COMMAND DESCRIPTIONS 

"awk" - Pattern Scanning and Processing language 

General 

The awk command is used to search lines of input data for defined 
patterns and to do specified actions on the lines or fields when a match is 
found. Lines that do not contain a matching pattern are ignored. 
Conversely, a line that contains more than one matching pattern can be 
operated on and output several times. One primary use of awk is for the 
generation of reports. Input data is processed to extract counts, sums, 
and other pertinent information. The processed information is then output 
in a specified format. 

The awk command has its own programming language for defining patterns 
and their corresponding actions. The language is designed to simplify the 
task of information retrieval and text manipulation. Initially, the novice 
user will find awk difficult to use and understand. Your understanding of 
awk will increase as you spend more time using (and experimenting with) 
the capabilities provided by the command. Remember that the use of this 
command is task oriented; you must establish a purpose for using the 
command. For example, the awk command can be used to output tabular 
material in a different sequence of columns. Certain basic arithmetic 
functions can also be performed on designated fields. 

Input Data Characteristics 

Input data is normally taken from files of data. The variable called 
FILENAME contains the name of the current input data file. Input data is 
divided into records with each record ended by a record separator. The 
record separator is stored in a variable named RS. The default record 
separator is a new-line character. This means that by default, awk reads 
and processes data on a line-by-line basis. The record separator can be 
redefined by setting the variable RS equal to the desired character. When 
the RS is empty (undefined), a blank line is used as the record separator. 
In addition, the field separators are defined as blanks, tabs, and new-lines. 
The novice user should not arbitrarily redefine the RS variable. The 
number of the current record (current line) is stored in a variable named 
NR. 

OF 2-13 



COMMAND DESCRIPTIONS 

Each input record (line) is divided into fields. Each field, except the last 
field, is ended by a field separator. The field separator is stored in a 
variable named FS. The default field separator is white space: blanks or 
tabs. The field separator can be redefined by setting the variable FS equal 
to the desired character. The novice user should not arbitrarily redefine 
the FS variable. Each field is identified by an uncommon variable. The 
variables are $1, $2, $3, and etc. The first field is named $1. The entire 
record (line) is named $0. The number of fields in the current record is 
maintained in a variable named NF. 

Command Language Format 

The instructions that tell the awk command what to do to the input data 
can be specified directly as an argument to the command, or the 
instructions can be read from a file. In either case, these instructions 
constitute an awk program. An awk program is a sequence of statements 
that are in the following form for each statement. Note that an action 
must be enclosed in braces to distinguish it from a pattern. Additional 
command format information is provided later in this description. The 
general form of each statement is as follows: 

pattern { action } 

The awk command operates on one record (line) of input data at a time. 
Each line of input data is tested against each of the command lines defined 
in an awk program. When a pattern match is found, the associated action 
is executed. When a command line defines a pattern without an 
associated action, then the input data record is output when a match is 
found. When a command line defines an action without an associated 
pattern, then the action is performed for all input lines (records). After all 
program command lines have been tested against the current record 
(line), the next record (line) is read and the process repeated until all 
records are read. 

OF 2-14 



COMMAND DESCRIPTIONS 

Patterns 

A pattern is an expression that determines whether the associated action 
is to be performed. When a command line defines a pattern without an 
associated action, then the input data record is output when a match is 
found. A variety of expressions can be used as patterns. Patterns can be 
regular expressions as used with ed or grep, relational expressions, or 
special expressions. Combinations of these types of expressions can be 
used to define a pattern by using Boolean operators to connect each 
expression. The Boolean operators are OR GI), AND (&&), and NOT(!). 
Conventional arithmetic operators are also provided. The arithmetic 
operators are add ( + ), subtract (· ), multiply (*), divide (/), and modulus 
(%). Also, included are the increment(++) and decrement(··) operators. 

Regular Expressions: Regular expressions, in their simplest form, are 
context search patterns in the form used by theed or grep commands. 
The awk language adds operators to the regular expression to specify 
whether the corresponding action is to be executed if the pattern matches 
C) or does not match (r). For example, the following pattern outputs all 
records in which the first field does not contain the word "operates". 

$1 r /operates/ 

Relational Expressions: Relationships are statements that express 
conditions such as greater than (> ), less than ( < ), greater than or equal 
to(>=), less than or equal to(<=), equal to(==), and not equal to(!=). 
For example, the following relational expression selects lines that begin 
with any letter that is equal to or greater than the letter s: All lines 
beginning with the letters s through z are matched by this pattern. 

$1 >= "s" 

Special Expressions: Two special expressions named BEGIN and END are 
provided. The BEGIN expression defines a special pattern that matches 
the beginning of the input data before the first record is read. The END 
expression defines a special pattern that matches the end of the input data 
after the last record has been processed. These special expressions 

OF 2-15 



COMMAND DESCRIPTIONS 

provide the means to establish initial and post-processing conditions. 
When BEGIN is used, it must be the first pattern in the awk sequence of 
commands (program). The END must be the last pattern in the program. 
The following example shows a typical structure. In this example, the field 
separator (FS) is set to a colon at the beginning of the program; the 
number of each record (NR) is output at the end of the program. 

BEGIN { FS = " :" } 

... body of program ... 

END { print NR } 

Two patterns, separated by a comma, can be used to control the 
execution of an action over a range of records. The action is executed for 
each record, starting with the match of the first pattern and continuing 
until the match of the second pattern, inclusive of the record containing 
the second pattern. The following example shows the general construction 
for a pattern range that controls an action: 

/pattern!/, /pattern2/ {action } 

Actions 

An action specifies a function that is to be executed. When an action is 
associated with a pattern, then the action is executed only when the 
current record (line) matches the associated pattern. An action that does 
not have a corresponding pattern is executed for each input record (line). 

DF 2-16 



COMMAND DESCRIPTIONS 

The various action terms recognized by the awk command are as follows: 

exp 
index(sl,s2) 
int 
length 
log 
print 
printf(" f' ,el,e2, ... ) 
split(s,array," sep") 
sprintf(" f' ,el,e2, ... ) 
sqrt 
substr(s,m,n) 

Each of these action terms are described in the following paragraphs. 

exp: The exp function computes e (2.7182818) raised to the x power, 
where xis a field argument. For example, when combined with the print 
function, the following statement outputs the value of ex for each record, 
where xis the value of third field: 

{ print exp($3) } 

index(sl,s2): The index function is used to obtain the starting position of 
a string (s2) within another string (sl). A zero is returned when s2 does 
not exist within sl. When combined with the print function, the following 
statement outputs the starting character position of a string Smith within 
the first field of each record: 

{ print index($1," Smith" ) } 

DF 2-17 



COMMAND DESCRIPTIONS 

int: The integer function converts irrational numbers to rational numbers 
for a specified field; numbers expressed to some fractional quantity are 
converted to whole numbers. The function DOES NOT round off numbers. 
Fractional quantities are deleted. For example, the number 3.984 would 
be converted to the number 3. When combined with the print function, 
the following statement outputs the fifth field of each record expressed as 
whole numbers (integers): 

{ print int($5) } 

length: The length function computes the length of a string of 
characters. When combined with the print function, the following 
statement outputs the length of each record (line): 

{ print length($0) } 

The following statement outputs the length of each record, followed by the 
record: 

{ print length($0), $0 } 

The length function can also be used to output records (lines) that are 
within a specified length range. For example, the following statement 
outputs all records that are less than 20 and greater than 10 characters in 
length. The II is the Boolean OR function. 

{ length > 10 :: length < 20 } 

OF 2-18 



COMMAND DESCRIPTIONS 

The following statement outputs all records that are outside the 10 to 20 
character range: 

{ length < 10 :: length > 20 } 

log: The log function computes logarithms to the base e. When 
combined with the print function, the following statement outputs the 
logarithm of fifth field for each record: 

{ print log($5) } 

print: The simplest action provided is the print function. For example, 
the following statement outputs the first two fields of each record in 
reverse order (field 2 followed by field 1 ): 

{ print $2, $1 } 

The output of a print statement can be directed to a file. For example, the 
following statement outputs the first field to filel and the second field to 
file3 for each record: 

{ print $1 >> "filel"; print $2 >> "file3" } 

The output of a print statement can be directed to another program. For 
example, the following statement outputs the fifth field of each record to 
the sort command: The output of the sort command is directed to a file 
named file5. 

{ print $5 I" sort -o file5" } 

DF 2-19 



COMMAND DESCRIPTIONS 

pri111tf(" f" ,el,e2, ... ): The printf converts, formats, and prints its 
arguments on the standard output. This function is exactly like the C 
Language printf function. The f argument specifies the format. The 
expressions to be formatted are specified by the e arguments. For 
example, the following statement prints the third field of each record as a 
floating point number that is ten digits wide with two decimal places. The 
fifth field is printed as a ten-digit long decimal number, followed by a new­
line (\n). 

{ printf(" %8.2f %101d\n", $3, $5) } 

Remember that with this print function, you must specify the output field 
separators; no field separators are automatically output 

split(s,array," sep" ): The split function is used to automatically divide a 
string into fields. The sep argument. if provided, defines the field 
separator. The FS variable is used as the field separator if the sep 
argument is omitted from the statement. The string s is divided into fields 
defined by the array argument For example, the following statement 
divides the second field of a record into elements of an array named z 
based on the dash as the field separator. Each element of the array (field) 
is individually identified. The first element is named z[l]; the fifth element 
is z[5]. In the following example, the print function is used to output the 
fifth field of the array z: 

{ split($2,z," -");print z[5]} 

sprintf(" f" ,el,e2, ... ): The string print function is used to place formatted 
output in a character array pointed to by a single character name. The 
sprintf converts, formats, and outputs its arguments to a string name. For 
example, the following statement sets x equal to the formatted result of 
the third and fifth field. The third field of each record is formatted as a 
floating point number that is ten digits wide with two decimal places. 

DF 2-20 



COMMAND DESCRIPTIONS 

The fifth field is formatted as a ten-digit long decimal number followed by a 
new-line (\n). Thus, the variable x is set to the string produced by 
formatting the values of fields $3 and $5. The variable x can be used in 
other statements to express these values as a formatted expression. 

{ x = sprintf(" %8.2f %10ld\n", $3, $5) } 

sqrt: The square root function computes the second root of a specified 
item. When combined with the print function, the following statement 
outputs the square root of the first field for all records: 

{print sqrt($1)} 

substr(s,m,n): The substring function is used to obtain a specified part of 
a string. The m argument defines the starting character position of the 
substring. The beginning of the string is character position number 1. The 
111 argument defines the number of characters to be included in the 
substring. If the n argument is omitted, the substring is defined from the 
beginning position m to the end of the string s. When combined with the 
print function, the following statement outputs part of the third field for all 
records. The portion of the field that is selected is the fifth character 
position to the end of the field. 

{ print substr($3,5) } 

Assigning Variables 

Variables are assigned as either floating point numbers or as string values. 
Unlike C Language, variables DO NOT have to be declared at the beginning 
of a program. For example, the following sets x equal to the string word: 

x ="word" 

DF 2-21 



COMMAND DESCRIPTIONS 

The following sets x equal to the number 100: 

)( =" 100" 

Arrays 

Arrays are used to hold fields of data that are called elements. Each 
element or field in the array is identified by its sequential position. Array 
elements can also be named by nonnumeric values, which provides an 
associative type of memory. For example, the following awk program 
counts the number of times the patterns apple and orange occur. The 
results are stored in an array named z. The accumulated counts for each 
of these patterns is output at the end of the program. Note that the ++ 
operator increments the count by one each time it is called. 

/apple/ {z[" apple"]++} 
/orange/ {z[" orange"]++} 
END {print z[" apple"], z[" orange" ]} 

The following example does the same function as the previous program. 
The only differences are that numeric designators are used for the 
elements of the array as opposed to associative names, and that the 
names are output to identify the counts. 

/apple/ {z[l]++} 
/orange/ {z[2]++} 
END {print" apple =" z[l]" orange =" z[2l} 

Control Flow Statements 

The awk programming language provides the following basic control flow 
statements: if-else, while, and for. Also provided are the following control 
statements: break, continue, and next. The break statement causes an 
immediate exit from an enclosing while or for construction. The continue 
statement causes the next cycle of a loop to begin. The next statement 
causes awk to immediately skip to the next record and begin processing. 

DF 2-22 



COMMAND DESCRIPTIONS 

Control flow constructions are exactly like that of the C Programming 
Language. For example, the following construction outputs all fields on a 
separate line using a while statement: 

i=l 
while (k=NF) { 

print $i 
++i 

The following example construction outputs all fields on a separate line 
using a for control statement: 

Commenting Programs 

for (i=l;k=NF;++i) 
print $i 

In general, the awk programs that you write are done so in files. Only the 
simplest of awk functions are done by specifying patterns and actions 
directly to awk as arguments. When writing a program, the importance of 
adequately providing comments that show what you are doing at various 
stages in the program cannot be over emphasized. 

Comments are entered by preceding the comment with a pound symbol 
(#). The comment ends with the end of the line. When more than one line 
is used for a comment, each comment line must begin with the pound 
symbol. Remember that if your erase character is the pound symbol, you 
must precede the pound with a backslash (\) to enter the symbol. This is 
referred to as escaping the special meaning of the character. The 
following shows how you enter comments into a program: 

print x, y # Print results 
# This is a continued or new comment line. 

OF 2-23 



COMMAND DESCRIPTIONS 

Command Format 

The general format of the awk command is as follows: 

awk [-f source: 'cmds'] [parameters] [file] 

The instructions that tell the awk command what to do can be directly 
expressed to the command as arguments or they can be entered into a file 
that is then read by the command. When instructions are expressed as 
arguments, they are in the form 'cmds '. Note that instructions that are 
expressed as arguments must be enclosed in single quotes. When 
instructions are placed in a file, the file is specified to the awk command in 
the form -f file. Note that the file name can be expressed as a full path 
name. 

The parameters argument is used to identify the value of variables. The 
argument is: x= ... y= ... , and so on. Note that a space is used to separate 
each variable statement. 

The files argument identifies the input data file. The file name can be 
expressed as a complete path name. 

Sample Command Use 

The following examples are based on a file named list. This file contains a 
list of names, addresses, and phone numbers as follows. Note that the 
format of each line of this file is name(tab)address(tab)phone. 

$ cat !iskCR:> 
Nancy 1080 Route 3, Farmington, NC 27015 919-736-2437 
John 4589 Breckenridge, Clemmons, NC 27012 919-828-7512 
Sam 2700 Route 67, Winston-Salem, NC 27106 919-234-1940 
doctor 4100 First St, Winston-Salem, NC 27102 919-727-1111 
$ 

DF 2-24 



COMMAND DESCRIPTIONS 

The first example uses the awk command to output selected names and 
addresses from the list file in a format suitable for mailing labels. The 
program is in a file called labelsprgm and follows: 

$ cat labelsprgm<CR> 
BEGIN{FS=" \t"} 
$1" /Nancy /11$1" /Sam/ {split($2,x," ,") 
printf(" %s\n%s\n%s\n%s\n\n" ,$1,x[ 1] ,x[2] ,x[3])) 
$ 

The second example uses the awk command to output selected names and 
phone numbers from the list file. The program is in a file called numbers 
and follows: 

$ cat numbers<CR> 
BEGIN{FS=" \t"} 
$1" /Nancy /11$1" /Sam/ {printf(" %s\t%s\n" ,$1,$3)) 
$ 

The following command line entry and system responses show the use of 
the labelsprgm: 

OF 2-25 



COMMAND DESCRIPTIONS 

$ awk -f labelsprgm list<CR> 
Nancy 
1080 Route 3 
Farmington 
NC 27015 

Sam 
2700 Route 67 
Winston-Salem 
NC 27106 

$ 

The following command line entry and system responses show the use of 
the numbers program: 

$ awk -f numbers list<CR> 
Nancy 919-736-2437 
Sam 919-234-1940 
$ 

The following example is based on a file named gaintbl. This file is a table 
containing columns of measured data, input and output voltage (Vi and 
Vo), and blank columns for new data. 

$ cat gaintbkCR> 
Vi Vo Vo/Vi Log+Av Av(dB) 

2 5 
8 15 
10 18 
$ 

DF 2-26 



COMMAND DESCRIPTIONS 

In this example, the awk command performs several arithmetic operations 
on the data in gaintbl. The measured data and the resulting new data are 
output in a table format. Since the field separators of gaintbl are spaces, 
a BEGIN statement is not required. The program is in a file called 
calcprgm and follows: 

$ cat calcprgm<CR> 
# 
# PRINT TABLE HEADING 
$r /Vi/11$1" /--/ { 
printf" %s\t%s\t%s\t%s\t%s\n" ,$1,$2,$3,$4,$5} 
# 
# CALCULATE & PRINT DATA 
$Ir /Vi/ &&$1 !" /--/ {$3=($2/$1 );$4=1og($3);$5=20"$4; 
printf" %21d\t%21d\t%3.3f\t%3.4f\t%3.3f\n" ,\ 
$1,$2,$3,$4,$5} 
$ 

The following command line entry and system responses show the use of 
the calcprgm: 

$ awk -f calcprgm gaintbl<CR> 
Vi Vo Vo /Vi Log+Av Av( dB) 

2 5 2.500 0.9163 18.326 
8 15 1.875 0.6286 12.572 

10 18 1.800 0.5878 11.756 
$ 

DF 2-27 





COMMAND DESCRIPTIONS 

"bdiff" - Big Differential File Comparator 

General 

The bdiff command operates much like the diff command covered later in 
this chapter. It compares two files and outputs instructions that tell what 
must be changed to bring the two files into agreement. The purpose of 
bdiff is to compare files that are too large for diff to process. It splits the 
files being compared into segments and performs diff on each segment. 
The output is identical to that of diff, except the line numbers are adjusted 
to account for the previous segments. 

Command Format 

The general format for the bdiff command is as follows: 

bdiff filel file2 [n] [-s] 

If no options are specified, bdiff ignores the lines that are common to the 
beginning of both files and splits the remainder of each file into 3500-line 
segments. The diff command is then performed automatically on the 
segments. The output will be the lines of the first named file followed by 
the lines of the second named file that are different. The less-than symbol 
( <) precedes the lines of the first named file. The greater-than symbol (>) 
precedes the lines of the second named file. 

The optional third argument, n, is used to specify the number of lines to be 
contained in the file segments. If n is given in numeric form, the files are 
split into n-line segments instead of the 3500-line default count. These 
n-line segments are useful where the 3500-line segments are still too large 
for diff to handle. 

The -s option will suppress any diagnostics that would be displayed by 
bdiff. However, any diagnostics output by diff will still be displayed. 

DF 2-29 



COMMAND DESCRIPTIONS 

If both the n and -s options are specified, they must be specified in the 
order shown in the command format, that is, the numeric value for n is 
entered before the -s option. 

If a dash(-) is entered instead of filel or file2, the file that is named will 
be compared to what is input from the terminal. The input is entered 
exactly as it is to be compared to the named file. A "control d" is used to 
show the end of the input. 

Sample Command Use 

The following command line and system response shows how to output the 
differences between chapterLl and chapterL2: 

$ bdiff chapterl.1 chapterl.2<CR> 
23c23 
< designed for Release 1.1 of the software. 

> designed for Release 1.2 of the software. 
104cl04 
< with update considerations for Release 1.2 compatibility. 

> with update considerations for Release 1.3 compatibility. 
$ 

OF 2-30 



COMMAND DESCRIPTIONS 

The following command line and response show how to split the files into 
1000-line segments: 

$ bdiff fi!el file2 1000<CR> 
2124c2124 
< is a sample of the command. 

> is an example of how to use the command. 
$ 

Note: The difference between the two files was found in the 
second segment, but bdiff adjusts the line count to specify the 
correct line number for the original file. 

The following example shows how to format chapl and compare the 
formatted file to OLDchapl. The format program for this example is called 
form. 

$ form chapl I bdiff OLDchapl-<CR> 
72c72 
< will not be displayed on the screen. 

> will be displayed on the screen. 
$ 

Note: In this example, OLDchapl lines will be displayed first. The 
order may be reversed if the filename and - are reversed. 

DF 2-31 





COMMAND DESCRIPTIONS 

"bfs" - Big File Scanner Editor 

General 

Note: This command does not follow the same format as the other 
commands in this Utilities Guide. 

This part of the chapter describes the bfs (big file scanner) editor used on 
the 382 Computer. The bfs editor is similar to the ed editor, except that it 
is read-only. Since bfs cannot be used to change a file, commands such 
as: insert, append, substitute, delete, and move will not execute. 

8fs works with the file instead of a copy placed in a buffer (temporary 
memory). It is normally used for processing files that are too large for 
conventional editing. 8fs can access files up to 1024 kilobytes (maximum 
size) and 32,000 lines--with up to 255 characters per line. 

The bfs editor is useful for identifying sections of a large file where the 
commands esp/it or split can be used to divide it into more manageable 
pieces for editing. The esp/it and split commands are included in this 
Utilities Guide. 

This editor description assumes that you know how to log in to the 382 
Computer. If you do not, refer to the AT&T 382 Computer 
Owner /Operator Manual. 

Refer to the AT&T 382 Computer User Reference Manual for UN IX System 
V manual pages supporting the commands described in this guide. 

DF 2-33 



COMMAND DESCRIPTIONS 

Current Line Definition 

Throughout this chapter, the term "current line" is used to identify what 
line in the file you are currently on. To display the current line, enter: 

Any commands you execute will use this line as a reference point. 

Getting Started 

The bfs editor can only be used on existing files. To create a new file by 
inputting data directly, you must use another editor. However, bfs can be 
used to create a new file if you need to copy part of an existing file into 
another file. Commands to do this are discussed later in this chapter. 

To execute the bfs editor, you must first be logged in to the 382 
Computer. Once you are logged in, the UNIX System prompt($ or #) 
should be displayed. You are now ready to begin working with the bfs 
editor. 

Accessing a File 

To scan a file using the bfs editor, you will need to type bfs followed by a 
space, and then the name of the file you wish to scan. Execute the 
command by entering a carriage return <CR>. For example: 

$ bfs filename<CR> 

will execute the bfs editor against the file "filename". If you entered the 
command correctly, the response will be a number that represents the 
number of characters in the edited file. 

If you do not enter the command correctly, you will receive a usage 
message indicating an incorrect syntax was used. When this occurs, verify 
the name of the file; make sure you are in the right directory; and reenter 
the command correctly. 

DF 2-34 



COMMAND DESCRIPTIONS 

If you do not want the editor to display the size of the file, enter: 

$ bfs • filename<CR> 

where filename is the name of the file you want to access. The 382 
Computer will not display a response. 

Once you are in the bfs editor, you may begin scanning the file. To begin 
displaying lines in the file, you must enter a line number (tor example: 1) 
followed by a carriage return. The editor will use the line as a reference 
point. After you display a line, any of the commands described in this 
chapter can be used. 

Displaying a Prompt 

The bfs editor does not display a prompt unless you request one. At 
times, absence of a prompt can be confusing. Most users find it easier to 
use the editor with the prompt (*) displayed. To display the prompt, 
enter: 

P<CR> 

Receiving Error Messages 

When the prompt is not requested, any editor error message displayed will 
simply be"?". To receive self-explanatory error messages, the prompt 
must be turned on. See the previous discussion on "Displaying a Prompt". 

Getting File Information 

There are two editor commands that can be used to obtain information 
about the file you are editing. To display how many lines are in the file, 
enter: 

=<CR> 

To display the name of the file, enter: 

f<CR> 

DF 2-35 



COMMAND DESCRIPTIONS 

Quitting the Editor 

Because the bfs editor is read-only, it will allow you to quit without warning 
you to write the file. To quit the editor, enter: 

The 382 Computer will return you to the UNIX System. 

Displaying Lines in the File 

As previously discussed in "Current Line Definition", the current line is 
always displayed whenever you move through the file. However, you can 
display more than one line by using the print command (p). An example of 
the print command would be: 

1,lOp<CR> 

that would display lines 1 through 10. This form of the print command can 
be used to display as much of the file as you wish. The end of file symbol 
($) can also be used with the print command to display lines. For 
example: 

250,$p<CR> 

will display lines 250 through the end of the file. As you become familiar 
with the editor, you will find that the lines will be displayed even if you 
leave the p off the end of the command. For example: 

250,$<CR> 

will display from line 250 to the end of the file. 

The print command can also be used with other commands, such as 
searches and marks. These uses of the print command are discussed in 
the explanation of the individual commands. 

DF 2-36 



COMMAND DESCRIPTIONS 

Basic Movement Commands 

As previously discussed, one way to move through a file is to use the 
carriage return. You can also use the + and - commands with the carriage 
return to move you forward or backward through the file. With these 
commands, you can move to an adjacent line in the file. 

To move in larger steps, you can use numbers with the + and - commands. 
For example: 

+15<CR> 

will move you forward in the file 15 lines, and display the current line. 
Likewise, 

-15<CR> 

will move you backward 15 lines and then display the current line. 

Each line in the file has a line number associated with it, although it is not 
displayed. The bfs editor allows you to move across large areas of the file 
by just entering a line number followed by a carriage return. For example: 

375<CR> 

will make 375 the current line and display the line. 

Another movement command that is useful on large files is the $. If you 
enter: 

bfs will move you to the last line of the file and display the line. 

OF 2-37 



COMMAND DESCRIPTIONS 

Forward and Backward Searches 

If you do not know a specific line number, but you do know an exact 
pattern of characters on a line in the file, the quickest way to locate that 
line is with a search. The pattern must be on one line" There are several 
types of searches. The type you should use depends on your specific 
application. 

Searches With Wrap-Around 

When entering a command, the bfs editor interprets the character "/" as 
meaning "search tor this pattern". The search command"/" searches 
from the current line forward through the file for the first occurrence of 
the pattern. When the end of the file is reached, the search will wrap­
around to the beginning of the file and continue searching until the pattern 
is found or it reaches the line where the search started. If the pattern is 
found, the line will be displayed and will become the current line. An 
example of a forward search command would be: 

/learning the bfs editor/ <CR> 

that will search for the first occurrence of a line containing the pattern 
"learning the bfs editor", make it the current line, and display the line. If 
the pattern is not found, the message: 

"learning the bfs editor not found" 

will be displayed. This means the pattern you searched for is not on one 
line in the file, and the current line does not change. Check to see if you 
entered the command correctly, or if it included any characters with a 
special meaning (see "Special Search Characters"). 

The character "?" also executes a search when used in a command. It 
works the same as the "/" search character, except that it searches 
backward through the file from the current line. This search will wrap­
around to the end of the file and continue searching until the pattern is 
found or it reaches the line where the search started. An example of a 
backward search command would be: 

?learning the bfs editor?<CR> 

DF 2-38 



COMMAND DESCRIPTIONS 

Searches Without Wrap-Around 

Another set of search commands can be used that do not wrap-around the 
end of the file. These commands are similar to the wrap-around searches, 
except that they stop at the beginning or end of the file. The forward 
search command ">" searches for the first occurrence of the specified 
pattern until it reaches the end of the file. An example of this type of 
forward search command would be: 

>learning the bfs editor><CR> 

If the pattern is found, the line will be displayed and will become the 
current line. If the pattern is not found, the message: 

" learning the bfs editor 111ot found" 

will be displayed and the current line will not change. 

The character "<" also executes a search. It works the same as the ">" 
search, except that it searches from your current position backwards until 
it reaches the beginning of the file. An example of this type of backward 
search command would be: 

<learning the bfs editor<<CR> 

Repeating a Search 

Often when searching for a pattern, the first occurrence is not the one you 
were actually looking for. You could repeat the entire search command, 
but there is a much easier way. The editor remembers the last search 
pattern entered. If you enter the command: 

//<CR> 

a forward search will look for the remembered pattern. The commands 
? ? , > >, and < < will also repeat searches. The type of search repeated 
depends on the command used. The repeated search does not have to be 
the same type as the original search. 

OF 2-39 



COMMAND DESCRIPTIONS 

Global Searches 

The bfs editor also allows you to do global searches on the file. A global 
search is used to find all the occurrences of a specified pattern in a file. 
This type of search is useful when scanning for a pattern that occurs in 
several places. The two types of global searches that can be executed use 
the g and v commands. 

The global search that uses the g command locates all the lines that 
contain a specified pattern. An example would be: 

g/sample pattern/p<CR> 

that will search for and display all lines containing the words 
"sample pattern". The current line will be the last line displayed. 

The global search that uses the v command locates all lines that do not 
contain a specified pattern. An example would be: 

v/sample pattern/p<CR> 

that will search for and display all lines that do not contain the words 
"sample pattern." The current line will be the last line displayed. 

Special Search Characters 

Several characters have special meaning when used in specifying searches. 
These characters will work with all types of searches. They can be used 
to: match repetitive strings of characters, turn off special meanings of 
characters, or denote the placement of characters in the line. These 
characters are: " .. ", ' 1 * 11

, 

11
\

11
, "[]", 

11 $", and''". 

The period matches any single character except the newline 
(carriage return) character. For example: 

/bfs edit.r /<CR> 

will search for a pattern such as "bfs editor", "bfs editxr", or with 
any other character on a line between "bfs edit", and "r". 

OF 2-40 



COMMAND DESCRIPTIONS 

* The asterisk matches any string of characters except the first ., \, 
[, or - in that group. For example: 

/the x* editor/ <CR> 

will search for a pattern such as "the xxx editor", 
"the xxxxxx editor", or a pattern with any amount of "x" 
characters on a line between "the" and "editor". 

\ The backslash is used to nullify the meaning of the special 
characters. It should be placed immediately before the character it 
is to nullify. For example: 

/This is a \$/<CR> 

will search for the pattern "This is a $", instead of interpreting the 
"$"as meaning "at end of line". 

[] Brackets are used to enclose a variable string. For example: 

/Search for file[23]/ <CR> 

will search for the patterns "Search for file2"or "Search for file3" 
and stop at the first occurrence of either pattern. 

$ The dollar sign is interpreted by the editor to mean "end of the 
line". It is used to identify patterns that occur at the end of a line. 
For example: 

/last character$/ <CR> 

will search for the next occurrence of a line ending in "last 
character", and make it the current line. 

DF 2-41 



COMMAND DESCRIPTIONS 

The circumflex (caret) works like "$" except it looks for the pattern 
at the beginning of the line. For example: 

/'First character/<CR> 

will search for the next occurrence of the pattern "First character" 
at the beginning of a line and makes it the current line. 

To search for the characters., *, \, [. ], $, or', you must precede the 
characters with a backslash. This will nullify the characters special 
meaning. 

Marking Lines 

The bfs editor gives you the ability to set marks in the file. Marks are 
useful when you are planning on moving around in the file and you want to 
set some reference points. They can save you from having to search for 
the same address several times. 

Marks are set by moving to the line where you want the mark set and 
using the k command. The mark must be a single, lower case letter. For 
example, if you wanted to identify a line with the mark "a", you would 
move to that line and enter the command: 

To move to that marked line from anywhere in the file, enter the 
command: 

The marked line will become the current line. To set another mark, repeat 
the k command using a different letter. 

OF 2-42 



COMMAND DESCRIPTIONS 

To change an existing mark, move to the line where you want the mark 
and use the k command with the existing mark. The new position will 
replace the previous one. 

The n command will display a list of the active marks. For example, if the 
active marks in a file were a, b, and c, you could display them by entering: 

The system response would be: 

a 
b 
c 

Notice that only the marks are displayed and not the lines. 

Note: All marks are removed if you quit the editor using the q 
command. However, if you leave the editor by using thee 
command and then return to the file with the e command, all 
marks are saved. See "Changing Files While Using the " bfs " 
Editor." 

Writing to Another File 

The bfs editor allows you to copy all or part of the file you are editing to 
another file. To copy the whole file to another file, use thew command 
and the name of the file you want to create. For example: 

w newfile<CR> 

will create a copy of the file you are editing and name it "newfile". The 
number of characters in the new file will be displayed to show that the new 
file was created. 

DF 2-43 



COMMAND DESCRIPTIONS 

Caution: Be careful when naming the new file. If you use an 
existing filename, the text in that file will be overwritten by the 
new text 

If you only want to write part of the file, you must specify the beginning 
and ending lines you want to write. For example: 

50,220w newfile<CR> 

will create a file named "newfile" which will contain lines 50 through 220 
of the file you are editing. 

Changing Files While Using the "bfs" Editor 

When using the bfs editor, only one file can be scanned at a time. 
However, the "e" command allows you to change files without quitting the 
editor. For example, if you are scanning filel with the bfs editor and want 
to change to file2, you would use the command: 

e file2<CR> 

Th is will cause the editor to leave file 1 and enter file2. To reenter file 1, 
you would need to use the e command again. Using the quit (q) command 
will cause you to leave the file you are now in and return you to the UNIX 
System. 

Issuing UNIX System Commands 

The bfs editor allows you to execute a single UNIX System command by 
entering a command of the form: 

!cmd<CR> 

where "cmd" represents the command you want to execute. The system 
will then execute the command. When finished, bfs will display an ! and 
then return you to the current line in the file. You can then continue 
editing or issue another ! command. 

DF 2-44 



COMMAND DESCRIPTIONS 

If you need to execute more than one UNIX System command, enter the 
command: 

!sh<CR> 

When you are finished executing UNIX System commands, enter a 
control-d (depress and hold the CONTROL "CTRL" key and simultaneously 
depress the "d" key). The editor will display an ! and return to the current 
line in the file. 

High-Level "bfs" Commands 

A "command file" is an executable file that contains editor commands. 
Command files may be set up and run against other files with the bfs 
editor. When executing command files, the output is directed to another 
file. 

OF 2-45 





COMMAND DESCRIPTIONS 

"comm" - Select or Reject Common Lines 

General 

The comm command compares two files and produces an output showing 
the differences and similarities between them. The contents of the two 
files should be in alphabetical order, that is, in order according to the ASCII 
collating sequence. The output is formatted into three columns. The first 
column lists those lines found only in the first named file, the second 
column lists those lines found only in the second named file, and the third 
column lists those lines that are common to both files. 

Command Format 

The general format for the comm command is as follows: 

comm [ - [ 123 ] ] filel file2 

The - [123] option suppresses the column corresponding to the number 
specified. For example, if -1 is specified, the first column of the output is 
not displayed. Thus, only those lines uncommon to the second named file 
and those lines common to both named files are displayed. 

If a dash (-) is entered in place of a file name, the standard input from 
the terminal is read. The comm command compares the input with the 
file and produces the three-column output as before. 

OF 2-47 



COMMAND DESCRIPTIONS 

Sample Command Use 

The examples provided are based on the contents of two files named listA 
and listB. The contents of these two files are as follows: 

listA: birds listB: birds 
cats cats 
dogs horses 
horses mice 
mice mules 
snakes pigs 

The following command line and system response shows how to compare 
the two lists and receive all columns of the output: 

$ comm listA listB<CR:> 
birds 

dogs 
cats 

horses 
mice 

mules 
pigs 

snakes 
$ 

DF 2-48 



COMMAND DESCRIPTIONS 

The following command line and system response shows how to compare 
the two lists and output only those lines that are common to both files: 

$ comm -12 listA iistEkCR> 
birds 
cats 
horses 
mice 
$ 

DF 2-49 



COMMAND DESCRIPTIONS 

The following example shows how to alphabetize a file named list and 
compare it to listB with the same command line. The file list is: 

birds 
mice 
dogs 
cats 
pigs 

The command line uses sort to alphabetize the file list. 

$ sort list : comm - listB<CR> 
birds 

dogs 

$ 

OF 2-50 

cats 

horses 
mice 

mules 
pigs 



COMMAND DESCRIPTIONS 

"csplit" - Context Split 

General 

The csplit command splits a file into sections using input arguments as the 
boundaries of the sections. The sections are suffixed with a number 
starting with 00 and may go up to 99. The first section (00) will contain 
from the beginning of the file up to, but not including, the line defined by 
the first argument. The second section (01) will contain the line defined by 
the first argument up to, but not including, the line defined by the second 
argument. The last section will contain the line defined by the last 
argument through the end of the original file. The original file is not 
affected. 

Command Format 

The general format for the csplit command is as follows: 

cspiit (-s] [-kl [-f prefix] filename argl [arg2 ... argn] 

The csplit command normally outputs the character count of each section 
as the section is created. The -s option will suppress the printing of these 
character counts. The process is complete when the system response is 
returned. 

If an error occurs during the csplit operation, the sections that have been 
created are removed. The -k option overrides the removal of previously 
created files. However, the process will halt at the point the error 
occurred. The current section and the remainder of the original file will 
not be processed. 

The created files are normally named xxOO thru xxnn. If the -f prefix 
option is used, the files are named prefixOO through prefixnn. 

The filename is the name of the original file that is to be split. The 
command will start at the beginning of the file and search for the first 

DF 2-51 



COMMAND DESCRIPTIONS 

argument. That section is then written into a file, and the argument is 
used as the beginning for the next section. The arguments for the csplit 
command can be any combination of the following: 

/string/ 

%string% 

zzz 

{num} 

OF 2-52 

A file will be created from the current line up to, but not 
including, the line containing the character string string 
This string may be followed by a +n or -n where n is a line 
number. For instance, if your file should contain Page 5 
and the three lines that follow it in the original file, the 
expression would be /Page 5/+3. If the character string 
has blanks or other significant characters to the command, 
the string must be enclosed in quotes. 

This argument acts exactly like /string/ except that no file 
will be created for the section from the current line to the 
line containing %string%. 

A file will be created from the current line up to, but not 
including, line number zzz. The line numbered zzz would 
then become the current line, that is, the first line in the 
next section. 

The argument that appears before { num} will be repeated 
num times. If the argument is a string type argument, that 
argument is searched for num more times. By using 
{ num} after the zzz argument, you can split a file num 
times every zzz lines. It is a good idea to use the -k option 
with this argument because if the { num} number is too 
high, you will receive an error message and lose the files 
that have already been created. 



COMMAND DESCRIPTIONS 

Sample Command Use 

The following example shows how to split the file basic into three pieces, 
basOO, basOl, and bas02. The first line of basOl will contain the string 
test procedures. The first line of bas02 will contain the string 2.05. 

$ csplit -f bas basic" /test procedures/" /2.05/<CR> 
2345 
1068 
297 
$ 

The following example shows how to split the file doc into pieces of 100 
lines each. To be sure that the entire file is split, an arbitrary number, 99 
has been used for the number of times to split the file. Any lines over 
10,000 will not be split. The -s option is used to suppress the character 
counts of each 100-line file. 

Ii "Plit -• -k do< 100 {99)<CIC-

The 100-line files would be named xxOO through xxnn. 

The following example shows how to save the last piece of the file mail. 
The saved file, xxOO, contains the text from the line MISC to the end of the 
file. 

OF 2-53 





COMMAND DESCRIPTIONS 

"cut" - Output Selected Fields of a File 

General 

The cut command is used to output selected columns or fields from a line 
of data. The lines of data operated on by the cut command can be from 
one or more files, the output of another command, or from the terminal 
(standard input). 

Command Format 

The general format of the cut command is as follows: 

cut -clist [fi/e(s)] 

cut -f/ist [-dchar] [-s] [file(s)] 

The -c/ist argument identifies the character positions in each line that are 
to be output. Individual character positions are identified by integers. A 
comma (,) is used to separate each position identifier. Ranges are 
specified by using a dash between the starting and ending number in the 
range. For example, character positions 1, 5, and 7 through 10 are 
identified as follows: 

-cl,5,7-10 

The -flist argument identifies the field positions of each line that are to be 
output A comma (,) is used to separate each field identifier. Ranges are 
specified by using a dash between the starting and ending number in the 
range. For example fields 1, 5, and 7 through 10 are input as follows: 

-fl,5,7-10 

The -s option is used with the -flist argument to prevent lines that do not 
contain field delimiters from being output. 

OF 2-55 



COMMAND DESCRIPTIONS 

The -dchar argument identifies the field delimiter. The default field 
delimiter is the tab character. For example, the argument -d: defines a 
colon as the field delimiter. Delimiter characters that have a special 
meaning to the shell must be either placed in single quotes or escaped by 
preceding the character with a backslash (\). For example, the space can 
be defined as a field delimiter by the following: 

-d' ' 

The file(s) argument identifies the name or names of the files that are to 
be operated on by the command. 

Sample Command Use 

The following sample command line entries and system responses show 
you how to output the character positions 5 through 10 and 15 from each 
line of a file named list. In this example, the cat command is first used to 
display the contents of the list file. 

$ cat liskCR> 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

11111111111222222 
12345678901234567890123456 
$ cut -c5-10,15 list<CR> 
EFGHIJO 

11 
5678905 
$ 

DF 2-56 



COMMAND DESCRIPTIONS 

The following sample command line entries and system responses show 
you how to output the second and fifth fields from a f!le named table. The 
field separator (delimiter) is a colon (:). Note what happens when the 
delimiter is defined as a space by the -d' ' argument. Also, note that the 
sequence in which you define the fields (-f5,2 verse -f2,5) does not change 
the sequence in which they are output. The selected fields are output in 
the order that they appear in the data, from left to right. In this example, 
the cat command is used to display the contents of the table file. 

$ cat table<CR> 
field 1 :field 2:field 3:field 4:field 5:field 6 
field 1 :field 2:field 3:field 4:field 5:field 6 
field 1 :field 2:field 3:field 4:field 5:field 6 
$ cut -f2,5 -d: table<Cfi'> 
field 2:field 5 
field 2:field 5 
field 2:field 5 
$cut -f5,2 -d':' table< CR> 
field 2:field 5 
field 2:field 5 
field 2:field 5 
$ cut -f2,5 -d' ' table<CR> 
1 :field 4:field 
1 :field 4:field 
1 :field 4:field 
$ 

DF 2-57 





COMMAND DESCRIPTIONS 

"diff3" - 3-Way Differential File Comparator 

General 

The diff3 command compares three files and outputs information showing 
the range of lines that differ between the files. The information is 
separated by a string of equal signs (====)to signify that the files are 
different. If the string of equal signs is alone, this shows that all files differ. 
If the string of equal signs is followed by a number, the number signifies 
what file is different. For example, ====2 would show that the second 
named file is different and the information following the ====2 would 
show the differences. 

The range of lines that are different are shown in the format "f:ln ed" 
where; 

f = the number of the file as it was entered in the command line. 

In = the line number that is different. This could be a range of lines. 

ed = the editor command that needs to be performed to bring the 
files into agreement with each other. If the c (change) operation is 
shown, the original contents of the file will be shown immediately 
after the range of lines information. 

Command Format 

The general format for the diff3 command is as follows: 

diff3 [-ex3] file 1 file2 file3 

The -e or -x options publish a script file with the editor commands needed 
to make the first named file agree with the third named file. The script file 
contains all the commands necessary to make the proper changes and 
may be applied directly to the file. 

DF 2-59 



COMMAND DESCRIPTIONS 

Sample Command Use 

The sample commands used in this section are based on the usage of 
three files named a, b, and c. The contents of the three files are shown 
below: 

a: A b: B c: c 
B c D 
c D E 
[) E A 
E A B 

The following command and system response show how to compare the 
three files and have the standard output displayed: 

$ diff3 a b C<CR> 

1: l,2c 
A 
B 

2:lc 
B 

3:0a 

1:5a 
2:5c 

A 
3:4,5c 

A 
B 

$ 

OF 2-60 



COMMAND DESCRIPTIONS 

The following command line and system response show how to compare 
the three files and receive an editor script file that will make a agree with 
c: 

$ diff3 -e a b c<CR> 
5a 
A 
B 
l,2c 
w 
q 
$ 

The script file that is produced can be applied directly to the file being 
changed. This can be done on the same command line as the diff3 
command. The following command line shows how to compare the three 
files and apply the script file to a. There will be no output from this 
command, completion is shown with the system prompt. 

DF 2-61 





COMMAND DESCRIPTIONS 

"dircmp" - Directory Comparison 

General 

The dircmp command compares two directories and outputs information 
about the names and contents of the files in each directory. The output is 
paginated to list those files that are uncommon to each directory and then 
those files that have common file names. The files common to both 
directories are compared, and the output includes whether the contents 
are the "same" or "different". 

Command Format 

The general format for the dircmp command is as follows: 

dircmp [-d) [-s) dirl dir2 

The -d option makes a comparison of the files common to both directories 
and gives information on what must be done to bring the two files into 
agreement. The format for the output is identical to the format of the diff 
command covered previously in this chapter. 

The -s option will suppress any messages about identical files. That is, the 
output will only contain information on the files that are different from 
each other. 

DF 2-63 



COMMAND DESCRIPTIONS 

Sample Command Use 

The examples provided in this section are based on the contents of the 
two directories dirl and dir2. The contents of the two directories follow: 

dirl: appendix dir2: appendixA 
cha pl appendixB 
chap2 chapl 
chap3 chap2 
chap4 chap3 
index chap4 
table index 
toe toe 
trademarks trademarks 

DF 2-64 



COMMAND DESCRIPTIONS 

The following command line and system response show how to compare 
dirl and dir2: 

$ dircmp dirl dir2<CR> 

July 19 09:02 1985 .. /dirl only and .. /dir2 only Page 1 

./appendix 

./table 
. / appendixA 

. I appendixB 

July 19 09:02 1985 Comparison of .. /dirl .. /dir2 Page 1 

directory 
same 
different 
different 
different 
same 
different 
same 

$ 

./chapl 
./chap2 
. / chap3 
./chap4 
./index 
./toe 
./trademarks 

Note: The output used in this example contains only the text of 
the output. The output is paginated with "white space" separating 
the uncommon files in each directory from the section displaying 
the common file names. 

DF 2-65 



COMMAND DESCRIPTIONS 

The following command line shows how to compare the files in dirl 
and dir2 and output information that tells what must be done to 
bring the files into agreement: 

$ dircmp -d dirl dir2<CR> 

Note: The first part qf the oufput would appear 
the same as in the pre1Jious example. The 
last part of the output would be in the 
format identical to that Qf the diff 
command. 

$ 

OF 2-66 



COMMAND DESCRIPTIONS 

"egrep," "fgrep" - Search a File for a Pattern 

General 

The egrep and fgrep commands search files or input lines for matching 
character patterns. These commands are similar to the grep 
command explained in the AT&T 382 Computer User Reference 
Manual. 

The input data to be searched can be the output of another command, 
one or more specified files, or the input from the terminal. When more 
than one file is searched, the file name is printed along with the 
matching input lines. The character patterns are regular expressions 
or fixed strings of characters in the style of the text editor (ed). Be 
careful when using the characters that have special meaning to the 
editor shell. In general, the pattern should be enclosed in single quotes 
('pattern') to remove any special character meaning. 

The expression grep (egrep) searches for full regular expressions. The 
egrep command accepts the following conventions for defining 
expressions: 

• A pattern followed by a plus sign ( +) matches one or more 
occurrences of the pattern. 

• A pattern followed by a question mark(?) matches 0 or 1 
occurrences of the pattern. 

• Multiple patterns can be defined by separating each pattern by a 
pipe symbol 0) or by a new-line (carriage return). When a new­
line is used, the secondary system prompt (>) is displayed. 
Each pattern is entered on a separate line following the prompt. 
The last pattern is entered on the same line as the remainder of 
the command. The command outputs matches for any or all 
patterns. 

DF 2-67 



COMMAND DESCRIPTIONS 

• Patterns can be grouped by enclosing the pattern in 
parentheses. 

The fast grep (fgrep) command searches for fixed patterns. This 
command is fast and compact. 

Command Format 

The general format for each of these commands is as follows: 

egrep [options] [expression] [file(s)] 

fgrep [options] [string(s)] [file(s)] 

The options recognized by these commands are explained as follows: 

-b Outputs the block number of the matching line. 
Each line is preceded by the number of the data 
block containing the line. 

-c Outputs only the number of lines that match the 
pattern. 

-e expression Same as a simple expression argument, but is useful 
when the expression contains a -. 

-f file The pattern (expressions or strings) is read (taken) 
from the specified file. 

-I Outputs only the names of the files that contain 
matching lines. 

-n Each line is preceded by its relative line number in 
the file. 

-v Outputs the lines that DO NOT contain the defined 
pattern. 

DF 2-68 



COMMAND DESCRIPTIONS 

-x Outputs the lines that match the pattern exactly 
and entirely. This option is used with the fgrep 
command only. 

The expression and string arguments define the search pattern or 
patterns. The file(s) argument is used to identify the file or files that 
are to be searched. Note that the file names are separated by a 
space. 

Sample Command Use 

The following command line and system response show how you can 
search two files (listl and list2) for lines containing one of several 
patterns. The patterns to be searched for are eggs and bacon. The ·n 
option is used to display the line number of the matching line. 

$ egrep -n 'eggsibacon' listl list2<CR> 
listl :2:eggs 
list2: 1 :bacon 
list2:3:eggs 
$ 

Note: The semicolon (:) is used to separate each field of the 
output of the egrep command. The first field is the file name. 
The second field is the line number of the matched pattern in 
the named file. The last field is the line containing the 
matching pattern. 

DF 2-69 



COMMAND DESCRIPTIONS 

The following command line and system response show you how to 
enter the previous example using a new-line (carriage return) to 
separate the patterns instead of a pipe symbol (:): 

$ egrep -n 'eggs<CR> 
> bacon' listl list2<CR> 
listl :2:eggs 
list2: 1 :bacon 
list2:3:eggs 
$ 

The following command line and system response show how you can 
search multiple files for lines that DO NOT contain a specified pattern. 
The -v option causes all lines that DO NOT match the specified 
patterns to be output. The ·n option is used again to output the line 
number of the matching line. 

$ egrep -nv 'eggslbacon' listl list2<CR> 
listl: l:milk 
listl :3:toast 
listl :4:ham 
list2:2:milk 
list2:4:juice 
list2:5:bread 
$ 

DF 2-70 



COMMAND DESCRIPTIONS 

The following example shows how you can use a file containing a list of 
patterns to search a group of files. The file to search from is named 
words and contains the following patterns: 570ab[3-7], 448hj2, 
747bg32. The first line of the words file defines a pattern beginning 
with 570ab and ending with 3, 4, 5, 6, or 7. The egrep command will 
search all files in the current directory that begin with the characters 
serials. 

$ egrep -f words serials*<CR> 
serialsnet:570ab4 
serialsnet:570ab5 
serialsold:7 47bg32 
serialsnew:570ab3 
serialsnew: 570ab 7 
serialsnew:448hj2 
$ 

OF 2-71 





COMMAND DESCRIPTIONS 

"file" - Determine File Type 

General 

The file command is used to determine the contents of one or more 
specified files. The command examines the contents of the first block 
of data (1024 bytes) of each file and attempts to classify the data. A 
file called /etc/magic is used by the file command to classify files 
containing certain special numeric or string constants. If you enter 
cat /etc/magic, an explanation of the magic file format is displayed. 

Some of the file-types that can be classified are: 

3b2/3b5 executable 
3b2/3b5 executable not stripped 
ASCII text 
c program text 
commands text 
data 
directory 
empty 
English text 
[nt]roff, tbl, or eqn input text 

Note: The file must have read permission before a 
classification can be made. 

DF 2-73 



COMMAND DESCRIPTIONS 

Command Format 

The general format of the file command is as follows: 

file [-c] [-f ffile] [-m mfile] name(s) 

The -c argument causes the command to check the magic file for 
format errors. No file classification is done with this function. 

The -f ffile option is used to specify the name of a file that contains a 
list of file names that are to be examined. The ffile argument identifies 
the name of the file containing the list of file names to be examined. 

The -m mfi/e option is used to specify an alternate magic file. The 
mfile argument identifies the name of an alternate magic file. 

Sample Command Use 

The following command line entry and system responses show how you 
can determine the classification of a given file: 

$ file /fl/house/bills/electric<CR> 
/fl /house/bills/electric: ascii text 
$ 

DF 2-74 



COMMAND DESCRIPTIONS 

The following command line entries and system responses show how 
you can determine the classification of several files. A file named list is 
first created that contains a listing of the files to be examined. The file 
command is then executed with the -f option to classify the files 
identified in the list file. 

$ ed list<CR> 
?list 
a<CR> 
/fl/house/bills/electric<CR> 
/fl/house/bills/water<CR> 
/fl/house/bills/gas<CR> 
/fl/house/bills/telephone<CR> 
.<CR> 
W<CR> 
94 
q<CR> 
$file -f list<CR> 
/fl /house/bills/electric: ascii text 
/fl /house/bills/water: ascii text 
/fl /house/bills/gas: ascii text 
/fl /house/bills/telephone: ascii text 
$ 

OF 2-75 





COMMAND DESCRIPTIONS 

"join" - Relational Data Base Operator 

General 

The join command is used to join a common field of two files. The 
results are printed on your terminal screen. The fields that are to be 
joined must be sorted in an increasing ASCII collating sequence. 
Normally, the first field in each line is the field to be joined. A blank, 
tab, or new-line usually separates the fields. Multiple separators will be 
counted as one, and leading separators are discarded. 

One line of output is generated for each pair of lines in the files that 
have identical join fields. The output line normally consists of the 
common field followed by the rest of the line from the first file, 
followed by the rest of the line from the second file. 

Command Format 

The general format of the join command is as follows: 

join [options] filel file2 

The following options exist: 

-an 

-e s 

In addition to the normal output, a line is produced for 
each unpairable line in file n (where n is 1 or 2). 

Replace empty output fields by string s. 

-jn m Join on the mth field of file n. If n is missing, use the mth 
field in each file. 

-o list Each output line includes the fields specified in list and 
each element of list has the form n.m (where n is a file 
number and m is a field number). 

DF 2-77 



COMMAND DESCRIPTIONS 

-tc Use character c as a separator (tab character). Every 
appearance of c in a line is significant. 

The filel and file2 arguments are the names of the files that are to be 
joined. 

Sample Command Use 

The following command line entries and system responses show the 
basic operation of the join command. The cat command is used to 
display the contents of filel and file2. The join command is used to 
join an inventory of red and blue items. 

$ cat filel<CR> 
l. red balls (7) 
2. red bicycles (3) 
3. red cars (5) 
4. red ink pens (10) 
5. red shoes (2 pair) 
$ cat file2<CR> 
1. blue balls (4) 
2. blue bicycles (2) 
3. blue cars (3) 
4. blue ink pens (5) 
5. blue shoes (3 pair) 
6. blue pants (2 pair) 
$ join -a2 filel file2<CR> 
L red balls (7) blue balls (4) 
2. red bicycles (3) blue bicycles (2) 
3. red cars (5) blue cars (3) 
4. red ink pens (10) blue ink pens (5) 
5. red shoes (2 pair) blue shoes (3 pair) 
6. blue pants (2 pair) 
$ 

DF 2-78 



COMMAND DESCRIPTIONS 

"newform" - Change the Format of a Text File 

General 

The newform command is used to read lines from a file or the 
standard input, reformat those lines, and reproduce the lines on the 
standard output. The format is selected through the command line 
options listed under "Command Format". 

Command Format 

The general format of the newform command is as follows: 

where: 

newform [ -s] [ -i tabspec] 
[-o tabspec] [ -bn] 
[-en] [·pn] 
[-an]:[ -f] [ -cchar] 
[-In] [ file(s)] 

-itabspec This option expands tabs into spaces. The tabspec 
part of this option uses the same tab specifications 
used with the tab command. Tab specifications may 
be found on the first line of the standard input. Here, 
use a double minus sign (··)as the tabspec. If tabspec 
is not specified, -8 is used. If -0 is given as the 
tabspec, there should not be any tabs in the text. If 
tabs are found in the text, they are treated as -1. 

-otabspec This option will replace spaces with tabs. The tabspec 
part of this option uses the same tab specifications as 
the tabspec part of the -itabspec option. If tabspec is 
not specified, -8 is used. If a tabspec of -0 is specified, 
spaces will not be converted to tabs. 

DF 2-79 



COMMAND DESCRIPTIONS 

-f 

DF 2-80 

The effective line length is set to n characters. If this 
option is not specified, the effective line length is 80 
characters. If -I is specified without n, the effective line 
length is set to 72. Tabs and backspaces are 
considered to be one character. Remember, tabs may 
be expanded to spaces by the itabspec option. 

Shorten the beginning of the line by n characters when 
the line length is greater than the effective line length 
set by the -In option. If n is not specified, the line will 
be shortened by the amount of characters necessary 
to obtain the effective line length set by the -In option. 
It is a good idea to specify -In as -11 when using this 
option. That way, you will be sure that this option will 
be started, because the effective line length will be 
shorter than any line in the file. 

This option works the same as the -bn option except 
that characters are removed from the end of the line. 

Change the prefix character (see -pn option) and/ or 
the append character (see -an option) to k. 

Prefix n characters to the beginning of a line when the 
line length is less than the effective line length set by 
the -In option. Spaces will be the prefix if the -ck 
option is not specified. If n is not specified, the 
number of characters necessary to obtain the effective 
line length will be the prefix number. 

This option is the same as the -pn option except that 
characters are appended to the end of a line. 

Write the tab specification format line on the standard 
output before printing the output. The -otabspec 
option determines what tab specification format line is 
printed. If the tabspec part of the -otabspec option is 
not specified, the line printed will be the default 
specification of -8. 



·S 

files(s) 

COMMAND DESCRIPTIONS 

Shears the leading characters off each line up to the 
first tab. Up to eight of the sheared characters are 
placed at the end of the line. If more than eight 
characters are sheared, the eighth character is 
replaced by an * and the rest are discarded. The first 
tab is always discarded. 

There must be a tab on each line of the file. If there is 
not a tab on each line, an error message and a 
program exit will occur. The characters sheared off 
are saved internally until all other options specified are 
applied to that line. These characters are then added 
at the end of the processed line. 

The name of the file(s) that is to be read. 

The command line options may appear in any order, may be repeated, 
and may be mingled with fi/e(s). However, if you use the -s option, it 
must be the first option specified. 

Sample Command Use 

The following command line entries and system responses show you a 
typical newform command output. The cat command is used to 
display the contents of testfile. The newform command is used to 
display the contents of testfile while removing the first three 
characters of each line and keeping the same column definition. 

DF 2-81 



COMMAND DESCRIPTIONS 

$ cat testfile<CR> 
RENTAL ITEM DATE RENTED DATE RETURNED 

l. ladder 7 /15/85 7 /16/85 
2.lawnmower 7/16/85 7/17/85 
3. spray gun 7 /17 /85 7 /18/85 
4. tiller 7 /18/85 7 /19/85 
5. weed eater 7 /19/85 7 /22/85 
$ newform -i -11 -b3 testfile<CR> 
RENTAL ITEM DATE RENTED DATE RETURNED 

ladder 7 /15/85 
lawn mower 7 /16/85 
spray gun 7/17 /85 
tiller 7 /18/85 
weed eater 7 /19/85 
$ 

7/16/85 
7/17/85 

7/18/85 
7/19/85 

7/22/85 

The following command line entry and system response show how to 
display the contents of testfile without the last column: 

$ newform -i -11 -e13 testfile<CR> 
RENTAL ITEM DATE RENTED 

l. ladder 7 /15/85 
2. lawn mower 7 /16/85 
3. spray gun 7/17 /85 
4. tiller 7/18/85 
5. weed eater 7 /19/85 
$ 

OF 2-82 



COMMAND DESCRIPTIONS 

"nl" - Line Numbering Filter 

General 

The nl command is used to read lines from a file or the standard input 
The lines that are read are numbered and printed on your terminal 
screen. The way the lines are numbered depends on the options you 
select. 

The nl command views the text it reads in terms of logical pages. A 
logical page contains three sections: a header, a body, and a footer 
section. You can have empty sections. The options for numbering 
lines can be different for each of the three sections. In order for the 
three sections to be recognized, the following delimiter character(s) 
must be included in the input lines: 

LINE CONTENTS 

\:\:\: 
\:\: 
\: 

START OF 

header 
body 
footer 

Note: There must not be any other input on the lines 
containing the delimiter character(s). 

The nl command assumes the text being read is a single, logical page 
body unless you select other options. 

Command Format 

The general format of the nl command is as follows: 

DF 2-83 



COMMAND DESCRIPTIONS 

where: 

-htype 

-btype 

-ftype 

nl [-htype] [-btype] [-ftype] [-vstart#] [-iincr] [-p] [-lnum] 
[-ssep] [-wwidth] [-nformat] [-ddelim] file 

Used to specify what logical page header lines are 
to be numbered. The recognized types are: 

a 

t 

n 

pstring 

Number all lines 

Number lines with printable text 
only 

No line numbering 

Number only the lines that contain 
the regular expression specified in 
string. 

The default type for the logical page header is n. 

Used to specify what logical page body lines are to 
be numbered. The recognized types are the same 
as -htype. The default type for the logical page 
body is t. 

Used to specify what logical page footer lines are to 
be numbered. The recognized types are the same 
as -htype. The default type for the logical page 
footer is n. 

-vs tart# The initial value used to number the logical page 
lines. Default is 1. 

-iincr 

OF 2-84 

The increment value used to number the logical 
page lines Default is 1. 



-p 

-lnum 

-ssep 

-wwidth 

-nformat 

-ddelim 

file 

COMMAND DESCRIPTIONS 

Do not restart numbering at the logical page 
delimiters. 

The number of blank lines to be considered as one. 
The appropriate -ha, -ba, and -fa option must be set. 
A -12 results in only the second adjacent blank line 
being numbered. Default is L 

The character(s) used in separating the line number 
and the corresponding text line. Default is a tab. 

The number of characters to be used for the line 
number. Default is 6. 

The line numbering format. The recognized values 
are: 

In Left justified with no leading zeros 

rn Right justified with no leading zeros 

rz Right justified with leading zeros. 

Default is rn. 

Used to change the delimiter characters. If only 
one character is entered, the second character 
remains the default character (:). If you wish to use 
a backslash (\) as a delimiter character, you need 
to enter two backslashes (\ \). 

The name of the file that is read by the nl 
command. 

The options can be specified in any order and can be mingled with an 
optional file name. However, when intermingling options with a file, 
only one file can be moved. 

OF 2-85 



COMMAND DESCRIPTIONS 

Sample Command Use 

The following command line entries and system responses show the 
basic operation of the nl command. The cat command is used to show 
the contents of filel. The nl command is used with several options to 
show how the command is input and the system response. 

$ cat filel<CR> 
\:\:\: 
THIS IS THE HEADER SECTION 

\:\: 
This is the body section. 

\: 
THIS IS THE FOOTER SECTION 

$ nl -ha -fa -v5 -i5 -nrz filel<CR> 

000005 THIS IS THE HEADER SECTION 
000010 

000015 This is the body section. 
000020 
000025 
000030 
000035 

000040 THIS IS THE FOOTER SECTION 
000045 
000050 ... 
$ 

OF 2-86 



COMMAND DESCRIPTIONS 

"od" - Octal Dump 

General 

The od command is used to output data in octal, decimal, ASCII, or 
hexadecimal formats. The name of the command, octal dump, is 
derived from the default output. Input can be from a named file, the 
output of another command, or from the standard input. 

Command Format 

The general format of the od command is as follows: 

od [-bcdoscx] [file] [[+]offset[.][b]] 

The meaning of the various format options are as follows: 

-b Interpret bytes in octal (base 8). 

-c Interpret bytes in ASCII. 

-d Interpret words in unsigned decimal (absolute value). 

-o Interpret words in octal. This is the default when no option 
argument is supplied. 

-s Interpret 16-bit words in signed decimal. 

-x Interpret words in hexadecimal (base 16). 

The file argument identifies the name of the file to be output. If the file 
argument is omitted, input is taken from the standard input. 

The offset argument identifies where the output is to start. This 
argument is normally expressed as the number of octal bytes to be 
skipped before data is output. If a period (.) is appended to the offset 

OF 2-87 



COMMAND DESCRIPTIONS 

argument, the argument is interpreted as a decimal number of bytes. 
If a letter b is appended to the argument, the argument is interpreted 
as the number of blocks to be skipped before data is output. If the file 
argument is omitted, the offset argument must be preceded by a plus 
sign ( +) to identify what follows as being the offset argument. 

Sample Command Use 

The following command line entries and system responses show how 
you can output the contents of a file named listl using the default 
form of the od command. This form of the command outputs octal 
words. The cat command is first used to display the normal ASCII 
contents of the file. 

$ cat !istl<CR> 
eggs 
bread 
milk 
butter 
meat 
$ od listl<CR> 
0000000 062547 063563 005142 071145 060544 005155 064554 065412 
0000020 061165 072164 062562 005155 062541 072012 
0000034 
$ 

DF 2-88 



COMMAND DESCRIPTIONS 

The following command line entries and system responses show how 
you can output the contents of a file named listl using the -b option of 
the command. This form of the command outputs the octal value for 
each character (byte). An offset of 27 bytes is used in this example. 
This offset causes the output to start at the last line of the file in this 
example. The cat command is first used to display the normal ASCII 
contents of the file. You need to refer to an octal map of the ASCII 
character set to make sense out of the output. For example, the letter 
"m" is octal 155; the letter "e" is octal 145; a new-I ine character is 
octal 012. 

$ cat lisU<CR:> 
eggs 
bread 
milk 
butter 
meat 
$ od -b listl 27<CR:> 
0000027 155 145 141 164 012 000 
0000034 
$ 

DF 2-89 





COMMAND DESCRIPTIONS 

"pack" - Compress Files 

General 

The pack command is used to compress and store files. Text files can 
be reduced between 60% and 75% of their original size. Load modules 
that use a larger character set and have a more uniform distribution of 
characters can be reduced to about 90% of their original size. The 
original file is removed and the compressed data is stored in a file with 
the same file name, except that a .z is added to the end of the file 
name. For example, if you compressed a file named filel, the 
compressed data will be stored in filel.z. The access modes, access 
and modified dates, and owner will remain the same as the original file. 
The compressed file can be restored to its original form using the peat 
or unpack command. 

How much a file is compressed depends on two things. They are: 

1. The size of the input file 

2. The character frequency distribution. 

Usually, it is not worthwhile to compress files smaller than three blocks 
of data because a decoding tree is placed at the beginning of the 
compressed file. However, if the character frequency distribution is 
skewed, you may wish to compress the file even if the file is less than 
three blocks. Some reasons for the character frequency distribution 
being skewed are printer plots, pictures, or tables in the file. 

The pack command will not work if: 

1. The file appears to be already compressed. 

2. The file name has more than 12 characters. 

DF 2-91 



COMMAND DESCRIPTIONS 

3. The file is linked to another file. 

4. The file is a directory. 

5. The file cannot be opened. 

6. No disk storage blocks will be saved by compression. 

7. A file called name.z already exists. 

8. The .z file cannot be created. 

9. An input/ output error occurred during processing. 

The pack command returns a value that is the number of files that it 
failed to compress. 

Command Format 

The general format of the pack command is as follows: 

where: 

name 

OF 2-92 

pack [ - ] name ... 

Used to set an internal flag that causes the number 
of times each byte is used, its relative frequency, 
and the code for the byte to be printed on the 
standard output. Additional occurrences of - in 
place of name will cause the internal flag to be set 
and reset. 

The name of the file to be compressed. 



COMMAND DESCRIPTIONS 

Sample Command Use 

The following command line entries and system responses show the 
basic operation of the pack command. The Is -I command is used to 
show what are the file sizes. The pack command is used to show how 
the command is inputted and the response you will receive. The Is -I 
command is used again to show the size of the files after they are 
compressed. 

$ Is -kCR> 
total 109 
-rw------- 1 cec other 29727 July 19 13:14 filel 

24355 July 19 13:15 file2 -rw------- 1 cec other 
$ pack - filel file2<CR> 
pack: filel: 36.2% Compression 

from 29727 to 18980 bytes 
Huffman tree has 15 levels below root 
90 distinct bytes in input 
dictionary overhead = 112 bytes 
effective entropy = 5.11 bits/byte 
asymptotic entropy = 5.08 bits/byte 

pack: file2: 36.2% Comp1·ession 
from 24355 to 15530 bytes 
Huffman tree has 15 levels below root 
85 distinct bytes in input 
dictionary overhead = 107 bytes 
effective entropy = 5.10 bits/byte 
asymptotic entropy = 5.07 bits/byte 

$is -kCR> 
total 73 
-rw------- 1 cec other 
-rw------- 1 cec other 
$ 

18980 July 19 13:14 filel.z 
15530 July 19 13:15 file2.z 

DF 2-93 





COMMAND DESCRIPTIONS 

"paste" - Side-by-Side File Merge 

General 

The paste command is used to combine two or more files of data in a 
side-by-side fashion. Each file of data is treated like a column of data 
in a table. The output of the paste command can be displayed on the 
terminal, redirected to a file, or redirected to another command. 

Command Formats 

Three general forms of the paste command are provided. These forms 
are as follows: 

paste file(s) 

paste -d 'list' file(s) 

paste -s [-d 'list1 file(s) 

The file(s) argument identifies the names of the files that are to be 
pasted together. The hyphen (-) can be used as a file name to read a 
line from the standard input. There is no prompting associated with 
the use of the hyphen. 

The -s option is used to merge several lines from each input file as 
opposed to one line from each input file. 

The -dlist argument option is used to define the delimiter(s) that is 
used between the merged lines. The tab character is the default 
delimiter. The list argument identifies what is to replace the tab 
delimiter. The items (characters) identified in the list argument are 
used in sequence until the end of the list. Then, the listed delimiters 
are reused in the same sequence. In general, the list argument should 
be in double quotes. 

DF 2-95 



COMMAND DESCRIPTIONS 

For example, to get one backslash, use -d'\ \' as the argument; use -d' ' 
as the argument to define a space as the delimiter. Special characters 
are defined by escape sequences. These include the following: 

.. \n for new-line character 

.. \t for tab character 

.. \ \ for the backslash character 

"' \0 for an empty string. 

Sample Command Use 

The following examples are based on the use of two files named listl 
and list2. The contents of these two files are as follows: 

listl: list2: 

listl: iteml list2: iteml 
listl: item2 list2: item2 
listl: item3 iist2: item3 
listl: item4 list2: item4 
listl: item5 list2: item5 
listl: item6 list2: item6 
listl: item7 list2: item7 

The following command line entries and system responses show how 
you can merge the contents of two files using the simplest form of the 
paste command. This form of the command requires no options. The 
named files are merged in a side-by-side fashion with a tab character 
as the delimiter between the lines of the files. The output of the paste 
command is redirected to a file named save. The cat command is used 
to display the contents of the resulting file. 

DF 2-96 



$ paste listl list2 > save<CR> 
$ cat save< CR> 
listl: iteml list2: iteml 
listl: item2 list2: item2 
listl: item3 list2: item3 
listl: item4 list2: item4 
listl: item5 list2: item5 
listl: item6 list2: item6 
listl: item? list2: item? 
$ 

COMMAND DESCRIPTIONS 

The following command line entries and system responses show how 
you can merge the contents of two files using the form of the paste -
dlist command. The named files are merged in a side-by-side fashion 
with a slash (/) character as the delimiter between the lines of the file. 
The output of the paste command is redirected to a file named save. 
The cat command is used to display the contents of the resulting file. 

$ paste -d' /' listl list2 > save< CR> 
$ cat save<CR> 
listl: iteml /list2: iteml 
listl: item2/list2: item2 
listl: item3/list2: item3 
listl: item4/list2: item4 
listl: item5 /list2: item5 
listl: item6/list2: item6 
listl: item? /list2: item? 
$ 

DF 2-97 





COMMAND DESCRIPTIONS 

"peat" - Concatenate and Print Packed Files 

General 

The peat command is used to concatenate and print files that have 
been compressed by the pack command. The compressed file is 
expanded and printed on your terminal screen in its original form. 

The peat command will not work if: 

L The file name (exclusive of .z) has more than 12 
characters. 

2. The file cannot be opened. 

3. The file does not appear to be the output of the pack 
command. 

The peat command returns a value that is the number of files that it 
failed to expand. 

Command Format 

The general format of the peat command is as follows: 

peat name ... 

The name argument identifies the name of the file that needs to be 
expanded. The .z at the end of the file name does not need to be 
inputted when specifying name. 

The standard output of the peat command can be redirected to a file. 
You will have two files: one that contains the compressed data 
(name.z) and one that contains the original data. 

OF 2-99 



COMMAND DESCRIPTIONS 

The general format when redirecting the output of the peat command 
follows: 

where: 

name 

new.file 

peat name > new. file 

Identifies the name of the file that needs to be 
expanded. 

Identifies the name of the file that contains the 
expanded data. 

Sample Command Use 

The following command line entries and system responses show the 
basic operation of the peat command. The Is -I command is used to 
display the compressed files before the peat command is given. The 
peat command is used to show you how the command is input using 
the redirection method. The Is -I command is used again to display 
the results of executing the peat command. 

$ Is -kCR> 
total 71 
-rw------- l cec other 18980 July 19 13:14 filel.z 
-rw------- 1 cec other 15530 July 19 13: 15 file2.z 
$ peat filel > new.filel<CR> 
$ peat file2 > new.file2<CR> 
$Is -kCR> 
total 181 
-rw------- 1 cec other 18980 July 18 13:14 filel.z 
-rw------- 1 cec other 15530 July 18 13:15 file2.z 
-rw------- 1 cec other 29727 July 19 07:47 new.filel 
-rw------- 1 cec other 24355 July 19 07:48 new.file2 
$ 

DF 2-100 



COMMAND DESCRIPTIONS 

"pg" - Command Description 

General 

The pg command is a filter that will allow you to view a file one page at 
a time on a soft-copy terminal screen. A prompt(:) is displayed after 
every page. If a carriage return is entered after the prompt, another 
page is displayed. Other options, listed in this section, may be chosen. 
What makes the pg command different from other similar commands is 
that the pg command allows you to back up and review something that 
has already passed. The pg command scans the terminfo data base 
for your terminal type to determine the terminal attributes. The 
variable TERM specifies your terminal type. If TERM is not specified, 
the terminal type dumb is assumed. Refer to the AT&T 382 Computer 
Programmer Reference Manual for information on the term info data 
base. 

A pause will occur after each page is displayed and the prompt is given. 
There are three categories of responses that can be given when the 
prompt is displayed. The three categories are those that cause further 
perusal, those that search, and those that change the perusal 
environment. 

Commands that cause further perusal normally take a preceding 
address. The address is an optionally signed number that indicates the 
point from which further text should be displayed. The address can be 
given in pages or lines. A signed address specifies a point relative to 
the current page or line. An unsigned address specifies an address 
relative to the beginning of the file. 

The perusal commands are as follows: 

<newline> or <blank> 
Display the next page. If a signed address is used, the pg 
command goes forward ( +) or backward (-) the numbered 
amount of pages specified and displays that page on your 
terminal screen. If an unsigned address is used, the page 

DF 2-101 



COMMAND DESCRIPTIONS 

number specified will be displayed. 

Scroll one line forward. If a signed address is used, the pg 
command simulates scrolling the screen, forward ( +) or 
backward (-), the number of lines specified. If an unsigned 
address is used, the pg command prints a screenful 
beginning at the line number specified. 

d or "D Simulates scrolling half a screen forward (+1 address) or 
half a screen backward (-1 address). 

The next two perusal commands do not use addresses . 

. or "L Causes the current page to be redisplayed. 

$ Displays the last window (page) in the file. If the input is a 
pipe, use with caution. 

The following commands are available for searching for specific 
patterns of text. These commands must be ended by a <newline>, 
even if the -n option is specified. You may use the regular expressions 
of theed command. Refer to the AT&T 382 Computer User Reference 
Manual for information about the ed command. 

i/pattern/ 

OF 2-102 

Search forward for the ith (default is i= 1) 
occurrence of pattern. Searching will begin after 
the current page and will continue until the end of 
the file is reached. If the entire pattern is not on 
the same line, pattern will not be found. 



COMMAND DESCRIPTIONS 

i ?pattern? or (pattern" 
Search backward for the ith (default is i= 1) 
occurrence of pattern. Searching will begin before 
the current page and will continue until the 
beginning of the file is reached. Use (pattern" if 
using an Adds 100 terminal. 

The line found at the top of the screen will be displayed after the 
search has ended. By Gippending m or b to the search command, you 
can display the line at the middle of the window or the bottom of the 
window. The suffix t can be used to restore the original file. 

You can change the perusal environment with the following commands: 

in 

ip 

iw 

s filename 

h 

q or Q 

!command 

Begin perusing the ith next file in the command line. 
If i is not specified, 1 is used. 

Begin perusing the ith previous file in the command 
line. If i is not specified, 1 is used. 

Display another window of text. If i is present, set 
the window size to i. 

Save the current file that is being perused in 
filename. This command must be ended by a 
<newline>, even if the -n option is specified. 

Help command. An abbreviated summary of 
available commands is displayed. 

Quit the pg command. 

The command is executed by the shell. If the 
SHELL environment variable is set, that shell is 
used. If the SHELL environment variable is not set, 
the default shell is used. This command must be 
ended by a <newline>, even if the -n option is 
specified. 

OF 2-103 



COMMAND DESCRIPTIONS 

You can stop sending output to the terminal at any time by depressing 
the quit key (normally control-\) or the interrupt (break) key. The 
prompt will appear and you may then enter commands in the normal 
manner. Unfortunately, some output is lost when you stop the output 
This happens because any characters waiting in the terminal output 
queue are flushed when the quit signal occurs. 

The pg command acts like the cat command if the standard output is 
not a terminal screen. The only difference is that a header is printed 
before each file if there is more than one file. Refer to the AT&T 382 
Computer User Reference Manual for information about the cat 
command. 

Execution of the pg command is stopped if BREAK, IDEl, or is 
depressed while the pg command is waiting for terminal input. If you 
are between prompts, these signals interrupt the current task and will 
place you in the prompt mode. Use the interrupt signals with caution 
when the input is coming from a pipe, since the interrupt is likely to 
stop the other commands in the pipeline. 

There are a couple of bugs that you need to know about. The first one 
is that the terminal tabs should be set to every eight positions or you 
may get undesirable results. The second one is that when using the pg 
command as a filter with another command that changes the terminal 
input/ output options, terminal settings may not be restored correctly. 

Command Format 

The general format of the pg command is as follows: 

pg [-number] [ ·P string] [ -cefns] [ +linenumber] [+/pattern/] [ fi/e(s)] 

where: 

-number 

OF 2-104 

The size (number of lines) of the window. If the size 
is not specified, the default value is one line less 



COMMAND DESCRIPTIONS 

than the total number of lines that can be displayed 
on your terminal screen. 

-p string Causes string to be used as the prompt. If %d 
appears in string, the first occurrence of %d in the 
prompt is replaced by the current page number 
when the prompt is issued. 

-c Take cursor to the home position and clear the 
screen before displaying a page. If clear _screen is 
not defined in the terminfo data base, this option 
will be ignored. 

-e Normally, a pause will occur at the end of each 
page and at the end of each file. This option 
eliminates the pause at the end of each file. 

-f Normally, if a line is longer than the terminal screen 
width, it is split into two lines. However, there are 
times when some sequences of characters in the 
text generate undesirable results; such as escape 
sequences for underlining. Here, you can use the 
option to inhibit the pg command from splitting 
lines. 

-n Normally, commands must be ended by a 
<newline> character. This option causes the 
command to end as soon as a command letter is 
entered. 

-s Causes all messages and prompts to be printed in 
the standout mode (usually inverse video). 

+linenumber Start up at linenumber. 

+/pattern/ Start up at the first line containing the pattern 
specified. 

DF 2-105 



COMMAND DESCRIPTIONS 

file(s) The name of the file to be examined. If file(s) is not 
specified or if a minus sign (") is specified, the pg 
command reads the standard input. 

Sample Command Use 

The following command line entry and system response show the basic 
operation of the pg command. The pg command along with the news 
command is used in a pipeline to read the system news. 

$ news : pg -p" (Page %d):" <CR'> 
Note: The first page of the news will appear next. 
(Page 1): Note: This is the prompt. It w1:ll appear 

$ 

DF 2-106 

after each page wi:th the nu.m.ber of the pa.ge 
you are on. You may now enter a 
command that manipulates the text or enter 
q to quit. 



COMMAND DESCRIPTIONS 

"sdiff" - Side-By-Side Difference Program 

General 

The sdlff command uses the output of the diff command (discussed 
earlier in this chapter) to produce a side-by-side listing of two files. If 
the lines are identical, each line of the two files are printed side-by-side 
with a blank gutter between the two files. If the line exists only in filel, 
a less than (<) symbol is in the gutter. If the line exists only in file2, a 
greater than (>) is in the gutter. If the line exists in both files and they 
are different, a pipe symbol (I) is in the gutter. 

For example: 

x y 
a a 
b < 
c < 
d d 

> c 

Command lormat 

The general format of the sdlff command is as follows: 

sdlff [options ... ] fi/el file2 

The following options exist: 

·W n Use the next argument (n) as the width of the output 
line. If n is not specified, the line length will be 130 
characters. 

~I Only print the left side of any lines that are identical. 

DF 2-107 



COMMAND DESCRIPTIONS 

-s Do not print identical lines. 

-o output Use the next argument (output) to create a third file 
that will let you control the merging of filel and fi/e2. 
All identical lines of filel and file2 are copied to the 
output file. All different lines of fi/el and fi/e2 are 
printed on your terminal screen. After the different 
lines are printed, you will receive a prompt(%). After 
the prompt (%) is received, enter one of the following 
commands: 

Append the left column to the output file. 

r Append the right column to the output file. 

s Turn the silent mode on; do not print identical 
lines. 

v Turn the silent mode off. 

e I Will let you edit the left column. 

e r Will let you ~dit the right column. 

e b Will let you edit the concatenation of the left 
and right columns. 

e Will let you edit a new file. 

q Exit from the program. 

When you exit from the editor, the resulting file is 
concatenated on the end of the output file. 

The arguments filel and file2 are the files that are being compared. 

OF 2-108 



COMMAND DESCRIPTIONS 

Sample Command Use 

The following command line entries and system responses show the 
basic operation of the sdiff command. The cat command is used to 
display the contents of filel and file2. The sdiff command is then used 
to display a side-by-side comparison of file 1 and file2. 

$ cat filel<CR> 
1000 
2000 
4000 
8000 
16000 
32000 
64000 
128000 
$ cat file2<CR> 
500 
1000 
2000 
3000 
8000 
16000 
34000 
64000 
$ sdiff -w 30 filel file2<CR> 

> 500 
1000 
2000 
4000 
8000 
16000 
32000 
64000 
128000 < 
$ 

1000 
2000 
3000 
8000 
16000 
34000 
64000 

DF 2-109 





COMMAND DESCRIPTIONS 

"split" - Split a File Into Pieces 

General 

The split command is used to read a file and write it in n number of 
lines onto a set of output files. Default is 1000 lines per file. The name 
of the first output file is name with aa through zz appended. The 
output file will be appended with aa, then ab, then ac, and so forth until 
zz is reached. A maximum of 676 files can be created using the split 
command. There must not be more than 12 characters in name. If no 
output name is given, xis default. 

Command Format 

The general format of the split command is as follows: 

where: 

-n 

file 

name 

split [ -n] [ file [ name] ] 

The number of lines that are to be written onto each 
output file. 

The name of the file to be split. 

The name of the output file. 

If no input file is given or if • is given, the standard input is used. 

DF 2-111 



COMMAND DESCRIPTIONS 

Sample Command Use 

The following command line entries and system responses show the 
basic operation of the split command. The cat command is used to 
display the contents of filel. The split command is used to split filel 
into 3 lines per output file. The Is -I command is used to display the 
new files that are created. The cat command is used again to display 
the contents of each new file. 

$ cat fi!el<CR> 
This will be the first line of the first output file. 

This will be the first line of the second output file. 

This will be the first line of the third output file. 

$ split -3 filel newJilel<CR> 
$Is -kCR> 
total 5 
-rw------- 1 cec other 
-rw------- 1 cec other 
-rw------- 1 cec other 
-rw------- 1 cec other 
$ cat new.fi!elaa<CR> 

187 July 19 10:52 filel 
62 July 19 10:53 new.filelaa 
63 July 19 10:53 new.filelab 
62 July 19 10:53 new.filelac 

This will be the first line of the first output file. 

$ cat new.filelab<CR> 
This will be the first line of the second output file. 

$ cat new.filelac<CR> 
This will be the first line of the third output file. 

$ 

DF 2-112 



COMMAND DESCRIPTIONS 

"sum" - Print Check Sum and Biock Count of a File 

General 

The sum command is used to calculate and output a 16-bit checksum 
for a specified file. Typically, the command is used to look for bad 
data or to validate a file transmitted over a communications interface. 
The number of blocks in the specified file is also output. 

To use the sum command to validate transmitted data, the checksum 
is executed on the file before transmission and the results are sent to 
the destination. At the destination, the sum command is again 
executed on the received data. The before and after checksums are 
then compared. Matching checksums show a successful transfer of 
data and a mismatch shows a problem. Note that you must know 
whether to use the -r option when validating transferred data or not. 
You must use the same form of the command to calculate the 
checksum at the source and destination to be able to validate the 
transmitted data. 

Command Format 

The general format of the sum command is as follows: 

sum [-r] file 

The -r option causes the command to use a different rationale 
(algorithm) in computing the checksum. The file argument identifies 
the name of the file to be processed. Note that the file name can be 
expressed as a complete path name. 

OF 2-113 



COMMAND DESCRIPTIONS 

Sample Command Use 

The following command line entries and system responses show you a 
typical sum command output. The first field output is the checksum, 
followed by the number of blocks (1), followed by the name of the file 
(listl). 

$ sum listl<CR> 
2496 1 listl 
$ sum -r listl<CR> 
55792 1 listl 
$ 

DF 2-114 



COMMAND DESCRIPTIONS 

11tail" - Output End of a File 

General 

The tail command is used to output the last portion of some data. The 
source data operated on by the command can be from a file, the 
output of another command, or from the terminal. Options are 
provided to tell the command at what point from the beginning or end 
of the input data to start passing data to the output. The start can be 
expressed in the number of lines, blocks, or characters from the 
beginning or end of the data. 

Command Format 

The general format of the tail command is as follows: 

tail [ ± [number][lbc[f]]] [file] 

The number argument identifies the number of units from the 
beginning or from the end of the input where the output is to begin. A 
plus sign preceding the number means from the beginning of the input 
data. A minus sign preceding the number means from the end of the 
input. The units used for the number argument are lines (I), blocks (b), 
or characters (c). The unit identifier immediately follows the number 
argument (no space). 

The -f option is used to continuously read data from a file. The option 
provides the ability to monitor the growth of a file that is being written 
by some other process. The -f option is not applicable when data is 
being piped to the tail command. 

The file argument identifies the name of the source file. Note that the 
file name can be expressed as a complete path name. 

DF 2-115 



COMMAND DESCRIPTIONS 

Sample Command Use 

The following examples are based on the contents of a file named 
sample. The contents of this file are as follows: 

line 1 
line 2 
line 3 
line 4 
line 5 
line 6 
line 7 
line 8 
line 9 
line 10 
line 11 
line 12 

The following command line entries and system responses show how 
you can output the end of a file of data using the simplest form of the 
tail command. This form of the command outputs the last ten lines of 
the contents of the sample file. The default of the number argument is 
-101. 

$ tail sample<CR> 
line 3 
line 4 
line 5 
line 6 
line 7 
line 8 
line 9 
line 10 
line 11 
line 12 
$ 

OF 2-116 



COMMAND DESCRIPTIONS 

The following sample command lines and system responses show you 
how to output the contents of the sample file starting 45 characters 
from the beginning of the file: 

$ tail +45c sample<CR> 
ne 7 
line 8 
line 9 
line 10 
line 11 
line 12 
$ 

DF 2-117 





COMMAND DESCRIPTIONS 

"tr" - Translate Characters 

General 

The tr command is used as a filter to change data that is passed 
through it on a character basis. The command functions like a stream 
editor. Repeated occurrences of a character in succession can be 
reduced to a single occurrence of the character. Characters can be 
identified by ASCII letter or octal value. Octal values are preceded by a 
backslash (\). Ranges of characters are identified by enclosing the 
range in brackets. For example, [a-c] represents the letters a, b, and 
c. The entire lower case ASCII range is identified by [a-z]. Multiple 
occurrences of a character is represented by an expression [x*n], 
where the x is any character and the n is the number of repetitions of 
x. The number is treated as an octal number if the most significant 
digit is a zero. The number is treated as a decimal number if the most 
significant digit is other than a zero. 

Command Format 

The general format of the tr command is as follows: 

tr [-eds] [stringl [string2]] 

The -c option reverses the meaning of string I. The stringl argument 
identifies the characters that ARE NOT to be translated. The 
characters identified in the stringl argument pass unchanged to the 
output. When the -c option is omitted, stringl characters are 
translated to string2 characters. 

The -d option causes the characters identified by stringl to be deleted 
from the output. The string2 argument is not used with the -d option. 
If the string2 argument is provided, it will be ignored. 

DF 2-119 



COMMAND DESCRIPTIONS 

The "s option causes multiple occurrences of the characters identified 
by string2 to be replaced by a single occurrence of the characters. If 
only one string argument is given, then stringl defines the character(s) 
to be operated on by the command. 

The stringl argument identifies input characters that are to be 
operated on by the command. When a string2 argument is also 
provided, the characters found in stringl are mapped to the 
corresponding character in string2. 

Sample Command Use 

The following command line entries and system responses show how 
you can change all lower case letters in a file named listl to upper 
case letters. The cat command is used to display the contents of listl. 
The output of the tr command is redirected to a file named UST. 

$ cat listl<CR> 
eggs 
bread 
milk 
butter 
meat 
$tr" [a-z)" "[A·Z]" < listl > UST<CR> 
$cat LIST <CR> 
EGGS 
BREAD 
MILK 
BUTTER 
MEAT 
$ 

DF 2-120 



COMMAND DESCRIPTIONS 

The following command line entries and system responses show how 
you can use the tr command to reduce multiple consecutive 
occurrences of a space character to a single occurrence throughout a 
file of data. The cat command is used to display the contents of the 
files. 

$ cat list3<CR> 
This file contains lines 
with multiple spaces between words. 
$ tr -s" " < list3 > new!ist<CR> 
$ cat newlist<CR> 
This file contains lines 
with multiple spaces between words. 
$ 

The following command line entries and system responses show how 
you can use the tr command to put each word in a file on a separate 
line. The cat command is used to display the contents of the sample 
file. The output of the tr command is displayed on the terminal in this 
example. 

$ cat file<CR> 
This file contains one line of text. 
$ tr -cs" [A-z]" "[\012*]" <file< CR> 
This 
file 
contains 
one 
line 
of 
text 
$ 

OF 2-121 





COMMAND DESCRIPTIONS 

"uniq" - Report Repeated Lines in a File 

Genera/ 

The uniq command is used to read an input file while comparing 
adjacent lines. The second and succeeding copies of repeated lines 
are removed in the normal output mode and the remaining lines are 
written on the output file. Repeated lines must be adjacent to be 
found. The input and output files must have different names. 

Command Format 

The general format of the uniq command is as follows: 

uniq [ -udc [ +n] [ -n] ] [ input [ output] ] 

where: 

-u The lines that are not repeated in the input file are written 
on the output file. 

-d Only one copy of just the repeated lines is written on the 
output file. 

-c The output file is generated in the normal output mode 
with a count of the number of times each line occurs. 
This option supersedes -u and -d. 

+n n amount of characters are ignored. Fields are skipped 
before characters. A field is defined as a string of 
nonspace, nontab characters separated by tabs and 
spaces from its neighbors. 

-n The first n amount of fields together with any blanks 
before each field are ignored. 

OF 2-123 



COMMAND DESCRIPTIONS 

input The name of the input file. 

output The name of the output file. 

The normal output mode is the union of the -u and -d options. 

Sample Command Use 

The following command line entries and system responses show the 
basic operation of the uniq command. The cat command is used to 
display a grocery list. The sort command is used to alphabetize the 
grocery list To learn more about the sort command, refer to your 
AT&T 382 Computer User Reference Manual. The cat command is 
used again to display the alphabetized grocery list The uniq command 
is used to remove the repeated lines and to count the number of times 
each item was listed. The cat command is used again to display the 
results. This is shown in the next example. 

DF 2-124 



$ cat filel<CR:> 
bread 
milk 
butter 
ice cream 
meat 
milk 
vegetables 
potato chips 
drinks 
orange juice 
bread 
vegetables 
$ sort filel > file2<CR:> 
$ cat file2<CR:> 
bread 
bread 
butter 
drinks 
ice cream 
meat 
milk 
milk 
orange juice 
potato chips 
vegetables 
vegetables 
$ uniq -c file2 file3<CR:> 
$ cat file3<CR:> 

$ 

2 bread 
1 butter 
1 drinks 
1 ice cream 
1 meat 
2 milk 
1 orange juice 
1 potato chips 
2 vegetables 

COMMAND DESCRIPTIONS 

DF2-125 





COMMAND DESCRIPTIONS 

"unpack" - Expand Files 

General 

The unpack command is used to expand files created by the pack 
command. The compressed data is expanded to its original form. The 
compressed file is removed and the expanded data is placed in a file 
with the same file name, except that the .z is dropped. For example, if 
you expanded a file named filel.z, the expanded data will be placed in 
filel. The access modes, access and modified dates, and owner will 
remain the same as the compressed file. 

The unpack command will not work if: 

1. The file name (exclusive of .z) has more than 12 
characters. 

2. The file cannot be opened. 

3. The file does not appear to be the output of the pack 
command. 

4. A file with the "unpacked" name already exists. 

5. The unpacked file cannot be created. 

The unpack command returns a value that is the number of files that it 
failed to expand. 

DF 2-127 



COMMAND DESCRIPTIONS 

Command Format 

The general format of the unpack command is as follows: 

unpack name ... 

The name argument identifies the name of the file that needs to be 
expanded. The .z at the end of the file name does not need to be 
input when specifying name. 

Sample Command Use 

The following command line entries and system responses show the 
basic operation of the unpack command. The Is -I command is used to 
display the character size of the compressed files before they are 
expanded. The unpack command is used to expand the compressed 
files. The Is -I command is used again to display the character size of 
the expanded files. 

$ Is ·l<CR> 
total 71 
-rw------- 1 cec other 18980 July 19 13:14 filel.z 
-rw------- 1 cec other 15530 July 19 13:15 file2.z 
$ unpack filel file2<CR> 
unpack:fi~l: unpacked 
unpack: file2: unpacked 
$Is -l<CR> 
total 110 
-rw------- 1 cec other 
-rw------- 1 cec other 
$ 

DF 2-128 

29727 July 19 13:14 filel 
24355 July 19 13:15 file2 


