
C++ Language System
Release 3.0

Library Manual

1



Copyright  1991 AT&T and UNIX System Laboratories, Inc.
Copyright  1984, 1989, 1990 AT&T. All Rights Reserved.

NOTICE
The information in this document is subject to change without notice. USL
assumes no responsibility for any errors that may appear in this document.

DEC is a registered trademark of Digital Equipment Corporation.
Motorola MC68000 is a trademark of Motorola.
Sun Workstation and Sun Microsystems are registered trademarks of

Sun Microsystems.
Sun-2 and Sun-3 are trademarks of Sun Microsystems.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
VAX is a registered trademark of Digital Equipment Corporation.
WE is a registered trademark of AT&T.

1



Contents

Preface
Preface i
Acknowledgements ii

1 Complex Arithmetic in C++
Complex Arithmetic in C++ 1-1
Footnotes 1-13

2 The Task Library
Introduction 2-1
A Set of C++ Classes for Co-routine Style Programming 2-2
Extending the C++ Task System for Real-Time Control 2-26
A Porting Guide for the C++ Coroutine Library 2-37
Footnotes 2-50

3 Iostream Examples
Iostream Examples 3-1

Table of Contents i



Table of Contents

ii Library Manual



Figures and Tables

Figure 2-1: Stack Frames on a 3B2, a VAX, and a Sun-2/3 for a Function Taking 3 Arguments and Saving 4
Registers 2-39

Figure 2-2: A Task Switch from a Suspending to a Resuming Task (D E D I C A T E D) 2-41
Figure 2-3: Creating a New Task’s Stack 2-42
Figure 2-4: A Task Switch to a New Child (D E D I C A T E D) 2-43
Figure 2-5: A 3B2 Stack Before and After Fudging 2-45
Figure 2-6: Fudging When u s e r _ t a s k : : u s e r _ t a s k ( ) Uses More Registers than t a s k : : t a s k 2-46

Table of Contents iii



Preface

Preface i

Acknowledgements ii

Table of Contents i



Preface

The C++ Language System Library Manual describes the C++ class libraries provided with Release 3.0 of the
C++ Language System:

the complex arithmetic library

the task library

the iostream library

The manual is part of a set of four documents that are supplied with your C++ Language System. The
other documents are:

the Release Notes , which describe the contents of this release, how to install it, and changes to the
language

the Product Reference Manual , which provides a complete definition of the C++ language supported by
Release 3.0 of the Language System.

the Selected Readings , which contains papers describing aspects of the C++ language

The chapters in this manual cover the following C++ class libraries:

Chapter 1 describes the complex arithmetic library, which provides a class c o m p l e x that allows you
to declare and manipulate complex numbers in C++ programs

Chapter 2 describes the task library, which allows you to create and control concurrent processes in
C++ programs. The last section of Chapter 2 provides porting information for the task library, which
is machine dependent.

Chapter 3 describes the stream library, which allows you to do formatted input and output from C++
programs

The back of this book contains manual pages for the complex library, task library, and iostream
library.

To make the best use of the Library Manual, you must be familiar with the C programming language and
the C programming environment under the UNIX operating system.
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Complex Arithmetic in C++

NOTE

This chapter is taken directly from a paper by Leonie V. Rose and Bjarne Stroustrup.

Abstract

This memo describes a data type c o m p l e x providing the basic facilities for using complex arithmetic in
C++. The usual arithmetic operators can be used on complex numbers and a library of standard complex
mathematical functions is provided. For example:

# i n c l u d e < c o m p l e x . h >

m a i n ( ) {
c o m p l e x x x ;
c o m p l e x y y = c o m p l e x ( 1 , 2 . 7 1 8 ) ;
x x = l o g ( y y / 3 ) ;
c o u t < < 1 + x x ;

}

initializes y y as a complex number of the form ( r e a l + i m a g * i ), evaluates the expressions and prints the
result: ( 0 . 9 6 4 7 6 , 1 . 2 1 8 2 5 ).

The data type c o m p l e x is implemented as a class using the data abstraction facilities in C++. The arith-
metic operators +, − , ∗ , and ⁄ , the assignment operators =, + =, −=, ∗=, and ⁄=, and the comparison opera-
tors = = and ! = are provided for complex numbers. So are the trigonometric and mathematical functions:
s i n ( ), c o s ( ), c o s h ( ), s i n h ( ), s q r t ( ), l o g ( ), e x p ( ), c o n j ( ), a r g ( ), a b s ( ), n o r m ( ), and p o w ( ).
Expressions such as ( x x + 1 )∗l o g ( y y∗l o g ( 3 . 2 ) ) that involve a mixture of real and complex numbers are
handled correctly. The simplest complex operations, for example + and + =, are implemented without func-
tion call overhead.

Introduction

The C++ language does not have a built-in data type for complex numbers, but it does provide language
facilities for defining new data types. The type c o m p l e x was designed as a useful demonstration of the
power of these facilities.

There are three plausible ways to support complex numbers in a language. First, the type c o m p l e x could be
directly supported by the compiler in the same way as the types i n t and f l o a t are. Alternatively, a
preprocessor could be written to translate all use of complex numbers into expressions involving only
built-in data types. A third approach was used to implement type c o m p l e x; it was specified as a user-
defined type. This demonstrates that one can achieve the elegance and most of the efficiency of a built in
data type without modifying the compiler. It is even much easier to implement than the pre-processor
approach, which is likely to provide an inferior user interface.
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This facility for complex arithmetic provides the arithmetic operators +, ⁄ , ∗ , and − , the assignment opera-
tors =, + =, −=, ∗=, and ⁄=, and the comparison operators = = and ! = for complex numbers. Input and out-
put can be done using the operators > > (get from) and < < (put to). The initialization functions and > >
accept a Cartesian representation of a c o m p l e x. The functions r e a l ( ) and i m a g ( ) return the real and ima-
ginary part of a c o m p l e x, respectively, and < < prints a c o m p l e x as ( r e a l , i m a g i n a r y ). The internal
representation of a c o m p l e x, is, however, inaccessible and in principle unknown to a user. Polar coordi-
nates can also be used. The function p o l a r ( ) creates a c o m p l e x given its polar representation, and a b s ( )
and a r g ( ) return the polar magnitude and angle, respectively, of a c o m p l e x. The function n o r m ( ) returns
the square of the magnitude of a c o m p l e x . The following complex functions are also provided: s q r t ( ),
e x p ( ), l o g ( ), s i n ( ), c o s ( ), s i n h ( ), c o s h ( ), p o w ( ), and c o n j ( ). The declaration of c o m p l e x and the
declarations of the complex functions can be found under ‘‘Type c o m p l e x.’’ A complete program using
complex numbers can be found under ‘‘An FFT Function.’’

Complex Variables and Data Initialization

A program using complex arithmetic will contain declarations of c o m p l e x variables. For example:

c o m p l e x z z = c o m p l e x ( 3 , - 5 ) ;

will declare z z to be complex and initialize it with a pair of values. The first value of the pair is taken as
the real part of the Cartesian representation of a complex number and the second as the imaginary part.
The function c o m p l e x ( ) constructs a complex value given suitable arguments.1 It is responsible for initializ-
ing c o m p l e x variables, and will convert the arguments to the proper type ( d o u b l e ). Such initializations
may be written more compactly. For example:

c o m p l e x z z ( 3 , - 5 ) ;
c o m p l e x c _ n a m e ( - 3 . 9 , 7 ) ;
c o m p l e x r p r ( S Q R T _ 2 , r o o t 3 ) ;

A complex variable can be initialized to a real value by using the constructor with only one argument. For
example:

c o m p l e x r a = c o m p l e x ( 1 ) ;

will set up r a as a complex variable initialized to ( 1 , 0 ). Alternatively the initialization to a real value can
also be written without explicit use of the constructor:

c o m p l e x r b = 1 2 3 ;

The integer value will be converted to the equivalent complex value exactly as if the constructor c o m -
p l e x ( 1 2 3 ) had been used explicitly. However, no conversion of a c o m p l e x into a d o u b l e is defined, so

d o u b l e d d = c o m p l e x ( 1 , 0 ) ;

is illegal and will cause a compile time error.
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If there is no initialization in the declaration of a complex variable, then the variable is initialized to ( 0 , 0 ).
For example:

c o m p l e x o r i g ;

is equivalent to the declaration:

c o m p l e x o r i g = c o m p l e x ( 0 , 0 ) ;

Naturally a complex variable can also be initialized by a complex expression. For example:

c o m p l e x c x ( - 0 . 5 0 0 0 0 0 0 e + 0 2 , 0 . 8 6 6 0 2 5 4 e + 0 2 ) ;
c o m p l e x c y = c x + l o g ( c x ) ;

It is also possible to declare arrays of complex numbers. For example:

c o m p l e x c a r r a y [ 3 0 ] ;

sets up an array of 30 complex numbers, all initialized to ( 0 , 0 ). Using the above declarations:

c o m p l e x c a r r [ ] = { c x , c y , c a r r a y [ 2 ] , c o m p l e x ( 1 . 1 , 2 . 2 ) } ;

sets up a complex array c a r r [ ] of four c o m p l e x elements and initializes it with the members of the list.
However, a struct style initialization cannot be used. For example:

c o m p l e x c w r o n g [ ] = { 1 . 5 , 3 . 3 , 4 . 2 , 4 } ;

is illegal, because it makes unwarranted assumptions about the representation of complex numbers.

Input and Output

Simple input and output can be done using the operators > > (get from) and < < (put to). They are declared
like this using the facility for overloading function operators:

o s t r e a m & o p e r a t o r < < ( o s t r e a m & , c o m p l e x ) ;
i s t r e a m & o p e r a t o r > > ( i s t r e a m & , c o m p l e x & ) ;

When z z is a complex variable c i n > > z z reads a pair of numbers from the standard input stream c i n into
z z. The first number of the pair is interpreted as the real part of the Cartesian representation of a complex
number and the second as the imaginary part. The expression c o u t < < z z writes z z to the standard output
stream c o u t. For example:

v o i d c o p y ( i s t r e a m & f r o m , o s t r e a m & t o )
{

c o m p l e x z z ;
w h i l e ( f r o m > > z z ) t o < < z z ;

}

reads a stream of complex numbers like ( 3 . 4 0 0 0 0 0 , 5 . 0 0 0 0 0 0 ) and writes them like ( 3 . 4 , 5 ). The
parentheses and comma are mandatory delimiters for input, while white space is optional. A single real
number, for example 1 0 e - 7 or ( 1 2 3 ), will be interpreted as a c o m p l e x with 0 as the imaginary part by
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operator > >.

A user who does not like the standard implementation of < < and > > can provide alternate versions.

Cartesian and Polar Coordinates

The functions r e a l ( ) and i m a g ( ) return the real and imaginary parts of a complex number, respectively.
This can, for example, be used to create differently formatted output of a c o m p l e x:

c o m p l e x c c = c o m p l e x ( 3 . 4 , 5 ) ;
c o u t < < r e a l ( c c ) < < " + " < < i m a g ( c c ) < < " * i " ;

will print 3 . 4 + 5 * i.

The function p o l a r ( ) creates a c o m p l e x given a pair of polar coordinates (magnitude, angle). The func-
tions a r g ( ) and a b s ( ) both take a c o m p l e x argument and return the angle and magnitude (modulus),
respectively. For example:

c o m p l e x c c = p o l a r ( S Q R T _ 2 , P I / 4 ) ; / / a l s o k n o w n a s c o m p l e x ( 1 , 1 )
d o u b l e m a g n = a b s ( c c ) ; / / m a g n = s q r t ( 2 )
d o u b l e a n g l = a r g ( c c ) ; / / a n g l = P I / 4
c o u t < < " ( m = " < < m a g n < < " , a = " < < a n g l < < " ) " ;

If input and output functions for the polar representation of complex numbers are needed they can easily
be written by the user.

Arithmetic Operators

The basic arithmetic operators +, − (unary and binary), ⁄ , and ∗ , the assignment operators =, + =, −=, ∗=,
and ⁄=, as well as the equality operators = = and ! =, can be used for complex numbers. The operators have
their conventional precedences. For example: a = b * c + d for complex variables a, b, c, and d is equivalent to
a = ( b∗c ) + d. There are no operators for exponentiation and conjugation; instead the functions p o w ( ) and
c o n j ( ) are provided. The operators + =, −=, ∗=, and ⁄= do not produce a value that can be used in an
expression; thus the following examples will cause compile time errors:

c o m p l e x a , b ;
/ / . . .
i f ( ( a + = 2 ) = = 0 ) {

/ / . . .
}
b = a * = b ;
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Mixed Mode Arithmetic

Mixed mode expressions are handled correctly. Real values will be converted to complex where necessary.
For example:

c o m p l e x x x ( 3 . 5 , 4 . 0 ) ;
c o m p l e x y y = l o g ( y y ) + l o g ( 3 . 2 ) ;

This expression involves a mixture of real values: l o g ( 3 . 2 ), and complex values: l o g ( y y ) and the sum.
Another example of mixing real and complex, x x = 1, is equivalent to x x = c o m p l e x ( 1 ) which in turn is
equivalent to x x = c o m p l e x ( 1 , 0 ). The interpretation of the expression ( x x + 1 )∗y y∗3 . 2 is
( ( ( x x + c o m p l e x ( 1 ) )∗y y )∗c o m p l e x ( 3 . 2 ) ).

Mathematical Functions

A library of complex mathematical functions is provided. A complex function typically has a counterpart
of the same name in the standard mathematical library. In this case the function name will be overloaded.
That is, when called, the function to be invoked will be chosen based on the argument type. For example,
l o g ( 1 ) will invoke the real l o g ( ), and l o g ( c o m p l e x ( 1 ) ) will invoke the complex l o g ( ). In each case
the integer 1 is converted to the real value 1 . 0.

These functions will produce a result for every possible argument. If it is not possible to produce a
mathematically acceptable result, the function c o m p l e x _ e r r o r ( ) will be called and some suitable value
returned. In particular, the functions try to avoid actual overflow, calling c o m p l e x _ e r r o r ( ) with an
overflow message instead. The user can supply c o m p l e x _ e r r o r ( ). Otherwise a function that simply sets
the integer e r r n o is used. See ‘‘Errors and Error Handling’’ for details.

c o m p l e x c o n j ( c o m p l e x ) ;

C o n j ( z z ) returns the complex conjugate of z z.

d o u b l e n o r m ( c o m p l e x ) ;

N o r m ( z z ) returns the square of the magnitude of z z . It is faster than a b s ( z z ), but more likely to cause an
overflow error. It is intended for comparisons of magnitudes.

d o u b l e p o w ( d o u b l e , d o u b l e ) ;
c o m p l e x p o w ( d o u b l e , c o m p l e x ) ;
c o m p l e x p o w ( c o m p l e x , i n t ) ;
c o m p l e x p o w ( c o m p l e x , d o u b l e ) ;
c o m p l e x p o w ( c o m p l e x , c o m p l e x ) ;

P o w ( a a , b b ) raises a a to the power of b b. For example, to calculate ( 1−i )∗ ∗4:

c o u t < < p o w ( c o m p l e x ( 1 , - 1 ) , 4 ) ;

The output is (−4 , 0 ) .
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d o u b l e l o g ( d o u b l e ) ;
c o m p l e x l o g ( c o m p l e x ) ;

L o g ( z z ) computes the natural logarithm of z z . L o g ( 0 ), causes an error, and a huge value is returned.

d o u b l e e x p ( d o u b l e ) ;
c o m p l e x e x p ( c o m p l e x ) ;

E x p ( z z ) computes e∗ ∗z z, e being 2.718281828...

d o u b l e s q r t ( d o u b l e ) ;
c o m p l e x s q r t ( c o m p l e x ) ;

S q r t ( z z ) calculates the square root of z z.

The trigonometric functions available are:

d o u b l e s i n ( d o u b l e ) ;
c o m p l e x s i n ( c o m p l e x ) ;

d o u b l e c o s ( d o u b l e ) ;
c o m p l e x c o s ( c o m p l e x ) ;

Hyperbolic functions are also available:

d o u b l e s i n h ( d o u b l e ) ;
c o m p l e x s i n h ( c o m p l e x ) ;

d o u b l e c o s h ( d o u b l e ) ;
c o m p l e x c o s h ( c o m p l e x ) ;

Other trigonometric and hyperbolic functions, for example t a n ( ) and t a n h ( ), can be written by the user
using overloaded function names.

Efficiency

C++’s facility for overloading function names allows c o m p l e x to handle overloaded function calls in an
efficient manner. If a function name is declared to be overloaded, and that name is invoked in a function
call, then the declaration list for that function is scanned in order, and the first occurrence of the appropri-
ate function with matching arguments will be invoked. For example, consider the exponential function:

d o u b l e e x p ( d o u b l e ) ;
c o m p l e x e x p ( c o m p l e x ) ;

When called with a d o u b l e argument the first, and in this case most efficient, e x p ( ) will be invoked. If a
c o m p l e x result is needed, the d o u b l e result is then implicitly converted using the appropriate constructor.
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For example:

c o m p l e x f o o = e x p ( 3 . 5 ) ;

is evaluated as

c o m p l e x f o o = c o m p l e x ( e x p ( 3 . 5 ) ) ;

and not

c o m p l e x f o o = e x p ( c o m p l e x ( 3 . 5 ) ) ;

Constructors can also be used explicitly. For example:

c o m p l e x a d d ( c o m p l e x a 1 , c o m p l e x a 2 ) / / s i l l y w a y o f d o i n g a 1 + a 2
{

r e t u r n c o m p l e x ( r e a l ( a 1 ) + r e a l ( a 2 ) , i m a g ( a 1 ) + i m a g ( a 2 ) ) ;
}

Inline functions are used to avoid function call overhead for the simplest operations, for example, c o n j ( ),
+, + =, and the constructors (See ‘‘Type c o m p l e x’’ ).

Type c o m p l e x

This is the definition of type c o m p l e x . It can be included as < c o m p l e x . h >. A f r i e n d declaration specifies
that a function may access the internal representation of a c o m p l e x. The standard header file < s t r e a m . h >
is included to allow declaration of the stream I/O operators < < and > > for complex numbers.

# i n c l u d e < s t r e a m . h >
# i n c l u d e < e r r n o . h >
# i n c l u d e < m a t h . h >

c l a s s c o m p l e x {
d o u b l e r e , i m ;

p u b l i c :
c o m p l e x ( ) { r e = i m = 0 ; }

c o m p l e x ( d o u b l e r = 0 , d o u b l e i ) { r e = r ; i m = i ; }

f r i e n d d o u b l e a b s ( c o m p l e x ) ;
f r i e n d d o u b l e n o r m ( c o m p l e x ) ;
f r i e n d d o u b l e a r g ( c o m p l e x ) ;
f r i e n d c o m p l e x c o n j ( c o m p l e x ) ;
f r i e n d c o m p l e x c o s ( c o m p l e x ) ;
f r i e n d c o m p l e x c o s h ( c o m p l e x ) ;
f r i e n d c o m p l e x e x p ( c o m p l e x ) ;
f r i e n d d o u b l e i m a g ( c o m p l e x ) ;
f r i e n d c o m p l e x l o g ( c o m p l e x ) ;
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f r i e n d c o m p l e x p o w ( d o u b l e , c o m p l e x ) ;
f r i e n d c o m p l e x p o w ( c o m p l e x , i n t ) ;
f r i e n d c o m p l e x p o w ( c o m p l e x , d o u b l e ) ;
f r i e n d c o m p l e x p o w ( c o m p l e x , c o m p l e x ) ;
f r i e n d c o m p l e x p o l a r ( d o u b l e , d o u b l e = 0 ) ;
f r i e n d d o u b l e r e a l ( c o m p l e x ) ;
f r i e n d c o m p l e x s i n ( c o m p l e x ) ;
f r i e n d c o m p l e x s i n h ( c o m p l e x ) ;
f r i e n d c o m p l e x s q r t ( c o m p l e x ) ;

f r i e n d c o m p l e x o p e r a t o r + ( c o m p l e x , c o m p l e x ) ;
f r i e n d c o m p l e x o p e r a t o r - ( c o m p l e x ) ;
f r i e n d c o m p l e x o p e r a t o r - ( c o m p l e x , c o m p l e x ) ;
f r i e n d c o m p l e x o p e r a t o r * ( c o m p l e x , c o m p l e x ) ;
f r i e n d c o m p l e x o p e r a t o r / ( c o m p l e x , c o m p l e x ) ;
f r i e n d i n t o p e r a t o r = = ( c o m p l e x , c o m p l e x ) ;
f r i e n d i n t o p e r a t o r ! = ( c o m p l e x , c o m p l e x ) ;

v o i d o p e r a t o r + = ( c o m p l e x ) ;
v o i d o p e r a t o r - = ( c o m p l e x ) ;
v o i d o p e r a t o r * = ( c o m p l e x ) ;
v o i d o p e r a t o r / = ( c o m p l e x ) ;

} ;

o s t r e a m & o p e r a t o r < < ( o s t r e a m & , c o m p l e x ) ;
i s t r e a m & o p e r a t o r > > ( i s t r e a m & , c o m p l e x & ) ;

i n l i n e c o m p l e x o p e r a t o r + ( c o m p l e x a 1 , c o m p l e x a 2 )
{

r e t u r n c o m p l e x ( a 1 . r e + a 2 . r e , a 1 . i m + a 2 . i m ) ;
}

i n l i n e c o m p l e x o p e r a t o r - ( c o m p l e x a 1 , c o m p l e x a 2 )
{

r e t u r n c o m p l e x ( a 1 . r e - a 2 . r e , a 1 . i m - a 2 . i m ) ;
}

i n l i n e c o m p l e x o p e r a t o r - ( c o m p l e x a )
{

r e t u r n c o m p l e x ( - a . r e , a . i m ) ;
}

i n l i n e c o m p l e x c o n j ( c o m p l e x a )
{

r e t u r n c o m p l e x ( a . r e , - a . i m ) ;
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}

i n l i n e i n t o p e r a t o r = = ( c o m p l e x a , c o m p l e x b )
{

r e t u r n ( a . r e = = b . r e & & a . i m = = b . i m ) ;
}

i n l i n e i n t o p e r a t o r ! = ( c o m p l e x a , c o m p l e x b )
{

r e t u r n ( a . r e ! = b . r e | | a . i m ! = b . i m ) ;
}

i n l i n e v o i d c o m p l e x . o p e r a t o r + = ( c o m p l e x a )
{

r e + = a . r e ;
i m + = a . i m ;

}

i n l i n e v o i d c o m p l e x . o p e r a t o r - = ( c o m p l e x a )
{

r e - = a . r e ;
i m - = a . i m ;

}

An FFT Function

Transcribed from Fortran as presented in ‘‘FFT as Nested Multiplication, with a Twist’’ by Carl de Boor in
SIAM Sci. Stat. Comput., Vol 1 No 1, March 1980.
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# i n c l u d e < c o m p l e x . h >

v o i d f f t s t p ( c o m p l e x * , i n t , i n t , i n t , c o m p l e x * ) ;

c o n s t N E X T M X = 1 2 ;
i n t p r i m e [ N E X T M X ] = { 2 , 3 , 5 , 7 , 1 1 , 1 3 , 1 7 , 1 9 , 2 3 , 2 9 , 3 1 , 3 7 } ;

c o m p l e x * f f t ( c o m p l e x * z 1 , c o m p l e x * z 2 , i n t n , i n t i n z e e )
/ *

C o n s t r u c t t h e d i s c r e t e F o u r i e r t r a n s f o r m o f z 1 ( o r z 2 ) i n t h e
C o o l e y - T u k e y w a y , b u t w i t h a t w i s t .

z 1 [ b e f o r e ] , z 2 [ b e f o r e ] .
i n z e e = = 1 m e a n s i n p u t i n z 1 ; i n z e e = = 2 m e a n s i n p u t i n z 2

* /
{

i n t b e f o r e = n ;
i n t a f t e r = 1 ;
i n t n e x t = 0 ;
i n t n o w ;

d o {
i n t n p = p r i m e [ n e x t ] ;
i f ( ( b e f o r e / n p ) * n p < b e f o r e ) {

i f ( + + n e x t < N E X T M X ) c o n t i n u e ;
n o w = b e f o r e ;
b e f o r e = 1 ;

}
e l s e {

n o w = n p ;
b e f o r e / = n p ;

}
i f ( i n z e e = = 1 )

f f t s t p ( z 1 , a f t e r , n o w , b e f o r e , z 2 ) ;
e l s e

f f t s t p ( z 2 , a f t e r , n o w , b e f o r e , z 1 ) ;
i n z e e = 3 - i n z e e ;
a f t e r * = n o w ;

} w h i l e ( 1 < b e f o r e )

r e t u r n ( i n z e e = = 1 ) ? z 1 : z 2 ;
}

v o i d f f t s t p ( c o m p l e x * z i n , i n t a f t e r , i n t n o w , i n t b e f o r e , c o m p l e x * z o u t )
/ *
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z i n ( a f t e r , b e f o r e , n o w )
z o u t ( a f t e r , n o w , b e f o r e )

t h e r e i s a m p l e s c o p e f o r o p t i m i z a t i o n
* /
{

d o u b l e a n g l e = P I 2 / ( n o w * a f t e r ) ;
c o m p l e x o m e g a = c o m p l e x ( c o s ( a n g l e ) , - s i n ( a n g l e ) ) ;
c o m p l e x a r g = 1 ;
f o r ( i n t j = 0 ; j < n o w ; j + + ) {

f o r ( i n t i a = 0 ; i a < a f t e r ; i a + + ) {
f o r ( i n t i b = 0 ; i b < b e f o r e ; i b + + ) {

/ / v a l u e = z i n ( i a , i b , n o w )
c o m p l e x v a l u e = z i n [ i a + i b * a f t e r + ( n o w - 1 ) * b e f o r e * a f t e r ] ;

f o r ( i n t i n = n o w - 2 ; 0 < = i n ; i n - - ) {
/ / v a l u e = v a l u e * a r g + z i n ( i a , i b , i n )

v a l u e * = a r g ;
v a l u e + = z i n [ i a + i b * a f t e r + i n * b e f o r e * a f t e r ] ;

}
/ / z o u t ( i a , j , i b ) = v a l u e

z o u t [ i a + j * a f t e r + i b * n o w * a f t e r ] = v a l u e ;
}
a r g * = o m e g a ;

}
}

}

The main program below calls f f t ( ) with a sine curve as argument. The complete unedited output is
presented on the next page. All but two of the numbers ought to have been zero. The very small numbers
shows the roundoff errors. Since C++ floating-point arithmetic is done in double-precision these errors are
smaller than the equivalent errors obtained using the published Fortran version.
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# i n c l u d e < c o m p l e x . h >

e x t e r n c o m p l e x * f f t ( c o m p l e x * , c o m p l e x * , i n t , i n t ) ;

m a i n ( )
/ *

t e s t f f t ( ) w i t h a s i n e c u r v e
* /
{

c o n s t n = 2 6 ;
c o m p l e x * z 1 = n e w c o m p l e x [ n ] ;
c o m p l e x * z 2 = n e w c o m p l e x [ n ] ;

c o u t < < " i n p u t : \ m " ;
f o r ( i n t i = 0 ; i < n ; i + + ) {

z 1 [ i ] = s i n ( i * P I 2 / n ) ;
c o u t < < z 1 [ i ] < < " \ m " ;

}

e r r n o = 0 ;
c o m p l e x * z o u t = f f t ( z 1 , z 2 , n , 1 ) ;
i f ( e r r n o ) c e r r < < " C e r r o r " < < e r r n o < < " o c c u r r e d \ m " ;

c o u t < < " o u t p u t : \ m " ;
f o r ( i n t j = 0 ; j < n ; j + + ) c o u t < < z o u t [ j ] < < " \ m " ;

}

i n p u t :
( 0 , 0 )
( 0 . 2 3 9 3 1 6 , 0 )
( 0 . 4 6 4 7 2 3 , 0 )
( 0 . 6 6 3 1 2 3 , 0 )
( 0 . 8 2 2 9 8 4 , 0 )
( 0 . 9 3 5 0 1 6 , 0 )
( 0 . 9 9 2 7 0 9 , 0 )
( 0 . 9 9 2 7 0 9 , 0 )
( 0 . 9 3 5 0 1 6 , 0 )
( 0 . 8 2 2 9 8 4 , 0 )
( 0 . 6 6 3 1 2 3 , 0 )
( 0 . 4 6 4 7 2 3 , 0 )
( 0 . 2 3 9 3 1 6 , 0 )
( 4 . 3 5 9 8 4 e - 1 7 , 0 )
( - 0 . 2 3 9 3 1 6 , 0 )
( - 0 . 4 6 4 7 2 3 , 0 )
( - 0 . 6 6 3 1 2 3 , 0 )

1-12 Library Manual



Complex Arithmetic in C++

( - 0 . 8 2 2 9 8 4 , 0 )
( - 0 . 9 3 5 0 1 6 , 0 )
( - 0 . 9 9 2 7 0 9 , 0 )
( - 0 . 9 9 2 7 0 9 , 0 )
( - 0 . 9 3 5 0 1 6 , 0 )
( - 0 . 8 2 2 9 8 4 , 0 )
( - 0 . 6 6 3 1 2 3 , 0 )
( - 0 . 4 6 4 7 2 3 , 0 )
( - 0 . 2 3 9 3 1 6 , 0 )
o u t p u t :
( 9 . 5 6 4 0 1 e - 1 7 , 0 )
( - 3 . 7 6 6 6 5 e - 1 6 , - 1 3 )
( 9 . 3 9 8 2 8 e - 1 7 , 1 . 1 1 2 6 1 e - 1 7 )
( 6 . 4 2 2 1 9 e - 1 6 , - 4 . 2 0 6 1 3 e - 1 7 )
( 7 . 3 7 2 7 9 e - 1 7 , 2 . 3 3 3 1 9 e - 1 6 )
( 2 . 8 5 0 8 4 e - 1 6 , 2 . 8 7 9 1 8 e - 1 6 )
( 4 . 0 3 1 3 4 e - 1 7 , 5 . 1 7 8 9 e - 1 7 )
( 2 . 6 0 8 6 5 e - 1 6 , 6 . 7 8 7 9 4 e - 1 7 )
( - 5 . 7 1 6 6 7 e - 1 7 , - 3 . 8 6 3 4 8 e - 1 7 )
( 2 . 7 6 3 1 5 e - 1 6 , 2 . 3 6 9 0 2 e - 1 7 )
( - 6 . 4 3 7 5 5 e - 1 7 , - 3 . 8 0 2 5 5 e - 1 7 )
( 1 . 9 5 0 3 1 e - 1 6 , 9 . 7 7 8 5 8 e - 1 7 )
( 1 . 4 9 0 8 7 e - 1 6 , - 7 . 5 7 3 4 5 e - 1 7 )
( 3 . 1 7 2 2 4 e - 1 6 , 1 . 6 4 2 9 4 e - 1 7 )
( 1 . 4 9 0 8 7 e - 1 6 , 7 . 5 7 3 4 5 e - 1 7 )
( 2 . 7 2 1 8 e - 1 6 , - 4 . 0 3 7 7 7 e - 1 7 )
( - 6 . 4 3 7 5 5 e - 1 7 , 3 . 8 0 2 5 5 e - 1 7 )
( 4 . 9 3 8 0 5 e - 1 6 , 3 . 3 6 8 7 4 e - 1 7 )
( - 5 . 7 1 6 6 7 e - 1 7 , 3 . 8 6 3 4 8 e - 1 7 )
( 7 . 8 6 0 4 7 e - 1 6 , - 4 . 1 1 0 6 8 e - 1 8 )
( 4 . 0 3 1 3 4 e - 1 7 , - 5 . 1 7 8 9 e - 1 7 )
( 1 . 6 0 7 8 8 e - 1 5 , - 1 . 0 6 8 4 1 e - 1 6 )
( 7 . 3 7 2 7 9 e - 1 7 , - 2 . 3 3 3 1 9 e - 1 6 )
( 5 . 4 5 1 8 6 e - 1 5 , 2 . 4 2 7 1 9 e - 1 6 )
( 9 . 3 9 8 2 8 e - 1 7 , - 1 . 1 1 2 6 1 e - 1 7 )
( - 1 . 1 2 0 1 3 e - 1 4 , 1 3 )
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Errors and Error Handling

These are the declarations used by the error handling:

i n t e r r n o ;
i n t c o m p l e x _ e r r o r ( i n t , d o u b l e ) ;

The user can supply c o m p l e x _ e r r o r ( ). Otherwise a function that simply sets e r r n o is used. The excep-
tions generated are:

c o s h ( z z ) :
C _ C O S H _ R E | zz.re | too large. Value with correct angle and huge magnitude returned.
C _ C O S H _ I M | zz.im | too large. Complex(0,0) returned.

e x p ( z z ) :
C _ E X P _ R E _ P O S zz.im too small. Value with correct angle and huge magnitude returned.
C _ E X P _ R E _ N E G zz.re too small. Complex(0,0) returned.
C _ E X P _ I M | zz.im | too large. Complex(0,0) returned.

l o g ( z z ) :
C _ L O G _ 0 zz==0. Value with a large real part and zero imaginary part returned.

s i n h ( z z ) :
C _ S I N H _ R E | zz.re | too large. Value with correct angle and huge magnitude returned.
C _ S I N H _ I M | zz.im | too large. Complex(0,0) returned.
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Footnotes

1 . Such a function is called a constructor. A constructor for a type always has the same name as the
type itself.
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Introduction

Roadmap for the C++ Task Library Documentation

The three sections of this chapter describe the C++ Language System coroutine or task library.

The first section, ‘‘A Set of C++ Classes for Co-routine Style Programming,’’ written by Bjarne
Stroustrup and revised and updated by Jonathan Shopiro, describes how the task library can be used.
Read this section to learn about the basic use of the task library.

The second section, ‘‘Extending the C++ Task System for Real-Time Control,’’ by Jonathan Shopiro,
describes new features of the task library to enable tasks to receive UNIX system signals.

The task system internals for Release 3.0 are described in the third section, ‘‘A Porting Guide for the
C++ Coroutine Library,’’ by Stacey Keenan. This part tells you about the internals of the task library.

The manual pages for the task library can be found at the end of this book.
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A Set of C++ Classes for Co-routine Style Programming

NOTE

This section is taken directly from a paper by Bjarne Stroustrup and Jonathan E. Shopiro.

Abstract

Some programs are most naturally expressed as a set of relatively independent activities communicating to
achieve a common goal. Each activity, here called a task, has its own locus of control, a program to execute,
and its own private data. Tasks can communicate by explicit sharing of data, by messages, or by data
pipes.

This paper describes C++ classes for a range of styles of multi-programming techniques in a single
language, single address-space environment. Each task is an instance of a user-defined class derived from
class t a s k, and the program of the task is the constructor of its class. A task can be suspended and
resumed without interfering with its internal state. Class q h e a d and class q t a i l enable a wide range of
message passing and data buffering schemes to be implemented simply.

The task system can be used for writing event driven simulations. Tasks execute in a simulated time frame
presented by the variable c l o c k, and objects of class t i m e r provide a convenient and efficient facility for
using the clock.

The implementation and use of these concepts rely heavily on the idea of derived classes. Familiarity with
the C++ language would be an advantage for the reader.

Introduction

Some programs are most naturally expressed as a set of relatively independent activities communicating to
achieve a common goal. Such activities, here called tasks, must be able to execute in parallel with each
other and communicate through means convenient to the chosen style of task usage.

Facilities for multi-thread computation can be provided in the semantics of a language, as is done in Con-
current Pascal and Mesa or a language without such facilities can be augmented using special run-time sup-
port systems and library functions, as has been done for BCPL and C. The use of C classes to implement
tasks represents an intermediate approach pioneered by Simula67.

The tools presented here1 provide the basic facilities for several styles of multi-thread programming in a
single language, single address-space environment. The underlying facility is a simple and efficient tasking
system with non-preemptive scheduling. That is, a task will only be suspended on its own request, so no
‘‘system policy’’ can be enforced without the cooperation of all tasks. In contrast to pure co-routine sys-
tems, however, the task system provides a framework for processor sharing and communication between
tasks. The task system is intended for applications, like event driven simulations, where tasks are used to
express a quasi-parallel structure for a single program. For this class of applications a concept of simulated
time is implemented. A unit of simulated time can represent any amount of real time, and it is possible to
compute without consuming simulated time. A few simple random number generating classes and a
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histogram class for data gathering are also provided. The task system is not intended for handling real
parallelism of some underlying real-time system. Consequently, no facilities are provided to map inter-
rupts and other real-time events into the concepts provided by the task system.

The current version of the task library has a new degree of extensibility, so that it is now
possible to write a class that represents an interrupt or signal that can be waited for.

Implementations of the task system have been used for about eight years on the UNIX system and other
operating systems on 3B2, 3B20, VAX, and Motorola 680x0 hardware.

In the following sections the task library will be described in some detail, and examples of its use will be
given. The classes used in the task system are presented. This allows a detailed and specific discussion of
the concepts involved, but it unfortunately also implies that some concepts cannot be explained in detail
where they are first mentioned.

Tasks

The publicly accessible functions and data of class t a s k look like this:2

c l a s s t a s k : p u b l i c s c h e d
{
p u b l i c :

t a s k ( c h a r * n a m e = 0 , i n t m o d e = 0 , i n t s t a c k s i z e = 0 ) ;
~ t a s k ( ) ;

t a s k * t _ n e x t ;
c h a r * t _ n a m e ;
i n t w a i t v e c ( o b j e c t * * ) ;
i n t w a i t l i s t ( o b j e c t * . . . ) ;
v o i d w a i t ( o b j e c t * ) ;
v o i d d e l a y ( l o n g ) ;
l o n g p r e e m p t ( ) ;
v o i d s l e e p ( o b j e c t * t = 0 ) ;
v o i d r e s u l t i s ( i n t ) ;
v o i d c a n c e l ( i n t ) ;

} ;

The base class, s c h e d, is responsible for scheduling and for the functionality that is common to tasks and
timers (described below). The public part of its declaration is:
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c l a s s s c h e d : p u b l i c o b j e c t {
p u b l i c :

s c h e d ( ) ;
v o i d s e t c l o c k ( l o n g ) ;
l o n g r d t i m e ( ) ;
i n t r d s t a t e ( ) ;
i n t p e n d i n g ( ) ;
v o i d c a n c e l ( i n t ) ;
i n t r e s u l t ( ) ;

} ;

Class s c h e d is used strictly as a base class: that is, only instances of derived classes are created.

A task is a locus of control, a virtual processor. It too can only be used as a base class, with the further
limitation that only one level of derivation from class t a s k is allowed

NOTE

Multi-level derivation from class t a s k is disallowed for implementation reasons. See the manual page for a
workaround for this limitation.

A task executes the program supplied as the constructor of the derived class.3 The most basic feature of a
task is that it can be suspended and later resumed so that several tasks can run in quasi-parallel. Most
member functions of class t a s k are conditional or unconditional requests for suspension.

A task can be in one of three states:

R U N N I N G The task is executing instructions or it will be scheduled to do so without further
intervention from other tasks.

I D L E The task is not in the R U N N I N G state, but it can be transferred to the R U N N I N G state
by some suitable action. That is, it is waiting.

T E R M I N A T E D The task has completed its work. It cannot be resumed, but its result can be
retrieved.

The function s c h e d : : r d s t a t e ( ) returns the state.

A simple example of the use of tasks is where one task creates another to run in parallel with itself. Later
the creator can obtain the result produced by the ‘‘secondary’’ task. For example, a task which counts the
number of spaces in a string could be declared. First a class S p a c e s must be declared.

c l a s s S p a c e s : p u b l i c t a s k
{
p u b l i c :

S p a c e s ( c h a r * ) ;
} ;

In the case of class S p a c e s the declaration is trivial. It states that S p a c e s is derived from class t a s k so
that each object of class S p a c e s becomes an independently scheduled entity. The program for the task is
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provided by its constructor.

S p a c e s : : S p a c e s ( r e g i s t e r c h a r * s )
{

r e g i s t e r i n t i = 0 ;
r e g i s t e r c h a r c ;
w h i l e ( c = * s + + )

i f ( c = = ’ ’ ) i + + ;
r e s u l t i s ( i ) ;

}

This function counts the spaces in its argument string and returns the result using the class t a s k function
r e s u l t i s ( ). A task of class S p a c e s can now be created and used like this:

m a i n ( )
{

S p a c e s s s ( " a l i n e w i t h f o u r s p a c e s " ) ;
i n t c o u n t = s s . r e s u l t ( ) ;
p r i n t f ( " c o u n t = % d 0 , c o u n t ) ;
t h i s t a s k - > r e s u l t i s ( 0 ) ;

}

When an object of class S p a c e s is created, like s s here, its constructor becomes a new task that runs in
parallel with the task4 that created it. A task can ‘‘return’’ an integer5 value using the function
t a s k : : r e s u l t i s ( i n t ). The task then becomes T E R M I N A T E D and the value is available for examination by
the function s c h e d : : r e s u l t ( ). That is, in this example s s will call r e s u l t i s ( ) with the argument 4,
which will be returned from s c h e d : : r e s u l t ( ) to the parent task. If a task calls r e s u l t ( ) for another task
which has not yet completed the calling task will be suspended. After the other task finishes the call to
r e s u l t ( ) in the waiting task will return. A task waiting for another to complete is I D L E. If a task calls
r e s u l t ( ) for itself it will cause a run time error.6

A task cannot return a value using the usual function return mechanism; it must use r e s u l t i s ( ). This
function puts the task into the T E R M I N A T E D state from which it cannot be resumed.

Queues

A queue is a type of storage that is organized so that objects are retrieved from it in the order in which they
were inserted into it. A queue has a head from which data is retrieved and a tail where data is inserted.
With a little elaboration this basic type of data structure makes an excellent inter-task communication facil-
ity.

There is no ‘‘class queue’’ available to a user. Instead, the two classes q h e a d and q t a i l provide the ser-
vices needed. There is a function q t a i l : : p u t ( ) which adds an object to the tail of a queue and a function
q h e a d : : g e t ( ) which retrieves an object from the head of a queue. This allows explicit separation between
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the source and the recipient of data. The public part of the declaration of class q h e a d looks like this:

c l a s s q h e a d : p u b l i c o b j e c t
{
p u b l i c :

q h e a d ( i n t = W M O D E , i n t = 1 0 0 0 0 ) ;
~ q h e a d ( ) ;

o b j e c t * g e t ( ) ;
i n t p u t b a c k ( o b j e c t * ) ;
i n t r d c o u n t ( ) ;
i n t r d m o d e ( ) ;
i n t r d m a x ( ) ;
v o i d s e t m o d e ( i n t ) ;
v o i d s e t m a x ( i n t ) ;
q t a i l * t a i l ( ) ;
q h e a d * c u t ( ) ;
v o i d s p l i c e ( q t a i l * ) ;
i n t p e n d i n g ( ) ;
v o i d p r i n t ( i n t , i n t = 0 ) ;

} ;

A queue can be created like this:

q h e a d q h ;

To obtain a q t a i l for an existing queue execute t a i l ( ) for its head:

q t a i l * q t p = q h . t a i l ( ) ;

The queue could now be used as a one way inter-task communication channel by giving its head and tail as
arguments to two new tasks, P r o d u c e r and C o n s u m e r:

P r o d u c e r p p ( q t p ) ;
C o n s u m e r c c ( & q h ) ;

The producer task p p can now p u t ( ) objects to the tail of the queue (denoted by the pointer q t p) and the
consumer task c c can g e t ( ) those objects from its head (denoted by the pointer & q h). The function
q t a i l : : p u t ( ) takes a pointer to a class o b j e c t as argument, and q h e a d : : g e t ( ) returns such a pointer.
Unless the user has specified otherwise a task executing q h e a d : : g e t ( ) will be suspended temporarily if
the queue is empty.7 After another task executes p u t ( ) on the associated queue tail the suspended task will
be resumed. Similarly a task executing q t a i l : : p u t ( ) on a full8 queue will be suspended until some other
task removes data from the queue.

The objects transmitted through a queue must be of class o b j e c t or of some class derived from it. Class
o b j e c t (described under ‘‘The o b j e c t Class’’ ) is provided by the task system, and it is up to the program-
mer to define types of objects suitable for each application.
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In the current version of the task library q h e a d and q t a i l have the form of user extensions,
but in the original version they were built in. Since extensibility was limited, the supplied
classes had to support a wide range of programming styles. Thus they may seem ‘‘feature-
rich.’’ The new organization makes it easy to provide new kinds of queues and other forms
of task interaction.

A Server Example

As an example of the use of tasks and queues we will define a server task that receives requests for service
in the form of messages on a queue, handles the requests and returns replies on other queues. One could
define a class M e s s a g e as follows:

c l a s s M e s s a g e : p u b l i c o b j e c t
{
p u b l i c :

i n t r _ o p e r a t i o n ;
i n t r _ a r g 1 ;
i n t r _ a r g 2 ;
q t a i l * r _ r e p l y ;

} ;

A message, that is an object of class M e s s a g e, describes an operation r _ o p e r a t i o n that is to be performed
by the recipient of the message. Arguments for this operation can be passed as r _ a r g 1 and r _ a r g 2, and
the result of the operation is to be returned as a message on the queue denoted by r _ r e p l y.

A server for these messages can be defined as follows:
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c l a s s S e r v e r : p u b l i c t a s k
{
p u b l i c :

S e r v e r ( q h e a d * ) ;
} ;

S e r v e r : : S e r v e r ( q h e a d * i n )
{

f o r ( ; ; ) {
M e s s a g e * r e q = ( M e s s a g e * ) i n - > g e t ( ) ;
q t a i l * r e p l y = r e q - > r _ r e p l y ;
i n t r e s = V A L U E ;
i n t v a l ;
s w i t c h ( r e q - > r _ o p e r a t i o n ) {
c a s e P L U S :
v a l = r e q - > r _ a r g 1 + r e q - > r _ a r g 2 ;
b r e a k ;
c a s e M I N U S :
. . .
d e f a u l t :
r e s = E R R O R ;
}
r e q - > r _ o p e r a t i o n = r e s ;

r e q - > r _ a r g 1 = v a l ;
r e p l y - > p u t ( r e q ) ;

}
}

This style of server has proved useful in many contexts. In particular, it is the backbone of many
‘‘message-based systems.’’ In this particular example a server, that is an object of class S e r v e r, and the
queue on which it depends can be declared:

q t a i l * r q = n e w q t a i l ;
S e r v e r * s e r = n e w S e r v e r ( r q - > h e a d ( ) ) ;

Other tasks can now send a request to this particular server through r q. For example:
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q h e a d r p l y ;
q t a i l * r p l y _ t o = r p l y . t a i l ( ) ;
M e s s a g e * m e s s = n e w M e s s a g e ;

m e s s - > r _ o p e r a t i o n = P L U S ;
m e s s - > r _ a r g 1 = 1 ;
m e s s - > r _ a r g 2 = 2 ;
m e s s - > r _ r e p l y = r p l y _ t o ;

r q - > p u t ( m e s s ) ;
m e s s = ( M e s s a g e * ) r p l y . g e t ( ) ;
i f ( m e s s - > r _ o p e r a t i o n = = E R R O R ) e r r o r ( ) ;
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More about Queues: Mode and Size

A queue head has a mode that controls what happens when g e t ( ) is executed on an empty queue. In
E M O D E this causes a run time error. In Z M O D E it will cause g e t ( ) to return the N U L L pointer instead of a
pointer to an object. In W M O D E a task executing a g e t ( ) on an empty queue will wait on that queue until
the queue becomes non-empty. Unless the user specifies the mode explicitly a queue head will be in
W M O D E. The function q h e a d : : r d m o d e ( ) returns the current mode and q h e a d : : s e t m o d e ( ) can be used to
change it.

As mentioned above a queue also has a maximum size. This can be changed using q h e a d : : s e t m a x ( ), and
read using q h e a d : : r d m a x ( ).

The mode and maximum size for a queue can also be specified when the queue is created. For example:

q h e a d Q 1 ( Z M O D E , 1 0 ) ;
q h e a d * Q P 2 = n e w q h e a d ( E M O D E , 6 4 * B U F S I Z E ) ;

The public part of the declaration of class q t a i l is similar to that of class q h e a d. The two classes comple-
ment each other, and together they provide a representation of the general idea of a queue:

c l a s s q t a i l : p u b l i c o b j e c t
{

/ / . . .
p u b l i c :

q t a i l ( i n t = W M O D E , i n t = 1 0 0 0 0 ) ;
~ q t a i l ( ) ;

i n t p u t ( o b j e c t * ) ;
i n t r d s p a c e ( ) ;
i n t r d m a x ( ) ;
i n t r d m o d e ( ) ;
q t a i l * c u t ( ) ;
v o i d s p l i c e ( q h e a d * ) ;
q h e a d * h e a d ( ) ;
v o i d s e t m o d e ( i n t m ) ;
v o i d s e t m a x ( i n t m ) ;
i n t p e n d i n g ( ) ;
v o i d p r i n t ( i n t , i n t = 0 ) ;

} ;

A queue tail’s mode controls what happens on queue overflow in the same way as a queue head’s mode
controls what happens on queue underflow. For example, when a task executes p u t ( ) on a full queue
where the queue tail is in W M O D E, then that task will be suspended until the queue is no longer full. The
modes of a queue’s head and tail need not be the same.

Similarly the maximum number of objects which can be on a queue can be examined by r d m a x ( ) and
changed by s e t m a x ( ). Decreasing the maximum below the current number of objects on the queue is
legal. Doing this simply implies that no new objects can be put on the queue until the queue has been
drained below the new limit.
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q h e a d : : r d c o u n t ( ) returns the current number of objects in a queue, and q t a i l : : r d s p a c e ( ) returns the
number of objects which can be inserted into a queue before it becomes full.

q h e a d : : p u t b a c k ( ) puts its argument back at the head of the queue, that is

q h e a d q h ( W M O D E , 1 0 ) ;
o b j e c t * o o = q h . g e t ( ) ;
q h . p u t b a c k ( o o ) ;
o o = q h . g e t ( ) ;

will assign the same object to o o twice. p u t b a c k ( ) has proved to be a useful function in many systems in
the past, and it also allows a queue head to operate as a stack. When p u t b a c k ( ) is used, the task execut-
ing it competes for queue space with tasks using p u t ( ) on the queue’s tail. A p u t b a c k ( ) to a full queue
causes a run time error in both E M O D E and W M O D E. In Z M O D E it returns N U L L.

More about Tasks

When a task is created it can be given three arguments. The first is a character string pointer which is used
to initialize the class t a s k variable t _ n a m e. This name can be used to provide more readable output and
does not affect the behavior of the task. The string denoted by the pointer will not be copied. The t _ n a m e
is used by the debugging aids and error reporting functions described below. The other two class t a s k
arguments are tuning parameters and will be described below. If an argument is N U L L a system default
will be used. For example, we could have given each S e r v e r task a name like this:

c l a s s S e r v e r : p u b l i c t a s k
{

S e r v e r ( c h a r * , q h e a d * ) ;
} ;

v o i d S e r v e r : : S e r v e r ( c h a r * n a m e , q h e a d * i n )
: ( n a m e ) / / a r g u m e n t f o r S e r v e r ’ s b a s e c l a s s t a s k
{

/ / . . .
}

S e r v e r m y _ n a m e _ i s _ f r e d ( " f r e d " , q h p ) ;

t a s k : : s l e e p ( o b j e c t * = 0 ) suspends the task unconditionally without specifying what is supposed to
cause it to be resumed.

If an argument is given to t a s k : : s l e e p ( o b j e c t * = 0 ) which is a pointer to a pending
object, the task will be remembered by the object, so that after it is no longer pending, the
task will be resumed.
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t a s k : : c a n c e l ( ) puts a task into the T E R M I N A T E D state and sets the return value just like r e s u l t i s ( ).
However, c a n c e l ( ) does not invoke the scheduler so that one task can terminate another without losing
control itself.

The pointer

t a s k * t h i s t a s k ;

denotes the currently active task. If no tasks have been created its value is 0. It is illegal to assign to t h i s -
t a s k. The use of t h i s t a s k enables the class t a s k functions to be used from external functions without
explicit passing of the current task’s t h i s pointer.

The pointer9

t a s k * t a s k _ c h a i n ;

is the start of a chain of all tasks. In the following loop t points to every task in turn:

t a s k * t ;
f o r ( t = t a s k _ c h a i n ; t ; t = t - > t _ n e x t ) ;

It is not possible to have only one task. Therefore, when the first task is created in a program another task
is implicitly created. Its name is m a i n and its code is the original m a i n ( ) function. It can be suspended
and resumed like any other task. Please remember that a return from m a i n ( ) terminates a C program. If
the ‘‘main’’ task should be terminated when there are other tasks which should be left running, then
r e s u l t i s ( ) can be used. For example,

t h i s t a s k - > r e s u l t i s ( 0 ) ;

can be executed in m a i n ( ). The program will then run on until no more tasks are or can become R U N N I N G.

It is illegal for a task to return. Always call r e s u l t i s ( ) instead of r e t u r n, and never just ‘‘drop out of the
bottom’’ of a task. Unless a task contains an infinite loop so that it will never terminate place a call of
r e s u l t i s ( ) at the end of its body.

The task system does not provide a garbage collector. It is left to the programmer to ensure that pointers
to deallocated store are not used.

Waiting

Functions like s c h e d : : r e s u l t ( ), q h e a d : : g e t ( ), and q t a i l : : p u t ( ) each provide a way of waiting for
one single specific event to happen. More general facilities are sometimes needed.

When an object must be waited for, we say it is pending. For example,

A queue head whose associated queue is empty is pending because if a task calls
g e t ( ) for it, the task must wait until some other task puts some data in the queue,

Similarly, a queue tail whose queue is full is pending because a p u t ( ) must wait, and
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A task that has not terminated is pending because its result is not available.

Each class derived from object may have its own definition of the virtual p e n d i n g ( ) func-
tion. An object may have several operations that could suspend the calling task, but it can
have only one definition of p e n d i n g ( ). Therefore (for example) it is not possible to combine
a queue head and a queue tail into a single object, because the former is pending when its
queue is empty, and the latter when its queue is full. New kinds of objects, with new kinds
of interaction can be added to the task library, with the fundamental requirement being a
definition of p e n d i n g ( ) for the new datatype.

t a s k : : w a i t ( o b j e c t * ) provides a way of waiting on an arbitrary object. If the argument points to a pend-
ing object, the calling task will be suspended until the object is no longer pending. If the argument is not
pending the caller will not be suspended at all. For example, if t a s k p is a pointer to a task then

w a i t ( t a s k p ) ;

will suspend the task executing it until the task denoted by t a s k p finishes.

Each class derived from class o b j e c t which is ever going to be ‘‘waited on’’ must have rules specifying
under which conditions a task executing a w a i t ( ) for it will be resumed. The rules for class t a s k, q h e a d,
and q t a i l have been stated.

The conditions for wakeup are reflected in state changes in the objects, and are not just transitory
unrecorded signals. For example, if a task executes a w a i t ( ) for a non-empty q h e a d it will immediately
continue, that is the condition for returning from a w a i t ( ) for a q h e a d is that the queue is non-empty, not
a brief state change from empty to non-empty. Rules of this type simplify programming considerably by
eliminating race conditions.

When the state of an object changes from pending to not pending, o b j e c t : : a l e r t ( ) must
be called for the object. This function changes the state of all tasks ‘‘remembered’’ by the
object from I D L E to R U N N I N G and puts them on the scheduler’s r u n _ c h a i n. Thus all such
operations should be member functions of the object’s class or a related class. For exam-
ple, in q t a i l : : p u t ( ), if the queue was empty, a call to a l e r t ( ) is made for the associated
queue head. If it was possible to put an object on a queue without calling a member func-
tion, then there would be no guarantee that a l e r t ( ) would be called.

The functions t a s k : : w a i t v e c ( ) and t a s k : : w a i t l i s t ( ) suspend a task waiting for one of a list of objects,
for example to wait for messages to arrive on one of a number of queue heads. w a i t l i s t ( o b j e c t * . . . )10

takes a list of object pointers terminated by a zero as argument; for example:

q h e a d * q 1 ;
q h e a d * q 2 ;
/ / . . .
s h o r t w h o = w a i t l i s t ( q 1 , q 2 , 0 ) ;

will suspend the task executing it until either q 1 or q 2 is non-empty. If either is non-empty when
w a i t l i s t ( ) is called the task will continue immediately.
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The value returned is the position in the list of the object that caused the return from the wait, that is if q 2
caused the task to resume the value 1 will be assigned to w h o. Positions are numbered starting from 0.
w a i t l i s t ( ) can take any number of arguments. The degenerate example

w a i t l i s t ( 0 ) ;

causes unconditional suspension of the task executing it without any guarantee of later resumption. It is
equivalent to s l e e p ( ) and w a i t ( 0 ).

Please note that one should not assume that because w a i t l i s t ( ) returns a particular value indicating one
object as the cause of resumption none of the other objects are ‘‘ready.’’ The value returned by
w a i t l i s t ( ) only indicates what is known to have happened, and it does not exclude other independent
possibilities.

However if w a i t l i s t ( ) indicates a particular object, that object is guaranteed to be ‘‘ready,’’
because w a i t l i s t ( ) does not return until the object is no longer pending.

Because every class in the task system allows non-blocking examination of the conditions which might lead
to suspension using the three wait functions, the value returned by w a i t l i s t ( ) can always be ignored.
The information it conveys can always be obtained by direct inquiry. In many cases, however, the value
returned can be trusted and used to write simpler, more efficient programs.

w a i t v e c ( ), a variation of w a i t l i s t ( ). takes the address of a vector holding a list of object pointers. For
example:

o b j e c t * v e c [ ] = { q 1 , q 2 , 0 } ;
s h o r t w h o = w a i t v e c ( v e c ) ;

is equivalent to the previous example.

System Time and Timers

The l o n g variable c l o c k measures simulated time. It is initialized to zero. It is illegal to assign to c l o c k.

t a s k : : d e l a y ( l o n g ) suspends a task for a specified time. That is,

l o n g t = c l o c k ;
d e l a y ( n ) ;
a c t u a l _ d e l a y = c l o c k - t ;

will assign the value n to a c t u a l _ d e l a y. d e l a y ( ) is useful for representing service delays in simulations.
While a task is delayed in this way its state is still R U N N I N G, but it will not be affected by the actions of
other tasks except if c a n c e l ( ) or p r e e m p t ( ) is used on it. d e l a y ( n ) makes an I D L E task R U N N I N G so that
it will start executing at time c l o c k + n.

t a s k : : p r e e m p t ( ) makes a R U N N I N G task I D L E and returns the number of time units left of its delay.
Applying p r e e m p t ( ) to an I D L E or T E R M I N A T E D task causes a run time error. This function is useful when
tasks are used to represent processes in a system with preemptive scheduling and delay times are used to
represent the time used by executing processes. The value returned by p r e e m p t ( ) allows the preempted
task to be re-started with a new delay time which is a function of the delay time at the time of preemption.

2-14 Library Manual



A Set of C++ Classes for Co-routine Style Programming

For example:

l o n g t i m e _ l e f t = o t h e r _ t a s k - > p r e e m p t ( ) ;
/ / . . .
o t h e r _ t a s k - > d e l a y ( t i m e _ l e f t + 1 0 ) ;

A t i m e r provides a facility for implementing time-outs and other time dependent phenomena.

Class t i m e r has this declaration:

c l a s s t i m e r : p u b l i c s c h e d {
p u b l i c :

t i m e r ( l o n g ) ;
~ t i m e r ( ) ;

v o i d r e s e t ( l o n g ) ;
v o i d p r i n t ( i n t , i n t = 0 ) ;

} ;

A timer is quite similar to a task with a constructor consisting of the single statement

d e l a y ( d ) ;

that is, when a timer is created it simply waits for the number of time units given to it as its argument, and
then wakes up any tasks waiting for it.

A timer’s state can be either R U N N I N G or T E R M I N A T E D. This state can be inspected by using
s c h e d : : r d s t a t e ( ).

A common use of timers is to wait for a task and a timer. For example, one can wait for the completion of
a task handling a simulated input operation and also on a timer. The timer ensures that the waiting task
will eventually be resumed even if the input operation is never completed:11

t i m e r * t t = n e w t i m e r ( 1 5 ) ;
s h o r t r e s = w a i t l i s t ( i o _ p t r , t t , 0 ) ;
s w i t c h ( r e s ) {
c a s e 0 :

/ * n o r m a l c o m p l e t i o n o f i / o * /
. . .
b r e a k ;

c a s e 1 :
/ * t i m e o u t o c c u r r e d * /
. . .
b r e a k ;

d e f a u l t :
e r r o r ( I M P O S S I B L E ) ;

}
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s c h e d : : r e s u l t and s c h e d : : c a n c e l ( ) have the same use and effects on t i m e rs as on
t a s ks. Since there is no t i m e r : : r e s u l t i s ( ), the value returned by s c h e d : : r e s u l t ( ) is
undefined for a t i m e r unless c a n c e l ( ) was used.

t i m e r : : r e s e t ( ) re-sets the timer delay to the value of its argument. This makes repeated use of timers
possible. A timer can be r e s e t ( ) even when it is T E R M I N A T E D.

A unit of simulated time can be used to represent any unit of real time. Only d e l a y ( ) causes the c l o c k to
advance.

More About Queues: Cutting and Splicing

One of the most convenient and powerful ways of using tasks involves tasks defined to do a transformation
on a data stream. Such a task is called a filter. It reads its input from one queue and writes its output onto
another queue. Tasks at the ‘‘other ends’’ of these queues tend to view these queues plus the filter as one
entity. The data source simply sees an output queue that is being emptied at some rate, and the task at the
receiving end sees an input queue being filled. In other words, a task sees only its input and output
queues and cares little about the ‘‘internal organization’’ of the programs that operate on the other ends of
those queues.

For example, one task could produce a stream of lines of characters, that is objects of class L i n e, and
another expect an input stream consisting of words, that is objects of class W o r d. A filter that handles the
conversion could be defined and used like this:
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c l a s s L i n e _ t o _ w o r d : t a s k
{
p u b l i c :

L i n e _ t o _ w o r d ( q h e a d * , q t a i l * ) ;
W o r d * n e x t _ w o r d ( L i n e * ) ;

} ;

L i n e _ t o _ w o r d : : L i n e _ t o _ w o r d ( q h e a d * i n _ q , q t a i l * o u t _ q )
{

L i n e * l ;
W o r d * w ;
f o r ( ; ; ) {

l = ( L i n e * ) i n _ q - > g e t ( ) ;
w h i l e ( w = n e x t _ w o r d ( l ) ) o u t _ q - > p u t ( ( o b j e c t * ) w ) ;

}
}

q h e a d * l i n e _ q = n e w q h e a d ( W M O D E , 1 0 ) ;
q t a i l * w o r d _ q = n e w q t a i l ( W M O D E , 5 0 ) ;
P r o d u c e r * p r o d = n e w P r o d u c e r ( l i n e _ q - > t a i l ( ) ) ;
C o n s u m e r * c o n s = n e w C o n s u m e r ( w o r d _ q - > h e a d ( ) ) ;
L i n e _ t o _ w o r d * f i l t = n e w L i n e _ t o _ w o r d ( l i n e _ q , w o r d _ q ) ;

In this way the filter f i l t is programmed into the path between c o n s and p r o d using two queues to
separate f i l t’s input from its output.

This is a fairly static use of a filter. Often one would like to insert a filter into an existing data path. For
example, a macro-based text formatting program could be organized as a sequence of filters — each doing
its small part of the common task. First some filters re-arrange the input into a form suitable for the for-
matter proper, then the ‘‘input independent’’ formatter does its job producing output of a standard form,
and last some output filters adjust this output to a form suitable for physical output. The task f i l t is an
example of such a filter. In this scenario it would be useful to have each macro defined as a filter which
the formatter proper inserts just in front of itself when the macro expansion is needed and which removes
itself when it is not needed any more. Assuming that data streams are represented by queues, this can be
achieved by using the class q h e a d functions c u t ( ) and s p l i c e ( ).

When the task f o r m a t t e r recognizes a call to the macro f o o it creates a new task of class M a c r o to handle
a macro of type F O O and diverts its own input through it. This is done by first ‘‘cutting’’ the input queue
to create a place to insert the new filter, and then creating the filter giving it the new q h e a d and q t a i l as
arguments:

q h e a d * n e w h e a d = i n p u t _ q u e u e - > c u t ( ) ;
q t a i l * n e w t a i l = i n p u t _ q u e u e - > t a i l ( ) ;
M a c r o * f = n e w M a c r o ( F O O , n e w h e a d , n e w t a i l ) ;
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q h e a d : : c u t ( ) splits the queue to which it is applied into two. n e w h e a d, the pointer returned from c u t ( ),
denotes the q h e a d for the original queue and has the same m o d e as the original q h e a d. The original q h e a d
is now attached to a new empty queue with the same m a x as the original.

Puts to the original q t a i l will therefore place objects on the filter’s input queue, and gets from the original
q h e a d will retrieve objects from the filter’s output queue.

The result of these operations has been to insert a filter with an input and an output queue into a queue
without changing the appearance of that queue to anyone using it, and without halting the flow of objects
through that queue. In our example the macro expansion filter f o o will g e t ( ) the input which would oth-
erwise have gone to the formatter, interpret it as macro arguments, and output the expanded input as its
output.

The filter can be removed again by splicing its input and output queues together with q h e a d : : s p l i c e ( ):

n e w h e a d - > s p l i c e ( n e w t a i l ) ;

s p l i c e ( ) deletes the q h e a d to which it is applied, the q t a i l given to it as an argument, and the queue
denoted by that q t a i l. If the s p l i c e ( ) operation causes an empty queue to become non-empty or a full
queue to become non-full all tasks waiting for such a state change are resumed.

Deleting the filter completes the cleanup:

d e l e t e f ;

Typically a filter would remove itself when its task was completed, because the task that inserted it would
not be programmed to be aware of the presence of the filter it inserted. The sequence of operations which
enables a task to remove itself without a trace is:

c a n c e l ( a n y _ v a l u e ) ;
d e l e t e t h i s ;

This will work because c a n c e l ( ) does not imply immediate suspension, only a guarantee that the task can-
not be resumed.

q t a i l : : c u t ( ) and q t a i l : : s p l i c e ( ) are similar to q h e a d, but they operate on the other end of the queue.

Encapsulation

Passing information between tasks through queues can lead to rather tedious, repetitive (and therefore
error prone) packing and unpacking of information into messages. Simple encapsulation techniques can be
used to relieve the programmer of this. For example, by adding a constructor to the class M e s s a g e the
server example could be re-written thus:
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c l a s s M e s s a g e : o b j e c t
{
p u b l i c :

i n t r _ o p e r a t i o n ;
i n t r _ a r g 1 ;
i n t r _ a r g 2 ;
q t a i l * r _ r e p l y ;

M e s s a g e ( i n t o p , i n t a 1 , i n t a 2 , q t a i l * r p ) :
r _ o p e r a t i o n ( o p ) , r _ a r g 1 ( a 1 ) ,
r _ a r g 2 ( a 2 ) , r _ r e p l y ( r p ) { }

} ;

M e s s a g e * m e s s ;
r q - > p u t ( n e w M e s s a g e ( P L U S , 1 , 2 , r p l y _ t o ) ) ;
m e s s = ( M e s s a g e * ) r p l y . g e t ( ) ;
i f ( m e s s - > r _ o p e r a t i o n = = E R R O R ) e r r o r ( ) ;

Furthermore, because the message queues obviously are meant to hold only M e s s a g e objects a specific mes-
sage queue could be defined and used:

c l a s s M q h e a d : q h e a d
{
p u b l i c :

M e s s a g e * g e t ( ) { r e t u r n ( M e s s a g e * ) q h e a d : : g e t ( ) ; } ;
} ;

c l a s s M q t a i l : q t a i l
{
p u b l i c :

i n t p u t ( M e s s a g e * m ) { r e t u r n q t a i l : : p u t ( m ) ; } ;
} ;

The use of M q t a i l : : p u t ( ) ensures that only class M e s s a g e objects are put on the queue, and no type cast
is needed when class M e s s a g e objects are taken from the queue using M q h e a d . g e t ( ). For example:

m e s s = r p l y - > g e t ( ) ;

Because the body of M q t a i l : : p u t ( ) is present in the class M q t a i l, declaration calls of M q t a i l : : p u t ( ) will
be expanded inline. This ensures that using a M q t a i l is no less efficient than using a q t a i l directly. In
many cases some error handling can also be handled by the derived p u t ( ) and g e t ( ) functions.

An alternative solution is to provide the server class with functions which handle the packing:
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c l a s s S e r v e r : t a s k
{

q t a i l * i n p ;
p u b l i c :

S e r v e r ( c h a r * , q h e a d * ) ;
i n t p l u s ( i n t , i n t , M q t a i l * ) ;
i n t m i n u s ( i n t , i n t , M q t a i l * ) ;

} ;

i n t S e r v e r : : p l u s ( i n t a r g 1 , i n t a r g 2 , M q t a i l * r q t )
{

M e s s a g e * m e s s ;
i n t x ;
i n p - > p u t ( n e w M e s s a g e ( P L U S , a r g 1 , a r g 2 , r q t ) ) ;
m e s s = r q t - > h e a d ( ) - > g e t ( ) ;
x = m e s s - > r _ o p e r a t i o n ;
d e l e t e m e s s ;
r e t u r n x ;

}

so now the server task can be requested to perform services like this:

M q t a i l q q ;
S e r v e r s s ( " p l u s _ a n d _ m i n u s " , 0 , 0 ) ;
i n t t w o = s s . p l u s ( 1 , 1 , & q q ) ;
i n t t e n = s s . m i n u s ( 1 2 , 2 , & q q ) ;

For large programs this style of inter-task communication promises not only increased clarity, but also
increased efficiency. The message queue interaction may, where necessary, be transparently replaced by a
specially tailored inter-task communication facility.

These techniques are now widely applied in C++ programming, but when this paper was first
written, they were new to C.

Histograms and Random Numbers

To ease data gathering class histogram is provided.
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s t r u c t h i s t o g r a m
/ / " n b i n " b i n s c o v e r i n g t h e r a n g e [ l : r ] u n i f o r m l y
/ / n b i n * b i n s i z e = = r - l
{

i n t l , r ;
i n t b i n s i z e ;
i n t n b i n ;
i n t * h ;
l o n g s u m ;
l o n g s q s u m ;

h i s t o g r a m ( i n t = 1 6 , i n t = 0 , i n t = 1 6 ) ;
v o i d a d d ( i n t ) ;
v o i d p r i n t ( ) ;

} ;

A histogram consists of n b i n bins h [ 0 ] , . . . h [ n b i n - 1 ] covering a range [ l : r ] of integers. The func-
tion a d d ( ) adds one to the correct bin for its integer argument. The sum of the integers added is main-
tained in s u m, and the sum of their squares is maintained in s q s u m. If an argument to a d d ( ) is outside the
range [ l : r ] the range is adapted by either decreasing l or increasing r. The number of bins remains con-
stant so the size of the range covered by a bin is doubled each time the size of the range [ l : r ] is. The
p r i n t ( ) function prints out the numbers of entries for each non-empty bin.

In most simulations some form of random number generation is needed. The generators provided here are
intended to help the developer of a simulation to get started and to provide a paradigm for generators of
more suitable distributions.

c l a s s r a n d i n t
/ / u n i f o r m d i s t r i b u t i o n i n t h e i n t e r v a l [ 0 , M A X I N T _ A S _ F L O A T ]
{

l o n g r a n d x ;
p u b l i c :

r a n d i n t ( l o n g s = 0 ) ;
v o i d s e e d ( l o n g s ) ;
i n t d r a w ( ) ;
f l o a t f d r a w ( ) ;

} ;

The following program shows the use of class r a n d i n t. The i n t s returned by r a n d i n t : : d r a w ( ) are uni-
formly distributed in the interval [ 0 : l a r g e s t _ p o s i t i v e _ i n t ]. The f l o a t s returned by
r a n d i n t : : f d r a w ( ) are uniformly distributed in the interval [ 0 : 1 ].
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m a i n ( )
{

r a n d i n t i r ;
r e g i s t e r i ;
f o r ( i = 0 ; i < 1 0 0 ; i + + )

p r i n t f ( " i = % d f = % f " , i r . d r a w ( ) , i r . f d r a w ( ) ) ;
}

Each object of class r a n d i n t provides an independent sequence of random numbers. r a n d i n t : : s e e d ( )
can be used to reinitialize a generator. The d r a w ( ) function calls the underlying C library r a n d ( 3 ). Using
class r a n d i n t, generators for other distributions are easily programmed. Note that e r a n d : : d r a w ( ) calls
l o g ( ) from the math library, so a program using it must be loaded with - l m.

c l a s s u r a n d : p u b l i c r a n d i n t
/ / u n i f o r m d i s t r i b u t i o n i n t h e i n t e r v a l [ l o w , h i g h ]
{
p u b l i c :

i n t l o w , h i g h ;
u r a n d ( i n t l , i n t h ) { l o w = l ; h i g h = h ; }

i n t d r a w ( ) { r e t u r n i n t ( l o w + ( h i g h - l o w ) *
( 0 + r a n d i n t : : d r a w ( ) / M A X I N T _ A S _ F L O A T ) ) ; }

} ;

c l a s s e r a n d : p u b l i c r a n d i n t
/ / e x p o n e n t i a l d i s t r i b u t i o n r a n d o m n u m b e r g e n e r a t o r
{
p u b l i c :

i n t m e a n ;
e r a n d ( i n t m ) { m e a n = m ; } ;

i n t d r a w ( ) ;
} ;

Implementation Details

The following sections contain many implementation-dependent details. The implementation described is
the UNIX version. Implementation-dependent information is unfortunately often necessary to allow tuning
and ease debugging.
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Task Stack Allocation

The two arguments m o d e and s t a c k s i z e allow the user to guide the system’s handling of the task. Their
exact interpretation is implementation dependent. Users who are not interested in implementation details
and/or want a more portable program should set them both to zero. The system will then choose (hope-
fully reasonable) implementation-dependent default values.

The s t a c k s i z e argument indicates the maximum amount of stack storage that the task is allowed to use.
Using more is an error. It will be expressed in a unit of store (typically machine words) suitable for stack
allocation on the host system.

The mode provides additional information. The value S H A R E D indicates that the stack space should be
taken from the stack space of the parent task, that is the task which created the new task. Where S H A R E D
stacks are used the active part of the stack is copied to a save area when a task is suspended, and copied
back when it is resumed. Since S H A R E D stack locations are not dedicated to a single task pointers to local variables
should not be passed to other tasks. The time needed to suspend and resume a task with S H A R E D stack is
approximately proportional to the amount of stack space actually used at the time of suspension.

If, on the other hand, the mode is D E D I C A T E D then a new and separate stack area is allocated, and no copy-
ing of stack space will occur.

Scheduling

Functions of a system class, known as the scheduler, are invoked as the result of any function of class t a s k
which causes the suspension of a running task, and may be invoked by any function from the standard
classes described here. The scheduler selects the next task to run. When the scheduler finds no more tasks
to run, and there are no i n t e r r u p t _ h a n d l e r s, it examines the pointer variable e x i t _ f c t, and if this is
non-zero the scheduler will call the function denoted by it.

Whenever c l o c k is advanced the scheduler examines the pointer variable c l o c k _ t a s k. If this denotes a
task, then that task will be resumed before any other task. The c l o c k _ t a s k must be I D L E when resumed
by the scheduler. The class t a s k function s l e e p ( ) is useful to ensure this.

Debugging and Tuning Aids

The task system has been designed under the assumption that a typical use of tasks may involve hundreds
of tasks and need tuning to achieve an acceptable time-space tradeoff. The task of debugging such a sys-
tem can safely be assumed to be non-trivial.

Classes were used in the implementation of the task system largely because they allow the scope of data
and functions to be explicitly restricted to the object to which they belong. This allows better type checking
of a multi-threaded program than could be achieved by a function-based implementation. The classes
which constitute the task system were designed to allow quite strong type checking of programs using
them.

A number of run time errors are detected by the task system. For example it is illegal to d e l e t e a queue
on which a task is waiting. When such a run time error is detected the task system function
o b j e c t : : t a s k _ e r r o r is called with the number of the error and the t h i s pointer of the object which
caused the error as arguments. A list of run time errors appears under ‘‘Run-Time Errors.’’ t a s k _ e r r o r ( )
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will in turn examine the pointer e r r o r _ f c t, and if this is non-zero call the function denoted by it with a
copy of its own arguments. function Otherwise t a s k _ e r r o r ( ) will call the system function e x i t ( ) with
the error number as argument.

When returning from t a s k _ e r r o r ( ) after executing an e r r o r _ f c t which returned rather than using
e x i t ( ) the task system will re-try the operation which caused the error (provided that e r r o r _ f c t could
have affected the condition which caused the error). For example, a p u t ( ) to a q h e a d will be re-tried
because the user’s e r r o r _ f c t might have either caused the g e t ( ) function to be used on the queue, or
used c h m a x ( ) to allow more objects to be inserted into that queue.

This error handling mechanism is primarily designed for debugging and it is expected that
user error functions will print some appropriate error message and exit.

Beware of infinite loops.

All task system classes have a function p r i n t ( ) which can be used to print the contents of their objects on
s t d o u t. A p r i n t ( ) function takes an i n t argument indicating the amount of information to be printed.
p r i n t ( 0 ) gives the minimum amount of information, p r i n t ( V E R B O S E ) rather more, and p r i n t ( C H A I N )
will call p r i n t ( ) for objects on lists associated with the object with its own arguments. The p r i n t ( ) argu-
ment constants can be combined by the o r operator. For example

t h i s t a s k - > p r i n t ( V E R B O S E ) ;
r u n _ c h a i n - > p r i n t ( V E R B O S E | C H A I N ) ;

will verbosely describe every non-T E R M I N A T E D timer and every R U N N I N G task. For tasks information about
the run time stack is printed by p r i n t ( S T A C K ). If the variable _ h w m is set to a non-zero value,
p r i n t ( S T A C K ) will also give an estimate of the maximum amount of stack space ever used by the task, the
stack’s ‘‘high water mark.’’ For tasks that share a stack, the high water mark printed will be the high water
mark of the most greedy task. For example, information describing stack usage for all tasks can be printed
by:

t a s k _ c h a i n - > p r i n t ( S T A C K | C H A I N ) ;

The output of the p r i n t ( ) functions is implementation-dependent and hopefully self-explanatory.

Overheads and Performance

The store used for representing a class object in addition to the user specified data is:

object 3 words_ ________________________________________________
timer 5 words_ ________________________________________________
task 18 words + stacksize_ ________________________________________________
queue 15 words (including the qhead and the qtail)






The times needed to execute some of the task system functions are (very) approximately:
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C procedure call + return 1 unit_ ______________________________________________
task suspend + resume 9 units (using result())_ ______________________________________________
put 2 units_ ______________________________________________
get 2 units_ ______________________________________________
wait, waitvec, or waitlist 3 units








The last four actions can all cause a task to be suspended. When this happens add 6 units of time.

For timing results relative to UNIX process switching, see ‘‘Extending the C++ Task System
for Real-Time Control.’’

The task system uses about 15K bytes of store for program and data, but much of this is redundant virtual
function tables that will be eliminated in a future version of the C++ compiler.

The o b j e c t Class

The task system as described above is implemented using a lower level of abstraction based on the direct
use of the class o b j e c t. Class o b j e c t can also be used as a base for other (user defined) abstractions, but
beware, it is an implementation tool that is not intended to be used directly.

Class o b j e c t is a base class for all classes in the task system and also the most basic facility for inter-task
communication. The declaration of class o b j e c t looks like this:

c l a s s o b j e c t
{
f r i e n d s c h e d ;
f r i e n d t a s k ;

o l i n k * o _ l i n k ;
p u b l i c :

o b j e c t * o _ n e x t ;
v i r t u a l i n t o _ t y p e ( ) ;

o b j e c t ( ) { o _ l i n k = 0 ; o _ n e x t = 0 ; }
~ o b j e c t ( ) ;

v o i d r e m e m b e r ( t a s k * t ) { o _ l i n k = n e w o l i n k ( t , o _ l i n k ) ; }
v o i d f o r g e t ( t a s k * ) ; / / r e m o v e a l l o c c u r r e n c e s o f t a s k f r o m c h a i n
v o i d a l e r t ( ) ; / / p r e p a r e I D L E t a s k s f o r s c h e d u l i n g
v i r t u a l i n t p e n d i n g ( ) ; / / T R U E i f t h i s o b j e c t s h o u l d b e w a i t e d f o r
v i r t u a l v o i d p r i n t ( i n t , i n t = 0 ) ; / / f i r s t a r g V E R B O S E , C H A I N , o r S T A C K

} ;

The task system implements objects of type T A S K, Q H E A D, Q T A I L, and T I M E R.

Virtual functions make it unnecessary to ever test the type of an object. The virtual function
o _ t y p e ( ) is never called.
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A task can be added to the set of tasks ‘‘remembered’’ by an object by executing o b j e c t : : r e m e m b e r ( ) and
a task can be removed from this set by executing o b j e c t : : f o r g e t ( ). Executing o b j e c t : : a l e r t ( ) has the
effect of transferring all I D L E tasks remembered by the object to the r u n _ c h a i n and the R U N N I N G state.

The virtual function o b j e c t : : p e n d i n g ( ) provides the ‘‘glue’’ that allows new kinds of
objects and new communication protocols to be added to the task system. The object may
have any kind of operation that may cause the invoking task to wait, but it must implement
its own version of p e n d i n g ( ) to tell whether the operation would cause a wait.

A task can be ‘‘remembered’’ by several objects or several times by the same object without any ill effects.
f o r g e t ( ) will insure that its argument is not ‘‘remembered’’ any more, and it causes no bad effects when
used for an object that does not ‘‘remember’’ its argument task. No record is kept of how many a l e r t ( )
operations have been executed on an object. a l e r t ( ) does not cause an object to f o r g e t ( ) tasks. Execut-
ing a r e m e m b e r ( ) does not suspend a task. Applying a l e r t ( ) to an object that does not remember any
tasks is legal, but has no effect. Caveat emptor!

The functions o b j e c t : : r e m e m b e r ( ), o b j e c t : : f o r g e t ( ), o b j e c t : : p e n d i n g ( ), and o b j e c t : : a l e r t ( )
provide a simple, efficient, but unstructured and therefore error-prone communication mechanism.

The declarations for the task system classes can be found in / u s r / i n c l u d e / C C / t a s k . h on systems where it
is implemented.

Run Time Errors

When an error is detected at run time, t a s k _ e r r o r ( ) is called. This function will examine e r r o r _ f c t and
if this variable denotes a function, that function will be called with the error number and t h i s as argu-
ments, otherwise the error number will be given as an argument to p r i n t _ e r r o r ( ) which will print an
error message on s t d e r r and terminate the program.

E _ O L I N K Attempt to delete an object which remembers a task.
E _ O N E X T Attempt to delete an object which is still on some chain.
E _ G E T E M P T Y Attempt to get from an empty queue in E _ M O D E.
E _ P U T O B J Attempt to put an object already on some queue.
E _ P U T F U L L Attempt to put to a full queue in E _ M O D E.
E _ B A C K O B J Attempt to putback an object already on some queue.
E _ B A C K F U L L Attempt to putback to a full queue in E _ M O D E.
E _ S E T C L O C K Clock was non-zero when s e t c l o c k ( ) was called.
E _ C L O C K I D L E The clock_task was not I D L E when the clock was advanced.
E _ R E S T E R M Attempt to resume a T E R M I N A T E D task.
E _ R E S R U N Attempt to resume a R U N N I N G task.
E _ N E G T I M E Negative argument to d e l a y ( ).
E _ R E S O B J Attempt to resume task or timer already on some queue.
E _ H I S T O Bad arguments for histogram constructor.
E _ S T A C K Task run time stack overflow.
E _ S T O R E No more free store — n e w ( ) failed.
E _ T A S K M O D E Illegal mode argument for task constructor.
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E _ T A S K D E L Attempt to delete a non-T E R M I N A T E D task.
E _ T A S K P R E Attempt to preempt a non-R U N N I N G task.
E _ T I M E R D E L Attempt to delete a non-T E R M I N A T E D timer.
E _ S C H T I M E Scheduler run chain is corrupted: bad time.
E _ S C H O B J Sched object used directly instead of as a base class.
E _ Q D E L Attempt to delete a non-empty queue.
E _ R E S U L T A task attempted to obtain its own r e s u l t ( ).
E _ W A I T A task attempted to w a i t ( ) for itself to T E R M I N A T E.
E _ F U N C S Internal error — cannot determine the call frame layout.
E _ F R A M E S Internal error — cannot determine frame size.
E _ R E G M A S K Internal error — unexpected register mask.
E _ F U D G E _ S I Z E Internal error — fudged frame too big.
E _ N O _ H N D L R No handler for the generated signal.
E _ B A D S I G Attempt to use a signal number that is out of range.
E _ L O S T H N D L R Signal handler not on chain.

A Program Using Tasks

# i n c l u d e < t a s k . h >

/ * t r i v i a l t e s t e x a m p l e :
m a k e a s e t o f t a s k s w h i c h p a s s a n o b j e c t r o u n d b e t w e e n t h e m s e l v e s
u s e p r i n t f t o i n d i c a t e p r o g r e s s
W A R N I N G : t h i s p r o g r a m s e t s u p a n i n f i n i t e l o o p

* /

c l a s s p c : t a s k
{

p c ( c h a r * , q t a i l * , q h e a d * ) ;
} ;

p c : : p c ( c h a r * n , q t a i l * t , q h e a d * h ) : ( n , 0 , 0 )
{

p r i n t f ( " n e w p c ( % s , % d , % d ) \ n " , n , t , h ) ;

w h i l e ( 1 ) {
o b j e c t * p = h - > g e t ( ) ;
p r i n t f ( " t a s k % s \ n " , n ) ;
t - > p u t ( p ) ;

}
}

m a i n ( )
{

q h e a d * h h = n e w q h e a d ;

The Task Library 2-27



A Set of C++ Classes for Co-routine Style Programming

q t a i l * t = h h - > t a i l ( ) ;
q h e a d * h ;
s h o r t i ;

p r i n t f ( " m a i n \ n " ) ;

f o r ( i = 0 ; i < 2 0 ; i + + ) {
c h a r * n = n e w c h a r [ 2 ] ; / * m a k e a o n e l e t t e r t a s k n a m e * /
n [ 0 ] = ’ a ’ + i ;
n [ 1 ] = 0 ;

h = n e w q h e a d ;
n e w p c ( n , t , h ) ;
p r i n t f ( " m a i n ( ) ’ s l o o p \ n " ) ;
t = h - > t a i l ( ) ;

}

n e w p c ( " f i r s t p c " , t , h h ) ;
p r i n t f ( " m a i n : h e r e w e g o \ n " ) ;
t - > p u t ( n e w o b j e c t ) ;
p r i n t f ( " m a i n : e x i t \ n " ) ;
t h i s t a s k - > r e s u l t i s ( 0 ) ;

}
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Extending the C++ Task System for Real-Time Control

NOTE

This section is taken from a paper by Jonathan E. Shopiro.

Abstract

The task system for coroutine programming was one of the first libraries written in C++ and it has served
admirably in several applications. It is small, efficient, and easy to use. As part of a robot control project,
it was extended to support real-time control. The new task library is more robust, more easily extendible,
and more portable than the original. It is upward compatible, so that programs written for the old task
library can still be used. This section documents the new features and the internal structure of the revised
system, and is intended for users of the task library and for authors of other coroutine systems.

Overview

The C++ task library is a coroutine12 support system for C++. A task is an object with an associated corou-
tine. The task library includes a scheduler that enables each task to execute just when it has work to do,
and to wait when necessary for whatever is needed.

Programming with tasks is particularly appropriate for simulations, real-time process control, and other
applications which are naturally represented as sets of concurrent activities. A task can represent a simple
part of a complex system, and when the task gains control, it can process its current input data, perhaps
creating other data that will be processed by other tasks. It can then relinquish control, waiting for more
input or an external event.

In a program using the C++ task system, all tasks share the same address space so that pointers can be
passed between tasks, and it is easy to share common data structures. Also, the scheduler is non-
preemptive, so that each task runs until it explicitly gives up the single processor, and only then does the
scheduler choose a new task to run. This eliminates the need for locks on shared data (which would be
required if preemptive scheduling or multiple processors were used) and allows task-switching to be
accomplished with low overhead, but requires the programmer to be careful that no task monopolizes the
processor.

The rest of this section is an overview of control flow in the task system along with a brief note on task sys-
tem performance. The section ‘‘Real-Time Extensions’’ describes the interrupt handler class and how it can
be used to provide real-time response to external events. Familiarity with C++ is assumed.

The Structure of the Task System

Control in the task system is based on a concept of operations which may succeed immediately or be
blocked, and objects13 which may be ready or pending (not ready). When a task executes a blocking opera-
tion on an object that is ready, the operation succeeds immediately and the task continues running, but if
the object is pending, the task waits. Control then returns to the scheduler, which chooses the next task
from the run chain, a list that contains all the tasks that are ready to run (not waiting or terminated). For
example, a queue head is ready when the associated queue has data, and g e t (which extracts an item from
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the queue) is a blocking operation for queue heads. Similarly, p u t is a blocking operation for queue tails,
which are ready unless the associated queue is full.

Each different kind of object can have its own way of determining whether it is ready or not, which makes
it easy to add new capabilities to the system. On the other hand, each kind of object can have only one cri-
terion for readiness (although it may have several blocking operations), so it is not possible for one object
to act as both a queue head and a queue tail, for example.

Each object contains a list (the remember chain) of the tasks that are waiting for it. When any operation
changes the state of a pending object so that it becomes ready, those tasks are moved to the run chain; this
is called an alert. Thus the cycle is: a task runs until it blocks; it is saved on the remember chain of one or
more pending objects; some other task or an interrupt alerts the object; the original task is moved to the
run chain; eventually the task runs again.

Task System Performance

The fundamental operations of the task system are task creation and task switching. In order to make a
meaningful evaluation of their performance, equivalent programs using tasks and UNIX Operating System
processes were written. These programs are given under ‘‘Example Programs.’’ Each of the first pair of
programs (t c r e a t e . c and u c r e a t e . c) repeatedly creates new trivial tasks (processes) and waits for them
to terminate. Each of the second pair of programs (t s w i t c h . c and u s w i t c h . c) creates a single child task
(process) and repeatedly exchanges control with it through a pair of semaphores (see under ‘‘Semaphores’’ )
in the task version, and through UNIX signals in the process version. The programs were run on a SUN
3/280 under 4.2 BSD, using the free store allocator (m a l l o c . c) from Ninth Edition UNIX, which is much fas-
ter than the one supplied with 4.2 BSD. The results were that t c r e a t e . c was 37 times faster than
u c r e a t e . c, and t s w i t c h . c was 10 times faster than u s w i t c h . c.

It is important to note that the task system and the UNIX Operating System are not equivalent and that the
results of these performance measurements do not imply that the task system is 23.5 times better than
UNIX. Among the significant differences between tasks and processes are the following.

A set of tasks runs as a single UNIX process. The task system relies on the UNIX Operating System
for I/O, memory management, etc.

Tasks share an address space, while processes have separate address spaces. This means that tasks
can share data by simply passing pointers, while processes must go through one of several much
more complex and expensive procedures to share data. By the same token, tasks can interfere with
each other as easily as they can cooperate, while errant processes usually kill only themselves.

The task system can support two or three orders of magnitude more concurrent tasks (especially with
the S H A R E D option; see ‘‘Task Switching’’ ) than the UNIX Operating System can support processes. It
is not uncommon for a simulation to require thousands of tasks.

The memory required for the task system is about 14,000 bytes for code and data, plus about 70 bytes per
task, plus stack storage for each task. By default each task has its own stack buffer with a default size of
3000 bytes, but tasks can share a stack buffer and then storage is required only for the active stack of each
task (typically 50 to 100 bytes). This option is very useful for applications with thousands of tasks. Queues
occupy 60 bytes (including both head and tail) plus the size of whatever is stored on the queue. Lists of
tasks are maintained in various places, for example the run chain and remember chains; each occurrence of
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a task on a list adds 8 bytes to the total memory requirement.

Real-Time Extensions

The application that motivated this work on the task system was a control system for two robots operating
in the same workspace. The most important requirement of this application that was not fulfilled by the
original task system was the need for tasks to wait for external events. For example, after a motion com-
mand was sent to a robot, the task that sent the command needed to wait for the interrupt that was gen-
erated by the robot hardware when the command was complete or had failed. A related requirement of
some real time systems is to respond to external events in a timely manner, for example to retrieve data
from an unbuffered external device. Also, in the original task system, the scheduler would exit when the
run chain was empty. This is inappropriate in a system that is intended to respond to external events
because some task might become runnable after an interrupt.

Hardware interrupts are handled differently by different machines and operating systems, so the interface
to the task system must also vary. For didactic reasons, the version described here is for the UNIX Operat-
ing System using signals as interrupts, but it should be clear how to adapt it to other environments.

In the task system events that can be waited for are represented by instances of class o b j e c t or derived
classes. When the function o b j e c t : : a l e r t ( ) is called, the tasks that were waiting for that object are made
runnable. A natural solution to the problem of waiting for external events was to define a new kind of
object to represent external events, and when such an event occurs, to call o b j e c t : : a l e r t ( ) for the
appropriate object. These objects are called interrupt handlers.

c l a s s I n t e r r u p t _ h a n d l e r : p u b l i c o b j e c t {
i n t i d ; / / s i g n a l o r i n t e r r u p t n u m b e r
i n t g o t _ i n t e r r u p t ; / / a n i n t e r r u p t h a s b e e n r e c e i v e d b u t n o t a l e r t e d
I n t e r r u p t _ h a n d l e r * o l d ; / / p r e v i o u s h a n d l e r f o r t h i s s i g n a l
v i r t u a l v o i d i n t e r r u p t ( ) { } / / r u n s a t r e a l t i m e

p u b l i c :
i n t p e n d i n g ( ) ; / / F A L S E o n c e a f t e r i n t e r r u p t
I n t e r r u p t _ h a n d l e r ( i n t s i g _ n u m ) ;
~ I n t e r r u p t _ h a n d l e r ( ) ;

} ;

After an interrupt handler is created, a task can wait for it, exactly as for any other object. When the inter-
rupt occurs, the handler’s i n t e r r u p t ( ) function will be executed immediately, or rather, as soon as the
operating system can route the interrupt to the process. When the interrupt function returns, control will
resume at the point where the current task was interrupted.

At the next entry to the scheduler, when the currently running task blocks, a special task, the interrupt
alerter, will be scheduled. This task alerts the handler (and any other handlers that have received interrupts
since it was last scheduled). Thus the waiting task becomes runnable. As long as any interrupt handler
exists, the scheduler will wait for an interrupt, rather than exiting when the run chain is empty. The p e n d -
i n g function for an interrupt handler always returns T R U E except the first time it is called after an interrupt
occurs.

The Task Library 2-31



Extending the C++ Task System for Real-Time Control

I n t e r r u p t _ h a n d l e r : : i n t e r r u p t ( ) is a null function, but since it is virtual, the programmer can specify
the action to be taken at interrupt time by simply defining an i n t e r r u p t ( ) function in a class derived
from I n t e r r u p t _ h a n d l e r. An example is given under ‘‘Interrupts.’’ In this way real-time response can be
obtained without resorting to a preemptive, priority-based scheduler which would be more complex and
less efficient, and would require locking of shared data structures.

Avoiding Interference

Whenever shared data structures are manipulated by concurrent processes, there is the potential for
interference, where one process is in the middle of modifying a data structure and another process accesses
it and finds it in an invalid state. Segments of code that access shared data structures are called critical
regions.14 If more than one process can be in a critical region at one time, there is a potential for interfer-
ence.

Interference is easy to avoid in the task system, because of the non-preemptive nature of the scheduler.
There are only two ways in which interference can arise: a task switch occurring within a critical region, or
an interrupt routine that accesses shared data.

It is almost always possible to write code so that no operation that could cause a task to block is inside a
critical region. The style of programming where coroutines share information by sending messages to each
other in the form of objects on queues typically leads to programs where there are no shared data struc-
tures or critical regions at all. Even if coroutines must share access to a data structure and alternately
modify it, no problems will arise if the routines that do the modification refrain from operations that could
cause the task to block. A properly modular program will generally satisfy this requirement without any
extra effort.

Semaphores

If, for some unusual reason, it is necessary to put an operation that could cause the task to block in a criti-
cal region, then the affected data structure should be protected by a semaphore, which will allow only one
task at a time to access the object. The following example code outlines this technique.

c l a s s M y _ d a t a {
S e m a p h o r e s e m a ;
/ / u s e r d a t a

p u b l i c :
v o i d l o c k ( ) { s e m a . w a i t ( ) ; }
v o i d u n l o c k ( ) { s e m a . s i g n a l ( ) ; }

M y _ d a t a ( ) : s e m a ( 1 ) { . . . } / / s e e n o t e
} ;

Each critical region must begin with a call to M y _ d a t a : : l o c k ( ) for the object to be accessed, and end with
a call to M y _ d a t a : : u n l o c k ( ). This will ensure that no interference occurs, even if the operations in the
critical region cause the task to block.15

The implementation of semaphores using the task system is easy.
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c l a s s S e m a p h o r e : p u b l i c o b j e c t {
i n t s i g s ; / / t h e n u m b e r o f e x c e s s s i g n a l s

p u b l i c :
S e m a p h o r e ( i n t i = 0 ) { s i g s = i ; }

i n t p e n d i n g ( ) { r e t u r n s i g s < = 0 ; }
v o i d w a i t ( ) ;
v o i d s i g n a l ( ) { i f ( s i g s + + = = 0 ) a l e r t ( ) ; }

} ;

v o i d
S e m a p h o r e : : w a i t ( )
{

f o r ( ; ; ) {
i f ( - - s i g s > = 0 )
r e t u r n ;
s i g s + + ;
t h i s t a s k - > s l e e p ( t h i s ) ;

}
}

Semaphores are useful tools for building other kinds of synchronization besides mutual exclusion. For
example, whenever one task wants to wait for an operation to be completed by another task, it can wait on
a semaphore.

Interrupts

The other case where interference can occur is a little more complex. The i n t e r r u p t ( ) routine of an
I n t e r r u p t _ h a n d l e r can be executed at any time, and it would be contrary to the reason for its existence to
lock it out. The mechanism that alerts the handler after the interrupt has occurred is carefully designed to
be safe from interference, and sometimes the alert is all that is necessary for an application. If it is neces-
sary to gather data from an external device immediately after an interrupt occurs, but the interrupts do not
come in rapid succession (for example, the next interrupt won’t occur until after the device is reset), the
interrupt routine can save the data and the task that is waiting for the interrupt can process the data before
resetting the device. In this case even though the data is shared, the interrupt routine cannot access the
data at the same time as the task.

Sometimes, however, it is necessary to handle interrupts that can come in rapid succession, with a require-
ment to gather data at each interrupt, so that several interrupts may occur before the task that will process
the data can be scheduled, and more interrupts may occur even while the task is running. This problem is
best handled by establishing a queue of the interrupt data records. Then the only shared data between the
interrupt handler and the task processing the data can be the queue head and tail pointers, which can be
atomically updated. In the following toy example, the interrupt routine records the value returned by an
arbitrary function, g e t _ d a t a ( ), each time the signal S I G I N T is sent. A waiting task is then scheduled and
prints all accumulated data.
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c l a s s D e l e t e _ h a n d l e r : p u b l i c I n t e r r u p t _ h a n d l e r {
v o i d i n t e r r u p t ( ) ;
i n t * l o c a l q ; / / d a t a b u f f e r b e g i n n i n g
i n t * l o c a l q _ e n d ; / / d a t a b u f f e r e n d
i n t * l o c a l q _ h ; / / q u e u e h e a d
i n t * l o c a l q _ t ; / / q u e u e t a i l

p u b l i c :
i n t g e t X ( i n t & ) ; / / t h e n e x t i t e m , i f a n y

D e l e t e _ h a n d l e r ( u n s i g n e d l o c a l _ q _ s i z e = 5 ) ;
~ D e l e t e _ h a n d l e r ( ) { d e l e t e [ l o c a l q _ e n d - l o c a l q ] l o c a l q ; }

} ;

The delete handler (so called because S I G I N T is normally sent when the user presses the DELETE key) is
an interrupt handler that maintains a local queue of data. Its interrupt function will put data on the local
queue, using l o c a l q _ t, the queue tail pointer, and its g e t X ( ) function is used by a task to retrieve the
data.

D e l e t e _ h a n d l e r : : D e l e t e _ h a n d l e r ( u n s i g n e d l o c a l _ q _ s i z e )
: ( S I G I N T ) / / b a s e c l a s s c o n s t r u c t o r a r g
{

l o c a l q _ t = l o c a l q _ h = l o c a l q = n e w i n t [ l o c a l _ q _ s i z e ] ;
l o c a l q _ e n d = & l o c a l q [ l o c a l _ q _ s i z e ] ;

}

The constructor initializes the local queue. The size of the local queue determines how many interrupts can
be awaiting processing.

v o i d
D e l e t e _ h a n d l e r : : i n t e r r u p t ( )
{

r e g i s t e r i n t * p = l o c a l q _ t ;
* p = g e t _ d a t a ( ) ;
i f ( + + p = = l o c a l q _ e n d ) p = l o c a l q ;
i f ( p ! = l o c a l q _ h )

l o c a l q _ t = p ; / / n o o v e r f l o w
e l s e e r r o r ( " O v e r f l o w " ) ;

}

The interrupt function assumes that l o c a l q _ t points to an available slot in the queue and puts the real-
time data there. It then checks for overflow and updates l o c a l q _ t to point to the next available slot if it’s
okay or calls an error function otherwise.
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i n t
D e l e t e _ h a n d l e r : : g e t X ( i n t & a n s )
{

r e g i s t e r i n t * p = l o c a l q _ h ;
i f ( p = = l o c a l q _ t )

r e t u r n 0 ;
a n s = * p ;
i f ( + + p = = l o c a l q _ e n d ) p = l o c a l q ;
l o c a l q _ h = p ;
r e t u r n 1 ;

}

The function g e t X ( ) assigns the next datum to its argument and returns ‘‘1,’’ or returns ‘‘0’’ and leaves its
argument alone if no data is available. A call to g e t X ( ) may be interrupted, but it has been designed so
that no corruption of the queue will result.

c l a s s D e l e t e _ p r i n t e r : p u b l i c t a s k {
D e l e t e _ h a n d l e r * h a n d l e r ;

p u b l i c :
D e l e t e _ p r i n t e r ( ) ;

} ;

D e l e t e _ p r i n t e r ( ) is a task that will create a D e l e t e _ h a n d l e r and print whatever data is received.

D e l e t e _ p r i n t e r : : D e l e t e _ p r i n t e r ( )
: h a n d l e r ( n e w D e l e t e _ h a n d l e r )
{

f o r ( ; ; ) {
w a i t ( h a n d l e r ) ;
i n t i ;
w h i l e ( h a n d l e r - > g e t X ( i ) )
c o u t < < i < < " \ n " ;

}
}

Note that each time the printer task is scheduled, it prints all the available data from the delete handler.

Implementation Details

The approach taken was to minimize the impact to the scheduler and to isolate as much as possible the
machine and operating system dependent parts of the implementation. There is a system-dependent func-
tion, s i g F u n c ( ), which catches each signal for which an I n t e r r u p t _ h a n d l e r exists. When the signal is
sent, s i g F u n c ( ) calls the appropriate i n t e r r u p t ( ) function. It then atomically puts the address of a dedi-
cated alerter task in a static, private cell of the scheduler and rearms the signal and returns. At the next
entry to the scheduler, that cell is checked and if it is non-zero, the alerter task is scheduled. The alerter
task alerts all pending interrupt handlers and returns to the scheduler. Tasks that were waiting for inter-
rupt handlers are then eligible to run.
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The other system-dependent parts of the implementation are the constructor and destructor for class
I n t e r r u p t _ h a n d l e r. Its constructor takes the signal number as argument (it might be an interrupt vector
address in another system). If some other interrupt handler already existed for that signal, it is saved (and
alerted if it was pending), and otherwise the UNIX system function s i g n a l ( ) is called to associate s i g -
F u n c ( ) with the signal. The destructor undoes the action of the constructor, restoring the previous signal
routine if necessary.

Example Programs

t c r e a t e . c

The following program repeatedly creates a task and waits for it to terminate. It would be possible to time
creation of new tasks without waiting for them to terminate, but because of the limited number of
processes that can exist under the UNIX system, the corresponding UNIX system program would fail.

# i n c l u d e " t a s k . h "

c l a s s C h i l d : p u b l i c t a s k / / u s e r t a s k d e c l a r a t i o n
{
p u b l i c :

C h i l d ( i n t ) ; / / t a s k c o n s t r u c t o r d e c l a r a t i o n
} ;

C h i l d : : C h i l d ( i n t i ) / / u s e r t a s k c o n s t r u c t o r d e f i n i t i o n
: ( " C h i l d " ) / / a r g u m e n t t o b a s e c l a s s c o n s t r u c t o r
{

r e s u l t i s ( i ) ; / / t e r m i n a t e t a s k e x e c u t i o n
}

m a i n ( )
{

f o r ( r e g i s t e r i n t i = 1 0 0 0 0 ; i - - ; ) {
C h i l d * c = n e w C h i l d ( i ) ; / / c r e a t e a t a s k
c - > r e s u l t ( ) ; / / w a i t f o r i t t o t e r m i n a t e
d e l e t e c ; / / c l e a n u p

}
t h i s t a s k - > r e s u l t i s ( 0 ) ; / / e x i t f r o m m a i n t a s k

}
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u c r e a t e . c

The following C program repeatedly forks a UNIX process and waits for it to terminate.

m a i n ( )
{

r e g i s t e r i n t i ;
f o r ( i = 1 0 0 0 0 ; i - - ; )

i f ( f o r k ( ) = = 0 )
e x i t ( 0 ) ; / / c h i l d p r o c e s s

e l s e
w a i t ( ( i n t * ) 0 ) ; / / p a r e n t p r o c e s s

}

t s w i t c h . c

The following program uses two semaphores (described under ‘‘Semaphores’’ ) to alternate control between
a parent and child task.
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# d e f i n e K 1 0 0 0 0
# i n c l u d e " t a s k . h "

c l a s s C h i l d : p u b l i c t a s k
{
p u b l i c :

C h i l d ( ) ;
} ;

S e m a p h o r e s e m a 1 ; / / f o r s i g n a l s f r o m m a i n t o C h i l d
S e m a p h o r e s e m a 2 ; / / f o r s i g n a l s f r o m C h i l d t o m a i n

C h i l d : : C h i l d ( )
: ( " C h i l d " )
{

f o r ( r e g i s t e r i n t n = K / 2 ; n - - ; ) {
s e m a 1 . w a i t ( ) ; / / w a i t f o r a s i g n a l f r o m m a i n
s e m a 2 . s i g n a l ( ) ; / / s e n d i t b a c k

}
r e s u l t i s ( 0 ) ;

}

m a i n ( )
{

n e w C h i l d ;
s e m a 1 . s i g n a l ( ) ; / / s e n d t h e f i r s t s i g n a l
f o r ( r e g i s t e r i n t n = K / 2 ; n - - ; ) {

s e m a 2 . w a i t ( ) ; / / w a i t f o r a s i g n a l f r o m C h i l d
s e m a 1 . s i g n a l ( ) ; / / s e n d i t b a c k

}
t h i s t a s k - > r e s u l t i s ( 0 ) ;

}

u s w i t c h . c

The following C program uses a UNIX system signal to force alternation between two UNIX system
processes. The program is a little strange in that its main routine consists of an infinite loop of p a u s e ( )
calls. Unfortunately the utility of w a i t ( ) and p a u s e ( ) for signal handling is limited because it is always
possible that a signal has been received just as the w a i t ( ) or p a u s e ( ) is being executed.
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# i n c l u d e < s i g n a l . h >
# d e f i n e K 1 0 0 0 0
i n t o t h e r p i d ;
i n t r e c e i v e d ;
i n t c h i l d ;
v o i d
s i g ( ) / * s i g n a l - c a t c h i n g r o u t i n e . c a l l e d * /

/ * w h e n a s i g n a l i s r e c e i v e d * /
{

s i g n a l ( S I G T E R M , s i g ) ; / * a r r a n g e t o c a t c h t h e n e x t s i g n a l * /
r e c e i v e d + + ;
i f ( c h i l d & & r e c e i v e d > = K / 2 ) e x i t ( ) ;
k i l l ( o t h e r p i d , S I G T E R M ) ; / * s e n d i t b a c k * /
i f ( ! c h i l d & & r e c e i v e d > = K / 2 ) e x i t ( ) ;

}

m a i n ( )
{

s i g n a l ( S I G T E R M , s i g ) ; / * a r r a n g e t o c a t c h t h e s i g n a l * /
i f ( ( o t h e r p i d = f o r k ( ) ) = = 0 ) { / * c r e a t e t h e c h i l d p r o c e s s * /

o t h e r p i d = g e t p p i d ( ) ; / * g e t p a r e n t p r o c e s s i d * /
c h i l d = 1 ; / * t h i s i s t h e c h i l d * /
k i l l ( o t h e r p i d , S I G T E R M ) ; / * s e n d t h e f i r s t s i g n a l * /

}
f o r ( ; ; )

p a u s e ( ) ;
}

r e a l _ t i m e r . c

In addition to the robot application, the system was implemented on the UNIX Operating System using sig-
nals as interrupts. A class R e a l _ t i m e r, modelled on the original class t i m e r was built.
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c l a s s R e a l _ t i m e r : p u b l i c o b j e c t {
f r i e n d c l a s s A l a r m _ h a n d l e r ;
i n t s t a t e ; / / R U N N I N G , I D L E , T E R M I N A T E D
l o n g t i m e ; / / i n i t i a l l y d e l a y , t h e n a l a r m t i m e
v o i d i n s e r t ( l o n g ) ; / / p u t o n c h a i n
v o i d r e m o v e ( ) ; / / r e m o v e f r o m c h a i n & m a k e I D L E
v o i d r e s u m e ( ) ; / / c a l l e d w h e n t i m e i s u p

p u b l i c :
R e a l _ t i m e r ( l o n g ) ;
~ R e a l _ t i m e r ( ) ;

i n t p e n d i n g ( ) ;
v o i d r e s e t ( l o n g ) ;
v o i d p r i n t ( i n t , i n t = 0 ) ;

} ;

Instead of simulated clock ticks, class R e a l _ t i m e r measures time in seconds. It is based on the following
handler for the alarm signal and a task that maintains the list of unexpired R e a l _ t i m e r instances.
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c l a s s A l a r m _ h a n d l e r : p u b l i c t a s k {
f r i e n d R e a l _ t i m e r ;
R e a l _ t i m e r * c h a i n ;
I n t e r r u p t _ h a n d l e r * b e l l ;
v o i d a d d _ t i m e r ( R e a l _ t i m e r * ) ;
v o i d r e m o v e _ t i m e r ( R e a l _ t i m e r * ) ;

p u b l i c :
A l a r m _ h a n d l e r ( ) ;

} ;

A l a r m _ h a n d l e r a l a r m _ h a n d l e r ; / / t h e o n l y i n s t a n c e

A l a r m _ h a n d l e r : : A l a r m _ h a n d l e r ( )
: ( " A l a r m _ h a n d l e r " ) , c h a i n ( 0 )
{

s l e e p ( ) ;
f o r ( ; ; ) {

f o r ( l o n g n o w = t i m e ( 0 ) ; c h a i n & & c h a i n - > t i m e < = n o w ;
c h a i n = ( R e a l _ t i m e r * ) c h a i n - > o _ n e x t )

c h a i n - > r e s u m e ( ) ; / / a l e r t t h e t i m e r
i f ( c h a i n ) {

a l a r m ( c h a i n - > t i m e - n o w ) ;
w a i t ( b e l l ) ;

} e l s e {
b e l l - > f o r g e t ( t h i s t a s k ) ;
d e l e t e b e l l ;
s l e e p ( ) ;

}
}

}

The I n t e r r u p t _ h a n d l e r pointed to by A l a r m _ h a n d l e r : : b e l l only exists while there are pending
R e a l _ t i m e r objects. The A l a r m _ h a n d l e r task runs after an alarm signal, and after alerting any timers that
have expired, if there are any unexpired timers, it resets the alarm and waits.
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NOTE

This section is taken directly from a paper by Stacey Keenan.

Introduction

The C++ coroutine library, commonly known as the task library after its header file, t a s k . h, provides mul-
tiple threads of control within one UNIX system process. Each thread of control is a coroutine, or task, and
each task runs until it explicitly gives up the processor; there is no pre-emption. Implementing concurrency
requires knowledge of hardware-dependent and compiler-dependent runtime features, especially calling
sequence and stack frame layout; hence the library is target-dependent and must be ported explicitly to
each supported compiler/processor platform.16 The target-dependent parts of the library are isolated in
four files. Release 3.0 of the C++ Language System supplies the task library for the AT&T 3B20, AT&T
WE32000 family (e.g., 3B2, 3B15), AT&T 6386 WGS and DEC VAX processors, and the Sun-2 and Sun-3
Workstations (Sun compilers on Motorola 68000 family processors).

This paper describes the implementation of the task library, with particular emphasis on task creation and
task switching, where target-dependent code is needed. The existing implementations for the 3B, VAX, and
Sun Workstation processors are used as examples.17 The scope of this paper is limited by the similarity of
the runtime models supported by these targets. Targets diverging from these models, like mainframe or
RISC– style processors, are likely to present porting difficulties not addressed in this paper. It is assumed
that the reader has access to the source code for the library. This paper does not describe how to use the
task library; see ‘‘A Set of C++ Classes for Co-routine Style Programming’’ and ‘‘Extending the C++ Task
System for Real-Time Control’’ for user-level information. ‘‘Task Switching Fundamentals’’ provides back-
ground needed to understand the workings of the task library. ‘‘Implementation of Task Switching’’
describes how the task library creates new tasks and switches among them, including details about the
target-dependent functions s w a p ( ) and f u d g e _ r e t u r n ( ). The final sections discuss source file organiza-
tion and miscellaneous hints for porting the library.

Task Switching Fundamentals

The C++ task library provides non-preemptive scheduling for tasks. A task runs until it explicitly gives up
the processor to allow another task to run. Typically, a task will give up the processor when it tries to per-
form an action that cannot yet be done, for example, if it tries to put an object on a full queue, or to get an
object from an empty queue. When this happens, the task is put to sleep.18 The scheduler then chooses to
run the next task on the ready-to-run list, s c h e d : : r u n c h a i n.

When a task is put to sleep, or suspended, the task system must save the state of the task so that it may be
resumed later. On the targets described here, this involves saving the task’s stack and hardware registers,
including the non-volatile registers and the frame pointer (and the argument pointer on some targets). A
task switch is the process of saving the state of one task, and restoring the state of another.
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Stack Frames

Some familiarity with the C runtime environment and the target implementation of stacks is needed to
understand the details of task creation and switching. A C function call sets up a new stack frame for the
function. A stack frame contains the arguments to the function, the saved hardware state of the calling
function, and any automatic variables used by the function. Figure 2-1 illustrates the stack frames built on
the 3B2, the VAX, and the Sun-2/3 targets for a function called with three arguments and saving four regis-
ters. These stack frames are described here to provide a base for later discussions on the internals of the
task library.

On a 3B2, the argument pointer (ap) points to the start of the arguments to the function, the frame pointer
(fp) points to the start of the automatics of the function, and the stack pointer (sp) points to the next avail-
able space in the stack. The caller’s registers are saved between the arguments and the automatics. Previ-
ous stack frames can be accessed via the frame pointer: The old frame pointer, argument pointer, and pro-
gram counter (pc) are always a fixed distance below the frame pointer. Stacks grow up, toward higher
memory addresses.

On a VAX, stacks grow down, toward lower memory, although the figures in this paper will show the low
memory on top and relative positions on the stack will be described in terms of the pictures (e.g., above
means higher in the picture, at a lower memory address). The argument pointer points to a longword con-
taining the number of arguments that have been pushed on the stack. Arguments are pushed in reverse
order, so that the first argument is stored one word below the ap. The frame pointer points to a condition
handler, above which are the automatics of the function. The stack pointer points to the last assigned word
in the stack. The word just under the frame pointer contains a procedure entry mask, which tells which
registers were saved in the frame. Saved user registers and the old frame pointer, argument pointer, and
program counter are stored between the argument and frame pointers.
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Figure 2-1: Stack Frames on a 3B2, a VAX, and a Sun-2/3 for a Function Taking 3 Arguments and Saving 4
Registers
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The stack on the Sun-2/3 Workstation grows down, toward lower memory. This target has no argument
pointer. Arguments, saved registers, and automatics are all referenced as offsets from the frame pointer.
Arguments are pushed on the stack in reverse order, followed by the return pc and the old frame pointer.
The frame pointer points at the old frame pointer. Space for automatics is reserved above the frame
pointer. Saved registers are pushed after the reserved space, and the stack pointer points to the last saved
register. The 68000 processor has both data (dx) and address (ax) registers. In this example, two of each
type are saved.

On entry, a function first saves all the registers that it might use.19 On function exit, the same number of
registers are restored from the register save area of the stack frame. On some targets, like the VAX, stack
frames are self-describing: one can tell how many registers are saved in the frame (and where they are)
from the frame itself (by looking at the entry mask). Thus, the function return sequence on a VAX consists
of a single, simple instruction: r e t. The 3B and Sun-2/3 targets do not have self-describing stack frames.
This means that ‘‘return’’ instructions on these targets need to specify how many registers to restore. When
(as happens in the task system) one needs to restore registers without returning through the normal return
sequence, one can only find out how many registers were saved on the stack by looking at the save instruc-
tion at the beginning of the function.

To switch to a new task, the task system needs to know what the new frame pointer (and argument pointer
on the 3B targets) should be and from where to restore all the non-volatile registers.20 The task library
explicitly saves the frame pointer and argument pointer of the function to be returned to, s w a p ( ), in the
task object as t _ f r a m e p and t _ a p. The non-volatile registers are stored in s w a p’s stack frame.

D E D I C A T E D and S H A R E D Tasks

Tasks can be of one of two modes: D E D I C A T E D or S H A R E D. D E D I C A T E D tasks each have their own stack, of
some fixed size, allocated from the free store. S H A R E D tasks share a single stack, of some fixed size. When
a S H A R E D task is about to resume execution, if its stack space is occupied by another task,21 the portion of
the stack that is in use by the other (suspended) task is copied out to a save area, and the resuming task’s
stack is copied from its save area back into the stack. Because the in-use part of the stack is less than the
allocated size of the stack, the user can save space by using S H A R E D stacks, at a cost in execution speed.
Additionally, some targets and operating systems do not allow the stack pointer to point into the UNIX pro-
cess data segment; on these systems S H A R E D tasks must be used.22

Implementation of Task Switching

There are two general contexts in which a task switch occurs: when a parent task creates a new child task
and switches to it, and when a task suspends and the scheduler chooses a new task to run. The stacks of
both the suspending and resuming tasks look different in each of these situations. Task creation differs
from a switch to a suspended task in two ways. First, in task creation a runtime environment for the new
task must be set up before the switch can take place. Second, task creation causes the parent task to be
suspended and the new task to run immediately, bypassing any other tasks waiting on the run chain. This
is the only case where a task switch takes place without a call to the scheduler to choose the next task to
run. These two contexts are described below.
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Task Switches Between Suspending and Resuming Tasks

In task switches from a suspending to a resuming task (i.e., switches other than those to newly created
tasks), the function that causes the running task to block (q h e a d : : g e t ( ) in Figure 2-2) calls
t a s k : : s l e e p ( ), which in turn calls the scheduler, s c h e d : : s c h e d u l e ( ). After selecting the next task to
run, the scheduler calls t a s k : : r e s u m e ( )23 for the resuming task. The function t a s k : : r e s u m e ( ) calls
t a s k : : r e s t o r e ( ), an inline function whose purpose is to call the appropriate version of s w a p ( ) (s w a p ( )
for D E D I C A T E D tasks, s s w a p ( ) for S H A R E D tasks) with the appropriate arguments.

Figure 2-2 shows examples of the stacks for a suspending and a resuming task, both of type u s e r _ t a s k
(u s e r _ t a s k : : u s e r _ t a s k ( ) is the constructor and ‘‘main’’ function of the task). Each box in the stack
represents a stack frame; the frames for t a s k : : r e s u m e ( ) and t a s k : : r e s t o r e ( ) are separated by a dashed
line because t a s k : : r e s t o r e ( ) is an inline function, and therefore doesn’t really have its own stack frame.

Figure 2-2: A Task Switch from a Suspending to a Resuming Task (D E D I C A T E D)
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Switching Between D E D I C A T E D Tasks: s w a p ( )

The two s w a p functions do the real work of performing a task switch. They are written in assembly
language because they manipulate hardware registers. The s w a p ( ) function saves the state of the suspend-
ing task (labeled r u n n i n g in the code)24 and restores the state of the resuming task (labeled t o - r u n). Sav-
ing the state of the suspending task involves first saving all the non-volatile registers in s w a p’s stack frame,
then saving the current frame pointer, which defines s w a p’s frame, and the argument pointer, if necessary,
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in the suspending task’s task object, in members t _ f r a m e p and t _ a p. Then s w a p ( ) overwrites the
hardware frame pointer and argument pointer with the values saved in the resuming task’s t _ f r a m e p and
t _ a p. Now the to-run task is running; s w a p ( ) returns, restoring all the registers that were saved when the
to-run task was suspended. Note that s w a p’s save is done on the suspending task’s stack, and the restore
is done on the resuming task’s stack. This is because save and restore instructions are executed relative to
the frame pointer, which was modified in the middle of s w a p ( ). Figure 2-2 illustrates a task switch on a
3B target. The s w a p ( ) hardware frame and argument pointers are shown both before and after the switch.

Switching Between S H A R E D Tasks: s s w a p ( )

The function s s w a p ( ) is like s w a p ( ), but has additional code for S H A R E D tasks to copy task stacks out of
and into the shared stack area.25 There are three tasks that are relevant during a S H A R E D task switch: the
suspending task, the resuming task, and the task that last occupied the stack space that the resuming task
now wants to occupy (the target stack). This ‘‘prevOnStack’’ task is often the same as the suspending task,
but that is not necessarily the case.26

The s s w a p ( ) function first saves all the non-volatile registers in its stack frame, then saves the frame
pointer (and argument pointer, if necessary) of the suspending task in that task’s task object, just as s w a p ( )
does. It also calculates and saves the height of the stack in the t _ s i z e member of the task object. Next, it
allocates space and copies the contents of the target stack to that space, which becomes ‘‘prevOnStack’s’’
save area (pointed to by task member t _ s a v e a r e a). Next, s s w a p ( ) copies the resuming task’s saved stack
back from its t _ s a v e a r e a to the target stack, and deletes the space. Finally, s s w a p ( ) restores the resum-
ing task’s t _ f r a m e p (and t _ a p, if necessary) to be the hardware frame and argument pointers, and the
resuming task is running. As in s w a p ( ), s s w a p ( ) returns, restoring all the registers saved in the resuming
task’s s s w a p frame.

New Task Creation

To use the task library, the user derives a class, which I will refer to as class u s e r _ t a s k, from the base class
t a s k. The ‘‘main’’ program for the user task will be the constructor u s e r _ t a s k : : u s e r _ t a s k ( ). The first
thing u s e r _ t a s k : : u s e r _ t a s k ( ) does is to call the base class constructor, t a s k : : t a s k ( ). The constructor
t a s k : : t a s k ( ) initializes the private data for the new task, acquires stack space27 in which the task will
run, initializes the stack with the top two frames of the parent task’s stack (as illustrated in Figure 2-3),
inserts the parent task on the run chain, and switches to the new task, which runs immediately.
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Figure 2-3: Creating a New Task’s Stack
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After initializing the new task’s stack, the parent task continues execution in t a s k : : t a s k ( ). Notice that
the parent’s stack contains a frame for u s e r _ t a s k : : u s e r _ t a s k ( ), the child’s ‘‘main’’; the parent task needs
to skip over that frame when it returns from t a s k : : t a s k ( ). To arrange this, t a s k : : t a s k ( ) calls a func-
tion, t a s k : : f u d g e _ r e t u r n ( ), to alter t a s k : : t a s k’s stack frame so that it returns to
u s e r _ t a s k : : u s e r _ t a s k’s caller (restoring any registers saved in the skipped frame as well). This change
to the parent’s stack is shown in Figure 2-4 with dotted lines through the u s e r _ t a s k : : u s e r _ t a s k ( ) frame.
The f u d g e _ r e t u r n function will be described in detail under ‘‘Fudging the Parent Stack.’’

s w a p ( ) for Children

When a new task is created, its stack does not have an instance of s w a p ( ) on it; t a s k : : t a s k ( ) is the top
frame. It is t a s k : : t a s k’s responsibility to arrange for the hardware state of u s e r _ t a s k : : u s e r _ t a s k ( ) to
be restored when the child begins execution there. Therefore, t a s k : : t a s k ( ) saves the frame and argu-
ment pointers for the child’s t a s k : : t a s k ( ) frame in the child’s t _ f r a m e p and t _ a p of its task object.
Then t a s k : : t a s k ( ) saves all the registers as they were when u s e r _ t a s k : : u s e r _ t a s k ( ) called
t a s k : : t a s k ( ) in a global variable, N e w _ t a s k _ r e g s.28 Getting these registers right, no matter how many
registers were saved in u s e r _ t a s k : : u s e r _ t a s k or t a s k : : t a s k ( ), is a bit tricky. We first copy all the
current hardware registers into N e w _ t a s k _ r e g s and then overwrite any of those that are used by
t a s k : : t a s k ( ) with those saved in t a s k : : t a s k’s frame. This is done with a macro, S A V E _ C H I L D _ R E G S,
which calls S A V E _ R E G S ( ) to do the first step, and s a v e _ s a v e d _ r e g s ( ) to do the second step.

Then the parent calls t a s k : : r e s t o r e, which calls s w a p ( ) with a N E W _ C H I L D argument. Given this argu-
ment, s w a p ( ) explicitly restores the registers that were saved in N e w _ t a s k _ r e g s, instead of restoring the
registers saved in the frame. See Figure 2-4 When s w a p ( ) returns, the return is effectively from
t a s k : : t a s k ( ), as that is where the frame pointer points, and then the child task is executing in
u s e r _ t a s k : : u s e r _ t a s k ( ). On the 3Bs, the assembly language return instruction specifies how many
registers to restore. Because the necessary registers have been restored from N e w _ t a s k _ r e g s, s w a p ( )
restores no registers saved in t a s k : : t a s k ( )’s frame on its return. The VAX return instruction determines
the number of registers saved in the frame by looking at the entry mask under the frame pointer, therefore,
when s w a p ( ) returns, the registers saved in t a s k : : t a s k’s frame are restored. Since these registers are the
same as those saved by s a v e _ s a v e d _ r e g s ( ), s a v e _ s a v e d _ r e g s ( ) is unnecessary on the VAX.
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Figure 2-4: A Task Switch to a New Child (D E D I C A T E D)
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s s w a p ( ) for Children

New S H A R E D tasks don’t need to copy in a new stack, nor do they need to reset the hardware frame and
argument pointers. Their stacks are already in place, since a new S H A R E D task runs in its parent’s stack.
However, the parent task needs to call s s w a p ( ) to save its state and to copy its active stack to its save area.
Therefore, t a s k : : r e s t o r e ( ) and s s w a p ( ) are called with a N E W _ C H I L D argument, and s s w a p ( ) has a
branch for new children to skip the ‘‘copy in’’ part.

Fudging the Parent Stack

As mentioned above, f u d g e _ r e t u r n is called by t a s k : : t a s k ( ) to modify the parent stack so that the
parent does not return to u s e r _ t a s k : : u s e r _ t a s k ( ). Rather, the parent skips the
u s e r _ t a s k : : u s e r _ t a s k ( ) frame and returns to u s e r _ t a s k : : u s e r _ t a s k’s caller (m a i n ( ) in Figure 2-4).
This routine is highly machine- and compiler-dependent. It depends on call/return and save/restore con-
ventions of both the compiler and the machine. The left side of Figure 2-5 shows a hypothetical example of
a parent stack when f u d g e _ r e t u r n ( ) is first called. Portions of three stack frames are shown:

at the bottom is the register save area for u s e r _ t a s k : : u s e r _ t a s k ( ), containing the saved state of
m a i n ( ) (i.e., ‘‘main’s r8’’ refers to the value of hardware register r8 in m a i n ( ) before
u s e r _ t a s k : : u s e r _ t a s k ( ) was called). In this example, u s e r _ t a s k : : u s e r _ t a s k ( ) uses, and there-
fore saves, two registers, which on a 3B2 would be registers r7 and r8.
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in the middle is the save area for t a s k : : t a s k ( ), containing the saved state of
u s e r _ t a s k : : u s e r _ t a s k ( ) or s k i p ( ), as it is labeled in the diagram and in the f u d g e _ r e t u r n ( )
code. In this example, t a s k : : t a s k ( ) uses and saves four registers, r5 through r8.29

at the top is the save area for f u d g e _ r e t u r n ( ), containing the saved state of t a s k : : t a s k ( ). In this
example, f u d g e _ r e t u r n ( ) uses and saves just one register, r8.

The ellipses in the diagram represent function arguments, automatics, and unused words in the stack
frames. The f u d g e _ r e t u r n ( ) function must copy up the relevant elements from s k i p’s stack frame to
t a s k : : t a s k’s stack frame, so that when t a s k : : t a s k’s return instruction is executed, the parent will find
itself back in m a i n ( ) (in this example), with the hardware registers restored to the values they had before
s k i p ( ) was called. The stack on the right side of Figure 2-5 represents the same parent stack after
f u d g e _ r e t u r n has altered the stack. The dotted arrows show where the elements from s k i p’s save area
have been copied.

In the 3B, VAX, and Sun-2/3 implementations, f u d g e _ r e t u r n ( ) overwrites the program counter, frame
pointer, and argument pointer (for 3B targets only) saved in t a s k : : t a s k’s frame with those saved in
s k i p’s frame. This causes t a s k : : t a s k ( ) to return to m a i n ( ).

Restoring m a i n ( )’s registers is trickier. It requires knowing the layout of the save area for at least s k i p ( )
and t a s k : : t a s k ( ), and sometimes for f u d g e _ r e t u r n ( ) as well. Ways of determining the frame layout
are discussed under ‘‘Finding Where Registers Are Saved: Framelayout().’’ For now, assume
f u d g e _ r e t u r n ( ) knows how many registers are saved in each frame.
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Figure 2-5: A 3B2 Stack Before and After Fudging
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save area

user_task:: user_task::
user_task user_task

save area

task’s r8

task’s ap

skip’s r8

skip’s fp

If s k i p ( ) saved any registers, we must take pains to see that they are restored on t a s k : : t a s k’s return. If,
as is the case in the example in Figure 2-5, all the registers saved in s k i p’s frame are also saved in
t a s k : : t a s k’s frame, this is simple. We just copy the saved s k i p ( ) registers over the corresponding
t a s k : : t a s k ( ) registers, leaving any additional saved t a s k : : t a s k ( ) registers in place. There is room in
t a s k : : t a s k’s frame for these registers and, in the case of the 3B and Sun-2/3 targets,30 t a s k : : t a s k’s
restore instruction will restore all the registers we care about.
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There are various difficulties with restoring the ‘‘extra’’ registers when s k i p ( ) saves registers that
t a s k : : t a s k ( ) does not save. On some targets, such as the VAX and Sun-2/3, there is no room in the
frame for the additional registers; on other targets, such as the 3Bs, t a s k : : t a s k’s restore instruction won’t
restore any extra registers, although the save area is always large enough to hold extras. Figure 2-6 shows
a parent stack frame where the s k i p ( ) frame contains four saved registers, the t a s k : : t a s k frame contains
only two saved registers, and the f u d g e _ r e t u r n ( ) frame contains three saved registers. In this example,
r5 and r6 are ‘‘extra."
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Figure 2-6: Fudging When u s e r _ t a s k : : u s e r _ t a s k ( ) Uses More Registers than t a s k : : t a s k

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

. . . . . . ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
. . . . . . . . . . . . . . . .

. . . . ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
. . . . . . . . . . . . . . . . . .

main’s pc main’s pc

main’s fp main’s fp

main’s r6main’s r6

main’s r8main’s r8

skip’s pc

skip’s fp

skip’s r8

task’s ap

task’s r8

...

save area

user_taskuser_task
user_task::user_task::

save area

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

save area

save area

save areasave area

task::task
task::task

(skip) (skip)

After Before

fudge_returnfudge_return

...

...

task’s fp task’s fp

...

main’s r6

...
restored

explicitly
main’s r5

task’s r8

task’s ap

task’s r7

task’s pc

main’s r7

main’s ap

main’s fp

main’s r8

main’s pc

task’s pc

main’s r7main’s r7

main’s ap main’s ap

skip’s ap

task’s r7

...

main’s r5main’s r5

...

skip’s r7

skip’s r6

...............................................................................................................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
. . . . .

. . . . . . . . . . . . . . . ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
. . . . . . .

. . . . . . . . . . . . . . ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
. . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . . ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

. . . . . . . . .

The Task Library 2-53



A Porting Guide for the C++ Coroutine Library

If f u d g e _ r e t u r n ( ) saved any of the ‘‘extra’’ registers, then we can overwrite those with the corresponding
saved s k i p registers. In Figure 2-6, s k i p ( ) saved r6 (‘‘m a i n’s r6’’), t a s k : : t a s k ( ) did not, but
f u d g e _ r e t u r n ( ) also saved r6. Therefore, f u d g e _ r e t u r n ( ) will overwrite the r6 in its save area with the
r6 from s k i p’s save area. When f u d g e _ r e t u r n ( ) returns, r6 will be restored to the value it had when
m a i n ( ) last executed, which is what we want. Because t a s k : : t a s k ( ) did not save r6, we know that it
will not disturb its value.

Neither t a s k : : t a s k ( ) nor f u d g e _ r e t u r n ( ) saved the other extra register, r5, in this example. Therefore,
to ensure that when t a s k : : t a s k ( ) returns, r5 has the value it had in m a i n ( ), and not the value it had in
s k i p ( ) (its current value), f u d g e _ r e t u r n ( ) must explicitly set the hardware register r5 to the value saved
in s k i p’s frame (main’s r5). This is safe to do, because none of the intervening functions use r5. The func-
tion f u d g e _ r e t u r n ( ) calls an assembly language function to overwrite r5 (or any other extra registers).
After f u d g e _ r e t u r n ( ) and t a s k : : t a s k ( ) return, all the registers will have the values they had when
m a i n ( ) last executed on the parent stack.

There is one final step: arranging for the stack pointer to be in the right place after t a s k : : t a s k returns.
This depends on the way the target executes a return. Without some adjustment, the stack pointer will be
set one frame too high (at the top of s k i p’s frame instead of at the top of m a i n’s frame).

On the VAX, a return instruction restores the frame and argument pointers from those saved in the stack,
pops the saved registers off the stack, and adds the number of arguments that are on the stack (as given in
the argument descriptor, see Figure 2-1) to the stack pointer. We can cause the stack pointer to be restored
correctly by adjusting the argument descriptor in t a s k : : t a s k’s frame to include all the words in the s k i p
frame in addition to the arguments. In other words, f u d g e _ r e t u r n ( ) alters t a s k : : t a s k’s frame to look as
though there is a big argument list.

On the 3Bs, a return instruction restores the frame and argument pointers from those saved on the stack,
but the stack pointer is given the value of the argument pointer of the returning function. This presents a
problem for a fudged parent stack: when we return from t a s k : : t a s k ( ), the frame and argument pointers
are reset to point to m a i n’s frame, as we wanted, but the new stack pointer points where t a s k : : t a s k’s
argument pointer was, which is higher than needed and wastes space.31 What we want is to have the stack
pointer point to where s k i p’s argument pointer was. We arrange for this with an assembly language func-
tion, F U D G E _ S P ( ),32 which is defined for the 3Bs to take an argument, the s k i p ( ) argument pointer, and to
reset the current argument pointer (t a s k : : t a s k’s) to the argument. F U D G E _ S P ( ) is called just before
t a s k : : t a s k ( ) returns on the parent side. Once F U D G E _ S P ( ) is called, no arguments to t a s k : : t a s k ( ) can
be referenced. The t a s k : : t a s k ( ) constructor returns the t h i s pointer, which is its implicit first argument.
The t h i s argument is usually in a register, but if it is not, t a s k : : t a s k will need to reference it through the
now-changed argument pointer when it sets the return value. Therefore, F U D G E _ S P ( ) also copies the value
of t a s k : : t a s k’s first argument to be u s e r _ t a s k : : u s e r _ t a s k’s first argument, to ensure that
t a s k : : t a s k’s return value will be set properly.

The Sun-2/3 targets have a similar problem to that described above for the 3B targets. The solution, how-
ever, is different. The Sun-2/3 compiler typically generates a function return sequence of three instructions:
m o v e m, u n l k, and r t s. The m o v e m instruction restores the registers denoted by a mask and uses an offset
from the frame pointer to find the register save area. The u n l k instruction resets the frame pointer to be
the one saved in the stack, and also resets the stack pointer to point at the saved return program counter
on the stack. Finally, the r t s instruction pops the program counter off the stack, leaving the stack pointer
pointing at the top of the frame of the function that called the returning function. As with the 3B targets,
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after a parent task (whose stack has been fudged) returns from t a s k : : t a s k ( ) to m a i n ( ) (in the example),
the stack pointer points to the top of the skipped frame.

We compensate for this with a variation in F U D G E _ S P ( ) and f u d g e _ r e t u r n ( ) on the Sun-2/3 targets.33

Instead of overwriting t a s k : : t a s k’s return pc with s k i p’s return pc, f u d g e _ r e t u r n ( ) overwrites
t a s k : : t a s k’s return pc with the address of an assembly language function, f u d g e _ s p ( ). When the parent
task returns through t a s k : : t a s k ( ), it calls F U D G E _ S P ( ), which sets a global variable, S k i p _ p c _ p, to point
to s k i p’s return pc in the stack. Then t a s k : : t a s k ( ) returns to f u d g e _ s p ( ),34 which sets the stack pointer
to S k i p _ p c _ p, and executes an r t s instruction, which pops s k i p’s saved return pc off the stack, leaving
the stack pointer at the top of m a i n ( )’s frame.

Finding Where Registers Are Saved: F r a m e L a y o u t ( )

As mentioned above, fudging the parent stack requires knowing the layout of the stack frames surrounding
the one to be fudged.35 This is not a problem for targets with self-describing stack frames, such as the VAX.
Targets that do not have self-describing stack frames, such as the 3B and Sun-2/3, include a structure,
defined in the source file f u d g e . c, called F r a m e L a y o u t. F r a m e L a y o u t has different members, depending
on the target. It always has a constructor, which initializes the members so that f u d g e _ r e t u r n ( ) has the
information it needs to modify the parent stack.

F r a m e L a y o u t for the 3B Processors

On the 3B2 and 3B20 targets the layout of saved registers follows from the number of registers saved by the
function. On both targets, the size of the save area is invariant; if fewer than all the registers are saved,
some slots in the save area will be unused and contain garbage values. The number of registers saved is
found by looking at the save instruction of the function in question. By convention, the save instruction is
the first instruction of the function. The easiest way to find the save instruction for a given function, f, is
by dereferencing a pointer to the function. However, when f is a constructor, as both t a s k : : t a s k ( ) and
u s e r _ t a s k : : u s e r _ t a s k ( ) are, one cannot take its address. In this case, one can find the save instruction
for f by using the pointer to the return pc saved in the f’s frame, backing up one instruction to find the
instruction to call f, and following the destination argument of the call to find the save instruction.

On the 3B targets, F r a m e l a y o u t contains one element: n _ s a v e d, which represents the number of registers
saved in the frame. The F r a m e l a y o u t constructor finds n _ s a v e d for the frame denoted by its frame
pointer argument. F r a m e L a y o u t : : F r a m e L a y o u t ( ) uses the frame pointer to find the return pc, which
points to the instruction after the call to the denoted function. It backs up one instruction to get a pointer
to the call instruction,36 then decodes the call instruction (using a function called c a l l _ d s t _ p t r ( )) to get a
pointer to the function denoted by the frame pointer argument. Finally, it decodes the save instruction
(pointed to by the function pointer) to find the number of registers saved in the frame.

F r a m e L a y o u t for the Sun-2/3 Target

On the Sun-2/3 target, F r a m e l a y o u t contains two elements: o f f s e t, the offset of the top of the register
save area from the frame pointer, and m a s k, the bit mask denoting which registers were saved. The
F r a m e l a y o u t constructor for the Sun-2/3 initializes the structure by a method similar to that described
above for the 3B targets, which involves following the return pc to find the call, and decoding the call to
find the destination of the call. Finally, it decodes the instructions in the function prologue (which can
vary), to find the m a s k and the o f f s e t.
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Source File Organization

The target-dependent parts of the task library are isolated in four source files:

h w _ s t a c k . h
contains target-dependent macro, const, structure, and function declarations for each sup-
ported target (surrounded by # i f d e fs).

h w _ s t a c k . c
contains definitions of target-dependent functions for each supported target (surrounded by
# i f d e fs). Many of these are short assembly language functions which set or return hardware
registers.

f u d g e . c There is a version of f u d g e . c for each supported target, currently: f u d g e . c . 3 b,
f u d g e . c . v a x, f u d g e . c . 3 8 6, and f u d g e . c . 6 8 k.37 These files contain definitions of
t a s k : : f u d g e _ r e t u r n ( ) and F r a m e L a y o u t : : F r a m e L a y o u t ( ) (for the targets that need it).

s w a p . s There is a version of s w a p . s for each supported target, currently: s w a p . s . 3 b, s w a p . s . v a x,
s w a p . s . 3 8 6, and s w a p . s . 6 8 k. These files contain the assembly language functions s w a p ( )
and s s w a p ( ).

Hints for Porting the Task Library to Other Processors

Draw pictures (like those in Figure 2-1) of the stack frame layout for the target to which you are port-
ing. Detailed pictures of the register save areas of several frames on the stack, like those in Figure
2-5 and Figure 2-6, are helpful in writing f u d g e _ r e t u r n ( ).

Become familiar with the sequence of operations in function calls and returns. Write and compile
some sample C or C++ programs and look at the generated code to see what kinds of call and return
sequences the compiler generates, in what order registers are used, and so forth. A fast way to write
the copy in and copy out loops for s s w a p ( ) is to write them in C, compile them with the - S option,
and transcribe the generated code into s s w a p ( ).

The implementation of the task library was designed to be both maintainable and, as far as possible,
portable across both machines and compilers. These goals are sometimes mutually exclusive, and in
those cases, we aimed for maintainability and portability across different compilers for the same
machine (where possible). Some porters may want to write some of the assembly language functions
in h w _ s t a c k . c as macros that depend on positional parameters and compiler conventions. For
example, F P ( ) returns the frame pointer for the calling function. This could also be written for the
3B targets as a macro that takes as an argument the first automatic variable of the function and
returns the address of that variable, or for the VAX takes the same argument and returns the address
of that variable minus one. This only works if the macro is given the f i r s t automatic as an argu-
ment, if the compiler assigns automatics in the order in which they are declared, and if the optimizer
leaves the automatic on the stack, even if it is never read nor written.
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1 . The original version of this paper was written in 1980 by B. Stroustrup and revised in 1982 by him.
Since then both the task library and C++ (then known as ‘‘C with Classes’’) have changed substan-
tially, but the interface to the task library has been left intact. This has allowed old programs to run
with new versions of the library, but has prevented any updating of the style of the interface, which
does not conform to current tastes.

This version of the paper has been revised by J. E. Shopiro to reflect the present state of affairs. I
have added a few notes (in sans-serif type) where changes have been significant, and have made
numerous syntactic changes, etc., without further comment.

2 . Many of the member functions are inline, but their definitions are not shown here to prevent clutter.
Class t a s k is derived from class s c h e d which is derived from class o b j e c t. Class o b j e c t is a sim-
ple base class used by most classes in the task system. It contains some of the pointers used by the
task system’s internal ‘‘house-keeping.’’ Class o b j e c t is described under ‘‘The o b j e c t Class.’’

3 . The class may have other member functions, of course, which may be called by the constructor or by
any other function according to the usual rules of C++.

4 . When the first task is created, m a i n ( ) automatically becomes a task itself.

5 . It is a fairly simple job to add a new kind of task that returns some other datatype.

6 . The handling of run time errors will be described below.

7 . Thus q h e a d : : p e n d i n g ( ) returns 1 if the queue is empty and 0 otherwise. Correspondingly,
q t a i l : : p e n d i n g ( ) returns 1 if the queue is full and 0 otherwise.

8 . The default maximum size for a queue is 10000. That is, the queue can hold up to 10000 pointers to
objects. It does not, however, pre-allocate space.

9 . The original task package had a number of global variables, including t h i s t a s k, t a s k _ c h a i n, and
c l o c k. They are now all macros which expand to inline functions that return the values of private
static variables. Thus programs that just read the values will be unaffected, but programs that try to
set them (which was always illegal) will fail to compile.

10 . w a i t l i s t ( ) is an example of a function whose form does not satisfy current esthetic standards.

11 . In a quasi-parallel system this will only be true provided no infinite loop without task system calls
exists. Such a loop constitutes an error that only a system with true parallelism or time slicing can
recover from.

12 . Coroutines can exchange control among themselves more freely than ordinary functions and pro-
cedures. In the usual function calling discipline, when one procedure (more precisely, one instance
of a procedure) executes a procedure call, a new instance of the called procedure is created, and the
calling procedure waits until the called procedure (and any procedures it may call) returns. A pro-
cedure instance is initiated when the procedure is called and is destroyed when it returns. When one
coroutine (coroutine instance) initiates another it need not wait for the new coroutine to end, but
instead it can be resumed while the new coroutine is still active. A running coroutine can relinquish
control to any waiting coroutine without abandoning its state and later regain control and continue
from where it left off.
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13 . Class o b j e c t is the base class of most classes in the task system. We use the t y p e w r i t e r font for
programming language constructs.

14 . Semaphores which are used for mutual exclusion are initialized with one excess signal so that the
first lock call will succeed.

15 . But watch out for deadlock.

16 . To the extent that the target hardware dictates subroutine linkage and stack frame layout, the com-
piler is less important. Some machines, like the 3Bs and the VAX, support a particular stack frame;
the task library is largely independent of the compiler on these machines. The 68000, however, does
not support a specific stack frame arrangement; the task library on this machine also depends on the
compiler conventions for the stack frame. The word target will be used in this paper to denote an
instance of either a processor or a compiler/processor platform.

17 . The stack frame layout on the AT&T 6386 WGS is similar to that on the Sun-2/3 Workstations. The
task library port is also similar on these targets.

18 . See ‘‘A Set of C++ Classes for Co-routine Style Programming’’ or ‘‘Extending the C++ Task System
for Real-Time Control’’ for details. The ways in which a task is put to sleep and awakened are
target-independent.

19 . This is true for our example targets. Some targets may use a caller save convention rather than a cal-
lee save convention.

20 . It may not be immediately obvious that all registers must be saved on a task switch. Consider a task
A, which has a function f that uses all the registers. It calls another function, g, which uses less than
all the registers, say two, and therefore only saves two registers in its save area. If a task switch
occurs before g returns, and task B uses all the registers, it will destroy those needed by task A’s
function f.

21 . It can happen that a S H A R E D task will resume execution without having ever been displaced by
another task sharing the same stack.

22 . For example, D E D I C A T E D tasks do not work with 3B2s running versions of the UNIX system earlier
than SVR3.

23 . The function r e s u m e ( ) is virtual, with definitions for tasks and timers. Only tasks are relevant here.

24 . If the suspending task is T E R M I N A T E D, then s w a p ( ) does not save its state.

25 . Writing the code for stack copying of S H A R E D tasks in assembly language adds more complexity than
we would like to the job of porting the task library. It would be possible to call a C function to copy
out the suspended task’s stack to its save area. However, copying the resuming task’s stack back in
presents a problem: If the resuming task’s stack is taller than the stack on which we are executing, a
copy-in will overwrite the current stack frame. The s s w a p ( ) function is careful to move all the data
it needs from the frame into registers, so that if the frame is overwritten, s s w a p ( ) can still complete
successfully. But if s s w a p ( ) called a C function to do the copy-in, that function might overwrite its
own stack frame, making it impossible to return to s s w a p ( ) to finish the task switch. So long as the
copy-in must be written as part of s s w a p ( ), it seems little more trouble to write the complementary
copy-out in assembly language as well.
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26 . When the prevOnStack task and the resuming task are the same, r e s t o r e ( ) calls s w a p ( ), rather
than s s w a p ( ), to do the task switch, as no stack copying is necessary.

27 . The constructor t a s k : : t a s k ( ) only acquires stack space for D E D I C A T E D tasks, that is, tasks that have
their own stack. S H A R E D tasks will need space in which to save the current (or parent) task’s active
stack; s s w a p ( ) takes care of that, as described above.

28 . Only one child is activated at a time — remember, no pre-emption — and the child runs immedi-
ately, so it is safe to put these registers in a global, and more space-efficient than keeping them as
part of the task object.

29 . Note that, in Figure 2-5, the saved r5 and r6 in t a s k : : t a s k’s frame are labeled ‘‘main’s r5’’ and
‘‘main’s r6’’ rather than ‘‘skip’s r5’’ and ‘‘skip’s r6.’’ This is because in this example, s k i p ( ) does
not use r5 or r6; m a i n ( ) was the last function to use r5 and r6. Therefore, the values of r5 and r6
saved in t a s k : : t a s k’s frame are the values that r5 and r6 had when m a i n ( ) was running.

30 . The restore instruction for the VAX doesn’t specify which registers to restore.

31 . In the case of a task that repeatedly spawned children, the stack pointer would grow unnecessarily,
eventually causing the stack to overflow. Each time the parent task returned from t a s k : : t a s k, the
stack pointer would be an additional frame higher than needed, and a new call to t a s k : : t a s k
would start building the next frame where the stack pointer pointed.

32 . F U D G E _ S P ( ) is defined as a do-nothing macro for the VAX.

33 . The AT&T 6386 WGS port of the task library also uses this technique.

34 . When t a s k : : t a s k ( ) returns, the hardware registers are restored to the values they had in m a i n ( )
and the frame pointer is set to the value it had in m a i n ( ), but the program counter is set to
f u d g e _ s p ( ).

35 . Some of these frames are for user functions, so we cannot rely on techniques which require the C++
code for the function to be written so as to generate code that creates frames with some particular
layout.

36 . Because 3B instructions can be of various sizes, one cannot deterministically ‘‘back up’’ one instruc-
tion. F r a m e L a y o u t : : F r a m e L a y o u t ( ) subtracts each possible instruction size from the return pc and
decodes the resulting pointer to check for a call opcode and legal operands. There is a small possi-
bility, reduced by familiarity with the compiler, that these heuristic methods could yield more than
one candidate call instruction.

37 . The .68k suffix used for the Sun-2/3 target is something of a misnomer. These files were written
specifically for Sun compiler/68K platforms; they will not necessarily work on all 68K platforms, for
example, the AT&T compiler for the 68K. However, the # i f d e fs in the source files say
# i f d e fmc68000
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NOTE

This chapter is taken directly from a paper by Jerry Schwarz.

Abstract

The iostream library supports formatted I/O in C++. This document, containing many examples, is an
introduction to the library. Overloading and other C++ features are used to provide an interface that com-
bines flexibility and type checking. Predefined and user defined operations are easily mixed. The stream-
buf class supports alternate sources and sinks of characters.

The manual pages for the iostream library can be found at the end of this book.

Introduction

C and C++ share the property that they do not contain any special input or output statements. Instead,
I/O is implemented using ordinary mechanisms and standard libraries. In C this is the stdio library. In
C++ (since Release 2.0 of the AT&T C++ Language System) it is the iostream library. Because C++ is an
extension of C it is possible for a C++ program to use stdio. Using stdio may be the easiest way for a C
programmer to get started with C++, but using stdio is not a good style for C++ I/O. Its main drawbacks
are its type insecurity and the inability to extend it consistently for user defined classes.

This document consists mainly of examples of the use of parts of the iostream library. It assumes a reason-
able familiarity with C++, including such extensions to C as references, operator overloading, and the like.
An attempt has been made to create examples that not only illustrate features of the iostream library, but
represent good programming style. A programmer who is new to C++ may copy the examples ‘‘cookbook
style,’’ but cannot be said to have mastered C++ until he or she understands the examples.

Some of the examples are moderately complicated and demonstrate advanced features of the iostream
library. These are included so that the document will continue to be useful as an aid even after the pro-
grammer has written a few programs using iostreams. The author is annoyed by ‘‘tutorials’’ that show
how to do simple things that he could figure out himself, but are silent about the harder, more sophisti-
cated kinds of code that he frequently wants to write.

This document is not a complete description of the iostream library. Some classes and members are not
described at all. Some are used without complete descriptions. The reader is referred to the iostream man
pages for more details.

The declarations for the iostream library exist in several header files. To use any part of it, a program
should include i o s t r e a m . h. Other header files may be needed for other operations. These are mentioned
below, but the # i n c l u d e lines are never put in the examples.
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The iostream library is divided into two levels. The low level (based on the s t r e a m b u f class) is responsible
for producing and consuming characters. This level is an independent abstraction and may be used
without the upper level. This is appropriate when the program is moving characters around without much
(or any) formatting operations.

The upper level is responsible for formatting. There are three significant classes. i s t r e a m and o s t r e a m
are responsible for input and output formatting, respectively. They are both derived from class i o s, which
contains members relating to error conditions and the interface to the low level. A third class, i o s t r e a m, is
derived (multiple inheritance) from both i s t r e a m and o s t r e a m. It plays only a minor role in the library.
A ‘‘stream class’’ is any class derived from i s t r e a m or o s t r e a m.

The topics covered in this document are:

Output — predefined output conversions, ways to deal with errors, and ways to adapt the library for
output of user classes.

Input — predefined input conversions, and ways to adapt the library for input of user classes.

Constructing specialized streams — file I/O and incore operations.

Format Control — An i o s contains some format state variables. This section describes how they are
manipulated by user code and interpreted by the predefined operations

Manipulators — A powerful method for customizing operations.

s t r e a m b u fs — How to use the low level interface.

Deriving Streambuf Classes — Methods for creating specialized classes that specialize s t r e a m b u f to
deal with alternate producers and consumers of characters.

Extending Streams — Deriving classes from i s t r e a m and o s t r e a m, adding state variables, and ini-
tialization issues.

Comparison of I/O libraries.

Compatibility — Converting a program that uses the old stream library to use the new library.

Output

Suppose we want to print the variable x. The main mechanism for doing output in the iostream library is
the insertion operator < <. This operator is usually called left shift (because that is its built-in meaning for
integers) but in the context of iostreams it is called insertion.

c o u t < < x ;

c o u t is a predefined o s t r e a m and if x has a numeric type (other than c h a r or u n s i g n e d c h a r) the inser-
tion operator will convert x to a sequence of digits and punctuation, and send this sequence to standard
output. There are different operations depending on the type of x, and the mechanism used to select the
operator is ordinary overload resolution. The insertion operator for type t is called the ‘‘t inserter.’’
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If we have two values we might do:

c o u t < < x < < y ;

which will output x and y, but without any separation between them. To annotate the output we might
do:

c o u t < < " x = " < < x
< < " , y = " < < y
< < " , s u m = " < < ( x + y ) < < " \ n " ;

This will not only print the values of x, y, and their sum, but labels as well. It uses the string (c h a r *)
inserter, which copies zero terminated strings to an o s t r e a m.

Notice the parentheses around the sum. These are not needed because the precedence of + is higher than
that of < <. But, when using < < as insertion, it is easy to forget that C++ is giving it a precedence appropri-
ate to shift. Getting in the habit of always putting in parentheses is a good way to avoid nasty surprises
such as having c o u t < < x & y output x rather than x & y.

The output might look like:

x = 2 3 , y = 1 5 9 , s u m = 1 8 2

A pointer (v o i d *) inserter is also defined.

i n t x = 9 9 ;
c o u t < < & x ;

It prints the pointer in hex.

A c h a r inserter is defined:

c h a r a = ’ a ’ ;
c o u t < < a < < ’ \ n ’ ;

This prints a and newline.

User Defined Insertion Operators

What if we want to insert a value of class type?

Inserters can be declared for classes and values of class type and used with exactly the same syntax as
inserters for the primitive types. That is, assuming the proper declarations and definitions, the examples
from the previous section can be used when x or y are variables with class types.

The simplest kinds of examples are provided by a s t r u c t that contains a few values.

s t r u c t P a i r { i n t x ; i n t y ; } ;

We want to insert such values into an o s t r e a m, so we define:
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o s t r e a m & o p e r a t o r < < ( o s t r e a m & o , P a i r p ) {
r e t u r n o < < p . x < < " " < < p . y ;
}

This operator inserts two integral values (separated by a space) contained in p into o, and then returns a
reference to o.

The pattern of taking an o s t r e a m & as its first argument and returning the same o s t r e a m is what makes it
possible for insertions to be strung together conveniently.

As a slightly more elaborate example, consider the following class, which is assumed to implement a vari-
able size vector:

c l a s s V e c {
p r i v a t e :

. . .
p u b l i c :

V e c ( ) ;
i n t s i z e ( ) ;
v o i d r e s i z e ( i n t ) ;
f l o a t & o p e r a t o r [ ] ( i n t ) ;
. . .

} ;

We imagine that V e c has a current s i z e, which may be modified by r e s i z e, and that access to individual
(float) elements of the vector is supplied by the subscript operator. We want to insert V e c values into an
o s t r e a m, so we declare:

o s t r e a m & o p e r a t o r < < ( o s t r e a m & o , c o n s t V e c & v ) ;

The definition of this operator is given below. Using V e c & rather than V e c as the type of the second argu-
ment avoids some unnecessary copying, which in this case might be expensive. Of course, using V e c *
would have a similar advantage in terms of performance, but would obscure the fact that it is the value of
the V e c itself that is being output, and not the pointer.

The definition might be:

o s t r e a m & o p e r a t o r < < ( o s t r e a m & o , c o n s t V e c & v )
{

o < < " [ " ; / / p r e f i x
f o r ( i n t x = 0 ; x < v . s i z e ( ) ; + + x )

/ / u s e c o m m a a s s e p a r a t o r
i f ( x ! = 0 ) o < < ’ , ’ ;
o < < v [ x ] ;
}

r e t u r n o < < " ] " ; / / s u f f i x
}

This will output the list as a comma separated list of numbers surrounded by brackets. The code takes care
to get the empty list right and to avoid a trailing comma.
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Propagating Errors

None of the examples so far has checked for errors. Omitting such checks would be bad style, except that
the iostream library is arranged so that errors are propagated.

Streams have an error state. When an error occurs bits are set in the state according to the general category
of the error. By convention, inserters ignore attempts to insert things into an o s t r e a m with error bits set,
and such attempts do not change the stream’s state. The error bits are declared in an enum, which is
declared inside the declaration of class i o s.

c l a s s i o s {
e n u m i o _ s t a t e { g o o d b i t = 0 , e o f b i t = 1 , f a i l b i t = 2 , b a d b i t = 4 } ;
} ;

i o s : : g o o d b i t is not really a ‘‘bit.’’ It is zero and indicates the absence of any bit.

In the definitions of the P a i r and V e c inserters, if an error occurs some wasted computation may be done
as the code does insertions that have no effect. But eventually the error will be properly propagated to the
caller.

It is a good idea to check the output stream in some central place. For example:

i f ( ! c o u t ) e r r o r ( " a b o r t i n g b e c a u s e o f o u t p u t e r r o r " ) ;

The state of c o u t is examined with o p e r a t o r !, which will have a non-zero value if the state indicates an
error has occurred. This and other examples in this document assume that e r r o r ( ) is a function to be
called when an error is discovered, and that it does not return. But e r r o r ( ) is not part of the iostream
library.

An o s t r e a m can also appear in a ‘‘boolean’’ position and be tested.

i f ( c o u t < < x ) r e t u r n ;
. . . ; / / e r r o r h a n d l i n g

The magic here is that i o s contains a definition for o p e r a t o r v o i d * that returns a non-null value when
the error state is non-zero.

An explicit member function also exists:

i f ( . . . , c o u t . g o o d ( ) ) r e t u r n ;
. . . ; / / e r r o r h a n d l i n g

The reader is referred to the man pages for other member functions that examine the error state.

Flushing

In many circumstances the iostream library accumulates characters so that it can send them to the ultimate
output consumer in larger (presumably more efficient) chunks. This is a problem mainly in interactive pro-
grams where the user may need to see the output before entering input. It can also be a problem during
debugging when the programmer may need to see how far the program has gotten before dumping core.
The easiest way to make sure that everything inserted into an ostream has been sent to the ultimate consu-
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mer is to insert a special value, f l u s h. For example:

c o u t < < " P l e a s e e n t e r d a t e : " < < f l u s h ;

Inserting f l u s h into an o s t r e a m forces all characters that have been previously inserted to be sent to the
ultimate consumer of the o s t r e a m. f l u s h is an example of a kind of object known as a manipulator , a
value that may be inserted into an o s t r e a m to have some effect. It is really a function that takes an
o s t r e a m & argument and returns its argument after performing some actions on it.

Another useful way to cause flushing is the e n d l manipulator, which inserts a newline and then flushes.

c o u t < < " x = " < < x < < e n d l ;

Binary Output

Sometimes a program needs to output binary data or a single character.

i n t c = ’ A ’ ;
c o u t . p u t ( c ) ;
c o u t < < ( c h a r ) c ;

The last two lines are equivalent. Each inserts a single character (A) into c o u t.

If we want to output a larger object in its binary form a loop using p u t would be possible, but a more
efficient method is to use the w r i t e member. For example:

c o u t . w r i t e ( ( c h a r * ) & x , s i z e o f ( x ) )

will output the raw binary form of x.

The reader should notice that the above example violates C++ type discipline by converting & x to c h a r *.
Sometimes this is harmless, but if the type of x is a class with virtual member functions, or one that
requires non-trivial constructor actions, the value written by the above cannot be read back in properly.

Input

Iostream input is similar to output. It uses e x t r a c t i o n (> >) operators that can be strung together. For
example:

c i n > > x > > y ;

inputs two values from the predefined istream c i n, which is by default the standard input. The extractor
used will be appropriate for the types. The lexical details of numbers are discussed below under ‘‘Format
Control.’’ Whitespace characters (spaces, newlines, tabs, form-feeds) will be ignored before x and between
x and y. For most types (including all the numeric ones), at least one whitespace character is required
between x and y to mark where x ends.

There is a c h a r extractor. For example:
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c h a r c ;
c i n > > c ;

skips whitespace, extracts the next visible character from the istream and stores it in c. (‘‘Non-whitespace’’
is too ugly a phrase for extensive use. This document uses ‘‘visible’’ instead. Strictly speaking this termi-
nology is incorrect. For example, it classifies control characters as visible. But the term is reasonably
euphonious and reasonably clear.)

Sometimes it is desirable to extract the next character unconditionally. For example:

c h a r c ;
c i n . g e t ( c ) ;

The next character is extracted and stored in c, whether or not it is whitespace.

User Defined Extraction Operators

Creating extractors for classes is similar to creating inserters. The P a i r extractor could be defined thus:

i s t r e a m & o p e r a t o r > > ( i s t r e a m & i , P a i r & p a i r )
{

r e t u r n i > > p a i r . x > > p a i r . y ;
}

By convention, an extractor converts characters from its first (i s t r e a m &) argument, stores the result in its
second (reference) argument, and returns its first argument. Making the second argument a reference is
essential because the purpose of an extractor is to store a new value in the second argument.

A subtle point is the propagation of errors by extractors. By convention, an extractor whose first argument
has a non-zero error state will not extract any more characters from the i s t r e a m and will not clear bits in
the error state, but it is allowed to set previously unset error bits. Further, an extractor that fails for some
reason must set at least one error bit. The code in the P a i r extractor does nothing explicitly to respect
these conventions, but because the only way it modifies i is with extractors that honor the conventions, the
conventions will be respected.

Conventions also apply to the meaning of the individual error bits. In particular i o s : : f a i l b i t indicates
that some problem was encountered while getting characters from the ultimate producer, while
i o s : : b a d b i t means that the characters read from the stream did not conform to the expectation of the
extractor. For example, suppose that the components of a P a i r are supposed to be non-zero. The above
definition might become:
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i s t r e a m & o p e r a t o r > > ( i s t r e a m & i , P a i r & p a i r )
{

i > > p a i r . x > > p a i r . y ;
i f ( ! i ) r e t u r n i ;
i f ( p a i r . x = = 0 | | p a i r . y = = 0 ) {

i . c l e a r ( i o s : : b a d b i t | i - > r d s t a t e ( ) ) ;
}

r e t u r n i ;
}

This uses the (misleadingly named) c l e a r ( ) member function to set the error state to indicate that the
extractor found incorrect data. Oring i o s : : b a d b i t with i - > r d s t a t e ( ) (the current state) preserves any
bits that may previously have been set.

The P a i r extractor has been defined so that it can input values that were output by the P a i r inserter.
Maintaining this symmetry is an important general principle that is worth some effort.

The next example is the V e c extractor, which will require an opening [ followed by a sequence of numbers,
followed by a ]. Recall that the V e c inserter uses , as a separator and does not insert any whitespace
between numbers. The extractor must accept such input. It will also accept slightly more general formats.
In particular it allows extra whitespace, and it allows any visible character to be used as a separator. It also
deals properly with a variety of special conditions such as errors in the input format.
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i s t r e a m & o p e r a t o r > > ( i o s t r e a m & i , V e c & v )
{

i n t n = 0 ; / / n u m b e r o f e l e m e n t s
c h a r d e l i m ;

v . r e s i z e ( n ) ;

/ / v e r i f y o p e n i n g p r e f i x
i > > d e l i m ;
i f ( d e l i m ! = ’ [ ’ ) ;

i . p u t b a c k ( d e l i m ) ;
i . c l e a r ( i o s : : b a d b i t | i . r d s t a t e ( ) ) ;
r e t u r n i ;
}

i f ( i . f l a g s ( ) & i o s : : s k i p w s ) i > > w s ;
i f ( i . p e e k ( ) = = ’ ] ’ ) r e t u r n i ;

/ / l o o p
w h i l e ( i & & d e l i m ! = ’ ] ’ ) {

v . r e s i z e ( + + n ) ;
i > > v [ n - 1 ] > > d e l i m ;
}

r e t u r n i ;
}

The steps this code performs are:

Turn v into an empty vector. This is done by the first r e s i z e operation.

Verify that the next character in the istream is [.

If the next character is not [ (or if the state of the iostream already has error bits set), mark the state
of i as bad, put d e l i m back in e (where it may later be extracted again), and return. Putting d e l i m
back in the stream is not essential but it is consistent with the behavior of the predefined extractors.

Optionally skip some whitespace.

Whether to skip is controlled by the i o s : : s k i p w s flag set in a collection of bits known as i’s format
flags. This bit also controls skipping of whitespace in the predefined extractors. If it is set,
whitespace was skipped before extracting the character stored into d e l i m.

If the next character is ] , the input represents an empty vector and since v has already been resized
the extractor can just return.

The next character is examined using the p e e k ( ) member function. This returns the next character
that would be extracted but leaves it in the stream.
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The code now loops, extracting numbers and delimiters until either the closing ] is found or an input
error occurs. An explicit check of the state of i is required to prevent an infinite loop should an
error occur in extracting v e c [ n - 1 ] or d e l i m.

c h a r * Extractor

A useful extractor, but one that must be used with caution, takes a c h a r * second argument. For example,

c h a r p [ 1 0 0 ] ;
c i n > > p ;

skips whitespace on c i n, extracts visible characters from c i n and copies them into p until another
whitespace character is encountered. Finally it stores a terminating null (0) character. The c h a r * extractor
must be used with caution because if there are too many visible characters in the i s t r e a m, the array will
overflow.

The above example is more carefully written as:

c h a r p [ 1 0 0 ] ;
c i n . w i d t h ( s i z e o f ( p ) ) ;
c i n > > p ;

There are very few circumstances (perhaps there are none at all) in which it is appropriate to use the c h a r *
extractor without setting the ‘‘width’’ of the i s t r e a m.

To make specifying a width more convenient, the s e t w manipulator (declared in i o m a n i p . h) may be used.
The above example is equivalent to:

c h a r p [ 1 0 0 ] ;
c i n > > s e t w ( s i z e o f ( p ) ) > > p ;

Binary Input

The c h a r extractor skips whitespace. Programs frequently need to read the next character whether or not
it is whitespace. This can be done with the g e t ( ) member function. For example,

c h a r c ;
c i n . g e t ( c ) ;

g e t ( ) returns the i s t r e a m and a common idiom is:

c h a r c ;
w h i l e ( c i n . g e t ( c ) ) {

. . .
}
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Programs also occasionally need to read binary values (e.g., those written with w r i t e ( )) and this can be
done with the r e a d ( ) member function.

c i n . r e a d ( ( c h a r * ) & x , s i z e o f ( x ) ) ;

This does the inverse of the earlier w r i t e example (namely, it inputs the raw binary form of x).

If a program is doing a lot of character binary input, it may be more efficient to use the lower level part of
the iostream library (s t r e a m b u f classes) directly rather than through streams.

Creating Streams

The examples so far have used the predefined streams, c i n and c o u t. For some programs, reading from
standard input and writing to standard output suffices. But other programs need to create streams with
alternate sources and sinks for characters. This section discusses the various kinds of streams that are avail-
able in the iostream library.

Files

The classes o f s t r e a m and i f s t r e a m are derived from o s t r e a m and i s t r e a m and inherit the insertion and
extraction operations respectively. In addition they contain members and constructors that deal with files.
The examples in this section assume that the header file f s t r e a m . h has been included.

If the program wants to read or write a particular file it can do so by declaring an i f s t r e a m or o f s t r e a m
respectively. For example,

i f s t r e a m s o u r c e ( " f r o m " ) ;
i f ( ! s o u r c e ) e r r o r ( " u n a b l e t o o p e n ’ f r o m ’ f o r i n p u t " ) ;
o f s t r e a m t a r g e t ( " t o " ) ;
i f ( ! t a r g e t ) e r r o r ( " u n a b l e t o o p e n ’ t o ’ f o r o u t p u t " ) ;
c h a r c ;
w h i l e ( t a r g e t & & s o u r c e . g e t ( c ) ) t a r g e t . p u t ( c ) ;

copies the file f r o m to the file t o. If the i f s t r e a m ( ) or o f s t r e a m ( ) constructor is unable to open a file in
the requested mode it indicates this in the error state of the stream.

In some circumstances a program may wish to declare a file stream without specifying a file. This may be
done and the filename supplied later. For example:

i f s t r e a m f i l e ;
. . . ;
f i l e . o p e n ( a r g v [ 1 ] ) ;

It is even possible to reuse the same variable by closing it between calls to o p e n ( ). For example:
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i f s t r e a m i n f i l e ;
f o r ( c h a r * * f = & a r g v [ 1 ] ; * f ; + + f ) {

i n f i l e . o p e n ( * f ) ;
. . . ;
i n f i l e . c l o s e ( ) ;
}

In some circumstances the program may already have a file descriptor (such as the integer 0 for standard
input) and want to use a file stream. For example,

i f s t r e a m i n f i l e ;
i f ( s t r c m p ( a r g v [ 1 ] , " - " ) ) i n f i l e . o p e n ( a r g v [ 1 ] , i n p u t ) ;
e l s e i n f i l e . a t t a c h ( 0 ) ;

opens i n f i l e to read a file named by a r g v [ 1 ] , unless the name is -. In that case it will connect i n f i l e
with the standard input (file descriptor 0). A subtle point is that closing a file stream (either explicitly or
implicitly in the destructor) will close the underlying file descriptor if it was opened with a filename, but
not if it was supplied with a t t a c h.

Sometimes the program wants to modify the way in which the file is opened or used. For example, in
some cases it is desirable that writes append to the end of a file rather than rewriting the previous values.
The file stream constructors take a second argument that allows such variations to be specified. For exam-
ple,

o f s t r e a m o u t f i l e ( " o u t " , i o s : : a p p | i o s : : n o c r e a t e ) ;

declares o u t f i l e and attempts to attach it to a file named o u t. Because i o s : : a p p is specified all writes
will append to the file. Because i o s : : n o c r e a t e is specified the file will not be created. That is, the open
will fail (indicated in o u t f i l e’s error status) if the file does not previously exist. The enum o p e n _ m o d e is
declared in i o s.

c l a s s i o s {
e n u m o p e n _ m o d e { i n , o u t , a p p , a t e , n o c r e a t e , n o r e p l a c e } ;

} ;

These modes are each individual bits and may be or’ed together. Their detailed meanings are described in
the man pages.

Sometimes it is desirable to use the same file for both input and output. f s t r e a m is an i o s t r e a m (a class
derived via multiple inheritance from both i s t r e a m and o s t r e a m). The type s t r e a m p o s is used for posi-
tions in an iostream. For example,

f s t r e a m t m p ( " t m p " , i o s : : i n | i o s : : o u t ) ;
. . .
s t r e a m p o s p = t m p . t e l l p ( ) ; / / t e l l p ( ) r e t u r n s c u r r e n t p o s i t i o n
t m p < < x ;
. . .
t m p . s e e k g ( p ) ; / / s e e k g ( ) r e p o s i t i o n s i o s t r e a m
t m p > > x ;

saves the position of the file in p, writes x to it, and later returns to the same position to restore the value
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of x.

A variant of s e e k g ( ) takes a streamoff (integral value) and a s e e k_d i r to specify relative positioning. For
example,

t m p . s e e k g ( - 1 0 , i o s : : e n d ) ;

positions the file 10 bytes from the end, and

t m p . s e e k g ( 1 0 , i o s : : c u r ) ;

moves the file forward 10 bytes.

Incore Formatting

Despite its name, the iostream library may be used in situations that do not involve input or output. In
particular, it can be used for ‘‘incore formatting’’ operations in arrays of characters. These operations are
supported by the classes i s t r s t r e a m and o s t r s t r e a m, which are derived from i s t r e a m and o s t r e a m
respectively. The examples of this section assume that the header file s t r s t r e a m . h has been included.

For example, to interpret the contents of the string a r g v [ 1 ] as an integer value, the code might look like:

i n t i ;
i s t r s t r e a m ( a r g v [ 1 ] ) > > i ;

The argument of the i s t r s t r e a m ( ) constructor is a c h a r pointer. In this example, there is no need for a
named s t r s t r e a m. An anonymous constructor is more direct.

The inverse operation, taking a value and converting it to characters that are stored into an array, is also
possible. For example,

c h a r s [ 3 2 ] ;
o s t r s t r e a m ( s , s i z e o f ( s ) ) < < x < < e n d s ;

will store the character representation of x in s with a terminating null character supplied by the e n d s
(endstring) manipulator. The iostream library requires that a size be supplied to the constructor and noth-
ing is ever stored outside the bounds of the supplied array. In this case, an ‘‘output error’’ will occur if an
attempt is made to insert more than 32 characters.

In case it is inconvenient to preallocate enough space for the string, a program can use an o s t r s t r e a m ( )
constructor without any arguments. For example, suppose we want to read the entire contents of a file into
memory.
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i f s t r e a m i n ( " i n f i l e " ) ;

/ / s t r s t r e a m w i t h d y n a m i c a l l o c a t i o n
s t r s t r e a m i n c o r e ;

c h a r c ;
w h i l e ( i n c o r e & & i n . g e t ( c ) ) i n c o r e . p u t ( c ) ;

/ / s t r r e t u r n s p o i n t e r t o a l l o c a t e d s p a c e
c h a r * c o n t e n t s = i n c o r e . s t r ( ) ;
. . .
/ / o n c e s t r i s c a l l e d s p a c e b e l o n g s t o c a l l e r
d e l e t e c o n t e n t s ;

The file i n f i l e is read and its contents inserted into i n c o r e. Space will be allocated using the ordinary
C++ allocation (o p e r a t o r n e w) mechanism, and automatically increased as more characters are inserted.
i n c o r e . s t r ( ) returns a pointer to the currently allocated space and also ‘‘freezes’’ the s t r s t r e a m so that
no more characters can be inserted. Until i n c o r e is frozen, it is the responsibility of the s t r s t r e a m ( ) des-
tructor to free any space that might have been allocated. But after the call to s t r ( ) , the space becomes the
caller’s responsibility.

Predefined Streams

There are four predefined streams, c i n, c o u t, c e r r, and c l o g. The first three are connected to standard
input, standard output, and standard error respectively. c l o g is also connected to standard error but,
unlike c e r r, c l o g is buffered. That is, characters are accumulated and written to standard error in chunks.
c o u t is also buffered.

Frequently programs want to use either standard input and output or some external file depending on their
command line arguments. One way is to use the predefined streams and assign to them. Assignment of
streams is not possible in general but the predefined streams have special types which allow it. The reader
is referred to the man pages for a discussion of the semantics of assignment. A more flexible style is to use
a pointer or reference to a stream:

i s t r e a m * i n = & c i n ;
. . .
i f ( i n f i l e ) i n = n e w i f s t r e a m ( i n f i l e ) ;
. . .
* i n < < x ;

Problems can occur when mixing code that uses iostreams with code that uses stdio. There is no connec-
tion between the predefined iostreams and the stdio standard F I L Es except that they use the same file
descriptors. It is possible to eliminate this problem by calling

i o s : : s y n c _ w i t h _ s t d i o ( )

which will connect the predefined iostreams with the corresponding stdio F I L Es. Such connection is not
the default because there is a significant performance penalty when the predefined files are made
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unbuffered as part of the connection.

Format Control

The default treatment of scalar types is that integral values (except c h a r and u n s i g n e d c h a r) are inserted
in decimal, pointers (except c h a r * and u n s i g n e d c h a r *) in hex, floats and doubles with 6 digits of preci-
sion and all without leading or trailing padding. c h a r and u n s i g n e d c h a r values are just inserted as sin-
gle characters. c h a r * and u n s i g n e d c h a r * values are treated as pointers to strings (null terminated
sequences of characters). The default treatment for extraction of integer types is decimal numbers with
leading whitespace permitted. An optional sign (+ or –) is permitted, but without whitespace between it
and the digits. Extraction is terminated by a non-digit character. Extraction for floating point types is simi-
lar except that the lexical possibilities for floating point numbers are an optional sign followed (without
intervening whitespace) by a number according to C++ lexical rules.

For many purposes these defaults are adequate. When they are not, the program can do more formatting
itself, or it can use the format control features of the iostream library. The examples in this section use
these features.

Associated with each iostream is a collection of ‘‘format state variables’’ that control the details of conver-
sions. The most important of these is a l o n g i n t value that is interpreted as a collection of bits. These
bits are declared as:

e n u m { s k i p w s = 0 1 , / / s k i p w h i t e s p a c e o n i n p u t
l e f t = 0 2 , r i g h t = 0 4 , i n t e r n a l = 0 1 0 ,

/ / p a d d i n g l o c a t i o n
d e c = 0 2 0 , o c t = 0 4 0 , h e x = 0 1 0 0 ,

/ / c o n v e r s i o n b a s e
s h o w b a s e = 0 2 0 0 , s h o w p o i n t = 0 4 0 0 , u p p e r c a s e = 0 1 0 0 0 ,
s h o w p o s = 0 2 0 0 0 ,

/ / m o d i f i e r s
s c i e n t i f i c = 0 4 0 0 0 , f i x e d = 0 1 0 0 0 0

/ / f l o a t i n g p o i n t n o t a t i o n
} ;

These may be examined and set individually or collectively. For example, the i o s : : s k i p w s controls
whether leading whitespace is skipped by extractors.

c h a r c ;
c i n . s e t f ( 0 , i o s : : s k i p w s ) ; / / t u r n o f f s k i p p i n g
c i n > > c ;
c i n . s e t f ( i o s : : s k i p w s , i o s : : s k i p w s ) ; / / t u r n i t b a c k o n

The second argument of s e t f indicates which bits should be set. The first indicates what values they
should be set to.
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Manipulators are declared (in i o m a n i p . h) that will have an equivalent effect. The above is equivalent to:

c i n > > r e s e t i o s f l a g s ( i o s : : s k i p w s )
> > c
> > s e t i o s f l a g s ( i o s : : s k i p w s ) ;

r e s e t i o s f l a g s resets (makes zero) the indicated bits and s e t i o s f l a g s sets (makes them 1) the indicated
bits.

Commonly we want to save the flags (or other state variables) and restore their value later. Consider:

l o n g f = c i n . f l a g s ( ) ;
c i n . s e t f ( i o s : : s k i p w s , i o s : : s k i p w s ) ;
c i n > > c ;
c i n . f l a g s ( f ) ;

The variant of f l a g s without an argument returns the current value. state variable The variant with an
argument stores the argument into the f l a g s state variable. This code does the same extraction as the pre-
vious code, but instead of arbitrarily leaving c i n with skipping on it restores skipping to its previous
status.

The pattern of member functions is repeated for other state variables. That is, if s v a r is some state vari-
able, and s is a stream, then s . s v a r ( ) returns the current value of the state variable and s . s v a r ( x ) stores
the value x into the state variable.

Field Widths

The default behavior of the inserters is to insert only as many characters as is necessary to represent the
value, but frequently programs want to have fixed size fields.

c o u t . w i d t h ( 5 ) ;
c o u t < < x ;

will output extra space characters preceding the digits to bring the total number of inserted characters to
five. If the value of x will not fit in five characters, enough characters will be inserted to express its value.
The numeric inserters never truncate. The w i d t h state variable might be regarded as an implicit parameter
of extractors because it is reset to 0 (which induces the default behavior) whenever it is used.

c o u t . w i d t h ( 5 ) ;
c o u t < < x < < " " < < y ;

will output x in at least five characters, but will use only as many characters as necessary in outputting the
separating space and y.

The value of the w i d t h state variable is honored by the inserters of the iostream library, but user defined
inserters are responsible for interpreting it themselves. For example, the P a i r inserter defined previously
does nothing special with w i d t h and so if it is non-zero when the inserter is called the width will apply to
the first i n t inserted, and not the second. If the inserter wants to honor w i d t h its definition might look
like:
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o s t r e a m & o p e r a t o r < < ( o s t r e a m & o , P a i r p ) {
i n t w = o . w i d t h ( ) ;
o . w i d t h ( w / 2 ) ;
o < < p . x < < " " ;
o . w i d t h ( w / 2 - ( ( w + 1 ) & 1 ) ) ;
o < < p . y ;
r e t u r n o ;
}

This inserts each number in half the requested width.

It is slightly awkward to mix calls to the w i d t h ( ) member function with insertion operations. The mani-
pulator s e t w ( ) may be used. An alternative definition of the P a i r inserter might be:

i o s t r e a m & o p e r a t o r < < ( i o s t r e a m & i o s , P a i r p ) {
i n t w = i o s . w i d t h ( ) ;
r e t u r n i o s < < s e t w ( w / 2 ) < < p a i r . x < < " "

< < s e t w ( w / 2 + ( ( w + 1 ) & 1 ) ) < < p a i r . y ;
}

P a i r

w i d t h is always interpreted as a minimum number of characters. There is no direct way to specify a max-
imum number of characters. In cases where a program wants to insert exactly a certain number of charac-
ters, it must do the work itself. For example,

i f ( s t r l e n ( s ) > w ) c o u t . w r i t e ( s , w ) ;
e l s e c o u t < < s e t w ( w ) < < s ;

will always insert exactly w characters.

w i d t h is generally ignored by extractors, which tend to rely on the contents of the iostream to detect the
end of a field. There is, however, an important exception. The c h a r * extractor interprets a non-zero width
to be the size of the array. For example,

c h a r a [ 1 6 ] ;
c i n > > s e t w ( s i z e o f ( a ) ) > > a ;
i f ( ! i s s p a c e ( c i n . p e e k ( ) ) e r r o r ( " s t r i n g t o o l o n g " ) ;

protects the program in case there are sixteen or more visible characters. As a further measure of protec-
tion, the extractor stores a trailing null in the last byte of the array when it stops because there are too
many visible characters. This means that the number of characters extracted (not counting leading
whitespace) will be at most one less than the specified width.

Flags control whether padding (when it occurs) causes the field to be left or right justified. The f i l l state
variable (whose initial value is a space) supplies the character to be inserted.
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c o u t . f i l l ( * ) ;
c o u t . s e t f ( i o s : : l e f t , i o s : : a d j u s t f i e l d ) ;
c o u t < < s e t w ( 5 ) < < 1 3 < < " , " ;
c o u t . f i l l ( # ) ; / / s e t s t a t e v a r i a b l e
c o u t . s e t f ( i o s : : r i g h t , i o s : : a d j u s t f i e l d ) ;
c o u t < < s e t w ( 5 ) < < 1 4 < < " \ n " ;

results in a line of output that looks like:

1 3 * * * , # # # 1 4

Conversion Base

Integers are normally inserted and extracted in decimal notation, but this is controlled by flag bits. If none
of i o s : : d e c, i o s : : h e x , or i o s : : o c t are set the insertion is done in decimal but extractions are inter-
preted according to the C++ lexical conventions for integral constants. If i o s : : s h o w b a s e is set then inser-
tions will convert to an external form that can be read according to these conventions.

For example,

i n t x = 6 4 ;
c o u t < < d e c < < x < < " "

< < h e x < < x < < " "
< < o c t < < x < < e n d l ;

c o u t . s e t f ( i o s : : s h o w b a s e , i o s : : s h o w b a s e ) ;
c o u t < < d e c < < x < < " "

< < h e x < < x < < " "
< < o c t < < x < < e n d l ;

will result in the lines:

6 4 4 0 1 0 0
6 4 0 x 4 0 0 1 0 0

s e t f ( ) with only one argument turns the specified bits on, but doesn’t turn any bits off.

Reading the lines shown above could be done by:

c i n > > d e c > > x
> > h e x > > x
> > o c t > > x
> > r e s e t i o s f l a g s ( i o s : : b a s e f i e l d )
> > x > > x > > x ;

The value stored in x will be 64 for each extraction. The r e s e t i o s f l a g s ( ) manipulator turns off the
specified bits in the flags.
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Miscellaneous Formatting

As a precaution against looping, zero width fields are considered a bad format by the extractors. So if the
next character is whitespace and i o s : : s k i p w s is not set, the arithmetic extractors will set an error bit.

The number of significant digits inserted by the floating point (d o u b l e) inserter is controlled by the p r e c i -
s i o n state variable. The details of the conversion are further controlled by certain flags. The reader is
referred to the man page for more details.

It is good practice to flush o s t r e a ms appropriately. The f l u s h and e n d l manipulators make it relatively
easy to do so. Yet, there are circumstances in which some automatic flushing is appropriate. This is sup-
ported by the o s t r e a m * valued state variable t i e. If i . t i e is non-null and an i s t r e a m needs more char-
acters, the o s t r e a m pointed at by t i e is flushed. Initially c i n is tied in this fashion to c o u t so that
attempts to get more characters from standard input result in flushing standard output. This seems to han-
dle most interactive programs reasonably well without imposing a large performance penalty on non-
interactive programs and without creating different behavior when programs are connected to pipes rather
than directly to a terminal. (Programs that won’t work when their input or output is connected to a pipe
are one of the author’s pet peeves.) The overheads implied by tying are relatively small when compared
with ‘‘big’’ extractors (such as the arithmetic ones) but may be large when single character operations are
being performed. For this reason it is sometimes a good idea to break the tie by setting the state variable
to 0. For example:

c h a r c ;
/ / b r e a k t h e t i e t o i m p r o v e p e r f o r m a n c e o f g e t .
c i n . t i e ( 0 ) ;
w h i l e ( c i n . g e t ( c ) ) c o u t . p u t ( c ) ;

Manipulators

A manipulator is a value that can be inserted into or extracted from a stream to cause some special side
effect. That is, some side effect besides inserting a representation of its value, or extracting characters and
converting them to a value. A parameterized manipulator is a function (or a member of a class with an
o p e r a t o r ( )) that returns a manipulator. Previous sections contain examples of the use of manipulators
and parameterized manipulators. This section contains examples illustrating how to define manipulators.
The predefined manipulators and macros discussed in this section are declared in the header file
i o m a n i p . h.

A (plain) manipulator is a function that takes an i s t r e a m & or o s t r e a m & argument, operates on it in some
way, and returns it. A (pointer to a) function of this type may be extracted from or inserted into a stream,
respectively.

Many examples of manipulators (such as f l u s h or e n d l) have already appeared in this paper. For exam-
ple, a manipulator to insert a tab can be defined:
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o s t r e a m & t a b ( o s t r e a m & o ) {
r e t u r n o < < ’ \ t ’ ;
}

. . .
c o u t < < x < < t a b < < y ;

This seems over elaborate. Why not simply define tab as a character or string? One possible reason has to
do with the namespace. There can be only one (global) variable in a C++ program named t a b but because
of overloading there can be many functions with that name.

Another common use of manipulators is to shorten the long names and sequences of operations required
by the iostream library. For example,

o s t r e a m & f l d ( o s t r e a m & o ) {
o . s e t f ( i o s : : s h o w b a s e , i o s : : s h o w b a s e ) ;
o . s e t f ( i o s : : o c t , i o s : : b a s e f i e l d ) ;
o . w i d t h ( 1 0 ) ;
r e t u r n o ;
}

. . .
c o u t < < f l d < < x ;

It is common for the function that manipulates a stream to need an auxiliary argument. s e t w ( ) is an
example of such a parameterized manipulator. To use parameterized manipulators the program must
include i o m a n i p . h.

For example, we might want to supply the value to be printed to f l d in the above.

o s t r e a m & f l d ( o s t r e a m & o , i n t n ) {
l o n g f = f l a g s ( i o s : : s h o w b a s e | i o s : : o c t ) ;
o < < s e t w ( 1 0 ) < < n ;
f l a g s ( f ) ; / / r e s t o r e o r i g i n a l f l a g s
r e t u r n o ;
}

O M A N I P ( i n t ) f l d ( i n t n ) {
r e t u r n O M A N I P ( i n t ) ( f l d , n ) ;
}

. . .
c o u t < < f l d ( 2 3 ) ;

O M A N I P is a macro and O M A N I P ( i n t ) expands to the name of a class declared in i o m a n i p . h. An
O M A N I P ( i n t ) insertion operator is also declared in i o m a n i p . h and is used in the example. Note that f l d
in the above is overloaded; it is both the function that manipulates the stream and a function that returns
an O M A N I P ( i n t ).
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If we need parameterized manipulators for parameter types other than i n t and l o n g (which are declared
in i o m a n i p . h), they must be declared. For example, suppose we want to read numbers that may have a
suffix.

t y p e d e f l o n g & L o n g r e f ;
I O M A N I P d e c l a r e ( L o n g r e f ) ;

/ / D e c l a r e s I M A N I P ( L o n g r e f ) , O M A N I P ( L o n g r e f ) , I O M A N I P ( L o n g r e f )
/ / I A P P ( L o n g r e f ) , O A P P ( L o n g r e f ) , I O A P P ( L o n g r e f )

i s t r e a m & i n _ k ( i s t r e a m & i , l o n g & n )
{

/ / E x t r a c t a n i n t e g e r .
/ / I f s u f f i x i s p r e s e n t m u l t i p l y b y 1 0 2 4
i > > n ;
i f ( i . p e e k ( ) = = ’ k ’ ) {

i . i g n o r e ( 1 ) ;
n * = 1 0 2 4 ;
}

r e t u r n i ;
}

I A P P ( I n t r e f ) i n _ k = i n _ k ;
/ / I A P P ( I n t r e f ) i s t h e t y p e o f a n I n t r e f a p p l i c a t o r
/ / i n _ k o n r i g h t i s f u n c t i o n , o n l e f t v a r i a b l e

. . .
l o n g n ;
c i n > > i n _ k ( n ) ;

The I O M A N I P d e c l a r e ( T ) declares manipulators (and applicators) for type T. Because of the way the macro
I O M A N I P d e c l a r e expands, the argument must be an identifier. In this case a t y p e d e f is required to create
manipulators for l o n g &. An applicator is something that behaves like a function returning a manipulator.
That is, it is a class with an o p e r a t o r ( ) member.

Sometimes we want a manipulator with more than one parameter. One way to achieve this effect is to
define a manipulator on a class. For example, a manipulator that can be used to repeat a string might look
like:

c o u t < < r e p e a t ( " a b " , 3 ) < < e n d l ;

to result in a line containing ‘‘ababab.’’ A possible definition of repeat would be
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s t r u c t R e p e a t p a i r {
c o n s t c h a r * s ;
i n t n ;

} ;

I O M A N I P d e c l a r e ( R e p e a t p a i r ) ;

s t a t i c o s t r e a m & r e p e a t ( o s t r e a m & o , R e p e a t p a i r p ) {
/ / i n s e r t p . s i n t o o , p . n t i m e s
f o r ( i n t n = p . n ; n > 0 ; - - n ) o < < p . s ;
r e t u r n o ;
}

O M A N I P ( R e p e a t p a i r ) r e p e a t ( c o n s t c h a r * s , i n t n ) {
R e p e a t p a i r p ;
p . s = s ; p . n = n ;
r e t u r n O M A N I P ( R e p e a t p a i r ) ( r e p e a t , p ) ;
}

Manipulators are a powerful and flexible method of extending the default inserters and extractors.

The Sequence Abstraction

The iostream library is built in two layers: The formatting layer discussed in previous sections, and a
sequence layer based on the class s t r e a m b u f. The formatting layer is responsible for converting between
sequences of characters and various types of values and for high level manipulations of the streams. The
sequencing layer is responsible for producing and consuming those sequences of characters. The most com-
mon way of using streambufs is with a stream. But s t r e a m b u f is an independent class and may be used
directly.

Abstractly, a s t r e a m b u f represents a sequence of characters and two pointers into that sequence, a g e t and
a p u t pointer. These pointers should be thought of as pointing at the locations either before or after char-
acters in the sequence, rather than at specific characters. The sequences and pointers may be manipulated
in a variety of ways, with the two fundamental ones being fetching the character after the get pointer, and
storing a character in the position after the put pointer. Storing either replaces any previous character at
that location or, if the put pointer was at the end of the sequence, extends the sequence. Other manipula-
tions may move the pointers in various ways.

For the examples of this section, we assume that there are two s t r e a m b u fs, pointed at by i n and o u t.
Methods for constructing s t r e a m b u fs appear later, but it is easy enough to get at the s t r e a m b u f associated
with a stream via r d b u f ( ). So we assume that i n and o u t have been initialized with

s t r e a m b u f * i n = c i n . r d b u f ( ) ;
s t r e a m b u f * o u t = c o u t . r d b u f ( ) ;

An i s t r e a m or o s t r e a m retains no information about the state of the associated s t r e a m b u f. For example
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a program may alternate between extracting characters from i n and c i n.

The simplest operations are getting and putting characters. A simple loop to copy characters from one
streambuf to another would be:

i n t c ;
w h i l e ( ( c = i n - > s b u m p c ( ) ) ! = E O F ) {

i f ( o u t - > s p u t c ( c ) = = E O F ) e r r o r ( " o u t p u t e r r o r " ) ;
}

s b u m p c ( ) fetches the character after the get pointer and advances the get pointer over the fetched charac-
ter. s p u t c ( ) stores a character into the sequence and moves the put pointer past it. Both functions report
errors by returning E O F, which is why c must be declared an i n t rather than a c h a r. E O Fs returned while
fetching tend to mean that the streambuf has run out of characters from the ultimate producer. E O Fs
returned when storing tend to signal real errors. Because, unlike iostreams, streambufs do not contain any
error state, it is possible that a store or fetch might fail one time and succeed the next time it is tried.

The s t r e a m b u f class contains several different member functions for manipulating the get pointer. The fol-
lowing loop represents a common idiom:

i n t c = i n - > s g e t c ( ) ;
w h i l e ( c ! = E O F & & ! i s s p a c e ( c ) ) {

c = i n - > s n e x t c ( ) ;
}

It scans the streambuf looking for a whitespace character (i.e., one for which i s s p a c e is non-zero). It stops
when it finds that character leaving it available for extraction. This is because s g e t c ( ) and s n e x t c ( ) do
not behave the way many programmers expect. s g e t c ( ) returns the character after the get pointer, but
does not move the pointer. s n e x t c ( ) moves the get pointer and then returns the character that follows the
new location. As usual both these functions return E O F to signal an error.

The copy loop moved characters one at a time. It is possible to do larger chunks, as in:

s t a t i c c o n s t i n t B u f s i z e = 1 0 2 4 ;
c h a r b u f [ B u f s i z e ] ;
i n t p , g ;
d o {

g = s g e t n ( b u f , B u f s i z e ) ;
p = s p u t n ( b u f , g ) ;
i f ( p ! = g ) e r r o r ( " o u t p u t e r r o r " ) ;
} w h i l e ( g > 0 ) ;

s g e t n ( b , n ) attempts to fetch n characters from the sequence into the array starting at b. Similarly
s p u t n ( b , n ) tries to store the n characters starting at b into the sequence. Both move the pointer (get or
put respectively) over the characters they have processed and return the number transferred. For s g e t n ( )
this will be less than the number requested when the end of sequence is reached. When s p u t n ( ) returns
less than the number requested, it indicates an error of some sort.
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Buffering Exposed

As the name suggests s t r e a m b u fs may implement the sequence abstraction by buffering between the
source and sink of characters. This results in an unfortunate pun. The word ‘‘buffer’’ is frequently used
informally to designate a s t r e a m b u f, but it is also used to describe the chunking of characters. Thus, the
oxymoron ‘‘unbuffered buffer’’ refers to a s t r e a m b u f in which characters are passed to the ultimate consu-
mer as soon as they are stored, and obtained from the ultimate producer whenever they are retrieved.

In light of the buffering provided by streambufs, the reader will not be surprised to discover that arrays of
characters are used in the implementation. The s t r e a m b u f class contains some member functions that
make the presence of such arrays visible to the program. With some effort, they might be used to ‘‘break
the abstraction,’’ but the intended purpose is to deal with the delays implicit in buffering.

The earlier example using s g e t n ( ) and s p u t n ( ) to copy from i n to o u t waits until B u f s i z e characters
become available (or the end of the sequence is reached) before passing any to o u t. If the source of charac-
ters has delays (e.g., it is a person typing at a terminal) and we want the characters to be passed on as soon
as they become available; the program might use operations on single characters instead, or it might use an
adaptive method such as:

s t a t i c c o n s t i n t B u f s i z e = 1 0 2 4 ;
c h a r b u f [ B u f s i z e ] ;
i n t p , g ;
d o {

i n - > s g e t c ( ) ; / / f o r c e a c h a r a c t e r i n b u f f e r
g = i n - > i n _ a v a i l ( ) ;
i f ( g > B u f s i z e ) g = B u f s i z e ;
g = i n - > s g e t n ( b u f , g ) ;
p = o u t - > s p u t n ( b u f , g ) ;
o u t - > s y n c ( ) ;
i f ( p ! = g ) e r r o r ( " o u t p u t e r r o r " ) ;
} w h i l e ( g > 0 )

i n_a v a i l returns the number of characters immediately available in the array. Calling s g e t c ( ) first forces
there to be at least one such character (unless the get pointer is at the end of the sequence). Recall that
s g e t c ( ) returns the next character, but doesn’t move the get pointer. The code calls s y n c ( ) after it has
put characters into o u t, thus causing these characters to be sent to the ultimate consumer.

In some circumstances, such as when streambufs are being used for interprocess messages, the chunks in
which characters are produced and consumed may have significance. The above preserves these chunks
provided they are less than B u f s i z e and they fit into the arrays of i n and o u t. To ensure that this latter
condition is met, the code should provide large enough arrays explicitly with:

c h a r i b u f [ B u f s i z e + 8 ] , o b u f [ B u f s i z e + 8 ] ;
i n - > s e t b u f ( i b u f , s i z e o f ( i b u f ) ) ;
o u t - > s e t b u f ( o b u f , s i z e o f ( o b u f ) ) ;

The calls to s e t b u f ( ) should be done before any fetches or stores are done. The arrays are eight larger
than required by the largest chunk to allow for various overheads. Of course, this code behaves properly
only when i n delivers the characters in the appropriate chunks.
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Using Streambufs in Streams

The positions of the put pointer after operations that store characters and position of the get pointer after
operations that fetch characters are well defined by the sequence abstraction. But the location of the get
pointer after stores, and the location of the put pointer after fetches is not. Most specializations of s t r e a m -
b u f (i.e., classes derived from it) follow one of two patterns. Either the class is queuelike, which means
that the put pointer and the get pointer are independent and moving one has no effect on the other. Or the
class is filelike, which means that when one pointer moves the other is adjusted to point to the same place.
So a filelike class behaves as if there were only one pointer. Other possibilities are logically possible, but
do not seem to be as useful.

A queuelike streambuf, may be shared between two streams. For example:

s t r s t r e a m b u f b ;
o s t r e a m i n s ( & b ) ;
i s t r e a m e x t r ( & b ) ;
w h i l e ( . . . ) {

i n s < < x ; . . . ;
e x t r > > x ; . . . ;
}

This example explicitly uses the s t r s t r e a m b u f class (declared in s t r s t r e a m . h) which is also used (impli-
citly) by the i s t r s t r e a m and o s t r s t r e a m classes. The i s t r e a m ( ) and o s t r e a m ( ) constructors require a
s t r e a m b u f argument. They use that s t r e a m b u f as a producer or consumer of characters. The characters
inserted into i n s may later be extracted from e x t r. If an attempt is ever made to extract more characters
than have been inserted, the extraction will fail. If more characters are later inserted, e x t r’s error state can
be cleared and the extraction retried.

Because of the dynamic allocation performed by s t r s t r e a m b u fs the queue is unbounded, but there is a
serious drawback. Space is not reclaimed until b is destroyed.

Deriving New Streambuf Classes

The s t r e a m b u f class is intended to serve as a base class. Although it contains members to manipulate the
sequences, it does not contain any mechanism for producing or consuming characters. These must be pro-
vided by a derived class. The iostream library contains several such derived streambuf classes, but a pro-
gram may define new ones.

The members of a class that are intended for use by derived classes are p r o t e c t e d, and the data structure
as seen by a derived class is said to be the protected interface of the s t r e a m b u f class. This abstraction
exposes the details of the array management that is implicit in the buffering provided by streambufs. It
consists of two parts. The first part is member functions of s t r e a m b u f that permit access to and manipula-
tion of the arrays and pointers used to implement the sequence abstraction. The second part is virtual
members of s t r e a m b u f that must be supplied by the derived class.
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The principle example of this section will be the implementation of f c t b u f, whose declaration looks like:

t y p e d e f i n t ( * a c t i o n ) ( c h a r * b , i n t n , o p e n _ m o d e m ) ;

c l a s s f c t b u f : p u b l i c s t r e a m b u f {
p u b l i c :

f c t b u f ( a c t i o n f , o p e n _ m o d e m ) ;
p r i v a t e : . . .
} ;

When called with m=i o s : : o u t, an a c t i o n ( ) function processes the n characters starting at b. When called
with m=i o s : : i n, it stores n characters starting at b. It returns non-zero to indicate success and zero to
indicate failure.

The declaration of f c t b u f looks like:

c l a s s f c t b u f : p u b l i c s t r e a m b u f {
p u b l i c : / / c o n s t r u c t o r

f c t b u f ( a c t i o n a , o p e n _ m o d e m ) ;

p r i v a t e : / / d a t a m e m b e r s
a c t i o n f c t ;
o p e n _ m o d e

m o d e ;
c h a r s m a l l [ 1 ] ;

p r o t e c t e d : / / v i r t u a l s
i n t o v e r f l o w ( i n t ) ;
i n t u n d e r f l o w ( ) ;
s t r e a m b u f *

s e t b u f ( c h a r * , i n t , i n t ) ;
i n t s y n c ( ) ;

} ;

The constructor just initializes the data elements. The action function a will be called only in modes com-
patible with m.

f c t b u f : : f c t b u f ( a c t i o n a , o p e n _ m o d e m )
: f c t ( a ) , m o d e ( m ) { }

The virtual functions define details that make f c t b u f ( ) behave properly. The s t r e a m b u f protected inter-
face is organized around three areas (c h a r arrays), the holding area, the get area, and the put area. Char-
acters are stored into the put area and fetched from the get area.

As characters are stored in the put area, it shrinks until there is no more space available. If an attempt is
made to store a character when the put area has no space, a new area must be established. Before that can
be done the old characters must be consumed. Both these tasks are the responsibility of the o v e r f l o w ( )
function. Similarly, the get area is shrunk by fetches and is eventually empty. If more characters are
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needed the u n d e r f l o w ( ) function must create a new get area. Both o v e r f l o w ( ) and u n d e r f l o w ( ) will
use the holding area to initialize the put or get area (respectively).

setbuf

The virtual function s e t b u f is called by user code to offer an array for use as a holding area. It can also be
used to turn off buffering.

s t r e a m b u f * f c t b u f : : s e t b u f ( c h a r * b , i n t l e n )
{

i f ( b a s e ( ) ) r e t u r n 0 ;

i f ( b ! = 0 & & l e n > s i z e o f ( s m a l l ) ) {
/ / s e t u p h o l d i n g a r e a
s e t b ( b , b + l e n ) ;
}

e l s e {
/ / U s e a o n e c h a r a c t e r a r r a y t o a c h i e v e
/ / " u n b u f f e r e d " a c t i o n s .
s e t b ( s m a l l , s m a l l + s i z e o f ( s m a l l ) ) ;
}

s e t p ( 0 , 0 ) ; / / p u t a r e a
s e t g ( 0 , 0 , 0 ) ; / / g e t a r e a
r e t u r n t h i s ;
}

The actions of this function are:

b a s e ( ) points to the first character of the holding area. If a holding area has already been set up
(b a s e non-zero) a new one cannot be established and s e t b u f ( ) returns a null pointer as an error
indication.

If an array is supplied and is sufficiently large, s e t b ( ) is called to set up the pointers to the holding
area. Its first argument becomes b a s e, the first c h a r of the holding area, and its second becomes
e b u f, the c h a r after the last. Otherwise the f c t b u f will become unbuffered. This is noted by set-
ting up a one character holding area.

Finally the pointers related to the put area are set to 0 by s e t p ( ) and the pointers related to the get
area are set to 0 by s e t g ( ).
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overflow

The virtual function o v e r f l o w ( ) is called to send some characters to the consumer, and establish the put
area. Usually (but not always) when it is called, the put area has no space remaining.

i n t f c t b u f : : o v e r f l o w ( i n t c ) {
/ / c h e c k t h a t o u t p u t i s a l l o w e d
i f ( ! ( m o d e & i o s : : o u t ) ) r e t u r n E O F ;

/ / M a k e s u r e t h e r e i s a h o l d i n g a r e a
i f ( a l l o c a t e ( ) = = E O F ) r e t u r n E O F ;

/ / V e r i f y t h a t t h e r e a r e n o c h a r a c t e r s i n
/ / g e t a r e a .
i f ( g p t r ( ) & & g p t r ( ) < e g p t r ( ) ) r e t u r n E O F ;

/ / R e s e t g e t a r e a
s e t g ( 0 , 0 , 0 ) ;

/ / M a k e s u r e t h e r e i s a p u t a r e a
i f ( ! p p t r ( ) ) s e t p ( b a s e ( ) , b a s e ( ) ) ;

/ / D e t e r m i n e h o w m a n y c h a r a c t e r s h a v e b e e n
/ / i n s e r t e d b u t n o t c o n s u m e d .
i n t w = p p t r ( ) - p b a s e ( ) ;

/ / I f c i s n o t E O F i t i s a c h a r a c t e r t h a t m u s t
/ / a l s o b e c o n s u m e d .
i f ( c ! = E O F ) {

/ / W e a l w a y s l e a v e s p a c e
* p p t r ( ) = c ;
+ + w ;
}

/ / c o n s u m e c h a r a c t e r s .
i n t o k = ( * f c t ) ( p b a s e ( ) , w , i o s : : o u t ) ;

i f ( o k ) {
/ / S e t u p p u t a r e a . B e s u r e t h a t t h e r e
/ / i s s p a c e a t e n d f o r o n e e x t r a c h a r a c t e r .
s e t p ( b a s e ( ) , e b u f ( ) - 1 ) ;
r e t u r n z a p e o f ( c ) ;
}

e l s e {
/ / I n d i c a t e e r r o r .
s e t p ( 0 , 0 ) ;
r e t u r n E O F ;
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}
}

Some explanations of this code:

It first tests for various error conditions, such as trying to do insertion when there are characters that
have been produced but not extracted. This is a problem because the code only uses one area to hold
characters for insertion and extraction. It would also be possible to ignore this condition and just
throw away the characters or a more elaborate version of f c t b u f might use separate areas for inser-
tion and extraction.

a l l o c a t e ( ) is a part of the s t r e a m b u f protected interface. If no reserve area has previously been
specified it allocates heap space.

p b a s e is the value of p p t r established by the last call to s e t p ( ). As characters are stored, p p t r is
moved so that it always points to the first unused character. Thus the characters between p b a s e and
p p t r have been stored and not consumed. They are now sent to the consumer.

The value returned by the consumer is checked to verify that it has been able to consume all the char-
acters that were passed to it. If not, there is no put area and E O F is returned.

When all has gone well the put area is established by s e t p ( ) whose first argument becomes p p t r
(pointing to the first c h a r of the put area) and whose second becomes e p p t r (pointing to the c h a r
after the last c h a r of the put area). In this case when no errors have occurred the whole holding
area minus the last character is used as a put area. The last character will usually be filled in by the
character supplied to the next call to o v e r f l o w ( ).

Finally, if all has gone well, c is returned unless it is E O F. If c is E O F something else must be
returned because E O F is returned to signal an error. The macro z a p e o f ( ) deals with this con-
tingency.

underflow

The underflow function is called when characters are needed for fetching and none are available in the get
area. Its general outline is similar to o v e r f l o w ( ), but it deals with the get area rather than the put area.
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i n t f c t b u f : : u n d e r f l o w ( ) {
/ / C h e c k t h a t i n p u t i s a l l o w e d
i f ( ! ( m o d e & i o s : : i n ) ) r e t u r n E O F ;

/ / M a k e s u r e t h e r e i s a h o l d i n g a r e a .
i f ( a l l o c a t e ( ) = = E O F ) r e t u r n E O F ;

/ / I f t h e r e a r e c h a r a c t e r s w a i t i n g f o r o u t p u t
/ / s e n d t h e m ;
i f ( p p t r ( ) & & p p t r ( ) > p b a s e ( ) ) o v e r f l o w ( E O F ) ;

/ / R e s e t p u t a r e a
s e t p ( 0 , 0 ) ;

/ / S e t u p g e t a r e a ;
i f ( b l e n ( ) > 1 ) s e t g ( b a s e ( ) , b a s e ( ) + 1 , e b u f ( ) ) ;
e l s e s e t g ( b a s e ( ) , b a s e ( ) , e b u f ( ) ) ;

/ / P r o d u c e c h a r a c t e r s
i n t o k = ( * f c t ) ( b a s e ( ) , b l e n ( ) , i o s : : i n ) ;

i f ( o k ) {
r e t u r n z a p e o f ( * b a s e ( ) ) ;
}

e l s e {
s e t g ( 0 , 0 , 0 ) ;
r e t u r n E O F ;
}

}

Some explanations:

E O F is returned immediately if we aren’t supposed to do input or if a holding area cannot be allo-
cated.

a l l o c a t e ( ) is called to make sure that there is a holding area.

s e t g ( ) is used to establish the get area where f c t will be asked to store characters. Its first argu-
ment sets up a pointer, e b a c k, that marks the limit to which p u t b a c k can move g p t r. The second
argument becomes g p t r, and the last becomes e g p t r, pointing at the char after the last c h a r contain-
ing values stored by the producer.

b l e n ( ) returns the size of the holding area. It may be as small as 1.

If the action function indicated success u n d e r f l o w ( ) returns the first character. It is left in the get
area and may be extracted again. z a p e o f ( ) is used to make sure that the returned result is not E O F.
If z a p e o f ( ) were omitted this might occur on a machine in which c h a rs are signed and E O F is -1.
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sync

The virtual function s y n c ( ) is called to maintain synchronization between the various areas and the pro-
ducer or consumer. It is also called by the s t r e a m b u f ( ) destructor.

i n t f c t b u f : : s y n c ( )
{

i f ( g p t r ( ) & & e g p t r ( ) > g p t r ( ) ) {
/ / n o w a y t o r e t u r n c h a r a c t e r s t o p r o d u c e r
r e t u r n E O F ;
}

i f ( p p t r ( ) & & p p t r ( ) > p b a s e ( ) ) {
/ / F l u s h w a i t i n g o u t p u t
r e t u r n o v e r f l o w ( E O F ) ;
}

/ / n o t h i n g t o d o
r e t u r n 0 ;
}

The virtual functions defined above implement a correct s t r e a m b u f class. A possible refinement would be
to provide implementations of the virtual x s p u t n ( ) and x s g e t n ( ) functions. These functions are called
when chunks of characters are being inserted and extracted respectively. Their default actions are to copy
the data into the buffer. If they were defined in the f c t b u f class they could call the functions directly and
avoid the extra copy.

Extending Streams

There are two kinds of reasons to extend the basic stream classes. The first is to specialize to a particular
kind of s t r e a m b u f and the second is to add some new state variables.

Specializing i s t r e a m or o s t r e a m

When the iostream library is specialized for a new source or sink of characters the natural pattern is this:
First derive a class from s t r e a m b u f, such as f c t b u f in the previous section. Then derive classes from
whichever of i s t r e a m, o s t r e a m, or i o s t r e a m is appropriate. For example, suppose we want to do this
with the f c t b u f class defined in the previous section. The streams might get the definitions:
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c l a s s f c t b a s e : v i r t u a l p u b l i c i o s {
p u b l i c :

f c t b a s e ( a c t i o n a , o p e n _ m o d e m )
: b u f ( a , m ) { i n i t ( & b u f ) ; }

p r i v a t e :
f c t b u f b u f ;

} ;

c l a s s i f c t s t r e a m : p u b l i c f c t b a s e , p u b l i c i s t r e a m {
p u b l i c :

i f c t b a s e ( a c t i o n a )
: f c t b a s e ( a , i o s : : i n ) { }

} ;

c l a s s o f c t s t r e a m : p u b l i c f c t b a s e , p u b l i c o s t r e a m {
p u b l i c :

o f c t b a s e ( a c t i o n a )
: f c t b a s e ( a , i o s : : o u t ) { }

} ;

c l a s s i o f c t s t r e a m : p u b l i c f c t b a s e , p u b l i c i o s t r e a m {
p u b l i c :

i o f c t s t r e a m ( a c t i o n a o p e n _ m o d e m )
: f c t b a s e ( a , m ) { }

} ;

Derivations from i o s are virtual so that when the class hierarchy joins (as it does in i o f c t s t r e a m) there
will be only one copy of the error state information. Because the derivation from i o s is virtual an argu-
ment cannot be supplied to its constructor. The s t r e a m b u f is supplied via i o s : : i n i t ( ), which is a pro-
tected member of i o s intended precisely for this purpose.

Extending State Variables

In many circumstances we would like to add state variables to streams. For example, suppose we are
printing trees and would like to have an indentation level associated with an o s t r e a m.
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i n t x d e n t = i o s : : x a l l o c ( ) ;
/ / g e n e r a t e a u n i q u e i n d e x

o s t r e a m & i n d e n t ( o s t r e a m & o ) {
/ / m a n i p u l a t o r t h a t i n s e r t s n e w l i n e s a n d
/ / a p p r o p r i a t e n u m b e r o f t a b s
o < < ’ \ n ’ ;
i n t c o u n t = o . i w o r d ( x d e n t ) ;
w h i l e ( c o u n t - - > 0 ) o < < ’ \ t ’ ;
r e t u r n o ;
}

o s t r e a m & r e d e n t ( o s t r e a m & o , i n t n ) {
/ / p a r a m e t e r i z e d m a n i p u l a t o r t h a t m o d i f i e s
/ / i n d e n t a t i o n l e v e l
o . i w o r d ( x d e n t ) + = n ;
}

O A P P ( i n t ) r e d e n t = r e d e n t ;

o . i w o r d ( x d e n t ) is a reference to the x d e n t’th integer state variable. Each call to i o s : : x a l l o c returns a
different index. The index may then be used to access a word associated with the stream. The reason for
calling i o s : : x a l l o c to get an index rather than just picking an arbitrary one is that it allows combining
code that uses the indentation level with code that may have extended the formatting state variables for
some other purpose.

A subtle problem occurs in the above example because x d e n t is initialized by a function call. What if
i n d e n t ( ) or r e d e n t ( ) were called before x d e n t was initialized? Can that happen? Yes it can. It can
happen if i n d e n t ( ) or r e d e n t ( ) is called from inside a constructor that is itself called to initialize some
variable with program extent. Problems with order of initialization when doing I/O in constructors are
common. The solution relies on ‘‘tricks’’ to force initialization order. In this case we would put into the
header file containing the declarations of i n d e n t ( ) and r e d e n t ( ):

s t a t i c c l a s s I n d e n t _ i n i t {
s t a t i c i n t c o u n t ;

p u b l i c :
I n d e n t _ i n i t ( ) ;
~ I n d e n t _ i n i t ( ) ;

} i n d e n t _ i n i t ;

Each file that includes this header file will have a local variable i n d e n t _ i n i t that has to be initialized.
Because this variable is declared in the header its initialization will occur early.

The definition of the constructor and destructor looks like:
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s t a t i c I o s t r e a m _ i n i t * i o ;

I n d e n t _ i n i t : : I n d e n t _ i n i t ( )
{

/ / c o u n t k e e p s t r a c k o f t h e d i f f e r e n c e b e t w e e n h o w
/ / m a n y c o n s t r u c t o r a n d d e s t r u c t o r c a l l s t h e r e a r e
i f ( c o u n t + + > 0 ) r e t u r n ;

/ / T h i s c o d e i s e x e c u t e d o n l y t h e f i r s t t i m e
i o = n e w I o s t r e a m _ i n i t ;
x d e n t = i o s : : x a l l o c ( ) ;
}

I n d e n t _ i n i t : : ~ I n d e n t _ i n i t ( )
{

i f ( - - c o u n t ) > 0 ) r e t u r n ;

/ / T h i s c o d e w i l l b e e x e c u t e d t h e l a s t t i m e
d e l e t e i o ;
}

The iostream library uses this idea itself. The constructor for I o s t r e a m _ i n i t causes the iostream library to
be initialized the first time it is called. It also keeps track of how many times the constructor is called and
will do finalization operations on various data structures the last time it is called. It is therefore important
that any values of type I o s t r e a m _ i n i t that are constructed by a program are eventually deleted. This is
the purpose of having an I n d e n t _ i n i t destructor; even though there are no finalization operations associ-
ated with indentation, it must delete i o.

Comparison of Iostreams, Streams, and Stdio

The stdio library served C programmers well for many years. However, it has several deficiencies:

The use of functions, like p r i n t f ( ), that accept variable numbers and types of arguments mean that
type checking is subverted at an important point in many programs.

There is no mechanism for extending it to user defined classes. The only way to add new format
specifiers to p r i n t f ( ) is to reimplement it.

The mechanism is closely tied to file I/O. s p r i n t f ( ) explicitly extends it to incore operations, but
there is no general method for creating alternate sources and sinks of data.

After stdio, the next stage of development was the stream library. Its most significant innovation was the
introduction of insertion and extraction operations. The first two problems with stdio were elegantly
solved. It was in use by C++ programmers for several years. But the stream library had problems of its
own:
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The mechanism for creating sources and sinks of characters (s t r e a m b u f class) was not documented
or designed for extension.

The full range of UNIX file operations was not supported. In particular there were no repositioning
operations (s e e ks).

There was only limited control over formatting. Programs frequently reverted to p r i n t f ( ) like func-
tions to specify alternative formats for numbers. A fixed size area was allocated for converting
values to strings and then outputting the strings. Although it was not a problem in practice, in
theory this buffer was subject to overflows.

The iostream library presented in this document has resolved these problems. It is relatively new, and
whether significant problems will emerge in the future is not yet known. Some apparent deficiencies are:

There is no way to determine if a producer has characters available, and no way to select input from
one of multiple sources. This is, of course, also a deficiency of stdio and streams.

There is no way to process data in the buffers without copying them out. This extra copying step can
be expensive when simple operations (e.g., scanning for a specific character) are being performed.

Some formatting operations tend to be wordier than the equivalent stdio operations. This is compen-
sated for by the ability to define manipulators and inserters.

Converting from Streams to Iostreams

The iostream library is mostly upward compatible with the older stream library, but there are a few places
where differences may affect programs. This section discusses those differences.

The major conceptual difference is that in the iostream library, s t r e a m s and s t r e a m b u fs are regarded
solely as abstract classes. The old stream classes provided certain specialized behaviors, specifically incore
formatting and file I/O. In the iostream library these are supported solely through derived classes.

The old stream library declared everything in the header file s t r e a m . h. The iostream library uses
i o s t r e a m . h and some other headers. For compatibility a s t r e a m . h is supplied that includes i o s t r e a m . h
and other headers that are required for compatibility and defines a variety of items whose names are dif-
ferent in the iostream and stream libraries.

s t r e a m b u f Internals

The internals of the s t r e a m b u f class in the stream library were all public. Any program that relies on
these internals will break because they are different (and private) in the iostream library.

How to derive new s t r e a m b u f classes was not documented in the stream library. But it is such a natural
idea to do so that many programs do it. Converting these programs to the iostream library may require
changes in the derived o v e r f l o w ( ) and u n d e r f l o w ( ) functions. The functionality of these functions in the
iostream library is essentially the same as in the stream library. But because the internals of s t r e a m b u f
have changed, some code changes will probably be required. In particular the code will have to use the
(protected) s t r e a m b u f member functions s e t b ( ), s e t g ( ) , and s e t p ( ) instead of directly manipulating
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the pointers.

Incore Formatting

In the stream library the use of arrays of characters as sources or sinks was supported as the default
behavior of s t r e a m b u f. Although some attempt to preserve the default behavior is made by the iostream
library these uses of a s t r e a m b u f are considered obsolete. The support of incore operations is specifically
the responsibility of the s t r s t r e a m b u f declared in s t r s t r e a m . h. s t r e a m b u fs created for this purpose can
usually be replaced directly by s t r s t r e a m b u fs that have equivalent behavior. The stream usage:

c h a r * b u f [ 1 0 ] ;
s t r e a m b u f b ( b u f , 1 0 ) ;

is equivalent to the iostream:

c h a r * b u f [ 1 0 ] ;
s t r s t r e a m b u f b ( b u f , 1 0 ) ;

and the old method for initializing a streambuf for extraction:

c h a r * b u f [ 1 0 ] ;
s t r e a m b u f b ;
b . s e t b u f ( b u f , 1 0 , b u f + 5 ) ;

is equivalent to the iostream method:

c h a r * b u f [ 1 0 ] ;
s t r s t r e a m b u f b ( b u f , 1 0 , b u f + 5 ) ;

Frequently these uses of s t r e a m b u f do not appear explicitly in the program but are the consequence of
using certain constructors of i s t r e a m and o s t r e a m. These constructors are supplied in the iostream
library, but are considered obsolete. The equivalent forms using s t r s t r e a m should be used.

The old method of storing a formatted value into an array:

c h a r * b u f [ 1 0 ] ;
o s t r e a m o u t ( 1 0 , b ) ;

is replaced by:

c h a r * b u f [ 1 0 ] ;
o s t r s t r e a m o u t ( b , 1 0 ) ;

Note that the order of the arguments is reversed. The new order creates more consistency between various
uses of strstreams.

The old method of extracting a formatted value from an array:

c h a r * b u f [ 1 0 ] ;
i s t r e a m i n ( 1 0 , b ) ;

3-36 Library Manual



Iostream Examples

is replaced by

c h a r * b u f [ 1 0 ] ;
i s t r s t r e a m i n ( b , 1 0 ) ;

The old i s t r e a m ( ) constructor allowed an optional extra argument to specify skipping of whitespace. In
the iostream library this is part of a greatly expanded collection of state variables and so an extra argument
is not provided for the i s t r s t r e a m ( ) constructor. However, the obsolete form of i s t r e a m ( ) constructor
continues to accept these optional arguments.

Filebuf

Both libraries contain a f i l e b u f class for using streams to do I/O. It is declared in f s t r e a m . h in the ios-
tream library. The stream library had constructors that implied the use of f i l e b u fs. In the iostream
library these constructors are replaced by constructors of certain derived classes. The old usage:

i n t f d ;
i s t r e a m i n ( f d ) ; / / f i l e d e s c r i p t o r
o s t r e a m o u t ( f d ) ; / / f i l e d e s c r i p t o r

is replaced by:

i n t f d ;
i f s t r e a m i n ( f d ) ; / / f i l e d e s c r i p t o r
o f s t r e a m o u t ( f d ) ; / / f i l e d e s c r i p t o r

The optional extra arguments of the stream constructors (for specifying whitespace skipping and ‘‘tying‘‘)
are not supported. The equivalent functionality is supported by format state variables.

Interactions with stdio

The libraries differ significantly in the way they interact with stdio. The old stream header s t r e a m . h
included s t d i o . h and some stream data structures could contain a pointer to a stdio F I L E. In the iostream
library specialized streams and streambufs (declared in s t d i o s t r e a m . h) are provided to make the connec-
tion.

The old usage:

F I L E * s t d i o f i l e ;
f i l e b u f f b ( s t d i o f i l e ) ;
i s t r e a m i n ( s t d i o f i l e ) ;
o s t r e a m o u t ( s t d i o f i l e ) ;
c o n s t r u c t o r , o b s o l e t e f o r m
c o n s t r u c t o r , o b s o l e t e f o r m
c o n s t r u c t o r , o b s o l e t e f o r m

is replaced by:
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F I L E * s t d i o f i l e ;
s t d i o b u f f b ( s t d i o f i l e ) ;
s t d i o s t r e a m i n ( s t d i o f i l e ) ;
s t d i o s t r e a m o u t ( s t d i o f i l e ) ;

In the old library the predefined streams c i n, c o u t, and c e r r were directly connected to the stdio F I L Es
s t d i n, s t d o u t, and s t d e r r. I/O was mixed character by character. Further, these streams were unbuf-
fered in the sense that insertion and extraction was done by doing character by character puts and gets on
the corresponding stdio F I L Es. In the iostream library the predefined streams are attached directly to file
descriptors rather than to the stdio streams. This means that for output the characters are mixed only as
flushes are done and the input buffer of one is not visible to the other.

In practice the biggest problems seem to come from attempts to mix code that uses s t d o u t with code that
uses c o u t. The best solution is to cause flushes to be inserted whenever the program switches from one
library to the other. An alternative is to use:

i o s : : s y n c _ w i t h _ s t d i o ( ) ;

This causes the predefined streams to be connected to the corresponding stdio files in an unbuffered mode.
The major drawback of this solution is the large overheads associated with insertion of characters in this
mode. Typically insertion into c o u t is slowed by a factor of 4 after a call of s y n c _ w i t h _ s t d i o ( ).

The old stream library contained some ‘‘stringifying’’ functions that were called with various arguments
and returned a string. These are declared in s t r e a m . h and available primarily for compatibility. The only
such formatting function that seems to provide a significant functionality that is not easily available in the
iostream library is f o r m ( ) , which allows p r i n t f ( ) like formatting. In fact, f o r m ( ) is just a wrapper for
calls to s p r i n t f ( ). The programmer can easily write manipulators and inserters that do the same thing.

Assignment

In the old library it was possible to assign one stream to another. This is possible in the iostream library
only if the left hand side is declared to be an assignable class. A general assignment cannot be allowed
because of the interactions of derived classes. What, for example, should be the effect of assigning an i f s -
t r e a m to an i s t r s t r e a m? Most programs that use this feature can be converted by using a reference or
pointer to a stream. The old usage:

o s t r e a m o u t ;
o u t = c o u t ;
o u t < < x ;

can be replaced by:

o s t r e a m * o u t ;
o u t = c o u t ;
o u t < < x ;

or:
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o s t r e a m _ w i t h _ a s s i g n o u t ;
o u t = & c o u t ;
* o u t < < x ;

c h a r Insertion Operator

The stream library did not contain an insertion operator for c h a r. So inserting a c h a r was taken as insert-
ing an integer value, and it was converted to decimal. This omission was due to problems with overload
resolution in earlier versions of the C++ Language System. Any old code such as:

c h a r c ;
c o u t < < c ;

may be replaced by:

c h a r c ;
c o u t < < ( i n t ) c ;
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CPLX.INTRO ( 3C++ ) ( C++ Complex Math Library ) CPLX.INTRO ( 3C++ )

NAME
complex – introduction to C++ complex mathematics library

SYNOPSIS
# i n c l u d e < c o m p l e x . h >
c l a s s c o m p l e x ;

DESCRIPTION
This section describes functions and operators found in the C++ Complex Mathematics Library, l i b c o m p l e x . a.
These functions are not automatically loaded by the C++ compiler, C C(1); however, the link editor searches this
library under the – l c o m p l e x option. Declarations for these functions may be found in the # i n c l u d e file
< c o m p l e x . h >. When compiling programs using the complex library, users must provide the – l m options on the
C C command line to link the math library.

The Complex Mathematics library implements the data type of complex numbers as a class, c o m p l e x. It over-
loads the standard input, output, arithmetic, assignment, and comparison operators, discussed in the manual
pages for c p l x o p s(3C++). It also overloads the standard exponential, logarithm, power, and square root func-
tions, discussed in c p l x e x p(3C++), and the trigonometric functions of sine, cosine, hyperbolic sine, and hyper-
bolic cosine, discussed in c p l x t r i g(3C++), for the class c o m p l e x. Routines for converting between Cartesian
and polar coordinate systems are discussed in c a r t p o l(3C++). Error handling is described in c p l x e r r(3C++).

FILES
I N C D I R / c o m p l e x . h
L I B D I R / l i b c o m p l e x . a

SEE ALSO
c a r t p o l(3C++), c p l x e r r(3C++), c p l x o p s(3C++), c p l x e x p(3C++), and c p l x t r i g(3C++).
Stroustrup, B., ‘‘Complex Arithmetic in C++,’’ Chapter 1 of the C++ Language System Release 2.1 Library Manual.

DIAGNOSTICS
Functions in the Complex Mathematics Library (3C++) may return the conventional values ( 0 , 0 ), ( 0 ,
±H U G E ), (±H U G E , 0 ) , or (±H U G E , ±H U G E ), when the function is undefined for the given arguments or when
the value is not representable. ( H U G E is the largest-magnitude single-precision floating-point number and is
defined in the file < m a t h . h >. The header file < m a t h . h > is included in the file < c o m p l e x . h >.) In these cases, the
external variable e r r n o [see i n t r o(2)] is set to the value E D O M or E R A N G E.
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NAME
cartesian/polar – functions for the C++ Complex Math Library

SYNOPSIS
# i n c l u d e < c o m p l e x . h >

c l a s s c o m p l e x {

p u b l i c :

f r i e n d d o u b l e a b s ( c o m p l e x ) ;
f r i e n d d o u b l e a r g ( c o m p l e x ) ;
f r i e n d c o m p l e x c o n j ( c o m p l e x ) ;
f r i e n d d o u b l e i m a g ( c o m p l e x ) ;
f r i e n d d o u b l e n o r m ( c o m p l e x ) ;
f r i e n d c o m p l e x p o l a r ( d o u b l e , d o u b l e = 0 ) ;
f r i e n d d o u b l e r e a l ( c o m p l e x ) ;

} ;

DESCRIPTION
The following functions are defined for c o m p l e x, where:
— d, m, and a are of type i n teger and
— x and y are of type c o m p l e x.

d = a b s (x) Returns the absolute value or magnitude of x.

d = n o r m (x) Returns the square of the magnitude of x. It is faster than a b s, but more likely to cause an
overflow error. It is intended for comparison of magnitudes.

d = a r g (x) Returns the angle of x, measured in radians in the range – π to π.

y = c o n j (x) Returns the complex conjugate of x. That is, if x is ( r e a l , i m a g ), then c o n j (x) is ( r e a l ,
– i m a g ).

y = p o l a r (m, a)
Creates a complex given a pair of polar coordinates, magnitude m, and angle a, measured in
radians.

d = r e a l (x) Returns the real part of x.

d = i m a g (x) Returns the imaginary part of x.

SEE ALSO
C P L X . I N T R O(3C++), c p l x e r r(3C++), c p l x o p s(3C++), c p l x e x p(3C++), and c p l x t r i g(3C++).
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NAME
complex_error – error-handling function for the C++ Complex Math Library

SYNOPSIS
# i n c l u d e < c o m p l e x . h >

c l a s s c _ e x c e p t i o n
{

i n t t y p e ;
c h a r * n a m e ;
c o m p l e x a r g 1 ;
c o m p l e x a r g 2 ;
c o m p l e x r e t v a l ;

p u b l i c :

c _ e x c e p t i o n ( c h a r * n , c o n s t c o m p l e x & a 1 , c o n s t c o m p l e x & a 2 = c o m p l e x _ z e r o ) ;

f r i e n d i n t c o m p l e x _ e r r o r ( c _ e x c e p t i o n & ) ;

f r i e n d c o m p l e x e x p ( c o m p l e x ) ;
f r i e n d c o m p l e x s i n h ( c o m p l e x ) ;
f r i e n d c o m p l e x c o s h ( c o m p l e x ) ;
f r i e n d c o m p l e x l o g ( c o m p l e x ) ;

} ;

DESCRIPTION
In the following description of the c o m p l e x error handling routine,
— i is of type i n t and
— x is of type c _ e x c e p t i o n.

i = c o m p l e x _ e r r o r (x) Invoked by functions in the C++ Complex Mathematics Library when errors are
detected.

Users may define their own procedures for handling errors, by defining a function named c o m p l e x _ e r r o r in
their programs. c o m p l e x _ e r r o r must be of the form described above.

The element t y p e is an integer describing the type of error that has occurred, from the following list of con-
stants (defined in the header file):

S I N G argument singularity
O V E R F L O W overflow range error
U N D E R F L O W underflow range error

The element n a m e points to a string containing the name of the function that incurred the error. The variables
a r g 1 and a r g 2 are the arguments with which the function was invoked. r e t v a l is set to the default value that
will be returned by the function unless the user’s c o m p l e x _ e r r o r sets it to a different value.

If the user’s c o m p l e x _ e r r o r function returns non-zero, no error message will be printed, and errno will not be
set.

If c o m p l e x _ e r r o r is not supplied by the user, the default error-handling procedures, described with the com-
plex math functions involved, will be invoked upon error. These procedures are also summarized in the table
below. In every case, errno is set to E D O M or E R A N G E and the program continues.

Note that complex math functions call functions included in the math library which has its own error handling
routine, m a t h e r r(3M). Users may also override this routine by supplying their own version.
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______________________________________________________
DEFAULT ERROR HANDLING PROCEDURES____________________________________________________________________________________________________________

Types of Errors____________________________________________________________________________________________________________
t y p e S I N G O V E R F L O W U N D E R F L O W____________________________________________________________________________________________________________
errno E D O M E R A N G E E R A N G E____________________________________________________________________________________________________________

E X P:______________________________________________________
real too large/small – (±H, ±H) (0, 0)______________________________________________________
imag too large – (0, 0) –____________________________________________________________________________________________________________
L O G:______________________________________________________
arg = (0, 0) M, (H, 0) –  –____________________________________________________________________________________________________________
S I N H:______________________________________________________

real too large – (±H, ±H) –______________________________________________________
imag too large – (0, 0) –____________________________________________________________________________________________________________
C O S H:______________________________________________________

real too large – (±H, ±H) –______________________________________________________
imag too large – (0, 0) –______________________________________________________ 





























































































_ _________________________________________
ABBREVIATIONS

M Message is printed (E D O M error).
(H, 0) (H U G E, 0) is returned.

(±H, ±H) (±H U G E, ±H U G E) is returned.
(0, 0) (0, 0) is returned._ _________________________________________ 














SEE ALSO
C P L X . I N T R O(3C++), m a t h e r r(3M), c a r t p o l(3C++), c p l x o p s(3C++), c p l x e x p(3C++), and c p l x t r i g(3C++).

Page 2 3/91



CPLXEXP ( 3C++ ) ( C++ Complex Math Library ) CPLXEXP ( 3C++ )

NAME
exp, log, pow, sqrt – exponential, logarithm, power, square root functions for the C++ complex library

SYNOPSIS
# i n c l u d e < c o m p l e x . h >

c l a s s c o m p l e x {

p u b l i c :
f r i e n d c o m p l e x e x p ( c o m p l e x ) ;
f r i e n d c o m p l e x l o g ( c o m p l e x ) ;
f r i e n d c o m p l e x p o w ( d o u b l e , c o m p l e x ) ;
f r i e n d c o m p l e x p o w ( c o m p l e x , i n t ) ;
f r i e n d c o m p l e x p o w ( c o m p l e x , d o u b l e ) ;
f r i e n d c o m p l e x p o w ( c o m p l e x , c o m p l e x ) ;
f r i e n d c o m p l e x s q r t ( c o m p l e x ) ;

} ;

DESCRIPTION
The following math functions are overloaded by the complex library, where:
— x, y, and z are of type c o m p l e x.

z = e x p (x) Returns ex.
z = l o g (x) Returns the natural logarithm of x.

z = p o w (x, y) Returns xy.
z = s q r t (x) Returns the square root of x, contained in the first or fourth quadrants of the complex plane.

SEE ALSO
C P L X . I N T R O(3C++), c a r t p o l(3C++), c p l x e r r(3C++), c p l x o p s(3C++), and c p l x t r i g(3C++).

DIAGNOSTICS
e x p returns ( 0 , 0 ) when the real part of x is so small, or the imaginary part is so large, as to cause overflow.
When the real part is large enough to cause overflow, e x p returns ( H U G E , H U G E ) if the cosine and sine of the
imaginary part of x are positive, ( H U G E , – H U G E ) if the cosine is positive and the sine is not, ( – H U G E , H U G E ) if
the sine is positive and the cosine is not, and ( – H U G E , – H U G E ) if neither sine nor cosine is positive. In all these
cases, errno is set to E R A N G E.

l o g returns ( – H U G E , 0 ) and sets errno to E D O M when x is ( 0 , 0 ). A message indicating S I N G error is printed
on the standard error output.

These error-handling procedures may be changed with the function c o m p l e x _ e r r o r (c p l x e r r(3C++)).
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NAME
complex_operators: operators for the C++ complex math library

SYNOPSIS
# i n c l u d e < c o m p l e x . h >

c l a s s c o m p l e x {

p u b l i c :
f r i e n d c o m p l e x o p e r a t o r + ( c o m p l e x , c o m p l e x ) ;
f r i e n d c o m p l e x o p e r a t o r – ( c o m p l e x ) ;
f r i e n d c o m p l e x o p e r a t o r – ( c o m p l e x , c o m p l e x ) ;
f r i e n d c o m p l e x o p e r a t o r * ( c o m p l e x , c o m p l e x ) ;
f r i e n d c o m p l e x o p e r a t o r / ( c o m p l e x , c o m p l e x ) ;

f r i e n d i n t o p e r a t o r = = ( c o m p l e x , c o m p l e x ) ;
f r i e n d i n t o p e r a t o r ! = ( c o m p l e x , c o m p l e x ) ;

v o i d o p e r a t o r + = ( c o m p l e x ) ;
v o i d o p e r a t o r – = ( c o m p l e x ) ;
v o i d o p e r a t o r * = ( c o m p l e x ) ;
v o i d o p e r a t o r / = ( c o m p l e x ) ;

} ;

DESCRIPTION
The basic arithmetic operators, comparison operators, and assignment operators are overloaded for complex
numbers. The operators have their conventional precedences. In the following descriptions for c o m p l e x opera-
tors,
— x, y, and z are of type c o m p l e x.

Arithmetic operators:

z = x + y Returns a c o m p l e x which is the arithmetic sum of complex numbers x and y.

z = –x Returns a c o m p l e x which is the arithmetic negation of complex number x.

z = x – y Returns a c o m p l e x which is the arithmetic difference of complex numbers x and y.

z = x * y Returns a c o m p l e x which is the arithmetic product of complex numbers x and y.

z = x / y Returns a c o m p l e x which is the arithmetic quotient of complex numbers x and y.

Comparison operators:

x = = y Returns non-zero if complex number x is equal to complex number y; returns 0 otherwise.

x ! = y Returns non-zero if complex number x is not equal to complex number y; returns 0 otherwise.

Assignment operators:

x + = y Complex number x is assigned the value of the arithmetic sum of itself and complex number y.

x – = y Complex number x is assigned the value of the arithmetic difference of itself and complex
number y.

x * = y Complex number x is assigned the value of the arithmetic product of itself and complex
number y.

x / = y Complex number x is assigned the value of the arithmetic quotient of itself and complex
number y.

WARNING
The assignment operators do not produce a value that can be used in an expression. That is, the following con-
struction is syntactically invalid,
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c o m p l e x x , y , z ;
x = ( y + = z ) ;

whereas,

x = ( y + z ) ;

x = ( y = = z ) ;
are valid.

SEE ALSO
C P L X . I N T R O(3C++), c a r t p o l(3C++), c p l x e r r(3C++), c p l x e x p(3C++), and c p l x t r i g(3C++).
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NAME
cplxtrig – trigonometric and hyperbolic functions for the C++ complex library

SYNOPSIS
# i n c l u d e < c o m p l e x . h >

c l a s s c o m p l e x {

p u b l i c :
f r i e n d c o m p l e x s i n ( c o m p l e x ) ;
f r i e n d c o m p l e x c o s ( c o m p l e x ) ;

f r i e n d c o m p l e x s i n h ( c o m p l e x ) ;
f r i e n d c o m p l e x c o s h ( c o m p l e x ) ;

} ;

DESCRIPTION
The following trigonometric functions are defined for c o m p l e x, where:
— x and y are of type c o m p l e x.

y = s i n (x) Returns the sine of x.

y = c o s (x) Returns the cosine of x.

y = s i n h (x) Returns the hyperbolic sine of x.

y = c o s h (x) Returns the hyperbolic cosine of x.

SEE ALSO
C P L X . I N T R O(3C++), c a r t p o l(3C++), c p l x e r r(3C++), c p l x o p s(3C++), and c p l x e x p(3C++).

DIAGNOSTICS
If the imaginary part of x would cause overflow s i n h and c o s h return ( 0 , 0 ). When the real part is large
enough to cause overflow, s i n h and c o s h return ( H U G E , H U G E ) if the cosine and sine of the imaginary part of
x are non-negative, ( H U G E , – H U G E ) if the cosine is non-negative and the sine is less than 0, ( – H U G E , H U G E ) if
the sine is non-negative and the cosine is less than 0, and ( – H U G E , – H U G E ) if both sine and cosine are less than
0. In all these cases, errno is set to E R A N G E.

These error-handling procedures may be changed with the function c o m p l e x _ e r r o r (c p l x e r r(3C++)).
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NAME
task – coroutines, multiple threads of control, C++ task library

SYNOPSIS
# i n c l u d e < t a s k . h >

c l a s s o b j e c t ;
c l a s s s c h e d : p u b l i c o b j e c t ;
c l a s s t i m e r : p u b l i c s c h e d ;
c l a s s t a s k : p u b l i c s c h e d ;

c l a s s q h e a d : p u b l i c o b j e c t ;
c l a s s q t a i l : p u b l i c o b j e c t ;

c l a s s I n t e r r u p t _ h a n d l e r : p u b l i c o b j e c t ;

c l a s s h i s t o g r a m ;
c l a s s r a n d i n t ;
c l a s s u r a n d : p u b l i c r a n d i n t ;
c l a s s e r a n d : p u b l i c r a n d i n t ;

DESCRIPTION
The C++ task library provides facilities for writing programs with multiple threads of control within one UNIX
system process. Each thread of control is a t a s k or coroutine. Each t a s k is an instance of a user-defined class
derived from class t a s k, and the main program of the t a s k is the constructor of its class. A t a s k can be
suspended and resumed without interfering with its internal state. Each t a s k runs until it explicitly gives up
the processor; there is no pre-emption.

Most classes in the task system are derived from the base class o b j e c t. The base class s c h e d is responsible for
scheduling and for the functionality that is common to t a s ks and t i m e rs. Class s c h e d is meant to be used
strictly as a base class, that is, it is illegal to create objects of class s c h e d. Class t a s k must also be used only as
a base class. The programmer must derive a class from class t a s k, and provide a constructor to serve as the
t a s k’s main program. The task system can be used for writing event-driven simulations. t a s ks execute in a
simulated time frame. Objects of class t i m e r provide a facility for implementing time-outs and other time-
dependent phenomena. Classes t a s k, t i m e r, s c h e d, and o b j e c t and their public member functions are
described on the t a s k(3C++) manual page.

Classes q h e a d and q t a i l enable a wide range of message-passing and data-buffering schemes to be imple-
mented simply. These classes are described on the q u e u e(3C++) manual page.

Class I n t e r r u p t _ h a n d l e r provides an interface for writing classes that can wait for external events using UNIX
system signals. These classes are described on the i n t e r r u p t(3C++) manual page.

Class h i s t o g r a m aids data gathering. Classes r a n d i n t, u r a n d, and e r a n d provide random number generation.
These four classes are described on the t a s k s i m(3C++) manual page.

SEE ALSO
t a s k(3C++), q u e u e(3C++), i n t e r r u p t(3C++), t a s k s i m(3C++)
Stroustrup, B. and Shopiro, J. E., ‘‘A Set of C++ Classes for Co-routine Style Programming,’’ in Chapter 2 of the
AT&T C++ Language System Release 2.1 Library Manual.
Shopiro, J. E., ‘‘Extending the C++ Task System for Real-Time Control,’’ in Chapter 2 of the AT&T C++ Language
System Release 2.1 Library Manual.
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NAME
Interrupt_handler – signal handling for the C++ task library

SYNOPSIS
# i n c l u d e < t a s k . h >

c l a s s I n t e r r u p t _ h a n d l e r : p u b l i c o b j e c t {
v i r t u a l v o i d i n t e r r u p t ( ) ;

p u b l i c :
I n t e r r u p t _ h a n d l e r ( i n t ) ;
~ I n t e r r u p t _ h a n d l e r ( ) ;

o b j t y p e o _ t y p e ( ) ;
i n t p e n d i n g ( ) ;

} ;

DESCRIPTION
Class I n t e r r u p t _ h a n d l e r allows t a s ks to wait for external events in the form of UNIX system signals. Class
I n t e r r u p t _ h a n d l e r is derived from class o b j e c t so that t a s ks can wait for I n t e r r u p t _ h a n d l e r objects.
Class o b j e c t is described on the t a s k(3C++) manual page.

The public member functions supplied in the task system class I n t e r r u p t _ h a n d l e r are listed and described
below. The following symbols are used:

ih an I n t e r r u p t _ h a n d l e r object

i an i n t

eo an o b j t y p e enumeration

I n t e r r u p t _ h a n d l e r ih( i ) ;
Constructs a new I n t e r r u p t _ h a n d l e r object, ih, which is to wait for a signal number i. (See s i g -
n a l(2).) Once an I n t e r r u p t _ h a n d l e r object has been established for a particular signal, when that sig-
nal occurs, the private, virtual i n t e r r u p t ( ) function is called at real time. When it returns, control will
resume at the point where the current t a s k was interrupted. That is, signals do not cause the current
t a s k to be pre-empted. When the currently running t a s k is suspended, a special, built-in task, the inter-
rupt alerter, will be scheduled. This t a s k alerts the I n t e r r u p t _ h a n d l e r (and any others that have
received interrupts since the interrupt alerter last ran), and thereby makes any t a s ks waiting for those
I n t e r r u p t _ h a n d l e rs runnable. As long as any I n t e r r u p t _ h a n d l e r exists, the scheduler will wait for
an interrupt, rather than exiting when the run chain becomes empty.

v o i d i n t e r r u p t ( )
The private virtual function I n t e r r u p t _ h a n d l e r : : i n t e r r u p t ( ) is a null function, but because it is vir-
tual, the programmer can specify the action to be taken at interrupt time by defining an i n t e r r u p t ( )
function in a class derived from I n t e r r u p t _ h a n d l e r.

eo = ih. o _ t y p e ( )
Returns the class type of the object (o b j e c t : : I N T H A N D L E R). o _ t y p e ( ) is a virtual function.

i = ih. p e n d i n g ( )
Returns T R U E except the first time it is called after a signal occurs.

DIAGNOSTICS
See t a s k(3C++).

BUGS
UNIX System V Releases 3.1 and 3.2 (SVR3.1 and SVR3.2) for the Intel 386 machine will not call a signal handler
when the current t a s k is running on a stack in the free store, that is, when the current t a s k has a D E D I C A T E D
stack. If you need to use the signal handling mechanisms on that configuration, you cannot use tasks which
have D E D I C A T E D stacks. In this case, compile the task library with _ S H A R E D _ O N L Y defined, which will make
S H A R E D the default mode for t a s k s. (Note: it is insufficient to declare all t a s ks as S H A R E D without compiling a
_ S H A R E D _ O N L Y version of the task library, because the internal system t a s k, the interrupt alerter, is D E D I C A T E D
by default.)
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SEE ALSO
T A S K . I N T R O(3C++), t a s k(3C++), q u e u e(3C++), t a s k s i m(3C++), s i g n a l(2)
Stroustrup, B. and Shopiro, J. E., ‘‘A Set of C++ Classes for Co-routine Style Programming,’’ in Chapter 2 of the
AT&T C++ Language System Release 2.1 Library Manual.
Shopiro, J. E., ‘‘Extending the C++ Task System for Real-Time Control,’’ in AT&T C++ Language System Release
2.1 Library Manual.
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NAME
queue – qheads and qtails for the C++ task library

SYNOPSIS

# i n c l u d e < t a s k . h >

e n u m q m o d e t y p e { E M O D E , W M O D E , Z M O D E } ;

c l a s s q h e a d : p u b l i c o b j e c t {
p u b l i c :

q h e a d ( q m o d e t y p e = W M O D E , i n t = 1 0 0 0 0 ) ;
~ q h e a d ( ) ;

q h e a d * c u t ( ) ;
o b j e c t * g e t ( ) ;
o b j t y p e o _ t y p e ( ) ;
i n t p e n d i n g ( ) ;
v o i d p r i n t ( i n t , i n t = 0 ) ;
i n t p u t b a c k ( o b j e c t * ) ;
i n t r d c o u n t ( ) ;
i n t r d m a x ( ) ;
q m o d e t y p e r d m o d e ( ) ;
v o i d s e t m o d e ( q m o d e t y p e ) ;
v o i d s e t m a x ( i n t ) ;
v o i d s p l i c e ( q t a i l * ) ;
q t a i l * t a i l ( ) ;

} ;

c l a s s q t a i l : p u b l i c o b j e c t {
p u b l i c :

q t a i l ( q m o d e t y p e = W M O D E , i n t = 1 0 0 0 0 ) ;
~ q t a i l ( ) ;

q t a i l * c u t ( ) ;
q h e a d * h e a d ( ) ;
o b j t y p e o _ t y p e ( ) ;
i n t p e n d i n g ( ) ;
v o i d p r i n t ( i n t , i n t = 0 ) ;
i n t p u t ( o b j e c t * ) ;
i n t r d s p a c e ( ) ;
i n t r d m a x ( ) ;
q m o d e t y p e r d m o d e ( ) ;
v o i d s p l i c e ( q h e a d * ) ;
v o i d s e t m o d e ( q m o d e t y p e ) ;
v o i d s e t m a x ( i n t ) ;

} ;

DESCRIPTION
Classes q h e a d and q t a i l enable a wide range of message-passing and data-buffering schemes to be imple-
mented simply with the C++ task system. Both classes are derived from the base class o b j e c t, which is
described on the t a s k(3C++) manual page. In general, class q h e a d provides facilities for taking objects off a
queue, and class q t a i l provides facilities for putting objects on a queue. The objects transmitted through a
queue must be of class o b j e c t or of some class derived from it.
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A queue is a data structure with an associated list of o b j e c ts in first-in, first-out order. Each queue also has
associated q h e a d and q t a i l objects attached (one of each). No public functions are provided to operate on
queues directly. Rather all access to a queue is through either the attached q h e a d or the attached q t a i l. To
create a queue, the programmer must declare a q h e a d object and then use that object to call q h e a d : : t a i l ( ) or
must declare a q t a i l object and then use that object to call q t a i l : : h e a d ( ). For example:

q h e a d q h ;
q t a i l * q t p = q h . t a i l ( ) ;

Once the queue is established, o b j e c ts are added to it with q t a i l : : p u t ( ) and o b j e c ts are removed from it
with q h e a d : : g e t ( ).

Objects derived from class o b j e c t have definitions of when they are ready and pending (not ready). q h e a d
objects are ready when the queue is not empty and pending when the queue is empty. q t a i l objects are ready
when the queue is not full, and pending when the queue is full.

Queues have three attributes: mode, maximum size, and count. The size and count attributes apply to the
queue itself, while the mode attribute applies independently to the q h e a d and q t a i l of a queue. These attri-
butes are described below.

Both classes q h e a d and q t a i l have a mode (set by the constructor) that controls what happens when an object
of that class is pending. The default is W M O D E (wait mode). With W M O D E, a t a s k that executes q h e a d : : g e t ( ) on
an empty queue will be suspended until that queue becomes non-empty. Similarly, with W M O D E a t a s k that exe-
cutes q t a i l : : p u t ( ) on a full queue will be suspended until that queue has room for the o b j e c t to be added to
the queue. In E M O D E (error mode), calling q h e a d : : g e t ( ) for an empty queue or calling q t a i l : : p u t ( ) for a
full queue will cause a run time error. In Z M O D E (zero mode), if q h e a d : : g e t ( ) is executed on an empty queue
it will return the N U L L pointer instead of a pointer to an object. In Z M O D E, if q t a i l : : p u t ( ) is executed on a full
queue, it will return 0 instead of 1. The modes of a queue’s head and tail need not be the same. Classes q h e a d
and q t a i l both provide a function, s e t m o d e ( ), which will reset the mode.

Queues also have a maximum size, which is set to 10000 by default. That is, the queue can hold up to 10000
pointers to objects. It does not, however, preallocate space. The size of a queue can be reset with either
q h e a d : : s e t m a x ( ) or q t a i l : : s e t m a x ( ).

The count is the number of objects on a queue.

Both the q h e a d and q t a i l constructors optionally take mode and size arguments.

The public member functions supplied in the task system classes q h e a d and q t a i l are listed and described in
the next two sections. The following symbols are used:

qh a q h e a d object

qt a q t a i l object

t a t a s k object

qhp a pointer to a q h e a d

qtp a pointer to a q t a i l

op a pointer to an o b j e c t

tp a pointer to a t a s k

i, j i n ts

eo an o b j t y p e enumeration

eq a q m o d e t y p e enumeration

Class qhead
Class q h e a d has one form of constructor:

q h e a d qh( eq, j )
Constructs a q h e a d object, qh. Both arguments are optional and have default values. eq represents the
mode (see above), which can be W M O D E, E M O D E, or Z M O D E. W M O D E is the default. j represents the max-
imum length of the queue attached to qh; the default is 10000.
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The public member functions of class q h e a d are (in alphabetical order):

qhp = qh. c u t ( )
Splits qh in two. q h e a d : : c u t ( ) returns a pointer to a new q h e a d, which is attached to the original
queue. o b j e c ts that are already on the queue and o b j e c ts that are q t a i l : : p u t ( ) on the original
queue must be retrieved via qhp. q h e a d : : c u t ( ) modifies qh to point to a new empty queue. A new
q t a i l must be established for qh (with qh. t a i l ( )). o b j e c ts that are q t a i l : : p u t ( ) to the new q t a i l
can be retrieved via a qh. g e t ( ).

Thus, q h e a d : : c u t ( ) can be used to insert a filter into an existing queue, without changing the appear-
ance of the queue to anyone using it, and without halting the flow of o b j e c ts through the queue. The
filter will intercept o b j e c ts that are q t a i l : : p u t ( ) on the original q t a i l when it does a q h e a d : : g e t ( )
on the new q h e a d. Then the filter can q t a i l : : p u t ( ) o b j e c ts on the new q t a i l, where execution of
q h e a d : : g e t ( ) on the original q h e a d will retrieve them. In other words, the filter t a s k uses the newly
established q h e a d and q t a i l, while other t a s k s continue to p u t ( ) and g e t ( ) from the original q t a i l
and q h e a d. q h e a d : : s p l i c e ( ) can be used to restore the queue to its original configuration.

op = qh. g e t ( )
Returns a pointer to the o b j e c t at the head of the queue, if the queue is not empty. If the queue is
empty, q h e a d : : g e t ( )’s behavior depends on the mode of qh. In W M O D E, a t a s k that executes
q h e a d : : g e t ( ) on an empty queue will be suspended until that queue becomes non-empty, when the
operation can complete successfully. In E M O D E, it will cause a run time error. In Z M O D E, it will return
the N U L L pointer instead of a pointer to an o b j e c t.

eo = qh. o _ t y p e ( )
Returns the class type of the object (o b j e c t : : Q H E A D). o _ t y p e ( ) is a virtual function.

i = qh. p e n d i n g ( )
Returns T R U E if the queue attached to q h is empty, and F A L S E otherwise. p e n d i n g ( ) is a virtual func-
tion.

qh. p r i n t ( i )
Prints the contents of qh on s t d o u t. It calls the p r i n t ( ) function for the o b j e c t base class. i specifies
the amount of information to be printed. It can be 0, for the minimum amount of information, or V E R -
B O S E, for more information. A second integer argument is for internal use and defaults to 0. p r i n t ( ) is
a virtual function.

i = qh. p u t b a c k ( op )
Puts the o b j e c t denoted by op back on the head of the queue attached to qh, and returns 1 on success.
This allows a q h e a d to operate as a stack. A t a s k calling q h e a d : : p u t b a c k ( ) competes for queue space
with t a s ks using q t a i l : : p u t ( ). Calling q h e a d : : p u t b a c k ( ) for a full queue causes a run time error in
both E M O D E and W M O D E, and returns N U L L in Z M O D E.

i = qh. r d c o u n t ( )
Returns the current number of o b j e c ts in the queue attached to qh.

i = qh. r d m a x ( )
Returns the maximum size of the queue attached to qh.

eq = qh. r d m o d e ( )
Returns the current mode of qh, W M O D E, E M O D E, or Z M O D E.

qh. s e t m o d e ( eq )
Sets the mode of qh to eq, which can be W M O D E, E M O D E, or Z M O D E.

qh. s e t m a x ( i )
Sets the maximum size of the queue attached to qh to i It is legal to decrease the maximum below the
current number of o b j e c t s on the queue. Doing so means that no more o b j e c ts can be put on the
queue until the queue has been drained below the new limit.

qh. s p l i c e ( qtp )
Reverses the action of a previous q h e a d : : c u t ( ). q h e a d : : s p l i c e ( ) merges the queue attached to qh
with the queue attached to qtp. The list of o b j e c t s on the latter queue precede those on the former
queue in the merged list. q h e a d : : s p l i c e ( ) deletes qh and qtp. qh is meant to be a q h e a d that was
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previously c u t ( ), and qtp is meant to be the pointer returned by that c u t ( ). If in merging the queues
q h e a d : : s p l i c e ( ) causes an empty queue to become non-empty or a full queue to become non-full, it
will alert all t a s ks waiting for that state change, and add them to the scheduler’s run chain. (See
o b j e c t : : a l e r t ( ) on the t a s k(3C++) manual page.)

qtp = qh. t a i l ( )
Creates a q t a i l object for the queue attached to qh (if none exists) and returns a pointer, qtp, to the new
q t a i l object.

Class qtail
Class q t a i l has one form of constructor:

q t a i l qt( eq, j )
Constructs a q t a i l object, qt. Both arguments are optional and have default values. eq represents the
mode (see above), which can be W M O D E, E M O D E, or Z M O D E. W M O D E is the default. j represents the max-
imum length of the queue attached to qt; the default is 10000.

The public member functions of class q t a i l are (in alphabetical order):

qtp = qt. c u t ( )
Splits the queue to which it is applied in two. q t a i l : : c u t ( ) returns a pointer to a new q t a i l, which
is attached to the original queue. o b j e c ts already on the original queue can still be retrieved with a
q h e a d : : g e t ( ) to the original q h e a d. (This is the primary functional difference between q h e a d : : c u t ( )
and q t a i l : : c u t ( ).) q t a i l : : c u t ( ) modifies qt to point to a new empty queue. A new q h e a d must be
established for qt. o b j e c ts that are q t a i l : : p u t ( ) to qt must be retrieved via the new q h e a d. o b j e c ts
that are q t a i l : : p u t ( ) to qtp will be retrieved via the original q h e a d.

Thus, q t a i l : : c u t ( ) can be used to insert a filter into an existing queue, without changing the appear-
ance of the queue to anyone using it, and without halting the flow of o b j e c ts through the queue. The
filter will intercept o b j e c ts that are q t a i l : : p u t ( ) on the original q t a i l when it does a q h e a d : : g e t ( )
o n t h e n e w q h e a d. Then the filter can q t a i l : : p u t ( ) o b j e c ts on the new q t a i l, where execution of
q h e a d : : g e t ( ) on the original q h e a d will retrieve them. In other words, the filter t a s k uses the newly
established q h e a d and q t a i l, while other t a s k s continue to p u t ( ) and g e t ( ) from the original q t a i l
and q h e a d. q t a i l : : s p l i c e ( ) can be used to restore the queue to its original configuration.

qhp = qt. h e a d ( )
Creates a q h e a d object for the queue attached to qt (if none exists) and returns a pointer to the new
q h e a d object.

eo = qt. o _ t y p e ( )
Returns the class type of the object (o b j e c t : : Q T A I L). o _ t y p e ( ) is a virtual function.

i = qt. p e n d i n g ( )
Returns T R U E if the queue attached to qt is full, and F A L S E otherwise. p e n d i n g ( ) is a virtual function.

qt. p r i n t ( i )
Prints the contents of qt on s t d o u t. It calls the p r i n t ( ) function for the o b j e c t base class. i specifies
the amount of information to be printed. It can be 0, for the minimum amount of information, or V E R -
B O S E, for more information. A second integer argument is for internal use and defaults to 0. p r i n t ( ) is
a virtual function.

i = qt. p u t ( op )
Adds the o b j e c t denoted by op to the tail of the queue attached to qt, and returns 1 on success. If the
queue is full, q t a i l : : p u t ( )’s behavior depends on the mode of qt. In W M O D E, a t a s k that executes
q t a i l : : p u t ( ) on a full queue will be suspended until that queue becomes non-full, when the operation
can complete successfully. In E M O D E, it will cause a run time error. In Z M O D E, it will return N U L L.

i = qt. r d s p a c e ( )
Returns the number of o b j e c ts that can be inserted into the queue attached to qt before it becomes full.

i = qt. r d m a x ( )
Returns the maximum size of the queue attached to qt.
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eq = qt. r d m o d e ( )
Returns the current mode of qt, W M O D E, E M O D E, or Z M O D E.

qt. s p l i c e ( qhp )
Reverses the action of a previous q t a i l : : c u t ( ). q t a i l : : s p l i c e ( ) merges the queue attached to qt
with the queue attached to qhp. The list of o b j e c t s on the former queue precede those on the latter
queue in the merged list. q t a i l : : s p l i c e ( ) deletes qt and qhp. qt is meant to be a q t a i l that was pre-
viously c u t ( ), and qhp is meant to be the pointer returned by that c u t ( ). If in merging the queues
q t a i l : : s p l i c e ( ) causes an empty queue to become non-empty or a full queue to become non-full, it
will alert all t a s ks waiting for that state change, and add them to the scheduler’s run chain . (See
o b j e c t : : a l e r t ( ) on the t a s k(3C++) manual page.)

qt. s e t m o d e ( eq )
Sets the mode of qt to eq, which can be W M O D E, E M O D E, or Z M O D E.

qt. s e t m a x ( i )
Sets the maximum size of the queue attached to qt to i. It is legal to decrease the maximum below the
current number of o b j e c ts on the queue. Doing so means that no more o b j e c ts can be put on the
queue until the queue has been drained below the new limit.

DIAGNOSTICS
See t a s k(3C++).

SEE ALSO
T A S K . I N T R O(3C++), t a s k(3C++), i n t e r r u p t(3C++), t a s k s i m(3C++)
Stroustrup, B. and Shopiro, J. E., ‘‘A Set of C++ Classes for Co-routine Style Programming,’’ in AT&T C++
Language System Release 2.1 Library Manual.
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NAME
task – coroutines, multiple threads of control, C++ task library

SYNOPSIS

# i n c l u d e < t a s k . h >

t y p e d e f i n t ( * P F I O ) ( i n t , o b j e c t * ) ;
t y p e d e f v o i d ( * P F V ) ( ) ;
e x t e r n i n t _ h w m ;

c l a s s o b j e c t {
p u b l i c :

e n u m o b j t y p e { O B J E C T , T I M E R , T A S K , Q H E A D , Q T A I L , I N T H A N D L E R } ;

o b j e c t * o _ n e x t ;
o b j e c t ( ) ;
~ o b j e c t ( ) ;

v o i d a l e r t ( ) ;
v o i d f o r g e t ( t a s k * ) ;
v i r t u a l o b j t y p e o _ t y p e ( ) ;
v i r t u a l i n t p e n d i n g ( ) ;
v i r t u a l v o i d p r i n t ( i n t , i n t = 0 ) ;
v o i d r e m e m b e r ( t a s k * ) ;
s t a t i c i n t t a s k _ e r r o r ( i n t , o b j e c t * ) ;
i n t t a s k _ e r r o r ( i n t ) ;
s t a t i c t a s k * t h i s _ t a s k ( ) ;
s t a t i c P F I O e r r o r _ f c t ;

} ;

c l a s s s c h e d : p u b l i c o b j e c t {
p r o t e c t e d :

s c h e d ( ) ;
p u b l i c :

e n u m s t a t e t y p e { I D L E = 1 , R U N N I N G = 2 , T E R M I N A T E D = 4 } ;

s t a t i c t a s k * c l o c k _ t a s k ;
v o i d c a n c e l ( i n t ) ;
i n t d o n t _ w a i t ( ) ;
s t a t i c l o n g g e t _ c l o c k ( ) ;
s c h e d * g e t _ p r i o r i t y _ s c h e d ( ) ;
s t a t i c s c h e d * g e t _ r u n _ c h a i n ( ) ;
s t a t i c i n t g e t _ e x i t _ s t a t u s ( ) ;
i n t k e e p _ w a i t i n g ( ) ;
i n t p e n d i n g ( ) ;
v o i d p r i n t ( i n t , i n t = 0 ) ;
s t a t e t y p e r d s t a t e ( ) ;
l o n g r d t i m e ( ) ;
i n t r e s u l t ( ) ;
v o i d s e t c l o c k ( l o n g ) ;
s t a t i c v o i d s e t _ e x i t _ s t a t u s ( i n t ) ;
v i r t u a l v o i d s e t w h o ( o b j e c t * ) ;
s t a t i c P F V e x i t _ f c t ;

} ;

# d e f i n e D E F A U L T _ M O D E D E D I C A T E D
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c l a s s t a s k : p u b l i c s c h e d {
p u b l i c :

e n u m m o d e t y p e { D E D I C A T E D = 1 , S H A R E D = 2 } ;
p r o t e c t e d :

t a s k ( c h a r * n a m e = 0 , m o d e t y p e m o d e = D E F A U L T _ M O D E , i n t s t a c k s i z e = S I Z E ) ;
p u b l i c :

t a s k * t _ n e x t ;
c h a r * t _ n a m e ;

~ t a s k ( ) ;
v o i d c a n c e l ( i n t ) ;
v o i d d e l a y ( l o n g ) ;
s t a t i c t a s k * g e t _ t a s k _ c h a i n ( ) ;
o b j t y p e o _ t y p e ( ) ;
l o n g p r e e m p t ( ) ;
v o i d p r i n t ( i n t , i n t = 0 ) ;
v o i d r e s u l t i s ( i n t ) ;
v o i d s e t w h o ( o b j e c t * ) ;
v o i d s l e e p ( o b j e c t * = 0 ) ;
v o i d w a i t ( o b j e c t * ) ;
i n t w a i t l i s t ( o b j e c t * . . . ) ;
i n t w a i t v e c ( o b j e c t * * ) ;
o b j e c t * w h o _ a l e r t e d _ m e ( ) ;

} ;

c l a s s t i m e r : p u b l i c s c h e d {
p u b l i c :

t i m e r ( l o n g ) ;
~ t i m e r ( ) ;

o b j t y p e o _ t y p e ( ) ;
v o i d p r i n t ( i n t , i n t = 0 ) ;
v o i d r e s e t ( l o n g ) ;
v o i d s e t w h o ( o b j e c t * ) ;

} ;

DESCRIPTION
A t a s k is an object with an associated program and thread of control. To use the task system, the programmer
must derive a class from class t a s k, and supply a constructor for the derived class to serve as the t a s k’s main
program. (Note, however, that only one level of derivation is permitted from class t a s k. See the BUGS section.)
Control in the task system is based on a concept of operations which may succeed immediately or be blocked,
and o b j e c ts which may be ready or pending (not ready). When a t a s k executes a blocking operation on an
o b j e c t that is ready, the operation succeeds immediately and the t a s k continues running, but if the o b j e c t is
pending, the t a s k waits. Control then returns to the scheduler, which chooses the next t a s k from the ready
list or run chain. Eventually, the pending o b j e c t may become ready, and it will notify all the t a s ks that are
waiting for it, causing the waiting t a s ks to be put back on the run chain.

A t a s k can be in one of three states:

R U N N I N G The t a s k is running or it is ready to run.

I D L E The t a s k is waiting for a pending o b j e c t.

T E R M I N A T E D The t a s k has completed its work. It cannot be resumed, but its result can be retrieved.

The function s c h e d : : r d s t a t e ( ) returns the state. These states are enumerations of type s t a t e t y p e. These
enumerations are in the scope of class s c h e d.
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Most classes in the task system are derived from class o b j e c t. Each different kind of o b j e c t can have its own
way of determining whether it is ready, which makes it easy to add new capabilities to the system. However,
each kind of o b j e c t can have only one criterion for readiness (although it may have several blocking opera-
tions). The criterion for readiness is defined by the virtual function p e n d i n g ( ). For all classes derived from
o b j e c t, p e n d i n g ( ) returns T R U E if the o b j e c t is not ready. This invariant should be maintained for user-
defined derived classes as well.

Each pending o b j e c t contains a list (the remember chain ) of the t a s ks that are waiting for it. When a t a s k
attempts an operation on a pending o b j e c t (that is, it calls a blocking function), that t a s k is put on the
remember chain for the o b j e c t via o b j e c t : : r e m e m b e r ( ), and the t a s k is suspended. When the state of an
o b j e c t changes from pending to ready, o b j e c t : : a l e r t ( ) must be called for the o b j e c t. (Note, this is done
for classes in the task system. Programmers who write classes for which t a s ks can wait, must ensure that
o b j e c t : : a l e r t ( ) is called on a state change.) a l e r t ( ) changes the state of all t a s ks ‘‘remembered’’ by the
o b j e c t from I D L E to R U N N I N G and puts them on the scheduler’s run chain.

The base class, s c h e d, is responsible for scheduling and for the functionality that is common to t a s ks and
t i m e rs. Class s c h e d can only be used as a base class, that is, it is illegal to create objects of class s c h e d. Class
s c h e d also provides facilities for measuring simulated time. A unit of simulated time can represent any amount
of real time, and it is possible to compute without consuming simulated time. The system clock is initialized to
0 and can be set with s c h e d : : s e t c l o c k ( ) once only. Thereafter, only a call to t a s k : : d e l a y ( ) will cause the
clock to advance. s c h e d : : g e t c l o c k ( ) can be used to read the clock.

Class t i m e r provides a facility for implementing time-outs and other time-dependent phenomena. A t i m e r is
similar to a t a s k with a constructor consisting of the single statement:

d e l a y ( d ) ;
That is, when a t i m e r is created it simply waits for the number of time units given to it as its argument, and
then wakes up any t a s ks waiting for it. A t i m e r’s state can be either R U N N I N G or T E R M I N A T E D.

A t a s k cannot return a value with the usual function return mechanism. Instead, a t a s k sets the value of its
result (using t a s k : : r e s u l t i s ( ) or t a s k : : c a n c e l ( )), at which time the t a s k becomes T E R M I N A T E D. Then this
result can be retrieved by other t a s ks via a call to s c h e d : : r e s u l t ( ).

The t a s k constructor takes three optional arguments: a name, a mode, and a stacksize. The name is a character
string pointer, which is used to initialize the class t a s k variable t _ n a m e. This name can be used to provide
more readable output and does not affect the behavior of the t a s k.

The mode argument can be D E D I C A T E D (the default when none is specified) or S H A R E D, (the enumerations of
type m o d e t y p e in class t a s k’s scope). D E D I C A T E D t a s ks each have their own stack, allocated from the free
store. S H A R E D t a s ks share stack space with the t a s k that creates them. When a S H A R E D t a s k is running, it
occupies the shared stack space, while copies of the active portions of the other t a s ks’ stacks occupy save areas.
S H A R E D t a s ks trade speed for space: they use less storage than D E D I C A T E D t a s ks use, but task switches among
S H A R E D t a s ks often involve copying stacks to and from the save area.

The stacksize argument to the t a s k constructor represents the maximum space that a t a s k’s stack can occupy.
The default is 750 machine words. Overflowing the stack is a fatal error.

When an object of a class derived from class t a s k is created, its constructor becomes a new t a s k that runs in
parallel with the other t a s ks that have been created. When the first t a s k is created, m a i n ( ) automatically
becomes a t a s k itself.

The public member functions supplied in the task system classes t a s k, o b j e c t, s c h e d, and t i m e r are listed and
described in the next four sections. The following symbols are used:

t a t a s k object

o an o b j e c t object

s a s c h e d object

tm a t i m e r object

op a pointer to an o b j e c t
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tp a pointer to a t a s k

sp a pointer to a s c h e d

cp a pointer to a c h a r

i, j i n ts

l a l o n g i n t

eo an o b j t y p e enumeration

es a s t a t e t y p e enumeration

em a m o d e t y p e enumeration

Class Task
Class t a s k has one form of constructor, which is protected:

t a s k t( cp, em, j )
Constructs a t a s k object, t. All three arguments are optional and have default values. If cp is given, the
character string it points to is used as t’s name. em represents the mode (see above), and can be D E D I -
C A T E D or S H A R E D. D E D I C A T E D is the default. The default mode can be changed to S H A R E D by recompil-
ing the task library with _ S H A R E D _ O N L Y defined. See the NOTES section. j represents the maximum size
of t’s stack; the default is 750 machine words.

Most public member functions of class t a s k are conditional or unconditional requests for suspension. They are
(in alphabetical order):

t. c a n c e l ( i )
Puts t into the T E R M I N A T E D state, without suspending the calling t a s k (that is, without invoking the
scheduler), and sets t’s result (or ‘‘return value’’) to i.

t. d e l a y ( l )
Suspends t for the time specified by l. A delayed t a s k is in the R U N N I N G state. t will resume at the
current time on the task system clock + l. Only a call to d e l a y ( ) causes the clock to advance.

tp = t a s k : : g e t _ t a s k _ c h a i n ( )
tp = t. g e t _ t a s k _ c h a i n ( )

Returns a pointer to the first t a s k on the list of all t a s ks (linked by t _ n e x t pointers).

eo = t. o _ t y p e ( )
Returns the class type of t (o b j e c t : : T A S K). o _ t y p e ( ) is a virtual function.

l = t. p r e e m p t ( )
Suspends R U N N I N G t a s k t, making it I D L E. Returns the number of time units left in t’s delay. Calling
p r e e m p t ( ) for an I D L E or T E R M I N A T E D t a s k causes a runtime error.

t. p r i n t ( i )
Prints the contents of t on s t d o u t. The first argument, i, specifies the amount of information to be
printed. It can be 0, for the minimum amount of information, V E R B O S E, for more information, C H A I N,
for information about each object on the chain of all t a s ks, or S T A C K, for information about the runtime
stack. These argument constants can be combined with the or operator, e.g., p r i n t ( V E R B O S E | C H A I N ).
A second integer argument is for internal use and defaults to 0. p r i n t ( ) is a virtual function.

t. r e s u l t i s ( i )
Sets the result (or ‘‘return value’’) of t to be the value of i and puts t in the T E R M I N A T E D state. The result
can be examined by calling t. r e s u l t ( ) (r e s u l t ( ) is a member function of class s c h e d). t a s ks cannot
return a value using the usual function return mechanism. A call to t a s k : : r e s u l t i s ( ) should appear
at the end of every t a s k constructor body (unless the constructor will execute infinitely). A t a s k is
pending (see s c h e d : : p e n d i n g ( )) until it is T E R M I N A T E D.

t. s e t w h o ( op )
Records the o b j e c t denoted by op as the one that alerted t when it was I D L E. *op is meant to be the
o b j e c t whose state change from pending to ready caused t to be put back on the run chain. This infor-
mation can be retrieved with t a s k : : w h o _ a l e r t e d _ m e ( ).
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t. s l e e p ( op )
t. s l e e p ( )

Suspends t unconditionally (puts the t in the I D L E state). The op argument is optional. If
t a s k : : s l e e p ( ) is given a pointer to a pending o b j e c t as an argument, t will be ‘‘remembered’’ by the
denoted o b j e c t, so that when that o b j e c t becomes ready, t will be ‘‘alerted’’ and put back on the run
chain (via o b j e c t : : a l e r t ( )). If no argument is given to t a s k : : s l e e p ( ), the event that will cause t to
be resumed is unspecified. Contrast s l e e p ( ) with w a i t ( ), which suspends a t a s k conditionally.
t a s k : : s l e e p ( ) does not check whether the o b j e c t denoted by op is pending.

t. w a i t ( op )
If op points to a pending o b j e c t, then t will be suspended (put in the I D L E state) until that o b j e c t is
ready. If op points to an o b j e c t that is not pending (that is ready), then t will not be suspended at all.
Any class derived from class o b j e c t that is ever going be waited for must have rules for when it is
pending and ready. Each o b j e c t can only have one definition of pending.

i = t. w a i t l i s t ( op . . . )
Suspends t to wait for one of a list of o b j e c ts to become ready. w a i t l i s t ( ) takes a list of o b j e c t
pointers terminated by a 0 argument. If any of the arguments points to a ‘‘ready’’ o b j e c t, then t will
not be suspended at all. w a i t l i s t ( ) returns when one of the o b j e c ts on the list is ready. It returns
the position in the list of the o b j e c t that caused the return, with positions numbered starting from 0.
Note that o b j e c ts on the list other than the one denoted by the return value might also be ready.

i = t. w a i t v e c ( op* )
Is the same as w a i t l i s t ( ), except that it takes as an argument the address of a vector holding a list of
o b j e c t pointers.

op = t. w h o _ a l e r t e d _ m e ( )
Returns a pointer to the o b j e c t whose state change from p e n d i n g to r e a d y caused t to be put back on
the run chain (put in the R U N N I N G state).

_ h w m = 1 ;
Causes the task system to keep track of the ‘‘high water mark’’ for each t a s k’s stack; that is, the most
stack ever used by each t a s k. This information is printed by t a s k : : p r i n t ( S T A C K ). This information is
intended primarily for debugging purposes, and will affect performance speed. _ h w m must be set before
any t a s ks whose high water marks are of interest are created. Note that two t a s ks are created by a
static constructor: the internal Interrupt_alerter t a s k and the ‘‘main’’ t a s k. If you need accurate infor-
mation about the high water mark for ‘‘main,’’ then _ h w m must be set by a static constructor which is
called before that for the I n t e r r u p t _ a l e r t e r t a s k.

Class Object
Class o b j e c t has one form of constructor:

o b j e c t o;
Construct an o b j e c t object, o, which is not on any lists. The constructor takes no arguments.

Public member functions of class o b j e c t are (in alphabetical order):

o. a l e r t ( )
Changes the state of all t a s ks ‘‘remembered’’ by o from I D L E to R U N N I N G, puts them on the scheduler’s
run chain, and removes them from o’s remember chain.

o. f o r g e t ( tp )
Removes all occurrences of the t a s k denoted by tp from o’s remember chain.

eo = o. o _ t y p e ( )
Returns the class type of the object, o (o b j e c t : : O B J E C T). o _ t y p e ( ) is a virtual function.

i = o. p e n d i n g ( )
Returns the ready status of an o b j e c t. It returns F A L S E if o is ready, and T R U E if it is pending. Classes
derived from class o b j e c t must define p e n d i n g ( ) if they are to be waited for. o b j e c t : : p e n d i n g ( )
returns T R U E by default. p e n d i n g ( ) is a virtual function.
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o. p r i n t ( i )
Prints the contents of o on s t d o u t. It is called by the p r i n t ( ) functions for classes derived from
o b j e c t. See t a s k : : p r i n t ( ) for a description of the arguments. p r i n t ( ) is a virtual function.

o. r e m e m b e r ( tp )
Adds the t a s k denoted by tp to o’s remember chain. Remembered t a s ks will be alerted when o’s state
becomes ready.

i = o b j e c t : : t a s k _ e r r o r ( i, op )
i = o. t a s k _ e r r o r ( i, op )

The central error function called by task system functions when a run time error occurs. i represents the
error number (see the DIAGNOSTICS section for a list of error numbers and their meanings). op is meant
to be a pointer to the o b j e c t which called t a s k _ e r r o r ( ) or 0. o b j e c t : : t a s k _ e r r o r ( ) examines the
variable e r r o r _ f c t, and if this variable denotes a function, that function will be called with i and op as
arguments, respectively. (See e r r o r _ f c t, below.) Otherwise, i will be given as an argument to
p r i n t _ e r r o r ( ), which will print an error message on s t d e r r and call e x i t ( i ), terminating the pro-
gram. The non-static, single argument form of t a s k _ e r r o r ( ) is obsolete, but remains for compatibility.

tp = o b j e c t : : t h i s _ t a s k ( )
tp = o. t h i s _ t a s k ( )

Returns a pointer to the t a s k that is currently running.

P F I O user-defined-error-function;
e r r o r _ f c t = user-defined-error-function

e r r o r _ f c t is a pointer to a function that returns an i n t and takes two arguments: an i n t representing
the error number and an o b j e c t * representing the o b j e c t * that called t a s k _ e r r o r. If e r r o r _ f c t is
set, t a s k _ e r r o r ( ) will call the user-defined-error-function with the error number and the o b j e c t * as
arguments. (The o b j e c t * will be 0 if t a s k _ e r r o r was not called by an o b j e c t.) If user-defined-error-
function does not return 0, t a s k _ e r r o r ( ) will call e x i t (i). If the user-defined-error-function does return
0, t a s k _ e r r o r ( ) will retry the operation that caused the error.

Class Sched
Both class t a s k and class t i m e r are derived from class s c h e d. Class s c h e d provides one form of constructor,
which is protected:

s c h e d s;
Constructs a s c h e d object, s, initialized to be I D L E and to have a 0 delay.

Class s c h e d is responsible for the functionality that is common to t a s ks and t i m e rs. Class s c h e d provides the
following public member functions:

s. c a n c e l ( i )
Puts s into the T E R M I N A T E D state, without suspending the caller (that is, without invoking the scheduler),
and sets the result of s to be i.

i = s. d o n t _ w a i t ( )
Returns the number of times k e e p _ w a i t i n g ( ) has been called, minus the number of times d o n t _ w a i t ( )
has been called (excluding the current call). If these functions are used as intended, the return value
represents the number of o b j e c ts that were waiting for external events before the current call. See
k e e p _ w a i t i n g ( ). See i n t e r r u p t(3C++) for a description of how t a s ks can wait for external events.

l = s c h e d : : g e t _ c l o c k ( )
l = s. g e t _ c l o c k ( )

Returns the value of the task system clock.

i = s c h e d : : g e t _ e x i t _ s t a t u s ( )
i = s. g e t _ e x i t _ s t a t u s ( )

Returns the e x i t s t a t u s of the task program. When a task program terminates normally (that is,
t a s k _ e r r o r is not called), the program will call e x i t (i), where i is the value passed by the last caller of
s c h e d : : s e t _ e x i t _ s t a t u s ( ).
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sp = s. g e t _ p r i o r i t y _ s c h e d ( )
Returns a pointer to a system t a s k, i n t e r r u p t _ a l e r t e r, if a signal that was being waited for has
occurred. If no interrupt has occurred, g e t _ p r i o r i t y _ s c h e d ( ) returns 0.

sp = s c h e d : : g e t _ r u n _ c h a i n ( )
sp = s. g e t _ r u n _ c h a i n ( )

Returns a pointer to the run chain, the linked list of ready s c h e d objects (t a s ks and t i m e rs).

i = s. k e e p _ w a i t i n g ( )
Returns the number of times k e e p _ w a i t i n g ( ) has been called (not counting the current call), minus the
number of times d o n t _ w a i t ( ) has been called. k e e p _ w a i t i n g ( ) is meant to be called when an o b j e c t
that will wait for an external event is created. For example, it is called when an I n t e r r u p t _ h a n d l e r
object is created by the I n t e r r u p t _ h a n d l e r constructor (see i n t e r r u p t(3C++)). The inverse function,
d o n t _ w a i t ( ), should be called when such an o b j e c t is deleted. k e e p _ w a i t i n g ( ) causes the scheduler
to keep waiting (not to exit) when there are no runnable t a s ks (because an external event may make an
I D L E t a s k runnable).

i = s. p e n d i n g ( )
Returns F A L S E if s (t a s k or t i m e r) is in the T E R M I N A T E D state, T R U E otherwise. p e n d i n g ( ) is a virtual
function.

s. p r i n t ( i )
Prints the contents of s on s t d o u t. It is called by the p r i n t ( ) functions for classes derived from s c h e d.
See t a s k : : p r i n t ( ) and t i m e r : : p r i n t ( ) for a description of the arguments. p r i n t ( ) is a virtual func-
tion.

es = s. r d s t a t e ( )
Returns the state of s: R U N N I N G, I D L E, or T E R M I N A T E D.

l = s. r d t i m e ( )
Returns the clock time at which s is to run.

i = s. r e s u l t ( )
Returns the result of s (as set by t a s k : : r e s u l t i s ( ), t a s k : : c a n c e l ( ), or s c h e d : : c a n c e l ( ) ). If s is
not yet T E R M I N A T E D, the calling t a s k will be suspended to wait for s to terminate. If a t a s k calls
r e s u l t ( ) for itself, it will cause a run time error.

s c h e d : : s e t c l o c k ( l )
s. s e t c l o c k ( l )

Initializes the system clock to the time given by l. Causes a run time error if used more than once.

s c h e d : : s e t _ e x i t _ s t a t u s ( i )
s. s e t _ e x i t _ s t a t u s ( i )

Sets the exit status of the task program. When a task program terminates normally (that is, t a s k _ e r r o r
is not called), the program will call e x i t (i), where i is the value passed by the last caller of
s e t _ e x i t _ s t a t u s ( ).

s. s e t w h o ( op )
Is a virtual function defined for t a s ks and t i m e rs; see its definition for those classes. The argument is
meant to be a pointer to the o b j e c t that caused s to be alerted.

P F V user-defined-exit-function;
e x i t _ f c t = user-defined-exit-function

e x i t _ f c t is a pointer to a function taking no arguments and returning void. If set, the task system
scheduler will call the user-defined-exit-function before the program exits.

c l o c k _ t a s k = tp;
Sets tp to be a t a s k that will be scheduled each time the system clock advances, before any other t a s ks.
The c l o c k _ t a s k must be I D L E when it is resumed by the scheduler. The c l o c k _ t a s k can suspend itself
by calling t a s k : : s l e e p ( ) to ensure this.
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Class Timer
Class t i m e r provides one form of constructor:

t i m e r tm( l ) ;
Constructs a t i m e r object, tm, and inserts it on the scheduler’s run chain. l represents the number of
time units tm is to wait.

The following public member functions are provided for t i m e rs:

eo = tm. o _ t y p e ( )
Returns the class type of the object (o b j e c t : : T I M E R). o _ t y p e ( ) is a virtual function.

tm. r e s e t ( l )
Resets tm’s delay to l. This makes repeated use of t i m e rs possible. A t i m e r can be reset even when it
is T E R M I N A T E D.

tm. s e t w h o ( op )
Is defined to be null for t i m e rs. s e t w h o ( ) is a virtual function.

tm. p r i n t ( i )
Prints the contents of tm on s t d o u t. The argument is ignored. p r i n t ( ) is a virtual function.

FILES
L I B D I R / l i b t a s k . a

NOTES
The task library is supplied only for the following machines: WE32000-series machines (e.g., the AT&T 3B2),
AT&T 3B20, AT&T 6386 WGS, Sun-2 and Sun-3, and the VAX. It must be ported to work on other platforms.

WARNINGS
Beware of optimizing compilers that inline constructors for classes derived from class t a s k!

Although the task library was engineered to be as free as possible from dependencies on compilation systems
and dynamic call chains, it does depend on the existence of stack frames for the t a s k constructor and construc-
tors for classes derived from class t a s k. If these constructors are inlined by an optimizing compiler, unpredict-
able behavior will result.

For related reasons, although you must derive a class from class t a s k to use the task library, you can only have
one level of derivation from class t a s k. That is, the system will not work reliably if you derive a class from a
class derived from class t a s k.

BUGS
D E D I C A T E D tasks are implemented by building task stacks in the free store. Because UNIX System V Release 2
(SVR2) for the WE32000-series machines does not allow stack pointers to point into the free store, D E D I C A T E D
t a s ks cannot be used on these machines with SVR2. In such cases, compile the task library with _ S H A R E D _ O N L Y
defined, which will make S H A R E D the default mode for t a s k s. (Note: it is insufficient to declare all t a s ks as
S H A R E D without compiling a _ S H A R E D _ O N L Y version of the task library, because there is an internal system t a s k
(the interrupt alerter t a s k, see i n t e r r u p t(3C++)) which is D E D I C A T E D by default.)

UNIX System V Releases 3.1 and 3.2 (SVR 3.1 and SVR 3.2) for the Intel 386 machine will not call a signal handler
when the current t a s k is running on a stack in the free store, that is, when the current t a s k has a D E D I C A T E D
stack. If you need to use the signal handling mechanisms (described on the t a s k s i m(3C++) manual page) on
that configuration, you cannot use tasks which have D E D I C A T E D stacks. In this case, compile the task library
with _ S H A R E D _ O N L Y defined, which will make S H A R E D the default mode for t a s k s.

For implementation reasons, it is not possible to derive a class from a class derived from class t a s k; only one
level of derivation is permitted. Use of multi-level derivation is not detected, and will usually result in an unex-
pected core dump. One possible workaround for this limitation is to put the required complex structures in a
class not derived from t a s k. Then derive a trivial class from t a s k whose constructor executes the coroutine in
the complex task. For example:

c l a s s T a s k _ b a s e {
v i r t u a l i n t M a i n ( ) ;

} ;
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c l a s s R u n n e r : p u b l i c t a s k {
T a s k _ b a s e * p ;

p u b l i c :
R u n n e r ( T a s k _ b a s e * ) ;

} ;

R u n n e r : : R u n n e r ( T a s k _ b a s e * f p ) : p ( f p )
{

r e s u l t i s ( p - > M a i n ( ) ) ;
}

Class T a s k _ b a s e is the base class from which the user should derive whatever additional classes and structures
are needed.

DIAGNOSTICS
When a task system function encounters a run time error, it calls o b j e c t : : t a s k _ e r r o r ( ), with one of the fol-
lowing error numbers as an argument. The table below lists the run time errors the task system detects, the
associated error messages, and explanations of the errors.

3/91 Page 9



TASK ( 3C++ ) ( C++ Task Library ) TASK ( 3C++ )

Error Name Message Explanation

Attempt to delete an object
which remembers a task.

1 E _ O L I N K "object::delete(): has chain"

Attempt to delete an object
which is still on some chain.

2 E _ O N E X T "object::delete(): on chain"

Attempt to get from an
empty queue in E _ M O D E.

3 E _ G E T E M P T Y "qhead::get(): empty"

Attempt to put an object
already on some queue.

4 E _ P U T O B J "qtail::put(): object on other queue"

Attempt to put to a full
queue in E _ M O D E.

5 E _ P U T F U L L "qtail::put(): full"

"qhead::putback(): object on other
queue"

Attempt to putback an object
already on some queue.

6 E _ B A C K O B J

Attempt to putback to a full
queue in E _ M O D E.

7 E _ B A C K F U L L "qhead::putback(): full"

Clock was non-zero when
setclock() was called.

8 E _ S E T C L O C K "sched::setclock(): clock!=0"

The clock_task was not I D L E
when the clock was
advanced.

9 E _ C L O C K I D L E "sched::schedule(): clock_task not idle"

Attempt to resume a T E R -
M I N A T E D task.

10 E _ R E S T E R M "sched::schedule: terminated"

Attempt to resume a R U N N I N G
task.

11 E _ R E S R U N "sched::schedule: running"

Negative argument to delay(). 12 E _ N E G T I M E "sched::schedule: clock<0"
"sched::schedule: task or timer on other
queue"

Attempt to resume task or
timer already on some queue.

13 E _ R E S O B J

Bad arguments for histogram
constructor.

14 E _ H I S T O "histogram::histogram(): bad arguments"

Task run time stack overflow. 15 E _ S T A C K "task::restore(): stack overflow"
No more free store--new()
failed.

16 E _ S T O R E "new: free store exhausted"

Illegal mode argument for
task constructor.

17 E _ T A S K M O D E "task::task(): bad mode"

Attempt to delete a non-
T E R M I N A T E D task.

18 E _ T A S K D E L "task::˜task(): not terminated"

Attempt to preempt a non-
R U N N I N G task.

19 E _ T A S K P R E "task::preempt(): not running"
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Error Name Message Explanation

Attempt to delete a non-
T E R M I N A T E D timer.

20 E _ T I M E R D E L "timer::˜timer(): not terminated"

Scheduler run chain is cor-
rupted: bad time.

21 E _ S C H T I M E "schedule: bad time"

Sched object used directly
instead of as a base class.

22 E _ S C H O B J "sched object used directly (not as base)"

Attempt to delete a non-
empty queue.

23 E _ Q D E L "queue::˜queue(): not empty"

A task attempted to obtain its
own r e s u l t ( ).

24 E _ R E S U L T "task::result(): thistask->result()"

A task attempted to w a i t ( )
for itself to T E R M I N A T E.

25 E _ W A I T "task::wait(): wait for self"

"FrameLayout::FrameLayout(): function
start"

Internal error--cannot deter-
mine the call frame layout.

26 E _ F U N C S

"FrameLayout::FrameLayout(): frame
size"

Internal error--cannot deter-
mine frame size.

27 E _ F R A M E S

"task::fudge_return(): unexpected regis-
ter mask"

Internal error--unexpected
register mask.

28 E _ R E G M A S K

Internal error--fudged frame
too big.

29 E _ F U D G E _ S I Z E "task::fudge_return(): frame too big"

No handler for the generated
signal.

30 E _ N O _ H N D L R "sigFunc - no handler for signal"

Attempt to use a signal
number that is out of range.

31 E _ B A D S I G "illegal signal number"

32 E _ L O S T H N D L R "Interrupt_handler::˜Interrupt_handler():
signal handler not on chain"

SEE ALSO
T A S K . I N T R O(3C++), i n t e r r u p t(3C++), q u e u e(3C++), t a s k s i m(3C++)
Stroustrup, B. and Shopiro, J. E., "A Set of C++ Classes for Co-routine Style Programming," in Chapter 2, AT&T
C++ Language System Release 2.1 Library Manual.
Shopiro, J. E., "Extending the C++ Task System for Real-Time Control," in Chapter 2, AT&T C++ Language Sys-
tem Release 2.1 Library Manual.
Keenan, S. A., "A Porting Guide for the C++ Coroutine Library," in Chapter 2, AT&T C++ Language System
Release 2.1 Library Manual.
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NAME
tasksim – histograms and random numbers for simulations with C++ tasks

SYNOPSIS
# i n c l u d e < t a s k . h >

c l a s s h i s t o g r a m {
p u b l i c :

i n t l , r ;
i n t b i n s i z e ;
i n t n b i n ;
i n t * h ;
l o n g s u m ;
l o n g s q s u m ;

h i s t o g r a m ( i n t n b = 1 6 , i n t l e f t = 0 , i n t r i g h t = 1 6 ) ;
v o i d a d d ( i n t b i n ) ;
v o i d p r i n t ( ) ;

} ;

c l a s s r a n d i n t {
p u b l i c :

r a n d i n t ( l o n g s e e d = 0 ) ;
i n t d r a w ( ) ;
f l o a t f d r a w ( ) ;
v o i d s e e d ( l o n g ) ;

} ;

c l a s s u r a n d : p u b l i c r a n d i n t {
p u b l i c :

i n t l o w , h i g h ;
u r a n d ( i n t l o , i n t h i ) ;

i n t d r a w ( ) ;
} ;

c l a s s e r a n d : p u b l i c r a n d i n t {
p u b l i c :

i n t m e a n ;
e r a n d ( i n t m ) ;

i n t d r a w ( ) ;
} ;

DESCRIPTION
The C++ task library can be used to program simulations. To support such applications, the library supplies
classes to ease data gathering and random number generation.

The public member functions supplied in the task system classes h i s t o g r a m, r a n d i n t, u r a n d, and e r a n d are
listed and described in the next two sections. The following symbols are used:

h a h i s t o g r a m object

ri a r a n d i n t object

ur a u r a n d object

er a e r a n d object

i, nb, left, right, lo, hi, m
i n ts
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l a l o n g i n t

f a f l o a t

Histograms
Class h i s t o g r a m provides simple facilities to generate histograms.

Class h i s t o g r a m has one form of constructor:

h i s t o g r a m h( nb, left, right ) ;
Constructs a h i s t o g r a m object, h. A histogram consists of n b i n bins, h[ 0 ] , . . . h[ n b i n - 1 ], covering a
range l to r of integers. The optional arguments to the h i s t o g r a m constructor correspond to the number
of bins (n b i ns), and the left (l) and right (r) ends of the range, respectively. By default, nb is 16, left is 0,
and right is 16, in other words, there are 16 bins covering a range from 0 to 16.

h. a d d ( i )
Adds one to the ith bin. The sum of the integers added is maintained in sum, and the sum of their
squares is maintained in s q s u m. If i is outside the range l-r, the range is extended by either decreasing l
or increasing r. The number of bins however, remains constant, so the size of the range covered by a
bin is doubled each time the size of the range is doubled.

h. p r i n t ( )
Prints the numbers of entries for each non-empty bin in h.

Random Number Generation
Classes r a n d i n t, u r a n d, and e r a n d provide basic facilities for generating random numbers, and can serve as a
paradigm for other, application-specific generators.

Each object of class r a n d i n t provides an independent sequence of random numbers.

Class r a n d i n t has one form of constructor:

r a n d i n t ri( l ) ;
Constructs a r a n d i n t object, ri. The argument is optional, and defaults to 0. If l is given, it is used to
seed ri.

i = ri. d r a w ( )
Returns a random i n t in the range from 0 to l a r g e s t _ p o s i t i v e _ i n t e g e r. Integers returned by
r a n d i n t : : d r a w ( ) are uniformly distributed in that range.

f = ri. f d r a w ( )
Returns f l o a ts that are uniformly distributed in the interval 0 to 1.

ri. s e e d ( l )
Reinitializes a generator with the seed l.

Classes u r a n d and e r a n d are both derived from class r a n d i n t.

u r a n d ur( l o , h i ) ;
Constructs a u r a n d object, ur. l o and h i define the range from l o w to h i g h for the distribution of
numbers generated by this object.

i = ur. d r a w ( )
Returns a random i n t in the range l o w to h i g h. Integers returned from u r a n d : : d r a w ( ) will be uni-
formly distributed in the range.

e r a n d er( i )
Constructs an e r a n d object, er, with i as the m e a n for the distribution of random numbers generated.

i = er. d r a w ( )
Returns a random i n t. Integers returned from e r a n d : : d r a w ( ) will be exponentially distributed around
the m e a n. e r a n d : : d r a w ( ) uses l o g ( ) from the C math library, so programs using it must be loaded
with - l m.

DIAGNOSTICS
See t a s k(3C++).
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SEE ALSO
T A S K . I N T R O(3C++), t a s k(3C++), i n t e r r u p t(3C++), q u e u e(3C++)
Stroustrup, B. and Shopiro, J. E., "A Set of C++ Classes for Co-routine Style Programming," in Chapter 2, AT&T
C++ Language System Release 2.1 Library Manual.
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NAME
iostream – buffering, formatting and input/output

SYNOPSIS
# i n c l u d e < i o s t r e a m . h >
c l a s s s t r e a m b u f ;
c l a s s i o s ;
c l a s s i s t r e a m : v i r t u a l p u b l i c i o s ;
c l a s s o s t r e a m : v i r t u a l p u b l i c i o s ;
c l a s s i o s t r e a m : p u b l i c i s t r e a m , p u b l i c o s t r e a m ;
c l a s s i s t r e a m _ w i t h a s s i g n : p u b l i c i s t r e a m ;
c l a s s o s t r e a m _ w i t h a s s i g n : p u b l i c o s t r e a m ;
c l a s s i o s t r e a m _ w i t h a s s i g n : p u b l i c i o s t r e a m ;

c l a s s I o s t r e a m _ i n i t ;

e x t e r n i s t r e a m _ w i t h a s s i g n c i n ;
e x t e r n o s t r e a m _ w i t h a s s i g n c o u t ;
e x t e r n o s t r e a m _ w i t h a s s i g n c e r r ;
e x t e r n o s t r e a m _ w i t h a s s i g n c l o g ;

# i n c l u d e < f s t r e a m . h >
c l a s s f i l e b u f : p u b l i c s t r e a m b u f ;
c l a s s f s t r e a m : p u b l i c i o s t r e a m ;
c l a s s i f s t r e a m : p u b l i c i s t r e a m ;
c l a s s o f s t r e a m : p u b l i c o s t r e a m ;

# i n c l u d e < s t r s t r e a m . h >
c l a s s s t r s t r e a m b u f : p u b l i c s t r e a m b u f ;
c l a s s i s t r s t r e a m : p u b l i c i s t r e a m ;
c l a s s o s t r s t r e a m : p u b l i c o s t r e a m ;

# i n c l u d e < s t d i o s t r e a m . h >
c l a s s s t d i o b u f : p u b l i c s t r e a m b u f ;
c l a s s s t d i o s t r e a m : p u b l i c i o s ;

DESCRIPTION
The C++ iostream package declared in i o s t r e a m . h and other header files consists primarily of a collection of
classes. Although originally intended only to support input/output, the package now supports related activities
such as incore formatting. This package is a mostly source-compatible extension of the earlier stream I/O pack-
age, described in The C++ Programming Language by Bjarne Stroustrup.

In the iostream man pages, character refers to a value that can be held in either a c h a r or u n s i g n e d c h a r.
When functions that return an i n t are said to return a character, they return a positive value. Usually such
functions can also return E O F (– 1) as an error indication. The piece of memory that can hold a character is
referred to as a byte. Thus, either a c h a r * or an u n s i g n e d c h a r * can point to an array of bytes.

The iostream package consists of several core classes, which provide the basic functionality for I/O conversion
and buffering, and several specialized classes derived from the core classes. Both groups of classes are listed
below.

Core Classes
The core of the iostream package comprises the following classes:

s t r e a m b u f
This is the base class for buffers. It supports insertion (also known as s t o r i n g or p u t t i n g) and
extraction (also known as f e t c h i n g or g e t t i n g) of characters. Most members are inlined for
efficiency. The public interface of class s t r e a m b u f is described in s b u f . p u b(3C++) and the pro-
tected interface (for derived classes) is described in s b u f . p r o t(3C++).
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i o s This class contains state variables that are common to the various stream classes, for example,
error states and formatting states. See i o s(3C++).

i s t r e a m
This class supports formatted and unformatted conversion from sequences of characters fetched
from s t r e a m b u fs. See i s t r e a m(3C++).

o s t r e a m
This class supports formatted and unformated conversion to sequences of characters stored into
s t r e a m b u fs. See o s t r e a m(3C++).

i o s t r e a m
This class combines i s t r e a m and o s t r e a m. It is intended for situations in which bidirectional
operations (inserting into and extracting from a single sequence of characters) are desired. See
i o s(3C++).

i s t r e a m _ w i t h a s s i g n
o s t r e a m _ w i t h a s s i g n
i o s t r e a m _ w i t h a s s i g n

These classes add assignment operators and a constructor with no operands to the corresponding
class without assignment. The predefined streams (see below) c i n, c o u t, c e r r, and c l o g, are
objects of these classes. See i s t r e a m ( 3 C + +), o s t r e a m(3C++), and i o s(3C++).

I o s t r e a m _ i n i t
This class is present for technical reasons relating to initialization. It has no public members.
The I o s t r e a m _ i n i t constructor initializes the predefined streams (listed below). Because an
object of this class is declared in the i o s t r e a m . h header file, the constructor is called once each
time the header is included (although the real initialization is only done once), and therefore the
predefined streams will be initialized before they are used. In some cases, global constructors
may need to call the I o s t r e a m _ i n i t constructor explicitly to ensure the standard streams are
initialized before they are used.

Predefined streams
The following streams are predefined:

c i n The standard input (file descriptor 0).

c o u t The standard output (file descriptor 1).

c e r r Standard error (file descriptor 2). Output through this stream is unit-buffered, which means that
characters are flushed after each inserter operation. (See o s t r e a m : : o s f x ( ) in o s t r e a m(3C++)
and i o s : : u n i t b u f in i o s(3C++).)

c l o g This stream is also directed to file descriptor 2, but unlike c e r r its output is buffered.

c i n, c e r r, and c l o g are tied to c o u t so that any use of these will cause c o u t to be flushed.

In addition to the core classes enumerated above, the iostream package contains additional classes derived from
them and declared in other headers. Programmers may use these, or may choose to define their own classes
derived from the core iostream classes.

Classes derived from s t r e a m b u f
Classes derived from s t r e a m b u f define the details of how characters are produced or consumed. Derivation of
a class from s t r e a m b u f (the p r o t e c t e d i n t e r f a c e) is discussed in s b u f . p r o t(3C++). The available buffer
classes are:

f i l e b u f
This buffer class supports I/O through file descriptors. Members support opening, closing, and
seeking. Common uses do not require the program to manipulate file descriptors. See
f i l e b u f(3C++).

s t d i o b u f
This buffer class supports I/O through stdio F I L E structs. It is intended for use when mixing C
and C++ code. New code should prefer to use f i l e b u fs. See s t d i o b u f(3C++).
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s t r s t r e a m b u f
This buffer class stores and fetches characters from arrays of bytes in memory (i.e., strings). See
s s b u f(3C++).

Classes derived from i s t r e a m, o s t r e a m, and i o s t r e a m
Classes derived from i s t r e a m, o s t r e a m, and i o s t r e a m specialize the core classes for use with particular kinds
of s t r e a m b u fs. These classes are:

i f s t r e a m
o f s t r e a m
f s t r e a m

These classes support formatted I/O to and from files. They use a f i l e b u f to do the I/O.
Common operations (such as opening and closing) can be done directly on streams without
explicit mention of f i l e b u fs. See f s t r e a m(3C++).

i s t r s t r e a m
o s t r s t r e a m

These classes support ‘‘in core’’ formatting. They use a s t r s t r e a m b u f. See s t r s t r e a m(3C++).

s t d i o s t r e a m
This class specializes i o s t r e a m for stdio F I L Es. See s t d i o s t r e a m . h.

CAVEATS
Parts of the s t r e a m b u f class of the old stream package that should have been private were public. Most nor-
mal usage will compile properly, but any code that depends on details, including classes that were derived from
s t r e a m b u fs, will have to be rewritten.

Performance of programs that copy from c i n to c o u t may sometimes be improved by breaking the tie between
c i n and c o u t and doing explicit flushes of c o u t.

The header file s t r e a m . h exists for compatibility with the earlier stream package. It includes i o s t r e a m . h,
s t d i o . h, and some other headers, and it declares some obsolete functions, enumerations, and variables. Some
members of s t r e a m b u f and i o s (not discussed in these man pages) are present only for backward compatibility
with the stream package.

SEE ALSO
i o s(3C++), s b u f . p u b(3C++), s b u f . p r o t(3C++), f i l e b u f(3C++), s t d i o b u f(3C++), s s b u f(3C++),
i s t r e a m(3C++), o s t r e a m(3C++), f s t r e a m(3C++), s t r s t r e a m(3C++), and m a n i p(3C++)
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NAME
filebuf – buffer for file I/O.

SYNOPSIS
# i n c l u d e < i o s t r e a m . h >

t y p e d e f l o n g s t r e a m o f f , s t r e a m p o s ;
c l a s s i o s {
p u b l i c :

e n u m s e e k _ d i r { b e g , c u r , e n d } ;
e n u m o p e n _ m o d e { i n , o u t , a t e , a p p , t r u n c , n o c r e a t e , n o r e p l a c e } ;
/ / a n d l o t s o f o t h e r s t u f f , s e e i o s ( 3 C + + ) . . .

} ;

# i n c l u d e < f s t r e a m . h >

c l a s s f i l e b u f : p u b l i c s t r e a m b u f {
p u b l i c :

s t a t i c c o n s t i n t o p e n p r o t ; / * d e f a u l t p r o t e c t i o n f o r o p e n * /

f i l e b u f ( ) ;
~ f i l e b u f ( ) ;
f i l e b u f ( i n t d ) ;
f i l e b u f ( i n t d , c h a r * p , i n t l e n ) ;

f i l e b u f * a t t a c h ( i n t d ) ;
f i l e b u f * c l o s e ( ) ;
i n t f d ( ) ;
i n t i s _ o p e n ( ) ;
f i l e b u f * o p e n ( c h a r * n a m e , i n t o m o d e , i n t p r o t = o p e n p r o t ) ;
s t r e a m p o s s e e k o f f ( s t r e a m o f f , s e e k _ d i r , i n t o m o d e ) ;
s t r e a m p o s s e e k p o s ( s t r e a m p o s , i n t o m o d e ) ;
s t r e a m b u f * s e t b u f ( c h a r * p , i n t l e n ) ;
i n t s y n c ( ) ;

} ;

DESCRIPTION
f i l e b u fs specialize s t r e a m b u fs to use a file as a source or sink of characters. Characters are consumed by
doing writes to the file, and are produced by doing reads. When the file is seekable, a f i l e b u f allows seeks.
At least 4 characters of putback are guaranteed. When the file permits reading and writing, the f i l e b u f per-
mits both storing and fetching. No special action is required between gets and puts (unlike stdio). A f i l e b u f
that is connected to a file descriptor is said to be o p e n. Files are opened by default with a protection mode of
o p e n p r o t, which is 0644.

The reserve area (or buffer, see s b u f . p u b(3C++) and s b u f . p r o t(3C++)) is allocated automatically if one is not
specified explicitly with a constructor or a call to s e t b u f ( ). f i l e b u fs can also be made u n b u f f e r e d with cer-
tain arguments to the constructor or s e t b u f ( ), in which case a system call is made for each character that is
read or written. The g e t and p u t pointers into the reserve area are conceptually tied together; they behave as a
single pointer. Therefore, the descriptions below refer to a single get/put pointer.

In the descriptions below, assume:
— f is a f i l e b u f.
— pfb is a f i l e b u f *.
— psb is a s t r e a m b u f *.
— i, d, len, and prot are i n ts.
— name and ptr are c h a r *s.
— mode is an i n t representing an o p e n _ m o d e.
— off is a s t r e a m o f f.
— p and pos are s t r e a m p o s’s.
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— dir is a s e e k _ d i r.

Constructors:

f i l e b u f ( )
Constructs an initially closed f i l e b u f.

f i l e b u f (d)
Constructs a f i l e b u f connected to file descriptor d.

f i l e b u f (d, p, len)
Constructs a f i l e b u f connected to file descriptor d and initialized to use the reserve area starting at p
and containing len bytes. If p is null or len is zero or less, the f i l e b u f will be unbuffered.

Members:

pfb=f. a t t a c h (d)
Connects f to an open file descriptor, d. a t t a c h ( ) normally returns &f, but returns 0 if f is already open.

pfb=f. c l o s e ( )
Flushes any waiting output, closes the file descriptor, and disconnects f. Unless an error occurs, f’s error
state will be cleared. c l o s e ( ) returns &f unless errors occur, in which case it returns 0. Even if errors
occur, c l o s e ( ) leaves the file descriptor and f closed.

i=f. f d ( )
Returns i, the file descriptor f is connected to. If f is closed, i is E O F.

i=f. i s _ o p e n ( )
Returns non-zero when f is connected to a file descriptor, and zero otherwise.

pfb=f. o p e n (name, mode, prot)
Opens file name and connects f to it. If the file does not already exist, an attempt is made to create it
with protection mode prot, unless i o s : : n o c r e a t e is specified in mode. By default, prot is
f i l e b u f : : o p e n p r o t, which is 0644. Failure occurs if f is already open. o p e n ( ) normally returns &f, but
if an error occurs it returns 0. The members of o p e n _ m o d e are bits that may be or’ed together. (Because
the or’ing returns an i n t, o p e n ( ) takes an i n t rather than an o p e n _ m o d e argument.) The meanings of
these bits in mode are described in detail in f s t r e a m(3C++).

p=f. s e e k o f f (off, dir, mode)
Moves the get/put pointer as designated by off and dir. It may fail if the file that f is attached to does
not support seeking, or if the attempted motion is otherwise invalid (such as attempting to seek to a
position before the beginning of file). off is interpreted as a count relative to the place in the file
specified by dir as described in s b u f . p u b(3C++). mode is ignored. s e e k o f f ( ) returns p, the new posi-
tion, or E O F if a failure occurs. The position of the file after a failure is undefined.

p=f. s e e k p o s (pos, mode)
Moves the file to a position pos as described in s b u f . p u b(3C++). mode is ignored. s e e k p o s ( ) normally
returns pos, but on failure it returns E O F.

psb=f. s e t b u f (ptr, len)
Sets up the reserve area as len bytes beginning at ptr. If ptr is null or len is less than or equal to 0, f will
be unbuffered. s e t b u f ( ) normally returns &f. However, if f is open and a buffer has been allocated, no
changes are made to the reserve area or to the buffering status, and s e t b u f ( ) returns 0.

i=f. s y n c ( )
Attempts to force the state of the get/put pointer of f to agree (be synchronized) with the state of the
file f. f d ( ). This means it may write characters to the file if some have been buffered for output or
attempt to reposition (seek) the file if characters have been read and buffered for input. Normally,
s y n c ( ) returns 0, but it returns E O F if synchronization is not possible.

Sometimes it is necessary to guarantee that certain characters are written together. To do this, the pro-
gram should use s e t b u f ( ) (or a constructor) to guarantee that the reserve area is at least as large as the
number of characters that must be written together. It can then call s y n c ( ), then store the characters,
then call s y n c ( ) again.

Page 2 3/91



FILEBUF ( 3C++ ) ( C++ Stream Library ) FILEBUF ( 3C++ )

CAVEATS
a t t a c h ( ) and the constructors should test if the file descriptor they are given is open, but I can’t figure out a
portable way to do that.

There is no way to force atomic reads.

The UNIX system does not usually report failures of seek (e.g., on a tty), so a filebuf does not either.

SEE ALSO
s b u f . p u b(3C++), s b u f . p r o t(3C++), and f s t r e a m(3C++).
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NAME
fstream – iostream and streambuf specialized to files

SYNOPSIS
# i n c l u d e < f s t r e a m . h >

t y p e d e f l o n g s t r e a m o f f , s t r e a m p o s ;
c l a s s i o s {
p u b l i c :

e n u m s e e k _ d i r { b e g , c u r , e n d } ;
e n u m o p e n _ m o d e { i n , o u t , a t e , a p p , t r u n c , n o c r e a t e , n o r e p l a c e } ;
e n u m i o _ s t a t e { g o o d b i t = 0 , e o f b i t , f a i l b i t , b a d b i t } ;
/ / a n d l o t s o f o t h e r s t u f f , s e e i o s ( 3 C + + ) . . .

} ;

c l a s s i f s t r e a m : i s t r e a m {
i f s t r e a m ( ) ;
~ i f s t r e a m ( ) ;
i f s t r e a m ( c o n s t c h a r * n a m e , i n t = i o s : : i n ,

i n t p r o t = f i l e b u f : : o p e n p r o t ) ;
i f s t r e a m ( i n t f d ) ;
i f s t r e a m ( i n t f d , c h a r * p , i n t l ) ;

v o i d a t t a c h ( i n t f d ) ;
v o i d c l o s e ( ) ;
v o i d o p e n ( c h a r * n a m e , i n t = i o s : : i n ,

i n t p r o t = f i l e b u f : : o p e n p r o t ) ;
f i l e b u f * r d b u f ( ) ;
v o i d s e t b u f ( c h a r * p , i n t l ) ;

} ;

c l a s s o f s t r e a m : o s t r e a m {
o f s t r e a m ( ) ;
~ o f s t r e a m ( ) ;
o f s t r e a m ( c o n s t c h a r * n a m e , i n t = i o s : : o u t ,

i n t p r o t = f i l e b u f : : o p e n p r o t ) ;
o f s t r e a m ( i n t f d ) ;
o f s t r e a m ( i n t f d , c h a r * p , i n t l ) ;

v o i d a t t a c h ( i n t f d ) ;
v o i d c l o s e ( ) ;
v o i d o p e n ( c h a r * n a m e , i n t = i o s : : o u t , i n t p r o t = f i l e b u f : : o p e n p r o t ) ;
f i l e b u f * r d b u f ( ) ;
v o i d s e t b u f ( c h a r * p , i n t l ) ;

} ;

c l a s s f s t r e a m : i o s t r e a m {
f s t r e a m ( ) ;
~ f s t r e a m ( ) ;
f s t r e a m ( c o n s t c h a r * n a m e , i n t m o d e ,

i n t p r o t = f i l e b u f : : o p e n p r o t ) ;
f s t r e a m ( i n t f d ) ;
f s t r e a m ( i n t f d , c h a r * p , i n t l ) ;

v o i d a t t a c h ( i n t f d ) ;
v o i d c l o s e ( ) ;
v o i d o p e n ( c h a r * n a m e , i n t m o d e , i n t p r o t = f i l e b u f : : o p e n p r o t ) ;
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f i l e b u f * r d b u f ( ) ;
v o i d s e t b u f ( c h a r * p , i n t l ) ;

} ;

DESCRIPTION
i f s t r e a m, o f s t r e a m, and f s t r e a m specialize i s t r e a m, o s t r e a m, and i o s t r e a m, respectively, to files. That is,
the associated s t r e a m b u f will be a f i l e b u f.

In the following descriptions, assume
— f is any of i f s t r e a m, o f s t r e a m, or f s t r e a m.
— pfb is a f i l e b u f *.
— psb is a s t r e a m b u f *.
— name and ptr are c h a r *s.
— i, fd, len, and prot are i n ts.
— mode is an i n t representing an o p e n _ m o d e.

Constructors
The constructors for xs t r e a m, where x is either i f, o f, or f, are:

xs t r e a m ( )
Constructs an unopened xs t r e a m.

xs t r e a m (name, mode, prot)
Constructs an xs t r e a m and opens file name using mode as the open mode and prot as the protec-
tion mode. By default, prot is f i l e b u f : : o p e n p r o t, which is 0644. The error state (i o _ s t a t e) of
the constructed xs t r e a m will indicate failure in case the o p e n fails.

xs t r e a m (d)
Constructs an xs t r e a m connected to file descriptor d, which must be already open.

xs t r e a m (d,ptr,len)
Constructs an xs t r e a m connected to file descriptor d, and, in addition, initializes the associated
f i l e b u f to use the len bytes at ptr as the reserve area. If ptr is null or len is 0, the f i l e b u f will
be unbuffered.

Member functions
f. a t t a c h (d)

Connects f to the file descriptor d. A failure occurs when f is already connected to a file. A
failure sets i o s : : f a i l b i t in f’s error state.

f. c l o s e ( )
Closes any associated f i l e b u f and thereby breaks the connection of the f to a file. f’s error state
is cleared except on failure. A failure occurs when the call to f. r d b u f ( ) - > c l o s e ( ) fails.

f. o p e n (name,mode,prot)
Opens file name and connects f to it. If the file does not already exist, an attempt is made to
create it with protection mode prot unless i o s : : n o c r e a t e is set. By default, prot is
f i l e b u f : : o p e n p r o t, which is 0644. Failure occurs if f is already open, or the call to
f. r d b u f ( ) - > o p e n ( ) fails. i o s : : f a i l b i t is set in f’s error status on failure. The members of
o p e n _ m o d e are bits that may be or’ed together. (Because the or’ing returns an i n t, o p e n ( ) takes
an i n t rather than an o p e n _ m o d e argument.) The meanings of these bits in mode are:

i o s : : a p p
A seek to the end of file is performed. Subsequent data written to the file is always
added (appended) at the end of file. On some systems this is implemented in the operat-
ing system. In others it is implemented by seeking to the end of the file before each
write. i o s : : a p p implies i o s : : o u t.

i o s : : a t e
A seek to the end of the file is performed during the o p e n ( ). i o s : : a t e does not imply
i o s : : o u t.
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i o s : : i n
The file is opened for input. i o s : : i n is implied by construction and opens of i f s t r e a ms.
For f s t r e a ms it indicates that input operations should be allowed if possible. Is is legal
to include i o s : : i n in the modes of an o s t r e a m in which case it implies that the original
file (if it exists) should not be truncated. If the file being opened for input does not exist,
the open will fail.

i o s : : o u t
The file is opened for output. i o s : : o u t is implied by construction and opens of
o f s t r e a ms. For f s t r e a m it says that output operations are to be allowed. i o s : : o u t may
be specified even if prot does not permit output.

i o s : : t r u n c
If the file already exists, its contents will be truncated (discarded). This mode is implied
when i o s : : o u t is specified (including implicit specification for o f s t r e a m) and neither
i o s : : a t e nor i o s : : a p p is specified.

i o s : : n o c r e a t e
If the file does not already exist, the o p e n ( ) will fail.

i o s : : n o r e p l a c e
If the file already exists, the o p e n ( ) will fail. Only valid with i o s : : o u t.

pfb=f. r d b u f ( )
Returns a pointer to the f i l e b u f associated with f. f s t r e a m : : r d b u f ( ) has the same meaning as
i o s t r e a m : : r d b u f ( ) but is typed differently.

f. s e t b u f (p,len)
Has the usual effect of a s e t b u f ( ) (see f i l e b u f(3C++)), offering space for a reserve area or
requesting unbuffered I/O. Normally the returned psb is f. r d b u f ( ), but it is 0 on failure. A
failure occurs if f is open or the call to f. r d b u f ( ) - > s e t b u f fails.

SEE ALSO
f i l e b u f(3C++), i s t r e a m(3C++), i o s(3C++), o s t r e a m(3C++), s b u f . p u b(3C++)
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NAME
ios – input/output formatting

SYNOPSIS
# i n c l u d e < i o s t r e a m . h >

c l a s s i o s {
p u b l i c :

e n u m i o _ s t a t e { g o o d b i t = 0 , e o f b i t , f a i l b i t , b a d b i t } ;
e n u m o p e n _ m o d e { i n , o u t , a t e , a p p , t r u n c , n o c r e a t e , n o r e p l a c e } ;
e n u m s e e k _ d i r { b e g , c u r , e n d } ;
/ * f l a g s f o r c o n t r o l l i n g f o r m a t * /
e n u m { s k i p w s = 0 1 ,

l e f t = 0 2 , r i g h t = 0 4 , i n t e r n a l = 0 1 0 ,
d e c = 0 2 0 , o c t = 0 4 0 , h e x = 0 1 0 0 ,
s h o w b a s e = 0 2 0 0 , s h o w p o i n t = 0 4 0 0 , u p p e r c a s e = 0 1 0 0 0 , s h o w p o s = 0 2 0 0 0 ,
s c i e n t i f i c = 0 4 0 0 0 , f i x e d = 0 1 0 0 0 0 ,
u n i t b u f = 0 2 0 0 0 0 , s t d i o = 0 4 0 0 0 0 } ;

s t a t i c c o n s t l o n g b a s e f i e l d ;
/ * d e c | o c t | h e x * /

s t a t i c c o n s t l o n g a d j u s t f i e l d ;
/ * l e f t | r i g h t | i n t e r n a l * /

s t a t i c c o n s t l o n g f l o a t f i e l d ;
/ * s c i e n t i f i c | f i x e d * /

p u b l i c :
i o s ( s t r e a m b u f * ) ;

i n t b a d ( ) ;
s t a t i c l o n g b i t a l l o c ( ) ;
v o i d c l e a r ( i n t s t a t e = 0 ) ;
i n t e o f ( ) ;
i n t f a i l ( ) ;
c h a r f i l l ( ) ;
c h a r f i l l ( c h a r ) ;
l o n g f l a g s ( ) ;
l o n g f l a g s ( l o n g ) ;
i n t g o o d ( ) ;
l o n g & i w o r d ( i n t ) ;
i n t o p e r a t o r ! ( ) ;

o p e r a t o r v o i d * ( ) ;
i n t p r e c i s i o n ( ) ;
i n t p r e c i s i o n ( i n t ) ;
s t r e a m b u f * r d b u f ( ) ;
v o i d * & p w o r d ( i n t ) ;
i n t r d s t a t e ( ) ;
l o n g s e t f ( l o n g s e t b i t s , l o n g f i e l d ) ;
l o n g s e t f ( l o n g ) ;
s t a t i c v o i d s y n c _ w i t h _ s t d i o ( ) ;
o s t r e a m * t i e ( ) ;
o s t r e a m * t i e ( o s t r e a m * ) ;
l o n g u n s e t f ( l o n g ) ;
i n t w i d t h ( ) ;
i n t w i d t h ( i n t ) ;
s t a t i c i n t x a l l o c ( ) ;

p r o t e c t e d :
i o s ( ) ;
i n i t ( s t r e a m b u f * ) ;
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p r i v a t e :
i o s ( i o s & ) ;

v o i d o p e r a t o r = ( i o s & ) ;
} ;

/ * M a n i p u l a t o r s * /
i o s & d e c ( i o s & ) ;
i o s & h e x ( i o s & ) ;
i o s & o c t ( i o s & ) ;
o s t r e a m & e n d l ( o s t r e a m & i ) ;
o s t r e a m & e n d s ( o s t r e a m & i ) ;
o s t r e a m & f l u s h ( o s t r e a m & ) ;
i s t r e a m & w s ( i s t r e a m & ) ;

DESCRIPTION
The stream classes derived from class i o s provide a high level interface that supports transferring formatted
and unformatted information into and out of s t r e a m b u fs. This manual page describes the operations common
to both input and output.

Several enumerations are declared in class i o s, o p e n _ m o d e, i o _ s t a t e, s e e k _ d i r, and format flags, to avoid
polluting the global name space. The i o _ s t a t es are described on this manual page under ‘‘Error States.’’ The
format fields are also described on this page, under ‘‘Formatting.’’ The o p e n _ m o d es are described in detail in
f s t r e a m(3C++) under o p e n ( ). The s e e k _ d i rs are described in s b u f . p u b(3C++) under s e e k o f f ( ).

In the following descriptions assume:
— s and s2 are i o ss.
— sr is an i o s &.
— sp is a i o s *.
— i, oi, j, and n are i n ts.
— l, f, and b are l o n gs.
— c and oc are c h a rs.
— osp and oosp are o s t r e a m *s.
— sb is a s t r e a m b u f *.
— pos is a s t r e a m p o s.
— off is a s t r e a m o f f.
— dir is a s e e k _ d i r.
— mode is an i n t representing an o p e n _ m o d e.
— fct is a function with type i o s & ( * ) ( i o s & ).
— vp is a v o i d * &.

Constructors and assignment:
i o s (sb)

The s t r e a m b u f denoted by sb becomes the s t r e a m b u f associated with the constructed i o s. If sb
is null, the effect is undefined.

i o s (sr)
s2=s

Copying of i o ss is not well-defined in general, therefore the constructor and assignment opera-
tors are private so that the compiler will complain about attempts to copy i o s objects. Copying
pointers to i o s t r e a ms is usually what is desired.

i o s ( )
i n i t (sb)

Because class i o s is now inherited as a virtual base class, a constructor with no arguments must
be used. This constructor is declared protected. Therefore i o s : : i n i t ( s t r e a m b u f * ) is declared
protected and must be used for initialization of derived classes.
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Error States
An i o s has an internal error state (which is a collection of the bits declared as i o _ s t a t es). Members related to
the error state are:

i=s. r d s t a t e ( )
Returns the current error state.

s. c l e a r (i)
Stores i as the error state. If i is zero, this clears all bits. To set a bit without clearing previously
set bits requires something like s. c l e a r ( i o s : : b a d b i t | s . r d s t a t e ( ) ).

i=s. g o o d ( )
Returns non-zero if the error state has no bits set, zero otherwise.

i=s. e o f ( )
Returns non-zero if e o f b i t is set in the error state, zero otherwise. Normally this bit is set when
an end-of-file has been encountered during an extraction.

i=s. f a i l ( )
Returns non-zero if either b a d b i t or f a i l b i t is set in the error state, zero otherwise. Normally
this indicates that some extraction or conversion has failed, but the stream is still usable. That is,
once the f a i l b i t is cleared, I/O on s can usually continue.

i=s. b a d ( )
Returns non-zero if b a d b i t is set in the error state, zero otherwise. This usually indicates that
some operation on s. r d b u f ( ) has failed, a severe error, from which recovery is probably impos-
sible. That is, it will probably be impossible to continue I/O operations on s.

Operators
Two operators are defined to allow convenient checking of the error state of an i o s: o p e r a t o r ! ( ) and o p e r a -
t o r v o i d * ( ). The latter converts an i o s to a pointer so that it can be compared to zero. The conversion will
return 0 if f a i l b i t or b a d b i t is set in the error state, and will return a pointer value otherwise. This pointer is
not meant to be used. This allows one to write expressions such as:

i f ( c i n ) . . .

i f ( c i n > > x ) . . .

The ! operator returns non-zero if f a i l b i t or b a d b i t is set in the error state, which allows expressions like the
following to be used:

i f ( ! c o u t ) . . .

Formatting
An i o s has a format state that is used by input and output operations to control the details of formatting opera-
tions. For other operations the format state has no particular effect and its components may be set and exam-
ined arbitrarily by user code. Most formatting details are controlled by using the f l a g s ( ), s e t f ( ), and
u n s e t f ( ) functions to set the following flags, which are declared in an enumeration in class i o s. Three other
components of the format state are controlled separately with the functions f i l l ( ), w i d t h ( ), and
p r e c i s i o n ( ).

s k i p w s
If s k i p w s is set, whitespace will be skipped on input. This applies to scalar extractions. When
s k i p w s is not set, whitespace is not skipped before the extractor begins conversion. If s k i p w s is
not set and a zero length field is encountered, the extractor will signal an error. Additionally, the
arithmetic extractors will signal an error if s k i p w s is not set and a whitespace is encountered.

l e f t
r i g h t
i n t e r n a l

These flags control the padding of a value. When l e f t is set, the value is left-adjusted, that is,
the fill character is added after the value. When r i g h t is set, the value is right-adjusted, that is,

3/91 Page 3



IOS ( 3C++ ) ( C++ Stream Library ) IOS ( 3C++ )

the fill character is added before the value. When i n t e r n a l is set, the fill character is added
after any leading sign or base indication, but before the value. Right-adjustment is the default if
none of these flags is set. These fields are collectively identified by the static member,
i o s : : a d j u s t f i e l d. The fill character is controlled by the f i l l ( ) function, and the width of
padding is controlled by the w i d t h ( ) function.

d e c
o c t
h e x

These flags control the conversion base of a value. The conversion base is 10 (decimal) if d e c is
set, but if o c t or h e x is set, conversions are done in octal or hexidecimal, respectively. If none of
these is set, insertions are in decimal, but extractions are interpreted according to the C++ lexical
conventions for integral constants. These fields are collectively identified by the static member,
i o s : : b a s e f i e l d. The manipulators h e x, d e c, and o c t can also be used to set the conversion
base; see ‘‘Built-in Manipulators’’ below.

s h o w b a s e
If s h o w b a s e is set, insertions will be converted to an external form that can be read according to
the C++ lexical conventions for integral constants. s h o w b a s e is unset by default.

s h o w p o s
If s h o w p o s is set, then a ‘‘+’’ will be inserted into a decimal conversion of a positive integral
value.

u p p e r c a s e
If u p p e r c a s e is set, then an uppercase ‘‘X‘‘ will be used for hexadecimal conversion when
s h o w b a s e is set, or an uppercase ‘‘E’’ will be used to print floating point numbers in scientific
notation.

s h o w p o i n t
If s h o w p o i n t is set, trailing zeros and decimal points appear in the result of a floating point
conversion.

s c i e n t i f i c
f i x e d

These flags control the format to which a floating point value is converted for insertion into a
stream. If s c i e n t i f i c is set, the value is converted using scientific notation, where there is one
digit before the decimal point and the number of digits after it is equal to the p r e c i s i o n (see
below), which is six by default. An uppercase ‘‘E’’ will introduce the exponent if u p p e r c a s e is
set, a lowercase ‘‘e’’ will appear otherwise. If f i x e d is set, the value is converted to decimal
notation with p r e c i s i o n digits after the decimal point, or six by default. If neither s c i e n t i f i c
nor f i x e d is set, then the value will be converted using either notation, depending on the value;
scientific notation will be used if the exponent resulting from the conversion is less than – 4 or
greater than or equal to precision digits. Otherwise the value will be converted to decimal nota-
tion with p r e c i s i o n digits total. If s h o w p o i n t is not set, trailing zeroes are removed from the
result and a decimal point appears only if it is followed by a digit. s c i e n t i f i c and f i x e d are
collectively identified by the static member i o s : : f l o a t f i e l d.

u n i t b u f
When set, a flush is performed by o s t r e a m : : o s f x ( ) after each insertion. Unit buffering pro-
vides a compromise between buffered output and unbuffered output. Performance is better
under unit buffering than unbuffered output, which makes a system call for each character out-
put. Unit buffering makes a system call for each insertion operation, and doesn’t require the user
to call o s t r e a m : : f l u s h ( ).

s t d i o When set, s t d o u t and s t d e r r are flushed by o s t r e a m : : o s f x ( ) after each insertion.

The following functions use and set the format flags and variables.
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oc=s. f i l l (c)
Sets the ‘‘fill character’’ format state variable to c and returns the previous value. c will be used
as the padding character, if one is necessary (see w i d t h(), below). The default fill or padding
character is a space. The positioning of the fill character is determined by the r i g h t, l e f t, and
i n t e r n a l flags; see above. A parameterized manipulator, s e t f i l l, is also available for setting
the fill character; see m a n i p(3C++).

c=s. f i l l ( )
Returns the ‘‘fill character’’ format state variable.

l=s. f l a g s ( )
Returns the current format flags.

l=s. f l a g s ( f )
Resets all the format flags to those specified in f and returns the previous settings.

oi=s. p r e c i s i o n (i)
Sets the p r e c i s i o n format state variable to i and returns the previous value. This variable con-
trols the number of significant digits inserted by the floating point inserter. The default is 6. A
parameterized manipulator, s e t p r e c i s i o n, is also available for setting the precision; see
m a n i p(3C++).

i=s. p r e c i s i o n ( )
Returns the p r e c i s i o n format state variable.

l=s. s e t f (b)
Turns on in s the format flags marked in b and returns the previous settings. A parameterized
manipulator, s e t i o s f l a g s, performs the same function; see m a n i p(3C++).

l=s. s e t f (b,f)
Resets in s only the format flags specified by f to the settings marked in b, and returns the previ-
ous settings. That is, the format flags specified by f are cleared in s, then reset to be those
marked in b. For example, to change the conversion base in s to be h e x, one could write:
s. s e t f ( i o s : : h e x , i o s : : b a s e f i e l d ). i o s : : b a s e f i e l d specifies the conversion base bits as
candidates for change, and i o s : : h e x specifies the new value. s. s e t f ( 0 ,f) will clear all the bits
specified by f, as will a parameterized manipulator, r e s e t i o s f l a g s; see m a n i p(3C++).

l=s. u n s e t f (b)
Unsets in s the bits set in b and returns the previous settings.

oi=s. w i d t h (i)
Sets the field width format variable to i and returns the previous value. When the field width is
zero (the default), inserters will insert only as many characters as necessary to represent the value
being inserted. When the field width is non-zero, the inserters will insert at least that many char-
acters, using the fill character to pad the value, if the value being inserted requires fewer than
field-width characters to be represented. However, the numeric inserters never truncate values, so
if the value being inserted will not fit in field-width characters, more than field-width characters
will be output. The field width is always interpreted as a mininum number of characters; there is
no direct way to specify a maximum number of characters. The field-width format variable is
reset to the default (zero) after each insertion or extraction, and in this sense it behaves as a
parameter for insertions and extractions. A parameterized manipulator, s e t w, is also available
for setting the width; see m a n i p(3C++).

i=s. w i d t h ( )
Returns the field-width format variable.

User-defined Format Flags
Class i o s can be used as a base class for derived classes that require additional format flags or variables. The
iostream library provides several functions to do this. The two static member functions i o s : : x a l l o c and
i o s : : b i t a l l o c, allow several such classes to be used together without interference.
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b= i o s : : b i t a l l o c ( )
Returns a l o n g with a single, previously unallocated, bit set. This allows users who need an
additional flag to acquire one, and pass it as an argument to i o s : : s e t f ( ), for example.

i= i o s : : x a l l o c ( )
Returns a previously unused index into an array of words available for use as format state vari-
ables by derived classes.

l=s. i w o r d (i)
When i is an index allocated by i o s : : x a l l o c, i w o r d ( ) returns a reference to the ith user-defined
word.

vp=s. p w o r d (i)
When i is an index allocated by i o s : : x a l l o c, p w o r d ( ) returns a reference to the ith user-defined
word. p w o r d ( ) is the same as i w o r d except that it is typed differently.

Other members:
sb=s. r d b u f ( )

Returns a pointer to the s t r e a m b u f associated with s when s was constructed.

i o s : : s y n c _ w i t h _ s t d i o ( )
Solves problems that arise when mixing stdio and iostreams. The first time it is called it will
reset the standard iostreams (c i n, c o u t, c e r r, c l o g) to be streams using s t d i o b u fs. After that,
input and output using these streams may be mixed with input and output using the correspond-
ing F I L Es (s t d i n, s t d o u t, and s t d e r r) and will be properly synchronized. s y n c _ w i t h _ s t d i o ( )
makes c o u t and c e r r unit buffered (see i o s : : u n i t b u f and i o s : : s t d i o above). Invoking
s y n c _ w i t h _ s t d i o ( ) degrades performance a variable amount, depending on the length of the
strings being inserted (shorter strings incur a larger performance hit).

oosp=s. t i e (osp)
Sets the t i e variable to osp, and returns its previous value. This variable supports automatic
‘‘flushing’’ of i o ss. If the t i e variable is non-null and an i o s needs more characters or has char-
acters to be consumed, the i o s pointed at by the tie variable is flushed. By default, c i n is tied
initially to c o u t so that attempts to get more characters from standard input result in flushing
standard output. Additionally, c e r r and c l o g are tied to c o u t by default. For other i o ss, the
tie variable is set to zero by default.

osp=s. t i e ( )
Returns the t i e variable.

Built-in Manipulators:
Some convenient manipulators (functions that take an i o s &, an i s t r e a m &, or an o s t r e a m & and return their
argument; see m a n i p(3C++)) are:

sr< < d e c
sr> > d e c

These set the conversion base format flag to 10.

sr< < h e x
sr> > h e x

These set the conversion base format flag to 16.

sr< < o c t
sr> > o c t

These set the conversion base format flag to 8.

sr> > w s
Extracts whitespace characters. See i s t r e a m(3C++).

sr< < e n d l
Ends a line by inserting a newline character and flushing. See o s t r e a m(3C++).
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sr< < e n d s
Ends a string by inserting a null (0) character. See o s t r e a m(3C++).

sr< < f l u s h
Flushes o u t s. See o s t r e a m(3C++).

Several parameterized manipulators that operate on i o s objects are described in m a n i p(3C++): s e t w, s e t f i l l,
s e t p r e c i s i o n, s e t i o s f l a g s, and r e s e t i o s f l a g s.

The s t r e a m b u f associated with an i o s may be manipulated by other methods than through the i o s. For exam-
ple, characters may be stored in a queuelike s t r e a m b u f through an o s t r e a m while they are being fetched
through an i s t r e a m. Or for efficiency some part of a program may choose to do s t r e a m b u f operations
directly rather than through the i o s. In most cases the program does not have to worry about this possibility,
because an i o s never saves information about the internal state of a s t r e a m b u f. For example, if the s t r e a m b u f
is repositioned between extraction operations the extraction (input) will proceed normally.

CAVEATS
The need for s y n c _ w i t h _ s t d i o is a wart. The old stream package did this as a default, but in the iostream
package unbuffered s t d i o b u fs are too inefficient to be the default.

The stream package had a constructor that took a F I L E * argument. This is now replaced by s t d i o s t r e a m. It
is not declared even as an obsolete form to avoid having i o s t r e a m . h depend on s t d i o . h.

The old stream package allowed copying of streams. This is disallowed by the iostream package. However,
objects of type i s t r e a m _ w i t h a s s i g n, o s t r e a m _ w i t h a s s i g n, and i o s t r e a m _ w i t h a s s i g n can be assigned to.
Old code using copying can usually be rewritten to use pointers or these classes. (The standard streams c i n,
c o u t, c e r r, and c l o g are members of ‘‘withassign’’ classes, so they can be assigned to, as in
c i n = i n p u t f s t r e a m.)

SEE ALSO
I O S . I N T R O(3C++), s t r e a m b u f(3C++), i s t r e a m(3C++), o s t r e a m(3C++), m a n i p(3C++).

3/91 Page 7



ISTREAM ( 3C++ ) ( C++ Stream Library ) ISTREAM ( 3C++ )

NAME
istream – formatted and unformatted input

SYNOPSIS
# i n c l u d e < i o s t r e a m . h >

t y p e d e f l o n g s t r e a m o f f , s t r e a m p o s ;
c l a s s i o s {
p u b l i c :

e n u m s e e k _ d i r { b e g , c u r , e n d } ;
e n u m o p e n _ m o d e { i n , o u t , a t e , a p p , t r u n c , n o c r e a t e , n o r e p l a c e } ;
/ * f l a g s f o r c o n t r o l l i n g f o r m a t * /
e n u m { s k i p w s = 0 1 ,

l e f t = 0 2 , r i g h t = 0 4 , i n t e r n a l = 0 1 0 ,
d e c = 0 2 0 , o c t = 0 4 0 , h e x = 0 1 0 0 ,
s h o w b a s e = 0 2 0 0 , s h o w p o i n t = 0 4 0 0 , u p p e r c a s e = 0 1 0 0 0 , s h o w p o s = 0 2 0 0 0 ,
s c i e n t i f i c = 0 4 0 0 0 , f i x e d = 0 1 0 0 0 0 ,
u n i t b u f = 0 2 0 0 0 0 , s t d i o = 0 4 0 0 0 0 } ;

/ / a n d l o t s o f o t h e r s t u f f , s e e i o s ( 3 C + + ) . . .
} ;

c l a s s i s t r e a m : p u b l i c i o s {
p u b l i c :

i s t r e a m ( s t r e a m b u f * ) ;
i n t g c o u n t ( ) ;
i s t r e a m & g e t ( c h a r * p t r , i n t l e n , c h a r d e l i m = ’ \ n ’ ) ;
i s t r e a m & g e t ( u n s i g n e d c h a r * p t r , i n t l e n , c h a r d e l i m = ’ \ n ’ ) ;

i s t r e a m & g e t ( u n s i g n e d c h a r & ) ;
i s t r e a m & g e t ( c h a r & ) ;
i s t r e a m & g e t ( s t r e a m b u f & s b , c h a r d e l i m = ’ \ n ’ ) ;
i n t g e t ( ) ;
i s t r e a m & g e t l i n e ( c h a r * p t r , i n t l e n , c h a r d e l i m = ’ \ n ’ ) ;
i s t r e a m & g e t l i n e ( u n s i g n e d c h a r * p t r , i n t l e n , c h a r d e l i m = ’ \ n ’ ) ;
i s t r e a m & i g n o r e ( i n t l e n = 1 , i n t d e l i m = E O F ) ;
i n t i p f x ( i n t n e e d = 0 ) ;
i n t p e e k ( ) ;
i s t r e a m & p u t b a c k ( c h a r ) ;
i s t r e a m & r e a d ( c h a r * s , i n t n ) ;
i s t r e a m & r e a d ( u n s i g n e d c h a r * s , i n t n ) ;
i s t r e a m & s e e k g ( s t r e a m p o s ) ;
i s t r e a m & s e e k g ( s t r e a m o f f , s e e k _ d i r ) ;
i n t s y n c ( ) ;
s t r e a m p o s t e l l g ( ) ;

i s t r e a m & o p e r a t o r > > ( c h a r * ) ;
i s t r e a m & o p e r a t o r > > ( c h a r & ) ;
i s t r e a m & o p e r a t o r > > ( s h o r t & ) ;
i s t r e a m & o p e r a t o r > > ( i n t & ) ;
i s t r e a m & o p e r a t o r > > ( l o n g & ) ;
i s t r e a m & o p e r a t o r > > ( f l o a t & ) ;
i s t r e a m & o p e r a t o r > > ( d o u b l e & ) ;
i s t r e a m & o p e r a t o r > > ( u n s i g n e d c h a r * ) ;
i s t r e a m & o p e r a t o r > > ( u n s i g n e d c h a r & ) ;
i s t r e a m & o p e r a t o r > > ( u n s i g n e d s h o r t & ) ;
i s t r e a m & o p e r a t o r > > ( u n s i g n e d i n t & ) ;
i s t r e a m & o p e r a t o r > > ( u n s i g n e d l o n g & ) ;
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i s t r e a m & o p e r a t o r > > ( s t r e a m b u f * ) ;
i s t r e a m & o p e r a t o r > > ( i s t r e a m & ( * ) ( i s t r e a m & ) ) ;
i s t r e a m & o p e r a t o r > > ( i o s & ( * ) ( i o s & ) ) ;

} ;

c l a s s i s t r e a m _ w i t h a s s i g n : p u b l i c i s t r e a m {
i s t r e a m _ w i t h a s s i g n ( ) ;

i s t r e a m & o p e r a t o r = ( i s t r e a m & ) ;
i s t r e a m & o p e r a t o r = ( s t r e a m b u f * ) ;

} ;

e x t e r n i s t r e a m _ w i t h a s s i g n c i n ;

i s t r e a m & w s ( i s t r e a m & ) ;
i o s & d e c ( i o s & ) ;
i o s & h e x ( i o s & ) ;
i o s & o c t ( i o s & ) ;

DESCRIPTION
i s t r e a ms support interpretation of characters fetched from an associated s t r e a m b u f. These are commonly
referred to as input or extraction operations. The i s t r e a m member functions and related functions are
described below.

In the following descriptions assume that
— ins is an i s t r e a m.
— inwa is an i s t r e a m _ w i t h a s s i g n.
— insp is a i s t r e a m *.
— c is a c h a r &
— delim is a c h a r.
— ptr is a c h a r * or u n s i g n e d c h a r *.
— sb is a s t r e a m b u f &.
— i, n, len, d, and need are i n ts.
— pos is a s t r e a m p o s.
— off is a s t r e a m o f f.
— dir is a s e e k _ d i r.
— manip is a function with type i s t r e a m & ( * ) ( i s t r e a m & ).

Constructors and assignment:
i s t r e a m (sb)

Initializes i o s state variables and associates buffer sb with the i s t r e a m..

i s t r e a m _ w i t h a s s i g n ( )
Does no initialization.

inswa=sb
Associates sb with inswa and initializes the entire state of inswa.

inswa=ins
Associates ins- > r d b u f ( ) with inswa and initializes the entire state of inswa.

Input prefix function:
i = ins. i p f x (need)

If ins’s error state is non-zero, returns zero immediately. If necessary (and if it is non-null), any
i o s tied to ins is flushed (see the description i o s : : t i e ( ) in i o s(3C++)). Flushing is considered
necessary if either need= = 0 or if there are fewer than need characters immediately available. If
i o s : : s k i p w s is set in ins. f l a g s ( ) and need is zero, then leading whitespace characters are
extracted from ins. i p f x ( ) returns zero if an error occurs while skipping whitespace; otherwise
it returns non-zero.
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Formatted input functions call i p f x ( 0 ), while unformatted input functions call i p f x ( 1 ); see below.

Formatted input functions (extractors):
ins> >x Calls i p f x ( 0 ) and if that returns non-zero, extracts characters from ins and converts them

according to the type of x. It stores the converted value in x. Errors are indicated by setting the
error state of ins. i o s : : f a i l b i t means that characters in ins were not a representation of the
required type. i o s : : b a d b i t indicates that attempts to extract characters failed. ins is always
returned.

The details of conversion depend on the values of ins’s format state flags and variables (see
i o s(3C++)) and the type of x. Except that extractions that use width reset it to 0, the extraction
operators do not change the value of o s t r e a m’s format state. Extractors are defined for the fol-
lowing types, with conversion rules as described below.

c h a r *, u n s i g n e d c h a r *
Characters are stored in the array pointed at by x until a whitespace character is found in
ins. The terminating whitespace is left in ins. If ins. w i d t h ( ) is non-zero it is taken to be
the size of the array, and no more than ins. w i d t h ( ) - 1 characters are extracted. A ter-
minating null character (0) is always stored (even when nothing else is done because of
ins’s error status). ins. w i d t h ( ) is reset to 0.

c h a r &, u n s i g n e d c h a r &
A character is extracted and stored in x.

s h o r t &, u n s i g n e d s h o r t &,
i n t &, u n s i g n e d i n t &,
l o n g &, u n s i g n e d l o n g &

Characters are extracted and converted to an integral value according to the conversion
specified in ins’s format flags. Converted characters are stored in x. The first character
may be a sign (+ or -). After that, if i o s : : o c t, i o s : : d e c, or i o s : : h e x is set in
ins. f l a g s ( ), the conversion is octal, decimal, or hexadecimal, respectively. Conversion is
terminated by the first ‘‘non-digit,’’ which is left in ins. Octal digits are the characters ’0’
to ’7’. Decimal digits are the octal digits plus ’8’ and ’9’. Hexadecimal digits are the
decimal digits plus the letters ’a’ through ’f’ (in either upper or lower case). If none of
the conversion base format flags is set, then the number is interpreted according to C++
lexical conventions. That is, if the first characters (after the optional sign) are 0 x or 0 X a
hexadecimal conversion is performed on following hexadecimal digits. Otherwise, if the
first character is a 0, an octal conversion is performed, and in all other cases a decimal
conversion is performed. i o s : : f a i l b i t is set if there are no digits (not counting the 0 in
0 x or 0 X) during hex conversion) available.

f l o a t &, d o u b l e &
Converts the characters according to C++ syntax for a float or double, and stores the
result in x. i o s : : f a i l b i t is set if there are no digits available in ins or if it does not
begin with a well formed floating point number.

The type and name (o p e r a t o r > >) of the extraction operations are chosen to give a convenient syntax for
sequences of input operations. The operator overloading of C++ permits extraction functions to be
declared for user-defined classes. These operations can then be used with the same syntax as the
member functions described here.

ins> >sb
If i o s . i p f x ( 0 ) returns non-zero, extracts characters from i o s and inserts them into sb. Extrac-
tion stops when E O F is reached. Always returns ins.

Unformatted input functions:
These functions call i p f x ( 1 ) and proceed only if it returns non-zero:

insp= &ins. g e t (ptr,len,delim)
Extracts characters and stores them in the byte array beginning at ptr and extending for len bytes.
Extraction stops when delim is encountered (delim is left in ins and not stored), when ins has no
more characters, or when the array has only one byte left. g e t always stores a terminating null,
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even if it doesn’t extract any characters from ins because of its error status. i o s : : f a i l b i t is set
only if g e t encounters an end of file before it stores any characters.

insp= &ins. g e t (c)
Extracts a single character and stores it in c.

insp= &ins. g e t (sb,delim)
Extracts characters from ins. r d b u f ( ) and stores them into sb. It stops if it encounters end of file
or if a store into sb fails or if it encounters delim (which it leaves in ins). i o s : : f a i l b i t is set if it
stops because the store into sb fails.

i=ins. g e t ( ).
Extracts a character and returns it. i is E O F if extraction encounters end of file. i o s : : f a i l b i t is
never set.

insp= &ins. g e t l i n e (ptr,len,delim)
Does the same thing as ins. g e t (ptr,len,delim) with the exception that it extracts a terminating
delim character from ins. In case delim occurs when exactly len characters have been extracted,
termination is treated as being due to the array being filled, and this delim is left in ins.

insp= &ins. i g n o r e (n,d)
Extracts and throws away up to n characters. Extraction stops prematurely if d is extracted or
end of file is reached. If d is E O F it can never cause termination.

insp= &ins. r e a d (ptr,n)
Extracts n characters and stores them in the array beginning at ptr. If end of file is reached
before n characters have been extracted, r e a d stores whatever it can extract and sets
i o s : : f a i l b i t. The number of characters extracted can be determined via ins. g c o u n t ( ).

Other members are:
i=ins. g c o u n t ( )

Returns the number of characters extracted by the last unformatted input function. Formatted
input functions may call unformatted input functions and thereby reset this number.

i=ins. p e e k ( )
Begins by calling ins. i p f x ( 1 ). If that call returns zero or if ins is at end of file, it returns E O F.
Otherwise it returns the next character without extracting it.

insp= &ins. p u t b a c k (c)
Attempts to back up ins. r d b u f ( ). c must be the character before ins. r d b u f ( )’s get pointer.
(Unless other activity is modifying ins. r d b u f ( ) this is the last character extracted from ins.) If it
is not, the effect is undefined. p u t b a c k may fail (and set the error state). Although it is a
member of i s t r e a m, p u t b a c k never extracts characters, so it does not call ipfx. It will, however,
return without doing anything if the error state is non-zero.

i= &ins. s y n c ( )
Establishes consistency between internal data structures and the external source of characters.
Calls ins. r d b u f ( ) - > s y n c ( ), which is a virtual function, so the details depend on the derived
class. Returns E O F to indicate errors.

ins> > m a n i p
Equivalent to m a n i p (ins). Syntactically this looks like an extractor operation, but semantically it
does an arbitrary operation rather than converting a sequence of characters and storing the result
in m a n i p. A predefined manipulator, ws, is described below.

Member functions related to positioning:
insp= &ins. s e e k g (off,dir)

Repositions ins. r d b u f ( )’s get pointer. See s b u f . p u b(3C++) for a discussion of positioning.

insp= &ins. s e e k g (pos)
Repositions ins. r d b u f ( )’s get pointer. See s b u f . p u b(3C++) for a discussion of positioning.

Page 4 3/91



ISTREAM ( 3C++ ) ( C++ Stream Library ) ISTREAM ( 3C++ )

pos=ins. t e l l g ( )
The current position of i o s . r d b u f ( )’s get pointer. See s b u f . p u b(3C++) for a discussion of posi-
tioning.

Manipulator:
ins> >ws

Extracts whitespace characters.

ins> >dec
Sets the conversion base format flag to 10. See i o s(3C++).

ins> >hex
Sets the conversion base format flag to 16. See i o s(3C++).

ins> >oct
Sets the conversion base format flag to 8. See i o s(3C++).

CAVEATS
There is no overflow detection on conversion of integers. There should be, and overflow should cause the error
state to be set.

SEE ALSO
i o s(3C++), s b u f . p u b(3C++), m a n i p(3C++)
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NAME
manipulators – iostream out of band manipulations

SYNOPSIS
#include <iostream.h>
#include <iomanip.h>

IOMANIPdeclare(T) ;

class SMANIP(T) {
SMANIP(T)( ios& (*)(ios&,T), T);
friend istream& operator>>(istream&, SMANIP(T)&);
friend ostream& operator<<(ostream&, SMANIP(T)&);

};
class SAPP(T) {

SAPP(T)( ios& (*)(ios&,T));
SMANIP(T) operator()(T);

};
class IMANIP(T) {

IMANIP(T)( istream& (*)(istream&,T), T);
friend istream& operator>>(istream&, IMANIP(T)&);

};
class IAPP(T) {

IAPP(T)( istream& (*)(istream&,T));
IMANIP(T) operator()(T);

};
class OMANIP(T) {

OMANIP(T)( ostream& (*)(ostream&,T), T);
friend ostream& operator<<(ostream&, OMANIP(T)&);

};
class OAPP(T) {

OAPP(T)( ostream& (*)(ostream&,T));
OMANIP(T) operator()(T);

};
class IOMANIP(T) {

IOMANIP(T)( iostream& (*)(iostream&,T), T);
friend istream& operator>>(iostream&, IOMANIP(T)&);
friend ostream& operator<<(iostream&, IOMANIP(T)&);

};
class IOAPP(T) {

IOAPP(T)( iostream& (*)(iostream&,T));
IOMANIP(T) operator()(T);

};

IOMANIPdeclare(int);
IOMANIPdeclare(long);

SMANIP(long) resetiosflags(long);
SMANIP(int) setfill(int);
SMANIP(long) setiosflags(long);
SMANIP(int) setprecision(int);
SMANIP(int) setw(int w);

DESCRIPTION
Manipulators are values that may be "inserted into" or "extracted from" streams to achieve some effect (other
than to insert or extract a value representation), with a convenient syntax. They enable one to embed a function
call in an expression containing a series of insertions or extractions. For example, the predefined manipulator
for o s t r e a ms, flush, can be used as follows:
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cout << flush
to flush c o u t. Several iostream classes supply manipulators: see ios(3C++), istream(3C++), and ostream(3C++).
flush is a simple manipulator; some manipulators take arguments, such as the predefined i o s manipulators,
setfill and setw (see below). The header file i o m a n i p . h supplies macro definitions which programmers can use
to define new parameterized manipulators.

Ideally, the types relating to manipulators would be parameterized as "templates." The macros defined in
i o m a n i p . h are used to simulate templates. IOMANIPdeclare(T) declares the various classes and operators.
(All code is declared inline so that no separate definitions are required.) Each of the other Ts is used to con-
struct the real names and therefore must be a single identifer. Each of the other macros also requires an
identifier and expands to a name.

In the following descriptions, assume:
— t is a T, or type name.
— s is an i o s.
— i is an i s t r e a m.
— o is an o s t r e a m.
— io is an i o s t r e a m.
— f is an i o s & ( * ) ( i o s & ).
— if is an i s t r e a m & ( * ) ( i s t r e a m & ).
— of is an o s t r e a m & ( * ) ( o s t r e a m & ).
— iof is an i o s t r e a m & ( * ) ( i o s t r e a m & ).
— n is an i n t.
— l is a l o n g.

s<<SMANIP(T)(f,t)
s>>SMANIP(T)(f,t)
s<<SAPP(T)(f)(t)
s>>SAPP(T)(f)(t)

Returns f(s,t), where s is the left operand of the insertion or extractor operator (i.e., s, i, o, or io).

i>>IMANIP(T)(if,t)
i>>IAPP(T)(if)(t)

Returns if(i,t).

o<<OMANIP(T)(of,t)
o<<OAPP(T)(of)(t)

Returns of(o,t).

io<<IOMANIP(T)(iof,t)
io>>IOMANIP(T)(iof,t)
io<<IOAPP(T)(iof)(t)
io>>IOAPP(T)(iof)(t)

Returns iof(io,t).

i o m a n i p . h contains two declarations, I O M A N I P d e c l a r e ( i n t ) and I O M A N I P d e c l a r e ( l o n g ) and some manipulators
that take an i n t or a l o n g argument. These manipulators all have to do with changing the format state of a stream;
see ios(3C++) for further details.

o<<setw(n)
i>>setw(n)
Sets the field width of the stream (left-hand operand: o or i) to n.

o<<setfill(n)
i>>setfill(n)
Sets the fill character of the stream (o or i, or) to be n.

o<<setprecision(n)
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i>>setprecision(n)
Sets the precision of the stream (o or i) to be n.

o<<setiosflags(l)
i>>setiosflags(l)
Turns on in the stream (o or i) the format flags marked in l. (Calls o.setf(l) or i.setf(l)).

o<<resetiosflags(l)
i>>resetiosflags(l)
Clears in the stream (o or i) the format bits specified by l. (Calls o.setf(0,l) or i.setf(0,l)).

CAVEATS
Syntax errors will be reported if IOMANIPdeclare(T) occurs more than once in a file with the same T.

SEE ALSO
ios(3C++), istream(3C++), ostream(3C++)
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NAME
ostream – formatted and unformatted output

SYNOPSIS
# i n c l u d e < i o s t r e a m . h >

t y p e d e f l o n g s t r e a m o f f , s t r e a m p o s ;
c l a s s i o s {
p u b l i c :

e n u m s e e k _ d i r { b e g , c u r , e n d } ;
e n u m o p e n _ m o d e { i n , o u t , a t e , a p p , t r u n c , n o c r e a t e , n o r e p l a c e } ;
e n u m { s k i p w s = 0 1 ,

l e f t = 0 2 , r i g h t = 0 4 , i n t e r n a l = 0 1 0 ,
d e c = 0 2 0 , o c t = 0 4 0 , h e x = 0 1 0 0 ,
s h o w b a s e = 0 2 0 0 , s h o w p o i n t = 0 4 0 0 , u p p e r c a s e = 0 1 0 0 0 , s h o w p o s = 0 2 0 0 0 ,
s c i e n t i f i c = 0 4 0 0 0 , f i x e d = 0 1 0 0 0 0 ,
u n i t b u f = 0 2 0 0 0 0 , s t d i o = 0 4 0 0 0 0 } ;

/ / a n d l o t s o f o t h e r s t u f f , s e e i o s ( 3 C + + ) . . .
} ;

c l a s s o s t r e a m : p u b l i c i o s {
p u b l i c :

o s t r e a m ( s t r e a m b u f * ) ;
o s t r e a m & f l u s h ( ) ;
i n t o p f x ( ) ;
o s t r e a m & p u t ( c h a r ) ;
o s t r e a m & s e e k p ( s t r e a m p o s ) ;
o s t r e a m & s e e k p ( s t r e a m o f f , s e e k _ d i r ) ;
s t r e a m p o s t e l l p ( ) ;
o s t r e a m & w r i t e ( c o n s t c h a r * p t r , i n t n ) ;
o s t r e a m & w r i t e ( c o n s t u n s i g n e d c h a r * p t r , i n t n ) ;
o s t r e a m & o p e r a t o r < < ( c o n s t c h a r * ) ;
o s t r e a m & o p e r a t o r < < ( c h a r ) ;
o s t r e a m & o p e r a t o r < < ( s h o r t ) ;
o s t r e a m & o p e r a t o r < < ( i n t ) ;
o s t r e a m & o p e r a t o r < < ( l o n g ) ;
o s t r e a m & o p e r a t o r < < ( f l o a t ) ;
o s t r e a m & o p e r a t o r < < ( d o u b l e ) ;
o s t r e a m & o p e r a t o r < < ( u n s i g n e d c h a r ) ;
o s t r e a m & o p e r a t o r < < ( u n s i g n e d s h o r t ) ;
o s t r e a m & o p e r a t o r < < ( u n s i g n e d i n t ) ;
o s t r e a m & o p e r a t o r < < ( u n s i g n e d l o n g ) ;
o s t r e a m & o p e r a t o r < < ( v o i d * ) ;
o s t r e a m & o p e r a t o r < < ( s t r e a m b u f * ) ;
o s t r e a m & o p e r a t o r < < ( o s t r e a m & ( * ) ( o s t r e a m & ) ) ;
o s t r e a m & o p e r a t o r < < ( i o s & ( * ) ( i o s & ) ) ;

} ;

c l a s s o s t r e a m _ w i t h a s s i g n {
o s t r e a m _ w i t h a s s i g n ( ) ;

i s t r e a m & o p e r a t o r = ( i s t r e a m & ) ;
i s t r e a m & o p e r a t o r = ( s t r e a m b u f * ) ;

} ;

e x t e r n o s t r e a m _ w i t h a s s i g n c o u t ;
e x t e r n o s t r e a m _ w i t h a s s i g n c e r r ;
e x t e r n o s t r e a m _ w i t h a s s i g n c l o g ;
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o s t r e a m & e n d l ( o s t r e a m & ) ;
o s t r e a m & e n d s ( o s t r e a m & ) ;
o s t r e a m & f l u s h ( o s t r e a m & ) ;
i o s & d e c ( i o s & ) ;
i o s & h e x ( i o s & ) ;
i o s & o c t ( i o s & ) ;

DESCRIPTION
o s t r e a ms support insertion (storing) into a s t r e a m b u f. These are commonly referred to as output operations.
The o s t r e a m member functions and related functions are described below.

In the following descriptions, assume:
— outs is an o s t r e a m.
— outswa is an o s t r e a m _ w i t h a s s i g n.
— outsp is an o s t r e a m *.
— c is a c h a r.
— ptr is a c h a r * or u n s i g n e d c h a r *.
— sb is a s t r e a m b u f *
— i and n are i n ts.
— pos is a s t r e a m p o s.
— off is a s t r e a m o f f.
— dir is a s e e k _ d i r.
— manip is a function with type o s t r e a m & ( * ) ( o s t r e a m & ).

Constructors and assignment:
o s t r e a m (sb)

Initializes i o s state variables and associates buffer sb with the o s t r e a m.

o s t r e a m _ w i t h a s s i g n ( )
Does no initialization. This allows a file static variable of this type (c o u t, for example) to be
used before it is constructed, provided it is assigned to first.

outswa=sb
Associates sb with swa and initializes the entire state of outswa.

inswa=ins
Associates ins- > r d b u f ( ) with swa and initializes the entire state of outswa.

Output prefix function:
i=outs. o p f x ( )

If outs’s error state is nonzero, returns immediately. If outs. t i e ( ) is non-null, it is flushed.
Returns non-zero except when outs’s error state is nonzero.

Output suffix function:
o s f x ( )

Performs ‘‘suffix’’ actions before returning from inserters. If i o s : : u n i t b u f is set, o s f x ( ) flushes
the o s t r e a m. If i o s : : s t d i o is set, o s f x ( ) flushes s t d o u t and s t d e r r.

o s f x ( ) is called by all predefined inserters, and should be called by user-defined inserters as well, after
any direct manipulation of the s t r e a m b u f. It is not called by the binary output functions.

Formatted output functions (inserters):
outs< <x

First calls outs. o p f x ( ) and if that returns 0, does nothing. Otherwise inserts a sequence of char-
acters representing x into outs. r d b u f ( ). Errors are indicated by setting the error state of outs.
outs is always returned.

x is converted into a sequence of characters (its representation) according to rules that depend on
x’s type and outs’s format state flags and variables (see i o s(3C++)). Inserters are defined for the
following types, with conversion rules as described below:
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c h a r * The representation is the sequence of characters up to (but not including) the terminating
null of the string x points at.

any integral type except c h a r and u n s i g n e d c h a r
If x is positive the representation contains a sequence of decimal, octal, or hexadecimal
digits with no leading zeros according to whether i o s : : d e c, i o s : : o c t, or i o s : : h e x,
respectively, is set in i o s’s format flags. If none of those flags are set, conversion defaults
to decimal. If x is zero, the representation is a single zero character(0). If x is negative,
decimal conversion converts it to a minus sign (-) followed by decimal digits. If x is posi-
tive and i o s : : s h o w p o s is set, decimal conversion converts it to a plus sign (+) followed
by decimal digits. The other conversions treat all values as unsigned. If i o s : : s h o w b a s e
is set in ios’s format flags, the hexadecimal representation contains 0 x before the hexide-
cimal digits, or 0 X if i o s : : u p p e r c a s e is set. If i o s : : s h o w b a s e is set, the octal represen-
tation contains a leading 0.

v o i d * Pointers are converted to integral values and then converted to hexadecimal numbers as if
i o s : : s h o w b a s e were set.

f l o a t, d o u b l e
The arguments are converted according to the current values of outs. p r e c i s i o n ( ),
outs. w i d t h ( ) and outs’s format flags i o s : : s c i e n t i f i c, i o s : : f i x e d, and
i o s : : u p p e r c a s e. (See i o s(3C++).) The default value for outs. p r e c i s i o n ( ) is 6. If nei-
ther i o s : : s c i e n t i f i c nor i o s : : f i x e d is set, either fixed or scientific notation is chosen
for the representation, depending on the value of x.

c h a r, u n s i g n e d c h a r
No special conversion is necessary.

After the representation is determined, padding occurs. If outs. w i d t h ( ) is greater than 0 and the
representation contains fewer than outs. w i d t h ( ) characters, then enough outs. f i l l ( ) characters
are added to bring the total number of characters to i o s . w i d t h ( ). If i o s : : l e f t is set in i o s’s
format flags, the sequence is left-adjusted, that is, characters are added after the characters deter-
mined above. If i o s : : r i g h t is set, the padding is added before the characters determined
above. If i o s : : i n t e r n a l is set, the padding is added after any leading sign or base indication
and before the characters that represent the value. i o s . w i d t h ( ) is reset to 0, but all other for-
mat variables are unchanged. The resulting sequence (padding plus representation) is inserted
into outs. r d b u f ( ).

outs< <sb
If outs. o p f x ( ) returns non-zero, the sequence of characters that can be fetched from sb are
inserted into outs. r d b u f ( ). Insertion stops when no more characters can be fetched from sb. No
padding is performed. Always returns outs.

Unformatted output functions:
outsp= &outs. p u t ( c )

Inserts c into outs. r d b u f ( ). Sets the error state if the insertion fails.

outsp= &outs. w r i t e (s,n)
Inserts the n characters starting at s into outs. r d b u f ( ). These characters may include zeros (i.e.,
s need not be a null terminated string).

Other member functions:
outsp= &outs. f l u s h ( )

Storing characters into a streambuf does not always cause them to be consumed (e.g., written to
the external file) immediately. f l u s h ( ) causes any characters that may have been stored but not
yet consumed to be consumed by calling outs. r d b u f ( ) - > s y n c.

outs< < m a n i p
Equivalent to m a n i p (outs). Syntactically this looks like an insertion operation, but semantically it
does an arbitrary operation rather than converting m a n i p to a sequence of characters as do the
insertion operators. Predefined manipulators are described below.
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Positioning functions:
outsp= &ins. s e e k p (off,dir)

Repositions outs. r d b u f ( )’s put pointer. See s b u f . p u b(3C++) for a discussion of positioning.

outsp= &outs. s e e k p (pos)
Repositions outs. r d b u f ( )’s put pointer. See s b u f . p u b(3C++) for a discussion of positioning.

pos=outs. t e l l p ( )
The current position of outs. r d b u f ( )’s put pointer. See s b u f . p u b(3C++) for a discussion of
positioning.

Manipulators:
outs< < e n d l

Ends a line by inserting a newline character and flushing.

outs< < e n d s
Ends a string by inserting a null (0) character.

outs< < f l u s h
Flushes outs.

outs< < d e c
Sets the conversion base format flag to 10. See i o s(3C++).

outs< < h e x
Sets the conversion base format flag to 16. See i o s(3C++).

outs< < o c t
Sets the conversion base format flag to 8. See i o s(3C++).

SEE ALSO
i o s(3C++), s b u f . p u b(3C++), m a n i p(3C++)
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NAME
streambuf – interface for derived classes

SYNOPSIS
# i n c l u d e < i o s t r e a m . h >

t y p e d e f l o n g s t r e a m o f f , s t r e a m p o s ;
c l a s s i o s {
p u b l i c :

e n u m s e e k _ d i r { b e g , c u r , e n d } ;
e n u m o p e n _ m o d e { i n , o u t , a t e , a p p , t r u n c , n o c r e a t e , n o r e p l a c e } ;
/ / a n d l o t s o f o t h e r s t u f f , s e e i o s ( 3 C + + ) . . .

} ;

c l a s s s t r e a m b u f {
p u b l i c :

s t r e a m b u f ( ) ;
s t r e a m b u f ( c h a r * p , i n t l e n ) ;

v o i d d b p ( ) ;
p r o t e c t e d :

i n t a l l o c a t e ( ) ;
c h a r * b a s e ( ) ;
i n t b l e n ( ) ;
c h a r * e b a c k ( ) ;
c h a r * e b u f ( ) ;
c h a r * e g p t r ( ) ;
c h a r * e p p t r ( ) ;
v o i d g b u m p ( i n t n ) ;
c h a r * g p t r ( ) ;
c h a r * p b a s e ( ) ;
v o i d p b u m p ( i n t n ) ;
c h a r * p p t r ( ) ;
v o i d s e t g ( c h a r * e b , c h a r * g , c h a r * e g ) ;
v o i d s e t p ( c h a r * p , c h a r * e p ) ;
v o i d s e t b ( c h a r * b , c h a r * e b , i n t a = 0 ) ;
i n t u n b u f f e r e d ( ) ;
v o i d u n b u f f e r e d ( i n t ) ;

v i r t u a l i n t d o a l l o c a t e ( ) ;
v i r t u a l ~ s t r e a m b u f ( ) ;

p u b l i c :
v i r t u a l i n t p b a c k f a i l ( i n t c ) ;
v i r t u a l i n t o v e r f l o w ( i n t c = E O F ) ;
v i r t u a l i n t u n d e r f l o w ( ) ;
v i r t u a l s t r e a m b u f *

s e t b u f ( c h a r * p , i n t l e n ) ;
v i r t u a l s t r e a m p o s

s e e k p o s ( s t r e a m p o s , i n t = i o s : : i n | i o s : o u t ) ;
v i r t u a l s t r e a m p o s

s e e k o f f ( s t r e a m o f f , s e e k _ d i r , i n t = i o s : : i n | i o s : o u t ) ;
v i r t u a l i n t s y n c ( ) ;

} ;

DESCRIPTION
s t r e a m b u fs implement the buffer abstraction described in s b u f . p u b(3C++). However, the s t r e a m b u f class
itself contains only basic members for manipulating the characters and normally a class derived from s t r e a m -
b u f will be used. This man page describes the interface needed by programmers who are coding a derived
class. Broadly speaking there are two kinds of member functions described here. The non-virtual functions are
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provided for manipulating a s t r e a m b u f in ways that are appropriate in a derived class. Their descriptions
reveal details of the implementation that would be inappropriate in the public interface. The virtual functions
permit the derived class to specialize the s t r e a m b u f class in ways appropriate to the specific sources and sinks
that it is implementing. The descriptions of the virtual functions explain the obligations of the virtuals of the
derived class. If the virtuals behave as specified, the s t r e a m b u f will behave as specified in the public interface.
However, if the virtuals do not behave as specified, then the s t r e a m b u f may not behave properly, and an i o s -
t r e a m (or any other code) that relies on proper behavior of the s t r e a m b u f may not behave properly either.

In the following descriptions assume:
— sb is a s t r e a m b u f *.
— i and n are i n ts.
— ptr, b, eb, p, ep, eb, g, and eg are c h a r *s.
— c is an i n t character (positive or E O F)).
— pos is a s t r e a m p o s. (See s b u f . p u b(3C++).)
— off is a s t r e a m o f f.
— dir is a s e e k d i r.
— mode is an i n t representing an o p e n _ m o d e.

Constructors:
s t r e a m b u f ( )

Constructs an empty buffer corresponding to an empty sequence.

s t r e a m b u f (b,len)
Constructs an empty buffer and then sets up the reserve area to be the len bytes starting at b.

The Get, Put, and Reserver area
The protected members of s t r e a m b u f present an interface to derived classes organized around three areas
(arrays of bytes) managed cooperatively by the base and derived classes. They are the get area, the put area, and
the reserve area (or buffer). The get and the put areas are normally disjoint, but they may both overlap the
reserve area, whose primary purpose is to be a resource in which space for the put and get areas can be allo-
cated. The get and the put areas are changed as characters are put into and gotten from the buffer, but the
reserve area normally remains fixed. The areas are defined by a collection of c h a r * values. The buffer abstrac-
tion is described in terms of pointers that point between characters, but the c h a r * values must point at c h a rs.
To establish a correspondence the c h a r * values should be thought of as pointing just before the byte they really
point at.

Functions to examine the pointers
ptr=sb- > b a s e ( )

Returns a pointer to the first byte of the reserve area. Space between sb- > b a s e ( ) and
sb- > e b u f ( ) is the reserve area.

ptr=sb- > e b a c k ( )
Returns a pointer to a lower bound on sb- > g p t r ( ). Space between sb- > e b a c k ( ) and
sb- > g p t r ( ) is available for putback.

ptr=sb- > e b u f ( )
Returns a pointer to the byte after the last byte of the reserve area.

ptr=sb- > e g p t r ( )
Returns a pointer to the byte after the last byte of the get area.

ptr=sb- > e p p t r ( )
Returns a pointer to the byte after the last byte of the put area.

ptr=sb- > g p t r ( )
Returns a pointer to the first byte of the get area. The available characters are those between
sb- > g p t r ( ) and sb- > e g p t r ( ). The next character fetched will be *sb- > g p t r ( ) ) unless
sb- > e g p t r ( ) is less than or equal to sb- > g p t r ( ).

ptr=sb- > p b a s e ( )
Returns a pointer to the put area base. Characters between sb- > p b a s e ( ) and sb- > p p t r ( ) have
been stored into the buffer and not yet consumed.
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ptr=sb- > p p t r ( )
Returns a pointer to the first byte of the put area. The space between s b - > p p t r ( ) and
s b - > e p p t r ( ) is the put area and characters will be stored here.

Functions for setting the pointers
Note that to indicate that a particular area (get, put, or reserve) does not exist, all the associated pointers should
be set to zero.

sb- > s e t b (b, eb, i)
Sets b a s e ( ) and e b u f ( ) to b and eb respectively. i controls whether the area will be subject to
automatic deletion. If i is non-zero, then b will be deleted when b a s e is changed by another call
of s e t b ( ), or when the destructor is called for *sb. If b and eb are both null then we say that
there is no reserve area. If b is non-null, there is a reserve area even if eb is less than b and so the
reserve area has zero length.

sb- > s e t p (p, ep)
Sets p p t r ( ) to p, p b a s e ( ) to p, and e p p t r ( ) to ep.

sb- > s e t g (eb, g, eg)
Sets e b a c k ( ) to eb, g p t r ( ) to g, and e g p t r ( ) to eg.

Other non-virtual members
i=sb- > a l l o c a t e ( )

Tries to set up a reserve area. If a reserve area already exists or if sb- > u n b u f f e r e d ( ) is nonzero,
a l l o c a t e ( ) returns 0 without doing anything. If the attempt to allocate space fails, a l l o c a t e ( )
returns E O F, otherwise (allocation succeeds) a l l o c a t e ( ) returns 1. a l l o c a t e ( ) is not called by
any non-virtual member function of s t r e a m b u f.

i=sb- > b l e n ( )
Returns the size (in c h a rs) of the current reserve area.

d b p ( ) Writes directly on file descriptor 1 information in ASCII about the state of the buffer. It is
intended for debugging and nothing is specified about the form of the output. It is considered
part of the protected interface because the information it prints can only be understood in rela-
tion to that interface, but it is a public function so that it can be called anywhere during debug-
ging.

sb- > g b u m p (n)
Increments g p t r ( ) by n which may be positive or negative. No checks are made on whether the
new value of g p t r ( ) is in bounds.

sb- > p b u m p (n)
Increments p p t r ( ) by n which may be positive or negative. No checks are made on whether the
new value of p p t r ( ) is in bounds.

sb- > u n b u f f e r e d ( i )
i=sb- > u n b u f f e r e d ( )

There is a private variable known as sb’s buffering state. sb- > u n b u f f e r e d (i) sets the value of
this variable to i and sb- > u n b u f f e r e d ( ) returns the current value. This state is independent of
the actual allocation of a reserve area. Its primary purpose is to control whether a reserve area is
allocated automatically by a l l o c a t e.

Virtual member functions
Virtual functions may be redefined in derived classes to specialize the behavior of s t r e a m b u fs. This section
describes the behavior that these virtual functions should have in any derived classes; the next section describes
the behavior that these functions are defined to have in base class s t r e a m b u f.

i=sb- > d o a l l o c a t e ( )
Is called when a l l o c a t e ( ) determines that space is needed. d o a l l o c a t e ( ) is required to call
s e t b ( ) to provide a reserve area or to return E O F if it cannot. It is only called if
sb- > u n b u f f e r e d ( ) is zero and sb- > b a s e ( ) is zero.
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i= o v e r f l o w (c)
Is called to consume characters. If c is not E O F, o v e r f l o w ( ) also must either save c or consume
it. Usually it is called when the put area is full and an attempt is being made to store a new char-
acter, but it can be called at other times. The normal action is to consume the characters between
p b a s e ( ) and p p t r ( ), call s e t p ( ) to establish a new put area, and if c! = E O F store it (using
s p u t c ( )). sb- > o v e r f l o w ( ) should return E O F to indicate an error; otherwise it should return
something else.

i=sb- > p b a c k f a i l (c)
Is called when e b a c k ( ) equals g p t r ( ) and an attempt has been made to putback c. If this situa-
tion can be dealt with (e.g., by repositioning an external file), p b a c k f a i l ( ) should return c; oth-
erwise it should return E O F.

pos=sb- > s e e k o f f (off, dir, mode)
Repositions the get and/or put pointers (i.e., the abstract get and put pointers, not p p t r ( ) and
g p t r ( )). The meanings of off and dir are discussed in s b u f . p u b(3C++). mode specifies whether
the put pointer (i o s : : o u t bit set) or the get pointer (i o s : : i n bit set) is to be modified. Both
bits may be set in which case both pointers should be affected. A class derived from s t r e a m b u f
is not required to support repositioning. s e e k o f f ( ) should return E O F if the class does not sup-
port repositioning. If the class does support repositioning, s e e k o f f ( ) should return the new
position or E O F on error.

pos=sb- > s e e k p o s (pos, mode)
Repositions the s t r e a m b u f get and/or put pointer to pos. mode specifies which pointers are
affected as for s e e k o f f ( ). Returns pos (the argument) or E O F if the class does not support repo-
sitioning or an error occurs.

sb=sb- > s e t b u f (ptr, len)
Offers the array at ptr with len bytes to be used as a reserve area. The normal interpretation is
that if ptr or len are zero then this is a request to make the sb unbuffered. The derived class may
use this area or not as it chooses. It may accept or ignore the request for unbuffered state as it
chooses. s e t b u f ( ) should return sb if it honors the request. Otherwise it should return 0.

i =sb- > s y n c ( )
Is called to give the derived class a chance to look at the state of the areas, and synchronize them
with any external representation. Normally s y n c ( ) should consume any characters that have
been stored into the put area, and if possible give back to the source any characters in the get
area that have not been fetched. When s y n c ( ) returns there should not be any unconsumed
characters, and the get area should be empty. s y n c ( ) should return E O F if some kind of failure
occurs.

i=sb- > u n d e r f l o w ( )
Is called to supply characters for fetching, i.e., to create a condition in which the get area is not
empty. If it is called when there are characters in the get area it should return the first character.
If the get area is empty, it should create a nonempty get area and return the next character
(which it should also leave in the get area). If there are no more characters available, u n d e r -
f l o w ( ) should return E O F and leave an empty get area.

The default definitions of the virtual functions:

i=sb- > s t r e a m b u f : : d o a l l o c a t e ( )
Attempts to allocate a reserve area using o p e r a t o r n e w.

i=sb- > s t r e a m b u f : : o v e r f l o w (c)
Is compatible with the old stream package, but that behavior is not considered part of the
specification of the iostream package. Therefore, s t r e a m b u f : : o v e r f l o w ( ) should be treated as
if it had undefined behavior. That is, derived classes should always define it.

i=sb- > s t r e a m b u f : : p b a c k f a i l (c)
Returns E O F.
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pos=sb- > s t r e a m b u f : : s e e k p o s (pos, mode)
Returns sb- > s e e k o f f ( s t r e a m o f f (pos) , i o s : : b e g ,mode). Thus to define seeking in a derived
class, it is frequently only necessary to define s e e k o f f ( ) and use the inherited
s t r e a m b u f : : s e e k p o s ( ).

pos=sb- > s t r e a m b u f : : s e e k o f f (off, dir, mode)
Returns E O F.

sb=sb- > s t r e a m b u f : : s e t b u f (ptr, len)
Will honor the request when there is no reserve area.

i=sb- > s t r e a m b u f : : s y n c ( )
Returns 0 if the get area is empty and there are no unconsumed characters. Otherwise it returns
E O F.

i =sb- > s t r e a m b u f : : u n d e r f l o w ( )
Is compatible with the old stream package, but that behavior is not considered part of the
specification of the iostream package. Therefore, s t r e a m b u f : : u n d e r f l o w ( ) should be treated as
if it had undefined behavior. That is, it should always be defined in derived classes.

CAVEATS
The constructors are public for compatibility with the old stream package. They ought to be protected.

The interface for unbuffered actions is awkward. It’s hard to write u n d e r f l o w ( ) and o v e r f l o w ( ) virtuals that
behave properly for unbuffered s t r e a m b u f ( )s without special casing. Also there is no way for the virtuals to
react sensibly to multi-character gets or puts.

Although the public interface to s t r e a m b u fs deals in characters and bytes, the interface to derived classes deals
in c h a rs. Since a decision had to be made on the types of the real data pointers, it seemed easier to reflect that
choice in the types of the protected members than to duplicate all the members with both plain and unsigned
char versions. But perhaps all these uses of c h a r * ought to have been with a typedef.

The implementation contains a variant of s e t b u f ( ) that accepts a third argument. It is present only for com-
patibility with the old stream package.

SEE ALSO
s b u f . p u b(3C++), s t r e a m b u f(3C++), i o s(3C++) i s t r e a m(3C++) o s t r e a m(3C++)
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NAME
streambuf – public interface of character buffering class

SYNOPSIS
# i n c l u d e < i o s t r e a m . h >

t y p e d e f l o n g s t r e a m o f f , s t r e a m p o s ;
c l a s s i o s {
p u b l i c :

e n u m s e e k _ d i r { b e g , c u r , e n d } ;
e n u m o p e n _ m o d e { i n , o u t , a t e , a p p , t r u n c , n o c r e a t e , n o r e p l a c e } ;
/ / a n d l o t s o f o t h e r s t u f f . . . S e e i o s ( 3 C + + )

} ;

c l a s s s t r e a m b u f {
p u b l i c :

i n t i n _ a v a i l ( ) ;
i n t o u t _ w a i t i n g ( ) ;
i n t s b u m p c ( ) ;
s t r e a m b u f * s e t b u f ( c h a r * p t r , i n t l e n ) ;
s t r e a m p o s s e e k p o s ( s t r e a m p o s , i n t = i o s : : i n | i o s : : o u t ) ;
s t r e a m p o s s e e k o f f ( s t r e a m o f f , s e e k _ d i r , i n t = i o s : : i n | i o s : : o u t ) ;
i n t s g e t c ( ) ;
i n t s g e t n ( c h a r * p t r , i n t n ) ;
i n t s n e x t c ( ) ;
i n t s p u t b a c k c ( c h a r ) ;
i n t s p u t c ( i n t c ) ;
i n t s p u t n ( c o n s t c h a r * s , i n t n ) ;
v o i d s t o s s c ( ) ;
v i r t u a l i n t s y n c ( ) ;

} ;

DESCRIPTION
The s t r e a m b u f class supports buffers into which characters can be inserted (put) or from which characters can
be fetched (gotten). Abstractly, such a buffer is a sequence of characters together with one or two pointers (a
get and/or a put pointer) that define the location at which characters are to be inserted or fetched. The pointers
should be thought of as pointing between characters rather than at them. This makes it easier to understand
the boundary conditions (a pointer before the first character or after the last). Some of the effects of getting and
putting are defined by this class but most of the details are left to specialized classes derived from s t r e a m b u f.
(See f i l e b u f(3C++), s s b u f(3C++), and s t d i o b u f(3C++).)

Classes derived from s t r e a m b u f vary in their treatments of the get and put pointers. The simplest are uni-
directional buffers which permit only gets or only puts. Such classes serve as pure sources (producers) or sinks
(consumers) of characters. Queuelike buffers (e.g., see s t r s t r e a m(3C++) and s s b u f(3C++)) have a put and a
get pointer which move independently of each other. In such buffers characters that are stored are held (i.e.,
queued) until they are later fetched. Filelike buffers (e.g., f i l e b u f, see f i l e b u f(3C++)) permit both gets and
puts but have only a single pointer. (An alternative description is that the get and put pointers are tied
together so that when one moves so does the other.)

Most s t r e a m b u f member functions are organized into two phases. As far as possible, operations are performed
inline by storing into or fetching from arrays (the get area and the put area, which together form the reserve area,
or buffer). From time to time, virtual functions are called to deal with collections of characters in the get and
put areas. That is, the virtual functions are called to fetch more characters from the ultimate producer or to
flush a collection of characters to the ultimate consumer. Generally the user of a s t r e a m b u f does not have to
know anything about these details, but some of the public members pass back information about the state of the
areas. Further detail about these areas is provided in s b u f . p r o t(3C++), which describes the protected inter-
face.
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The public member functions of the s t r e a m b u f class are described below. In the following descriptions
assume:
— i, n, and len are i n ts.
— c is an i n t. It always holds a ‘‘character’’ value or E O F. A ‘‘character’’ value is always positive even when
c h a r is normally sign extended.
— sb and sb1 are s t r e a m b u f *s.
— ptr is a c h a r *.
— off is a s t r e a m o f f.
— pos is a s t r e a m p o s.
— dir is a s e e k _ d i r.
— mode is an i n t representing an o p e n _ m o d e.

Public member functions:

i=sb- > i n _ a v a i l ( )
Returns the number of characters that are immediately available in the get area for fetching. i characters
may be fetched with a guarantee that no errors will be reported.

i=sb- > o u t _ w a i t i n g ( )
Returns the number of characters in the put area that have not been consumed (by the ultimate consu-
mer).

c=sb- > s b u m p c ( )
Moves the get pointer forward one character and returns the character it moved past. Returns E O F if the
get pointer is currently at the end of the sequence.

pos=sb- > s e e k o f f (off, dir, mode)
Repositions the get and/or put pointers. mode specifies whether the put pointer (i o s : : o u t bit set) or
the get pointer (i o s : : i n bit set) is to be modified. Both bits may be set in which case both pointers
should be affected. off is interpreted as a byte offset. (Notice that it is a signed quantity.) The meanings
of possible values of dir are

i o s : : b e g
The beginning of the stream.

i o s : : c u r
The current position.

i o s : : e n d
The end of the stream (end of file.)

Not all classes derived from s t r e a m b u f support repositioning. s e e k o f f ( ) will return E O F if the class does not
support repositioning. If the class does support repositioning, s e e k o f f ( ) will return the new position or E O F
on error.

pos=sb- > s e e k p o s (pos, mode)
Repositions the streambuf get and/or put pointer to pos. mode specifies which pointers are affected as
for s e e k o f f ( ). Returns pos (the argument) or E O F if the class does not support repositioning or an error
occurs. In general a s t r e a m p o s should be treated as a ‘‘magic cookie’’ and no arithmetic should be per-
formed on it. Two particular values have special meaning:

s t r e a m p o s ( 0 )
The beginning of the file.

s t r e a m p o s ( E O F )
Used as an error indication.

c=sb- > s g e t c ( )
Returns the character after the get pointer. Contrary to what most people expect from the name IT
DOES NOT MOVE THE GET POINTER . Returns E O F if there is no character available.
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sb1=sb- > s e t b u f (ptr, len, i)
Offers the len bytes starting at ptr as the reserve area. If ptr is null or len is zero or less, then an unbuf-
fered state is requested. Whether the offered area is used, or a request for unbuffered state is honored
depends on details of the derived class. s e t b u f ( ) normally returns sb, but if it does not accept the offer
or honor the request, it returns 0.

i=sb- > s g e t n (ptr, n)
Fetches the n characters following the get pointer and copies them to the area starting at ptr. When
there are fewer than n characters left before the end of the sequence s g e t n ( ) fetches whatever charac-
ters remain. s g e t n ( ) repositions the get pointer following the fetched characters and returns the
number of characters fetched.

c=sb- > s n e x t c ( )
Moves the get pointer forward one character and returns the character following the new position. It
returns E O F if the pointer is currently at the end of the sequence or is at the end of the sequence after
moving forward.

i=sb- > s p u t b a c k c (c)
Moves the get pointer back one character. c must be the current content of the sequence just before the
get pointer. The underlying mechanism may simply back up the get pointer or may rearrange its inter-
nal data structures so the c is saved. Thus the effect of s p u t b a c k c ( ) is undefined if c is not the charac-
ter before the get pointer. s p u t b a c k c ( ) returns E O F when it fails. The conditions under which it can
fail depend on the details of the derived class.

i=sb- > s p u t c (c)
Stores c after the put pointer, and moves the put pointer past the stored character; usually this extends
the sequence. It returns E O F when an error occurs. The conditions that can cause errors depend on the
derived class.

i=sb- > s p u t n (ptr, n)
Stores the n characters starting at ptr after the put pointer and moves the put pointer past them.
s p u t n ( ) returns i, the number of characters stored successfully. Normally i is n, but it may be less
when errors occur.

sb- > s t o s s c ( )
Moves the get pointer forward one character. If the pointer started at the end of the sequence this func-
tion has no effect.

i=sb- > s y n c ( )
Establishes consistency between the internal data structures and the external source or sink. The details
of this function depend on the derived class. Usually this ‘‘flushes’’ any characters that have been stored
but not yet consumed, and ‘‘gives back’’ any characters that may have been produced but not yet
fetched. s y n c ( ) returns E O F to indicate errors.

CAVEATS
s e t b u f does not really belong in the public interface. It is there for compatibility with the stream package.

Requiring the program to provide the previously fetched character to s p u t b a c k is probably a botch.

SEE ALSO
i o s(3C++) i s t r e a m(3C++) o s t r e a m(3C++), s b u f . p r o t(3C++)
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NAME
strstreambuf – streambuf specialized to arrays

SYNOPSIS
# i n c l u d e < i o s t r e a m . h >
# i n c l u d e < s t r s t r e a m . h >

c l a s s s t r s t r e a m b u f : p u b l i c s t r e a m b u f {
p u b l i c :

s t r s t r e a m b u f ( ) ;
s t r s t r e a m b u f ( c h a r * , i n t , c h a r * ) ;
s t r s t r e a m b u f ( i n t ) ;
s t r s t r e a m b u f ( u n s i g n e d c h a r * , i n t , u n s i g n e d c h a r * ) ;
s t r s t r e a m b u f ( v o i d * ( * a ) ( l o n g ) , v o i d ( * f ) ( v o i d * ) ) ;

v o i d f r e e z e ( i n t n = 1 ) ;
c h a r * s t r ( ) ;
v i r t u a l s t r e a m b u f * s e t b u f ( c h a r * , i n t )

} ;

DESCRIPTION
A s t r s t r e a m b u f is a s t r e a m b u f that uses an array of bytes (a string) to hold the sequence of characters. Given
the convention that a c h a r * should be interpreted as pointing just before the c h a r it really points at, the map-
ping between the abstract get/put pointers (see s b u f . p u b(3C++)) and c h a r * pointers is direct. Moving the
pointers corresponds exactly to incrementing and decrementing the c h a r * values.

To accommodate the need for arbitrary length strings s t r s t r e a m b u f supports a dynamic mode. When a
s t r s t r e a m b u f is in dynamic mode, space for the character sequence is allocated as needed. When the sequence
is extended too far, it will be copied to a new array.

In the following descriptions assume:
— ssb is a s t r s t r e a m b u f *.
— n is an i n t.
— ptr and pstart are c h a r *s or u n s i g n e d c h a r *s.
— a is a v o i d * ( * ) ( l o n g ).
— f is a v o i d * ( * ) ( v o i d * ).

Constructors::
s t r s t r e a m b u f ( )

Constructs an empty s t r s t r e a m b u f in dynamic mode. This means that space will be automati-
cally allocated to accommodate the characters that are put into the s t r s t r e a m b u f (using opera-
tors n e w and d e l e t e). Because this may require copying the original characters, it is recom-
mended that when many characters will be inserted, the program should use s e t b u f ( )
(described below) to inform the s t r s t r e a m b u f.

s t r s t r e a m b u f (a, f)
Constructs an empty s t r s t r e a m b u f in dynamic mode. a is used as the allocator function in
dynamic mode. The argument passed to a will be a l o n g denoting the number of bytes to be
allocated. If a is null, o p e r a t o r n e w will be used. f is used to free (or delete) areas returned by
a. The argument to f will be a pointer to the array allocated by a. If f is null, o p e r a t o r d e l e t e
is used.

s t r s t r e a m b u f (n)
Constructs an empty s t r s t r e a m b u f in dynamic mode. The initial allocation of space will be at
least n bytes.

s t r s t r e a m b u f (ptr, n, pstart)
Constructs a s t r s t r e a m b u f to use the bytes starting at ptr. The s t r s t r e a m b u f will be in static
mode; it will not grow dynamically. If n is positive, then the n bytes starting at ptr are used as
the s t r s t r e a m b u f. If n is zero, ptr is assumed to point to the beginning of a null terminated
string and the bytes of that string (not including the terminating null character) will constitute
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the s t r s t r e a m b u f. If n is negative, the s t r s t r e a m b u f is assumed to continue indefinitely. The
get pointer is initialized to ptr. The put pointer is initialized to pstart. If pstart is null, then stores
will be treated as errors. If pstart is non-null, then the initial sequence for fetching (the get area)
consists of the bytes between ptr and pstart. If pstart is null, then the initial get area consists of
the entire array.

Member functions:
ssb- > f r e e z e (n)

Inhibits (when n is nonzero) or permits (when n is zero) automatic deletion of the current array.
Deletion normally occurs when more space is needed or when ssb is being destroyed. Only space
obtained via dynamic allocation is ever freed. It is an error (and the effect is undefined) to store
characters into a s t r s t r e a m b u f that was in dynamic allocation mode and is now frozen. It is
possible, however, to thaw (unfreeze) such a s t r s t r e a m b u f and resume storing characters.

ptr=ssb- > s t r ( )
Returns a pointer to the first c h a r of the current array and freezes ssb. If ssb was constructed
with an explicit array, ptr will point to that array. If ssb is in dynamic allocation mode, but noth-
ing has yet been stored, ptr may be null.

ssb- > s e t b u f ( 0 ,n)
ssb remembers n and the next time it does a dynamic mode allocation, it makes sure that at least
n bytes are allocated.

SEE ALSO
s b u f . p u b(3C++), s t r s t r e a m(3C++)
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NAME
stdiobuf – iostream specialized to stdio FILE

SYNOPSIS
# i n c l u d e < i o s t r e a m . h >
# i n c l u d e < s t d i o s t r e a m . h >
# i n c l u d e < s t d i o . h >

c l a s s s t d i o b u f : p u b l i c s t r e a m b u f {
s t d i o b u f ( F I L E * f ) ;

F I L E * s t d i o f i l e ( ) ;
} ;

DESCRIPTION
Operations on a s t d i o b u f are reflected on the associated F I L E. A s t d i o b u f is constructed in unbuffered
mode, which causes all operations to be reflected immediately in the F I L E. s e e k g ( )s and s e e k p ( )s are
translated into f s e e k ( )s. s e t b u f ( ) has its usual meaning; if it supplies a reserve area, buffering will be turned
back on.

CAVEATS
s t d i o b u f is intended to be used when mixing C and C++ code. New C++ code should prefer to use f i l e b u fs,
which have better performance.

SEE ALSO
f i l e b u f(3C++), i s t r e a m(3C++), o s t r e a m(3C++), s b u f . p u b(3C++)
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NAME
strstream – iostream specialized to arrays

SYNOPSIS
# i n c l u d e < s t r s t r e a m . h >

c l a s s i o s {
p u b l i c :

e n u m o p e n _ m o d e { i n , o u t , a t e , a p p , t r u n c , n o c r e a t e , n o r e p l a c e } ;
/ / a n d l o t s o f o t h e r s t u f f , s e e i o s ( 3 C + + ) . . .

} ;

c l a s s i s t r s t r e a m : p u b l i c i s t r e a m {
p u b l i c :

i s t r s t r e a m ( c h a r * ) ;
i s t r s t r e a m ( c h a r * , i n t ) ;

s t r s t r e a m b u f * r d b u f ( ) ;
} ;

c l a s s o s t r s t r e a m : p u b l i c o s t r e a m {
p u b l i c :

o s t r s t r e a m ( ) ;
o s t r s t r e a m ( c h a r * , i n t , i n t = i o s : : o u t ) ;

i n t p c o u n t ( ) ;
s t r s t r e a m b u f * r d b u f ( ) ;
c h a r * s t r ( ) ;

} ;

c l a s s s t r s t r e a m : p u b l i c s t r s t r e a m b a s e , p u b l i c i o s t r e a m {
p u b l i c :

s t r s t r e a m ( ) ;
s t r s t r e a m ( c h a r * , i n t , i n t m o d e ) ;

s t r s t r e a m b u f * r d b u f ( ) ;
c h a r * s t r ( ) ;

} ;

DESCRIPTION
s t r s t r e a m specializes i o s t r e a m for ‘‘incore’’ operations, that is, storing and fetching from arrays of bytes. The
s t r e a m b u f associated with a s t r s t r e a m is a s t r s t r e a m b u f (see s s b u f(3C++)).

In the following descriptions assume:
— ss is a s t r s t r e a m.
— iss is an i s t r s t r e a m.
— oss is an o s t r s t r e a m.
— cp is a c h a r *.
— mode is an i n t representing an o p e n _ m o d e.
— i and len are i n ts.
— ssb is a s t r s t r e a m b u f *.

Constructors
i s t r s t r e a m (cp)

Characters will be fetched from the (null-terminated) string cp. The terminating null character
will not be part of the sequence. Seeks (i s t r e a m : : s e e k g ( )) are allowed within that space.

i s t r s t r e a m (cp, len)
Characters will be fetched from the array beginning at cp and extending for len bytes. Seeks
(i s t r e a m : : s e e k g ( )) are allowed anywhere within that array.
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o s t r s t r e a m ( )
Space will be dynamically allocated to hold stored characters.

o s t r s t r e a m (cp,n,mode)
Characters will be stored into the array starting at cp and continuing for n bytes. If i o s : : a t e or
i o s : : a p p is set in mode, cp is assumed to be a null-terminated string and storing will begin at the
null character. Otherwise storing will begin at cp. Seeks are allowed anywhere in the array.

s t r s t r e a m ( )
Space will be dynamically allocated to hold stored characters.

s t r s t r e a m (cp,n,mode)
Characters will be stored into the array starting at cp and continuing for n bytes. If i o s : : a t e or
i o s : : a p p is set in mode, cp is assumed to be a null-terminated string and storing will begin at the
null character. Otherwise storing will begin at cp. Seeks are allowed anywhere in the array.

i s t r s t r e a m members
ssb = iss. r d b u f ( )

Returns the s t r s t r e a m b u f associated with iss.

o s t r s t r e a m members
ssb = oss. r d b u f ( )

Returns the s t r s t r e a m b u f associated with oss.

cp=oss. s t r ( )
Returns a pointer to the array being used and ‘‘freezes’’ the array. Once s t r has been called the
effect of storing more characters into oss is undefined. If oss was constructed with an explicit
array, cp is just a pointer to the array. Otherwise, cp points to a dynamically allocated area.
Until s t r is called, deleting the dynamically allocated area is the responsibility of oss. After s t r
returns, the array becomes the responsibility of the user program.

i=oss. p c o u n t ( )
Returns the number of bytes that have been stored into the buffer. This is mainly of use when
binary data has been stored and oss. s t r ( ) does not point to a null terminated string.

s t r s t r e a m members
ssb = ss. r d b u f ( )

Returns the s t r s t r e a m b u f associated with ss.

cp=ss. s t r ( )
Returns a pointer to the array being used and ‘‘freezes’’ the array. Once s t r has been called the
effect of storing more characters into ss is undefined. If ss was constructed with an explicit array,
cp is just a pointer to the array. Otherwise, cp points to a dynamically allocated area. Until s t r
is called, deleting the dynamically allocated area is the responsibility of ss. After str returns, the
array becomes the responsibility of the user program.

SEE ALSO
s t r s t r e a m b u f(3C++), i o s(3C++) i s t r e a m(3C++) o s t r e a m(3C++)
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