

ð

2

T E C H N O T E :
Understanding PCI Expansion ROM
Choices for Copland

by Wayne Flansburg
W.Flansburg@applelink.apple.com
Apple Developer Technical Support (DTS)

This Technote addresses PCI expansion ROM contents for Copland. The
information here also applies to all Macintosh computers with PCI expansion
capability, such as the Power Macintosh 9500, 8500, and 7500. The Note looks at
the basic device types as defined in the IEEE 1275-1994 Open Firmware
standard. It defines the recommended contents common for all ROMs, as well
as the specific recommended contents for the various standard device types,
excluding bridge devices.

This Note is intended for PCI expansion device driver writers. It can also be of
value to board designers because it discusses the various ROM contents that
can supersede the values that are hard-coded into PCI Configuration Space. It
also addresses why the board designer might want to constrain the design
based on the various ROM contents, such as specifying maximum memory
requirements in Configuration Space and particular requirements in the “reg”
1 of 10
Technote 1044 - Release 1.0  Apple Computer, Inc. 5/8/96

property –– that is, using the Configuration Space register to define memory
requirements for one OS and using properties for another OS.

This Technote assumes you understand the Open Firmware process integral to
the newer Macintosh computers that use the PCI-I/O expansion model. It also
assumes you understand “properties” and know how to create and use them.

Providing Open Firmware Support 2

Since the ROM contents is ultimately decided by third-party developers, the
first issue to address is what level of Open Firmware support the device will
provide. This can be divided into the following categories:

■ no support

■ minimum support

■ full support

For each level of support, this Note addresses what can and cannot be
accomplished by the device for Copland or other operating systems the device
may target.

Defining “Boot” and “Runtime” Drivers 2

At this point, before explaining the different levels of Open Firmware support
provided by the device, we need to distinguish between “boot” and “runtime”
drivers.

IMPORTANT

Boot drivers are programmed in FCode, a byte-encoded
OS (Operating System) and ISA (Instruction Set
Architecture) independent form of software. They are used
before control has been passed to the main operating
system by Open Firmware and its client. Note that the
operating system can be other than the Mac OS.

Runtime drivers are OS-dependent and are, in the context of this Note,
Macintosh drivers. ◆
2 of 10 Providing Open Firmware Support

Technote 1044 - Release 1.0  Apple Computer, Inc. 5/8/96

No Support of Open Firmware 2

The first type of Open Firmware support is that of no support. This lack of
support does not require an expansion ROM at all, although an expansion
ROM with no FCode is also contained in this category. However, placing an
expansion ROM on a device costs money, and it makes little sense to provide
an empty ROM.

Problems With This Approach 2

There are problems that you should consider with this type of support: 1) not
being plug-and-play, 2) having an ambiguous device driver name, 3) wasting
memory space, since using base registers only allow memory sizes to be
multiples of powers of two, and 4) not being able to define sub-apertures.
Sub-apertures are defined using the Configuration Space base registers. A
typical example is a display device with a frame buffer, video controller, and
RAMDAC. By defining three base registers, one for each function on the
device, families can write memory differently than they do registers. This is
useful for caching.

No Plug-and-Play 2

Without an expansion ROM, the device won’t be plug and play. Nor will it be
available to the user until the file system is initialized because the driver
container must be placed on a hard disk and loaded from there. Note that the
driver container does not necessarily have to be place on a hard disk: it could,
for example, be located on a network. However, the device and driver will be
matched and loaded.

Ambiguous Device Driver Name 2

Another issue to consider is that a distinct device “name” property cannot be
provided when there is no expansion ROM. This makes unique device/driver
matching ambiguous. For example, two manufacturers may supply a similar
driver for a particular device, or a chip vendor may rev a PCI interface chip
used on your device. Open Firmware during its probing process first looks for
a name property in the Expansion ROM. It then looks for the Subsystem ID and
Subsystem Vendor ID. And finally, it will choose the Device ID and Vendor ID
if the name property is not defined and the Subsystem ID and Subsystem
Vendor ID are zero.
Providing Open Firmware Support 3 of 10
Technote 1044 - Release 1.0  Apple Computer, Inc. 5/8/96

Runtime drivers may fall into the no-support category but boot drivers cannot
exist without an expansion ROM and therefore do not belong in this category.

The no-support category is populated mostly by applications controlling a
device via a private driver. The device is not available to other applications.
Since the name may not be unique, the driver should provide additional
software to make sure that the device it has been matched with by the
operating system is indeed its device. This could be some sort of a signature
diagnostic. For instance, all drivers have a validateHardware interface that is
called by the family that instantiates the driver to validate that the match is
correct and the device is functional.

Minimum Support of Open Firmware 2

To achieve minimum support requires an expansion ROM. Minimum support
or Run Time Support requires a driver,AAPL,MacOS,PowerPC property. It
should also include a “name” property. This will eliminate ambiguous driver/
devices matching and provide plug-and-play.

Full Support of Open Firmware 2

The last category –– full support –– includes but is not limited to unambiguous
driver/device matching, plug-and-play support, and boot support. The
presence of a “name” property in the ROM guarantees matching, the presence
of a runtime driver in the ROM guarantees plug-and-play, and the presence of
a boot driver guarantees Open Firmware driver support such as display and
network devices.

Properties Common To All Device Types 2

Given that your device has an expansion ROM, there are properties common to
all devices as well as device-specific properties. What follows is an introduction
to those properties that are defined by the IEEE 1275-1994 Specification, the PCI
Binding Specification, and Apple Computer.
4 of 10 Properties Common To All Device Types

Technote 1044 - Release 1.0  Apple Computer, Inc. 5/8/96

The "name" Property 2

The “name” property is uniquely used to define the name of your node in the
Open Firmware device tree. This is also the name of your device. This is the
only required property. If you do not supply this property, the Open Firmware
is obliged to construct one on your behalf because it is required. This is the
algorithm. The Open Firmware probing process first looks for FCode to define
this property in the device tree. If it is not present, it then uses the Subsystem
ID and SystemVendor ID that is hard-wired in Configuration Space on your
device. If those fields are zero, it then uses the Vendor ID and Device ID also in
the Configuration Space. It will construct a “name” property of the form
pcixxxx,yyyy. The yyyy field can be the System ID or Device ID while the xxxx
field can be a SubsystemVendor ID or Vendor ID.

The "reg" Property 2

The "reg" property is used to define your device’s PCI memory-mapped areas
including I/O space. If a "reg" property is contained in your expansion ROM, it
will be used. If not, the Open Firmware probing process constructs one for you.
It does so by writing all 1’s to the Base Address Registers. (0x10 through 0x24)
in Configuration Space. It then reads back the values. These registers are
hardwired in powers of two to define your memory needs. Bits returning a
zero effectively define the memory requirements. See the PCI Local Bus
Specification Revision 2.1 Section 6.2.5 Base Addresses for details. A word
about the "assigned-addresses" property. This property is also generated
during the probing process from the "reg" property. It is not, however,
contained in the expansion ROM but is placed in the device tree. A Technote on
these memory related properties and the device tree is scheduled for release
mid 1996.

The "device-type" Property 2

The "device-type" property defines the device by function such as display,
network, block, and so on. A word of caution is required. All device types
except type “pci” use a PCI Configuration Register Map. Device type “pci”
uses a PCI-to-PCI Bridge Register Map. See Designing PCI Cards and Drivers for
Power Macintosh Computers, Chapter 4, “Startup & System Configuration,”
Figures 4-1 and 4-2 for details.
Properties Common To All Device Types 5 of 10
Technote 1044 - Release 1.0  Apple Computer, Inc. 5/8/96

The "interrupts" Property 2

Use this property to define whether your device can generate interrupts. Its
absence defines no interrupt needs. Since all interrupt pins on the PCI bridge
chip are “ORed” together, there can be only one interrupt source on your
device. Your device will be required to supply, in the case of multiple sources, a
method for the driver to determine which source is the one requiring service.

The "model" Property 2

The model number or name of your device.

The "address" Property 2

Used to define large virtual address regions. Currently unused by Open
Firmware.

The "compatible" Property 2

Used to define alternate "name" property values. You would typically use this
property to tell the Open Firmware that there are other device choices that can
be matched with a driver, given the original "name" property could not be
matched. The compatible property allows other drivers to match against your
device. For example, consider an XYZ networking card that is
register-compatible with an Apple networking card. In this case, the name
property would be "XYZ,xxx,yyy" and, correspondingly, the compatible
property would be AAPL,xxx,yyy".

The "status" Property 2

The status of your device. Use this when you run diagnostics on your device
during the Open Firmware boot process and you wish to report the results to
Open Firmware. Currently unused by Open Firmware.
6 of 10 Properties Common To All Device Types

Technote 1044 - Release 1.0  Apple Computer, Inc. 5/8/96

Standard Device Nodes and Their Properties 2

That concludes our discussion of the properties that are common to all device
nodes. Now let’s look at some standard device nodes and their properties. The
most common five are: "block", "byte", "display", "network", and "serial".
Standard Device Nodes and Their Properties 7 of 10
Technote 1044 - Release 1.0  Apple Computer, Inc. 5/8/96

y

y

y

Table1 Standard devices, properties and methods

Device Property Function

block open Prepares device for use

close Closes previously opened device

read Moves device memory contents to main memory

write Moves main memory contents to device memory

seek Sets device position

load Loads a client program from device to main memor

Note: To be bootable, block devices must support
disk-label and deblocker packages and implement
associated methods, such as read-blocks.

byte open Prepares device for use

close Closes previously opened device

read Moves device memory contents to main memory

write Moves main memory contents to device memory

seek Sets device position

load Loads a client program from device to main memor

display open Prepares device for use

close Closes previously opened device

write Puts characters on boot screen

draw-logo Calls the FCode function to draw caller’s
bit-mapped logo

restore Resets your device

character-set Defines which standard set of characters your
device supports, such as ISO8859-1

network open Prepares device for use

close Closes previously opened device

read Moves device memory contents to main memory

write Moves main memory contents to device memory

load Loads a client program from device to main memor

local-mac-address The preassigned network address. The mac stands
for Media Access Control and should not be
confused with the Macintosh.

mac-address Contains the last used network address

address-bits Contains the length of the network address

max-frame-size Contains the maximum packet size
8 of 10 Standard Device Nodes and Their Properties

Technote 1044 - Release 1.0  Apple Computer, Inc. 5/8/96

Note
Using the Open Firmware User Interface to look at the
mace device tree node, which is the motherboard ASIC for
controlling the Ethernet, gives the following information
about that device. It is of type "network". It uses the
"local-mac-address" but does not have need for the last
used network address. It has 48 address bits and can
transfer a packet no bigger that 2048 bytes in size. ◆

Summary 2

This Technote introduces you to the possible expansion ROM contents for all
PCI Macintosh computers. Copland will run on both NuBus and PCI
Macintoshes, but NuBus machines have no expansion ROM and therefore this
Note does not apply to them. The least risky choice between no ROM,
minimum ROM, and full ROM is, of course, full support, but the actual
decision is constrained by how the board will be used. This Note is intended to
make you aware of your ROM-content choices.

But it must be stated that NuBus devices that want to be boot devices will be
able to supply Open Firmware just like a PCI device. Additionally, we expect/
hope to see Open Firmware code for ALL devices, so that we can create address
spaces correctly and install the right set of device nodes and interrupt tree
nodes for multi-function cards.

serial open Prepares device for use

close Closes previously opened device

read Moves device memory contents to main memory,
i.e., character

write Moves main memory contents to device memory,
i.e., character

restore Resets your device

install-abort When used, polls for a console abort sequence

remove-abort Reverses the effect of install-abort

ring-bell Need no further comment

Device Property Function
Summary 9 of 10
Technote 1044 - Release 1.0  Apple Computer, Inc. 5/8/96

A closing caveat is that device type 'ndrv' was not addressed in this Note. This
type is an Apple-derived type to allow developers to move to PCI before
certain families are introduced into the OS. With time, all device types should
use families. However, 'ndrv' is a valid type and can be used. Having an
expansion ROM on a 'ndrv' device can allow the driver writer to at least
generate a "name" property with its unambiguous value. This alone will
prevent a third-party manufacturer from having to recall its drivers to revise its
DriverDescription data structure.

Further Reference 2

■ Starting FORTH; Brody

■ Writing FCode Program for PCI

■ PCI Local Bus Specification Revision 2.1

Acknowledgments 2

Thanks to Monte Benaresh, Ron Hochsprung, Pradeep Kathail, Holly Knight,
and Samuel Yan.
10 of 10 Summary

Technote 1044 - Release 1.0  Apple Computer, Inc. 5/8/96

	Providing Open Firmware Support
	Defining “Boot” and “Runtime” Drivers
	No Support of Open Firmware
	Problems With This Approach
	No Plug-and-Play
	Ambiguous Device Driver Name

	Minimum Support of Open Firmware
	Full Support of Open Firmware

	Properties Common To All Device Types
	The "name" Property
	The "reg" Property
	The "device-type" Property
	The "interrupts" Property
	The "model" Property
	The "address" Property
	The "compatible" Property
	The "status" Property

	Standard Device Nodes and Their Properties
	Table1 Standard devices, properties and methods

	Summary
	Further Reference
	Acknowledgments

