PA-800515
Issue 2, July 1979
AT&T Co Provisional

\C-8

1A MICROPROCESSOR
TRAINING AID
MAC TUTOR

' REFERENCE MANUAL
@Bell Laboratories

NOTICE

Not for use or disclosure outside the Bell
System except under written agreement.

Prepared and published for the
Microprocessor Systems Development Department
by the
Technical Documentation Department
Bell Laboratories

Printed in U.S.A.

I SSUE NUMBER AND DATE
[©ANE e
CONTENTS PAGE 1o e
NUMBER | ' | .
4L
PAGE [NDEX A R
¥ 12
A3 RE
I NE
A5 1|2
A6 B1hnk
TITLE PAGE, FRONT - 2
TITLE PAGE, REAR - _
FOREWORD, FRONT _ _ |2
FOREWORD, REAR - Blhnk
CONTENTS i 2
11 2
CHAPTER 1 TITLE PAGE
FRONT _ -
REAR - Blpnk

THE CONTENT OF THIS MATERIAL IS PROPRIETARY AND CONSTITUTES A TRADE SECRET.
IT IS FURNISHED PURSUANT TO WRITTEN AGREEMENTS OR INSTRUCTIONS LIMITING THE

EXTENT OF D1SCLOSURE.

ITS FURTHER DISCLOSURE IN ANY FORM WITHOUT THE WRITTEN

PERMISSION OF ITS OWNER, BELL LABORATORIES, INCORPORATED, IS PROHIBITED.

PAGE INDEX NOTES

SUPPORTING INFORMATION

WHEN CHANGES ARE MADE IN THIS
DOCUMENT, ONLY THOSE PAGES AFFECTED
WiLL BE REISSUED.

THIS PAGE INDEX WILL BE REISSUED

AND BROUGHT UP TO DATE EACH TIME ANY
PAGE OF THE DOCUMENT !S RE{SSUED, OR
A NEW PAGE IS ADDED.

THE |SSUE NUMBER ASSIGNED TO A
CHANGED OR NEW PAGE WILL BE THE SAME
ISSUE NUMBER AS THAT OF THE PAGE
INDEX.

PAGES THAT ARE NOT CHANGED WiLL
RETAIN THEIR EXISTING ISSUE NUMBER.

THE LAST ISSUE NUMBER OF THE PAGE
INDEX IS RECOGNIZED AS THE LATEST
ISSUE NUMBER OF THE DOCUMENT AS A
WHOLE.

@ Bell Laboratories

CATEGORY NUMBER
A TTET Co.
MAC TUTOR Provisional
REFERENCE MANUAL PA-800515-A1

PAGE I SSUE NUMBER
CONTENTS NUMBER e
1. SYSTEM OVERVIEW 1-1 1]2
1-2 1 {2
1-3 112
1-4 Blank
1=-5 1]2
1-6 Blank
1-7 112
1-8 Blank
1-9 112
1-10 Blank
CHAPTER 2 TITLE PAGE
FRONT - 1 |-
REVERSE - Blpnki
2. MAC-TUTOR HARDWARE 2-1 1|2
2-2 1 12
2-3 1l {2
2-4 - |2
2-5 1 |2
2-6 Blank
2-7 1]2
2-8 Blank
2-9 1 |-
2-10 Blank
2-11 112
2-12 112
2-13 112
2-14 112
2-15 112
2-16 112
2-17 112
2-18 1|2
2-19 112
2-20 Blank

@ Bell Laboratories

MAC-8

ISSUE

PA-800515
-A2

CONTENTS NESgER — I SSUE NUMBER
CHAPTER 3 T1TLE PAGE
FRONT - 1
REVERSE - Blank
3. MAC-8 ARCHITECTURE 3-1 1]2
3-2 112
3-3 112
3-4 112
3-5 1 12
3-6 1 12
CHAPTER 4 TITLE PAGE
FRONT - 1 |-
REVERSE - Blank
4, MAC-TUTOR SOFTWARE h-1 1]2
h-2 1l]2
4-3 1|2
h-4 1 {2
-5 1 {2
h-6 1 |2
-7 1 |2
L-8 1 {2
h-9 1]2
4-10 1 |2
4-11 1 |2
4-12 1 12
4-13 1 |2
4-14 1]2
4-15 1]2
4-16 1]2
CHAPTER 5 TITLE PAGE
FRONT - 1 |-
REVERSE - Blgnk
(&) BellLaboratories MAC-8 ssve [za-500513
2

PAGE | SSUE NUMBER

CONTENTS NUMgER -

5. SOFTWARE 5-1 12f 2
5-2 12

5-3 1]2

5-4 112

5-5 112

5-6 102

APPENDIX TITLE PAGE

FRONT - 12
REAR - Bllank
APPENDIX, RESIDENT A-1 -1 2
EXECUTIVE SOFTWARE A-2 -l 2
A-3 - 2

A-4 -1 2

A-5 -2

A-6 -2

A=-T7 -1 2

A-8 -2

A-9 “T2

A-10 -1 2

A-11 12

A-12 -1 2

A-13 -2

A-14 -1 2

A-15 -1 2

A-16 -1 2

A=17 -1 2

A-18 -1 2

A-19 -1 2

A-20 -T2

A-21 -1 2

A-22 -1 2

A-23 12

A-2L -1 2

A-25 -1 2

i ISSUE -
@ Bell Laboratories MAC-8 2 ﬁiu800515

CONTENTS

PAGE
NUMBER

{ SSUE NUMBER

A TYTYTIATTS T XT

a YA
A=Z0

A-27

A-28

A-29

A-30

A-31

A-32

A-33

A-34

I
hSN NICN NG NION I\CEE B\OT BACEE RACEE NAGIE NAV}

@ Bell Laboratories

MAC-8

ISSUE

no

PA-800515
-A5

PA-800515 Issue 2, July 1979

FOREWORD

MAC-Tutor has been coded by the Western Electric Company as the No. 1A Microprocessor
Training Aid (component code 103180717), but will be called MAC-Tutor throughout this
manual.

The following manuals are shipped with the No. 1A Microprocessor Training Aid:

PA-800515 MAC-TUTOR REFERENCE MANUAL
PA-800516 MAC-TUTOR SELF-TRAINING MANUAL
PA-800517 MAC-8 HEXADECIMAL CODING CHART

For questions or comments concerning MAC-Tutor usage, repairs, documentation, and/or to
be placed on distribution for future documentation updates, dial the MAC-Phone on CORNET
233, extension MAC8 (6228).

PA-800515
Issue 2, July 1979

1.

MAC TUTOR REFERENCE MANUAL

CONTENTS

SYSTEM OVERVIEW

1.1 Introduction

1.2 System Features .

MAC TUTOR HARDWARE .

2.1 Functional Description

2.2 Electrical Characteristics e s e e e e
2.2.1 MAC-8 Microprocessor and Reset Circuitry (See Figure 2-2.)
2.2.2 ROM and RAM (See Figure 2-3.)
2.2.3 1/0 (See Figure 2-4.) .
2.2.4 Keypad (See Figure 2-5.)
2.2.5 PROM Programmer (See Figure 2-6.)
2.2.6 TTY Terminal and Data Set Interface (See Figure 2-7.)
2.2.7 Cassette Tape Interface (See Figure 2-8.)
2.2.8 Power Supply Circuitry (See Figure 2-9.)
2.2.9 Timing .

MAC-8 ARCHITECTURE .

3.1 General Registers

3.2 Register Pointer .

3.3 Pushdown Stack .

3.4 Addressing Modes

3.5 Conditions . . . -,

3.6 Interrupts .

3.7 Traps

3.8 Reset

MAC TUTOR SOFTWARE

4.1 Functional Description

4.2 Operation
4.2.1 Keypad/Display .
4.2.2 Keypad Button Control
4.2.3 TTY Control .
4.2.4 System Utilities .

4.3 Programming .

Contents

4-11
4-11

PA-800515
Contents Issue 2, July 1979

4.4 Available Programs « +« v 4 v e s e 4 e e .o 412
441 Move Memory -*022F « +« « + + « v o« v o« o+ . 412
442 WriteaPROM-*0541 « « « « « « . . . 412
443 VerifyaPROM-*057B « + « « « . « . . 413
4.4.4 Dump to Audio Tape-*06C6 413
445 Read from Audio Tape-*0SEE 414
4.5 Testing and Diagnosing « .+ . .+ « 416
5. GLOSSARY « v v v e e e e e e e e e e e e e e e 51

APPENDIX

Resident Executive Program

-1 -

System Overview
P A-800515
Issue 2, July 1979

Chapter 1

SYSTEM OVERVIEW

PA-800515 System Overview
Issue 2, July 1979

1. SYSTEM OVERVIEW

1.1 Introduction

The MAC Tutor is a low cost, self-contained, microprocessor-based system developed to famil-

iarize users with microprocessor basics and, in particular, with MAC-8 microprocessor opera-
tion.

1.2 System Features

The MAC Tutor contains an on-board keypad and an 8-digit display whereby MAC-8 programs
can be entered, executed, and debugged. In addition, the necessary interface is available for
various peripheral equipment, such as a teletypewriter (TTY) terminal, a time-sharing com-
puter, or a cassette tape recorder. Figure 1-1 shows the MAC Tutor sections.

MAC Tuior feaiures inciude:
o MAC-8 microprocessor
¢ 2K bytes of random-access memory (RAM)
e 2K read-only memory (ROM) executive program to control hardware features
e Sockets for three 1K-byte programmable read-only memories (PROMs)
¢ Eight 7-segment light-emitting diode (LED) displays
e 28-button, calculator-type keypad

e PROM programming socket capable of creating and verifying Intel 2708-type, 1K-byte
PROMs

e Audio cassette interface for storing and retrieving data at a rate of 166 baud
e 32 input/output (I/0) lines with a socket to add another 24 lines

e RS232C interface for TTY-compatible terminals capable of running at rates from 0 to
2400 baud

e Data set interface with software-controlled data direction switch

e Address and data buses available on 16-pin connectors for addition of memory or peri-
pherals

e Ability to single-step program instructions

e On-board power supply (110-volt ac, 60-Hz input required)

1-1

System Overview PA-800515
Issue 2, July 1979

CONNECTORS FOR TWQ RS 232C
2Kx8-BIT (BYTE) INPUT-OUTPUT LINES CONNECTIONS FOR
RANDOM-ACCESS AND BUS ACCESS TTY TERMINAL OR MODEM

MEMORY (RAM)

SOCKETS FOR THREE
1Kx8-BIT (BYTE)

PROGRAMMABLE POWER
READ-ONLY MEMORIES SUPPLY
(PROMS)
(SUPPLIED BY USER)
CASSETTE
TAPE
INTERFACE
2Kx8-BIT (BYTE)
READ-ONLY MEMORY
(ROM)
CONTAINS EXECUTIVE
PROGRAM
KEYPAD AND
DISPLAY
MAC-8 AND CLOCK
ADDRESS DECODING PROM PROGRAMMING SOCKET

AND RESET LOGIC

Figure 1-1. MAC Tutor Sections

Note: The material in this manual pertains to ISSUE 4 models (prototype version). ISSUE 4
schematic diagrams are shown in Figures 1-2 and 1-3. ISSUE 3 schematic diagrams, Figures 1-
4 and 1-5, are included for reference only.

1-2

PA-800515
Issue 2, July 1979

DNAAL

System Overview

—_—— r PR —_
R\ 1 T
M 3 “.- (3] raocn~ > 2 "
] 2 i 2 3 »" NABLE ! 1)
w1 » '} Tror) L8 2
18 ¢ Jig- o (] u a 1 “ 102 |5 1] rERIP <) il
™ o i o N T a2 2l? " A2 9 2| sl [H WTERface | 140 P
B B & " A o e [[1]] s = e 03 024 o [e :
A m—tHmr &] M e Mt glf T " n 10 |2 a2 H s
SO BAIT STATE 0 " " [H 2 on " u IR A3 L3 et m‘
A L Py [PP TR 1] [w12 A e My ~ol® P02
. 2 S a7 g [3 Al bos 13 "
" 2 ® 32088 n g 1] 1 B——r
u—d\;'w—L—Esi TT™u] p ol % L o " be 02 28
| " " A 2 i ot = x n 02 m J
Udee '@ i % E o ' caon eagLLL ® . o i ow
1) nl > Ll 3 oS J = 4 ?
| n_ @ 3 i s - Sl i
wR & st 7% o I sf 701
ab—es2 hT1. (] o Lifi—
[L] i b re ZR
' -) 2 = %l fe ; Fez
1] 1761 ——2gn 5 o] 3
1 M «| 1702 [2 = e ———r———
. 4 az 8 Z| vw Bl——qm - ; X 0
33323 [—'—2‘.‘ 3] Fro— E vm s o O ¥
E < < < a] 1o ___|
’) b—— i 1 ' Gl ! -
2
asae- A F O R R R) S e 5 b) A
"
a0 e 1 15 w0, | M Woma N [Al 1 1 1 ce #00 1
R N To A I3 “ [}] 03 M A PROCRAN - P01
i 71, Q D as ErRom g D M 1hxd NADLE 1
iz) MY 3 L s K01 gl ® i 2 PR i |2 e
n t Lk 12 ar 2108 . A cxon [{}] INTERF)
S W oic 1 DR I;"'I] 1P o [T} " O S "3 :n‘d z a, 0 L] 7s
8 i 1 §lo 3 wph oot — i3 A 74 - o (1% s s 4 TET)
[e T o —18 4 138 18P 1T " 4 3 Ped a2 0 gy FT 1T
>+ " e % !‘r’ " K3 m cS/we — [
[y — 3 ';? ! e 1l = bl L3 g) L7 P ! '_{_1
15 3B 1 [A - L— wire % Iy PE1
b ommu +s 2 and) d 2 i ! 178
s - 4540 7% < 7 T 7 ~ 3 '§ I U
el - 5 . < < % 4 o] T
12 >+ ' an » ' s ol S I
" o facuns S b ¢] ___H: ? ™ M _Trﬁ [
Ple 50 L] 1 L A T B s T R 7 121 L4 p2
HE T g SN Al a " Jrr—3 1% LN A " M o O
o ™ 2 M) [L a2 1 = [H z Jas (4 X
s » a2 ot N A2 =| ve 7w [4 * 1 14
H) oo | A Nu azfil & Vo Vih—dn [o I
’ - | M Mxd gy - =dae 12 = 5 = = 7 ¥
" 2) 3as Eerow g o AS s |2 pa B ————q® = & ‘hr—w
”? ALY I ‘: :‘,—f—li 81 g 5",- 3 4 i |2 WPt 1S : EN
A U n_ e At Fe—1
" —m A Wlin M 2 AT el 3 A8 o Kt 12 _‘q:s L1 u'___r,
10+ 18 L0 A z|M oy o7 M n U
3 >—a3 S T} 4]] 508 A 573
§ >4 A Lol w—— /e coon ok i —— 4 %0
¢ s & % -4y A5 I ap o PROGRAN - 0 T
% »% PO s y i naBLE 1 3
7 p—tt o7 o AT - f 0 ? X
Al — F-60789 Al % TSI P4y L PERIPH %
P — EL] — 15 P () NET
‘ 5 ReadY u + 0] L i~ [P L
A3 r3 o Ty
2 —a +s-wv-] A AlQ. s s
Al 10 " b 0 2 MY a9 0 T
12 AN " an T 1 e 104 v S BT
% n a2 b A .hz O = 1o i% 1
hRemm] +5 a1 © A3 ki 3 1o s b B SO T 1
SRemmY] (U0 A - xS] /o4 o1 1 :
")4—“ [y ars 1 1] 1 Al Ad Tlm a 02 2 0 }1;_
13 b o 5o 29 ‘“ :; Q2 ul :? 10 —:g : s (S D ﬁ 03 -3 ; ':‘
M8 |2 o4 | g XLl
L2 lady, ool 1 Htu o e —X g B 1 He =
- H A
2 ™ [} —_——lg 1Kxd [¢
§ >—qlt A, P o B i (2] AS U AR TR or T
9 >b—— 412 " SRR T} 05 D 8] L] 93
eI, - b F—- caor —— e s S,—[“ Lso <]
1t >H— -5 P44 T g [T} 11y ———————qyq s M 5
13 Jbe 59 3]9¢ im—gnm 2 25]
¢ _ e L . S Zish :
15 Db §2 Ll L B ——q® o Fe [T) 2 :
12 Y—— Dati et S M
7 +— Ses Hm
3 H— 13 . -
' 3
§ >p— |8 J
§ e 2 e [r
LD S voe \ = - = =
My - * T Y7 \ — 7 — N\
n—J S | =elzl=lelels ekl delkizeke ko
. .1.‘ = = S|zl EEE E e Sl skl ER il
++4+4 IH 1
s p \ A . \
FEE R S-E oS- & L St T Do ne~a T N e DT P e~ an 2T
— — —— —
—_ s sown=oes 22 $25223333 ze coreczeszooc2
<g ——/SE2I0nc2 FEEFPEEITISIOEES LIgSsoroforEIfEce
2

Figure 1-2. MAC Tutor Schematic Diagram
Issue 4, Sheet 1

1-3

PA-800515
Issue 2, July 1979

System Overview

TAPE OUT

n-TR

" ‘
N PR
+5 [A—L 20
o o 7 [+5 s N
! LE3 N [! 1 . a2 ! [) I
)3 o W (N 260
2 "o, WA 32 NUMERIC 3 i3
DEC/ 3 13 P R DiSPLAY ! \r
BRIVER 2 AAA———= \':_l_l (MS0) - 1"
122 [), s R "
3 VWV
o a8l . 145 ~ o < o) 1 L g —L-¢1 —L-¢y
I o " * = '; AN 2 33 22 . Iw ’T\cs 0511 01 f,\ 01
M L U 0L — L] 0s2)] W . T o r26 x21 !
: M2 13 s 7 1 1 r— 7 | 4— 4] ? 619 J0ET |
=t ‘ AV L muerc 3 9 10k 108
[y }] 12, e 9 A [3 1 DISPLAY] 2 65 o
N v - I | -I}-—W\r——’~ A 2
— 2 s fe sl r e
X0 9 l_]" a1 619 304K s
> > S O 5 > o R 0
— (iiEss DN o> S
+5 . T 3
wueme L3
52 1 DSFLAY i§ § NV
£AY s KETBOARD \i-—-“—
A 1
A2 s A 4A A LA A (7]
[T [1 1]
PA1 1 A GAGAGA G A G A4 ! : NUMERIC 3 !
7 U!
T:] /(/(/ /(&/(/(/(7 DISPLAY 14 [
s TR
\’!9 hd] L odol o] N _J
VAV AVAVAVEV: o
) F 1 0 0] S $__ul «
18
1] 055 <
i —— s
! 7 NUMERIC 3
:: 7 oiSPLAY []
95 et
705
»01 '\ FA g 1
- azleze 2 11 n &~ ANt =~ ¢z i 2ss il—us
< %- A —= T a5 or 2 109 |
oo 11 02s~_10 1 Tt —r | LY 5 L X ‘L‘ Al I 10
406 - -AAA- £ 1] NUMERIC 3 ~ AC ® =
ok 4 7 1 f 12 DISPLAY] W ws e |
1 1
re " 405 ot 4 T tl e [z eee 1 Al .
02 A T 300 c2e ot
A ' 15 2 0 L I X
_['“ " (i n| o = = T j; N
n» v os? , w s L
i J L 1 powER o R3]
04 . T NUMERIC 3 (+5 RES)
7 oiseLAY [T]
15 L T
\ 05 QUL =
o6 L 10
o [T} ——? :: | » (=5 REG)
4 , I 2 s Ja s |s : 1] . T
2 LDJ" L L L 1 8 T T NoMERIC |3 = =
RIS 7 DISPLAY 77 2
108 M (Ls)
! ~
] - Pe0,pe3,pee ~ "
\ i
(0
oo i L2Y]
n___ +5 —AN—
0 T o-Tiee 4640
, s ;
1
K) st
0 (RESET)
P2 [} ™ '}
[1] 1
7 0 Res
e s _ o .
L) 3 $40
" 15 "
r T 13 Rag —
R42 I4%xr ran 13 uoe | 1
:ﬁ L J— o T o o apo gl 15 asemg ™ rst
w ¥ rc? 2 £13 €10
ot o0 FE 19 NOWO WuLT iy
7% 3 55 ;il!s N 2"131 ’
e - 4 13 10 —
4 1" (U] 4T00PF
T 17 ‘,: o [T Taes .
1 3 +
i 1: » T k 4640
) o e 1 [-
‘AM— [}
i' 4640

Figure 1-3. MAC Tutor Schematic Diagram

Issue 4, Sheet 2

1-5

PA-800515
issue 2, July 1579
System Overview
i__ClO —
1?2
L)
! 1 o ' eocan- [0
5" it g e TR 2y wsLe !
Iy . :; ol 0 :;:fgn - (I,”:?t_‘;'::f. . peRIP | 2
2 . Il du NI i E r— WERFACE E(1
Y] A i : P — s) e i Ear I
i L et i 1 | Mo T " . ez 0255 s
T8 srs PR K12 % <a5 0 Py SRS 1 15 i 12 64
e " 03 J a6 w0t I N i Bl N
12 > Y Lo : O T A !
| 0 r Ju e RETH ! i ol
| o :;: 3 = B D;J] 3 1
4 A3 0 p————— A3 0 ?
24 A10 14 —1‘9 J
(7]} L z: Mo [4.0] -—-——,i:f =i 3
A ess ' z| 4
S s
=52 3l
= ke :
(1T ¥ S
Y
") 0 4 -
a 2 el s e
Az [E :; s g}
B 2 0
—4 A4 [
AS 16 |
. G — 1
an AT 2 L
412 LIS ar 11 42
" ki T e 3) l“ 3 | ad procean- [0
RO | 5 > — " LN 2 & 4 29 J AAN NABLE T
6o | & >—rs: " ‘ oEC A1 0 12 K05 PERIPY 2
oL | 1 S—— 3 i TERLL : 18—t O g 931 INTERFACE | 3
el > ——pp _‘qm R 3 N B 016 i
EXOMAL | T >+ 4 S]eo 7 el 8258 5
: g =00
00 l 16 >—00 — e] v M
(1} ||s >'"_T Cr
14 >d—
:; 3 3 r ., b, 1 y, 2) '?
03] 13>+ | » ~ _ - 7 < A ‘
84 § 12— s [0 < h z
05 [11 Db N < A~ =| 1}
06 |10 >+—% e : Z 4
3 g
l:rr : — n 1 A0 ¢ L ; 12 :
+ - —] ?
ast | s S— .[] RES! yra— 1 - gw m Tk 0 st !
e 50 A i1 Siat . 3 24 ~
mi s A il Ny, ald »y a2 3 =| Ve 7 \l -0
g 22 Moo w2 %0 :: S as PR 0 ! 1) "":25 s i’“ GBI ? T !
€ ' / } hd _— 38 [
00 [12 55— o 2ip o % [ENTE A5 1 e £ 1 L e |2 " g 2 - ;
1 T A 1 -4 AS bl] M L AS 1% <. — }) = =
a0t | 11)-{—:;—)3 '0-—-—3-—2 Lt oy u ;Y [0 :g F i 5 0 12 Has |3) G——q® | 5|«
02 | 10 >H—s 7 2 2 53 “i & Har 2108 ggftd 35 | ! v > :Gr < apEdasr |S 5
a03 | 9 >—pn = = 03 o — u 21 ol %] M et ‘ . s
ALd | 5 H—0pmn 35 w104 o M m 119 pry i 0! 9 T Ran k12 ————q08 L7
A0S | § H—= 5] mc-n S 2 “] C/we c50 121 e oo >
208 | 1 >0) e L L - proe] i
At {a H— e LA L 3 AT - . 779 ¢ PROCRAN - rs
AL L4 >t READY gL [1] 1 31 % gLt '
103 |2 M—att 13 l 19 A9 _ by ") |2
aoto |5 4—12 +5 Yy A0 :;C‘! " ' WERFaE | 3
ADtT | 4 >+__l—l2 A . /‘0 D20 § 4
4012 |16 2—nt L N2 b :|: :‘: ;;‘,0 TR o.\{ sy 825 s
§ bt + 3
4013 113 o s A3 Ry : M = vep——232 W
RO 14 >b— LU Y e A) ' AZ 9142 = ’ B 0 u T
ass |1 AtS s 12 X8 s m m 3| 103 =7 20 -
s |13 > AD | w At | A iy m 18143 Ml & 1 i 0
I o m—_l 5o ;: “ A2 o al 50 \ﬁw_— . T |2 2 T :
omARL 1 > Blpsr STATISt Hy———s! A 43 10 1 [} D \ [Bl -
o |8 >+—]l 52— 52 M T g 2 i 7% T F— o e
=
12 |9 M—— 12 —q a1 2 23 lag EPRON 13] " 2B g
+5 np—— A6 ? 001 o s LLI— 1t s
16 > t§ [0 b e 126 s] 9 3 hed * L N— B %
Wl — " m A e £ 8 PR Y B . (3P "’ — 1
Z K
S0 J13 >— 50 o b WAk 7 Ly ar s b, ¢ T 913 A0 o
|18 —— 1 n wl 5 k1) ————————3q¢s 7 R 1 X
S2 {15 Xb—— 52 _ 85 L85 we M ; M ——qm (3 2
oAl |12 >H——— Duaa W ey — U ”t "o R
Ol — = el
i — Ll (% _J —fqu |z F|,
z
= w0
14 : b e L3 £13 s W
T >—— (
10 Db o
: _ - (
In \ 7/, I
=|elof=iz| >l el ol ef el < || [o ol = [t =
SRR R R I I R R I e
g sbhtbaxkrttbtbitd Abotr
—_—— —_— P RN - R 1.:::-_:__,\‘__'”;;’_“0_,_ 2 A
TEy reerm~-: tufiTsivoscsocc -
<8 STITTSS FEEETTEECSC8TSSIS oTZgzcseo

Figure 1-4. MAC Tutor Schematic Diagram
Issue 3, Sheet 1

1-7

nA nnn

e System Overview
FA-OUUD10
Issue 2, July 1979

: - —_—— .
ol O D a7 N Iz
e AAA— 4§ a8 N [+— +s ml':
4547) 2 |=
: s : 4 ¢2 w,;-
—_ o N iy " ’
Ve : . . 3 3
As “ 3 2 t NLWSRIC R
pres ! 2 ——An i‘ ; T oo 1] J :;5 R
over g ——AAN— T i
143 H " q FA_ g
B et = a,
i 1 1"* ' A s 0
£ : XY L] 3 & i WA N | — <— - T | 0s2 L
~ 7 R ' b L T T NER.C 3 !
2 e 3 AN e i i
"3 .2 il 18] {F ? DISPLAY " \,
0 4 —AVV -J (AT
I 'y_w d el bl —/— s
’. !—"—]'(- - i 1
| S L > |T_o
$33FLL8] .
M D & & - & J ! (' . , s "3
45 } T NUMERIC
OISPLAY W] ‘
2 = o
_ o3 ; XEYBOARD § o
YOV SV EVEVEVEY. ’: E
e 3 c 1w 0sé Q3 o-TR
A L/(l/ i/ l/(‘g/ l/ ! g_",_ WUMERIC : ‘
ost . y— 7N
r; il ol o1 o1 p; — DISPLAY [1 \y_ . ——2 | CRD
ALA ALK ALK T 2 |
PAD 9 L—r |/ LE] |
) PAvavAvAvaY: e
"] z] 0 § 1 0 AL] :u; | ’ss w
:; g 3 ‘ $
7 NUMERIC
nl DISPLAY 1@ I %
[e1] Tl
»03 S ::' |
3 ’\ 1
" T 1]
- lagNe_ 2 13 46N -5
L 456 - —VW— L 0s6 4 o7
3 o If : —— 7 . .
00 .-1.35- 0 10 ANA 7 F ? 7 NUMERIC 3 r at
® B € v 7 DISPLAY [16v
01 . o
[I3 il
Pes 12 —AAN— Ty 1" ~ A
+
- 22 68 1 ae 02 rd__ 1y N
({1 1 |K28 2 20| — [11 ‘0 o
lyc 3% 3 ML c 1w 0s7 o *
)
P30 LN ' PO- ER o LM
g 1
rlﬁ‘:g AL A < - 7 NUME R1C 3 SUPLY 16 "sgi doer ~— CR?
"z sl] T oispLay [11] i ; e
L Py 3], 15 — e) ’1\ £]:_\ 1
- TR M 08 ~ AC Iy, "_‘ } -5
' ZTR % A | o——4 3w o
e 2l s (Y ~ in g (-SRE| o
rer ! t_ 10 Q9 — .
cr o 2 b fas | : 058 . . 1900 R € T
N— > QS 7 wuMERC (3 3 = = 5
? oISPLAY g
{Lso)
res
_) res o P ol uc
I‘ LIRY
rce Rad GAf - |
2w s Hoe 8
: [&
1= £y 2 4640 o I
"“I! 4
. L o
a "CLI q § 1
e " (MESET |
4
nes
i +5—AAA—4
" 4640
© n 91 15 l@u R4s -
3 BRSO ,—-é——‘ 15] 41in o) —ANN———o
114 [A300 14 . 41in D)
[‘ G e o | 0 L = in w
rd
t om0 wuLt i 6
aAs - p I — —_
7 2 ah Blee 200 | eacer
———— 48] R46
2 *— NA—-5 N .
sss0 Figure 1-5. MAC Tutor Schematic
i Diagram Issue 3,
4640
- Sheet 2

200/

1-9

PA-800515 MAC Tutor Hardware
Issue 2, July 1979

Chapter 2

MAC TUTOR HARDWARE

PA-800515 MAC Tutor Hardware
Issue 2, July 1979

2. MAC TUTOR HARDWARE

2.1 Functional Description

The MAC Tutor contains a MAC-8 microprocessor and the associated control circuitry to per-
form the computing and controlling functions for the entire MAC Tutor. Figure 2-1 is a block
diagram of the MAC Tutor hardware.

The instructions to be executed by the MA('?-8 are contained in the ROM and RAM. The
ROM can be mask programmed at the factory or field programmed by inserting a blank PROM
into the PROM programmer. The RAM can be read or written directly with the microproces-
sor.

The 2K-byte ROM (mask programmed) contains an executive program that includes the rou-
tines required to drive the display, read the keypad, and communicate with a terminal.

The 1K-byte RAM is used for MAC-8 registers, stack memory, and a user’s program. Because
this memory is volatile, it must be recorded into a PROM or cassette tape for retention.

Three sockets are provided for 2708-type PROMs, each having a capacity of 1K bytes. These
PROMSs can be programmed with the on-board programmer, using the separate 24-pin socket.
Programs are erased by exposing the PROMs to ultraviolet light.

Users enter and debug their MAC-8 programs by interfacing with the 28-button keypad and
eight 7-segment LED displays. Commands to the executive program are issued through the
keypad and acknowledged through the display.

Sixty-four 1/0 lines, with a socket to add another 24 lines, are provided. Thirty-two 1/O lines
are used for internal operation and the remaining lines terminate at the 16-pin periphery sock-
ets. Sixteen of these lines are transistor-transistor logic (TTL) outputs with an 8-mA current
drive. The others that can be programmed as I/0 lines are also TTL compatible, but have a
1.6-mA current drive (4 LSTTL Loads).

The computer/TTY data switch allows a remote computer or TTY terminal to communicate
with the MAC Tutor.

A commercial quality cassette tape recorder can be used to store and retrieve files by connect-
ing the microphone input and earphone output to the MAC Tutor.

A conventional 110-volt input connects to the on-board power supply, which generates the
required voltage levels of +5, +12, and +27 volts dc.
2.2 Electrical Characteristics

The electrical sections of the MAC Tutor are: the MAC-8 and reset circuitry, ROM and RAM,
1/0, keypad and display, PROM programmer, TTY terminal and data set interface, cassette tape
interface, power supply circuitry, and timing.

‘ PA-800515
MAC Tutor Hardware lssue 2. July 1979

2.2.1 MAC-8 Microprocessor and Reset Circuitry (See Figure 2-2.)

Conventionally, the reset input to a CPU resets the program counter to zero and a program
begins to execute. However, the MAC-8 CPU also handles the reset input as a nonmaskable
interrupt. That is, the status of the CPU is saved before resetting. As a result, the MAC Tutor
uses the reset input for a power-on reset, single stepping, and nonmaskable interrupt. The
reset button then allows the user to stop the execution of a program and monitor the location
and status at that point. This unique feature requires the reset circuit to clock-in on only one
reset request.

When the reset button is depressed, the first operation code (opcode) fetch generates the reset
and the succeeding opcode fetch disables the reset.

A power-on detect flip-flop (F13-A) serves to distinguish between the reset function and the
nonmaskable interrupt. Multivibrator J15 applies the reset signal 25 us after a low to high sig-
nal transition to provide the singie-stepping capability.

The basic controlling signals for remote access or system expansion are available at connectors
J1, J2, and J3. These signals include the address and data buses as well as the +12, +5, and -5
volt dc buses. The 1-kilohm resistor (R48) allows the reset pin to be externaily driven.

2.2.2 ROM and RAM (See Figure 2-3.)

The MAC Tutor circuitry is capable of driving one 2K by 8 ROM, three 1K by 8 PROMs, and
four 1K by 4 RAMs. The chip-select lines are decoded from the address space through a 3- to
8-line decoder (J13 138). Table 2-1 lists the address assignments provided through these
decoders.

The AMD 9131 clocked static RAMs do not need refreshing, but require a clock transition to
latch in the address and chip-select signals. The required clock pulse edge is generated by a
monostable multivibrator (J15 221-B, one-half of the 74221). The multivibrator is triggered by
the falling edge of the clock-out pulse (CKO). Then, after a 400-ms delay, a positive going
clock pulse (CKOM) is generated. For 2-MHz operation, a faster clock pulse edge is required.

2-2

PA-800515
Issue 2, July 1979

PPT SELECT,

READ 1/0,
N () oM) TEnciio TR | (ra)
WRITE 1/C 17O PURTS DATA OUT (P24 ACCETTE TAPE ouTY H P
SELECT PRI SELECTs , READ 170, WRITE 1/0 ngg?::&?ﬁ !Q:.'Eil?m e - Cais:;g ft - =<
- A |
—— INTERFACES 3 DATA IN (PAT) TAPE 1N P
i (D“E:T"Dms) \ODRESS ROM SELECT (EXEC) WAIT RDY (READY) }m . (PPIs) A0 AL (Png Pi?) }roP:g;x:nn - INTERFACE .
RAM SELECTS _ Y EXEC STATE (PORT ADDRESSES) | oo suuani ¢ |
DECODER o) 1 nag ity piTouT hal _PORTB y 10 pISPLAY TERMINAL TN /HODEM OUT '
S ROM 70 DATA QUTPYT _ TERMINAL 1N /MODEM QUT ;
GENERATOR PERIPHERAL | (PBO-PBT) | prcoDER/DRIVER
EPROM SELECTS KX 8 ENABLE (CLOCK) | qurpyT (1080-1087> - -—— DATA (PA6Y SERIALDATATN |
————’}TO EPROMs 2080-2087/)4 00 07 INTERFACE AND PROM ~—o T
00-07 | LATCHES - ’e (024) PORT PROGRAMMER | yopew 1n/verminaL ouT | TERMINAL/MODEM | geppy pamaour |
READ. C_Lﬂ_g. (D TYPE) (pcoO-PCT) DATA (PAS) INTERFACE - 1
MO-AtS) orn) AO-A11 §00-D7 "&fééfs)‘ READ, § - - MODEM DATAIN !
T ao- WRITE B} _ i
1? ADDRESS BUS L AD-A15 (16 B1TS) — | _ | ADDRESS BUS (A0 -A15) . (8255-1) SELECT NODEM / TERMINAL (PCO) (RS232€) WODEN DATA OUT !
J} DATA aus:l)o—or(s;nns) DATA BUS (DO-DT) - PCS5,PC6 }m PRON PROCRANMER
' CONTROL BUS (CLOCK,READ, | WRITE
: 4(E) T bl AD, At :gg: PBO-PB3 DISPLAY DICIT SELECTS DISPLAY
CHIP ’
i ENABLES ORI AuoRess) b DECODER /DRIVER (8 DiGITS)
FROM WAIT STATE | RDY [CLOCK | MONO | (CxOM) AN F SECHENTS
GENERATOR oLocK,) MULTI RAM - TUTOR TUTOR caow) VEYBOARD STROBE DRIVEN
.Ill DATAREADY [READ, WRITE WRITE MENORY 1/0 PORTS 1/0 PORTS PORT } (PAO-PA3) rzEgiOEAYzD) PDO-PDE DISPLAY
A
! TNTERRUPT REQUEST 2KX 8 - PORT D DRIVER
TNTERRUPT REQUEST RAM SELECT 00-07 PORT
: DATA DTS RAM SELECTS - PROGRAMMABLE | (pco-pe7) 46 (P00~ POT) }
' RESET D0- 07 i,

. RESET * MAC-8 -— RO PERIPHERAL . : 00-07T | PROGRAMMABLE et ¢ N
FROM RESET CPU ADDRESS INTERFACE i ! _ DATA —_— —-
TIMING C“‘W”}R—ST AND CLOGK | ADORESS BITS | DECODER EPROM M09 | Q00211 (02a) (PHO-PHT) ' AL PERIPHERAL M{l§< m?s] A0-A9 (PBO-PBT,PC1,PC2) (PDO-POT) RST cPy

43 DHA REQUEST LUK 1 ko - ass MEMORY | (PoRT ApDREsses) | INTERFACE L sae PROM (RESET)
. REFERENCE |EPROM SELECTS | cper (200 PORT I (016) PORTF 1
SHA TCENOWLEDGE - (PFO - PFT)
' DMA ACK10|LEDGE + SOLKETS o1 seLecr, | (SOCKET OMLY) (P10-PIT) 47 PP SELECT 0 i CH(Ig’_SS/E'I.EE?T/IMT(icE::ﬂLE PROGRAMMER PFORROTIC}PCS'P“'PW
! STATUS (S0-52) (ﬂXBEACH) READ 1/0, READ I/0, (8255-2) PORT AND STATUS RESET
- Ywerero | (8259-3) FRON) WRITE 1/0 ; PROGRAM (PC6) SOCKET | rrow) (S0-52) | TIMING
10 RESET FROM WAIT STATE cfunummjk —_— WAIT STATE J» —_—— ol B
TIMING CIRCUIT GENERATOR
NOTE

Pin information for connectors J1 through J8
is shown in Table 2-2. MAC Tutor Pinouts.

Figure 2-1. Functional Block Diagram of MAC-Tutor

PA-800515
Issue 2, July 1979

CKO
CRD
kL
RDL
EXDMAL
00

01
02
03
04
05
06
07
RDY
RSTL
INTL

ADO
AN
AD2
AD3
AD4
ADS
ADS
ADT
ADS
AD9
AD10
A4
AD12 7
ADA3
ADI4
AD1S

DMARL
GRD
+2
+5
-5

S0

N

S2
DMAAL

L

T0
170 CIRCUIT

~
[11]

o N

-
~
-
~
> [
/

TT
AN

&R s 0 B n D
>
~

?,

34T :

-

P34

HI

(1}

PCT

~N

+
&

R2
e !

M4

+5 == NAN—4
w40

)

St
(RESET)

MAC Tutor Hardware

U

/ T0
1 170 cincuir

1

Figure 2-2. MAC-8 Microprocessor and Reset

Circuitry Schematic Diagram

2-4

MAC Tutor Hardware

Issue 2, July 1979

PA-800515

L] 8, N
p
10-00
(N
oos_.wﬂ:.
wgp oy
—_— %0 o ~
—— O 1 T 1T B
1143 90 9} 90 R [[1]
GON i) LD 0 8022 m¢,|ﬂ~c
A 7 W 00 [T] o
Ry Moa T W
. A E TR]
Ob| 3 [l
g LA 0 Ik oy H]
01 g 8 P
w01 |=
osw a _hol
0 g
9084 o 1
¢ 118 u!m.ww.ll N
o 0 o' ol &
£ Gl
(23 1) . ‘ 30 : % 8012 :* o
% o W 5 %,
|||]\|||||\
8 Mn P v)
v0/1 oF v v |
— 2 w1 (S v % Sl 2 W
91 10 g) 1 5 ov A}
o P oV T ow_
T} A 08 {11
o %___ = wsor 6
v M o B
(e AR —— m s g
W b fvﬂ 70
x 1]] 1] 0
VXN o u. .m_lll.a.a uo“_uw " w« /A
>
g o W o O A O
AL 1] 1 a0 t M (I
i W T W
o PO W3 o
£0/1 p
w1 5| wit q
W/l SOVt -3
APy (17} .
08 =111) a—p
W I "
Mm_. w“ Oy £8 k{11 S
010 oW
o M W | m___my W o
(2313 11] W jg LR
44 5V 9
VY iv-ov
o
i .uhw [T
o s o,
"o
%: 930
> Hqu
WA i
(E1T] &
W= w3 Hoy gL !
of o o sf o ¢ 2
_ S W
o (LIt
[}
g+
[Jt1]
1] 1 T
o o W "
g S g 1 z,,g}ul?
L
8
o LU w
2 i [T}
1) 089 08 =7 (1]
Aro.. oty o 1 h————— oW
] g
oY

1IN1) 1353
1e-0m
0l

Figure 2-3. ROM and RAM Schematic Diagram

2-5

PA-800515 MAC Tutor Hardware
Issue 2, July 1979 :

TABLE 2-1. ADDRESS ASSIGNMENTS/MEMORY MAP

Physical Hex
Device Location [A15 Al4 Al3 A12 A1l A10 A4 A3 A2 Al AO| Addresses
33221;\SF‘§%MM } NOL [0 0 0 0 0 X 0000-07FF
2708 PROM KoL |0 0 0 0 1 0 0800-OBFF
2708 PROM gort 1o o 0o o0 1 1 0C00-OFFF
2708 PROM DO |0 0 0 1 0 0 1000-13FF
9131 RAM DOS-KOS| 0 0 0 1 0 1 1400-17FF
9131 RAM GOS-NOS| 6 6 6 1 1 © 1800-1BFF
8255 /O D4 O 0 0 1 1 1 0 0 0 1F00-1F03
8255 1/0 DI6 {0 0 0 1 1 1 0 0 1 1F04-1F07
8255 /0O D20 [0 0 0 1 1 1 0 1 0 1F08-1FOB
74LS273 1/0 cto |o o o 1 1 1 0o 1 1 o 1[iIFD -
74LS273 /O c13 {0 0 0 1 1 1 0 1 1 1 0/|IFOE

Table Notes: 1. X designates either logical 1 or 0. Blank areas
indicate future expansion.

2. Unit comes equipped with one of the two listed ROMs.

Four wire straps connecting points A through D to E through H provide memory assignment
flexibility. By interchanging points A and B with C and D, the address of executive ROM is
interchanged with that of PROM 2 and PROM 3. This allows the user’s PROM to have
immediate control under a power-on or reset condition.

A wire strap between points J and K allows an interrupt to the MAC-8 to cause control of the
program to transfer to the first location in PROM 1.

The memory configuration can be expanded or replaced by connecting external address signals
to the two 16-pin dual in-line package (DIP) connectors, J1 and J2, located at the periphery.
The entire memory can be deactivated by keeping EXDMAL (J1, pin 7) low.

2.2.3 1/0 (See Figure 2-4.)

The MAC Tutor circuitry is capable of driving three Intel 8255 programmable peripheral inter-
face (PPI) integrated circuits and two 74LS273 octal latches.

Each 8255 PPI has three I/0O ports (eight lines per port) that can be programmed as either
inputs or outputs. In the output configuration, they can only drive one medium-power TTL
load. However, the two output ports provided by the 74LS273 latches have a drive fanout of
10 Low Power Schottky TTL (LSTTL) loads.

MAC Tutor Hardware

PA-800515

1979

Issue 2, July 1

/
1002 | ¥ >
990z | ¢ o ——
2802 | £ >+ gmyr < D
902 :Ilﬁ.ﬁn T i 08 LAk Y m S
002 |+ >+gr i 08—
| 2 S [apf—u
veaz | ¢ m ;
va0z | S g LI L TR
0802 o.g 180 L S e $! »
0 | o >+ N s B e T 10-00
W L > A 0 PR}
SO0 | & i 7 gy MMO gL 90
v o S aa 0z | ¢ D N_Q
¢a0) | ¢ S—2o0k t 0
200 | 9 >z %
1801 :NuH@e T los 0 (13}
0804 | 23— a1l 0 a8} a
vt OWr 70910, LD 0
5801 __GHloe pr{ P T
S+ | o —6+ LI 1Y bl % 1
o | v —n I A R H 0
g H—— g%y O W
b D——— 1804 3 MN 3dAl-0 Mw 1 v
£ Y—— ’
W | 080} ? D [N
MYTI > ¢ 00
G
¢ g - 71) sapy £
i | >
914 [1 >+ $ | gl s
S| Oy 2 il E | P
vid 14 NEle B ype— oma
] 2| omm
i 12 S I
el i iy MK W
0d | S /:. - 01d b h s [OV,
P Hd ' ,_D
< He N % gz 90
1M | 9 T (] AN i 3
9id w—j&l THd i V= ¥ 0 b 8
SHd | W +op i i 80y f
Mﬁ n.. S E'R 03] ~. T 20
[s W 6 W16
e | € e B 7% 0y o
Wa f 2 g I kN
ol FRGHEIT] 905 °
194] s >—= $9d - S = non~~%
Siid Ly
9% ov 934 ¥ e 3 3owmam
§34 | L g I i f
vad | 8 > 2 HdI¥3d
cod | § S4—10e |wn Ml 3780
2 | op D42 Lo T -NV¥90Hd
19d | bt “ r
034 | 2 or oﬁL e L7 (7] © aa—1}
o0 3
M ewrd N ol sy
| 2 T % § 2 5t
§4d 1 € > 4 (3 5| gyp—— o1
vd .vtw_. e s ; LA
1d i p—
£4d n.vLLmH 4 A KT
244 [11 >34 r ' NI v) 2
Wl | s >+5 i/ o o o o 7
0dd lele.El 7 T ”J L0 I¥]
i34 | § >+g B W, | MR T}
3
§3¢ [1 5+5F B3 e o ra— y
] Hea T i]
234 | 0 > 2 ' o
FEY] 134 g
Wd | W55 s 0 L ST
03¢ | 20 >g—57 | JUE o
304
YINNVHIO0BY HONd ’ 8 S04 S e 58
0 w7 7 7] B
. 4 IH - £ 5 2w
ANISIO Y OUVOUIN g e S
v 004 w w\ s
135 VIV ¥ W31 ALL
o - Y b}
0 (]) 9Py
199 13538 ¥ ¢ow £ 9 .
o (3 g| W
-
GNnvs20nd woud D 5 5 Ho |8 m QP ola¥
9°6°7494 o " fle B wp——oum
14 0o M ruﬁ - S~
=03 3 (1] >
V4810 1 owvo3y ’ T . WM 7 10
T ~ ; % W
S [z s
LINNYEI0Nd HONS 5, v, : v 2 vt-s mu g
o Foed 7 \ T £ |= 80} 4
= e
30V3 43N V84
135 WO 1AL E%r > I’ K 00y o
1 Y
WAL L v 4 c28
' V4 , S 20
ANes0 v aboRY 2 5 I e.m = v
v A HdI43d
] 74 Fin T
3 g | -Wvasone
oW h

1100810 13534
¥ 8-3vm
0L

Figure 2-4. 1/0 Port Schematic Diagram

2-9

PA-800515 MAC Tutor Hardware
Issue 2, July 1979)

Four of the I/0 ports are used mainly to drive the keypad display, and PROM. Additionally,
two 8255 1/0 ports, or five 8255 I/0 ports when fully equipped, are available at connectors J5
through J7. The remaining two 74LS273 ports are available at connector J4.

A wait state generator integrated circuit (WE-146D) provides the required decoding and timing
for the 1/0 devices. Refer to Figure 2-3 for circuit detaiis.

Table 2-2 contains a listing of all the 1/0 pinouts. (This information is aiso inciuded on Figures
1-2 and 1-3.)

TABLE 2-2. MAC Tutor Pinouts

Pin Number/Connector Connector J8
nooon 33 J4 5 J6 J7 Pin
A00 A04 A08 Al12 Al6 A20 A24 No. Designation Pin No.
WRL ADS8 -5 2DB3 PF7 PHO GRD 1 +5 VOLTS 1
RDL AD9 NC 2DB2 PF6 PHI NC 2 GRD 2
RSTL ADI10 NC 2DB6 PF5 PH2 NC 3 TAPE-IN 3
RDY ADI1 NC 2DB7 PF4 PH3 NC 4 TAPE-OUT-LO 4
CKO AD4 NC iDB3 PE7 PG7 PIS 5 GRD : S
INTL ADS NC IDB2 PE6 PG6 Pl 6 TAPE-OUT-HI 6
EXDMAL AD6 NC 1DB6 PE5 PGS PI2 7 " CM-RC 7
GRD AD7 GRD 1IDB7 PE4 PG4 PI3 8 GRD 8
D7 AD3 H2 1DBS PE3 PG3 P14 9 CM-TR 9
Dé AD2 NC 1DB4 PE2 PG2 PIS 10 TTY-KB 10
D5 AD1 DMARL 1DB1 PEl1 PGl PI6 11 GRD 11
D4 ADO DMAAL 1DB0 PE0O PGO PI7 12 TTY-PR 12
D3 AD15 SO 2DB5 PF3 PH4 NC 13
D2 ADI14 S1 2DB4 PF2 PHS NC 14
D1 ADI13 S2 2DBI PF1 PH6 NC 15
DO ADI12 +5 2DB0 PFO0 PH7 +5 16

2.2.4 Keypad (See Figure 2-5.)

The keypad includes a 4 by 7 array of switches that is read with a strobing algorithm. Each row
is strobed with a logical 0 signal and the state of the seven columns is read. Since the column
outputs are converted to logic highs by a set of resistors (R15), a keypad depression in a partic-
ular column will cause a logical 0 reading at that input line. Strobing is repeated for the four
rows so the MAC-8 can determine the state of the keypad.

The display contains eight 7-segment LED displays where digits are multiplexed in time and
driven by common segment drivers. The same lines (PDO through PD6) that are used to read

2-11

MAC Tutor Hardware PA-800515
Issue 2, July 1979

the keypad also drive the segments. Output lines PBO through PB3 are decoded to select the
appropriate digit.

2.2.5 PROM Programmer (See Figure 2-6.)
The programming procedure for 2708 PROMs requires the following;:
¢ Initiate write enable by applying 12 volts to @/WE.pin.

e Sequence the address space of the 2708 PROM and apply data to be programmed for each
address.

e When the address and data are valid, apply a 27-volt pulse of 1-ms duration to PRO-
GRAM pin throughout the address sequence.

o Repeat address sequence 100 times.

A mix of software and hardware is used to implement the preceding procedure. High-level tim-
ing and control are done in software. The hardware has the 12-volt driver for the write enable
signal and the 27-volt driver for the program pulse. This program pulse is generated by the
resistance-capacitance (RC) circuit (R12, R13, C1) to produce a 1-us rise and fall time level.
level.

The PROM address and data lines are driven directly from the 1/0 ports so the MAC-8 can
sequence through the address and data, and control the high-voltage drivers. After device pro-
gramming, the MAC-8 is able to read the PROM if a low-level signal is coupled to the CS pin.
This allows the PROM to be verified prior to programming for an erased condition (all 1s) and
after programming for programmed contents.

2.2.6 TTY Terminal and Data Set Interface (See Figure 2-7.)

When a TTY terminal is connected to the MAC Tutor, all operations provided from the on-
board keypad/display can be controlled from the TTY terminal. The interface to the TTY ter-
minal is through a serial I/0 line under direct control of the MAC-8. The MAC Tutor adapts
to the baud rate of the terminal (up to 300 baud automatically and manually to 2400). Data
can also be accepted from a remote computer through a telephone line when a modem is con-
nected. A built-in, software-controlled data switch allows one of two configurations to be
selected. In one configuration, the TTY terminal is fully connected to the modem with the
MAC Tutor in the listening mode. In the other configuration, the TTY terminal is connected
to the MAC Tutor and the modem is switched out. Both configurations are selected from the
TTY terminal. Table 2-3 lists the TTY terminal and data set interface connections.

2-12

€1-C

T0
170 CIRCUT

+5

?j

o
o

?

o
-

i

o
rry

i

o
>

i

=

!

o
o

7

R7 P .
——\N— 45 R8 g —_—
440 880 b I 13
nk (11 IO 2 N 10 [
W12 "l 32 1 7 NUMERIC 3
DEC/ 3 v A P 7 DISPLAY]
DRIVER F] N] " (MSD)
2 [12 5 4 N
(o w, M5 PR o A P Se
1 M 81
PRl “I § 10 1 [10
5 ANV £ 052
PB2 13 ¢ 6 T 1 s 7 (ﬁrg,_
AAA— NUNERIC 3
(] 12, 118 $ AAA 8 8 J DISPLAY e 1
0 v .
8 " 2 s fels e |7 [1
1
5 A A
! L L one
47K]
\ 1 0s3
+5 7T L]
NUMERIC 3
, 52 F 2 DISPLAY]
(n 3 XEYBOARD A
~
/(/< / /< / / /(A 1
" 5 T
j15ene e re s e =
UNERIC
/(/< /< /(/(/(DISPLAY M
PAD 9 1
N
_ IS AIAIA] < b
PO T 2| & 6 8] w0 n g1
P (M)
s T NUNERKE 3
P ’
7] Wm‘ 71 osPY fa]
P05 "
706 L.
RN r 1
13 [K2! 12 13 4 6 1
:os— AN 0 06
Hjus~ 10 10 T F o
406 - A2 WUMERIC 3
3 S~ 2 f DISPLAY [14]
Uit >0 a1 £ T
A Ny
3 M2 4 15 2 } -
[VW i
5 '.'32 § 14 3¢ [) 087
1~ 12 * 1 ¢ 8 7 74 £ NUNERIC |3
406- AN F DISPLAY 14 l
£ T +
§
A 1
A
10 0sd
T] .
T WUMERK 3
DIS PLAY
1 3 9
+5 G R—

Figure 2-5. Keypad and Display Schematic Diagram

(L50) E—m %

6461 AInr ‘g anss)

S§15008-vd

alempiey Iony, HVIA

MAC Tutor Hardware PA-800515
Issue 2, July 1979

~
~PCAL25.6 L P00
)
% PD4
PR g
R 1 m
2
] HET ms b—m—
170 CIRCUIT pCs 1|k 2 Py -
406- Cs/¥E 13 P03
o A . 03 poT
P8 :‘1) el pos | 78 1/0 CIRCUT
;: A2
P8o-7 ! A3 15 POS
7% -% LI 05
i 3as 16 POS
] P pep e PO6
i1 1
dl 1) o L | N
G2 2 49

CRD | TTY

/\

CH-TR

MODEM

GRD

CK-RC

Figure 2-7. TTY Terminal and Data Set Interface Schematic Diagram

2-14

PA-800515 MAC Tutor Hardware

Issue 2, July 1979

TABLE 2-3. TTY TERMINAL AND DATA SET INTERFACE CONNECTIONS

MAC Tutor TTY Terminal
Connector Connector

J8 (RS-232C level compatible} | 2S-pin interface connector
(RS-232C level compatible)

 Pin 10 - Terminal/Keypad Pin 2 - Terminal/Keypad
Pin 12 - Terminal/Printer Pin 3 - Terminal/Printer
Pin 11 - Ground Pin 7 - Ground
MAC Tutor Modem
Connector Connector

J8 (RS-232C level compatible) | 25-pin interface connector
(RS-232C level compatible)

Pin 9 - Modem Transmitter Pin 2 - Transmitter
Pin 7 - Modem Receiver Pin 3 - Receiver
Pin 8 - Ground Pin 7 - Ground

Table Note: In addition, some of the pins on the TTY terminal connector may be required to be strapped together for
proper operation. Typically, pins 4, 5, 6, and 8 should be strapped together.
2.2.7 Cassette Tape Interface (See Figure 2-8.)

A cassette tape recorder microphone input and earphone output can be connected to the MAC
Tutor to read and write data.

+5 :
m:ls s [w)
mM7 20 1
. GR | TAPE
- LY c2 w8 " 1_,\/\/\,__“. |}_+'<5 wr
o {E—vw AV 164 Ko
0 t 350 2260 |
[
R24 l
o A b3 | mee-In
15 - i
LT cg_l_ R4 4 SK 3 = /ﬁ_\“z p— 2 | 6RO
™ 4 o 2260 24 * E I l +s e
1/ CIRCUIT 0 "__L 4] 14 [~]
2 |, e5 0544 o o g
" 1 Do | me R21 3 730
819 #0ET A - 8 4640
s 10K 10K 22 7
565 814 4
1 823 3 6 & K
(3] ‘I—F o] 30.4K 1
-5 R2S
47 NES =
02
PAT

~

Figure 2-8. Cassette Tape Interface Schematic Diagram

To write data, the MAC Tutor generates a frequency shift keying (FSK) signal that alternates
between 2000 and 4000 Hz. When a logical 0 is written on the tape, 2000 Hz appears for two-
thirds of the bit time and 4000 Hz for one-third of the bit time. When a logical 1 is written,
2000 Hz appears for one-third of the bit time and 4000 Hz for two-thirds of the bit time.

To read data, an LM565 phase-lock loop integrated circuit (IC) with a free-running frequency
of 3000 Hz locks on the input signal. The input voltage to the voltage-controlled oscillator

2-15

MAC Tutor Hardware PA-800515
Issue 2, July 1979

(VCO), which is available from the LM565 IC, indicates what frequency is being received.
This signal is then passed through an RC filter to eliminate the carrier frequencies, while retain-
ing the modulating signal. A comparator converts this low-level signal to a TTL signal for
MAC-8 input. The MAC-8 synchronizes to the bit pattern by detecting the negative transition
(from 4000 to 2000 Hz) and determines the state of the bit transmitted by the incoming
waveform duty cycle.

The operating baud rate is 166 bits per second to ensure low error rates and portability of tape
cassettes from one recorder/MAC Tutor to another recorder with a different MAC Tutor. The
cassette tape recorder interface connections are listed in Table 2-4.

TABLE 2-4. CASSETTE TAPE RECORDER INTERFACE CONNECTIONS

MAC Tutor Cassette Tape Recorder
Connector Connector

J8, Pin 6 - TAPE-OUT-HI | MICROPHONE JACK

J8, Pin 5 - GROUND MICROPHONE JACK GROUND
J8, Pin 3 - TAPE IN EARPHONE JACK
J8, Pin 2 - GROUND EARPHONE JACK GROUND

Table Note: An additional pin designated TAPE-OUT-LO (pin 4) is provided for cassette tape recorders that require a
low-level input to the microphone jack.

2.2.8 Power Supply Circuitry (See Figure 2-9.)

The 117-volt ac line is stepped down by a 16-volt ac center-tapped transformer and four dc vol-
tage outputs are generated, as indicated in Table 2-5.

Two voltage doubler circuits are used to generate the +27 and -5 voltage levels. The +27 vol-
tage doubler circuit operates by charging capacitor Cl1 through diode CR4 on the negative
half-cycle. On the positive half-cycle, CR4 becomes reverse-biased and the conducting path is
through C11, CR3, and Cl12. Therefore, the voltage on Cl1 gets added to the ac voltage to
effectively double the dc output voltage. Regulator VR1 is a 3-terminal, -15 volt regulator that
uses the 12-volt supply as a reference. By adding this 15-volt supply to the 12-volt supply, the
required 27-volt supply is obtained.

The 5-volt supply uses a full-wave bridge rectifier due to the high current requirement.

2-16

PA-800515 : MAC Tutor Hardware
Issue 2, July 1979

I P 3! 1 w 2 +g
+ b + 421 R
[_1)00 + 35 427 REQ) . th
_ o /-_E b T
= " =
1‘scv >] +19V 1 w2 2 +12
ot —o0
+ (+12 REC) _L
Ul R
L P T® T
A
ToAC | 8V
pomen | O—
e e gy Hoe B -
" N wse [T
6
T™m F Th =
y U = - =
CONMON ¢ o ’ =
X H < 3 3w 2 3
L 1T ¢ T (-5 REG) T
. T ¥
¥

Figure 2-9. Power Supply Schematic Diagram

TABLE 2-5. POWER SUPPLY VOLTAGE AND CURRENT RATINGS

Voltage | Current Rating

+5Vdc 1.5A

-5Vdc 120 mA
H2Vde | 250 mA
+27Vde | 20 mA

Table Note: The 5-volt supply has 350 mA of spare current available at J8, pin 1 to drive the external logic.

2.2.9 Timing

Several factors are involved in the execution time (as defined in terms of microprocessor clock
cycles) of an instruction. In one clock cycle a byte can be read from memory, a byte can be
written into memory, or some mtemal function can be accomplished. To minimize require-
ments on the memory response time, ‘there is a pipeline processor internal to the MAC-8 that
imposes a lower bound on the total execution time of any instruction. A simple no outpulsing
(NOP) instruction requires four cycles for completion and most instructions are multibyte to
ensure that minimum time is used effectively. Timing detail diagrams include the following:

e Fast Memory Accessing, Figure 2-10
e Siow Memory Accessing, Figure 2-11

e A Waijt State Generator, Figure 2-12.

2-17

MAC Tutor Hardware

— g ———

CLOCK Ou:—_—__/_—_\

:gqn:&sss BUS \/le—— vALID ADDRESS (I —-|><

> 1.8 VOLTS
DATA READY R
READ —\
READ
T
oa (‘2;’“”} ACCESS

N N ~
DATA BUS
it DATA ASSUMED INVALID \

WRITE

Seee 1 |access

AN

DATA VALID

~

7~
(1) TR AND TF ARE 50ns CORRESPONDING TO BUS CAPACITANCE OF
50pF. EACH ADDITIONAL pF INCREASES TR AND TF BY | n3

(2) DATA VALID WINDOW IS USED TOLATCH DATA INTO THE MAC-8. THE
VOLTAGE PRESENT ON THE DATA PIN AT THE END OF THE WINDOW
DE TERMINES THE LATCHED BINARY LEVEL.

Figure 2-10. Fast Memory Accessing

CLOCK OUT m

7 \

ADDRESS BUS x
AO-AIS
READ \
wame *
pEao
WRITE \ / \
— STROBE (1) STROBE
DATA READY * STROBE l
DATA BUS | I
DBO- D87
7
DATA LATCHED
DATA VALID ON READ
ON WRITE

(1) EXCEPT FOR STROBE TIME, DATA READY LEVEL IS A DON'T CARE.

Figure 2-11. Slow Memory Accessing

2-18

READ
CYCLES

WRITE
CYCLES

PA-800515
Issue 2, July 1979

PA-800515
Issue 2, July 1979

A
—C f
\
A I l =
cip MAC-8
BORROW. 74193 Cgmﬁ'REYR
rLL,‘G—T =
]

lo

D| 7474 CLK
D F/F CLK

DA RDY ———

ak _/ /7 _/ _
Ais 1
LT 4

ysTROBE 4
DATA READY\“/—*._/_
INTERNAL WAIT ' I
STATE
e /. _
CowTo______ /T ___
BORROW N\

% FOR A SINGLE WAIT STATE GENERATOR, THE COUNTER CAN BE
ELIMINATED WITH Q BEING CONNECTED AS AN INPUT OF
THE 2 INPUT NAND GATE.

Figure 2-12. A Wait State Generator

MAC Tutor Hardware

PA-800515 MAC-8 Architecture
Issue 2, July 1979

Chapter 3

MAC-8 ARCHITECTURE

PA-800515 MAC. et
Issue 2, July 1979 AC-8 Architecture

3. MAC-8 ARCHITECTURE

The MAC-8 is a byte-oriented, general purpose microprocessor in which the instruction reper-
toire emphasizes Boolean logical and integer arithmetic operations on 8-bit quantities. These
instructions are supplemented by 16-bit operations chosen to facilitate address arithmetic.

Because the MAC-8 is a 2-address microprocessor, typical instructions for dyadic operations
such as addition specify only two operands, the augend and addend. By convention, one of the
operands is also the destination of the result. To distinguish the operands, one is called the
source and the other is the destination, even though both are operand sources for dyadic opera-
tions. For monadic operations such as incrementing, there is only one operand, called the des-

tination, which is also the source.

A set of memory-addressing modes is available for accessing up to the maximum of 65,536
bytes of storage. These modes, together with a set of identical general purpose registers, are
used to form a highly symmetrical set of operand combinations for the instructions. The same
memory-addressing modes are used to specify the destinations of control transfer instructions.

A pushdown stack is used as the subroutine call/return mechanism and allows dynamic storage
management. Interrupts allow the processor to respond to unusual events in periphery.

3.1 General Registers

There are 16 general registers available to the MAC-8 at any given time that can be accessed in
two different ways:

e As a 16-bit base register (b register) used primarily to hold memory addresses.
e As a low-order, 8-bit accumulator (a register) for arithmetic and logical operations.

When the register is used as an a register, only the low-order byte participates. Some opera-
tions, such as addition, can be performed with either the 8-bit or 16-bit register set. Certain
operations, such as negation, can be performed only with an a register.

3.2 Register Pointer

The MAC-8 general purpose registers, unlike those of most computers, are not special
hardware registers located in the microprocessor. A 32-byte section of regular memory is used
as the register set. The first two bytes of this section are register 0, the next two are register 1,
etc. The starting address of this section (which must be in writable memory) is contained in a
16-bit, on-chip register called the register pointer (rp). By changing the address in the rp,
under program control, the user can locate the general registers anywhere in the memory space.
The rp can be thought of as pointing to a movable 32-byte window in the memory space (a win-
dow through which the MAC-8 "sees" the register set).

The three low-order bits of the rp are always zero. For each instruction that accesses a general
register, the complete effective address of the register is computed from the current value in
the rp and the source or destination qualifier field of the instruction. Also included is a bit sup-
plied by the MAC-8 designated as the HI/LO bit. The HI/LO bit determines whether the high-

3-1

MAC-8 Architecture PA-800515
Issue 2, July 1979

or low-order byte of the 16-bit register is being addressed. The formation of the effective
address is shown in Table 3-1. Notice that the three quantities are aligned as shown and added,
each being treated as an unsigned integer.

TABLE 3-1. EFFECTIVE REGISTER ADDRESS

BIT:
REGISTER POINTER x| x| x x x| x| x x x| x| x x} x|O0O]Jo}]oO

Sor D FIELD x x | x X

HI/LO BIT X

EFFECTIVE ,
REGISTER vl iv]iviviv]vly]lvylvlvlvylv]lv]x]x]x
ADDRESS

The bump and debump instructions can be used to add or subtract a 1 to bit 3 or 4 of the rp.
The effect is to move the general register window up or down in memory by 8 or 16 bytes,
respectively, corresponding to a change of four or eight 16-bit registers. The effect is to intro-
duce a new set of registers that partially overlaps the previous set. This makes it possible to
save and restore the contents of the register set without actually moving any data.

3.3 Pushdown Stack

The stack pointer (sp) can be used to implement a last-in, first-out queue or "pushdown stack."
The sp points to the top of the stack (the last item pushed on or the next item to be popped
off). Since only the top item and those under it are valid, items above the top of the stack
should not be used. An item is pushed onto the stack by decrementing the sp by 1 or 2,
depending on the length of the item, and storing the item at the new address. Conversely, an
item is popped off the stack by incrementing the sp by 1 or 2, depending on the length of the
item. The item may or may not be moved somewhere before the sp is incremented.

In purely software terms, it does not matter whether pushing something onto the stack incre-
ments or decrements the sp, as long as pushes and pops are complementary. In the MAC-8, a
push decrements and a pop increments, i.e., the stack grows downward in memory because this
arrangement often facilitates systemwide memory allocation. In any case, the term "top of the
stack" always refers to the logical top of the stack, whether or not this represents the highest
absolute address.

The most common use for the pushdown stack is in calling subroutines. Since the dynamic
nature of nested subroutine calls corresponds exactly to the action of a stack, a call is a push
and a return is a pop. The MAC-8 uses the stack to save and restore the program counter (pc)
when subroutines are called and when interrupts are accepted. In the latter case, the condition

3-2

PA-800515 MAC-8 Architecture
Issue 2, July 1979

register (cr) is also saved on the stack. The depth of nesting of subroutines, plus interrupts, is
limited only by the amount of memory allocated to the stack. In addition to these automatic
uses of the stack, the executing program can use explicit push and pop instructions to place
subroutine parameters and temporary variables on the stack. This use is facilitated by several
special addressing modes that allow easy access to items at or near the top of the stack.

3.4 Addressing Modes

The addressing modes of an instruciion are the different ways in which the effective addresses
of the operands of the instruction are formed. Some instructions do not address memory and
therefore have no modes.

Generation of a memory address usually involves one of the b registers. The b register (0
through 15) is specified in a 4-bit field of the instruction, called the s field for the source and d
field for the destination. There are eight modes, with each mode representing a way of deter-
mining a source operand address and a destination operand address. To extend the MAC-8
addressing capability, s and d fields of register 15 often have special interpretations. In addi-
tion, mode 4 (memory-to-memory mode) is presently implemented only for 8-bit operations.

in summary, the three factors that determine how an operand address is caicuiated are as fol-
lows:

¢ The mode number (0 through 7).

e Whether the operand is the source or the destination.

e Whether or not the specified register ig 15,

Refer to Table 3-2 for a list of addressing modes.

TABLE 3-2. ADDRESSING MODES

Addl\::lsemg Source Destination
s!=15 s==15 d!'=l5 d==15

0 Rs *pc Rd R15

1 Rs *pc *Bd **pc

2 Rs *pe *(Bd+n) | (SP+n) [*pc+n)]
3 Rs *pc *Bd++ *BiS++

4 *(Bs+nl) | *(sp+nl) | *Bd+n2) *(sptn2)

5 *Bs **pe Rd R15

6 *(Bs+n) *(sp+n) Rd R15

7 *Bs++ *B15++ Rd R15

Table Key:
B - The contents of a 16-bit base register
d - The destination operand qualifier (d field)
n, nl, n2 - An 8-bit signed displacement
pc - The contents of the program counter
R - A 16-bit b register for 16-bit operations or
an 8-bit a register for 8-bit operations
s - The source operand qualifier (s field)
sp - The contents of the stack pointer
++- Indicates a post increment of the b register
{1 - Special interpretation for transfer instructions

MAC-8 Architecture PA-800515

Issue 2, July 1979

3.5 Conditions

The 16 conditions in the MAC-8 are logical indicators that can be tested by the conditional
instructions. A 4-bit condition field in these instructions selects one of the 16 conditions. Each
instruction uses two opcodes representing, for example, jump on condition true and jump on
condition false. Refer to Table 3-3 for a list of the 16 conditions and description of the 16 con-

dition register bits.

TABLE 3-3. MAC-8 CONDITIONS

BIT CLEARED SET DESCRIPTION REMARKS
0 Ineg neg Sign bit of result

1 zero zero Indicates all zero result ,

2 lovfl ovfl Indicates arithmetic overflow CSSE?TPI‘(SN
3 Icarry carry Indicates carry or borrow ZQNDITION
4 fones ones Indicates result is all ones BITS

5 lodd odd Lower-order (LSB) of result

6 'enable enable Interrupts are enabied

7 'flag flag User-designated flag

8 't It Arithmetically less than zero (bit 0Abit 2)

9 liteg Iteg Arithmetically less than or equal to zero [(bit OAbit 2)|bit 1] DERIVED
10 Hiteg liteg Logically less than or equal to zero (bit 3 |bit 1) FROM

11 'homog homog Logically homogeneous (all zeros or all ones) (bit 4]bit 1) CROE%EI)S‘?EO&J
12 Ishovfl shovfl Arithmetic left-shift overflow (bit OAbit 3) BITS 0-7
13 — ' — (Unused,Unassignable) (PHYSICALLY
14 — — (Unused,Unassignable) ‘ NON EXISTENT)
15 —_ always Condition always true (set) (unconditional jump, call, return)

! nontrue condition

A bit-by-bit exclusive OR

| bit-by-bit inclusive OR

Conditions 0 through 5 describe the results of the most recent arithmetic or logical instructions
that are implicitly altered by many MAC-8 instructions. Condition 6 determines whether or not
the MAC-8 can be interrupted and condition 7 is available as a user flag. These first eight con-
ditions are known collectively as the cr. They can be explicitly altered by the set conditions and
clear conditions instructions. The cr is automatically pushed onto the stack when an interrupt is
accepted and the saved value is popped back into the cr when a return from interrupt instruc-
tion is executed.

The second group of eight conditions, 8 through F, is comprised of read-only indicators. Most
of them represent useful logical combinations of the first eight. Since these conditions are
derived from the first eight, it is unnecessary to save and restore them (they are effectively
saved and restored whenever the first eight are).

3.6 Interrupts

Exceptional events (such as interrupt, trap, and reset) alter the course of the program running
in the MAC-8. They have a common association with a fixed memory location (each different)
to which control is transferred when the event occurs.

PA-800515 MAC-8 Architecture
Issue 2, July 1979

An external device requests an interrupt by setting the MAC-8 interrupt request pin. If the
enable condition in the MAC-8 is 0, it will ignore the request because it is in a masked condi-
tion. . If interrupts are enabled and a request is received, the following sequence occurs at the
completion of the instruction being executed:

e The cr is pushed into the stack.

e The pc, which contains the address of the instruction that would have been next exe-
cuted, is pushed onto the stack.

e The enable condition is set to 0.

e The MAC-8 performs a normal read operation, addressing location X(FFFF). In most
applications, this address will not represent regular memory, but will serve as an interrupt
acknowledgment to the interrupting device. The data byte read by the MAC-8 is supplied
by the device and is used in the next step.

e The data byte read is right-adjusted with leading zeros placed in the pc. The next instruc-
tion is then taken from that location.

The value placed on the data bus by the interrupting device is effectively a pointer to an
instruction in the first 256 bytes of memory. This should be the first instruction of the routine
to process that particular type of interrupt. Depending on the application, there can be one or
many interrupt handling routines.

It is the responsibility of the interrupt handler to save other registers (if necessary) before pro-

cessing the intcrrupt.
from interrupt instruction is executed, causing resumption of the program that was executing
when the interrupt was accepted. Except for possible changes made by the interrupt handler,

the state of the microprocessor will be identical to that before the interrupt was accepted.

At completion of the routine, saved registers are restored and a return

3.7 Traps

A trap occurs when the MAC-8 controller has no valid transition defined for the present state
and present inputs. This situation can develop when the MAC-8 attempts to execute an invalid
opcode, when electrical transients disrupt the controller, or when a fault develops in the con-
troller. However, not all transients and faults will cause a trap. Also, traps cannot be masked.

When a trap condition is recognized, the sequence occurs as follows:
e The cr is pushed onto the stack.
e The pc, which points two bytes beyond an invalid opcode byte, is pushed onto the stack.
e The enable condition is set to 0.
e The pc is set to X(0008) and the next instruction is taken from that location.

Location X(0008) should contain the first instruction of a routine to handle traps. The address
of the interrupted instruction (which may have an invalid opcode) can be calculated from the
saved pc.

3.8 Reset

An external device resets the MAC-8 by setting the reset pin. When this signal (which cannot
be masked) is applied, the sequence occurs as follows:

e The cr is pushed onto the stack.

e The pc, which contains the address of the instruction that would have been the next one
executed, is pushed onto the stack.

3-5

MAC-8 Architecture PA-800515
Issue 2, July 1979

o The enable condition is set to 0.

e The MAC-8 performs what appears to be a normal read operation, addressing location
X(FFFF), but the data byte read is ignored. The operation serves only to acknowledge
the reset.

e The pc is set to X(0000) and the next instruction is taken from that location.

Location X (0000) should contain the first instruction of the routine to handle resets. If a reset
occurs immediately after power-up, the values of the sp and rp are unpredictable.

Since the dedicated memory locations are associated with interrupts (traps and resets overlap),
it is possible to simulate traps and resets by appropriate interrupt signals, as well as by direct
jumps or calls from other routines.

3-6

PA-800515 MAC Tutor Software
Issue 2, July 1979

Chapter 4

MAC TUTOR SOFTWARE

PA-800515 MAC Tutor Software
Issue 2, July 1979

4. MAC TUTOR SOFTWARE

4.1 Functional Description

A resident executive program is supplied (see Appendix) to allow the user to access the
hardware components. The primary purpose of this executive program is to enable the user to
store programs in memory and then execute them. In addition, the executive program provides
the following:

e Supplies the necessary interface routines io siore information permanently on cassette
tapes or PROMs.

¢ Allows program debugging with single-stepping, breakpoints, or nonmaskable interrupts.

e Allows communication between a TTY terminal and a time-sharing computer.

The executive program ig divided into three major sections:

e Keypad and Display — Commands and directives are given with the keypad and the results
appear on the LED displays.

e TTY — All of the capabilities of the executive keypad are available through a TTY termi-
nal and communication with a time-sharing computer is possible at the same time.

e Utilities — Programs are available for such functions as writing PROMs, verifying PROMs,
and writing/reading magnetic cassette tape information.

4.2 Operation

4.2.1 Keypad/Display

The keypad consists of a standard calculator-type button-pad with four rows, each containing
seven keys. Each key is marked with two labels, one in blue and the other in yellow. The blue
labels are presently in use and the yellow labels are intended for future system expansion
requirements.

The eight 7-segment LED displays are used mainly to display memory addresses and contents
of memory locations. The standard arrangement uses the left four digits for memory address
and the next two digits show the contents of that memory address plus one. The right two
digits show the contents of that memory location. For example, the number 18001234 indi-
cates that memory location 1800 contains hexadecimal number 34 and location 1801 contains
12. The left four digits are the address, the next two digits are the high contents, and the last
two digits are the low contents.

4.2.2 Keypad Button Control

There are 16 keypad buttons labeled 0 through F that represent hexadecimal digits 0 through F.
A is the decimal number 10, B is the decimal number 11, and so on through F, which is the
decimal number 15. These keys are used in conjunction with the other function keys to specify
exactly what will be done.

MAC Tutor Software PA-800515
Issue 2, July 1979

Initialize — init
The purpose of the init button is to reinitialize memory to recover from some abnormal condi-
tion. When this button is pressed, operations are performed as follows:

e The executive registers are set to the last 32 bytes of RAM, locations 1BEO through
1BFF.

e The user program registers are assigned to the preceding 32 bytes of RAM, locations
1BCO through 1BDF. These are the registers that are examined with the /a and /b but-
tons.

e User register bll is set to the address of the I/0 page, location 1F00. This is done so that
a user program can call subroutines in the executive program without setting this register
beforehand.

e User register bl2 is set to the constant FF02. This enables a user program to easily use
the executive subroutines to display numbers on the LEDs.

e The stack is set to just below the user registers. The stack will then grow down toward
lower addresses.

o The return address into the executive program is pushed onto the stack. This is to enable
a user program to make a normal return to the executive program on termination.

e A zero byte, representing an empty user condition register, is pushed onto the stack.

e The default value of the program counter (1800 is the first location of RAM) is pushed
onto the stack.

e The address of the user registers is pushed onto the stack and becomes the user register
pointer.
TTY - @
The button with the Bell System logo allows 2 TTY terminal keyboard te enter commands and
directives.
Memory Address — *

This button is used to specify a memory address. After the * button is pressed and as each
succeeding button is pressed, the memory address is shifted one place to the left (the last but-
ton pressed becomes the rightmost digit). For example, if the current memory address is 19AB
and we wish to look at location 03FD, refer to Table 4-1.

Register Pointer — /d

When the /d button is pressed, the display address is set to that location in memory which con-
tains the register pointer and the right four display digits will indicate the register pointer value.

This enables the following:

e Manual change of register pointer. By pressing the = button and changing the two
memory locations containing the register pointer, operating registers can be set to any
memory position.

e Since the register pointer is stored on the stack, the address field will now indicate where
the bottom of the stack is located. This makes it possible to examine what the program
has pushed onto the stack.

4-2

PA-800515 MAC Tutor Software
Issue 2, July 1979

TABLE 4-1. MEMORY ADDRESS EXAMPLE STEPS

Key Pressed | Display Reading

19AB1234*
1800ABCD*
8003FFFF
003F5498
03FDAFED

Omw =

Table Notes:

1. Although memory addresses consisi of four digits, the immediacy of the executive program required oniy three
digits to be entered. Whatever memory address is displayed, whether by chance or design, the digits to the right
will dispiay the contents of those two addresses.

2. Itis a good idea to specify all four digits of a memory address, otherwise leftover digits from the previous address
could produce unexpected results.

3. The content of nonexistent memory, in this example 8003, is a/ways FF.

Display a Register — /a

The /a button allows examination of the contents of the sixteen 8-bit registers that have been
assigned for use. After this button is pressed, the display changes to indicate an a register and
not memory. The left two digits of the address and the digits indicating the high contents are
bianked out. The right two digits of the address change to the letter a, indicating that the
display is showing an a register, followed by a digit representing the particular register displayed.
Register al0 is displayed as AA, all is AB, and on through al5, which is AF. By default, the
register a0 is displayed when /a is pressed. The low contents then show what is contained in
the register indicated by the address. Since an a register contains eight bits, only the two digits
of low contents are required (that is why the high contents display is blanked out). Once the
/a is pressed, the displayed register can be specified as follows:

e Pressing any of the digit buttons from 0 to F will cause that register (0 to 15) to be
displayed.

e The + button will cause the next higher numbered register to be displayed. If the regis-
ter displayed is 15, AF in the address digits, the + button will cause register a0 to appear.

* The - button will cause the next lower numbered register to be displayed. If the register
displayed is a0, the - button will cause register al5 to appear.

For example, to assume that registers a9, a8, al5, and al are to be displayed in that order, refer
to Table 4-2.

4-3

3
MAC Tutor Seftware PA-800515
Issue 2, July 1979

TABLE 4-2. REGISTER DISPLAY EXAMPLE STEPS

Key Pressed | Display Reading
1800 ACED

/a A0 10

9 A9 34

- A8 AA

F AF EO

+ A0 98

+ Al BA

Table Notes:

1. The /a button causes the display format to change. This allows determination of whether the display refers to
memory or registers.

2. The last digit pressed determines which register will be displayed.

3. Digit, +, and - buttons can be mixed at will to specify which register to display.

Display b Register — /b

The /b button allows examination of the contents of the sixteen 16-bit registers that have been
assigned for use. When this button is pressed, the display is changed to a format indicating that
b registers are being shown. The left two digits of the address are blanked out and the right
two digits change to the letter b, followed by a digit that indicates the register being displayed.
The right four digits of the display are then used to show the 16-bit contents of the b register
being examined. The /b button operates in the same fashion as the /a button.

Display Next Location — +

The <+ button allows examination of successive locations in memory. When this button is
pressed, the current memory address is incremented by one and the contents of the new
memory locations are displayed.

For example, it is possible to step through memory looking at successive locations, one after
another. Refer to Table 4-3.

TABLE 4-3. MEMORY LOCATION EXAMPLE STEPS

Key Pressed | Display Reading

18002211
+ 18013322
+ 18024433

Table Note: The standard display has the low contents showing whatever is in the memory location pointed to by the
address, and the high contents showing whatever is in the following location. This explains why every time + is

pressed, whatever was showing in high contents is now displayed in low contents.

Display Previous Location — -

The - button performs a function similar to the + button, but in the opposite direction. Every
time the - button is pressed, the address is decremented by one, which makes it possible to go
backward in memory and look at different locations one at a time.

4.4

PA-800515 MAC Tutor Software
Issue 2, July 1979

Change Contents — =

The = button makes it possible to change memory. Normally, any digit button depressed
causes a change in the address. However, after the = button is pressed, any digit button
pressed causes a change to the low contents. The low contents are shifted left by one digit, los-
ing the leftmost digit, and the button pressed becomes the rightmost digit. Also, after every
digit is pressed, the new value of the low contents is stored into the location pointed to by the
address. For example, to assume that the numbers 1, 2, and 3 are stored into the locations
1900, 1902, and 1A00, refer to Table 4-4.

TABLE 4-4. LOW CONTENTS LOCATION EXAMPLE STEPS

Koy Pregsed Display Reading

>
O-—“co
wTloo

O 00 00 00 NN N NN
cro0oNNYOTMoocrwmwomr e =T Moo
woprOocOPMTMONMNOAN—~, O~ —~—UparmToo

cocooP " ococoocncocococoocOowURO OO
C OO0 OP —~ONNN—~COOOOOWY =0
ST W N NN NN

mMmmMmmg ™y

PP PP T C o000 W0wOOOOO0 =0 S 0 0
Do UOTw >

wobllooP—~ *NOf 4=l |l OO0 *
T s = O O 00 e e e e O O 00

Table Notes:
1. The low contents are the ones affected and only one memory location can be changed at a time.
2. Pressing the = button more than once makes no difference (additional button pressing is ignored).

3. To correct an error, keep pressing buttons until the proper number is obtained.

The a and b registers can be changed in a similar fashion. The only difference to keep in mind
is the operation of b registers. Since the b registers contain 16-bit numbers, all of the rightmost
Jour digits in the display are affected when a b register is changed, instead of the rightmost mo
digits. For example, to set a8 to 88, a7 to 77, bl4 to 00EE, bl5 to 00FF, and b0 to 00, refer to
Table 4-5.

4.5

MAC Tutor Software PA-800515
Issue 2, July 1979

TABLE 4-5. A AND B REGISTER CHANGE EXAMPLE STEPS

Key Pressed Display Reading

1800FECD
/a A0 34
8 A8 12
= A8 12
8 A8 28
8 A8 838
- A7 67
7 A7 717
/b BO 1234
E BE 3400
= BE 3400
E BE 400E
E BE OO0EE
+ BF 0550
0 BF 5500
F BF 5S500F
F BF 00FF
+ BO 1234
0 BO 2340
0 B0 3400
0 B0 4000
0 BO 0000

Table Notes:

1. It is only necessary to key in the number of digits to obtain the required number. Two digits were sufficient for
bl4, whereas all four were necessary for b0.

2. Once the = button is pressed, it does not need to be pressed again if the format of the display remains the same.

3. When the display went from /a format to /b format, the = was necessary to indicate that the b registers were to
be changed. However, when going from a8 io a7, the executive program remained in a change register mode.

4, When changing registers or memory, the + and - buttons are used to go o a new register or memory location.
After examining a specific register or memory location, the = button can be pressed to make necessary changes.

Program Execution — go

After a program is placed in memory with the = button, the go button is pressed to start the
program running. This is an unconditional start and control will not return to the executive
program uniess one of three things happens:

e The user’s program relinquishes control. (If the program executes a return instruction
with no preceding subroutine call, the program will return to the executive program.)

o Illegal instructions will cause the executive program to regain control. To set a break-
point, just place an illegal instruction (FF is a good choice) where the program breakpoint
is desired.

o The reset button will also cause the MAC Tutor executive program to take over.

Single Step — sst

The sst button operates in the same manner as the go button, but with one difference. Every
time the sst button is pressed and immediately released, one instruction from the user’s pro-
gram is executed. The executive program then takes control and displays the address of the
next instruction that would have been executed. This allows successive execution of one

4-6

PA-800515 MAC Tutor Software
Issue 2, July 1979

instruction at a time from the user’s program merely by pressing the sst button.

If the sst button is pressed and held down, instructions will be executed at a rate of approxi-
mately two per second. The address display will contain the address of the next instruction to
be executed (used to view the program in operation).

4.2.3 TTY Control

If a TTY-compatible terminal is available, the MAC Tutor has the capability of using this dev-
ice for the user interface instead of the on-board keypad/display. When the Bell System logo
button is pressed, initialization functions are performed as follows:

e If there is no TTY connection or if the TTY is turned off, control will immediately return
to the keypad/display portion of the MAC Tutor executive program.

e The executive program pauses, waiting for the user to type in a carriage return (cr). This
key is used by the executive program to determine the terminal operating baud rate.

e A header is typed out to indicate what version of the executive program is being used.
Currently the header looks like this: MAC Tutor Exec 1.0.

¢ The executive program displays a 4-digit memory address followed by a space and the 2-
- digit contents of that memory address. The memory address displayed will be the current

value of the program counter, which on initial start-up will be 1800, the first address of
RAM.

Operation from the TTY keyboard is the same as from the executive program keypad/display,
except for the following differences.
Half Duplex — h

Normally the TTY executive program assumes that the terminal is running in full-duplex
mode, therefore the executive program prints out each character as it is typed in. In the half-
duplex mode, characters that are typed in will not be printed out. However, every time the h
key is typed, the executive program switches from either half- or full-duplex to full- or half-
duplex operation.

Initialize — i

The i key causes the memory to be set up and the header message and location 1800 are
displayed.

Terminate TTY — Break Key

Pressing the break key, turning off the terminal, or unplugging the terminal will stop TTY
operation and return control to the keypad/display.

Memory Address — *

Pressing the * key causes the executive program to set up to start displaying memory locations,
and the memory address is set to the current value of the program counter.

After typing in the * followed by an optional address, a carriage return causes that memory
address and its contents to be displayed at the terminal. For example, to examine locations
8003, 1900, and 1800 (in that order), refer to Table 4-6.

4-7

MAC Tutor Software PA-800515
Issue 2, July 1979

TABLE 4-6. MEMORY ADDRESS LOCATION (TTY) EXAMPLE STEPS

User Type Input Output

1800 DC

*3er’ 8003 FF
*1234123111900‘cr’ | 1900 8F
*er’ 1800 DC

Table Notes:

1. It is required to only type in as few digits as are necessary to generate the proper address. (The digit 3 was
sufficient to convert the address 1800 into 8003.)

2. The TTY executive program requires (at most) the last four digits to be typed. If a mistake is made, it can be
corrected simply by typing in all the proper digits.

3. An * alone is sufficient to bring back the current value of the program counter.

Register Pointer — r

This key operates in a manner similar to the *. The difference is that the memory address is
set to the bottom of the stack, which is where the register pointer is stored. As soon as the r
key is typed, the address of the bottom of the stack is displayed, along with the contents of that
location, the low byte of the register pointer. Refer to Table 4-7.

TABLE 4-7. REGISTER POINTER (TTY) EXAMPLE STEPS

User Type Input Output

1800 DC
r 1BB9 CO
‘o’ 1BBA 1B

Register Display — /

This key sets up the executive program to display the contents of one of the operating registers.
After pressing the / key, either the character a or b must be typed, indicating whether examina-
tion of the 8-bit a registers or 16-bit b registers is desired. Next, one of the digits 0 through F
should be typed to indicate which particular register is to be examined. If more than one digit
is typed, the executive program will use the last one to specify which register is desired. After
the type is entered and the proper register is selected, a carriage return will cause that register
to be displayed. For example, to examine registers al0, bl5, a0, and a9, refer to Table 4-8.

TABLE 4-8. REGISTER DISPLAY (TTY) EXAMPLE STEPS

User Type Input Output

1800 DC

/aA‘cr’ AA 01
/Bfcr’ BF 56D4
/er’ A0 FD

/A0123456789 cr’ A9 99

Display Next Location — Carriage Return

In order to examine a successive location, a carriage return (cr) key typed alone on a line will

4-8

PA-800515 MAC Tutor Software
Issue 2, July 1979

cause either the next higher memory location or register to be displayed. If the current register
number is 15, the cr key will cause register 0 to be displayed. For example, to examine
memory locations 1900 through 1903, registers al5 through a3, and registers bl5 and b0, refer
to Table 4-9.

TABLE 4-9. DISPLAY NEXT LOCATION (TTY) EXAMPLE STEPS

User Type Input Ouiput

1800 DC

*1900¢cr’ 1900 00
‘er’ 1901 11
‘er’ 1902 22
‘cr’ 1903 33
/af‘cr’ AF FF
‘cr’ A0 00
‘er’ Al 11
‘er’ A2 22
‘cr’) A3 33
/BFcr’ BF OFFF
‘er’ B0 1200

Display Previous Location — Line Feed

In contrast to the carriage return, the line feed (If) key causes the next lower memory location
or register to be displayed. Otherwise, the If and cr keys operate in the same manner. For

xample, to display memory locations 1800 through 17FE, registers al through al4, and regis-
ters bl4 through bl, refer to Table 4-10.

TABLE 4-10. DISPLAY PREVIOUS LOCATION (TTY) EXAMPLE STEPS

User Type Input Output

2FCD FF

*1800¢cr’ 1800 DC
‘e 17FF FF
‘1r 17FE FF
/Alcr Al 11
‘ar A0 00
‘1 AF 11
/BE‘cr’ BE OEEE
‘er’ BF OFFF
‘er’ BO 0000
‘er’ Bl 0111

Change Contents

If an input line consists of nothing but hexadecimal digits followed by either a cr or If key, the
digits are collected into one number. Then when the cr or If key is typed, the rightmost two
digits are stored into the currently displayed memory location or a register, or the rightmost
four digits are stored into the currently displayed b register. If fewer digits than necessary to fill
up a memory location or register are typed, the leftmost digits are assumed to be zero. For
example, to store 59, 00, and 18 into memory locations 1800, 1802, and 1804; FF, 0, and 1
into registers al5 to al; and 1, 1000, and FACE into registers b8 through bl0; refer to Table
4-11.

4-9

PA-800515
MACT
utor Software Issue 2, July 1979

TABLE 4-11. CHANGE CONTENTS (TTY) EXAMPLE STEPS

User Type Input Output
BADD FF
*1800¢cr’ 1800 DC
59 ‘cr’ 1801 11
‘er’ 1802 22
Ocr’ 1802 33
18*1803¢cr’ 1803 33
‘er’ 1804 44
18¢cr’ 1805 55
/AF‘cr’ AF FF
‘er’ A0 FF
0“cr’ Al 11
1cr’ A2 22
/B8‘cr’ B8 0888
ler’ B9 0999
1000‘cr’ BA 0AAA
01234FACE‘cr’ BB 0BBB

Table Notes:
1. Something has to be currently displayed before it can be changed.

2. The change does not take effect until the cr or If key is depressed. This gives the ability to check the input for
errors before making a change. If a mistake is made, start typing the desired number from scratch until the proper
number is in the rightmost digit position.

3. If it is not desired to change a displayed value, type in a cr or If key to skip over that location without affecting it.

Program Execution — g

The g key signals that the current memory location is the first address of some executable code.
When the cr key is typed, the executive program starts execution at this address. The current
memory location can be specified on the same line as the g command, so that the sequence
*1800gcr would cause the MAC Tutor to start executing the program at location 1800. In order
to avoid trying to execute a register address or other strange problems, it is recommended that
program execution start with *, followed by a 4-digit starting address, followed by g command,
and terminated with cr.

Single Step — s

The s key operates in the same manner as the g key, except that it only executes one instruc-
tion.

The s key also causes one instruction to be executed without waiting for a cr to be typed. After
the instruction is completed, the header message is typed out, followed by the address of the
next instruction to be executed and the contents of that memory location.

Since the address of the next instruction is the current address, a program can be single-stepped
many times by merely using the s key. Since the * key sets the current memory location to the
value of the program counter, it is easy to single-step a program for a while, look at memory
locations or registers, then continue single-stepping or executing the program. Refer to Table
4-12 for an example that will single-step a program through two instructions, look at some
registers and memory locations, and then restart execution at the third instruction of the pro-
gram.

4-10

PA-800515 MAC Tutor Software
Issue 2, July 1979

TABLE 4-12. SINGLE-STEP (TTY) EXAMPLE

User Type Input Output
2000 FF
*1900s MAC Tutor Exec 1.0
1902 7F
s MAC Tutor Exec 1.0
1903 59
/b0¢cr’ B0 0000
‘A BF FFFF
/AF‘cr’ AF FF
*1904¢cr’ 1904 00
‘er’ 1905 18
zgecrs

Table Note: Although the last memory location displayed was 1905, the g command caused execution to resume at
location 1903. Recall that the * key causes the current memory address to be set to the current value of the program

counter, which in this example was left at 1903.

Talk to Host Computer — !

When the ! key is pressed, the TTY executive program connects a modem interface to allow
communication with a time-sharing computer. If another ! is typed, the connection between
the terminal and modem is broken and the connection is once again made with the MAC
Tutor. (This sequence can be repeated as many times as desired.)

Load Hex File — 1

If access to a time-sharing computer is available, the TTY executive program has the ability to
load programs developed on that computer into the MAC Tutor memory. When the 1 key is
typed, the TTY executive program will load a standard hex. file.

4.2.4 System Utilities

Certain routines have been created that utilize MAC Tutor features. All of these routines are
executed as if they were user programs that were loaded into memory. However, because these
routines are part of the ROM executive, they are always available and unmodifiable. These
routines are invoked by setting certain registers to indicate what is desired, then executed with
the keypad go button or terminal g key. Refer to 4.4 for routine details.

4.3 Programming
There are basically three ways to create programs for the MAC-8:

e Hand Coding. Pencil and paper are used to create each byte of each instruction in the pro-
gram.

o Assembler. Assembly language programs can be created on a UNIX* time-sharing system.
These programs can then be loaded into memory and executed on the MAC Tutor.

e C Compiler. A UNIX system can be used to create
programs in the C programming language.

* UNIX is a trademark of Bell Laboratories.

4-11

MAC Tutor Software PA-800515
Issue 2, July 1979

4.4 Available Programs

The following descriptions include the starting address on the title line, input parameters, con-
straints, and abnormal conditions.

4.4.1 Move Memory - *022F

This routine moves a copy of a block of memory from one place to another. The input consists
of setting registers b8, b9, and b10 as follows:

e b8 The address of where to move the block of memory.
e b9 The address of the first location to move.
* bl0 One more than the last address that is to be moved.

For example, to move a copy of everything in locations 1900 through 19FF to locations 1800
through 18FF, refer to Table 4-13.

TABLE 4-13. MOVE MEMORY EXAMPLE STEPS

User Type Input Output

1800 DC

/B8cr’ B8 0888
1800¢cr’ B9 0999
1900¢cr’ BA 0AAA
1A00cr’ BB OBBB
*022Fg‘cr’ MAC Tutor Exec 1.0 (cr)
1800 00

Table Note: If the "to” address is greater than the "from" address and the blocks overlap, only the locations between
these two addresses will be moved properiy. All the rest of the destination block will consist of repetitions of this small

block.

4.4.2 Write a PROM - *0541

This program writes the contents of any contiguous 1024-byte block of memory into a 2708
PROM. The program that writes the PROM uses register and stack space in the upper 1024-
byte block of RAM (starting address 1800); therefore, it is not possible to successfully program
an entire 2708 PROM unless the lower 1024-byte block of RAM (starting address 1400) is
used to contain the program to be written. This restriction is not too severe, since approximately
the first 950 bytes in the upper 1024-bytes of RAM (starting address 1800) can be written into
the PROM.

The only input required consists of setting register b9 to the starting address of the block of
1024-bytes of RAM to be written into the 2708 PROM. It takes approximately two minutes to
write the PROM.

When the program is complete, it indicates whether or not the PROM is correctly written by
setting registers b13 and b14 to the following values:

b13 If the lower 1024-bytes of RAM (starting address 1400) were used, this register con-
tains 400 if the PROM is written correctly. If incorrectly written, b13 will contain a
number from 0000 to O3FF, indicating the first location in the PROM that is in
error. If the upper 1024-bytes of RAM (starting address 1800) were used, bl3
should contain at least 03b9.

4-12

PA-800515 MAC Tutor Software
Issue 2, July 1979

b14 If b13 does not contain 400, then the ieft two digits in bi4 are what should have
been stored in the PROM at the location specified by b13. The right two digits in
bl4 show what is actually there.

To write locations 1000 to 1400 into a PROM that has been placed in the PROM programming
socket, refer to Table 4-14.

TABLE 4-14. WRITE PROM LOCATIONS EXAMPLE STEPS

User Type Input Output

1800 DC
/B9y’ BS 1234
1000‘cr’ BA 5678

*0541g'cr’

4.4.3 Verify a PROM - *057B

This program verifies that the contents of the PROM match what is in a block of memory. The
oniy input is to set register b9 to the beginning address of a 1024-byte block of memory.
(Since a blank PROM and nonexistent memory both contain FF, a PROM can be zero verified
by specifying a nonexistent block of memory, such as 2000.)

ata thhn cemmamo 2ia

) 1/ RO | —
When CoOmMpiCic, uic prograiii ii

ters b13 and b14 as follows:

e bl3 If this register contains 400, the 1024 bytes in the PROM are the same as the
1024 bytes in memory. If the register does not contain 400, it will contain a
number from 0 to 3FF, indicating the first location in the PROM that did not
match.

dicates the resulis of the verification operation by setiing regis-

e bl4 If register bl3 does not contain 400, the left two digits of register bl4 indicate
what was stored in the PROM. The right two digits are in memory.

To check whether the contents of locations 1800 to 1BFF are the same as what is in the
PROM, refer to Table 4-15.

TABLE 4-15. VERIFY PROM CONTENTS EXAMPLE STEPS

User Type Input Output

1800 DC
/B9cr’ B9 1234
1800%cr’ BA 5678

*057Bg‘cr’

4.4.4 Dump to Audio Tape - *06C6
This routine dumps a block of memory to an audio tape file. The input consists of:

e a8 File ID, a unique number from 1 through FE identifying this file. It is recom-
mended that IDs O and FF not be used.

e b9 The address of the first location to be stored on the tape.

4-13

MAC Tutor Software PA-800515
Issue 2, July 1979

e bl0 One more than the last address to be written onto the tape.
The sequence of events necessary to write a file out to tape is:
o Set registers a8, b9, and b10.

Start tape recorder and set to record mode.

Wait until tape leader has been skipped.

Execute the tape dump program.

Stop the tape recorder when the program is completed.

Note: While the program is executing, the leftmost digit of the LED display indicates what is
happening. For the first 5 seconds it will show two vertical bars, the right bar being one-half
the height of the left bar (this indicates that the 100 sync characters which begin every file are
being written out). After this is completed, the right two vertical segments should be lighted,
the top horizontal segment should be off, and all other segments should flicker (this indicates
that data is being written out to the tape). If the display indicates a pattern of bars with none
of the segments varying, one of two things has happened:

e All the data to be stored on tape is the same. This situation is possible, but rather
unlikely.

e The data being written out are all Fs. This was probably caused by putting the wrong
starting address in b9 and writing out a nonexistent program.

To store locations 1000 to 13FF on tape using the file ID 10, refer to Table 4-16.

TABLE 4-16. TAPE STORE LOCATION EXAMPLE STEPS

User Type Input Output User Action

1800 DC
/B8‘cr’ B8 1234
0010‘cr’ B9 5678
1000¢cr’ BA 9ABC
1400cr’ BB DEFO0

*06Cég'cr’ MAC Tutor Exec 1.0 | Start tape recorder.

1800 DC | Skip leader.
Stop tape recorder.

4.4.5 Read from Audio Tape - *05EE

This routine reads information stored on tape back into MAC Tutor memory. The input con-
sists of:

e a8 File ID of data to be read in from tape.

e b9 Address of the first location to be stored in memory. (This parameter is used only
if the file ID is FF.)

Since special meanings have been assigned to certain file IDs, actions will take place as follows:
o0 The next file on the tape will be read into the address stored as part of the file.

e 1-FE The first file with the same ID as this will be read into the address stored as part
of the file.

PA-800515 MAC Tutor Software
Issue 2, July 1979

¢ FF The next file on the tape will be read into the address specified in register b9.
The following steps are required to read in a file from tape:
o Set register a8 and possibly register b9.
e Start execution of the tape load program.
o Start tape recorder.
e Upon completion of program, stop tape recorder.

As with the dump program, the leftmost digit of the LED display gives some indication of what
the program is doing. If the display is a random pattern that does not change or only changes
very slowly every one or two seconds, the program is waiting for the next data file to appear. If
there are two vertical bars {the right one haif the height of the left one), the 100 sync charac-
ters that begin a data file are being read. The data file is actually being loaded when the right
two vertical segments are lighted, the top horizontal segment is off, and all other segments are
flickering too fast to be understood.

The program can detect the following types of errors:

o Vertical parity error. A parity bit is stored with each character in the data file to enable
detection of a change in one bit of the character.

o Longitudinal checksum error. The last character of a file, called a checksum, gives the tape
load program one more way of checking that a file is read in properly.

When the tape load program terminates, register b14 contains the number of vertical parity
errors in the upper two digits. The lower two digits contain the computed checksum for the
file. If register b14 contains all zeros, no errors were detected. If register bl4 has no zeros,
data that was read in should be viewed with suspicion. An error has occurred but there is no
way to determine where it has occurred.

The tape read program will ignore anything on the tape that it does not recognize as a data file.
As a result, a short voice description of a data file can precede that file on the tape without
causing any problems for the load program.

For example, if a data file with file ID 53 has been stored on tape, refer to Table 4-17 to read
that file back. '

TABLE 4-17. TAPE READ EXAMPLE STEPS

User Type Input Output User Action
1800 DC
/A8‘cr’ A8 12
S53cr A9 34
*0SEEg‘cr’ MAC Tutor Exec 1.0 Start tape recorder.
1800 DC
Stop tape recorder.
/BE‘cr’ BE 0000

Table Note: The tape can be started from the very beginning and the program will skip everything until it comes to the
right file. It is also possible to manually position the tape with the fast forward and rewind controls to just before the
desired file. If the position of the file is known, either through voice information on the tape or tape recorder counter,

this technique can be used to speed up tape file processing.

4-15

MAC Tutor Software PA-800515
Issue 2, July 1979

4.5 Testing and Diagnosing

MAC Tutor testing and diagnosing approaches consist of
e Self-test program
¢ Truth table excitation
e Manual logic analyzer

The self-test approach consists of running a program that checks out each portion of the MAC
Tutor. This program requires that a set of straps be plugged into the I/0 and PROM program-
ming sockets. Then, by feeding the outputs to the inputs of the various elements, the program
verifies the operation. '

The truth table excitation approach makes use of a logic tester to excite the various elements in
the MAC Tutor and to logically compare the appropriate outputs. This test requires that the
MAC-8 be removed from the socket and the logic tester be connected to the MAC-8 and 170
sockets.

The third approach for testing and diagnosing the MAC Tutor is through the use of a logic
analyzer (e.g., Hewlett-Packard Model 1600A or equivalent). The address and data buses are
available for monitoring purposes at connectors J1 and J2. Through the use of the memory
map shown in Table 4-18, the read and write cycles for the various memory devices can be
monitored and verified. Typically, the first items that are checked out involve the integrity of
the control signals to and from the MAC-8. These include the reset, memory read, memory
write, and clock signals. If these signals check out, the ROM, RAM, and 1/0 follow in
sequence. These are checked out by determining the integrity of the chip select signal of these
devices and the data bus contents.

TABLE 4-18. ADDRESS ASSIGNMENTS/MEMORY MAP

Physical 3 Hex
Device Loca(ion';AlS Ald4 A13 A12 AIl A10 A4 A3 A2 Al A0 Addresses
- . - 4 s - - R — e S S |
3%:‘;;“&":4} NO1 ; 6 0 0 0 0 X 0000-07FF
2708 PROM K0l ¢ 0 0 0 1 0 0800-OBFF
2708 PROM GOl ‘ 0o 0 0 0 1 1 0C00-OFFF
2708 PROM DO} \ 0o 0 0 1 0 0 1000-13FF
9131 RAM DOS-KOSE 0o 0 0 ! 0 1 1400-17FF
9131 RAM GO5-NOS; 0 0 O 1 1 0 1800-1BFF
8255110 D24 0O 0 0 1 | 1 0 0 0 1F00-1F03
| 8255 17O Dle 0o 0 0 ! 1 1 0 0 1 1F04-1F07
I 825510 D20 0o 0 0 ! | 1 0 1 0 1F08-1F0OB
74LS273 1/0 Ccio 0 0 0 1 1 1 0 1 1 0 1 |IFOD
5_7.‘4.?5_273 7o ciy jo o o v v o r 1t 1 0JIFE
Table Notes: 1. X designates either logical 1 or 0. Blank areas

indicate future expansion.

2. Unit comes equipped with one of the two listed ROMs

4-16

PA-800515 Glossary
Issue 2, July 1979

Chapter 5

GLOSSARY

Glossary PA-800515
Issue 2, July 1979

5. GLOSSARY

Addend A number 1o be added to another.

Addressing Mode A way of forming the effective memory
address(es) for the operand(s) in an instruc-
tion.

Architecture A design or orderly arrangement of a micropro-
Cessor.

Augeiid A quaniiiy io which an addend is added.

Autobaud To automatically adjust to a given baud rate.

Baud Rate A measure of data flow. The number of signal

elements per second based on the duration of
the shortest element. When each element car-
ries one bit, the the baud rate is numerically
equal to bits per second (bps).

Bit A binary digit (logical 1 or 0).

Byte A sequence of adjacent binary digits (usually
shorter than a word) operated on as a unit.
Sometimes referred to an 8-bit byte.

C Compiler A unit that translates C language source pro-
grams into machine language codes.

Central Processing The heart of any computer system. A basic
Unit (CPU) CPU consists of an arithmetic and logic unit,
control block register array, and input/output.

5-1

Glossary PA-800515
Issue 2, July 1979

Checksum The last character of a data file that is used for
error detection purposes.

Clock A pulse generator that controls the timing of
microprocessor switching circuits.

Command The portion of an instruction that specifies the
operation to be performed.

C Program An organized set of instructions written in the
C programming language.

< CPU See Central Processing Unit.

Data Bus A group of lines each capable of transferring
one bit of data. It is bidirectional and can
transfer data to and from the CPU, memory
storage, and peripheral devices.

Debug To search for and eliminate errors in a comput-
er program.
Decrement A programming instruction that decreases the

contents of a storage location.

DIP Connector Dual In-line package connector.

Dump To transfer the contents of memory to an out-
put device.

Dyadic Operation An operation performed using two operands,

the source and destination.

EPROM See Erasable Programmable Read-Only Memory.
Erasable Programmable Usually consists of a mosaic of undifferentiated
Read-Only Memory (EPROM) cells that is electrically reprogrammable and

erasable by ultraviolet irradiation.

5-2

PA-800515
Issue 2, July 1979

Fetch

Frequency Shift
Keying (FSK)

FSK

Hardware

Hexadecimal

Increment

Input/Output (1/0)

Interface

Interrupt

10

LED

Glossary

To obtain data from a memory location. Read-
ing an instruction from memory and entering it
in the instruction register is often referred to as
an instruction fetch.

A form of frequency modulation in which the
modulating wave shifts the output frequency
between predetermined values (usuaily calied a
mark and space).

See Frequency Shift Keying.

The electrical, mechanical, electronic, and mag-
netic components of a computer.

Whole numbers and letters in positional nota-
tion using the decimal number 16 as a base.
The least significant hexadecimal digits read:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

A programming instruction that increases the
contents of a storage location.

Package pins connect directly to the internal
bus network to interface the microprocessor
with the "outside world."

A common boundary between adjacent com-
ponent circuits or systems enabling the devices
to yield or acquire information from one anoth-
er. (Buffer, handshake, and adapter are used
interchangeably with interface.)

Suspension of the normal programming routine
of a microprocessor in order to handle a sudden
request for service.

See Input/Output.

Light-emitting diode.

5-3

Glossary

Memory

Microprocessor

Modem

Monadic Operation

Opcode

Operand

Peripheral

PPI

Program

Programmable Peripheral
Interface (PPI)

Programmable Read-Only
Memory (PROM)

PA-800515
Issue 2, July 1979

Core, disk, drum, or semiconductor systems
into which information can be inserted and held
for future use. (Memory and storage are inter-
changeable terms.)

A central processing unit fabricated on one or
two chips consisting of arithmetic and logic
unit, control block, and register array. The in-
puts and outputs of the associated sections are
joined to a memory storage system.

An acronym for modulator-demodulator. A
device that converts data to a form that is com-
patible between data processing and transmis-
sion equipment.

An operation performed using only one
operand.

An acronym for operation code; that part of the
coded instruction designating the operation to
be performed.

A quantity of data in which an operation is per-
formed; usually one of the instruction fields in
an addressing statement.

Auxiliary function (devices not under direct
computer control).

See Programmable Peripheral Interface.

A procedure for solving a problem. Frequently
referred to as software.

An integrated circuit that can be programmed
to interface with a variety of peripheral equip-
ment.

A programmable mosaic of undifferentiated
cells. Program data is stored in the PROM.

5-4

PA-800515
Issue 2, July 1979

PROM

Pushdown Stack

RAM

Random-Access
Memory (RAM)

Read-Only Memory (ROM)

Register

ROM

Routine

Single-Step

Software

Storage

Glossary

See Programmabie Read-Only Memory.

A register array used for storing and retrieving
data on a last-in, first-out basis.

See Random-Access Memory.

Memory in which access to any storage location
is provided immediately by means of vertical
and horizontal coordination. Information can
be "written in" or "read out" in the same rapid
manner.

A storage device in which stored data cannot be
aitered by computer instructions (sometimes
called firmware).

A device for temporary storage of one or more
bits involved in arithmetical, logical, or
transferral operations. The number of registers
in a microprocessor is considered one of the
most important architecture features.

See Read-Only Memory.

A sequence of instructions for performing a
particular task.

A command that executes only one instruction
at a time.

The internal programs or routines prepared to
simplify computer operations. Software permits
the programmer to use a language such as C or
mathematics to communicate with a computer.

Any device that retains information. The word
storage is used interchangeably with memory.

5-5

Glossary

Subroutine

Teletypewriter (TTY)

Transistor- Transistor
Logic (TTL)

TL
ITY

Word

PA-800515
Issue 2, July 1979

Part of a master routine that can be used at will
to accomplish a specific task (the object of a
branch or jump command).

The teletypewriter uses electromechanical func-
tions to generate codes (Baudot) in response to
manual inputs from a typewriter keyboard.

A logic-circuit design method that uses inputs
from multiple emitter transistors. Sometimes
referred to as multiemitter transistor logic.

See Transistor-Transistor Logic.

See Teletypewriter.

A number of bits that are treated as one unit,
where the number depends on the CPU.

5-6

PA-800515 RESIDENT EXECUTIVE PROGRAM
Issue 2, July 1979

APPENDIX

RESIDENT EXECUTIVE PROGRAM

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
*define

#define
#define
#define
#define
tdefine

#define

#define
#define

#define
#define
#define
tdefine
#define
#define
#define
#define

#define

#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

IOPAGE
PCNTRL
QCNTRL
Al
PBIO
PCIO
PDIO

SETMOD
AINP
BINP
CINP
CLINP
CUINP
DINP

SSTKEY
NOKEY
OFFDI1G
ALLDIG
KDOWN

BAUD

NUMDEL
SSTDEL

RAMORG
RAMLEN
SYSREG
USERRG
USERB1

017400
*(b11+3)
*(b11+7)
*511

*(b11+1)
*(bi1+2)
*(b11+4)

0200
020
02
011
01
010
010

24

28

i5
0177400
2

*015776

3
0x7£

0x1800
04000
0x1be0
0x1bco
1 *015726

USERB12 *0 15730

USERB13 *015732
USERB14 *015734
NBIT 50

A 10

B 1
STARTCH °**
ENDCH A
CHECKSUM Ox2a
EOT oou
SYNC 026
BIT1 24<<8 |
BITO 12<4<8 {
CYCLEO 13
CYCLE1 6

NOISE 040

int USERR11;
int USERB12;

A-1

/%
/%
/%
/%

/*x

12
12

0x1bd6
0x1bds
0Ox1bda
0x1bdc

kT Ky

*x/
x/
x/
*/

int USERB13;
int USERB14;

int BAUD;

_ASSEM “BAUD = 15776";
_ASSEM "PCNTRL = 17403";
_ASSEM *QCNTRL = 17407";

_ASSEM "PAID = 17400";

_ASSEM "PBIO = 17401";
_ASSEM "PCIO = 17402";
_ASSEM "PDIO = 17404";
77A 7E 30 6D 79 char tfmt[] { o176, 0060, 0155, 0171 }
77€ 33 5B S5F 70 { oo63, 0133, 0137, 0160 }
782 7F 73 77 {F { o177, 0163, 0167, 0037 }
786 0D 3D 4F 47 { o015, 0075, 0117, 0107 };
78A 18 14 10 0OC char tnum(] { 24, 20, 16, 12}
786 OD OE OF 19 { 13, 14, 15, 25}
792 15 1t 08 09 { 21, 17, 8, 9}
796 OA 0B 1A 16 { 10, 11, 25, 22}
79A 12 04 05 06 { 18, 4, 5, 6}
79€E 07 1B 17 13 { 7, 27, 23, 19}
7A2 00 01 02 03 { o, 1, 2, 3}
7A6 65 01 E2 01 FO O int tfnc[] { &numb, &plus, &minus, &star }
7AC DV 01
7AE DE Ot QOE 02 A7 01t { &equal, &exec, &areg, &breg }
784 C3 01
786 FE 01 15 02 15 02 { &rptr, &sst, &sst, &init0 }
78C 29 00
78E 44 02 { &tty };
/% Mac8 Tutor Executive
L]
*+ Gilobal memory allocation
-
* et e R +
« 1BFE |~-- b15 -- BAUD rate counter
- e E +
. i=— bi14 -=i contents of (b13)
* e ————— +
* i-- bi3 - current address
- o +
» e + on digits flags
- H a2 H exec state flags
- e L P +
* == b1t -= address of 10 page
* e et +
*
*
-

A-2

18
1F
8B

93

00 tF
02 FF

00

18
18

™
= 1BEO
*

= 1BDE
*

-

*

£ 3

»*

« 1BCO
®

*

%

*

*

*

*

*

»

*®

*

-

=

= 1400
*

*

s/
main()
1:

reset:
init0:

init:

e bo --
frmmm—— e ——— +
V- b1s -1
tmmmmm— e +
fmmmm e —————— +
\-- bo -~
frmmmmm————————— +
s init0 -—
femmmmm— e — e +
| cr |
B e +
i-= User pc ~-i|
pmmmmm————————— +
i=- User rp =--|
B +
e —————— +
']
) 1
O et +

noo();

nop():

nop ()

goto 1f;

goto *0xB800;

push(rp);:

rp = SYSREG;
b1t = I0QOPAGE;
QCNTRL = 0213;
PDIO = 0377;
PCNTRL = 0223;
a0 = PCIO;

<- rp

user registers

<- user rp

return acdress to

<~ sp

Stack

Origin of RAM

if (!bit(3,a0)) goto 1f;

nop():

goto powon;

b15 = 0;

USER311 = 10PAGE;

USERB12 = ALLDIG | KODOWN;

rp = SYSREG;
btt = IOPAGE:
sp = USERRG - 2 - 1
#(dsp + 5) = &init;
*(sp + 4) = 0;

«(dsp + 2) = RAMORG;
*(dsp + 0) = USERRG;
PCNTRL = 0220;

PCIO = 020;

A-3

-2 -2

exec

ED
02
OF
07
OF
OF

A6

03
07
F9

07

04
7F

FF

18
02

00

07

82
98
00

b13 = *(dsp + 2);
b14 = *di13;
man2: b12 = ALLDIG;
set(zero); /* mac7 hardware error */
b0 = BAUD;
if ('zero) tty();
rdkey();

a0 - SSTKEY;

if (zero) goto 1f;
at2 = KDOWN;
disp():

rdkey();

if (a0 == NOKEY) {

at2 =& 0375;
goto 1b;

if (bit(1,a12)) goto 1b;
a12 =| KDOWN;
if (a0 <= 15) {

b2 = b0,
b0 = 15;
}
a0 =- 15;
a0 =» 2;
b0 =+ &tfnc;
b3 = *d0;
*b3():
goto 1b;
}
/* rdkey = read keyboard
L3
*+ entry = entry - none.
L]
* uses - a 0,1,3
* b 0,1
*
* calls = none.
L 3
* exit - a0 = number from 0 to 27 indicating
» which key was pressed.
-
=/
rdkey()
PCNTRL = 0202;
QCNTRL = 0233;
b0 = (=7)&0377;
a3l = 0357;
1: a0 =+ 7;
a3 =>>> 1;
if (!'neg) return;
PAIC = a3;
a4 = PDIO;
a4 =& 0177;

A-4

aF
F1
14
18

na
v

i1F
10
01

7F
EC

8A 07

07 8B

03 90

01

01
03 00

01 OF

N
LR N R N K K B I R I I

*

*/
disp(}

{

SN

LR B BN R BE K BE BE B

*

«/
dsp4d ()

ag =~ 0177;
if (zero) goto 1b;
at = flolaqg);

--atl;

AN -2 =
av =+ &

1.
T

b1 = &tnum;
b1 =+ logical(a0);
a0 = =*bi1;

return;

nop ()
QCNTRL
PDIO =
PCNTRL

calls - dsp4,

0;

disp - display numbers in 7-segment displays

entry = at2(15-8) = bit mask indicating on

digits.
first four digits to display
last four digits

delay.

exit - 7-segment displays refreshed.

/* historical allignment
0213;

0220;

swap(b12);

a2 = 0;
0 = b1
dspd();
b0 = b1
dspda();

3:

4;

bS5 = NUMDEL;

delay()
PBIO =

QoF

FDIG;

swap(b12);

return;

entry - b0

b 0

calls - dsp2.

dspd4 - display 4 digits

16-bit number to display

uses - a none.

exit - next 4 digits displayed.

*/

107
109
10C
10€
111

112
114
116
118
11A
11C
120
122
124
128
12A
120
130
133
137
13A
13C
13F
143
145
147
148
14D
150
153
156
158

6A
79
6A

66

o1

01

NN
LR B R I A A I Y

*

*/

swap(bo0);
dsp2();
swap(b0);
dsp2();
return;
dsp2 - display 2 digits
entry - a0 =

uses - a 0,1,2,3,5
b 3,5

calls - delay.

exit -~ next 2

dsp2()
{

07

OF

0o

dpait:

07

0t OF
07

01

dp22:

}
/

L]
*
*
»
*
]
*

at
at
at =>> 1;

al >> 1

at =>> 1;

b3 = &tfmt;

b3 = logical(at);
a3 = =b3;

PBIO = OFFDIG;

art2 =<<< t;

it (!'odd) goto dp2t1;
PDIO = a3;

PBIO = a2;

bS = NUMDEL;
delay();

++a2;

a0 =& 017;

b3 &tfmt;

b3 =+ logical(a0);
a3l *b3;

PBIO = OFFDIG;

a1 =<<< 1;

if (lodd) goto dp22;
PDIO = a3;

PBIO = a2;

++a2;

return;

A\
[=]

W uun
v

Howown

bitime,

entry - b5 = delay count

8-bit number to display

digits displayed.

delay - delay specified time

(picked up from

BAUD by bitime)

uses -~ a 5
b5

calls — none.

exit - eventually.

* * B R *

*/
bitime()
{
159 (¢5 5F FE 1B bS5 = BAUD;
150 01 02 delay: set(zero);
15F 68 58 --b5;
i6i &4 CO if {neg) return:
163 58 F8 goto delay;
}
/* numb = process hex number
*
* entry - a2 = number keyed in
3
*+ uses - a 0,1,13,14
* b 0,13,14
*
* calls = none.
E 3
* exit - number shifted into the current
* address or data field as required.
L 3
*/
numb ()
{
165 52 CO 12 if (bit(0,a212)) {
168 S5A C2 21 if (bit(2,a12)) goto chreg;
168 38 E1 atg =<< 1;
160 38 Et atq =<< 1;
16F 38 E1 alg4 =<< 1;
171 38 E1 atq =<< 1;
173 90 E2 a14 =) a2;
175 81 DE *b13 = al4;
177 58 11 } else {
179 S5A C2 3A if (bit(2,212)) goto reg2;
17C CO0 0D b0 = b13;
17E 79 3B 02 shiftd();
181 co DO b13 = bO;
183 98 DF FO a13 =& 0360;
186 90 D2 a13 =, a2;
188 C5 ED b14 = *di13;
}
1BA 66 return;
188 52 C3 0A chreg: if (bit(3.a12)) {
186 CO0 OE b0 = b14;
190 79 38 02 shiftd();
193 CO0 €0 b14 = b0;
195 58 08 } else {
197 38 E1 at4 =<< 1;
199 38 E1 atq =<< 1;
198 38 Et a4 =<< 1;
19D 38 E1 a14 =<< 1;

A-7

}
19F 90 E2 atd =! a2;

1Al 79 33 04 regad();
1A4 C1 CE *d0 = b14;
1A6 66 return;
}
/* areg - set a register mode
*
* entry - none.
*
* uses - a 0,2,12,13,14
* b 0,12,13
*
* calls = none.
*
* exit - display set up for a-register dispiay
*
*/
areg()
{
1A7 DO CF 04 FF b12 =) ALLDIG}04;
1AB DB CF F6 33 b12 =& 031766;
1AF CO0 DF AQ 00 b13 = A<<4;
183 20 20 regt: a2 = 0;
185 98 2F OF reg2: a2 =& 017;
1B8 98 DF FO al3 =& 0360;
188 90 D2 al3 =, a2;
18D 79 33 04 regad();
1CO0 (5 EO b14 = do0;
1C2 66 return;
}
/* breg - set b register mode
*
* entry - none.
*®
* uUses - a 12,13
* b 12,13
*
* calls - areg.
*
* exit - display set up for b-register display.
*
*/
breg()
{
1C3 00 CF 0OC FF b12 =] ALLDIG|014;
1C7 D8 CF FE 3F b12 =& 037776;
1CB Cco DOF BO 00 b13 = B<<4;
1CF 58 E2 goto regl;
}
/* star - set address mode
*
* entry = none.
-
* uUses - a 12,13,14
* b 12,13,14

A-8

calls - none.

all further numbers keyed into the
address field. Address is set to

*
*
*
* exit - display set up for memory display and
L 3
*
* current user pc.

*/
star()
{
1Dt 98 CF F2 at2 =& 0362;
104 DO CF 00 FF bi12 =] ALLDIG;
108 Cc6 DF 04 b13 = *(dsp + 4);
108 CS ED b14 = =di13;
iDD 66 return;
}
/* equal - set data mode
- *
* entry = none.
*
* uUses - a 12
* b none.
*
* calls = none.
x
* exit - ali further numbers heyed in get
* stored at the current address.
*
*/
equal ()
1DE 90 CF Ot at2 =} 1;
iE1 66) return;
}
/ plus - increment the current address

entry - b13 = current address

uses - a 2,13,14
b 2,13,14

calls - none.

exit - current address incremented and
address/data mode unchanged.

— % A R B AR R R R R RN
~

r{>u5()
1E2 52 C2 07 if (!'bit(2,a12)) goto 1f;
1€5 80 20D a2 = al3;
1E7 28 20 ++a2;
1E9 58 CA goto reg2;
1EB 68 DO 1: ++b13;
1ED C5 ED b14 = *d13;

1EF

1FO
1F3
1F5
1F7
1F9
iFB
1FD

1FE
201
204
206
20A
200

66

52
80
28
58
68
cs
66

DF
DF
ED
CF
CF

00
02

00 FF
F2

return;

}
/* minus - decrement the current address
»
* entry - b13 = current address
*
* uses - a 2,13,14
* b 2,13,14
*
* calls - none.
*
* exit - current address decremented and
* address/data mode unchanged.
*
*/
minus()
if (Ibit(2,a12)) goto 1f;
a2 = al3;
--a2;
goto reg2;
--b13;
b14 = »d13;
return;
}
/* rptr - disptay user rp
*
* entry - none.
"
* uses - a 12,13,14
* b 12,13,14
*
* calls - none.
*
*+ exit - current address set tc location
* containing the user rp.
*
*/
rptr()
{
b13 = &*(sp+0);
b13 =+ 2;
rpt1: b14 = «d13;
b12 =! ALLDIG;
al2 =& 0362;
return;

N

£ ® £ B X B B X B

exec - execute user program
entry - b13 = starting address

uses - a 0
b 0

calls - none.

A-10

20E 44 00
210 C2 FD 02
213 45

214 &7

215 80 AF 7F
218 79 DF 00
218 28 AB
210 40 FO F9
220 44 00
222 80 CF 12
225 C2 FD 02
228 82 BF 02 80
22C 7F

220 45

22 67

22F 01 02
231 FO 9A
233 64 01

*
*

exet - to user program.

*/
exec()
{
b0 = pop();
*(dsp+2) = bi13;
rp = pop():
ireturn();
}
/+ sst - single step user program
*
* entry - b13 = current address to execute
*
* uses - none.
*
*+ calls = none.
x
* exit = None. Interrupt will automatically
* occure before one user instruction
* can ccmpiete.
*
=/
sst()
{
ali0 = SSTDEL:
1: disp();
--ai10;

if ('neg) goto 1b;

sst0: b0 = pop();

al2 = 022;
*(dsp+2) = B13;
PCIO = 0200;
nop ()
rp = pop();
ireturn();
}
/% move - move block of memory
*®
*+ entry — b8 = fwa of destination
* b9 = fwa of source
* b10 = lwa+l of source
L 3
* uses - a 0,8,9
* b 8,9
E 3
* calls - none.
-
+ exit - (b9) to (b10-1) moved to
&
./
move ()
{
set(zero):
b9 - b10;

if (zero) return;

b8.

235 87 09 a0 = *b9++;

237 83 80 *b8++ = ao;
239 58 F4 goto move;
}
/* shift4 - shift b0 left by 4
*
* entry - b0 = 16-bit number to be shifted
* logically.
*
* uses - a 0,1
* b 0,1
*
* calls - none.
*
* exit - b0 shifted left 4.
*
*/
shiftq4()
{
238 €8 00 b0 =+ bO;
23D E8 00 b0 =+ bO;
23F €8 00 b0 =+ bO;
241 E8 00 b0 =+ DO}
243 66 return;
}
7C0 4D 63 54 75 74 6F char header[] "McTutor Exec 1.0\n\r";
7C6 72 20 45 78 65 63
7CC 20 31 2E 30 OA 0D
702 00
703 68 2A 67 73 char ttty[] { 'n', "%t gt gt
707 0D OA 21 6C { '\r', '\n', 1t}
708 2F 69 72 { 7', "i', 'r')
7DE 99 03 8D 02 A9 02 int ttyf{] { &half, &addr, &run, &sst0 }
7e4 20 02
7e6 9D 03 EB 03 08 03 { &retrn, &linefd, &unix, &load }
7eC 22 03
7EE 83 02 29 00 99 02 { &raddr, &inito, &rpoint };
/« tty - main teletype controler
*
* entry - none.
*
* uses - a 0,7,10,13,14
- b 0,10,13
* calls - baud, prstring, rdtty, prtty, ktype
*”
* exit - none. (it doesn't)
*
~/
tty()

A-12

244 44 00 b0 = pop();
246 79 A1 04 baud():
249 80 7F 40 a7 = 0100;
24C 80 CF 02 at2 = 02;
24F 79 76 04 1fcr():
252 Cc0 DF coO 07 bt3 = &header;
256 79 91 04 prstring();
259 C6 OF 02 b13 = *(dsp + 2);
25C 79 05 04 prloc();
25F 79 C6 04 1: rdtty();
262 98 EF 7F al4 =& 0177;
265 49 F1 27 00 if (zero) goto reset;
269 5A C4 04 if (bit(4,a12)) goto 2f;
26C 79 14 0S5 prtty();
26F 80 EF a1 2: atd - 'A';
272 48 FB 0A if (1t) goto 3f;
275 BO EF 5A at4 - '2';
278 40 F9 04 if (liteq) goto 3f;
278 90 EF 20 a1d4 =! 040;
27E 79 3F 04 3: ktype():
281 58 DC goto 1b;
}
/* raddr - set register mode
*
* entry — none.
E
*+ uses — a 12,13
* b none.
*
* calls - none.
*
s+ exit - state bits set up for register
* operations.
*
*/
raddr ()
{
283 98 CF 12 at2 =& 022;
286 90 CF 68 a12 =, 0150:
289 80 DF A0 a13 = A<<4;
28C 66 return;
}
/* addr - '#' key => set up to input address
*
* entry — none
*
« uses - a 12
» b 10,13
*
* calls - none.
*
+« exit - current address set to origin of ram
* and ready to be changed.
L d
*/

A-13

addr ()
{

28D C6 AF 04 b10 = *(dsp + 4);
290 CO Da b13 = b10; '
292 98 CF 12 al2 =& 022;
295 90 CF 20 at2 =} 040;
298 66 return;
}
/* rpoint - set address to rp
*
* entry - none.
*®
* uses - a 12,13
* b 13
*
* calls - 1fcr, priloc
»
* exit - current address set to base of
* which contains the user rp.
*
*/
rpoint()
{
299 6F DOF 00 bi3 = &*(sp + 0):
29C 7D DF 02 b13 =+ 2;
29F 98 CF 12 at2 =& 022;
2A2 79 76 04 Tfcr():
2A5 79 05 04 prloc();
2A8 66 return;
}
/* run - set execute bit in status byte
-
*« entry - none.
-
* uses - a 12
* b none.
*
* calls = none.
*
* exit - execute bit set so next return
* will start execution.
L]
*/
run()
2A9 90 CF 80 a12 =} 0200;
2AC 66 return;
}
/* pPrnum = print B8-bit number on tty
]
« entry - a9 = number to be printed
*
* uses - none.
*
*= calls = prnt,
*®

A-14

stack

*# exit - number printed as two hex digits.
*

*/
prnum()
2AD 79 B4 02 prnt();
280 79 B4 02 prnt1();
2B3 66 return;
}
/* prnt - print 4-bit number as hex digit
»®
* entry - a9 = upper 4 bits is number to be
* printed.
*
* uUses - a 9,14
* b none.
*
* calls - prtty,
*
* exit - digit printed and a9 shifted left
* by 4.
*®
\4
prnt ()
2B4 34 91 a9 =<<< 1;
286 34 91 a9 =<<< 1;
288 34 91 a9 =<<< i,
2BA 34 91 a9 =<<< 1;
28C 80 E9 at4 = ag;
2BE 98 EF OF atd4 =& 017;
2C1 B0 EF 09 at4 - 9;
2C4 48 F9 04 if (1teq) goto 1f;
2C7 A8 EF 07 . atd z+ 'A' - '0' - 10;
2CA AB EF 30 1: at4 =+ '0';
2C0 79 14 05 prity();
2D0 66 return;
}
/* tnumb - number input from tty
*
* entry - b10 = current number being built up
* 214 = character input
*
¥ Uses - a 0,10,12,13,14
* b 0,10,13
*®
* calls - shifta,
»”
* exit - new digit shifted into the right
* of b10.
*
*/
tnumb ()
{
201 98 EF OF ald4 =8 017;
204 52 C3 1C if ('bit(3,a12)) goto 2f;

A-15

207 52 Cé6 10 if (!'bit(6,a12)) goto 1f;

2DA 98 CF BF al2 =& 0277;
200 BO EF 0B ald - 11;
2E0 65 01 if (1zero) return;
2E2 90 CF 04 al2 =} 04;
2ES 80 DF BO a13 = B<<4;
2E8 66 return;
2E9 52 CS5 07 1: if (!'bit(5,a12)) goto 2f;
2EC 98 DF FO at3 =& 0360;
2EF 90 DE at3 =} al4;
2F1 66 return;
2F2 CO OA 2: b0 = bl10;
2F4 79 3B 02 shift4();
2F7 CO A0 D10 = bO;
2F9 98 AF FO at0 =& 0360;
2FC 90 AE a10 =} al4;
2FE 5A C5 05 if (bit(5,a12)) goto 1f;
301 90 CF 01 al2 =} 1;
304 66 return;
305 CO DA 1: b13 = b10;
307 66 return;
}
/* unix = listen to modem
L
*+ entry - nonhe.
*
* uses - a 14.
* b none.
*x
* calls - rdtty.
»
« exit - when a ‘!' is received from the modem.
*
./
unix():
{
308 82 BF 02 01 PCIO = 01,
30C 79 C6 04 1: rdtty();
30F 98 EF 7F atq =& 0177;
312 B8O EF 21 a14 - "',
315 40 F1 FS5 if (lzero) goto 1b;
318 22 B0 02 PCIO = 0%
31B 79 14 05 prtty();
31E 79 76 04 ifer();
321 66) return;
/+ load - load hex file from modem
*
*« entry - none.
*
* uses - a 7,8,9,13,14
* b 13
»*
*« calls - rdnod, 1fcr, prlioc, getbyt.
»
*« exit - next location that would have been

A-16

* load is printed. Only +:00' is
* printed from the last line of the
* hex file if the load is successfull.
* Otherwise there was a checksum errgrp
* in the last line listed.
*
1oad()
{
322 82 BF 02 01 PCIO = 01;
326 80 7F 20 a7 = 040;
329 20 80 ag = 0;
328 73 0D 05 i rgnod()
32E 98 EF 7F al4 =& 0177;
331 B0 EF 3A a14 - ':';
334 40 F1 FS if (!zero) goto 1b;
337 79 71 03 getbyt();
33A 80 9A ag9 = alo;
33C 40 F1 10 if (lzero) goto 3F;
33F 22 BO 02 2: PCIO = 0;
342 80 7F 40 a7 = 0100;
345 g1 D8 *p13 = aB8;
347 79 76 04 1fcr();:
34A 79 05 04 prlicc();
34D 66 return;
34 79 71 03 3: getbyt();
35i 80 DA ai3 = ail;
353 79 71 03 getbyt();
356 6A DO swap(bi13);
358 80 DA at3 = al10;
35A 79 71 03 getoyt();
350 28 98 3: --a9;
35F 48 FO 08 if (neg) goto 4f;
362 79 71 03 getbyt{):
365 83 DA *b13++ = a10;
367 58 F4 goto 3b;
369 79 71 03 4: gethyt():
36C 48 F1 BD if (zero) goto 1b;
36F 88 CE goto 2b;
}
/* gQetbyt - accumulate 8-bit byte from hex file
*
* entry - none.
*
* uses - a 8,10
* b none.
*
*+ calis - digit.
*
* exit - al10 = byte read
* aB ' = current value of check sum.
*
./
getbyt()
{
371 79 B6 03 digit();

A-17

374
376
379
378
370
37F
381
383
385

386
389
38C
38F
392
395
398

399
39C

390
3A0
3A3
3A6

79
98
BO
48
AB
98
€6

88
66

79
79
80
79

AE

At
A1
A1
A1

8A

00
EF
EF
F9
EF

CF

03

10

a10 = at14;
digit();:
al0 =<< 1;
al0 =<< 1;
a10 =<< 1;
al0 =<< 1;
ato0 =] atl4;
a8 =+ ail0;
return;

N

L R BN 2R BN 2R BE IR Bk B 2

entry = none.

uses - a 14
b none.

calls - rdmod.

*

*/
digit()

rdmod();

atd4 =& 0177;

atg - '9';

if (lteg) goto 1f;
atd4 =+ 9;

ald4 =& 017;
return;

-
..

N

LR R BE BE IR 2 2R 2 R BE BN

entry = none.

uses - a 12
b none.

calls - none.

exit - bit set in ai12 to
of input.

*
~

half()

a12 =" 020;
return;

retrn()
regad();
store();

at4 = '\n';
prtty();

A-18

digit - read hex digit from hex file

exit - al4 = binary value of hex digit read

half -~ set half duplex mode

indicate no echeing

3A9
3AC
3AF
3B2
384

ane
<07

389
38C
38F
3C1
3C4
3Cé6
3C9
3cC
3CF
301

306
309
308
3DE
3Et
3E3
3E4
3e7
3E9

3EB
3EE
3F1
3F4
3F7
3FA
3FC
3FE
400
402
405

04
02
33
03

OF
FO

04
02
04
08
02
02
05

1C

04

reto:

}
/* linefd - print previous

*

*« entry - bi13
*

*

Infi:
prloc:

if (!'bit(7,a12)) goto 1f;
goto exec;

if (!'bit(3,a12)) goto 2f;
ag = at3;

if (bit(5,a12)) goto ret0;
++a0;

a0 =& 017;

al3 =& 0360;

al3 =) a0;

crdel();

ad9 = ail3;

proum();

prsp();

regad();

bg = %=doO;

if (!bit(2,a12)) goto 1f;
swap(b9);

proum();

swap{b%);

proum();

prsp();

b10 = 0;

return;

if (bit(5,a12)) goto Inf1;
++b13;

goto Inf1;

current address

location

al0 = possible value to store in

uses - a 8,9,10,13,14

b 9,10,13

current address.

calls - store, prtty, prnum, prsp.

exit - any pending values are stored in

the location if necessary and

the previous location

regad();
store();
atd = '\r';
prtty();

if (1bit(3,a12)) goto 1f;
a0 = al3;
--ag;

goto retO;
--b13;
crdel();

b9 = b13;

A-19

is displayed.

407 6A 90 swap(b9);

409 79 AD 02 proum();
40C 6A 90 swap(b9);
4DE 79 AD 02 prnum();
411 79 11 05 prsp();
414 85 9D a9 = *b13;
416 79 AD 02 proum() ;
419 79 11 05 prsp():
41C 60 AD b10 = 0;
41E 66 return;
1
/* store - store value in current location
*
* entry - b0 = register address if necessary
* b13 = current address
* al0 = value to be stored there
*®
* uses - a 10,12,13
* b 10,13
L 3
* calls = none.
*
x exit — if necessary, value stored in current
* location and status updated to
* indicate no value to be stored.
L]
*/
store()
{
41F 52 CO OF if ('bit(0,a12)) goto 2f;
422 52 C3 0A if (!'bit(3,a12)) goto 1¢;
42% 81 OA *b0 = a10;
427 52 C2 07 if (!'bit(2,a12)) goto 2f;
42A C1 0A *d0 = b10;
42C 58 02 goto 2f;
42E 81 DA 1: 5123 = al0;
430 60 AO 2: b10 = 0;
432 66 return;
}
/* regad - calculate user register address
*
* entry -~ at3(0-3) = register number
L4 * (dsp+4) = user register pointer
*
« uses - a 0
* b 0
L3
= calls - none.
*
» exit - b0 = address of desired register.
*
*/
regad()
{
433 80 0D a0 = at3;
435 p8 OF OF 00 b0 =& 017;

A-20

439 38 01 a0 =<< 1;
438 EE OF 04 b0 =+ *(dsp + 4):
43E 66 return;
1
I
/* ktype - determine key type
*
* entry - al4 = ascii character input
*
* Uuses - a 0,1,2,14
* b 1,2
*
* calls - space, addr, go, retrn, linefd, unix,
* load, tnumb.
*
* exit - to appropriate processing routine.
* In the case of ‘tnumb' characters
* ra! - f' are converted into easy
* to convert values.
*/
ktype()
i
43F BO EF 30 aiga - '0';
442 48 F8 08 if (1t) goto tf;
445 B0 EF 39 al4 - '9g';
448 49 F9 D1 02 if (1teq) goto tnumb;
44C BO EF 61 1: ata - ‘'a';
44F 48 F8 0D if (1t) goto 1f;
452 B0 EF 66 at4 - '¢';
455 40 F9 07 if (!'1teq) goto 1f;
458 A8 EF 09 a14 =+ 9;
458 59 Dt 02 goto tnumb;
45e CO 1F D3 07 1: b1 = &ttty
462 CO 2F DC 07 b2 = &ttyf - 2.
466 7D 2F 02 1: b2 =+ 2;
469 87 01 a0 = *bi++;
468 64 01 if (zero) return;
46D BO OE a0 - at4;
46F 40 F1 FS5 if (lzero) goto 1b;
472 (5 22 b2 = =d2;
474 49 2F goto *b2;
}
/* 1fcr - output linefeed and carriage return
*
* entry - none.
*
* uUses - a 0,14
* b none.
*
* calls - prtty, bitime
-
* exit - carriage moved to new line and delay
- done to allow time for this.”
*®
*/
1fcr ()

A-21

476 80 EF OA al4 = '\n';
479 79 14 05 prtty();
47C 80 EF 0D prcr: atd = '\r';
47F 79 14 05 prtty();
482 98 CF 9E crdel: a12 =& 0236;
485 80 OF 32 a0 = NBIT;
488 79 59 01t 1: bitime():
488 28 08 --al;
48D 40 Ft F9 if (l1zero) goto 1b;
490 66 return;
}
/* prstring ~ print out ‘\0' terminated string
*
*+ entry - bi3 = pointer to string.
»
* uses - a 13,14
* b 13
*®
*= calls - prtty, crdel.
*
* exit - string printed out on terminal.
»
*/
prstring()
{
431 87 ED 1: atd = *b13++;
433 64 01 if (zero) return;
435 79 14 0S5 prtty();
498 BO EF 0D at4 - '\r';
438 69 F1 82 04 if (zero) crdel();
49F s8 FO goto 1b;
}
/* baud - determine baud rate of terminal
L]
= entry = BAUD = 0 => baud rate unknown
-
* uses - a 0,5
. b o
L]
* calls = none.
*
* exit - BAUD contains delay count that enables
* bitime to wait one bit time,
*
./
baud()
{
4A1 82 BF 03 92 PCNTRL = 0222;
4A5 (CS OF FE 18 b0 = BAUD;
4A9 65 01 if (!'zero) return;
4AB 5B B6 14 if (bit(6,PAIO0)) goto 3f;
4AE 53 B6 FE 1: if ('bit(6,PAI0)) goto 1b;
481 70 OF 03 1: b0 =+ 3;
484 80 S5F 02 a5 = 2;
487 80 55 a5 = a5;

A-22

489 28 58 2: --a5;

4BB 40 FO FC if (!neg) goto 2b;
4BE SB B6 F1i if (bit(6,PAIDQ)) goto 1b;
4C1 C1 FO FE 1B 3: BAUD = bo0;
4C5 66 return;
}
/* rdtty - read character from tty
*
* entry - none.
*
* uses - a 0,1,5,6,14
* b 5
*
* calls - delay, bitime.
3
* exit - al4 = character read
*
*/
rdtty()
i
4C6 20 10 at = 0;
4CB 20 EO rdto: atd4 = 0;
4CA 86 6B 02 aé = PCIO;
4CD 82 BF 03 92 PCNTRL = 0222;
4D1 82 B6 02 PCIO = a6;
4D4 85 0B 1: a0 = PAIO;
406 98 07 a0 =& a7;
apg8 g8 01t at =" at;
4DA 48 F1 F8 if (zero) goto 1b;
4DD C5 5F FE 1B bS = BAUD;
4E1 03 08 clear(carry);
4E3 6A 50 swap(b5);
4ES 3C 5F a5 =>>% 1;
4E7 6A S50 swap(bh);
4E9 3C S5F as =>>% 1;
4EB 79 SO 01 delay();
4EE B8O 6F 09 a6 = 9;
4F1 28 68 1: --a6;
4F3 48 F1 14 if (zero) goto 2fF;
4F6 79 59 01 bitime();
4F9 38 EF atd4 =>> 1;
4FB 85 OB a0 = FAIO;
4FD 98 07 a0 =& a7;
4FF 88 01 ao =" at;
501 40 F1 EE if (!zero) goto 1b;
504 90 EF 80 ald =) 0200;
507 58 E8 goto 1b;
509 79 59 01 2: bitime();
50C 66 return;

rdmod - read character from modem

NS

uses - a 1.

*®
*
* éentry - none.
*
*
- b none.

A-23

500 80 17
SOF 58 B7
St1 80 EF
S14 86 68
517 82 BF
S51B 82 B6
S1E 21 BO
520 79 S9
523 80 6F
526 80 OF
$29 SA EO
52C 20 00
S2E 34 EF
530 81 BO
532 79 59
535 28 68
537 40 F1
S3A 81 BF
530 79 59
540 66

20
02
03 82
02
01
08

20
03

01
ED

01

* % B & B

*/

calls - rdtty.

exit - through rdtty. at4 = character read.

rdmod()

{

N~

LR I B R SR K NE B B B)

*/

al
got

= a7;
o rdto;

prtty - print character to tty.

entry - ald4 = character to be printed

uses - a 0,6,14

b none,

calls - bitime.

exit - character written out to terminal.

prsp()

ald

prtty: a6

N e

L K B R BR R K 2R BE B

PCN
PCl1
PAl
bit
a6
a0

= PCIO;

TRL = 0202;

0 = ab6;
0= 0;
ime():
= 8

= 040;

if (bit(0,a14)) goto 2f;

a0
a4
PAl
bit
--a
if

= 0;
=>>> 1
0 = a0;
ime();
6;
(!lzero)

goto 1b;

PAIO = 040;

bit
ret

ime();
urn;

prom - write a prom

entry - b9 = starting address

uses - a 1,7,12

b none.

calls - verify, zapall.

exit -— 1024 bytes starting at b9 are written

A-24

out,

then the prom is verified to

* see that everything was written out
* correctly. If everything is OK the
* address displayed will be 400.
*
*/
prom()}
{
541 82 BF 03 90 PCNTRL = SETMOD ! AINP;
545 82 BF 07 80 QCNTRL = SETMOD;
543 80 7F 6E a7 = 110;
54C 79 88 ¢ it zapaii(j:
54F 28 78 --a7;
551 40 F1t1 FS if {{zeroj goto ib;
554 79 78 05 verify();
557 22 BO 02 retd: PCIO = 0;
55A 0D OF BB 18 sp = USERRG - 2 - 1 - 2;
SSE C2 FF 03 35 00 *(dsp + 3) = &init;
563 22 FO 02 *(sp + 2) = 0;
566 €2 FF 00 00 18 *(dsp + 0) = RAMORG;
568 47 push(rp);
56C 4D OF EO 1B rp = SYSREG;
570 C5 DF DA 1B b13 = USERB13;
574 S5 EF DC 1B b14 = USERB14;
578 59 60 00 goto man2;
}
/* verify - verify information in prom
* entry - a12(4) = zero/data verify
* b9 = starting address for data verify
*
* uses - a 0,1,3,4,9,13,14
* b 0,9,13
*
* calls -~ none.
=
* exit - if no errors then return. If erronr
* then return one level up and set
* b13 to prom address in error,
* b14(15-8) to prom data, and
* b14(7-0) to expected data.
*®
*/
verify()
578 60 DO b13 = 0;
570 20 30 a3 = 0;
57F 80 4F 20 a4 = 040;
582 82 BF 03 90 PCNTRL = 0220;
586 82 BF 07 98B QCNTRL = 0233;
SBA 82 B4 02 PClO = a4;
58D CO0 5F FF 3F bS = Ox3fff;
591 79 5D 01 delay();
594 82 83 01 1: PBIO = a3;
597 82 84 02 PCIO = a4;
59A 86 EB 04 atd4 = PpDIO:
58D 87 19 al = *b9++;

A-25

S9F
SA1
5A4
S5A6
5A8
S5AA
SAC
SAE
SB1
SB4
SB7
SBA

5886
SBD
SBF
5C1
5C3
5C6
5C9
5CC
SCF
5D2
506
509
5DC
SDF
SE1
S5E4
SE7
SEA
SED

. at - aitq;
07 if (zero) goto 2f;
swap(b14);
atd4 = ait;
goto retd;
2: ++b13;
++a3;
€4 if (tzero) goto 1b;
02 a4 =+ 02;
28 a4 - 050;
D8 if (1t) goto 1b;
return;
}
/* zapall - write all locations in prom
=
* entry - b9 = starting address to write
»*
* uses - a 0,3,4,5,13
* b 5,13
x
* calls - none.
*
* exit - all locations of the prom hit with a
* 1 msec. write pulse.
»
»/
zapalti()
{
b13 = b9;
aj = 0;
ad = 0;
1: a0 = *bi13++;
01 PBIO = a3;
02 PCIO = a4d;
04 PDID = a0l;
40 ad =" 0100;
02 PCIO = a4d;
tCc 00 bS5 = 28;
(3] delay();
40 aq =" 0100;
02 PClO = a4;
++a3;
DE if (!'zero) goto 1b;
02 ag =+ 02;
os aq - 010;
D5 if (1t) goto 1b;
return;
)
/* loadt - load file from tape
*
* entry - aB = file id
. b9 = fwa of load
]
*+ uses - a 1,3,7,8,9,12,13,14
L] b 13
-

A-26

SEE
5F2
5f6
5FB
5FB
5FD
600
603
606
609
60C
60F
611
613
616
619
61C
61F
622

~ne
VLI

627
62A
620
630
633
636
639
638
63F
642
645
647
64A
64D
64F
652
654
657
659
65C
65F
662
665
667
669
66C
66E
671

03 90

07
iF

06
o8
06
06

7F

80

calls - rdbit, rdchar, rdbyte, rdnib

*

*

* exit - file with matching
*

*"

foadt{)

sync:

loaded into ram.

PCNTRL = SETMOD | AINP;
QCNTRL = SETMOD;

b13 = b9;

ai2 =& 037;

a9 = a8;

if (lhomog) goto 1f;
at2 =, 040;

if (zero) goto 1f;
at2 =! 0100;

PDIO = at2;

rabit();

at =>> 13

at = ao;

al = SYNC;

if (tzeroc) goto sync:
a3 = 10;

rdchar();

al - SYNC;

if {(1zero) goto sync;
-—a3;

if (!lzero) goto 1b;
rdchar();

al = STARTCH;

if (zero) goto 1f;

al - SYNC;

if (!2zero) goto sync:
goto 1b;

b8 = CHECKSUM;
rdbyte();

if (bit(5,a12)) goto 1f;
a7 - a9;

if (!zero) goto sync:
rdbyte();

swap(b7):

rdbyte();

swap(b7);

if (bit{6,a12)) goto 1f;
b13 = b7;

rdchar();

al -~ ENDCH;

if (zero) goto 1f;
rdnib();

*bi13++ = a7;

goto 1b;

rdchar():

b14 = b8;

atd =4 0177;

return;

A-27

id from tape

/* initialize check sum character */

/* accept anything */

/* wrong id */

/* ignore addr on tape */

672
675
678
67A
67C
67E
680
682
685
688
68A

688
68E
691
693
695
697
69A
690
69F
6A1
6A4
6A6
6A9
6AD

06
OF

06
OF

08
06

FS
04
7F

01
01 00

N

rdbyte - read B-bit byte from tape

*
*
* entry - none.
*®
* UuUses - a 1,7
* b none.
*
* calls - rdchar.
*
*» exit - a7 = B-bit byte assembled from 2 pseudo
* ascii characters on the tape.
*
*/
rdbyte()
{
rdchar():
rdnib: at =& 017;
a7 = at;
a7 =<< 1;
a7 =<< {3
a7 =<< t;
a7 =<< 1{;
rdchar();
a1t =8 017;
a7 =, at;
return;
}
/* rdchar = read pseudo ascii character from tape
*
*« entry - none.
*
*= uses - a 1,2,8
* b none.
*
calls - rdbit.
*
* exit - al = Character read from tape.
*
*/
rdchar()
a2 = 8;
1: rdbit();
at =>> 1;
al =, a0;
--a2;
if (tzero) goto 1b;
PDIO = at;
ag =" at;
a0 = at;
at =& 0177;
a0 = bitsum(al);
a0 =" 1;
b0 =& 1;

swap(b0);

A-28

6AF
6B1

682
684
687
689
sRac
6BF
6C2
6C5

6C6
6CA
6CE
600
6D4
606
609
608
6DD
6E0

ES
66

80

FE
FC

a0

-

F1

03
07

64

07

FS

80
80

16

b8 =+ b0;

return;
}
/* rdbit - read a bit from the tape
*
* entry — none.
*
* uses - a 0
* b none.
*
* calils - none.
* exit - a0(7) = bit read.
*
* note - the loop at *'2' is very time critical
* and dependant upon the way outbit puts
* out bits.
»
*/
rdbit{)
{
a0 = 0; ,
1: if ('bit(7,PAID0)) goto 1b;
2: ++a0;
if (bit(7,PAI0)) goto 2b;
at - NOISsEt;
if (11teq) goto rdbit;
a0 =& 0200;
return;
}
/ dumpt - dump file to tape

entry — a8

= file id
b9 = fwa to dump
b10 = 1wa+l to dump

b 7,13

calls - outch, outbyte

exit - fwa to lwa stored on tape

*
*

*

*

E

*

* uses - a 1,4,7,9,10,13
*

*

*

*

*

*

PCNTRL SETMOD;
QCNTRL = SETMOD;
13 = b3;

bi = SYNC<<8 | 100;
swap(bt);

outch();

swap(bt);

--at;

if (lzero) goto 1b;
a9 = 0;

A-29

6E2 80 tF 2A at = STARTCH;

6E5 79 31 07 outch();
6E8 80 78 a7 = a8;
6EA 79 1A 07 outbyte();
6ED CO 7D b7 = bi3;
6EF 79 1A 07 outbyte();
6F2 6A 70 swap(b7);
6F4 79 1A 07 outbyte();
6F7 01 02 1: set(zero);
6F9 FO AD b10 - b13;
6FB 48 F1 08 if (zero) goto 1f;
6FE 87 70 a7 = *b13++;
700 79 1A 07 outbyte();
703 58 F2 goto ib;
705 80 tF 2F 1: al = ENDCH;
708 79 31 07 outch();
708 80 19 at = a9;
700 79 33 07 outchar();
710 80 1F 04 at = €0T;
713 79 31 07 outch();
716 79 31 07 outch();
719 66 return;
}
/* outbyte - output one 8-bit byte to tape
*
* entry - a7 = byte to be written
*
* uses - none.
*
* cCalls - out4.
»
* exit - a7 written out as two pseudo ascii
. characters and contents of a7 unchanged.
L]
*/
outbyte()
{
71A 79 21 07 outd();
710 79 2t 07 outd();
720 66 return;
}
/* outd4 - output 4-bit nibble as pseudo ascii
* character.
* outch - output ascii character
*
*+ entry - a7 = 4-bit nibble to be written out (out4d4)
- al =z ascit character to output (outch)
*
* uses - a 0,1,2,4,7,9
» b 0
*
* calls - outbit.
*
* exit - one ascii character written to tape.
*

-
~

A-30

721
723
725
727
729
728
72E
731
733
736
738
738
73E
740
742
745
749
748
74E
752
755
758
758
75D
760
782

765

766
768
768
760
76F
771
774
776
779

18

oc

outd()

outch: a9
outchar:PDI
pitsum{ai);
& t;

o
o
W 0w n unn nn Q“ nonow

N
»
N
1]
(9}
~<
O
(e
m
o

cutbit();

a2 = CYCLE1;
swap(b0);

outbit():

--aq;

if {izero) goto ib;
return;

outbit - output stream of bits to tape

N S

L RN EE R T

entry - a0
a2

length of each 1 bit

uses - a 0,3,5
b none.

calls - none.

length is written to the tape.

*

*/
outbit()

a3 = 0;
1: a3 =" 020;
PAID = a3;
a5 = a2;
2: --a$%;
if {!'neg) goto 2b;
--ao;
if (!zero) goto 1b;
return;

A-31

twice the number of 1 bits desired

exit - a square wave of proper frequency and

7F4
7F6
7F8
7FB

TFC

7FE

#%s SYMBOL TABLE ##»

1BFEa
1F03a
1F07a
1F00a
1FOt1a
1F02a
1F04a
77AD
78AD
7A6D
o7
27t
29t
35t
60t
88t
apt
ACT
DFT
1077
1127
13At
156t

1

co

L.
L.

58
58
FO FC

00

05

BAUD
PCNTRL
QCNTRL

PAIO

PBIC

PCIO

PDIO

tfmt

tnum
tfnc
main
reset
inito0
init
man2
..0001
..0003
rdkey
disp
dspd
dsp2
dp21
dp22

/* powon = delay for power On

®

* entry = none.

*

* uses - a b

* b5

*®

* calls - reset.

®

« exit - Delay done to enable any transient

* interrupts caused by the noisy

* transformer to disappear. This

» routine had to be encoded into

* the data section since it is a patch
* that must be at the very end of the
* exeCutive.

./

char powon|]
{ Oxc0, Ox5b }
{ ox568, 0x58 }
{ ox40, Oxf0, Oxfc }
{ 0x59 };

int powr &reset;

char unused|]
{ Oxcd, 0x05};

A-32

/*
/*
/™
/*

bS = b1t; */
1: =-bS5; */

if (Ineg) goto 1b;

goto reset;

*/

./

1597
1507
1657
179t
18At
188t
197t
19Ft
1A7T
183t
iB5t
1C3T
iDiT
1DET
1E2T
1FOT
1FET
204¢
20ET
215T
220t
22FT
238T
7C00D
703D
70ED
2447
28371
280T
29971
2A9T
2ADT
2847
2017
3087
3227
37171
3867
39971
3907
3B9t
3EBT
402t
4057
41FT
4337
43FT
47671
47Ct
4827
4917
4A1T
4CeT
4C8t
5007
5117

bitime
delay
numb
L...0005
L...0006
chreg
L...0007
L...0008
areg
regt
reg2
breg
star
equal
plus
minus
rptr
rpt1
exec
sst
ssto
move
shift4
header
ttty
ttyf
ity
raddr
addr
rpoint
run
prnum
prni
tnumb
unix
1oad
getbyt
digit
half
retrn
ret0
linefd
Inf1
prioc
store
regad
ktype
I fcr
prcr
crdel
prstring
baud
rdtty
rdto
rdmod
prsp

A-33

5147 - prtty
5417 - prom
557t -~ retd
5787 - verify
5B8T - zapatl
SEET -~ loadt
60Ct - sync
6727 - rdbyte
6757 - rdnib
6887 - rdchar
6827 - rdbit
6C6T - dumpt
71AT - outbyte
7217 = outd
7317 = outch
733T - outchar
7667 - outbit
7F4D -~ powon
7FCD - powr
7FED - unused

A-34

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	1-00
	1-01
	1-02
	1-03
	1-05
	1-07
	1-09
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-07
	2-09
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34

