
Distributed Application
Handbook

By Paul Dickson

Business and Office Systems Engineering

Distributed Application and Architecture Group

First edition

Draft of December 6. 1985

Distributed Application Handbook

Digital Equiprr:~nt Corporation makes no representation that the interconnection of its
products in the manner described herein will not infringe on existing or future patent
rights. nor do the descriptions contained herein imply the granting of license to' make.
use. or sell equipment constructed in accordance with this description.

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for errors in this handbook.

DECnet. VAX. VMS. VAX VTX. and VT are trademarks of Digital Equipment
Corporation.

Copyright © 1985 Digital Equipment Corporation. All rights reserved.

Table of Contents

Preface

Chapter 1 - System Engineering l

Chapter 2 - Structure of Distributed Applications 9

Chapter 3 - What the user sees . 15

Chapter 4 - Implementation techniques . 23

Chapter 5 - Examples . 29

Chapter 6 - A Framework for Many Applications 35

Appendix A - DASL . 37

Glossary . 41

Bibliography . 43

Table of Contents iii

Preface

Potential computer users have problems. They want a computer to help them with
these problems. They don't want a collection of unrelated components. and the last
thing they need is anothe'r set of problems.

The "micro-mainframe connection" gets a lot of attention these days, but there is no
concensus as to what it really is. Is it just copying files between computers? That is
about all that most companies can deliver today. Yet even this is presented in such a
complicated way that the user has to understand computer concepts in order to use it.

There are many computer products in the market that. while attempting to solve one
set of problems. create another. Personal computers have saddled the end user with
unexpected system support tasks, while making integration with the shared environ­
ment of centralized databases more difficult. Some observers say the the users' discov­
ery of these shortcomings is one of the causes of the current industry slump.

The purpose of this paper is to describe a particular way of looking at computer appli­
cations. and a particular engineering approach. that leads toward efficient and versatile
system products. The tool described here is the distributed application. a particular
kind of computer program that splits the processing load into two or more parts.

Distributed processing is any processing in which programs are executed cooperatively
in separate computers. and communicate with one another. There are five senses in
which an application can be said to be distributed:

Functionally
Separate functions are in separate components.

Physically
The components are in separate computers.

Logically
The specifications of the client and server are under separate control. al­
though the specification of the client necessarily references that of the
server.

Operationally
Each component is under separate operational control. with some degree
of local discretion. Operational control is the control of program execution
and physical operation of the equipment.

Administratively

Preface v

Distributed Application Handbook

The installation and management of the clients is separated from the !of­
ten complex) administrative arrangements for the servers. This has rami­
fications for pricing. installation procedures. and licencing.

The focus of this paper is on the functional. log1cal. and physical aspects of distribu­
tion.

Cost per desk

If we divide a system's total cost by the number of desks served. we get the cost per
desk for that system. This is a useful metric for measuring the economic viability of
various solutions.

The costs associated with shared resources (large disks. printers. etc.) can be spread
over all the desks, while costs associated with individual desks !CRT display. keyboard.
communications hardware, personal computer) apply directly to the cost per desk. It is
important to include not only the initial capital and training costs but also the continu­
ing costs of operation. in both time and money.

For example. the choice of application design can affect communication requirements.
thereby affecting the kind of wiring to use between the shared icentralized) and un­
shared (dispersed) components. A design calling for high-bandwidth communication will
typically require more expensive communication facilities. and more compute power in
the shared component, than a design calling for lower-speed links.

The goal of a distributed design is to assign functions to the components of a system
in such a way as to minimize the cost per desk while simultaneously nwximizing the
visible performance of the system.

That is the goal of distributed design. but there can be additional benefits. Among
these are increased modularity of the resulting systems. and ease of extension to han­
dle new problems. \That is a good test for an elegant solution: it solves other problems
in addition to the one you thought you were solYing.)

Structure of this paper

This paper is organized in several chapters. The early chapters are conceptual while
the later ones are technical. Readers with limited interest in implementation details
can stop after 3 chapters. Development managers should also take a look at chapter
SlX.

In the System Engineering chapter we look at how to analyze requirements and entire
systems.

In the Structure of Distributed Applications chapter I present a way of looking at the
functions to be performed in a distributed application. and how to choose which func­
tions should be performed where. The model is similar to the "Open System
Interconnect" model for communications systems. but talks about information repre­
sentation. manipulation. and presentation functions. rather than routing. re-try. and so
on.

vi Preface

Distributed Application Handbook

In What the user sees we look at some human factors concepts that lead the way to a
style of presentation that is both technically efficirnt in a distributed environment and
operationally efficient for the person using it.

The Implementation Techniques chapter presents a "toolbag" of programming tech­
niques you can use in designing high performance distributed applications.

Chapter five contains some Examples of real distributed applications. and the final
chapter is a discussion of how many applications, with a single user interface. can be
built from the same components.

At the back is a glossary of terms and a bibliography.

What makes you the expert?

Many of the ideas presented here are distilled from my experiences in designing and
implementing early versions of three distributed applications: the Message Router.
VAX VTX. and the ALL-IN-1 Workstation Server, as well as a few experimental pro­
jects that never became products. At the time. I was not aware of any conceptual
foundations for what I was doing. I just did what felt right.

So writing this handbook has been a process of "reverse engineering" for me. trying to
remember what I was thinking of back then and attempting to discover the underlying
concepts. It turns out that there were common themes running through those designs -
I just had not put them into words. At times it has been a considerable challenge to
come up with clear explanations for what is. in some respects. a new way of looking at
computer applications design.

Scattered though the paper there are some questions about how things might be done
differently from the way they are now. These half-finished suggestions are intended to
get you thinking about how to apply the concepts to your own projects. I hope that
you will find the ideas presented here to be useful.

Preface vii

Chapter 1
System Engineering

Computers are not solutions to business problems. At most computers can be tools to
make people more productive. and then only when appropriate application software is
available. The task of computer engineering is to make effective tools using computer
technology.

A system is a group of interrelated elements forming a collective entity. If we take a
bunch of existing components and stick them together and call the result a "system".
we are just fooling ourselves. If the components are not working consistently together
toward one end. it is not really a system.

Making low-level system components like printers and disks work on a network lwith
"printer servers" and so on) does not make the applications themselves distributed. As
I will show in the next chapter, distribution has to take place at high levels in the
program in order for all the performance benefits to be seen.

The system designer must consider each individual component's effect on the over-all
system as seen by the user in terms of response-time. cost. and management effort.
From the manufacturer's point of view. the maintainability. expandability. ease of sell­
ing. and profit's must be considered.

In this chapter we will be looking at how product requirements are best determined.
My view is that the only meaningful source of requirements is an analysis of the tasks
the user needs to perform. Therefore our analysis will be from front to back. starting
with the user.

As we look at the requirements we must keep an open mind about what they mean
and how they might be met. So first we will be looking at some common pitfalls in the
analytical process.

How to look
When we look at how systems are put together. or when we analyze problems to see
how they might be solved. we should be careful not to go in with our minds locked on
one way of looking at things. Specifically. we should try not to confuse what we have
chosen to call things with what those things really are. "Naming" is only one of the
ways in which a mind can be closed. but it is a very easy trap to fall into. As Alan
Watts writes in The VVay of Zen:

System Engineering 1

Distributed Application Handbook

11 To serve their purpose. names and terms must of necessity be
fixed and definite like all other units of measurement. But their
use is - up to a point - so satisfactory that man is always in danger
of confusing his measures with the world so measured. of identify­
ing money with wealth. fixed convention with fluid reality. But to
the degree that he identifies himselt and his life with these rigid
and hollmv frames of definition. he condemns himself to the per­
petual frustration of one trying to catch water in a sieve."

Watts is talking about confusion between the name of a thing and the thing itself. A
name restricts your knowledge about something to a particular viewpoint. and if you
pay too much attention to the name. and not to the named thing. you will lose contact
with reality. In particular for this discussion. if two things are similar. but have differ­
ent names. you might be tempted to handle the two things differently. Why implement
the same function twice?

Another aspect of naming that can cause a lot of trouble in software design is the
effect names have on how we build hierarchies. As Robert Pirsig puts it in Zen and the
Art of Motorcycle lv1 aintenance:

"There is a knife moving here. A very deadly one: an intellectual
scalpel so swift and so sharp you sometimes don't see it moving.
You get the illusion that all those parts are just there and are be­
ing named as they exist. But they can be named quite differently
and organized quite differently depending on how the knife
moves."

Focusing on the wrong names can lead you to a wrong analysis of organization. Names
can be given according to where something is in some organizational view, but if you
pay too much attention to the names and forget the organization from which they
spring. you might not think to look for other organizations.

The trick in applying this principle to the analysis of requirements is to take a step
back from the problem to see the general context in which it exists. You may be able
to pick a better viewpoint from which to approach the solution than where you started.

To clarify this point. consider the following examples.

Constellations

A stellar constellation is a group of stars. In ancient times, names were given to these
groups !Gemini. Ursa Major. and so on) because the patterns reminded people of some­
thing. But these patterns are only visible from our location in the galaxy. Viewed from
another position. the stars will form entirely different patterns.

The stars that make up a constellation are at various distances from the Earth. but
the constellation itself is right here. inside our heads.

2 System Engineering

Distributed Application Handbook

Animals in a zoo

Imagine you are setting up a small zoo. and you have just three kinds of animal: lions.
snakes. and rabbits. There are five ways you could organize your zoo:

Scheme

No groups
By name
By class

By size

By diet

Description

One big buildings
Three separate buildings
Lions and rabbits in the mammal building. snakes in the reptile
building
Lions in the "large animal" building. snakes and rabbits in the
"small animal" building
Snakes and lions in the 1' carnivore" building. rabbits in the "herbi­
vore" building

Each scheme has advantages and disadvantages. depending on cost. and what educa­
tional message you. as zoo director. are trying to get across to the visitors.

Books in a library

As another example. consider a library. Most libraries put the books on the shelves
according to some analysis of what the book is about: non-fiction by subject category.
fiction by author's name. This facilitates browsing in the stacks.

But the medical library at the Ohio State University School of Medicine stores the
books according to their physical size. This library does not allow browsing in the
stacks. In fact. the only "person" in the stacks is a robot that retrieves whole boxes of
books at a time. Using an index. a computer tells the robot which box to fetch.

By eliminating the need for efficient browsing in the stacks. the designers of this li­
brary were free to choose a more efficient shelving arrangement: the boxes are filled
most efficiently if all the books in a box are the same size. Browsing is done in various
abstracts and index collections, which is a more productive way of finding something in
such a vast technical collection.

Examples of wrong hierarchies
Hierarchies are inventions of the human mind. They represent a particular view of the
thing under study. Taxonomies and hierarchies may help us to understand a complex
structure, but they are not necessarily inherent in that structure. It all depends on how
you look at it.

In this section we will look at a few examples of hierarchies in computer products. and
how they may not have been appropriate.

Office functions on a menu

In an attempt to shield end users from traditional computer command languages. we
have often resorted to menus. When there are more alternatives than will legibly fit on
a screen. we have several menus. linked into a tree structure.

System Engineering 3

Distributed Application Handbook

How often have you heard computer menu interfaces decried as slow or unwieldly?
This happens because the designers have put the functions into a hierarchy that has
nothing to do with the way in which the customer is going to use them. These hie­
rarchies also do not necessarily represent what the user will have in mind. If you want
to visit all the carnivores in the zoo. but the animals are grouped by size. you are
going to do a lot of walking between buildings.

Perhaps the end-user should be allowed to move things around in the menus. to suit
his own idea of how things should be organized. Job requirements change over time.
and a fixed menu scheme does not let the user adapt the environment to meet the
requirements or his own changing capabilities or assignments. After alL we usually
don't bolt the furniture to the floor.

Wrong menu organizations also have a human factors impact. If the goal menu is more
than one choice away from the current menu. we are asking the user to remember and
visualize the hierarchy we used.

Office projects on a menu

Another consideration the kind of things that are on the menus. Is the choice from a
list of computer tasks to perform. or a list of projects to work on? That is, does the
menu reflect the organizational chart of the end-user or of the development team?

Working from Front to Back
The system starts on the desk, right in front of the user's eyeballs. That is where we
start building. But what the user wants to accomplish starts behind his eyeballs. That
is where we should start analyzing potential computer applications.

The only meaningful source of functional requirements is an analysis of the tasks the
user needs to perform. but we can not rely just on what people tell us they want, or
what the "market" says it wants. We should solve the customer's problem. not just
provide the customer's solution.

It is somewhat naive to think that users know what they want and that all we have to
do is ask them and they will tell us. If you sit down with a potential user and describe
just about any solution based on your knowledge and research into how he does busi­
ness. the person will say "Yeah. that sounds good. Build me one."

Conversations between engineers and customers and salesmen often suffer from the
different point of view each has of the problem. A "romanticist" looks at the function
of a thing. while the "classicist" looks at the form of a thing. End users and salesmen
typically take a romantic view. They want a computer to accomplish a particular task
and they are not particularly interested in how it works. The engineer typically takes a
classic view. and is concerned with the form the solution takes. There can be a great
deal of confusion if somebody confuses a desired function with the form in which that
function is delivered.

To the user. the object of attention is usually the solution to some business problem.
To the engineer. the object of attention is typically the tool used to solve the problem.
There is a conflict here that would arise even if both the user and the tool builder were

4 System Engineering

Distributed Application Handbook

both either romanticist or classicist: there is a conflict in purpose. One thing we should
work on is trying to bring the tool builders closer to the problems their tools are being
used for. And we should bring the users closer to the tools they use.

We must discover the real problems and tasks. then step back to get an over-all per­
spective. This discovery process includes customer interviews. but also learning directly
about their offices. business operations. and industries.

So called technology dric,en products are not responsive to customers· needs. but to

engineers' egos. Just because something can be done does not mean it should be done.
It is all too easy to be so caught up in making better and better electric drills that one
loses sight of the fact that what the customer really wanted was holes.

Perhaps we should not concentrate so much on "functionality" as on usefulness. You
can probably buy an electric apple peeler, and it does indeed perform that function.
But how useful is it. considering it takes longer to set up before. and clean after. than
using a simple paring knife. is more prone to failure. and costs more?

A paring knife is much. much. simpler than an electric apple peeler. but it embodies
much more useful functionality. A collection of simple tools. usable in various combina­
tions for each task. may be easier to understand than large and complex tools special­
ized for single tasks.

How are things the same?
A good technique for finding other views of a problem is too pick some other problem
and see what the two problems have in common. If you can find a point of view from
which the problems are similar, perhaps you have found a method for solving both
problems at once.

This is why I brought up '!stepping back from the problem" earlier. You have to step
away from the immediate goals and look at other goals before you can find a pattern.
There is no pattern in a singularity.

A mental trick for "stepping back" is to temporarily stop naming and classifying all
that you experience and simply feel life as it is. This is a method of getting away from
any preconceptions you may have about how things are organized.

A Data-flow model
Sometimes it is useful to analyze a computer problem by looking at the way informa­
tion flows through the system rather than how and where various procedures are per­
formed.

Don't look at the problem from the point of view of processes that read data in and
write data out. Instead think of the processes as simply waypoints through which the
data flows. like filters. Filters are passive: they take what is given to them, process it.
and pass it out again. transformed in some way.

The procedure can only process information at a certain speed. The client (or clients)
can generate information into this procedure faster than it can be processed. A buffer
is needed to smooth out the flow. To store the information until the function can pro­
cess it. This buffer is that functions input queue.

System Engineering 5

Distributed Application Handbook

If there are a chain of several functions. each with an input queue. it is unreasonable
for the first function to wait for an answer back from the second function. before it
starts processing another input request. So after the first function processes the re­
quest and passes information on lxick. it can immediately start processing the next
input.

When the response comes back forward again. it has to match the response with the
context of the suspended first request and performs the next step in the procedure.

Some input going backward requires a response before that thread can continue in the
client. Every transaction is not of this type. Short ones might be. but if there is a
large amount of information to pass, it is better to send rather iong streams of it.
several sub-transactions. without waiting for an acknowledgement on each one.

The client can work the same way as the function boxes: that is. proceed as far as
possible. The acknowledgements will be coming back. but they will come some time
later. Be prepared to have the operation suspended until the response comes back.
This does not mean it should stop doing everything else.

Bandwidth and performance

Communication links are also bottlenecks between functions. Therefore a communica­
tion link needs to have an input queue of messages waiting to go out. So as a function
unit prepares a message to send to another unit, which might be on another node
somewhere, information may go into an input queue for a function that does nothing
more than transport the information to the other end.

A procedural function has a certain thoughput. which can often be expressed in bits
per second. This involves the complexity of the procedure. A communication link also
has an effective bandwidth.

If a function contains calls on another function which can take an amount of time. it
should be broken do'sn into more steps. For example. if the function has to read from
a disk file, the disk latency is very long compared to what the CPU can do. So the
action of reading a record from the disk should be a seperate action. with an input
queue. Procedural functions put requests in this queue. the disk services them as fast
as possible. information is retured later to the next next step of the procedural func­
tion, which matches it up with the suspended context.

When effective. this decoupling of functions by queues allows each resource to saturate
at its own rate. This makes it much easier to predict what the service time will be
with a mathematical model.

Multi-server queues

Sometimes there is a performance advantage in having more than one instance of a
function available to service a single queue. An example of this is the HSC-50 disk
subsystem controller. which is capable of reducing the effective seek time of the disks
if more than one request is presented to it simultaneously.

6 System Engineering

Distributed Application Handbook

Multiprogramming not required

The procedures do not necessarily operate in parallel or consecutivelv. It you take the
procedure-centered view. you worry about parallelism and so on. If you take the data­
flow point of view. with the distinct function units separared bv queues. then v:hetber
the proceures operate in parallel is not important. Any complex procedures are broken
down into steps. and each step is indivisible.

There is no point in interrupting one step in order to execute another step. so there is

no need to have a time-slice scheduler involved.

Designed in this pipe-lined fashion, the functional units can be on other processors or
the same processor. When units do execute on the same processor. they can be within
the same host system process. with no need for any kind of ;/multiprogramming"
within the program. No operating system support for "multiprogramming within a pro­
cess /1 is needed.

This same technique will work on Ultrix. VMS. or MSDOS.

Recapitulation
ln this chapter we looked at the insideous trap of naming, and how it can mislead us
into building inappropriate hierarchies.

We discussed how requirements have to flow from front to back. starting with an ana­
lysis of the user's tasks.

Finally we examined a data-flow method of analysis.

In the next chapter we will look at an analytical model of the functions performed in
computer programs in general. and interactive programs in particular.

System Engineering 7

Chapter 2
The Structure of Distributed Applications

The most important decision in the design of a succesful distributed application is the
choice of which functions go on which end of each communications link. As an aid to
the understanding of program structure, so we will know the ramifications of introduc­
ing a communications link in one place or another, this chapter describes an analytical
tool called the Layered Abstraction Model.

The Layered Abstraction Model is similar to the "Open System Interconnect" model
for communications systems. but here our focus will be on information representation.
manipulation. and presentation functions. rather than routing. re-try. and so on.

Functional layers in interactive programs
While acknowledgeing that all such categorizations are artificial isee "How to Look"). I
find that analysis of applications according to two viewpoints to be useful for the pur­
poses here. The first view is that programs contains components that deal with differ­
ent levels of abstraction in the information being processed.

The second view is that programs contain both visib·Ze and invisib'le components.

The Concrete and the Abstract

Now let's take a look at the different kinds of things going on in an application pro­
gram. I find that five layers prove useful in this analysis:

Specific Abstract 5 Coordination
4 Manipulation
3 Representation
2 Style

General Concrete 1 Physical

The more concrete layers deal with the mundane issues of particular I/O devices and
data structures. The more abstract layers deal with particular views of problems to be
solved.

Any particular implementation can leave the boundaries between layers indistinct. but
if you are building a sharable function module. the boundary should be well-defined.
Such compartmentalizing is important when it comes time to split an application be­
tween layers.

The Structure of Distributed Applications 9

Distributed Application Handbook

Layer 1 - The Physical layer - This is a very general-purpose layer. and rt iS also the
most constrained by the hardware design. This layer is very concrete. like the symbols
in the preceding chapter. lt is not reaily "physical". but it is as close to physical as a
programmer typically gets.

This is the "QIO" level of interaction with disk drives, where the only structure is a
series of blocks. !We will gioss over the details of disk controlle;- interfaces and
MSCP.)

In a terminal. this layer includes the display list. a section of memory from which the
video display is regenerated by hardware. This is the most visible part of a computer
program. So-called bit map terminals have very simple display-lists. while some text
and vector graphics terminals have very rich display-list formats.

Layer 2 - The Style Layer - This software superimposes a general purpose structure
on top of the fixed blocks available from the previous level. For example. the RMS.
DBMS. and RdB database facilities operate at the Style layer. Alhough still general­
purpose. this layer is a bit more focused on particular ways of organizing information
than is the QIO level.

In terminals. this layer includes the display style. which controls the generation of the
display-list from the Representation Data. The display style is a set of rules for the
translation of data from the Representation Layer into its concrete visible form on a
specific display device. Forms drivers and window managers are examples of functions
operating in this layer.

Layer 3 - The Representation Layer - This software superimposes a special purpose
structure on top of the general purpose structure available from the Style Layer. Code
at this level is reposible for maintaining the integrity of the information. A paragraph
of text is an example of data at this level. perhaps coded according to the DDIF
\Digital Document Interchange Format) specification.

For terminals. this is a hardware-independant representation of visible information. An
examples is the data in the fields of a form. The elements in this layer are common to
many applications. as was shown in the earlier visible/invisible table.

Layer 4 - The Manipulation Layer - These processes operate on the data maintained
in the representation layer. Examples of operations at this layer include moving infor­
mation from one document into another. wrapping a paragraph. inserting and removing
text. and so on!.

Layer 5 - The Coordination Layer - This is the most specialized layer of an applica­
tion. the least constrained by hardware. and the most abstract. This is the "glue" that
holds the pieces together. forming a particular instance of an application program out
of more general functions. Code in this layer keeps track of what manipulations are
being performed. how many windows are active at once. which files are open for what
purpose. and so on. It also coordinates the activites of the other layers.

10 The Structure of Distributed Applications

Distributed Application Handbook

The Visible and the Invisible

The second viewpoint I find useful is that functions can be classified as ertl1er visible
or invisible. Let's take a look at five common office computer application families. For
each famiiy we will list the functions that are visible to the end user and those that
are i m ·i si bl P.

Word processing · This is generally text editing. The invisible operations of word pro­
cessing are the manipulation of the on-disk structure of the document. Other back­
ground operations include formating a document to be printed.

Electronic mail - This is really just a special "post'' operation added to a text editor
and a filing system. Text editing was covered above. and the filing system needed by
mail can be exactly the same one used in most word processing packages. The "post"
operation is itself invisible.

Transaction processing · The interactive style of transaction processing !order entry.
for example) is pretty much fixed forms and menus. Of course. the processing of the
transaction varies from one application to the other. and the layout of the forms may
differ.

Information retrieval · This can be just another form of transaction processing. but
might include more unstructured information. such as videotex pages.

Spreadsheets - A spreadsheet's visible aspect is of a multi-windowed text editor with
a whole lot of windows. mapped to different parts of the same document.

When we summarize these applications in a table, one of the first things we notice is
that the same set of relatively well defined visible functions is used by all the applica­
tions. It is even feasible to put them all into a terminal.

Application Visible functions Invisible functions

Edit Scroll, select. wrap. File update. indexing. print
move. insert. replace

Mail edit. forms Filing and posting

TP Forms. menus Special processing.
database access

Info ret Forms. menus. Database access
videotex pages

Spread Scroll. select. forms. Database access.
move. insert. replace computation

A nice thing about invisible operations is that they can be placed in a host computer
with minimal performance penalty. because they are invisible: that is. noninteractive.
This fact suggests that the visible/invisible boundary is a good place to make the cut
in a distributed application.

The Structure of Distributed Applications 11

Distributed Application Handbook

To the extent visible and invisible operations can overlap. response time is reduced. It
the invisible operations can be sufficiently decoupled from the visible operations. the
visible. perceived responsiveness can be greatly improved. This is easily visible in a
spreadsheet when you turn off ''automatic recalculation".

Combining the two views

An interactiue program has two concrete ends: one in the disk drives and one in the
terminal display screen. Using the five layers just described, we see that such a pro­
gram must consist of two sequences of layers one through four - one for the front or
uisiblP part of the program. and one for the back or invisible part of the program.

For a text editor. it might look like this diagram. (Readers with knowledge of the
Open System Interconnect communication model will see a certain similarity between
this diagram and those used in OSI.)

+----------------------------------+
Coordination Buffers

+---------------+--+---------------+
Manipulation

+---------------+ +---------------+
Representation DD I F

+---------------+ +---------------+
Style Display style RMS, etc

+---------------+ +---------------+
Physical display List disk QIOs

+---------------+ +---------------+
visible invisible

Remember we will be looking for a good place to make the physicai cut between the
functions in one {local. private) computer and another !remote. shared) computer.

Let us step back a moment. and look at the over-all form of an interactive program.
I'll draw it sideways this time.

+---+
2 3

display
visible
general-purpose
concrete

4 5

specialized
abstract

4 3 2
di s k

i n v i s i b l e
general-purpose

concrete
+---+

Thus the interactive program completes the cycle from concrete symbols. to abstract
application concepts. and back to concrete symbols again. \Nhat you see on the screen
is just the presentation. Moving information between windows must move more than
the presentation: it must move the real data. A window manager package does not
know where the real data is. so the application itself must implement the movement. If
the application is split between the desktop and a server. this means that the protocol
connecting the two must have a way to express such a movement.

12 The Structure of Distributed Applications

Distributed Application Handbook

Examples of application splits

ln this section we will look at a few ways of splitting programs in distributed environ­
ments. Between each layer we have the opportunity to define a protocol and to split
the layers apart and put them in different computers. For example:

• Corvus Omninet disk servers define a protocol between the invisible Style and
Physical layers.

• VT220 terminals are controlled with a protocol between a host program at the
visible Style layer and the terminal microcode at the Physical layer. This protocol
conveys operations on the terminal's display-list.

• DECnet's Data Access Protocol (DAP) operates between RMS in the invisible
Style layer and a program implementing the invisible Representation layer. The
protocol conveys operations on the disk "storage style''.

• The Videotex Access Protocol of VAX VTX \see chapter on Examples) operates
in the middle of the Coordination layer. between the server and the Terminal
Control Program. Both the server and the TCP implement Manipulation func­
tions. one invisible. the other visible. on different representations of the same
data structure.

Time-sharing with dumb terminals

"Traditional time-sharing" applications split the program between visible-layer one and
visible-layer two. Essentially everything except the maintenance of the display-list is
done on the shared computer. A "dumb terminal" is. after all, a computer. What dif­
ferentiates a VT220 from a Rainbow PClOO is the particular program being run.

Communications bandwidth is not the bottleneck. The real bottleneck is in the server
computer. Put another way. the problem for the server is not in speaking at high
speed, but in thinking of something to say.

The responsiveness of traditional (dumb terminal) time-sharing systems becomes unac­
ceptable when many terminals are in use at the same time. This is because the single
computer is involved in making many low-level ''visible" computations for each user.
and any load beyond a certain point slows down those computations.

And looking at it the other way. keeping the computer busy with visible functions
slows down the background computations for the invisible functions. If the invisible
functions are not divorced from the visible ones. so they can each proceed at their own
speed iinvisible functions at a lower priority!. they effect each other even more.

Putting more intelligence in the terminal would relieve the host of the visible computa­
tion load. allowing it to support more simultaneous users.

It is probably misleading to think of a computer terminal as a "peripheral device" at
all. Peripheral to what? If it is peripheral. then it is not at the center. But in a distrib­
uted design. there is no center.

The Structure of Distributed Applications 13

Distributed Application Handbook

Personal computers

Applications designed for personal computers typically split the program between
invisible-laver three and invisible-layer two. An examination of the numbers wili shm1
that the effective speed of such an arrangement is not much faster than a floppy disk.
even on Ethernet. especially when there are a large number of clients for the same
server.

If the PC has its own files. and the server is not merely simulating a PC disk struc­
ture. there will be two filing systems. Files will almost always be in the wrong place.
because some of the programs to be run will be on the server. and some will be on the
PC. Files that need to be shared must be in one place. In many cases. the end user is
forced to be aware of two computer systems. with different command languages.

Distributed Applications as compromise

The problem is shortage of cpu power at the human interface. and we can best solve
that problem by simply putting cpu power at the human interface. There is no need to
put a complete computer system on the user's desk.

In a distributed application of the kind I am encouraging, the physical split between
desktop and back-end comes right in the middle, in the Coordination Layer.

Predicatable response time - With the interactive component of the applications in
the PC. short-term response time will be essentially independant of host load.

Single file system - There is only one file-system: on the host computer. Information
is kept in a safer place. and is easily shared.

Cheaper desk-top - A fully-configured PC is not required on the desk. This saves
money as well as not requiring "system manager" activities on the part of the user.

High-level vs. Low-level communications
There has been much interest recently in communication techniques that attempt to
tie computers together at a very low level. in the Physical or Style layers of the model.
The so-called remote procedure call is one of these techniques. as are ideas like file
servers and printer servers.

This technique can work in a homogeneous environment. where all of the components
are built out of the same cpu and are running the same operating system. But that is
not the environment we are working in today.

When there is not an exact match in the low-level concepts of two enviroments. any
gateway or translation between those environments is going to lose something. Either
performance. functionality. or both are going to suffer. and the user of the heteroge­
neous system will be worse off than the user of the homogeneous system.

If communication between computers is in terms of abstract concepts. beyond the
range of operating system convention, then there is no need for performance or func­
tional penalties.

14 The Structure of Distributed Applications

Distributed Application Handbook

For example. consider the issue of "file types". The Vl\IS file system maintains some
"type" information about each file. The records in a file may all be the same specified
length. or may be of varying lengths. In either case. a record may have implicit 11 car­
riage control". explicit but encoded carriage control. fixed prefixes of unspecified con­
trol information. or no special format at all.

This is all very well. but what if I vvam to store a FORTRAN source program? \·\'hat i::.
the proper VMS file format? Given that we pick one. how can VMS convey enough
information to. say. an Ultrix system. so that the file is stored in the appropriate for­
mat for FORTRAN source fifrs there? Too easy? Make that word-processing docu­
ments. and have the other system run IBM's MVS operating system.

Design in abstract terms first

If the same abstract concept exists in both environments. communication between
those environments should be in terms of the common concepts. not low-level issues
like record formats. Each environment is then free to process those concepts in the
way that makes sense locally.

If a distributed application is built assuming that both components are on the same
kind of computer. it may be very difficult later to have the components on different
kinds of computer and still deliver the same performance and functionality.

Recapitulation
This chapter presented the layered function model and its application to distributed
interactive programs. Important concepts were the difference between visible and in­
visible functions. and the observation that what makes one program different from an­
other is in the most abstract functional layers.

We also looked at the results of making inappropriate splits between components of a
distributed application. and why the communication between components must be at
abstract levels.

In the next chapter we will look at some human factors issues and how a distributed
implementation can help.

The Structure of Distributed Applications 15

Chapter 3
What the user sees

Now that we have decided that it is possible to have a single piece of code handle the
human interactions for all applications. we should consider whether it is acceptable. or
even desirable, to have a single interface. This is important. because the separation of
function necessary for distributed applications is feasible only if there are not a lot of
different interfaces that have to co-exist in the terminal. PC. or whatever.

There are human factors things to consider in designing a user interface package, but
there are other issues as well. and they all affect each other. If you design something
with the user as the primary contraint, you end up with perhaps a different architec­
tural model than otherwise.

No matter how nice a 11 user interface" package might be. it won't be as good as it
could be if you graft it on to the front of some random program that is not itself well
behaved.

Building a technically efficient program is always a concern. but we also have to con­
sider whether it is operationally efficient. That is. does it let the user work as effi­
ciently as he could. or does it slow him down or make it hard for him to understand
what is going on?

Clearly. different styles of interface shouid be available for different markets or termi­
nal equipment capabilities. but why should an individual user have to put up with dif­
ferent interface styles when dealing with the varying aspects of the job at hand?

We should not approach the task of designing the visible parts of a computer program
looking for a way to "interface" the user to the computer. as though the user were
just another component under our control. A company buys computer equipment to

increase the productivity of its employees in accomplishing their jobs. so it should be
our ultimate goal to increase the user's productivity.

The user must feel in control at all times. This does not mean just that the computer
waits for commands from the user. If we put an untrained airline passenger into the
pilot's seat. that passenger will be in control. but will not feel in control, because he
will not understand what is going on. or what is expected of him.

We don"t want to be too constrained by what the user has seen in other computer
products. We want to be able to lead the user /!toward the light". But if we force a
strange way of working that is driven by the way we choose to implement something.
we create an unnesessary wall of "learning curve" between the user and the product.

What the user sees 17

Distributed Application Handbook

If there is a single user interface. a person will become so familiar with that one style
that he will become fluent in its use. And he wili be in a supportive environent because
his neighbors in the workplace will be using that same interface. even if they are doing
different _iobs.

What does a terminal terminate?
In computers. "terminal" is the boundary of the computer. 1 A human being sits on
the other side.

Terminal: Pertaining to. situated at. or forming the end or boundary of
something. A terminating point or limit.

But the printers have humans on the other side. so it makes sense to look for a more
general term.

Peripheral: 11) Of or on the periphery.
(2) Relatively unimportant.

I think we can agree that meaning l2i is not appropriate. Maybe to a designer of big
central processors a VT220 is unimportant. but certainly not to the person sitting in
front of it. And if it is important to the user. it should be important to us. Lets look at
(1). and what it means to be "on the periphery".

Periphery: (1) The outermost region within a precise boundary.
!2) The region immediately beyond a precise boundary.
13) A zone constituting an imprecise boundary.
(4) Perimeter.

The first 3 look good. especially 13 l when we start talking about workstations. And this
stays with historical computer usage where the world ends where the electrical signals
change to light. sound. or motion. I do not think this is a healthy point of view any
more, because users are not interested in where the electrical signals start or stop.
Those impulses are not important to the job at hand. and the fact that some of the job
is inside the computer and some of it is outside should always be in our minds.
Consider this:

Gateway: Something that serves as an entrance or means of access.

The computer definition of gateway is similar: a point of access between two domains.
the domains having different rules for name management. security management. cod­
ing. etc.

Certainly the rules and procedures on my side of the VT220 are not the same as those
on the the other side. yet we want the richest possible communication between my side
and the computer side.

1 Definitions are from the American Heritage Dictionary of the English Language.
published by Dell.

18 What the user sees

Distributed Application Handbook

When we think in terms of gateways. we are acknowledging some responsibility for
what happens on the other side. and I think that is a point of view we should encour­
age in the design of software products. what with the importance of "human factors"
these days. The semantics of 1' gateway" is rich enough to encompass the most power­
ful workstations as well as the simplest dumb terminal. The word ''interface" suggests
only the surface where two domains meet. (in the mathematical sense of ''surface").
and does not suggest the processing that takes place in the kind of equipment we are
talking about. Leave "interface" to the board-level hardware engineers.

A computer will be perceived as ''difficult to use" if it forces the user to make con­
scious decisions to manipulate information that he is only aware of at a sub-conscious
level. Our goal should not be to make the computer "user friendly", but to make it
inconspicuous. A good computer gateway is transparent to the processes using it.

All is One

One of the central beliefs of many eastern philosophies is that "All is one".
Para phrasing for our purposes here. "All applications are one". This is not the same
thing as is meant by the name of ALL-IN-1. DEC's office product. In ALL-IN-1. all of
the application programs or functions are in, or are available through, a single product
framework.

The point I want to make here is that the distinction we make between different office
applications is a result of the way we have built them. not in anything inherent in the
functions to be performed. We have optimized each view of the user's problems. result­
ing in separate programs. Then we have the task of putting these programs back to­
gether under a single interface style. when we could have done it the other way around
and designed the common interface first.

That all applications are really the same is what we are constantly learning whenever
we talk to customers about what they want. The perceived differences are simply ex­
amples of Pirsig's "knife" being used. The users are romanticists and the engineers
are classicists. and finding the common ground between the two views of the world is
not simple.

There are two issues here: the first is the mental frame that each uses when looking
at the world. The second is the object of the contemplation. Simply making the distinc­
tion between the two views of the system does not get us very far. We have to under­
stand a bit about why the differences exist and if they really are differences.

One of the real differences is in the role that the system plays for any particular per­
son. To the "user". the system is a tool. a means by which some end can be acheived.
an end which has meaning only in a greater context. To the engineer. the system itself
is the object of attention. It is its own justification. It is a thing which needs w be
understood as an end in itself. distinct from its utility or role.

As a tool the system is an extension of the user's self. It is. or is intended to be. an
augmentation of the user. And. as a distinct augmentation. the system has its place in
a universe of many other distinct augmentations. The user views these things as a set
of all things outside of himself that can become. for a moment. part of himself in order

What the user sees 19

Distributed Application Handbook

to accomplish some purpose. With most computer systems. the user is ''one" but the
extensions are ,,many,, - a different extension for each function. Perhaps we can do
better than this.

The search for one-ness

"Becoming one with the environment" seems to be a constant in manv of life's exper­
iences. A child must. over time and by experience. learn to differentiate between that
which is itself and that which is not. Self awareness is largely the result of succe':>s in
that differentiation. There is a certain amount of tension that is experienced in learn­
ing about this division. Then people spend their lives joining groups. assuming reli­
gions. and taking analysis in a never ending attempt to become one again: to end the
loneliness.

Sometimes. users are unconsciously limited by the systems. changed by them at the
same time they are augmented by them. This is probably the case with text editors. A
long time user of the EDT editor program reports:

"My entire concept of text is largely limited by the capabilites of EDT as J have
learned them. I do not think about EDT when I use EDT: 1 simply have
thoughts and express them via the keyboard and my fingers. There are all sorts
of new ways of thinking and new modes of expression that I have accepted after
years of 'becoming one' with this editor. It is to the point where 1 find myself
feeling claustrophobic whenever I try to use paper and pencil.

"Now. EDT is not the perfect editor. But to a certain extent it has become part
of me in that I now accept it as a natural extension of myself. It is an essential
component of the means with which I communicate with the world. I think this
is in part why the debates between the supporters of various editors are so emo­
tional. What is going on is not just a simple objective comparison of different
tools. The discussion is about who the users are and how they express them­
selves."

Changing contexts considered harmful

One of the big problems with the kind of systems we build is that they emphasize
their separateness from the user. The user must be constantly aware of what the sys­
tem is and needs in order to acheive the user·s goals. The user also needs to be con­
stantly aware of the limits of the system as distinct from the user's limits. Thus. the
users are constantly choosing between temporary extentions of themselves. Perhaps we
could design programs in such a way that we eliminate the need for making these
choices and thereby reduce the mvareness of self as separate from the computer.

In ALL-IN-1 when we integrate Datatrieve !DTR! and other tools into the editor an
exciting thing happens. Suddenly. the distinctions between the different tools are les­
sened. IU nfortunately. the differences in syntax still make the distinctions obvious. i
This integrating of the tools is exciting because it means that I am extending my Self.

Put another way. we are am extending the capacity of the tool that we have allowed to
share a part of our selfness. We can now use a data analysis tool to extend our capa­
cities. The editor becomes capable of handling the same sort of integrated thought that
we do inside our heads. Not only can it help in recording (or remembering) the data. it

20 What the user sees

Distributed Application Handbook

also helps in generating it. We could do this without the integration. but if we had to
leave the editor and then run DTR on its own. create files. and include them back into
the document. we would become entirely too aware of the separate worlds. the separate
tools that we are using. 'vVe begin to see again the littie islands of other things which
are not us. We begin again to deal with ":'vie" vs. "the other".

\'\·e want the user to remain focussed on the business problem at hand and be unaware
of the tool. When we make the user leave the editor to run DTR. he has to back away
from his problem and see the computer again. and Computer Anxiety has a chance to
creep in. This need not be the case. If we build our programs so that the user is not
forced to be aware of himself as distinct from the computer. we reduce the opportunity
for him to be aware of the computer at all. Remember. our goal is transparency.

Why just one

We do not conciously make distinctions between the different capacities of our own
intellects. For instance. we are usually not really aware that at one moment we are
11 calculating" and at the next 11 analysing// or "communicating". Perhaps. when we con­
template the past. or plan the future, we can see the distinctions. but we are not aware
of them when we are actually acting. The best tools. the best systems. will be those
that do not require us to make these distinctions when using them. The closer these
tools can come to reflecting the way we think, and amplifying that thought. the more
effective they will be and the less tension they will cause. Since we are on£> the best
tools will also be one. Then, there is hope of a coming together.

This is one reason we must strive to acheive such goals as "The network is the sys­
tem." For the network to be maximally useful it must become one. We must not be
able to notice the boundaries between the components that are combined to construct
it. We must perceive a one that we can then begin to become one with.

Fluency
Fluency is having facility or aptitude in the use of something. The result is an effort­
less, polished excecution of the task at hand.

You can only begin to type rapidly when you stop thinking about your fingers on the
keys and start thinking about what you want to say. You can only piay a good game of
tennis when you stop thinking about getting your racquet on the ball. You can only
speak a language fluently when you stop trying to translate from your native lana­
guage.

The tennis player does not think iconsciously) about how to hold the racket or when to
swing: she thinks about strategy. The musician does not think lconsciouslyi about indi­
vidual notes. but about tempo and phrasing. You do not think \consciously! about what
your feet are doing as you walk down the street. In fact. if you do think about your
feet. you will stumble.

So not only is fluency possible at a subconscious level. but it is nearly impossible at a
conscious level. The conscious mind. because it is focused. cannot think about enough
things fast enough to maintain fluent performance. Fluency demands sub-conscious
thinking. and without fluency. productivity will not improve.

What the user sees 21

Distributed Application Handbook

A book to read on this subject is "Inner Tennis". bv Timothy Galwey. He has written
"Inner" books on other subjects as 1velL including skiing and business management.

\Vhen the computec- makes the user stop to think about what he is doing. especially
when his mental model ot what is going on does not match system behavior. he will
slow down. !See also Hersh and Rubenstein's book on 1'Tbe Human Factor".)

The conscious and unconscious are not two separate worlds: there is a gradual fading
from one into the other. and where we consider the boundary to be at any given mo­
ment. and how sharp the boundary is. can change according to circumstances. Once we
have learned how to perform some mental task, and practiced it enough. the doing of
that task starts to drop into the subconscious.

This is not to say that you can learn to do things without conscious thought. You
really have to focus your attention while you are still learning. But while you are slav­
ing away, the subconscious part of your mind is "looking over your shoulder 11

• and
after a while it says "ok. I can do that now". and from then on it takes less and less
conscious thought.

(The mind can be subconsciously creative, as well as analytical. if it has been pre­
viously provided with the knowledge and techniques to use. Somebody once asked
Albert Einstein how he came up with his theories on relativity. His answer was. "it
just came to me." This is insight. The conscious mind may later work out the detailed
description and justification. but the original idea was developed subconsciously.)

Familiarity breeds fluency

We spend so much time in editors that we become fluent and merge with the editor.
as was reported by the user of EDT. If you do not become fluent. your productivity
will not increase.

If there is a single interface to all applications. so that the person re-uses the same set
of tools no matter what the task. that person cannot help but become fluent in the use
of those tools. Also. people in neighboring offices. using the same tools. are available
for support.

A world of things

When we look out at the world. we see things, not actions. \Ve know the actions we
are capable of performing. and we just do them as needed. The world has the things.
but the actions are internal to us.

"I seem to be a verb." - Buckminster Fuller

But when we sit down at a computer and look at a menu. often we are presented with
a list of actions.

One of the nice things about the Apple Macintosh"' is that ·when vou use it vou are not
thinking verbally. The wastebasket is just there. and you drop your old document into
it: you don't have to think of the word "DELETE".

22 What the user sees

Distributed Application Handbook

If a computer puts names onto things (like commands!. the user must learn those
names. and the documentation mus;; talk about them. If the user puts names onto
things Oike documents!. no learning. documentation. or translation of documentation
about those names is required. A manufacturer of paring knives does not have to come
out with foreign language versions of his product.

Representation of Information
The central layer in the Abstraction Model is the Representation Layer. It is here that
what the computer "knows" about the problem at hand is stored. The Style Layer
uses the information stored in the Representation Layer to build the visual display.
The functions of the Manipulation Layer are defined in terms of the concepts stored in
the Representation Layer. Obviously. the choice of what goes into this layer is going to
be important.

Information in a language is represented by a linear sequence of symbols. The se­
quence is analyzed into lexemes by a set of lexical rules. ("A". "B''. and "C" are sym­
bols. "DOG". 11 THE 11 • and "HYPOTHESIZE" are lexemes in English. whose lexical
rules say that a sequence of letters bounded by non-letters is a word.)

Lexemes are then interpreted according to a grammar. resulting in a structure. The
structure is NOT inherent in the lexemes. but is only a particular view of the lexemes
imposed by the grammar. A '1 prepositional phrase" and a 11 paragraph 1

' are elements of
structure in English.

A stylr> is the collection of rules by which an external visual prr>sentation of the struc­
ture is generated. A rule that paragraphs should be separated by one blank line is a
style rule.

+---+
Symbols => Lexemes => Structure => Presentation

Lexical Grammatical Stylistic
rules rules rules

+---+

Since the presentation is manifested to the user by symbols ! 11 An. 11 W'. and "C"
againi. we have finished where we started. This progression from concrete to abstract
to concrete came up in the last chapter when we examined the imernal structure of
programs.

Consequences of the storage format

If the storage represents the stream of lexemes. different grammars can be employed
to analyze the information for different purposes. If the storage represents the struc­
ture. the grammar cannot be changed. only the style. If the storage represems the
presentation. not even the style can be changed.

ls an editor program to work on the presentation. the structure. the lexemes. or the
symbols? Which does the user want to edit? Perhaps he wants to work at different
levels at different times. But he is not conscious of these levels. so how do we work at
the right level without forcing the user to verbalize what he wants?

What the user sees 23

Distributed Application Handbook

Human beings are very good at analyzing linear streams for their structure and in
generating streams from a structure, In fact they are so good at it that most people
are unaware they are doing it, and being made to think about it slcrn·s them down,

As an intermediate step in editing. the sequence o± lexemes 1mrv not be grammatical.
Should the editor prevent this from happening. or mere\y detect when it does happen
and alert the user?

Recapitulation
We want to reduce anxiety in the user. A good way to do this is to present a "my­
thology'' that is consistent with the way the system behaves [Hersh and Rubenstein].

We want all applications to present the same mythology. Yet different kinds of users
might need different styles of interaction. If we just publish a standard for user inter­
action and require all application developers to adhere to it. we will end up with as
many implementations as there are applications.

This lead us to the conclusion that the "user interface" should be a separate compo­
nent. with a standard interface to the application software.

A separate computer must be thought about. If you think about your tools. you can't
be fluent in their use.

In the next chapter. we will look at some implementation techniques for actually build­
ing efficient distributed client and server programs.

24 What the user sees

Chapter 4
Implementation techniques

In this chapter we will look at various programming techniques that are helpful in
actually building the components of distributed applications. Some of these techniques
will require cooperation from underlying service layers Hike operating systems) in ways
that current products do not support. If products for end users are to be based on
standard components !to avoid duplicate efforts in engineering. services. and sales),
how are we to determine what those base components should be?

System engineering has to be more than designing products out of ex1stmg parts. It
has to include determining what those parts should be. If the available parts do not fit
together well regarding performance. cost, or functionality, pouring glue over the mess
will not make them into a system that is easy to describe. sell. install. learn. use. and
evolve.

Here is a list of the basic techniques I have been leading up to in this paper. The rest
of this chapter is an in-depth discussion of each one.

• Asynchrony between layers
• Pipeline operations
• Multi-thread servers

Communicate high-level concepts
• Extend sharing backward
• Avoid time-sensitive server operations
• Minimize procedural programming on PC's
• Separation of visible and invisible functions

Asynchrony between layers
Make the code in each functional layer operate asynchronously from code in other lay­
ers. If you used the data flow analysis technique described in chapter one. you are
halfway toward implementing asynchronous code anyway.

Pipeline operations
Pipelining is particularly useful in servers. where as the number of clients increases. i:;
quickly becomes desirable to overlap the I/O operations on behalf of one client with the
computations or I/O on behalf of another.

Implementation techniques 25

Distributed Application Handbook

ln a pipelined implementation. each request is broken down inw severai steps. each
involving a single 1/0 operation. The operations are all done asynchronouslv. and as
each completes with an AST. the next step is initiated.

In situations where there are several disk files. and some requests (or steps of re­
quests) use different files. servicing these requests can proceed in paraliel. Also it the
disk controller would benefit from having more than one operation to perform at a
time (such as an HSC-50i. setting up parallel pipes can increase effective disk speed.

One aspect of this is that a simple remote procedure call (RPC1 communications
scheme is generally not appropriate. unless the RPC provides for asynchronous re­
turns. With a multi-threaded pipelined implementation. the RPC mechanism cannot
use the server's single stack to hold the stub call context. A way around this is for the
server to return from the first remote call immediately. then call back to the client
later when the results from the operation are available.

·tV.t'ulti-th re·a.Q code . .
Hand in hand with the pipelined technique is the concept of nwlti-threading. Multi­
threaded code can handle requests simultaneously from more than one "context 11 •

Again. this is particularly useful in servers.

If a functional unit is to be multi-thread. each function call must pass a 11 context han­
dle". Where the functional units are separated by a communications link, it is a good
idea to maintain sufficient context information on each side that only the handle needs
to be passed across.

The context for all the clients is kept inside the one program.

Advantages

The advantages of a multi-thread server are numerous.

Opportunities for data sharing. If more than one client are getting at the same
base information. the server only needs to work with one copy of the
information.

Less task-s~-itch overhead. Because all operations of the server are containc'd
within a single host task. there is no overhead from the operating sys­
tem switching contexts between users.

Fewer locks required. There is often no need for a locking mechanism to pre-
vent attempts at simultaneous changes to data structures. because the
code never gets interrupted.

Simpler account management. Because the server acts on behalf of all clients.
the host operating system does not have to know about each individual
user.

No start-up delay. As the single server task will be running all the time. and
there is no need to start up another task as each client request comes
in. any host operating system delays in task spawning are eliminated.

26 Implementation techniques

Distributed Application Handbook

More predictable response pattern. With the small transaction. pipeline model of
processing. it is reasonsble to talk about the number of transactions per
unit time. an easily measurable parameter. And since each resource
saturates at its own rate. it is easier to come up with an accurate math­
ematical modei of performance under load.

The multi-thread technique can also be used in the client program. A multi-thread cli­
ent is a single task which contains context for more than one simultaneous operation.
For example. a multi-window text editor might treat the activities in each window as a
separate thread.

Disadvantages

There might be a mismatch with underlying security facilities. This comes about be­
cause the server is running in its own "account" on the host system. with its own set
of rights and pri,·iledges. Yet it is acting on behalf of several distinct users. each with
potentialfy diffef'wit rights.

'';.:"".- ~· .. ~~

If the server has to call on services which do not allow for this possibility. the imple­
mentation might be forced to be very inefficient. The server may know the rights of
each user. and can keep them straight. but if the called-on service is not prepared to
handle multiple contexts in a single activation. additional tasks may need to be
started.

Implementation

In Appendix A you will find a description of a software package called DASL (the
Distributed Application Services Link! which handles the management of multiple con­
texts of communication links.

Most multi-tasking operating systems will attempt to give equal cpu time to all tasks
of the same priority. If there are two compute-limited tasks. the operating system will
periodically interrupt one to run the other. This can cause problems if there are com­
mon data structures between the tasks.

Since the application designer knows more about the nature of his transactions than
does the operating system. he can put the points of loss of control at places in the
program that will not cause damage to the data structures.

If there are two tasks to be completed. interrupting one in order to run another does
not improve the response time of either one. All it does is make them both degrade
equally.

Communicate high-level concepts
Protocols and gateways are very difficult to build between domains at very low levels.
Nobody would attempt to gateway between a VAX and an IBIV1 370 at the cpu back­
plane level. It is much easier to build gateways at higher levels of abstraction. where
you have enough context to know what goal is intended and not just the way this or
that domain goes about accomplishing it.

Implementation techniques 27

Distributed Application Handbook

For example. the V.A.X RMS disk structure only stores attributes about the physical
representation of information (fixed length. variable length. this or that carriage con­
trol) and nothing about the information itself isource. object. executable. DDIF.
postscript!. 'When you try tO build gateways or servers. and you don't know what the
high·level concepi: is. you cari·t deduce it from the low-level implementation.

The proper way to build protocols and other interfaces between functions especially rn
a distributed environment. is to encode only the high-level concepts. at let each domain
represent those concepts however it wants.

Extend sharing backward

Separate visible and invisible operations

Avoid time-sensitive server operations

Remember that any operation the user has to wait for is visible to some extent. It is
possible to make some operations on a server overlap in such a way that. although
they take finite time to complete. do not actually cause a long wait.

Some examples:

• Pull in the next page of a document being edited before the user scrolls off
the bottom of the current page.

• Overlap sending back changes to the last page with pulling out the next
page.

As we move back from the user. the bandwidth requirements to deliver a given respon­
siveness to the user decrease as far as the support of that one user is concerned.
There is an opportunity for a step reduction in bandwidth wherever memory and com­
puting power is located in the system. An analysis of the bandwidth requirements in
the data flow model of an application can show up the good (and bad) places put a
communications link to a shared resource.

Display list refreshes the screen - A raster display monitor capable of displaying 24
rows of 80 characters at a resolution that is comfortable for long periods needs 240
scan lines of 800 pixels per line. At 60 frames per second. this means that the video
circuitry of the terminal must generate pixels at a rate of 12 million per second.

In a character-cell display. the video chip provides the 100 pixels required for each
character. so the text display list in video memory typically needs only 8 bits for each
character to be displayed. Therefore information is read from the display list at an
average of only 960 kilobits per second. Still not a good place to put a communications
link.

28 Implementation techniques

Distributed Application Handbook

Style code updates the display list - The dispiay list only needs to be changed as
the visible part of the current document is changed. The worst case might be when the
entire display list isay 2000 bytes) must be rebuili: in one second. requiring l G kilobits
per second. A more typical case is where one text row 1say 80 bytes! is changed :3
times per second as the user types in insen. mode. This requires only 1920 bits per
second. assuming no assist from the display-list layer.

Some dumb terminals have an 1'insert mode,, in which microcode in the terminal takes
care of shuffling the row over for each new character. These terminals need only 40
bits per second. until the line overflows. The style layer (in the host for dumb termi­
nals) must keep track ot when this will happen.

Exchanges between visible and invisible representations • The visible text buffer
representation might not be large enough to hold the entire document at once.
Assuming the user wants to see the beginning of the document first. the we need
deliver information no faster than it takes to fill the screen in one second. or 16 kilo­
bits per second. in a short burst. Taking an average document size of 5 pages of 4000
bytes each, and an average working time per document of 20 minutes. the anJragc
speed requirement might be 5 x 4000 x 8-:- 20-:- 60 or only 135 bits per second. assum­
ing the entire document needs to be seen by the user.

The following table summarizes the information rate m the five communication links
just described. Speeds are given in bits per second.

Link between components Average Peak
Video chip to screen 12M 1211
Display list to Video chip 960K 960K
Visible buffer to Display list 1920 16K
Invisible to visible 135 16K
Invisible rep to disk 135 16K

From this table it looks like a communications link running at 19.200 bits per second.
placed between the visible and invisible components of a text editor. will deliver ade­
quate performance. Provided the visibie maniipulation and style code is powerful
enough to maintain the screen for serveral minutes of editing at a time. the load on
the back-end will be minimal.

Some functions require a higher bandwidth again as we get cioser to the disk storage
subsystem. For example. a text search unaided by pre-built indices must read great
quantities of data from the disk in as short a time as possible. But since this search is
an invisiblr? operation. it can be built on a server. close to the disk. There is no need
to convey the raw data to the visible portion of the program.

Minimize large procedural programming on PC's

Use lightweight protocols

Lightweight protocols are protocols designed to support specific application services
and to do so with minimum run-time overheads.

Implementation techniques 29

Distributed Application Handbook

An implementation that improves response-time by sending fewer bits between compo­
nents will be cheaper in the long run than one that requires a faster communication
channei. This is because hi-speed interconnects are more expensive than low-speed
interconnects. and also because the principle bottleneck in a client1server architecture
is the server's inabilitv to communicate meaningfully at high speed with a large num­
ber of clients. F pwer bits is cheaper than faster bi rs.

Recapitulation
ln this chapter we have examined various specific programming techniques and tools
that help in the construction of distributed applications.

In the next chapter we will examine some real distributed application systems and see
how they used these techniques.

30 Implementation techniques

Chapter 5
Examples

In this chapter we will examine three examples of distributed applications and how
they are implemented. The three applications are a videotex service. a shared filing
system for personal computers. and a text editor.

For each application a description will be given of how the protocol passes functional
requests between the client and serYer components.

Videotex Service
Videotex is a means of delivering pages of textual or graphic information with a very
simple menu selection scheme. It usually also includes the ability to use simple trans­
action processing programs through a combination of menus and forms. VAX VTX'" is
DEC's videotex implementation.

Separation of functions

For videotex there are three main categories of functions: those pertaining to the user
at the terminal. those pertaining to the retreival of fixed information from a videotex
database. and those pertaining to special application programs. VAX VTX puts these
three functions into three separate components.

Terminal operations - The Terminal Control Program is the only component of VAX
VTX that knows what kind of terminal is being used. It translates keyboard input into
generic codes that get passed on to the database server.

The TCP is also the only component that knows how to clear the screen of the termi­
nal. how to display error messages and prompts, and so on. If something goes wrong,
the server sends a generic code to the TCP. which then takes the appropriate action.
Since the prompt and message strings are in the TCP. it can display the messages m
any of several languages.

Although it is possible to do presentation code translation here. none of the existing
VAX VTX products do so. It was decided that performance is better if the pages are
translated just once. and a duplicate database kept for the different terminal types.

Database operations - The architecture or VTX identifies three roles for a database
server: the home server. the current server. and intermediate servers.

Examples 31

Distributed Application Handbook

The home server is the one to which the Terminal Control Program is directly con­
nected. For any given user. there is only one home server, This is where accounting is
done for that user. where authorization information is stored. and where the "l\fain
JV!enu" function always returns

The current server is the one from which videotex pages are retreiveC.. The home
server can also be ti1e current serYeL but the home server mav connect to another
server and pass user requests back. The remote server then becomes the current
server for that user's session. urn:il the link is broken and the home server takes over
again. or until the current server passes control on to yet a third server. The current
server is sometimes called the rearmost server.

When one server passes control for a session on to another server. the data flow for
the session still passes through the first server. and if the link is broken. control re­
turns there. If a server is neither the home nor current server. then it is said to be an
intermediate server. All it has to do is keep passing messages back and forth until one
side or the other disconnects the session.

Using a multi-thread database server leads to the need for a multiplexed communica­
tion link between servers. as there is no particular advantage to having tens or hun­
dreds of network links between two tasks. The DASL communications package was
derived from this requirement.

Application operations - The same protocol used between terminal control programs
and the server is used between the server and "back end" application programs. The
TCP and server work together to provide a request-level forms and menu interface to
specialized transaction processing programs.

Access control

VAX VTX uses a "rights forwarding" authorization model. to avoid the disadvantage
of multi-threaded servers described in the preceding chapter. Each user's home server
has a list of the closed user groups to which that user belongs. Each page in a server
database can be tagged as belonging to such a group. Only members of that group
may retrieve the page.

When one server connects to another. acting as agent for the user. a list of the groups
of which that user is a member is passed along so that. if the two servers are set up
to use the same group codes. the called-on server will immediately have that informa­
tion available. And the list of groups is stored at only one place in the network: on the
user· s home server.

An additional mechanism called base page determination is available to direct incom­
ing connections to particular places in the server's database. Various attributes of the
user can be matched against a template to control which pages will be made directly
available to that user.

Single protocol

The generic requests which tie the three components of VAX VTX together are en­
coded in a single communications protocol. the Videotex Access Protocol (VAP}.

INPUT Conveys user requests to the server

32 Examples

OUTPUT
LOG

FORCE

FOR'.\l

WHERE

HERE

Distributed Application Handbook

Convevs information to the user
Carries accounting information from back-end application pro­
grams to server logging fiies
Used by application programs to cause a pan:icular database page
to be displaveci to the user
Gsed by application programs to cau~e 2 data collection form to

be displayed to the user. information coliected. and returned to
the program
l~ sed by home servers to request context information from other
servers
Used by rear servers to report context to the home server

The INPUT messages convey all direct user input back to the servers and application
programs.

l\tlAIN
CHOICE
BACKUP

Request main menu page
Select from a menu
Go back to last menu

NEXT Go to next continuation page
PREVIOUS Go back to previous continuation page
DIRECT Request a page by its number
KEYWORD Request a page by its keyvwrd
FORMDATA Report field contents from filling out a form

The OUTPUT messages convey all user-visible information from the servers and appli­
cation programs.

PRESENT
Errors
FORMDEF

Implementation

Displays database information
Reports various failures
Describes a form layout

The VAX VTX database server makes use of the full pipelined multi-thread technique
described in chapter 4. The DASL package !described in appendix Al takes care of
manageing the communication links.

To increase performance when an HSC50 or similar disk controller is available. VAX
VTX uses multi-server queues for requests for pages from the database.

ALL-IN-1 Workstation Server
The File Cabinet server of Al WS is a single VMS process. and as it serves several
users at once. and since it cannot simultaneously be in many accounts. it can not rely
entirely on the VMS protection scheme. There was a product requirement that a vrvIS
account not be required for each user. so an independant access control mechanism
was required. Since we had to build one anyv;ay. we designed it to have exactly the
features we needed in an office filing system.

In particular. the ability to share documents and folders was built into the server. All
sharing and access control is handled by the File Cabinet server.

Examples 33

Distributed Application Handbook

Protocol summary

FIND

CREATE
DELETE
READ
\VRJTE
MODIFY
ACTION

Select one folder rrom a group of folders. or one document from a
group within a t{)!der
C reatc a nev•: ±older
Get rid of folders and documents.
Transfer a document to the client.
Transfer a documem to the server.
Change various attribmes of a document.
Invoke special outboard application functions.

The outboard functions available though the ACTION message are:

GIVE

PRINT
MAIL

Gives a reference to the current document to some other file cabi­
net user
Queues the current document for printing
Mails a copy of the current document to one or more other users
anywhere in the network

Implementation details

The File Cabinet Server uses the same pipelined multi-thread concepts as does the
VAX VTX database server. although without multi-server queues. \The goal configura­
tion was much smaller than a ty-pical VTX installation. and the load needed to justify
multi-server queues would not be present.)

This server uses the same DASL package as does VTX. although the first version does
not make use of the agent concept to tie servers together.

Distributed Editor
This is a protocol design for a possible future editor. The protocol is designed in such a
way that the server !where the files arei is not aware of things like cursor position.
insert mode. screen layout. etc. The FORrvl of editing does not affect what goes on in
the protocol, which is only concerned with the FUNCTION of editing.

This is accomplished by having every command carry all the state information neces­
sary to give the proper effect. In terms of the model. all visible concepts stay in the
front-end. and the server deals only with invisible concepts.

Protocol summary

One DASL session corresponds to one 11 document'' being edited. The protocol has pro­
visions so that. if two documents are being edited at the same time by the same
workstation. using the same server. data may be moved between the two documents
without the need to copy the information out to the workstation and back again. This
is indicated by a session reference in the COPY messages.

Control - These messages set up and terminate workspaces. and manage the
copying of information across the link.

Open Creates a workspace and binds it to a particular backing store
or program.

34 Examples

Close
Find

Request

Distributed Application Handbook

Disolves a workspace.
The server will search the workspace for a string. starting at a
particular bucket. A Failure or Success report will be sent in
return.
Specifies a range of buckets which are to be sent from tbe
server to the client. The server will send one or more vVrite
Bucket messages.

Ranges - These messages operate on ranges of one or more complete buckets.
\Nrite Insert or overlay bucket
Remove
Copy

Remove contiguous buckets
Copy (destructively or not) contiguous buckets. inserting or
overiaying at destination.

Strings - These messages operate on strings of bytes within a single bucket.
Write Insert or overlay bytes
Remove
Copy

Remove contiguous bytes
Copy (destructively or not) contiguous bytes. inserting or over­
laying at destination.

Reports - These messages report activity by the server.
Failure Reports that an operation has not been able to complete nor­

mally.
Success Reports that a FIND operation has located a matching string.

Supplies bucket number and byte offset of the match.
Summary Reports general information about a workspace. such as the

number of buckets present.

A position in a workspace is given by a bucket number and sometimes a byte number.
The first bucket in a workspace is number one, and the first byte within a bucket is
numbered one. When a command refers to bucket 65535 in a workspace. it really
means "the last bucket". whatever its number.

Examples 35

..

Chapter 6
A Framework for many Applications

All the preceding chapters have been analytical and conceptual. presenting analytical
tools. analyzing the nature of applications and then how best to distribute them across
processors while achieving the maximum advantage from that distribution. We have
looked at some existing programs in the light of these analytical tools. Now it is time
to be creative. In this final chapter I will present a single design calling on most of the
concepts presented earlier.

We will look at a way of building a framework on which many products can be built.
The framework will embody the layered model from chapter two. and will take care of
the operational details. The application programmer then need only deal with what is
special about the particular problem at hand.

An interpreter in each layer
In each functional layer. we should be able to define a suite of primitive functions from
which more complex specialized functions can be constructed. This has already been
done for some layers - wherever a protocol or command language has been defined.

Once the functions are identified, we can define a programming language in which to
describe how these functions are used within the layer. Communication and coordina­
tion between the layers will be taken care of by the underlying framework.

Event-triggered procedures

"Programming" in this environment can be reduced to writing small action routines
which will be invoked by the framework when certain events occur. These events might
be a keystroke. a mouse click in a particular place. a message arriving from another
layer. and so on.

Primitive Style functions

The visible style layer combines the functions of a forms driver. a window manager.
and a text formatter. Taking a step back we can see how these are three different
implementations of the same concept. So if we capture the concept in the primitive
functions. the application designer should be able to put the functions together to get a
wide range of effects.

A Framework for many Applications 37

Distributed Application Handbook

Primitive Representation functions

Primitive Manipulation functions

Anvone who has used a DEC' 'vVPS word processor or VTl ";'~~ termma1 vvith "l'ser
Definable he.vs" has had a taste of a programming language for manipulation func­
tions. Par::s of DCL 1 "Digital Command Language" i and the ALL-IN-1 script langu::ige
can also be ronsiciered examples of such a manipulation language.

A user-defined-key is a small program. triggered by an event ia key press). and ex­
ecuted only in the context of some larger process.

Implementation of the Visible Interpreter

38 A Framework for many Applications

Appendix A
DASL

DASL is the Distributed Application Service Level protocol for communicating between
the distributed components of an application. The DASL interface library implements
this protocol. as well as provideding context management and communications manage­
ment functions.

The concepts in DASL were developed as part of the V.;\.X VTX product. but have
been split out and made more general.

Application definition
A single DASL server task can support more than one application at the same time.
The programmer must provide DASL with a description of the communication and
context requirements of each application. This information is kept in an Application
Control Bloch.

Protocol overview
The DASL prowcol 1 consists of six message types. Each message type has an inher­
ent direction. expressed in terms of whether the message moves toward the client
!"forward") or toward the server i"backward"l.

Connections are always initiated by the client. In fact. that is the definition of being
the client - the one that initiates the connection. Connections can be broken from ei­
ther end.

All DASL messages start with the same three fields:

COMMAND. one byte
carries a message type identifier to indicate if the message is a
CONNECT. DISCONNECT. etc.

REFERENCE. four bytes

This description is for version 1.0 of DASL.

DASL 39

Distributed Application Handbook

an identification of the session on whose behalf this message is being
sent. It is composed of two parts. each of two bytes. The Front
Reference carries a number bv which the client identifies the session.
and the RPrir RefcrencP carries a number by which the server identi­
fies the session.

DATA LENGTH. two bytes
carries the number of data bytes in the remainder of the message.

Each particular DASL message (described below) may have additional fields. and then
the particular application can add more fields at the end.

CONNECT message - The CONNECT message (backward-going) tells a server to be­
gin processing input from a particular session.

APPLICATION. one byte
Indicates which application protocol will be used over the new session
link. Values up to 127 are assigned by Bostac. Values of 128 and
above are for customer use.

VERSION. one byi;e
Indicates the version of the DASL protocol being used.

The Rear Reference must be zero in a CONNECT message.

CONFIRM message - The CONFIRM message (forward-going). sent in response to a
CONNECT messsage. tells the client a little about the environment in which the new
session will be operating.

VERSION. one byte
Indicates the DASL protocol version that will be used by the server.

The value of the Front Reference must be the same as was used in the CONNECT
message for which this is a confirmation. The Rear Reference must be non-zero. so the
client will knov1· the reference number to be used in future messages for this session
over the same link.

All subsequent messages for the same session over the same link will use the same
value for REFERENCE.

DISCONNECT message - The DISCONNECT message ibackward-goingl tells a server
to stop processing for a session. The client may send a DISCONNECT at any time.
asynchronously. After receiving a DISCONNECT. the server must send no more mes·
sages for the session.

REASON. one byte
Indicates the reason the session is being terminated. Possible values
iexplained later) are APPL. OPER. and UNLINK

BREAK message - The BREAK message (forward-going) has the same effect on the
protocol as the DISCONNECT message. but is sent in the other direction.

40 DASL

Distributed Application Handbook

The rear program mav send a BREAK at any time. asynchronously. After receIYmg a
BREAK. the forward program must send no more messages for the session over the
same link 1without first re-establishing the connection with a CONNECT message;.

REASOi\. one byte
Indicates the reason the session is being terminated.

If the reason code is APPL. the application can send additional information about the
reason in fields beginning after REASO~.

BDATA message - BDATA messages (backward going) convey purely application infor­
mation toward the rear, that is, away from the end-user. BDATA messages do not
have any required fields after DATA_LENGTH.

FDATA message - FDATA messages (forward going\ convey purely application infor­
mation forward. that is. toward the end-user. FDAT A messages do not have any re­

, quired fields after DATA_ LENGTH.

Description of Reason Codes

The reason codes in DISCONNECT and BREAK messages are taken from the follow­
ing list:

Symbol

APPL
RESOURCES
PERMIT
OPER
NO APPL
BAD VER
UNLINK

Reason

Application requested BREAK
Insufficient resources to create a session
User does not have permission
System operator requested BREAK
Application not available
Protocol version not supported
Comm link broken or not established

Note that the UNLINK code is usualy not transmitted over a communications link.
but is faked up by the DASL support routines.

Context management

To make it easier to write multi-thread programs. the DASL library takes on the job
of matching incoming messages to application context areas.

Communication management

Since every DASL message carries a context identifier. a large number of DASL ses­
sions can be run through a single transport-level connection. Under DECnet there is
no performance advantage to having a separate link for each session between two
tasks. and there are several disadvantages.

DASL 41

Distributed Application Handbook

Protocol procedures

To start a session -

1 Client sends CONNECT.
2 Server performs access checks.
3 If a session can not be started. server sends a BREAK message. Otherwise.

the server Rear sends CONFIRM.

FDATA and BDATA messages may be exchanged before the CONFIRM or BREAK is
sent. These are used by the application to collect additional information necessary for
starting the session. (Such as passwords. etc.) But the first message exchanged after
the CONNECT must be one of the forward-going messages. BREAK. CONFIRM. or
FDATA. with the Rear Reference filled in.

To discontinue a session - If the client sends DISCONNECT or the server sends
BREAK. the session immediately stops using the link over which the message was
sent. The server can discard any context it was keeping for the session.

To exchange application information - Once the session connection is set up as de­
scribed above. the client may send BDATA messages at any time. Likewise. the server
may send FDATA messages at any time.

The DASL protocol provides no acknowledgement or flow control. If the functions in­
herited from the lower layers are not sufficient for a given application, that application
must implement its own flow control on top of the DASL protocol.

42 DASL

Glossary

Client

A consumer of resources in a network.

Client-Server model

Cognitive workload

Co-computing

A form of distributed processing isee below) in which the two programs are in fact
parts of the same program. and execute at the same time.

DASL

Distributed Application Service Link. A lightweight session protocol on top of
which multiple application prowcols can be built.

DECnet

Distributed processing

Processing in which programs are executed cooperatively in separate computers.

lightweight protocol

A protocol designed to support specific application services and to do so with mini­
mum run-time overhead.

Server

A provider of resources in a network.

VAP
Videotex Access Protocol. This is the application protocol used between compo­
nents of the VAX VTX service.

WYSIWYG

What You See Is What You Get. pronounced "wizzy wig". A kind of editor pro­
gram which makes the document on the screen look just the way it will when fi­
nally printed.

Glossary 43

Bibliography

Whiteside .. J., et al, Usability Engi.1wr>ring Handbook. DEC-TR-347. November 1985.

Galwey. T .. Inner Tennis

Magers. C., Systems that grow with the User: User Description Document. DEC­
TR-136. October 1980.

Pirsig. R.. Zen and the Art of ~Motorcycle A1aintenance. Bantam Books 1974.

Rubenstein. R. and Hersh. H .. The Human Factor: Designing computer systems for
people. Digital Press. 1984.

Saltzer. J .. Reed. D .. and Clark D .. End-to-end Arguments in System Design, ACM
Transactions on Computer Systems. Vol. 2. No. 4. November 1984. pages
277-288.

Watts. A., The Way of Zen. Vintage Books iRandom House). 1957.

Bibliography 45

