
INSTITUTE FOR ADVANCED PROFESSIONAL STUDIES
Technology Consultation and Training Worldwide

955 MASSACHUSETIS AVENUE
CAMBRIDGE, MASSACHUSETIS 02139-3107

(617) 497-2075 • FAX: (617) 497-4829 • email@ iaps.com

OSF/1 Internals
Volume I

For the Technical Staff of

Digital Equipment Corporation

Colorado Springs

Release 1.0

Amsterdam· Boston· Dallas· London· Los Angeles· Paris· San Francisco • Tokyo • Washington, DC

Copyright Notice

The material in this binder is either Copyright 1992 by the Institute for
Advanced Professional Studies or Open Software Foundation, or reproduced for
use in this course by lAPS with permission from the copyright holder.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying or otherwise, without the prior written permission of
the Institute for Advanced Professional Studies.

Additional copies of these materials are available strictly through the Institute
for Advanced Professional Studies, 955 Massachusetts Avenue, Cambridge, MA
02139.

The ideas and designs set forth in the course materials are the property of the
Institute for Advanced Professional Studies. These materials are not to be
distributed to third persons without the express written permission of lAPS.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Contents

Overview

Il/~(;i ell
A'h}'5~ e J

Course Description .. 0-1
Prerequisites . 0-1
Audience .. 0-1
Course Goals ... 0-2
Exercises .. 0-2
Agenda.. 0-2
Recommended Readings .. 0-2

Slide Conventions . 0-4

Module 1 - Introduction
Objectives .. .
What is OSF /1? .. .
Organization of the OSF/l Kernel .. .
Threads and Parallelism .. .
Introduction to Mach .. .
The Extensible Kernel
Exercises

Module 2 - The Process Abstraction
Objectives .. .
Processes
System Calls in OSF/l
Synchronization and Thread Management
Signals and Exception Handling
Threads .. .
Scheduling .. .
Thread Pools .. .
Zoned Memory Allocation
Exercises

Module 3 - Messages and Ports

1-1
1-2
1-8

1-12
1-20
1-36
1-46

2-1
2-6

2-16
2-26
2-64
2-78
2-86

2-104
2-106
2-108

Objectives ... 3-1

Messages
Ports •.•••.......................•...
Row of Control .. .
Exercises

Module 4 - Virtual Memory
Objectives .. .
Lazy Evaluation .. .
VM ComIX>nents
Memory Objects
Copying and Sharing .. .
The Pmap Module .
Exercises

3-4
3-8

3-28
3-32

4-1
4-4
4-6

4-30
4-58

4-102
4-120

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Overview

Course Description

OSF/l Internals is a four-day course designed to introduce the fundamentals of the OSF/l operating system. The
course does not contain source-code level material. It offers students a deep technical introduction to the OSF/l
kernel.

Prerequisites

The OSF/l Internals course is not a beginning operating systems course. It assumes familiarity with operational
principles of the following:

• virtual memory

• one or more of the following file systems:

UFS

NFS

System V

• UNIX execution environment

Familiarity with the operational principles of the following is recommended:

• sockets

• streams

• system-level C programming

Audience

The intended course audience is made up of system programmers, system support personnel, application
engineers, system administrators, and customer support staff. The course assumes that the student is familiar with
UNIX and C programming at the system-call level. No knowledge of Mach is assumed.

0-1

Overview

Course Goals

After completing this course the student should be able to demonstrate an understanding of OSF/1 Internals by
describing:

• how OSF/I enhances traditional UNIX

• how Mach is utilized in OSF/l

• how OSF/1 exploits parallel architectures

• the security features of OSF/1

Exercises

At the end of each module are two sets of exercises. The first set tests the student's perfonnance with respect to
each of the major objectives. The second set tests for a deeper understanding of the material: these exercises may
require the student to synthesize the knowledge gained from the course, and, in some cases, require that the
student delve into other materials. These questions should be considered optional. They may be used by the
student as a means for studying the material at a level deeper than is presented in this course.

The answers to the exercises are given in the appendix at the end of the book. The answers to the first set of
exercises consists merely of a reference to the pages in the book where the answer can be found. The answers to
the second set of exercises is sketched out in the appendix; they are not fully developed.

Agenda

The following schedule will vary depending on the number of questions raised or the level of interest shown by
the students.

Day 1: Module 1 through Module 3

Day 2: Module 4 through Module 5

Day 3: Module 6 though Module 8

Day 4: Module 9 through Module 11

Recommended Readings

A discussion of most of the topics covered in this course can be found in Open Software Foundation, 1990a (this
and other bibliographic citations appear in the bibiography). Two recommended books on UNIX are Bach, 1986

0-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Overview

and Leffler, 1989 (the latter covers Berkeley UNIX and is thus the most relevant). A description of the
programmer's interface to OSF/1 can be found in Open Software Foundation 1989.

0-3

Slide Conventions

~

I]
helvetica font

port

task

task has send rights

task has receive rights

a task with an unspecified number of additional
vm J'Zap _ entrys.

thread

disk

buffer

pmap

encloses an indirect reference to a routine

system call

0-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Slide Conventions

indicates the flow of control

boxes with square comers contain all of the incore
pages

boxes with rounded comers contain all of the pages
assocated with the vm _object

bug

0-5

I Slide Conventions

0-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Introduction

Module Contents

1. What is OSF/l? ... 1-2
The components of the OSF!1 package
What the course covers
Where the technology originated
Why this technology was chosen

2. Organization of the OSF II Kernel .. 1-8

3. Threads and Parallelism .. 1-12
Concurrency vs. parallelism
Types of hardware for OSF/l

4. Introduction to Mach .. 1-20
Fundamental abstractions
Basic system calls

5. The Extensible Kernel ... 1-36
Network shared memory

Module Objectives

In order to demonstrate an awareness of the components of OSF/1, including its Mach functionality, the student
should be able to:

• list the components of OSF!1

• describe the functionality that OSF/l supplies that is supplied neither by traditional UNIX nor Mach

• explain how Mach and UNIX coexist within the OSF!1 kernel

• list the five fundamental abstractions of Mach and briefly describe each

• give an example of how the OSF/l kernel can be easily extended to provide functionality not found in the
traditional UNIX kernel

1-1

Module 1 ~ Background and Introduction

1-1. What is OSF/l?

What is OSF/l?~n I/TJr /:c&A5c f-cJv>'ird

fA J l<&/'ttJ jJflJ

1-1.

• Parallelized 4.4BS,.Q UNIX

fJl~ f.r / /J II /
;-Mach kernel fA/r.' If ely [oY.-t-c, 4/1 e

I' • Logical vOlumemanager~~v",,~..,t QZ 7 ()fI1 -~:C41
A,!vJne.J

// • Streams eQv(7 LIM)} ~ 5'/I}

• Extensible loader

• Dynamic configurability

• B, 1-compliant 'l r _J "iL
O~ C2.) .ifrC7F . ,noe

© 1990,1991 Open Software Foundation

/;FF5

~)
/}~,4/F5 -J.bf v1&/ u/tJj;l

1-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: What is OSF/l?

OSF/l's UNIX technology is derived from the latest version of Berkeley UNIX-4.3renoBSD (the test version of
4.4BSD). This code has been modified by Encore so that it can efficiently exploit multiprocessors: all user and
kernel processing (with minor exceptions) can take place in parallel on multiple processors. OSF/l supports all
the major UNIX file systems: the S5 file system (derived from that of AT&T), the UFS file system (derived from
4.3renoBSD), and the NFS file system (derived from a totally new implementation done at the University of
Guelph). The latter two file systems have been parallelized.

Mach is intended to be a foundation for further operating-system development. It is a simple, extensible kernel
that can be used to construct the sort of functionality expected of nonnal operating systems, such as processes, file
systems, etc. Unlike many operating systems, Mach was designed from the ground up for parallel and distributed
environments.

Mach is relatively easy to port to many different architectures (there are Mach implementations on most oftoday's
major architectures).

OSF/l's logical volume manager (derived from mM's AIX operating system) allows file systems to span
volumes, thus eliminating a major restriction on their use, as well as providing additional reliability through disk
mirroring when desired. The streams implementation (derived from technology supplied by the Mentat
Corporation) is compatible with that of SVR3, but is transparently parallelized: existing streams code can be
made to run in parallel without modification. The extensible loader allows multiple load fonnats, shared libraries,
and run-time loading, as well as other useful capabilities. The loader lets the user load modules into the kernel
dynamically. Thus device drivers, streams modules, file systems, and protocols can be added to a running system.

OSF/l can be compiled to be either C2- or B I-compliant, depending on the user's security requirements (this
technology is derived from that supplied by Secure Ware).

1-3

Module 1 - Background and Introduction

1-2. What is OSF/I?

UNIX

• Compliance

_ POSIX 1003.1 --;-S'1J ~ 0,/15
-~ Issue 2 (goal)

- XPG Issue 3 X.::s/,-,h

• 4.4BSD framework

- processes

- file systems

- tenninals

- sockets

1-2 © 1990, 1991 Open Software FoundaIiOll

1-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: UNIX

The UNIX portion of OSF/l includes both traditional UNIX functionality and new functionality implemented
within the UNIX framework. OSF/l is fully compliant with all of the standards given on the slide; the final
arbiter in the face of conflicting specifications is the AES. Compliances are described in detail in the Open
Software Foundation, 1989.

The base technology for UNIX is 4.4BSD. OSF changed the code in a number of places, primarily for integration
with Mach and for parallelization. A very good description of Berkeley UNIX can be found in LeIDer, 1989.
Required System-5 functionality that is not in BSD has been added. In particular, OSF/l includes an
SVR3-compatible streams package, which allows transparent parallelization of streams modules.

1-5

Module 1 - Background and Introduction

1-3. What is OSF/l?

-

UNIX support

, tasks and threads

/. extended UNIX processes

,;. scheduling

../. multiprocessing primitives

/'. virtual memory

Extensibility

• microkemel architecture - --
1·3. © 1990, 1991 Open Software Foundation

1-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Mach

The primary function of Mach in OSF/l iSlo support UNIX. UNIX processes are built from the Mach notions of
tasks and threads. Unlike traditional single-threaded UNIX processes, OSF/l processes can be multithreaded. -Mach is responsible for scheduling the various threads. OSF/l allows users to select from a number (currently
two) of scheduling poliCies and, on multiprocessors, it allows user control of processor allocation.

Traditional UNIX event-oriented synchronization has been extended and made safer in Mach; Mach supplies
varieties of interprocessor locks to support multiprocessor synchronization.

Mach's virtual memory system completely replaces that of UNIX. It provides efficient and portable support for
all of UNIX's VM needs as well as extensibility for future requirements.

A key point to remember is that Mach fosters continued improvements. In particular, as part of the microkernel
project, all non-Mach portions of the system will be moved from the kernel to various user-level tasks, to produce
a very simple, pure Mach kemel in which user tasks provide many of the operating-system functions.

An example of the easy extensibility obtained with Mach is the network memory server (discussed soon), which'
provides the abstraction of shared memory among threads running on different processes.

fi;-/ --a~ S /4 L e-

~)re~ .01 ~)yj6/ /A 44 ~cc

1-7

I Module 1 - Background and Introduction

1-4. Organization of the OSF/l Kernel

OSF/l

1-4.

1-8

t~:::~:~:;:;:~~:1 Mach

It:t~I] UNIX

© 1990, 1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I I Module 1 - Background and Introduction

I
I Student Notes: OSF/1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 1-9

Module 1 - Background and Introduction

1-5. Organization of the OSF/l Kernel

UNIX with Mach

• UNIX as a set of tasks

1-5. © 1990,1991 Open Software Foundation

1-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: UNIX with Mach

The OSF/l implementation of UNIX coexists with Mach in the kernel, allowing the Mach-based technology to
provide both perfonnance and functional enhancements to standard UNIX technology. Unlike earlier versions of
UNIX with Mach, the OSF/l version is, except for a few infrequently executed subsystems, fully parallelized.

Current research at CMU, OSF, and elsewhere is directed towards providing UNIX functionality efficiently with
user-level tasks supported by a "pure" Mach kernel. The first approach provided the UNIX functionality in a
single task. This arrangement provided a pageable, interruptible, multithreaded UNIX, but it lacked much support
for extensibility. Work. at eMU and OSF is proceeding on a more extensible approach, the microkernel
architecture, in which a set of tasks provides UNIX functionality. By breaking up UNIX along functional
boundaries, various components can be replaced or UNIX components can be used to build other systems.

If this approach is successful, then not only UNIX but also other operating system interfaces can be implemented
on top of the microkemel. By breaking up UNIX along functional boundaries, certain UNIX modules can be
reused to implement other interfaces, and the UNIX interface can be improved or modified by substituting for
certain modules.

For further discussion see Golub, 1990.

1-11

Module 1 --- Background and Introduction

1-6. Threads and Parallelism

Concurrency

processor scheduler threads

.R.W

~----.R.W

.R.W

1-6. © 1990,1991 Open Software FOllDdatiClll

1-12

I
I
I
I
I
I
I
I
I
I
~
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I·
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Concurrency
~------

Concurrency means that multiple threads are in progress at one time; on a single processor, their execution might ---=--
~ multiplexe~.

1-13

Module 1 - Background and Introduction

1-7. Threads and Parallelism

Parallelism

processors threads

1-7_ © 1990, 1991 Open Software FollDdalion

1-14

I
I
I
1
I
I
I
,I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Parallelism

Parallelism means that multiple threads are executing simultaneously: parallelism requires multiple processors.
The architecture assumed in OSF/l is a shared-memory processor, i.e., all processors have equal access to
memory.

1-15

Module 1 - Background and Introduction

1-8. Threads and Parallelism

Multithreaded Process: Server

1·8.

~

_----1 client 1 1
-----1 client 21
- I client 31

© 1990,1991 Open Software FolDldaUoa

1-16

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Multithreaded Process: Server

A typical example of the use of multithreaded processes in a uniprocessor environment is a server that deals with
• multiple clients concurrently. Rather than having to multiplex the clients explicitly, it can make use of the kernel's
multiplexing of multiple threads.

1-17

Module 1 - Background and Introduction

1-9. Threads and Parallelism

Multithreaded Processes: Exploiting a

Shared-Memory Multiprocessor

n p

m n

x -

A B

• m x p inner products to be computed

• t processors available

1-9.

1-18

p

m

c

© 1990, 1991 Open Software Foundation

I
I
I
I
I
,I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Multithreaded Processes: Exploiting a Shared-Memory
Multiprocessor

An example of the use of a shared-memory multiprocessor is the computation of the product of two matrices.
With a simple algorithm, this would involve computing a number of inner products. One can utilize all processors
of shared-memory multiprocessors by creating a multithreaded process with one thread per processor. If m x p
inner products need to be computed and we have t processors, then each thread would compute (m x p) / t inner
~~. ~ ----

1-19

Module 1 - Background and Introduction

1-10. Introduction to Mach

Mach

Fundamental abstractions

• tasks

• threads

• memory objects

1·10. © 1990,1991 Open Software FoWidation

1-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Mach

A task is a holder of capabilities, such as address space and communication channels. These capabilities are
represented as ports, and the kernel itself is viewed as a task.

A thread is the usual notion of a thread of control. The equivalent of a UNIX process is one task containing a
single thread. In Mach (and in OSF/l), however, a task may have multiple threads. Tasks may have disjoint
address spaces or they may share memory with each other.

Threads can communicate by exchanging messages. (Any two threads can communicate this way, although it is
more efficient for threads in the same task to communicate using shared memory.)

forts have two purposes: they represent communication.-fhannels and they are object references. Unlike sockets
in BSD, which are the endpoints of a communication channel, a port is the entire channel. An object holding a
reference to the output end of a port is securely named by references to the input side.

Memory objects are ut.Nng~" that can be mapped into a task's address space. These things might be temporary
storage (e.g., UNIX's BSS and stack), files, or objects defined by user-provided selVers.

~k
~r~

1-21

Module 1 ~ Background and Introduction

1-11. Introduction to Mach

Mach Messages

1-11.

System calls:

msg_~(header, options, timeout)

msg_reeei~(header, options, timeout)

mS9_rpe(header, options, send_size, rev_size, send_timeout,
rev_timeout)

© 1990, 1991 Open Software Foundation

1-22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Mach Messages

A message is represented by a header that names the port, gives the type of the message (e.g. integer or real, or a
port), and either contains a small amount of data or refers to a larger amount of data.

1-23

Module 1 - Background and Introduction

1-12. Introduction to Mach

Ports

cit tv, 7""

1-12.

tasks with
send rights

© 1990, 1991 Open Software Foundation

1-24

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Ports

A task may have either send and receive rights to a port or just send rights. However, while only one task may
have receive rights, any number may have send rights. Thus one task can provide a service to multiple clients.

Ports in aSF/! are most commonly used as object references: send rights on a port represent the name of the
associated object.

System calls:

• port_allocale(task, port_name): create a port, giving task both send and receive rights

• port deallocate(task, porLname): eliminate task's rights to the named port

1-25

Module 1 - Background- and Introduction

1-13. Introduction to Mach

Tasks

------------------.

kernel

r--------------------,
name server I L __________________ ~

1-13. © 1990, 1991 Open Sobin: FolUlciation

1-26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Tasks

Tasks are the basic unit of protection: threads within a task share all of the task's capabilities (ports) and thus are
not protected from one another.

Each task has four ports associated with it: I'. -A J
ok;);.G.II"Ie"'e-A~'<. ~(;¥.i"U;.1 /) 4 Jt:il

1. Task kernel pOiJ:: essetftially the name of the task. In order to perfonn a system call that affects a task, the
calling thread must have send righ!§.. to the task kernel port of this task. Thus threads in other tasks may issue
system calls on a task's behalf if their tasks have send rights to the target task's task kernel port. This ability
is particularly useful for debuggers. The special call task_self returns send rights for the current task.

2., Notify port; the kernel sends messages through this port to notify the task of various kernel events, such as
the destruction of ports. Each task is given receive rights on its own notify port.

3. Exception port: used to implement the exception mechanism (discussed in Module 2). Each task inherits
from its parent send rights to an exception port.

4. Bootstrap port: used by the threads in a task to send requests (to a name server) to obtain other ports. A task
is given send rights to a bootstrap port. This port is available in aSF/1 but not used.

/Jt~ .-nJ
System calls:

• task_create(parent_task, inherit_memory, Child_task): the OSF/l kernel does not currently export this
call, although a pure Mach kernel would. Instead, one uses the UNIX fork system call, which creates both a
task and a thread within that task.

• task_terminate(target_task): also not currently exported.

• task_suspend(target_task): suspends all threads within a task.

• task_resume(target_task): resumes all threads within a task.

1-27

Module 1 - Background and Introduction

1-14. Introduction to Mach

Threads

1-14.

1-28

-------. r.p-d f
....-...... ---t another task fJ/~' Ie JYif,5

excepuon
handler

© 1990, 1991 Open Softwuc Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Threads

Threads are the basic unit of scheduling.

Each thread h~ associated with it:

1. Thread kernel port: represents the name of a thread. When a thread is created, its task is given send rights to
the thread's kernel port. Threads in tasks holding send rights on this port may use these rights to issue system
calls on the target thread's behalf. A thread can discover its own kernel port by calling thread_self.

2. Thread reply port: used for receiving initialization messages and responses from early RPC calls. When a
thread is created, its task is given receive rights to this port.

3. Thread exception port: part of the implementation of exception handling (described in Module 2). When a
thread is created, its task is given send rights to the task's exception port.

Ports, like threads, exist within a task: all of a task's ports are accessible by all of the task's threads.

System calls:

• thread_create (parent_task, child_thread)

• thread_terminate(targ et_th read)

• thread_susper'!9(target_thread)

1-29

Module 1 - Background and Introduction

1-15. Introduction to Mach

Virtual Memory in Mach

l·IS.

System calls: J

1('7 06h~
vm_allocate(target_task, address, size, anywhere) -tl-f/ J1~ ,

vm_deallocate(target_task, address, size)

vm_read(target_task, address, data, data_count)

vm_write(target_task, address, data, data_count)

vm-protect(target_task, address, size, set_maximum, newJ)rotection)

vm_inherit(target_task, address, size, new_inheritance)

© 1990,1991 Open SoftWItC Foundation

1-30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I,

I
I
I
I
I
I
1
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Virtual Memory in Mach

Virtual memory is a property of the task.

Each task has a (possibly sparse) virtual address space.

Tasks may inherit virtual memory from their parents, either shared or copied.

Pages are backed up by memory objects, which may be either temporary (traditional paging/swapping space) or
penn anent.

Lazy evaluation is the pervasive implementation technique.

1-31

Module 1 - Background and Introduction

1-16. Introduction to Mach

Messages Revisited

map map

kernel task

1·16. © 1990, 1991 Open Softwuc Foundation

1-32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Messages Revisited

Longer messages are first mapped (copy-on-write) into the kernel's address space. When the message is received,
it is remapped into the receiver's address space. Thus the receiver gains not only the data of the message, but new
valid locations in its address space. These locations may be deallocated using vm_deallocate.

1-33

Module 1 - Background and Introduction

1-17. Introduction to Mach

External Memory Object Managers vIer Mf~

user
address

space

kernel
memory
objects

Fry

backing store

external
memory
object

1·17. © 1990,1991 Open Software Fo1Ulcialioa.

1-34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: External Memory Object Managers

• The Mach kernel normally manages the backing store for virtual memory

• Users may supply external memory object managers to perform this chore

External object managers are responsible for supplying initial values for a range of virtual memory and for
backing up virtual memory when the physical memory cache becomes full. Such managers may be used, for
example, to map files into the address spaces of tasks, to provide shared memory in a distributed system, and to
implement a transaction-management system.

1-35

Module 1 - Background and Introduction

1-18. The Extensible Kernel

Network Shared Memory, part 1

site 3

:= .~ :

~.,":: ... : ... ~ , ~:

1-18. © 1990, 1991 Open Software Foundation

1-36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Network Shared Memory, part 1

This example shows how the Mach facilities of OSF/l might provide the abstraction of shared memory to threads
running on different machines. Here, site 1 and site 2 are two different machines; the coordinator, the provider of
the "shared memory:' might be on a third machine.

Two sites share memory by mapping it from the coordinator. A thread uses the vrn_rnap system call to inform its
kernel that it wishes to map a particular object into its task's address space. The kernel, in tum, forwards a
notification to the coordinator (a memory _object _init message), telling it that yet another site is using one of its
objects.

Note that at this point no pages have been transferred.

1-37

Module 1 - Background and Introduction

1-19. The Extensible Kernel

Network Shared Memory, part 2

site 3

"

3: memory object
data yrovided(read-only)

1-19.

2: memory_object_
data _request (read-only)

1-38

site 2

© 1990, 1991 Open Software FolDldation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 -Background and Introduction

Student Notes: Network Shared Memory, part 2

A thread running on site 1 attempts to read from one of the pages in the object maintained by the coordinator.
Since the page is not resident at its site, a page fault occurs. The local kernel handles the fault and forwards it to
the coordinator (by sending the coordinator an memory_object _data _request message).

The coordinator sends a copy of the page back to the kernel on site 1 (via a memory _object_data yrovided
message), but marks it read-only.

The kernel then puts this page in its memory cache and allows the original thread to resume execution.

1-39

Module 1 - Background and Introduction

1-20. The Extensible Kernel

Network Shared Memory, part 3

site 1

1-2'1.

site 3
.. .

: .. :.1!mD .. ':

2: memory object
data_request (read-only)

1-40

3: memory object
data yrovided (read-only)

© 1990,1991 Open Sohue Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Network Shared Memory, part 3

A thread running on site 2 attempts to read the same page that was just read on site 1. As before, the coordinator
gives site 2 a read-only copy of the page. Thus threads on both sites effectively share this page, though at the
moment they are only reading it.

1-41

Module 1 ~ Background and Introduction

1-21. The Extensible Kernel

Network Shared Memory, part 4

site 3
'.

~.:.v.: ~ ;:.

5: memory object
lock request -
(read-write) 2: memory object data

unlock (read-write) -
4: memory object

lock _ co,npleted -

1·21.

1-42

© 1990, 1991 Op:n Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Network Shared Memory, part 4

A thread on site 1 now attempts to modify the page of which both sites have a read-only copy. The local kernel
handles the resulting protection fault by sending a request to the coordinator (a memory_object _data_unlock
message), asking to upgrade its pennissions for this page from read-only to read-write.

The coordinator must arrange that all subsequent reads of this page by any site obtain the modified version of the
page. To accomplish this, it sends a request to site 2 (a memory_object _lock _request message) asking it to flush
the page from its cache. After it has done so, site 2 sends a memory_object_lock_completedmessage back to the
coordinator. After the coordinator receives this message, it sends a message to site 1 (a
memory_object _lock _request message) granting it read-write pennission for the page. Thus threads on site 1 are
now free to modify the page.

1-43

Module 1 - Background and Introduction

1-22. The Extensible Kernel

Network Shared Memory, part 5

3: memory_object_
lock request

(read-only, clean)

1·22.

site 3

:"~.:'

'
............................... : : ..

5: memory object
lock yrovided(read-ooly

4: memory object lock
completed (read-only, clean)

2: memory object
aata~equest(read-only)

© 1990, 1991 Open Software Foundation

1-44

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 1 - Background and Introduction

Student Notes: Network Shared Memory, part 5

If a thread on site 2 attempts to access the page, a page fault occurs, since the page is no longer resident, and a
request (memory_object _data _request) is sent to the coordinator for a copy of the page.

To obtain the current contents of the page, the coordinator must send a message to site 1
(memory_object _lock _request) asking for the latest version. To make certain that this version continues to be the
latest version, this message tells site 1 to tum off write permission.

1-45

Module 1 --- Background and Introduction

Exercises:

1. List the components of OSF/I.

2. Explain how Mach and UNIX coexist within the OSF/l kernel.

3. Characterize the multiprocessor architectures supported by OSF/l.

4. a. List the fundamental abstractions of Mach.

b. What is the difference between concurrency and parallelism?

c. Give an example of how concurrency as provided by threads simplifies the design of an application even
on a uniprocessor.

d. Explain how threads may be used to exploit the multiprocessor.

e. Explain how ports may be used for both object references and interprocess communication.

5. Can network-shared memory be implemented on other UNIX systems without kernel modifications?

Advanced Questions:

6. What functionality does Mach supply that Berkeley UNIX does not?

7. What functionality does OSF/l supply that is supplied by neither Berkeley UNIX nor Mach?

1-46

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Module Contents

1. Processes .. 2-6
Extending traditional processes to multithreaded processes
Representing processes in OSF /1

2. System Calls in OSF II .. 2-16
UNIX system calls
Mach system calls

3. Synchronization and Thread Management ... 2-26
Synchronization in standard UNIX
The problems introduced by multiprocessors
Synchronization primitives in OSF/l
Managing threads through state transitions

4. Signals and Exception Handling ... 2-64
Integrating signals into multithreaded processes
The Mach exception mechanism

5. Threads .. 2-78
The system call interface
Utilizing threads with the POSIX-threads library

6. Scheduling .. 2-86
Scheduling policies
Multiplexing of threads
Processor sets

7. Thread Pools ... 2-104

8. Zoned Memory Allocation .. 2-106

Module Objectives

In order to demonstrate an understanding of the differences between the OSF/l process and the traditional UNIX
process and the implementation of the process in OSF/l, the student should be able to:

• list the UNIX system calls that are difficult to adapt for use by threads within a multithreaded process and
describe the difficulty

2-1

Module 2 - The Process Abstraction

• explain how the proc and user structures of older UNIX implementations must be modified for use with
multithreaded processes

• explain the conceptual difference between UNIX and Mach system calls

• list and explain the need for the kernel synchronization routines

• for each of two types of signals explain how it is determined which thread receives the signal

• explain Mach implementation of exception handling and how exceptions are converted into signals

• explain the rationale for using the POSIX threads library

• describe the scheduling policies used in OSF/l

• explain the rationale of processor sets

• describe the purpose of thread pools and which subsystems use them

• explain the advantage of the zone memory allocation technique

2-2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I I Module 2 -The Process Abstraction

I
I
I
I
I
I
I
I
I
I
I
I
I
I"
I
I
I 2-3

I Module 2 - The Process Abstraction

2-1. The Big Picture

The Process Abstraction

2-1_

2-4

'~1:~:~:l:1 Mach

f:f{t] UNIX

© 1990,1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: The Process Abstraction

The material in this module is partially covered in .Open Software Foundation, 1990a, chapters 4 and 5.

2-5

Module 2 - The Process Abstraction

2-2. Processes

The UNIX Process: Beyond Tasks

Identification
1)0

• user and group

Open files

• which are open?

Signal state

• how handled?

• which are masked?

• which are pending?

2·2.

Family

• parent

• children

- alive

- tenninated

- stopped

Address space

• limits to growth

© 1990, 1991 Open Software Fouudalion

2-6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: The UNIX Process: Beyond Tasks

The UNIX process embodies much more than what is in a Mach task. Associated with a task is the address space
and a collection of port rights. Associated with the UNIX process are additional concepts such as userid and
group ids, open fues, signal infonnation, and relationships between parents and children. Since this infonnation is
not part of the task concept, it must be represented separately.

2-7

Module 2 - The Process Abstraction

2-3. Processes

• sigpause/sigsuspend
-----.--- --

• return pointers to static data (e.g. gethostbyname)

• access shared data structures (e.g. stdio)

2-3_

2-8

© 1990, 1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I Module 2 - The Process Abstraction

I
I

Student Notes: Multithreading the UNIX Process

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 2-9

Module 2 --.-..: The Process Abstraction

2-4. Processes

Threads, Tasks, and Processes

• The thread abstraction

- a single thread of control

- represented by a thread structure

• The task abstraction

- holds capabilities and an address space

- represented by a task structure

• The process abstraction

- combines thread and task abstractions: a UNIX concept

2-4. © 1990, 1991 Open Software Foundation

2-10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I I Module 2 - The Process Abstraction

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

Student Notes: Threads, Tasks, and Processes

A user thread normally executes in user mode. While it is in a system call, however, it executes in system mode
(or kernel mode or privileged mode). The operating system must maintain a separate context for each mode (user
and system modes): for example, a thread has both a user stack and a system stack (or kernel stack).

Threads and tasks are represented in Mach by their thread and task data structures. In traditional UNIX, each
process is represented by two data structures: the proc structure, which is allocated from the kernel's address
space, and the user structure, which is allocated at a fixed location in the private address space of the process.

aSF/1 represents a UNIX process with both the Mach data structures and most of the infonnation contained in the
traditional UNIX data structures. Ideally, the UNIX data structures should be basically unchanged from 4.4BSD
so that no significant changes to the UNIX code are necessary.

However, extending the single-threaded UNIX process into a multithreaded process requires some significant
changes. Most of the infonnation in the proc structure is a property of the task, but the user structure contains
both task information and thread infonnation. Thus each thread within the task requires its own copy of the
thread portion of the user structure: the user structure is divided into a u_task component and (multiple) u_thread
components.

Both types of components are allocated from the system address space, not the process address space (the original
UNIX scheme of allocating user structure at a fixed location in the process address space is not possible because
of the multiple u _thread components).

A slight problem arises here: UNIX kernel code refers to components within the user structure as, for example,
u.xxx. aSF/1 copes with this simply by using the C preprocessor to convert such references into either
u _task->xxx or u_thread->xxx.

These issues are discussed in A. Tevanian, 1987.

2-11

Module 2 - The Process Abstraction

2-5. Processes

Process Data Structures

2-S.

shared
kernel

address
space

private
process
address

space

UNIX

-- per process ..

2-12

OSF/l

shared kernel
address space

shared kemeJ
address space

shared kernel ---address space

shared kernel -address space

© 1990, 1991 Open Software FolllldatioD

1
1
1
I
I
I
I
I
I
I
I
I
1
I
1
'I

1
1
1

I
I I Module 2 - The Process Abstraction

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Student Notes: Process Data Structures

I 2-13

Module 2 - The Process Abstraction

2-6. Processes

;J14d date {/Yl/vtA?~j
Thread and Task Structures

2-6.

task
structure

thread
structure

2-14

thread
structure

© 1990,1991 Open Softwan: Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I Module 2 - The Process Abstraction
I
I

Student Notes: Thread and Task Structures

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 2-15

I Module 2 - The Process Abstraction

2-7. System Calls in OSF/l

System Calls

• UNIX system calls

2-7.

2-16

© 1990,1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: System Calls

System calls are the sole interface between the user and the operating system. From the user's point of view, a
system call is a subroutine call, but the body of this subroutine call involves a switch from unprivileged user mode
to privileged system mode. Accomplishing this switch requires an architecture-specific trap construction.

Most system calls issued on an OSF/1 system are UNIX system calls, but Mach system calls are used as well. The
UNIX system-call interface is implemented differently from the Mach system-call interface.

2-17

Module 2 - The Process Abstraction

2-8. System Calls in OSF/l

UNIX System Calls

user kernel

mamO l
int x, y;

locore
y=read(...); stack frame

main user's registers
exit(O); stack frame

} syscall
local variables stack frame

locore's registers
local variables

int read
return address

read(...) { stack frame handler

~ stack frame
if(error) { main's registers syscall's registers
errno= return address local variables

error_code return address
retum(-I)

} else {
retum(result) user stack

}
} ..

2-8.

2-18

locore: ---
syscall0;

rei

syscall(...) {

handler(...)

© 1990, 1991 Open Software Fouudation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: UNIX System Calls

To the C programmer, system calls are calls to subroutines provided by the C library. The bodies of these library
routines first execute whatever machine construction is required to generate a trap. The trap is handled in kernel
mode (but in the context of the calling process) via a call to syscall.

Syscall copies the arguments of the system call to the process's u _thread structure, then calls the appropriate
system call handler in the kernel.

On return, syscall deals with errors, and arranges for results to be returned to user mode.

Finally, the original C library routine passes either an error indication or a result back to the caller.

2-19

Module 2 ---.;. The Process Abstraction

2-9. System Calls in OSF/l

UNIX System Calls: Passing of Arguments

structure

user kernel
2-9. © 1990, 1991 Open Softwuc FoUDda1ion

2-20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: UNIX System Calls: Passing of Arguments

How arguments are passed from the user to the kernel depends upon the architecture, but what is described here is
typical. We use the write system call as an example.

As part of calling the write library routine, the arguments are pushed onto the user stack (the end of the stack is
pointed to by the user stack pointer-USP). When a trap occurs, all of the user's registers, including the USP, are
saved on the kernel stack.

The syscall routine in the kernel detennines which system call is being made and how many arguments it expects.
Then, following the saved USP, it finds the arguments on the user stack and copies them to the u _thread structure.
Copying must be done with care: the user supplies the value of the USP to the kernel. The kernel has no reason
to believe that the user has supplied a legitimate value-it might point into the kernel. Thus the kernel must first
validate locations pointed to by the USP before copying them to the u_thread structure.

2-21

Module 2 - The Process Abstraction

2-10. System Calls in OSF/l

UNIX System Calls: Returning to User Mode

2-10.

Q . Successful completion

- return result to user

• Unsuccessful completion

- return error indication and error code

2-22

© 1990, 1991 Open Softwuc Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: UNIX System Calls: Returning to User Mode

Again, the details here depend upon the architecture; what follows is typical. Assume a calling convention in
which functions return theiuesul!§jn r~.

On return from the trap instruction, if the system call completed successfully, the system arranges for the value to
be returned to appear in the user's register O. This is accomplished by copying this value into the saved copy of
register 0 in the kernel stack before returning to user mode. The C library code leaves this value where it is and
returns to its caller, which sees the system call returning the appropriate value.

If an error occurred in the system call, UNIX requires that the library routine (e.g. write) return - @that the
error code be found in the global variable~. This is achieved via cooperation between the operating system
and the library routine: the carry bit of the program status word is used to indicate whether the system call
succeeded or not. This word is saved on the kernel stack as part of the trap; the operating system sets the carry bit
in it accordingly before control is returned to user mooe, and the program status word is restored from the kernel
stack.

If there was an error, the carry bit is set to 1 and the error code is placed in register O. When control returns to the
library code, if it finds the carry bit is set it copies the value of register 0 to errno, puts a -1 into register 0, and
then returns.

Note that this does not work well with multithreaded processes!

2-23

Module 2 - The Process Abstraction

2-11. System Calls in OSF/l

Mach System Calls

status = thread_create(parent_task, child_thread)

2-11.

c~ll

kernel
thread_create routine

2-24

user
kernel

© 1990, 1991 Open Software Foundalion

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Mach System Calls

In the UNIX system call interface, the functional value returned by the system call is overloaded with either an
error indication or the result of a call. Mach avoids the clumsy type problems associated with this Ie b usin
an output parameter to return the result of the system c , so at the functional value of the call is solely an

Tndication of success or error (and if an error, what sort of error). -

A Mach system call is essentially a remote procedure call to a procedure provided in a kernel task. These
procedural requests are actually transmitted to the kernel as messages. The result obtained by the kemel is sent
back to the user as another message. Thus a system call, from the user's point of view, is implemented as a
mSQ_rpc call. The stub routines that convert the procedure calls into messages are produced bY,MIG (thel!!ach
Interface Generator). --- ~

The implementation of the Mach system call is optimized: it is not the case that special threads exist in the kernel
for the purpose of receiving these system call messages. Instead, the user thread generating the Mach system call
traps into the kernel (Le., switches to kernel mode) and receives its own message and processes its own system
call.

2-25

Module 2 - The Process Abstraction

2-12. Synchronization and Thread Management

UNIX Synchronization: Putting a Process to Sleep

2-12

• Many operations (e.g. I/O requests) result in the suspension of a process's
execution

• To effect this suspension, a process executes a sietgl call (which is a
kernel-level subroutine)

• At some later time, a wakeup' call is issued to resume the execution of the
process

© 1990, 1991 Open Software Foundation

2-26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: UNIX Synchronization: Putting a Process to Sleep

UNIX synchronization is a very simple, event-driven mechanism. A process (in kernel mode) puts itself to sleep
by calling sleep. Its state is then set to sleeping, and control is passed to swtch, which fmds another runnable
process and resumes its execution.

A call to wakeup resumes the execution of all processes waiting on a particular event Such processes' states are
changed to runnable, and when the scheduler chooses them they resume execution.

2-27

Module 2 - The Process Abstraction

2-13. Synchronization and Thread Management

UNIX Synchronization: Sleep and Wakeup

• sleep(channel, disposition)

• wakeup(channel) -

2·13. © 1990,1991 Open Softwan: FoUlldaIion

2-28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: UNIX Synchronization: Sleep and Wakeup

The integer channel specifies the awaited event. By convention, this channel is the address of some relevant data
structure.

A number of things are overloaded on top OfBisPOS"itiOn:)

1. It represents the scheduling priority to be taken on by the process when it is awakened (low values are good
priorities, high values are poor priorities).

2. It indicates whether or not the sleep is interruptible by a signal. If it is less than or equal to the fixed value
PZERO, then the sleeping process may not be awakened by a signal.

3. It indicates what happens if the sleep is interrupted by a signal. The call to sleep either longjmp§.back to an
exception handler or returns a value indicating that there was a ~

(N.B.: This is done differently in OSF/I, as will be seen.)

2-29

I
Module 2 ~ The Process Abstraction

I
I

2-14. Synchronization and Thread Management
I

Protection from Interrupts I
I
I
I
I
I
I
I

2-14. © 1990, 1991 Open Software FoundatiOll

I
I
I
I
I
I

2-30 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Protection from Interrupts

Interrupt protection is very architecture-dependent. The UNIX (and OSF/l)..!!lodel is based on the PD~
architecture .. : the devices and processor connect via a 6Us. A device interrupts a processor by raising a line on the
bus corresponding to a particular interrupt priority (or bus request leve!). If the processor's current interrupt
priority level (lPL) is less than the bus request level, then the request interrupts the processor's current
computation. The processor receives the interrupter's interrupt priority; after the processor returns from the
interrupt, it regains its previous priority level.

A call to splnnn, where nnn identifies the interrupt priority level, disables an entire class of interrupts by raising
the processor's IPL. This call returns the previous priority, which can be restored via a call to splx.

2-31

Module 2 - The Process Abstraction

2-15. Synchronization and Thread Management

UNIX Synchronization: Sleep/Wakeup Example

2·15.

s = splbioO; /* disable a class of interrupts * /
while (device_inuse)

sIeep(&device_data_structure, priority);
device_inuse++;
splx(s); /* enable interrupts */

/* in some other thread (or interrupt handler) * /

device_inuse = 0;
wakeup(&device_data_structure);

© 1990, 1991 Open Softwue Foundation

2-32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 -- The Process Abstraction

Student Notes: UNIX Synchronization: Sleep/Wakeup Example

In this example, various threads wish to obtain mutually exclusive access to a device. They check device _inuse to
see if the device is in use. If it is, they then put themselves to sleep. After the thread using the device fInishes
with it, the thread clears the device _inuse flag and then wakes up all threads waiting for the device.

A potential race condition must be guarded against: between testing the device_inuse flag and calling sleep, an
interrupt handler might issue a wakeup. (Since wakeups are not remembered, if no thread is sleeping when a
wakeup occurs, nothing happens.) Thus, if a thread goes to sleep and the one and only wakeup that would ever
wake it up has already been issued, the thread sleeps forever.

The solution is straightforward: interrupts must be disabled while the flag is tested and the thread is put to sleep.
The call to splbio disables (disk) interrupts and returns the previous IPL. Thus interrupts are disabled through the
call to sleep.

Inside of sleep, after the thread has been effectively put to sleep, the IPL is reduced back to zero so that interrupts
may occur. However, the IPL set by sp/bio is remembered as part of the thread's context. When the thread is
woken up and returns from sleep, this IPL is restored and the thread can then make the test (and possibly put itself
to sleep again, immune from interrupts). Once it has taken the device, it can restore the original IPL (probably 0)
by a call to splx.

2-33

Module 2 - The Process Abstraction

2-16. Synchronization and Thread Management

OSF/l Synchronization

2·16.

while (device_inuse)
sleep(...)

device_inuse++;

thread running on processor 1

device_inuse = 0;
wakeup(...);

thread running on processor 2

© 1990, 1991 Open Softwan: Pouudalion

2-34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: OSF/1 Synchronization

OSF/l synchronization must be able to cope with the effects of multiprocessors. Masking interrupts is not
sufficient protection on a (shared-memory) multiprocessor. Any operation that might be affected by actions of
other processors must be protected.

2-35

Module 2 - The Process Abstraction

2-17. Synchronization and Thread Management

Synchronization Primitives in OSF/1

read-write locks

simple locks

r-, not parallelized
L_.I

~ interruptibility is an option

1m interruptibility and timeout are options

D interruptibility is not an option

2-17. © 1990, 1991 Open Software Foundation

2-36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Synchronization Primitives in OSF/l

A good discussion of synchronization in OSF/1 can be found in Open Software Foundation, 1990b, chapter 8.

2-37

Module 2 - The Process Abstraction

2-18. Synchronization and Thread Management

Simple Locks

I

2-18.

simple_lock _init(lock)

simple _lock(1ock)

simple _ unlock(lock)

simple_lock _try(lock)

2-38

© 1990,1991 Open Softwue Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Simple Locks

Simple locks are used in many cases where mutual exclusion is required. They are implemented as spin locks;
i.e., a thread or interrupt handler sets a lock by setting a bit and waits for a lock by repeatedly testing the bit until
the holder of the lock clears it. Because of this active involvement on the part of the processor, simple locks
should be held only briefly.

Although simple locks are nonnally acquired in a synchronous manner, an additional request is provided in which
the lock is taken if it is not already taken and otherwise returns failure.

2-39

Module 2 -' The Process Abstraction

2-19. Synchronization and Thread Management

Combining Unlock with Sleep, part 1

2-19.

. simple _lock(...);

if (should_sleep) (

simple _ unlock(...);

sleep(...);

} else .

simple _ un/ock(...);

or

simple _lock(...)

wakeup(...)

simple _ unlock{ .•.)

2-40

W{){~

simple _lock(...);

if (should_sleep) (

sleep(...);

simple _unlock(...);

} else

simple _ unlock(...);

© 1990,1991 Open Software Foundalioa

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Combining Unlock with Sleep, part 1

To avoid a race between one thread doing a sleep and another thread doing a wakeup, it is necessary to use a lock.
However, as illustrated in the slide, it is not clear when the thread calling sleep should unlock the lock. In the
code fragment in the top left, a thread first takes a lock to guarantee that no thread does a wakeup while there is
the possibility that the first thread may go to sleep. It then discovers that it indeed should go to sleep, so it
unlocks the lock and then calls sleep. However, another thread running on another processor might call a wakeup
at the instant that the lock is unlocked (before the first thread calls sleep). Thus we still have the race condition
we are trying to eliminate.

Another approach, as illustrated in the upper right, might be to switch the calls to sleep and simple_unlock. But
now, though we eliminate the race condition, we introduce a deadlock. A thread attempting to do a wakeup won't
be able to do so until the lock is released, but the thread holding the lock won't release it until after the wakeup
has been performed.

2-41

Module 2 - The Process Abstraction

2-20. Synchronization and Thread Management

Combining Unlock with Sleep, part 2

~i~;' t b-
~----------~¢~~.

assert _ wait(...);------- ? 10 f;"~
simple _ unlock(...); = simple_unlock + sleep

thread_block(...);

2-71». © 1990,1991 Open Software FoundatiClll

2-42

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
1
1-
I

Module 2 - The Process Abstraction

Student Notes: Combining Unlock with Sleep, part 2

The solution is to find a way to combine sleep and simple_unlock. One approach might be to add an extra
argument to sleep indicating which lock to unlock after the calling thread is effectively asleep. The approach
taken, however, is to split sleep into two parts. The first part, assert_wait, announces that the thread is about to go
to sleep. The second part, thread_block, actually puts the thread to sleep. A call to simple_unlock may be safely
placed between the calls to assert_wait and thread_block.

2-43

Module 2 - The Process Abstraction

2-21. Synchronization and Thread Management

Blocking Threads
" simple _lock(&object.lock);

while (object in_use) (

assert _wait(&object. wait);

/* indicate intent to wait */

simple unIock(&object.lock);

thread _ blockO;

/* give up the processor-however, the thread might return immediately
if a wakeup has already happened */

simple _lock(&object.lock);

object.in_use = 1;

simple _ unlock(&object.lock);

2·21. © 1990, 1991 Open Soban: Foundation

2-44

I
I
I
I
I
I
I
'I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Blocking Threads

In this example, threads desire mutually exclusive access to object. Associated with the object is a simple lock,
which a thread takes so that it can safely determine if another thread is using the object. If the object is in use,
then the thread attempting to take the object declares its intention to block by calling assert _wait, it then unlocks
the simple lock and calls thread_block to yield the processor. If this thread is woken up before it yields the
processor, the call to thread_block does not put the thread to sleep but, at worst, puts the thread on the run queue.

2-45

Module 2 - The Process Abstraction

2-22. Synchronization and Thread Management

Blocking Threads Example

t2

thread A

object object object object object object

eeoooe
thread B thread B threadB threadB threadB thread B

2-22. © 1990. 1991 Open Software Foundation

2-46

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Blocking Threads Example

Initially thread B is using the object (has set its in_use field) and both thread A and thread B are running (or
runnable). Thread A is attempting to use the object but finds by examining the in_use field that the object is being
used by another thread. It indicates its intention to wait for the object by calling assert_wait. This sets the wait
bit in thread A's state vector and queues thread A on the list of those threads waiting for the object. Since thread
A has not called thread _block, it continues to run.

In the meantime, thread B finishes with the object, so it clears the in_use field and then calls wakeup to wake up
those threads waiting for the object.

The effect of thread B's call to wakeup is to wake up thread A. However, thread A has not gone to sleep yet, so
the wait bit is cleared in its state vector. Thread A subsequently calls thread_block. Since the wait bit is no longer
set, thread A returns from thread _block immediately (if the call to wake up thread B had not taken place, then the
call by thread A to thread_block would have put thread A to sleep---the run bit of its state vector would have been
cleared, leaving only the wait bits set). Thread A now can test the in_use bit, see that it is clear, and set it itself.

2-47

Module 2 - The Process Abstraction

2-23. Synchronization and Thread Management

Suspending Threads

2-23.

thread 1 running
on processor A

2-48

thread 2 running
on processor B

© 1990, 1991 Open Softwan: Founda1ioa

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Suspending Threads

The effect of suspending a thread is not necessarily immediate. In this picture, threads I and 2 are running on
different processors, and thread 1 issues a thread _suspend call on thread 2. This call marks thread 2 to be
suspended, but nothing is done to make this suspension happen immediately. Thread 2's processor will eventually
switch to kernel mode, because of an interrupt or trap. The thread will then notice that it is marked to be
suspended and suspend it accordingly. In general, the kernel will notice that a thread is to be suspended when that
thread calls thread_block (which is done when the thread is about to return from kernel mode to user mode).

2-49

Module 2 - The Process Abstraction

2-24. Synchronization and Thread Management

Thread States ~ re-lse-
51 sp/TVe-

R~ , ---§ak~;;t RUN+WAIT

suspend ¥~, nd l~thread_bIOCk
jf/' " " I /, , /

/ I " /. I
~/jf " '" ~,.~ I

resume ~ wakeup ~sume I
RUN+ .~;... __ ..:. __________ .. RUN+WAIT+SUSPENDED

SUSPENDED I~' .. a:sert,wau ~ I" I

I .. , I thread_block 1
1
+ wake~up I.

thread blockl .. f ..
- I '

II I II'~ suspend

I resume ak I 17'
I I w eup I '
I (wmnrenuptihle) I /J(
I """ I res~me
I wakw~I"

SUSPENDED --------------~-. WAIT +SUSPENDED
(in1rruptible)

WAIT

2·24. © 1990, 1991 Open Sohue Foundation

2-50

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Thread States

Represented as three bits in the thread structure: RUN, WAIT, and SUSPENDED

• RUN

- thread is either runnable or running

• WAIT

- thread is blocked, waiting for an event (it is on a wait queue)

- both interruptible and noninterruptible waits are supported (represented by another bit)

• SUSPENDED

- thread is suspended and thus not on any queue

- nested suspends are supported via a suspend count

- usually the result of a thread_suspend system call

• RUN+WAIT

- thread has just perfonned an assert_wait; either it will do a thread_block and switch to WAIT, or another
thread will wake it up (before the thread_block) and switch it to RUN

• RUN+SUSPENDED

- thread has been set to be suspended; it will switch to SUSPENDED as soon as it either calls thread _block or
returns to user mode

• WAIT+SUSPENDED

- a call to thread _resume switches thread to WAIT; if the wait is interruptible, the thread switches to
SUSPENDED when it wakes up; otherwise it switches to RUN+SUSPENDED (Le., the effect of the
thread _suspend is delayed)

• RUN+WAIT+SUSPENDED

a call to thread_block switches thread to WAIT+SUSPENDED, a thread_resume switches it to RUN+WAIT,
a wakeup switches it to RUN+SUSPENDED

2-51

Module 2 - The Process Abstraction

2-25. Synchronization and Thread Management

UNIX-Style Sleep

2·25.

sleep(chan, disposition)

tsleep(chan, disposition, wmesg, timeout) A-r
mpsleep(chan, disposition, wmesg, timeout, lockp, flags)

2-52

© 1990, 1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: UNIX-Style Sleep

UNIX-style sleeps involve waiting for "one-shot" events. Traditionally, the kernel provided only a sleep call, but
starting with 4.4BSD a tsleep (timed sleep) call was added as well. Sleeps instigated by calls to sleep are not
interruptible (Le. by signals). Calls to tsleep can be interruptible; interruptibility is specified by setting the
PCATCH flag in the disposition argument. Unlike other UNIX implementations, the disposition argument has no
other use in aSF/I.

As discussed earlier, a lock is necessary on multiprocessors to prevent a race between a wakeup and a sleep or
tsleep, but, since there is no clear position for the unlock, these routines can only be used in unparallelized code,
i.e., only in situations where all relevant activities are guaranteed to take place on the same processor. Mpsleep is
a multiprocessor-safe version of sleep and tsleep that takes a pointer to a lock as an argument. Mpsleep contains
calls to assert_wait and thread_block, and the lock is unlocked between these calls.

The wmesg argument to tsleep and mpsleep is a character string indicating why the thread is sleeping. Its only
purpose is for display when a user types control-T to see the states of the foreground processes.

2-53

Module 2 - The Process Abstraction

2-26. Synchronization and Thread Management

Waking Up

2-26.

clear _ wait(thread, result, interruptible_only)

thread_wakeup _ one(event)

thread_wakeup _with _result(event, result)

Possible results:

THREAD_AWAKENED

THREAD_TlMED_OUT

THREAD_INTERRUPTED

THREAD_SHOULD_TERMINATE

THREAD_RESTART

2-54

© 1990,1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Waking Up

Wakeup routines:

• clear _wait: wakes up a particular thread. If the interruptible-only flag is set, then the thread is awakened only
if it is in an interruptible sleep (this flag is used, for example, to wake up a thread conditionally in response to
a signal).

• thread_wakeup _one: wakes up the first thread waitin",g for a particular event, and sets the wait _result to
THREAD_AWAKENED.

• thread_wakeup _with_result: wakes up all threads waiting for a particular event, and sets their wait _results to
the second argument.

Whenever a thread is woken up, the cause of the wakeup is put in the wait _reSUlt field of the thread's thread
structure. The five standard results are as follows:

1. THREAD_AWAKENED: returned if the event for which the thread was waiting actually occurred.

2. THREAD_TIMED~OUT: returned if the timeout period expired (e.g. as set in tsleep).

3. THREAD_INTERRUPTED: returned if the thread was interrupted by a signal, and this caused the wakeup.

4. THREAD_SHOULD_TERMINATE: returned if a signal forces the tennination of the thread.

5. THREAD_RESTART: returned if a thread was waiting for some event that turns out to be no longer relevant,
e.g. a thread is waiting on a condition involving a leaf of a tree, but a structural change occurs higher up in the
tree. This result notifies the thread that it should reevaluate its circumstances.

2-55

Module 2 - The Process Abstraction

2-27. Synchronization and Thread Management

2-'E1_

event

happenedl
hasn't happened

queue of
waiting
threads

2-56

© 1990, 1991 Open SoftWIUI: Foundatioa

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Events

Events provide an improvement of the common case of the UNIX sleep call. A thread can test whether an event
has been posted and, if it has not, then wait for the event to be posted. When the event is posted, it stays posted
until explicitly cleared.

Kernel subroutines:

• event_clear(event): mark an event as hasn't happened

• eventyosted(event): return whether the event has happened

• event_wait(event): wait until the event has happened

• eventyost(event): mark the event as has happened

Note that the implementation guarantees that there will not be a race between event yost and event_wait: a thread
calling event_wait returns soon (if not immediately) after event yost is called.

As an example, consider operations on a buffer. One thread starts I/O to fill the buffer, but before doing so, clears
the event that would indicate the buffer is filled. Other threads might test for this event, find that the event has not
been posted, and thus wait (inside of event _wait). When the first thread finishes filling the buffer, it then posts the
event, which both wakes up all threads waiting for the buffer and marks the buffer as filled for any subsequent
thread that needs its contents.

2-57

Module 2 - The Process Abstraction

2-28. Synchronization and Thread Management

Read-Write Locks

2·28.

lock _init(lock)

lock _read(lock)

lock _ write (lock)

lock _ done(lock)

2-58

lock _read_to _ write(lock)

lock_write _to _read(lock)

lock_try _ write(lock)

lock_try _,ead(lock)

lock_set _,ecursive(lock)

lock_clear _recursive(lock)

© 1990, 1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Read-Write Locks

Read-write locks provide reader-writers-type synchronization, i.e., any number of threads may hold a lock for
reading, but if a thread holds a lock for writing, no other thread may hold it for either reading or writing. A
read-write lock may be configured to be either a blocking lock or a spin lock. In most cases, it is a blocking lock,
i.e., threads waiting for the lock will yield their processor. But, particularly when it is used in the interrupt
context, it may be a spin lock.

In some situations, it may be convenient to use a read-write lock recursively, i.e., a thread may "take" a lock even
if it already has it. This notion is useful in situations in which a thread possesses a lock but is calling a routine that
causes it to take the lock again (if the lock is not set to be recursive, this produces an immediate deadlock
situation).

On mUltiprocessors, threads do not immediately block while waiting for a lock. Instead, they test the lock for a
number of times equal to the value of lock_wait_time (a global variable whose value is typically set to 1(0) and
then yield their processor, if necessary.

2-59

Module 2 _. The Process Abstraction·

2-29. Synchronization and Thread Management

Synchronization in OSF/l: Summary

read-write locks

simple locks

r- -., not parallelized ~ interruptibility and timeout are options
L_.I ~

~ interruptibility is an option D interruptibility is not an option

2·29. © 1990, 1991 Open SoftwlR Fo1m.datioD

2-60

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Synchronization in OSF/l: Summary

This diagram summarizes synchronization in the OSF/l kernel and shows the layering. Note that simple locks are
not used on uniprocessors.

2-61

I
I

I Module 2 - The Process Abstraction

I
2-30. Synchronization and Thread Management

I
Avoiding Deadlock I

I
I
I
I
I
I

2·30. © 1990,1991 Open Softw_ Founda1ioa I
I
I
I
I
I
I

2-62 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Avoiding Deadlock

In many cases it is necessary to hold two or more locks. Unless these locks are taken with care, there is a potential
for deadlock. To avoid deadlock, locks are usually taken in a prescribed ord.er. by all threads (typically
"downwards"). However, it is occasionally necessary to take locks out of order. Deadlock is avoided in this case
by using conditional requests for locks. For example, if the prescribed order is "take lock A, then take locl0!,"
but one has lock B and desires lock A, then one should make a conditional request for lock A. If the request fails,
then one should release lock B (thus avoiding deadlock) and try again

2-63

I
Module 2 - The Process Abstraction

I
I

2-31. Synchronization and Thread Management
I

Taking Locks in the y.terrupt Contex1 I
I
I
I
I
I
I
I

© 1990, 1991 Open Softwan: Founclalioa
2-31.

I
I
I
I
I
I

2-64 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Taking Locks in the Interrupt Context

Locks can be taken in the interrupt context, but only with some care. The picture illustrates a situation to be
avoided. A thread is interrupted after it has taken a lock. The interrupt handler (executing in the interrupt
context) then attempts to take the same lock, and deadlock results: the interrupt handler cannot return from the
interrupt context until it takes the lock, and the thread cannot release the lock to the interrupt handler until the
interrupt handler returns and lets the thread have the processor.

The solution to this problem is straightforward. If a lock can be taken in the interrupt context at an
interrupt-priority level of n, then whenever the lock is taken in any other context, the interrupt-priority level must
be at least as high as n.

2-65

I
I

I Module 2 - The Process Abstraction

I
2-32. Signals and Exception Handling

I

Signals and Blocked Threads I
I
I
I
I
I
I

2-32. © 1990, 1991 Open Softwue Foundation
I
I
I
I
I
I
I

2-66 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Signals and Blocked Threads

All UNIX synchronization calls (tsleep, etc.) return to their caller even if they have been interrupted by a signal.
The tsleep call (which is interruptible only ifPCATCH is set) returns one of four possible values:

VALUE EVENT

0 nonnal wakeup

EINTR interrupted and the system call should return the EINTR error code

ERESTART interrupted and the system call should be restarted

EWOULDBLOCK the sleep timed out

2-67

Module 2 - The Process Abstraction

2-33. Signals and Exception Handling

Signals

2-33.

• Synchronous signal~

- exceptions

• Asynchronous ,!ignals

- interrupts

• Different animals-same mechanism
~

2-68

© 1990, 1991 Open Software FoUDdation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Signals

Signals serve a dual purpose in UNIX. They are used to infonn processes about exceptions (e.g. addressing
errors), and they are used to infonn processes about external events (e.g. the typing of an interrupt character, a
signal sent from another process). For each signal, a process may set up a handler (catch the signal), ignore the
signal, or chose the default action (which may be to abort the process, stop the process, resume the process, or
ignore the signal).

2-69

Module 2 ~ The Process Abstraction

2-34. Signals and Exception Handling

Signals and Multithreaded Processes

• Signals were designed for single-threaded processes
~

• Extending the concept to multithreaded processes:

- synchronous signals: delivered to the ~using threa.!L

_. asynchronous signals: delivered to the first thread
<

2-34. © 1990, 1991 Open Software Foundation

2-70

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Signals and Multithreaded Processes

Most of the signal-handling state is kept with the process (as opposed to the thread): signal mask, signal
disposition, and vector of pending signals. Per-thread signal disposition is kept for synchronous signals. There is
no universally accepted semantics for generalizing signals for multithreaded processes.

It is clear to whom a synchronous signal (Le. exception) should be sent. What is not so clear is to whom an
asynchronous signal (Le. interrupt) should be sent. In OSF /1, such signals are delivered to the first thread that was
created within the process (if this thread has terminated, then to the second thread, etc.).

2-71

Module 2 - The Process Abstraction

2-35. Signals and Exception Handling

Debugging with Ptrace

2-35.

parent
"debugger"

2-72

child
"debuggee"

Ii

© 1990, 1991 Open SoftWIU'C FoundatioD

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Debugging with Ptrace

A process may "allow" its parent to debug it by the use of the ptrace system call. A child issues a ptrace with an
argument of zero, thereby turning on the trace bit in its proc structure. From that point on, whenever it receives a
signal, it stops so that its parent (the debugger) ma~ examine and possibly modify it.

The parent debugger process may wait for a child to stop via the wait system call. The parent may send requests
to the child by issuing ptrace calls with positive arguments. With ptrace, it may examine and modify the child's
memory and registers, and control the child's response to signals. The data transfer is perfonned using Mach
facilities for reading and writing to another task's address space.

2-73

Module 2 - The Process Abstraction

2-36. Signals and Exception Handling

eY..:
Exception Handling in Mach / v 'J ~

raise exception - catch exception -
clear exception

continue or vanish - or - tenninate victim

victim handler

2-36_ © 1990,1991 Open Softwll'C Founclatioa

2-74

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Exception Handling in Mach

Components of exception handling:

1. victim thread: raise the exception

2. victim thread: wait for handler to complete

3. handler: catch the exception, i.e. receive notification of the exception and perfonn appropriate actions

4. handler: either clear the exception, i.e. resume the waiting victim, or terminate the victim thread

2-75

I
Module 2 - The Process Abstraction

I
I

2-37. Signals and Exception Handling

I

Exceptions: Exporting the Interface I
I

to victim

I
tl victim I

I
I

t2
victim

t3 I
I

© 1990, 1991 Open Software Foundation
2·37.

I
I
I
I
I
I

2-76 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Exceptions: Exporting the Interface

Each task has send rights to an exception port that it inherits from its parent. The receive rights for the default
task's exception port are held in the kernel by a routine that converts exceptions into UNIX signals. Associated
with a thread may be a thread exception port, to which the task has send rights. By default, there is no such port,
but a thread may establish one. If the thread exception port exists, it is used instead of the task's exception port.

The slide illustrates the sequence of events during exception handling with the default task exception handler:

to. the victim raises an exception (e.g., divides by zero); a message is sent through the exception port.

tl. an exception reply port is created if one does not already exist, and an exception message is received by the
(single) thread in the kernel exception task, which is a subtask of the kernel task.

t2. the thread in the kernel exception task translates the exception into the UNIX signal and marks this signal as
pending in the victim.

t3. the thread in the kernel exception task sends a clear exception message through the exception reply port; this
has the effect of waking up the victim, which then discovers that it has a signal and deals with it in its own
context.

2-77

I Module 2 --"- The Process Abstraction

2-38. Threads

Creating a Thread ~o f, tA/l-; i/fer S'Cl9..f

2-38. © 1990, 1991 Op:n Software Foundatioa

2-78

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Creating a Thread

Creating a thread takes a surprising number of system calls.

1. The thread_create call establishes the kernel context of a thread, but leaves the establishment of the user
context to the caller. Thus the new thread is created in the suspended state.

2. The user then establishes a user context for the thread with the thread_set_state call. This may involve
giving initial values for all of the general-purpose registers in the thread's user context, which has the effect
of giving the thread a user stack and an initial value for its program counter. Thus the management of stack
space, and the semantics of what a new thread should do, are left to the user.

3. The final step is for the user to put the thread into a runnable state by calling thread_resume.

2-79

I
Module 2 - The Process Abstraction

I
I

2-39. Threads
I

Suspending a Thread I
I
I

1. thread_suspend

2. thread_abort

3. thread_resume I
I
I
I
I

2-39. © 1990,1991 Open Software Foundatioa

I
I
I
I
I
I

2-80 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Suspending a Thread

Simple suspension and resumption are straightforward: the user just calls the appropriate system calls. Changing
the suspended thread's behavior is more difficult: the thread might be suspended in the kernel (in mid-system call
or in some other sort of trap), but the user can only directly modify the thread's user context. When the thread is
resumed, the user state might be modified as part of completing the trap, thus overriding any changes made to the
user state.

To allow the detenninistic modification of a thread's user context, the system must suspend the thread at the point
at which it is about to return to the user, i.e., after any modifications to its user context have been made within the
trap. However, if the thread is blocked, i.e. in the WAIT state, at the time at which it is suspended, then the thread
must be forced to go to the point at which it is just about to return to user mode. This forcing is accomplished by
the thread_abort system call. The effect of this call is to wake the target thread up if it is waiting interruptibly.
This thread will then do any necessary cleanup and then effectively abort the system call.

2-81

I
Module 2 - The Process Abstraction

I
I

2-40. Threads

I

Terminating a Thread I
I
I

thread_terminate

• murder is easy

• suicide is tough I
I
I
I

2-40. © 1990,1991 Open Software Foundation
I
I
I
I
I
I
I

2-82 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Terminating a Thread

Terminating another thread is straightforward: the victim thread is stopped at a clean point, i.e., a point at which it
is holding no locks, and then eliminated.

Terminating oneself presents a problem. Part of tennination involves ~eing a thread's kernel stack and thread
structure. However, doing so requires a call to a subroutine, and calls to subroutines in the kernel involvethe use
~er's kernel stack. On a multiprocessor, the instant that a stack is freed it may be allocated to some other

thread. The suicidal thread is still using its stack as it returns from the stack liberation routine, but now a new
thread is using the same stack, and total chaos ensues.

Thus a thread cannot tenninate itself directly. Instead, the thread is put on a queue that is examined by the -special-purpose kernel reaper thread, which cleans up the suicidal thread af!er that thread has yielded the ...,...
processor. -----

2-83

I Module 2 - The Process Abstraction

2-41. Threads

Pthreads

thread thread thread

J.W J.W

2-41.

2-84

user

kernel

© 1990,1991 Open Softwvc Foandatioa

I
I
I
I
I
I
J

I
I
I
I
I
I

'.
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Pthreads

The intended programmer interface to multithreaded processes is provided by the POSIX threads (Pthreads)
package, which is implemented as a user-level library. Though the OSF/l kernel lDterface for threads mayor may
not become standard, it is used to support the Pthreads interface, which is standard.

The intent is that the programmers manage threads using Pthreads. Pthreads maintains a cache of kernel threads.
When a Pthreads thread is terminated, the underlying kernel thread is merely suspended, and can be reused to
support the next Pthreads thread.

2-85

Module 2 - The Process Abstraction
I
I

2-42. Scheduling

I

Scheduling I
I

Concerns:

• processor allocation I
• processor sharing :1

I
I
I

2-42. © 1990,1991 Opca. Software FoUlldaIioa
I
I
I
I
I
I
I

2-86 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Scheduling

Processor allocation involves user-controlled partitioning of the processors to satisfy application requirements.

Processor sharing deals with two concerns: processors must be shared equitably among the running threads, but
preferential treatment must be given to uimportant" threads.

2-87

I Module 2 - The Process Abstraction

2-43. Scheduling

• processors

JAH threads

2-43. © 1990,1991 Open Softwuc Foundalioa

2-88

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Processor Sets

Processor sets are a mechanism for processor allocation supplied in the OSF/1 kernel. The intent is that a
(privileged) user-level server should supply the policy for processor allocation. The user-level server will
establish processor sets and manage their contents in response to requests from ordinary threads.

Processors are partitioned into containers called processor sets: each container holds zero or more processors,
and each processor is in exactly one container. Threads are also assigned to these containers: threads may run
only on a processor and its container (processor set). By default, there is exactly one processor set containing all
processors and threads.

Examples of use:

• Gangs. A set of cooperating threads can be given a set of processors for their exclusive use.

• Non-homogeneous multiprocessors. Multiprocessor might have two classes of processors, one with
floating-point hardware, one without. Processor sets could be used to run those threads with extensive
floating-point requirements on the appropriate processors.

For further discussion, see Black, 1991.

2-89

Module 2 - The Process Abstraction

2-44. Scheduling

Dispatching Threads for Execution

2-44.

running
threads

clock_tick
quantum mainltenan4~
time conswnption

local run
queues

global run
queue

2-90

© 1990, 1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
·1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Dispatching Threads for Execution

OSF/l maintains two types of run queues: a global run que~ (one per processor set) for threads with !!9-
Qrocessor affinity (the usual case), anCUocal run queues for threads with ~cessor ~ (e.g., threads involved
in unparallelized UNIX system calls and in device handling on unsymmetric hardware). Currently, the processor
known as the...UNlX mas}!:!!!,.as the only local run queue. This queue is used solely to support those few parts of
the kernel that have not been paraIlelized.

When a processor needs work, it first checks its local run queue (if any) and then its global run queue; finally, if it
finds no work to do, it runs a special kernel idle thread.

An important case is the dispatching of a runnable thread when there are idle processors. To speed this dispatch,
the system maintains a list of the idle processors. If this list is not empty when a thread is made runnable, then the
agent making the thread runnable selects the t rocessor in the i . st and quickly dispatches that processor to
the new y runnable thread.

A further optimization applies to those architectures in which it is advantageous that a newly runnable thread
resume execution on the processor on which it last ran. (This technique is conditionally compiled into the kernel:
it is used only when--arctutecturaDy relevant.) Associated with each thread is a reference to its last processor, this
processor is chosen, if available, when the thread runs again.

2-91

I Module 2 - The Process Abstraction

2-45. Scheduling

Scheduling Policies

2-45.

POLICY_TIMESHARE

POLICY_FIXEDPRI ~ A'~",,! % \~h-t e

2-92

© 1990, 1991 Opeu Sot\wue FoundatioD

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Scheduling Policies

Two scheduling policies are supported: a time-shared policy and aJued-priority policy. These are properties both
of the thread, i.e., how it is scheduled, and of the processor set, i.e., which policies are allowed. The primary goal
of the time-shared policy is the equitable sharing of the processors among the various threads. The goal of the
fixed-priority policy is to provide preferential treatment to particular threads.

Each thread has a base priority and a scheduler priority, both in the range between 0 and 31. The base priority is
fixed for each thread-it represents the thread's "importance" (as is usual in UNIX, numerically low priorities are
"better" than numerically high priorities). The scheduler priority is equal to the base priority for fixed-priority
threads. However, for time-shared threads, the scheduler priority is computed from the base priority by adding a
(positive) value based on processor usage.

UNIX's nice routine (which uses the (UNIX) getpriority and setpriority system calls) affects the calling thread's
base priority.

2-93

Module 2 - The Process Abstraction

2-46. Scheduling

Time-Shared Threads

2-46.

• Priority is a measure of importance and of CPU utilization

- relative importance, represented by the base priority, depends upon
whether the thread belongs to the system or to the user

- CPU utilization is an exponential average of CPU use weighted by
system load

© 1990, 1991 Open Software Foundation

2-94

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Time-Shared Threads

The basis for computing the weighted average of a thread's CPU usage is the following formula:

sched_average = current_usage * load + (518) * sched_average

where current_usage is the CPU time used in the past second and load is the current (averaged) measure of load
(based on the length of the run queue).

The effect of the weighted average is that CPU seconds are more costly the more they are in demand.

OSF/l uses a distributed approach to compute this average efficiently: the sched_average computation is done in
the clock-interrupt context for the currently running threads. Every two seconds all threads in the global run
queues are "aged" by multiplying their sched _averages by (5/8)", where n is the number of seconds since this
computation was last performed (each thread has a private count of seconds that is compared with the system
count of seconds, maintained in the global variable). Threads joining the run queue have their priorities
recomputed so as to "catch up."

The sched _average decays to 0 after 30 seconds of no processor use. Thus a thread's scheduler priority reverts to
the thread's base priority after the thread has been idle for more than 30 seconds.

No floating-point arithmetic is involved in these computations: numbers are scaled and arithmetic is perfonned
using shiftS and adds. No floating point is ever used in the kernel; thus floating-point registers need not be saved
across system calls.

2-95

I Module 2 - The Process Abstraction

2-47. Scheduling

Measuring Time

\ }~
\' '\ tl \\J
\'\-' ~bt'

"master" ;~essor

2-47. © 1990, 1991 OpeD Softw_ FouudatioD

([f T~ OJ? '~jJ

CJ ~ ;;r:fl-ea'! //rvc_ e/5bY S fa is

a~/J~

2-96

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Measuring Time

The basic unit of time is given as hz: number of clock ticks per second. The number of clock ticks per second is
architecture-dependent, but is typically 100. -

• On a uniprocessor: hz clock interrupts/second

• On a multiprocessor: the master processor's clock interrupts hz times a second; the other processors' clocks
may be set to interrupt at an integral multiple slower (but their clock interrupt rates in the Encore Multimax
reference port is identical to that of the master processor)

• On some architectures, hardware timers are used to measure per-thread processor time accurately

• On the others, per-thread processor time is a count of clock ticks

2-97

Module 2 - The Process Abstraction

2-48. Scheduling

Time Slicing

2-48.

• A thread is assigned a processor for a particular time period (or time
quantum)

• During this period, it is not preempted unless a thread with a better ..
scheduler priority is made runnable

• Threads are not preempted while executing in kernel mode

• For a multiprocessor, an adjustable quantum is used

© 1990, 1991 Op:n Software Foundatioo

2-98

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Time Slicing

The quantum for fix~riority threads is settable for each thread. However, for time-shared threads, the time
quantum is typically~f a second. While a thread is running, it cannot be preempted by threads that have been
on the run queue since the beginning of the quantum. However, if a thread with a better priority becomes
runnable, then it preempts the currently running thread. Currently, preemption does not take place immediately
for threads running in kernel mode: a thread is not preempted unless it is running in user mode (or "voluntarily"
gives up the processor by a call to thread_block). The effect of a quantum expiration in kernel mode is delayed
until the running thread returns to user mode (or blocks).

For a multiprocessor, an adjustable time quantum is used for time-shared threads. If there are more processors
than runnable threads then there is no preemption-it is not needed. If, however, there are more runnable threads
than processors, then the individual time quanta are set so that the average time between quantum ends, over all
processors, is lho of a second. E.g., for 11 threads competing for 10 processors, the per-thread time quantum is
set to one second. Thus there is an average of 1/10 of a second between quaniiIm~irations. The scheduler
adjusts the quanta so that quantum expirations are never in sync.

2-99

I
Module 2 - The Process Abstraction

I
I

2-49. Scheduling

I

Influencing the Scheduler I
I
I • Handoff scheduling

• TImed pause ~ -t J I {J... tJ
• Priority depression - ~ f1~Y I

I
I
I
I

2-49. © 1990, 1991 Open Softw_ Pmmdatioa

I
I
I
I
I
I

2-100 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Influencing the Scheduler

An application can exert some local influence over scheduling decisions through the thread_switch system call.
One application of thread switch is when a thread is in effect making a synchronous request of some other
thread. To avoid dclays, it~ ~t9 its processor to thjs other thread (as long as the thread is within its
processor set). If both threads are time-shared, the new thread receives the remainder of the current time
quantum. Otherwise, the new thread gets a new quantum.

The other two options of thread_switch arise when, for example, a thread is spinning on a lock in user mode,
waiting for another thread to release that lock. To avoid this perhaps wasteful use of processor time, it might be
advisable to yield the processor by blocking. However, in user mode, this would require at least two system calls:
one call executed by the thread itself to put itself to sleep, and another executed by another thread to wake it up.
In certain situations, we can reduce this system call overhead to just one system call. If the duration of the wait is
known, a thread can issue the thread_switch system call with the wait option, requesting that it be suspended for
a fixed period of time and then automatically woken up.

Another approach to the same problem uses the priority depression option to thread_switch. This system call
"depresses" the calling thread's priority to the worst possible value for a given period of time and then restores it.
After depressing its priority, the caller might then start spinning on a lock. If there is no competition for its
processor, then it uses otherwise idle processor cycles by spinning. Otherwise, if there is competition for the
processor, then the thread yields to the competition because of its depressed priority.

The swtch system call returns an indication of whether another runnable thread is waiting to use the caller's
processor. The swtch.J>ri system call is a special case of the thread_switch system call in which priority
depression is requested with a fixed time period (set to the time quantum for time shared threads-lito of a
second).

2-101

I
Module 2 - The Process Abstraction

I
I

2-50. Scheduling
I

Non-Parallelized Code I
I

• UNIX master

- force thread to "master processor"
I

.~ I
- subject thread to constraint of subsystem --- I

I
I

© 1990, 1991 Open Software FouDdation
I

2-50.

I
I
I
I
I
I

2-102 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Non-Parallelized Code

When a thread enters an unparallelized subsystem within the kernel, it calls UNIX_master to force itself to run on
the master processor (Le. it joins that processor's local run queue). When it completes its execution of the
unparallelized subsystem, it calls UNIX _release to allow itself to run on other processors. The signal subsystem is
one of the few such unparalleiized subsystems.

The notion of funnels is intended as a generalization of the UNIX_master concept. Associated with a subsystem,
for example a device driver, might be afunnel data structure that describes the constraints of that subsystem. E.g.,
for an asymmetric I/O architecture, it might indicate to which processors a particular I/O device is accessible.
Calls to the driver for that device would then be "funneled" to a processor of that set. Currently, funnels are used
only to force processing to take place on the UNIX_master.

2-103

Module 2 - The Process Abstraction

2-51. Thread Pools

Kernel Thread Pools

2-S1.

interrupt
source

:.::., :.:: .. ;:.: .. : .. :: :

2-104

© 1990,1991 Open Softwve Fcnmdatioa

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Kernel Thread Pools

Kernel thread pools are used in a number of places to perfonn actions in a thread context that would otherwise be
perfonned in the interrupt context. These pools are particularly useful for multiprocessors but may be used for
uniprocessors as well.

In the interruot context, the interrupt handler places a request for action on a f.allout queue and directs a wakeup
call to a pool of kernel threads. One of these threads pulls the reque~ the queue and services it. --

This technique is used in the logical volume manager, in the networking subsystem, and for device drivers (for
multiprocessors).

2-105

Module 2 - The Process Abstraction

2-52. Zoned Memory Allocation

lock

elements in use

list of free elements

+ current size --maximum size

element size

allocation size

flags

struct zone

2·52.

2-106

--

© 1990, 1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

Student Notes: Kernel Memory Allocation: Zones

Zones provide a technique for fast allocation and liberation of storage in the kernel. A zone is a collection of
fixed-size blocks: a separate zone is created for each kernel data structure that is so managed (e.g., task and
thread structures, etc.).

A zone is initialized with a pre-allocated free list, an allocation size, and a maximum size. Allocations are taken
from the free list until it is exhausted; then additional memory (of allocation size) is allocated from the virtual
memory system and added to the free list. (Zones may be paged or wired: currently they are always wired.)

2-107

Module 2 ~ The Process Abstraction

Exercises:

1. a. Which UNIX system calls can be adapted simply for use by threads within a multithreaded process?

b. Which UNIX system calls are difficult to adapt for use by threads within a multithreaded process?

c. Explain how the proc and user structures of older UNIX implementations must be modified for use with
multithreaded processes.

d. Why is it not sufficient to represent a multithreaded process with the Mach task and thread structures?

2. Explain the conceptual difference between UNIX and Mach system calls.

3. a. Explain why two routines in OSF/l, assert_wait and thread_block, are needed in place of the typical
sleep routine in older UNIX systems.

b. What is the difference between a simple lock and a read-write lock?

c. Why are conditional lock requests (e.g., simple_lock_try) necessary?

I
I
I
I
I
I
I
I
I

d. Explain what is meant when a thread is in the state RVN+WAIT+SUSPENDED. I
4. a. What is the difference between a synchronous signal and an asynchronous signal?

b. When an asynchronous signal is sent to a process, which thread within the process receives the signal? I
c. Which aspects of signal handling state infonnation are kept with the thread and which are kept with the

process as a whole? I
d. How is an exception converted into a signal?

5. a. How does a user-level program create a thread? I
b. What is the function of the thread_abort system call?

c. What is the difference between a thread as supported by the POSIX library and a thread as supported by I
the OSF /l kernel?

6. a. What scheduling policies are used in OSF/l? I
b. What is the difference between a thread's scheduling priority and its base priority?

c. Explain the meaning and use of handoff scheduling and priority depression. I
d. What might processor sets be used for?

e. Why might there be threads in a processor set but no processors?

7. a. What are thread pools used for?

2-108

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 2 - The Process Abstraction

b. Which subsystems use them?

8. Why is zoned memory allocation used instead of dynamic storage allocation techniques such as the "buddy
system"?

Advanced Questions:

9. Since the original UNIX user structure is now split into two structures, u _task and u _thread, and both are now
located in the kernel address space, why is it necessary to maintain separate u _task and proc structures?

10. In what ways are OSF/l's kernel threads cheaper than UNIX's kernel processes?

11. a. Why can't OSF/l be preemptible in kernel mode?

b. Some versions of UNIX have added preemption points in the kernel at which a thread in kernel mode
may yield to more important threads. If such preemption points were added to OSF/l, what would be the
constraints on where they might be placed?

2-109

I
I Module 2 - The Process Abstraction

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2-110 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Module Contents

1. Messages .. 3-4
Representation
Contents

2. Ports .. 3-8
Representation
Port sets
Naming ports
Ports as object references
Port destruction
Backup ports

3. Flow of Control. .. 3-28
Sending a message
Receiving a message

Module Objectives

In order to demonstrate an understanding of the use of messages and ports in OSF/I, the student should be able to:

• describe how a message header would be set up to represent a C structure and differentiate between the header
created for a mSQ_send system call and the header created for a mSQ_rpc system call

• describe how port rights are represented both within a user task and within the kernel

• describe the flow of control and data within the mSQ_send and mS9_receive system calls.

3-1

I Module 3 - Messages and Ports

3-1. The Big Picture

Messages and Ports

3-1.

3-2

':\~::;::~:I Mach

't~~~f:~~:~1 UNIX

© 1990,1991 Open Software Foundatioo

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Messages and Ports

The material in this module is covered in Open Software Foundation, 1990a, chapter 3.

3-3

I
Module 3 - Messages and Ports

I
I

3-2. ~essages

I

Messages I
I
I • Contents

- variable amount of typed data

- destination port ~ I
- return port

• Fonn I
I

- simple messages

- complex messages

I

3-2 © 1990, 1991 Open Softwan: FoundatioD
I
I
I
I
I
I
I

3-4 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Messages

A message is a collection of data to be sent through a port to the task that has receive rights for the port. The data ---is typed, allowing the kernel or intennediate tasks to interpret it as necessary. For example, the kernel must know
if a data item is a port right (send or receive) so that it can deal with it accordingly. If the data is to be transferred
from one machine to another in a heterogeneous environment, then the kernel must know the type of application
data, so that it can convert the data to the target machine's representation. (The use of ports for inter-machine
communication is not supported in OSF/l.)

The message must contain a reference to the destination port, which is the port through which the message is
transferred, and may contain a reference to a return port through which a reply can be sent.

Simple messages contain no out-of-line data, and they are copied directly into and out of the kernel. This
technique is used if the message is small and does not contain port rights. Otherwise the message is deemed to be
complex and requires additional processing by the kernel. Port rights must be interpreted by the kernd, as
discussed later. The transfer of out-of-line data is optimized using copy-on-write techniques. -

3-5

Module 3 - Messages and Ports

3-3. ~essages

Message Data Structure

message header

message descriptor

3·3.

3-6

simple?

© 1990, 1991 Open Softwue Folll1dation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Message Data Structure

A message consists of a header followed by zero or more data items, each headed by a descriptor.

Message header:

• simple? no ports or out-of-line data?

• size: total bytes (except for out-of-line data)

• local port: optional port through which a reply might be sent

• remote port: port for sending message

• id: application-specific id

Message descriptor:

• type: send right, receive right, int

• size: bits per item

• number: number of items

• i: inline (data follows) or out-of-line (pointer follows)

• I: longfonn-type, size, number follow

• d: deallocate port right or memory

3-7

~I ~ 1 ~ 0 .
.... 0 -

I.~
...... =-~ ('Jl en

~ ~ = ~
Q -s tD
C'Il

~

I
9 ~ (0
en

~ en

~ ('Jl
('Jl

en = (JC
tD
til

= "t:S

~~r~ 18-a ,,, .. ""..,....,.. 0
..,..~~.~
'v... '\11.. ...

~
0

(,;.)

~~~i:l ~_:M l:l 00 ........... "" ........... 
til 

@ 
; 
.0 

!I t rD~ 
I 

i 
8' 

- - - .- - - -- - .~ - - - - - - -- - - -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

Module 3 - Messages and Ports 

Student Notes: Ports 

A port may be used either as a protected queue of messages or as an object reference. When a port is used as an 
object reference, the task with receive rights manages the object, and send rights to the port are effectively 
references to the object. 

3-9 



VJ 
I -0 

~ I 

@ 

i p 

! 
f 
~ 

t 
I 

II B~~~~~ """""""""" """"""."""" """"""""."" 'i'k'l\""""''''' 

~ 

~ 
~ 

~ 
W 

Iotj 

8 
(') 

.~ 

r~~~l"8 ",,"C.."C.."C.."C.."" ~ 
"""""""""" :~~~~ OJ 

B~~~~~ """""""""" 
:~~~~ 

~ 
~ 

/ 
~ 

l ~ \ I 

.! \\ ...... 
)1 C'-l 

~ 

I~~~~r~ I ~"""""""" 0 f}.."C.."t.:'o..~ !4 
"""""""" """""""". ~"C..~~~ •. > 

I----~~ I'k"""""""" ~""""'.fk'.fk'. 
~~~~~~ 

a_, ________________________ ~

~
I~ Ul .
0
Q..

~ = Q, ('D
~

~

I
~
('D
C'I.)
rn = ~
~ rn

= = Q..

~
Q

I~

------------ _---------

I
I
I
I
I
I
I
I
I
I'

I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Port Sets

The selVer task, which has receive rights for ports A, B, and C, can consolidate them into a port set The effect of
this is to merge the message queues of all the ports into a single queue. The selVer can then receive messages
from the port set, and thus receive messages from any of ports A, B, or C.

3-11

Module 3 - Messages and Ports

3-6. Ports

The Kernel Port Structure

3-6.

blocked senders
receiver (task)
backup (port)
port set

3-12

object

© 1990, 1991 Op:a Softw_ Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I,

I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Kernel Port Structure

A port is represented in the kernel by a structure of type kern yort _t. The first parts of this structure, of type
port _ obj and port_object, refer to a kernel object if this port represents such a reference. (The source code often
uses the types port _ obj and kern yort interchangeably. This works only because the port _ obj is the first
component of the kern JJort structure.) The next portion of the structure, the port _messages structure, represents
the queue of messages for the port and the queue of receivers waiting for a message to arrive (of course, only one
of these queues can be non-empty at a time). Even though only one task can hold receive rights to the port, there
may be multiple blocked receivers, since this task may have mulifple threads. --- - ----~=====---~---=-
The remaining important fields of the kern yort structure include a queue of blocked senders, a reference to the
task holding receive rights to the port, and a reference to the port's backup port.

3-13

I
I Module 3 - Messages and Ports

I
I

3-7. Ports
I
I
I

P9rt Names ~ I' rf-ls

I
I
I
I
I
I

3-7. © 1990, 1991 Open Software PoundatioD

I
I
I
I
I
I

3-14 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Port Names

Internally, a port is named by the address of its kernyort structure. Externally (Le., in user tasks), a strictly local
name is used. These local names (of type port _ t) are just integers. They are analogous to iIle descriptors in
UNIX: one task's port names mean nothing to another task; when these names are passed to the kernel, they must
be converted to the internal fonn (analogous to the address of a file-table entry). However, !ffilike UNIX file
descripto~ if two local port names within a task are di!fen;nt, then t!.tey necessarily refer to different PO!!S.

3-15

I Module 3 - Messages and Ports

3-8. Ports

Port Name Translation

3-8. © 1990, 1991 Opm Software PouDd&ticm

3-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Port Name Translation

The first two lists are doubly linked and are used just to keep track of the port rights associated with each object.
The second two lists are actually hash tables and are used for efficient translation from external to internal names
and vice versa.

Each time a port right is added to a task's name space, a translation entry is created. Each such entry is put on
four lists:

• The task's translation entry chain

• The port's translation entry chain

• The task/local name table (TL table),

• The task/port table (TP table)

3-17

Module 3 ---- Messages and Ports

3-9. Ports

Port Name Interpretation

task

3-9.

3-18

rnyort

translation entry
(port hash t) - -

© 1990, 1991 Opm Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I Module 3 - Messages and Ports

I
I

Student Notes: Port Name Interpretation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 3-19

I Module 3 - Messages and Ports

3-10. Ports

Object Cache

object cache

3-10.

3-20

object

© 1990, 1991 Open Software Fouodatioa

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Object Cache

To speed the translation from the local name of a port to the object it identifies, each task has an object cache.
This cache is a simple array indexed by the low-order bits of the local name of the port. If the translation is in the
table, it is found immediately.

3-21

I
I Module 3 - Messages and Ports

I
I

3-11. Ports

I

Port Destruction I
I
I
I
I
I
I

3-11. © 1990. 1991 Open Software Foundation
I
I
I
I
I
I
I

3-22 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Port Destruction

If a port with no backup port has its receive rights deallocated, then the port is marked dead. All tasks with send
rights to this port receive aport_de/etedmessage and lose their rights. All threads that were blocked and queued
on the port's queue of blocked senders are woken up and their mS9_send system calls return with an error status.

3-23

I Module 3 - Messages and Ports
I
I
I

3-12. Ports

I

Backup Ports, part 1 I
I
I
I
I
I
I

3-12. © 1990,1991 OpeD Software Foundatioa
I
I
I
I
I
I
I

3-24 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Backup Ports, part 1

If a task deallocates a port's receive rights, then these rights are transmitted to some other task through the port's
backup port. Send rights to the backup port are effectively held by the port itself. Receive rights are held by the
task that is to provide the backup function.

3-25

w
I

~

~ I

@

j
!
f
f
r
~

I ~'A~a ~] ~~ffi' """" ' .~.~.~ e? •

== = n
~ c: --c
~
0
-t
fI'J
~

~

~
N

\

8~' ______________________________ ~

tH
I :: ~

tH • 0
~

~ c: e tf>
rI.l

~

I
::
tf>
fI'J
fI'J

= CIQ
tf>
C'/j

= = =-
--C
0

I~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: Backup Ports, part 2

Task 1 has vanished; its receive rights to port A have been transferred to task 2 via the backup port.

3-27

Module 3 ~ Messages and Ports

3-14. Flow of Control

3-14.

- transfer message to kernel

• use copyin to transfer header
and inline data

• use vm _map _ copyin to map
the out-of-line data into copy
objects

- convert to internal fonn

• use object_copyin to deal with
ports in messages

- ifkemel is the receiver, call
mach _ msg, which transfers to
appropriate kernel routine

- handle flow control

- if a thread is waiting for a
message, then transfer control
to it immediately (handoff
scheduling)

- otherwise, queue message

© 1990,1991 Open Software Foundation

3-28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: msg_send

Sending a message involves two steps. First, the message has to be transferred into the kernel. Then it has to be
disposed of: either queued on the port's message queue or immediately handed off to a waiting receiving thread.

Out~f-line..data is not directly mapped into the kernel's address space, but instead is represented by a copy object,
which has the effect of a vm _map _entry but does not occupy kernel address space. The purpose of the copy
object is to maintain a copy of the out-of-line data that can be later mapped into a receiving task's address space.

3-29

Module 3 - Messages and Ports

3-15. Flow of Control

3-15.

- check queue for message,
possibly block

- when a message is consumed,
wake up blocked senders

• wake up one blocked sender
for each message received

• generate notify messa.s.e if
necessary

• msg_copyout

- convert ports from internal to
external representation with
object _ copyout

- use vm _map _ copyout to
transfer out-of-line data

- use copyout to copy header to
user

© 1990. 1991 Opeu. SoItware Foundation

3-30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 3 - Messages and Ports

Student Notes: msg receive

Receiving a message is also a two-step process. The first step is to remove the next message from the port's
message queue. If there is no message, then the following thread is queued on the queue of waiting procedures.
If there is a message and there are blocked senders (i.e., the message queue was full), then the first blocked sender
is woken up. If the sender of the message requested it, a notify mess~ is sent to infonn it of the message's

------------------------=-~~-~ ~ consumption.

The second step in message reception is to transfer the message from the kernel to the user task.

3-31

Module 3 - Messages and Ports

Exercises:

1. a. How does the contents of a message header created for a mSQ_send system call differ from that created
for a mSQ_rpc system call?

b. Describe how a message header would be set up to represent a C structure.

2. a. What is contained in the kernel port structure?

b. How are a task's rights to a particular port represented within the task?

c. How are such external references to a port converted by the kernel into the address of the kernel port
structure?

d. When the task receives a port right via a message, how is it added to the task's port space?

e. What happens when a task deallocates its send rights to a port?

f. What happens when a task deallocates its receive rights to a port?

3. a. Explain how out-of-line data is passed from one task to another.

b. Explain how flow control is implemented as part of the mSQ_send and mS9_receive system calls.

Advanced Question:

4. Messages and ports are not heavily used in OSF/l, in part because the UNIX standards that dictate the
user/system interface make no mention of message- and port-like constructs. However, messages and ports
could be used to aid the implementation of a number of UNIX system calls. For example, in the write system
call, the buffer could be transferred from the user's address space to the kernel's address space as part of a
message, allowing copy-on-write techniques to be used to minimize the actual copying of data. What
problems would be associated with doing this? What other UNIX system calls and facilities could benefit
from the use of messages and ports?

3-32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Module Contents

1. Lazy Evaluation .. 4-4

2. VM Components .. 4-6
Data structures
Representing an address space
Separating architecture-independent from architecture-dependent aspects

3. Memory Objects ... 4-30
Vnode pager
External memory object managers
Paging and swapping

4. Copying and Sharing .. 4-58
Virtual copy operation
Read/write sharing
Penn anent memory objects
External memory objects

5. The Ptnap Module ... 4-102
Required functionality
A typical architecture
TLB shootdown

Module Objectives

In order to demonstrate an understanding of virtual memory within OSF/I, the student should be able to:

• explain the concept of lazy evaluation and give four examples of how it is used in OSF/l

• list the data structures in the architecture-independent portion of OSF/l and explain their purpose

• describe the interface between the memory object manager and the virtual memory kernel

• describe the implementation of memory objects within the vnode pager

• explain the use of shadow objects and copy objects in optimizing virtual copy operations

• explain what must be done at the architecture-dependent level to implement the virtual copy operation

4-1

I Module 4 - Virtual Memory

4-1. The Big Picture

Virtual Memory

4-1.

4-2

':~t~:~:1 Mach

ttt~~::::1 UNIX

© 1990. 1991 Open Softw_ Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Virtual Memory

A task's address space consists of a number of either private or shared virtual memory objects. The address space
may be large and sparse. Objects such as files can be mapped into the address space.

The VM model is independent of the underlying architecture; primary storage is a cache of pages belonging to the
VM objects. The architecture's address-translation mechanism maps references to cached pages. The
architecture-dependent code and the architecture-independent code are separate.

User code can access the interface between the kernel's page cache and memory object managers, and thus
memory object management can be perfonned outside of the kernel.

The material in this module is covered in Open Software Foundation, 1990a, chapters 7,8,9, and 10.

4-3

Module 4 - Virtual Memory

4-2. Lazy Evaluation

Lazy Evaluation --- /1,;1 c/J~ fo-)eYJt;e-/ .rAJ

4-2.

Postpone everything until the last possible
moment: if you put it off long enough,
maybe you won't have to do it.

© 1990, 1991 Opr:n Softwuc Foundation

4-4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Lazy Evaluation

The technique of lazy evaluation is pervasive; it's used throughout the VM system. It is an effective optimization,
since many operations, such as copying, often tum out not to be really necessary.

Examples of the use of lazy evaluation:

• n.,,-o~p~h..:y_Si_C_al_a_d_d_re_ss_m_ap~s_a_re_cre_at_ed_u_nt_il_th~ey::...-are ___ n..;:..ee __ d_e_d....;..to_~~

• no pages are allocated until they are needed

• no page is copied until two copies are necessary - ---
• no backing store is allocated until it is needed

4-5

Module 4 -.;... Virtual Memory

4-3. VM Components

VM Rough Sketch

address space

VMkemel

4·3.

4-6

hardware
translation

facility

© 1990. 1991 Open Softwme FoundalioD

I
I
I
I
I
I
I
I
I
,I

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I -

I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: VM Rough Sketch

A process's address space is managed by the kernel, which is responsible for setting up the hardware address
translation facilities as required, for responding to page faults, and for detennining which pages should be kept in
primary memory. This kernel functionality is divided into two pieces, a machine-independent piece and a
machine-dependent piece. The fonner is by far the larger, and it is responsible for maintaining a description of
each process's address space. The size of the latter depends upon the architecture, but is typically much smaller
than the fonner.

There is a third component of the VM subsystem, which is the manager of the backing store. It is responsible for
supplying the initial values of pages and for holding on to pages that have been paged out. Two possibilities are
available to the programmer. A special subtask of the kernel known as the vnode pager is the default manager of
backing store. It uses the fue system for its backing storage. An alternative is to provide a user-level backing
store manager (known as an external memory object manager or an external pager). It can be used to back
objects that the user has mapped into its address space via the vrn_map system call; what it does with the pages is
entirely up to the application.

4-7

I
I

I Module 4 - Virtual Memory

I
4-4. VM Components

I
Mapping Objects into an Address Space I

I
I

address space

I
I
I
I

4-4. © 1990, 1991 Open Software Foundation I
I
I
I
I
I
I

4-8 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 -- Virtual Memory

Student Notes: Mapping Objects into an Address Space

Mapping an object into an address space involves a number of issues. First of all, what is the nature of the object?
It might be:

1. tempor'E]: it has no name and hence no penn anent existence.

2. afile: it has a name and hence a permanent existence, but should changes made to the address space be
~

reflected to the fue?

3. a user-provided objecf; a user process provides the contents of the object and manages its modifications.

Second, how might the pages obtained from the object be shared among multiple processes? For example:

1. the pages are not shared

2. the pages are shared read-only (and if they are modified, copies are made)

3. the pages are shared read-write

4-9

Module 4 - Virtual Memory

4-5. VM Components

VM Components
I I rJA\

~\h 1 {j) ~k'l\" task A
~ j'r-vt 'f'r'.~"..,.,....,.

page
lists

4-5.

taskB

4-10

memory h~f): ~
object - 5 6 (-t-

© 1990, 1991 Open Software Faundalion

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

Module 4 - Virtual Memory

Student Notes: VM Components

Each task has a map to represent its address space, consisting of a header, the vm _map structure, and a linked list
of structures, each a vm _map_entry representing a continuous range of~ddresses.

~

Each such range is mapped to a memory object represented internally as a vm_object. Each vm_objectmay refer
to other vm_objects (via the shadow chain, which will soon be discussed). In addition, it represents a set of virtual
pages, some of which may currently be in primary storage. Those pages in primary memory are represented by
vm yage structures and are linked to the vm_object. The vm_object may refer to a memory object (via a port
reference), which represents those pages stored elsewhere (in backing store) and managed by a memory object
manager. This object manager may be supplied by either the kernel or a user task.

The pmap data structure encapsulates of the architecture-dependent portion of the VM subsystem. It represents
the architecturally required memory mapping structures and related information.

4-11

I Module 4 - Virtual Memory

4-6. VM Components

VMMaps

4-6. © 1990, 1991 Open Sol:\WIl'C Foundation

4-12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: VM Maps

A VM map, mapping a range of virtual addresses to vm _objects, is represented as a doubly linked list of
vm_map _entry structures headed by a vm_map structure. The mapping may be sparse, Le., many if not most
addresses in the range may not be represented. The VM map represents either the address space of a task or a
range of addresses shared by a number of tasks.

4-13

I
I

I Module 4 - Virtual Memory

I
4-7. VM Components

I
I
I
I
I
I
I
I

4-7. © 1990,1991 Open Software Foundation I
I
I
I
I
I
I

4-14 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: vrn map entry - -
• Previous entry, next entry:

- links in chain of vm _map _ entrys

• Start address, end address:

- range of addresses represented in this entry

• Inheritance:

how this range should be inherited by a child (i.e., via a fork)

share, copy, or none (not inherited at all)

• Maximwn protection, current protection:

specifies maximum and currently permitted accesses

some combination of read, write, and execute; not all combinations may be possible

(RWX) > (RX) > ()

• Object:

- reference to an object, which may be a vm _object or a vm _map

• Object type:

- share map, submap, and vm _object

• Offset:

- offset into object

• Rags:

- copy-on-write information

• Wired count:

this is incremented by one to indicate that the range of addresses must not be paged out; thus pages in this
range may only be paged out if the wired count is 0 (which is the usual value)

4-15

I Module 4 - Virtual Memory

4-8. VM Components

4-8. © 1990,1991 Open Software Foundation

4-16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: vID_map

• Size:

- virtual size of mapped region

• Number of entries:

- number of vm _map _entrys in list

• Mainmap?

- whether it is the top-level map of a task

• Pmap:

- pointer to pmap for this mapping

• Lock:

- a blocking lock protecting this data structure

• Timestamp:

- time of last change to map (used to detennine if anything has changed since the object was unlocked)

• Reference count

• Hint: L "/ c::v- t21t3)
- pointer to last vm _map_entry that was encountered in a lookup (a good pl~o start for the next 10okuQ~

• Free-space hint:

- pointer to the first hole in the address space

4-17

I Module 4 - Virtual Memory

4-9. VM Components

4-9. © 1990. 1991 Open Software Foundation

4-18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: vm_object

• Memory list:

- list of incore pages assigned to this object

• Reference count

• Pager:

the memory object manager

• send rights to memory object port

• offset into the memory object

• Shadow object:

- link to backing object for copy-on-write

• Copy object:

- link to object that should receive copies of the modified pages (used for copy-on-write with pennanent
memory objects)

• Size:

- object's size if it's an internal object

• Page count:

- number of inc ore pages

• Lock:

- a simple lock for mutual exclusion

• Flags:

- various

4-19

Module 4 - Virtual Memory

4-10. VM Components

Representing Pages in Primary Memory

• • • pageq • • • -
• • • hasbq • • •
• • • listq • • •

flags

etc.

vrn_page

~~/
~V1r;"

4-10.

4-20

~, inactive,
orfree~t

-header >

vffi_objectloffset

© 1990, 1991 Open Software FolIDdalioa

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Representing Pages in Primary Memory

Each page in primary storage is represented by a 56-byte vm yage data structure, which is used to represent the
page in a number of lists. Attached to each vm_object is a list of all the vmyage structures for incore pages
associated with the object. If the underlying page is pageable, then the vm yage structure is attached to one of
three lists managed by the pageout daemon (the active, the inactive, or the free-page list). In order to find a
particular page, there is a system-wide hash table headed by the array vm yage _buckets. This hash table is keyed
by the address of the vm_object and the page's offset within the virtual memory represented by the object.

4-21

I Module 4 - Virtual Memory

4-11. VM Components

Submaps

kernel map

4-11.

4-22

SL/LAsk tAA/~jl~
/keY/l~1

© 1990. 1991 Opc:a Soh..: Fcnmdatiou

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Submaps

Since the list of vm map entm is typically not very long, sequential search is reasonable for user tasks.
~-

However, the kernel task's address space ~resentation can become fairly complicated. To simplify searching,
special submaps are used (only in the kernel) to represent a range of addresses.

Note that this representation is used only in the kernel.

4-23

I
I

I Module 4 - Virtual Memory

I
4-12. VM Components

I
UNIX VM on OSF/l I

I
I

)"IJ
I L1 I
I
I

4-12. © 1990, 1991 Open Software Foundation
I
I
I
I
I
I
I

4-24 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: UNIX VM on OSF/l

This picture shows how the address space is initially set up for a UNIX process. A vm_object for an executable
file is mapped into both the text and the data sections. The executable portion of the fue is mapped in the text
region, and then the initialized data from the file is mapped on the data region.

Since the data region of the process may be modified but the file should not be, the fue pages representing data
are mapped copy-on-write. The kernel creates a temporary memory object to back up the modified copies of data
pages. Since threads in the process cannot modify the text region, the kernel need not allocate any additional
backing store for the text.

Two vm _objects representing temporary storage are set up for the BSS (block skip section or, less cryptically,
uninitialized data) and the stack regions.

4-25

I Module 4 ~ Virtual Memory

4-13. VM Components

UNIX VM on OSF/l: Expansion

4-13.

4-26

© 1990, 1991 Opm Software FoundalioD.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: UNIX VM on OSF/l: Expansion

This picture shows the effect of growing the UNIX address space. The UNIX process issues an sbrk system call
to increase the size of BSS by 20K bytes. Internally, this is converted into a vm _allocate request, which
detennines that an existing vm_map_entry can simply be extended to include the new address space.

4-27

Module 4 - Virtual Memory

4-14. VM Components

Locating Pages

pmap

access page table
1----------..

location
20170

4-14. © 1990,1991 Open Software FoundatioD

4-28

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 -. Virtual Memory

Student Notes: Locating Pages

A page fault occurs when a page is referenced that is not mapped by the hardware. The page-fault handler must
detennine if this is a legitimate reference; if so, it must allocate primary storage for the page and put data into the
real memory.

1. The page-fault handler first scans the list of vm _map _ entrys for an entry whose range includes this page. To
speed this search, the hint field of the vm _map structure points to the last vm map _entry referenced by this
task; successive page faults often occur on pages within the same vm _ map _entry.

a. If a containing vm _map_entry is not found, then the reference is invalid and an exception is generated.

2. If a containing vm _map _entry is found, then the page-fault handler checks to see whether the desired access is
allowed.

a. If access is not allowed (e.g., an attempt to modify a page in a read-only region), then, again, an exception
is generated.

3. If the access is allowed, then the page-fault handler follows the pointer to the vm _object. Associated with the
object is a hash table representing virtual pages belonging to the object.

a. If the desired page belongs to the object, then its contents are fetched from the associated memory object
(as described later).

b. If the page is not present in this vm_object, then the page-fault handler checks the next vm_object (which
this one shadows). (We discuss what this means and why it occurs in the following pages.)

c. If no vm _object claims ownership of the page, then the page is created, filled with zeros, and given to the
topmost vm_object.

4-29

Module 4 - Virtual Memory

4-15. Memory Objects

Memory Objects

kemeltask

4·15.

4-30

memqry object manager
fo {l,(t ~ vJ(/' ~ II::

© 1990, 1991 Open So1\wuc Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Memory Objects

A memory object is an abstraction representing what is mapped into virtual memory. The object might be a file,
temporary storage, or something implemented by a user task (such as the network memory server).

A memory object is implemented (managed) either in the kernel or in a user task. It is represented by three ports:

• memory object porr. effectively the name of the object-used to transmit requests to the manager. The
memory object manager holds the receive rights to this port.

• memory object control porr. a path from the manager to the vm _object used to transmit requests from the
(external) memory object manager. The kernel holds the receive rights to this port.

• memory object name port: created by the kernel and used to name an object in the kernel's response to the
vm_regions system call (it provides a means for showing that an object exists without giving away rights to
it).

Memory object managers (also known as pagers) manage the objects that may be mapped into tasks' address
spaces. A pager's duties are to respond to a kernel's requests for pages (in response to page faults) and to store
pages on some sort of backing store in response to pageout requests.

The default memory object manager, known as the vnode pager, is implemented as a separate task running in
kernel mode. (Its address space is implemented as a submap of the kernel map, as we will discuss later.) The
vnode pager supports both temporary memory objects and pennanent memory objects. The fonner are used to
back up virtual memory that will exist only as long as tasks have it mapped into their address spaces. This is used,
for example, to back up BSS and stack, as well as to back up a process's private modifications to penn anent
objects that the process has mapped copy-on-write, such as initialized data.

Permanent memory objects have names in the file system and thus can continue to exist even if no process has
them mapped (Le., pennanent object are files). Examples are text, initialized data, and memory-mapped files.

Memory object interactions typically involve three parties:

• the memory object manager (pager)-rnanages one or more memory objects

• the kernel-maintains the page cache and responds to page faults

• the client-one or more user threads; maps memory objects into its address space

4-31

Module 4 - Virtual Memory

4-16. Memory Objects

Memory Object Management: Interfaces

Memory object management

• cli~el

• kernel to pager
L-/

• pager to kernel
~

4-16_ © 1990, 1991 OpeD Softwuc FouudatioD

4-32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Memory Object Management: Interfaces

• Client to pager

- obtain memory object (i.e. a port); no fonnal interface

• Client to kernel

- map memory object into address space; use either mmap (for files) or vm_map (for Mach objects).

• Kernel to pager

- initialize memory object

- request a data page

- write back a modified data page

- upgrade permissions

• Pager to kernel

- provide a data page (either in response to a request or ~tuitously) _,4~ 4/44/

- indicate that a page is not available (will be zero-filled)

-, restrict access to cached data (e.g. write-protect or read-and-write protect)
:::=r

clean or flush cached data

- set persistence and virtual copy attributes

4-33

Module 4 - Virtual Memory

4-17. Memory Objects

Pagei part 1

4-17.

list of vm yage
structures
(representing
inoore pages)

user task

need this
page

4-34

© 1990, 1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Pagein, part 1

When a page fault occurs, the kernel's page fault handler first detennines that the desired page is not incore. It
consults the vm yage hash table to check if a vm -page structure for the desired page exists. If one does not, it
must fetch the page from the associated pager.

4-35

Module 4 ~ Virtual Memory

4-18. Memory Objects

Pagein, part 2

user task

4-18. © 1990, 1991 Open Sottw_ PollDClation

4-36

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Pagein, part 2

1. The kernel creates a vmyage structure for the desired page (page 2 in the example) and marks this page
~ (indicating that a value for the page has not been found yet) ~ (indicating that an operation on
the page is in progress).

2. The faulting thread requests the desired page by sending a memory object data request message to the pager
through the pager's memory object port (send rights for which are found in the vm_object).

3. The faulting thread blocks, awaiting a response.

4. The pager, using the memory object control port, either:

a. returns the desired page (via a memory_object_datayrovided message) and then turns off the absent
indication in the vm yage structure.

b. indicates that it does not have the desired page (by sending a memory_object _data_unavailable message),
marks the page no longer busy, and wakes up the waiting threads.

c. indicates that an error occurred while fetching the page (by sending a memory _object_data _error
message), marks the page no longer busy, and wakes up the waiting threads.

A "short-circuit" approach is used with the default pager, Le., the vnode pager. Since this pager exists in the
kernel, it does not need to be sent a message; it can be called directly. Thus a call is made to it in the context of
the faulting thread and the page I/O occurs in this thread's context. Instead of sending a return message, the
thread merely returns.

4-37

Module 4 - Virtual Memory

4-19. Memory Objects

Pageout, part 1

user task

vm yage struetures pageout
(representing
ineore pages)

4-19. © 1990,1991 Open Software FouudaUOD

4-38

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Page out, part 1

Pageouts are perfonned in the conteg of a special kernel thread called the pageDut daemo!} (as will be discussed).
It selects a page to be freed and then contacts the appropriate pager.

4-39

I
Module 4 - Virtual Memory

I
I

4-20. Memory Objects

I
Pageout, part 2 I

user task I
I
I
I
I
I

4·11). © 1990, 1991 Open Software FoundatioD
I
I
I
I
I
I
I

4-40 I

I
I
I
I
I
I
I
I,

I
I
I
I
I
I
I
I
I
~
I

Module 4 - Virtual Memory

Student Notes: Page out, part 2

The pageout daemon then:

1. locks the vm_objectto prevent any other thread from manipulating the page in question

2. creates a new object

3. assigns to this new object the vmyage structure for the page to be paged out

4. assigns a new vm yage structure (marked "fictitiousU
) to the original vm _object in place of the page being

paged out

a. this structure blocks any attempt to page the page in while it is being paged out

5. unlocks the original vm_object

4-41

Module 4 - Virtual Memory

4-21. Memory Objects

Pageont, part 3

user task pager task

new object

4-21. © 1990,1991 Op:u Softwmc FoandatioD

4-42

I
I
I
I
I
I
I
,)

,I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Page out, part 3

The new object is sent to the pager as part of a memory_object _data_write message and is mapped into the pager
task on receipt. The pager is now responsible for copying the page to some penn anent storage. After it has done
so, it issues a vm_deallocate system call to deallocate the page and thereby indicate that it has dealt with it.

Once the memory_object_data_write message has been successfully queued, the fictitious page is removed. The
purpose of this page is to serialize pageins with pageouts: we must make certain that pageins are dealt with after
the pageout has been completed so that the most recent version of the page will be fetched. The fictitious page is
placed in the original vm _object, forcing any thread that faults on this page to block until the fictitious page is
removed. At this point the faulting thread sends a memory_object_data_requestmessage that is queued after the
memory _object_data _write message, thus serializing the messages and leaving it to the pager to maintain
serialization.

The original page is put into a new object just in case the pager does not complete the pageout quickly enough.
The pager for this new object is set to be the vnode pager and the outgoing page is returned to the domain of the
pageout daemon. If the page is not deallocated soon enough, then the pageout daemon will give the page to the
vnode pager for a sure pageout.

The interface to the vnode pager is identical to that of other pagers. However, the pageout daemon is assured that
the vnode pager will always complete a pageout. Thus the page being paged out is not returned to the domain of
the pageout daemon, but instead is "wired," assuring that the pageout daemon will keep its hands off of it until the
vnode pager has paged it out and deallocated it.

The vnode pager needs additional synchronization for serialization with a concurrent pagein request. Since
pagein requests are short-circuited (are done in the context of the faulting thread as opposed to being handled by
sending a message to the pager), this serialization, based on message order as described above, doesn't happen
here. Instead, the vnode pager maintains a hash table of page outs in progress. When a pagein of an outgoing
page is attempted, the page in thread must block until the pageout has been completed so that it does not page in
stale data. The vnode pager nonnally pages to ordinary files (via the buffer cache). Thus a pageout effectively
completes as soon as the page is copied into the buffer cache.

4-43

Module 4 ~ Virtual Memory

4-22. Memory Objects

Lazy Evaluation of Object Creation

4-22.

>

list of incore
pages

>

4-44

vnode pager task

© 1990,1991 Open Software Foundation

I
I
I
I
I
I
I
I
J

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
t
I
I
I
I
I
I
I
I'

I
I
I
I

.,J

I

Module 4 - Virtual Memory

Student Notes: Lazy Evaluation of Object Creation

Memory objects and vm_objects are both created using lazy evaluation techniques. A vrn_allocate system call
creates a vm_map_entry, not a vm_object. The vm_object is created only when a page is actually accessed. Only
then does the system set up the vm_object and link to it a vmyage structure for the accessed page. The vnode
pager does not allocate a memory object until the pageout daemon issues a pageout request

4-45

Module 4 - Virtual Memory

4-23. Memory Objects

Temporary Memory Objects

4-23.

vstruct structure
(vnode yager _t)

vS.J1map

>flZ 01

I~J pager Jile
structure

© 1990, 1991 Opm Software FolIDdatioD

4-46

I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
'.

I

I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Temporary Memory Objects

In a typical configuration, a fairly small number of paging files is set up for use by the vnode pager to back the
pages of temporary memory objects. Each of these files is represented by a pager Jile structure, which, among
other things, gives the vnode for the file and a limit on its size. Each memory object is represented by a vstruct
structure that indicates on which paging rue the object is backed.

vs ymap structures are used to indicate where pages of the object have been stored in the paging file. If the
object's size is no more than 512 pages, then a single vsymap is used to map each of the pages to the paging file.
For larger objects a two-level scheme is used: the first vs ymap points to up to 512 vs ymaps, each of which
contains up to 512 pointers to where pages have been backed in the paging file.

Note that lazy evaluation is used as much as possible, so that the vsymaps (and space in the paging files) are
allocated only when necessary to back up a page.

4-47

Module 4 - Virtual Memory

4-24. Memory Objects

Allocating Backing Storage

--------I~ ?

4-1A.

pages in primary
memory

Is there room?

4-48

backing store

© 1990, 1991 Open Softwan: Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Allocating Backing Storage

OSF/I takes a liberal approach to the allocation of the backing store: backing store is allocated only when
necessary, i.e., when a page must be written out. This approach differs from the conservative approach used in
earlier versions of UNIX, in which backing store and virtual memory are allocated at the same time.

To see the difference between the two approaches, consider an extreme example: a system has 100Mb of primary
storage and 10 Mb of backing store. With the conservative approach, since all virtual memory must have backing
store allocated for it, at most 10 Mb of the primary store can be used. With the liberal approach, a total virtual
address space of 110 Mb can be used: 100Mb in primary memory and 10Mb on backing storage.

Unfortunately, with the liberal approach one may find out at a rather inopportune moment that there is no more
backing store. Recovery from running out of backing store is not currently handled gracefully.

4-49

~M_o_d_u_le_4 __ --__ V_ir_t_u_al_~ __ em __ o~rY~ ______________________ ~1

4-25. Memory Objects

Vnode Pager Task: Slave Threads

vstruct

vstruct

4-25. © 1990, 1991 OpeD Softw_ Foundation

4-50

I
I
I
I
I
I
I
I
I
J
I
I
I
I
I
I
J
I
I

I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Vnode Pager Task: Slave Threads

A number of threads (tenned "slave threads") exists within the vnode pager task. Each such thread is responsible
for a set of memory objects and deals with all requests coming on the memory objects ports for its memory
objects. Given a request from a particular port, it looks this port up in the vnode JJort _hash _table to determine
the memory object's associated vstruct structure.

When a memory object is created it must be assigned to a slave thread. This is done by randomly chosing an
index into the array vnode yager _sets. Each entry of this array contains a port set (described in the next module)
to which the memory object's memory object port is added. Using the port set mechanism, the slave thread
receives messages sent through any of its memory_object JJorts.

4-51

I Module 4 - Virtual Memory

4-26. Memory Objects

Vnode Pager Task: Address Space

kernel map

-=---=--submap

4-26. © 1990.1991 Open Softwue Fcnmdation

4-52

1
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Vnode Pager Task: Address Space

The vnode pager is implemented as a very special task. It has a task structure, a u _task structure, and contains
threads, but its address space is the kernel address space. It has access to all of the kernel address space, though
its private data structures are segregated within a special submap.

4-53

Module 4 ~ Virtual Memory

4-27. Memory Objects

Page Replacement

It orlw
active list inactive list

4-27.

free list

© 1990, 1991 Open Software Foundation

4-54

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Page Replacement

Unlike the architecture-independent address space representation, page replacement is very simple. Each unwired
page is on one of three lists, each maintained in FIFO order:

• free list

• inactive list

• active list

Whenever there is a memory shortage, a single kernel thread, the pageout daemon, is woken up by whichever
thread in the kemel notices the memory shortage. It transfers enough pages from the inactive list to the free list to
increase the size of the free list to a threshold. It examines each page in tum on the inactive list: if the page's
reference bit is set, it transfers the page to the end of the active list; otherwise it transfers it to the end of the free
list. If a page's modified bit is set, then the pageout daemon writes the page out to its memory object before it
transfers the page to the free list

After transferring pages to the free list, the pageout daemon ch~cks to see if the inactive list has enough pages. If
it does not, it transfers pages from the active list to the inactive list As it does so, it turns off the pages' reference
bits. The intent is that, once a page has been placed on the inactive list, it must be proved that this page is needed.
The proof comes when a thread accesses the page, thus turning on the reference bit. Thus non-referenced pages
eventually go to the free list; referenced pages go back to the end of the active list.

Pages on the free list may be reclaimed if they are referenced by a page before they are used for some other
purpose.

If the hardware does not support a reference bit, a slightly different strategy is used. The translation entries for
pages on the inactive list are marked invalid, thus forcing a page fault to occur when these pages are referenced.
The page fault thus proves that the page is needed. These faulted pages are then moved to the end of the active
list.

4-55

I
Module 4 - Virtual Memory

I
I

4-28. Memory Objects

I
Swapping I

Ey
• unwire the kernel stack

I
I

~jA(e/4P1J I
• fetch and wire the kernel stack

I
I
I

4-28. © 1990. 1991 OpeD Software FouDdaIioa
I
I
I
I
1
I
I

4-56 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Swapping

Swapping is handled by two kernel threads: a swapout thread and a swapin thread. The pageout daemon wakes
up the swapout thread in response to memory shortages (but no more than once a minute). The swapout thread

scans the list of all threads and swaps out those nonrunnable, interruptible threads that have been idle for more ---than 10 seconds.

The aSF/1 notion of "swapping out" is somewhat unusual: the thread is marked "swapped out" and its kernel
stack is unwired. Nothing else happens to the thread immediately. Eventually, however, the pageout daemon will
claim the pages of this thread. Since its kernel stack is unwired, these pages will be freed as well.

The swapin thread is responsible for swapping in threads. The swapin thread "swaps in" threads by wiring the
thread's kernel stack. A swapped-out thread becomes a candidate to be swapped in when it is made runnable.
Runnable swapped-out threads are placed on a swap in lisr, the swapin thread is woken up whenever a thread is
placed on this list

4-57

Module 4 - Virtual Memory

4-29. Copying and Sharing

Virtual Copy

4-29.

pages belonging
to vm _object

task A

>
copy

task A

pages belonging
to vm_object

4-58

taskB

© 1990, 1991 Opan Softwuc Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Virtual Copy

There are many situations in which it is necessary to make a logical copy of a range of pages. For example, after
a UNIX fork system call, the child process has a copy of the parent's address space. When a task sends a message
to another task, the recipient receives a copy of the message. A very useful optimization is copy-on-write, in
which the "copying" is lazily evaluated, i.e., postponed in hope that it will not be necessary. Two tasks holding
logical copies of a page can share the same physical page until one of them modifies itt at which point the
modifier obtains a copy of the page to modify.

A thread in task A has just executed a fork system call, creating task B. We focus our attention on a range of
addresses represented by a single vm _map _entry in task At which is "copied" into task B. As long as neither task
modifies any of the pages in this range, the pages are shared.

4-59

Module 4 - Virtual Memory

4-30. Copying and Sharing

Virtual Copy Redux

task A taskB task A

> copy

4-30.

4-60

task B task C

© 1990, 1991 Opm Software FoImdatioD

I
I
I
I
I
I
I
I
I
J
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Virtual Copy Redux

Suppose that task B from page 4-58 executes a fork system call, creating task C. If none of tasks A, B, and C has
modified any pages within the range, then they will continue to share all the pages.

4-61

I Module 4 - Virtual Memory

4-31. Copying and Sharing

Virtual Copy and Modified Pages, part 1

task A task B

4-31.

4-62

© 1990, 1991 Open Softw_ PoundatioD.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Virtual Copy and Modified Pages, part 1

This picture shows the situation of page 4-58 after a thread in task A has modified page 1. To represent the pages
that a task has modified, and thus those pages that are now private to the task, the system creates a shadow object.

The picture shows the architecture-independent representation of the address spaces for tasks A and B: task A has
its private version of page 1, but uses the original versions of pages 2 and 3; task B uses the original versions of
pages 1,2, and 3.

4-63

I Module 4 ~ Virtual Memory

4-32. Copying and Sharing

Virtual Copy and Modified Pages, part 2

task A taskB

4·32.

4-64

© 1990, 1991 Open ~ Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 -Virtual Memory

Student Notes: Virtual Copy and Modified Pages, part 2

This picture shows the situation in the previous picture after a thread in task B has modified page 2. Another
shadow object has been created, this time to represent those pages which are private to task B.

4-65

I Module 4 - Virtual Memory

4-33. Copying and Sharing

Virtual Copy and Modified Pages, part 3

task A task B

4-33.

4-66

taskC

© 1990,1991 Open Softw_ FoundatiOll

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Virtual Copy and Modified Pages, part 3

In this picture, task B has executed a fork system call, creating task C. As long as neither task B nor task C
modifies any pages, the situation will be as shown here: the two tasks share the version of page 2 referred to by
the shadow object and use the versions of pages 1 and 3 referred to by the original object.

4-67

I Module 4 - Virtual Memory

4-34. Copying and Sharing

Virtual Copy and Modified Pages, part 4

task A taskB

4-34.

4-68

taskC

© 1990. 1991 Open Softwuc PouudatioD

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I Module 4 - Virtual Memory 1---------------------

1
Student Notes: Virtual Copy and Modified Pages, part 4

1 A thread in task B has further modified page 2, necessitating the creation of still another shadow object to
represent what are now task B's private pages.

I
1
1
I
I
I
I
I
I
I
I
I
I
I
I 4-69

I Module 4 - Virtual Memory

4-35. Copying and Sharing

Virtual Copy and Modified Pages, part 5

task A taskB

4-35.

4-70

taske

© 1990, 1991 Open Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I Module 4 - Virtual Memory

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Student Notes: Virtual Copy and Modified Pages, part 5

A thread in task C has modified page 1, resulting in the creation of yet another shadow object.

4-71

I Module 4 - Virtual Memory
I
I

4-36. Copying and Sharing
I
I

Sharing I
task A task B I

I
I
I
I
I

4-36. © 1990, 1991 Opm Soh_ Foundation I
I
I
I
I
I
I

4-72

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Sharing

Multiple tasks occasionally share portions of their address spaces with one another. The most straightforward
representation of this would be for the appropriate vm_map_entry of each task to point to the one vm_object
representing the shared memory. However, this representation is already taken: it is used for copy-on-write. A
separate memory map, called the share m,gp, represents the shared memory. This map consists of a vm map
structure heading a linked list of v~ _map _ entrys. each of which points to a vm _object. The vm _ map _ e~trys of the
tasks sharing this memory point to the share map (not to vm_objects).

4-73

I Module 4 - Virtual Memory

4-37. Copying and Sharing

Share Then Copy, part 1

task A task B

4-37.

taskC

© 1990, 1991 Open Softwuc Pouudaticm

4-74

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I Module 4 - Virtual Memory I ~. --------~----------~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Student Notes: Share Then Copy, part 1

Fairly complex memory representations can be achieved by perfonning numerous copy and share operations. In
the picture, the original object is shared by tasks A and B. Task B has created a child task C, but this portion of
the address space is (virtually) copied into task C.

4-75

I Module 4 - Virtual Memory

4-38. Copying and Sharing

Share Then Copy, part 2

task A taskB

4-38.

taskC

© 1990,1991 OpcnSoftw_ Fouodation

4-76

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Share Then Copy, part 2

Task C has modified page 2 and either task A or task B has modified page 1.

This picture illustrates why a separate map is needed when tasks share a portion of their address space. An
alternative representation might be for the vm _map _ entrys of tasks A and B to point directly to the vm _object.
However, this would complicate the creation of the shadow object needed in this model to represent the modified
copy of page 1. Without a share map, it would be necessary to track down all of the vm _ map _ entrys that point to
a vm _object and then change them to point to the new shadow object.

4-77

I Module 4 - Virtual Memory

4-39. Copying and Sharing

Clipping: Changing Attributes

>

4-39.

4-78

© 1990.1991 Open Software FolIDdalion

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I Module 4 - Virtual Memory I 1....-. ------=----------'

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Student Notes: Clipping: Changing Attributes

Programmers do not see the organization of the address space imposed by the vm _map _ entrys. Instead, they see
the address space as a collection of pages; i.e., the only important boundary is the page boundary (a system call is
available to detennine the page size).

In particular, programmers can adjust the protection on arbitrary ranges of pages by using the vm yrotect system
call. The use of this call might well result in the creation of new vm _map _ entrys to represent the new view of the
address space.

This picture illustrates the effect of using vm yrotect to set a range of pages, previously read-write, to be
read-only. The affected pages span two vm_map_entrys, each of which must be split in two to allow a read-write
portion and a read-only portion.

4-79

I Module 4 - Virtual Memory

4-40. Copying and Sharing

Collapsing Objects
task 2

>

task 1 task 2

4-40. © 1990. 1991 Open Softw_ Foundation

4-80

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I ~I -M-o-d-u-le-4-----V-i-rt-u-al-M--em--o-ry----------------------~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Student Notes: Collapsing Objects

Shadow chains can become fairly lengthy after a series of virtual copy operations. A couple of simple rules are
employed to reduce their length.

The first rule "is that if a vm _object is pointed to by only a single vm _object via a shadow link, then it is not
necessary to have both objects: they may be combined into a single object.

The second rule is a bit more complicated. If a shadow chain links three vm _objects and all pages of the middle
object are shadowed by the objects above it, then the middle object is unnecessary and can be eliminated: the top
object's shadow link is changed to point directly at the bottom object. To apply this rule, no pages in either
vm_objectcan be paged out (otherwise it is too cumbersome to detennine if the upper object completely shadows
the lower).

Due to complications with locking, these optimizations can be perfonned only in the context of one task at a time.
They are done when the shadow links are being traversed anyhow, for instance while a page fault is being
handled.

4-81

I Module 4 - Virtual Memory

4-41. Copying and Sharing

The Virtual Copy Operation: Permanent Objects
-

task A taskB

vm write
- -

4-41. © 1990, 1991 Open SoftwllC Foundation

4-82

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I~M-o-d-u-le-4-----V-i-rt-u-al-M--em--or-y----------------------~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Student Notes: The Virtual Copy Operation: Permanent Objects

As mentioned previously, the virtual copy operation is extremely important. It is used as part of:

• fork

• message passing

It is essential that a virtual copy be quick. However, if a penn anent object is involved, the standard copy-on-write
optimization must be performed with care: all changes to the associated virtual memory must be reflected back
into the pennanent object.

Suppose that a thread in task A uses vrn_ write to copy data from its address space into a portion of task B's
address space, into which a penn anent object (e.g., shared mappings of memory-mapped fIles or an external
memory object) has been mapped. If it weren't for the fact that the object was permanent, the vrn_write could be
easily optimized using copy-on-write techniques. For example, task B's vm _ map_entry could be set to point
directly to the vm _object of task A. However, the copy-on-write optimization will not work in this case because it
would effectively unmap the permanent object from task B. The system must ensure that changes to this portion
of task B's address space get back to the penn anent memory object.

4-83

Module 4 - Virtual Memory

4-42. Copying and Sharing

Optimizing the Virtual Copy Operation

4-42.

• Three parties are involved:

- the server (Le. the memory object manager) ------ the client (i.e. the task that maps the penn anent memory object)

- the ~ (Le. the task that is the target of the virtual copy)

• From the copier's viewpoint, the mapped object should be a snapshot of its
state taken at the time of the virtual copy

© 1990,1991 OpcnSoftwuePoalldatioll

4-84

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 -Virtual Memory

Student Notes: Optimizing the Virtual Copy Operation

Suppose now that we are making a virtual copy of a portion of an address space into which a pennanent object has
been mapped; the virtual copy is a temporary object, not a pennanent object.

Immediately after a virtual copy operation takes place, both the client and the copier should "see" the original
value of the object However, the copier's changes to the object should have no effect on the object itself, but
should change only the copier's private view of the object. The client's changes to the object, however, must
affect the object, so that all other clients that have mapped the same memory object see the changes. Furthennore,
any changes made by any of these other clients, even if they reside on other computers, will be seen by this client.
The major problem is detennining whether such changes occurred before or after the virtual copy, and thus
whether or not they should affect the copier.

4-85

Module 4 - Virtual Memory

4-43. Copying and Sharing

Virtual Copy from Permanent Objects:

COPY_DELAY, part 1
client client

copy

4-43.

4-86

copier 1

copy
object

© 1990. 1991 Open Software Fouadatioa

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

II ~ -~-o-d-u-l-e-4-----V-I-·r-tu-a-I-~--em--o-ry------------------------~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Student Notes: Virtual Copy from Permanent Objects: COPY_DELAY, part 1

In the simplest case, the memory object manager and all of its clients are on the same machine. Thus the kernel is
immediately aware of any change made to the object. The major concern here is to make certain that all changes
clients make to the object are reflected in the object itself. The representation of memory after a virtual copy is
necessarily asymmetric, since the copier's changes to the object are reflected only in the copier's view and backed
up by a temporary memory object, while the client's changes to the object are sent to the original object.

After a virtual copy, the client's view of the object is unchanged except that, whenever it modifies a page of the
original object, the kernel must first copy the original version of the page to a copy object in the copier's view.
The kernel finds the copy object by following a special copy link. Thus the copier is always assured of seeing the
original version of the object.

4-87

Module 4 - Virtual Memory

4-44. Copying and Sharing

Virtual Copy from Permanent Objects:

COPY_DELAY, part 2

client client

copy

4-44.

4-88

copier 1

© 1990, 1991 Open Sohuo PouDdation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I 1~-M-o-d-u-le-4-----V-i-rt-u-al-M--em--or-y----------------------~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Student Notes: Virtual Copy from Permanent Objects: COPY_DELAY, part 2

In this picture the client has modified page 2, so the original value of page 2 is first copied to the copy object and
the client now modifies the original.

4-89

I Module 4 - Virtual Memory

4-45. Copying and Sharing

Virtual Copy from Permanent Objects:

COPY_DELAY, part 3
client copier 1

shadow link

4-45.

4-90

© 1990. 1991 Opm SoltwU'C FowIdatioa

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Virtual Copy from Permanent Objects: COPY_DELAY, part 3

The copier now modifies page 1. A new shadow object is created for the copier and a copy of page 1 is attached
to it.

4-91

Module 4 - Virtual Memory

4-46. Copying and Sharing

Virtual Copy from Permanent Objects:

COPY_DELAY, part 4

client copier 2 copier 1

shadow link

copy link

4-46. © 1990. 1991 Opm Software Foundation

4-92

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I Module 4 - Virtual Memory
I
I

Student Notes: Virtual Copy from Permanent Objects: COPY_DELAY, part 4

I The copier of page 4-88 has executed a fork system call, creating copier 2.

I
I
I
I:,

I
I
I
I
I
I
I
I
I
I
I 4-93

Module 4 -.Virtual Memory

4-47. Copying and Sharing

Virtual Copy from Permanent Objects:

COPY_DELAY, part 5
client copier 3 copier 2

4-47.

4-94

copier 1

© 1990, 1991 OpeD Software Poundatioo

I
I
I
I
I
,I

I
II
I
I
I
I
I
I
I
I
I
I
I

:1 ~ -M-o-d-ul-e-4-----V-i-rt-u-al-M-e-m-o-r-y--------------------~

I
I
I
I
I
I,

I
I
I
I
I
I
I
I
I,

I
I

Student Notes: Virtual Copy from Permanent Objects: COPY_DELAY, part 5

Starting from the previous picture, the client has fork'd once again, creating copier 3, which must start with the
same view of the object as that of the client.

4-95

Module 4 - Virtual Memory

4-48. Copying and Sharing

Virtual Copy from Permanent Objects:

COPY_DELAY, part 6
client copier 3 copier 2

4-48.

4-96

copier 1

© 1990, 1991 Open Softwuc: Foandatioa

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I 1~-M-o-d-u-le-4-----V-i-rt-u-al-M--em--o-ry----------------------~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Student Notes: Virtual Copy from Permanent Objects: COPY_DELAY, part 6

The client now modifies page 3. But, before this is allowed to happen, a copy of the page is propagated across the
copy link to copier 3 's copy object, assuring copier 3 of a correct view. Since the shadow link of copier 1 's and
copier 2 's copy object points to copier 3 's copy object, their view is maintained as wen.

4-97

Module 4 - Virtual Memory

4-49. Copying and Sharing

Virtual Copy from Permanent Objects:

COpy NONE e;~ 1h4dl/j~

4-49_

~ ~ I server I
[object] I

v;({~y ;rAcJ1)ht

4-98
-y-

© 1990,1991 Open SoftWIN Foaadatiaa

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I 1~~-o-d-u-le-4------V-ir-tu-a-I-~-e-m--or-y----------------------~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,

I
I

Student Notes: Virtual Copy from Permanent Objects: COpy NONE

The COPY_DELAY technique does not work if clients on other machines are modifying the objects. The
problem is that the local kernel does not know whether such changes took place before or after the virtual copy.
Only the seNer knows for sure. If the server is not prepared to deal with this uncertainty, then the virtual copy
must be implemented as a physical copy. That is, we ensure that the copier sees a snapshot of the object taken at
the time of the copy by physically copying all of its pages at that moment.

4-99

Module 4 - Virtual Memory

4-50. Copying and Sharing

Virtual Copy from Permanent Objects: . /;,
COpy CALL-- ,/oe-r jl wp,j ~""~ 4k~e~;::;..:~w I

[

4-50.

I server I -~~ver-c&';
_ _ /JIST iVbYk,

object 1 copy of
object

4-100

© 1990.1991 Open 501_ FoaudatioD

I
I
I
I
I
I
I
·1

I
I
I
I
I
I
I
I
,I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,

I
I

Module 4 - Virtual Memory

Student Notes: Virtual Copy from Permanent Objects: COPY_CALL

This technique augments the interface between the kernel and the server so that the selVer can manage the
snapshot views of the various copiers of the object. Each time a virtual copy is perfonned, the kernel notifies the
server. The server then receives rights to a port that it uses to represent the snapshot All pages of the object that
are in primary memory are marked read-only so that the seIVer can handle each write-fault Thus the seIVer is
given enough infonnation to allow it to perfonn the job that the kernel perfonns with the COPY_DELAY option.

4-101

Module 4 - Virtual Memory

4-51. The Pmap Module

Pmaps

4-51.

• The machine-dependent part of the VM system

• Functions

- maintaining the virtual-toj>hysical ~a~gl9! each address s~ce
(task) as required by the hardware

- manipulating unmapped physical memory

/? /1~/e-j-/;'ke- /Jill" '.) -)/1/fl)
-I 1/ _ ~ /'mt)541} ~CAdJ~

/tv ~rI4i:'/~ ~

~8C
«~bOO{) ~ I),~U r?~i/d

© 1990, 1991 Open Softwue FoaDdation

4-102

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

The pmap module maintains whatever hardware-m~'1dated data SLn.!ctllres are required to map virtual to physical
addresses. These mappings need not be complete: all that is required is that enough mapping infonnation be
available to the hardware to satisfy the current reference.

Following the principle of lazy evaluation, physical mapping infonnation is typically set up on demand, i.e., when
it is needed to satisfy a reference. As threads within a task reference virtual memory, physical mapping
information continues to be built up. However, this information may be deallocated when necessary, for example,
to cope with shortages of memory.

The other function of the pmap module is to manipulate physical memory directly. For example, if the kernel
must copy into an unmapped address space, it must call upon the pmap level to perfonn this operation.

4-103

Module 4 - Virtual Memory

4-52. The Pmap Module

Operations Involving Pmaps: Thread Switchin

4-52.

• Leave the context of one thread and enter the context of another

-~ if both threads are in th~iiiSk:J
- otherwise, must leave the old address s~ce (via a call to

pmap deactivate) and enter the new address. space (via a call to
pmap activate)!)

'"3--

© 1990, 1991 Opm Software Pouodation

4-104

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 ~ Virtual Memory

Student Notes: Operations Involving Pmaps: Thread Switching

Calls to pmap _activate and pmap _deactivate must be implemented for each particular architecture. The
pmap _deactivate call might involve saving some context and, for multiprocessors, removes this processor from
the list of processors using this pmap. The pmap _activate call might involve setting a hardware register to point
to a new page table and, for multiprocessors, puts this processor on the list of processors using the new pmap.

4-105

Module 4 - Virtual Memory

4-53. The Pmap Module

Operations on Pmaps: A Single Address Space

• pmap _enter

- ~ a physical page at a particular virtual address

• pmap _remove

- remove a range of addresses

• pmap yrotect

- set the protection attributes for a range of pages --------

4-53. © 1990, 1991 Open SoAwuc PoundalioD

4-106

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Operations on Pmaps: A Single Address Space

This set of operations affects the address space of a single task.

• pmap _enter: called as part of the response to a page fault. A new page allocated for the task must be entered
into the address map immediately, so that a reference to this page can now be completed.

• pmap _remove: called as part of a vm_deallocate request to ensure that address faults result if the given range
of addresses is accessed.

• pmap yrotect: called as part of a vmJlrotect request to set the desired protection at the hardware level.

4-107

Module 4 - Virtual Memory

4-54. The Pmap Module

Operations on Pmaps: Physical Pages

- remove write pennission on all maps to a particular page
------~~5 ~

• pmapJemove_aU -:>-".,~ aur
- remove a page from all maps and indicate whether the page has been ---modified

4-.54. © 1990,1991 Open SohIn: Fouudation

4-108

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: Operations on Pmaps: Physical Pages

This set of operations affects a physical page and all of the pmaps in which it appears. A pmap _copy_on _write
message would be called as part of a virtual copy operation to implement copy-on-write semantics. It makes
certain that write pennission is not allowed for this page in all of the maps in which it appears.

A pmap _remove_all message might be called as part of a pageout operation. The page is to be removed from all
pmaps but pmap _remove_all must check to see if the page has been modified via any of these pmaps. If it has,
the modification is indicated by setting a bit in a global array.

4-109

Module 4 - Virtual Memory

4-55. The Pmap Module

Forward-Mapped Segmented-Paged Architecture

pmap

4-55.

l'-s_e_gm_e_nt_# 1 _p_a_ge_#_",--_off_s_et ___ 1 virtual address

10 10 f'/<, J1 61 1f; .
~

segment table
(fully allocated)

page tables

4-110

pages

© 1990,1991 Opan Software Foundation

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: forward-Mapped Segmented-Paged Architecture

As an example of a pmap module, we look at a forward-mapped segmented-paged architecture. Virtual addresses
are divided into three parts: a t2-bit offset within a page (i.e., a page size of 4K), a lO-bit page number (Le., a
page table size of tK entries), and a to-bit segment number (i.e., a segment table size of lK entries). Thus the
hardware-required memory-mapping structures for an address space are headed by a segment table. Each pmap
points to a unique segment table that is fully anocated when the pmap (and hence address space) is created. Page
tables and pages are allocated as needed.

4-111

Module 4 - Virtual Memory

4-56. The Pmap Module

PV List

pv _entry -1---'-'.

pmap

4-56. © 1m, 1991 Open SoL\wuc FoIIDdaticm

4-112

I
I
I
I
I
I
I
I
I
-I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: PV List

Operations on physical pages need to be able to fmd all of the pmaps mapping each page. The pv list contains the
location of each page's pmaps. Given a physical address, an index into the pv _headers array is computed. This
array is an array of pv _ entrys. Each pv _entry points to a pmap (i.e., one mapping the associated physical page),
contains the virtual address of this physical page within the pmap-described address space, and points to the next
pv _entry (if any) referring to another pmap that maps this physical page.

4-113

Module 4 - Virtual Memory

4-57. The Pmap Module

Pmaps: Sharing Pages

pmap
segment table

pmap

segment table page table

4-51.

4-114

page
(Physical location

10000)

© 1990, 1991 Open Sot\wuc Fouudatioll

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 ~ Virtual Memory

Student Notes: Pmaps: Sharing Pages

In our example architecture, page tables are not shared. Thus a page shared by two or more pmaps has multiple
page-table entries pointing to it If this page is being shared using copy-on-write semantics, then each of the
page-table entries specifies read-only pennission.

4-115

I Module 4 - Virtual Memory

4-58. The Pmap Module

TLB Shootdown

4-SB_ © 1990. 1991 Op:a Software Foaodatioa

4-116

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

Student Notes: TLB Shootdown

Most architectures employ translation-Iookaside buffers (TLBs) to speed the translations from virtual address to
physical address. If the architecture also uses a primary-memory resident data structure (e.g., page table) as the
source of TLB entries, then the operating system must take care to keep the TLB and this mapping structure
consistent. In a typical architecture, one might change a memory map by modifying the primary-memory data
structure, but since the hardware accesses the TLB first, one must also arrange that the TLB be changed as well.
This is usually accomplished by invalidating all or part of the TLB, thus forcing a miss when the hardware
accesses this translation in the 1LB and hence forcing a lookup in the mapping structure.

On a shared-memory multiprocessor, one must also be concerned about the consistency of the 1LBs on other
processors. This is an issue when threads of the same task are running simultaneously on different processors or
when threads of tasks sharing memory are running simultaneously on different processors. The problem is that
each of these threads may be modifying the memory map, and such changes must be propagated to all TLBs.

With most such mUltiprocessors, this is not easy: there is usually no notion of interprocessor TLB access. Thus to
propagate changes to other 1LBs one must use interprocessor interrupts to notify software to make these changes.

Two potential race conditions must be avoided when TLBs are modified across a mUltiprocessor:

• if one invalidates a processor's TLB before changing the global page table, and if a thread continues to run on
that processor, the hardware might reload the 1LB from the (unmodified) page table before the page table is
updated.

• if the page table is modified first, and if the unmodified affected entry is in the TLB of some other processor, a
thread accessing another page might force the writeback of the unmodified TLB entry to the page table, thus
undoing the modification to the page table.

These race conditions are avoided by "stalling" the other processors long enough to make the changes.

A detailed discussion of the TLB shootdown algorithm can be found in Black, 1989.

4-117

Module 4 - Virtual Memory

4-59. The Pmap Module

TLB ShootdowD Algorithm

Initiator:

4-59.

lockpmap

send interrupts to all processors using
thepmap

spin on all-processor bit vector, waiting
for others to acknowledge

invalidate TLB

update translation map

unlockpmap

Responders:

clear bit in vector

wait (spin) for pmap unlock

invalidate TLB

retum from interrupt

© 1990,1991 Opm SoAw_ Fo1IDdatioa

4-118

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I Module 4 - Virtual Memory

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Student Notes: TLB Shootdown Algorithm

The algorithm is actually very simple: first the pmap is locked. This prevents any other thread from making
changes to the translation map and it prevents any thread using this pmap from entering the running state.
Attached to the pmap is the list of processors that are currently using the associated address space-these
processors are running a thread from the pmap's task. Each of these processors (the "responders'') is sent an
interrupt, which it acknowledges by clearing·a bit; then they spin, waiting for the pmap to be unlocked (they don't
lock the pmap themselves, but merely wait for it to be unlocked). Once the first processor (the initiator)
detennines that all responders have responded, then it can safely invalidate its own TLB and modify the
translation map (referred to by the pmap). It then unlocks the pmap, notifying the responders that they can
invalidate their TLBs.

Note that if multiple tasks are sharing the affected page, this procedure must be repeated for each pmap.

4-119

Module 4 - Virtual Memory

Exercises:

1. a. Under what circumstances is "lazy evaluation" a viable technique?

b. Give four examples of how lazy evaluation is used in OSF/l.

2. a. List the components of the VM system.

b. What are the three uses of a vm _ map?

c. Why might two vm _ map _ entryS point to the same vm _object?

d. What is the purpose of the pmap data structure?

3. a. How is an internal memory object represented?

b. When is it created?

c. In whose context are pages written to a paging file?

d. In whose context are pages fetched from the paging file?

e. Is there any difference between the interface to the vnode pager and the interface to an extemal pager?

f. What optimizations are employed to improve the perfonnance of the vnode pager (as opposed to external
memory object managers)?

g. What is an "inactive" page?

h. Explain what happens when a thread is swapped out and when it is swapped in.

4. a. How is lazy evaluation used in conjunction with the fork system call?

b. When a copy-on-write page is modified, the copy is assigned to the topmost vm _object. Why is it not
assigned to a lower vm_object?

c. Why is it necessary to have share maps, e.g., why not represent read/write sharing by having multiple
references to the same vm_object?

d. Which virtual copy technique is used with objects set up by the mmap system call? Why?

e. Under what circumstances does COpy _DELAY not worle?

5. a. Explain what must be done at the pmap level in response to a virtual copy operation.

b. Explain what must be done at the pmap level in response to a pageout operation.

c. Give a detailed answer for the above two questions in terms of the architecture-dependent data structures
used for the forward-mapped segmented-paged architecture discussed in the notes.

4-120

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Module 4 - Virtual Memory

d. Suppose that we have a shared-memory multiprocessor that employs TLBs and forward-mapped
segmented-paged virtual address translation. Explain what must happen in response to a vrn_deallocate
system call.

Advanced Questions:

6. What is the correct response to running out of backing store?

7. What difficulties would be encountered in replacing the vnode pager with an external pager?

8. Select an architecture different from the forward-mapped segmented-paged architecture discussed in the
notes. Sketch the implementation of its pmap module.

4-121

I Module 4 - Virtual Memory
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4-122 I

