INSTITUTE FOR ADVANCED PROFESSIONAL STUDIES
Technology Consultation and Training Worldwide
955 MASSACHUSETTS AVENUE
CAMBRIDGE, MASSACHUSETTS 02139-3107
(617) 497-2075 « FAX: (617) 497-4829 « email @ iaps.com

OSF/1 Internals

Volume II

For the Technical Staff of
Digital Equipment Corporation

- Colorado Springs

Release 1.0

Amsterdam - Boston ¢ Dallas « London « Los Angeles « Paris « San Francisco » Tokyo » Washington, DC

Copyright Notice

The material in this binder is either Copyright 1992 by the Institute for
Advanced Professional Studies or Open Software Foundation, or reproduced for
use in this course by IAPS with permission from the copyright holder.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying or otherwise, without the prior written permission of
the Institute for Advanced Professional Studies.

Additional copies of these materials are available strictly through the Institute
for Advanced Professional Studies, 955 Massachusetts Avenue, Cambridge, MA
02139.

The ideas and designs set forth in the course materials are the property of the
Institute for Advanced Professional Studies. These materials are not to be
distributed to third persons without the express written permission of IAPS.

Contents
]

Module 5 — File Systems
L0 0 1<t 5-2
Representingan OpenFileo i i i i i i e 5-6
Virtual Fle Systems oitiii ittt ittt e e e ettt 5-14
TheBufferCache e ettt it 5-34
Directory Path Searching oot i i it it e i iee et 5-66
NI 31 T T 1 5-84
L8] S 371 (I 17 1+ 5-100
NES File System ...ttt ettt it ittt taeatrereaeeneeeaanneeneannnns 5-124
28 (s P 5-166

Module 6 — Terminal I/0Q and Device Drivers

L8 13 1T 4 6-1
0 e 11 (P 64
Dynamic Configurationttt ittt et ie ettt iaeeiannennanas 6-10
)BT (T B T OO U 6-16
Terminal IO i it i i it e ettt et e et e e 5-30
EXercisescoveuiieanns e e e e e e eeatenee ettt ettt e 6-48
Module 7 — Streams
L0 01T TP 7-1
Streams ConCePLS . ..o o ie it i e i e e et eaeieeenaaa. 7-4
Message Flow e e et e et ae ettt 7-24

Implementation 0f Streams i e e 7-38

)21 13 2V T) o N 7-50

8] (s £ < 7-60
Module 8 — Sockets
L0 4] =T 1071 PN 8-1
R o 101 1 8-4
1 1 & .S U N 8-10
0193 (514101 11 L 1 P 8-26
SOCKELS AN S AL .. v vt ittt ittt ettt it eneneeeensoanneeenueeoeseenanssannosaneeenns 8-34
28 3 (0 1= O A 8-38

Module 9 — Logical Volume Manager

L 0] (1t 1P 9-1
ROl Of the LV M ... ittt ittt tetenatessassecenoesononanensnenseasnneas 9-4
LD T B 40 11 P 9-12
Components and FIow of CONIOLttt i ettt i it iaiannenneans 9-26
(3 (o1 < U 9-36
Module 10 — Loader
(0) 701 1 10-1
ROle Of the Loader ..o ittt ittt ittt ittt taeteeneeraeernneneaseseoeasonnenanenas 104
SymbOL ReSOIUHONt iit i i it it it ittt ettt it ia ittt 10-10
Data Structures and Flow of Control i i i ittt iiiee i 10-18
The RUN-IME IMage it it et ittt ittt et en st earaaenanaennn 10-22
Dynamic Loadingc.oiiiiniiuiiiiiit ittt it it et i e 10-26
S (v 2 10-30
Module 11 — Security
L0 0] 170 11-1
S CUIE Y COMOBITIS . . ottt ittt it e e eaeeeaseeeeeoensenenseneasoenesseanenaneacnns 114
Auditing ..., it et et e s 11-12
ACCESS COMIIOLttt it ittt ie et e it et ta e iia e i 11-16
Authorizations and Privilegeso itiirtn ittt et et e 11-28
Living With SeCUIILYot it i ittt it e ittt ettt ia i ianenenns 11-44
5 o3 (vt vt AP 11-46

BiblOgraphy e et et i e,

Glossary

..

Index

Module 5 —File Systems

Module Contents

1. Representing an Open Fileo it i i i i i it i ittt e et teeteeaeenannnns 5-6

Open file data structures
Coping with parallelism

2. Virtual File Systems . . . oottt it it i e it e e e e e et

Representing multiple file system types
Mounting file systems

File-system-independent data structures
File-system-independent flow of control

B, The Buffer Cache .. . ittt ettt ettt ettt ettt iesnaeeenseeeeeaneseeensneaneas

Multibuffered I/O
Representing the cache
Maintaining consistency
Parallelizing the cache
Interaction with mmap

4. Directory Path Searchingt i i i e e sttt
Coping with multiple types of file systems

Mount points
Symbolic links
Concurrency
Speed

T B o1 (I £ (= 1+ P

Inodes
Disk map
S5 organization

[T 8 S 5T LN £ 1+

Directories
Disk layout
Parallelization

A S 51 (11 1 N O

NFS semantics

Server and client implementation
Mount protocol

Effects of crashing

Reliability

Parallelization

Module 5 — File Systems

Module Objectives

In order to demonstrate an understanding of the virtual-file-system interface and of OSF/1’s implementations of
the S5, UFS, and NFS file systems, the student should be able to:

® explain the use of the reference count in the system file table entries

® explain the roles of the vfsops and vnodeops data structures and the abstraction of the file system concept
® describe how the buffer cache has been parallelized

® describe how directories are protected from concurrent updates

® give the size constraints on files in the S5 and UFS file systems

® cxplain how two threads may simultaneously extend the size of two different files within the same UFS file
system

® explain why it is necessary for a NFS server to maintain a queue of recent NFS requests

5-2

Module 5 — File Systems

5-3

Module 5 — File Systems

5-1. The Big Picture

File Systems

747,

UNIX

5-1. © 1990, 1991 Open Software Foundation

54

Module 5 — File Systems

Student Notes: File Systems

The file subsystem is part of the UNIX portion of OSF/1. The user interface to the file subsystem is that of UNIX.
The implementation is primarily based on that of 44BSD. What has been added in OSF/1 is the parallelization of
the file system.

The VFS implementation is from BSD but has been parallelized. The S5 implementation is from SVR3 and has
not been parallelized; it is included mainly for compatibility purposes. The UFS implementation is, of course,
from BSD and has been parallelized. The NFS implementation was originally done at the University of Guelph in
Canada. It was modified by Berkeley and has been parallelized.

Some of the material of this module is discussed in chapter 11 of Open Software Foundation, 1990a.

5-5

Module 5 — File Sy

Representing an Open File

Representing an Open File, part 1
M process

active
system file table vnode table

ref access vnode
count offset

disk

buffer cache

52 © 1990, 1991 Open Sofiware Foundation

5-6

Module 5 — File S_ystems

Student Notes: Representing an Open File, part 1

The set of open files is a property of the process as a whole. Thus, while in traditional UNIX the file descriptor
table appears in the user structure, in OSF/1 it appears in the u_task structure. This structure is used to map file
descriptors representing open files to system file table entries. Each system file table entry represents an open file.
As discussed later, each active file (i.e., a file that is open or otherwise being used) is represented by a vnode that
is entered in the active vnode table. Files are accessed via a kemel-supported buffer cache and the file itself is, of
course, kept on disk.

5-7

Module S — File Systems

5-3. Representing an Open File

Representing an Open File, part 2

. £il active
file descriptor table system file table vnode table

ref access vnode
count Oﬁset

disk

buffer cache

fdrw = open(*“x”, rw)

5.3,
© 1990, 1991 Open Software Foundation

5-8

Module S — File Systems

Student Notes: Representing an Open File, part 2

In this picture we illustrate what happens when a file is opened.

The lowest-numbered available file descriptor is allocated from the file descriptor table. Next, an entry in the
system file table is allocated, and the file descriptor table entry is set to point to the system file table entry. A

vnode for the file is allocated (or found if it already exists) and the system file table entry is set to point to it.
Additional fields of the system file table entry are initialized, including:

® 3 reference count
® the allowed access (i.e., how the file was opened—read-only, read-write)

® the offset (i.e., the location within the file at which the next transfer will start)

In a multithreaded environment like OSF/1°s, the reference count takes on particular importance. A reference
count of 0, of course, means that the entry is no longer being used. Race conditions, for instance one thread
closing the file while another thread within the same task accesses the file, must be guarded against. In addition,
data structures such as the system file table entry must not be deallocated while they are in use.

To avoid these problems, when the file is open the reference count is set t@l for the file descriptor table entry
and 1 for the thread performing the open system call). When the thread retumns from the call, it removes its
reference, reducing the reference count to 1.

Gf two threads of the same task concurrently close and write the file, the reference count first goes from 1to 2 (1
for the file descriptor table entry and 1 for the thread within the write system call; the file table’s reference count
is incremented by 1 at the beginning of each I/O system call, except for the close system call). If the close
system call completes first, the reference count will be reduced by 1, to eliminate the file descriptor table entry’s
reference. But there still is a reference corresponding to the thread performing the write system call, so the file
table entry remains allocated and the file remains open until this thread returns from the call. Thus the reference
count enables the kernel to ensure that the file table entry and file exist as long as a thread is using them;j

Another race condition that must be dealt with concerns the individual file descriptor table entries: when a file is
being opened, we need to ensure that the file is not accessed by any other thread until the open has completed. To
accomplish this, the file descriptor table entry is not made to point to the allocated file table entry until the open
completes. However, we must make certain that this file descriptor table entry is not allocated by some other
thread. Thus, when the file descriptor table entry is allocated it is marked as reserved. Only when the open
completes is it set to point to the file table entry.

Module 5 — File Systems

5-4. Representing an Open File

Representing an Open File, part 3

active
system file table vnode table

ref access vnode
count es OffSCt

disk

buffer cache

fdrw = open(“x”, rw)
fdrw2 = dup(fdrw)
write(fdrw, buf, 20)

5-4. © 1990, 1991 Open Software Foundation

5-10

Module 5 — File Systems

Student Notes: Student Notes: Representing an Open File, part 3

Dup was invented to deal with the following problem. By convention, file descriptors 1 and 2 are used for
processes’ normal and diagnostic output. Normally they both refer to the display, and thus diagnostic output is
intermingled with normal output. Suppose, however, one wanted to redirect both file descriptors so that all
output, normal and diagnostic, was sent to a file. One might open this file twice, once as file descriptor 1 and
again as file descriptor 2, thereby creating two system file table entries. As file descriptor 1 receives output, the
offset field of its file table entry advances with each write. After 1000 bytes have been written (sequentially), the
offset field is set to 1000, representing the current end-of-file.

If at this point a diagnostic message is written to file descriptor 2, it will start at the beginning of the file,
overwriting the data already there, since file descriptor 2’s file table entry’s offset is still at 0. This outcome is
certainly not desirable.

To solve this problem, the dup system call makes file descriptors 1 and 2 both refer to the same file table entry
and hence share the offset.

5-11

Module 5 — File Systems

5-5. Representing an Open File

Representing an Open File, part 4

write(fdrw, buf, 20)
fdr = open(“x”, r)
read(fdr, buf, 10)

ip active
file descriptor table system file table T e
21 w] 20
1 r |10
ref access vnode
cont = offset
disk

fdrw = open(“‘x”, rw) buffer cache
fdrw2 = dup(fdrw)

5-S.

© 1990, 1991 Open Software Foundation

Module S — File Systems

Student Notes: Representing an Open File, part 4

In this slide we see the effect of two opens of the same file within the same task.

5-13

Module 5 — File Systems

5-6. Virtual File Systems

Generalizing the File System Concept
Suh'j /'ﬂ/@‘@

GFs

ih
LA IX

—

5-6. © 1990, 1991 Open Software Foundation

ﬂ(g /’;; d{@‘/ 47%/

Module 5 — File Systems

Student Notes: Generalizing the File System Concept

In the beginning, UNIX supported only one type of file system. Modem UNIX systems now support multiple file
system types. To represent different file system types, generalizations of the standard file system data structures
are used. The scheme adopted in OSF/1 is based on Sun’s virtual file system (VES) technology (though the code
has been entirely rewritten—it is adapted from 4.4BSD).

5-15

Module 5 — File Systems

5-7. Virtual File Systems

Virtual File Systems (VFS)

mount
start

unmount

quotactl
statfs
sync

fhtovp

vptoth

init

visops

57. © 1990, 1991 Open Software Foundation

5-16

Module 5 — File Systems

Student Notes: Virtual File Systems (VFS)

VES is the abstraction of a file system that provides a common interface to many different file systems. OSF/1
currently supports the local UNIX file systems (S5 and UFS) and a reimplementation of Sun’s NFS.

Each instance of a file system is represented by a mount structure. The interface to the file system is represented
by an array of entry points, the vfsops array, that is attached to the mount structure and defines operations on the
file system as a whole.

5-17

Module 5 — File §Xstems

5-8. Virtual File Systems

VYnodes Yok

create

e cod 74/& sys Tipe

vnodeops

5-8.

5-18

© 1990, 1991 Open Software Foundation

Module 5 — File Systems

Student Notes: Vnodes

Vnodes are the abstractions of files. They represent individual files; they contain generic information about files
and refer to the file-system-specific information on files (to inodes for UNIX files and to nfsnodes for NFS files).
They also provide access to the various operations on the files—each vnode refers to an array of entry points
called vnodeops.

5-19

Module 5 — File S_ystems

5-9. Virtual File Systems

Mounting File Systems, part 1

unix etc usr mnt dev

N

file system .o
2

Ll P et Vs w2 ‘
i
spsepeasesibasises]sisesedescs
$535 35555
A . I)
L SEAIAIA G, A ARG 4

» a b 'y

5-9. © 1990, 1991 Open Software Foundation

7 e’ T Tk 2k

5-20

Module 5 — File Systems

Student Notes: Mounting File Systems, part 1
To place a file system in the tree structure directory hierarchy, one must mount it. A file system as a whole is a

device that is named as a special file in the /dev directory. In order that the contents of this device be treated as
files, they must be made to appear in the directory hierarchy.

5-21

Module 5 — File Systems

5-10. Virtual File Systems

Mounting File Systems, part 2

unix

etc

usr

mnt

dev

N

2

file system

!

)

mount /dev/filesystem2 /usr

5-10.

5-22

© 1990, 1991 Open Software Foundation

Module 5 — File Systems

Student Notes: Mounting File Systems, part 2

The contents of the file system are placed in the directory hierarchy when one issues the mount command. The
mount command superimposes the root directory of the file system on top of the directory given in the mount
command. Any attempt to follow a path to this directory leads one instead to the root directory of the file system.
Thus the prior contents of the mounted-upon directory become invisible.

5-23

Module S — File Systems

5-11. Virtual File Systems

File System Data Structures, part 1

-y

Y
4 rootfs 7,

ufsmount
structure

s © 1990, 1991 Open Softwars Foundation

5-24

Module 5 — File Systems

Student Notes: File System Data Structures, part 1

The data structures in this picture show a single mounted file system, the root file system, which happens to be a
UFS file system. The field rootfs points to the mount structure of the root file system. The mount structure
points to a file-system-specific mount structure, in this case the UFS mount structure. Each active file within this
file system is represented by a vnode that in turn points to the mount structure. Attached to the vnode is a
file-system-specific per-file data structure, in this case the inode. The inode represents the file within the UFS file
system and is stored permanently on disk.

5-25

Module 5 — File Systems

5-12. Virtual File Systems

File System Data Structures, part 2

AR
SRR

ufsmount structure

nfsmount structure

5-26

© 1990, 1991 Open Software Foundation

Module S — File Systems

Student Notes: File System Data Structures, part 2

Here we see the effect of mounting an NFS file system in the root file system of the previous picture. The mount
structure for this file system is linked to the mount structure of the root file system. The mounted file system’s
mount structure also points to the file-system-specific mount structure, in this case the NFS mount structure. The
vnode of the mounted-upon directory is set to point to the mounted file system’s mount structure to represent
where the file system has been mounted. This mount structure in turn points back to the vnode. Attached to the
vnodes of the active files of the mounted file system are nfsnode data structures, which represent the remote files.

5-27

Module 5 — File Systems

5-13. VYirtual File Systems

en and Create: Flow of Control

VOP_LOOKUP
Lna! Macto

5-13. © 1990, 1991 Open Software Foundation

5-28

Module 5 — File Systems

Student Notes: Open and Create: Flow of Control

Copen is called in the kernel in response to create and open system calls. As shown in the picture, copen calls
falloc, which then calls ufalloc. On retumn from these, i.e., after the open file data structures have been set up,

copen calls vm_open to initiate locating the file in the directory hierarchy. vn_open calls namei, which for each
directory in the path calls the lookup routine associated with the directory’s file system. The boxes with heavy

outlines represent indirect references to a routine via a vector such as vnodeops. In particular, VOP_LOOKUP
means to call the lookup routine listed in the vnodeops array attached to the vnode.

5-29

Module 5 — File Systems

5-14. Virtual File Systems

Reading and Writing: Flow of Control

read(fd, buffer, count) re

write
system file ‘/7 ' /47 1
table 7 :Z £ -
|5 ocieC rwitio
set up uio
N\ structure

vn_write

5-14. © 1990, 1991 Open Software Foundation

5-30

Module 5 — File Systems

Student Notes: Reading and Writing: Flow of Control

Most of the work performed in reading and writing a file occurs within the file system. However, some of the
work occurs at the file-system-independent level. The first step in any I/O request is to copy the parameters of the
1/O request into the uio structure (see the next slide). The next step is to find the file table entry and the vnode
and to verify that the user has permission to perform the desired operation.

An important next step for regular files and directories is to lock the file offset in the file table entry (using a
blocking read-write lock) so as to make the operation gtomic. This is done to avoid a race condition in which two

threads that share the same file table entry concurrently access the file. (Locking has been done incorrectly in
some versions of UNIX.)
/__/“\

e

5-31

Module 5 — File Systems

5-15. Virtual File Systems

The Uio Structure

ff:"!:"fff’ffﬂ'a:'/
start address— buffer segment 1 /)

P A A A A A A "'#’
length
IIHI’J’TM;"EIIJ"I?
start address—| buffer segment 2 .~
N A A A A A A AL

length

AN J‘l‘;“,u ::7
start address———g! buffer segmentn ./~

.‘,&'
length

RN "'ﬂ"..-

struct uio

struct jovec

5.15. © 1990, 1991 Open Software Foundation

5-32

Module 5 — File Systems

Student Notes: The Uio Structure

The uio structure represents a logical I/O request. Its contents represent what needs to be done to complete an I/O
request; these contents are updated as the I/O request progresses through the system. The buffer may, in general,
be composed of multiple segments, and hence an array of iovec structures is needed to refer to each of the pieces
of the buffer. This organization is made necessary by the readv and writev system calls, which use such
multicomponent buffers.

5-33

Module S — File Systems

5-16. The Buffer Cache

The Buffer Cache

T 2 2 F T - "
.55 20T

AN R NN

user process

buffer cache

5-16. © 1990, 1991 Open Software Foundation

J//owz Sy ¢ zj/-é’j

5-34

Module S — File Systems

Student Notes: The Buffer Cache

The buffer cache has two primary functions. The first, and most important, is to make possible concurrent I/O and
computation within a UNIX process. The second is to insulate the user from physical block boundaries.

From a user thread’s point of view, 1/O is synchronous. By this we mean that when the I/O system call returns, the
system no longer needs the user-supplied buffer. For example, after a write system call, the data in the user buffer
has either been transmitted to the device or copied to a kemnel buffer—the user can now scribble over the buffer
without affecting the data transfer. Because of this synchronization, from a user thread’s point of view, no more
than one I/O operation can be in progress at a time. Thus user-implemented multibuffered I/O is not possible (in a
single-threaded process). In OSF/1, however, the user can utilize multiple threads within a task to program
concurrent I/O and computation.

The buffer cache provides a kernel implementation of multibuffering I/O, and thus concurrent I/O and
computation are possible even for single-threaded processes.

5-35

Module S — File Systems

5-17. The Buffer Cache

Multi-Buffered I/O

fetch first fetch second
(read-ahead)

last block current block probable
next block

5-17. © 1990, 1991 Open Software Foundation

5-36

Module 5 — File Systems

Student Notes: Multi-Buffered I/O

The use of read-aheads and write-behinds makes concurrent I/O and computation possible: if the block currently
being fetched is block i and the previous block fetched was block i-1, then block i+ is also fetched. Modified
blocks are normally not written out synchronously but are instead written out sometime after they were modified,
asynchronously.

5-37

Module 5 — File Systems

5-18. The Buffer Cache

oldest

youngest

5-18.

Maintaining the Cache

x /7’” 7
/g;ed/‘/ﬁ

iy
";'/v‘

.-"":"M' / .

N

o

[

a

N

T,
; 7

o

7

- buffer requests

free buffe
77 e ?/'/c ?/éf

-¢—— retumns of no-longer-active buffers

active buffers

«¢——— returns of active buffers

© 1990, 1991 Open Software Foundation

5-38

Module 5 — File Systems

Student Notes: Maintaining the Cache

Active buffers are maintained in least-recently-used (LRU) order in the system-wide LRU list. Thus after a buffer
has been used (as part of a read or write system call), it is returned to the end of the LRU list. The system also
maintains a separate list of “free” buffers called the aged list. Included in this list are buffers holding
no-longer-needed blocks, such as blocks from truncated files.

Fresh buffers are taken from the aged list. If this list is empty, then a buffer is obtained from the LRU list, as
follows. If the first buffer (least recently used) in this list is clean (i.e., contains a block that is identical to its copy
on disk), then this buffer is taken. Otherwise (i.e., if the buffer is dirty), it is written out to disk asynchronously
and, when written, is placed at the end of the aged list. The search for a fresh buffer continues on to the next
buffer in the LRU list, etc.

When a file is deleted, any buffers containing its blocks are placed at the head of the aged list. Also, when I/O
into a buffer results in an I/O error, the buffer is placed at the head of the aged list.

In BSD, buffers that have been read (or written) in their entirety are placed at the end of the aged list. The

assumption is that, since files are normally accessed sequentially, these buffers won’t be needed for a while. This
technique has not been found to improve performance and thus is not used in OSF/1.

5-39

Module 5 — File Systems

5-19. The Buffer Cache

Accessing the Cache

vnode

5-19. © 1950, 1991 Open Software Foundation

5-40

Module 5 — File sttems

Student Notes: Accessing the Cache

Buffers in the cache are accessed via a hash table. In older versions of UNIX, buffers in the cache were identified
by file-system number and block number (within the file system). With remote file systems such as NFS, the
client does not know the block number within the file system, but only knows the block number relative to the
beginning of the file. OSF/1 thus uses the address of the vnode and the block number relative to the beginning of
the file to identify blocks of files of not only remote but also local file systems.

This approach does not work for the indirect blocks and other metadata structures of UNIX file systems (both S5
and UFS). These are identified by the address of the vnode of the underlying file system (i.e. block special file)
and the block number relative to the beginning of the file system. (A possible consistency problem that would
arise when blocks of open files in a mounted file system are accessed via the block special interface is prevented
by not allowing the block special interface to a mounted file system to be accessed.)

In order to improve the performance of operations such asfs_/’yg_c_that affect the cached blocks of a particular file,
each vnode heads a list of incore clean buffers and incore dirty buffers.

541

Module 5 — File Systems

5-20. The Buffer Cache

Virtual Buffers

bufsize = 2K
bcount = 1.5K

bufsize =0
bcount =0

bufsize = 8K
becount = 7.5K

bufsize = 4K
bcount = 4K

bufsize = .5K
bcount = .5K

5-20. © 1990, 191 Open Software Foundation

542

Module 5 — File Systems

Student Notes: Virtual Buffers

If buffers were all of the same size and files were allocated in fixed-size blocks, then allocating a buffer would be
trivial. However, the UFS file system allows different file systems to have different block sizes and, within a file
system, it allows the last block of a file to be smaller than the others.

Each buf structure is assigned a maximum-block-size amount of virtual memory (MAXBSIZE = 8K) for its
buffer.

The total amount of real memory allocated for buffers is divided up among the buf structures; a possible result is
that not all buffers will have the maximum 8K of real memory backing them up. If such an underendowed buffer
is allocated when a full allotment of real memory is needed, space is “stolen” from another buf structure’s buffer
(by remapping the memory). Buf structures without real memory for their buffers are placed on an empty list. 1f a
buf structure is allocated whose buffer is larger than is needed, its extra space is given to a buf structure on the
empty list.

5-43

Module 5 — File Systems

5-21. The Buffer Cache

File System Consistency, part 1

5. © 1990, 1991 Open Software Foundation

Module § — File Systems

Student Notes: File System Consistency, part 1

In the event of a crash, the contents of the file system may well be inconsistent with any view of it the user might
have. For example, a programmer may have carefully added a node to the end of the list, so that at all times the

list structure is well-formed.

5-45

Module 5 — File Systems

5-22. The Buffer Cache

File System Consistency, part 2

D

2)

3)

4)

5)

5-22. © 1990, 1991 Open Sofiware Foundation

5-46

Module 5 — File Systems

Student Notes: File System Consistency, part 2

But, if the new node and the old node are stored on separate disk blocks, the modifications to the block containing
the old node might be written out first; the system might well crash before the second block is written out.

547

Module 5 — File Systems

5-23. The Buffer Cache

Keeping It Consistent

write this first
then this)

5. © 1990, 1991 Open Software Foundation

5-48

Module 5 — File Systems

Student Notes: Keeping It Consistent

To deal with this problem, system data structures are written out synchronously and in the correct order (i.e., the
block containing the target of a pointer is updated before that containing the pointer). This is done for directory
entries, inodes, indirect blocks, etc.

No such synchronization is done for user data structures: not enough is known about the semantics of user

operations to make this possible. However, a user process called update executes a Sync system call every 30

seconds, which initiates the writing out to disk of all dirty buffers. Altematively, the user can open a file with the

synchronous option so that all writes are waited for; i.e, the buffer cache acts as a write-through cache (N.B. that
—————

this is expensive!).

5-49

Module 5 — File Systems

5-24. The Buffer Cache

Parallelizing the Buffer Cache

Locks: buf structure (blocking)
free lists (LRU and aged) (spin)

hash chains (spin)

Precedence: buf structure > free list

buf structure > hash chain

5-24.

5-50

© 1990, 1991 Open Software Foundation

Module 5 — File Systems

Student Notes: Parallelizing the Buffer Cache

The buffer cache is parallelized by using blocking locks on the buffers. Thus many operations may proceed
simultaneously, as long as they involve different buffers. To avoid race conditions when updating the free lists
and hash table, spin locks are employed. A partial precedence order on these locks is used, as shown on the slide.

5-51

Module 5 — File Systems

5-25. The Buffer Cache

Block I/0 Read
thread |
read
0 getblk
'bread find buffer
(block read)
@ strategy
start I/O
® biowai
event_wait(b_iocomplete)

interrupt

disk driver
interrupt handler

!

biodone
event_post(b_iocomplete)

5-25.

5-52

© 1990, 1991 Open Software Foundation

Module 5 — File Systems

Student Notes: Block I/O Read

Note that the use of events avoids the race condition between the biodone and the biowait: the interrupt could be
handled on a different processor from the one on which the thread calling biowait is running.

5-53

Module 5 — File Systems

5-26. The Buffer Cache

Block I/0 Read (Pseudocode)

bread(vnod_e, blkno)
buffer = getblk(vnode, blkno)
if (event_posted(buffer—>b_iocomplete))
return(buffer)
VOP_STRATEGY (vnode, buffer)
event_wait(buffer—>b_iocomplete)

return(buffer)

5-26. © 1990, 1991 Open Software Foundation

5-54

Module 5 — File Systems

Student Notes: Block I/O Read (Pseudocode)

5-55

Module 5 — File Systems

5-27. The Buffer Cache

Finding a Block in the Cache
/;9 s 1/ (A %7/)///

3 lock O lock

= lock —f—»

event] event [}

hash chain headers

5-21. © 1990, 1991 Open Software Foundation

5-56

Module 5 — File Systems

Student Notes: Finding a Block in the Cache

First the thread takes the lock on the hash chain header (simple lock). If it finds the desired buffer, then it unlocks
the header and takes the lock on the buffer (blocking lock). If, after the thread waits for the lock, it finds that the
buffer no longer contains the desired block, then the thread repeats the procedure from the beginning.

5-57

Module 5 — File Systems

5-28. The Buffer Cache

Finding a Block in the Cache (Pseudocode)
getblk(vnode, blkno) buffer = gétnewbuf()
hash(vnode, blkno) /* has someone else just now allocated a different
restart: lock(hash chain) ~ buffer for the same block? */
* for each buffer in chain { lock(hash chain)
if (buffer.blkno == blkno) { +if (hash chain has been modified) { /*(check
unlock(hash chain) timestamnps) */
lock(buffer) if (blkno is in hash chain) {
if (buffer.blkno # blkno) { 7z vk return buffer to free list
unlock(buffer) unlock (hash chain)
goto restart goto restart
} }
return(buffer))
) insert (buf, hash chain)
) unlock (hash chain)
/* block is not in cache */ return(butfer)
unlock (hash chain)
5-28. © 1990, 1991 Open Software Foundation

5-58

Module 5 — File Systems

Student Notes: Finding a Block in the Cache (Pseudocode)

Associated with each hash chain is a timestamp that is incremented by one when the hash chain is modified (a
buffer is either inserted or removed).

There is a potential race condition when getnewbuf is called: two threads may simultaneously discover that a
particular block is not in the cache, and both call getnewbuf to allocate a buffer for it (and two buffers are indeed
allocated). Due to the lock on the hash chain, one buffer will be inserted in the hash table first. To prevent both
buffers (representing the same block) from being inserted, a check has to be made to insure that the buffer being
inserted is not a duplicate. This check would involve searching the hash chain (again). To minimize the number
of times this must be done, the current value of the timestamp on the hash chain is compared with its value when
it was originally ascertained that the block was not present. Only if the timestamps are now different is the hash
chain searched.

5-59

Module 5 — File Systems

5-29. The Buffer Cache

Getting a New Buffer
LRU or aged list *
header (free list
e» er (free list) ok
17‘* CJ event (J
protects O lock
A
/@ 794,/4 event [
J lock
event []
5.29. © 1990, 1991 Open Software Foundation

5-60

Module 5 — File Systems

Student Notes: Getting a New Buffer

First the thread takes the lock on the header (simple lock). Then it conditionally takes the lock on the buffer. If
the buffer is already locked, then the thread skips it and tries the next one. If no buffers are available, then the

thread sleeps until one is.

5-61

Module 5 — File Systems

5-30. The Buffer Cache

Getting a New Buffer (Pseudocode)

getnewbuf()
lock (free list)
for each buffer in free list {
if (lock_try (buffer))

break;

}

remove buffer from free list

unlock (free list)

event_clear (buffer—>b_iocomplete)

return(buffer)

5-30. © 1950, 1991 Open Software Foundation

5-62

Module 5 — File Systems

Student Notes: Getting a New Buffer (Pseudocode)

5-63

Module 5 — File Systems

5-31. The Buffer Cache

Mmap

address space

531 © 1990, 1991 Opea Software Poundation

Module 5 — File Systéms

Student Notes: Mmap

The mmap system call is used either to map a file into a process’s address space or to create an anonymous
memory region. Anonymous memory is shared with all of the process’s descendants.

A mapped file may be private, meaning that changes to the mapped memory are not shared with other processes
and are not reflected back to the file.

A mapped file may be shared, meaning that changes to the mapped memory are shared with other processes that
have a shared mapping of the file, and these changes are reflected back to the file.

Two important issues arise with mmap. First, does a process that has a private mapping of a file “see” the
changes made by processes with shared mappings? In OSF/1, the answer is no.

The other issue involves the simultaneous access of a file via mmap and read/write system calls. In the current

implementation there is a consistency problem, since two copies of blocks of the file may exist in primary
memory: one in the buffer cache and one in a page frame to which a virtual page has been mapped.

5-65

Module 5§ — File Systems

5-32. Directory Path Searching

Directory Path Searching

start with root vnode or current-directory vnode
while (not at end of path) {
search for next component in file represented by current vnode
if not found
terminate

fetch associated vnode, assign it to current vnode

532 © 1990, 1991 Open Software Foundation

5-66

Module 5 — File Systems

Student Notes: Directory Path Searching

Following directory paths would seem to be quite trivial. The basic algorithm is shown in the picture. However,
as will be discussed, the actual procedure is fairly complex, and this subsystem is a very important part of the

operating system.

5-67

Module 5 — File Systems

5-33. Directory Path Searching

Complications in Directory Path Searching

Multiple file system types

Mount points

Symbolic links

Concurrency

e Speed

5.33. © 1990, 1991 Open Software Foundation

5-68

Module 5 — File Systems

Student Notes: Complications in Directory Path Searching

5-69

Module 5 — File Systems

5-34. Directory Path Searching

Multiple File Systems

¢ The top-level path-searching routine is namei
Pega's

e Namei breaks the path into components and, for each component, calls the

appropriate file system (via VOP_LOOKUP) to look it up in the current
directory

5-34. © 1990, 1991 Open Software Foundation

5-70

Module 5 — File Systems

Student Notes: Multiple File Systems

One might think that a more efficient technique for following a path would be to give the file system lookup
routine all of the remaining portion of the path so that it can follow it as far as possible. This technique is not
easy, however, for a number of reasons.

In NFS, it is up to the client to determine which character separates components; the server is not involved. For
example, UNIX clients use “/” as the component separator, whereas MS-DOS uses “\”. Only the client can break
a pathname into its components (though one might argue that the client could pass the component-separator as an
argument to the server). But, furthermore, mount points are interpreted strictly by the client, and server mount
points mean nothing to the client.

5-71

Module 5 — File Systems

5-35. Directory Path Searching

Mount Points

ufsmount structure | nfsmount structure
© 1990, 1991 Open Software Foundation

5-72

Module 5 — File Systems

Student Notes: Mount Points

Mount points are encoded in the vnode and mount structures. This system makes it not only possible but
obligatory that clients view a file system independent of mounts done by the server. Namei tests each directory it
encounters to determine if it is a mount point; if it is, namei calls the mounted file system’s VFS_ROOT routine to
obtain its root vnode.

A related scenario is following “..” links out of a mounted file system. In this case, namei consults the mounted
file system’s mount structure to find the address of the vnode that it covers, and then it follows that directory’s “..”
link of the directory represented by that vnode.

5-73

Module 5 — File Systems

5-36. Directory Path Searching

Symbolic Links

sym link

/B/C/G wmmm=/A/E[F/G

5-36. © 1990, 1991 Open Software Foundation

5-74

Module 5§ — File Systems

Student Notes: Symbolic Links

If a vnode marked as a symbolic link is encountered, then the file system’s VOP_READLINK routine is called to
get the link. The routine replaces that portion of the path that has already been followed with the value of the
symbolic link, and then restarts the search from the beginning of the newly modified path name.

To avoid loops caused by careless placement of symbolic links, no one path may be composed of more than
MAXSYMLINKS (32) symbolic links.

4

5-75

Module 5 — File Systems

5-37. Directory Path Searching

Concurrency

Must guard against two types of race conditions:
e a directory is modified while it is being searched

¢ adirectory is modified after a lookup, but before the result is acted upon

5-37. © 1990, 1991 Open Software Foundation

5-76

Module 5 — File Systems

Student Notes: Concurrency

OSF/1 deals with the first case by requiring that a thread hold a read lock on a directory while searching it and
hold a write lock on the directory while modifying it.

Timestamps are used to deal with the second case. Each time a thread modifies a directory, it increments the
directory’s timestamp by one. When a thread searches a directory it records the directory’s current timestamp.
Before the thread modifies a directory, it compares the timestamp it obtained in the lookup request to the
directory’s current timestamp. If the timestamps are different, then the directory must have been modified since
the lookup, and the thread repeats the lookup. If the lookup fails a second time, then the operation fails.

For example, suppose two threads issue concurrent delete requests for the same directory entry. The net result
should be that one succeeds and the other fails. Both threads do a successful lookup of the entry and one thread
succeeds in deleting the entry. The other thread will note before it attempts to remove the entry that the timestamp
has changed. It will thus repeat the lookup, the lookup will fail, and so the delete system call will fail.

An example of the destructive effects of the second race condition is the following set of operations, each
performed by a separate thread:

thread 1: tm /A
thread 2: m /A
thread 3: cp /C /B

The two rms are executed concurrently: both threads do a successful lookup to determine that /A exists; as a side
effect the lookup returns the position of the component A within the / directory. This lookup is performed while
holding a read lock; thus both threads can do it in parallel. Modifying the directory to delete the entry A,
however, requires an exclusive write lock. Thus one thread blocks while the other thread removes the entry A.
However, it happens that immediately after thread 1 removes entry A, thread 3 creates the entry B in the directory
slot just vacated by A. When thread 2 wakes up and completes its operation, it removes what it thinks is entry A
but is in fact entry B.

5-77

Module 5§ — File Systems

5-38. Directory Path Searching

Speed

o Fancier file-naming facilities result in longer lookup times

o Solution: more caching

5-38. © 1990, 1991 Opea Sotware Foundation

5-78

Module 5 — File Systems

Student Notes: Speed

4 2BSD added many new facilities not present in earlier versions of UNIX. One result of these additions was that
4.2BSD was considerably slower than 4.1BSD. Kernel profiling showed that approximately 25% of system time
spent in the kernel was spent in routines translating directory paths. This was much too much time for such
chores, so to speed things up, two forms of caching were introduced. Both forms were designed for use with the
UFS file system, but may be used with any file system. With the addition of the two types of caching, the system
time devoted to name translation dropped from 25% to less than 10%.

5-719

Module 5 — File Sgstems

5-39. Directory Path Searching

The Lookup Cache

lookup cache

vnode table

5-39.

5-80

© 1990, 1991 Open Software Foundation

Module 5 — File Systems

Student Notes: Lookup Cache

gt payer?
The lookup cache is a cache of the most recent component-name-to-vnode translations. Searching a directory for
a component name can be expensive, so the most recent lookups are kept in a cache. (Note that this is not a cache
of path names, but merely of component names.)

A vnode reference presents a problem in representing the result of a translation. If the cache contains actual
“reference-counted” references to the vnode, then the reference count on vnodes themselves remains positive, and
incore vnodes are not freed. (SVR4 actually does employ this technique: when the system is low on available
vnodes, it makes a pass through the cache and frees those vnodes whose only reference is due to the cache.)

The OSF/1 cache, derived from 4.4BSD, contains ““soft” references to vnodes, i.e. references that do not show in
the reference count. The problem here is that if a file is deleted and its vnode reused for another file, the cache
continues to contain a reference to the vnode in its previous incarnation, since there is no indication in the vnode
that a cache entry refers to it. To deal with this, vnodes and the cache contain ¢ lities (version
_numbers)—32-bit integers. Each vnode has an assigned capability. When the vnode is invalidated, the version
number is incremented by one. Each cache translation also contains a version number, which is set equal to that
of the vnode. If the version numbers do not match when the translation is accessed, then the cache entry is
considered invalid and is flushed. Berkeley’s figures indicate that this cache has a “hit rate” of

e

5-81

Module 5 — File Systems

5-40. Directory Path Searching

The Search Cache

5-40. © 1990, 1991 Open Software Foundation

5-82

Module 5 — File Systems

Student Notes: The Search Cache

The second form of caching deals with repeated lookups of one directory. Consider a command such as Is -1 its
implementation involves reading the contents of the directory, then performing a stat system call on each entry. It
takes time proportional to i to search for the ith entry, since the search always starts at the beginning of the
directory. Thus, for n entries, time proportional to #? is needed to find each entry in the directory. For a large
directory this could be rather significant.

By storing in the inode the offset of where the last search terminated, a linear algorithm for Is -/ (and others) can
be devised, since the search for the next item in the directory will start where the previous item was found.

Note that 4.2BSD and 4.3BSD stored the offset in the user structure. This approach seems better, especially if
multiple threads are each doing the equivalent of Is —/ on the same directory. However, storing the offset in the
inode makes this technique work when Is - is applied to directories other than the current directory (i.e., when
each directory lookup involves searching a path).

The search cache has a “hit rate” of 5-15%.

5-83

Module 5 — File Systems

5-41. S5 File System

The S5 File System

The original UNIX file system:
e extremely simple

¢ no attempt to optimize the layout of files

5-41, © 1990, 1991 Open Software Foundation

5-84

Module 5 — File Systems

Student Notes: The S5 File System

The SS file system, provided primarily for ibili ns, is generally always slower than the UFS file
system. However, it has a few things in common with the UFS file system, in particular the notion of inodes
(including the disk map).

5-85

Module 5 — File Systems

5-42. SS File System

Inodes

5-42. © 1990, 1991 Open Software Foundation

5-86

Module 5 — File Systems

Student Notes: Inodes

Inodes are the focus of all file activity, i.e., every access to a file must go through the inode. Every file has a
inode on permanent storage; this on-disk inode is of type struct dinode in the S5 file system. All open files,
current directories, mounted-on directories, and the root have incore inodes of type struct SSinode. Once brought
into primary storage, an inode stays there until its associated file is deleted or its storage is needed for some other

purpose.

5-87

Module 5§ — File Systems

5-43. S5 File System

Disk Map

10
11
12

5-43. © 1990, 1991 Open Software Foundation

5-88

Module S — File Systems

Student Notes: Disk Map

The purpose of the disk-map portion of the inode is to map block numbers relative to the beginning of a file into
block numbers relative to the beginning of the file system. An S5 file system may be configured with a 512-byte,
1K-byte, or 2K-byte block size. We assume a 1K block size from here on.

The disk map consists of 13 pointers to disk blocks, the first 10 of which point to the first 10 blocks of the file.
Thus the first 10Kb of a file are accessed directly. If the file is larger than 10KDb, then pointer number 10 points to
a disk block called the indirect block. This block contains up to 256 (4-byte) pointers to data blocks (i.e., 256Kb
of data). If the file is bigger than this (256K +10K = 266K), then pointer number 11 points to a double indirect
block containing 256 pointers to indirect blocks, each of which contains 256 pointers to data blocks (64Mb of
data). If the file is bigger than this (64Mb + 256Kb + 10Kb), then pointer number 12 points to a triple indirect
block containing up to 256 pointers to double indirect blocks, each of which contains up to 256 pointers pointing
to single indirect blocks, each of which contains up to 256 pointers pointing to data blocks (potentially 16Gb,
although, as will be discussed, the real limit is either 2Gb or 4Gb).

The structure of the UFS file system is similar, except that the block size is either 4K or 8K and the disk map
consists of 15 pointers, the first 12 of which point to the first 12 data blocks. Because of the larger block size, the
triple indirect block is unusable, since the double indirect block can represent a file size larger than 4Gb. A hard
limit on file size for 32-bit architectures is 4Gb (or perhaps 2Gb, depending on one’s feelings about sign bits),
since the offset into a file must fit in a word!

This data structure allows the efficient representation of sparse files, i.e., files whose content is mainly zeros.
Consider, for example, the effect of creating an empty file and then writing one byte at location 2,000,000,000.
Only four disk blocks are allocated to represent this file: a triple indirect block, a double indirect block, a single
indirect block, and a data block. All pointers in the disk map, except for the last one, will be zero. If the file is
read, all bytes up to the last one will read as zero. This is because a zero pointer is treated as if it points to a block
containing all zeros: a zero pointer to an indirect block is treated as if it points to an indirect block filled with zero
pointers, each of which is treated as if it points to a data block filled with zeros. However, one must be careful
about copying such a file, since commands such as cp and zar actually attempt to write all the zero blocks! (The
dump command, on the other hand, copes with sparse files properly.)

The units of the pointers in the disk map in the S5 file system are in blocks (1K). For the UFS file system, the

units are in fragments that can be any multiple of 512 bytes, from 512 bytes to 8K bytes (this value is fixed for
each instance of the file system).

5-89

Module 5 — File Systems

5-44. SS File System

Directory Structure

unix etc u

mnt

dev

slide

5-90

© 1990, 1991 Open Software Foundation

Module S — File Systems

Student Notes: Directory Structure

5-91

Module S — File Systems

5-45. S5 File System

LY

S5 Directory Format

inode number

component name

directory entry

117 unix
4 etc
18 u
36 mnt
93 dev

5-45.

5-92

© 1990, 1991 Open Software Foundation

Module S — File Systems

Student Notes: S5 Directory Format

The S5 directory consists of an array of pairs of inode number and component number. An important restriction is
that the component name may be no longer than 14 bytes, thereby making a fixed length format possible. Note
that identifying a file requires a reference to the file system as well as the inode number, but only the latter is
suppliéd in each directory. The file system is assumed to be the one that contains the directory. Thus the only
way a path can cross a file system boundary is via mount points.

5-93

Module 5 — File Systems

5-46. S5 File System

File System Layout

Superblock

Bootblock

5-46.

© 1990, 1991 Open Software Foundation

Module S — File Systems

Student Notes: File System Layout

® Bootblock

— used on some systems to contain a bootstrap program

® Superblock
— describes the file system:

¢ total size
¢ size of inode list (I-list)
¢ header of free-block list
¢ list of free inodes
@ modified flag
¢ read-only flag
+ number of free blocks and free inodes

¢ resides in a buffer borrowed from the buffer cache while the file system is mounted

® [-list
— area for allocating inodes

® Data region
— remainder of file system is for data blocks and indirect blocks
A problem with this organization is that the I-list and the data region are separated from each other. Since one

must always fetch the inode before reading or writing the blocks of a file, the disk head is constantly moving back
and forth between the I-list and the data region.

5-95

Module 5 — File Systems

5-47. S5 File System

Free Block List

NICFREE-1

Superblock
NICFREE-1

2
1
0

list ement
(and free block) :

5-47. © 1990, 1991 Open Software Foundation

5-96

Module 5§ — File Systems

Student Notes: Free Block List

Free disk blocks are organized as shown in the picture. The superblock contains the address of up to NICFREE (=
100) free disk blocks. The last of these disk blocks contains NICFREE pointers to additional free disk blocks.
The last of these pointers points to another block containing up to NICFREE free disk blocks, etc., until all free
disk blocks are represented. Thus most requests for a free block can be satisfied by merely getting an address
from the superblock. When the last block reference by the superblock is consumed, however, a disk read must be
called to fetch the addresses of up to 100 more free disk blocks. Freeing a disk block results in reconstructing the
list structure.

This organization, though very simple, scatters the blocks of files all over the surface of the disk. When allocating
a block for a file, one must always use the next block from the free list; there is no way to request a block at a
specific location. No matter how carefully the free list is ordered when the file system is initialized, it becomes
fairly well randomized after the file system has been used for a while.

5-97

Module 5 — File Systems

5-48. S5 File System

Managing Inodes

13
s_inode 11
6
12

sallest free 4 _

P ok
- N W H W

—_ WA UNG 00O

mode

I-list

5-48.

598

© 1990, 1991 Open Software Foundation

Module 5 — File Systems

Student Notes: Managing Inodes

Inodes are allocated from the I-list. Free inodes are represented simply by zeroing their mode bits. The
superblock contains a cache of indices of free inodes in an array called s_inode (of size NICINOD). When a free
inode is needed (i.e., to represent a new file), its index is taken from this cache. If the cache is empty, then the
I-list is scanned sequentially until enough free inodes are found to refill the cache.

To speed this search somewhat, the cache contains a reference to the inode with the smallest index that is known
to be free. When an inode is free, it is added to the cache if there is room, and its mode bits are zeroed on disk.

5-99

Module 5 — File S_ystems

5-49. UFS File System

The UFS File System

e The goal is to lay out files on disk so that they can be accessed as quickly

as possible and so that no more than a minimal amount of disk space is
wasted

* Component names of directories can be much longer than in the S5 file
system

e Fully parallelized

5-49. © 1990, 1991 Open Software Foundation

5-100

Module 5 — File Systems

Student Notes: The UFS File System

5-101

Module § — File Systems

5-50. UFS File System

UFS Directory Format , e
Jike
¢

—inode number

record length string length
(multiple of 4) component name
o\
A
i
7
P’
/ Vt"% o ﬂ/é /
, /
Ao /ﬁﬂf sl
directory block
550, © 1990, 1991 Open Software Foundation

5-102

Module 5 — File Systems

Student Notes: UFS Directory Format

UFS allows component names to be up to 255 characters long, thereby necessitating a variable-length field for
components. Directories are composed of 512-byte blocks and entries must not cross block boundaries. This
design adds a degree of atomicity to directory updates. It should take exactly one disk write to update a directory
entry (512 bytes was chosen as the smallest conceivable disk sector size). If it takes two disk writes to modify a
directory entry, then clearly the disk will crash between the two disk w/rite/s!

Like the S5 directory entry, the UFS directory entry contains the inode number and the component name. Since
the component name is of variable length, there is also a string length field (the component name includes a null
byte at the end; the string length does not include the null byte). In addition to the string length, there is also a
record length, which is the length of the entire entry (and must be a multiple of four to ensure that each entry starts
on a four-byte boundary). The purpose of the record length field is to represent free space within a directory
block. Any free space is considered a part of the entry that precedes it, and thus a record length longer than
necessary indicates that free space follows. If a directory entry is free, then its record length is added to that of the
preceding entry. However, if the first entry in a directory block is free, then this free space is represented by
setting the inode number to zero and leaving the record length as is.

Compressing directories is considered to be too difficult. Free space within a directory is made available for

representing new entries, but is not returned to the file system. However, if there is free space at the end of the
directory, the directory may be truncated to a directory block boundary.

5-103

Module 5 — File Systems

5-51. UFS File System

How to Do Disk I/O Quickly

1. Transfer as much as possible with each I/O request
S e
2. Minimize seek time (i.e. reduce head movement)
QR

3. Minimize latency time
RS ki

5-51. © 1990, 1991 Open Software Foundation

5-104

Module 5 — File Systems

Student Notes: How to Do Disk I/O Quickly

The UFS file system uses three techniques to improve I/O performance. The first technique, which has perhaps
the greatest payoff, maximizes the amount of data transferred with each I/O request by using a relatively large
block size. UFS block sizes may be either 4K bytes or 8K bytes (the size is fixed for each individual file system).
A problem with using a large block size is the wastage due to internal fragmentation: on the average, half of a
disk block is wasted for each file. To alleviate this problem, blocks under certain circumstances may be shared
among files.

The second technique to improve performance is to minimize seek time by attempting to locate the blocks of a file
so that they are near to one another.

Finally, UFS attempts to minimize latency time, i.e. to reduce the amount of time spent waiting for the disk to

rotate to bring the desired block undemeath the desired disk head (many modern disk controllers make it either
impossible or unnecessary to apply this technique).

5-105

Module 5 — File Systems

5-52. UFS File System

UFS Layout

file system

cylindéf éﬁmp

Zw/b,?/g

5-52.

5-106

© 19%, 1991 Open Software Foundatic

,/%5 a/ fﬂj 2 ﬂ/ts'é /ﬁé/

Module 5 — File Systems

Student Notes: UFS Layout

® Superblock (struct fs)
— incore while the file system is mounted
— contains the parameters describing the layout of the file system

— for paranoia’s sake, one copy is kept in each cylinder group, at a rotating track position

® Cylinder group summary (struct csum, one for each cylinder group)
— incore while the file system is mounted
— contains a summary of the available storage in each cylinder group

— allocated from the data section of cylinder group 0

® (Cylinder group block (struct cg)
— resides in the buffer cache “as needed”

— contains free block map and all other allocation information

Note: the superblock contains two sorts of information, static and dynamic. The static information describes the
layout of the entire file system and is essential to make sense of the file system. The dynamic information
describes the file system’s current state and can be computed from redundant information in the file system. If the
static portion of the superblock is lost, then the file system cannot be used. To guard against this, each cylinder
group contains a copy of the superblock (just the static information needs to be copied).

A possible (though unlikely) failure condition might be that the entire contents of one surface are lost, but the
remainder of the disk is usable. However, if this surface contains all copies of the superblock, then the rest of the
disk would be effectively unusable. To guard against this, the copy of the superblock is placed on a different
surface in each cylinder group. Of course, the system must keep track of where these copies are. This
information is kept in the djsk label (along with information describing how the physical disk is partitioned).

5-107

Module 5 — File Systems

5-53. UFS File System

Minimizing Fragmentation Costs

o A file system block may be split into fragments that can be independently
assigned to files

— fragments assigned to a file must be contiguous and in order

o The number of fragments per block (1, 2, 4, or 8) is fixed for each file
system

e Allocation in fragments may only be done on what would be the last block—
of a file, and only if the file does not contain indire@_glgs

S+ Sleck T spall (g

5-5. © 1990, 1991 Open Software Foundation

5-108

Module 5 — File Systems

Student Notes: Minimizing Fragmentation Costs

5-109

Module 5 — File Systems

5-54. UFS File System

The Use of Fragments, part 1

NN file B

55 © 1990, 1991 Open Software Foundation

5-110

Module 5 — File Systems

Student Notes: The Use of Fragments, part 1
This example illustrates a difficulty associated with the use of fragments. The file system must preserve the
invariant that fragments assigned to a file must be contiguous and in order, and that allocation of fragments may

be done only on what would be the last block of the file. In the picture, the direction of growth is downwards.
Thus file A may easily grow by up to two fragments, but file B cannot easily grow within this block.

In the picture, file A is 18 fragments in length, file B is 12 fragments in length.

5-111

Module 5 — File Systems

5-55. UFS File System

The Use of Fragments, part 2

DANINNN]

file B

© 1990, 1991 Open Softwars Foundation

5-55.

5-112

Module S — File Systems

Student Notes: The Use of Fragments, part 2

File A grows by one fragment.

5-113

Module 5 — File Systems

5-56. UFS File System

The Use of Fragments, part 3

N

A7 file A
N file B

5-56. © 1990, 1991 Open Software Foundation

5-114

Module 5 — File Systems

Student Notes: The Use of Fragments, part 3

File A grows by two more fragments, but since there is no space for it, the file system allocates another block and
copies file A’s fragments into it. How much space should be available in the newly allocated block? If the newly
allocated block is entirely free, i.e., none of its fragments are used by other files, then further growth by file A will
be very cheap. However, if the file system uses this approach all the time, then we do not get the space-saving
benefits of fragmentation. An alternative approach is to use a “best-fit” policy: find a block that contains exactly
the number of free fragments needed by file A, or if such a block is not available, find a block containing the
smallest number of contiguous free fragments that will satisfy file A’s needs.

Which approach is taken depends upon the degree to which the file system is fragmented. If disk space is
relatively unfragmented, then the first approach is taken (“optimize for time”). Otherwise, i.e., when disk space is
fragmented, the file system takes the second approach (“optimize for space”).

The points at which the system switches between the two policies is parameterized in the superblock: a certain
percentage of the disk space, by default 10%, is reserved for superuser. (Disk allocation techniques need a
reasonable chance of finding free disk space in each cylinder group in order to optimize the layout of files.) If the
total amount of fragmented free disk space (i.e., the total amount of free disk space not counting that portion
consisting of whole blocks), increases to 8% of the size of the file system (or, more generally, increases to 2% less
than the reserve), then further allocation is done using the best-fit approach. Once this approach is being used, if
the total amount of fragmented free disk space drops below 5% (or half of the reserve), then further allocation is
done using the whole-block technique.

5-115

Module 5 — File Systems

5-57. UFS File System

Minimizing Seek Time

o The principle:

— keep related information as clo er as possible
o
— distribute information sufficiently to make the above possible

¢ The practice:
=" attempt to put new inodes in the same cylinder group as their directory
put inodes for new directories in cylinder groups with “lots” of free space
— put the beginning of a file (direct blocks) in the inode’s cylinder group

— put additional portions of the file (¢ach 2Mb) in cylinder groups with
“lots™ of free space '

5-57. © 1990, 1991 Open Software Foundation

5-116

Module 5 — File Systems

Student Notes: Minimizing Seek Time

5-117

Module 5 — File Systems

5-58. UFS File System

Minimizing Latency, part 1

5-58. © 1990, 1991 Open Software Foundation

5-118

Module 5 — File Systems

Student Notes: Minimizing Latency, part 1

A naive way of laying out consecutive blocks of the file on a track would be to put them in consecutive locations.
The problem with this is that some amount of time passes between the completion of one disk request and the start
of the next. During this time, the disk rotates a certain distance, probably far enough so that the disk head is
positioned after the next block. Thus it will be necessary to wait for the disk to rotate almost a complete
revolution for it to bring the beginning of the next block underneath the disk head. This delay could cause a

significant slowdown.

5-119

Module 5 — File Systems

5-59. UFS File System

Minimizing Latency, part 2

stacks of rotationally
equivalent blocks

5-59. © 1990, 1991 Open Software Foundation

5-120

Module S — File Systems

Student Notes: Minimizing Latency, part 2

A better technique is not to lay out the blocks on the track consecutively, but to leave enough space between them
so that the disk will rotate no further than to the position of the next block during the time between disk requests.

It may be that when a new block is allocated for a file, the optimal position for the next block is already occupied.
If so, one may be able to find a block that is just as good. If the disk has multiple surfaces (and multiple heads),
then we can make the reasonable assumption that the blocks underneath each head can be accessed equally
quickly. Thus the stack of blocks undemeath the disk heads at one instant are said to be rotationally equivalent.

If all of these blocks are occupied, then the next stack of rotationally equivalent blocks in the opposite direction of
disk rotation is almost as good as the first. If all of these blocks are taken, then the third stack is almost as good,
and so forth all the way around the cylinder. If all of these are taken, then any block within the cylinder group is
chosen.

This technique is perhaps not as useful today as in the past, since many disk controllers buffer entire tracks and
hide the relevant disk geometry.

5-121

Module 5 — File Systems

5-60. UFS File System

Parallelization of UFS

simple lock for updates
“Bogus memory” locking for reads

RW lock for access to file
simple lock for update of inode
“pogus memory” locking for reads of inode

cylinder group
cg block protected via lock on buffer (from cache)

cylinder summary simple lock for updates
superblock | *“bogus memory” locking for reads

5-60. © 1990, 1991 Open Software Foundation

5-122

Module S — File Systems

Student Notes: Parallelization of UFS
Two sorts of locking are used with UFS, blocking RW locks and simple locks (spin locks):

1. blocking RW locks (on inodes): used to protect the file across logical operations. I.e., synchronization is

supplied at the granularity of the operations described by uio structures. As a special case, cg blocks reside in
the buffer cache and are locked via the blocking lock on the buffer from the cache.

2. simple locks (spin locks): used to protect important system data structures (inodes, vnodes, and superblocks).
Modifications to these data structures are always synchronized with simple locks. However, on many
architectures, such synchronization is not necessary for reads: if the architecture guarantees that 32-bit,
aligned items can be read atomically, then no locking is required. Thus, for example, a thread can read the
mode bits from the inode and be guaranteed that they make sense.

Parallel architectures that do not supply such atomicity guarantees are deemed to have bogus memory. These
cases are dealt with in the source code with the ﬂ macro: BM(lock(x)) expands to lock(x) on bogus-memory
machines and expands to the null string on other machines. Thus locking is compiled conditionally.

5-123

Module S — File Systems

5-61. NFS File System

Network File System (NFS)

o —— e

ftcuh‘é

VES jssve

B

S5

UFS | NFS
client

5-61.

5-124

© 1990, 1991 Open Software Foundation

Module S — File Systems

Student Notes: Network File System (NFS)

5-125

Module 5§ — File Systems

5-62. NFS File System

NFS Highlights

Servers are stateless:

e server crash recovery is trivial

¢ NFS does not support full UNIX semantics

o NFSis “easily” supported on other operating systems

5-62. © 1990, 1991 Open Sofiware Foundation

5-126

Module 5 — File Systems

Student Notes: NFS Highlights

Since servers contain no information about their clients, crash recovery is trivial in NFS: there is no information to
be recovered after a crash. However, some state information is required for implementing certain UNIX I/O calls,
and thus NFS cannot duplicate UNIX semantics exactly.

For example, a common technique for creating a temporary file is for a process to create a file and then to unlink
the newly created file. Since the file is open, it continues to exist even though it has a zero link count (the
reference count on its vnode is positive). The file is removed only when it is closed.

If this technique is practiced over NFS, the server does not know that the file is open (since this would be state
information), and thus removes the file as it is unlinked. Since a number of important applications use this
technique for creating a temporary file, the method must be accommodated. The client-side NFS code (executing
in the kemel) converts unlink requests into rename requests, changing the name of the file to a temporary name.
When the client application finally closes the file, the close is converted into an unlink and the file is removed.

Another example of the difference between UNIX and NFS semantics arises when an application changes the
access permissions of an open file. Access checks for UNIX files are performed only when the file is opened.
Thus, if the user successfully opens a file for read-write access and subsequently changes the permissions to
read-only, write access to the already open file is still allowed. However, since the NFS server must check access
permissions with each access to a file, write access would be denied in this case.

OSF/1 (and other UNIX implementations of NFS) provides only a partial solution to this problem. The NFS
server allows the owner of a file read-write-execute access regardless of the permissions associated with the file;
the NFS client filters requests to the NFS server on the basis of how the file was opened. Thus if the file was
opened successfully for read-write access, then the client side allows read and write calls to be processed.
However, if the file was opened as read-only, then the client side denies write requests.

A further difference between UNIX and NFS semantics is caused by the fact that NFS clients cache blocks from
files provided by NFS servers. This means that processes on different machines do not necessarily have a
consistent view of shared files.

5-127

Module S — File Systems

5-63. NFS File System

NFS and RPC

Issues

e reliability

e security

RPC

5-63. (© 1990, 1991 Open Software Foundation
L ona !
Dz e
%@//&f s Ter 7 OA

5-128

Module 5 — File Systems

Student Notes: NFS and RPC

The client and server communicate via Sun’s RPC protocol. The XDR protocol copes with the heterogeneous
environment. The two major issues are rehablhty and securi 2

The transport protocol is typically UDP, W Thus NFS itself must provide reliability. NFS
accomplishes this by taking advantage of the request/response semantics of the client-server interaction.

For example, suppose that a client issues a write request but receives no response. The client will repeat the
request under the assumption that the original request was lost.

However, suppose that it was the response that was lost, and not the request. Now the server receives the write
request twice. This usually presents no problems, because most NFS requests, such as write, are idempotent,
meaning that the effect of performing the request twice is the same as performing it once. The write request is
idempotent since it contains the location in the file to which the data is to be written. However, there are
additional problems with reliability, as will be seen.

Security has always been a problem in NFS. The model for authentication is essentially “Trust me.” Each NFS
RPC request contains as part of its header the numeric user id of the caller. Servers refuse requests from the
superuser but will trustingly honor any other requests. Sun uses an enhanced authentication technique for RPC
involving a combination of DES and public-key encryption. OSF will deal with such problems through its
distributed computing environment (DCE).

5-129

Module 5 — File Systems

5-64. NFS File System

File Handles

client server

5-64. © 1990, 1991 Open Software Foundation

5-130

Module 5 — File Systems

Student Notes: File Handles

When a file is opened, it is identified by its path name. The NFS server verifies that the file exists, checks that the
desired access is currently allowed, and retums a file handle that the client will use to identify the file on
subsequent accesses. Using the file handle for subsequent accesses thus avoids expensive path traversal for each
access. This file handle is of an opaque data type meant not to be interpreted by the client but only to be passed
back to the server.

UNIX servers pass back a handle consisting of:
e file system number
® inode number <

® inode generation number —

The generation number copes with the confusion that could arise from the reuse of inodes. One client may open a
file, another delete it, and a third might reuse the inode when it creates an entirely new file. When the first client
attempts to access the original file, the server must be able to determine that the desired file no longer exists. So,

when a client reuses an inode, the inode receives a new jon number to distinguish its current use from past

uses. When a client accesses a no-longer-extant file, a “‘stale file handle” error message is returned to the client.

The generation number is stored on disk in the inode.

5-131

Module S — File Systems

5-65. NFS File System

Client-Side Caching

Client C

5-65.
© 1950, 1991 Open Software Foundation

5-132

Module 5 — File Sﬁtems

Student Notes: Client-Side Caching

Remote disk blocks are cached in the client’s buffer cache. If multiple clients use the same file, there may be a
consistency problem. While it is considered too expensive to keep the various caches consistent, an attempt is
made to keep things from being too inconsistent. In each nfsnode is a copy of the associated remote file’s
attributes (i.e., what is obtained from a stat system call—information such as the file’s modification time). Every
time the attributes are fetched from the server, an expiration time of some number of seconds is set (five seconds
in OSF/1). If the file is accessed before the attributes expire, then it is assumed that any locally cached blocks of
the file are valid. If the attributes have expired, the new attributes must be obtained from the server and, if the file
has been modified, then the locally cached blocks are flushed. (Modified cached blocks are written to the server.)

The cache is cleaned in response to close, sync, and fsync system calls (fsync is performed synchronously over
NFES). '
v

5-133

Module 5 — File Systems

5-66. NFS File System

nfsbiod Processes

¢ Concurrent I/O and computation require asynchronous read-aheads and
write-behinds

o NFS’s RPC requests are synchronous

e Solution: use additional kemel threads

5-66. © 1990, 1991 Open Sofiware Foundation

5-134

Module S — File Systems

Student Notes: nfsbiod Processes

When a process accesses files through the buffer cache, concurrency between I/O and computation is achieved by
exploiting read-aheads and write-behinds. This is easy to do for I/O for local files, because the interface to the
device driver is asynchronous. For example, when reading a file sequentially, one can start I/O read requests for
the current block and the next block without waiting for the request to the latter. When writing a block, the user
process merely modifies the buffer cache and the file itself is modified later, asynchronously.

The interface between the client and the NFS server is synchronous, since RPC requests are inherently

synchronous. To achieve the desired concurrency, separate threads are used on the client to perform many NFS
client RPC calls. These threads are pre-created and are known as nfsbiod processes (these are user processes that
have executed the async_daemon system call). Whenever an asynchronous I/O request is desired, the client
checks to see if an nfsbiod process is available. If so, then the request is given to it to perform in its own context,
Otherwise, the caller performs the request in the caller’s context (and blocks until the request is completed).

5-135

Module S — File Systems

5-67. NFS File System

nfsd Processes

o Kemel processes that handle NFS requests on the server

¢ Must deal with “authentication” and access checking

5-67. © 1990, 1991 Open Software Foundation

5-136

Module 5§ — File Systems

- Student Notes: nfsd Processes

Each server has a number of afsd processes that handle the incoming RPC requests for NFS. (These are user
processes that have executed the nfssvc system call.) Unlike the nfsbiod processes, the nfsd processes are
essential. NFS requests are handled only in their context on the server. When such a process receives a request, it
acts on behalf of the caller and temporarily assumes its identity. This is accomplished through the use of
credentials structures, which contain groupids and a userid and are passed to the access-checking routines.

5-137

Module 5 — File Systems

5-68. NFS File System

Server’s Buffer Cache

update request

server

5-68. © 1990, 1991 Open Software Foundation

5-138

Module S — File Systems

Student Notes: Server’s Buffer Cache

The server’s buffer cache is used for handling client requests, but it is treated as a write-through cache: when an
nfsd process handles a write request, not only is the cache modified but also the data is written to the disk
immediately and the RPC call does not retumn until the disk-write completes. This technique is consistent with the
idea that NFS servers are stateless: data that is in the cache but not on disk is state information that the client
would not want the server to lose if the server were to crash. The client is assured that, when an NFS RPC request
returns, any requested changes to a file have been reflected on disk.

5-139

Module 5 — File Systems

5-69. NFS File System

The NFS Mount Protocol

L&

5-69. © 1990, 1991 Open Software Foundation

5-140

Module 5 — File Systems

Student Notes: The NFS Mount Protocol

Like local file systems, in UNIX a remote file system must be mounted in the client’s directory hierarchy in order
to be used.

In OSF/1, the mount shell command makes an RPC request to the server’s mountd process to obtain a file handle
for the mount point. The mountd process is a user process that implements the server side of the mount protocol
(the mount shell command implements the client side). Each server maintains in the /etc/exports file a list of
exported file systems and the clients to which they are exported. The mountd process first makes certain that the
client is allowed to mount the requested file system, then returns to it the file handle for the root of the file system.
The mount shell command then issues a mount system call, passing to the kernel the file handle and the path
name of the mount point. -

5-141

Module 5 — File Systems

5-70. NFS File System

Remote Mounting, part 1

nancy

/usr/src nancy
/ust/man nancy

sluggo:/etc/exports

sluggo

mount point

5-70.

© 1990, 1991 Open Software Foundation

5-142

Module § — File Systems

Student Notes: Remote Mounting, part 1

In this picture we have two machines, nancy and sluggo. Sluggo exports two file systems to nancy, identified as
lusr/src and /usr/iman.

5-143

Module 5 — File Systems

5-71. NFS File System

Remote Mounting, part 2

nancy

mount point

nancy% mount sluggo:/usr/man /usr/man

5. © 1950, 1991 Open SoRware Foundation

5-144

Module 5 — File Systems

Student Notes: Remote Mounting, part 2

Nancy mounts sluggo’s /usr/man on its own /usr/man directory.

5-145

Module 5 — File Systems

5-72. NFS File System

Remote Mounting, part 3

nancy sluggo

nancy% mount sluggo:/usr/man /usr/man
nancy% mount sluggo:/ust/src /usr/osrc

5-72. © 1990, 1991 Open Software Foundation

5-146

Module 5 — File Systems

Student Notes: Remote Mounting, part 3

Nancy now mounts sluggo’s /usr/src on nancy’s /usr/osrc. On sluggo, /usr/src/sys is a mount point: another file
system, X, has been mounted here and, from sluggo’s point of view, the root directory of this file system is
superimposed on top of the directory /usr/src/sys (thus the original contents of this directory are invisible to
sluggo). However, nancy does not see this mount point.

The directory (on nancy) /usr/osrc/sys is not mounted upon. Unlike sluggo, nancy sees the actual contents of this
directory. If it is desired that this mount point exist in nancy’s view as it does in sluggo’s, then nancy could
explicitly mount file system X on top of the directory /usr/osrc/sys.

The reasons for not having a client use the server’s mount points are partly for security, but mainly for simplicity.
Suppose on server B, file system Y (from server C) is mounted on a directory within file system X and file system
Z (on the same server as X) is also mounted within file system X. If client A mounts X (and thus appears in B’s
fetc/exports list), what would be required for it to be able to follow the mount point to Y on server C? A must
appear in C’s /etc/exports list. But C has only verified that B is there. If B were to pass on A’s requests to C, it
would have to ensure that C approves of A. Rather than do this complicated checking, the convention is that A
must mount Y itself.

Note that it wouldn’t be very difficult for B to allow A to follow the mount point to Z, but, again, for simplicity,
this is not done.

5-147

Module 5 — File Systems

5-73. NFS File System

When the Server Crashes ...

e Hard mounts
}ﬂr gl WES

¢ Soft mounts

¢ Interruptible hard mounts

5-73. © 1990, 1991 Open Software Foundation

5-148

Module S — File Systems

Student Notes: When the Server Crashes ...

The client’s response to server crashes depends upon an option specified when the remote file system was
mounted. If the client specified a hard mount, then any system call involving a file on the remote machine blocks
until the machine comes back up (whether this takes seconds or weeks). Such system calls block uninterruptibly,
so there is no way to abort the process making the system call. This can be very annoying.

Another option is the soft mount. Any system calls involving files on the dead remote machine will return
(eventually) with the error code ETIMEDOUT. This option might seem a good idea, but there are difficulties. A
number of UNIX applications pay no attention to error returns on I/O system calls (if the open succeeded, there
could not possibly be any problems with reads and writes...). Thus damage may be done because the client is
unaware of the crash.

A gﬁe reasonable way of mounting the remote file system is the interruptible hard mount. With this option, as
before, system calls involving a file on the remote machine block until the machine comes back up, but the wait is
interruptible (i.c., by signals). However, the interrupt is not immediate: the underlying RPC layer performs many
retries before checking to see if a signal is pending.

5-149

Module S — File Systems

5-74. NFS File System

More on Server Crashes, part 1

5-74. © 1990, 1991 Open Software Foundation

5-150

Module 5 — File Systems

Student Notes: More on Server Crashes, part 1

Here moe, larry, and curly are the names of NFS servers. Each contains a file system that has been mounted,
respectively, in /nfs/A, Infs/B, and /nfs/C (i.e., the client has set up its directory hierarchy so that all NFS mounts
are in one directory). Suppose one’s current directory is in the root directory of curly’s file system and one
executes the pwd command. The result should be /nfs/C. How does the pwd command work? It determines the
inode of the current directory (“.”), and then searches the parent directory (*..”) until it finds the component name
associated with the matching inode number. It then repeats this procedure backwards along the path until it
reaches the root directory.

However, when a mount point is encountered, the parent directory of the mount point does not contain the inode
number of the root directory of the mounted file system. Instead, the pwd command must issue the stat system
call for each entry of the parent directory until it finds the entry that refers to the mounted file system.

Back to our example. Suppose that NFS server moe is down. When the pwd command is executed starting with
curly’s root directory, it will be necessary to stat each of the entries in the /nfs directory to determine which of
them refers to curly. But, since moe is down, the stat call will hang when it is applied to /nfs/A. Thus it will be
impossible to complete the pwd command until machine moe comes back up, even though there is no logical
connection between the path /nfs/C and the machine moe.

This is especially annoying because both csh and ksh perform a pwd when starting up.

Vs ‘/4/»0“»/ & Ay)"Wé

s

AR /il

f<2

5-151

Module 5 — File Systems

5-75. NFS File System

More on Server Crashes, part 2

575, © 1990, 1991 Opea Software Foundation

5-152

Module S — File Systems

Student Notes: More on Server Crashes, part 2

This picture illustrates a safer NFS mount technique. An extra level of directories has been added so as to avoid
the problems with pwd.

5-153

Module S — File Systems

5-76. NFS File System

‘The Problem of (Non)Idempotency

— remove file

lost -$—————— done —

— retransmit of remove file
what file? =

6. © 1990, 1991 Open Software Foundation

5-154

Module S — File Systems

Student Notes: The Problem of (Non)Idempotency

As previously mentioned, NFS is typically implemented on top of an unreliable protocol and thus must implement
reliability guarantees itself. To accomplish this, it exploits the request/response nature of its interaction: if a client
receives no response to its request, it assumes that the request was lost and repeats it. However, difficulties can
occur if it was the response that was lost, not the request.

This situation should be no problem as long as the requests are idempotent, as was discussed on page 5-129.
Certain requests, however, are known to be nonidempotent. For example, suppose that a remove file request is
repeated because the first response was lost. The response to the second request indicates an error because the file
no longer exists. But, other than the error, the desired effect has been achieved—the file has been removed,
though the programmer may end up somewhat confused.

With some cooperation by the server, this sort of nonidempotency, known as nondestructive nonidempotency, can
be made transparent. In the original reference port for NFS, the server maintains a queue of completed
nonidempotent requests and their responses. If a nonidempotent request fails, the server checks this queue to see
if this is a repeat of an earlier request (the RPC headers contain a transmission id (xid) to facilitate this duplicate
detection). Ifit is, then the server repeats the previous response.

However, as the next slide shows, there are other, more subtle cases that are not dealt with.

5-155

Module 5 — File Systems

5-77. NFS File System

A Problem Case#*

Time Client Activity Server Activity

t0 § process starts idle

t1] transmit creat request (C0O) idle

t2] wait for creat response ‘ receive CO; schedule nfsdl

t3 | retransmit creat request (C1) nfsdl: complete CO, truncate file, send creat response
t4 | receive creat response; process resumes receive C1; schedule nfsdl

t5 § transmit write request (W0) nfsdl: starts but blocks on a system resource

t6 | wait for write response receives WO, schedules nfsd2

t7 | wait for write response nfsd2: complete WO, send wrife response

t8 | receive write response; process completes | nfsd1: complete C1, truncate file, send creat response
t9 § receive creat response—discard it idle

* from “Improving the Performance and Correctness of an NFS Server,” by Chet Juszczak, Conference Proceedings of 1989 Winter USENIX Technical Conference.
Used with pormission.

57 © 1990, 1991 Open Software Foundation

5-156

Module § — File Systems

Student Notes: A Problem Case

A side effect of a creat request is to truncate the file to zero length if it already exists. In this example, the
intention was to truncate the file and then write to it, but the result was the opposite: the file was written to, then
truncated. The problem is that, though the write request and the creat request are by themselves idempotent, more
complicated interactions have occurred. That is, idempotency itself is not sufficient.

5-157

Module 5 — File Systems

5-78. NFS File System

Fixing the Problem

receive
request

duplicate?

repeat original
successful? reply
perform .
request discard
5-78. © 1990, 1991 Open Software Foundation

5-158

Module S — File Systems

Student Notes: Fixing the Problem

OSF/1 solves this problem by using the technique described in the paper referenced on the previous slide. The
NFS server maintains a cache of active and completed requests. Items stay in this cache for a finite period (2
seconds). When the server receives a request, it immediately checks if it is a duplicate of a request still in the
cache. Ifitis, and if the original is still in progress, then the duplicate is discarded, i.e. the client timed out
prematurely. If the original completed successfully, the duplicate is again discarded. (Here we are assuming that
the response was not lost but that the client again timed out prematurely—from observation, this is the usual case.)

If the response was indeed lost, the client will continue to retry the request; eventually the original request will
have been removed from the cache, so that a retry will not be recognized as such and will actually be retried. The
problem outlined in the previous slide will not occur, since the client does not move on to its next request until it
finally gets a response from its current request. If the original failed, the server retries the duplicate (there is no
particular rationale for retrying the duplicate other than that this is the behavior of the original implementation of
NFS).

5-159

Module 5§ — File Systems

5-79. NFS File System

Optimizing NFS Writes in OSF/1 Ml7

b_dirtyoff b_dirtyend

51, © 1990, 1991 Opea Software Foundation

5-160

Module S — File Systems

Student Notes: Optimizing NFS Writes in OSF/1

Nommally (i.e., when using a local file system), when one writes to a file a span of data that does not fill an entire
buffer from the cache, the block I/O subsystem first reads a whole block, then modifies the desired portion of the
block. To eliminate the need for these (expensive) reads when writing to an NFS file, the block I/O subsystem
keeps track of what portion of a buffer has been modified (using two new fields in the buf structure: b_dirtyoff
and b_dirtyend). Thus when the buffer is “cleaned,” just the modified portion is written to the server.

This presents a problem if the entire buffer is read by an application before the modified portion is sent to the
server: consider a situation in which bytes 2048 through 8191 of a file are modified on the client, and no blocks of
the file currently reside in the client’s cache. An 8K buffer is allocated on the client, but only locations 2048
through 8191 are written. At this point, a thread on the client attempts to read the entire 8K portion of the file.
Rather than complicate the client-side code so that it will recognize that it must first fetch bytes 0 through 2047
from the server, the client, whenever it reads from an NFS file that it has recently written to, first cleans its buffer
cache of blocks from this file (by sending dirty blocks to the server). Then it checks the attributes of the file with
the server and fetches the block from the server if necessary.

For further discussion about this implementation of NFS, see Macklem, 1991.

5-161

Module 5 — File Systems

5-80. NFS File System

Duplicate Detection

request

lost <@———— response —
= retransmit

client server

5-80. © 1990, 1991 Open Software Foundation

5-162

Module S — File Systems

Student Notes: Duplicate Detection

As mentioned previously, duplicate detection relies on an xid supplied by the RPC level. However,
retransmissions are performed by a pair of nested loops. In the inner loop, retransmissions are done by the RPC
layer, which does not modify the value of the xid. However, after this loop is performed a finite number of times,
control passes to the outer loop, which is performed by the NFS layer (client side). In the original reference port,
at each iteration of this loop the xid would change. OSF/1 (which does not have separate NFS and RPC layers,
but combines them into a single layer) fixes this by ensuring that the xid never changes during retransmissions.

5-163

Module S — File Systems

5-81. NFS File System

Parallelization of NFS

simple lock for updates
“bogus memory” locking for reads

RW lock for access to file
simple lock for update of nfsnode
“bogus memory” locking for reads of nfsnode

s-81. © 1990, 1991 Open Soware Foundation

5-164

Module S — File Systems

Student Notes: Parallelization of NFS

At the higher levels, the parallelization is very similar to that of UFS: there are blocking RW locks on nfsnodes to
protect access to files at the level of operation described by uio structures. Simple locks are used to synchronize
updates to vaodes and nfsnodes. Reads of these data structures need only be protected on architectures with
“bogus memory.”

Simple locks are used at lower levels for synchronization of NFS data structures. For example, the client side

maintains a queue of NFS RPC requests (which are waiting for responses). The server side maintains a table of
active and completed requests, accessed via a hash table.

5-165

Module 5§ — File Systems

Exercises:

1. Explain the use of the reference count in the system file table entries.

2. a

e

S

What are the roles of the vfsops and vrnodeops data structures in the abstraction of the file system
concept?

Some versions of UNIX maintain a “mount table” in the kernel, representing in tabular form which file
systems are mounted where. How is this sort of information represented in OSF/1?

Why is it necessary for a thread to hold a lock over the entire period during which it is using the offset
field of the system file table entry?

How does the buffer cache facilitate concurrent I/O and computation?
Why are blocks in the buffer cache identified by vnode and block number?

‘What happens when two threads simultaneously access a file block that is not currently in the cache?

How are directories protected from concurrent conflicting updates?

Explain the concept and use of capapbilities in the directory lookup cache.

What aspects of the operating system limit the maximum possible size of the file?

What are the performance problems inherent in the standard S5 file system?

How is free space represented in a UFS directory?
List the techniques used in the UFS file system to improve performance.

What are the two different policies for allocating fragments for a file? Under what circumstances is each
policy used?

Suppose that two threads are extending the size of two different files within the same file system. What
data structures need to be protected from concurrent access? What types of locks are employed for this
protection? Under what circumstances can the two threads proceed without one having to wait for the
other?

List three differences between NFS semantics and UNIX semantics.

Explain how generation numbers are used.

What is the function of nfsbiod processes?

Why is the server’s buffer cache accessed in a synchronous write-through fashion?

What are the differences between hard mounts, soft mounts, and interruptible hard mounts?

5-166

Module 5 — File Systems

f. Why is it necessary for the server to maintain a queue of recent NFS requests?

Advanced Questions:

8. A thread executing an I/O system call involving an ordinary file must obtain blocking locks on the file table

entry and on buffers in the buffer cache. On a multiprocessor, a simple lock is needed for operations on the
vnode. Why are all of these locks necessary? Could fewer be used?

9. On page 5-77, we discuss the use of timestamps to avoid a race condition. Why isn’t this race condition dealt
with by combining the lookup and delete operations into a single operation?

5-167

Module 5 — File Systems

5-168

Module 6 — Device Drivers and Terminal I/O

Module Contents

B o T 1 5[6-4
Identifying devices and drivers
Flow of control
Data structures

2. Dynamic Configuration

3. DEVICEDIIVETS . .ot ieteeeeiieieeeeeesansnenaanannneeennnn e et 6-16
Summary of the interface

T B U v 1114 1 16 O 6-30
Line disciplines
POSIX session management
Data structures
Flow of control
Pseudo terminals

Module Objectives

In order to demonstrate an understanding of device drivers and terminal I/O, the student should be able to:
® explain the problem of aliasing in special files and how it is dealt with in OSF/1

® list the steps necessary to dynamically add a module to the operating system

® list what has been done in the OSF/1 kemel to support internationalization

¢ list the data structures supporting terminals and sessions

Module 6 — Device Drivers and Terminal I/0

6-1. The Big Picture

Device Drivers

UNIX

© 1990, 1991 Open SoRtware Foundation

PFS
LS

s ¢ VA

Module 6 — Device Drivers and Terminal I/O

Student Notes: Device Drivers

OSF/1 does not provide any device drivers itself, since they are necessarily extremely machine-dependent.
Device drivers are, however, supplied with the reference ports, and they can be used as a guide for constructing
one’s own device drivers. OSF has added the dynamic configurability and loading of device drivers. In
particular, one of the reference ports is for a symmetric multiprocessor, and its device drivers provide an example
of how other device drivers may be parallelized.

This material is discussed in chapters 17 and 18 of Open Software Foundation, 1990a.

(//N/)j\j/* = veeS wre et //*.'Vr,':(

Module 6 — Device Drivers and Terminal I/O

6-2. Special Files

Devices

o Accessed via special files
—’-——.———’
__ block interface 477 cache

— character interface 7= s V/ /f/ cz:/a/z

o Identified by device number . ¢
— major portion identifies driver - - f /. 7’{5

— minor portion interpreted by driver B4 /s

62 © 1990, 1991 Open Software Foundation

6-4

Module 6 — Device Drivers and Terminal I/O

Student Notes: Devices

Devices are treated as a special form of a file in that they are named by paths in the directory hierarchy. A device
may be accessed via two different interfaces: the block interface, meaning that all access is through the buffer
cache, and the character interface, meaning that the buffer cache is not used.

A device is identified by a device number that has two parts: the major portion, identifying the driver, and a minor
portion to be interpreted by the driver but usually identifying the device, among other things.

Module 6 — Device Drivers and Terminal I/O

6-3. Special Files

Device I/O: Flow of Control

t -
major(dev) Spec_wite
1 cdevsw[] 1

3 o
bdevsw[] =3 driver

&3 © 1990, 1991 Open Software Foundation

6-6

Module 6 — Device Drivers and Terminal /O

Student Notes: Device I/O: Flow of Control

Special files are represented by inodes in both the S5 and UFS file systems. However, the vnode set up for the
inode refers to the vnode operations for special files. Thus, for example, a write system call results in a call to
spec_write.

These special file vnode operations must identify the device driver that controls the device. They do so by using
the major portion of the device number as an index into the cdevsw table for the character interface and the
bdevsw table for the block interface. (However, for the block interface, the driver is actually called from the block
I/O routines.) Each entry in the cdevsw and bdevsw tables is a structure containing entry points of the associated
driver.

Module 6 — Device Drivers and Terminal I/O

6—4. Special Files

Aliases and Shadows

—

sa_vlist

— sa_vnode:

specinfo

v_specinfo

specinfo

specinfo

\— si_shadowvp

© 1990, 1991 Open Safiware Foundation

Module 6 — Device Drivers and Terminal 1I/O

Student Notes: Aliases and Shadows

A difficulty with devices is that one device might have multiple names (special files). This arrangement could
lead to problems: for example, when a device driver’s close routine is called, the driver must be assured that this
is the last close of the device, regardless of the name used to open it. For accesses to a device via its block
interface, we must ensure that, no matter which name of the device is used, all accesses use the same buffers in the
cache.

All vnodes (representing open files) of the same device are linked on a chain headed by a specalias structure. The
actual links are contained in specinfo structures, which are allocated along with the vnodes when the underlying
inodes are brought into primary memory.

Another problem occurs when one block device has multiple names. Since blocks in the buffer cache are
identified by the pair of vnode address (of the block device) and block number, there would be multiple names for
each block of the device, one for each of the device’s path names. Thus, depending upon which special file is
used to access a particular block, the block would be identified differently in the cache. This problem is avoided
though the use of shadow vnodes.

If a device is opened via its block interface, then the system allocates a shadow vnode. If the same device is
subsequently opened via its block interface but with a different name, then the same shadow vnode is used. This
vnode is used to refer to the device in all accesses to the buffer cache, thus ensuring consistency.

A related problem might occur when a mounted file system is accessed via its block special interface. In this
situation, a single block might have two identities in the cache; it is a block within an ordinary file and it is a block
within the block device. This problem is dealt with by prohibiting access to a mounted file system via its block
device interface.

Module 6 — Device Drivers and Terminal I/O

6-5. Dynamic Configuration

System Configuration

* Boot-time activation of driver (BSD) 770

¢ Dynamic loading and configuring of subsystems (OSF/1)

6-5. © 1990, 1991 Open Software Foundation

6-10

Module 6 — Device Drivers and Terminal I/O

Student Notes: System Configuration

In BSD-style autoconfiguration, device drivers are statically linked into the kemnel. At boot time,
autoconfiguration code determines which devices are present and “activates” the appropriate drivers.
—_— L ke s

OSF/1 supports dynamic configuration of:
® device drivers

® file systems

® streams modules and drivers

® network protocols

Drivers and other modules may be loaded into or unloaded from a running system.

6-11

Module 6 — Device Drivers and Terminal I/O

6—6. Dynamic Configuration

Dynamically Adding a Driver

configure daemon script

file system

load driver

configure(...)
mknod(...)

kernel

66 © 1990, 1991 Open Software Foundation

6-12

Module 6 — Device Drivers and Terminal I/0

Student Notes: Dynamically Adding a Driver

A driver is loaded into the operating system with the aid of the run-time loader, as will be discussed in Module 10.
The run-time loader links the driver to the rest of the operating system, but the loaded driver is responsible for
linking the rest of the operating system to its