
September 1977

This document describes the operating procedures for the TECO (Text Editor and COrrectorl program.

TECO is distributed with the IAS, RSX-11D, RSX-11M, and RT•11 operating systems, but is unsup-
ported by DIGITAL; TECO is Category C software.

PDP-11
TECO User's Guide

Order No. DEC-II-UTECA-A-D

SUPERSESSION/UPDATE INFOi~MATiON: This manual includes Update Notice
No. 1 (DEC•11 •UTECA-A-DN 1).

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts Oi 754.

digital equipment corporation • ma~nard, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

The software described in this manual is Category C software; DIGITAL
assumes no responsibility to support the software nor to answer in-
quiries about it. If you have problems with this software, you may
contact the RT-11 Special Interest Group of DECUS CDigital Equipment
Corporation Users' Society) at the following address:

RT-11 Special Interest Group
c/o DECUS
Digital Equipment Corporation
129 Parker Street PK3-1/E55
Maynard, Massachusetts 01754

Copyright © 1974, 1975, 1976, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation ,

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UN IBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECSYSTEM-20 TYPESET-11

TECO-1~1

TABLE OF CONTENTS

Introduction

Chapter I : Introductory Command s

1.0 Fundamentals
1.1 File Selection Commands
1.2 Input and Output Commands
1.3 Pointer Positioning Commands
1.4 Type Out Commands
1. 5 Text Modification Commands
1.6 Search Command s
1.7 Summary
1.8 Sample Editing Job

Chapter I I :. Complete Command Summar y

2.0 Teco Character Se t
2.1 File Specification Command s
2.2 Page Manipulation Commands
2.3 Buffer Pointer Manipulation Commands
2.4 Text Type-out Command s
2.5 Deletion Commands
2.6 Insertion Commands
2.7 Search Commands
2.8 Search Arguments
2.9 Q-registers
2.10 Command Loops
2.11 Branching Commands
2.12 Conditional Execution Command s
2.13 Numeric Arguments
2.14 Mode Control Flags
2.15 Programming Aids
2.16 Error Messages
2.17 Manipulating Large Pages
2.18 Techniques and Examples

Appendix A:
Appendix B :
Appendix C
Appendix D
Appendix E :
Appendix F

RT-11 Operating Characteristics
RSTS/E Operating Characteristics
RSX-11 Operating Characteristics
ASCII Character Se t
Error Messages
Index to TECO Commands

iii

v

1

1
3
6
7
8
9
10
11
12

15

15
18
22
23
24
26
2?
29
34
36
40
40
42
44
50
54
56
56
57

A-1
B-1
C-1
D-1
E-1
F-1

U

i

TECO-11

INTRODUCTION

TECO is a powerful text editing program that runs under most
PDP-11 operating systems. TECO may be used to edit any farm of
ASCII text such as program listings, manuscripts, correspondence
and the 1 ike . Since TECO is a character-oriented editor rather
than a 1 ine editor , text edited with TECO does not have 1 ine
numbers associated with it, nor is it necessary to replace an
entire 1 ine of text in order to change one character .

Because TECO is very versatile, it is necessarily complex .
This manual is, therefore, divided into two parts. Chapter I
contains basic information and introduces enough TECO commands to
allow the novice TECO user to begin creating and editing text
files after only a few hours of instruction. The introductory
commands are sufficient for any editing application; however ,
they are 1 ess convenient, in most cases , than the advanced
commands presented later .

Chapter II introduces the full TECO command set, including a
review of the introductory commands presented earlier . This
chapter also introduces the concept of TECO as a programming
language and explains how basic editing commands may be combined
into "programs" which are sophisticated enough to handle the most
complicated editing tasks.

Specific examples of the use of TECO commands have been
de-emphasized throughout this manual. This was done because all
of the TECO commands have a consistent, logical format which will
quickly become apparent to the novice user . However , each
chapter of the manual is concluded with one or more elaborate
examples which employ most of the commands introduced up to that
point . Users who are learning TECO commands should experiment
with each command as it is introduced, then duplicate the
examples on their computer.

v

f

TECO-11

CHAPTER I

INTRODUCTORY COMMANDS

1.0 FUNDAMENTALS

TECO considers text to be any string of ASCII codes . Tex t
is broken down into units of pages, lines, and characters. A
page of text consists of all the ASCII codes between two form
feed .characters, including the second form feed. A character is
one ASCII code. Thus, every page of text contains one form feed
character , which is the last character on the page. Every 1 ine
of text contains one 1 ine feed , which is the last character on
the line.

TECO maintains a text buffer in which text is stored. The
buffer usually contains one page of text .consisting of up to
several thousand characters, but the terminating form feed
character never appears in the buffer . TEl;O also maintains a
buffer pointer . The pointer is simply a movable position
indicator which is always located between two characters in the
buffer , or before the first character in the buffer , or after the
last character in the buffer. The pointer is never located on a
character .

Line feed and form feed characters are inserted
automatically by TECO. A 1 ine feed is automatically appended to
every carriage return entered into the buffer , and a form feed is
appended to the content of the buffer by certain output commands.
Additional line feed and form feed characters may be ent-erect into
the buffer as text. If a form feed character is entered into the
buffer , it will cause a page break upon output. That is, all
text preceding the form feed will appear on one page, and the
text following the form feed will appear on the next page.

Finally, TECO also maintains an input file and an output
file , both of which are selected by the user through the use of
file specification commands . The input file is any device from
which text may be accepted. For example, if a block of text is
stored in a d isk file , the disk file would be specified as an
input file when the text is edited .

The output file i s any device on which edited text may be
written. If the disk f i.le mentioned above were to be edited , i t
could be written, for example , onto another disk file .

TECO functions as a "pipeline" editor . Text is read from
the input file into the text buffer , and is written from the
buffer onto the output file. Once a portion of text has been
written to the output file, it cannot be accessed again without
closing the output file and re-opening it as an input file.

TECO-11

TECO may be called from command level by typing

. R TECO For RT-11

RUN $TECO For RSTS/E

TECO For RSX-11

(terminated with a carriage return) . TECO will respond by
printing an asterisk at the left margin to indicate that it is
ready to accept user commands. At this point, one or more
commands may be typed at the terminal , and TECO will execute the
commands upon receipt o f two consecutive ESCAPE characters . The
ESCAPE i s a non-printing character which may be 1 abel led ESC ,
ALT, or PREFIX on some keyboards. TECO ec-hoes a dollar sign ($)
whenever an ESCAPE is received. The dollar sign character is
used in examples throughout this manual to represent ESCAPE.

A TECO command consists of one or two characters which cause
a specific operation to be per formed . Some TECO commands may be
preceded or followed by arguments. Arguments may be either
numeric or textual. A numeric argument is simply an integer
value which might be used to indicate such things as the number
of times a command should be executed. A text argument is a
string of ASCII characters which might be words of text, for
example, or a file specification.

If a command requires a numeric argument, the numeric
argument always precedes the command. If a command requires a
text argument , the text argument always follows the command . Al l
text arguments are terminated by a special character (usually an
ESCAPE) which indicates to TECO that the next character typed
will be the first character of a new command.

If more than one command is typed in response to the
asterisk generated by TECO, the command string wild be executed
from left to right until either all commands have been executed
or a command error is recognized. If an error is encountered, a
message is printed and the rest of the command string is ignored .
In any case, TECO prints another asterisk at the left margin as
soon as i t finishes execution of a command string , so that
additional commands may be entered.

The extensive text editing capability of TECO implies a
large and versatile command set. However , the novice TECO user
will find that 1 ittle more than a dozen basic commands suffice
for most editing requirements . The following section introduces
the basic TECO commands. The full command set will be described
later

in this manual.

2

TECO-11

1.1 FILE SELECTION COMMANDS

Input and output files may be specified to TECO in several

ways. The following commands permit flexible file selection with
TECO.

NOTE

All of the following file selection commands
are shown with a general argument of
"filespec" . The actual contents of this
filespec argument are operating system
dependent. See the Operating Characteristics
Appendices .

TECO will accept input text from any input device in the
operating system. The input device may be specified by means of
an ER command terminated by an ESCAPE . The ER command cause s
TECO to open the specified file and print an error message if the
file is not found . This command does not cause any portion of
the file to be read into the text buffer , however . The following

examples illustrate use of the ER command

COMMAND FUNCTION

ERf i 1 e spe c $

E RPR : $

ERPROG.MAC$

ERDXI:PROG.FOR$

General form of the ER command
where "filespec" is the designation
of the input file. The command is
terminated by an ESCAPE , which
echoes as a dollar sign.

Prepare to read an input file from
the paper tape reader .

Prepare to read input file PROG. MAC
from the system's default device .

Prepare to read input file PROG. FOR
from DX1:.

3

TECO-11

TECO will write output text onto any device in the operating
system. The output file may be specified by means of an EW
command terminated by an ESCAPE. If the output device is a
file-structured device (e.g. , a disk) , a file name and extension
(if any) must be supplied . If a file name is specified but no
device is explicitly defined , the system's default device is
assumed. The following examples illustrate use of the EW
command , which has the same format as the ER command

COMMAND FUNCTION

EWfilespec$

EWSY:TEXT.LST$

EW PROG $

EWDX1: TEXT. LST$

General form of the EW command
where "f ilespec" is the designation
of the output file . The command is
terminated by an ESCAPE , which
echoes as a dollar sign.

Prepare to write output file
TEXT. LST on SY: .

Prepare to write output file PROG
on the system's default device.

Prepare to write output file
TEXT. LST on DX1: .

It is not always necessary to specify an input file. If the
user desires to create a file without using any previously edited
text as input, he may type commands to insert the necessary text
directly into the text buffer from the keyboard and, at the end
of each page, write the content of the buffer onto an output
file . Since all input is supplied from the keyboard , no input
file is necessary.

An output file is unnecessary if the user desires only to
examine an input file , without making permanent changes or
corrections. In this case, the content of the input file may be
read into the text buffer page by page and examined at the
terminal . Since all output is printed on the user terminal , no
output file is needed .

4

TECO-11

When the user is finished editing a file, he may use the EX
command to close out the file and exit from TECO. The cur rent
contents of the text buffer , and any portion of the input file
that has not been read yet, are copied to the output file before
TECO exits . Note that the EX command takes no arguments .

COMMAND: EX

FUNCTION: Move the remainder of the current input file to the
current output file, close the output file, then return
to the monitor .

COMMAND STRING: ERDXI:INPUT.MAC$EWOUTPUT.MAC$$

FUNCTION: Open an input file "INPUT.MAC" to be found on DX1 and
open an output file named "OUTPUT.MAC". The double
ESCAPE ($$) terminates the command string and causes
the string to be executed . Note that the ESCAPE which
terminates the EW command may be one of the two ESCAPEs
which terminates the command string .

COMMAND STRING: ERFILE.MAC$EWCOPY.MAC$EX$$

FUNCTION: Open an input file "FILE.MAC" and open an output file
named "COPY. MAC" , then copy all the text in the input
file to the output file , close the output file and exit
from TECO.

TECO will only keep one input and one output file open and
selected at a time . The current input file may be changed by
simply using the ER command to specify a new file. The EX
command or one of the other file closing commands presented later
may be used to close the output file .

5

TECO-11

1.2 INPUT AND OUTPUT COMMANDS

The following commands permit pages of text to be read into
the TECO text buffer from an input device or written from the
buffer onto an output device. Once a page of text has been
written onto the output file, it cannot be recalled into the text
buffer unless the output file is closed and reopened as an input
file.

COMMAND FUNCTION

Y Clear the text buffer , then read the next page of the
input file into the buffer . Since the Y command causes
the contents of the text buffer to be lost, it is not
permitted if an output file is open and there is text in
the buffer (see ED flag in 2.14) .

P Write the content of the text buffer onto the next page
of the output file, then clear the buffer and read the
next page of the input file into the buffer.

nP Execute the P command n times , where n must be an integer
in the range 1<=n<=65535. If n is not specified, a value
of 1 is assumed .

6

TECO-11

1. 3 POINTER POSITIONING COMMANDS

The buffer pointer provides the only means of specifying the
location within a block of text at which insertions, deletions or
corrections are to be made. The following commands permit the
buffer pointer to be moved to a position between any two adjacent
characters in the buffer. TECO positions the pointer before the
first character in the buffer after every Y or P command .

COMMAND FUNCTION

J Move the pointer to the beg inning of the buffer .

L Move the pointer forward to a position between the next
1 ine feed and the first character of the next 1 ine . That
i s , advance the pointer to the beg inning o f the nex t
line.

nL Execute the L command n times , where n may be any
integer . A positive value of n moves the pointer to the
beg inning of the nth 1 ine following the cur rent pointer
position. A negative value moves the pointer backward n
lines and positions it at the beg innning of the nth line
preceding the current position. If n is zero, the
pointer is moved to the beg inning of the 1 ine on which it
is currently positioned .

C Advance the pointer forward across one character .

nC Execute the C command n times, where n must be an integer
in the range -32768<=n<=32767. A positive value of n
moves the pointer forward across n characters (carriage
return/1 ine feed counts as two characters) . A negative
value of n moves the pointer backward across n
characters. If n is zero, the pointer position is not
changed .

These commands may be used to move the buffer pointer across
any number of 1 fines or characters in either direction; however ,
they will not move the pointer across a page boundary. If a C
command attempts to move the pointer backward beyond the
beg inning of the buffer or forward past the end of the buffer , an
error message is printed and the command is ignored.

If an L command attempts to exceed the page boundaries in
this manner , the pointer is positioned at the boundary which
would have been exceeded . Thus the command "-10000L" would
position the pointer before the first character in the buffer .
The command "10000L" would position the pointer after the last
character in the buffer . No error message is printed in either
case.

7

TECO-11

1.4 TYPE OUT COMMANDS

The following commands permit portions of the text in the
buffer to be printed out for examination. These commands do not
move the buffer pointer.

COMMAND FUNCTION

T Type the content of the text buffer from the current
position of the pointer through and including the next
1 ine feed character .

nT Type n 1 ines, where n must be an integer in the range
-32768<=n<=32767. A positive value of n causes the n
1 ines following the pointer to be typed . A negative
value of n causes the n 1 ines preceding the pointer to be
typed. If n is zero, the content of the buffer from the
beg inning of the 1 ine on which the pointer is located up
to the pointer is typed . This facilitates locating the
buffer pointer.

HT Type the entire content of the text buffer.

V Type the current 1 ine . Equivalent to the sequence "OTT" .

The OT command is particularly useful for determining the
position of the buffer pointer. This command should be used
frequently to determine that the pointer is actually located
where the user expects i t to be .

8

TECO-11

1. 5 TEXT MODIFICATION COMMANDS

The following commands permit the user to insert or delete
text from the buffer .

COMMAND FUNCTION

Itext$ Where "text" is a string of ASCII characters terminated
by an ESCAPE, which echoes as a dollar sign. The
specified text is inserted into the buffer at the cur rent
position of the pointer , with the pointer positioned
immediately after the last character of the insertion.

K Delete the content of the text buffer from the current
position of the pointer through and including the next
1 ine feed character .

nK Execute the K command n times, where n may be any integer
in the range -32768<=n<=32767. A positive value of n
causes the n 1 Ines following the pointer to be deleted .
A negative value of n causes the n 1 fines preceding the
pointer to be deleted . If n is zero, the content of the
buffer from the beg inning of the 1 ine on which the
pointer is located up to the pointer is deleted.

HK

D

nD

Delete the entire content of the text buffer.

Delete the character following the buffer pointer .

Execute the D command n times, where n may be any integer
in the range -32768<=n<=32767. A positive value of n
causes the n characters following the pointer to be
deleted. A negative value of n causes the n characters
preceding the pointer to be deleted. If n is zero, the
command i s ignored .

Like the L command , the D and K commands may not execute
across page boundaries. If a K command attempts to delete text
up to and across the beg inning or end of the buffer , text will be
deleted only up to the buffer boundary and the pointer will be

j positioned at the boundary. No error message is printed . A , D
command attempting to delete text across a page boundary will
produce an error and the command is ignored .

TECO-11

1. 6 SEARCH COMMANDS

The following commands may be used to search for a specified
string of characters which may occur somewhere in the input file.
They cause the buffer pointer to be positioned immediately after
the last character in the specified string, if found.

COMMAND FUNCTION

Stext$ Where "text" is a string of ASCII characters terminated
with an ESCAPE which echoes as a dollar sign. This
command searches the text buffer for the next occurrence
of the specified character string following the cur rent
pointer position. If the string is found, the pointer is
positioned after the last character on the string. If it
is not found , the pointer is positioned immediately
before the first character in the buffer and an error
message is printed .

Ntex t$ Per forms the same function as the S command except that
the search is continued across page boundaries, if
necessary, until the character string is found or the end
of the input file is reached. If the end of the input
file i s reached , an error message is printed and it i s
necessary to close the output file and reopen it as an
input file before any further editing may be done on that
file.

Both the S command and the N command begin searching for the
specified character string at the current position of the
pointer . Therefore, neither command _will locate any occurrence
of the character string which precedes the current pointer
position, nor will it locate any character string which continues
across a page boundary.

Both commands execute the search by attempting to match the
command argument, character for character, with some portion of
the buffer contents. If an N command reaches the end of the
buffer without finding a match for its argument, it writes the
content of the buffer onto the output file, clears the buffer ,
reads the next page of the input file into the buffer , and
continues the search.

10

TECO-11

1. 7 SUMMARY

At this point, the basic TECO commands have been introduced .
Recall that TECO indicates it is ready to accept user commands by
printing an asterisk (*) . Once TECO has printed an asterisk , one
or more commands may be typed at the terminal . Errors may be
corrected by typing the DELETE key to delete characters. The
DELETE key may be labeled DEL or RUBOUT on some keyboards. Each
depression of the DELETE key deletes one character , beg inning
with the last character typed, and then prints the deleted
character at the terminal . An entire command string may be
deleted in this manner , if necessary. Once the correct
command (s) have been entered , typing a double ESCAPE ($ $) causes
TECO to execute the command (s) in the order in which they were
entered, and to print another asterisk so that additional
commands may be typed . Note that this manner o f operation i s
different from most other editors. In particular, carriage
return has no special significance to TECO. Only the double
ESCAPE forces execution of the command string .

If TECO encounters an erroneous command , i t prints an error
message and ignores the erroneous command as well as all command s
which follow it. All error messages are of the form:

?XXX Message

where XXX is an error code and the message is a self explanatory
message relating to the command that generated the error . Every
error message is followed by an asterisk at the left margin,
indicating that TECO is ready to accept additional commands . If
the first command entered after a TECO-generated error message is
a single question mark character (?) , TECO will print the
erroneous command string up to and including the character which
caused the error message. This facilitates locating errors in
long command strings and determining how much of a command string
was executed before the error was encountered .

At the conclusion of an editing job, the user may type EX to
exit TECO. If an input and output file are open at the time the
EX command is encountered , the remainder of the input file ,
including the current contents of the text buffer, is copied to
the output file, and the output file is closed before TECO exits.

11

TECO-11

1.8 SAMPLE EDITING JOB

The following sample editing job is included to help the new
user to achieve a greater understanding of the basic TECO
commands. The entire terminal output from the editing run has
been reproduced intact, and numbers have been added in the left
margin referencing the explanatory paragraphs which follow.

1) At this point, the user called TECO into memory. TECO
responded by printing an asterisk at the left margin. The user
then entered an EW command, opening an output file called
"FILE1. TXT" on DT1. There is no input file. Upon receipt of the
double ESCAPE ($$) , TECO created the designated output file, then
printed another asterisk at the 1 of t margin .

2) The user then entered a command string consisting of two
commands. The HK command cleared the text buffer (not really
necessary, since it was already empty) , and the I command
inserted 18 1 ines of text into the buffer , including 8 blank
1 ines . TECO executed these commands upon receipt o f the second
double ESCAPE. At this point, the buffer pointer was positioned
at the end of the buffer , following the last 1 ine feed Character
in the text. Note that the user made an error while typing the
word "MASSACHUSETTS" . He typed "MASA" , then realized his mistake
and struck the DELETE key once to delete the second "A" . TECO
echoed the deleted character . The user then typed the correct
character and continued the insertion.

3) The user then typed -20L to move the pointer to the
beg inning of the buffer and SETTS$ to position the pointer
immediately after the character string "ETTS" which terminates
the word "MASSACHUSETTS" . He then used an I command to inser t
one space and a five-digit zip code . A second S command
positioned the pointer after the word "INFORMATION" . The 2C
command moved the pointer to the beg inning of the next 1 ine
(carriage return and line feed count two characters) , and the
user deleted the words "PERTAINING TO" and replaced them with the
word "REGARDING" .

4) The user continued editing by positioning the pointer
after the word "GUIDE" . He then deleted this word , and replaced
it with the word "MANUAL" . Finally, he searched for the word
"SINCERELY" , typed OT to determine that the pointer was correctly
positioned between the Y and the comma which follows it, and
typed OK to delete everything on the 1 ine except the comma. He
then inserted "VERY TRULY YOURS" in place of the word
"SINCERELY" . An HT command caused the edited text to be printed
a t the terminal .

5) The command string EX$$ caused the content of the buffer
to be written onto the output file and closed the output file.
The user then reentered TECO and reopened the file "FILE1. TXT" as

12

TECO-11

an input file and specified the 1 ine printer as an output file .

6) This command string reads the first (and only) page of
"FILE1. TXT" into the buffer , deleted the first 5 lines, replaced
them with a different address and salutation, then printed the
content of the buffer on the terminal for verification and
finally printed the new version of the letter onto the 1 ine
printer . Note that the previous version of the letter still
resides in file "FILEI.TXT" on DT1.

1< *EWDTI:FILEI.TXT$$
2< *HKIMR. JOHN P. JONES

! COMPUTER ELECTRONICS CORPORATION
! BOSTON, MASAASACHUSETTS

DEAR MR. JONES

I WAS PLEASED TO RECEIVE YOUR REQUEST FOR INFORMATION

PERTAINING TO THE NEW TECO-11 TEXT EDITING AND CORRECTING
PROGRAM .

ENCLOSED IS A COPY OF THE TECO-11 USERS' S GUIDE, WHICH
SHOULD ANSWER ALL OF YOUR QUESTIONS.

SINCERELY,

! S$
3< *-20LSETTS$I 02150$$
! *STI0N$2C13DIREGARDING$$

4< *SGUIDE$-SDIMANUAL$$

! *SELY$OT$$
! SINCERELY*UKIVERY TRULY YOURS$$
! *HT$$
! MR. JOHN P. JONES
! COMPUTER ELECTRONICS CORPORATION
! BOSTON, MASSACHUSETTS 02150

DEAR MR. JONES

I WAS PLEASED TO RECEIVE YOUR REQUEST FOR INFORMATION
REGARDING THE NEW TECO-11 TEXT EDITING AND CORRECTING
PROGRAM .

ENCLOSED IS A COPY OF THE TECO-11 USER' S MANUAL, WHICH

SHOULD ANSWER ALL OF YOUR QUESTIONS.

! VERY TRULY YOURS,

13

TECO-11

5< *EX$$
~ (TECO is rerun, operating system dependent)
! *ERDTI:FILEI.TXT$EWLP: $$

6< *YSKIMR. JAMES B. SMITH
! DATE K ASSOCIATES , INC .
~ 122 MAIN STREET WEST
! AUSTIN , TEXAS

DEAR MR. SMITH :
$$
*HT$$
MR. JAMES B . SMITH
DATEK ASSOCIATES, INC.
122 MAIN STREET WEST
AUSTIN , TEXAS

DEAR MR. SMITH

I WAS PLEASED TO RECEIVE YOUR REQUEST FOR INFORMATION
REGARDING THE NEW TECO-11 TEXT EDITING AND CORRECTING
PROGRAM .

ENCLOSED IS A COPY OF THE TECO-11 USER'S MANUAL, WHICH
SHOULD ANSWER ALL OF YOUR QUESTIONS.

VERY TRULY YOURS ,

! *EX$$

TECO-11

CHAPTER I I

COMMAND SUMMARY

The remainder of this manual is devoted to a detailed
description of the full TECO command set. It is assumed that the
reader is familiar with the elementary TECO commands presented
earlier . The commands described in this chapter are the commands
implemented in TECO version 27. Some of the I/O related commands
may not be present under some operating systems.

2. U TECO CHARACTER SET

TECO accepts the full 7-bit ASCII character set, which is
presented in Appendix D. All characters have their 8th bit (the
parity bit) trimmed off. Most terminals will not transmit and
receive all of the ASCII codes; however , characters that are not
available on the user's terminal may be inserted into the TECO
text buffer by means of special commands which will be presented
later in this chapter .

TECO command strings may be entered using upper case
characters, as indicated throughout this manual, or by using the
corresponding lower case characters. A file which contains upper
and lower case text may be edited in the same manner as a file
which contains only upper case text, although dealing with lower
case text from an upper case only terminal is inconvenient. TECO
normally converts lower case alphabetics to upper case as they
are typed in. Commands to enable lower case type-in are
presented later in this chapter .

TECO considers certain ASCII characters to have special
meaning . Most o f the special characters are immediate action
commands. Typing these characters in a command string causes
TECO to perform a specified function immediately, without waiting
for the double ESCAPE which terminates the command string .
Immediate action commands may be entered at any point in a
command string - even in the middle of a command or text
argument. For this reason, the special characters should not be
used in text arguments, except where specifically indicated
throughout this manual.

Table 2-0 lists the special characters, their functions and
the restrictions associated with each character .

15

TECO-11

TABLE 2-0 : RESTRICTIONS ON SPECIAL CHARACTERS

CHARACTER RESTRICTION

ESCAPE

DELETE

Control-C

Control-U

The ESCAPE character i s a command terminator .
It may not be used in the argument of any
command except where noted specifically
throughout this manual. TECO echoes a dollar
sign when an ESCAPE i s received . ESCAPE may
be labelled ALTMODE or PREFIX on some
terminals. A double ESCAPE initiates
execution of the command string.

Typing a DELETE character deletes the last
character typed. The DELETE key may be
1 abel ed DEL or RUBOUT on some keyboards .
Typing several consecutive DELETEs deletes
one character for each DELETE typed beg inning
with the last character typed. TECO echoes
the deleted character whenever a DELETE is
typed (except in "scope" mode , see 2.14) .

Control-C, produced by striking the CONTROL
key and the C key simultaneously. The action
of the Control-C key depends on the operating
system being used (See Appendices) .

Control-U, produced by striking the CONTROL
key and the U key simultaneously, causes the
current 1 ine of the current command 1 ine to
be deleted . TECO echoes the character as ~U
followed by carriage return and 1 ine feed
(except in "scope" mode , see 2.14) .

Control-G<Control-G> Typing two consecutive Control-G
characters, produced by holding the CONTROL
key depressed while striking the G key twice,
causes all commands which have been entered
but not executed to be erased . (If the
terminal has a bell, it will ring.) This
command is used to erase an entire command
string . A single Control-G character is not
a special character .

Control-G<space> Control-G, produced by striking the CONTROL
key and the G key simultaneously, followed by
a space, causes the 1 ine currently being
input to be retyped .

Control-G<aster isk> Control-G, produced by striking the CONTROL
key and the G key simultaneously, followed by
an aster isk, causes all the 1 fines typed by
the user from the last TECO prompt (the
aster isk) to be retyped .

16

TECO-11

The Control-Z character is used as an end-of -file terminator
in some contexts. While its presence is usually harmless in disk
files , it may cause premature end of file if the file is copied
to other media (e . g . , paper tape) .

TECO also attaches special significance to the carr iage
return, line feed, space, and null characters. Aline feed is
appended to every carriage return typed. Thus, it is necessary
to type a carr iage return and then a DELETE in order to enter a
carr iage return which is not followed by a 1 ine feed .

Carr iage return, 1 ine feed , and space characters are ignored
' between commands in a command str Ong ; they may be inserted for

clarity or convenience whenever necessary. The null character
(control -shift -P or control-@) is ignored by all TECO input
commands including the reading of data files.

Control characters which are not special characters (i.e. ,
immediate action commands) may be included in the text argument
of any TECO command . When used in this manner , the control
character must be produced by striking the CONTROL key and a
character key simultaneously. TECO will echo a caret (or
uparrow) followed by the character which was typed whenever most
control characters are entered ; the others , such as control -L
(form feed) or control -G (bell) echo as the function they
perform.

Many control characters are also TECO commands. When a
control character is entered as a command, it may be produced by
striking the CONTROL key and the character key simultaneously or
else by typing a caret (uparrow) followed by the desired
character . This is advantageous because all control characters
echo normally when typed in the caret/character format and it is
essential that some TECO commands such as caret/C ("C) never be
typed inadver tantly in their control format.

_, Several of the commands in TECO require a text string
argument. The insert and search commands are examples of these.
The TECO command language contains a general alternate form for
all the commands which take a text argument as follows:

@command/text/

A delimiting character (shown as a slash here) must precede and
follow the text argument. Command is the actual TECO command to
be executed (e.g . , I, S, ER, ~A, !) . This alternate form is

frequently used to imbed ESCAPE'S in the text argument or to
avoid the use of control characters as in the ~A command. Of
course, the text argument itself may not contain the delimiting
character .

1?

TECO-11

2. 1 FILE SPECIFICATION COMMANDS

An input file must be specified whenever TECO is requested
to accept text from any source except the terminal . An output
file must be specified whenever a permanent change is made to the
input file . Input and output files are selected by means of file
specification commands.

File specifications are operating system dependent. The
Operating Characteristics Appendices at the end of this manual
fully describe file specifications for each operating system.

Almost every editing job beg ins with at least one file
specification command.- Additional file specification commands
may be executed during an editing job whenever required ;
however , TECO will only keep one input file and one output file
selected at a time.

TECO allows for two input and two output "streams" . These
are called the primary and secondary streams. Most of the file
selection commands operate on the currently selected stream. The
primary input and output streams are initially selected when TECO
is invoked . All of the other TECO commands (page manipulation,
etc .) operate on the currently selected input and/or output
stream.

Table 2-1 1 fists the full file specification command set.
Unless otherwise noted , all file specification commands leave the
text buffer unchanged .

TABLE 2-1: FILE SPECIFICATION COMMANDS

COMMAND FUNCTION

ERf i 1 e spe c $

EWfilespec$

EBfilespec$

Opens a file for input on the currently
selected input stream. The "filespec" is
the file specification and "$" signifies
an ESCAPE .

Opens a file for output on the currently
selected output stream. The "filespec"
is the file specification and "$"
signifies an ESCAPE.

The EB command may be used for files on
file-structured devices only. It opens
file "filespec" for input on the
currently selected input stream and for
output on the currently selected output
stream . The EB command also keeps the
unmodified file (the latest copy of the
input file) available to the user in a

18

1.J

TECO-11

system dependent fashion (See
Appendices) .

EF

EC

Closes the current output file on the
currently selected output stream . The EF
command does not write the current
contents of the buffer to the file before
closing it.

Moves the remainder of the current input
file on the currently selected input
stream to the current output file on the
currently selected output stream, then
closes those input and output files.
Control remains in TECO. EC leaves the
text buffer empty.

EX Per forms the same function as the EC
command , but then exits from TECO.

EGtex t$ Per forms the same function as the EC
command , but then exits from TECO and
passes "text" to the operating system a s
a parameter (see Append ices) .

Control-C The Control-C (caret/C) command , when not
executed from within a macro, causes an
immediate abort and exit from TECO .
Currently open files are not necessarily
closed . See the Append ices . Section
2.11 describes the Control-C command when
it is executed from within a macro.

EK

ERf ilespec$

Kill the current output file on the
currently selected output stream. This
command purges the output file without
closing it. This command is useful to
abort an undesired edit from becomming
permanent . Executing the EK command
after an EW which i s superseding an
existing file leaves the old file intact.
The EK command also "undoes" an EB
command. (See Appendices for details.)

Per forms a s imil iar function as the ER
command, but returns a numeric value. A
-1 indicates success and the file is open
for input. A 0 indicates the specified
file could not be found , and no error
message is generated . Other errors (e .g .
hardware errors, protection violations,
etc .) generate messages and terminate
command execution as usual.

19

TECO-11

: EBf ilespec$ Perform a simil iar function as the EB
command , but returns a numeric value .
See the : ER command .

EP Switches the input to the secondary input
stream. This command does not open or
close any file and does not change the
text buffer .

ER$

EA

EW $

EIfilespec$

EI$

ENf it a spec $

Switches the input to the primary input
stream. This command does not open or
close any file and does not change the
text buffer .

Switches the output to the secondary
output stream. This command does not
open or close any file and does not
change the text buffer .

Switches the output to the primary output
stream. This command does not open or
close any file and does not change the
text buffer .

Opens a file as an indirect command file.
Any further TECO requests for terminal
input will come from this file. At
end-of -file , the file will be closed and
terminal input will again come from the
terminal. Any error message will also
close the indirect command file and
switch input back to the terminal. Note
that this command only presets where
input will come from; it does not
"splice" the file's data into the current
command string . End-of -file in the
indirect command file does not
automatically start execution of
commands. The indirect file must have
two adjacent ESCAPEs to start its
execution.

If an indirect command file is active,
this command will close it and resume
terminal input from the terminal . Any
portion of the file which has not yet
been read is discarded. Otherwise, this
command has no effect.

This command presets the "wild card"
lookup filespec. This is the only
filespec that can contain any wild card
notations. See the Append ices for the

20

1J

lJ

U

~►

~J

TECO-11

allowed wild fields in each operating
system. This command is only a preset;
it does not open, close or try to find
any f i 1 e .

EN$

:EN$

Each occurence of this command will load
the filespec buffer with the next
occurence of the preset wild card lookup
filespec . The G* command (see 2.9) can
be used to retrieve the fully expanded
filespec. If no more occurences of the
wild card filespec exist, the ?FNF error
is returned.

Performs a simil iar function as the EN$
command, but returns a numeric value. A
-1 indicates another match of the wild
card filespec exists and has been loaded
into the filespec buffer . A 0 indicates
no more occurences exist. No error
message is generated .

The filespec argument to the file selection commands can use
the string building characters described in Table 2-8A (see
section 2.8) . The Control-EQ* construct is especially useful.

Many editing jobs are most conveniently accomplished by
using the EB (Edit Backup) command to open the designated input
and output file, then terminating the job with either an EC
command, which returns control to TECO, or an EX command, which
exits from TECO. The EB command is recommended for normal
editing .

21

TECO-11

2. 2 PAGE MANIPULATION COMMANDS

In the sections following, the letters "m" and "n" are used
in command formats to indicate numerical arguments. These may be
either simple integers or expressions of arbitrary complexity
(explained later) .

The following commands permit whole pages of text to be read
into the text buffer from an input file or written from the
buffer onto an output file.

TABLE 2 - 2 : PAGE MANIPULATION COMMANDS

COMMAND FUNCTION

A

Y

PW

Appends the next page of the input file to the content
of the text buffer , thus combining the two pages of
text on a single page with no intervening form feed
character .

Clears the text buffer and then reads the next page of
the input file into the buffer . As the Y command can
result in the loss of data, it is not permitted under
certain circumstances (see ED flag in 2.14) .

Write the content of the buffer onto the output file
and append a form feed character. The buffer is not
cleared and the pointer position remains unchanged .

nPW Executes the PW command n times , where n must be an
integer in the range 1<=n<=65535.

m,nPW Writes the content of the buffer from the m+lth
character through and including the nth character onto
the output file . m and n must be integers in the range
0<=n<=32767 and m should be less than n. A form feed
is not appended to this output, nor is the buffer
cleared. The pointer position remains unchanged.

HPW

P

Equivalent to the PW command except that a form feed
character is not appended to the output. (See 2.13 for
the definition of H.)

Writes the content of the buffer onto the output file,
then clears the buffer and reads the next page of the
input file into the buffer . A form feed is appended to
the output file if the last page read in (with a P, Y,
or A command) was terminated with a form feed.

nP Executes the P command n times, where n must be an
integer in the range 1<=n<=65535.

v

22

TECO-11

m,nP Equivalent to m,nPW.

HP Equivalent to HPW.

All of the input commands 1 fisted in Table 2-2 assume that
the input file is organized into pages small enough to fit into
available memory. If any page of the input file contains more
characters than will fit into available memory, the input command
will continue reading characters into the buffer until a 1 fine
feed is encountered when the buffer is two thirds full. Special
techniques for handling pages in excess of the buffer capacity
will be developed later in this chapter .

2.3 BUFFER POINTER MANIPULATION COMMANDS

Table 2-3 summarizes the complete buffer pointer
manipulation command set. These commands may be used to move the
pointer to a position between any two characters in the buffer ,
but they will not move the pointer across either buffer boundary.
If any R or C command attempts to move the pointer backward
beyond the beg inning of the buffer or forward past the end of the
buffer , the command is ignored and an error message is printed.
If any L command attempts to exceed the buffer boundaries in this
manner , the pointer is positioned at the boundary which would
have been exceeded and no error message is printed .

TABLE 2-3: BUFFER POINTER MANIPULATION COMMANDS

COMMAND FUNCTION

J Moves the pointer to a position immediately preceding
the first character in the buffer . Equivalent to OJ.

nJ Moves the pointer to a position immediately following
the nth character in the buffer.

ZJ Moves the pointer to a position immediately following
the last character in the buffer.

C Advances the pointer forward across one character .

nC Executes the C command n times . I f n i s positive , the
pointer is moved forward across n characters. If n is
negative, the pointer is moved backward across n
characters. If n is zero, the pointer position is not
changed .

-C Equivalent to -1C .

23

TECO-11

R Moves the pointer backward across one character .

nR Executes the R command n times. If n is positive, the
pointer is moved backward across n characters. If n is
negative, the pointer is moved forward across n
characters. If n is zero, the position of the pointer
is not changed .

-R Equivalent to -1R.

L Advances the pointer forward across the next 1 ine
terminator [1] and positions it at the beg inning of the
next 1 ine .

nL Executes the L command n times. A positive value of n
advances the pointer to the beg inning of the nth 1 ine
following its current position. A negative value of n
moves the pointer backwards to the beg inning of the nth
complete line preceding its current position. If n is
zero, the pointer is moved to the beg inning of the 1 ine
on which it is currently positioned.

-L Equivalent to -1L.

2. 4 TEXT TYPE -OUT COMMANDS

Table 2-4 summarizes the commands which may be used to type
out part or all of the content of the buffer for examination.
These commands do not move the buffer pointer .

[1] . Line terminators are 1 ine feed , vertical tab, and form
feed .

24

TECO-11

TABLE 2-4: TEXT TYPE-OUT COMMANDS

COMMAND FUNCTION

s

s

T

nT

Types out the content of the buffer from the cur rent
position of the buffer pointer through and including
the next 1 ine terminator character .

Types n 1 ines. If n is positive, the n 1 ines following
the current position of the pointer are typed. If n is
negative , the n 1 ines preceding the pointer are typed .
If n is zero, the content of the buffer from the
beg inning of the 1 ine on which the pointer is located
up to the pointer i s typed .

-T Equivalent to -1T.

m,nT Types out the content of the buffer from the m+lth
character through and including the nth character in
the buffer . M should be less than n.

Types out the n characters immediately following the
buffer pointer . N should be greater than zero . (See
2.13 for the definition of . j

Types the n characters immediately preceding the buffer
pointer . N should be greater than zero (i .e . , -n
should be less than zero) .

HT Types out the entire content of the buffer .

V Types out the current 1 ine. Equivalent to OTT.

nV Types out n-1 lines each side of the current 1 ine.
Equivalent to 1-nTnT.

n"'T Types out the ASCII character whose value is n. This
can be used to output any ASCII character to the
terminal .

"Atext"'A Types "text" on the terminal. While the command may be
entered as Control-A or Caret/A, the closing character
must be a Control-A.

: @"A/text/ Equivalent to the "'A command except that the text to be
printed may be bracketed with any character. This
avoids the need for the closing Control-A.

Users may stop the output of any typeout command by typing
control-0 at the keyboard. Typing control-0 stops the output of
the current command string . When used in this manner , the
control-0 must be entered while TECO is actually in the process
of typing out at the terminal.

25

TECO-11

2. 5 DELETION COMMANDS

Table 2-5 summarizes the text deletion commands, which
permit deletion of single characters, groups of adjacent
characters, single 1 ines, or groups of adjacent 1 ines.

COMMAND

D

nD

-D

m,nD

K

nK

-K

m,nK

TABLE 2 - 5 : TE xT DELETION COMMANDS

FUNCTION

Delete the first character following the current
position of the buffer pointer.

Execute the D command n times. If n is positive, the n
characters following the current pointer position are
deleted . If n is negative, then characters preceding
the current pointer position are deleted. If n is
zero, the command is ignored .

Equivalent to -1D.

Equivalent to m,nK.

Deletes the content of the buffer from the current
position of the buffer pointer through and including
the next 1 ine terminator character .

Executes the K command n times. If n is positive, the
n 1 ines following the current pointer position are
deleted . If n is negative, the n 1 ines preceding the
current pointer position are deleted. If n is zero,
the content of the buffer from the beginning of the
line on which the pointer is located up to the pointer
is deleted .

Equivalent to -1K .

Deletes the content of the buffer from the m+lth
character through and including the nth character . M
should be 1 ess than n . The pointer moves to position
m.

Deletes the n characters immediately following the
buffer pointer. N should be greater than zero.

Deletes the n characters immediately preceeding the
buffer pointer. N should be greater than zero.

Deletes the entire contents of the buffer.

26

~✓

TECO-11

2.6 INSERTION COMMANDS

Table 2-6 1 fists the full text insertion command set. Al l
text insertion commands cause the string of characters specified
in the command to be inserted into the text buffer at the cur rent
position of the buffer pointer . Following execution of an
insertion command, the pointer will be positioned immediately
after the last character of the insertion.

The length of an insertion command is 1 invited primarily by
the amount of memory available for command string storage.
During normal editing jobs, it is most convenient to 1 imit
insertions to about 10 or 15 1 fines each . When command string
space is about to run out , TECO wil 1 echo "'G (Bell) after each
character that is typed. Attempting to enter too many characters
into the current command string causes TECO to delete them as
they. are entered. Use of the DELETE key should be attempted to
shorten the command to permit its termination.

With the exception of the nI$ command, insertion command
arguments must not contain special characters (see Table 2-0) .
The nI $ command will insert any character into the buffer ,
including the special characters .

TABLE 2-6: TEXT INSERTION COMMANDS

COMMAND FUNCTION

Itext$ Where "text" is a string of ASCII characters terminated
by an ESCAPE, which echoes as a dollar sign. The
specified text string is entered into the buffer at the
current position of the pointer , with the pointer
positioned immediately after the last character of the
insertion.

nI$ This form of the I command inserts the single character
whose 7-bit ASCII code is n into the buffer at the
current position of the buffer pointer. (i.e. n is
taken modulus 118.) It may be used to insert characters
that are not available on the user's terminal or
special characters such as DELETE which may not be
inserted with the standard I command .

<tab>text$ Where <tab> is a tabulation, produced by striking the
TAB key or by pressing the CONTROL key and the I key
simultaneously. The TAB character echoes as one to
eight spaces on most terminals . This command is
equivalent to the I command except that the tabulation
is part of the text which is inserted into the buffer.

@ I/text/ Equivalent to the I command except that the text to be
inserted may contain ESCAPE characters. A delimiting

27

TECO-11

character (shown as a slash here) must precede and
follow the text to be inserted. This delimiter may be
any non-special character which does not appear in the
insertion. This @ and alternate delimiter construct
may be used in al ~. commands which take a string
argument.

n@I// Equivalent to the nI$ command, but does not require the
ESCAPE character. Any delimiting character (shown as
slash here) can be used.

FRtext$ Equivalent to "-nDItext$"., where "n" is obtained from
the most recent occurrence of the following : (a) the
length of the most recent string found by a successful
search command, (b) the length of the most recent text
string inserted (including insertions from the FS, FN,
o r FR commands) , o r (c) the 1 eng th o f the string
retrieved by the most recent "G" command . In effect,
the last string inserted or found is replaced with
"text'° , provided that the pointer has not been moved.

@FR/text/ Equivalent to "FRtext$" , except that "text" may contain
ESCAPE characters. The delimiter (shown as a slash
here) must not be present in "text" .

28

TECO-11

2. 7 SEARCH COMMANDS

In many cases, the easiest way to position the buffer
pointer is by means of a character string search. The search
commands cause TECO to scan through text until a specified string
of characters is found, and then position the buffer pointer at
the end of the string . A character string search always beg ins
at the current position of the pointer and proceeds either in a
forward direction or in a reverse direction within the current
buffer or in a forward direction through the file.

The last explicitly specified search string is always
remembered by TECO. If a search command is specified with a null
search string argument, the last explicitly defined search string
will be used. This saves having to retype a complex or lengthy
search string on successive search commands.

Normally searches are "unbounded" . That is, they search
from the current position to the end of the text buffer . A
bounded search will only search from the current position to the
specified bound limit. If the search string is found within the
bound 1 imits, the pointer is positioned immediately after the
last character in the string . If the string cannot be found, the
pointer is left unchanged.

TABLE 2- 7 : SEARCH COMMANDS

Stex t$

nStext$

-nStext$

Where "text" is a string of characters
terminated by an ESCAPE . This command
searches the text buffer for the next
occurrence of the specified character string
following the cur rent position of the buffer
pointer. If the string is found, the pointer
is positioned after the last character in the
string. If it is not found, the pointer is
positioned immediately before the first
character in the buffer (i . e . a OJ is
executed) and an error message is printed .

This command searches for the nth occurrence
of the specified character string , where n
must be greater than zero. It is identical
to the S command in other respects .

Identical to "nStext$" except that the search
proceeds in the reverse direction. If the
string is not found , the pointer is
positioned immediately before the first
character in the buffer and an error message
is printed . If the pointer is positioned at
the beginning of or within an occurrence of
the desired string, that occurrence is

29

TECO-11

considered to be the first one found and the
pointer is positioned after the last
character in the string .

-Stex t$ Equivalent to -1Stex t$.

m,nStext$

O,nStext$

Per forms the same function as the nS command ,
but ~m serves a bound 1 imit for the search.
If the search string can be found without
moving the pointer more than ABS (m) -1 places,
the search succeeds and the pointer is
repositioned to immediately after the last
character of the string . Otherwise, the
pointer is -left unchanged. (See 2.13 for a
description of the "Q operator . It converts
1 ine moving arguments to character moving
arguments .)

Per forms the same function as the nS command ,
but the pointer position will remain
unchanged on search string failure.
(Essentially an unbounded search with no
pointer movement on failure .)

m,Stext$ Identical to "m,lStext$" .

m, -nStex t$ Per forms the same function as the m, nS
command, but searches is the reverse
direction.

m,-Stext$ Identical to "m,-lStext$".

Ntext$

nNtex t$

Per forms the same function as the S command
except that the search is continued across
page boundaries, if necessary, until the
character string is found or the end of the
input file is reached . This is accomplished
by executing an effective P command after
each page is searched . If the end of the
input file is reached, an error message is
printed and it is necessary to close the
output file and re-open it as an input file
before any further editing may be done on
that file . The N command will not locate a
character string which spans a page boundary.

This command searches for the nth occurrance
of the specified character string , where n
must be greater than zero. It is identical
to the N command in other respects .

_text$ The underscore (backarrow) command is
identical to the N command except that the

30

TECO-11

search is continued across page boundaries by
executing effective Y commands instead of P
commands, so that no output is generated .
Since an under score search can result in the
loss of data, it is aborted under the same
circumstances as the Y command (see ED flag
in 2.14) .

n text$ This command searches for the nth occurrence
of the specified character string , where n
must be greater than zero. It is identical
to the command in other respects .

FStextl$text2$ Executes an
" tex tl" and

nFStextl$text2$ Executes an
" tex tl" and

FNtextl$text2$ Executes an
" tex tl" and

nFNtextl$text2$ Executes an
" tex tl" and

S tex t 1$ command , then
replaces it with "text2" .

n5tex tl $ command , then
replaces it with "text2" .

Ntex tl$ command , then
replaces it with "text2" .

nNtex t 1$ command , then
replaces it with "text2" .

The FS and FN commands above can also be reverse
(n<0) or bounded searches (m,n argument) .

deletes

deletes

deletes

deletes

searches

If a search command is entered without a text argument, TECO
will execute the search command as tizough it had been entered
with the same character string argument as the last search
command entered . For example , suppose the command "STHE END$"
results in an error message, indicating that character string
"THE END" was not found on the current page. Entering the
command "N$" causes TECO to execute an N search for the same
character string . Al though the text argument may be omitted , the
command terminator (ESCAPE) must always be entered .

Any of the search commands 1 fisted above may be preceded by a
colon (:) . The colon is a search command modifier which
supresses error message generation and causes the search command
to "return a value" instead. That is, the next sequential
command is executed with an argument of zero if the search fails.
If the search succeeds, the next sequential command is executed
with an argument of -l. If the next sequential command belongs
to the class of commands which require a positive argument, the
-1 is interpreted as a positive 65535. If the next sequential
command does not require an argument, it is executed as it
stands . If an unmodified search command in a command loop
(section 2 . lU) is immediately followed by a semi-colon (section
2.12) , it is treated as if it were a colon-modified search. The
following examples illustrate use of the colon modifier .

31

TECO-11

COMMANDS: n:Stext$ ~/
m,n:Stext$
n:Ntext$
n: text$
n:F`Stextl$text2$
m,n:FStextl$text2$
n:FNtextl$text2$

etc .

FUNCTION:

::Stext$

In each case, execute the search command . If the
search is successful , execute the next sequential
command with an argument of -1 (or 65535, if it is
a command which must have a positive argument) .
I f the search fails , execute the next command with
an argument of zero. If the next command does not
require a numeric argument, execute it as it
stands.

Compare command . The :: S command is not a true
search. If the characters in the buffer
immediately following the current pointer position
match the search string , the pointer is moved to
the end of the string and the command returns a
value of -1; i . e . , the next command is executed
with an argument of -1. If the characters in the
buffer do not match the string , the pointer is not
moved and the command returns a value of 0.
Identical to "1,1: Stext$" .

The @ character is another search command modifier .
Inserting an @ character between the numeric argument of any
search command and the command itself causes TECO to accept the
first character following the command as a del inviting character
which will also be the command terminator . This character may be
any character which does not appear in the search command
argument , except for special characters . When the @ command is
used, search command arguments may contain ESCAPE characters.
The following examples illustrate use of the @ command modifier .

COMMANDS: n@S/text/
m,n@S/text/
n@N/text/
n@ /text/
n@FS/textl/text2/
m,n@FS/textl/text2/
n@FN/textl/text2/

etc.

FUNCTION: In each case , execute the search command with text
string "text" as an argument. This argument must
be preceded and followed by a delimiting character
which does not appear in the argument (a slash is

32

TECO-11

shown here) . The search command argument (and the
replacement string in FS and FN) may contain
ESCAPE characters , as long as two consecutive
ESCAPES are not struck .

Needless to say, these constructs may be combined .

COMMANDS: n:@S/text/
m,n: @S/text/
n:@N/text/
n:@ /text/
n:@FS/textl/text2/
m,n:@FS/textl/text2/
n:@FN/textl/text2/

etc.

33

TECO-11

2. 8 SEARCH ARGUMENTS

TECO builds the search string by loading its search string
buffer from the supplied search command argument. To facilitate
the entry of special characters or frequently used character
sequences, the argument may contain special string building
characters. Table 2-8A lists the string building characters and
their functions. (The notation Control-Ex means the Control-E
character followed by the character x .)

TABLE 2-8A: STRING BUILDING CHARACTERS

CHARACTER FUNCTION

A caret (uparrow) character in a search command
argument indicates that the character following
the caret is to be used as its control character
equivalent (i.e. octal 100 to 137 is used as
octal 0 to 37) . Combination with other string
building or match control characters is legal.
For example, the combination Caret/Q/Caret is the
same as Control-Q/Caret which means literally
Caret. This string building character can be
disabled by using the ED flag (see 2.14 and
Appendices) .

Control-Q A control -Q character in a search command argument
indicates that the character following the
control-Q is to be used literally rather than as a
match control character .

Control-"' A control-"' character in a search command argument
indicates that the character following the
control-" is to be used as the equivalent
character in the lower case ASCII range (i.e.
octal 100 to 137 is treated as octal 140 to 177) .

Control-EQq Control-EQq indicates that the string stored in
Q-register q is to be used in the position
occupied by the "EQq in the search string . Q
registers are discussed in section 2. 9 below.

Control-EQ* Control-EQ* indicates that the string stored in
the f ilespec buffer is to be used in the position
occupied by the , ~EQ* in , the search string . Q
registers are discussed in section 2. 9 below.

Control-EQ_ Control-EQ indicates that the string stored in
the search string buffer is to be used in the
position occupied by the "'EQ_ in the search
string . Q registers are discussed in section 2.9
below.

34

TECO-11

TECO executes a search command by attempting to match the
search command argument character -by-character with some portion
of the input file. There are several special control characters
that may be used in search command arguments . These character s
alter the usual matching process that occurs when a search is
executed. Table 2-8B lists the match control characters and
their functions.

TABLE 2-8B : MATCH CONTROL CHARACTERS

CHARACTER FUNCTION

Control-X

Control-S

Control-N

A control -X character indicates that this position
in the character string is unimportant. TECO
accepts any character as a match for control -X.

A control -S character indicates that any separator
character is acceptable in this position. TECO
accepts any character that is not a letter (upper
or lower case A to Z) or a d ig it (0 to 9) as a
match for control -S.

TECO accepts any character as a match for the
control-N/character combination EXCEPT the
character which follows the control -N. Other
combined Control-N/special character are legal
also . For example , the combination
Control-N/Control-ED means match anything except a
digit in this position.

Control-EA Control-EA indicates that any alphabetic character
is acceptable in this position. TECO accepts any
letter (upper or lower .case A to Z) as a match for
SEA.

Control-EC Control-EC indicates that any RAD50 character is
acceptable in this position. TECO accepts any
letter (upper or lower case A to Z) , any digit (0
to 9) , a dot (.) , or a dollar sign ($ } as a match
for "EC .

Control-ED Control-ED indicates that any digit is acceptable
in this posi ton. TECO accepts any digit (0 to 9 }
as a match for ~ED.

Control-EL Control-EL indicates that any 1 ine terminator is
acceptable in the position occupied by "EL in the
search string . Line terminators are 1 ine feed ,
vertical tab, and form feed .

Control-ER Control-ER indicates that any alphanumeric
character is acceptable in this position. TECO

35

TECO-11

accepts any letter (upper or lower case A to Z) or
digit (0 to 9) as a match for "ER.

Control-ES Control-ES indicates that any non-null string of
spaces and/or tabs is acceptable in the position
occupied by "ES.

Control-EX Equivalent to "X.

2.9 Q-REGISTERS

TECO provides 36 data storage registers, called Q-registers,
which may be used to store single integers and/or ASCII character
strings. Each Q-register is divided into two storage areas. In
the number storage area, each Q-register can store one integer in
the range -32768<=n<=32767. In the text storage area, each
Q-register can store an ASCII character string which may be
either text or a TECO command string . Each Q-register has a
single character name which is one of the letters A to Z or one
of the digits 0 to 9 . Upper and lower case 1 etter s may be used
interchangeably. In this manual , a Q-register name is indicated
by a lower case "q" , which stands for any one of the 36
Q-registers.

Table 2-9A 1 fists the commands which permit characters to be
loaded into the Q-registers.

36

TECO-11

TABLE 2-9A: Q-REGISTER LOADING COMMANDS

COMMAND FUNCTION

"'Ugstr ing$ This command inserts character string "str ink"
into the text storage area of Q-register "q". U
must be specified in the caret/U format, since the
control -U character is the 1 ine erase character .

@~Uq/string/ Equivalent to the ~U command except that the
character string to be inserted into Q-register q
may contain ESCAPE characters . The insertion must
be delimited before and after by any character (a
slash is shown here) which does not appear in the
insertion.

nUq

n$q

~q

n Xq

Xq

-Xq

m , n Xq

. , . +n Xq

.-n,.Xq

Put n in the number storage area of Q-register q.

Add n to the content
Q-register q. The
Q-register q is used
next command . I f
require a numeric
discarded .

Equivalent to l~q.

of the number storage area of
resulting value contained in

as a numeric argument for the
the next command does no t
argument, this value is

Move n lines into Q-register q, where n is an
integer in the range -32768<=n<=32767. If n is
positive, the n lines following the current
pointer position are copied into the text storage
area of Q-register q. If n is negative, the n
lines preceding the pointer are copied . If n is
zero, the content of the buffer from the beg inning
of the 1 ine on which the pointer is located up to
the pointer is copied. The pointer is not moved.

Equivalent to 1Xq.

Equivalent to -1Xq.

Copy the content of the buffer from the m+lth
character through and including the nth character
into the text storage area of Q-register q. M and
n must be positive, and m should be less than n.

Copy the n characters immediately following the
buffer pointer into the text storage area of
Q-register q. N should be greater than zero.

Copy the n characters immediately pr eceed ing the
buffer pointer into the text storage area of
Q-register q. N should be greater than zero.

37

TECO-11

]q

~)9

Pop from the Q-register push-down 1 ist into
Q-register q. Any previous contents of Q-register
q are destroyed . Both the numeric and text parts
of the Q-register are loaded by this command. The
Q-register push-down list is a last -in first -out
(LIFO) storage area. This command does not use
numer is values. Numeric values are passed through
this command as i f i t did not occur . This allows
macros to restore Q-registers and still return
numeric values .

Just 1 ike the] q command except that a numeric
value is returned. A -1 indicates that there was
another item on the Q-register push-down 1 ist to
be popped . A 0 indicates that the Q-r eg i s to r
push-down 1 ist was empty (and Q-register q was not
modified) .

Table 2-9B lists the commands which permit characters to be
retrieved from the Q-registers.

TABLE 2-9B : Q-REGISTER RETRIEVAL COMMANDS

COMMAND FUNCTION

Gq

• Gq

Qq

Mq

nMq

m ,nMq

Copy the content of the text storage area of
Q-register q into the buffer at the current
position of the buffer pointer , leaving the
pointer positioned after the last character
copied.

Print the content of the text storage area of
Q-register q on the terminal. The text buffer and
buffer pointer are not changed by this command .

Use the integer stored in the number storage area
of Q-register q as the argument of the next
command.

Execute the content of the text storage area of
Q-register q as a command string . Mq commands may
be nested recursively as far as TECO' s push down
storage will permit.

Execute the content of the text storage area of
Q-register q as a command string and use n as a
numeric argument for the first command in this
string.

Execute the content of the text storage area of
Q-register q as a command string and use m,n as a
numeric argument for the first command in this

38

TECO-11

string.

[Q

G *

Copy the content of the numeric and text storage
areas of Q-register q into the Q-register
push-down 1 ist. This command does not alter
either the numeric or text storage areas of
Q-register q. This command does not use numeric
values. Numeric values are passed through this
command as if it did not occur. This allows
macros to save temporary Q-registers and still
accept numeric values . The command sequence [A] B
copies the text and numeric value from Q-register
A to Q-register B.

Get most recent filespec string . The asterisk is
not actually a Q-register but represents TECO' s
filespec string area. Copy the contents of the
filespec string area into the buffer at the
current position of the buffer pointer, leaving
the pointer positioned after the last character
copied . The filespec string area contains the
fully expanded filespec of the last E command (see
Append ices) .

G* Print the contents of the filespec buffer on the
terminal.

G_ Get most recent search string . The underscore
(backarrow) is not actually a Q-register but
represents TECO's search string area. Copy the
contents of the search string area into the buffer
at the current position of the buffer pointer,
leaving the pointer positioned after the last
character copied.

•G Print the contents of the search string buffer on
the terminal .

TECO-11

2.10 COMMAND LOOPS

The user may cause a command string to be executed any
number of times by placing the command string within angle
brackets and preceding the brackets with a numeric argument which
designates the number of iterations. Iterated command strings
are called command loops. Loops may be nested in such away that
one command loop contains another command loop, which, in turn,
contains other command loops, and so on. The maximum depth to
which command loops may be nested is determined by the size of
TECO' s push-down 1 ist (system dependent) , but is always greater
than 10 .

The general form of the command loop is:

n<command str ing>

where "command string" is the sequence of commands to be iterated
and n is the number of iterations. If n is not supplied then no
limit is placed on the number of iterations. If n is 0 or less
than U then the iteration is not executed at all; command
control skips to the closing angle bracket. If n is greater than
0 (1 through 32767) then the iteration is done n times.

Search commands inside command loops are treated specially.
If a search command which is not preceded by a colon modifier is
executed within a command loop and the search fails, a warning
message is printed , the command loop is exited immediately and
the command following the right angle brackets of the loop is the
next command to be executed . If an unmodified search command in
a command loop is immediately followed by a semicolon (section
2.12) , it is treated as if it were a colon-modified search.

2.11 BRANCHING COMMANDS

TECO commands may be combined in sophisticated command
strings which are capable of solving even the most complex
editing problems. In this respect, TECO should be considered a
programming language which accepts an input file as data and
processes this input to produce an output file. As with most
programming languages, TECO provides an unconditional branch
command and a set of conditional execution commands.

40

TECO-11

To provide for branching within a _command string , there must
be some means of naming ~ locations inside the string . TECO
permits location tags which have the form:

! tag !

to be placed between any two commands in a command string . The
name "tag" will be associated with this location when the command
string is executed. Tags may contain any number of ASCII
characters and any character except for special characters.
Since tags are ignored by TECO except when a branch command
references the tagged location, they may also be used as comments
within complicated command strings .

The unconditional branch command is the 0 command which has
the form:

Otag $

where "tag" is a named location elsewhere within the command
string and "$" signifies an ESCAPE. When an 0 command is
executed, the next command to be executed will be the command
following the tag referenced by the 0 command, and command
execution continues normally from this point.

The use of the O command is subject to two important
restrictions. If an 0 command is stored in a Q-register as part
of a command string which is to be executed by an M command , the
tag referenced by the 0 command must reside in the same
Q-register.

Secondly, an 0 command which is inside a command loop may
not branch to a tagged location preceding the command loop.
However , it is always possible to branch out of a command loop to
a location which follows the command loop and then branch to the
desired tag .

Branching into a conditional poses no problems, but
branching into a command loop will causes unpredictable results.

A special purpose branching command is Control-C (caret/C) .
If the Control-C command is executed from within a macro, the
execution of TECO commands is aborted and TECO returns to the top
level (asterisk prompt) . No cleanup of push-down 1 fists, flag
settings, etc . is done. This command allows a macro to abor t
TECO's command execution.

41

TECO-11

2.12 CONDITIONAL EXECUTION COMMANDS

All cond itonal execution commands are of the form:

n"Gcommand string'

where "n" is a numeric argument on which the decision is based,
"G" may be any of the conditional execution commands 1 fisted in
table 2-12, and "command string" is the command string which will
be executed if the condition is satisfied . If the condition on n
is not satisfied , the command string will not be executed . Note
that the numeric argument is separated from the conditional
execution command by a double quote (") and the command string is
terminated with an apostrophe (') .

Conditional execution commands may be nested in the same
manner as iteration commands. That is, the command string which
is to be executed if the condition on n is met may contain
conditional execution commands, which may, in turn, contain
further conditional execution commands .

Table 2-12 1 fists the conditional execution commands. Each
conditional execution command must be followed by a command
string (not shown in Table 2-12) which will be executed- only if
the condition is satisfied . This command string must be
terminated by an apostophe . If the condition is not satisfied ,
the first command following the apostrophe will be the next
command executed .

TABLE 2-12: CONDITIONAL EXECUTION COMMANDS

COMMAND FUNCTION

n"G or n" > Execute the following command string (terminated by an
apostrophe) if n is greater than zero.

n" L or n" < Execute the following command string (terminated by an
apostrophe) if n is less than zero.

n" E Execute the following command string (terminated by an
apostrophe) if n is equal to zero.

n" C Execute the following command string (terminated by an
apostrophe) if n is the ASCII code of any character
which is one of the upper or lower case letters A to Z,
one of the digits 0 to 9, or period, or dollar sign.

n"N Execute the following command string (terminated by an
apostrophe) if n is not equal to zero.

n"T Execute the following command string (terminated by an
apostrophe) if n is TRUE. Equivalent to n"L.

42

1,J

TECO-11

n" S Execute the following command string (terminated by an
apostrophe) if n is SUCCESSFUL. Equivalent to n"L.

n"F Execute the following command string (terminated by an
apostrophe) if n is FALSE. Equivalent to n"E.

n"U Execute the following command string (terminated by an
apostrophe) if n is UNSUCCESSFUL. Equivalent to n"E.

r

n"A Execute the following command string (terminated by an
apostrophe) if n equals the ASCII code for an
alphabetic character (upper or lower case A to Z) .

n"V

n"W

Execute the following command string (terminated by an
apostrophe) if n equals the ASCII code for an upper
case alphabetic character (upper case A to Z) .

Execute the following command string (terminated by an
apostrophe) if n equals the ASCII code for a lower case
alphabetic character (lower case A to Z) .

n"D Execute the following command string (terminated by an
apostrophe) if n equals the ASCII code for a digit (0
to 9) .

n"R Execute the following command string (terminated by an
apostrophe) if n equals the ASCII code for an
alphanumeric (upper or lower case A to Z or 0 to 9) .

There is one further conditional execution command which is
not related to the commands 1 fisted in Table 2-12. The n;
command, where n is any integer or numeric expression, may be
used in an iterated command loop. It has the general form:

m<str ingl n; string2>str ing3

where "m" is the iteration count, "str ingl" , "string2" , and
"str ing3" are command strings and "n; " is the conditional exit
command . When the n ; command is executed , it will cause TECO to
exit the command loop so that "string 3" will be executed next if
n is greater than or equal to zero. If n is less than zero, the
loop is not exited and "string2" is executed next. N may be any
argument such as Qq (the value of the numeric part of Q-register
q) , a colon-modified search, or any other command that returns a
value.

If an unmodified search command in a command loop is
immediately followed by a semicolon, it is treated as if it were
a colon-modified search.

43

TECO-11

2.13 NUMERIC ARGUMENTS

Almost all TECO commands may be preceded by a numeric
argument which generally indicates a buffer pointer, an ASCII
character value, the number of iterations, or how many times the
command should be executed . Some. numeric arguments must be
positive, while others may be negative or zero. In any case,
every numeric argument is stored as a single 16-bit word.

This leads to an important restriction on the maximum size
of any numeric argument. Commands which require positive
arguments must have an argument in -the range 0<=n<=65535, since
65535 is the largest number which may be stored in one 16-bit
word. Commands which have positive or negative arguments require
an argument in the range -32768<=n<=32767, because -32768 is the
smallest number which may be stored in 16 bits using 2's
complement notation, while 32767 is the largest number which may
be stored in this manner .

TECO maintains several internal variables which record
conditions within TECO. Each o f the variables has a name which
is equivalent to the current contents of the variable. These
characters may be entered as numeric arguments to TECO commands.
When the command is executed, the current value of the designated
variable is substituted for the character and used in the numeric
argument o f the command .

Some of the characters which stand for specific values
associated with the text buffer have been introduced earlier in
this manual. For example, the dot character (.) , which
represents the current pointer position, may be used in the
argument of a T command . The command " . , . +5T" causes the 5
characters following the buffer pointer to be typed out. When
this command is executed, the number of characters preceding the
buffer pointer is substituted (twice) for the "dot" . The
addition is then carried out, and the command is executed as
though it were of the form "m,nT" .

Table 2-13A lists all of the characters which have special
numeric values. Any of these characters may be used as numeric
arguments in place of the values they represent.

44

TECO-11

TABLE 2-13A: CHARACTERS ASSOCIATED WITH NUMERIC QUANTITIES

CHARACTER FUNCTION

B

Z

H

nA

Mq

Always equivalent to zero. Thus, B represents the
position at the beg inning of the buffer , preceding the
first character in the buffer.

Equivalent to the number of characters currently
contained in the buffer . Thus, Z represents the
position at the end of the buffer, following the last
character in the buffer .

Equivalent to the number of characters between the
beg inning of the buffer and the current position of the
pointer. Thus "." represents the current position of
the pointer .

Equivalent to the numeric pair "B, Z" , or "from the
beg inning of the buffer up to the end of the buffer . "
Thus, H represents the whole buffer.

Equivalent to the ASCII code for the . +n+lth character
in the buffer. For example, the expression -lA is
equivalent to the ASCII code of the character
immediately preceding the pointer and OA is equivalent
to the ASCII code of the character immediately
following the pointer .

The Mq command (execute the content of the text storage
area of Q-register "q" as a command string) may return
a numeric value if the last command in the string
returns a numeric value and is not followed by an
ESCAPE .

Qq : Qq is equivalent to the number of characters in the
text storage area of Q-register q.

~ A backslash character which is not preceded by a
numeric argument is equivalent to the value of the
digit string (if any) that beg ins with the character
immediately following the buffer pointer and is
terminated by the next character that is not a valid
digit for the current radix. The first character may

t be a d ig it or + or -. As the backslash command is
evaluated, TECO moves the buffer pointer to a position
immediately following the digit string . If there is no
digit string following the pointer , the backslash is
equivalent to zero and the pointer position remains
unchanged . The digits 8 and 9 will stop the evaulation
if TECO's current radix is octal.

ED ED is equivalent to the current value of the edit level

45

TECO-11

flag . The use of the ED flag is described in section
2.14.

EH

ES

ET

EU

EV

EH is equivalent to the current value of the help level
flag . The use of the EH flag is described in section
2.14.

ES is equivalent to the current value of the search
verification flag . The use of the ES flag is described
in section 2.14.

ET is equivalent to the current value of the type-out
control flag . The use of ET flag is described in
section 2.14.

EU is equivalent to the current value of the upper
lower case flag. The use of the EU flag is described
in section 2.14.

EV is equivalent to the cur rent value of the edit
verify flag . The use of the EV flag is described in
section 2.14.

B Control-B (caret/B) is equivalent to the current date
via the following equations

E

F

H

RT-11:
RSTS/E:
RSX-11:

"B = (((month*32) +day) *32) +year-72
"B = ((year-1970) *1000) +day within year
"B = (-(year-1900)*16+month)*32+day

Control-E (caret/E) is equivalent to -1 if the buffer
currently contains a full page of text (which was
terminated by a form feed in the input file) or 0 if
the buffer contains only part of a page of text (which
either filled the buffer to capacity before the
terminating form feed was read or which was not
terminated by a form feed.) The "'E flag is tested by
the P command and related operations to determine
whether a form feed should be appended to the content
of the buffer on output.

Control-F (caret/F) is equivalent to the current value
of the console switch register .

Control-H (caret/H) is equivalent to the current time
of day via the following equations

RT-11:
RSTS/E:
RSX-11:

"'H - 0
"'H =minutes until midnight
"H = (seconds since midnight) /2

N Control-N (caret/N) is the end of file flag. It is
equivalent to -1 if the file open on the currently

46

TECO-11

selected input stream is at end of file, and zero
otherwise.

i.

S

T

V

X

Y

Z

Control-S (caret/S) is equivalent to the negative of
the length of the last insert, string found, or string
inserted with a "G" command , whichever occurred 1 as t .
To back up the pointer to the start of the last insert,
string found, etc. , one simply types "~SC" .

Control-T (caret/T) is equivalent to the ASCII code for
the next character typed at the terminal. Every ~T
command executed causes TECO to pause and accept one
character typed at the terminal. See the ET flag
description (section 2.14) for variations.

Control-V (caret/V) is equivalent to the version number
of the version of TECO which is currently being run.
This manual describes TECO version 27 .

Control-X (caret/X) is equivalent to the current value
of the search mode flag . The use of the ~X flag is
described in section 2.14.

Control-Y (caret/Y) is equivalent to " . +~S, . " . This is
the n,m numeric argument spanning the text just
searched for or inserted. For example, this value may
be used to recover from inserting a string in the wrong
place. One types "~YXAFR$" to store the string in
Q-register A and remove it from the buffer . One may
then position the pointer to the ~r fight place and type
"GA" to insert the string .

Control-Z (caret/Z) is equivalent to the number of
characters presently stored in the Q-register storage
area, including requirements for the command string
currently being executed .

""'x The combination of the Control-Caret (double caret or
double uparrow) followed by any character is equivalent
to the value of the ASCII code- for the character . The
"x" in this example may be any character that can be
typed i n to TEC O .

The numeric argument of a TECO command may consist of a
single integer , any of the characters 1 fisted in Table 2-13A, the
numeric contents of any Q-register , or an arithmetic combination
of integers, Q-registers, and the characters 1 fisted in Table
2-13A. If an arithmetic expression is supplied as a numeric
argument, TECO will evaluate the expression. All arithmetic
expressions are evaluated from left to right. Parentheses may be
used to override the normal order of evaluation of an expression.

= If parentheses are used, all operations within the parentheses

47

TECO-11

are ,per formed , left to right, before per forming operations
outside the parentheses. Parentheses may be nested, in which
case the innermost expression contained by parentheses will be
evaluated first. Table 2-13B lists all of the arithmetic
opera-tors that may be used in arithmetic expressions.

TABLE 2-13B : ARITHMETIC OPERATORS

OPERATOR EXAMPLE

*

FUNCTION

+2=2 Ignored if used before the first term in an
expression.

5+6=11 Addition, if used between terms.

-2=-2 Negation, if used before the first term in an
expression.

8-2=6

8*2=16

8/3=2

Subtraction, if used between terms

Multiplication. Used between terms.

Integer division with loss of the remainder.
Used between terms .

12&10=8 Bitwise logical AND of the binary
representation of the two terms. Used
between the terms .

12#10=14 Bitwise logical OR of the binary of the two
terms . Used between the terms .

_ 5 _=-6 Unary one's
expression .

Q n"QC=nL

complement. Used after an

The number of characters between the buffer
pointer and the nth 1 ine separator (both
positive and negative) . This operator
converts line oriented command argument
values into character oriented argument
values . Used after an expression .

48

TECO-11

The following commands affect the radix in which TECO
processes numbers, which may be either octal or decimal. All
numbers typed in, typed out, or handled by the \ and n\ commands
are interpreted in the current radix.

TABLE 2 -13 C : CONVERSION AND RADIX CONTROL COMMANDS

COMMAND FUNCTION

n=

n--

n•_

n•--. -

O

D

This command causes the value of n to be output at the
terminal in decimal followed by a carriage return and
1 ine feed . Decimal numeric conversion i s signed . For
example , the unsigned number 6 5535 will output as -1.
TECO' s radix i s una 1 to r ed .

This command causes the value of n to be output at the
terminal in octal followed by a carriage return and
1 ine feed . Octal numeric conversion is unsigned . For
example , the unsigned number 6 5535 (decimal) wil l
output as 17777 7. TECO' s radix is unaltered .

This command causes the value of n to be output at the
terminal in decimal and leaves the carriage positioned
at the end of the output.

This command causes the value of n to be output at the
terminal in octal and leaves the carriage positioned at
the end of the output.

Control-0 (caret/0) causes all subsequent numeric input
to be accepted as octal numbers . The digits 8 and 9
become illegal as numeric characters when the radix is
octal . Numeric conversions using the \ or n\ command s
wil 1 also be octal . The octal radix wi 11 continue to
be used until the next "D command is executed .

Control-D (caret/D) causes all subsequent numeric input
to be accepted as decimal numbers . This i s the initial
setting .

n\ The backslash command preceded by an argument inserts
the value of n into the text buffer at the cur rent
position of the pointer, leaving the pointer positioned
after the last digit of the insertion. The insertion
i s either signed decimal (decimal radix) or unsigned
octal (octal radix) . Note that \ is a "bidirectional"
command. n\ inserts a string into text while \ (no
argument) returns a numeric result.

49

TECO-11

Some TECO commands generate numeric values which they pass
on to subsequent commands. An example is any colon-modified
search command , which causes the next sequential command to be
executed with an argument of -1 or 0, depending upon the outcome
of the search. Commands of this sort are very useful , but
occasionally it may be undesirable to have arguments passed in
this manner . Note that many TECO commands per form significantly
different functions, depending on whether no, one, or two
arguments are present. A single ESCAPE character may be inserted
between any two commands in a command string to absorb unwanted
values . This ESCAPE has no effect on the individual commands ,
however a numeric argument will never be passed across an
extraneous ESCAPE.

2.14 MODE CONTROL FLAGS

TECO has flags which control various aspects of its
operation. These flags are referenced with the commands ""'X" ,
"ED" , "EH" , "ES" , "ET" , and "EU" , "EV" , and are called the ~X,
ED, EH, ES, ET, EU, and EV flags. A flag's current setting may
be interrogated by executing its command name without an
argument; the current setting of the flag is returned as a
value . A f 1 ag may be set to a specific value by executing its
command name with a preceding numerical argument; the flag is
set to the value of the argument. The flags have the following
functions:

COMMAND

n~X

TABLE 2-14: MODE CONTROL FLAGS

FUNCTION

Sets the search mode flag to n.

If n is 0, the text argument in a search command will
match text in the text buffer independent of case in
either the search argument or the text buffer . Thus
the lower case alphabetics match the upper case
alphabetics and "~ ", " { ", " ~ ", " } ", "~" match "@" , " [" ,
"~" , "] ", "~" respectively. If n is -1, the search
will succeed only if the text argument is identical to
text in the text buffer.

The initial value of the "'X flag is 0.

nED Sets the value of the edit level flag to n.

If n is -1 the Y (Yank) command and _ (underscore or
backar row) command work unconditionally as described
earlier in the manual. If n is +1 or 0 the behavior of
the Y and _commands are modified as follows : If an
output file is open and text exists in the text buffer ,

50

lJ

U

L/

TECO-11

the Y or _command will produce an error message and
the command will be aborted leaving the text buffer
unchanged . Note that if no output file is open the Y
and _commands act normally . Fur the rmor e , i f the tex t
buffer is empty the Y command can be used to bring in a
page of text whether or not an output file is open (HKY
will always work) . The _ command will succeed in
bringing one page of text into an empty text buffer but
will fail from bringing in successive pages if an
output file is open.

If n is -1 or 0 the character caret in a search
argument will convert the character following it to a
control character. If n is +l the character caret has
no special meaning in search arguments .

The initial value of ED is system dependent (see
Append ices) .

nEH Sets the value of the help level flag to n.

If n is equal to 1, error messages are output in
abbreviated form ("?XXX") . If n is equal to 2, error
messages are output in normal form ("?XXX Message") .
If n is equal to 3, error messages are output in normal
form, then the failing command is output up to and
including the failing character in the command followed
by a question mark . (Just 1 i ke TECO' s response to the
typing of a question mark immediately after an error .)

The initial value is 0 which is equivalent to a value
of 2.

nES Sets the value of the search verification flag to n.

If n is equal to 0 , nothing is typed out after
searches. If n is -1, the current 1 ine is typed out
when a search is completed (i . e . a V command is done
automatically) . If n is between 1 and 31, the current
1 ine is typed out with a 1 ine feed immediately
following the position of the pointer to identify its
position. If n is between 32 and 126, the current 1 ine
is typed out with the ASCII character corresponding to
the value of n immediately following the position of
the pointer to identify its position. If more than one
line of type-out is desired, the form m*256+n can be
used. The n is the same as above. The m is the number
of lines of view. For example, 3*256+~~ ! would be two
lines on either side of the found line, and the found
line with the character " ! " at the pointer's position. i
The ES flag does not apply to searches executed inside

s r macros • lines found inside iterations or iteration o
macros are never typed out.

51

TECO-11

The initial value of ES is 0.

nET Sets the type out control flag to n.

The ET flag is a bit -encoded word that controls TECO's
treatment of the console terminal. Any combination of
the individual bits may be set as the user sees fit.
The bits have the following functions:

Bit 0 (1) Type out in image mode. Setting this bit
inhibits all of TECO's type out conversions.
All characters are output to the terminal
exactly as they appear in the buffer or "A
command . For example , the changing of
control characters into the "c-aret/character"
form is suppressed . This mode is useful for
driving displays . I t should be used with
caution , especially i f the user i s talking to
TECO over a d ial -up 1 ine .

Bit 1 (2) Process DELETES and Control -Us in "scope"
mode. Scope mode processing uses the cursor
control features of CRT type terminals to
handle character deletion by actually erasing
characters from the screen.

Bit 2 (4) Read lower case . TECO normally converts all
lower case alphabetics to upper case on
input. Setting this bit causes lower case
alphabetics to be input as lower case. TECO
commands and file specifiers may be typed in
either upper or lower case. For the purpose
of searches, however, upper and -lower case
may be treated as different characters. (See
"X - flag) .

Bit 3 (8) Read without echo for "T commands . Th i s
allows data to be read by the "'T command
without having the characters echo a t the
terminal. Normal command input to TECO will
echo.

Bit 4 (16) Cancel Control-O on typeout. Setting this
bit will cancel any outstanding Control-0
when the next typeout occurs . After TECO has
canceled the Control-0, it will automatically
reset the bit.

Bit 5 (32) Read with no wait. This enables the ~T
command to test to see if a character is
available at the user terminal. If a
character has been typed "'T returns the value
of the character as always. If no character

52

TECO-11

has been typed "'T immediately returns a value
of -1 and execution continues without waiting
for a character .

Bit 6 (64) Detach flag (see Appendices) .

Bit 7 (128) When this bit is set: 1) all informational
messages are supressed, 2) any Control-C
causes the immediate termination of TECO, and
3) any error causes the termination of TECO
after the error message is printed .

Bit 8 (256) If this bit is set, all 1 fines output to the
terminal are truncated to the terminal' s
width i f needed . (RSTS/E and RSX-11 only.)

Bit 15 (32768) If this bit is set and a Control-C is typed,
the bit is turned off , but execution of the
current command string is allowed to
continue. This allows a TECO macro to detect
typed Control-Cs.

The initial setting of ET is operating system dependent
(see Appendices) . In addition, some of the ET bits are
automatically turned off by certain error conditions.

nEU Sets the value of the upper/lower case flag to n.

If n is -1, no case flagging of any type is performed
on typeout, lower case characters are output as lower
case characters. If n is 0, lower case characters are
flagged by outputting a (quote) before the lower case
character and the lower case character is output in
upper case; upper case characters are unchanged. If n
is +1, upper case characters are flagged by outputting
a ' (quote) before each one and then the upper case
character is output; lower case characters are output
as their upper case equivalents.

The initial value of the EU flag is operating system
dependent (see Append ices) .

nEV Sets the value o f the edit verify f 1 ag to n .

The edit verify flag's value is decoded just 1 ike the
ES flag . Just before TECO prints its prompting * , the
EV flag is checked. If it is non-zero the lines to be
viewed are printed on the terminal .

The initial value of the EV flag is 0.

53

TECO-11

2.15 PROGRAMMING AIDS

Text Formatting

The characters carriage return, 1 ine feed , vertical tab, and
space are ignored in command strings, except when they appear as
part of a text argument. These characters may be inserted
between any two TECO commands to lend clarity to a long command
string . The carriage return/1 ine feed combination is
particularly useful for typing command strings which are too long
to fit on a single 1 ine.

If the character form feed is encountered in a command
string and it is not part of a text argument, a form feed is
output to the terminal. This can be used to format terminal
output .

Comments

One of the most powerful features of TECO is the ability to
store very long command strings so that a given sequence of
commands may be executed whenever needed . Long command strings
may be thought ~ of as editing programs and , 1 ike any other type of
program, they should be documented by means of comments.

Comments may be inserted between any two commands by using a
tag construction of the form:

!THIS IS A COMMENT!

Comments may contain any number of characters and any
characters except the special characters. Thus a long TECO macro
might look like:

TECO commands
TECO commands
more commands
more command s

!This comment describes line 1!
! This comment describes 1 ine 2 !

! end o f comment string !

An important pitfall to avoid is the use of tab character s
to format long command strings. Only space, carriage return, and
line feed must be used to format command strings since TAB is an
insertion command.

Messages

The control -A command may be used to print out a statement
at any point during the execution of a command string. The
control-A command has the general form:

~Atext~A

or

54

TECO-11

@"A/text/

where the first "'A is the actual command, which may b.e entered by
striking the control key and the A key simultaneously or by
typing a caret (uparrow) followed by an A character. The second
control -A character of the first form shown is the command
terminator , which must be entered by typing the control key and
the A key simultaneously. In the second form, the second
occurence of the delimiting character (shown as slash in the
example) terminates the message. Upon execution, this command
causes TECO to print the specified message at the terminal .

The "'Amessage"'A command is particularly useful when it
precedes a command whose numeric argument contains ~T or "F
characters. The message may contain instructions notifying the
user as to what sort of input is required .

Tracing

A question mark entered betweeen any two commands in a
command string causes TECO to print all subsequent commands at
the terminal as they are executed . Commands will be printed as
they are executed until another question mark character is
encountered or the command string terminates (TECO prompts with
*) .

Command Editing

If an error is typed while entering a command string, the
error may be corrected at any time before the double ESCAPE which
terminates the command string is typed . Characters may be
deleted individually by striking the DELETE key. Each depression
of the DELETE key deletes one character , beg inning with the last
character typed, and causes the deleted character to be printed
at the terminal . An entire 1 ine of a command string may be
deleted by typing control -U. If an entire command string is
deleted in one of these manners, TECO responds by printing a new
asterisk at the left margin.

Typing Control-G<space> causes TECO to retype the 1 ine
currently being input. Typing Control-G<after isk> causes TECO to
retype all the lines from the last command execution point. The
caret form of the Control-G may not be used for these commands.

Typing two successive control -G characters causes the
current command string to be erased completely. The double
control -G command must be produced by holding the control key
depressed while striking the G key twice (if the terminal has a
bell , it will ring)". The caret form of the control -G may not be
used for this command .

After successful command completion, after an error, or
after "'G"G to cancel a command , the last command buffer contents

55

TECO-11

may be recovered by immediately typing "*q" , where "q" is any
Q-register name. This places the command buffer contents into
the named Q-register . No ESCAPE i s required after the * q .

2.16 ERROR MESSAGES

When TECO encounters an illegal command or a command that
cannot be executed , an error message is printed at the terminal .
Error messages are of the form:

?XXX Message

where "XXX" is an error code and "Message" is an explanatory
message . When an error message is generated , the command to
which it refers is not executed, the rest of the current command
string is ignored, and TECO prints an asterisk at the left margin
to indicate that it is ready to accept further commands.

In some cases i t may be difficult to determine which command
in a long command string resulted in an error message. Typing a
question mark immediately after the TECO-generated error message
causes TECO to print the cur rent command string up to and
including the erroneous character . When used in this manner , the
question mark must be the first character typed after the error
message is printed . It is not necessary to follow the question
mark with an ESCAPE .

2.17 MANIPULATING LARGE PAGE S

TECO is designed to operate most efficiently when editing
files that contain no more than several thousand characters per
page . [1] If any page of an input file is too large to fit in the
text area, the various TECO input commands will terminate reading
that page into memory when the first 1 ine feed is encountered
after a point that the buffer is 3/4 full . One may make room by
positioning the pointer past a portion of text at the beginning
of the buffer and moving i t out with the commands

0, . PWO, . K

[1] . TECO storage includes q-register storage and buffer space .
The size of the text storage area is dynamic and depends on the
amount of available memory.

56

TECO-11

2.18 TECHNIQUES AND EXAMPLES

TECO may be used in three ways. The most elementary
application, described in Chapter I of this manual, involves
using TECO to create and edit ASCII files on-1 ine . The user
enters short command strings, often consisting of a single
command, and proceeds from task to task until the file is
completely edited.

Since every editing job is s imply a long sequence of TECO

commands, an entire job may be accomplished with one long command
string consisting of all of the short command strings placed end
to -end with the intervening double ESCAPE characters removed .
This leads to the concept of a TECO editing program, which is
simply a long command string that per forms a certain editing
task. Editing programs may be written (using TECO) and stored in
the same manner as any other ASCII file. Whenever the program is
needed , it may be read into the buffer as text, stored in a
Q-register , and executed by an Mq command (where "q" is the
Q-register name) .

This is fine for clear-cut editing assignments, such as
converting from one format to another or editing certain
characters out of a file, but many editing jobs are so complex
that a given editing program will only solve a small class of
problems. The solution, in this case, is to write specialized
"editing subroutines." TECO subroutines might perform such
elementary functions as replacing every occurrence of two or more
consecutive spaces with a tabulation character, for example, or
ensuring that words are not hyphenated across a page boundary.
When an editing problem arises, the right combination of
subroutines may be loaded into various Q-registers , augmented
with additional commands if necessary, and called by a "mainline"

command string .

Editing subroutines are essentially macros; that is,
sequences of commands which per form commonly required editing
functions. Thus the third and most powerful application of TECO
is the creation and use of a macro 1 ibrary. As each editing job
is under taken, the user may look for sequences of operations
which might be required in future editing assignments. All of
the TECO commands required to perform such an operation may be
loaded into a Q-register and executed by means of an Mq or nMq
command . When the job is finished , the content of any Q-register
which contains a useful macro may be written onto an output file
(via the buffer) and saved in the macro 1 ibrary. The nMq and
m,nMq commands, which were designed to facilitate use of macros,
permits run-time numeric arguments to be passed to a macro.

57

TECO-11

TECO macros can preserve the user's radix , flag values, etc .
By using the Q-register push-down 1 fist, the macro can save and
then restore values and/~r text. For example:

[0 [l [2
+OUO
10U1
~D
EUU2
-lEU
QO"E 3U0 '
...
Q2EU
10-Q1"N "'0
]2]1]0

!
!
!

Save contents of Q-registers 0, 1 and 2 !
Put any calling argument into Q-register 0 !
Put a 10 (decimal) or 8 (octal) into Q-reg 1 !
Ensure that the cur rent radix is now decimal !
Save the case flagging flag !
Ensure no case flagging !
Default calling argument to 3 !

Restore the case flagging flag !
Restore radix as octal if needed !
Restore contents of Q-registers 2, 1, and 0 !

The EI command is particularly useful for executing macros
from a 1 ibrary, since with it they may be read without disturbing
the current input file. This makes it unnecessary to plan in
advance which macros might be needed and saves Q-register storage
space . A TECO command file retrieved with an EI command may be
in one of two basic forms : The file may contain a TECO command
that loads the macro into a Q-register for later use. Or , the
file may simply be the macro itself (in which case it must be
retrieved with EI each time it is used) .

The following examples are intended to illustrate some of
the techniques discussed earlier . It would not be practical to
include examples of the use of every TECO command, since most of
the commands admit to many diverse applications . Instead , users
are encouraged to experiment with the individual commands on
scratch files.

EXAMPLE 1: SPLITTING, MERGING, AND REARRANGING FILES

Assume that the user has a file named PROGRAM.DAT on the
system disk and that this file contains data in the following
form:

AB <FF> CD <FF> EF <FF> GH <FF> IJ <FF> KL <FF> MN <FF> OP

where each of the letters A, B, C etc. , represents 20 lines of
text and <FF> represents a form feed character . The user intends
to rearrange the file so that it appears in the following format:

AOB <FF> D <FF> MN <FF> EF <FF> ICJ <FF> KL <FF> P <FF> GH

The following sequence of commands will achieve this
rearrangement. (Search command arguments are not 1 fisted
explicitly .)

58

TECO-11

*-lED$$
*EBPROG.DAT$Y$$
*NC$$

*J20X1$$
*20K$$
*NG$$

*Hx2$$
*Y$$
*20L$$
*G1$$
*NM$$

*Hxl$$

*YSS
*J20X3$$
*20K$$
*P$$

*G2$$
*xPEFSS
*EBPROG.DAT$Y$$
*20L$$
*G3$$
*ND$$

*PWHK$$
*G1$$

*EX$$

Call TECO.
Allow all Y commands .
Specify input file and get first page.
Search for a character string in C, writing A
and B on the output file .
Save all of C in Q-register 1.
Delete C from the buffer.
Search for a character string in G, writing
D, E, and F on the output file .
Save G and H in Q-register 2.
Delete GH from the buffer and read IJ.
Move the pointer to the beg inning of J.
Insert C, which was stored in Q-register 1.
Search for a character string in M, writing
ICJ and KL on the output file.
Save MN in Q-register 1 (the previous content
is overwritten) .
De f e t e MN and read O P
Save all of 0 in Q-register 3.
Delete 0 from the buffer .
Write P onto the output file, leaving the
buffer cleared (the input file is exhausted) .
Bring GH into the buffer f ram Q-register 2 .
Write GH on the output file and close it.
Open the partially revised file.
Move the pointer to the beg inning of B.
Insert all of 0 from Q-register 3 .
Search for a character string in D writing
AOB on the output file .
Write Don the output file and clear buffer .
Bring all of MN from Q-register 1 into the
buffer.
Write MN onto the output file, then close the
file and exit.

At this point the file has been rearranged in the desired
format . Of course , this r ear rangement could have been
accomplished in fewer steps i f the commands 1 i s ted above had been
combined into longer command strings. Note that the asterisks
shown at the left margin in this example are generated by TECO,
and not typed by the user .

Assume, now, that the same input file mentioned earlier,
containing data in the form:

AB <FF> CD <FF> EF <FF> ... <FF> OP

is to be split into two separate files, with the first file
containing AB <FF> CD and the second file containing KL <FF> M,
while the rest of the data is to be discarded . The following
commands could be used to achieve this rearrangement:

59

TECO-11

Call TECO.
*-lED$$ Allow all Y commands.
*ERFILE$EWFILEI$$ Open the input file and the first output

file.
*Y$$ Read AB into the buffer.
*P$$ Write AB <FF> onto the output file and read

CD into the buffer.
*HPEF$$ Write CD onto the output file (without

appending a form feed) , and close the first
output file.

*_K$$ Search for a character string in K. After
this command has been executed , the buffer
will contain KL. No output is generated .

*EWFILE2$P$$ Open the second output file and write KL onto
it. Read MN into the buffer .

*20L0, . P$$ Move the pointer to the end of M, then write
M onto the output file .

*EX$$ Close the output file and exit.

As a final example of file manipulation
that the user has two files. One file
contains information in the form

A8 <FF> CD <FF> EF <FF> GH <FF> IJ <FF> KL

and the other is MATH. TWO, which contains:

MN <FF> OP <FF> QR

techniques, assume
is MATH.ONE, which

If both of these files are stored on DKl, the following sequence
of commands may be used to merge the two files into a single
file, MATH. NEW, which contains all of MATH. TWO followed by the
latter half of file MATH.ONE in the following format:

MN <FF> OP <FF> QR <FF> GH <FF> IJ <FF> KL

*-lED$$
* ERDK1: MATH .TWO$ $
*EWMATH.NEW$$
*Y$$
*NR$ $

*PW$$

*ERDKI:MATH.ONE$$
*HKY$$
* G$$

*NK$$

Call TECO.
Allow all Y commands .
Open the first input file.
Open the output file on the default device.

Read MN into the text buffer .
Search for a character string in R, writing
MN and OP onto the output file.
Write QR onto the output file, appending a
form feed.
Open the second input file .
Read AB into the buffer . QR is over-written.
Search for a character string in G, deleting
AB, CD, and EF, leaving GH in the buffer .
Search for a character string in K, writing
GH and IJ on the output file , 1 eav ing KL in
the buffer.

60

1J

`✓

i✓

TECO-11

*HPEX$$ Write KL onto the output file (without
appending a form feed) and close the file,
then exit.

EXAMPLE 2: ALPHABETIZING BY BINARY SEARCH

Assume that TECO is running and that the buffer contains
many short 1 ines of text beg inning with an alphabetic character
at the left margin (i . e . immediately following a 1 ine feed) .
The 1 ines might consist of names in a roster , for example, or
entries in an index. The following command string will rearrange
the 1 ines into rough alphabetical order . This command string
groups all lines which begin with the character "A" at the
beg inning of the page, followed by all 1 ines with "B" , and so on.
Note that the algorithm could be extended to place the entries in
strict alphabetical order by having it loop back to perform the
same binary sorting operation on successive characters in each
line.

! START! J OAUA !Load first character of first 1 ine
into Q-register A !

! CONY! L OAUB !Load first character of next 1 ine
into Q-register B !

QA-QB"G XA K -L GA lUZ ' ! If A>B, switch the 1 ines and set a
flag (Q-register Z) !

QBUA !Load B into A !
L Z-."G -L @0/CONY/ ' !Loop back if there is another line

in the buffer !
QZ"G OUZ @0/START/ ' !Repeat if a switch was made on the

last pass !
SS

61

TECO-11

APPENDIX A

RT-11 OPERATING CHARACERISTICS

Startup

TECO i s started with the

. R TECO

command . TECO i s now immediately ready to accept commands . The
text buffer and Q-register areas are empty.

The EDIT command

. EDIT/TECO filespec

is used to edit an already existing file. It is equivalent to

. R TECO
*EBf ilespec$Y$$

For those RT-11 users that wil 1 use TECO as the primary
editor , a mon i to r SET command i s provided

.SET EDITOR TECO

Once this command is issued , the /TECO option on the EDIT command
is no longer necessary since the default editor is now TECO.

Since this SET command only has affect between system bootstraps,
it is recommended that the command be placed in the appropr iate
startup file (e.g . , STARTS.COM) .

Now, assuming the SET command has been issued , the command

.EDIT filespec

can be used to edit an already existing file.

The standard RT-11 EDIT command options are all available
with TECO.

.EDIT/CREATE filespec
.EDIT/INSPECT filespec
.EDIT/OUTPUT:filespec filespec

Another option, /EXECUTE, is also available:

. EDIT/EXECUTE [:string] filespec

The /EXECUTE option causes TECO to process the filespec (assumed

A-1

TECO-11

. TEC f iletype) as a set of TECO commands. If "string" is used,
the string is placed into TECO' s text buffer . If "string"
contains only alphanumeric characters , i t does not have to be
enclosed in quotes. If it is to contain blanks, it must be
quoted with single quotes. The equivalent TECO commands would be

.R TECO
*ERf ilespec$YHXZHKIstr ing$MZ$$

~.

Note the input file remains open and can provide more input to
the macro.

Startup Conditions

The initial value of the ET flag is 0.

The initial value of the EU flag is -1.

The initial value of the ED flag is 0.

File Specification

The file access commands ER, EB, and EW accept a file
specification in the standard RT-11 format:

dev :filename .type

in which dev: is a physical device name or a user assigned
logical name; if dev: is not specified, the default DK: is
assumed . The filename field must be specified in the commands
ER, EB, and EW and be a legal RT-11 filename . The type field is
a file ex tens ion and must be explicitly given i f used (there i s
no default) . The EB and EW commands also accept the extended
notation for an output file size

dev:filename.type[n]

The optional [n] specifies the output file size where n is the
number of blocks to be allocated .

Backup Files
R
~~

The EB command maintains one level of file backup on RT-11.
The pre-edited input file name is changed to

f i 1 ename . BAK

before the new output file is closed with the or iginal name.
Only normal file closing commands (EC, EF, EG, and EX) cause this
renaming to happen. If TECO is aborted or the output file is

A-2

u

TECO-11

purged by the EK command, the input filename remains unchanged.
Note only one .BAK file for a g iven name is kept; ear 1 ier .BAK
backup files are deleted each time a new backup file is created .

A good policy to follow when editing is to close the edited
file frequently enough so that an unexpected incident would not
cause a substantial loss of work . Files should be backed up
regularly. TECO has the power to let an unsuspecting user alter
a good file into a completely useless state. The SRCCOM program
can be used to verify an editing session.

Exit and Go

I f TECO i s exited via the EGs tr i ng $ command , the string i s
passed to the system as the next command to execute. This string
may be any valid command or an indirect command file
specification.

Control-C

The action taken when the user types Control-C depends on
what TECO i s doing . At command level Control-C i s a val id input
character and has no special meaning . Note though, that if TECO
executes Control-C as a command from command level , TECO i s
aborted .

If TECO is executing commands or doing I/O, a double
Control-C will stop the operation and generate the ?XAB error
message .

A "T command within a macro can read a Control-C as its
input character , but another Control-C will normally abort the
macro.

Sometimes it is desireable for a TECO macro to detect when a
double Control-C was typed . By detecting the double Control-C ,
the macro can exit cleanly back to command level (pop saved
Q-registers, restore any flag values, etc.) . To do this, the
macro sets Bit 15 (Octal 100000, Decimal -32768) of the ET flag.
When a double Control-C is typed , TECO will automatically turn
off Bit 15, but will continue execution of the macro. The macro
periodically checks Bit 15 and exits cleanly if it ever goes off .
For example

[0 [1 -32768#ETET < ... ET; > 32767&ETET] 1] 0

REENTER and CLOS E

The RT-11 REENTER command may always be used to continue

TECO. Its primary differences from running TECO is that when

A-3

TECO-11

REENTER is used , the text buffer and Q-register areas are
unmodified , as opposed to when TECO is run the text buffer and
Q-register areas are cleared . The input and output file are
always lost upon reentering TECO. If an output file was open
before reentering TECO, the file will have to be recreated with
the appropriate E-command . (Note that the monitor command s
GT ON, GT OFF, LOAD, and UNLOAD disallow a REENTER.)

The output file is not closed if TECO is aborted. The RT-11
CLOSE command can be used to make the output file permanent, but
be aware that the output file will not be complete because of
internal buffers that TECO keeps . TECO may be reentered after a
CLOSE command .

File Recovery

TECO can be a useful tool in recovering ASCII files lost on
a block replaceable device. TECO allows block replaceable
devices to be opened in a non-file structured mode. This gives
the user the capability to open a d isk and access ASCII data
anywhere on it, independent of file boundaries. The command

ERdev : $

is used to open the device at which point _ (underscore or
backarrow) searches may be used to locate specific ASCII data and
transfer it to new output files. Note that files tend to get
reproduced , in whole or part, many places on a block replaceable
device; be sure to verify that any given text is indeed complete
and the correct version.

System Crash Recovery

TECO and RT-11 are highly reliable, but if during an
important edit session a random system failure should occur , the
following procedure may help save some or all of the editing .

1. Bootstrap the system

2 . Immediately per form a SAVE command to save as much of
memory as possible into a file on SY:. The address
range form of the SAVE command must be used . The SAVE
command will not allow any part of the monitor to be
saved , e .g . , if you have a 28K system and are running SJ
you cannot save 28K but only 26.3K.

3. Perform standard startup procedures, e.g. , DATE.

4. Use TECO on the SAVEd file to try and recover useful
parts of the edit.

A-4

~J

:v

u

t

TECO-11

VT11 Graphics Suppor t

If the monitor supports the VT11 graphics processor tGT ON
and GT OFF work) TECO will automatically start up in display
mode , adjusting to both the size of the display screen and to the
presence or absence of the scroller .

If the display fails to start with a working VT11, TECO has
decided that there is not enough free memory and will not
allocate the display file buffer or start the display. TECO
provides two commands to interact with the display:

Command Function

"W Cause an immediate display screen update with
the current window into the text buffer .
This command allows the creation of
interactive display screen macros.

n~W Cause TECO to display the n 1 fines preceding
and following the current position of the
pointer on the display screen. The window
size is set to n.

Various aspects of the display screen become immediately
obvious upon seeing them; the text pointer, its position and
shape and its position between lines; wrap around of more than
72 characters per 1 fine; the scroller interaction and so on.
Experiment with a scratch file for more familiarity.

~►

TECO-11

APPENDIX B

RSTS/E OPERATING CHARACERISTICS

Startup

TECO i s started with the

RUN $TECO

command . TECO i s now immediately ready to accept commands . The
text buffer and Q-register areas are empty.

The CCL command

TECO f ilespec

is used to edit an already existing file. It is equivalent to

RUN $TECO
*EBf ilespec$Y$$

The CCL command

MAKE f i l e spe c

is used to create a new file with TECO. It is equivalent to

RUN $TECO
*EWf ilespec$ $

One more CCL command exists for TECO. It is

MUNG f ilespec
--or--

MUNG f ilespec, text

This i s equivalent to

RUN $TECO
*Itext$Elfilespec$$

In other words, the MUNG command will process the f ilespec as a
TECO indirect command file passing an argument of text in the
text buffer . This is a cony ienent way to invoke TECO macros .

The CCL command switches /DETACH and /SIZE:n (or /SIZE:+n)
can be used with TECO. I f /DETACH i s used and the user i s
privileged , TECO will detach the job before any further
processing. If /SIZE:n is used, TECO will pre-expand the text
and Q-register storage area to nK. If /SIZE : +n is used , TECO

B-1

TECO-11

will set the text storage and Q-register storage area to n+3K
initially (TECO' s default startup size is 3K) .

Startup Conditions

The initial value of the ED flag is always 0.

When TECO is initially invoked it will automatically set the
ET and EU flags as described below.

The ET flag i s set to 0 for non-scope terminals without
lower case input, to 2 for scope terminals without lower case
input, to 4 for non-scope terminals with lower case input, and to
6 for scope terminals with lower case input. Note: The actual
ET flag value will be 128, 130, 132, or 134 (Bit 7 on in addition
to the above) when TECO initially starts. TECO automatically
clears Bit 7 every time it reaches prompt (*) level .

The EU flag is set to 0 (flag lower cased for upper case
only terminals. It is set to -1 (no flagging) for lower case
terminals.

File Specification

The file access commands ER, EB, EW, and EI accept a file
specification in the standard RSTS/E format

dev: [p,pn] filename.ext

in which dev : is a phys ical dev ice name or a logical dev ice
name; if dev: is not specified, the public structure is
assumed . If [p,pn] is not specified , the user's cur rent logged
in account is assumed . The filename field must be specified
whenever the device name references a file structured device.
The . ext field is a file extension and must be explicitly given
if used. There is no default extension except for EI commands
which default the . ex t field to . TEC .

The file specification switches /RONLY, /MODE : n , and
/CLUSTERSIZE:n can be included in a file specification. TECO
automatically opens all disk input files in /RONLY mode. The
file size switches /FILESIZE:n and /SIZE:n might leave an output
file larger than the amount of data output by TECO. These file
size switches are therefore illegal and produce an error if
included in a file specification.

The EB and EW commands also accept the extended notation for
an output file protection code

dev: [p,pn] filename.ext<prot>

B-2

TECO-11

The optional <prot> specifies the output file protection code.

Editing BASIC-PLUS Programs

The 1 ine feed , carriage return, null combination that
s ignal s a continuation 1 ine to BAS IC-PLUS can cause problems when
those files are edited with TECO. To overcome this, TECO has a
special "BASIC-PLUS f i 1 e" edit mode . Simply append a s 1 a sh to
the file specification.

dev:[p.pn]filename.ext/

This changes TECO' s handling for file input and/or output as
follows.

On input, TECO will strip off and ignore all nulls (Octal 0,
Decimal 0) and caxriage returns (Octal 15, Decimal 13) . For
every 1 ine feed (Octal 12, Decimal 12) , TECO will automatically
insert a carriage return preceeding the line feed. In this way
the text buffer has all lines ending with the carriage return,
line feed combination. Editing of the text buffer is now easy.

On output, TECO will ig-Wore all carriage returns. For every
line feed TECO do one of the following:

1) If the character two positions before the 1 ine feed was the
character ampersand (&) , TECO will output carriage return
and 1 ine feed . In other words , the text buffer sequence & ,
CR, LF will be output unchanged . This is the BASIC-PLUS
"EXTEND" mode convention for 1 ine continuation.

2) If the character following the 1 ine feed is a digit (i . e .
the start of a 1 ine number) or no characters follow the 1 ine
feed , TECO will output a carriage return, 1 ine feed .

3) If the character following the 1 ine feed is not a digit
(start continuation 1 ine with a tab to ensure this) or the
line feed is the last character but a form feed is to be
output, TECO will output a 1 ine feed , carriage return, null
sequence.

Editing RSX Run-Time System Generated Files

TECO will correctly read RSX Run-Time System generated files
of type 1 (fixed length records) , type 2 (variable length
records) , and type 4 (ASCII stream) . All types are converted to
ASCII stream format in the text buffer . All TECO output files
are ASCII stream.

Backup Files

B- 3

TECO-11

The EB command maintains one level of file backup on RSTS/E.
The pre-edited input file name is changed to

filename .BAK

before the new output file is closed with the original name_ .
Only normal file closing commands (EC, EF, EG, and EX) cause this
renaming to happen. If TECO is aborted or the output file is
purged by the EK command , the input filename remains unchanged .
Note only one .BAK file for a g iven name is kept; earlier .BAK
backup files are deleted each time a new backup file is created.

A good policy to follow when editing is to close the edited
file frequently enough so that an unexpected incident would not
cause a substantial loss of work. Files should be backed up
regularly. TECO has the power to let an unsuspecting user alter
a good file into a completely useless state. The FILCOM program
can be used to verify an editing session.

Wild Card Lookup

The EN command will process wild card lookups on RSTS/E. To
preset the wild card lookup file specification, use the standard
RSTS/E format

dev : [p,pn] f ilename . ext

The device name must reference a file structured disk device, be
the public structure (SY:) , or be omitted which defaults to the
public structure. The [p,pn] field cannot be wild. It defaults
to the user's current logged in account. The filename field must
be specified and can be expl is it~, fully wild (i . e . *) , or
partially wild (i . e . containing one or more ? ' s) . If the . ext
field is omitted , only files with no ex tens ion will be looked
for . Otherwise, the extension field can be explicit, fully wild
(*) , or partially wild (?'s) .

Exit and Go

If TECO is exited via the EGstr ing$ command , the most
recently created output file's extension is checked . If the
extension matches an extension in TECO's built in~ table, the
associated CCL command is executed .

.MAC for command "MACRO string"

. RNO for command "RNO string"

.CTL for command "SUBMIT string"

.FOR for command "FORTRAN string "

If no match occurs, TECO simply exits.

B-4

TECO-11

Control-C

The action taken when the user types Control-C depends on
what TECO is doing .

If TECO is executing commands, the ?XAB error occurs.

If TECO is in the midst of doing I/O, the error
"?ERR Programmable "C trap" occurs.

If TECO is at command level or asking for a character with
the ~T command , TECO simply restarts and reprompts its asterisk .

If two Control-Cs are typed to TECO when it is at command
level, it will exit.

Sometimes it is desireable for a TECO macro to detect when a
Control=C was typed. By detecting the Control-C, the macro can
exit cleanly back to command level (pop saved Q-registers,
restore any flag values, etc.) . To do this, the macro sets Bit
15 (Octal 100000, Decimal -32768) of the ET flag . When a
Control-C is typed, TECO will automatically turn off Bit 15, but
will continue execution of the macro. The macro periodically
checks Bit 15 and exits cleanly if it ever goes off . For
example

[0 [1 -32768#ETET < ... ET; > 32767&ETET]1 JO

ET Flag Handling

TECO will automatically turn off the following bits in the
ET flag on every error : Bit 0 (image output) , Bit 3 (no echo on
"'T) , Sit 4 (cancel "'O) , Bit 5 (no stall on "T) , and Bit 15 ("C
trap) .

In addition, TECO always turns off Bit 7 (exit on error,
etc.) every time is reaches prompt (*) level.

Bit 6 (detach) is handled specially by TECO. Every time the
ET flag is read (used as a numeric value) , TECO ensures that Bit
6 is on if the job is attached or off if the job is detached .
This allows a TECO macro to check for "detachedness" . If a
non-privileged user attempts to set Bit 6, the request is ignored
and Bit 6 will read back as a 0 (assuming the job is attached) .
When a privileged user sets Bit 6 , the job wi 11 become detached .
Further reading of Bit 6 will return a 1 to indicate the detached
condition .

Instal 1 ing TECO

The following commands will install TECO on your RSTS/E V06B

B-5

TECO-11

system. (Note : dev : is your distribution medium.)

RUN $PIP
(PIP's header line)
#$TECO.TEC/CO:T=dev:$TECO.TEC
#[O,IJTECO.RTS/CL:32/CO:T=dev:[O,1jTECO.RTS
#=$~ECO.TEC<232>/RE
#"Z

RUN $UTILTY
(UTILTY' s header 1 ine)
? NAME TECO=$TECO.TEC
~ ~Z

Inclusion of TECO on System Startup

The following commands will include TECO on your RSTS/E V06B
system at system startup time.

RUN $UTILTY
(UTILTY's header line)
? ADD TECO
? CCL MAK-E=$TECO.TEC ; [PRIV] n
? CCL MU-NG=$TECO.TEC ; [PRIV] n
? CCL TE-CO=$TECO . TEC ; [PRIV] n
~ ~Z

The n above i s a memor y usage 1 im i t. I f n i s 0 then the
TECO will expand its memory on demand up to the user's memory
limit. If n is non-zero then TECO will not expand its memory
over nK. N will be 0 for most installations.

If PRIV is included , TECO will expand its memory beyond the
user's private memory limit (but never beyond the 1 imit set by n
if any) . Most installations will not include PRIV in their CCL
definitions.

TECO-.11

APPENDIX C

RSX-11 OPERATING CHARACTERISTICS

Startup

TECO i s started with the

TECO

command . TECO i s now immediately ready to accept commands . The
text buffer and Q-register areas are empty.

The command

TECO f it espec

is used to edit an already existing file. It is equivalent to

TEC 0
*EBfilespec$Y$$

The command

TECO f ilespecl=f ilespec2

is used to edit and rename an already existing file. It is
equ iyal en t to

TECO
*ERf ilespec2$EWf ilespecl$Y$$

The command

MAKE f i l e spe c

is used to create a new file with TECO. It is equivalent to

TECO
*EWf fi lespec$$

One more command exists for TECO. It is

MUNG filespec
--or--

MUNG filespec ,text

This is equivalent to

TECO
*Itext$EIfilespec$$

C-1

TECO-11

In other words, the MUNG command will process the filespec as a
TECO indirect command file passing an argument of .text in the
text buffer. This is a convienent way to invoke TECO macros.

If the. MUNG command is not installed, TECO macros may also
be invoked with the command

TECO @filespec

It is equivalent to

TECO
*EIfilespec$$

In systems supporting dynamic task expansion, TECO will
expand its buffer space as necessary, up to a 1 imit defined in
the task build command file. (As supplied , this 1 imit is roughly
7K words.) Also, TECO'S buffer space may be explicitly allocated
in the startup command

RUN $TEC/INC=n

If a larger text buffer is needed than the expansion 1 imit, TECO
should be started up with a /INC allocation greater than the
1 imit ; i t will then expand to the maximum size the system wil l
allow.

Startup Conditions

The initial value of the ED flag is always 1.

When TECO is initially invoked it will automatically set the
ET and EU flags according to the user's terminal characteristics.
If the terminal supports CRT style rubouts, then bit 1 of the ET
flag is set to do the same in TECO. If the terminal supports
lower case type in, then bit 2 of the ET flag is set and the EU
flag is set to -1 to turn off case flagging. Thus the initial
value of the ET flag will be either 0, 2, 4 or 6. While the
command line is being processed, bit 7 of the ET flag is also set
to cause TECO to exit should any errors occur r . ET bit 7 is
cleared every time TECO reaches prompt (*) level.

File Specification

_The file access commands ER, EB, EW, and EI accept a file
specification in the standard RSX-11 format:

dev: [p,pn] filename.typ;version

in which dev : is a physical dev ice name or a logical dev ice
name ; if dev : is not specified , SY: is assumed . If [p,pn] is

C-2

TECO-11

not specified , the user's cur rent default directory is assumed .
The filename field must be specified whenever the device name
references a file structured device. The typ field is a file
type and must be explicitly given if used . There is no defaul t
type except for EI commands which default the . typ field to . TEC .

The switch /RW may be applied to any file specification in
an ER, EW, and EI command . If the file specification references
a mag tape , the tape i s rewound before the f i 1 e i s opened . Note
that for output files, this has the effect of zeroing the tape.
The /RW switch is ignored for all other device types.

The presence of version numbers in Files-11 causes file
processing to behave slightly differently under RSX-11 than under
other operating systems . For example , no . BAK files are used ;
each execution of an EB command simply produces a new version of
the file. Thus a user may retain any level of backup he feels to
be comfortable. It also means that one must occasionally delete
obsolete files to avoid cluttering the disk. Thus the command

EBname.typ;version$

is equivalent to the commands

ERname. t yp;version$EWname.typ;0

The EW command also creates a new version (one higher than
the current highest) if no version number is given. If an
explicit version number is given, then that number is used, and
if another file of the same name, type, and version previously
existed, it is superseded without warning. (See use of the EP
and EK commands below.)

In reading files, version numbers behave the same as in
other RSX-11 utilities: the default is the highest version.
This leads to a problem in re-opening the input file while a file
is being edited with EB. Since the output file is already
created and in the directory, the input file is no longer the
highest version. One may deduce the version number of the input
file by doing a G* (returning the file string of the output file)
and subtracting one from that version number.

In symmetry with the EB command , the EK command functions by
simply deleting the current output file. Note, however , that a
supersede (EW of same name , type , and version) is not undone -
the file is already deleted !

The EP and EA commands , while simulating two channels each
with an open file for each of input and output , in fact only keep
one file open for each to conserve buffer space. This means that
they are only useful for disk files. Also, it means that if one
opens a file and then supersedes i t, one should not switch the
input channel away from it with an EP or ER$ command, since it

C-3

TECO-11

will not be possible to open the file again.

Wild Card Lookup

The EN command will process wild card lookups on RSX-11. To
preset the wild card lookup file specification, use the standard
RSX-11 format

dev:[p,pn]filename.typ;version

The device name must reference a file structured disk device or
mag tape . All other fields of the file specification may be fully
wild (*) , including either or both halves of the directory. The
version number may be explicit, wild , or default. As with the
other file specification commands, there is no default file type .

Exiting from TECO

The normal method o f exiting from TECO i s with the EX
command. This copies the remaining input file to the output
file, closes all files and exits. To protect against accidental
loss of text typed in, the EX command will not allow TECO to exit
if there is text in the buffer and no open output file. To exit
after just looking at a file, one must use the sequence HKEX.

The EG command is identical in action to the EX command ,
since RSX-11 has no facility for passing control from one program
to another .

The Control-C (or Caret-C) command is the "give up and get
out" command . Executed from main command level , it will cause
TECO to exit regardless of the state of the buffer . If there is
an open output file, it is deleted . The Control-C command is
roughly equivalent to EKHKEX.

Control-C

The action taken when the user types Control-C depends on
what TECO is doing.

If TECO is executing commands, or is awaiting type-in for
the "'T command , the ?XAB error occurs .

If TECO is at command level , the control-C is simply entered
into the command string . Note that execution of the Control-C
command causes instant exit from amain level command string .

Sometimes it is desireable for a TECO macro to detect when a
Control-C was typed . By detecting the Control-C, the macro can
exit cleanly back to command level (pop saved Q-registers,

C-4

TECO-11

restore any flag values, etc.) . To do this, the macro sets Bit
15 (Octal 100000, Decimal -32768) of the ET flag . When a
Control-C is typed, TECO will automatically turn off Bit 15, but
will continue execution of the macro. The macro periodically
checks Bit 15 and exits cleanly if i t ever goes off . For
example

[0 [1 -32768#ETET < ... ET; > 32767&ETET J1]0

Setting the Control-C intercept bit in the ET flag must be done
with .some care; if the bit is set inside a command loop which
does not check it, it will be impossible for the user to abort
the loop. The only remedy for this situation is to abort TECO
from another terminal.

ET F 1 ag Hand 1 i ng

TECO will automatically turn off the following bits
ET flag on every error : Bit 0 (image output) , Bit 3 (no
"'T) , Bit 4 (cancel ~0) , Bit 5 (no stall on "T) , and Bit
trap) .

in the
echo on
15 ("' C

In addition, TECO always turns off Bit 7 (exit on error,
etc .) every time is reaches prompt (*) level .

Bit 6 (the detach flag) controls TECO' S treatment of the
terminal. Normally, TECO keeps the terminal attached to gain
control of Control-C interrupts. Setting bit 6 of the ET flag
causes TECO to run with the terminal detached . All commands
function normally, except that typing Control-C causes the MCR to
be activated, allowing other tasks to be run from the same
terminal concurrently with TECO. It is, of course , the user' s
problem to sort out the confusion that will arise if both TECO
and another task request input from the terminal at the same
time.

File Record Format

Files -11 files are record structured, while TECO' S text
buffer is ASCII stream. Thus TECO must make format conversions
when reading and writing files. The conversion depends on the
record attributes of the file . While reading a file, the records
are packed into the buffer . If the file is implied carriage
control (the standard RSX-11 source format) or Fortran carriage
control , TECO inserts a carriage return and 1 ine feed after each
record to make each record appear as a 1 ine of text in the
buffer . The one exception to this processing is a record
containing just a form feed. This is interpreted as an end of
page mark; it stops the read operation but is not entered in the
buffer . If the input file has no carriage control (also called
internal carriage control) , TECO simply packs the records

C-5

TECO-11

together in the text buffer .

On output, TECO scans the text buffer for carriage return /
1 ine feed sequences. Each carriage return / 1 ine feed delimits
the end of an output record . If the output file i s implied or
Fortran carriage control , the carriage return and 1 ine feed are
not output with the record; if the file is internal carriage
control , they are. Form feed characters in the buffer are always
output as a single character record . Note that solitary carriage
returns and 1 ine feeds, and 1 ine feed / carriage return sequences
do not delimit records, but remain embedded in the records being
output.

Switches may be applied to the input and output f ~iles to
control their carriage control attributes. The switch /CR forces
implied carriage control ; /-CR forces no (internal) carriage
control; /FT forces Fortran carriage control. When a carriage
control switch is applied to an input file, the file is read as
if it had that attribute; when the switch is applied to an
output file, the file is written with that attribute. Applying a
switch to an EB file specification causes the switch to apply to
both input and output files. When an output file is created , its
carriage control attributes are defaulted to those of the
currently open input file as follows:

Input Output

implied implied
none implied
Fortran Fortran

Files read with the EI command have their record attributes
interpreted i n the same manner . This 1 e ad s to an unexpected s id e
effect with EI files containing an entire command. The last
record of the file presumably contains as its last characters the
two alt modes which initiate execution of the macro. If the file
is implied carriage control , however , there are also the final
carriage return / line feed belonging to the last record, which
remain in the type in buffer while the macro executes. If the
macro attempts to receive input with the Control-T command, the
carriage return / line feed will be the first two characters
read . Alternatively, if the macro does no type in, the carriage
return / line feed will be read by TECO as the first two
characters of the next command . Then no asterisk ~(*) will appear
as the prompt for the next command . The remedy for both cases is
for the macro to execute an EI$ command early on. This causes
the remainder of the indirect file to be discarded and further
input to be read from the terminal .

Command Line Processing

The mechanism used to process the command 1 ine in RSX-11

C-6

TECO-11

TECO is designed to allow sophisticated TECO users the greatest
flexibility in customizing TECO for their own use. It _ functions
as follows:

The initialization routine places the original MCR command
1 ine (if any) into the filename buffer . It copies into the text
buffer the text of a TECO macro that will be used to interpret
the command 1 ine . Then i t starts up TECO with the command

HXY HKG* HXZ HK :EITECO$$

+ in the type in buffer . This loads the command 1 ine into
Q-register Z and the macro into Q-register Y. It then executes
the file named TECO.TEC located in the user's default directory,
if it exists. After the user's TECO. TEC, and any files it might
link to with EI, have been executed, TECO executes the command
MY$ $, thus executing the macro to interpret the command 1 ine and
open the f i l e s requested .

The uses o f TECO. TEC are 1 im i ted only by the user ' s
imagination. They range from simply loading a few utility macros
into Q-registers, through interpreting and perhaps modifying the
command 1 ine (available in Q-register Z) or the command
processing macro (in Q-register Y) , to loading and starting up a
higher level editing macro which handles the command line_.itself
and takes its own commands from the terminal .

Installing TECO

The first step in installing TECO is to copy the files from
the distribution medium into an available directory on the system
disk . TECO distributed on Mag tape o r DEC tape i s i n DOS forma t
and must be read with FLX; disks are in Files-11 format. The
command line thus is of the form

s

FLX SY: =MT: [200 , 200] * .

or

PIP SY: =DK1: [200 , 200] * .

One must then build TECO with the command

TKB @TECBLD

Note that TECO uses the Utility Library. In RSX-11M this is
located in the file [1, 20] PIPUTL.OLB in the system distribution
kit; in RSX-11D it is located in the file [11, 5] UTLLIB.OLB.
These must be available to build TECO. Users with unmapped
RSX-11M systems will need to edit the TKB command file to alter
the PARTITION directive to fit their system. RSX-11M users
should also note that the size of TECO is about 7.5K words ,

C-7

TECO-11

excluding its text buffer. Thus, TECO requires a minimum
partition of about 10K words to be useful .

Once task built, TECO needs to be installed under three
names to make all of the commands available:

INS TEC default name is ...TEC
INS TEC/TASK= ...MAK for the MAKE command
INS TEC/TASK=...MUN for the MUNG command

In IAS, TECO is installed instead under the task names $$$TEC,
$$$MAK, and $$$MUN to implement the three commands.

TECO makes use of some of the advanced features of RSX-11M
V3 and RSX-11D V6.2 , such as dynamic task expansion , the read
with special terminators terminal function (i.e. , TECO mode) , and
unsolicited character AST's. TECO may be reconfigured to do
without some of these features to allow it to run on subset or
older systems; instructions on this are to be found in the
assembly and TKB command files, and in the assembly prefix file
TEC PRE .MAC .

TECO-11

APPENDIX D

OCTAL & DECIMAL ASCII CHARACTER SET

CHAR OCT DEC CHAR OCT DEC CHAR OCT DEC CHAR OCT DEC

NUL 000 000 SP 040 032 @ 100 064 ~ 140 096
"A 001 001 ! 041 033 A 101 065 a 141 097
"B 002 002 042 034 B 102 066 b 142 098
"C, 003 003 # 043 035 C 103 067 c 144 099
"D 004 004 $ 044 036 D 104 068 d 144 100
~E 005 005 $ 045 037 E 105 069 a 145 101
"F 006 006 & 046 038 F 106 070 f 146 102
"'G 007 007 ' 047 039 G 107 071 g 147 103
"H O10 008 (050 040 H 110 072 h 150 104
TAB 011 009) 051 041 I 111 073 i 151 105
LF 012 010 * 052 042 J 112 074 j 152 106
VT 013 011 + 053 043 K 113 075 k 153 107
FF 014 012 , 054 044 L 114 076 1 154 108
CR 015 013 - 055 045 M 115 077 m 155 109
"N 016 014 056 046 N 116 078 n 156 110
~O 017 015 / 057 047 0 117 079 0 157 111
"P 020 016 0 060 048 P 120 080 p 160 112
"Q 021 017 1 061 049 Q 121 081 q 161 113
"R 022 018 2 06.2 050 R 122 082 r 162 114
~S 023 019 3 063 051 S 123 083 s 163 115
~T 024 020 4 064 052 T 124 084 t 164 116
"U 025 021 5 065 053 U 125 085 u 165 117
"V 026 022 6 066 054 V 126 086 v 166 118
"'W 027 023 7 067 055 W 127 087 w 167 119
~X 030 024 8 070 056 X 130 088 x 170 120
~Y 031 025 9 071 057 Y 131 089 y 171 121
"Z 032 026 072 058 Z 132 090 z 172 122
ALT 033 027 073 059 [133 091 { 173 123
FS 034 028 < 074 060 \ 134 092 I 174 124

GS 035 029 = 075 061] 135 093 } 175 125
RS 036 030 > 076 062 "' 136 094 176 126
US 037 031 ? 077 063 137 095 DEL 177 127

1

TECO-11

APPENDIX E

ERROR MESSAGES

TECO error messages consist of a three letter message
preceded by a question mark. A short description of the error
optionally follows (dependent on the cur rent value of the EH
flag) . Typing ? (question mark) immediately after an error
message printout causes the command string to be printed up to
and including the character which causes the error message .
Typing *q (asterisk , Q-register name) immediately after an error
message printout saves the entire command string in the specified
Q-register . This is especially useful for recovering mistyped
insert commands . Both the ? and *q facilities may be used when
an error occurs.

TECO also produces two warning messages. These messages do
not abort the command and execution continues .

$Superseding existing file
Indicates that the file to be created as the resul t
of an EW command already exists. If the output
file is closed the old copy of the file will be
deleted . The EK command may be used to "take back"
the EW command .

Sear ch fail in i to r
Indicates that a search command has failed inside
iteration brackets. A (semi-colon) command
immediately following the search command can
typically be used to suppress this message.

ERROR MESSAGES

?BNI > not in iteration
There is a close angle bracket not matched by an
open angle bracket somewhere to its left. (Note
an iteration in a macro stored in a Q-register must
be complete within the Q-register .)

?C PQ Can't pop Q-r eg
A] command has been executed and there is nothing
saved on the Q-register push down 1 ist.

?DEV Invalid device (RT-11 only)
A file specification string in an E command
contains an unknown device name.

?DIO Directory I/O error (RT-11 only)
A file creation command has probably been attempted
to a write locked device .

E-1

TECO-11

?DTB Delete too big
A D command has been attempted which is not
contained within the current page.

?ERR RSTS/E error message (RSTS/E only)
Some RSTS/E monitor call failed. The error message
text explains the error.

?FNF File not found "filespec"
The requested input file could _not be located . If
this occurred within a macro the colon modified ER
or EB command may be necessary.

?FUL Output file full (RT-11 only)
The page of text currently in the text buffer will
not fit in the open output file. Until enough free
space can be obtained on the output device the file
may have to be split . An EF command to close the
current output file, followed by a new EW command
to a temporary file may be used. The files should
then be concatenated when the space problem is
a 11 ev i a ted .

? ICC Illegal character
One of the valid commands did not follow the " .
Refer to Section 2.12 (conditional exectution
commands) for the legal set of commands.

?IEC Illegal E character
An invalid E command has been executed . The E
character must be followed by an alphabetic to form
a legal E command (i . e . , ER or EX) .

?IFC Illegal F character
An invalid F command has been executed. The only
valid F commands are FN, FR, and FS.

? IFN Error in file name (RT-11 only)
The filespec as an argument to one of the E
commands is unacceptable to the system. The file
specification must be appropr iate to the system in
use.

?IIA Illegal insert arg
A command of the form "nitext$" was attempted .
This combination of character and text insertion is
illegal.

?ILL Illegal command
An attempt has been made to execute an invalid TECO
command .

TECO-11

?ILN Illegal number
An 8 or 9 has been entered when the radix of TECO
i s set to octal .

?INP Input error (RT-11 only)
The system has reported an error attempting to read
the current input file. The text buffer may be
corrupt. This operation may be retried, but if the
error persists, the user may have to return to a
backup file .

? IQR Illegal Q-reg
An illegal Q-register name was specified in o.ne of
the Q-register commands .

?ISA Illegal search arg
The argument preceding a search command is 0. This
argument must not be 0.

?MEM Memory overflow
Insufficient memory available to complete the
current command. Make sure the Q-register area
does not contain much unnecessary text. Breaking
up the text area into multiple pages might be
useful . (Section 2.17.)

?MFN Missing file name (RT-11 only)
An ER or EW command has been executed in which the
file name has been left out.

? MRP Missing)
A command string has been executed which contains a
parenthetical expression that is not closed by a
r fight parenthesis.

?NAB No arg before ~_
The ~ command must be preceded by either a
specific numeric argument or a command that returns
a numeric value.

?NAC No arg before ,
A command has been executed in which a
preceded by a numeric argument.

is not

?NAE No arg before =
The = or == command must be preceded by either a
specific numeric argument or a command that returns
a numeric value .

?NAP No arg before)
A) parenthesis has been encountered and is not
properly preceded by a specific numeric argument or
a command that returns a numeric value .

E-3

TECO-11

?NAQ No arg before "
The commands must be preceded by a single numeric
argument on which the decision to execute the
following commands or skip to the matching ' is
based.

?NAS No arg before ;
The command must be preceded by a single numeric
argument on which the decision to execute the
following commands or skip to the matching > is
based .

?NAU No arg before U
The U command must be preceded by either a specific
numeric argument or a command that returns a
numeric value.

?NFI No file for input
Before issuing an input command, such as Y, it is
necessary to open an input file by use of a command
such as ER or EB.

?NFO No file for output
Before issuing an output command such as N search
or P it is necessary to open an output file by use
of a command such as EW or EB.

?NRO No room for output (RT-11 only)
The output device i s too full to accept the
requested output file.

?OFO Output file already open
A command has been executed which tried to create
an output file, but an output file currently is
open. It is typically appropriate to use the EC or
EK command as the situation calls for to close the
output file.

?OUT Output error (RT-11 only)
The system has reported an error attempting to do
output to the output file. Make sure that output
device did not become write locked . Use of the EF
command (or EK if necessary) and another EW can be
considered until the condition is fixed.

?PDO Push-down 1 ist over flow
The command string has become too complex.
Simplify it.

?POP Pointer off page
A J, C or R command has been executed which
attempted to move the pointer off the page . The
result of executing one of these commands must
leave the pointer between 0 and Z, inclusive.

E-4

~.J

a

v

~ _

,rt

TECO-11

?SNI not in iteration
A command has been executed outside of an open
iteration bracket. This command may only be
executed within iteration brackets.

?SRH Search failure "text"
A search command not preceded by a colon modifier
and not within an iteration has failed to find the
specified "text" . After an S search fails the
pointer is left at the beg inning of the buffer .
After an Nor _ search fails the last page of the
input file has been input and , in the case of N,
output, and the buffer is cleared . In the case of
an N search it is usually necessary to close the
output file and reopen it for continued editing .

?STL String too long
A search or file name string is too long . This is
most 1 ikely the result of a missing ESCAPE after
the string .

?UEA EA not implemented (RT-11 only)
The EA command has no meaning in this version of
TECO.

?UEI Edit Indirect not implemented (RT-11 only)
The EI command has no meaning in this version of
TECO.

?UEN Edit Next not implemented (RT-11 only)
The EN command has no meaning in this version of
TEC 0 .

?UEP EP not implemented (RT-11 only)
The EP command has no meaning in this version of
TECO.

?UTC Unterminated command
This is a general error which is usually caused by
an Unterminated insert, search, or f ilespec
argument, an Unterminated "'A message, an
Unterminated tag or comment (i . e . , Unterminated !
construct) , or a missing character which closes a
conditional execution command .

?UTM Unterminated macro
This error is the same as the ?UTC error except
that the Unterminated command was executing from a
Q-register (i , e . it was a macro) . (Note : An
entire command sequence stored in a Q-register must
be complete within the Q-register .)

TECO-11

?XAB Execution aborted
Execution of TECO was aborted . This is usually due
to the typing of Control-C .

?YCA Y command aborted
An attempt has been made to execute an Y or _
search command with an output file open, that would
cause text in the text buffer to be erased without
outputting it to the output file. The ED command
(section 2.14) controls this check.

?nnn I/O Error or Directive Error (RSX-11 only)
.All errors from the executive and file system are
reported in this format, where nnn is the decimal
I/O or directive error status. The accompanying
message is the corresponding message from the
QIOSYM message file. A complete list of I/O and
directive errors appears in Appendices to the
various Executive reference manuals and in the
IAS/RSX-11 I/O Operations Reference Manual.

u

TECO-11

APPENDIX F

INDEX TO TECO COMIMANDS
AND SPECIAL CHARACTERS

Co~aand
Char Page

NUL
"A ~8

"C
~D
"E
~~

"EC
"ED
"EL
"EQq
DER
"Es
SEX
~F
w

G
wG

~G<~pace~
~Gw
~H

TAB
LF
VT
FF
CR
"N
"Nx
"o
"o
^p
~Q
~Q

n"R
"S
A~

~T
tz"T
~U
"Uq ~V

'~w
A

A

♦`Y
A

Function

17 Discarded on input.
25 Output message to terminal.
46 Current date.
16 ,19 , 41 Stop execution .
49 Set radix to decimal.
4 6 Forts feed flag .
35 (Match control char) Match alpha.
35 (Match control char) Match RAD50.
35 (Match control char) Match digit.
35 (Match control char) Match line terminator.
34 (String build char) Use contents of Q-reg q.
3 5 (Match control char) Match alphanumeric.
36 (Match control char) Match spaces or tabs.
36 (Match control char) Match any character.
46 Contents of console switch register.
16 K i 11 cotn~aand string .
16 Retype current command line.
16 Retype current contiaand input.
4 6 Titae of day .
27 insert tab and text.
1 Line terminator, ignored in commands.
- Ignored in commands.
1 Page ter~ainator , ignored in cot~nands .
1 Ignored in commands.
46 End of f ile f lag.
35 (Match control char) Match all but x.
49 Set radix to octal.
25 Stop terminal typeout.
- Not a TECO coms►and .
48 Convert line arg into character arg.
34 (String build char) Use next char literally.
31 I dentica 1 to nFS cotatnand .
47 -(length) of last string inserted or found.
35 (Match control char) Match separator char.
47 ASCII code of next char typed.
25 Output ASCII character of value n.
16 Kill cot~aand line.
37 Put string into Q-register q.
47 Version of TECO.
A-5 Redisplay text buffer inn~nediately.
50 Search mode flag.
35 (Match control char) Match any character.
4 7 Equivalent to " . + "S , . " .
47 Number of characters in Q-register area.

F-1 September 1977

TECO-11

Com~aand
Char Page Function

ESC 16 String and concnanand terminator .
" ~ IFS } - Not a TECO command.
"] t GS } - Not a TECO command .
""x SRS} 47 ASCII value of next char in command string.
^"x CRS} 34 tString build char} Use next char as lower case.
_ tUS} 48 Ones complement.
SP 17 Ignored in commands.
' 41 Define label .
" 42 Start conditional.
n"A 43 Test for alphabetic.
n"C 42 Test for RAD50.
n"D 43 Test for digit.
n"E 42 Test for equal to zero.
n"F 43 Test for false.
n"G 42 Test for greater than zero.
n"L 42 Test for less than zero.
n"N 42 Test for not equal to zero.
n" R 4 3 Test for alphanumeric .
n"S 43 Test for successful.
n"T 42 Test for true.
n"U 43 Test for unsuccessful.
n"V 43 Test for upper case alphabetic.
n"W 43 Test for lower case alphabetic.
n"> 42 Test for greater than zero.
n"< 42 Test for less than zero.
48 Logical OR.
$ - Not a TECO cott~cta nd . ~ Dol lar symbol not ESCAPE . }
n$q 37 Add n to Q-register q.
& 48 Logical AND.
' 4 2 End conditional .
t 47 Expression grouping.
} 47 Expression grouping.
* 48 Multiplication.
*q 56 Put last command in Q-register q.
+ 48 Addition.

- Argument separator.
- 46 Subtraction or negation.

45 Current pointer position
/ 48 Division.
0-9 - Digit.
• 31 Make next command return a value.
;: 32 Make next search a compare.
;= 49 Type in decimal, no carriage return.
:_= 49 Type in octal, no carriage return.
:Gq 38 Type Q-register q on terminal.
: Qq 4 5 S ize of text in Q-register q .

F-2 September 1977

TECO-11

Com~aand
Char Page Function

n; 43 Exit iteration .if n>=0.
n< 40 Iterate n times.
= 4 9 Type in dec itaal .
_= 49 Type in octal.
> 40 End iteration.
? 55 Toggle trace mode.
? 5 6 Type conunand string up to error .
@ 17 Use alternate string delimiters.
A 22 Append to buffer.
nA 4 5 ASCII value of char in buffer.
B 45 0 - beginning of buffer.
nC 23 Advance n characters.
nD 26 Delete n characters.
EA 20 Select secondary output stream.
EB 18 Open input and output.
EC 19 Close out (copy input to output and close) .
ED 50 Edit level flag.
EF 19 Close output file.
EG 19 Close out and exit.
EH 51 Edit help level.
EI 20 Open indirect command f ile.
ER 19 Kill output file.
EN 20 Wildcard lookup.
EP 20 Select secondary input stream.
ER 18 Open input file.
ES 51 Search verification flag.
ET 52 Type out control flag.
EU 53 Case flagging flag.
EV 53 Edit verify flag .
EW 18 Open output file.
EX 19 Close out and exit.
nFN 31 Global string replace.
FR 28 Replace last string.
nFS 31 Local string replace.
m,nFS 31 Bounded local string replace.
Gq 38 Get string in Q-register q into buffer.
G* 39 Get last filespec string into buffer.
G 39 Get last search string into buffer.
H 45 Equivalent to "B,Z".
I 27 Insert text.
nI 27 Insert ASCII character "n" .
nJ 23 Move pointer to "n" .
nK 26 Kill n lines.
ta, nR 26 Delete between m and n.
nL 24 Advance n lines.
Mq 38 Execute string in Q-register q.
nN 30 Global search.
O 41 Go to label.

F-3 September 1977

TECO-11

Coauetand
Char Page Function

np 2 2 Advance n pages .
m,nP 23 Write out chars m to n.
nPW 22 Write buffer n times.
nt,nPW 22 Write out chars to to n.
Qq 38 Number in Q-register q.
nR 24 Back up n characters.
nS 29 Local search.
ter, nS 3 0 Bounded local search.
nT 25 Type n lines.
ia, nT 2 5 Type f rota m to n.
nUq 37 Put number n in Q-register q.
nV 25 Type n current lines.
W - Not a TECO command .
nxq 37 Put n lines inter Q-register q.
ter, nxq 3 7 Put characters nn to n into Q-register q .
Y 22 Read into buffer.
Z 4 5 End of buffer value.
~q 39 Q-register push.
~ 45 Value of digit string in buffer.
n~ 49 Convert n to digits in buffer.
q 38 Q-register pop.

" 17 Interpret next cora~aand char a$ a control char .
" 34 Interpret next search char as a control char.
n 31 Global search without output. `" Not a TECO command.
a-z Treated the setae as upper case A-Z.
{ - Not a TECO comtaand.

- Not a TECO cotntnand .
- Not a TECO comtaand.
- Not a TECO command.

DEL 16 Delete last character typed in.

F-4 S epte~aber 19 7 7

