

Studies indicate that APL programmers
typically achieve 10 times the productivity
of programmers who use lower level­
languages. APL is a more productive lan­
guage because it was designed to be used
by people. It forces the computer to under­
stand people, not the other way around.
With VAX-11 APL, the programmer tells
the computer what to do, not how to do it.

It Takes Most Programmers
Less Time To Write Most
Programs In APL

VAX-11 APL frees programmers from
tedious and time-consuming housekeeping
functions that keep the computer happy
but contribute nothing towards the solution
of the problem. With some languages,
programmers seem to spend most of their
time getting around the limitations imposed
on them by the language.

VAX-11 APL programmers don't spend
valuable time reserving space for variables
(DIMENSION, DATA DMSION, etc.) or
specifying data types (REAL, INTEGER,
etc.). There are no required input or output
format statements. VAX-11 APL uses an
interactive interpreter, so the programmer
does not need to compile or link programs.
Since VAX-11 APL users spend less time on
housekeeping functions, they have more
time to spend solving problems.

Reduce Complex Functions
To A Single Line Of Code.
VAX-11 APL has exceptionally powerful
primitive functions which greatly simplify
many programs. One APL special character
can often perform a function that would
require a paragraph of code in another
language.

For example, APL has two sort charac­
ters, one for an ascending sort and one for
a descending sort. When you want to sort a
table or list, you simply type the name of
the table or list, the sort character, and the
item or field you want to sort on. Even a
complex multikey sort requires only one
short line of code.

VAX-I I APL Works At The
Speed of Thought

APL uses special symbols to represent
mathematical and logical functions that
every programmer understands, but which
can be difficult to e:xpr~ in words. Once
programmers get used to these symbols(it
rarely takes more than a few days) they
will find that they now have the tools they
need to write simple, short, efficient pro­
grams. The result will often be an imme­
diate jump in productivity. You can expect
to see a steady increase in productivity for
some time to come.

Tables And Matrices Are
As Easy To Work With As
Single Numbers
APL has a number of special characters
which let programmers handle lists and
tables as easily as they now handle num­
bers. In most languages, a single character,
called the DMSION SIGN, lets you divide
one number by another. In APL, another
single character, called the DOMINO, lets
you divide one matrix by another.

The RESHAPE function, represented by
a single character, lets the programmer
define the size and shape of a table or even
a multidimensional array. This same single
character can be applied to the table to
determine how many elements are in the
table. The programmer, using the RESHAPE
function, can change the shape of the table
or array at any time by typing one short
line of code. Another special character,
called the CEILING, can be applied to a list ·
or table to find the highest or largest ele­
ment. In the same way, a special character
called the FLOOR lets the programmer find
the smallest or lowest element.

VAX-I I APL Lets The
Computer Work With You

APL puts the full power of the computer to
work helping the programmer write pro­
grams. The interactive interpreter lets the
programmer use the computer dynamically
as an active programming and debugging
tool.

With many languages (even so-called
interactive languages with threaded compil­
ers) the programmer first writes a program .
using an editor. Then the programmer
must leave the editor and compile the
program. After the program has been
compiled, the programmer may enter data
and try to run the program. If there are any
problems or bugs (a not infrequent event),
the programmer must go back to the editor
and start all over again. With APL, the
programmer can try one solution and if it
doesn't work, go back and try another.

VAX- I I APL Provides Virtually
Everything A Programmer Needs
In A Comprehensive Problem­
Solving Environment.
It includes a function editor, debugging aids,
system communications facilities and a file
system. The interactive interpreter can
execute each line of code as it is entered.
The extensive debugging aids report imme­
diate results when each line of code is
executed. The built-in editor lets you modify
programs at any time. VAX-11 APL lets you
take advantage of the full power and func­
tionality of VAX/VMS™* commands. You
can execute VMS commands from within
the APL environment and have those
commands return the output to APL (or
even to a variable within APL). There is no
need to leave the VAX-11 APL environment
during the creation, testing or execution of
programs.

*VAX/VMS is a trademark of Digital
Equipment Corporation.

VAX- I I APL Is Easy To
Learn

VAX-11 APL is an exceptionally easy lan­
guage to learn, even for beginners who
have never programmed. The user can
quickly learn to use a simple, but very
useful subset of APL to obtain meaningful
results almost immediately. Users will gradu­
ally expand their knowledge of APL while
continuing to perform highly productive
work. Experienced programmers learn a
larger subset of APL initially and progress
rapidly.

APL Is An International
Language
APL is an international programming
language because it is not based ·on English
verbs or function names. The special APL
characters follow in the tradition of mathe­
matical symbols that transcend lingual
boundaries. The translation of English­
based programming languages can be as
expensive as it is frustrating. Any APL
programmer anywhere in the world can
read your APL code.

How Much Can You Save
Using VAX-II APL?

We all know that programming time is
expensive. Do you know how much it costs
you for each hour of a programmers time?

Lets look at a simple program that not
only tells you what it costs you for each
hour of programming, but also demon­
strates how much you can save by using
VAX-11 APL instead of COBOL or
FORTRAN.

Suppose you give your programmers
two weeks of vacation each year and they
work a forty-hour work week. To find their
hourly rates you could divide their annual
salary by fifty (for the number of work
weeks in the year) and then again by forty
(for the number of work hours in a week).
You could then average each programmers
hourly rate to get an average hourly pro­
gramming cost.

It sounds like an easy problem to solve,
and it is, in U4X-11 APL. We asked three
experienced programmers to write and
debug a program to solve this problem.

To find out how much you would have
saved by using VAX-11 APL, run this pro­
gram (m the programming language of
your choice). Of course, your programmers
may be either faster or slower than ours,
and some applications might take longer to
write in APL. However, this example is
consistent with a number of reported pro­
ductivity comparisons between APL and
other programming languages.

•
•

[1]

[2]
(3]

•
(4]
(5]
[6]

•
(7]
(BJ
(9]

•
(10]
(11]

VLEN

sTAFFf-0 50r' '
SALAR 'ff-0f0

LOOF·: 1 ENTEJ;: NAME (T"fF"E <Cf;:) OHL "T° WHEN !•ONE): 1

➔ (I'\/ 1 '=NEWJ·fAMEf-1 50f 50tfl) /CALCULATE
STAFFf-STAFF,(1JNEWNAME

'ENTER ANNUAL SALARY WITH NO COMMAS:•

SALARYf-SALARY,lfQFifl
➔ LOOP­

CALCULATE:TOTALf-(+/HOURLY)+ROWSf-f,HOURLYf-(SALARY+50)+40
1 ANNUAL HOURLY'

SALAR "T°

(12] '---------- ---------- --------------------'
(13] I I

• [14] (10 21t(f;:OWS,l)fSALAt:;:·1·), 1 ',(10 21t(ROWS,1)fH0Uf;:L"T°), 1 ',STAFF

(15] I ----------·
[16 J • AVEf;:AGE

• Q

•
•
It took an APL programmer about

½ hour to write this program.

• VAX-II APL

•
•
•
•
•
•
•
•

•
•
•
• 10

1000

•
•
•
•
• 1001

•
• 20

•
1002

•
100

• 1003

•
•
•
•
•

FORTRAN
CHARACTER*50 NAME
REAL SALARY, TOTAL
INTEGER COUNT

OPEN (UNIT:1, FILE='LEN. DAT', ACCESS:'SEQUENTIAL',
1 STATUS:'NEW', FORM:'UNFORMATTED')

COUNT= 0
WRITE (*,1000)
FORMAT('$', "'name", yearly salary [I to stop): ')
NAME= ' ' ! input I => IO list unchanged
READ (*,*) NAME, SALARY
IF (NAME .NE. I I) THEN

COUNT~ COUNT+ 1
WRITE (1) NAME, SALARY
GO TO 10
END IF

IF (COUNT .EQ. 0) THEN
WRITE (1 ,*) 'no data was inputted - so none to print'
CLOSE (UNIT:1, DISPOSE='DELETE')
STOP
ENDIF

REW IND (U NIT:1)

WRITE (*,1001)
FORMAT (' pro gr am mer ' , T 5 0 ,
1 ' name', T50,
2

TOTAL = 0
COUNT= 0

' ye a r l y' , T 7 0 ,
'salary', T70,

T70,

READ (1, END:100) NAME, SALARY
COUNT : COUNT+ 1
TOTAL= TOTAL+ SALARY
WRITE (1 ,1002) NAME, SALARY, (SALARYl50)I40
FORMAT(' ' A50, T50, F12.2, T70, F8.2)
Go To.20

CLOSE (UNIT=Y, DISPOSE='DELETE')
WRITE (*,1003) ((TOTALICOUNT)l50)I40

'average',
'hourly' ,
'salary',

I
I
//)

FORMAT (' ', I I, ' average hourly salary for all is ', F8. 2)

END

It took an experienced FORTRAN
programmer over. 2 hours to write
this program.

It took an experienced COBOL
programmer over 4 hours to write
this simple program.

•
•
•
•
•
•
•
•
•
•
•
•-
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. LEN •

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES •

CONSOLE IS DISPLAY-DEV.
DATA DIVISION.

WORKING-STORAGE SECTION •
77 HRS-PER-WK P IC S9(4) COMP VALUE 40.
7 7 W KS - PER - YR PIC S9(4) COMP VALUE 50.
77 INDX
01 NAME-MAX
01 NAME-COUNT
01 TOT-SALARY
0 1 TEHP-1
01 TEM P-2
0 1 AVG-HOURLY
01 NEW-SALARY

05 INTEGER-PART
05 DEC !MAL -PART

01 WORK-SALARY
01 IN-SALARY
01 IN-NAME

88 ALL-NAMES-ENTERED
01 P-T ABLE.

05 P-N AME
05 P-SALAR Y

01 DETAIL-LINE
05 DETAIL-SALARY
05 FILLER
05 DETAIL-HOURLY
05 FILLER
05 PROGRAMMER-NAME

P IC S9(4) COMP •
PIC S9(4) COMP VAI/UE 50.
P IC S9 (4) COMP VALUE o.
PIC S9(7)V99 COMP •
P IC S9(7)V99 COM p •
PIC S9(7)V99 C(),1 p

P IC S9(7)V99 COMP.
DISPLAY.
P IC 9(7).
P IC 9 9.
P IC 9(7)V99.
PIC X(10) DISPLAY •
P IC X(40) DISPLAY.
VAL U E II E X I T11 •

PIC X(40) DISPLAY OCCURS 50.
PIC S9(7)V99 C(),IP OCCURS 50.
DISPLAY.
P IC $$ $ $ $ $ 9 ·• 9 9 •
PIC X(5) VALUE SPACES.
PIC $$$$9,99.
PIC X(6) VALUE SPACES.
PIC X(40) VALUE SPACES.

0 1 TOTAL-LINE DISPLAY.
05 FILLER PIC X(14) VALUE
11 AVER AGE 11

05 DETAIL-AVG-SALARY PIC $$$$$9.99.
01 HCR-1 PIC X(75) DISPLAY VALUE

II ANNUAL HOURLY II.

01 HDR-2 P IC X(75) DISPLAY VA LUE
II SALARY SALARY NAM E11 •

01 HDR-3 P IC X(75) DISPLAY VA LUE
II "

01 HDR-4 --- ---P IC X(75) DISPLAY VA LUE
II II

PROCEDURE DIVISION •
MAIN-BODY.

PERFORM INIT-RTN.
PERFORM INPUT-RTN THRU INPUT-EXIT UNTIL ALL-NAMES-ENTERED •
PERFORM HEADING-RTN.

PERFORM COt-1 PU TE-AND-PR INT VA RY ING INDX FROM 1 BY 1
UNTIL INDX > NAME-COUNT •

PERFORM CLEAN-UP.
STOP RUN.

INIT-RTN.
MOVE OTO TOT-SALARY, TEMP-1,TEMP-2, NAME-COUNT, AVG~HOURLY.
MO VE S PACES TO IN - N AME •

INPU T-R TN.
DISPLAY "ENTER NAME (OR EXIT TO EXIT): "UPON DISPLAY-DEV

WITH NO ADVANCING.
AC E PT IN-NAME FROM DI SPLAY-DEV.
IF (ALL-NAMES-ENTERED OR NAME-COUNT = NAME-MAX)

GO TO INPUT-EXIT
ELSE DISPLAY "YEARLY SALARY : "UPON DISPLAY-DEV

WITH NO ADVANCING
ACCEPT IN-SALARY FROt-1 DISPLAY-DEV

UNSTRING IN-SALARY DEL IM !TED BY 11
." OR 11 11

INTO INTEGER-PART,DECIMAL-PART
COM PU TE WO R K - SAL ARY = (D EC IM AL - PART 1 • 0 1) +

INTEGER-PART
ADD 1 TO NAME-COUNT
MOVE IN-NAME TO P-NAME(NAME-COUNT)
MOVE WORK-SALARY TO P-SALARY(NAME-COUNT) •

INPUT-EXIT. EXIT •

COM PU TE-AND-PR INT •
MOVE P-NAME(INDX) TO PROGRAMMER-NAME.
t-lOVE P-SALARY(INDX) TO DETAIL-SALARY •
ADD P-SALARY(INDX) TO TOT-SALARY.
DIVIDE P-SALARY(INDX) BY WKS-PER-YR GIVING TEMP-1.
DIVIDE TEMP-1 BY HRS-PER-WK GIVING AVG-HOURLY •
MOVE AVG-HOURLY TO DETAIL-HOURLY.
DISPLAY DETAIL-LINE UPON DISPLAY-DEV •

HEADING-RTN.
DISPLAY SPACES UPON DISPLAY-DEV •
DISPLAY HDR-1 UPON DISPLAY-DEV.
DISPLAY HDR-2 UPON DISPLAY-DEV.
DISPLAY HDR-3 UPON DISPLAY-DEV.

CLEAN-UP.
DISPLAY HDR-4 UPON DISPLAY-DEV.
DIVIDE TOT-SALARY BY WKS-PER-YR GIVING TE~P-1 •
DIVIDE TEMP-1 BY HRS-PER-WK GIVING TEMP-2.
DIVIDE TEMP-2 BY NAME-COUNT GIVING TOT-SALARY.
MOVE TOT-SALARY TO DETAIL-AVG-SALARY •
DISPLAY TOTAL-LINE UPON DISPLAY-DEV •

VAX-II APL
The Productivity Of APL . ..
The Power Of VAX
Together They're
"Virtually" Unbeatable

VAX-11 APL is a native-mode interpreter
that provides virtually everything you need
during a terminal ses.5ion.
VAX-11 APL features include:
• Built-in function editor
• Debugging Aids
• System communications facilities
• File management system

All The Workspace
You'll Ever Need

VAX-11 APL gives you a "virtually unlim­
ited" workspace by taking advantage of the
VAX/VMS Virtual Memory System. Your
workspace can expand as you need it. You
don't have to worry about wasting system
resources. The VAX/VMS operating system
allocates available resources when you
need them.

The symbol table and function stack (SI
stack) also expand dynamically according
to need. The expandable workspace speeds
processing by reducing file 1/0.
• The ultimate size of your workspace is

limited only by the available virtual
memory.

• The workspace expands dynamically
according to need.

• The symbol table and SI stack expand
dynamically according to need.

• You can limit the size of your workspace.
• The VAX/VMS system manager can limit

the amount of virtual memory available
to any user.

Flexible Error Handling
VAX-11 APL gives you the flexibility you
need for application-oriented error handling
in user-defined functions. You can define
error handling routines that will:
• Detect, analyze, and correct errors

without interrupting the program.
• Halt execution of the program, prompt

the user to enter a correction, then
resume execution.

• Terminate the execution of a program
when the severity of an error requires
it. The user can resume executing the
program from that point once the error
is corrected.

• Display either the appropriate VAX-11
APL error message or an error message
you write for that particular application.

□TRAP Executes a stored APL expres­
sion when an error is detected.

□ERROR Contains the error-message
text of the last error detected.

□SIGNAL Lets you define new error situa­
tions unique to the application.

D BREAK Immediately stops program
execution and returns control
to the user.

Meaningful Error
Messages
VAX-11 APL gives you meaningful error
messages that pinpoint the location and the
nature of a detected error. For example, if
you have a domain error that was caused
by an attempted division by zero, VAX-11
APL displays the line where the error
occurred and the message, "DOMAIN
ERROR (DMSION BY ZERO)." In the same
way, should you ever manage to use all of
your available virtual memory, you will see,
"WORKSPACE FULL (VIRTUAL MEMORY
EXHAUSTED)."

Debugging Tools
VAX-11 APL supplies several features that
help you find logic errors in your programs.
These features include:
• More detailed error messages that exactly

pinpoint the source and nature of a
problem.

□TRACE Lets you see the results of each
requested line of APL as it
executes without changing the
source.

□STOP Sets breakpoints on lines of
APL without changing the
source. You can examine varia­
bles and the VAX-11 APL envi­
ronment. You can continue
programs right from where
they were stopped.

□BREAK You can use inside a VAX-11
APL program to set break­
points.

File Compatibility

VAX-11 APL applications can acces.5 the
same files used by applications written in
other VAX/VMS languages, including
VAX-11 FORTRAN, VAX-11 BASIC, VAX-11
PASCAL, VAX-11 PL/I, VAX-11 COBOL,
and VAX-11 C. Many users can read the
same file at the same time. It does not
matter which language created or last
wrote that file. This is possible because
VAX-11 APL uses VAX-11 RMS (Record
Management System) for all file input and
output.

VAX-I I APL Supports
Three File Types:
• Sequential files
• Relative files
• APL component files

Workspaces Are Saved
As VMS Files
When you use the)SAVE command, your
entire VAX-11 APL workspace is stored as
a VMS file and is listed in your directory.
You can use the full power of VAX/VMS to
manage workspace files.
• Assign protection to workspace files.
• Copy, rename, or delete workspace files.
• Send workspace files to other VAX/VMS

systems using DECnetYM

*DECnet is a trademark of Digital
Equipment Corporation.

Execute Any VMS
Command From
Within APL
VAX-11 APL lets you execute any VMS
command from within the APL environ­
ment-even from within an APL program.

The)DO command lets you execute a
single VMS command line from within
APL. Optionally, the results of this command
can be stored in an APL variable.

For instance, you could use the)DO
command to determine who is using the
system. You can write a program that
sends a m~e to another terminal when
that program has completed processing.

The)PUSH command places you in a
VMS subprocess without disturbing your
APL environment. While you are in this
subprocess you can use all of the VAX/VMS
features and commands. When you are
done with the subprocess, you are returned
to APL exactly where you left off.

For example, you could use)PUSH
when you want to use the VMS Mail utility.
You can read and send mail, then return to
your APL ses.5ion.

Batch Processing
VAX-11 APL accepts commands from a file
as well as from a terminal. This allows for
batch-like processing within the APL envi­
ronment. You can use the VAX/VMS Batch
Control System to run APL programs with
no modification to the APL workspaces or
user input conventions.

APL Command Files
Command files help you write applications
for people who are not familiar with APL.
You can store all the information you need
to start a ses.5ion and load a workspace in a
VMS command file. This workspace can
automatically start executing by placing an
expression in the variable DLX.

APL Initialization Files
Frequent APL programmers can store the
APL environment they like in an initializa­
tion file. This automatically initializes APL
each time it is run. For example, if you use
the same terminal every time you use
VAX-11 APL, you can store your terminal
type in the initialization file.

Sharing Data
VMS mailboxes and event flags provide an
easy way for a running VAX-11 APL process
to pas.5 information and data to other run­
ning processes. The VAX-11 APL process
can then wait for the other process to use
the information and pas.5 back the results.
The other processes can be written in
VAX-11 APL or any VAX language that
supports mailboxes. These include VAX-11
FORTRAN, VAX-11 BASIC, VAX-11
COBOL, and VAX-11 C.

Writing Output
Many APL products require extensive user­
written file operations to create a report or
any text that would eventually go to a
lineprinter or system editor. VAX-11 APL
has features that automatically write se­
quential text files in the supported character
set of the users choice.

When invoked;)OUfPUf directs every­
thing that would have appeared on a termi­
nal to a file. When invoked,)OUfPUf
/SHADOW directs output to both the
terminal and to a file. The file looks the
same as the output would look on the
terminal, complete with formatting and
control characters.

APL With Powerful
Extensions
VAX-11 APL includes the APL language
elements most programmers would expect.
It has every primitive function and operator
described in Development of an APL Stand­
ard, by Falkoff and Orth, in the APL79
Conference proceedings. The interpreter
has an extensive set of DIGITAL language
extensions.

VAX- I I APL Extensions:

Execute Function
Allows any APL character string to be
evaluated just as if it were entered from a
terminal. Therefore, a variable can contain
the name of another variable for analysis.
Any APL system command may be exe­
cuted from within an APL program.
Diamond Statement Separators
Allow more than one APL expression on a
single line.

Ambivalent Functions
Allow the user to define programs that will
accept either one or two arguments. The
program can test to see how many argu­
ments it has.
Replicate _
Adds new capabilities to Compression. Not
only can elements be eliminated, but the
same expression can insert spaces or zeros
apd can repeat any element as many times
as the user wishes.
Scalar Extension
Extended to vectors and matrices. A single
element object of any shape will be ex­
panded just as if it were a scalar.
End-Of-Line Comments
Make it easier to document APL code.
Sorts
Can be made on characters as well as
numbers.
User Defined FMT Functions
Add formatting capabilities beyond the
Format function.

APL From Any ASCD
Terminal
A user can access every part of the VAX-11
APL interpreter without a special terminal
because VAX-11 APL has a full complement
of mnemonic names for each of the APL
characters. For graphic applications,
VAX-11 APL can transmit any character,
including escape sequences. VAX-11 APL
also supports the full APL character set for
users with APL terminals.

Transferring Workspaces
VAX-11 APL fully supports the Workspace
Interchange Convention which enables the
user to exchange workspaces with APL
products running on other systems, includ­
ing the fully-featured APL products on the
DECsystem-IO and DECSYSTEM-20
computers.

APL System Variables APL System Functions

DAUS

OCT

DDML

□ERROR

□GAG

0 10
DLX

ONG

□PP

OPW
□RL

□SINK

□SF

□TERSE

□TRAP

Automatically backs up DAI Maintains· account information □Fl Converts character argument
the current workspace on the current APL ~ion. to numeric, placing Os in each
periodically. Includes user identification, position not corresponding to
Determines the degree of CPU time and connect time. a valid number.
tolerance applied in numeric □ALPHA Vector of 27 characters: b:. DFX Establishes a function from its
comparisons ("fudge factor"). and A through Z. canonical representation.
Sets the maximum record DALPHAU Vector of 27 underscored □LC Vector of line numbers in
length used to save the work- characters. state indicator. Most recently
space or to create a file. DARBOUf mites arbitrary output to the suspended function appears
Contains the text of the error terminal. first.
message for the last error DASS As.50ciates a file or mailbox □MBX Returns information about
detected. with a channel. mailboxes on one or more
Indicates whether to accept DAV Vector of all APL characters. channels.
messages sent from other □BREAK Suspends function execution □NC Returns the classification of
users. and returns control to imme- one or more names.
Sets index origin for arrays. diate mode. □NL Constructs a list of named
Causes expr~ion to be DCHANS Identifies channel numbers objects residing in the active
executed automatically when as.5oeiated with files. workspace.
the workspace is loaded. OCHS Returns file organization and □NUM Vector of 10 digits: 0 through 9.
Controls the recognition and open status. DQCO Quietly copies a workspace.
printing of the negative sign OCIQ Unpacks data packed by DQLD Quietly loads a workspace.
(with standard ASCII terminals). OCOQ. DQPC Quietly copies a workspace
Controls the number of signifi- DCLS Closes the files on one or with certain protection.
cant digits in noninteger more channels. D RELEASE Releases all locked records in
output. DCOQ Packs data of different types files on one or more channels.
Sets the page width. for storage as one record. □RESET Clears the state indicator.
Forms the seed for random OCR Returns a canonical represen- □SIGNAL Passes an error up the stack
numbers. tation of a defined function. one level to the caller of the
Discards unwanted output. □CfRL Vector of ASCII control function in error.
Always iota 0. characters. □STOP Sets or clears stop bits as.50Ci-
Prompt for evaluated input. □DAS Disassociates files from one or ated with function lines.
Can be changed from O: more channels. □TRACE Sets or clears trace bits as.5oei-
Suppr~ display of second- □DL Delays execution by the ated with function lines.
ary error messages. number of seconds specified. □TS Current date and time in base
Causes expr~ion to be □DVC Returns the device character- 10 format.
executed when error occurs istics for one or more files. □Tr Terminal type for current
in a user defined function. DEFC Clears event flags as.5oeiated APL~ion.

with one or more channels. DUL Proc~ identification number.
□EFR Returns the setting for event □VERSION Interpreter and workspace

flags as.5oeiated with one or versions.
more channels. DVI Returns logical vector giving

□EFS Sets event flags as.5oeiated position of valid numbers in
with one or more channels. D F1 of argument.

DEX Expunges existing use of a OWA Maximum amount in bytes
name in the workspace. by which the active work-

DFLS Returns information about space can be increased.
files on one or more channels.

The information in this document is subject to change without notice and should not be con­
strued as a commitment by Digital Equipment Corporation. Digital Equipment Corporation

assumes no responsibility for any errors which may appear in this document.

Order Code: EA-23365-18

	Cover
	p01
	p02
	p03
	p04
	p05
	p06
	Zcover

