
MicroVMS
Workstation Release Notes, Version 3.0
Order Number: AA-HR84A-TN

May 1986

This document provides supplemental information about Version 3.0 of MicroVMS
Workstation graphics software. It describes changes between Version 2.0 and Version
3.0, lists problems and restrictions, includes notes to existing documentation, and
provides an appendix for VMS data types.

Revision/Update Information: This manual supersedes the MicroVMS
Workstation Release Notes, Version 2.0.

Software Version: VAX/VMS Version 4.4

digital equipment corporation
maynard, massachusetts

May 1986

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1986 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DEC/CMS EduSystem
DEC/MMS IAS
DECnet MASSBUS
DECsystem-10 PDP
DECSYSTEM-20 PDT
DECUS RSTS
DECwriter RSX

UNIBUS
VAX
VAXcluster
VMS
VT

d 9 9
ZK-3166

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA &PUERTO RICO* CANADA.

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

Digital Equipment
of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

INTERNATIONAL

Digital Equipment Corporation
PSG Business Manager
c/o Digital's local subsidiary
or approved distributor

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.
*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation,
Westminster, Massachusetts 01473.

This document was prepared using an in-house documentation production system. All page composition and
make-up was performed by TEX, the typesetting system developed by Donald E. Knuth at Stanford University.
TEX is a trademark of the American Mathematical Society.

Contents

Preface Vll

Chapter 1 Differences Between Version 2.0 and
Version 3.0

1.1 Summary of New and Changed VAXstation Features 1-1
1.1.1 Changes to the User Interface 1-1
1.1.2 Changes to the Programming Interface 1-2
1.1.2.1 New UIS Routines 1-2
1.1.2.2 New UISDC Routines 1-4
1.1.2.3 New Chapters 1-5
1.1.2.4 New UIS Writing Modes 1-5
1.1.2.5 New Fonts in Technical Character Set 1-5
1.1.2.6 New Text Attributes 1-5
1.1.2.7 Changes to Existing UIS Routines 1-6
1.1.2.8 Display Lists and Segmentation 1-6
1.1.2.9 UIS Metafiles 1-6
1.1.2.10 Shrinking Viewports and Expanding Icons 1-6
1.1.2.11 Obsolete UIS Routines in Version 2.0 1-6
1.1.3 Changes to the Driver Interface 1-7

1.2 Fonts 1-7
1.2.1 New Font Utility 1-7

1.3 Demonstration Software 1-8

1.4 Hardcopy UIS 1-9

iv Contents

Chapter 2 Problems and Restrictions
2.1 User Interface 2-1
2.1.1 VAXstation II/GPX Boot Problem 2-1
2.1.2 Restriction with Autologin 2-1
2.1.3 Restriction to Print Screen Destination 2-1

2.2 Programming Interface 2-2
2.2.1 UIS$CIRCLE and UIS$ELLIPSE Overflow Problem 2-2
2.2.2 UIS$DISABLE _ICB and

UIS$DISABLE _VIEWPORT_ICB AST Not
Delivered 2-2

2.2.3 UIS$SET~CB~TTRIBUTES Spurious Data 2-2
2.2.4 UIS$SET_I'OINTER~ST Late Execution of Exit AST

Routines 2-2
2.2.5 Drawing Images That Use 8 Bits per Pixel 2-3
2.2.6 Text Problems 2-3
2.2.6.1 Extracting Transformed Control Lists 2-3
2.2.6.2 Tabs Within Control Lists 2-3
2.2.6.3 Text Placement and Display Lists 2-4
2.2.6.4 Text Formatting Problems 2-4
2.2.6.5 Sloped Text 2-4
2.2.6.6 Restrictions on Writing Modes That Change the

Background 2-5

2.3 Device Driver Interface 2-6
2.3.1 MOVE/ROTATE DOP—Specifying Scaling 2-6

Chapter 3 Notes to Published Documentation
3.1 Directory Change for Font Utility 3-1

3.2 Notes to MicroVMS Workstation Graphics Programming Guide 3-1
3.2.1 UIS$GET_OBJECT~ITTRIBUTES—Missing Object Type 3-1
3.2.2 Symbol Prefix Change 3-2

Contents v

Appendix A VMS Data Types
A.1 VMS Data Types A-1

A.2 VAX BLISS Implementation A-21

A.3 VAX C Implementation A-24

A.4 VAX FORTRAN Implementation A-27

A.5 VAX MACRO Implementation A-32

A.6 VAX PASCAL Implementation A-35

A.7 VAX PL/I Implementation A-39

Index

Tables
A-1 VMS Data Types A-2
A-2 VAX BLISS Implementation A-21
A-3 VAX C Implementation A-24
A-4 VAX FORTRAN Implementation A-27
A-5 VAX MACRO Implementation A-32
A-6 VAX PASCAL Implementarion A-35
A-7 VAX PL/I Implementation A-39

Preface

This document provides supplemental information about the Version 3.0 MicroVMS
Workstation software. It describes all changes to the software since Version 2.0. If
you have not already done so, please read the Read-Me First card included with your
documentation.

Intended Audience

This manual is intended for use by graphic programmers and general users who
should know about new features, problems and restrictions, and changes to existing
documentation. All users should read this document before using the MicroVMS
Workstation graphics software.

Structure of This Document

The MicroVMS Workstation Release Notes, Version 3.0, are arranged in four sections
that cover the following topics:

• Differences Between Version 2.0 and Version 3.0

• Problems and Restrictions

• Notes to Published Documentation

• VMS Data Types Appendix A

viii Preface

Associated Documents

The following manuals are related to this document:

• VWS Installation Guide

• MicroVMS Workstation User's Guide

• MicroVMS Workstation Graphics Programming Guide

• MicroVMS Workstation Video Device Driver Manual

• MicroVMS Workstation Guide to Printing Graphics

Conventions Used in This Document

Unless otherwise noted, the following conventions are used in this manual in
displaying examples and the requirements of user input to the system.

Convention Meaning

RET

CTRL/x

$ SHOW TIME
05-JUN-1985 11:55:22

Ellipsis

A symbol with aone- to six-character abbreviation
indicates that you press a key on the terminal, for example,
RET

The phrase CTRL/x indicates that you must press the key
labeled CTRL while you simultaneously press another key,
for example, CTRL/C, CTRL/Y, CTRL/O.

Command examples show all output Lines or prompting
characters that the system prints or displays in black
letters. All user-entered commands are shown in red
letters.

Vertical series of periods, or ellipsis, mean either that not
all the data that the system would display in response to
the particular command is shown or that not all the data a
user would enter is shown.

file-spec, . . . Horizontal ellipsis indicates that additional parameters,
values, or information can be entered.

Preface ix

Convention Meaning

[logical-name] Square brackets indicate that the enclosed item is optional.
(Square brackets are not, however, optional in the syntax
of a directory name in a file specification or in the syntax
of a substring specification in an assignment statement.)

quotation marks The term quotation marks is used to refer to double
apostrophes quotation marks ("). The term apostrophe is used to refer

to a single quotation mark (').

Chapter 1

Differences Between Version 2.0 and Version
3.0

This chapter describes major changes in the MicroVMS Workstation software
since Version 2.0. For additional changes, see Chapter 3, "Notes to Published
Documentation."

1.1 Summary of New and Changed VAXstation Features

The following changes have been made for Version 3.0 of the MicroVMS Workstation
software and are reflected in the corresponding documentation.

1.1.1 Changes to the User Interface
The following changes are reflected in the MicroVMS Workstation User's Guide:

• Automatic login If automatic login is enabled, you need only log in to the
system once. Any terminal-emulator windows you create subsequently will
execute your login procedure automatically.

• Color display setup On color and intensity systems, you can adjust the color
shades using the color-setup options in the Workstation Setup menu. On a
monochrome system, this setup item permits you to change between black,
white, and grey.

• Mouse fallback mechanism The pointer on the screen can be moved by using
the CTRL and SHIFT keys in conjunction with the arrow keys. When used
together with E4, E5, or E6, CTRL/SHIFT performs the same functions as the
three mo~:se buttons.

• The Window Options menu includes new options:

"Shrink to an icon," which provides a user interface for shrinking windows to
icons.

1-2 Differences Between Version 2.0 and Version 3.0

"Additional options," which you may enable for your own use. The VT220
emulator uses this option to do aper-terminal setup.

• The banner on the terminal emulator window is always black, regardless of
window background color. (In previous versions, the banner was always the
reverse of the window background color.) On color and intensity workstations,
the default is also black, but can be altered to any desired hue with the color-
setup menu.

• The "Print (portion of) screen" option of the Workstation Options menu option
includes a change in the SELECT button function on the mouse. Instead of two
separate clicks of the SELECT button, a single click and hold down function is
used to delineate a portion of the screen for printing.

• The VT100 terminal emulator has been replaced by a VT220 terminal emulator.

• The format and contents of the Workstation Setup menu have changed. Many
new options have been added. The options "Window memory size" and "Text
scrolling rate" have been removed.

1.1.2 Changes to the Programming Interface

The following sections describe changes made to the programming interface after UIS
Version 2.0. These changes are documented in the MicroVMS Workstation Graphics
Programming Guide.

1.1.2.1 New UIS Routines
The following UIS routines were added:

Function Routine

AST-enabling UIS$SET_ADDOPT_AST
UIS$SET~XPAND_ICON _AST
UIS$SET_TB~ST
UIS$SET_SHRINK_TO~CON_AST

Differences Between Version 2.0 and Version 3.0 1-3

Function Routine

Color

Display list

Graphics

UIS$CREATE _COLOR _MAP
UIS$CREATE _COLOR _MAP_SEG
UIS$DELETE _COLOR _MAP
UIS$DELETE _COLOR_MAP_SEG
UIS$GET_COLORS
UIS$GET_HW_COLOR _INFO
UIS$GET_INTENSITIES
UIS$GET_VCM_ID
UIS$HLS_TO_RGB
UIS$HSV_TO_RGB
UIS$RESTORE _CMS_COLORS
UIS$RGB_TO~ILS
UIS$SET_COLORS
UIS$RGB_TO_HSV
UIS$SET_INTENSITIES

UIS$COPY_OBJECT
UIS$DELETE_OBJECT
UIS$DELETE_PRIVATE
UIS$EXECUTE
UIS$EXECUTE _DISPLAY
UIS$EXTRACT_HEADER
UIS$EXTRACT_OBJECT
UIS$EXTRACT_PRIVATE
UIS$EXTRACT~EGION
UIS$EXTRACT_TRAILER
UIS$FIND_PRIMITIVE
UIS$FIND_SEGMENT
UIS$GET_CURRENT_OBJECT
UIS$GET~IEXT_OBJECT
UIS$GET_OBJECT_ATTRIBUTES
UIS$GET_PARENT_SEGMENT
UIS$GEL PREVIOUS_OBJECT
UIS$GET~OOT_SEGMENT
UIS$INSERT_OBJECT
UIS$PRIVATE
UIS$SET_INSERTION _POSITION
UIS$TRANSFORM _OBJECT

UIS$LINE
UIS$LINE~RRAY

1-4 Differences Between Version 2.0 and Version 3.0

Function Routine

Keyboard and pointer

Text

Windowing

UIS$CREATE _TB
UIS$DELETE_TB
UIS$DISABLE _TB
UIS$ENABLE_TB
UIS$GET_TB~NFO
UIS$GET_TB~'OSITION

UIS$GET_CHAR _ROTATION
UIS$GET_CHAR_SIZE
UIS$GET_CHAR_SLANT
UIS$GET_FONT_ATTRIBUTES
UIS$GET_TEXT_FORMATTING
UIS$GET_TEXT-1VIARGINS
UIS$GET_TEXT_I'ATH
UIS$GET_TEXT_SLOPE
UIS$SET_CHAR NOTATION
UIS$SET_CHAR_SIZE
UIS$SET_CHAR_SLANT
UIS$SET_TEXT~ORMATTING
UIS$SET_TEXT_MARGINS
UIS$SET_TEXT_PATH
UIS$SET_TEXT_SLOPE

UIS$EXPAND~CON
UIS$GET_VIEWPORT_ICON
UIS$GET_WINDOW_SIZE
UIS$SHRINK_TO_ICON

1.1.2.2 New UISDC Routines
The following UISDC routines are new for Version 3.0.

• UISDC$ALLOCATE _DOP

• UISDC$EXECUTE_DOP_ASYNCH

• UISDC$EXECUTE_DOP_SYNCH

• UISDC$GET_CHAR_SIZE

• UISDC$GET_TEXT~VIARGINS

• UISDC$LINE

• UISDC$LINE_ARRAY

• UISDC$LOAD_BITMAP

Differences Between Version 2.0 and Version 3.0 1-5

• UISDC$QUEUE_DOP

• UISDC$SET_CHAR_SIZE

• UISDC$SET_TEXT_1VIARGINS

1.1.2.3 New Chapters
Three new chapters describing color concepts, transformations, and color
programming have been added since Version 2.0.

• Color Concepts

• Geometric and Attribute Transformations

• Programming in Color

1.1.2.4 New UIS Writing Modes
Five new writing modes have been added since Version 2.0.

• UIS$C_IVIODE_BIC

• UIS$C~VIODE _BICN

• UIS$C_1VIODE_BIS

• UIS$C_1VIODE _BISN

• UIS$C~VIODE _COPYN

1.1.2.5 New Fonts in Technical Character Set
Twelve new fonts have been added to the technical character set since Version 2.0.

1.1.2.6 New Text Attributes
The following new text attributes have been added to the programming interface:

• Character rotation

• Character scaling

• Character slant

• Text formatting

• Text margins

• Text path

• Text slope

1-s Differences Between Version 2.0 and Version 3.0

1.1.2.7 Changes to Existing UIS Routines

UIS$BEGIN_SEGMENT

UIS$BEGIN_SEGMENT now returns a segment identifier that can be referenced by
other display list routines. For example, this allows traversing segments and segment
paths.

UIS$MEASURE_TEXT and UIS$TEXT

You can now use control lists with UIS$TEXT and UIS$MEASURE _TEXT.

UIS$DISABLE_DISPLAY_LIST and UIS$ENABLE_DISPLAY_LIST

Additional arguments have been included that control updates to display screens and
display lists.

UIS$SET_POINTER_PATTERN and UISDC$SET_POINTER_PATTERN

If you are using a color system, you can now specify a pointer pattern outline and
flags to bind the pointer to a particular region.

1.1.2.8 Display Lists and Segmentation
The chapter on display lists and segmentation has been expanded with more
examples.

1.1.2.9 UIS Metafiles
You can now create and store metafiles of generically encoded instructions as files
and reexecute the file.

1.1.2.10 Shrinking Viewports and Expanding Icons
You can now shrink display viewports and expand icons.

1.1.2.11 Obsolete UIS Routines in Version 2.0
The following routines are now obsolete:

• UIS$GET_LEFT_IVIARGIN

• UIS$SET_LEFT~VIARGIN

• UISDC$GET_LEFT~VIARGIN

• UISDC$SET_LEFT~VIARGIN

They have been replaced by the following routines:

• UIS$SET_TEXT~ViARGINS

• UIS$GET_TEXT~VIARGINS

Differences Between Version 2.0 and Version 3.0 ~-7

1.1.3 Changes to the Driver Interface
The following changes are reflected in the MicroVMS Workstation Video Device Driver
Manual:

• The QDSS driver is available (on systems with QDSS hardware). The QDSS
driver permits you to draw multiplane (color) images through the use of the
hardware-assisted Drawing Operation Primitive (DOP) interface. The QDSS
system also uses a QIO interface. Read Chapters 1 and 2 for an overview of the
driver.

• New QDSS-specific QIOs see Chapter 4.

• New DOP interface see Chapter 5.

• New UISDC routines for use with the DOP interface see Chapter 5.

1.2 Fonts

The following sections describe new font features.

1.2.1 New Font Utility

A Font Utility has been added in Version 3.0. This utility permits you to add new
user-defined fonts to the system. See Section 2.5 of the VWS Installation Guide for a
description of how to install and use user-defined fonts.

Note that the documentation gives an incorrect file specification for this utility.
Any references in documentation to SYS$FONT:UISFONTS should be changed to
SYS$ SYSTEM: UISFONTS.

Font File Types

In previous versions of UIS, the font files supplied in SYS$FONT had the file type
FNT. Beginning with Version 3.0, the font files will have the file types shown in the
following table.

System File Type

VAXstation I VWS$FONT

VAXstation II VWS$FONT

VAXstation II/GPX VWS$VAFONT

Loading UIS Fonts

In previous versions of UIS, a font was associated with an attribute block when a
call to UIS$SET_FONT was made, but the font was not actually loaded until it was

1-s Differences Between Version 2.0 and Version 3.0

used in a call to UIS$TEXT or a fill routine. Beginning with Version 3.0, the font
will be loaded during the call to UIS$SET~ONT. UIS$SET_FONT now signals
all errors associated with loading the font not UIS$TEXT or the fill routine. This
may result in errors being signaled that would not have been signaled before. For
example, if UIS$SET_FONT is called with a nonexistent font but that font is never
used, UIS$SET_FONT will now signal an error when it would not have signaled
before.

1.3 Demonstration Software

The MicroVMS Workstation Version 3.0 software kit includes a floppy disk
containing a number of programs that demonstrate some of the capabilities of
the workstation.

The floppy is labeled "MicroVMS Workstarion Demos VWSDEM0030 1/1." Use
VMSINSTAL to install the demonstration programs. It will place them in a directory
that it creates called SYS$SYSDEVICE:[VWSDEMO]. The following files will be in
the directory when VMSINSTAL completes:

banner.com—Procedure that produces interactive banner

banner.exe—Executable program invoked by banner.com

compile~ll.com—Procedure that compiles and links quick and cube

cube.for—Graphics program that produces a rotating cube (source)

cube.exe—Executable version

declander.exe—Executable game

declander.help—Directions for playing DEClander

quick.for—Graphics program that produces swirling lines (source)

quick.exe—Executable version

setup_colors.pas—Linked with quick object module

sight.exe—Object-oriented graphics editor

sight.mem—Documentation for SIGHT

Differences Between Version 2.0 and Version 3.0 ~-9

1.4 Hardcopy UIS

The MicroVMS Workstation Version 3.0 software kit contains media and
documentation for Hardcopy UIS (HCUIS). HCUIS enables users and applications
to translate UIS pictures to the formats needed for printing on a variety of hardcopy
devices.

The kit for HCUIS consists of the following:

• The RENDER command, which translates and displays UIS picture files

• Four translators

UIS to PostScript
UIS to sixel
UIS to HPGL
UIS to ReGIS

• HCUIS$ routines

See the MicroVMS Workstation Guide to Printing Graphics for additional information
about HCUIS.

Chapter 2

Problems and Restrictions

This chapter describes problems and restrictions you may encounter when using
Version 3.0 of the MicroVMS Workstation software. The chapter describes the
problems and restrictions of the user interf act, programming interface, and device
driver interface in separate sections.

2.1 User Interface

The following sections describe problems and restrictions in the user interface.

2.1.1 VAXstation II/GPX Boot Problem

If your VAXstation II/GPX system appears to be hung during a boot or shutdown
operation, press the F2 key. The system may have written a message to the operator
console window and may be waiting for you to read the message before it continues.

2.1.2 Restriction with Autologin

If you log in to your first terminal emulator window while autologin is enabled and
then quickly create another emulator, you may not be automatically logged in to the
second window. This is because the process information for the first window has not
yet been saved. A solution is to wait until the initial login procedure has completely
executed before creating additional terminal emulators.

2.1.3 Restriction to Print Screen Destination

Do not set the print destination (using the Workstation setup) to be a WT device that
is already displayed on the screen. Printing to such a device will cause the system to
hang.

2-2 Problems and Restrictions

2.2 Programming Interface

The following sections describe problems and restrictions in the programming
interface.

2.2.1 UIS$CIRCLE and UIS$ELLIPSE—Overflow Problem

On both VAXstation II and VAXstation II/GPX systems, UIS$CIRCLE or
UIS$ELLIPSE may occasionally draw large circles or ellipses incorrectly, due to
an overflow in the coordinate conversion.

2.2.2 UIS$DISABLE_KB and UIS$DISABLE_VIEWPORT_KB—
AST Not Delivered

When a virtual keyboard is explicitly disabled by a UIS$DISABLE GCB or
UIS$DISABLE _VIEWPORT_ICB, the Lose Keyboard AST routine will not be
delivered. If your application depends on this AST being received after the virtual
keyboard has been detatched from the physical keyboard, you must explicitly call the
AST routine after disabling the keyboard.

2.2.3 UIS$SET_KB~►TTRIBUTES—Spurious Data
When you are using the Up/Down key transitions enabled by UIS$SET_ICB_
ATTRIBUTES, you may get spurious data when the physical keyboard is attached
to the window. A possible solution is to ignore incoming data for a short time after
getting a GAIN_ICB~ST. This will be fixed in a future release.

2.2.4 UIS$SET_POINTER_AST—Late Execution of Exit AST
Routines

When two contiguous regions have been set up with UIS$SET_I'OINTER_AST, it is
possible to execute an exit AST intended for the previous region after executing the
first movement AST routine for the new region.

To clarify, when you exit from one region and enter the other, three actions occur in
the following order:

1. The last movement in the first region

2. Exiting from the first region

3. The first movement in the new region

However, the ASTs asociated with these actions may be delivered out of order: last
movement, first movement, exit.

Problems and Restrictions 2-3

The recommended solution is to test for the first movement on any contiguous
region and emulate the exit AST before taking any other action. According to the
application, you may wish to emulate only some essential portion of the exit AST
routine and let the actual AST perform the remainder when it is executed.

2.2.5 Drawing Images That Use 8 Bits per Pixel
When drawing images that use 8 bits per pixel, use the COPY writing mode (UIS$C_
MODE_COPY) to use the pixel values as direct indices into the color map. This
writing mode will copy each pixel value from the image into the bit map without any
changes to the data.

The default writing mode (UIS$C~vIODE_OVER) will NOT work like copy mode.

2.2.6 Text Problems
The following sections describe problems and restrictions to be aware of when using
text with the programming interface.

2.2.6.1 Extracting Transformed Control Lists
The result of extracting transformed control list text is undefined. That is, the
following sequence of routine calls will produce a buffer containing unpredictable
results:

UIS$TEXT(vd_id, atb, text_string, x, y, ctllist, ctllen)
obj_id = UIS$GET_CURRENT_OBJECT(vd_id)
UIS$TRANSFORM_OBJECT(obj_id, matrix, atb)
UIS$EXTRACT_OBJECT (ob j _id , buf len , buf addr , retlen)

Note, however, that the results on the screen and within UIS's internal display list
will be correct.

2.2.6.2 Tabs Within Control Lists
Text that has a control list containing relative or absolute tabs may produce
unexpected results if it falls under any of the following categories:

• Sloped

• Written with a nondefault major text path (for example, UIS$C_TEXT_1'ATH_
LEFT)

• Transformed (using UIS$TRANSFORM_OBJECT or UIS$COPY_OBJECT) to be
sloped

Slanted text that has a control list containing relative or absolute tabs may erase
portions of characters when written with any writing mode that writes the
background, such as overlay negate.

2-4 Problems and Restrictions

2.2.6.3 Text Placement and Display Lists
After calling UIS$TEXT and UIS$NEW_TEXT_LINE to create lines of text, you may
wish to insert more text at the end of a line. Since current text position is undefined
when you insert text into a display list, you should always explicitly position your
inserted text.

2.2.6.4 Text Formatting Problems
The following sections describe problems and restrictions to be aware of when
formatting text.

Enabling and Disabling Text Formatting

If the original input attribute block for a UIS$TEXT or UISDC$TEXT call with a
control list does not have text formatting enabled and a subsequent ATB in the
control list does format text, the results are undefined.

Formatted Text with Nondefault Attributes

Formatted text gives undefined results if the text or vertical major text path being
written has nondefault attributes of slant, slope, rotation, or character size. The same
is true for formatted text that is transformed to have nondefault attributes of slant,
slope, rotation, or character size.

Full Text Justification of Nonstandard Fonts

For fully justified text to work correctly with fonts other than those supplied on the
distribution kit, the glyph for the space character must be in the 33rd position in the
font, which is the same position as the ASCII space character in the supplied fonts.

2.2.6.5 Sloped Text
The following sections describe the behavior of sloped text when it is viewed through
a distorted viewport.

Text Slope Angles with Distorted Windows

If sloped text is displayed using UIS$TEXT and a distorted window/viewport
mapping (that is, the aspect ratio of the window differs from the aspect ratio of
the viewport), the results differ depending on whether character scaling is enabled.
If character scaling is not enabled, the angle is displayed relative to the device. For
example, at a slope of 45 degrees (with major path right) each character position will
move up and right by the same number of pixels. If character scaling IS enabled,
the slope is measured relative to world coordinates. For example, at a slope of 45
degrees (with major path right) each character position will move up and right by the
same world-coordinate amount.

If sloped text is displayed using UISDC$TEXT, the slope angles are always measured
based on device coordinates regardless of whether scaling is enabled.

Problems and Restrictions 2-5

This behavior will be permanent and is consistent with other uses of unsealed text
and UISDC routines with distorted viewport/window mappings.

Text Slope Angles on VR100 Monitors

If sloped text is displayed using UIS$TEXT with character scaling disabled, the angles
appear to be distorted, even if the viewport and window aspect ratios are the same.
The reason for this behavior is that the angle is being drawn in device coordinates,
and pixels on a VR100 are not square. To make the angle appear correct, you must
enable character scaling using the UIS$SET_CHAR_SIZE routine.

If sloped text is displayed using UISDC$TEXT, angles will always appear distorted
on a VR100 monitor.

This behavior will be permanent and is consistent with other uses of unsealed text
and UISDC routines with VR100 monitors.

NOTE: The only supported hardware device that uses a VR 100 monitor is a
VAXstation I.

2.2.6.6 Restrictions on Writing Modes That Change the Background

The following sections describe restrictions that apply when writing text with writing
modes that modify the background.

Scaled Text on GPX systems

The VAXstation II/GPX hardware has the characteristic that when it compresses text,
it can write both the background and foreground colors into the same pixel on the
screen. This means that if you are using a writing mode that changes background
pixels (for example, REPL or REPLN), the foreground pixels can be overwritten. This
can result in what appears t0 be missing pixels in scaled characters. Note that scaling
is done implicitly if text is drawn at slope, rotation, or slant angles that are not 0 or
multiples of 90 degrees.

This will be a permanent restriction.

Text Written at Angles

If text is written in a mode that causes the background of the cell to be written (for
example, REPL or REPLN), there may be unwritten pixels between adjacent character
cells. This effect only happens with slope, rotation, or slant angles that are not 0 or
multiples of 90.

We believe that this is an unavoidable effect of rasterization, but we will continue to
investigate possible future improvements.

2-s ~ Problems and Restrictions

2.3 Device Driver Interface

The following section describes a problem in the device driver interface.

2.3.1 MOVE/ROTATE DOP—Specifying Scaling
There is a problem in specifying scaling in the MOVE/ROTATE Drawing Operation
Primitive (DOP).

If the source width divided by the vecl~ength, or the source_height divided by
the vec2_length, cannot be represented exactly in 12 bits or fewer, a pixel may be
dropped from the end of the source.

The recommended solution is to decrease the vector length (usually by a constant
1 or 2 pixels), without changing the Dx or Dy values, until the full source is drawn
correctly.

Chapter 3

Notes to Published Documentation

This chapter describes omissions and errors in existing documentation.

3.1 Directory Change for Font Utility

Any references in documentation to SYS$FONT:UISFONTS (Font Utility) should be
changed to SYS$SYSTEM:UISFONTS.

The VWS Installation Guide, Section 2.5, describes the procedures for adding user-
defined fonts to the workstation. Some of these procedures provide examples that
show how to invoke the Font Utility. For example:

$ RUN SYS$FONT:UISFONTS X
Font Utility>

The command in this example should be changed to the following:

$ RUN SYS$SYSTEM:UISFONTS X
Font IItility>

3.2 Notes to MicroVMS Workstation Graphics
Programming Guide

The following sections describe corrections to MicroVMS Workstation Graphics
Programming Guide.

3.2.1 UIS$GET_OBJECT~►TTRIBUTES—Missing Object Type

The routine UIS$GET_OBJECT~TTRIBUTES returns a value that identifies an
object. UIS$C_OBJECT~VEW_TEXT_LINE is the symbol of a value that is not listed
in the UIS$GET_OBjECT~TTRIBUTES routine description.

3-2 Notes to Published Documentation

3.2.2 Symbol Prefix Change
In Section 15.2.1, the symbol UIS$C_LENGTH_DIFF should be GER$C_LENGTH_
DIFF.

V

Appendix A

VMS Data Types

A.1 VMS Data Types

The VMS Usage entry in the documentation format for system routines indicates
the VMS data type of the argument. Each VMS data type has only one storage
representation. For example, the VMS data type access—mode is an unsigned byte.
In addition, a VMS data type may Or may not have a conceptual meaning.

Most VMS data types may be considered as conceptual types; that is, they carry
meaning that is unique in the context Of the VMS operating system. The
access node is one of these. The storage representation of this VMS type is an
unsigned byte, and the conceptual content of this unsigned byte is the fact that it
designates a hardware access mode and has therefore only four valid values: 0,
designating kernel mode; 1, executive mode; 2, supervisor mode; and 3, user mode.
However, some VMS data types are not conceptual types; that is, they specify a
storage representation but carry no other semantic content from the point of view of
VAX/VMS. For example, the VMS data type byte~igned is not a conceptual type.

NOTE: The VMS Usage entry is NOT a traditional data type such as the VAX
standard data types byte, word, longword and so on. It is significant only within the
context of the VMS operating system environment and is intended solely to expedite
data declarations within application programs.

To use the VMS Usage entry, perform the following procedure:

1. Find the data type in Table A-1 and read its definition.

2. Find the same VMS data type in the appropriate VAX language implementation
table (Tables A-2 through A-7) and its corresponding source language type
declaration.

3. Use this code as your type declaration in your application program. Note that, in
some instances, you may have to modify the declaration.

A-2 VMS Data Types
VMS Data Types

Table A-1 lists and describes the VMS data types.

Table A-1 VMS Data Types

Data Type Definition

access bit—names Homogeneous array of 32 quadword descriptors; each
descriptor defines the name of one of the 32 bits in an
access mask. The first descriptor names bit < 0 > ,the
second descriptor names bit < 1 > ,and so on.

access_mode Unsigned byte denoting a hardware access mode. This
unsigned byte can take four values: 0 specifies kernel
mode; 1, executive mode; 2, supervisor mode; and 3, user
mode.

address Unsigned longword denoting the virtual memory address
of either data or code, but not of a procedure entry mask
(which is of type procedure).

address_range Unsigned quadword denoting a range of virtual
addresses, which identify an area of memory. The
first longword specifies the beginning address in the
range; the second longword specifies the ending address
in the range.

arg_list Procedure argument list consisting of one to 256
longwords. The first longword contains an unsigned
integer count of the number of successive, contiguous
longwords, each of which is an argument to be passed to
a procedure by means of a VAX CALL instruction.

The argument list has the following format:

N

ARG 1

ARG 2

ARG N

ZK-4204-85

VMS Data Types a-3
VMS Data Types

Table A-1 (Copt.) VMS Data Types

Data Type Definition

ast_procedure

Boolean

byte~igned

byte unsigned

channel

char~tring

complex umber

Unsigned longword integer denoting the entry mask to a
procedure to be called at AST level. (Procedures that are
not to be called at AST level are of type procedure.)

Unsigned longword denoting a Boolean truth value flag.
This longword may have only two values: 1 (true) and 0
(false).

This VMS data type is the same as the data type byte
integer (signed) in Table 6-1.

This VMS data type is the same as the data type byte
(unsigned) in Table 6-1.

Unsigned word integer that is an index to an I/O
channel.

String of from 0 to 65,535 8-bit characters. This VMS
data type is the same as the data type character string
in Table 6-1. The following diagram shows the character
string XYZ.

7 0
<<X„

<<Y„

<<Z„

:A

A+1

A+2

ZK-4202-85

One of the VAX standard complex floating-point data
types. The three complex floating-point numbers are:
F_floating complex, D—floating complex, and G _floating
complex.

A-4 VMS Data Types
VMS Data Types

Table A-1 (font.) VMS Data Types

Data Type Definition

An F—floating complex number (r,i) is comprised of
two F—floating point numbers. The first Floating point
number is the real part (r) of the complex number; the
second F—floating point number is the imaginary part
(i). The structure of an Floating complex number is as
follows:

my—tree

1st (STRING)

2nd (INTEGER)

3rd (STRING)

'1010'

l

' a' ' b'

10

'c' 'd' 'x'

values (0) (11) (5) (-5) (44) (22) (6)

ZK-4293-85

VMS Data Types A-5
VMS Data Types

Table A-1 (Cont.) VMS Data Types

Data Type Definition

A D~loating complex number (r,i) is comprised of two
D—floating point numbers. The first D_floating point
number is the real part (r) of the complex number; the
second D_floating point number is the imaginary part
(i). The structure of a D~loating complex number is as
follows:

REAL

PART

IMAGINARY

PART

15 14 76 0

S EXPONENT FRACTION

FRACTION

FRACTION

FRACTION

S EXPONENT FRACTION

FRACTION

FRACTION

FRACTION

:A

A+2

A+4

A+6

A8

A+10

A+12

A+14

ZK-4201-85

A
-s VMS Data Types

VMS Data Types

Table A-1 (Copt.) VMS Data Types

Data Type Definition

A G floating complex number (r,i) is comprised of two
G floating point numbers. The first G floating point
number is the real part (r) of the complex number; the
second G floating point number is the imaginary part
(i). The structure of a G floating complex number is as
follows:

REAL

PART

IMAGINARY

PART

15 14 4 3 0

S EXPONENT FRACTION

FRACTION

FRACTION

FRACTION

S EXPONENT FRACTION

FRACTION

FRACTION

FRACTION

:A

A+2

A+4

A+6

A8

A+10

A+12

A+14

ZK-4200-85

VMS Data Types A-7
VMS Data Types

Table A-1 (Copt.) VMS Data Types

Data Type Definition

cond_value

31

Unsigned longword integer denoting a condition value
(that is, a return status or system condition code), which
is typically returned by a procedure in R0. The structure
of a condition value is as follows:

28 27 3 2 0

cntrl condition identification severity

27 16 15 3

2 0

S

facility number message number

ZK-1795-84

Depending on your specific needs, you can test just the
low-order bit, the low-order three bits, or the entire
value.

• The low-order bit indicates successful (1) or
unsuccessful (0) completion of the service.

• The low-order three bits, taken together, represent
the severity of the error.

• The remaining bits < 31:3 > classify the particular
return condition and the operating system
component that issued the condition value.

Each numeric condition value has a unique symbolic
name in the following format, where code is a mnemonic
describing the return condition.

SS$_code

A-8 VMS Data Types
VMS Data Types

Table A-1 (Cont.) VMS Data Types

Data Type Definition

context

date time

device_name

ef_cluster_name

ef_number

Unsigned longword that is used by a called procedure
to maintain position over an iterative sequence of calls.
It is usually initialized by the caller, but thereafter
manipulated by the called procedure.

64-bit unsigned, binary integer denoting a date and time
as the number of elapsed 100-nanosecond units since
00:00 o'clock, November 17, 1858. This VMS data type
is the same as the data type absolute date and time in
Table 6-1.

Character string denoting the 1- to 15-character name
of a device. It can be a logical name, but if it is, it must
translate to a valid device name. If the device name
contains a colon (:), the colon and the characters past it
are ignored. When an underscore (_) precedes device
name string, it indicates that the string is a physical
device name.

Character string denoting the 1- to 15-character name of
an event flag cluster. It can be a logical name, but if it is,
it must translate to a valid event flag cluster name.

Unsigned longword integer denoting the number of an
event flag. Local event flags numbered 32 to 63 are
available to your programs.

VMS Data Types A-9

VMS Data Types

Table A-1 (Copt.) VMS Data Types

Data Type Definition

exit handler_block

31

Variable-length structure denoting an exit handler control
block. This control block, which describes the exit
handler, is depicted in the following diagram.

0

forward link (used by VMS only)

exit handler address

these 3 bytes must be 0 arg. count

Address of condition value (written by VMS)

additional arguments for the
exit handler; these are optional;
one argument per longword

fab Structure denoting an RMS file access block.

ZK-1714-84

file protection Unsigned word that is a 16-bit mask that specifies file
protection. The mask contains four 4-bit fields, each of
which specifies the protection to be applied to file access
attempts by one of the four categories of user: from the
rightmost field to the leftmost field, (1) system users, (2)
the file owner, (3) users in the same UIC group as the
owner, and (4) all other users (the world). Each field
specifies, from the rightmost bit to the leftmost bit: (1)
read access, (2) write access, (3) execute access, (4)
delete access. Set bits indicate that access is denied.

A-1 o VMS Data Types
VMS Data Types

Table A-1 (Copt.) VMS Data Types

Data Type Definition

floating point

The following diagram depicts the 16-bit
file-protection mask.

WORLD GROUP OWNER SYSTEM

D E W R D E W R D E W R D E W R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ZK-1706-84

One of the VAX standard floating-point data types. These
types are Floating, D_floating, G floating, and
H _floating.

The structure of an F_floating number is as follows:

15 14 76 0

S EXPONENT FRACTION

FRACTION

31 16

:A

A+2

ZK-4197-85

The structure of a D_floating number is as follows:

15 14 76 0

S EXPONENT FRACTION

FRACTION

FRACTION

FRACTION

63 48

:A

A+2

A+4

A+6

ZK-4198-85

VMS Data Types A-~~
VMS Data Types

Table A-1 (Cont.) VMS Data Types

Data Type Definition

function code

The structure of a G floating number is as follows:

15 14 4 3 0

S EXPONENT FRACTION

FRACTION

FRACTION

FRACTION

63

:A

A+2

A+4

A+6

48

ZK-4199-85

The structure of an H_floating number is as follows:

15 14 0

S EXPONENT

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

127 113

:A

A+2

A+4

A+6

A+8

A+10

A+12

A+14

ZK-4196-85

Unsigned longword specifying the exact operations a
procedure is to perform. This longword has two word-
length fields: the first field is a number specifying
the major operation; the second field is a mask or bit
vector specifying various suboperations within the major
operation.

A-12 VMS Data Types
VMS Data Types

Table A-1 (font.) VMS Data Types

Data Type Definition

identifier

io~tatus_block

31

Unsigned longword that identifies an object returned by
the system.

Quadword structure containing information returned
by a procedure that completes asynchronously. The
information returned varies depending on the procedure.
The following figure illustrates the format of the
information written in the IOSB for SYS$QIO.

16 15 0

count condition value

device-dependent information

ZK-856-82

The first word contains a condition value indicating
the success or failure of the operation. The condition
values used are the same as for all returns from system
services; for example, SS$_NORMAL indicates successful
completion.

The second word contains the number of bytes actually
transferred in the I/O operation. Note that for some
devices this word contains only the low-order word of
the count.

The second longword contains device-dependent return
information.

To ensure successful I/O completion and the integrity of
data transfers, the IOSB should be checked following I/O
requests, particularly for device-dependent I/O functions.

VMS Data Types A-13
VMS Data Types

Table A-1 (Cont.) VMS Data Types

Data Type Definition

item~ist_2

31

Structure that consists of one or more item descriptors
and that is terminated by a longword containing 0. Each
item descriptor is a 2-longword structure that contains
three fields. The following diagram depicts a single item
descriptor:

15 0

item code component length

component address

ZK-1709-84

The first field is a word in which the service writes the
length (in characters) of the requested component. If
the service does not locate the component, it returns the
value 0 in this field and in the component address field.

The second field contains auser-supplied, word-length
symbolic code that specifies the component desired. The
item codes are defined by the macros that are specific to
the service.

The third field is a longword in which the service writes
the starting address of the component. This address is
within the input string itself.

A-~ 4 VMS Data Types
VMS Data Types

Table A-1 (font.) VMS Data Types

Data Type Definition

item list-3

31

Structure that consists of one or more item descriptors
and that is terminated by a longword containing 0. Each
item descriptor is a 3-longword structure that contains
four fields. The following diagram depicts the format of a
single item descriptor.

15 0

item code buffer length

buffer address

return length address

item_list_pair

ZK-1705-84

The first field is a word containing auser-supplied integer
specifying the length (in bytes) of the buffer in which the
service writes the information. The length of the buffer
needed depends upon the item code specified in the item
code field of the item descriptor. If the value of buffer
length is too small, the service truncates the data.

The second field is a word containing auser-supplied
symbolic code specifying the item of information that the
service is to return. These codes are defined by macros
that are specific to the service.

The third field is a longword containing the user-supplied
address of the buffer in which the service writes the
information.

The fourth field is a longword containing the user-
supplied address of a word in which the service writes
the length in bytes of the information it actually returned.

Structure that consists of one or more longword pairs,
or doublets and is terminated by a longword containing
0. Typically, the first longword contains an integer value
such as a code. The second longword can contain a real
or integer value.

VMS Data Types a-~ 5
VMS Data Types

Table A-1 (Cont.) VMS Data Types

Data Type Definition

item _quota list

lock ld

lock~tatus_block

Structure that consists of one or more quota descriptors
and that is terminated by a byte containing a value
defined by the symbolic name PQL$_LISTEND. Each
quota descriptor consists of a 1-byte quota name followed
by an unsigned longword containing the value for that
quota.

Unsigned longword integer denoting a lock identifier.
This lock identifier is assigned by the lock manager
facility to a lock when the lock is granted.

Structure into which the lock manager facility writes
status information about a lock. A lock status block
always contains at least two longwords: the first word of
the first longword contains a condition value; the second
word of the first longword is reserved to DIGITAL; and
the second longword contains the lock identifier.

The lock status block receives the final condition value
and the lock identification, and optionally contains a
lock value block. When a request is queued, the lock
identification is stored in the lock status block even if the
lock has not been granted. This allows a procedure to
dequeue locks that have not been granted.

The condition value is placed in the lock status block
only when the lock is granted (or when errors occur in
granting the lock).

The following diagram depicts a lock status block that
includes the optional 16-byte lock value block.

reserved condition value

lock identification

16 byte lock value block

only used when LCK$M—VALBLK is set

ZK-376-81

A-16 VMS Data Types
VMS Data Types

Table A-1 (Cont.) VMS Data Types

Data Type Definition

lock_value_block 16-byte block that the lock manager facility includes in
a lock status block if the user requests it. The contents
of the lock value block are user-defined and are not
interpreted by the lock manager facility.

logical _name Character string of from 1 to 255 characters that identifies
a logical name or eq~iivalence name to be manipulated by
VMS logical name system services. Logical names that
denote specific VMS objects have their own VMS types:
for example, a logical name identifying a device has the
VMS type device~ame.

longword_signed This VMS data type is the same as the data type
longword integer (signed) in Table 6-1.

longword unsigned This VMS data type is the same as the data type
longword (unsigned) in Table 6-1.

mask byte Unsigned byte wherein each bit is interpreted by the
called procedure. A mask is also referred to as a set of
flags or as a bit mask.

mask _longword Unsigned longword wherein each bit is interpreted by
the called procedure. A mask is also referred to as a set
of flags or as a bit mask.

mask_quadword Unsigned quadword wherein each bit is interpreted by
the called procedure. A mask is also referred to as a set
of flags or as a bit mask.

mask _word Unsigned word wherein each bit is interpreted by the
called procedure. A mask is also referred to as a set of
flags or bit mask.

null_arg Unsigned longword denoting a null argument. A null
argument is an argument whose only purpose is to hold a
place in the argument list.

octaword—signed This VMS data type is the same as the data type
octaword integer (signed) in Table 6-1.

octaword—unsigned This VMS data type is the same as the data type
octaword (unsigned) in Table 6-1.

page protection Unsigned longword specifying page protection to be
applied by the VAX hardware. Protection values are
specified using bits < 3:0 > ;bits < 31:4 > are ignored.

VMS Data Types A-17
VMS Data Types

Table A-1 (font.) VMS Data Types

Data Type Definition

procedure

process_id

process name

quadword_signed

quadword_unsigned

The $PRTDEF macro defines the following symbolic
names for the protection codes:

Symbol Description

PRT$C_NA

PRT$C~CR

PRT$C_ICW

PRT$C_ER

PRT$C_EW

PRT$C_SR

PRT$C_SW

PRT$C_UR

PRT$C_UW

PRT$C_ERKW

PRT$C_SRKW

PRT$C_SREW

PRT$C_URKW

PRT$C_UREW

PRT$C-URSW

No access

Kernel read only

Kernel write

Executive read only

Executive write

Supervisor read only

Supervisor write

User read only

User write

Executive read; kernel write

Supervisor read; kernel write

Supervisor read; executive write

User read; kernel write

User read; executive write

User read; supervisor write

If the protection is specified as 0, the protection defaults
to kernel read only.

Unsigned longword denoting the entry mask to
a procedure that is not to be called at AST level.
(Arguments specifying procedures to be called at AST
level have the VMS type ast_procedure.)

Unsigned longword integer denoting a process identifier
(PID). This process identifier is assigned by VMS to a
process when the process is created.

Character string, containing 1 to 15 characters, that
specifies the name of a process.

This VMS data type is the same as the data type
quadword integer (signed) in Table 6-1.

This VMS data type is the same as the data type
quadword (unsigned) in Table 6-1.

A-18 VMS Data Types
VMS Data Types

Table A-1 (Copt.) VMS Data Types

Data Type Definition

rights older

rights_id

Unsigned quadword specifying a user's access rights
to a system object. This quadword consists of two
fields: the first is an unsigned longword identifier (VMS
type rights_id) and the second is a longword bit mask
wherein each bit specifies an access right. The following
diagram depicts the format of a rights holder.

UIC Identifier of Holder

0

Z K-1903-84

Unsigned longword denoting a rights identifier, which
identifies an interest group in the context of the VMS
security environment. This rights environment may
consist of all or part of a user's user identification code
(UIC).

Identifiers have two formats in the rights database: UIC
format (VMS type uic) and ID format. The high order
bits of the identifier value specify the format of the
identifier. Two high order zero bits identify a UIC format
identifier; bit < 31 > ,set to 1, identifies an ID format
identifier.

Bit < 31 > ,set to 1, specifies ID format. Bits < 30:28 >
are reserved by DIGITAL. The remaining bits specify the
identifier value. The following diagram depicts the ID
format of a rights identifier.

31 0

1000 identifier

I D Format

ZK-1906-84

VMS Data Types A-~ 9
VMS Data Types

Table A-1 (font.) VMS Data Types

Data Type Definition

To the system, an identifier is a binary value; however,
to make identifiers easy to use, the system translates
the binary identifier value into an identifier name. The
binary value and the identifier name are associated in the
rights database.

An identifier name consists of 1-31 alphanumeric
characters and contains at least one nonnumeric
character. An identifier name cannot consist entirely
of numeric characters. It can include the characters A
through Z, dollar signs ($)and underscores (_), as well
as the numbers 0 through 9. Any lowercase characters
are automatically converted to uppercase.

rab Structure denoting an RMS record access block.

section ~d Unsigned quadword denoting a global section identifier.
This identifier specifies the version of a global section and
the criteria to be used in matching that global section.

section _name Character string denoting a 1 to 43-character global-
section name. This character string can be a logical name,
but it must translate to a valid global-section name.

system _access_id Unsigned quadword that denotes a system identification
value that is to be associated with a rights database.

time name Character string specifying a time value in VMS format.

uic Unsigned longword denoting a user identification code
(UIC). Each UIC is unique and represents a system user.
The UIC identifier contains two high order bits that
designate format, a member field, and a group field.
Member numbers range from 0 to 65,534; group numbers
range from 1 to 16,382. The following diagram depicts
the UIC format.

31 0

00 group member

UIC Format

ZK-1905-84

A-2o VMS Data Types
VMS Data Types

Table A-1 (font.) VMS Data Types

Data Type Definition

user_arg

varying_arg

vector_byte~igned

vector_byte_unsigned

vector~ongword~igned

vector~ongword_unsigned

vector_quadword_signed

vector_quadword_unsigned

vector_word_signed

vector_word_unsigned

word_signed

word_unsigned

Unsigned longword denoting auser-defined argument.
This longword is passed to a procedure as an argument,
but the contents of the longword are defined and
interpreted by the user.

Unsigned longword denoting a variable argument. A
variable argument can have variable types, depending on
specifications made for other arguments in the call.

A homogeneous
bytes.

A homogeneous
bytes.

A homogeneous
longwords.

A homogeneous
longwords.

A homogeneous
quadwords.

A homogeneous
quadwords.

A homogeneous
words.

A homogeneous
words.

array whose elements are all signed

array whose elements are all unsigned

array whose elements are all signed

array whose elements are all unsigned

array whose elements are all signed

array whose elements are all unsigned

array whose elements are all signed

array whose elements are all unsigned

This VMS data type is the same as the data type word
integer (signed) in Table 6-1.

This VMS data type is the same as the data type word
(unsigned) in Table 6-1.

VMS Data Types A-2~
VMS Data Types

A.2 VAX BLISS Implementation

The following table lists VMS data types and their corresponding VAX BLISS data
type declarations.

Table A-2 VAX BLISS Implementation

VMS Data Type VAX BLISS Declaration

access_bit_names BLOCKVECTOR[32,8,BYTE]

access_mode UNSIGNED BYTE

address UNSIGNED LONG

address~ange VECTOR[2,LONG,UNSIGNED]

arg~ist VECTOR[n,LONG,UNSIGNED]
where n is the number of arguments + 1

ast_procedure UNSIGNED LONG

Boolean UNSIGNED LONG

byte~igned SIGNED BYTE

byte unsigned UNSIGNED BYTE

channel UNSIGNED WORD

char~tring VECTOR[65536,BYTE,UNSIGNED]

complex umber F_Complex: VECTOR[2,LONG]
D_Complex: VECTOR[4,LONG]
G_Complex: VECTOR[4,LONG]
H_Complex: VECTOR[8,LONG]

cond—value UNSIGNED LONG

context UNSIGNED LONG

date time VECTOR[2,LONG,UNSIGNED]

device~ame VECTOR[n,BYTE,UNSIGNED]
where n is the length of the device name

ef_cluster~ame VECTOR[n,BYTE,UNSIGNED]
where n is the length of the event flag cluster name

ef~umber UNSIGNED LONG

exit_handler_block BLOCK[n,BYTE]
where n is the size of the exit handler control block

fab $FAB_DECL (from STARLET.REQ)

file protection BLOCK[2,BYTE]

A-22 VMS Data Types
VAX BLISS Implementation

Table A-2 (Cont.) VAX BLISS Implementation

VMS Data Type VAX BLISS Declaration

floating_point F_Floating: VECTOR[1,LONG]
D~loating: VECTOR[2,LONG]
G_Floating: VECTOR[2,LONGJ
H floating: VECTOR[4,LONG]

function code BLOCK[2,WORD]

identifier UNSIGNED LONG

io~tatus_block BLOCK[8,BYTE]

item_list_2 BLOCKVECTOR[n,8,BYTE]
where n is the number of the item descriptors + 1

item_list_3 BLOCKVECTOR[n,12,BYTE]
where n is the number of the item descriptors + 1

$ITMLST_DECL/$ITMLST~NIT
from STARLET.REQ

item_list_pair BLOCKVECTOR[n,2,LONG]
where n is the number of the item descriptors + 1

item_quota~ist BLOCKVECTOR[n,S,BYTE]
where n is the number of the quota descriptors + 1

lock_id UNSIGNED_LONG

lock~tatus_block BLOCK[n,BYTE]
where n is the size of the lock~tatus_block -at least 8

lock_value_block BLOCK[16,BYTE]

logical~iame VECTOR[255,BYTE,UNSIGNED]

longword_signed SIGNED LONG

longword_unsigned UNSIGNED LONG

mask byte BITVECTOR[8]

mask_longword BITVECTOR[32]

mask_quadword BITVECTOR[64]

mask _word BITVECTOR[16J

null _arg UNSIGNED LONG

octaword_signed VECTOR[4,LONG,UNSIGNED]

octaword_unsigned VECTOR[4,LONG,UNSIGNED]

page protection UNSIGNED LONG

procedure UNSIGNED LONG

process_id UNSIGNED LONG

VMS Data Types A-23
VAX BLISS Implementation

Table A-2 (Copt.) VAX BLISS Implementation

VMS Data Type VAX BLISS Declaration

process~ame VECTOR[n,BYTE,UNSIGNED]
where n is the length of the process name

quadword_signed VECTOR[2,LONG,UNSIGNED]

quadword_unsigned VECTOR[2,LONG,UNSIGNED]

rights holder BLOCK[8,BYTE]

rights_id UNSIGNED LONG

rab $RAB_DECL
from STARLET.REQ

section ~d VECTOR[2,LONG,UNSIGNED]

section _name VECTOR[n,BYTE,UNSIGNED]
where n is the length of the global section name

system_access_id VECTOR[2,LONG,UNSIGNED]

time name VECTOR[n,BYTE,UNSIGNED]
where n is the length of the time value in VMS format

uic UNSIGNED LONG

user_arg UNSIGNED LONG

varying_arg UNSIGNED LONG

vector_byte~igned VECTOR[n,BYTE,SIGNED]
where n is the size of the array

vector_byte_unsigned VECTO~[n,BYTE,UNSIGNED]
where n is the size of the array

vector~ongword~igned VECTOR[n,LONG,SIGNED]
where n is the size of the array

vector_longword_unsigned VECTOR[n,LONG,UNSIGNED]
where n is the size of the array

vector_quadword—signed BLOCKVECTOR[n,2,LONG]
where n is the size of the array

vector_quadword_unsigned BLOCKVECTOR[n,2,LONG]
where n is the size of the array

vector_word_signed VECTOR[n,BYTE,SIGNED]
where n is the size of the array

vector_word_unsigned VECTOR[n,BYTE,UNSIGNED]
where n is the size of the array

word_signed SIGNED WORD

word unsigned UNSIGNED WORD

A-24 VMS Data Types
VAX BLISS Implementation

A.3 VAX C Implementation

The following table lists VMS data types and their corresponding VAX C data type
declarations.

Table A-3 VAX C Implementation

VMS Data Type VAX C Declaration

access_bit~ames User-defined 1

access node unsigned char

address int *pointer 2,4

address_range int *array [2] 2,3,4

arg~ist User-defined 1

ast_procedure Pointer to function. 2

Boolean unsigned long int

byte~igned char

byte unsigned unsigned char

channel unsigned short int

char~tring char array[n] 3,5

complex umber User-defined 1

cond—value unsigned long int

context unsigned long int

date time User-defined 1

device_name char array[n] 3,5

ef_cluster~ame char array[n] 3,5

ef~umber unsigned long int

exit~andler_block User-defined 1

fab #include fab from text library
struct FAB

file protection unsigned short int, or User-defined

floating point float or double

1

1 The declaration of auser-defined data structure depends on how the data will be used. Such data
structures can be declared in a variety of ways, each of which is more suitable to specific applications.

2The term pointer refers to several declarations involving pointers. Pointers are declared with special
syntax and associated with the data type of the object being pointed to. This object is often user-defined.

3The term array denotes the syntax of a VAX C array declaration.

4 The data type specified can be changed to any valid VAX C data type.

SThe size of the array must be substituted for n.

VMS Data Types A-25
VAX C Implementation

Table A-3 (font.) VAX C Implementation

VMS Data Type VAX C Declaration

function _code Unsigned long int or User-defined

identifier int *pointer 2,4

io~tatus_block User-defined 1

item _list _2 User-defined 1

item _list _3 User-defined 1

item _list _pair User-defined 1

item _quota_list User-defined 1

lock_id unsigned long int

lock~tatus_block User-defined 1

lock_value_block User-defined 1

logical name char array[n] 3,5

longword—signed long int

longword_unsigned unsigned long int

mask _byte unsigned char

mask ~ongword unsigned long int

mask _quadword User-defined 1

mask word unsigned short int

null _arg unsigned long int

octaword—signed User-defined 1

octaword_unsigned User-defined 1

page protection unsigned long int

procedure Pointer to function 2

process_id unsigned long int

process_name char array[n] 3,5

quadword—signed User-defined 1

quadword_unsigned User-defined 1

rights holder User-defined 1

1

1 The declaration of auser-defined data structure depends on how the data will be used. Such data
structures can be declared in a variety of ways, each of which is more suitable to specific applications.

2The term pointer refers to several declarations involving pointers. Pointers are declared with special
syntax and associated with the data type of the object being pointed to. This object is often user-de~Cned.

3The term array denotes the syntax of a VAX C array declaration.

4 The data type specified can be changed to any valid VAX C data type.

5 The size of the array must be substituted for n.

A-2s VMS Data Types
VAX C Implementation

Table A-3 (font.) VAX C Implementation

VMS Data Type VAX C Declaration

rights_id

rab

section ~d

section _name

system _access_id

time_name

uic

user_arg

varying_arg

vector_byte~igned

vector_byte_unsigned

vector~ongword_signed

vector~ongword_unsigned

vector_quadword_signed

vector_quadword—unsigned

vector_word_signed

vector_word_unsigned

word_signed

word_unsigned

unsigned long int

#include rab from text library
struct RAB

User-defined 1

char array[n] 3,5

User-defined 1

char array[n] 3,5

unsigned long int

User-defined 1

User-defined 1

char array[n] 3,5

unsigned char array[n] 3,5

long int array[n] 3,5

unsigned long int array[n] 3,5

User-defined 1

User-defined 1

short int array[n] 3,5

unsigned short int array[n] 3,5

short int

unsigned short int

1 The declaration of auser-defined data structure depends on how the data will be used. Such data
structures can be declared in a variety of ways, each of which is more suitable to specific applications.

3The term array denotes the syntax of a VAX C array declaration.

SThe size of the array must be substituted for n.

VMS Data Types A-27
VAX C Implementation

A.4 VAX FORTRAN Implementation

The following table lists VMS data types and their corresponding VAX FORTRAN
data type declarations.

Table A-4 VAX FORTRAN Implementation

VMS Data Type VAX FORTRAN Declaration

access_bit~ames INTEGER*4(2,32)
or
STRUCTURE /access_bit_names/

INTEGER*4 access_name_Ien
INTEGER*4 access_name_buf

END STRUCTURE !access_bit~ames
RECORD /access_bit_names/ my~ames(32)

access_mode BYTE

address INTEGER*4

address~ange INTEGER*4(2)
or

STRUCTURE /address_range/
INTEGER*4 low_address
INTEGER*4 high_address

END STRUCTURE

arg~ist INTEGER*4(n)

ast_procedure EXTERNAL

Boolean LOGICAL*4

byte~igned BY~'E

byte_unsigned BYTE 1

channel INTEGER*2

char~tring CHARACTER*n

complex_number COMPLEX*8
COMPLEX* 16

cond_value INTEGER*4

context INTEGER*4

date time INTEGER*4(2)

device_name CHARACTER*n

ef_cluster_name CHARACTER*n

ef~umber INTEGER*4

1 Unsigned data types are not directly supported by VAX FORTRAN. However, in most cases you can
substitute the signed equivalent so long as you do not exceed the range of the signed data structure.

A-2s VMS Data Types
VAX FORTRAN Implementation

Table A-4 (Cont.) VAX FORTRAN Implementation

VMS Data Type VAX FORTRAN Declaration

exit_handler_block STRUCTURE /exhblock/
INTEGER*4 Oink
INTEGER*4 exit_handler_addr
BYTE(3) /0/
BYTE arg_count
INTEGER*4 cond_value
i
! (optional arguments ...
! .one argument per longword)
i

END STRUCTURE !cntrlblk

RECORD /exhblock/ myexh_block

fab INCLUDE '($FABDEF)'
RECORD /fabdef/ myfab

file protection INTEGER*4

floating point REAL*4
REAL*8
DOUBLE PRECISION
REAL* 16

function code INTEGER*4

identifier INTEGER*4

io~tatus_block STRUCTURE /iosb/
INTEGER*2 iostat, !return status
2 term offset, !Loc. of line terminator
2 terminator, !value of terminator
2 term _size !size of terminator

END STRUCTURE

RECORD /iosb/ my_iosb

VMS Data Types A-29
VAX FORTRAN Implementation

Table A-4 (font.) VAX FORTRAN Implementation

VMS Data Type VAX FORTRAN Declaration

item_list_2

item _list _3

STRUCTURE /itmist/
UNION
MAP
INTEGER*2 buflen,code
INTEGER*4 bufadr

END MAP
MAP
INTEGER*4 end—list /0/

END MAP
END UNION

END STRUCTURE !itmist

RECORD /itmist/ my_itmist_2(n)
(Allocate n records where n is the number item codes plus an
extra element for the end-of-list item)

STRUCTURE /itmist/
UNION
MAP
INTEGER*2 buflen,code
INTEGER*4 bufadr,retlenadr
END MAP
MAP
INTEGER*4 end~ist /0/
END MAP
END UNION

END STRUCTURE !itmist

RECORD /itmist/ my_itmist_2(n)

A-3o VMS Data Types
VAX FORTRAN Implementation

Table A-4 (Copt.) VAX FORTRAN Implementation

VMS Data Type VAX FORTRAN Declaration

item~ist_pair STRUCTURE /itmlist_pair/
UNION
MAP

INTEGER*4 code
INTEGER*4 value

END MAP
MAP

INTEGER*4 end_list /0/
END MAP
END UNION

END STRUCTURE !itmist_pair

RECORD /itmist_pair/ my_itmist_pair(n)
(Allocate n records where n is the number item codes plus an
extra element for the end-of-list item)

item _quota_list STRUCTURE /item _quota_list/
MAP
BYTE quota_name
INTEGER*4 quota value
END MAP
MAP
BYTE end_quota_list
END MAP

END STRUCTURE !item_quota_list

locked INTEGER*4

lock~tatus_block STRUCTURE/lksb/
INTEGER*2 cond_value
INTEGER*2 unused
INTEGER*4 lock_id
BYTE(16)

END STRUCTURE !lock~tatus_lock

lock_value_block BYTE(16)

logical_name CHARACTER*n

longword_signed INTEGER*4

longword_unsigned INTEGER*4 1

mask byte INTEGER*1

mask~ongword INTEGER*4

1 Unsigned data types are not directly supported by VAX FORTRAN. However, in most cases you can
substitute the signed equivalent so long as you do not exceed the range of the signed data structure.

VMS Data Types A-31
VAX FORTRAN Implementation

Table A-4 (Cont.) VAX FORTRAN Implementation

VMS Data Type VAX FORTRAN Declaration

mask _quadword

mask word

null _arg

octaword_signed

octaword_unsigned

page protection

procedure

process_id

process~ame

quadword_signed

quadword_unsigned

rights older

rights_id

rab

section ~d

section _name

system _accessed

time name

uic

user_arg

varying_arg

vector_byte~igned

vector_byte_unsigned

vector_longword_signed

vector~ongword_unsigned

vector_quadword_signed

vector_quadword_unsigned

INTEGER*4(2)

INTEGER*2

%VAL(0)

INTEGER*4(4)

INTEGER*4(4) 1

INTEGER*4

INTEGER*4

INTEGER*4

CHARACTER*n

INTEGER*4(2)

INTEGER*4(2) 1

INTEGER*4(2)
or
STRUCTURE /rights~iolder/

INTEGER*4 rights_id
INTEGER*4 rights~nask

END STRUCTURE !rights_holder

INTEGER*4

INCLUDE '($RABDEF)'
RECORD /rabdef/ myrab

INTEGER*4(2)

CHARACTER*n

INTEGER*4(2)

CHARACTER*23

INTEGER*4

Any longword quantity

INTEGER*4

BYTE(n)

BYTE(n) 1

INTEGER*4(n)

INTEGER*4(n) 1

INTEGER*4(2, n)

INTEGER*4(2,n) 1

1 Unsigned data types are not directly supported by VAX FORTRAN. However, in most cases you can
substitute the signed equivalent so long as you do not exceed the range of the signed data structure.

A-32 VMS Data Types
VAX FORTRAN Implementation

Table A-4 (font.) VAX FORTRAN Implementation

VMS Data Type VAX FORTRAN Declaration

vector_word_signed INTEGER*2(n)

vector_word_unsigned INTEGER*2(n) 1

word signed INTEGER*2(n)

word unsigned INTEGER*2(n) 1

1 Unsigned data types are not directly supported by VAX FORTRAN. However, in most cases you can
substitute the signed equivalent so long as you do not exceed the range of the signed data structure.

A.5 VAX MACRO Implementation

The following table lists VMS data types and their corresponding VAX MACRO data
type declarations.

Table A-5 VAX MACRO Implementation

VMS Data Type VAX MACRO Declaration

access_bit_names .ASCID /name~or_bit0/
.ASCID /name_for_bitl/

.ASCID /name_for_bit31 /

access_mode .BYTE PSL$C_xxxx

address .ADDRESSS virtual_address

address~ange .ADDRESS start_address,end_address

arg~ist .LONG n_args, argl, arg2,...

ast_procedure .ADDRESS ast_procedure

Boolean .LONG 1 or .LONG 0

byte_signed .SIGNED_BYTE byte value

byte unsigned .BYTE byte_value

channel .WORD channel umber

char~tring .ASCID /string/

complex umber NA

cond_value .LONG cond_value

context .LONG 0

date time .QUAD date time

VMS Data Types A-33
VAX MACRO Implementation

Table A-5 (Cont.) VAX MACRO Implementation

VMS Data Type VAX MACRO Declaration

device~ame .ASCID /ddcu:/

ef_cluster~ame .ASCID /ef_cluster_name/

ef~umber .LONG ef_number

exit_handler_block .LONG 0
.ADDRESS exit~andler~outine
.LONG 1
.ADDRESS status
STATUS: .BLKL 1

fab MYFAB: $FAB

file protection .WORD prot_value

floating point .FLOAT, .G_FLOAT, or .H_FLOAT

function code .LONG code!mask

identifier .ADDRESSS virtual address

io~tatus_block .QUAD 0

item moist _2 .WORD component _length
.WORD item code
.ADDRESS component address

item_list_3 .WORD buffer_length
.WORD item_code
.ADDRESS buffer~ddress
.ADDRESS return_length_address

item~ist_pair .LONG item code
.LONG data

item_quota~ist .BYTE PQL$~cxxx
.LONG value~or_quota
.BYTE pgl$_listend

lock ~d .LONG lock ~d

lock~tatus_block .QUAD 0

lock_value_block .BLKB 16

logical _I'tame .ASCID /logical_name/

longword_signed .LONG value

longword_unsigned .LONG value

mask _byte .BYTE mask _byte

mask~ongword .LONG mask~ongword

mask _quadword .QUAD mask _quadword

mask word .WORD mask word

A-34 VMS Data Types
VAX MACRO Implementation

Table A-5 (font.) VAX MACRO Implementation

VMS Data Type VAX MACRO Declaration

null _arg

octaword_signed

octaword_unsigned

page protection

procedure

process_id

process~ame

quadword_signed

quadworcLunsigned

rights_holder

rights_id

rab

section _id -

section _name

system _accessed

time_name

uic

user_arg

varying_arg

vector_byte~igned

vector_byte_unsigned

vector~ongword~igned

vector~ongword_unsigned

vector_quadword_signed

vector_quadword_unsigned

vector_word_signed

vector_word_unsigned

word_signed

word unsigned

.LONG 0

NA

.00TA value

.LONG page protection

.ADDRESS procedure

.LONG process_id

.ASCID /process~ame%

NA

.QUAD value

.LONG identifier, access~ight_bitmask

.LONG rights_id

MYRAB: $RAB

.LONG sec$k~natXXX, version_number

.ASCID /section_name/

.QUAD system_access_id

.ASCID /dd-mmm-yyyy:hh:mm:ss.cc/

.LONG uic

.LONG data

Dependent upon application.

.SIGNED_BYTE vall,val2,...va1N

.BYTE vall,val2,...valN

.LONG vall,val2,...valN

.LONG vall,val2,...va1N

NA

.QUAD wall

.QUAD va12

.QUAD va1N

.SIGNED_WORD vall,val2,...valN

.WORD vall,val2,...valN

.SIGNED_WORD value

.WORD value

VMS Data Types A-35
VAX PASCAL Implementation

A.6 VAX PASCAL Implementation

The following table lists VMS data types and their corresponding VAX PASCAL data
type declarations.

Table A-6 VAX PASCAL Implementation

VMS Data Type VAX PASCAL Declaration

access_bit_names PACKED ARRAY [1..32] OF [QUAD] RECORD END; 1,6

access mode [BYTE] 0..3; 6

address UNSIGNED;

address~ange PACKED ARRAY [1..2] OF UNSIGNED; 6

arg_list PACKED ARRAY [l..n] OF UNSIGNED; 6

ast_procedure UNSIGNED;

boolean BOOLEAN; 3

byte~igned [BYTE] -128..127; 6

byte unsigned [BYTE] 0..255; 6

channel [WORD] 0..65535; 6

char~tring [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

complex umber [LONG(2)] RECORD END; * F loating Complex * 1,6

[QUAD(2)] RECORD END; * D/G _Floating Complex
[OCTA(2)] RECORD END; * H~loating Complex

cond_value UNSIGNED;

context UNSIGNED;

date time [QUAD] RECORD END; 1,6

device~ame [CLASS_SJ PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

ef_cluster~ame [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

ef~umber UNSIGNED;

exit_handler_block PACKED ARRAY [l..n] OF UNSIGNED; 6

1 This type is not available in VAX PASCAL and an empty record has been inserted. To manipulate
the contents, declare with explicit field components. If you pass an empty record as a parameter to a
PASCAL routine, you must use the VAR keyword.

3 VAX PASCAL allocates a byte for a BOOLEAN variable. Use the [LONG] attribute when passing to
routines that expect a longword.

4 This parameter declaration accepts VARYING OF CHAR or PACKED ARRAY OF CHAR and produces
the CLASS_S descriptor required by system services.

6VAX PASCAL expects either a type identifier or conformant schema. Declare this under the TYPE
declaration and use the type identifier in the formal parameter declaration.

A-36 VMS Data Types
VAX PASCAL Implementation

Table A-6 (Copt.) VAX PASCAL Implementation

VMS Data Type VAX PASCAL Declaration

fab FAB$TYPE; 5

file protection [WORD] RECORD END; 1,6

floating point REAL; { F_Floating }
SINGLE; { F_Floating }

DOUBLE; { D~loating/Gloating } 2
QUADRUPLE; { H _Floating }

function _code UNSIGNED;

identifier UNSIGNED;

io~tatus_block [QUAD] RECORD END; 1,6

item_list_2 PACKED ARRAY [1..n] OF PACKED RECORD 6

CASE INTEGER OF
1:
FIELDI : [WORD] 0..65535;
FIELD2: [WORD] 0..65535;
FIELD3 : UNSIGNED);
2:

item_list_3

TERMINATOR :UNSIGNED);
END;

PACKED ARRAY [l..n] OF PACKED RECORD 6

CASE INTEGER OF
1:
FIELDI : [WORD] 0..65535;
FIELD2: [WORD] 0..65535;
FIELD3 : UNSIGNED;
FIELD4 : UNSIGNED);
2:
TERMINATOR :UNSIGNED);
END;

1 This type is not available in VAX PASCAL and an empty record has been inserted. To manipulate
the contents, declare with explicit field components. If you pass an empty record as a parameter to a
PASCAL routine, you must use the VAR keyword.

2 If the [G_FLOATING] attribute is used in compiling, double-precision variables and expressions are
represented in Gloating format. The /GLOATING command line qualifier can also be used. Both
methods default to no G—floating.

5The program must inherit the STARLET environment file located in SYS$LIBRARY:STARLET.PEN.

6VAX PASCAL expects either a type identifier or conformant schema. Declare this under the TYPE
declaration and use the type identifier in the formal parameter declaration.

VMS Data Types A-37
VAX PASCAL Implementation

Table A-6 (Cont.) VAX PASCAL Implementation

VMS Data Type VAX PASCAL Declaration

item_list_pair PACKED ARRAY [l..n] OF PACKED RECORD 6

CASE INTEGER OF
1:
FIELD 1 : INTEGER;
FIELD2 : INTEGER);
2:
TERMINATOR :UNSIGNED);
END;

item_quota_list PACKED ARRAY [1..n] OF PACKED RECORD 6

CASE INTEGER OF
1: (
QUOTA~IAME : [BYTE] 0..255;
QUOTA_VALUE: UNSIGNED);
2:
QUOTA_TERM : [BYTE] 0..255);
END;

lock_id UNSIGNED;

lock~tatus_block [BYTE(24)] RECORD END; 1,6

lock_value_block [BYTE(16)] RECORD END; 1,6

logical name [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

longword_signed INTEGER;

longworcLunsigned UNSIGNED;

mask byte [BYTE,UNSAFE] PACKED ARRAY [1..8] OF BOOLEAN; 6

mask~ongword [LONG,UNSAFE] PACKED ARRAY [1..32] OF BOOLEAN; 6

mask_quadword [QUAD,UNSAFE] PACKED ARRAY [1..64] OF BOOLEAN; 6

mask word [WORD,UNSAFE] PACKED ARRAY [1..16] OF BOOLEAN; 6

null _arg UNSIGNED;

1 This type is not available in VAX PASCAL and an empty record has been inserted. To manipulate

the contents, declare with explicit field components. If you pass an empty record as a parameter to a

PASCAL routine, you must use the VAR keyword.

4This parameter declaration accepts VARYING OF CHAR or PACKED ARRAY OF CHAR and produces

the CLASS_S descriptor required by system services.

6VAX PASCAL expects either a type identifier or conformant schema. Declare this under the TYPE

declaration and use the type identifier in the formal parameter declaration.

A-38 VMS Data Type
VAX PASCAL Implementation

Table A-6 (font.) VAX PASCAL Implementation

VMS Data Type VAX PASCAL Declaration

octaword_signed

octaword_unsigned

page protection

procedure

processed

process~ame

quadword_signed

quadworcL_unsigned

rights older

rights_id

rab

section ~d

section game

system _accessed

time_name

U1C

user_arg

varying_arg

vector_byte~igned

vector_byte_unsigned

vector~ongword_signed

vector~ongword_unsigned

vector_quadword_signed

vector_quadword_unsigned

[OCTA] RECORD END; 1,6

[OCTA] RECORD END; 1,6

[LONG] 0..7; 6

UNSIGNED;

UNSIGNED;

[CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

[QUAD] RECORD END; 1,6

[QUAD] RECORD END; 1,6

[QUAD] RECORD END; 1,6

UNSIGNED;

RAB$TYPE; 5

[QUAD] RECORD END; 1,6

[CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

[QUAD] RECORD END; 1,6

[CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR; 4

UNSIGNED;

[UNSAFE] UNSIGNED;

[UNSAFE,REFERENCE] PACKED ARRAY [L..U:INTEGER]
OF [BYTE] 0..255;

PACKED ARRAY [l..n] OF [BYTE] -128..127; 6

PACKED ARRAY [l..n] OF [BYTE] 0..255; 6

PACKED ARRAY [l..n] OF INTEGER; 6

PACKED ARRAY [l..n] OF UNSIGNED; 6

PACKED ARRAY [l..n] OF [QUAD] RECORD END; 1,6

PACKED ARRAY [1..n] OF [QUAD] RECORD END; 1,6

1 This type is not available in VAX PASCAL and an empty record has been inserted. To manipulate
the contents, declare with explicit field components. If you pass an empty record as a parameter to a
PASCAL routine, you must use the VAR keyword.

4 This parameter declaration accepts VARYING OF CHAR or PACKED ARRAY OF CHAR and produces
the CLASS_S descriptor required by system services.

5 The program must inherit the STARLET environment file located in SYS$LIBRARY:STARLET.PEN.

6VAX PASCAL expects either a type identifier or conformant schema. Declare this under the TYPE
declaration and use the type identifier in the formal parameter declaration.

VMS Data Types A-39
VAX PASCAL Implementation

Table A-6 (font.) VAX PASCAL Implementation

VMS Data Type VAX PASCAL Declaration

vector_word_signed PACKED ARRAY [l..n] OF [WORD] -32768..32767; 6

vector_worcLunsigned PACKED ARRAY [l..n] OF [WORD] 0..65535; 6

word_signed [WORD] -32768..32767; 6

word unsigned [WORD] 0..65535; 6

6VAX PASCAL expects either a type identifier or conformant schema. Declare this under the TYPE
declaration and use the type identifier in the formal parameter declaration.

A.7 VAX PL/I implementation

The following table lists VMS data types and their corresponding VAX PL/I data
type declarations.

Table A-7 VAX PL/I Implementation

VMS Data Type VAX PL/I Declaration

access_bit~ames 1 ACCESS_BIT~IAMES(32),
2 LENGTH FIXED BINARY(15),
2 DTYPE FIXED BINARY(7) INITIAL((32)DSC$K_
DTYPE _T),
2 CLASS FIXED BINARY(7) INITIAL((32)DSC$K_
CLASS_S),

2 CHAR_l'TR POINTER; 6

The length of the LENGTH field in each element of
the array should correspond to the length of a string
of characters pointed to by the CHAR_I'TR field. The
constants DST$K_CLASS_S and DST$K_DTYPE_T
can be used by including the module $DSCDEF from
PLISTARLET or by declaring it GLOBALREF FIXED
BINARY(31) VALUE.

6Routines declared in PLISTARLET often use ANY so the user is free to declare the data structure in

the most convenient way for her application. ANY may be necessary in some cases since PL/I does not
allow parameters declarations for some data types used by VMS. (In particular, PL/I parameters with

arrays passed by reference may not be declared to have nonconstant bounds.)

A-4o VMS Data Types
VAX PL/I Implementation

Table A-7 (Cont.) VAX PL/I Implementation

VMS Data Type VAX PL/I Declaration

access_mode FIXED BINARY(7)
(The constants for this type— PSL$C_ICERNEL, PSL$C_
EXEC, PSLC_SUPER, PSLC_USER—are declared in
module $PSLDEF in PLISTARLET.)1

address POINTER

address_range (2) POINTER 6

arg~ist 1 ARG _LIST BASED,
2 ARGCOUNT FIXED BINARY(31),
2 ARGUMENT (X REFER (ARGCOUNT))

POINTER; 6

If the arguments are passed by value, it may be
appropriate to change the type of the ARGUMENT field
of the structure. Alternatively, you can use the POSINT,
INT, or UNSPEC built-in functions/pseudovariables to
access the data. X should be an expression with a value
in the range 0-255 at the time the structure is allocated.

ast_procedure PROCEDURE or ENTRY 2

boolean BIT ALIGNED 1

byte~igned FIXED BINARY(7)

byte unsigned FIXED BINARY(7) 3

channel FIXED BINARY(15)

char_string CHARACTER(n) 4

1 System routines are often written so the parameter passed occupies more storage than the object
requires. For example, some system services have parameters that return a bit value as a longword.
These variables must be declared BIT(32) ALIGNED (not BIT(n) ALIGNED) so adjacent storage is not
overwritten by return values or used incorrectly as input. (Longword parameters are always declared
BIT(32) ALIGNED.)

2 AST procedures and those passed as parameters of type ENTRY VALUE or ANY VALUE must be
external procedures. This applies to all system routines which take procedure parameters.

3 This is actually an unsigned integer. This declaration is interpreted as a signed number; use the
POSINT function to determine the actual value.

4 System services require CHARACTER string representation for parameters. Most other system routines
allow either CHARACTER or CHARACTER VARYING. For parameter declarations, n should be an
asterisk.

6Routines declared in PLISTARLET often use ANY so the user is free to declare the data structure in
the most convenient way for her application. ANY may be necessary in some cases since PL/I does not
allow parameters declarations for some data types used by VMS. (In particular, PL/I parameters with
arrays passed by reference may not be declared to have nonconstant bounds.)

VMS Data Types A-41
VAX PL/I Implementation

Table A-7 (Cont.) VAX PL/I Implementation

VMS Data Type VAX PL/I Declaration

complex_number (2) FLOAT BINARY(n) (See floating_point for values
of n.)

cond_value See module STS$VALUE in PLISTARLET 6

context FIXED BINARY(31)

date time BIT(64) ALIGNED 5

device_name CHARACTER(n) 4

ef_cluster_name CHARACTER(n) 4

ef_number FIXED BINARY(31)

exit_handler_block 1 EXIT_HANDLER_BLOCK BASED,
2 FORWARD_LINK POINTER,
2 HANDLER POINTER,

2 ARGCOUNT FIXED BINARY(31),
2 ARGUMENT (n REFER

(ARGCOUNT)) POINTER; 6

Replace n with an expression that will yield a value
between 0 and 255 at the time the structure is allocated.

fab See module $FABDEF in PLISTARLET 6

file protection BIT(16) ALIGNED 1

1 System routines are often written so the parameter passed occupies more storage than the object
requires. For example, some system services have parameters that return a bit value as a longword.
These variables must be declared BIT(32) ALIGNED (not BIT(n) ALIGNED) so adjacent storage is not
overwritten by return values or used incorrectly as input. (Longword parameters are always declared
BIT(32) ALIGNED.)

4 System services require CHARACTER string representation for parameters. Most other system routines
allow either CHARACTER or CHARACTER VARYING. For parameter declarations, n should be an
asterisk.

5 VAX PL/I does not support FIXED BINARY numbers with precisions greater than 32. To use larger
values, declare variables to be BIT variables of the appropriate size and use the POSINT and SUBSTR
bits as necessary to access the values, or declare the item as a structure. The RTL routines LIB$ADDX
and LIB$SUBX may be useful if you need to perform arithmetic on these types.

6 Routines declared in PLISTARLET often use ANY so the user is free to declare the data structure in
the most convenient way for her application. ANY may be necessary in some cases since PL/I does not
allow parameters declarations for some data types used by VMS. (In particular, PL/I parameters with
arrays passed by reference may not be declared to have nonconstant bounds.)

A-42 VMS Data Types
VAX PL/I Implementation

Table A-7 (font.) VAX PL/I Implementation

VMS Data Type VAX PL/I Declaration

floating point FLOAT BINARY(n)
The values for n are as follows:
1 <= n <= 24 - F floating
25 <= n <= 53 - D floating
25 <= n <= 53 - G floating (with /G _FLOAT)
54 <= n <= 113 - H floating

function code BIT(32) ALIGNED

identifier POINTER

io~tatus_block Since there are different formats for I/O status blocks
for various system services, different definitions will be
appropriate for different uses. Some of the common
formats are shown here. 6

/* See p. SYS-229 */
1 IOSB_SYS$GETSYI,

2 STATUS FIXED BINARY(31),
2 RESERVED FIXED BINARY(31);

/* See fig. 8-16 in Part I of the I/O User's Guide */
1 IOSB_TTDRIVER_A,

2 STATUS FIXED BINARY(15),
2 BYTE_COUNT FIXED BINARY(15),
2 MBZ FIXED BINARY(31) INITIAL(0);

/* See fig. 8-16 in Part I of the I/O User's Guide */
1 IOSB_TTDRIVER_B,

2 STATUS FIXED BINARY(15),
2 TRANSMIT_SPEED FIXED BINARY(7),
2 RECEIVE _SPEED FIXED BINARY(7),
2 CR_FILL FIXED BINARY(7),
2 LF_FILL FIXED BINARY(7),
2 PARITY~LAGS FIXED BINARY(7),
2 MBZ FIXED BINARY(7) INITIAL(0);

6Routines declared in PLISTARLET often use ANY so the user is free to declare the data structure in
the most convenient way for her application. ANY may be necessary in some cases since PL/I does not
allow parameters declarations for some data types used by VMS. (In particular, PL/I parameters with
arrays passed by reference may not be declared to have nonconstant bounds.)

VMS Data Types A-43
VAX PL/I Implementation

Table A-7 (Cont.) VAX PL/I Implementation

VMS Data Type VAX PL/I Declaration

item _list _2 1 ITEM_LIST_2,
2 ITEM(SIZE),

3 COMPONENT_LENGTH FIXED BINARY(15),

3 ITEM_CODE FIXED BINARY(15),
3 COMPONENT~DDRESS POINTER,

2 TERMINATOR FIXED BINARY(31) INITIAL(0);6

Replace SIZE with the number of items you want.

item~ist_3 1 ITEM_LIST_3,
2 ITEM(SIZE),

3 BUFFER_LENGTH FIXED BINARY(15),
3 ITEM_CODE FIXED BINARY(15),
3 BUFFER~DDRESS POINTER,
3 RETURN _LENGTH POINTER,

2 TERMINATOR FIXED BINARY(31) INITIAL(0);6

Replace SIZE with the number of items you want.

item _list _pair 1 ITEM _LIST_I'AIR,
2 ITEM(SIZE),

3 ITEM _CODE FIXED BINARY(31),
3 ITEM UNION,

4 INTEGER FIXED BINARY(31),
0 REAL FLOAT BINARY(24),

2 TERMINATOR FIXED BINARY(31) INITIAL(0);6

Replace SIZE with the number of items you want.

item _quota_list 1 ITEM _QUOTA _LIST,
2 QUOTA(SIZE),

3 NAME FIXED BINARY(7),
3 VALUE FIXED BINARY(31),

2 TERMINATOR FIXED BINARY(7)

INITIAL(PQL$_LISTEND); 6

Replace SIZE with the number of quota entries that you
want to use. The constant PQL$_LISTEND can be used
by including the module $PQLDEF from PLISTARLET or
by declaring it GLOBALREF FIXED BINARY(31) VALUE.

locked FIXED BINARY(31)

6Routines declared in PLISTARLET often use ANY so the user is free to declare the data structure in

the most convenient way for her application. ANY may be necessary in some cases since PL/I does not

allow parameters declarations for some data types used by VMS. (In particular, PL/I parameters with

arrays passed by reference may not be declared to have nonconstant bounds.)

A-44 VMS Data Types
VAX PL/I Implementation

Table A-7 (font.) VAX PL/I Implementation

VMS Data Type VAX PL/I Declaration

lock~tatus_block 1 LOCK_STATUS_BLOCK,
2 STATUS_CODE FIXED BINARY(15),
2 RESERVED FIXED BINARY(15),

2 LOCKED FIXED BINARY(31); 6

lock_value_block The declaration of an item of this structure will depend
on the use of the structure, since VMS does not interpret
the value. 6

logical _name CHARACTER(n) 4

longword_signed FIXED BINARY(31)

longword_unsigned FIXED BINARY(31) 3

mask byte BIT(8) ALIGNED

mask_longword BIT(32) ALIGNED

mask_quadword BIT(64) ALIGNED

mask word BIT(16) ALIGNED

null _arg Ornit the corresponding parameter in the call. For
example, FOO(A„B) would omit the second parameter.

octaword_signed BIT(128) ALIGNED 5

octaword_unsigned BIT(128) ALIGNED 3,5

page protection FIXED BINARY(31) (The constants for this type are
declared in module $PRTDEF in PLISTARLET.)

procedure PROCEDURE or ENTRY 2

processed FIXED BINARY(31)

2 AST procedures and those passed as parameters of type ENTRY VALUE or ANY VALUE must be
external procedures. This applies to all system routines which take procedure parameters.

3 This is actually an unsigned integer. This declaration is interpreted as a signed number; use the
POSINT function to determine the actual value.

4 System services require CHARACTER string representation for parameters. Most other system routines
allow either CHARACTER or CHARACTER VARYING. For parameter declarations, n should be an
asterisk.

5 VAX PL/I does not support FIXED BINARY numbers with precisions greater than 32. To use larger
values, declare variables to be BIT variables of the appropriate size and use the POSINT and SUBSTR
bits as necessary to access the values, or declare the item as a structure. The RTL routines LIB$ADDX
and LIB$SUBX may be useful if you need to perform arithmetic on these types.

6Routines declared in PLISTARLET often use ANY so the user is free to declare the data structure in
the most convenient way for her application. ANY may be necessary in some cases since PL/I does not
allow parameters declarations for some data types used by VMS. (In particular, PL/I parameters with
arrays passed by reference may not be declared to have nonconstant bounds.)

VMS Data .Types A-45
VAX PL/I Implementation

Table A-7 (font.) VAX PL/I Implementation

VMS Data Type VAX PL/I Declaration

process~ame

quadword—signed

quadword—unsigned

rights older

rights_id

rab

section _id

section _name

system ~ccess~d

time name

uic

user_arg

varying_arg

vector_byte~igned

vector_byte_unsigned

vector~ongword~igned

vector~ongword_unsigned

vector_quadword—signed

CHARACTER(n) 4

BIT(64) ALIGI~TED 5

BIT(64) ALIGNED 3,5

1 RIGHTS_HOLDER,
2 RIGHTS_ID FIXED BINARY(31),

2 ACCESS~ZIGHTS BIT(32) ALIGNED; 6

FIXED BINARY(31)

See module $RABDEF in PLISTARLET 6

BIT(64) ALIGNED

CHARACTER(n} 4

BIT(64) ALIGNED

CHARACTER(n) 4

FIXED BINARY(31)

ANY

ANY with OPTIONS(VARIABLE) on the routine
declaration.

(n) FIXED BINARY(7) ~

(n) FIXED BINARY(7) 3 ~ ~

(n) FIXED BINARY(31) ~

(n) FIXED BINARY(31) 3~~

(n) BIT(64) ALIGNED 5~~

3 This is actually an unsigned integer. This declaration is interpreted as a signed number; use the
POSINT function to determine the actual value.

4 System services require CHARACTER string representation for parameters. Most other system routines
allow either CHARACTER or CHARACTER VARYING. For parameter declarations, n should be an
asterisk.

5 VAX PL/I does not support FIXED BINARY numbers with precisions greater than 32. To use larger
values, declare variables to be BI1' variables of the appropriate size and use the POSINT and SUBSTR
bits as necessary to access the values, or declare the item as a structure. The RTL routines LIB$ADDX
and LIB$SUBX may be useful if you need to perform arithmetic on these types.

6Routines declared in PLISTARLET often use ANY so the user is free to declare the data structure in
the most convenient way for her application. ANY may be necessary in some cases since PL/I does not
allow parameters declarations for some data types used by VMS. (In particular, PL/I parameters with
arrays passed by reference may not be declared to have nonconstant bounds.)

For parameter declarations, the bounds must be constant for arrays passed by reference. For arrays
passed by descriptor, *s should be used for the array extent instead. (VMS system routines almost always
take arrays by reference.)

A-46 VMS Data Types
VAX PL/I Implementation

Table A-7 (Cont.) VAX PL/I Implementation

VMS Data Type VAX PL/I Declaration

vector_quadword—unsigned

vector word—signed

vector_word_unsigned

word_signed

worcL_unsigned

(n) BIT(64) ALIGNED 3,5,7

(n) FIXED BINARY(15) 7

(n) FIXED BINARY(15) 3, 7

FIXED BINARY(15)

FIXED BINARY(15) 3

3 This is actually an unsigned integer. This declaration is interpreted as a signed number; use the
POSINT function to determine the actual value.

5 VAX PL/I does not support FIXED BINARY numbers with precisions greater than 32. To use larger
values, declare variables to be BIT variables of the appropriate size and use the POSINT and SUBSTR
bits as necessary to access the values, or declare the item as a structure. The RTL routines LIB$ADDX
and LIB$SUBX may be useful if you need to perform arithmetic on these types.

7For parameter declarations, the bounds must be constant for arrays passed by reference. For arrays
passed by descriptor, *s should be used for the array extent instead. (VMS system routines almost always
take arrays by reference.)

NOTE: All system services and many system constants and data structures are
declared in PLISTARLET.TLB. For examples of using system services, see either the
VAX-11 PL/1 User's Guide Or Programming in VAX-11 PL/I.

Important note: While the current version of VAX PL/I Version 2 does not support
unsigned fixed binary numbers or fixed binary numbers with a precision greater than
31, it is possible that future versions may support these features. If VAX PL/I is
extended to support these types, it is possible that declarations in PLISTARLET will
change to use the new data types where appropriate.

Index

B
BLISS implementation table

See Implementation table

C
C implementation table

See Implementation table

D
Data type

VMS
definition of, A-1
description of, A-2 to A-21

F
FORTRAN implementation table

See Implementation table

i

Implementation table
VAX BLISS, A-21
VAX C, A-24
VAX FORTRAN, A-27
VAX MACRO, A-32
VAX PASCAL, A-35
VAX PL/I, A-39
VMS Usage, A-2

M
MACRO implementation table

See Implementation table

P
PASCAL implementation table

See Implementation table
PL/I implementation table

See Implementation table

V
VAX language implementation table

See Implementation table
VMS Usage implementation table

See Implementation table

MicroVMS
Workstation Release Notes

AA—HR84A—TN

READER'S
COMMENTS

Note: This form is for document comments only.
DIGITAL will use comments submitted on this form at
the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

❑ Assembly language programmer
❑ Higher-level language programmer
❑ Occasional programmer (experienced)
D User with little programming experience
❑ Student programmer
❑ Other (please specify)

Name Date

Organization

Street

City State Zip Code
or Country

— — — — — Do Not Tear - Foid Here and Tape

d ~980a0 II

— — — — — Do Not Tear -Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~I~~II~~~~~I~II

No Postage
Necessary

if Mailed in the
United States

'
C

ut
 A

lo
n
g
 D

o
tt

e
d

 L
in

e

MicroVMS
Workstation Release Notes

AA—HR84A—TN

READER'S
COMMENTS

Note: This form is for document comments only.
DIGITAL will use comments submitted on this form at
the company's discretion. If you require a written reply
and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

~ Assembly language programmer
~ Higher-level language programmer
D Occasional programmer (experienced)
O User with little programming experience
~ Student programmer
D Other (please specify)

Name Date

Organization

Street

City State Zip Code
or Country

— — — — — Do Not Tear -Fold Here and Tape — — — — — — — — — — —

d ~9~~a0 ~ II

-- — — — — Do Not Tear -Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

ill~~~~~ll~ll~~~~ll~~~~l~ll~l~~l~l~~l~l~~ll~~~~~l~ll

No Postage
Necessary

if Mailed in the
United States

C
ut

 A
lo

n
g
 U

c►
tte

d
Li

ne

